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The Velocity Field

Velocity Field

By definition, the velocity of a particle is the time rate of change of the position
vector for that particle.

Particl h Particle 4 at
article pa .
Particle 4 at P time r + ¢
time ¢
40 At + 60
.1:
| _dry
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x dt

Particle location in terms of its position vector.

V= u(x, v, z,t)f+ v(x, v, z,t)j + w(x, v, z,t)ﬁ



The Velocity Field: Eulerian and
Lagrangian Flow Descriptions

Eulerian method

From this method we obtain information about the flow in terms of what happens at
fixed points in space as the fluid flows through those points.

Lagrangian method

Involves following individual fluid particles as
they move about and determining how the fluid | ocation 0.

properties associated with these particles change 7= %030, 0~
as a function of time. ) ':L

T Particle 4:
T.a = I:a{f]'

X

’__ -

Eulerian and Lagrangian descriptions of
temperature of a flowing fluid.



The Velocity Field: One-, Two-, and

Three—Dimensional Flows

Three-dimensional flow Vit
V= V(x, v, Z, t) = ui + vj +wk Pa'ﬂﬁ-l.i : i Wty 1)
. 1,
Two-dimensional flow reiele el 2 H“‘:{ii o)
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One-dimensional flow
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The development of the velocity profile in a circular pipe.



The Velocity Field: Steady and
Unsteady Flows

Steady flow — the velocity at a given point in space does not vary with time.

‘L

(a) (h)

(a) is an instantaneous image. (b) is a long-exposure (time-averaged) image.



The Velocity Field: Streamlines,
Streaklines, and Pathlines

Streamlines
A streamline is a curve that is everywhere tangent to the instantaneous local velocity
vector. It is often used in analytical work. Point (x +dx,y +dy) ¥
Streamline |
H_v
dx u
L Point (x, ¥)
X
. Streamline for two-dimensional flow in the xy-plane,

Streaklines P
A streakline is the locus of fluid particles Dye or smoke
that have passed sequentially through a Inected flid parice

Streakline 1
2

prescribed point in the flow. Streakline is
often used in experimental work.




The Velocity Field: Streamlines,
Streaklines, and Pathlines

Pathlines

Fluid particle at 1 = 7,

rd
Pathline ’.‘
RASERE N Re
T an®

Fluid particle at some
intermediate time

A pathline is the actual path traveled by an
individual fluid particle over some time period.
A pathline is often used in experimental work

Note : While the three flow patterns are identical in steady flow, they can be
quite different in unsteady flow.



The Velocity Field: Streamlines,
Streaklines, and Pathlines

Example 4.1

Consider the two-dimensional steady flow given by,
V= VZ—O (— xi+ yj)
Determine the streamlines for this flow.  Answer: XY =C
Plotfor C=1and C=-1
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The Acceleration Field

The acceleration of a particle is the time rate of change of its velocity.

Material acceleration

DV av
Dt ot

Acceleration of any particle
oV~ dV 9V oV

+(V-V)V

Vector form a= +u +v +w
ot ox dy 0z

Scalar form

_ov v
a +U—+v—
YT o ox ay az

av a_v

Where:

V : Gradient operator or del operator.

V : Velocity vector.

Steady flow
v
ot

=0

Unsteady flow

o,

ot




The Acceleration Field

Example 4.2

An incompressible, inviscid fluid flows steadily past a ball of radius R, as shown in Fig.
According to a more advanced analysis of the flow, the fluid velocity along streamline
A-B is given by

3
V=u(x)i= V0[1+R—3ji

X

where V,, is the upstream velocity far ahead of the —
sphere. Determine the acceleration experienced by g g o
fluid particles as they flow along this streamline. Lg— 4 - -
Answer: >
(R ]3 v —:—\\
I+ —
X
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Control Volume and System
Representation

System

A system (also called a closed system), is defined as a quantity of matter of fixed identity. The
size and shape of a system may change during a process, but no mass crosses its boundaries.

Control Volume

A control volume (also called an open system), defined as a region in space chosen for study. A
control volume allows mass to flow in or out across its boundaries, which are called the control
surfacee. =~ ..

e~ Sprayed mass [

the can. This is the control volume

: \ = (a) We follow the fluid as it moves and

i ! Systa i/ i deforms. This is the system approach.

\( Reyny (( Reyl (b) We consider a fixed interior volume of
\Deod! ‘\Deo do

1 :I - ' approach.
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Reynolds Transport Theorem

Reynolds Transport Theorem: The Reynolds transport theorem (RTT) provides a
link between the system approach and the control volume approach.

B =mb

m : Mass of the portion of fluid.

