

Compressible Flow

Instructor: Joaquín Valencia
ME 3140

Content

1. Stagnation Properties
2. One-Dimensional Isentropic Flow
3. Isentropic Flow Through Nozzles
4. Shock Waves and Expansion Waves
5. Duct Flow with Heat Transfer and Negligible Friction
6. Adiabatic Duct Flow with Friction

Content

1. Stagnation Properties

Stagnation Properties

Compressible flows involve significant changes in density. They are frequently encountered in devices that handle high-speed gas flow.

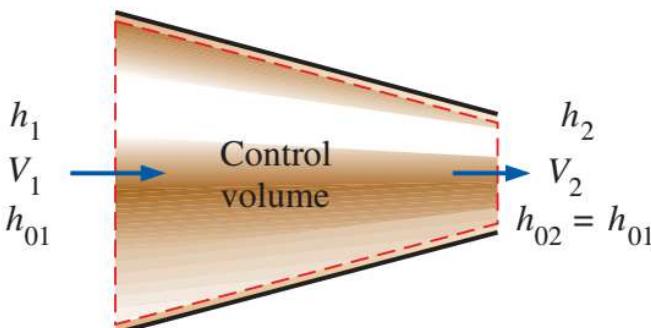
Total Enthalpy represents the total energy of a fluid: $H = U + PV$

\mathcal{V} : Volume

Specific Enthalpy (or static enthalpy), h

$$h = \frac{H}{m} = u + \frac{P}{\rho}$$

m : mass
 u : specific internal energy


P : absolute thermodynamic pressure

ρ : mass density

P/ρ : flow energy

Specific Stagnation Enthalpy, h_0 , represents the enthalpy a fluid attains when it is brought to rest isentropically.

$$h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}$$
$$h_{01} = h_{02}$$

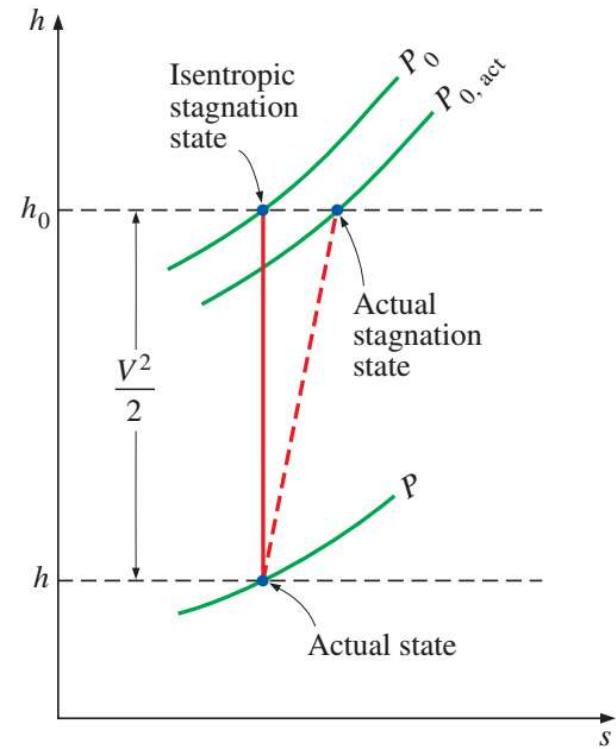
For an ideal gas with constant specific heat: $h = c_p T$

Stagnation Properties

Stagnation (or Total) Temperature, T_0 , represents the temperature an ideal gas attains when it is brought to rest adiabatically.

$$T_0 = T + \frac{V^2}{2c_p}$$

Stagnation pressure, P_0 , represents the pressure a fluid attains when brought to rest isentropically:


$$\frac{P_0}{P} = \left(\frac{T_0}{T}\right)^{k/(k-1)}$$

Isentropic relation: $P\nu^k = P_0\nu_0^k$

Stagnation density, ρ_0

$$\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{1/(k-1)}$$

Energy Balance: $\dot{E}_{\text{in}} = \dot{E}_{\text{out}} \rightarrow q_{\text{in}} + w_{\text{in}} + (h_{01} + gz_1) = q_{\text{out}} + w_{\text{out}} + (h_{02} + gz_2)$

Stagnation Properties

Example 1

An aircraft is flying at a cruising speed of 250 m/s at an altitude of 5000 m where the atmospheric pressure is 54.05 kPa and the ambient air temperature is 255.7 K. The ambient air is first decelerated in a diffuser before it enters the compressor (Figure E-1). Approximating both the diffuser and the compressor to be isentropic, determine (a) the stagnation pressure at the compressor inlet and (b) the required compressor work per unit mass if the stagnation pressure ratio of the compressor is 8.

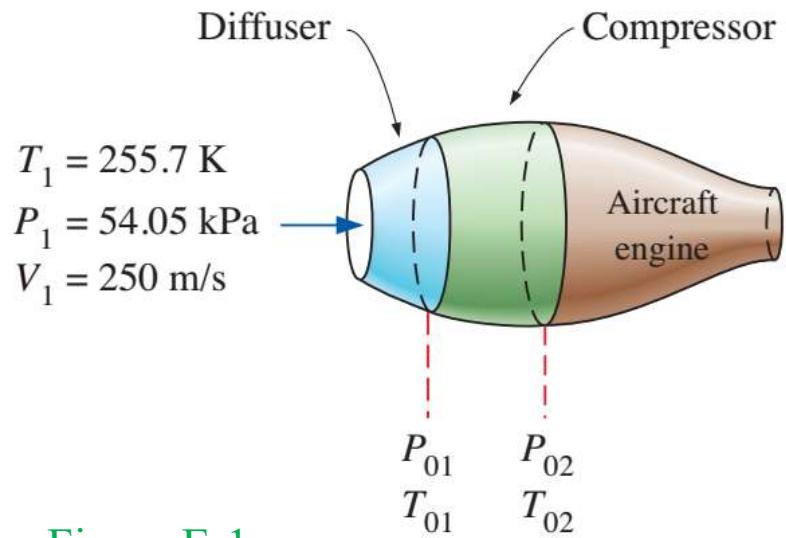


Figure E-1

Content

1. Stagnation Properties

2. One-Dimensional Isentropic Flow

One-Dimensional Isentropic Flow

Speed of Sound, c

$$c = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_s} \quad \text{or} \quad c = \sqrt{k \left(\frac{\partial P}{\partial \rho}\right)_T}$$

For an ideal gas:

$$c = \sqrt{kRT}$$

k : specific heat ratio of the gas

R : specific gas constant

Mach Number, M

$$M = \frac{V}{c}$$

V : fluid velocity

One-Dimensional Isentropic Flow

Example 2

Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle shown in Figure E-2 at a mass flow rate of 3.00 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to an exit pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 200 kPa.

