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Stagnation Properties

Compressible flows involve significant changes in density. They are frequently
encountered in devices that handle high-speed gas flow.

Total Enthalpy represents the total energy of a fluid: H = U + PV
V: Volume

Specific Enthalpy (or static enthalpy), h

y p T MASS P: absolute thermodynamic pressure

h=—=u+—

o : mass densit
m P, u: specific internal energy P 4

P/p: flow energy

Specific Stagnation Enthalpy, h, represents the enthalpy a fluid attains when it 1s brought
to rest isentropically.

For an ideal gas with constant
specific heat: —
p h=c,T




Stagnation Properties

Stagnation (or Total) Temperature, T, represents the temperature an ideal gas attains
when it 1s brought to rest adiabatically.
VZ ha

= _— sentropic e &
TO =T+ 2C itagrtlat?on/ R
p state
Stagnation pressure, Py, represents the pressure a h, __/_\ / _____
fluid attains when brought to rest isentropically: L ;’\
' Actual
— ; stagnation
PO TO fe/(ke=1) vz ,1 state
— = = 2 I
P T !
l'.II ks
Isentropic relation: pyk = PoV(’){ /
hi—=—X— 7« 'i ——————————
Stagnation density, pg po_ (To 1/(k=1) Adipal st
p T :

Energy Balance: Ej, = Egye w  qin + Win + (Ro1 + 921) = Gout + Wour + (hoz + 923)



Stagnation Properties

Example 1

An aircraft 1s flying at a cruising speed of 250 m/s at an altitude of 5000 m where the
atmospheric pressure is 54.05 kPa and the ambient air temperature is 255.7 K. The
ambient air is first decelerated in a diffuser before i1t enters the compressor (Figure E-1).
Approximating both the diffuser and the compressor to be isentropic, determine (a) the
stagnation pressure at the compressor inlet and (b) the required compressor work per
unit mass if the stagnation pressure ratio of the compressor is 8.

Diffuser \ / Compressor

T, =2557K

P1 = 5405 kPa
Vl =250 m/s

Figure E-1
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One-Dimensional Isentropic Flow

Speed of Sound, ¢

(6P> ) oP
Cc = -_— or = S
dp S ¢ dp .

For an ideal gas:

c = VKRT k: specific heat ratio of the gas
R: specific gas constant

Mach Number, M

%
M=—
C

. fluid velocity



One-Dimensional Isentropic Flow

Example 2

Carbon dioxide flows steadily through a varying cross-sectional area duct such as a
nozzle shown in Figure E-2 at a mass flow rate of 3.00 kg/s. The carbon dioxide enters
the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the
nozzle to an exit pressure of 200 kPa. The duct is designed so that the flow can be
approximated as isentropic. Determine the density, velocity, flow area, and Mach
number at each location along the duct that corresponds to an overall pressure drop of
200 kPa.

