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present the basic fundamentals of aerospace engineering at the introduc-

tory level in the clearest, simplest, and most motivating way possible. Be-
cause the book is meant to be enjoyed as well as understood, I have made every
effort to ensure a clear and readable text. The choice of subject matter and its
organization, the order in which topics are introduced, and how these ideas are
explained have been carefully planned with the uninitiated reader in mind. I sim-
ply put myself in the shoes of the reader who has no knowledge of the subject
matter, ask myself how I would want to hear about the subject, and then start
“talking” to the reader. Because the book is intended as a self-contained text at
the first- and second-year levels, I avoid tedious details and massive “handbook”
data. Instead, I introduce and discuss fundamental concepts in a manner that is as
straightforward and clean-cut as possible, knowing that the book has also found
favor with those who wish to learn something about this subject outside the
classroom.

The overwhelmingly favorable response to the earlier editions from stu-
dents, teachers, and practicing professionals both here and abroad is a source
of gratification. Particularly pleasing is the fact that those using the book
have enjoyed reading its treatment of the fascinating, challenging, and
sometimes awesome discipline of aerospace engineering.

Thanks to this response, much of the content of the seventh edition has
been carried over into the eight edition. A hallmark of this book is the use of
specially designed devices to enhance the reader’s understanding of the
material. In particular, these features are carried over from the seventh
edition:

The purpose of the present edition is the same as that of the first seven: to

1. Road maps placed at the beginning of each chapter help guide the reader
through the logical flow of the material.

2. Design boxes discuss interesting and important applications of the
fundamental material; this matrial is literally set apart in boxes.

3. Preview boxes at the chapter beginnings give the reader insight into what
each chapter is about and why the material is important. I intend the
preview boxes to be motivational, to make the reader interested and curious
enough to pay close attention to the content of the chapter. These preview
boxes are written in an informal manner to help turn the reader on to the
content. In these preview boxes, I am unabashedly admitting to providing
fun for the readers.

4. Summary and Review sections at the end of the chapters contain the
important ideas and concepts presented in each chapter, first without
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Preface to the Eighth Edition

equations, to remind readers about the physical aspects of the material and
to provide a focused intellectual background for the equations that are then
summarized at the end of the section.

In the same spirit, the eighth edition contains new material intended to
enhance the education and interest of the reader:

1. Two new sections, Section 6.22, “Quest for Aerodynamic Efficiency,” and
Section 9.12, “Quest for Engine Efficiency,” are added to provide a look
into the future for new, efficient aircraft, with implications for a future
“green airplane.”

2. A new Section 8.7, “An Application: The Voyager Spacecraft—Their
Design, Flight Trajectories, and Historical Significance,” has been added to
highlight these important space vehicles and their missions.

3. Some additional worked examples are supplied to further help readers to
understand how to use what they have been reading.

4. Some additional homework problems grace the end of some chapters.
An answer key is placed at the end of the book for selected homework
problems.

All told, the new material represents a meaningful enhancement of
Introduction to Flight.

To allow space for this new material in the eighth edition, without inor-
dinately increasing the length of the book, some text material originally in
Chs. 6, 8, and 9 has been removed from the eighth edition and placed on the
book’s website.

At the University of Maryland this text is used for an introductory course
for sophomores in aerospace engineering. It leads directly into a second
book by the author, Fundamentals of Aerodynamics, 5th edition (McGraw-
Hill, 2011), which is used in a two- semester junior-senior aerodynamics
course. This, in turn, feeds into a third text, Modern Compressible Flow:
With Historical Perspective, 3rd edition (McGraw-Hill, 2003), used in a
course for advanced undergraduates and first-year graduate students. The
complete triad is intended to give students a reasonable technical and his-
torical perspective on aerospace engineering in general and aerodynamics in
particular.

I am very grateful to Mrs. Susan Cunningham, who did such an excel-
lent job of typing the manuscript. [ am fortunate to have such dedicated and
professional help from one of the best scientific typists in the world. My
gratitude also goes out to my wife of 54 years, Sarah-Allen, who has helped
to motivate and expedite the effort that has gone into this book. Finally, spe-
cial thanks go to my very special editor, Lorraine Buczek at McGraw-Hill,
whose dedication and hard work has been extremely helpful in getting this
edition finished and published, and who has become a very special friend
over the years. Lorraine and I form a great McGraw-Hill team.



Preface to the Eighth Edition

Finally, emphasizing that the study, understanding, and practice of the
profession of aerospace engineering is one of the most gratifying of human
endeavors and that my purpose is to instill a sense of enthusiasm, dedica-
tion, and love of the subject, let me simply say to the reader: read, learn, and
enjoy.

John D. Anderson, Jr.

Other Textbooks in the Anderson Series Are:
Fundamentals of Aerodynamics, Fifth Edition, 007-3398101
Modern Compressible Flow, Third Edition, 007-2424435
Aircraft Performance & Design, 007-0019711
Computational Fluid Dynamics, 007-0016852

Modern Flight Dynamics, 007-339811X






nological and historical points of view. It is written to appeal to several

groups of people: (1) students of aerospace engineering in their freshman
or sophomore years in college who are looking for a comprehensive introduction
to their profession; (2) advanced high school seniors who want to learn what
aerospace engineering is all about; (3) college undergraduate and graduate
students who want to obtain a wider perspective on the glories, the intellectual
demands, and the technical maturity of aerospace engineering; and (4) working
engineers who simply want to obtain a firmer grasp on the fundamental concepts
and historical traditions that underlie their profession.

As an introduction to aerospace engineering, this book is unique in at
least three ways. First, the vast majority of aerospace engineering profes-
sionals and students have little knowledge or appreciation of the historical
traditions and background associated with the technology that they use
almost every day. To fill this vacuum, the present book marbles some his-
tory of aerospace engineering into the parallel technical discussions. For
example, such questions as who Bernoulli was, where the Pitot tube origi-
nated, how wind tunnels evolved, who the first true aeronautical engineers
were, and how wings and airfoils developed are answered. The present
author feels strongly that such material should be an integral part of the
background of all aerospace engineers.

Second, this book incorporates both the SI and the English engineering
system of units. Modern students of aerospace engineering must be
bilingual—on one hand, they must fully understand and feel comfortable
with the SI units—because most modern and all future literature will deal
with the SI system; on the other hand, they must be able to read and feel
comfortable with the vast bulk of existing literature, which is predominantly
in engineering units. In this book the SI system is emphasized, but an honest
effort is made to give the reader a feeling for and understanding of both
systems. To this end, some example problems are worked out in the SI sys-
tem and others in the English system.

Third, the author feels that technical books do not have to be dry and
sterile in their presentation. Instead the present book is written in a rather
informal style. It talks to the reader. Indeed it is intended to be almost a self-
teaching, self-pacing vehicle that the reader can use to obtain a fundamental
understanding of aerospace engineering.

This book is a product of several years of teaching the introductory
course in aerospace engineering at the University of Maryland. Over these

This book is an introduction to aerospace engineering from both the tech-
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years, students have constantly encouraged the author to write a book about
the subject, and their repeated encouragement could not be denied. The
present book is dedicated in part to these students.

Writing a book of this magnitude is a total commitment of time and
effort for a longer time than the author likes to remember. In this light, this
book is dedicated to my wife, Sarah-Allen, and my two daughters, Katherine
and Elizabeth, who relinquished untold amounts of time with their husband
and father so that these pages could be created. To them I say thank you, and
hello again. Also, hidden between the lines but ever-so-much present is
Edna Brothers, who typed the manuscript in such a dedicated fashion. In
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CHAPTER

The First Aeronautical
Engineers

Nobody will fly for a thousand years!
Wilbur Wright, 1901, in a fit of despair

SUCCESS FOUR FLIGHTS THURSDAY MORNING ALL AGAINST TWENTY
ONE MILE WIND STARTED FROM LEVEL WITH ENGINE POWER ALONE
AVERAGE SPEED THROUGH AIR THIRTY ONE MILES LONGEST 57 SECONDS
INFORM PRESS HOME CHRISTMAS.

ORVILLE WRIGHT

A telegram, with the original misprints,
from Orville Wright to his father,
December 17, 1903

1.1 INTRODUCTION

The scene: Windswept sand dunes of Kill Devil Hills, 4 mi south of Kitty Hawk,
North Carolina. The time: About 10:35 AM on Thursday, December 17, 1903.
The characters: Orville and Wilbur Wright and five local witnesses. The action:
Poised, ready to make history, is a flimsy, odd-looking machine, made from
spruce and cloth in the form of two wings, one placed above the other, a horizon-
tal elevator mounted on struts in front of the wings, and a double vertical rudder
behind the wings (see Fig. 1.1). A 12-hp engine is mounted on the top surface
of the bottom wing, slightly right of center. To the left of this engine lies a
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Figure 1.1 Three views of the Wright Flyer I, 1903.

man—Orville Wright—prone on the bottom wing, facing into the brisk and cold
December wind. Behind him rotate two ungainly looking airscrews (propellers),
driven by two chain-and-pulley arrangements connected to the same engine. The
machine begins to move along a 60-ft launching rail on level ground. Wilbur
Wright runs along the right side of the machine, supporting the wing tip so it
will not drag the sand. Near the end of the starting rail, the machine lifts into the
air; at this moment, John Daniels of the Kill Devil Life Saving Station takes a
photograph that preserves for all time the most historic moment in aviation his-
tory (see Fig. 1.2). The machine flies unevenly, rising suddenly to about 10 ft,
then ducking quickly toward the ground. This type of erratic flight continues for
12 s, when the machine darts to the sand, 120 ft from the point where it lifted
from the starting rail. Thus ends a flight that, in Orville Wright’s own words,
was “the first in the history of the world in which a machine carrying a man
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Figure 1.2 The first heavier-than-air flight in history: the Wright Flyer I with Orville Wright
at the controls, December 17, 1903.
(Source: Library of Congress [LC-DIG-ppprs-00626].)

had raised itself by its own power into the air in full flight, had sailed forward
without reduction of speed, and had finally landed at a point as high as that from
which it started.”

The machine was the Wright Flyer I, which is shown in Figs. 1.1 and 1.2
and which is now preserved for posterity in the Air and Space Museum of the
Smithsonian Institution in Washington, District of Columbia. The flight on that
cold December 17 was momentous: It brought to a realization the dreams of
centuries, and it gave birth to a new way of life. It was the first genuine powered
flight of a heavier-than-air machine. With it, and with the further successes to
come over the next five years, came the Wright brothers’ clear right to be consid-
ered the premier aeronautical engineers of history.

However, contrary to some popular belief, the Wright brothers did not truly
invent the airplane; rather, they represent the fruition of a century’s worth of
prior aeronautical research and development. The time was ripe for the attain-
ment of powered flight at the beginning of the 20th century. The Wright broth-
ers’ ingenuity, dedication, and persistence earned them the distinction of being
first. The purpose of this chapter is to look back over the years that led up to
successful powered flight and to single out an important few of those inventors
and thinkers who can rightfully claim to be the first aeronautical engineers. In
this manner, some of the traditions and heritage that underlie modern aerospace
engineering will be more appreciated when we develop the technical concepts of
flight in subsequent chapters.

1.2 VERY EARLY DEVELOPMENTS

Since the dawn of human intelligence, the idea of flying in the same realm as
birds has possessed human minds. Witness the early Greek myth of Daedalus
and his son Icarus. Imprisoned on the island of Crete in the Mediterranean Sea,
Daedalus is said to have made wings fastened with wax. With these wings, they
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both escaped by flying through the air. However, Icarus, against his father’s
warnings, flew too close to the sun; the wax melted, and Icarus fell to his death
in the sea.

All early thinking about human flight centered on the imitation of birds.
Various unsung ancient and medieval people fashioned wings and met with some-
times disastrous and always unsuccessful consequences in leaping from towers
or roofs, flapping vigorously. In time, the idea of strapping a pair of wings to
arms fell out of favor. It was replaced by the concept of wings flapped up and
down by various mechanical mechanisms, powered by some type of human arm,
leg, or body movement. These machines are called ornithopters. Recent histori-
cal research has revealed that Leonardo da Vinci was possessed by the idea of
human flight and that he designed vast numbers of ornithopters toward the end
of the 15th century. In his surviving manuscripts, more than 35,000 words and
500 sketches deal with flight. One of his ornithopter designs is shown in Fig. 1.3,
which is an original da Vinci sketch made sometime between 1486 and 1490. It
is not known whether da Vinci ever built or tested any of his designs. However,
human-powered flight by flapping wings was always doomed to failure. In this
sense, da Vinci’s efforts did not make important contributions to the technical
advancement of flight.

Human efforts to fly literally got off the ground on November 21, 1783,
when a balloon carrying Pilatre de Rozier and the Marquis d’ Arlandes ascended
into the air and drifted 5 mi across Paris. The balloon was inflated and buoyed

Figure 1.3 An ornithopter design by Leonardo da Vinci, 1486—1490.
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up by hot air from an open fire burning in a large wicker basket underneath.
The design and construction of the balloon were those of the Montgolfier broth-
ers, Joseph and Etienne. In 1782 Joseph Montgolfier, gazing into his fireplace,
conceived the idea of using the “lifting power” of hot air rising from a flame to
lift a person from the surface of the earth. The brothers instantly set to work, ex-
perimenting with bags made of paper and linen, in which hot air from a fire was
trapped. After several public demonstrations of flight without human passengers,
including the 8-min voyage of a balloon carrying a cage containing a sheep, a
rooster, and a duck, the Montgolfiers were ready for the big step. At 1:54 pM on
November 21, 1783, the first flight with human passengers rose majestically into
the air and lasted for 25 min (see Fig. 1.4). It was the first time in history that a
human being had been lifted off the ground for a sustained period. Very quickly
after this, the noted French physicist J. A. C. Charles (of Charles’ gas law in
physics) built and flew a hydrogen-filled balloon from the Tuileries Gardens in
Paris on December 1, 1783.

So people were finally off the ground! Balloons, or “aerostatic machines” as
they were called by the Montgolfiers, made no real technical contributions to human

Figure 1.4 The first aerial voyage in history: The
Montgolfier hot-air balloon lifts from the ground
near Paris on November 21, 1783.

