Table of Contents
Mechanism design
Week2
finding_the_grashof_condition_using_matlab_2_.pdf
module_1-part_1_kinematics_fundamentals_terminology._dof_v1_4_.pdf
module_1-part_2_kinematics_fundamentals_inversion_9_.pdf
module_1-part_3_grashof_condition_9_.pdf
Week3
module_2_part_1._graphical_linkage_synthesis_dimensional_synthesis._function_generation_2_.pdf
module_2_part_2._graphical_linkage_synthesis_motion_generation_2_.pdf
module_2_part_3._graphical_linkage_synthesis_quick_returns_6_.pdf
Week4
kinematics_design_position_analysis_using_newton_raphson_n-r_method_v2.pdf
module_3-position_analysis_of_linkages_graphical_analytical_v2_2_.pdf
Week5
velocity_analysis_of_a_fourbar_mechanism_using_ptc_creo_3_.pdf
module_4_part_1._velocity_analysis_of_linkages_graphical_method_3_.pdf
module_4_part_2._velocity_analysis_of_linkages_velocity_polygon._an_example_3_.pdf
module_4_part_3._velocity_analysis_of_linkages_analytical_method_3_.pdf
Acceleration analysis of linkages
Método | Tipo de Función | Continuidad de Jerk | Suavidad del Movimiento | Complejidad | Uso Industrial | Ventajas Clave | Aplicaciones Típicas |
---|---|---|---|---|---|---|---|
🔶 Cicloidal (Cycloidal) | Trigonométrica (seno) | ✔️ Muy buena | ✔️ Alta | Media | ✔️ Muy común en precisión | Mínima aceleración al inicio y final del trazo | Relojes, robots, pick-and-place, microactuadores |
🔷 Polinomio Quíntico | Polinómica grado 5 | ✔️ Excelente | ✔️ Muy alta | Alta | ✔️ Alta en industria avanzada | Suave, flexible, control sobre condiciones en extremos | CNC, automotriz, control numérico, CAD/CAM |
Armónica (Harmonic) | Trigonométrica (coseno) | ✖ Discontinuo | ✔️ Alta | Baja | ✔️ Común en alta velocidad | Movimiento suave y simétrico | Máquinas herramienta, motores paso a paso |
Aceleración Constante | Polinómica (grado 2) | ✖ Discontinua | ⚠️ Media | Muy baja | ✔️ En sistemas de bajo costo | Fácil de calcular y fabricar | Prensas mecánicas, sistemas neumáticos simples |
Velocidad Constante | Lineal | ❌ Muy mala | ❌ Baja | Muy baja | ❌ Rara vez usada | Simple, pero causa choques fuertes | Sistemas muy lentos, automatización antigua |
Polinomio Séptico | Polinómica grado 7 | ✔️ Excelente | ✔️ Máxima | Muy alta | ⚠️ Usado en investigación | Control adicional sobre jerk y sobreajustes | Investigación avanzada, diseño experimental de levas |
Method | Function Type | Jerk Continuity | Motion Smoothness | Complexity | Industrial Use | Key Advantages | Typical Applications |
---|---|---|---|---|---|---|---|
🔶 Cycloidal | Trigonometric (sine) | ✔️ Very good | ✔️ High | Medium | ✔️ Widely used in precision | Minimal acceleration at the start and end of the stroke | Watches, robots, pick-and-place, microactuators |
🔷 Quintic Polynomial | 5th-degree polynomial | ✔️ Excellent | ✔️ Very high | High | ✔️ Used in advanced industry | Smooth, flexible, control over boundary conditions | CNC, automotive, numerical control, CAD/CAM |
Harmonic | Trigonometric (cosine) | ✖ Discontinuous | ✔️ High | Low | ✔️ Common in high-speed systems | Smooth and symmetric motion | Machine tools, stepper motors |
Constant Acceleration | Polynomial (2nd degree) | ✖ Discontinuous | ⚠️ Medium | Very low | ✔️ In low-cost systems | Easy to calculate and manufacture | Mechanical presses, simple pneumatic systems |
Constant Velocity | Linear | ❌ Very poor | ❌ Low | Very low | ❌ Rarely used | Simple, but causes strong impacts | Very slow systems, old automation |
Septic Polynomial | 7th-degree polynomial | ✔️ Excellent | ✔️ Maximum | Very high | ⚠️ Used in research | Additional control over jerk and overshoot | Advanced research, experimental cam profile design |
Cam-Follower Systems – Part #1
Cam-Follower Systems – Part #2
Drawing the CamProfile – Part #3
Cam-Follower Systems – Part #4
Gears and Gear Trains – Part #1
Planetary Gear Trains – Part #2
Design of a CAM Profile Using Quintic Polynomial (SVAJ)
Cycloidal Motion of a Cam-Follower System