Carnot Refrigeration Cycle Analysis

Step-by-Step Solution (Revised)

May 15, 2025

Step-by-Step Solution (Revised)

Carnot Refrigeration Cycle Analysis

May 15, 2025

∃ →

KNOWN:

- Mass of air, m = 0.1 kg.
- Air executes a Carnot refrigeration cycle.
- Specific heat ratio for air, k = 1.4.

FIND:

- (a) The pressure and volume at each of the four principal states.
- (b) The work for each of the four processes.
- (c) The coefficient of performance (β) .

Schematic & Given Data

Given Data:

- m = 0.1 kg
- $V_4 = 0.01 \text{ m}^3$
- $Q_{12} = 3.4 \text{ kJ}$ (Heat absorbed from cold reservoir)
- *k* = 1.4

•
$$T_H = T_3 = T_4 = 300 \text{ K} (27^{\circ}\text{C})$$

- $T_C = T_1 = T_2 =$ 250 K (-23°C)
- Gas constant for air, $R = \frac{8.314}{28.97} \approx 0.287 \text{ kJ/kg K}$

Figure: Enter Caption

*P-V Diagram (Carnot Refrigerator)

Assumptions:

- Air is modeled as an ideal gas.
- Volume change is the only work mode.
- Specific heat ratio k = 1.4 is constant.

Ideal Gas Law: PV = mRT Adiabatic Process (Q = 0):

- $PV^k = \text{constant}$
- $TV^{k-1} = \text{constant}$

•
$$\frac{I_b}{T_a} = \left(\frac{P_b}{P_a}\right)^{\prime}$$

For any Carnot cycle operating between two temperatures:

• The two isothermal processes have equal volume ratios:

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

(where 1-2 is isothermal at T_C , and 3-4 is isothermal at T_H)

• This can also be written as (used in problem image):

$$V_4 V_2 = V_3 V_1$$

For a refrigeration cycle, work is input to move heat from T_C to T_H .

We will determine the pressure (P) and volume (V) at each state (1, 2, 3, 4) step-by-step:

- Calculate P_4 using known V_4 , T_4 .
- **2** Calculate P_1 using adiabatic relation for process 4-1.
- Solution V_1 using ideal gas law at state 1.
- Use Q_{12} (isothermal process 1-2) to find volume ratio V_2/V_1 .
- Salculate V₂.
- Solution 2 Solution 2 Calculate P2 using ideal gas law or isothermal relation.
- **\bigcirc** Calculate V_3 using Carnot cycle volume relation.
- Solution P_3 using ideal gas law at state 3.

Given: $V_4 = 0.01 \text{ m}^3$, $T_4 = T_H = 300 \text{ K}$, m = 0.1 kg. Using the ideal gas equation $P_4V_4 = mRT_4$:

$$P_{4} = \frac{mRT_{4}}{V_{4}}$$

$$P_{4} = \frac{(0.1 \text{ kg}) \left(\frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}\right) (300 \text{ K})}{0.01 \text{ m}^{3}}$$

$$P_{4} = \frac{(0.1)(8.314/28.97)(300)}{0.01} \text{ kPa}$$

Image: A matrix

★ 3 → 3

Process 4-1 is an adiabatic expansion ($T_4 = T_H \rightarrow T_1 = T_C$).

$$\begin{aligned} &\frac{T_4}{T_1} = \left(\frac{P_4}{P_1}\right)^{(k-1)/k} \\ &P_1 = P_4 \left(\frac{T_1}{T_4}\right)^{k/(k-1)} \\ &P_1 = (861.0 \text{ kPa}) \left(\frac{250 \text{ K}}{300 \text{ K}}\right)^{1.4/(1.4-1)} \\ &P_1 = (861.0) \left(\frac{250}{300}\right)^{1.4/0.4} = (861.0) \left(\frac{5}{6}\right)^{3.5} \\ &P_1 \approx 454.9 \text{ kPa} \end{aligned}$$

Image: A matrix and a matrix

글 에 에 글 어 !!

æ

Given: $P_1 \approx 454.9$ kPa, $T_1 = T_C = 250$ K. Using the ideal gas equation $P_1V_1 = mRT_1$:

$$V_{1} = \frac{mRT_{1}}{P_{1}}$$

$$V_{1} = \frac{(0.1 \text{ kg}) \left(\frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}\right) (250 \text{ K})}{454.9 \text{ kPa}}$$

$$V_{1} \approx 0.01577 \text{ m}^{3}$$

▶ ∢ ∃ ▶

< 4 → <

э

Process 1-2: Volume Ratio (V_2/V_1)

Process 1-2 is isothermal expansion at $T_C = 250$ K. For an ideal gas, $\Delta U = 0$, so $Q_{12} = W_{12}$.

$$W_{12} = mRT_C \ln\left(\frac{V_2}{V_1}\right)$$

Given $Q_{12} = 3.4$ kJ, so $W_{12} = 3.4$ kJ.