(Source: Library of Congress [LC-USZ62-15243].)
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heavier-than-air flight. However, they served a major purpose in triggering the pub-
lic’s interest in flight through the air. They were living proof that people could really
leave the ground and sample the environs heretofore exclusively reserved for birds.
Moreover, balloons were the only means of human flight for almost 100 years.

1.3 SIR GEORGE CAYLEY (1773-1857)—THE TRUE
INVENTOR OF THE AIRPLANE

The modern airplane has its origin in a design set forth by George Cayley in
1799. It was the first concept to include a fixed wing for generating lift, another
separate mechanism for propulsion (Cayley envisioned paddles), and a com-
bined horizontal and vertical (cruciform) tail for stability. Cayley inscribed his
idea on a silver disk (presumably for permanence), shown in Fig. 1.5. On the
reverse side of the disk is a diagram of the lift and drag forces on an inclined
plane (the wing). The disk is now preserved in the Science Museum in London.
Before this time, thought of mechanical flight had been oriented toward the flap-
ping wings of ornithopters, where the flapping motion was supposed to provide
both lift and propulsion. (Da Vinci designed his ornithopter wings to flap simul-
taneously downward and backward for lift and propulsion.) However, Cayley
is responsible for breaking this unsuccessful line of thought; he separated the
concept of lift from that of propulsion and, in so doing, set into motion a century
of aeronautical development that culminated in the Wright brothers’ success in
1903. George Cayley is a giant in aeronautical history: He is the parent of mod-
ern aviation and was the first to introduce the basic configuration of the modern
airplane. Let us look at him more closely.

Figure 1.5 The silver disk on which Cayley engraved his concept for a fixed-
wing aircraft, the first in history, in 1799. The reverse side of the disk shows the
resultant aerodynamic force on a wing resolved into lift and drag components,
indicating Cayley’s full understanding of the function of a fixed wing. The disk
is presently in the Science Museum in London.

(Source: © Science and Society/SuperStock.)
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Figure 1.6 A portrait of Sir George Cayley, painted by
Henry Perronet Briggs in 1841. The portrait now hangs
in the National Portrait Gallery in London.

(Source: © Science and Society/SuperStock.)

Cayley was born at Scarborough in Yorkshire, England, on December 27,
1773. He was educated at York and Nottingham and later studied chemistry and
electricity under several noted tutors. He was a scholarly man of some rank, a
baronet who spent much of his time on the family estate, called Brompton. A por-
trait of Cayley is shown in Fig. 1.6. He was a well-preserved person, of extreme
intellect and open mind, active in many pursuits over a long life of 84 years. In
1825 he invented the caterpillar tractor, forerunner of all modern tracked ve-
hicles. In addition, he was chairman of the Whig Club of York, founded the
Yorkshire Philosophical Society (1821), cofounded the British Association for
the Advancement of Science (1831), was a member of Parliament, was a leading
authority on land drainage, and published papers dealing with optics and railroad
safety devices. Moreover, he had a social conscience: He appealed for, and do-
nated to, the relief of industrial distress in Yorkshire.

However, by far his major and lasting contribution to humanity was in aero-
nautics. After experimenting with model helicopters beginning in 1796, Cayley
engraved his revolutionary fixed-wing concept on the silver disk in 1799 (see
Fig. 1.5). This was followed by an intensive 10-year period of aerodynamic
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Figure 1.7 George Cayley’s whirling-arm apparatus for testing airfoils.

investigation and development. In 1804 he built a whirling-arm apparatus,
shown in Fig. 1.7, for testing airfoils; this was simply a lifting surface (airfoil)
mounted on the end of a long rod, which was rotated at some speed to generate a
flow of air over the airfoil. In modern aerospace engineering, wind tunnels now
serve this function; but in Cayley’s time the whirling arm was an important de-
velopment that allowed the measurement of aerodynamic forces and the center
of pressure on a lifting surface. Of course these measurements were not very
accurate, because after a number of revolutions of the arm, the surrounding air
would begin to rotate with the device. Nevertheless, it was a first step in aero-
dynamic testing. (Cayley did not invent the whirling arm; that honor belongs to
the English military engineer Benjamin Robins in 1742.) Also in 1804, Cayley
designed, built, and flew the small model glider shown in Fig. 1.8. This may
seem trivial today, something that you might have done as a child; but in 1804, it
represented the first modern-configuration airplane of history, with a fixed wing,
and a horizontal and vertical tail that could be adjusted. (Cayley generally flew
his glider with the tail at a positive angle of incidence, as shown in his sketch in
Fig. 1.8.) A full-scale replica of this glider is on display at the Science Museum
in London; the model is only about 1 m long.

Cayley’s first outpouring of aeronautical results was documented in his mo-
mentous triple paper of 1809-1810. Titled “On Aerial Navigation” and published
in the November 1809, February 1810, and March 1810 issues of Nicholson’s
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Figure 1.8 The first modern-configuration airplane in history: Cayley’s model glider, 1804.

Journal of Natural Philosophy, this document ranks as one of the most important
aeronautical works in history. (Note that the words natural philosophy in history
are synonymous with physical science.) Cayley was prompted to write his triple
paper after hearing reports that Jacob Degen had recently flown in a mechani-
cal machine in Vienna. In reality, Degen flew in a contraption that was lifted by
a balloon. It was of no significance, but Cayley did not know the details. In an
effort to let people know of his activities, Cayley documented many aspects of
aerodynamics in his triple paper. It was the first published treatise on theoretical
and applied aerodynamics in history. In it, Cayley elaborated on his principle
of the separation of lift and propulsion and his use of a fixed wing to generate
lift. He stated that the basic principle of a flying machine is “to make a surface
support a given weight by the application of power to the resistance of air.” He
noted that a surface inclined at some angle to the direction of motion will gener-
ate lift and that a cambered (curved) surface will do this more efficiently than a
flat surface. He also stated for the first time in history that lift is generated by a
region of low pressure on the upper surface of the wing. The modern technical
aspects of these phenomena are developed and explained in Chs. 4 and 5; how-
ever, stated by Cayley in 1809-1810, these phenomena were new and unique.
His triple paper also addressed the matter of flight control and was the first doc-
ument to discuss the role of the horizontal and vertical tail planes in airplane
stability. Interestingly enough, Cayley went off on a tangent in discussing the
use of flappers for propulsion. Note that on the silver disk (see Fig. 1.5) Cayley
showed some paddles just behind the wing. From 1799 until his death in 1857,
Cayley was obsessed with such flappers for aeronautical propulsion. He gave
little attention to the propeller (airscrew); indeed, he seemed to have an aversion
to rotating machinery of any type. However, this should not detract from his nu-
merous positive contributions. Also in his triple paper, Cayley described the first
successful full-size glider of history, built and flown without passengers by him
at Brompton in 1809. However, there was no clue as to its configuration.
Curiously, the period from 1810 to 1843 was a lull in Cayley’s life in regard
to aeronautics. Presumably he was busy with his myriad other interests and ac-
tivities. During this period, he showed interest in airships (controlled balloons),
as opposed to heavier-than-air machines. He made the prophetic statement that
“balloon aerial navigation can be done readily, and will probably, in the order
of things, come into use before mechanical flight can be rendered sufficiently
safe and efficient for ordinary use.” He was correct; the first successful airship,
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Figure 1.9 Cayley’s triplane from 1849—the boy carrier. Note the vertical and horizontal
tail surfaces and the flapperlike propulsive mechanism.

propelled by a steam engine, was built and flown by the French engineer Henri
Giffard in Paris in 1852, some 51 years before the first successful airplane.

Cayley’s second outpouring of aeronautical results occurred in the period
from 1848 to 1854. In 1849 he built and tested a full-size airplane. During some
of the flight tests, a 10-year-old boy was carried along and was lifted several
meters off the ground while gliding down a hill. Cayley’s own sketch of this
machine, called the boy carrier, is shown in Fig. 1.9. Note that it is a triplane
(three wings mounted on top of one another). Cayley was the first to suggest such
multiplanes (i.e., biplanes and triplanes), mainly because he was concerned with
the possible structural failure of a single large wing (a monoplane). Stacking
smaller, more compact, wings on top of one another made more sense to him,
and his concept was perpetuated into the 20th century. It was not until the late
1930s that the monoplane became the dominant airplane configuration. Also
note from Fig. 1.9 that, strictly speaking, this was a “powered” airplane; that is,
it was equipped with propulsive flappers.

One of Cayley’s most important papers was published in Mechanics’ Magazine
on September 25, 1852. By this time he was 79 years old! The article was titled
“Sir George Cayley’s Governable Parachutes.” It gave a full description of a large
human-carrying glider that incorporated almost all the features of the modern air-
plane. This design is shown in Fig. 1.10, which is a facsimile of the illustration that
appeared in the original issue of Mechanics’ Magazine. This airplane had (1) a main
wing at an angle of incidence for lift, with a dihedral for lateral stability; (2) an ad-
justable cruciform tail for longitudinal and directional stability; (3) a pilot-operated
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Fig. 1.

Figure 1.10 George Cayley’s human-carrying glider, from Mechanics’ Magazine, 1852.

11



12

CHAPTER 1 The First Aeronautical Engineers

elevator and rudder; (4) a fuselage in the form of a car, with a pilot’s seat and three-
wheel undercarriage; and (5) a tubular beam and box beam construction. These
combined features were not to be seen again until the Wright brothers’ designs at
the beginning of the 20th century. Incredibly, this 1852 paper by Cayley went virtu-
ally unnoticed, even though Mechanics’ Magazine had a large circulation. It was
rediscovered by the eminent British aviation historian Charles H. Gibbs-Smith in
1960 and republished by him in the June 13, 1960, issue of The Times.

Sometime in 1853—the precise date is unknown—George Cayley built and
flew the world’s first human-carrying glider. Its configuration is not known, but
Gibbs-Smith states that it was most likely a triplane on the order of the earlier
boy carrier (see Fig. 1.9) and that the planform (top view) of the wings was prob-
ably shaped much like the glider in Fig. 1.10. According to several eyewitness
accounts, a gliding flight of several hundred yards was made across a dale at
Brompton with Cayley’s coachman aboard. The glider landed rather abruptly;
and after struggling clear of the vehicle, the shaken coachman is quoted as say-
ing, “Please, Sir George, I wish to give notice. I was hired to drive, and not to
fly.” Very recently, this flight of Cayley’s coachman was reenacted for the public
in a special British Broadcasting Corporation television show about Cayley’s
life. While visiting the Science Museum in London in August of 1975, the pres-
ent author was impressed to find the television replica of Cayley’s glider (minus
the coachman) hanging in the entranceway.

George Cayley died at Brompton on December 15, 1857. During his almost
84 years of life, he laid the basis for all practical aviation. He was called the father
of aerial navigation by William Samuel Henson in 1846. However, for reasons
that are not clear, the name of George Cayley retreated to the background soon
after his death. His works became obscure to virtually all later aviation enthusiasts
in the latter half of the 19th century. This is incredible, indeed unforgivable, con-
sidering that his published papers were available in known journals. Obviously
many subsequent inventors did not make the effort to examine the literature be-
fore forging ahead with their own ideas. (This is certainly a problem for engineers
today, with the virtual explosion of written technical papers since World War
II.) However, Cayley’s work has been brought to light by the research of several
modern historians in the 20th century. Notable among them is C. H. Gibbs-Smith,
from whose book titled Sir George Cayley’s Aeronautics (1962) much of the
material in Sec. 1.3 has been gleaned. Gibbs-Smith states that had Cayley’s work
been extended directly by other aviation pioneers, and had they digested ideas
espoused in his triple paper of 1809-1810 and in his 1852 paper, successful pow-
ered flight would most likely have occurred in the 1890s. Probably so!

As a final tribute to George Cayley, we note that the French aviation histo-
rian Charles Dollfus said the following in 1923:

The aeroplane is a British invention: it was conceived in all essentials by George
Cayley, the great English engineer who worked in the first half of last century. The
name of Cayley is little known, even in his own country, and there are very few who
know the work of this admirable man, the greatest genius of aviation. A study of his
publications fills one with absolute admiration both for his inventiveness, and for his



1.4 The Interregnum—from 1853 to 1891

logic and common sense. This great engineer, during the Second Empire, did in fact
not only invent the aeroplane entire, as it now exists, but he realized that the problem
of aviation had to be divided between theoretical research—Cayley made the first
aerodynamic experiments for aeronautical purposes—and practical tests, equally in
the case of the glider as of the powered aeroplane.

1.4 THE INTERREGNUM—FROM 1853 TO 1891

For the next 50 years after Cayley’s success with the coachman-carrying glider,
there were no major advances in aeronautical technology comparable to those
of the previous 50 years. Indeed, as stated in Sec. 1.3, much of Cayley’s work
became obscure to all but a few dedicated investigators. However, there was
considerable activity, with numerous people striking out (sometimes blindly) in
various uncoordinated directions to conquer the air. Some of these efforts are
noted in the following paragraphs, just to establish the flavor of the period.
William Samuel Henson (1812-1888) was a contemporary of Cayley. In
April 1843 he published in England a design for a fixed-wing airplane pow-
ered by a steam engine driving two propellers. Called the aerial steam carriage,
this design received wide publicity throughout the 19th century, owing mainly
to a series of illustrative engravings that were reproduced and sold around the
world. This was a publicity campaign of which Madison Avenue would have
been proud; one of these pictures is shown in Fig. 1.11. Note some of the quali-
ties of modern aircraft in Fig. 1.11: the engine inside a closed fuselage, driving
two propellers; tricycle landing gear; and a single rectangular wing of relatively

Figure 1.11 Henson’s aerial steam carriage, 1842—1843.
(Source: Library of Congress [LC-DIG-ppmsca-03479].)
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high aspect ratio. (We discuss the aerodynamic characteristics of such wings in
Ch. 5.) Henson’s design was a direct product of George Cayley’s ideas and re-
search in aeronautics. The aerial steam carriage was never built; but the design,
along with its widely published pictures, served to engrave George Cayley’s
fixed-wing concept on the minds of virtually all subsequent workers. Thus, even
though Cayley’s published papers fell into obscurity after his death, his major
concepts were partly absorbed and perpetuated by subsequent generations of in-
ventors, even though most of these inventors did not know the true source of
the ideas. In this manner, Henson’s aerial steam carriage was one of the most
influential airplanes in history, even though it never flew.