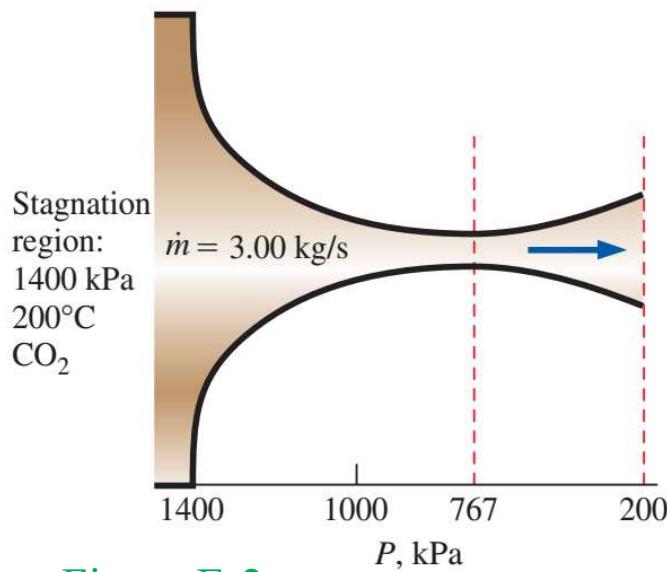
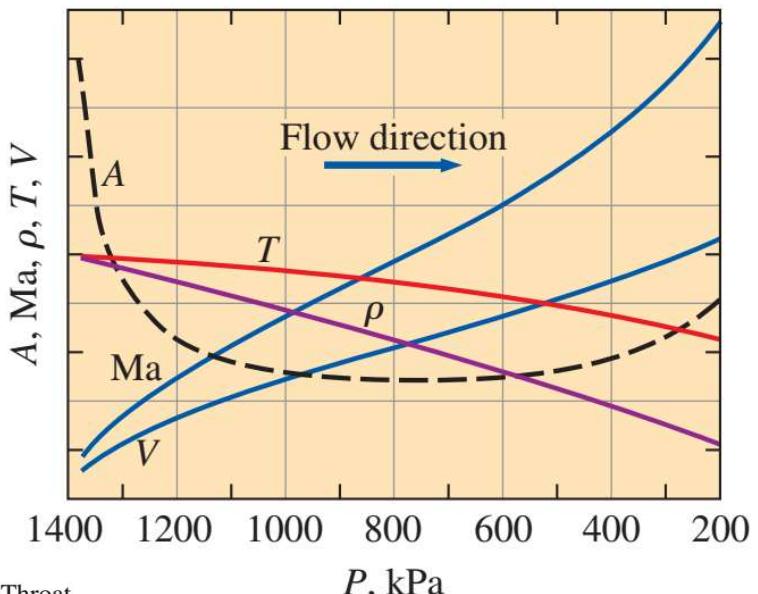


Figure E-2

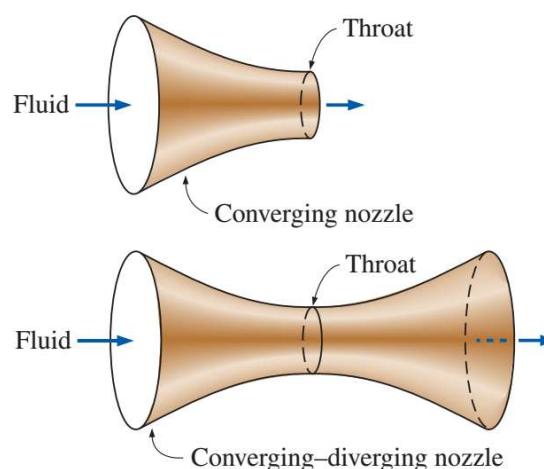
One-Dimensional Isentropic Flow

TABLE A-1

Molar mass, gas constant, and ideal-gas specific heats of some substances


Substance	Molar Mass <i>M</i> , kg/kmol	Gas Constant <i>R</i> , kJ/kg·K*	Specific Heat Data at 25°C		
			<i>c_p</i> , kJ/kg·K	<i>c_v</i> , kJ/kg·K	<i>k</i> = <i>c_p</i> / <i>c_v</i>
Air	28.97	0.2870	1.005	0.7180	1.400
Ammonia, NH ₃	17.03	0.4882	2.093	1.605	1.304
Argon, Ar	39.95	0.2081	0.5203	0.3122	1.667
Bromine, Br ₂	159.81	0.05202	0.2253	0.1732	1.300
Isobutane, C ₄ H ₁₀	58.12	0.1430	1.663	1.520	1.094
<i>n</i> -Butane, C ₄ H ₁₀	58.12	0.1430	1.694	1.551	1.092
Carbon dioxide, CO ₂	44.01	0.1889	0.8439	0.6550	1.288
Carbon monoxide, CO	28.01	0.2968	1.039	0.7417	1.400
Chlorine, Cl ₂	70.905	0.1173	0.4781	0.3608	1.325
Chlorodifluoromethane (R-22), CHClF ₂	86.47	0.09615	0.6496	0.5535	1.174
Ethane, C ₂ H ₆	30.070	0.2765	1.744	1.468	1.188
Ethylene, C ₂ H ₄	28.054	0.2964	1.527	1.231	1.241
Fluorine, F ₂	38.00	0.2187	0.8237	0.6050	1.362
Helium, He	4.003	2.077	5.193	3.116	1.667
<i>n</i> -Heptane, C ₇ H ₁₆	100.20	0.08297	1.649	1.566	1.053
<i>n</i> -Hexane, C ₆ H ₁₄	86.18	0.09647	1.654	1.558	1.062
Hydrogen, H ₂	2.016	4.124	14.30	10.18	1.405
Krypton, Kr	83.80	0.09921	0.2480	0.1488	1.667
Methane, CH ₄	16.04	0.5182	2.226	1.708	1.303
Neon, Ne	20.183	0.4119	1.030	0.6180	1.667
Nitrogen, N ₂	28.01	0.2968	1.040	0.7429	1.400
Nitric oxide, NO	30.006	0.2771	0.9992	0.7221	1.384
Nitrogen dioxide, NO ₂	46.006	0.1889	0.8060	0.6171	1.306
Oxygen, O ₂	32.00	0.2598	0.9180	0.6582	1.395
<i>n</i> -Pentane, C ₅ H ₁₂	72.15	0.1152	1.664	1.549	1.074
Propane, C ₃ H ₈	44.097	0.1885	1.669	1.480	1.127
Propylene, C ₃ H ₆	42.08	0.1976	1.531	1.333	1.148
Steam, H ₂ O	18.015	0.4615	1.865	1.403	1.329
Sulfur dioxide, SO ₂	64.06	0.1298	0.6228	0.4930	1.263
Tetrachloromethane, CCl ₄	153.82	0.05405	0.5415	0.4875	1.111
Tetrafluoroethane (R-134a), C ₂ H ₂ F ₄	102.03	0.08149	0.8334	0.7519	1.108
Trifluoroethane (R-143a), C ₂ H ₃ F ₃	84.04	0.09893	0.9291	0.8302	1.119
Xenon, Xe	131.30	0.06332	0.1583	0.09499	1.667

One-Dimensional Isentropic Flow


Results for Example 2

Variation of fluid properties in flow direction in the duct described in Example 12-2 for $\dot{m} = 3 \text{ kg/s} = \text{constant}$

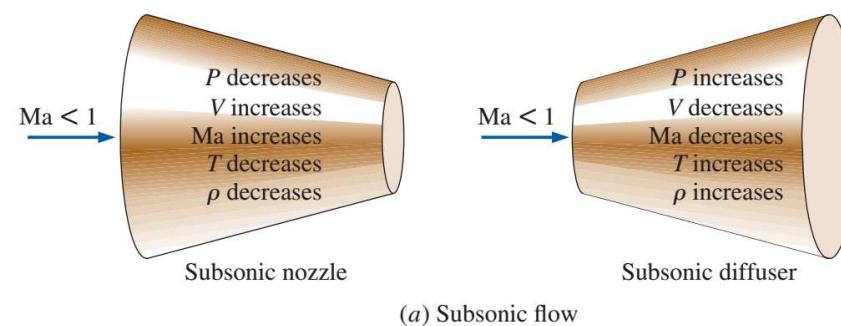
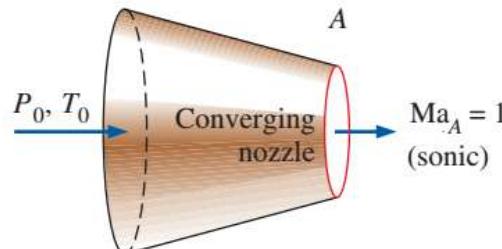
P, kPa	T, K	$V, \text{m/s}$	$\rho, \text{kg/m}^3$	$c, \text{m/s}$	A, cm^2	Ma
1400	473	0	15.7	339.4	∞	0
1200	457	164.5	13.9	333.6	13.1	0.493
1000	439	240.7	12.1	326.9	10.3	0.736
800	417	306.6	10.1	318.8	9.64	0.962
767*	413	317.2	9.82	317.2	9.63	1.000
600	391	371.4	8.12	308.7	10.0	1.203
400	357	441.9	5.93	295.0	11.5	1.498
200	306	530.9	3.46	272.9	16.3	1.946

The cross-section of a nozzle at the smallest flow area is called the **throat**.