B : Any physical parameter (scalar or vector). It
represents an extensive property.

| m
. . /
b : Physical parameter per unit mass (scalar or <
vector). It represents an intensive property. -
B b= BIm
Physical parameters  _ velocity, m 1
- Acceleration, ]
m\ \
- Mass,
- Temperature, %mb’z %vz

Momentum, etc.



Reynolds Transport Theorem

Control volume at time t + Al
(CV remains fixed in time)

System (material volume)

Bsys ;= BCV ; (At time 1) and control volume at time ¢
’ ’ (shaded region)

— _ . System at time ¢ + Af
Bsys,t+At - BCV,t+At Bl,t+At + BII,t+At (At time r+A4r) (hatched region)

dB,,. dB : .
= = o Bin + Bout
dt dt V
dB., dB
or . — = dCV — b1 PV Ay +D,y0,V2 Ay
t 4 (1)

States that the time rate of change of the property B
of the system is equal to the time rate of change of B Inflow during At
of the control volume plus the net flux of B out of the

. Outflow during At
control volume by mass crossing the control surface.

Attime t: Sys=CV
Attime r+Ar Sys=CV-=1+11



Reynolds Transport Theorem (RTT)

Reynolds Transport Theorem (RTT) for a fixed control volume.

n v n

dBy, d aa b y
=— | pbdV + j pbV -ndA X \(fx{i__
dt dt Jcv csS L /=)
Ou\Lﬂ\/o’u-' : Inﬁo;j: v
8 <90° 6> 90°
. dB,,, .
where: dzy The time rate of change of the property B of the system.

IC/SObV ‘ndA =B,, =B,,-B;,  Netrate of outflow through the entire control surface.

d Time rate of change of the property B content within the

— | pbd¥-
dt Jev control volume.

Reynolds Transport Theorem (RTT) for the control volume that moves and/or
deforms.

dBSyS d
=— | pbdV+ | pbV, -ndA
dt dt Jcv CsS

Where: V, : Relative velocity.
V : Absolute velocity.

Vs @ Local velocity of the control surface.



Reynolds Transport Theorem (RTT)

Reynolds transport theorem applied to a control volume moving at constant

velocity.
Absolute reference frame:

Control volume

Relative reference frame:

Control volume




Reynolds Transport Theorem (RTT)

RTT in terms of average values of fluid properties crossing the control surface.

dB d
== — | pbd¥+ Y it b, — Y m,b
dl' dl' C/{z Z r-avg ; r-avg

out

dB d
or Lal :—j bd¥- + boVy gve A— wvelaveVr ave A
» D PargbargVriag A= PagagVr g

dt dt :
out mn
Where: T o %
. & - - N
m, Is the mass flow rate through the inlet or '/ ©)7%
outlet. — 1
| ——— | e
: , O —— Q—
m, = pangr - pavgvr,ang |— I
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Newton’s Second Law

Newton’s second law of motion

F=ma  (Vectorial form)

F : net force acting on a fluid particle (Vector form).

m < 1mass.

a : acceleration (Vector form).
_av

a=
dt

For inviscid flows :  viscous forces << net pressure forces
viscous forces << gravity forces

= U= 0 M dynamic viscosity.

Net pressure force + net gravity force = particle mass X particle acceleration



Newton’s Second Law

Coordinate systems

N

~
\}*-.r |
_______ v /s — g "~ N
.1:

Rectangular Cylindrical

s : distance along the streamline, s = s(t).

n : coordinate normal to the streamline.

y—\ n=n
‘R : radius of curvature of the streamline. /—\ n=0

n
\ %
IS\
V : velocity, V = ds /dt. e
AV AV Streamlines
a. . streamwise acceleration, 4, =——=V—, -
s dt ds

-
. : v?
a, - normal acceleration, a, = ? . Flow in terms of streamline and normal coordinates.
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F=ma Along a Streamline

Steady flow along a streamline

ZdFs =dma,

Equation of motion along the streamline
direction

dP dv
—ysin@ ——= pV —
4 ds p ds

General

P V?
—+ 7 + gz = constant

P

Bernoulli equation (Incompressible flow)

P V?
—+ 7+ gz = constant

Yo

The Bernoulli equation between any two

points
2 2
AW BV
8 =——+—18%
2 p 2

Steady flow along a streamline

Freebody diagram of a fluid particle.



F=ma Along a Streamline

Example 4.3

Consider the inviscid, incompressible, steady flow along the horizontal streamline A-B in front of
the sphere of radius a, as shown in Figure a. From a more advanced theory of flow past a sphere,
the fluid velocity along this streamline is

3
V:VO(1+G—3]
X

as shown in Figure b. Determine the pressure variation along the streamline from point A far in
front of the sphere (x, = -0 and V,, = V,)) to point B on the sphere (x5 = -a and Vy =0).