$$\ln\left(\frac{V_2}{V_1}\right) = \frac{W_{12}}{mRT_C}$$
$$\ln\left(\frac{V_2}{V_1}\right) = \frac{3.4 \text{ kJ}}{(0.1 \text{ kg})\left(\frac{8.314}{28.97}\frac{\text{kJ}}{\text{kg K}}\right)(250 \text{ K})}$$
$$\ln\left(\frac{V_2}{V_1}\right) \approx \frac{3.4}{(0.1)(0.286952)(250)} \approx 0.47391$$
$$\frac{V_2}{V_1} = \exp(0.47391) \approx 1.6062$$

Step-by-Step Solution (Revised)

May 15, 2025

From the previous calculation, $\frac{V_2}{V_1}\approx 1.6062.$ With $V_1\approx 0.01577$ m^3:

$$\begin{split} V_2 &= 1.6062 \times V_1 \\ V_2 &= 1.6062 \times (0.01577 \text{ m}^3) \\ V_2 &\approx 0.02533 \text{ m}^3 \end{split}$$

æ

Given: $V_2 \approx 0.02533 \text{ m}^3$, $T_2 = T_C = 250 \text{ K}$. Using the ideal gas equation $P_2V_2 = mRT_2$:

$$P_{2} = \frac{mRT_{2}}{V_{2}}$$

$$P_{2} = \frac{(0.1 \text{ kg}) \left(\frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}\right) (250 \text{ K})}{0.02533 \text{ m}^{3}}$$

$$P_{2} \approx 283.2 \text{ kPa}$$

Alternatively, for isothermal process 1-2: $P_1V_1 = P_2V_2$

$$P_2 = P_1 rac{V_1}{V_2} = ($$
454.9 kPa $) rac{1}{1.6062} pprox$ 283.2 kPa

Step-by-Step Solution (Revised)

May 15, 2025

э

Using the Carnot cycle relation $V_4V_2 = V_3V_1$, which can be rearranged as used in the problem image: $V_3 = V_2 \left(\frac{V_4}{V_1}\right)$.

$$V_3 = (0.02533 \text{ m}^3) \left(\frac{0.01 \text{ m}^3}{0.01577 \text{ m}^3} \right)$$
$$V_3 \approx (0.02533) \times (0.634115)$$
$$V_3 \approx 0.01606 \text{ m}^3$$

(Note:
$$\frac{V_2}{V_1} \approx 1.6062$$
 and $\frac{V_3}{V_4} = \frac{0.01606}{0.01} = 1.606$. Consistent.)

Given: $V_3 \approx 0.01606 \text{ m}^3$, $T_3 = T_H = 300 \text{ K}$. Using the ideal gas equation $P_3V_3 = mRT_3$:

$$P_{3} = \frac{mRT_{3}}{V_{3}}$$

$$P_{3} = \frac{(0.1 \text{ kg}) \left(\frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}\right) (300 \text{ K})}{0.01606 \text{ m}^{3}}$$

$$P_{3} \approx 536.1 \text{ kPa}$$

→ < ∃ → </p>

э

Pressures:

- $P_1 \approx 454.9 \text{ kPa}$
- $P_2 \approx 283.2 \text{ kPa}$
- $P_3 \approx 536.1 \text{ kPa}$
- P₄ = 861.0 kPa

Volumes:

- $V_1 \approx 0.01577 \text{ m}^3$
- $V_2 \approx 0.02533 \text{ m}^3$
- $V_3 \approx 0.01606 \text{ m}^3$
- $V_4 = 0.01 \text{ m}^3$

Isothermal Process (e.g., 1-2 at T_C):

$$W = mRT \ln \left(rac{V_{\textit{final}}}{V_{\textit{initial}}}
ight)$$

For an ideal gas, $\Delta U = 0$, so Q = W. Adiabatic Process (e.g., 2-3, Q = 0): $W = -\Delta U = -mc_v(T_{final} - T_{initial})$

where $c_v = \frac{R}{k-1}$. We will use $c_v = 0.717 \text{ kJ/kg K}$ (consistent with image solution).

Process 1-2 is isothermal at $T_C = 250$ K. Heat $Q_{12} = 3.4$ kJ is absorbed.

$$W_{12} = Q_{12} = 3.4 \text{ kJ}$$

This is work done by the system (expansion).

The specific heat at constant volume, c_v , is needed for adiabatic work.

$$c_v = \frac{R}{k-1}$$

Using $R = \frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}$ and k = 1.4:

$$c_{
m v} = rac{(8.314/28.97) rac{{
m kJ}}{{
m kg} \, {
m K}}}{1.4 - 1} \ c_{
m v} pprox rac{0.286952}{0.4} pprox 0.71738 rac{{
m kJ}}{{
m kg} \, {
m K}}$$

The provided image solution uses $c_v = 0.717 \text{ kJ/kg K}$. We will use this value for consistency in work calculations for adiabatic processes.