One-Dimensional Isentropic Flow

Variation of Fluid Velocity with Flow Area

Mass balance for a steady flow process: $\dot{m} = \rho A V = \text{constant}$




Differential form of Energy balance:

$$\frac{dP}{\rho} + V dV = 0$$

Relations for isentropic flow in ducts:

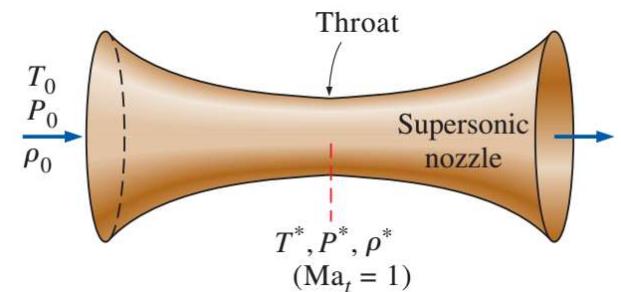
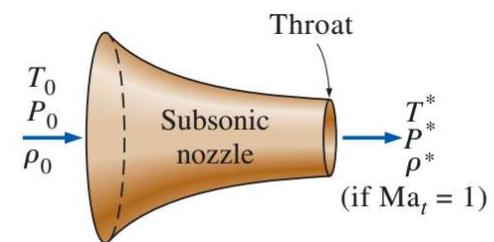
$$\frac{dA}{A} = \frac{dP}{\rho V^2} (1 - M^2)$$

and
$$\frac{dA}{A} = -\frac{dV}{V} (1 - M^2)$$

One-Dimensional Isentropic Flow

Property Relations for isentropic Flow of Ideal Gases

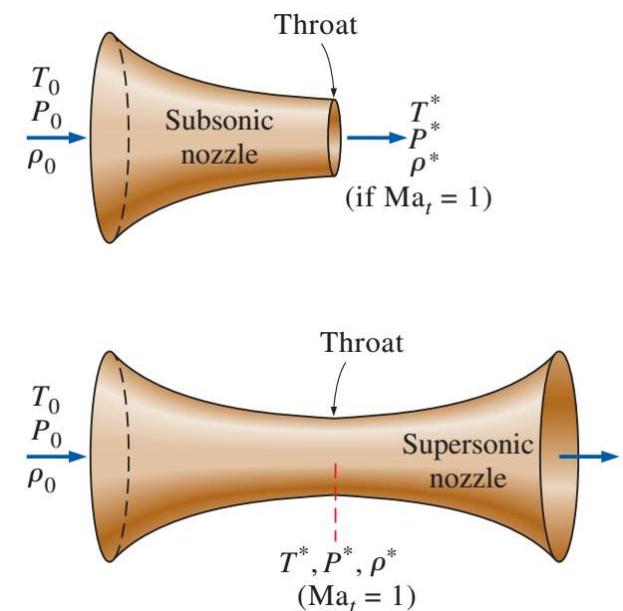
Relation between T_0 and T :
$$\frac{T_0}{T} = 1 + \left(\frac{k-1}{2}\right) M^2$$



Ratio between P_0 and P :
$$\frac{P_0}{P} = \left[1 + \left(\frac{k-1}{2}\right) M^2\right]^{k/(k-1)}$$

Ratio between ρ_0 and ρ :
$$\frac{\rho_0}{\rho} = \left[1 + \left(\frac{k-1}{2}\right) M^2\right]^{1/(k-1)}$$

Critical Ratios:
$$\frac{T^*}{T_0} = \frac{2}{k+1}$$

$$\frac{P^*}{P_0} = \left(\frac{2}{k+1}\right)^{k/(k-1)}$$


$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{k+1}\right)^{1/(k-1)}$$

One-Dimensional Isentropic Flow

The critical-pressure, critical-temperature, and critical-density ratios for isentropic flow of some ideal gases

	Superheated steam, $k = 1.3$	Hot products of combustion, $k = 1.33$	Air, $k = 1.4$	Monatomic gases, $k = 1.667$
$\frac{P^*}{P_0}$	0.5457	0.5404	0.5283	0.4871
$\frac{T^*}{T_0}$	0.8696	0.8584	0.8333	0.7499
$\frac{\rho^*}{\rho_0}$	0.6276	0.6295	0.6340	0.6495

One-Dimensional Isentropic Flow

Example 3

Calculate the critical pressure and temperature of carbon dioxide for the flow conditions described in Example 2 (Figure E-3).

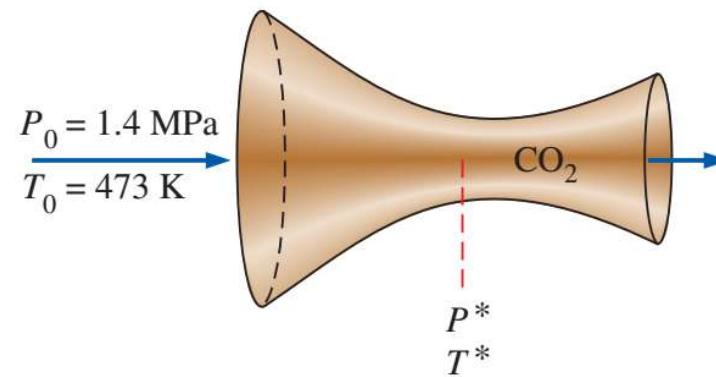


Figure E-3

Content

1. Stagnation Properties
2. One-Dimensional Isentropic Flow

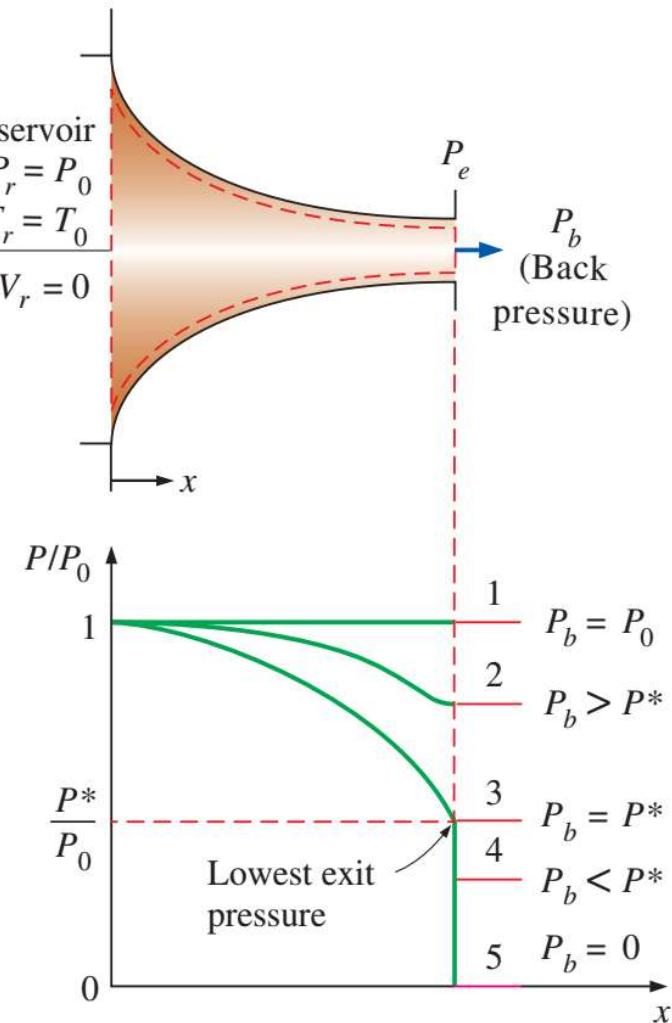
3. Isentropic Flow Through Nozzles

ISENTROPIC FLOW THROUGH NOZZLES

Converging and converging–diverging nozzles are shaped ducts used to speed up and direct fluids.

