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Problem Statement

ENGR. S.65*
A quantity of CO2 undergoes a Carnot cycle.

FIND: Determine the work and heat transfer for each process, the
thermal efficiency, and the pressures at the initial and final states

of the isothermal compression.



Schematic and Given Data

Schematic: (Refer to the

provided diagram showing a P-v
or T-s diagram for the Carnot
cycle)

Fluid: CO2

Given Data:

▶ k = 1.24

▶ P1 = 400 lbf/in2

▶ P2 = 200 lbf/in2

▶ TH = T1 = T2 = 910◦R
(450◦F)

▶ TL = T3 = T4 = 560◦R
(100◦F)



Assumptions

▶ The system consists of a quantity of CO2 modeled as an ideal
gas with k = 1.24.

▶ The cycle operates as a work mode cycle (power cycle).

▶ Processes are internally reversible.



Summary Table of Results

Work and Heat Transfer per Unit Mass
Process Q/m (Btu/lb) W /m (Btu/lb)

1-2 28.46 28.46
2-3 0 65.80
3-4 -17.52 -17.52
4-1 0 -65.80

Cycle 10.94 10.94



Process 1-2: Isothermal Expansion

Description:

▶ Reversible isothermal process (T = constant = TH).

▶ Expansion (v2 > v1).

▶ Heat is added to the system.

▶ Work is done by the system.



Process 1-2: Energy Balance

First Law of Thermodynamics per unit mass: q12 − w12 = ∆u12
For an ideal gas in an isothermal process, the internal energy

change is zero (∆u = cv∆T = 0). Therefore, the energy balance

simplifies to: q12 = w12



Process 1-2: Work Calculation

For a reversible process, the work done is given by w =
∫
P dv .

For an ideal gas (Pv = RT ) undergoing an isothermal process:

w12 =
∫ v2
v1

P dv =
∫ v2
v1

RT1
v dv = RT1 ln

(
v2
v1

)
Using the ideal gas

law for states 1 and 2 (P1v1 = RT1 and P2v2 = RT1), the volume
ratio can be expressed in terms of pressures: v2

v1
= P1

P2
So, the work

equation becomes: w12 = RTH ln
(
P1
P2

)



Process 1-2: Calculation Details

Gas constant R for CO2: R = R̄
MCO2

≈ 1545 ft·lbf/lbmol·◦R
44.01 lbm/lbmol Converting

to Btu: R = 1545
44.01 × 1

778
Btu

lbm·◦R ≈ 0.0450Btu/lbm ·◦ R
w12 = (0.0450Btu/lbm ·◦ R)× (910◦R)× ln

(
400 lbf/in2

200 lbf/in2

)
w12 = 0.0450× 910× ln(2) Btu/lbm w12 ≈ 28.46Btu/lbm Since

q12 = w12: q12 ≈ 28.46Btu/lbm



Process 2-3: Isentropic Expansion

Description:

▶ Reversible adiabatic process (q = 0).

▶ Expansion (v3 > v2).

▶ Temperature decreases from TH to TL.

▶ Work is done by the system.



Process 2-3: Energy Balance

First Law of Thermodynamics per unit mass: q23 − w23 = ∆u23
For an adiabatic process, q23 = 0. Therefore, the energy balance

is: −w23 = ∆u23 = cv (T3 − T2) w23 = cv (T2 − T3)



Process 2-3: Specific Heat Calculation

For an ideal gas, the specific heat at constant volume (cv ) is
related to the gas constant (R) and the specific heat ratio (k) by
the equation: cv = R

k−1 Using R ≈ 0.0450Btu/lbm ·◦ R and

k = 1.24: cv = 0.0450Btu/lbm·◦R
1.24−1 cv = 0.0450

0.24 Btu/lbm ·◦ R
cv ≈ 0.188Btu/lbm ·◦ R



Process 2-3: Work Calculation Details

w23 = cv (T2 − T3) w23 = (0.188Btu/lbm ·◦ R)× (910◦R− 560◦R)
w23 = 0.188× 350Btu/lbm w23 ≈ 65.80Btu/lbm q23 = 0



Process 3-4: Isothermal Compression

Description:

▶ Reversible isothermal process (T = constant = TL).

▶ Compression (v4 < v3).

▶ Heat is rejected by the system.

▶ Work is done on the system.



Process 3-4: Energy Balance

First Law of Thermodynamics per unit mass: q34 − w34 = ∆u34
For an ideal gas in an isothermal process, ∆u34 = 0. Therefore:

q34 = w34



Process 3-4: Work Calculation

For a reversible isothermal process: w34 =
∫ v4
v3

P dv = RT3 ln
(
v4
v3

)
Using the ideal gas law (P3v3 = RT3 and P4v4 = RT3):

v4
v3

= P3
P4

So, the work equation is: w34 = RTL ln
(
P3
P4

)
To calculate this, we

first need the pressures P3 and P4.