John Stringfellow, a friend of Henson, made several efforts to bring Henson’s
design to fruition. Stringfellow built several small steam engines and attempted
to power some model monoplanes off the ground. He was close but unsuccess-
ful. However, his most recognized work appeared in the form of a steam-pow-
ered triplane, a model of which was shown at the 1868 aeronautical exhibition
sponsored by the Aeronautical Society at the Crystal Palace in London. A pho-
tograph of Stringfellow’s triplane is shown in Fig. 1.12. This airplane was also
unsuccessful, but again it was extremely influential because of worldwide pub-
licity. Illustrations of this triplane appeared throughout the end of the 19th cen-
tury. Gibbs-Smith, in his book Aviation: An Historical Survey from Its Origins
to the End of World War II (1970), states that these illustrations were later a
strong influence on Octave Chanute, and through him the Wright brothers, and

Figure 1.12 Stringfellow’s model triplane exhibited at the first aeronautical exhibition in
London, 1868.
(Source: © Science Museum/SSPL/The Image Works.)
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Figure 1.13 Du Temple’s airplane: the first aircraft to make a powered but assisted
takeoff, 1874.

strengthened the concept of superimposed wings. Stringfellow’s triplane was the
main bridge between George Cayley’s aeronautics and the modern biplane.

During this period, the first powered airplanes actually hopped off the ground, but
only for hops. In 1857-1858 the French naval officer and engineer Felix Du Temple
flew the first successful powered model airplane in history; it was a monoplane with
swept-forward wings and was powered by clockwork! Then, in 1874, Du Temple
achieved the world’s first powered takeoff by a piloted, full-size airplane. Again the
airplane had swept-forward wings, but this time it was powered by some type of hot-
air engine (the precise type is unknown). A sketch of Du Temple’s full-size airplane
is shown in Fig. 1.13. The machine, piloted by a young sailor, was launched down
an inclined plane at Brest, France; it left the ground for a moment but did not come
close to anything resembling sustained flight. In the same vein, the second pow-
ered airplane with a pilot left the ground near St. Petersburg, Russia, in July 1884.
Designed by Alexander F. Mozhaiski, this machine was a steam-powered mono-
plane, shown in Fig. 1.14. Mozhaiski’s design was a direct descendant of Henson’s
aerial steam carriage; it was even powered by an English steam engine. With
I. N. Golubev as pilot, this airplane was launched down a ski ramp and flew for a
few seconds. As with Du Temple’s airplane, no sustained flight was achieved. At
various times the Russians have credited Mozhaiski with the first powered flight in
history, but of course it did not satisfy the necessary criteria to be called such. Du
Temple and Mozhaiski achieved the first and second assisted powered takeoffs,
respectively, in history, but neither experienced sustained flight. In his book The
World’s First Aeroplane Flights (1965), C. H. Gibbs-Smith states the following
criteria used by aviation historians to judge a successful powered flight:

In order to qualify for having made a simple powered and sustained flight, a con-
ventional aeroplane should have sustained itself freely in a horizontal or rising flight
path—without loss of airspeed—beyond a point where it could be influenced by
any momentum built up before it left the ground: otherwise its performance can

15
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Figure 1.14 The second airplane to make an assisted takeoff: Mozhaiski’s aircraft,
Russia, 1884.

(Source: Soviet Union Postal Service.)

only be rated as a powered leap, i.e., it will not have made a fully self-propelled
flight, but will only have followed a ballistic trajectory modified by the thrust of
its propeller and by the aerodynamic forces acting upon its aerofoils. Furthermore,
it must be shown that the machine can be kept in satisfactory equilibrium. Simple
sustained flight obviously need not include full controllability, but the maintenance
of adequate equilibrium in flight is part and parcel of sustention.

Under these criteria, there is no doubt in the mind of any major aviation historian
that the first powered flight was made by the Wright brothers in 1903. However,
the assisted “hops” just described put two more rungs in the ladder of aeronauti-
cal development in the 19th century.

Of particular note during this period is the creation in London in 1866 of the
Aeronautical Society of Great Britain. Before this time, work on “aerial naviga-
tion” (a phrase coined by George Cayley) was looked upon with some disdain
by many scientists and engineers. It was too out of the ordinary and was not to
be taken seriously. However, the Aeronautical Society soon attracted scientists
of stature and vision, people who shouldered the task of solving the problems of
mechanical flight in a more orderly and logical fashion. In turn, aeronautics took
on a more serious and meaningful atmosphere. The society, through its regular
meetings and technical journals, provided a cohesive scientific outlet for the pre-
sentation and digestion of aeronautical engineering results. The society is still
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flourishing today in the form of the highly respected Royal Aeronautical Society.
Moreover, it served as a model for the creation of both the American Rocket
Society and the Institute of Aeronautical Sciences in the United States; both of
these societies merged in 1964 to form the American Institute of Aeronautics
and Astronautics (AIAA), one of the most influential channels for aerospace
engineering information exchange today.

In conjunction with the Aeronautical Society of Great Britain, at its first
meeting on June 27, 1866, Francis H. Wenham read a paper titled “Aerial
Locomotion,” one of the classics in aeronautical engineering literature. Wenham
was a marine engineer who later was to play a prominent role in the society and
who later designed and built the first wind tunnel in history (see Sec. 4.24). His
paper, which was also published in the first annual report of the society, was the
first to point out that most of the lift of a wing was obtained from the portion near
the leading edge. He also established that a wing with a high aspect ratio was the
most efficient for producing lift. (We will see why in Ch. 5.)

As noted in our previous discussion about Stringfellow, the Aeronautical
Society started out in style: When it was only two years old, in 1868, it put on the
first aeronautical exhibition in history at the Crystal Palace. It attracted an assort-
ment of machines and balloons and for the first time offered the general public
a firsthand overview of the efforts being made to conquer the air. Stringfellow’s
triplane (discussed earlier) was of particular interest. Zipping over the heads of
the enthralled onlookers, the triplane moved through the air along an inclined
cable strung below the roof of the exhibition hall (see Fig. 1.12). However, it did
not achieve sustained flight on its own. In fact, the 1868 exhibition did nothing
to advance the technical aspects of aviation; nevertheless, it was a masterstroke
of good public relations.

1.5 OTTO LILIENTHAL (1848-1896)—THE
GLIDER MAN

With all the efforts that had been made in the past, it was still not until 1891 that
a human literally jumped into the air and flew with wings in any type of con-
trolled fashion. This person was Otto Lilienthal, one of the giants in aeronautical
engineering (and in aviation in general). Lilienthal designed and flew the first
successful controlled gliders in history. He was a man of aeronautical stature
comparable to Cayley and the Wright brothers. Let us examine the man and his
contributions more closely.

Lilienthal was born on May 23, 1848, at Anklam, Prussia (Germany). He
obtained a good technical education at trade schools in Potsdam and Berlin, the
latter at the Berlin Technical Academy, graduating with a degree in mechanical
engineering in 1870. After a one-year stint in the army during the Franco-Prussian
War, Lilienthal went to work designing machinery in his own factory. However,
from early childhood he was interested in flight and performed some youthful
experiments on ornithopters of his own design. Toward the late 1880s, his work
and interests took a more mature turn, which ultimately led to fixed-wing gliders.
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In 1889 Lilienthal published a book titled Der Vogelflug als Grundlage der
Fliegekunst (Bird Flight as the Basis of Aviation). This is another of the early
classics in aeronautical engineering: Not only did he study the structure and
types of birds’ wings, but he also applied the resulting aerodynamic informa-
tion to the design of mechanical flight. Lilienthal’s book contained some of the
most detailed aerodynamic data available at that time. Translated sections were
later read by the Wright brothers, who incorporated some of his data in their first
glider designs in 1900 and 1901.

By 1889 Lilienthal had also come to a philosophical conclusion that was to
have a major impact on the next two decades of aeronautical development. He
concluded that to learn practical aerodynamics, he had to get up in the air and
experience it himself. In his own words,

One can get a proper insight into the practice of flying only by actual flying
experiments. . . . The manner in which we have to meet the irregularities of the wind,
when soaring in the air, can only be learnt by being in the air itself. . . . The only way
which leads us to a quick development in human flight is a systematic and energetic
practice in actual flying experiments.

To put this philosophy into practice, Lilienthal designed a glider in 1889 and
another in 1890; both were unsuccessful. However, in 1891 Lilienthal’s first suc-
cessful glider flew from a natural hill at Derwitz, Germany. (Later he was to
build an artificial hill about 50 ft high near Lichterfelde, a suburb of Berlin; this
conically shaped hill allowed glider flights to be made into the wind, no matter
what the direction.) The general configuration of his monoplane gliders is shown
in Fig. 1.15, which is a photograph showing Lilienthal as the pilot. Note the
rather birdlike planform of the wing. Lilienthal used cambered (curved) airfoil

Figure 1.15 A monoplane hang glider by Lilienthal, 1894.
(Source: Library of Congress [LC-USZ62-19650].)
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shapes on the wing and incorporated vertical and horizontal tail planes in the
back for stability. These machines were hang gliders, the grandparents of the
sporting vehicles of today. Flight control was exercised by shifting one’s center
of gravity under the glider.

Contrast Lilienthal’s flying philosophy with those of previous would-be
aviators before him. During most of the 19th century, powered flight was looked
upon in a brute-force manner: Build an engine strong enough to drive an air-
plane, slap it on an airframe strong enough to withstand the forces and to gener-
ate the lift, and presumably you could get into the air. What would happen after
you got into the air would be just a simple matter of steering the airplane around
the sky like a carriage or automobile on the ground—at least this was the general
feeling. Gibbs-Smith called the people taking this approach the chauffeurs. In
contrast were the airmen—Lilienthal was the first—who recognized the need to
get up in the air, fly around in gliders, and obtain the “feel” of an airplane before
an engine was used for powered flight. The chauffeurs were mainly interested
in thrust and lift, whereas the airmen were more concerned with flight control in
the air. The airmen’s philosophy ultimately led to successful powered flight; the
chauffeurs were singularly unsuccessful.

Lilienthal made more than 2000 successful glider flights. The aerodynamic
data he obtained were published in papers circulated throughout the world. In
fact, his work was timed perfectly with the rise of photography and the print-
ing industry. In 1871 the dry-plate negative was invented, which by 1890 could
“freeze” a moving object without a blur. Also, the successful halftone method
of printing photographs in books and journals had been developed. As a result,
photographs of Lilienthal’s flights were widely distributed; indeed, Lilienthal
was the first human to be photographed in an airplane (see Fig. 1.15). Such
widespread dissemination of his results inspired other pioneers in aviation. The
Wright brothers’ interest in flight did not crystallize until Wilbur first read some
of Lilienthal’s papers in about 1894.

On Sunday, August 9, 1896, Lilienthal was gliding from the Gollenberg hill
near Stollen in Germany. It was a fine summer’s day. However, a temporary
gust of wind brought Lilienthal’s monoplane glider to a standstill; he stalled
and crashed to the ground. Only the wing was crumpled; the rest of the glider
was undamaged. However, Lilienthal was carried away with a broken spine. He
died the next day in the Bergmann Clinic in Berlin. During his life Lilienthal
remarked several times that “sacrifices must be made.” This epitaph is carved on
his gravestone in the Lichterfelde cemetery.

There is some feeling that had Lilienthal lived, he would have beaten the
Wright brothers to the punch. In 1893 he built a powered machine; however, the
prime mover was a carbonic acid gas motor that twisted six slats at each wing
tip—obviously an ornithopter-type idea to mimic the natural mode of propulsion
for birds. In the spring of 1895 he built a second, but larger, powered machine of
the same type. Neither of these airplanes was ever flown with the engine operat-
ing. It seems to this author that this mode of propulsion was doomed to failure.
If Lilienthal had lived, would he have turned to the gasoline engine driving a
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propeller and thus achieved powered flight before 19037 It is a good question
for conversation.

1.6 PERCY PILCHER (1867-1899)—EXTENDING
THE GLIDER TRADITION

In June 1895 Otto Lilienthal received a relatively young and very enthusias-
tic visitor in Berlin—Percy Pilcher, a Scot who lived in Glasgow and who had
already built his first glider. Under Lilienthal’s guidance, Pilcher made several
glides from the artificial hill. This visit added fuel to Pilcher’s interest in avia-
tion; he returned to the British Isles and over the next four years built a series
of successful gliders. His most noted machine was the Hawk, built in 1896
(see Fig. 1.16). Pilcher’s experiments with his hang gliders made him the most
distinguished British aeronautical engineer since George Cayley. Pilcher was an
airman, and along with Lilienthal he underscored the importance of learning the
practical nature of flight in the air before lashing an engine to the machine.
However, Pilcher’s sights were firmly set on powered flight. In 1897 he
calculated that an engine of 4 hp weighing no more than 40 1b, driving a 5-ft-
diameter propeller, would be necessary to power his Hawk off the ground.
Because no such engine was available commercially, Pilcher (who was a ma-
rine engineer by training) spent most of 1898 designing and constructing one.

Figure 1.16 Pilcher’s hang glider, the Hawk, 1896.
(Source: © The Keasbury-Gordon Photograph Archive/Alamy.)
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It was completed and bench-tested by the middle of 1899. Then, in one of
those quirks of fate that dot many aspects of history, Pilcher was killed while
demonstrating his Hawk glider at the estate of Lord Braye in Leicestershire,
England. The weather was bad, and on his first flight the glider was thoroughly
water-soaked. On his second flight, the heavily sodden tail assembly collapsed,
and Pilcher crashed to the ground. Like Lilienthal, Pilcher died one day after
this disaster. Hence England and the world also lost the only man other than
Lilienthal who might have achieved successful powered flight before the
Wright brothers.

1.7 AERONAUTICS COMES TO AMERICA

Look at the geographic distribution of the early developments in aeronautics
as portrayed in Secs. 1.2 through 1.6. After the advent of ballooning, due to
the Montgolfiers’ success in France, progress in heavier-than-air machines was
focused in England until the 1850s: Witness the contributions of Cayley, Henson,
and Stringfellow. This is entirely consistent with the fact that England also gave
birth to the Industrial Revolution during this time. Then the spotlight moved
to the European continent with Du Temple, Mozhaiski, Lilienthal, and others.
There were some brief flashes again in Britain, such as those due to Wenham and
the Aeronautical Society. In contrast, throughout this time virtually no impor-
tant progress was being made in the United States. The fledgling nation was
busy consolidating a new government and expanding its frontiers. There was not
much interest in or time for serious aeronautical endeavors.

However, this vacuum was broken by Octave Chanute (1832-1910), a
French-born naturalized citizen who lived in Chicago. Chanute was a civil en-
gineer who became interested in mechanical flight in about 1875. For the next
35 years he collected, absorbed, and assimilated every piece of aeronautical in-
formation he could find. This culminated in 1894 with the publication of his
book titled Progress in Flying Machines, a work that ranks with Lilienthal’s Der
Vogelflug as one of the great classics in aeronautics. Chanute’s book summarized
all the important progress in aviation up to that date; in this sense, he was the first
serious aviation historian. In addition, Chanute made positive suggestions about
the future directions necessary to achieve success in powered flight. The Wright
brothers avidly read Progress in Flying Machines and subsequently sought out
Chanute in 1900. A close relationship and interchange of ideas developed be-
tween them. A friendship developed that was to last in various degrees until
Chanute’s death in 1910.

Chanute was an airman. Following this position, he began to design hang
gliders, in the manner of Lilienthal, in 1896. His major specific contribution to
aviation was the successful biplane glider shown in Fig. 1.17, which introduced
the effective Pratt truss method of structural rigging. The Wright brothers were
directly influenced by this biplane glider, and in this sense Chanute provided the
natural bridge between Stringfellow’s triplane (1868) and the first successful
powered flight (1903).

21



22

CHAPTER 1 The First Aeronautical Engineers

Figure 1.17 Chanute’s hang glider, 1896.
(Source: Library of Congress [LC-USZ62-104585])

About 500 mi to the east, in Washington, District of Columbia, the United
States’ second noted pre-Wright aeronautical engineer was hard at work. Samuel
Pierpont Langley (1834-1906), secretary of the Smithsonian Institution, was
tirelessly designing and building a series of powered aircraft, which finally cul-
minated in two attempted piloted flights, both in 1903, just weeks before the
Wrights’ success on December 17.

Langley was born in Roxbury, Massachusetts, on August 22, 1834. He
received no formal education beyond high school, but his childhood interest
in astronomy spurred him to a lifelong program of self-education. Early in his
career, he worked for 13 years as an engineer and architect. Then, after mak-
ing a tour of European observatories, Langley became an assistant at Harvard
Observatory in 1865. He went on to become a mathematics professor at the
U.S. Naval Academy, a physics and astronomy professor at the University of
Pittsburgh, and the director of the Allegheny Observatory at Pittsburgh. By vir-
tue of his many scientific accomplishments, Langley was appointed secretary of
the Smithsonian Institution in 1887.

In this same year, Langley, who was by now a scientist of international repu-
tation, began his studies of powered flight. Following the example of Cayley, he
built a large whirling arm, powered by a steam engine, with which he made force
tests on airfoils. He then built nearly 100 different types of rubber-band-powered
model airplanes, graduating to steam-powered models in 1892. However, it was
not until 1896 that Langley achieved any success with his powered models; on
May 6 one of his aircraft made a free flight of 3300 ft, and on November 28
another flew for more than 3 mi. These Aerodromes (a term coined by Langley)
were tandem-winged vehicles, driven by two propellers between the wings, pow-
ered by a 1-hp steam engine of Langley’s own design. (However, Langley was
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influenced by one of John Stringfellow’s small aerosteam engines, which was
presented to the Smithsonian in 1889. After studying this historic piece of ma-
chinery, Langley set out to design a better engine.)

Langley was somewhat satisfied with his success in 1896. Recognizing
that further work toward a piloted aircraft would be expensive in both time and
money, he “made the firm resolution not to undertake the construction of a large
man-carrying machine.” (Note that it was in this year that the Wright brothers be-
came interested in powered flight—another example of the flow and continuity of
ideas and developments in physical science and engineering. Indeed, Wilbur and
Orville were directly influenced and encouraged by Langley’s success with pow-
ered aircraft. After all, here was a well-respected scientist who believed in the
eventual attainment of mechanical flight and who was doing something about it.)

Consequently, there was a lull in Langley’s aeronautical work until December
1898. Then, motivated by the Spanish-American War, the War Department,
with the personal backing of President McKinley himself, invited Langley to
build a machine for passengers. It backed up its invitation with $50,000. Langley
accepted.

Departing from his earlier use of steam, Langley correctly decided that
the gasoline-fueled engine was the proper prime mover for aircraft. He first
commissioned Stephan Balzer of New York to produce such an engine; dis-
satisfied with the results, Langley eventually had his assistant, Charles Manly,
redesign the power plant. The resulting engine produced 52.4 hp yet weighed
only 208 Ib, a spectacular achievement for that time. Using a smaller, 1.5-hp,
gasoline-fueled engine, Langley made a successful flight with a quarter-scale
model aircraft in June 1901, and then an even more successful flight of the model
powered by a 3.2-hp engine in August 1903.

Encouraged by this success, Langley stepped directly to the full-size air-
plane, top and side views of which are shown in Fig. 1.18. He mounted this
tandem-winged aircraft on a catapult to provide an assisted takeoff. In turn, the
airplane and catapult were placed on top of a houseboat on the Potomac River
(see Fig. 1.19). On October 7, 1903, with Manly at the controls, the airplane was
ready for its first attempt. The launching was given wide advance publicity, and
the press was present to watch what might be the first successful powered flight
in history. A photograph of the Aerodrome a moment after launch is shown in
Fig. 1.20. Here is the resulting report from the Washington Post the next day:

A few yards from the houseboat were the boats of the reporters, who for three
months had been stationed at Widewater. The newspapermen waved their hands.
Manly looked down and smiled. Then his face hardened as he braced himself for
the flight, which might have in store for him fame or death. The propeller wheels,
a foot from his head, whirred around him one thousand times to the minute. A man
forward fired two skyrockets. There came an answering “toot, toot,” from the tugs.
A mechanic stooped, cut the cable holding the catapult; there was a roaring, grind-
ing noise—and the Langley airship tumbled over the edge of the houseboat and
disappeared in the river, sixteen feet below. It simply slid into the water like a
handful of mortar. . . .
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Figure 1.18 Drawing of the Langley full-size Aerodrome.
Copyright © the Smithsonian Institution. All rights reserved. Used with permission.

Manly was unhurt. Langley believed the airplane was fouled by the launching
mechanism, and he tried again on December 8, 1903. Again the Aerodrome
fell into the river, and again Manly was fished out, unhurt (see Fig. 1.21). It is
not entirely certain what happened this time; again the fouling of the catapult
was blamed, but some experts maintain that the tail boom cracked due to struc-
tural weakness. (A recent structural analysis by Dr. Howard Wolko, now retired
from the National Air and Space Museum, has proven that the large Langley
Aerodrome was clearly structurally unsound.) At any rate, that was the end of
Langley’s attempts. The War Department gave up, stating that “we are still far
from the ultimate goal (of human flight).” Members of Congress and the press
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Figure 1.19 Langley’s full-size Aerodrome on the houseboat launching catapult, 1903.
(Source: © Science and Society/SuperStock.)

Figure 1.20 Langley’s first launch of the full-size Aerodrome, October 7, 1903.
(Source: Library of Congress [LC-DIG-ggbain-16453].)
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Figure 1.21 Langley’s second launch of the full-size Aerodrome, December 8, 1903.
(Source: © DIZ Muenchen GmbH, Sueddeutsche Zeitung Photo/Alamy.)

leveled vicious and unjustified attacks on Langley (human flight was still looked
upon with much derision by most people). In the face of this ridicule, Langley
retired from the aeronautical scene. He died on February 27, 1906, a man in
despair.

In contrast to Chanute and the Wright brothers, Langley was a chauffeur.
Most modern experts feel that his Aerodrome would not have been capable of
sustained, equilibrium flight, had it been successfully launched. Langley made
no experiments with gliders with passengers to get the feel of the air. He ig-
nored completely the important aspects of flight control. He attempted to launch
Manly into the air on a powered machine without Manly’s having one second
of flight experience. Nevertheless, Langley’s aeronautical work was of some
importance because he lent the power of his respected technical reputation to
the cause of mechanical flight, and his Aerodromes were to provide encourage-
ment to others.

Nine days after Langley’s second failure, the Wright Flyer I rose from the
sands of Kill Devil Hills.

1.8 WILBUR (1867-1912) AND ORVILLE
(1871-1948) WRIGHT—INVENTORS
OF THE FIRST PRACTICAL AIRPLANE

The scene now shifts to the Wright brothers, the premier aeronautical engineers of
history. Only George Cayley may be considered comparable. Sec. 1.1 stated that
the time was ripe for the attainment of powered flight at the beginning of the 20th
century. The ensuing sections then provided numerous historical brushstrokes to
emphasize this statement. Thus, the Wright brothers drew on an existing heritage
that is part of every aerospace engineer today.
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Wilbur Wright was born on April 16, 1867 (two years after the Civil War),
on a small farm in Millville, Indiana. Four years later, Orville was born on
August 19, 1871, in Dayton, Ohio. The Wrights were descendants of an old
Massachusetts family, and their father was a bishop of the United Brethren
Church. The two brothers benefited greatly from the intellectual atmosphere of
their family. Their mother was three months short of a college degree. She had
considerable mechanical ability, enhanced by spending time in her father’s car-
riage shop. She later designed and built simple household appliances and made
toys for her children. In the words of Tom Crouch, the definitive biographer of
the Wright brothers, “When the boys wanted mechanical advice or assistance,
they came to their mother.” Their father, Crouch says, “was one of those men
who had difficulty driving a nail straight.” (See T. Crouch, The Bishop’s Boys,
Norton, New York, 1989.) Interestingly enough, neither Wilbur nor Orville of-
ficially received a high school diploma; Wilbur did not bother to go to the com-
mencement services, and Orville took a special series of courses in his junior
year that did not lead to a prescribed degree, and he did not attend his senior
year. Afterward, the brothers immediately sampled the business world. In 1889
they first published a weekly four-page newspaper on a printing press of their
own design. However, Orville had talent as a prize-winning cyclist, and this
prompted the brothers to set up a bicycle sales and repair shop in Dayton in 1892.
Three years later they began to manufacture their own bicycle designs, using
homemade tools. These enterprises were profitable and helped to provide the
financial resources for their later work in aeronautics.

In 1896 Otto Lilienthal was accidently killed during a glider flight (see
Sec. 1.5). In the wake of the publicity, the Wright brothers’ interest in aviation,
which had been apparent since childhood, was given much impetus. Wilbur and
Orville had been following Lilienthal’s progress intently; recall that Lilienthal’s
gliders were shown in flight by photographs distributed around the world. In fact,
an article about Lilienthal in an issue of McClure’s Magazine in 1894 was appar-
ently the first to trigger Wilbur’s mature interest; it was not until 1896, though,
that Wilbur really became a serious thinker about human flight.

Like several pioneers before him, Wilbur took up the study of bird flight
as a guide on the path toward mechanical flight. This led him to conclude in
1899 that birds “regain their lateral balance when partly overturned by a gust
of wind, by a torsion of the tips of the wings.” Thus emerged one of the most
important developments in aviation history: the use of wing twist to control air-
planes in lateral (rolling) motion. Ailerons are used on modern airplanes for this
purpose, but the idea is the same. (The aerodynamic fundamentals associated
with wing twist or ailerons are discussed in Chs. 5 and 7.) In 1903 Chanute, in
describing the work of the Wright brothers, coined the term wing warping for
this idea, a term that was to become accepted but that was to cause some legal
confusion later.

Anxious to pursue and experiment with the concept of wing warping, Wilbur
wrote to the Smithsonian Institution in May 1899 for papers and books about
aeronautics; in turn he received a brief bibliography of flying, including works
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by Chanute and Langley. Most important among these was Chanute’s Progress
in Flying Machines (see Sec. 1.7). Also at this time, Orville became as enthu-
siastic as his brother, and they both digested all the aeronautical literature they
could find. This led to their first aircraft, a biplane kite with a wingspan of 5 ft,
in August 1899. This machine was designed to test the concept of wing warping,
which was accomplished by means of four controlling strings from the ground.
The concept worked!

Encouraged by this success, Wilbur wrote to Chanute in 1900, informing
him of their initial, but fruitful, progress. This letter began a close friendship be-
tween the Wright brothers and Chanute, which was to benefit both parties in the
future. Also, following the true airman philosophy, the Wrights were convinced
they had to gain experience in the air before applying power to an aircraft. By
writing to the U.S. Weather Bureau, they found an ideal spot for glider experi-
ments: the area around Kitty Hawk, North Carolina, where there were strong and
constant winds. A full-size biplane glider was ready by September 1900 and was
flown in October of that year at Kitty Hawk. Figure 1.22 shows a photograph of
the Wrights’ number 1 glider. It had a 17-ft wingspan and a horizontal elevator in
front of the wings and was usually flown on strings from the ground; only a few
brief piloted flights were made.

With some success behind them, Wilbur and Orville proceeded to build their
number 2 glider (see Fig. 1.23). Moving their base of operations to Kill Devil
Hills, 4 mi south of Kitty Hawk, they tested number 2 during July and August of
1901. These were mostly manned flights, with Wilbur lying prone on the bottom
wing, facing into the wind, as shown in Fig. 1.23. (Through 1901, Wilbur did
what little flying was accomplished; Orville flew for the first time a year later.)
This new glider was somewhat larger, with a 22-ft wingspan. As with all Wright

Figure 1.22 The Wright brothers” number 1 glider at Kitty Hawk, North
Carolina, 1900.
(Source: Library of Congress [LC-DIG-ppprs-00556].)
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Figure 1.23 The Wright brothers” number 2 glider at Kill Devil Hills, 1901.
(Source: Library of Congress [LC-DIG-ppprs-00570].)

machines, it had a horizontal elevator in front of the wings. The Wrights felt that
a forward elevator would, among other functions, protect them from the type of
fatal nosedive that killed Lilienthal.