They are used in:

- Turbines (steam/gas) to turn heat into high-speed flow.
- Aircraft and rocket engines to create thrust.
- Industrial nozzles (blasting, torch) to produce fast, focused jets for cutting, cleaning, or heating.


Converging Nozzles

The mass flow rate of a particular fluid through a nozzle:

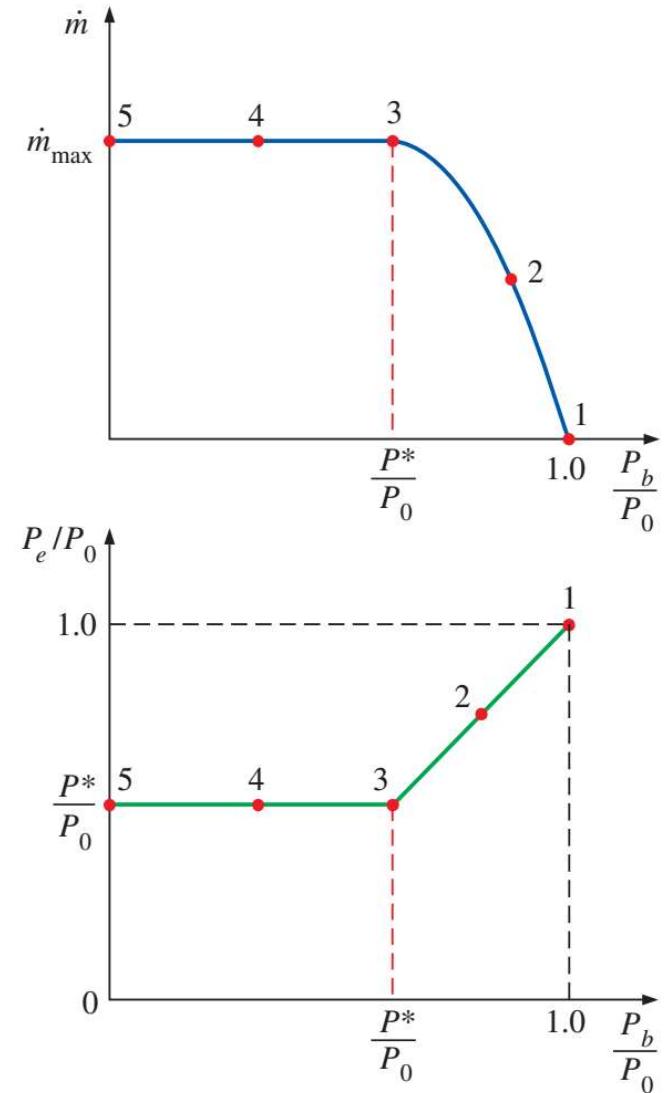
$$\dot{m} = \frac{A M P_0 \sqrt{\frac{k}{RT_0}}}{\left[1 + (k-1) \frac{M^2}{2}\right]^{\frac{k+1}{2(k-1)}}}$$

Maximum mass flow rate:

$$\dot{m} = A * P_0 \sqrt{\frac{k}{RT_0}} \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}}$$

Isentropic Flow Through Nozzles

The effect of **back pressure P_b** on the mass flow rate \dot{m} . and the **exit pressure P_e** of a converging nozzle.


$$P_e = \begin{cases} P_b & \text{for } P_b \geq P^* \\ P^* & \text{for } P_b < P^* \end{cases}$$

Relation for the variation of **flow area A** through the nozzle relative to **throat area A^*** :

$$\frac{A}{A^*} = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{\frac{k+1}{2(k-1)}}$$

Critical Mach number M^* : is the local velocity nondimensionalized with respect to the sonic velocity at the throat.

$$M^* = M \sqrt{\frac{k+1}{2 + (k-1)M^2}}$$

Isentropic Flow Through Nozzles

Example 4

Air at 1 MPa and 600°C enters a converging nozzle, shown in Figure E-4, with a velocity of 150 m/s. Determine the mass flow rate through the nozzle for a nozzle throat area of 50 cm² when the back pressure is (a) 0.7 MPa and (b) 0.4 MPa.

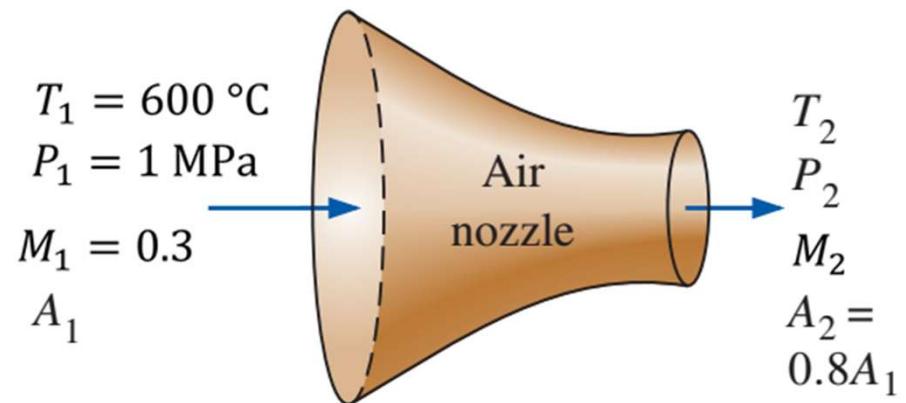
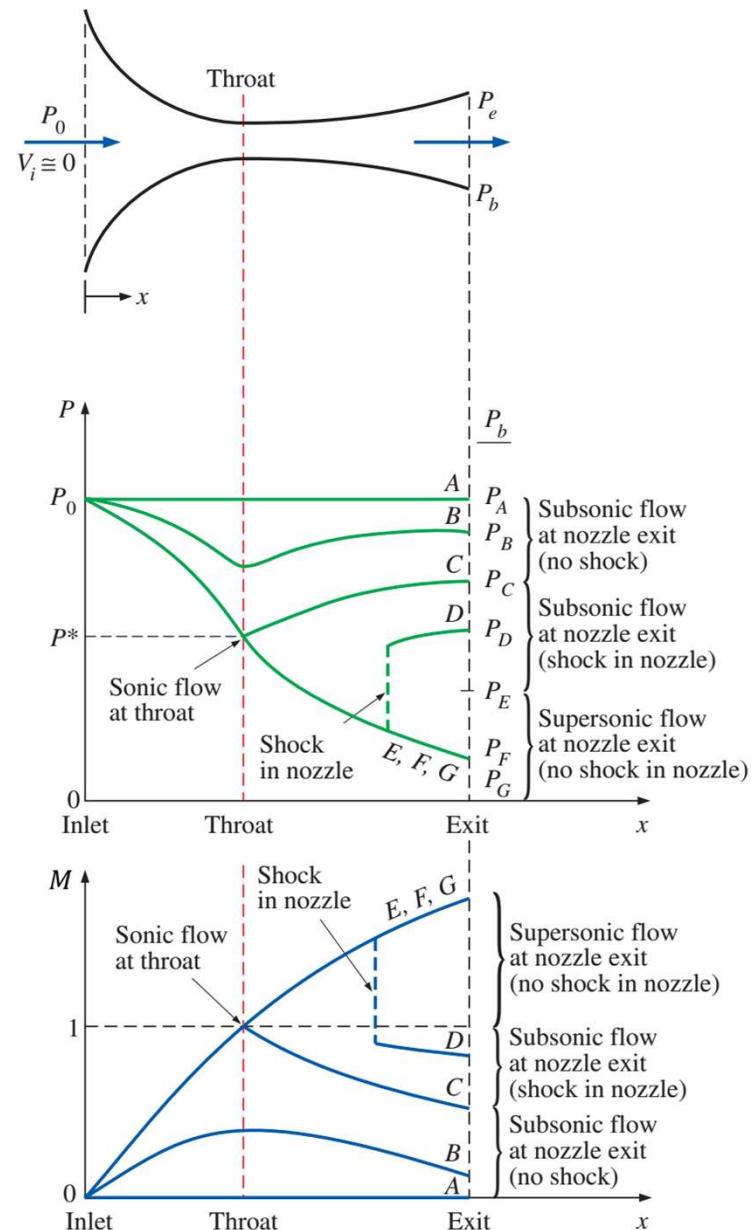


