Finite Control Volume Analysis

ENGI 2420

Content

-
- Content

 Conservation of Mass Continuity Equation

 Newton's Second Law Momentum Equation Content

Newton's Second Law – Momentum Equation

Newton's Second Law – Momentum Equation

Content

Content

Conservation of Mass – Continuity

Equation Equation

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Continuity**

Conservation of mass

The conservation of mass principle for a system is given by

Conservation of mass
\nThe conservation of mass principle for a system is given by
\n
$$
\frac{Dm_{sys}}{Dt} = 0
$$
\nwhere
\n
$$
m_{sys} = \int_{sys} \rho dV
$$
\nFrom the Reynolds Transport Theorem:
\n
$$
\frac{DB_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{cv} \rho b dV + \int_{cs} \rho b V \cdot \hat{n} dA
$$
\n
$$
B = m
$$
\n
$$
b = 1
$$
\n
$$
\frac{Dm_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{\rho} \rho dV + \int_{\rho} \rho V \cdot \hat{n} dA
$$
\n
$$
\frac{\partial}{\partial t} \int_{cv} \rho dV + \int_{cs} \rho V \cdot \hat{n} dA
$$

$$
\frac{DB_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{cv} \rho b dV + \int_{cs} \rho bV \cdot \hat{n} dA
$$

$$
B=m \qquad \quad b=1
$$

$$
\frac{Dm_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{cv} \rho dV + \int_{cs} \rho V \cdot \hat{n} dA
$$

Continuity Equation for a fixed, nondeforming control volume

$$
\frac{\partial}{\partial t} \int_{cv} \rho dV + \int_{cs} \rho V \cdot \hat{n} dA = 0
$$

It states that the time rate of change of mass within the control volume plus the net mass flow rate through the control surface is zero.

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Continuity**

Steady mass flow rate Control Surface

Mass flow rate through a section of control surface having area A

 $\dot{m} = \rho Q = \rho A V$

where $\qquad \qquad \bullet \text{ fluid density}$ ρ : fluid density.

-
- V : component of fluid velocity perpendicular to area A.

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Continuity**
 Equation
 Example 5.1

Air flows steadily between two sections in a long, straight portion of 4-in. inside

diameter pipe. The uniformly distributed temperature and pressure at eac **Conservation of Mass – Continuity**
 Equation
 Example 5.1

Air flows steadily between two sections in a long, straight portion of 4-in. inside

diameter pipe. The uniformly distributed temperature and pressure at eac **Conservation of Mass – Continuity**
 Equation
 Example 5.1

Air flows steadily between two sections in a long, straight portion of 4-in. inside

diameter pipe. The uniformly distributed temperature and pressure at eac **Conservation of Mass — Continuity**
 Equation
 Example 5.1

Air flows steadily between two sections in a long, straight portion of 4-in. inside

diameter pipe. The uniformly distributed temperature and pressure at eac

Example 5.1

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass — Continuity**
 Equation
 Example 5.2

Incompressible, laminar water flow develops in a straight pipe having radius R. At section (1), the

velocity profile is uniform; the velocity is equal to a **Conservation of Mass — Continuity**
 Equation
 Example 5.2

Incompressible, laminar water flow develops in a straight pipe having radius R. At section (1), the velocity profile is uniform; the velocity is equal to a c **Conservation of Mass — Continuity**
 Equation
 Example 5.2

Incompressible, laminar water flow develops in a straight pipe having radius *R*. At section (1), the velocity profile is uniform; the velocity is equal to a **Conservation of Mass — Continuity**
 Equation
 Example 5.2

Incompressible, laminar water flow develops in a straight pipe having radius R. At section (1), the

velocity profile is uniform; the velocity is equal to a

Example 5.2

(a) How are U and u_{max} related?

(b) How are the average velocity at section (2), and u_{max} related?

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Co**
 Equation

Moving, Nondeforming Control Volume
 $V = W + V_{cv}$ **DISEPVATION Of Mass — Co**
 Equation

Nondeforming Control Volume
 $V = W + V_{cv}$

V: is the fluid velocity seen by a stationary observer.