During these July and August test flights, Octave Chanute visited the Wrights’
camp. He was much impressed by what he saw. This led to Chanute’s invitation
to Wilbur to give a lecture in Chicago. In giving this paper on September 18,
1901, Wilbur laid bare their experiences, including the design of their gliders and
the concept of wing warping. Chanute described Wilbur’s presentation as “a dev-
ilish good paper which will be extensively quoted.” Chanute, as usual, was serv-
ing his very useful function as a collector and disseminator of aeronautical data.

However, the Wrights were not close to being satisfied with their results.
When they returned to Dayton after their 1901 tests with the number 2 glider,
both brothers began to suspect the existing data that appeared in the aeronauti-
cal literature. To this date, they had faithfully relied upon detailed aerodynamic
information generated by Lilienthal and Langley. Now they wondered about its
accuracy. Wilbur wrote that “having set out with absolute faith in the existing
scientific data, we were driven to doubt one thing after another, until finally, after
two years of experiment, we cast it all aside, and decided to rely entirely upon
our own investigations.” And investigate they did! Between September 1901 and
August 1902, the Wrights undertook a major program of aeronautical research.
They built a wind tunnel (see Ch. 4) in their bicycle shop in Dayton and tested
more than 200 different airfoil shapes. They designed a force balance to measure
accurately the lift and drag. This period of research was a high-water mark in
early aviation development. The Wrights learned, and with them ultimately so
did the world. This sense of learning and achievement by the brothers is apparent
simply from reading through The Papers of Wilbur and Orville Wright (1953),
edited by Marvin W. McFarland. The aeronautical research carried out during
this period ultimately led to their number 3 glider, which was flown in 1902. It
was so successful that Orville wrote that “our tables of air pressure which we
made in our wind tunnel would enable us to calculate in advance the perfor-
mance of a machine.” Here is the first example in history of the major impact of
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wind tunnel testing on the flight development of a given machine, an impact that
has been repeated for all major airplanes of the 20th century. (Very recently, it
has been shown by Anderson in A History of Aerodynamics and Its Impact on
Flying Machines [Cambridge University Press, 1997] that Lilienthal’s data were
reasonable, but the Wrights misinterpreted them. Applying the data incorrectly,
the Wrights obtained incorrect results for their 1900 and 1901 gliders. However,
this is irrelevant because the Wrights went on to discover the correct results.)

The number 3 glider was a classic. It was constructed during August and
September of 1902. It first flew at Kill Devil Hills on September 20, 1902. It
was a biplane glider with a 32-ft 1-in wingspan, the largest of the Wright glid-
ers to date. This number 3 glider is shown in Fig. 1.24. Note that, after several
modifications, the Wrights added a vertical rudder behind the wings. This rudder
was movable, and when connected to move in unison with the wing warping, it
enabled the number 3 glider to make a smooth, banked turn. This combined use
of rudder with wing warping (or later, ailerons) was another major contribution
of the Wright brothers to flight control in particular, and aeronautics in general.

So the Wrights now had the most practical and successful glider in history.
During 1902 they made more than 1000 perfect flights. They set a distance re-
cord of 622.5 ft and a duration record of 26 s. In the process, both Wilbur and
Orville became highly skilled and proficient pilots—something that would later
be envied worldwide.

Powered flight was now just at their fingertips, and the Wrights knew it!
Flushed with success, they returned to Dayton to face the last remaining problem:
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Figure 1.24 The Wright brothers’ number 3 glider, 1902.
(Source: Library of Congress [LC-DIG-ppprs-00602].)
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propulsion. As had Langley before them, they could find no commercial engine
that was suitable, so they designed and built their own during the winter months
of 1903. It produced 12 hp and weighed about 200 Ib. Moreover, they conducted
their own research, which allowed them to design an effective propeller. These
accomplishments, which had eluded people for a century, gushed forth from the
Wright brothers like natural spring water.

With all the major obstacles behind them, Wilbur and Orville built their
Wright Flyer I from scratch during the summer of 1903. It closely resembled the
number 3 glider, but had a wingspan of 40 ft 4 in and used a double rudder be-
hind the wings and a double elevator in front of the wings. And, of course, there
was the spectacular gasoline-fueled Wright engine, driving two pusher propel-
lers by means of bicycle-type chains. A three-view diagram and a photograph of
the Wright Flyer I are shown in Figs. 1.1 and 1.2, respectively.

From September 23 to 25, the machine was transported to Kill Devil Hills,
where the Wrights found their camp in some state of disrepair. Moreover, their
number 3 glider had been damaged over the winter months. They made re-
pairs and afterward spent many weeks of practice with their number 3 glider.
Finally, on December 12, everything was ready. However, this time the ele-
ments interfered: Bad weather postponed the first test of the Wright Flyer I until
December 14. On that day, the Wrights called witnesses to the camp and then
flipped a coin to see who would be the first pilot. Wilbur won. The Wright Flyer I
began to move along the launching rail under its own power, picking up flight
speed. It lifted off the rail properly but suddenly went into a steep climb, stalled,
and thumped back to the ground. It was the first recorded case of pilot error
in powered flight: Wilbur admitted that he had put on too much elevator and
brought the nose too high.

With minor repairs made, and with the weather again favorable, the Wright
Flyer I was again ready for flight on December 17. This time it was Orville’s
turn at the controls. The launching rail was again laid on level sand. A camera
was adjusted to take a picture of the machine as it reached the end of the rail. The
engine was put on full throttle, the holding rope was released, and the machine
began to move. The rest is history, as portrayed in the opening paragraphs of this
chapter.

One cannot read or write about this epoch-making event without experi-
encing some of the excitement of the time. Wilbur Wright was 36 years old;
Orville was 32. Between them, they had done what no one before them had
accomplished. By their persistent efforts, their detailed research, and their superb
engineering, the Wrights had made the world’s first successful heavier-than-air
flight, satisfying all the necessary criteria laid down by responsible aviation
historians. After Orville’s first flight on that December 17, three more flights
were made during the morning, the last covering 852 ft and remaining in the air
for 59 s. The world of flight—and along with it the world of successful aeronauti-
cal engineering—had been born!

It is interesting to note that even though the press was informed of these
events via Orville’s telegram to his father (see the introduction to this chapter),
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virtually no notice appeared before the public; even the Dayton newspapers did
not herald the story. This is a testimonial to the widespread cynicism and disbelief
among the general public about flying. Recall that just nine days before, Langley
had failed dismally in full view of the public. In fact, it was not until Amos I.
Root observed the Wrights flying in 1904 and published his inspired account
in a journal of which he was the editor, Gleanings in Bee Culture (January 1,
1905, issue), that the public had its first detailed account of the Wrights’ success.
However, the article had no impact.

The Wright brothers did not stop with the Wright Flyer I. In May 1904 their
second powered machine, the Wright Flyer II, was ready. This aircraft had a
smaller wing camber (airfoil curvature) and a more powerful and efficient en-
gine. In outward appearance, it was essentially like the 1903 machine. During
1904, more than 80 brief flights were made with the Wright Flyer II, all at a
90-acre field called Huffman Prairie, 8 mi east of Dayton. (Huffman Prairie still
exists today; it is on the huge Wright-Patterson Air Force Base, a massive aero-
space development center named in honor of the Wrights.) These tests included
the first circular flight—made by Wilbur on September 20. The longest flight
lasted 5 min 4 s, traversing more than 2 3 mi.

More progress was made in 1905. The Wright Flyer Il was ready by June.
The wing area was slightly smaller than that of the Flyer I, the airfoil camber was
increased back to what it had been in 1903, the biplane elevator was made larger
and was placed farther in front of the wings, and the double rudder was also larger
and placed farther back behind the wings. New, improved propellers were used.
This machine, the Flyer III, was the first practical airplane in history. It made more
than 40 flights during 1905, the longest being 38 min 3 s and covering 24 mi. These
flights were generally terminated only after the gas was used up. C. H. Gibbs-Smith
writes about the Flyer III, “The description of this machine as the world’s first
practical powered aeroplane is justified by the sturdiness of its structure, which
withstood constant takeoffs and landings; its ability to bank, turn, and perform fig-
ures of eight; and its reliability in remaining airborne (with no trouble) for over half
an hour.”

Then the Wright brothers, who heretofore had been completely open about
their work, became secretive. They were not making any progress in convincing
the U.S. government to buy their airplane, but at the same time various people
and companies were beginning to make noises about copying the Wrights’ de-
sign. A patent applied for by the Wrights in 1902 to cover their ideas of wing
warping combined with rudder action was not granted until 1906. So, between
October 16, 1905, and May 6, 1908, neither Wilbur nor Orville flew, nor did they
allow anyone to view their machines. However, their aeronautical engineering
did not stop. During this period, they built at least six new engines. They also
designed a new flying machine that was to become the standard Wright type A,
shown in Fig. 1.25. This airplane was similar to the Wright Flyer III, but it had a
40-hp engine and allowed two people to be seated upright between the wings. It
also represented the progressive improvement of a basically successful design, a
concept of airplane design carried out to present day.
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Figure 1.25 A two-view of the Wright type A, 1908.

The public and the Wright brothers finally had their meeting, and in a big
way, in 1908. The Wrights signed contracts with the U.S. Army in February
1908, and with a French company in March of the same year. After that the
wraps were off. Wilbur traveled to France in May, picked up a crated type A
that had been waiting at Le Havre since July 1907, and completed the assem-
bly in a friend’s factory at Le Mans. With supreme confidence, he announced
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his first public flight in advance—to take place on August 8, 1908. Aviation
pioneers from all over Europe, who had heard rumors about the Wrights’ suc-
cesses since 1903, the press, and the general public all flocked to a small race
course at Hunaudieres, 5 mi south of Le Mans. On the appointed day, Wilbur
took off, made an impressive, circling flight for almost 2 min, and landed. It
was like a revolution. Aeronautics, which had been languishing in Europe since
Lilienthal’s death in 1896, was suddenly alive. The Frenchman Louis Bleriot,
soon to become famous for being first to fly across the English Channel, ex-
claimed, “For us in France and everywhere, a new era in mechanical flight has
commenced—it is marvelous.” The French press, after being skeptical for years
of the Wrights’ supposed accomplishments, called Wilbur’s flight “one of the
most exciting spectacles ever presented in the history of applied science.” More
deeply echoing the despair of many would-be French aviators who were in a race
with the Wrights to be first with powered flight, Leon Delagrange said, “Well,
we are beaten. We just don’t exist.” Subsequently Wilbur made 104 flights in
France before the end of 1908. The acclaim and honor due the Wright brothers
since 1903 had finally arrived.

Orville was experiencing similar success in the United States. On
September 3, 1908, he began a series of demonstrations for the U.S. Army at Fort
Myer, near Washington, District of Columbia. Flying a type A machine, he made
10 flights, the longest for 1 h 14 min, before September 17. On that day, Orville
experienced a propeller failure that ultimately caused the machine to crash, seri-
ously injuring himself and killing his passenger, Lt. Thomas E. Selfridge. This
was the first crash of a powered aircraft, but it did not deter either Orville or the
Army. Orville made a fast recovery and was back to flying in 1909—and the
Army bought the airplane.

The public flights made by Wilbur in France in 1908 electrified aviators in
Europe. European airplane designers immediately adopted two of the most im-
portant technical features of the Wright machine: lateral control and the propeller.
Prior to 1908, European flying-machine enthusiasts had no concept of the impor-
tance of lateral control (rolling of the airplane—see Sec. 7.1) and certainly no
mechanical mechanism to achieve it; the Wrights achieved lateral control by their
innovative concept of wing warping. By 1909, however, the Frenchman Henri
Farman designed a biplane named the Henri Farman III that included flaplike ai-
lerons at the trailing edge near the wing tips; ailerons quickly became the favored
mechanical means for lateral control, continuing to the present day. Similarly, the
European designers were quick to adopt the long, slender shape of the Wrights’
propellers; these were quite different from the wide, paddlelike shapes then in
use, which had low propeller efficiencies (defined in Sec. 6.6.1) on the order of
40 to 50 percent. In 1909 the efficiency of the Wrights’ propeller was measured
by an engineer in Berlin to be a stunning 76 percent. Recent wind tunnel experi-
ments at the NASA Langley Research Center (carried out by researchers from
Old Dominion University in 2002) indicated an even more impressive 84 percent
efficiency for the Wrights’ propeller. These two technical features—the appre-
ciation for, and a mechanical means to achieve, lateral control, and the design
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of a highly efficient propeller—are the two most important technical legacies
left by the Wrights to future airplanes, and European designers quickly seized
upon them. (See Anderson, The Airplane: A History of Its Technology, American
Institute of Aeronautics and Astronautics, 2002, for more details.)

The accomplishments of the Wright brothers were monumental. Their ze-
nith occurred during the years 1908 to 1910; after that European aeronautics
quickly caught up and went ahead in the technological race. The main rea-
son for this was that all the Wrights’ machines, from the first gliders, were
statically unstable (see Ch. 7). This meant that the Wrights’ airplanes would
not fly “by themselves”; rather, they had to be constantly, every instant, con-
trolled by the pilot. In contrast, European inventors believed in inherently
stable aircraft. After their lessons in flight control from Wilbur in 1908, work-
ers in France and England moved quickly to develop controllable, but stable,
airplanes. These were basically safer and easier to fly. The concept of static
stability has carried over to virtually all airplane designs through the present
century. (It is interesting to note that the new designs for military fighters, such
as the Lockheed-Martin F-22, are statically unstable, which represents a return
to the Wrights’ design philosophy. However, unlike the Wright Flyers, these
new aircraft are flown constantly, every moment, by electrical means, by the
new “fly-by-wire” concept.)