Figure E-4

Isentropic Flow Through Nozzles


TABLE A-13

One-dimensional isentropic compressible flow functions for an ideal gas with $k = 1.4$

Ma	Ma*	A/A*	P/P ₀	ρ/ρ ₀	T/T ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
0.8	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
∞	2.2495	∞	0	0	0

ISENTROPIC FLOW THROUGH NOZZLES

Converging-Diverging Nozzles

Isentropic Flow Through Nozzles

Example 5

Air enters a converging-diverging nozzle, shown in Figure E-5, at 1.0 MPa and 800 K with negligible velocity. The flow is steady, one-dimensional, and isentropic with $k = 1.4$. For an exit Mach number of $M = 2$ and a throat area of 20 cm^2 , determine (a) the throat conditions, (b) the exit plane conditions, including the exit area, and (c) the mass flow rate through the nozzle.

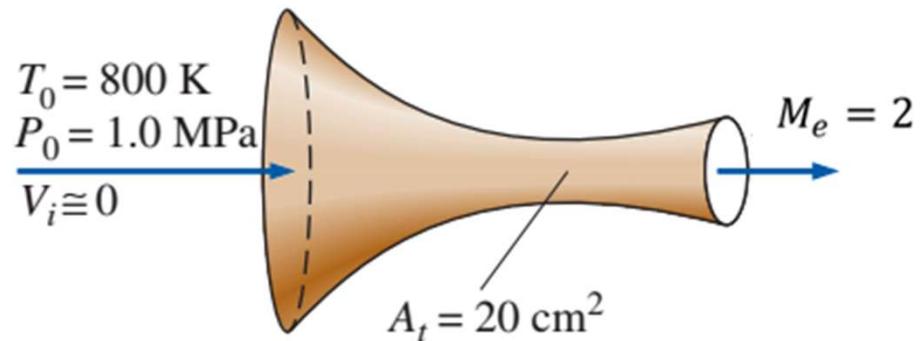


Figure E-5

Content

1. Stagnation Properties
2. One-Dimensional Isentropic Flow
3. Isentropic Flow Through Nozzles

4. Shock Waves and Expansion Waves

Shock Waves and Expansion

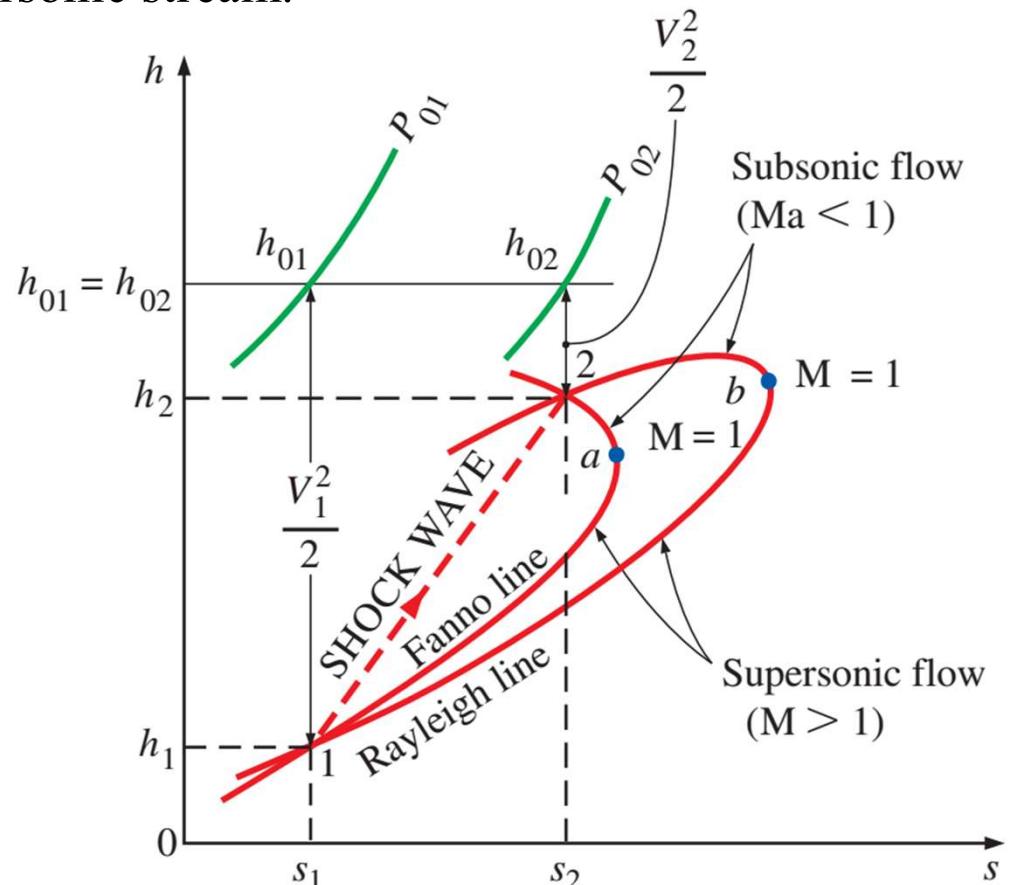
Shock Waves are very thin regions in a supersonic flow where pressure, temperature, density, and velocity change abruptly.

Normal shock waves are shock waves that stand in a plane perpendicular to the flow direction, causing abrupt changes in a supersonic stream.

Conservation of mass:

$$\rho_1 V_1 = \rho_2 V_2$$

Conservation of energy:


$$h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2} \quad \text{or} \quad h_{01} = h_{02}$$

Linear momentum equation:

$$A(P_1 - P_2) = \dot{m}(V_2 - V_1)$$

Increase of entropy:

$$s_2 - s_1 \geq 0$$

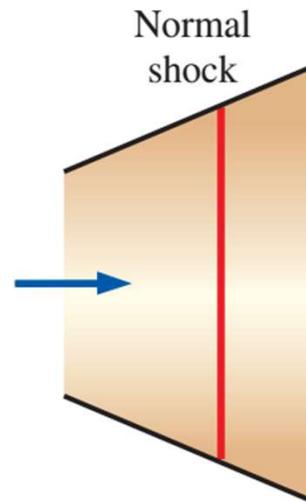
Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

Conservation of energy: $T_{01} = T_{02}$

Ratio of the static temperatures T_2 / T_1 :

$$\frac{T_2}{T_1} = \frac{1 + \frac{M_1^2(k-1)}{2}}{1 + \frac{M_2^2(k-1)}{2}} = \left(\frac{P_2}{P_1}\right)^2 \left(\frac{M_2}{M_1}\right)^2$$