5 17,

4’_/ = | 0.75 T/o
]:.-{ = I;Di F= Iji VB = G’ ’ ¥V 0.5 Vc\
e

B % .
A \ Q\’ ’ 0.257,
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Static, Stagnation, Dynamic, and
Total Pressure

1
P2:P1"‘—PV12
e | 2

. . Ope
Stagnation pressure 7
Static pressure
Dynamic pressure

T H

h 'L?L

v, — !
(3)

= hy P

o S B s |t
> (1) (2)
— V,=V V,=0

Measurement of static and stagnation pressures.



Static, Stagnation, Dynamic, and
Total Pressure

Pitot-static tube
Pitot-static tubes measure fluid velocity by converting velocity into pressure.

(3)

1
ps=p+=pV> Il
2
Ps=P1=P e (4)
v |2ps=pd)
Yo, , {i}
—-— .:.
p (2)

Measurement of static and stagnation pressures.



Static, Stagnation, Dynamic, and
Total Pressure

Example 4.4
An airplane flies 200 mi/hr at an elevation of 10,000 ft in a standard atmosphere as
shown in Fig. Determine the pressure at point (1) far ahead of the airplane, the
pressure at the stagnation point on the nose of the airplane, point (2), and the
pressure difference indicated by a Pitot static probe attached to the fuselage.
(a) 10.1 psia
(b) 10.63 psia
(c) 0.524 psi

(2
¥, = 200 mph Pitot-static tube |

(1)
. 4
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Example of use of the Bernoulli
Equation: Free Jets

Vertical flow from a tank.
. . I -
Bernoulli equation  p, + 5 PV + 9 = p, + B PV + 1,

Applying to the flow from a tank

I _»
=—pV
m 2,02
‘. V2=ﬂ2gh
and

Vs =42g(h+H)




Example of use of the Bernoulli
Equation: Confined Flows

Vena contracta effect for a sharp-edged orifice.

A
| Ce= ™
b A
i S —— A; ¢ area of the jet at the vena contracta.
= dh—-o—l—h-— —————
@ - T A, : area of the hole.

Confined Flows
Conservation of mass
ml = n'12

P1AV = P AV,

For incompressible flow (o, = p,)

AV, =AV, = 0,=0, Steady flow into and out of a volume - syringe.



Example of use of the Bernoulli
Equation: Flowrate Measurement

{T] (2)

Flowrate Measurement |

=I5
Ideal flow meters . - R Orifice
- Steady. e Pl
- Inviscid. ‘ ‘
- Incompressible.
Bernoulli equation —~ 2

—_—— T T Nozzle

| I _»
+=pVE=p,+—pV
P1 2,01 P2 2P2

Continuity equation ‘

R\ el
0= A1V1 = A2V2 > - Venturi
Flowrate Q M
2(!’1‘1’2) |
0= E . (1) (2)
AQJ A4/ )]

Typical devices for measuring flowrate in pipes.
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The Energy Line and the Hydraulic
Grade Line

The Bernoulli equation is actually an energy equation representing the partitioning of
energy for an inviscid, incompressible, steady flow.

p 2

—+—+ 7z = constant on a streamline = H
Yy 2g

— Energy line (EL)
v,
2g

————— Hydraulic

grade line (HGL) EGL : Energy grade line.

HGL : Hydraulic grade line.

Static

| Datum
Stagnation



Examples — Bernoulli Equation

Example 4.5

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The inner diameter
of the hose 1s 2 cm, and it reduces to 0.8 cm at the nozzle exit. If it takes 50 s to fill the
bucket with water, determine a) the volume and mass flow rates of water through the
hose, and b) the average velocity of water at the nozzle exit.

Answer: a) 7.56x10* m?/s
0.756 kg/s
b) 15.04 m/s

BLI\.‘kn‘l




Examples — Bernoulli Equation

Example 4.6

Kerosene (SG = 0.85) flows through the Venturi meter with flowrates between 0.005

and 0.05 m?/s. Determine the range in pressure difference, p, - p,, needed to measure
these flowrates.

Kerosene, SG = 0.85

f 0.005 m¥s < @ < 0.050 m?¥/s



Examples — Bernoulli Equation

Example 4.7

A stream of refreshing beverage of diameter d = 0.01 m flows steadily from the cooler
of diameter D = 0.20 m. Determine the flowrate, Q, from the bottle into the cooler if
the depth of beverage in the cooler is to remain constant at 2 = 0.20 m. Answer :

1.56x10% m3/s
0
W

——— { MESSSS=N—— W, [—

D=020m——

h=0.20m

@

k @ J—ﬁ it

d=0.01m

(b)