To round out the story of the Wright brothers, Wilbur died in an untimely
fashion of typhoid fever on May 30, 1912. In a fitting epitaph, his father said,
“This morning, at 3:15 Wilbur passed away, aged 45 years, 1 month, and 14 days.
A short life full of consequences. An unfailing intellect, imperturbable temper,
great self-reliance and as great modesty. Seeing the right clearly, pursuing it
steadily, he lived and died.”

Orville lived on until January 30, 1948. During World War I, he was com-
missioned a major in the Signal Corps Aviation Service. Although he sold all his
interest in the Wright company and “retired” in 1915, he afterward performed
research in his own shop. In 1920 he invented the split flap for wings, and he
continued to be productive for many years.

As a final footnote to this story of two great men, there occurred a dispute
between Orville and the Smithsonian Institution concerning the proper historical
claims on powered flight. As a result, Orville sent the historic Wright Flyer I, the
original, to the Science Museum in London in 1928. It resided there, through the
bombs of World War II, until 1948, when the museum sent it to the Smithsonian.
It is now part of the National Air and Space Museum and occupies a central posi-
tion in the gallery.

1.9 THE AERONAUTICAL TRIANGLE—LANGLEY,
THE WRIGHTS, AND GLENN CURTISS
In 1903—a milestone year for the Wright brothers, with their first successful

powered flight—Orville and Wilbur faced serious competition from Samuel P.
Langley. As portrayed in Sec. 1.7, Langley was the secretary of the Smithsonian
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Institution and was one of the most respected scientists in the United States at that
time. Beginning in 1886, Langley mounted an intensive aerodynamic research
and development program, bringing to bear the resources of the Smithsonian and
later the War Department. He carried out this program with a dedicated zeal that
matched the fervor that the Wrights themselves demonstrated later. Langley’s
efforts culminated in the full-scale Aerodrome shown in Figs. 1.18, 1.19, and
1.20. In October 1903 this Aerodrome was ready for its first attempted flight, in
the full glare of publicity in the national press.

The Wright brothers knew about Langley’s progress. During their prepara-
tions with the Wright Flyer at Kill Devil Hills in the summer and fall of 1903,
Orville and Wilbur kept in touch with Langley’s progress via the newspapers.
They felt this competition keenly, and the correspondence of the Wright broth-
ers at this time indicates an uneasiness that Langley might become the first to
successfully achieve powered flight before they would have a chance to test the
Wright Flyer. In contrast, Langley felt no competition at all from the Wrights.
Although the aeronautical activity of the Wright brothers was generally known
throughout the small circle of aviation enthusiasts in the United States and
Europe—thanks mainly to reports about their work by Octave Chanute—this
activity was not taken seriously. At the time of Langley’s first attempted flight on
October 7, 1903, there is no recorded evidence that Langley was even aware of
the Wrights’ powered machine sitting on the sand dunes of Kill Devil Hills, and
certainly no appreciation by Langley of the degree of aeronautical sophistication
achieved by the Wrights. As it turned out, as was related in Sec. 1.7, Langley’s
attempts at manned powered flight, first on October 7 and again on December 8,
resulted in total failure. In hindsight, the Wrights had nothing to fear from com-
petition with Langley.

Such was not the case in their competition with another aviation pioneer,
Glenn H. Curtiss, beginning five years later. In 1908—another milestone year
for the Wrights, with their glorious first public flights in France and the United
States—Orville and Wilbur faced a serious challenge and competition from
Curtiss, which was to lead to acrimony and a flurry of lawsuits that left a smudge
on the Wrights’ image and resulted in a general inhibition of the development
of early aviation in the United States. By 1910 the name of Glenn Curtiss was
as well known throughout the world as those of Orville and Wilbur Wright, and
indeed Curtiss-built airplanes were more popular and easier to fly than those
produced by the Wrights. How did these circumstances arise? Who was Glenn
Curtiss, and what was his relationship with the Wrights? What impact did Curtiss
have on the early development of aviation, and how did his work compare and
intermesh with that of Langley and that of the Wrights? The historical develop-
ment of aviation in the United States can be compared to a triangle, with the
Wrights on one apex, Langley at another, and Curtiss at the third. This “aero-
nautical triangle” is shown in Fig. 1.26. What was the nature of this triangular
relationship? These and other questions are addressed in this section. They make
a fitting conclusion to the overall early historical development of aeronautical
engineering as portrayed in this chapter.
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Figure 1.26 The “aeronautical triangle,” a relationship that dominated the early
development of aeronautics in the United States during the period from 1886 to 1916.
(Source: Top: Library of Congress [LC-USZ62-65478]; Bottom Left, Library of Congress
[LC-H261-9495-A]; Bottom Right, Library of Congress [LC-B2-4922-10].)

Letus first look at Glenn Curtiss, the man. Curtiss was born in Hammondsport,
New York, on May 21, 1878. Hammondsport at that time was a small town
(population less than 1000) bordering on Keuka Lake, one of the Finger Lakes
in upstate New York. (Later Curtiss was to make good use of Keuka Lake for
the development of amphibious aircraft—one of his hallmarks.) The son of a
harness maker who died when Curtiss was five years old, Curtiss was raised
by his mother and grandmother. Their modest financial support came from a

37



38

CHAPTER 1 The First Aeronautical Engineers

small vineyard that grew in their front yard. His formal education ceased with
the eighth grade, after which he moved to Rochester, where he went to work
for Eastman Dry Plate and Film Company (later to become Kodak), stenciling
numbers on the paper backing of film. In 1900 he returned to Hammondsport,
where he took over a bicycle repair shop (shades of the Wright brothers). At this
time Glenn Curtiss began to show a passion that would consume him for his
lifetime—a passion for speed. He became active in bicycle racing and quickly
earned a reputation as a winner. In 1901 he incorporated an engine on his bi-
cycles and became an avid motorcycle racer. By 1902 his fame was spreading,
and he was receiving numerous orders for motorcycles with engines of his own
design. By 1903 Curtiss had established a motorcycle factory at Hammondsport,
and he was designing and building the best (highest horsepower-to-weight ratio)
engines available anywhere. In January 1904, at Ormond Beach, Florida, Curtiss
established a new world’s speed record for a ground vehicle—67 mi/h over a
10-mi straightaway—a record that was to stand for seven years.

Curtiss “backed into” aviation. In the summer of 1904 he received an
order from Thomas Baldwin, a California balloonist, for a two-cylinder engine.
Baldwin was developing a powered balloon—a dirigible. The Baldwin dirigi-
bles, with the highly successful Curtiss engines, soon became famous around the
country. In 1906 Baldwin moved his manufacturing facilities to Hammondsport
to be close to the source of his engines. A lifelong friendship and cooperation
developed between Baldwin and Curtiss and provided Curtiss with his first expe-
rience in aviation, as a pilot of some of Baldwin’s powered balloons.

In August 1906 Baldwin traveled to the Dayton Fair in Ohio for a week of
dirigible flight demonstrations; he brought Curtiss along to personally maintain the
engines. The Wright brothers also attended the fair—specifically to watch Thomas
Baldwin perform. They even lent a hand in retrieving the dirigible when it strayed
too far afield. This was the first face-to-face encounter between Curtiss and the
Wrights. During that week, Baldwin and Curtiss visited the Wrights at the brothers’
bicycle shop and entered into long discussions about powered flight. Recall from
Sec. 1.8 that the Wrights had discontinued flying one year earlier; at the time of their
meeting with Curtiss, Orville and Wilbur were actively trying to interest the United
States, as well as England and France, in buying their airplane. The Wrights had
become very secretive about their airplane and allowed no one to view it. Curtiss
and Baldwin were no exceptions. However, that week in Dayton, the Wrights were
relatively free with Curtiss, giving him information and technical suggestions about
powered flight. Years later, these conversations became the crux of the Wrights’
claim that Curtiss had stolen some of their ideas and used them for his own gain.

This claim was probably not entirely unjustified, for by that time Curtiss
had a vested interest in powered flight; a few months earlier he had supplied
Alexander Graham Bell with a 15-hp motor to be used in propeller experiments,
looking toward eventual application to a manned, heavier-than-air, powered air-
craft. The connection between Bell and Curtiss is important. Bell, renowned as
the inventor of the telephone, had an intense interest in powered flight. He was a
close personal friend of Samuel Langley and, indeed, was present for Langley’s
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successful unmanned Aerodrome flights in 1896. By the time Langley died in
1906, Bell was actively carrying out kite experiments and was testing air pro-
pellers on a catamaran at his Nova Scotia coastal home. In the summer of 1907
Bell formed the Aerial Experiment Association, a group of five men whose of-
ficially avowed purpose was simply “to get into the air.” The Aerial Experiment
Association (AEA) consisted of Bell himself, Douglas McCurdy (son of Bell’s
personal secretary, photographer, and very close family friend), Frederick W.
Baldwin (a freshly graduated mechanical engineer from Toronto and close friend
of McCurdy), Thomas E. Selfridge (an Army lieutenant with an extensive en-
gineering knowledge of aeronautics), and Glenn Curtiss. The importance of
Curtiss to the AEA is attested to by the stipends that Bell paid to each member of
the association: Curtiss was paid five times more than the others. Bell had asked
Curtiss to join the association because of Curtiss’s excellent engine design and
superb mechanical ability. Curtiss was soon doing much more than just design-
ing engines. The plan of the AEA was to conduct intensive research and develop-
ment on powered flight and to build five airplanes—one for each member. The
first aircraft, the Red Wing, was constructed by the AEA with Selfridge as the
chief designer. On March 12, 1908, the Red Wing was flown at Hammondsport
for the first time, with Baldwin at the controls. It covered a distance of 318 ft and
was billed as “the first public flight” in the United States.

Recall that the tremendous success of the Wright brothers from 1903 to 1905
was not known by the general public, mainly because of indifference in the press
as well as the Wrights’ growing tendency to be secretive about their airplane
design until they could sell an airplane to the U.S. government. However, the
Wrights’ growing apprehension about the publicized activities of the AEA is
reflected in a letter from Wilbur to the editor of the Scientific American after the
flight of the Red Wing. In this letter, Wilbur states,

In 1904 and 1905, we were flying every few days in a field alongside the main wagon
road and electric trolley line from Dayton to Springfield, and hundreds of travel-
ers and inhabitants saw the machine in flight. Anyone who wished could look. We
merely did not advertise the flights in the newspapers.

On March 17, 1908, the second flight of the Red Wing resulted in a crash
that severely damaged the aircraft. Work on the Red Wing was subsequently
abandoned in lieu of a new design of the AEA, the White Wing, with Baldwin
as the chief designer. Members of the AEA were acutely aware of the Wrights’
patent on wing warping for lateral control, and Bell was particularly sensitive to
making certain that his association did not infringe upon this patent. Therefore,
instead of using wing warping, the White Wing utilized triangular movable sur-
faces that extended beyond the wing tips of both wings of the biplane. Beginning
on May 18, 1908, the White Wing successfully made a series of flights piloted
by various members of the AEA. One of these flights, with Glenn Curtiss at the
controls, was reported by Selfridge to the Associated Press as follows:

G. H. Curtiss of the Curtiss Manufacturing Company made a flight of 339 yards in
two jumps in Baldwin’s White Wing this afternoon at 6:47 pM. In the first jump he
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covered 205 yards then touched, rose immediately and flew 134 yards further when
the flight ended on the edge of a ploughed field. The machine was in perfect control
at all times and was steered first to the right and then to the left before landing. The
339 yards was covered in 19 seconds or 37 miles per hour.

Two days later, with an inexperienced McCurdy at the controls, the White Wing
crashed and never flew again.

However, by this time, the Wright brothers’ apprehension about the AEA was
growing into bitterness toward its members. Wilbur and Orville genuinely felt
that the AEA had pirated their ideas and was going to use them for commercial
gain. For example, on June 7, 1908, Orville wrote to Wilbur (who was in France
preparing for his spectacular first public flights that summer at Le Mans—see Sec.
1.8), “I see by one of the papers that the Bell outfit is offering Red Wings for sale
at $5,000 each. They have some nerve.” On June 28 he related to Wilbur, “Curtiss
et al. are using our patents, I understand, and are now offering machines for sale
at $5,000 each, according to the Scientific American. They have got good cheek.”

The strained relations between the Wrights and the AEA—particularly
Curtiss—were exacerbated on July 4, 1908, when the AEA achieved its crowning
success. A new airplane had been constructed—the June Bug—with Glenn Curtiss
as the chief designer. In the previous year the Scientific American had offered a
trophy, through the Aero Club of America, worth more than $3000 to the first avia-
tor making a straight flight of 1 km (3281 ft). On Independence Day in 1908,
at Hammondsport, New York, Glenn Curtiss at the controls of his June Bug was
ready for an attempt at the trophy. A delegation of 22 members of the Aero Club
was present, and the official starter was none other than Charles Manly, Langley’s
dedicated assistant and pilot of the ill-fated Aerodrome (see Sec. 1.7 and Fig. 1.26).
Late in the day, at 7:30 pm, Curtiss took off and in 1 min 40 s had covered a distance
of more than 1 mi, easily winning the Scientific American prize. A photograph of
the June Bug during this historic flight is shown in Fig. 1.27.

The Wright brothers could have easily won the Scientific American prize
long before Curtiss; they simply chose not to. Indeed, the publisher of the
Scientific American, Charles A. Munn, wrote to Orville on June 4, inviting him
to make the first attempt at the trophy, offering to delay Curtiss’s request for an
attempt. On June 30, the Wrights responded negatively; they were too involved
with preparations for their upcoming flight trials in France and at Fort Myer
in the United States. However, Curtiss’s success galvanized the Wrights’ op-
position. Remembering their earlier conversations with Curtiss in 1906, Orville
wrote to Wilbur on July 19,

I had been thinking of writing to Curtiss. I also intended to call attention of the Sci-
entific American to the fact that the Curtiss machine was a poor copy of ours; that we
had furnished them the information as to how our older machines were constructed,
and that they had followed this construction very closely, but have failed to mention
the fact in any of their writings.