Rayleigh Line: $\frac{P_2}{P_1} = \frac{1 + kM_1^2}{1 + kM_2^2}$

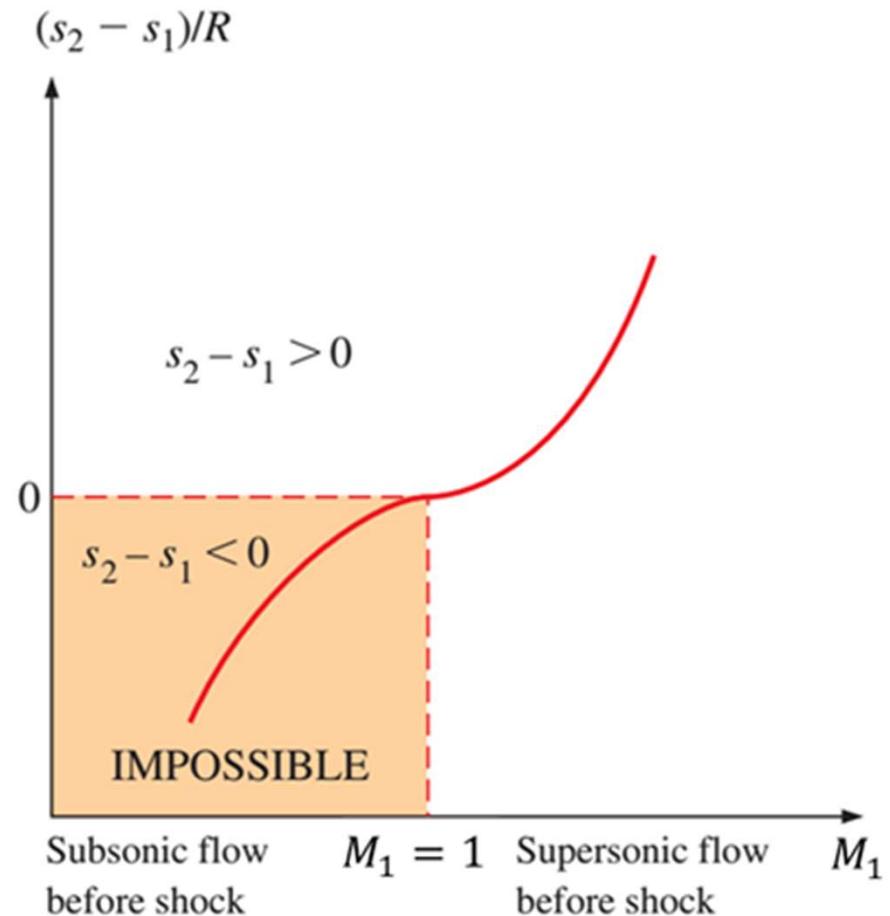
Normal shock Mach number relation

$$M_2^2 = \frac{M_1^2 + \frac{2}{k-1}}{\frac{2M_1^2k}{k-1} - 1}$$

Fanno Line:

$$\frac{P_2}{P_1} = \frac{M_1 \sqrt{1 + \frac{M_1^2(k-1)}{2}}}{M_2 \sqrt{1 + \frac{M_2^2(k-1)}{2}}}$$

- P increases
- P_0 decreases
- V decreases
- M decreases
- T increases
- T_0 remains constant
- ρ increases
- s increases


Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

Entropy change across the shock

$$ds = c_p \frac{dT}{T} - R \frac{dP}{P}$$

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

Shock Waves and Expansion

Example 6

If the air flowing through the converging-diverging nozzle of Example 5 experiences a normal shock wave at the nozzle exit plane (Figure E-6), determine the following after the shock: (a) the stagnation pressure, static pressure, static temperature, and static density; (b) the entropy change across the shock; (c) the exit velocity; and (d) the mass flow rate through the nozzle. Approximate the flow as steady, one-dimensional, and isentropic with $k = 1.4$ from the nozzle inlet to the shock location.

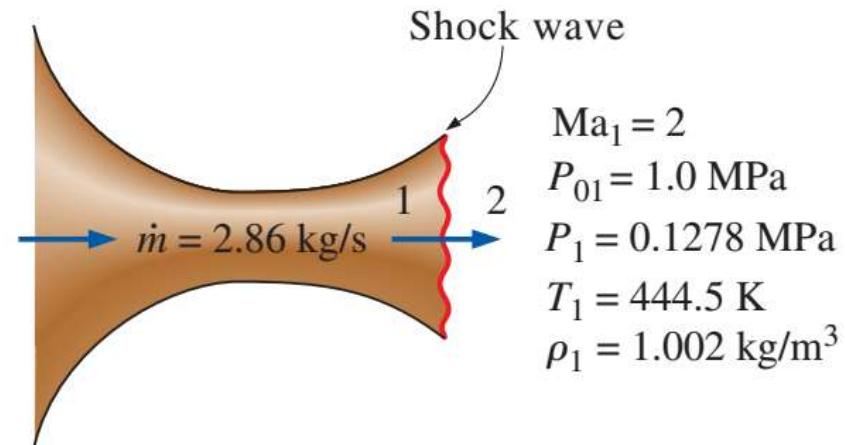


Figure E-6

Shock Waves and Expansion

TABLE A-14

One-dimensional normal shock functions for an ideal gas with $k = 1.4$

Ma ₁	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

Shock Waves and Expansion:

Oblique Shocks

Oblique Shocks

Conservation of mass:

$$\rho_1 V_{1,n} = \rho_2 V_{2,n}$$

Conservation of energy:

$$h_1 + \frac{V_{1,n}^2}{2} = h_2 + \frac{V_{2,n}^2}{2}$$

Linear momentum equation:

$$P_1 - P_2 = \rho_2 V_{2,n}^2 - \rho_1 V_{1,n}^2$$

Increase of entropy:

$$s_2 - s_1 \geq 0$$

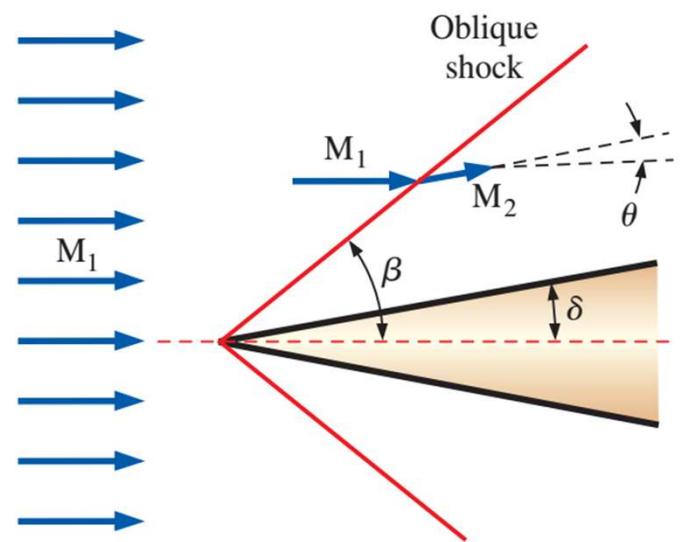
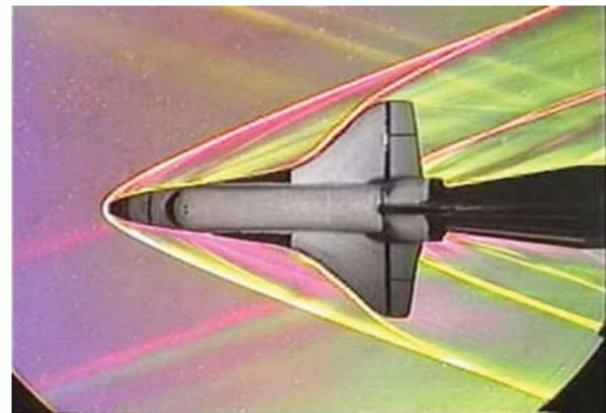



Figure E-6

Shock Waves and Expansion: Oblique Shocks

Relationships across an **oblique shock** for an ideal gas in terms of the normal component of upstream Mach number $M_{1,n}$.