Stagnation
region: m=3.00 kg/s
1400 kPa

200°C
CO,

|
|
|
|
|
|
|
|
|
|
|
|
|
_ J :
1400 1000 767 2

) P, kPa
Figure E-2




One-Dimensional Isentropic Flow

TABLE A-1

Molar mass, gas constant, and ideal-gas specfic heats of some substances

Specific Heat Data at 25°C

Molar Mass Gas Constant
Substance M, kg/kmol R, kl/kg-K* Cp kllkg-K c,, kJ/kg-K H="C /C,
Air 28.97 0.2870 1.005 0.7180 1.400
Ammonia, NH; 17.03 0.4882 2.093 1.605 1.304
Argon, Ar 39.95 0.2081 0.5203 0.3122 1.667
Bromine, Br, 159.81 0.05202 0.2253 0.1732 1.300
Isobutane, C,H,q 58.12 0.1430 1.663 1.520 1.094
n-Butane, C,H,q 58.12 0.1430 1.694 15551 1.092
Carbon dioxide, CO, 44.01 0.1889 0.8439 0.6550 1.288
Carbon monoxide, CO 28.01 0.2968 1.039 0.7417 1.400
Chlorine, Cl, 70.905 OH73 0.4781 0.3608 1.325
Chlorodifluoromethane (R-22), CHCIF, 86.47 0.09615 0.6496 0.5535 Al 7
Ethane, C,H, 30.070 0.2765 1.744 1.468 1.188
Ethylene, C,H, 28.054 0.2964 1.527 12231 1.241
Fluorine, F, 38.00 0.2187 0.8237 0.6050 1.362
Helium, He 4.003 2.077 5.193 3.116 1.667
n-Heptane, C;H,, 100.20 0.08297 1.649 1.566 1.6053
n-Hexane, CgHy, 86.18 0.09647 1.654 1.558 1.062
Hydrogen, H, 2.016 4.124 14.30 10.18 1.405
Krypton, Kr 83.80 0.09921 0.2480 0.1488 1.667
Methane, CH, 16.04 0.5182 2.226 1.708 1.303
Neon, Ne 20.183 0.4119 1.030 0.6180 1.667
Nitrogen, N, 28.01 0.2968 1.040 0.7429 1.400
Nitric oxide, NO 30.006 0.2771 0.9992 0.7221 1.384
Nitrogen dioxide, NO, 46.006 0.1889 0.8060 0.6171 1.306
Oxygen, 0, 32.00 0.2598 0.9180 0.6582 1.395
n-Pentane, CgH;, 1205 01152 1.664 1.549 1.074
Propane, C;Hg 44.097 0.1885 1.669 1.480 10327
Propylene, C;Hg 42.08 0.1976 1.531 15333 1.148
Steam, H,0 18.015 0.4615 1.865 1.403 1329
Sulfur dioxide, SO, 64.06 0.1298 0.6228 0.4930 1.263
Tetrachloromethane, CCl, 153.82 0.05405 0.5415 0.4875 1Ryl
Tetrafluoroethane (R-134a), C,H,F, 102.03 0.08149 0.8334 0.7519 1.108
Trifluoroethane (R-143a), C,H4F5 84.04 0.09893 0.9291 0.8302 1.119

Xenon, Xe 131.30 0.06332 0.1583 0.09499 1.667




One-Dimensional Isentropic Flow

Results for Example 2

1400 1200 1000 800 600 400 200

T
Variation of fluid properties in flow direction in the duct described in Example 12-2 1
for m = 3 kg/s = constant \
P kPa T K V, m/s p, kgm® ¢, mis A, cm? Ma > -\\ e
1400 473 0 157 339.4 % 0 o X
1200 457 164.5 13.9 333.6 13.1 0.493 < ~——
<
1000 439 240.7 12:1 326.9 10.3 0.736 < N
800 417 306.6 10.1 318.8 9.64 0.962 _ | N
767" 413 3172 9.82 317.2 9.63 1.000 Ma
600 391 371.4 8.12 308.7 10.0 1.203 _/
400 357 441.9 5.93 295.0 11.5 1.498 Ve
200 306 530.9 3.46 272.9 16.3 1.946 :
Throat
/

The cross-section of a nozzle at the
smallest flow area is called the throat.

Fluid

Fluid

—

K Converging nozzle

L Converging—diverging nozzle

P, kPa



One-Dimensional Isentropic Flow

Variation of Fluid Velocity with Flow Area

Mass balance for a steady flow process:

Differential form of Energy balance:

Relations for isentropic flow in ducts:

dA

A

dP ,
= 2= M)

MaA =:1
(sonic)

m = pAV =constant

dP
—+VdV =0

= Pincreases
V decreases

P decreases
V increases

—___ pincreases

Subsonic nozzle Subsonic diffuser

(a) Subsonic flow

= P decreases

P increases
V decreases

p increases

Supersonic nozzle

Supersonic diffuser

(b) Supersonic flow



One-Dimensional Isentropic Flow

Property Relations for isentropic Flow of Ideal Gases

Relation between Ty and T': % =1+ (T) M?

- k/(k-1)
Ratio between P, and P: & _ k—1Y\
P = 1+ 5 M

2

p

Ratio between p,, and p: [ k—1 ]
poand p:  pg 14_( )Aﬂ

Critical Ratios: T* 2
To, k+1

P, \k+1




One-Dimensional Isentropic Flow

The critical-pressure, critical-temperature, and critical-density ratios for
isentropic flow of some ideal gases

Superheated Hot products Monatomic Subsonic
steam, of combustion, Air, gases, —
k=1.3 k= 1.33 k=1.4 k=1.667
ES
% 0.5457 0.5404 0.5283 0.4871
0
7=
=~ 0.8696 0.8584 0.8333 0.7499
0
+
L 0.6276 0.6295 0.6340 0.6495




One-Dimensional Isentropic Flow

Example 3

Calculate the critical pressure and temperature of carbon dioxide for the flow
conditions described in Example 2 (Figure E-3).

P,=1.4 MPa
—
T,=473K

Figure E-3
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Isentropic Flow Through Nozzles

Converging and converging—diverging nozzles are shaped ducts used to speed

up and direct fluids.

They are used 1n:

- Turbines (steam/gas) to turn heat into high-speed flow.

- Aircraft and rocket engines to create thrust.

- Industrial nozzles (blasting, torch) to produce fast,
focused jets for cutting, cleaning, or heating.

k
The mass flow rate of a AM PO\fR_TO

particular fluid through a m k+1

2120h=1)
nozzle: [1 + (k — 1)MT 2=t

Converging Nozzles

k+1
Maximum mass flow ‘ k 2 \2(k-1)
rate: m=Axbo o \kT 1

Lowest exit
pressure




Isentropic Flow Through Nozzles

The effect of back pressure Pj, on the mass flow
rate m. and the exit pressure P, of a converging

nozzle. , p, for P, > P*
¢ | P* for P, <P*

Relation for the variation of flow area A through the
nozzle relative to throat area A™ :

k+1
A 1 2 1+k—1M2 2(k—-1)
A MI\k+1 2

Critical Mach number M™: is the local velocity
nondimensionalized with respect to the sonic velocity at
the throat.

v m k+1
24+ (k=1)M?

max

P /P,

o r



Isentropic Flow Through Nozzles

Example 4

Air at 1 MPa and 600°C enters a converging nozzle, shown in Figure E-4, with a velocity
of 150 m/s. Determine the mass flow rate through the nozzle for a nozzle throat area of 50
cm? when the back pressure is (a) 0.7 MPa and (b) 0.4 MPa.

T, = 600 °C
P, = 1 MPa

Figure E-4



Isentropic Flow Through Nozzles

One-dimensional isentropic compressible flow functions for an ideal

gaswith k= 1.4
Ma Ma* AlA* PIP, ploo T,
0 0 % 1.0000 1.0000 1.0000

0.1 0.1094 5.8218 0.9930 0.9950 0.9980
0.2 0.2182 2.9635 0.9725 0.9803 0.9921
0.3 0.3257 2.0351 0.9395 0.9564 0.9823
0.4 0.4313 1.5901 0.8956 0.9243 0.9690
0.5 0.5345 1.3398 0.8430 0.8852 0.9524
0.6 0.6348 1.1882 0.7840 0.8405 0.9328
0.7 0.7318 1.0944 0.7209 0.7916 0.9107
0.8 0.8251 1.0382 0.6560 0.7400 0.8865
0.9 0.9146 1.0089 0.5913 0.6870 0.8606
1.0 1.0000 1.0000 0.5283 0.6339 0.8333
1.2 1.1583 1.0304 0.4124 0.5311 0.7764
1.4 1.2999 1.1149 0.3142 0.4374 0.7184
1.6 1.4254 1.2502 0.2353 0.3557 0.6614
1.8 1.5360 1.4390 0.1740 0.2868 0.6068
2.0 1.6330 1.6875 0.1278 0.2300 0.5556
2.2 1.7179 2.0050 0.0935 0.1841 0.5081
2.4 1.7922 2.4031 0.0684 0.1472 0.4647
2.6 1.8571 2.8960 0.0501 0.1179 0.4252
2.8 1.9140 3.5001 0.0368 0.0946 0.3894
3.0 1.9640 4.2346 0.0272 0.0760 0.3571
5.0 2.2361 25.000 0.0019 0.0113 0.1667
o 2.2495 % 0 0 0




Isentropic Flow Through Nozzles

Converging-Diverging Nozzles

Combustion chamber

Oxidizer Fuel

Sonic flow |
at throat |

: Shock
| in nozzle

a ==

=)

F,

PA Subsonic flow

P

at nozzle exit
(no shock)

B

Subsonic flow
} at nozzle exit
(shock in nozzle)

Supersonic flow
} at nozzle exit
(no shock in nozzle)