Curtiss’s publicity in July was totally eclipsed by the stunning success of
Wilbur during his public flights in France beginning August 8, 1908, and by
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Figure 1.27 Glenn Curtiss flying the June Bug on July 4, 1908, on his way to the Scientific
American prize for the first public flight of greater than 1 km.
(Source: Library of Congress [LC-USZ62-59025].)

Orville’s Army trials at Fort Myer beginning on September 3, 1908. During the
trials at Fort Myer, the relationship between the Wrights and the AEA took an
ironic twist. One member of the evaluation board assigned by the Army to ob-
serve Orville’s flights was Lt. Thomas Selfridge. Selfridge had been officially
detailed to the AEA by the Army for a year and was now back at his duties of
being the Army’s main aeronautical expert. As part of the official evaluation,
Orville was required to take Selfridge on a flight as a passenger. During this
flight, on September 17, one propeller blade cracked and changed its shape, thus
losing thrust. This imbalanced the second propeller, which cut a control cable to
the tail. The cable subsequently wrapped around the propeller and snapped it off.
The Wright type A went out of control and crashed. Selfridge was killed, and
Orville was severely injured; he was in the hospital for 13-months. For the rest of
his life, Orville would walk with a limp as a result of this accident. Badly shaken
by Selfridge’s death, and somewhat overtaken by the rapid growth of aviation
after the events of 1908, the Aerial Experiment Association dissolved itself on
March 31, 1909. In the written words of Alexander Graham Bell, “The A.E.A.
is now a thing of the past. It has made its mark upon the history of aviation and
its work will live.”

After this, Glenn Curtiss struck out in the aviation world on his own. Forming
an aircraft factory at Hammondsport, Curtiss designed and built a new airplane,
improved over the June Bug and named the Golden Flyer. In August 1909 a
massive air show was held in Reims, France, attracting huge crowds and the
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crown princes of Europe. For the first time in history, the Gordon Bennett trophy
was offered for the fastest flight. Glenn Curtiss won this trophy with his Golden
Flyer, averaging a speed of 75.7 km/h (47.09 mi/h) over a 20-km course and de-
feating a number of pilots flying the Wrights’ airplanes. This launched Curtiss on
a meteoric career as a daredevil pilot and a successful airplane manufacturer. His
motorcycle factory at Hammondsport was converted entirely to the manufacture
of airplanes. His airplanes were popular with other pilots of that day because
they were statically stable and hence easier and safer to fly than the Wrights’
airplanes, which had been intentionally designed by the Wright brothers to be
statically unstable (see Ch. 7). By 1910 aviation circles and the general public
held Curtiss and the Wrights in essentially equal esteem. At the lower right of
Fig. 1.26 is a photograph of Curtiss at this time; the propeller ornament in his
cap was a good luck charm that he took on his flights. By 1911 a Curtiss airplane
had taken off from and landed on a ship. Also in that year, Curtiss developed the
first successful seaplanes and forged a lasting relationship with the U.S. Navy.
In June 1911 the Aero Club of America issued its first official pilot’s license to
Curtiss in view of the fact that he had made the first public flight in the United
States—an honor that otherwise would have gone to the Wrights.

In September 1909 the Wright brothers filed suit against Curtiss for patent
infringements. They argued that their wing warping patent of 1906, liberally
interpreted, covered all forms of lateral control, including the ailerons used by
Curtiss. This triggered five years of intensive legal maneuvering, which dissi-
pated much of the energies of all the parties. Curtiss was not alone in this re-
gard. The Wrights brought suit against a number of fledgling airplane designers
during this period, both in the United States and in Europe. Such litigation con-
sumed Wilbur’s attention, in particular, and effectively removed him from being
a productive worker toward technical aeronautical improvements. It is generally
agreed by aviation historians that this was not the Wrights’ finest hour. Their
legal actions not only hurt their own design and manufacturing efforts but also
effectively discouraged the early development of aeronautics by others, particu-
larly in the United States. (It is quite clear that when World War I began in
1914, the United States—the birthplace of aviation—was far behind Europe in
aviation technology.) Finally, in January 1914 the courts ruled in favor of the
Wrights, and Curtiss was forced to pay royalties to the Wright family. (By this
time Wilbur was dead, having succumbed to typhoid fever in 1912.)

In defense of the Wright brothers, their actions against Curtiss grew from a
genuine belief on their part that Curtiss had wronged them and had consciously
stolen their ideas, which Curtiss had subsequently parlayed into massive eco-
nomic gains. This went strongly against the grain of the Wrights’ staunchly ethi-
cal upbringing. In contrast, Curtiss bent over backward to avoid infringing on the
letter of the Wrights’ patent, and there is much evidence that Curtiss consistently
tried to mend relations with the Wrights. It is this author’s opinion that both sides
became entangled in a complicated course of events that followed those heady
days after 1908, when aviation burst on the world scene, and that neither Curtiss
nor the Wrights should be totally faulted for their actions. These events simply
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go down in history as a less than glorious, but nevertheless important, chapter in
the early development of aviation.

An important postscript should be added here regarding the triangular re-
lationship between Langley, the Wrights, and Curtiss, as shown in Fig. 1.26.
Secs. 1.7 and 1.8 have already shown the relationship between Langley and the
Wrights and the circumstances leading up to the race for the first flight in 1903.
This constitutes side A in Fig. 1.26. In this section we have seen the strong
connection between Curtiss and the work of Langley, via Alexander Graham
Bell—a close friend and follower of Langley and creator of the Aerial Experiment
Association, which gave Curtiss a start in aviation. We have even noted that
Charles Manly, Langley’s assistant, was the official starter for Curtiss’s suc-
cessful competition for the Scientific American trophy. Such relationships form
side B of the triangle in Fig. 1.26. Finally, we have seen the relationship, albeit
somewhat acrimonious, between the Wrights and Curtiss, which forms side C in
Fig. 1.26.

In 1914 an event occurred that simultaneously involved all three sides of the
triangle in Fig. 1.26. When the Langley Aerodrome failed for the second time in
1903 (see Fig. 1.21), the wreckage was simply stored away in an unused room
in the back of the Smithsonian Institution. When Langley died in 1906, he was
replaced as secretary of the Smithsonian by Dr. Charles D. Walcott. Over the en-
suing years, Secretary Walcott felt that the Langley Aerodrome should be given
a third chance. Finally, in 1914 the Smithsonian awarded a grant of $2000 for
the repair and flight of the Langley Aerodrome to none other than Glenn Curtiss.
The Aerodrome was shipped to Curtiss’s factory in Hammondsport; there not
only was it repaired, but also 93 separate technical modifications were made,
aerodynamically, structurally, and to the engine. For help during this restoration
and modification, Curtiss hired Charles Manly. Curtiss added pontoons to the
Langley Aerodrome and on May 28, 1914, personally flew the modified aircraft
for a distance of 150 ft over Keuka Lake. Figure 1.28 shows a photograph of
the Langley Aerodrome in graceful flight over the waters of the lake. Later the
Aerodrome was shipped back to the Smithsonian, where it was carefully restored
to its original configuration and in 1918 was placed on display in the old Arts and
Industries Building. Underneath the Aerodrome was placed a plaque reading,
“Original Langley flying machine, 1903. The first man-carrying aeroplane in the
history of the world capable of sustained free flight.” The plaque did not mention
that the Aerodrome demonstrated its sustained flight capability only after the
93 modifications made by Curtiss in 1914. It is no surprise that Orville Wright
was deeply upset by this state of affairs, and this is the principal reason why the
original 1903 Wright Flyer was not given to the Smithsonian until 1948, the year
of Orville’s death. Instead, from 1928 to 1948, the Flyer resided in the Science
Museum in London.

This section ends with two ironies. In 1915 Orville sold the Wright
Aeronautical Corporation to a group of New York businesspeople. During
the 1920s this corporation became a losing competitor in aviation. Finally, on
June 26, 1929, in a New York office, the Wright Aeronautical Corporation was
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Figure 1.28 The modified Langley Aerodrome in flight over Keuka Lake in 1914.
(Source: © Science and Society/SuperStock.)

officially merged with the successful Curtiss Aeroplane and Motor Corporation,
forming the Curtiss-Wright Corporation. Thus, ironically, the names of Curtiss
and Wright finally came together after all those earlier turbulent years. The
Curtiss-Wright Corporation went on to produce numerous famous aircraft, per-
haps the most notable being the P-40 of World War II fame. Unfortunately the
company could not survive the lean years immediately after World War II, and
its aircraft development and manufacturing ceased in 1948. This leads to the
second irony. Although the very foundations of powered flight rest on the work
of Orville and Wilbur Wright and Glenn Curtiss, there is not an airplane either
produced or in standard operation today that bears the name of either Wright or
Curtiss.

1.10 THE PROBLEM OF PROPULSION

During the 19th century numerous visionaries predicted that manned heavier-
than-air flight was inevitable once a suitable power plant could be developed
to lift the aircraft off the ground. It was just a matter of developing an engine
having enough horsepower while at the same time not weighing too much—that
is, an engine with a high horsepower-to-weight ratio. This indeed was the main
stumbling block to such people as Stringfellow, Du Temple, and Mozhaiski:
The steam engine simply did not fit the bill. Then, in 1860, the Frenchman Jean
Joseph Etienne Lenoir built the first practical gas engine. It was a single-cylinder
engine, burning ordinary street-lighting gas for fuel. By 1865, 400 of Lenoir’s
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engines were doing odd jobs around Paris. Further improvements in such internal
combustion engines came rapidly. In 1876 N. A. Otto and E. Langen of Germany
developed the four-cycle engine (the ancestor of all modern automobile engines),
which also used gas as a fuel. This led to the simultaneous but separate devel-
opment in 1885 of the four-cycle gasoline-burning engine by Gottlieb Daimler
and Karl Benz, both in Germany. Both Benz and Daimler put their engines in
motorcars, and the automobile industry was quickly born. After these “horseless
carriages” were given legal freedom of the roads in 1896 in France and Britain,
the automobile industry expanded rapidly. Later this industry was to provide
much of the technology and many of the trained mechanics for the future devel-
opment of aviation.

This development of the gasoline-fueled internal combustion engine was a
godsend to aeronautics, which was beginning to gain momentum in the 1890s.
In the final analysis, it was the Wright brothers’ custom-designed and custom-
constructed gasoline engine that was responsible for lifting their Flyer I off the
sands of Kill Devil Hills that fateful day in December 1903. A proper aeronauti-
cal propulsion device had finally been found.

It is interesting to note that the relationship between the automobile and the
aircraft industries persists to the present day. For example, in June 1926 Ford in-
troduced a very successful three-engine, high-wing transport airplane—the Ford
4-AT Trimotor. During World War II virtually all the major automobile com-
panies built airplane engines and airframes. General Motors maintained an air-
plane engine division for many decades—the Allison Division in Indianapolis,
Indiana—noted for its turboprop designs. Today Allison is owned by Rolls-
Royce and constitutes its North American branch. More recently, automobile
designers are turning to aerodynamic streamlining and wind tunnel testing to re-
duce drag, hence increasing fuel economy. Thus the parallel development of the
airplane and the automobile over the past 100 years has been mutually beneficial.

It can be argued that propulsion has paced every major advancement in the
speed of airplanes. Certainly the advent of the gasoline engine opened the doors
to the first successful flight. Then, as the power of these engines increased from
the 12-hp, Wrights’-designed engine of 1903 to the 2200-hp, radial engines of
1945, airplane speeds correspondingly increased from 28 to more than 500 mi/h.
Finally, jet and rocket engines today provide enough thrust to propel aircraft at
thousands of miles per hour—many times the speed of sound. So, throughout the
history of manned flight, propulsion has been the key that has opened the doors
to flying faster and higher.

1.11 FASTER AND HIGHER

The development of aeronautics in general, and aeronautical engineering in par-
ticular, was exponential after the Wrights’ major public demonstrations in 1908,
and has continued to be so to the present day. It is beyond the scope of this book
to go into all the details. However, marbled into the engineering text in Chs. 2
through 10 are various historical highlights of technical importance. It is hoped
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that the following parallel presentations of the fundamentals of aerospace engi-
neering and some of their historical origins will be synergistic and that, in com-
bination with the present chapter, they will give the reader a certain appreciation
for the heritage of this profession.

As a final note, the driving philosophy of many advancements in aeronautics
since 1903 has been to fly faster and higher. This is dramatically evident from
Fig. 1.29, which gives the flight speeds for typical aircraft as a function of chron-
ological time. Note the continued push for increased speed over the years and the
particular increase in recent years made possible by the jet engine. Singled out
in Fig. 1.29 are the winners of the Schneider Cup races between 1913 and 1931
(with a moratorium during World War I). The Schneider Cup races were started

3600 — 4100 mvh m
£
i =
3200 Experimental I
rocket-powered
airplanes
2800 — I
1 3
[
. m m
2400 - | z 3
Q ]
1 o £ 5
/ NG £
4 ?2 S v =
< | i g
2000 - ) ._‘ [s9gs ) <
2/ = [ g
/A =
¥ 5
1600 | . Q ° a
—S
/ Q- & ® ®
é ' O 7] g‘
o / =9 2 9 ° °
1200 <) , o 19 I
Schneider Cup “ = _ > = f\,l @
lanes) & 3 = LO) = =
races (seaplanes ER E ></
23 2 T
800 — O« 8 5 M
= N 2 % ™ Conventional
- = § ;5,} = S b airplanes
S5 25| £5F ge 3R I
= = 23 a A
s E5 "rl/ P
= < ©e
1 | | | | | | | | | |
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

Figure 1.29 Typical flight velocities over the years.



1.11 Faster and Higher

in 1913 by Jacques Schneider of France as a stimulus to the development of
high-speed float planes. They prompted some early but advanced development
of high-speed aircraft. The winners are shown by the dashed line in Fig. 1.29,
for comparison with standard aircraft of the day. Indeed, the winner of the last
Schneider race in 1931 was the Supermarine S.6B, a forerunner of the famous
Spitfire of World War II. Of course, today the maximum speed of flight has been
pushed to the extreme value of 36,000 ft/s, which is the escape velocity from the
earth, by the Apollo lunar spacecraft.