$$h_{01} = h_{02} \rightarrow T_{01} = T_{02}$$

$$Ma_{2,n} = \sqrt{\frac{(k-1)Ma_{1,n}^2 + 2}{2kMa_{1,n}^2 - k + 1}}$$

$$\frac{P_2}{P_1} = \frac{2k Ma_{1,n}^2 - k + 1}{k + 1}$$

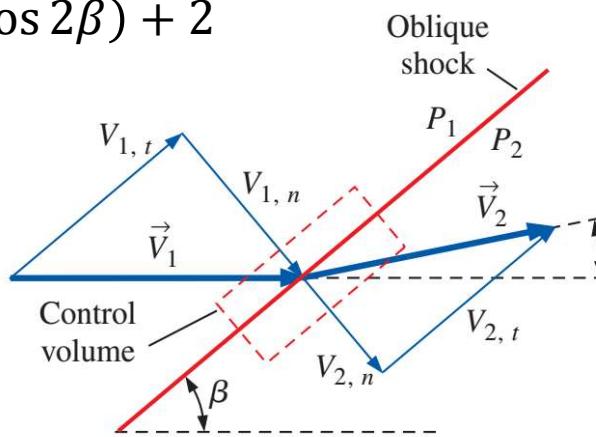
$$\frac{\rho_2}{\rho_1} = \frac{V_{1,n}}{V_{2,n}} = \frac{(k+1)Ma_{1,n}^2}{2 + (k-1)Ma_{1,n}^2}$$

$$\frac{T_2}{T_1} = [2 + (k-1)Ma_{1,n}^2] \frac{2k Ma_{1,n}^2 - k + 1}{(k+1)^2 Ma_{1,n}^2}$$

$$\frac{P_{02}}{P_{01}} = \left[\frac{(k+1)Ma_{1,n}^2}{2 + (k-1)Ma_{1,n}^2} \right]^{k/(k-1)} \left[\frac{(k+1)}{2k Ma_{1,n}^2 - k + 1} \right]^{1/(k-1)}$$

Shock Waves and Expansion:

Oblique Shocks

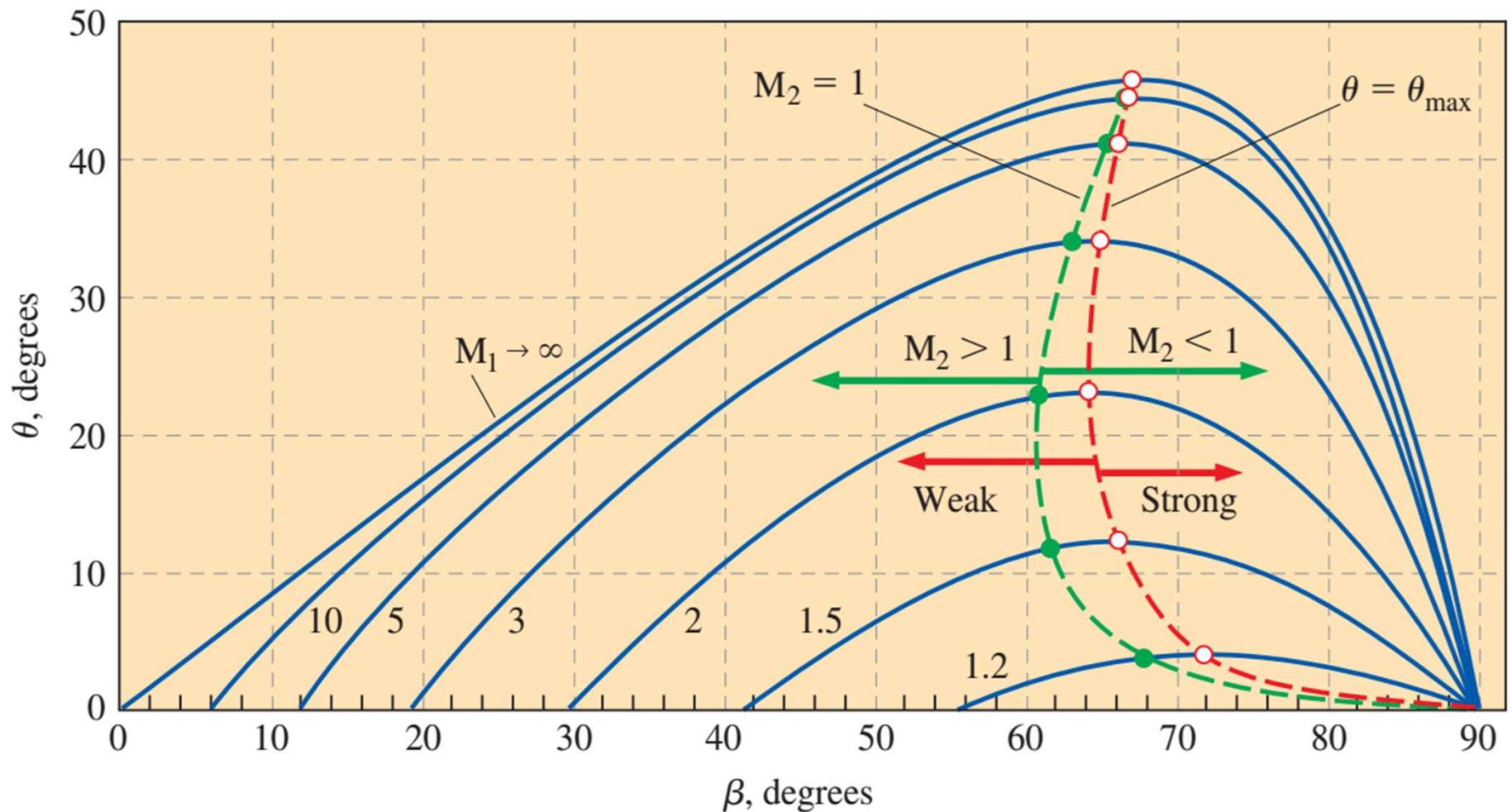

Oblique Shocks

$$M_{1,n} = M_1 \sin \beta \quad M_{2,n} = M_2 \sin(\beta - \theta)$$


The $\theta - \beta - M$ relationship:

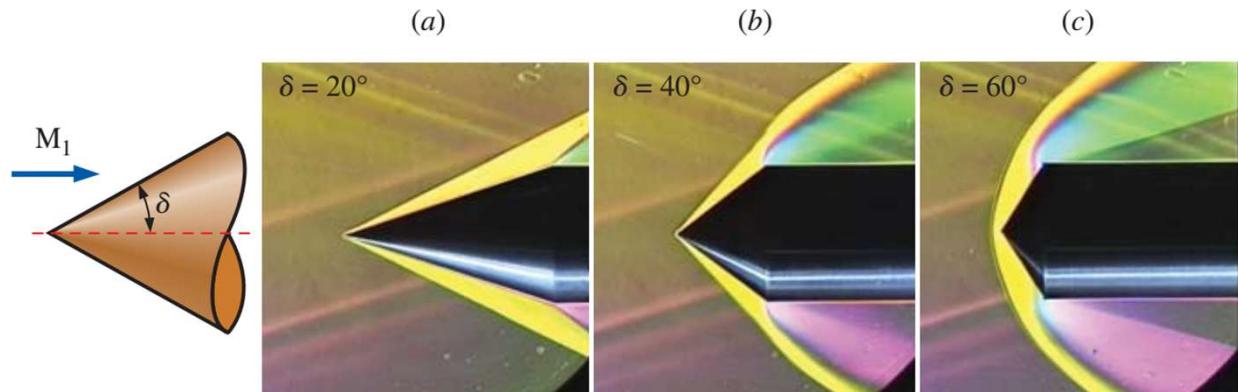
$$\tan \theta = \frac{2 \cot \beta (M_1^2 \sin^2 \beta - 1)}{M_1^2 (k + \cos 2\beta) + 2}$$

NOTE: All the equations, shock tables, etc., for normal shocks apply to oblique shocks as well, provided that we use only the normal components of the Mach number.