0 !
Inlet Throat

M I Shock
: in nozzle
Sonic flow !

at throat :

A,

X

Supersonic flow
} at nozzle exit
(no shock in nozzle)

Subsonic flow
at nozzle exit
(shock in nozzle)

Subsonic flow

|

at nozzle exit
(no shock)

Exit



Isentropic Flow Through Nozzles

Example 5

Air enters a converging—diverging nozzle, shown in Figure E-5, at 1.0 MPa and 800 K
with negligible velocity. The flow is steady, one-dimensional, and isentropic with k = 1.4.
For an exit Mach number of M = 2 and a throat area of 20 cm?, determine (a) the throat

conditions, (b) the exit plane conditions, including the exit area, and (c) the mass flow rate
through the nozzle.

T, = 800 K -
P,=1.0 MPa =
V,=0

I

A, =20 cm?

Figure E-5
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Shock Waves and Expansion

Shock Waves are very thin regions in a supersonic flow where pressure, temperature,
density, and velocity change abruptly.

Normal shock waves are shock waves that stand in a plane perpendicular to the flow
direction, causing abrupt changes in a supersonic stream.

Conservation of mass:

prVi=p2 V>
Conservation of energy:
hy + i + v,
— = —= or
)

Linear momentum equation:
A(P, — Py) =m(V, — V)
Increase of entropy:

So— 851 >0

ho1 = hy;

h

Supersonic flow
(M > 1)

“y



Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

Conservation of energy: To1= Ty
Ratio of the static temperatures T,/ T} : Fanno Line:
MZ(k —1)
Mi(k—1 M \/ 1+
= 2k—1) \p, ) \m, Py MZ(k — 1
T1 1+M2(k2 1) P]_ M]_ MZ\/1+ 2(2 )
. . 2 Normal
Rayleigh Line: P, _1+kMj shock =
P, 1+ kMZZ / P increases
P, decreases
) V decreases
Normal shock Mach number relation M decreases
y) T increases
, MZ + T—1 T, remains constant
M5 = ZMlzk \ p increases

-1 s Increases
k—1 Ty



Shock Waves and Expansion

Variation of flow properties across a normal shock in an ideal gas.

Entropy change across the shock

dT dP

dS= Cp——R?
T P,
So— S:=CpIn—— RIn—

(.8’2 - 8 )/R
A

OfF————————=

IMPOSSIBLE

|
|
|
|
|
|
|
|
|

Subsonic flow M,
before shock

1 Supersonic flow M,
before shock



Shock Waves and Expansion

Example 6

If the air flowing through the converging—diverging nozzle of Example 5 experiences a
normal shock wave at the nozzle exit plane (Figure E-6), determine the following after the
shock: (a) the stagnation pressure, static pressure, static temperature, and static density; (b)
the entropy change across the shock; (¢) the exit velocity; and (d ) the mass flow rate
through the nozzle. Approximate the flow as steady, one-dimensional, and isentropic with
k = 1.4 from the nozzle inlet to the shock location.

Shock wave

/ Mal=2

—» sii=286ke/su—4> P,=0.1278 MPa
S T, =4445K

p; = 1.002 kg/m?

Figure E-6



Shock Waves and Expansion

One-dimensional normal shock functions for an ideal gas with k= 1.4
Ma, Ma, Pyl Py p2lpi LT, Pool Pox Poo! Py

1.0000 1.0000 1.0000 1.0000 1.0000 1.8929
0.9118 1.2450 1.1691 1.0649 0.9989 2.1328
0.8422 1.5133 1.3416 1.1280 0.9928 2.4075
0.7860 1.8050 1.5157 1.1909 0.9794 2.7136
0.7397 2.1200 1.6897 1.2547 0.9582 3.0492
0.7011 2.4583 1.8621 1.3202 0.9298 3.4133
0.6684 2.8200 2.0317 1.3880 0.8952 3.8050
0.6405 3.2050 2.1977 1.4583 0.8557 4.2238
0.6165 3.6133 2.3592 1.5316 0.8127 4.6695
0.5956 4.0450 2.5157 1.6079 0.7674 5.1418
0.5774 45000 2.6667 1.6875 0.7209 5.6404
0.5613 49783 2.8119 1.7705 0.6742 6.1654
0.5471 5.4800 2.9512 1.8569 0.6281 6.7165
0.5344 6.0050 3.0845 1.9468 0.5833 1.2937
0.5231 6.5533 3.2119 2.0403 0.5401 7.8969
0.5130 7.1250 3.3333 2.1375 0.4990 8.5261
0.5039 7.7200 3.4490 2.2383 0.4601 9.1813
0.4956 8.3383 3.5590 2.3429 0.4236 9.8624
0.4882 8.9800 3.6636 2.4512 0.3895 10.5694
0.4814 9.6450 3.7629 25632 0.3577 11.3022
0.4752 10.3333 3.8571 2.6790 0.3283 12.0610
0.4350 18.5000 4.5714 4.0469 0.1388 21.0681
0.4152 29.000 5.0000 5.8000 0.0617 32.6335
0.3780 % 6.0000 % 0 %

