User Tools

Site Tools


airspace:mechanism_design:academic_mechanism_design

Table of Contents

Mechanism design



Week2

Week3

Week4

Week5



velocity_analysis_of_a_fourbar_mechanism_using_ptc_creo_3_.pdf

module_4_part_1._velocity_analysis_of_linkages_graphical_method_3_.pdf

module_4_part_2._velocity_analysis_of_linkages_velocity_polygon._an_example_3_.pdf

module_4_part_3._velocity_analysis_of_linkages_analytical_method_3_.pdf






Acceleration Polygon

Acceleration analysis of linkages

Acceleration_exc01 V1.

Acceleration_exc01 V2.



Cam-Follower Kinematics

Método Tipo de Función Continuidad de Jerk Suavidad del Movimiento Complejidad Uso Industrial Ventajas Clave Aplicaciones Típicas
🔶 Cicloidal (Cycloidal) Trigonométrica (seno) ✔️ Muy buena ✔️ Alta Media ✔️ Muy común en precisión Mínima aceleración al inicio y final del trazo Relojes, robots, pick-and-place, microactuadores
🔷 Polinomio Quíntico Polinómica grado 5 ✔️ Excelente ✔️ Muy alta Alta ✔️ Alta en industria avanzada Suave, flexible, control sobre condiciones en extremos CNC, automotriz, control numérico, CAD/CAM
Armónica (Harmonic) Trigonométrica (coseno) ✖ Discontinuo ✔️ Alta Baja ✔️ Común en alta velocidad Movimiento suave y simétrico Máquinas herramienta, motores paso a paso
Aceleración Constante Polinómica (grado 2) ✖ Discontinua ⚠️ Media Muy baja ✔️ En sistemas de bajo costo Fácil de calcular y fabricar Prensas mecánicas, sistemas neumáticos simples
Velocidad Constante Lineal ❌ Muy mala ❌ Baja Muy baja ❌ Rara vez usada Simple, pero causa choques fuertes Sistemas muy lentos, automatización antigua
Polinomio Séptico Polinómica grado 7 ✔️ Excelente ✔️ Máxima Muy alta ⚠️ Usado en investigación Control adicional sobre jerk y sobreajustes Investigación avanzada, diseño experimental de levas
Method Function Type Jerk Continuity Motion Smoothness Complexity Industrial Use Key Advantages Typical Applications
🔶 Cycloidal Trigonometric (sine) ✔️ Very good ✔️ High Medium ✔️ Widely used in precision Minimal acceleration at the start and end of the stroke Watches, robots, pick-and-place, microactuators
🔷 Quintic Polynomial 5th-degree polynomial ✔️ Excellent ✔️ Very high High ✔️ Used in advanced industry Smooth, flexible, control over boundary conditions CNC, automotive, numerical control, CAD/CAM
Harmonic Trigonometric (cosine) ✖ Discontinuous ✔️ High Low ✔️ Common in high-speed systems Smooth and symmetric motion Machine tools, stepper motors
Constant Acceleration Polynomial (2nd degree) ✖ Discontinuous ⚠️ Medium Very low ✔️ In low-cost systems Easy to calculate and manufacture Mechanical presses, simple pneumatic systems
Constant Velocity Linear ❌ Very poor ❌ Low Very low ❌ Rarely used Simple, but causes strong impacts Very slow systems, old automation
Septic Polynomial 7th-degree polynomial ✔️ Excellent ✔️ Maximum Very high ⚠️ Used in research Additional control over jerk and overshoot Advanced research, experimental cam profile design

Cam-Follower Systems – Part #1


Cam-Follower Systems – Part #2


Drawing the CamProfile – Part #3


Cam-Follower Systems – Part #4


Gears and Gear Trains – Part #1


Planetary Gear Trains – Part #2


Practice Problems



Design of a CAM Profile Using Quintic Polynomial (SVAJ)


Cycloidal Motion of a Cam-Follower System



hw4_final_antonio_perez.pdf



hw5_antonio_perez.pdf



airspace/mechanism_design/academic_mechanism_design.txt · Last modified: 2025/05/17 17:35 by aperez

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki