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Stagnation Properties

Compressible flows involve significant changes in density. They are frequently 
encountered in devices that handle high-speed gas flow.

Total Enthalpy represents the total energy of a fluid:    𝐻 = 𝑈 + 𝑃𝒱

ℎ =
𝐻

𝑚
= 𝑢 +

𝑃

𝜌

Specific Enthalpy (or static enthalpy), 𝒉

𝑢: specific internal energy

𝑃: absolute thermodynamic pressure

𝜌: mass density
𝑚: mass

Specific Stagnation Enthalpy, 𝒉𝟎, represents the enthalpy a fluid attains when it is brought 
to rest isentropically. 

ℎଵ +
𝑉ଵ

ଶ

2
= ℎଶ +

𝑉ଶ
ଶ

2

𝑃 𝜌⁄ : flow energy

𝒱: Volume

ℎ = 𝑐௣𝑇

For an ideal gas with constant 
specific heat:

ℎ଴ଵ = ℎ଴ଶ



Stagnation Properties

Stagnation (or Total) Temperature, 𝑻𝟎, represents the temperature an ideal gas attains 
when it is brought to rest adiabatically.

𝑇଴ = 𝑇 +
𝑉ଶ

2𝑐௣

Stagnation pressure, 𝑃଴, represents the pressure a 
fluid attains when brought to rest isentropically: 

𝑃଴

𝑃
=

𝑇଴

𝑇

௞ ௞ିଵ⁄

Isentropic relation: 𝑃𝜈௞ = 𝑃଴𝜈଴
௞

Stagnation density, 𝝆𝟎 𝜌଴

𝜌
=

𝑇଴

𝑇

ଵ ௞ିଵ⁄

𝐸̇୧୬ = 𝐸̇୭୳୲Energy Balance: 𝑞୧୬ + 𝑤୧୬ + ℎ଴ଵ + 𝑔𝑧ଵ = 𝑞୭୳୲ + 𝑤୭୳୲ + ℎ଴ଶ + 𝑔𝑧ଶ



Stagnation Properties

Example 1

An aircraft is flying at a cruising speed of 250 m/s at an altitude of 5000 m where the 
atmospheric pressure is 54.05 kPa and the ambient air temperature is 255.7 K. The 
ambient air is first decelerated in a diffuser before it enters the compressor (Figure E-1). 
Approximating both the diffuser and the compressor to be isentropic, determine (a) the 
stagnation pressure at the compressor inlet and (b) the required compressor work per 
unit mass if the stagnation pressure ratio of the compressor is 8.

Figure E-1
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One-Dimensional Isentropic Flow

Speed of Sound, 𝒄

𝑐 =
𝜕𝑃

𝜕𝜌
௦

𝑐 = 𝑘
𝜕𝑃

𝜕𝜌
்

or

For an ideal gas:

𝑐 = 𝑘𝑅𝑇

Mach Number, 𝑴

𝑀 =
𝑉

𝑐

𝑘: specific heat ratio of the gas

𝑅: specific gas constant

𝑉: fluid velocity



One-Dimensional Isentropic Flow

Example 2

Carbon dioxide flows steadily through a varying cross-sectional area duct such as a 
nozzle shown in Figure E-2 at a mass flow rate of 3.00 kg/s. The carbon dioxide enters 
the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the 
nozzle to an exit pressure of 200 kPa. The duct is designed so that the flow can be 
approximated as isentropic. Determine the density, velocity, flow area, and Mach 
number at each location along the duct that corresponds to an overall pressure drop of 
200 kPa.

Figure E-2



One-Dimensional Isentropic Flow



One-Dimensional Isentropic Flow

Results for Example 2

The cross-section of a nozzle at the 
smallest flow area is called the throat.



One-Dimensional Isentropic Flow

Variation of Fluid Velocity with Flow Area

𝑚̇ = 𝜌𝐴𝑉 =constant

𝑑𝑃

𝜌
+ 𝑉𝑑𝑉 = 0

Mass balance for a steady flow process:

Differential form of Energy balance:

Relations for isentropic flow in ducts:

𝑑𝐴

𝐴
=

𝑑𝑃

𝜌𝑉ଶ
1 − 𝑀ଶ

𝑑𝐴

𝐴
= −

𝑑𝑉

𝑉
1 − 𝑀ଶand



One-Dimensional Isentropic Flow

Relation between 𝑇଴ and 𝑇:
𝑇଴

𝑇
= 1 +

𝑘 − 1

2
𝑀ଶ

Property Relations for isentropic Flow of Ideal Gases

Ratio between 𝑃଴ and 𝑃: 𝑃଴

𝑃
= 1 +

𝑘 − 1

2
𝑀ଶ

௞ ௞ିଵ⁄

Ratio between 𝜌଴ and 𝜌:

Critical Ratios: 𝑇∗

𝑇଴
=

2

𝑘 + 1

𝑃∗

𝑃଴
=

2

𝑘 + 1

௞ ௞ିଵ⁄

𝜌∗

𝜌଴
=

2

𝑘 + 1

ଵ ௞ିଵ⁄

𝜌଴

𝜌
= 1 +

𝑘 − 1

2
𝑀ଶ

ଵ ௞ିଵ⁄



One-Dimensional Isentropic Flow



One-Dimensional Isentropic Flow

Example 3

Calculate the critical pressure and temperature of carbon dioxide for the flow 
conditions described in Example 2 (Figure E-3).

Figure E-3
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Isentropic Flow Through Nozzles

Converging and converging–diverging nozzles are shaped ducts used to speed 
up and direct fluids.

𝑚̇ =
𝐴 𝑀 𝑃଴

𝑘
𝑅𝑇଴

1 + 𝑘 − 1
𝑀ଶ

2

௞ାଵ
ଶ ௞ିଵ

Converging Nozzles

They are used in:
- Turbines (steam/gas) to turn heat into high-speed flow.
- Aircraft and rocket engines to create thrust.
- Industrial nozzles (blasting, torch) to produce fast, 

focused jets for cutting, cleaning, or heating.

The mass flow rate of a 
particular fluid through a 
nozzle:

𝑚̇ = 𝐴 ∗ 𝑃଴

𝑘

𝑅𝑇଴

2

𝑘 + 1

௞ାଵ
ଶ ௞ିଵMaximum mass flow 

rate:



Isentropic Flow Through Nozzles

The effect of back pressure 𝑷𝒃 on the mass flow 
rate 𝑚̇. and the exit pressure 𝑷𝒆 of a converging 
nozzle.

𝑃௘ = ቊ
𝑃௕    for   𝑃௕ ≥ 𝑃∗

𝑃∗   for   𝑃௕ < 𝑃∗

Relation for the variation of flow area 𝑨 through the 
nozzle relative to throat area 𝑨∗ :

𝐴

𝐴∗
=

1

𝑀

2

𝑘 + 1
1 +

𝑘 − 1

2
𝑀ଶ

௞ାଵ
ଶ ௞ିଵ

𝑀∗ = 𝑀
𝑘 + 1

2 + 𝑘 − 1 𝑀ଶ

Critical Mach number 𝑴∗: is the local velocity 
nondimensionalized with respect to the sonic velocity at 
the throat.



Isentropic Flow Through Nozzles

Example 4

Figure E-4

Air at 1 MPa and 600°C enters a converging nozzle, shown in Figure E-4, with a velocity 
of 150 m/s. Determine the mass flow rate through the nozzle for a nozzle throat area of 50 
cm2 when the back pressure is (a) 0.7 MPa and (b) 0.4 MPa.



Isentropic Flow Through Nozzles



Isentropic Flow Through Nozzles
Converging-Diverging Nozzles



Isentropic Flow Through Nozzles

Example 5
Air enters a converging–diverging nozzle, shown in Figure E-5, at 1.0 MPa and 800 K 
with negligible velocity. The flow is steady, one-dimensional, and isentropic with 𝑘 = 1.4. 
For an exit Mach number of 𝑀 = 2 and a throat area of 20 cm2, determine (a) the throat 
conditions, (b) the exit plane conditions, including the exit area, and (c) the mass flow rate 
through the nozzle.

Figure E-5
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Shock Waves and Expansion

Shock Waves are very thin regions in a supersonic flow where pressure, temperature, 
density, and velocity change abruptly.

Normal shock waves are shock waves that stand in a plane perpendicular to the flow 
direction, causing abrupt changes in a supersonic stream.

𝜌ଵ  𝑉ଵ = 𝜌ଶ 𝑉ଶ

Conservation of mass:

ℎଵ +
𝑉ଵ

ଶ

2
= ℎଶ +

𝑉ଶ
ଶ

2

Conservation of energy:

or ℎ଴ଵ = ℎ଴ଶ

𝐴 𝑃ଵ − 𝑃ଶ = 𝑚̇ 𝑉ଶ − 𝑉ଵ

Linear momentum equation:

𝑠ଶ − 𝑠ଵ  ≥ 0

Increase of entropy:



Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

 𝑇଴ଵ= 𝑇଴ଶ

Ratio of the static temperatures  𝑇ଶ  𝑇ଵ⁄  :

Conservation of energy:

 𝑇ଶ

 𝑇ଵ
=

1 +
𝑀ଵ

ଶ 𝑘 − 1
2

1 +
𝑀ଶ

ଶ 𝑘 − 1
2

=
𝑃ଶ

𝑃ଵ

ଶ
𝑀ଶ

𝑀ଵ

ଶ

Fanno Line:

 𝑃ଶ

 𝑃ଵ
=

𝑀ଵ 1 +
𝑀ଵ

ଶ 𝑘 − 1
2

𝑀ଶ 1 +
𝑀ଶ

ଶ 𝑘 − 1
2

Rayleigh Line:  𝑃ଶ

 𝑃ଵ
=

1 + 𝑘𝑀ଵ
ଶ

1 + 𝑘𝑀ଶ
ଶ

Normal shock Mach number relation

𝑀ଶ
ଶ =

𝑀ଵ
ଶ +

2
𝑘 − 1

2𝑀ଵ
ଶ𝑘

𝑘 − 1
− 1



Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

Entropy change across the shock

 𝑠ଶ− 𝑠ଵ= 𝑐௣ ln
𝑇ଶ

𝑇ଵ
− 𝑅 ln

𝑃ଶ

𝑃ଵ

𝑑𝑠 = 𝑐௣

𝑑𝑇

𝑇
− 𝑅

𝑑𝑃

𝑃



Shock Waves and Expansion

Example 6
If the air flowing through the converging–diverging nozzle of Example 5 experiences a 
normal shock wave at the nozzle exit plane (Figure E-6), determine the following after the 
shock: (a) the stagnation pressure, static pressure, static temperature, and static density; (b) 
the entropy change across the shock; (c) the exit velocity; and (d ) the mass flow rate 
through the nozzle. Approximate the flow as steady, one-dimensional, and isentropic with 
𝑘 = 1.4 from the nozzle inlet to the shock location. 

Figure E-6



Shock Waves and Expansion



Shock Waves and Expansion:
Oblique Shocks

Oblique Shocks

Figure E-6

𝜌ଵ  𝑉ଵ,௡ = 𝜌ଶ 𝑉ଶ,௡

Conservation of mass:

ℎଵ +
𝑉ଵ,௡

ଶ

2
= ℎଶ +

𝑉ଶ,௡
ଶ

2

Conservation of energy:

𝑃ଵ − 𝑃ଶ = 𝜌ଶ𝑉ଶ,௡
ଶ − 𝜌ଵ𝑉ଵ,௡

ଶ

Linear momentum equation:

𝑠ଶ − 𝑠ଵ  ≥ 0

Increase of entropy:



Shock Waves and Expansion:
Oblique Shocks

Relationships across an oblique shock for an ideal gas in terms of the normal component 
of upstream Mach number 𝑀ଵ,௡.



Shock Waves and Expansion:
Oblique Shocks

Velocity vectors through an 
oblique shock

Velocity vectors rotated by 
angle 𝜋 2⁄ − 𝛽

The 𝜃 − 𝛽 − 𝑀 relationship: 

tan 𝜃 =
2 cot 𝛽 𝑀ଵ

ଶ sinଶ 𝛽 − 1

𝑀ଵ
ଶ 𝑘 + cos 2𝛽 + 2

NOTE: All the equations, 
shock tables, etc., for 
normal shocks apply to 
oblique shocks as well, 
provided that we use only 
the normal components 
of the Mach number.

𝑀ଵ,௡ = 𝑀ଵ sin 𝛽 𝑀ଶ,௡ = 𝑀ଶ sin 𝛽 − 𝜃

Oblique Shocks



Shock Waves and Expansion:
Oblique Shocks

The dependence of straight oblique shock deflection angle 𝜃 on shock angle 𝛽 for several 
values of upstream Mach number M1. 



Shock Waves and Expansion:
Oblique Shocks

Mach angle:

μ = sinିଵ
1

𝑀ଵ

Shock Detachment over 
a Wedge

Schlieren videography illustrating shock Detachment from a Cone at Mach 3

Sphere Shadowgram at Mach 1.53



Shock Waves and Expansion:
Oblique Shocks

Example 7
Supersonic air at Mଵ = 2.0 and 75.0 kPa impinges on a two-dimensional wedge of half-
angle δ = 10° (Figure E-7). Calculate the two possible oblique shock angles, 𝛽୵ୣୟ୩ and 
𝛽ୱ୲୰୭୬୥, that could be formed by this wedge. For each case, calculate the pressure and 
Mach number downstream of the oblique shock, compare, and discuss.

Figure E-7

(a) 𝛽୵ୣୟ୩ (b)  𝛽ୱ୲୰୭୬୥



Shock Waves and Expansion:
Expansion Waves

Prandtl-Mayer Expansion Waves

𝜃 = 𝜈 𝑀ଶ − 𝜈 𝑀ଵ

Turning angle across an expansion fan:

𝜈 𝑀 : is an angle called Prandtl-Meyer function

𝜈 𝑀 =
𝑘 + 1

𝑘 − 1
tanିଵ

𝑘 − 1

𝑘 + 1
𝑀ଶ − 1 − tanିଵ 𝑀ଶ − 1

𝜈 𝑀 is the angle through which the flow must expand, starting with 𝜈 = 0 at 
𝑀 = 1, in order to reach a supersonic Mach number, 𝑀 > 1.



Shock Waves and Expansion: 
Expansion Waves

Example 8
Supersonic air at Mଵ = 2.0 and 230 kPa flows parallel to a flat wall that suddenly expands 
by δ = 10° (Figure E-8). Ignoring any effects caused by the boundary layer along the wall, 
calculate downstream Mach number Mଶ and pressure 𝑃ଶ.

Figure E-8
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