[ T e e e e )
CWLOWRNNOYO P WMNHO

g S Q2 TN IR RN IR D
cCooWLVLNOU A WN =~




Shock Waves and Expansion:
Oblique Shocks

Oblique Shocks

Conservation of mass:
P1 Vin=p2Van
Conservation of energy:

Vlzn szn
1+ > 2 T+ >

Linear momentum equation:

Py — Py = p, Vi — P1V12,n

Increase of entropy:

S — 54 >0

Figure E-6

Oblique
shock




Shock Waves and Expansion:
Oblique Shocks

Relationships across an oblique shock for an ideal gas in terms of the normal component
of upstream Mach number M, ,,.




Shock Waves and Expansion:

Oblique Shocks

Oblique Shocks

M;, = M;sinf M, = M, sin(f — 6)

The 8 —  — M relationship: B, 1

2 cotf (M?sin? g — 1)
M12 (k + cos 2,8) + 2 Oblique

tan @ =

NOTE: All the equations,
shock tables, etc., for
normal shocks apply to
oblique shocks as well,
provided that we use only
the normal components
of the Mach number.

Velocity vectors through an
oblique shock

- >Ma, , <1
B—0 /
0
/
‘\7 ’\}/
Oblique S
shock —_ ¢ A

Velocity vectors rotated by

anglet/2 —



Shock Waves and Expansion:
Oblique Shocks

The dependence of straight oblique shock deflection angle 8 on shock angle f for several
values of upstream Mach number M.

50
M, =1 0=0_.
/]
‘ I
g | | , | i
o . <
éﬁ h& o0 i M2>1 I 2 -
< 20f - e e e e
Weak | | Strong
10 =
0/5 /3 2NN N
1.2 e
0 | 1 | J L1 1 1 L1 1 1 | | 1 - ITT-I:""?
0 10 20 30 40 50 60 70 80 90

B, degrees



Shock Waves and Expansion:
Oblique Shocks

Mach angle:

Detached
oblique
shock

Shock Detachment over

a Wedge Sphere Shadowgram at Mach 1.53



Shock Waves and Expansion:
Oblique Shocks

Example 7

Supersonic air at M; = 2.0 and 75.0 kPa impinges on a two-dimensional wedge of half-
angle 6 = 10° (Figure E-7). Calculate the two possible oblique shock angles, S,yeak and
Bstrong, that could be formed by this wedge. For each case, calculate the pressure and

Mach number downstream of the oblique shock, compare, and discuss.

(a) Bweak (b) ,Bstrong

Figure E-7



Shock Waves and Expansion:
Expansion Waves

Expansion
waves

Prandtl-Mayer Expansion Waves

Turning angle across an expansion fan:

0 =v(Mz) —v(M,) v

v(M): is an angle called Prandtl-Meyer function —_—

Oblique
shock

k+1 k—1
V(M): k_ltan_l \/k—-l—]_(Mz—l) —tan_l( MZ_l)

v(M) is the angle through which the flow must expand, starting with v = 0 at
M = 1, in order to reach a supersonic Mach number, M > 1.



Shock Waves and Expansion:
Expansion Waves

Example 8

Supersonic air at M; = 2.0 and 230 kPa flows parallel to a flat wall that suddenly expands

by 6 = 10° (Figure E-8). Ignoring any effects caused by the boundary layer along the wall,
calculate downstream Mach number M, and pressure P,.

Figure E-8
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