W: is the fluid velocity seen by an observer moving with the

control volume.. **DINSERVATION OF Mass — Conti**
 Equation

Nondeforming Control Volume
 $v = W + V_{cv}$

V: is the fluid velocity seen by a stationary observer.

W: is the fluid velocity seen by an observer moving with the

control volume..

 $V = W + V_{cv}$

- control volume..
- V_{cv} : is the velocity of the control volume as seen from a fixed coordinate system.

$$
\frac{Dm_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{cv} \rho dV + \int_{cs} \rho \mathbf{W} \cdot \mathbf{n} dA = 0
$$

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Continuity**
 Equation

Example 5.3

An airplane moves forward at a speed of 971 km/hr. The frontal intake area of the jet

engine is 0.80 m² and the entering air density is 0.736 kg/m³. A sta

Example 5.3

Conservation of Mass — Continuity
 Equation
 Equation
 Example 5.3

An airplane moves forward at a speed of 971 km/hr. The frontal intake area of the jet

engine is 0.80 m² and the entering air density is 0.736 **rvation of Mass – Continuity**
 Equation

forward at a speed of 971 km/hr. The frontal intake area of the jet

and the entering air density is 0.736 kg/m³. A stationary observer

ative to the earth, the jet engine exh **Continuity**

al intake area of the jet

. A stationary observer

es move away from the

a is 0.558 m^2 , and the **Conservation of Mass – Continuity**
 Equation
 Example 5.3

An airplane moves forward at a speed of 971 km/hr. The frontal intake area of the jet

engine is 0.80 m² and the entering air density is 0.736 kg/m³. A s **Conservation of Mass – Continuity**
 Equation
 Example 5.3

An airplane moves forward at a speed of 971 km/hr. The frontal intake area of the jet

engine is 0.80 m² and the entering air density is 0.736 kg/m³. A s **uity**
of the jet
observer
from the
, and the
he engine **CONSETVATION OT MASS — CON**
 Example 5.3

An airplane moves forward at a speed of 971 km/hr. The frontal intal

engine is 0.80 m² and the entering air density is 0.736 kg/m³. A sta

determines that relative to the **of Mass – Continuity**
Equation
eed of 971 km/hr. The frontal intake area of the jet
g air density is 0.736 kg/m³. A stationary observer
n, the jet engine exhaust gases move away from the
hr. The engine exhaust area is **Example 5.3**
 Example 5.3

An airplane moves forward at a speed of 971 km/hr. The fronta

engine is 0.80 m² and the entering air density is 0.736 kg/m³.

determines that relative to the earth, the jet engine exhaus

**Conservation of Mass – Continuity
Equation** Equation

Deforming Control Volume

$$
\frac{DM_{sys}}{Dt} = \frac{\partial}{\partial t} \int_{cv} \rho dF + \int_{cs} \rho \mathbf{W} \cdot \hat{\mathbf{n}} dA = 0
$$

For the deforming control volume,

 $V = W + V_{cs}$

 V_{cs} : is the velocity of the control surface as seen by a fixed observer.

NOTE: The velocity of the surface of a deforming control volume is not the same at all points on the surface.

**Conservation of Mass – Continuity
Equation** Equation **Conservation of Mass – Continuity**
 Equation
 Example 5.4

A syringe (see Figure) is used to inoculate a cow. The plunger has a face area of 500 mm². The liquid in the syringe is to be injected steadily at a rate o **Conservation of Mass — Continuity**
 Equation

mple 5.4

ringe (see Figure) is used to inoculate a cow. The plunger has a face area of 500

The liquid in the syringe is to be injected steadily at a rate of 300 cm³/min **uity**
rea of 500
/min. The
edle. With **Conservation of Mass – Continuity**
 Equation
 Example 5.4

A syringe (see Figure) is used to inoculate a cow. The plunger has a face area of 500 mm². The liquid in the syringe is to be injected steadily at a rate o **Conservation of Mass — Continuity**
 Equation
 Example 5.4

A syringe (see Figure) is used to inoculate a cow. The plunger has a face area of 500 mm². The liquid in the syringe is to be injected steadily at a rate o

Example 5.4

 $mm²$. The liquid in the syringe is to be injected steadily at a rate of 300 cm³/min. The

Content

-
- Content

Conservation of Mass Continuity Equation

Newton's Second Law Newton's Second Law – Momentum Equation

Newton's Second Law – Momentum Equation

Linear Momentum Equation

Newton's second law can be stated as the sum of all external forces acting on a system is equal to the time rate of change of linear momentum of the system.

$$
\sum \mathbf{F} = \frac{D}{Dt} \int_{sys} \mathbf{V} \rho d\mathbf{F}
$$

Using the Reynolds transport theorem

$$
B = mV \t b = V
$$

$$
\frac{D}{Dt} \int_{sys} V \rho dV = \frac{\partial}{\partial t} \int_{cv} V \rho dV + \int_{cs} V \rho V \cdot \hat{n} dA
$$

Linear Momentum Equation

$$
\sum \mathbf{F} = \frac{\partial}{\partial t} \int_{cv} \mathbf{V} \rho d\mathbf{V} + \int_{cs} \mathbf{V} \rho \mathbf{V} \cdot \hat{\mathbf{n}} dA
$$

 \mathbf{r} \vert \vert (control surface by mass flow) The net flow rate of $\vert + \vert$ linear momentum out of the $\overline{}$ $\left| \right|$ J \setminus \mathbf{r} \vert \vert (of the contents of the CV) The time rate of change \vert = \vert of the linear momentum \vert $\left| \right|$ J (The sum of all $\big)$ \mathbf{r} \vert external forces \mathbf{r} $\left(\arctan\frac{1}{2}C\right)$

 $\overline{}$ $\left| \right|$ $\left| \right|$

 \setminus

J

Newton's Second Law – Momentum Equation

External forces acting on a CV

$$
\sum \mathbf{F} = \text{body forces} + \text{surface forces}
$$

$$
\sum \mathbf{F} = \sum_{out} \dot{m} \mathbf{V} - \sum_{in} \dot{m} \mathbf{V}
$$

Newton's Second Law – Momentum Equation **Newton's Second Law – Momentum**
 Equation

Example 5.5

As shown in the Figure, a horizontal jet of water exits

a vane, and is turned through an angle $\theta = 45^\circ$. **Newton's Second Law – Momentum**
 Equation

Example 5.5

As shown in the Figure, a horizontal jet of water exits

a nozzle with a uniform speed of $V_1 = 10$ ft/s, strikes

Determine the anchoring force needed to hold th **Newton's Second Law — Moment

Equation**

Example 5.5

As shown in the Figure, a horizontal jet of water exits

a nozzle with a uniform speed of $V_1 = 10$ ft/s, strikes

a vane, and is turned through an angle $\theta = 45^\circ$.
 Newton's Second Law — Momentum
 Equation
 Example 5.5

As shown in the Figure, a horizontal jet of water exits

a nozzle with a uniform speed of $V_1 = 10$ fi/s, strikes

a vane, and is turned through an angle $\theta = 4$

Example 5.5

Newton's Second Law – Momentum Equation **Newton's Second Law — Momentum**
 Equation
 Example 5.7

Air flows steadily between two cross sections in a long, straight portion of 4-in. inside diameter

pipe, where the uniformly distributed temperature and pressu

Example 5.7

Newton's Second Law — Momentum
 Equation
 Equation
 Example 5.7

Air flows steadily between two cross sections in a long, straight portion of 4-in. inside diameter

pipe, where the uniformly distributed temperatur **Newton's Second Law — Momentum**
Equation
Example 5.7
Air flows steadily between two cross sections in a long, straight portion of 4-in. inside diameter
pipe, where the uniformly distributed temperature and pressure a **Follow Example 5.7**
Follow Example 5.7
Air flows steadily between two cross sections in a long, straight portion of 4-in. inside diameter
pipe, where the uniformly distributed temperature and pressure at each cross sec Example 5.7

Example 5.7

Air flows steadily between two cross sections in a long, straight portion of 4-in. inside diameter

pipe, where the uniformly distributed temperature and pressure at each cross section are given.