Examples — Bernoulli Equation

Example 4.8

A liquid can be siphoned from a container as shown in Fig. a provided the end of the tube, point
(3), 1s below the free surface in the container, point (1), and the maximum elevation of the tube,
point (2), is “not too great.” Consider water at 60°F being siphoned from a large tank through a
constant diameter hose as shown in Fig. b. The end of the siphon is 5 ft below the bottom of the
tank, and the atmospheric pressure is 14.7 psia. Determine the maximum height of the hill, H,
over which the water can be siphoned without cavitation occurring. Answer : 28.2 ft

2)

151t

(b)




Appendix

Properties of the U.S. Standard Atmosphere (BG Units)®

Dynamic
Acceleration Density, Viscosity,
Altitude Temperature of Gravity, Pressure, p P 7

(ft) (°F) g (ft/sh) [Ib/in.*(abs)] (slugs/ft) (Ib-s/ft?)
—35.000 76.84 32.189 17.554 2745 E -3 3836 E—7
0 59.00 32.174 14.696 2377 E-3 3737 E—7
5.000 41.17 32.159 12.228 2,048 E —3 3.637 E—-7
10,000 23.36 32.143 10.108 1.756 E — 3 3534 E-—7
15.000 3159 32.128 8.297 1496 E — 3 3430 E-—7
20.000 = 12496 324112 6.759 152670 E =3 3324 WE-—
25,000 —30.05 32.097 5.461 1.066 E —3 2 b7 E
30,000 —47.83 32.082 4.373 8907 E—4 3107 E—T7
35,000 —065.61 32.066 3.468 7382 E—4 2995 E—7
40,000 —69.70 32.051 2.730 3 ST3NE 1 2969 E—7
45.000 —69.70 32.036 2.149 4623 E—4 2 OGO WEE
50,000 —69.70 32.020 1.692 3639 E—4 2969 E—7
60,000 —69.70 31.990 1.049 2256 E —4 2969 E—7
70,000 —67.42 31.959 0.651 1392 E—4 2984 E—7
80,000 —61.98 31.929 0.4006 8571 Bi= 5 3018 E—7
90,000 —56.54 31.897 02255 5610 E—-5 3052 W
100,000 — LK) 31.868 0.162 3318 E 3 3.087 E—7
150,000 19.40 31.717 0.020 3 038E N0 3 SN =
200.000 —19.78 31.566 0.003 5328 [E= 7 3279 E—-7
250,000 —88.77 31.415 0.000 6458 E — 8 2846 E-—7

. ____________________________________________________________________________________________________________________________________]
*Data abridged from U.S. Standard Atmosphere. 1976, U.S. Government Printing Office. Washington., D.C.

Islug =32.171bm



Appendix

Physical Properties of Water (BG Units)”

Specific Dynamic Kinematic Surface Vapor Speed of
Density, “"eight", Viscosity, Viscosity, Tension®, Pressure, Suundd,
Temperature P Y J v o P c

(°F) (slugs/ft’)  (b/ft}) (Ib -s/ft%) (ft*/s) (Ib/ft) [Ib/in *(abs)] (ft/s)
32 1.940 62.42 3732 E-—-5 1924 E-—5 518 E-3 8854 E-—2 4603
40 1.940 6243 3228 E— 35 1664 E—5 513 E-3 1217 E—-1 4672
50 1.940 62.41 2730 E—5 1407 E-—5 509 E-3 1781 E—-1 4748
60 1938 6237 2344 E— 5 1210 E—5 503 E—3 2563 E —1 4814
70 1.936 62.30 2037 E—5 1052 E-—5 497 E-3 3631 E—1 4871
80 1.934 6222 1791 E—5 9262 E—6 491 E-—3 5069 E-—1 4819
90 1931 62.11 1500 E-—5 8233 E—6 48 E-—3 6979 E-—1 4960
100 1.927 62.00 1423 E-—5 7383 E—6 479 E-—-3 9493 E-—1 4995
120 1.918 61.71 1164 E-—5 6067 E—6 467 E—3 1692 E+ 0 5049
140 1.908 6138 9743 E—6 5106 E—6 453 E-—3 288 E+0 5091
160 1.896 61.00 8315 E—6 4385 E—6 440 E-—3 4736 E+0 5101
180 1.883 60.58 7207 E—6 3827 E—6 426 E—3 7507 E+0 5195
200 1.869 60.12 6342 E—6 3393 E—6 412 E-—3 1152 E+1 5089
212 1.860 59.83 588 E-—¢6 3165 E—6 404 E-—3 1469 E + 1 5062

L]}
*Based on data from Handbook of Chemistry and Physics, 69th Ed.. CRC Press, 1988, Where necessary, values obtained by interpolation.

bDEﬂSil’_',’ and specific weight are related through the equation v = pg. For this table, g = 32.174 /s,
“In contact with air.
From B D. Blevins, Applied Fluid Dynamics Handbook, Van Nostrand Feinheld Co., Inc., New York, 1984

Islug =32.171bm
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