Process 2-3: $T_2 = T_C = 250 \text{ K} \rightarrow T_3 = T_H = 300 \text{ K}$. $Q_{23} = 0$.

$$W_{23} = -mc_v (T_3 - T_2)$$

$$W_{23} = -(0.1 \text{ kg})(0.717 \text{ kJ/kg K})(300 \text{ K} - 250 \text{ K})$$

$$W_{23} = -(0.1)(0.717)(50) \text{ kJ}$$

$$W_{23} = -3.585 \text{ kJ}$$

Work is done *on* the system (compression).

Work W_{34} (Process 3-4, Isothermal Compression)

Process 3-4 is isothermal at $T_H = 300$ K. $V_3 \approx 0.01606$ m³, $V_4 = 0.01$ m³.

$$W_{34} = mRT_H \ln\left(\frac{V_4}{V_3}\right)$$

$$W_{34} = (0.1 \text{ kg}) \left(\frac{8.314}{28.97} \frac{\text{kJ}}{\text{kg K}}\right) (300 \text{ K}) \ln\left(\frac{0.01}{0.01606}\right)$$

$$W_{34} \approx (0.1)(0.286952)(300) \ln(0.622665)$$

$$W_{34} \approx (8.60856)(-0.47375)$$

$$W_{34} \approx -4.079 \text{ kJ}$$

Work is done *on* the system (compression).

Process 4-1: $T_4 = T_H = 300 \text{ K} \rightarrow T_1 = T_C = 250 \text{ K}. Q_{41} = 0.$

$$W_{41} = -mc_v (T_1 - T_4)$$

$$W_{41} = -(0.1 \text{ kg})(0.717 \text{ kJ/kg K})(250 \text{ K} - 300 \text{ K})$$

$$W_{41} = -(0.1)(0.717)(-50) \text{ kJ}$$

$$W_{41} = 3.585 \text{ kJ}$$

Work is done by the system (expansion). Note: $|W_{23}| = |W_{41}|$ for a Carnot cycle with ideal gas.

Part (b): Summary of Work Net Work

Work for each process:

- W₁₂ = 3.4 kJ
- $W_{23} \approx -3.585 \text{ kJ}$
- $W_{34} \approx -4.079 \text{ kJ}$
- $W_{41} \approx 3.585 \text{ kJ}$

Net work for the cycle (W_{cycle}) :

$$W_{cycle} = W_{12} + W_{23} + W_{34} + W_{41}$$
$$W_{cycle} = 3.4 - 3.585 - 4.079 + 3.585 \text{ kJ}$$
$$W_{cycle} = 3.4 - 4.079 = -0.679 \text{ kJ}$$

Negative W_{cycle} means net work is done *on* the system (refrigerator).

(Work by system) (Work on system) (Work on system) (Work by system) For a refrigeration cycle, the Coefficient of Performance (β) is defined as:

$$\beta = \frac{\text{Desired Output}}{\text{Required Input}} = \frac{\text{Heat removed from cold space}}{\text{Net Work Input}} = \frac{Q_{in}}{|W_{cycle}|}$$

For a Carnot refrigerator, it is also given by:

$$\beta_{max} = \frac{T_C}{T_H - T_C}$$

(Temperatures in Kelvin)

Using the reservoir temperatures: $T_C = 250$ K, $T_H = 300$ K.

$$\beta = \beta_{Carnot} = \frac{T_C}{T_H - T_C}$$
$$\beta = \frac{250 \text{ K}}{300 \text{ K} - 250 \text{ K}}$$
$$\beta = \frac{250}{50}$$
$$\beta = 5.00$$

Image: A matrix and a matrix

₹ Ξ) Ξ

Using the calculated heat input and net work: $Q_{in} = Q_{12} = 3.4$ kJ $|W_{cycle}| = |-0.679$ kJ = 0.679 kJ

$$\beta = \frac{Q_{in}}{|W_{cycle}|}$$
$$\beta = \frac{3.4 \text{ kJ}}{0.679 \text{ kJ}}$$
$$\beta \approx 5.00736$$

The image solution shows 5.01. The slight difference is due to rounding in intermediate values (primarily W_{cycle}).

The Carnot refrigeration cycle analysis yielded:

- Pressures and Volumes: Determined for all four states.
- Work per process:
 - $W_{12} = 3.4 \text{ kJ}$
 - $W_{23} \approx -3.585 \text{ kJ}$
 - $W_{34} \approx -4.079 \text{ kJ}$
 - $W_{41} \approx 3.585 \text{ kJ}$
- Net Work Input: $|W_{cycle}| \approx 0.679 \text{ kJ}.$
- Coefficient of Performance: $\beta \approx 5.0$.

The results align closely with theoretical Carnot cycle performance, with minor variations due to rounding.