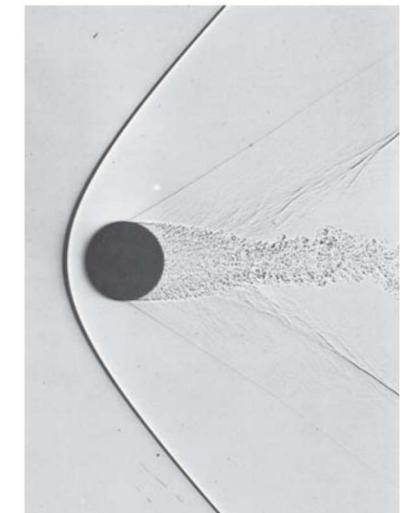
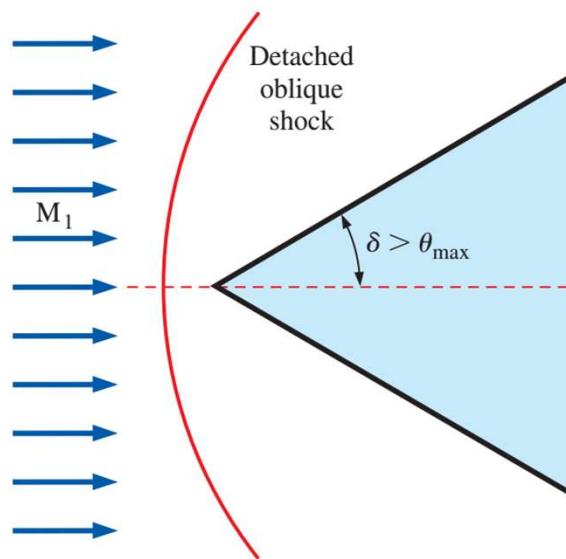

Velocity vectors through an oblique shock

Velocity vectors rotated by angle $\pi/2 - \beta$

Shock Waves and Expansion: Oblique Shocks


The dependence of straight oblique shock deflection angle θ on shock angle β for several values of upstream Mach number M_1 .

Shock Waves and Expansion: Oblique Shocks



Mach angle:

$$\mu = \sin^{-1} \left(\frac{1}{M_1} \right)$$

Schlieren videography illustrating shock Detachment from a Cone at Mach 3

Shock Detachment over
a Wedge

Sphere Shadowgram at Mach 1.53

Shock Waves and Expansion: Oblique Shocks

Example 7

Supersonic air at $M_1 = 2.0$ and 75.0 kPa impinges on a two-dimensional wedge of half-angle $\delta = 10^\circ$ (Figure E-7). Calculate the two possible oblique shock angles, β_{weak} and β_{strong} , that could be formed by this wedge. For each case, calculate the pressure and Mach number downstream of the oblique shock, compare, and discuss.

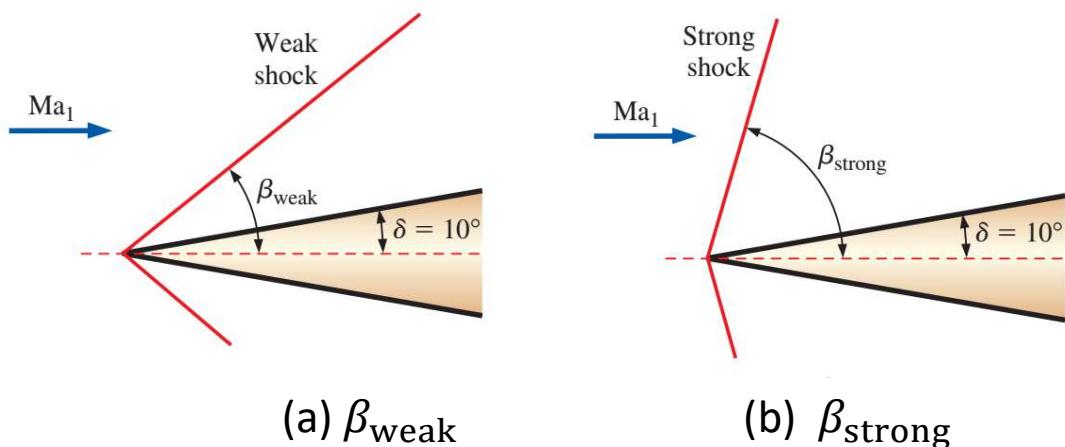
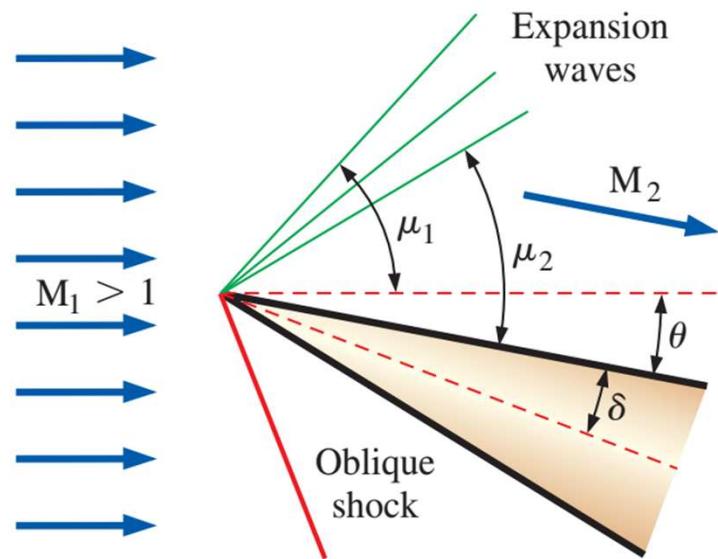


Figure E-7


Shock Waves and Expansion: Expansion Waves

Prandtl-Mayer Expansion Waves

Turning angle across an expansion fan:

$$\theta = \nu(M_2) - \nu(M_1)$$

$\nu(M)$: is an angle called Prandtl-Meyer function

$$\nu(M) = \sqrt{\frac{k+1}{k-1}} \tan^{-1} \left(\sqrt{\frac{k-1}{k+1}} (M^2 - 1) \right) - \tan^{-1} \left(\sqrt{M^2 - 1} \right)$$

$\nu(M)$ is the angle through which the flow must expand, starting with $\nu = 0$ at $M = 1$, in order to reach a supersonic Mach number, $M > 1$.

Shock Waves and Expansion:

Expansion Waves

Example 8

Supersonic air at $M_1 = 2.0$ and 230 kPa flows parallel to a flat wall that suddenly expands by $\delta = 10^\circ$ (Figure E-8). Ignoring any effects caused by the boundary layer along the wall, calculate downstream Mach number M_2 and pressure P_2 .

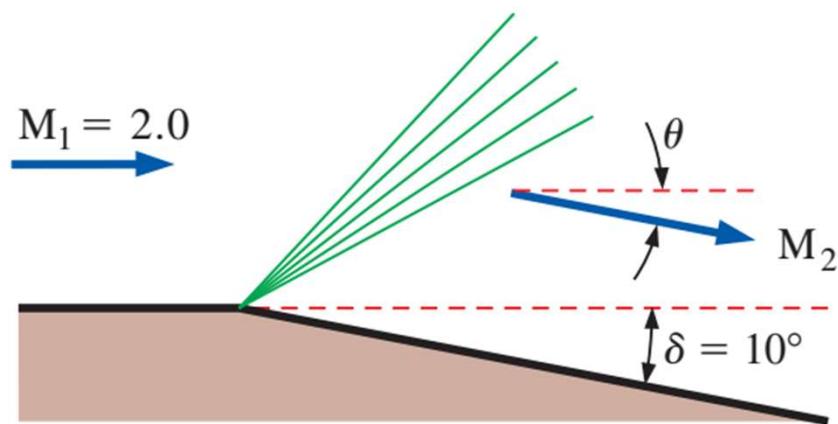


Figure E-8

References

- [1] Cengel Y., Cimbala, J. (2014). Fluid Mechanics: Fundamentals and Applications (3th Edition). New York: NY: McGraw-Hill Co.
- [2] Munson, B.R., Young, D.F., Okiishi, T.H., and Huebsch, W.W. (2016). Fundamentals of Fluid Mechanics (8th Edition). John Wiley & Sons. ISBN 1119080703.