Calculation of Pressure P3

State 3 is the end of the isentropic expansion (Process 2-3). For

an isentropic process of an ideal gas, the temperature and pressure

are related by: T3
T2

=
(
P3
P2

)(k−1)/k
We know T3, T2, and P2. We

can solve for P3.



Calculation of Pressure P3 Details

From the isentropic relation:
(
P3
P2

)(k−1)/k
= T3

T2

P3 = P2

(
T3
T2

)k/(k−1)
P3 = (200 lbf/in2)×

(
560◦R
910◦R

)1.24/(1.24−1)

P3 = 200×
(
560
910

)1.24/0.24
P3 ≈ 200× (0.61538)5.1667

P3 ≈ 200× 0.08138 P3 ≈ 16.28 lbf/in2



Calculation of Pressure P4

State 4 is the end of the isothermal compression (Process 3-4) and
the start of the isentropic compression (Process 4-1). For the

isentropic compression process 4-1, the temperature and pressure

are related by: T1
T4

=
(
P1
P4

)(k−1)/k
We know T1, T4, and P1. We

can solve for P4.



Isentropic Process Relation

An isentropic process is a reversible adiabatic process (dS = 0 and
dQ = 0). For a simple compressible system undergoing a reversible

process, the combined First and Second Laws of Thermodynamics
can be written as: T dS = dU + P dV (per unit mass) or
T ds = du + P dv



Derivation of Isentropic Relation (1)

For an isentropic process, ds = 0. So, the relation becomes:

0 = du + P dv du = −P dv For an ideal gas, du = cv dT .

cv dT = −P dv



Derivation of Isentropic Relation (2)

Using the ideal gas equation of state, Pv = RT , we can express P
in terms of T and v : P = RT

v Substitute this into the previous

equation: cv dT = −RT
v dv Rearrange the terms to separate

variables: cv
T dT = −R

v dv



Derivation of Isentropic Relation (3)

Integrate both sides from state 1 to state 2 (or any two states in

the isentropic process):
∫ 2
1

cv
T dT = −

∫ 2
1

R
v dv Assuming cv and R

are constant (ideal gas with constant specific heats):

cv
∫ 2
1

1
T dT = −R

∫ 2
1

1
v dv cv ln

(
T2
T1

)
= −R ln

(
v2
v1

)
cv ln

(
T2
T1

)
= R ln

(
v1
v2

)



Derivation of Isentropic Relation (4)

Exponentiate both sides:
(
T2
T1

)cv
=

(
v1
v2

)R
Using the properties of

logarithms, ln(ab) = b ln(a): ln
((

T2
T1

)cv)
= ln

((
v1
v2

)R
)

cv ln
(
T2
T1

)
= R ln

(
v1
v2

)
(This is the same as the last step on the

previous slide - let’s move to simplifying the exponent).



Derivation of Isentropic Relation (5)

Recall the relationships for ideal gases: R = cp − cv k =
cp
cv

From

these, we can write R = kcv − cv = cv (k − 1). So, R
cv

= k − 1.
Substitute this into the logarithmic equation from the previous

step: ln
(
T2
T1

)
= R

cv
ln
(
v1
v2

)
ln
(
T2
T1

)
= (k − 1) ln

(
v1
v2

)
ln
(
T2
T1

)
= ln

((
v1
v2

)k−1
)

Exponentiating gives the T-v relation:

T2
T1

=
(
v1
v2

)k−1
or T2v

k−1
2 = T1v

k−1
1



Derivation of Isentropic Relation (6)

To get the P-T relation, we can use the ideal gas law to substitute
for the volume ratio: v1

v2
= RT1/P1

RT2/P2
= T1P2

T2P1
Substitute this into the

T-v relation: T2
T1

=
(
T1P2
T2P1

)k−1
T2
T1

=
(
T1
T2

)k−1 (
P2
P1

)k−1

(
T2
T1

)1
=

(
T2
T1

)−(k−1) (
P2
P1

)k−1 (
T2
T1

)1+(k−1)
=

(
P2
P1

)k−1(
T2
T1

)k
=

(
P2
P1

)k−1
Taking the k-th root of both sides:

T2
T1

=
(
P2
P1

)(k−1)/k
Or, equivalently: T1

T2
=

(
P1
P2

)(k−1)/k



Applying the Isentropic Relation

We use this relation for the isentropic processes 2-3 and 4-1. For

Process 2-3 (State 1 → 2 in the derivation becomes State 2 → 3):

T3
T2

=
(
P3
P2

)(k−1)/k
This is used to calculate P3. For Process 4-1

(State 1 → 2 in the derivation becomes State 4 → 1):

T1
T4

=
(
P1
P4

)(k−1)/k
This is used to calculate P4.