Newton's Second Law – Momentum Equation **Newton's Second Law — Momentum**
 Equation
 Example 5.6

Water flows through a horizontal, 180° pipe bend as illustrated in Figure. The flow cross-

sectional area is constant at a value of 0.1 ft² through the bend.

Example 5.6

Newton's Second Law — Momentum
 Equation
 Example 5.6

Water flows through a horizontal, 180° pipe bend as illustrated in Figure. The flow crosectional area is constant at a value of 0.1 ft² through the bend. The **aw** — **Momentum**
 ion
 d as illustrated in Figure. The flow cross-

through the bend. The magnitude of the

and 50 ft/s. The absolute pressures at the

nd 24 psia, respectively. Calculate the **Figure 1.1 Figure 1.1 Figure 1.1 Figure 1.1 Equation**
Example 5.6
Water flows through a horizontal, 180° pipe bend as illustrated in Figure. The flow cross-
sectional area is constant at a value of 0.1 ft² th **Example 5.6**
 Example 5.6

Water flows through a horizontal, 180° pipe bend as illustrated in Figure. The flow cross-

sectional area is constant at a value of 0.1 ft² through the bend. The magnitude of the

flow vel **Example 5.6**
 Example 5.6

Water flows through a horizontal, 180° pipe bend as illustrated in Figure. The flow cross-

sectional area is constant at a value of 0.1 ft² through the bend. The magnitude of the

flow vel **Example 5.6**

Water flows through a horizontal, 180° pipe bend as illustrated in F

sectional area is constant at a value of 0.1 ft² through the bend.

flow velocity everywhere in the bend is axial and 50 ft/s. The abs

Newton's Second Law – Momentum Equation **Newton's Second Law — Momentum**
 Equation
 Example 5.8

A static thrust stand as sketched in Figure is to be designed for testing a jet engine. The following

conditions are known for a typical test: Intake air veloc

Example 5.8

Newton's Second Law — Momentum
 Equation
 Equation
 Example 5.8

A static thrust stand as sketched in Figure is to be designed for testing a jet engine. The following

conditions are known for a typical test: Inta **Newton's Second Law — Mome**
 Equation
 Equation
 Example 5.8

A static thrust stand as sketched in Figure is to be designed for testing a jet engine

conditions are known for a typical test: Intake air velocity = 2 **isomalisation of Equation**
Equation
is to be designed for testing a jet engine. The following
is intake air velocity = 200 m/s; exhaust gas velocity = 500
; intake static pressure = -22.5 kPa = 78.5 kPa (abs); intake
ati **SECOND LAW — MOMENTUM**
 Example 5.8

A static thrust stand as sketched in Figure is to be designed for testing a jet engine. The following

conditions are known for a typical test: Intake air velocity = 200 m/s; exhaus **Example 5.8**
 Example 5.8

A static thrust stand as sketched in Figure is to be designed for testing a jet engine. The following conditions are known for a typical test: Intake air velocity = 200 m/s; exhaust gas veloc

References

- **EXECTENCES**

[1] Cengel Y., Cimbala, J. (2014). Fluid Mechanics: Fundamentals and Applications (3th Edition). New York:

[2] Munson, B.R., Young, D.F., Okiishi, T.H., and Huebsch, W.W. (2016). Fundamentals of Fluid Mechan NY: McGraw-Hill Co.
- [2] Munson, B.R., Young, D.F., Okiishi, T.H., and Huebsch, W.W. (2016). Fundamentals of Fluid Mechanics (8th Edition). John Wiley & Sons. ISBN 1119080703.