Calculation of Pressure P4 Details

From the isentropic relation for Process 4-1: T1
T4

=
(
P1
P4

)(k−1)/k

Rearranging to solve for P4:
(
P1
P4

)
=

(
T1
T4

)k/(k−1)

P4
P1

=
(
T4
T1

)k/(k−1)
P4 = P1

(
T4
T1

)k/(k−1)

P4 = (400 lbf/in2)×
(
560◦R
910◦R

)1.24/(1.24−1)
P4 = 400×

(
560
910

)1.24/0.24
P4 ≈ 400× (0.61538)5.1667 P4 ≈ 400× 0.08138 P4 ≈ 32.55 lbf/in2



Process 3-4: Work Calculation Details

Now we can calculate the work using P3 and P4:

w34 = RTL ln
(
P3
P4

)
w34 = (0.0450Btu/lbm ·◦ R)× (560◦R)× ln

(
16.28 lbf/in2

32.55 lbf/in2

)
w34 ≈ 0.0450× 560× ln(0.500) w34 ≈ 0.0450× 560× (−0.6931)
w34 ≈ −17.52Btu/lbm Since q34 = w34: q34 ≈ −17.52Btu/lbm



Process 4-1: Isentropic Compression

Description:

▶ Reversible adiabatic process (q = 0).

▶ Compression (v1 < v4).

▶ Temperature increases from TL to TH .

▶ Work is done on the system.



Process 4-1: Energy Balance

First Law of Thermodynamics per unit mass: q41 − w41 = ∆u41
For an adiabatic process, q41 = 0. Therefore:

−w41 = ∆u41 = cv (T1 − T4) w41 = cv (T4 − T1)



Process 4-1: Work Calculation Details

Using cv ≈ 0.188Btu/lbm ·◦ R:
w41 = (0.188Btu/lbm ·◦ R)× (560◦R− 910◦R)
w41 = 0.188× (−350) Btu/lbm w41 ≈ −65.80Btu/lbm q41 = 0



Cycle Work and Heat Check

For any thermodynamic cycle, the net heat transfer must equal the
net work transfer according to the First Law of Thermodynamics.
Qcycle =

∑
Qi Wcycle =

∑
Wi We should verify that

Qcycle = Wcycle .



Cycle Work and Heat Check Details

Net Heat Transfer: Qcycle/m = q12 + q23 + q34 + q41
Qcycle/m = 28.46 + 0 + (−17.52) + 0Btu/lbm
Qcycle/m = 10.94Btu/lbm Net Work Transfer:

Wcycle/m = w12 + w23 + w34 + w41

Wcycle/m = 28.46 + 65.80 + (−17.52) + (−65.80) Btu/lbm
Wcycle/m = 10.94Btu/lbm Qcycle/m = Wcycle/m, confirming the

calculations.



Thermal Efficiency

Definition: The thermal efficiency (η) of a heat engine is the ratio

of the net work output to the total heat input. η =
Wcycle

Qin
In this

cycle, heat is only input during the isothermal expansion (Process
1-2), so Qin = Q12.



Thermal Efficiency Calculation

Using the calculated cycle work and heat input: η = 10.94Btu/lbm
28.46Btu/lbm

η ≈ 0.384 Expressed as a percentage: η ≈ 38.4%



Thermal Efficiency (Carnot Cycle)

For any reversible heat engine operating between two thermal
reservoirs at temperatures TH (hot) and TL (cold), the thermal
efficiency is given by the Carnot efficiency formula: η = 1− TL

TH

Where temperatures must be in absolute units (Rankine or Kelvin).



Thermal Efficiency Calculation (Carnot Formula)

Using the given reservoir temperatures: TH = 910◦R TL = 560◦R
η = 1− 560◦R

910◦R η = 1− 0.61538... η ≈ 0.3846 Expressed as a

percentage: η ≈ 38.5% This result is consistent with the efficiency

calculated from work and heat.



Pressures at Each State

The pressures at the initial and final states of the isothermal
compression (Process 3-4) are P3 and P4. We have calculated

these values:

▶ P3 ≈ 16.28 lbf/in2

▶ P4 ≈ 32.55 lbf/in2

For completeness, the pressures at all states are:

▶ P1 = 400 lbf/in2 (Given)

▶ P2 = 200 lbf/in2 (Given)

▶ P3 ≈ 16.28 lbf/in2

▶ P4 ≈ 32.55 lbf/in2



Conclusion

We have performed a detailed thermodynamic analysis of a Carnot
cycle operating with CO2. Key findings include:

▶ Work and heat transfer for each process of the cycle.

▶ A thermal efficiency of approximately 38.4%, which matches
the theoretical Carnot efficiency.

▶ The pressures at all states of the cycle, including P3 and P4

for the isothermal compression.

The results demonstrate the application of the First Law of
Thermodynamics and ideal gas relations to analyze a reversible
power cycle.