Note that the almost exponential increase in speed that occurred from 1903
to 1970 has not continued in recent years. In fact, the maximum speed of modern
military fighters has actually been decreasing since 1970, as shown in Fig. 1.29.
This is not due to a degradation in technology, but rather is a reflection of the
fact that other airplane performance parameters (not speed) are dictating the
design. For example, air-to-air combat between opposing fighter airplanes ca-
pable of high supersonic speeds quickly degenerates to flying at subsonic or
near-sonic speeds because of enhanced maneuverability at these lower speeds.
Today fighter airplanes are being optimized for this lower-speed combat arena.
On the commercial side, most transport airplanes are subsonic, even the newest
(at the time of this writing) such as the Boeing 787. Only one type of supersonic
transport, the Anglo—French Concorde, ever provided extensive service. The
Concorde was designed with 1960s technology and carried a relatively small
number of passengers. Hence, it was not profitable. The Concorde was with-
drawn from service in 2003. At the time of this writing, there is no commitment
from any country to build a second-generation supersonic transport; however, in
the United States, NASA has been carrying out an extensive research program to
develop the basic technology for an economical high-speed supersonic transport.
Even if an economically viable supersonic transport could be designed, its speed
would be limited to about Mach 2.2 or less. Above this Mach number, aerody-
namic heating becomes severe enough that titanium rather than aluminum would
have to be used for the aircraft skin and for some internal structure. Titanium is
expensive and hard to machine; it is not a preferred choice for a new supersonic
transport. For these reasons, it is unlikely that the speed curve in Fig. 1.30 will
be pushed up by a new supersonic transport.

As a companion to speed, the maximum altitudes of typical manned aircraft
are shown in Fig. 1.30 as a function of chronological time. The same push to
higher values in the decades between 1903 and 1970 is evident; so far the record
is the moon in 1969. However, the same tendency to plateau after 1970, as in the
speed data, can be seen in the altitude data in Fig. 1.31.

Hence the philosophy of faster and higher that has driven aeronautics
throughout most of the 20th century is now being mitigated by practical con-
straints. To this we must add safer, cheaper, more reliable, quieter, and more en-
vironmentally clean. Nevertheless, the eventual prospect of hypersonic aircraft
(with Mach number greater than 5) in the 21st century is intriguing and exciting.
Hypersonic airplanes may well be a new frontier in aeronautics in the future
century. See Ch. 10 for a discussion of hypersonic aircraft.
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Figure 1.30 Typical flight altitudes over the years.

In this chapter we have only been able to briefly note several important
events and people in the historical development of aeronautics. There are many
other places, people, and accomplishments that we simply could not mention in
the interest of brevity. Therefore, the reader is urged to consult the short bibliog-
raphy at the end of this chapter for additional modern reading about the history
of aeronautics.

1.12 SUMMARY AND REVIEW

The next time you see an airplane flying overhead, pause and reflect for a moment.
It is a flying machine that synergistically embodies the laws of physics, designed
by a person or people who know how to apply these laws using proven engineering
methods to obtain a vehicle that can perform a specified mission. For the Wright
brothers in 1903 (Fig. 1.2), that mission was simply to get off the ground and fly
through the air in a controlled fashion for a sustained period of time. For Charles
Lindbergh’s Spirit of St. Louis in 1927 (Fig. 1.31), that mission was to fly safely
across the Atlantic Ocean from New York to Paris on one load of fuel. For the
Douglas DC-3 in 1935 (Fig. 1.32), that mission was to fly more passengers safely
and comfortably at a faster speed and lower cost than any existing airliner of that
time, thus revolutionizing air travel for the public in the 1930s. For the Lockheed
F-104 in the 1950s (Fig. 1.33), the mission was to be the first supersonic jet fighter
to cruise at Mach 2 (twice the speed of sound). So it will most likely continue.
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Figure 1.31 Charles Lindbergh’s Spirit of St. Louis (1927), hanging in the National Air and
Space Museum.
(Source: Courtesy of John Anderson.)

Figure 1.32 The Douglas DC-3 (1935), hanging in the National Air and Space Museum.
(Source: Courtesy of John Anderson.)
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Figure 1.33 The Lockheed F-104 (1956), hanging near the second-floor balcony at the
National Air and Space Museum.
(Source: Courtesy of John Anderson.)

The intellectual understanding of how and why these (and indeed all) air-
planes fly, and to use this understanding to design new flight vehicles, is the
job of aerospace engineering. Since the 1950s, this job has extended to space
vehicles as well. You are about to embark on a study of aerospace engineering,
and as you progress through the pages of this book, and as your understanding of
the science and technology of flight gradually increases and matures, let yourself
begin to feel the joy of this undertaking.

Finally, as you are watching that airplane flying overhead, remember from
the history discussed in this chapter that airplane is the heritage of centuries
of effort to understand the physics of flight and to design flying machines.
This chapter has presented a short historical sketch of some of the heritage
underlying modern aerospace engineering. The major stepping stones to con-
trolled, heavier-than-air, powered flight with a human pilot are summarized
as follows:

1. Leonardo da Vinci conceives the ornithopter and leaves more than
500 sketches of his design, drawn from 1486 to 1490. However, this
approach to flight proves to be unsuccessful over the ensuing centuries.
2. The Montgolfier hot-air balloon floats over Paris on November 21, 1783.
For the first time in history, a human being is lifted and carried through
the air for a sustained period.
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3. A red-letter date in the progress of aeronautics is 1799. In that year Sir
George Cayley in England engraves on a silver disk his concept of a
fuselage, a fixed wing, and horizontal and vertical tails. He is the first
person to propose separate mechanisms for the generation of lift and
propulsion. He is the grandparent of the concept of the modern airplane.

4. The first two powered hops in history are achieved by the Frenchman Felix
Du Temple in 1874 and the Russian Alexander F. Mozhaiski in 1884.
However, they do not represent truly controlled, sustained flight.

5. Otto Lilienthal designs the first fully successful gliders in history. During
the period from 1891 to 1896, he makes more than 2000 successful glider
flights. If he had not been killed in a glider crash in 1896, Lilienthal might
have achieved powered flight before the Wright brothers.

6. Samuel Pierpont Langley, secretary of the Smithsonian Institution,
achieves the first sustained heavier-than-air, unmanned, powered flight in
history with his small-scale Aerodrome in 1896. However, his attempts at
manned flight are unsuccessful, the last one failing on December 8, 1903—
just nine days before the Wright brothers’ stunning success.

7. Another red-letter date in the history of aeronautics, indeed in the history
of humanity, is December 17, 1903. On that day, at Kill Devil Hills in
North Carolina, Orville and Wilbur Wright achieve the first controlled,
sustained, powered, heavier-than-air, manned flight in history. This flight is
to revolutionize life during the 20th century.

8. The development of aeronautics takes off exponentially after the Wright
brothers’ public demonstrations in Europe and the United States in 1908.
The ongoing work of Glenn Curtiss and the Wrights and the continued
influence of Langley’s early work form an important aeronautical triangle
in the development of aeronautics before World War 1.

Throughout the remainder of this book, various historical notes will appear,
continuing to describe the heritage of aerospace engineering as its technology
advanced during the 20th and 21st centuries. It is hoped that such historical notes
will add a new dimension to your developing understanding of this technology.
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CHAPTER

Fundamental Thoughts

Engineering: “The application of scientific principles to practical ends.” From the
Latin word “ingenium,” meaning inborn talent and skill, ingenious.

The American Heritage Dictionary
of the English Language, 1969

and assimilation of symbols, definitions, formulas, and concepts. To the
average person in the street, this language is frequently esoteric and in-
comprehensible. In fact, when you become a practicing engineer, do not expect
to converse with your spouse across the dinner table about your great technical
accomplishments of the day. Chances are that he or she will not understand what
you are talking about (unless your spouse happens to work in a related engineer-
ing field). The language is intended to convey physical thoughts. It is our way
of describing the phenomena of nature as observed in the world around us. It is
a language that has evolved over at least 2500 years. For example, in 400 BC the
Greek philosopher Democritus introduced the word and concept of the atom, the
smallest bit of matter that could not be cut. The purpose of this chapter is to in-
troduce some of the everyday language used by aerospace engineers; in turn, this
language will be extended and applied throughout the remainder of this book.
Throughout this book, you will be provided with road maps to guide you
through the thoughts and intellectual development that constitute this introduc-
tion to flight. Please use these road maps frequently. They will tell you where

T he language of engineering and physical science is a logical collection
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PREVIEW BOX

The purpose of this chapter is to help you get going.
For many of us, when we have a job to do or a goal
to accomplish, the most important thing is simply to
get started—to get going—and hopefully to get going
in the right direction. This chapter deals with some
fundamental thoughts to help you start learning about
airplanes and space vehicles.

For example, we have to start with some basic
definitions that are absolutely necessary for us to
speak the same language when we describe, discuss,
analyze, and design airplanes and space vehicles.
When we talk about the pressure in the airflow around
a Boeing 777 in flight, do we know what pressure
means? Really? If we talk about the airflow velocity
around the airplane, do we really know what we are
talking about? Definitions are important, so this chap-
ter pushes definitions.

Another example: When you walk down the
sidewalk in the face of a 40 mph gale, the wind is
pushing you around—exerting an aerodynamic force
on you. Every vehicle that moves through the air
feels an aerodynamic force. How does the wind reach
out and grab you? How does nature exert an aerody-
namic force on a Boeing 747 cruising at 500 miles
per hour at an altitude of 35,000 feet? In this chapter
we examine the sources of aerodynamic force and an-
swer the question how?

CHAPTER 2 Fundamental Thoughts

Dimensions and units—what dry and dull sub-
jects! Yet they are subjects of the utmost importance
in engineering and science. You have to get them
right. In December 1999 the Mars Polar Lander was
lost during entry into the Martian atmosphere be-
cause of a miscommunication between the contrac-
tor in Denver and the Jet Propulsion Laboratory in
Pasadena involving feet and meters, costing the space
program a loss of dollars and valuable scientific data
(not to mention considerable embarrassment and
bad publicity). Dimensions and units are fundamen-
tal considerations and are discussed at length in this
chapter.

Airplanes and space vehicles: Some readers are
enthusiasts; they recognize many of these vehicles
by sight and even know some of their performance
characteristics. Other readers are not so sure about
what they are seeing and are not so familiar with their
characteristics. Just to put all readers on the same
footing (on the same page, so to speak), this chapter
ends with a brief description of the anatomy of air-
planes and space vehicles—identifying various parts
and features of these vehicles.

This is how we get going—looking at some of
the most fundamental thoughts that will be with us
for the remainder of the book. Read on, and enjoy.

you are in our discussions, where you have been, and where you are going. For
example, Fig. 2.1 is an overall road map for the complete book. Examining this
road map, we can obtain an overall perspective for our introduction to flight as
presented in this book. First we start out with some necessary preliminaries—
some fundamental thoughts that are used throughout the remainder of the book.
This is the subject of this chapter. Because flight vehicles spend all, or at least
some of, their time operating in the atmosphere, next we have to consider the
properties of the atmosphere, as discussed in Ch. 3. (Airplanes spend all their
time in the atmosphere. Space vehicles have to ascend through the atmosphere
to get out to space; and if they carry humans or other payloads that we wish to
recover on earth, space vehicles have to descend—at very high speeds—back
through the atmosphere.) Now imagine a vehicle flying through the atmosphere.
One of the first thoughts that comes to mind is that there is a rush of air over



CHAPTER 2 Fundamental Thoughts

Flight vehicles — Some
main disciplines and considerations

|

Some preliminaries Chapter 2

Understanding the
atmosphere

—— Chapter 3

Aerodynamics Chapters 4 and 5

Flight mechanics

i

‘ Airplane performance }— Chapter 6
[
‘ Stability and control I— Chapter 7

Space flight Chapter 8

.

Propulsion Chapter 9

ﬁ

Structures Web page

Advanced vehicle
concepts (hypersonic —— Chapter 10
vehicles)

Figure 2.1 Road map for the book.

the vehicle. This rush of air generates a force—an aerodynamic force—on the
vehicle. A study of aerodynamics is the subject of Chs. 4 and 5. The vehicle
itself feels not only this aerodynamic force but also the force of gravity—its
own weight. If the vehicle is powered in some fashion, it will also feel the force
(called thrust) from the power plant. The vehicle moves under the influence of
these forces. The study of the motion of the flight vehicle is labeled flight dy-
namics, which is further divided into considerations of airplane performance
(Ch. 6) and stability and control (Ch. 7). In contrast, a space vehicle moving
in space will, for all practical purposes, feel only the force of gravity (except
when some on-board propulsion device is turned on for trajectory adjustment).
The motion of a vehicle in space due to gravitational force is the subject of
Ch. 8. Considering again a flight vehicle moving through the atmosphere, there
has to be something to push it along—something to keep it going. This is the
function of the engine, which generates thrust to keep the vehicle going. Space
vehicles also need engines, to accelerate them into orbit or deep space and for
midcourse trajectory corrections. Engines and how they generate thrust repre-
sent the discipline of propulsion, the subject of Ch. 9. Additionally, as the flight
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vehicle moves and responds to the forces acting on it, the physical structure of
the vehicle is under a lot of stress and strain. You want this structure to be strong
enough to not fall apart under these stresses and strains, but at the same time not
to be so heavy as to render the flight vehicle inefficient. We address some aspects
of flight structures in a special section of the web page for this book. All these
major disciplines—aerodynamics, flight dynamics, propulsion, and structures—
are integrated into the design of a flight vehicle. Such design is indeed the final
objective of most aerospace research and development. Throughout this book, at
appropriate places, we address pertinent aspects of vehicle design. We highlight
these aspects by placing them in accented design boxes. You cannot miss them in
your reading. Finally, looking toward the future, we discuss some advanced ve-
hicle concepts in Ch. 10. All the previous discussion is diagrammed in Fig. 2.1.
This is the road map for our excursions throughout this book. From time to time,
as you proceed through this book, flip back to Fig. 2.1 for a reminder of how the
material you are reading fits into the whole scheme.

Returning to our considerations at hand, we look at the road map for this
chapter in Fig. 2.2. We treat two avenues of thought in this chapter. As shown
in the left column of Fig. 2.2, we examine some basic ideas and definitions
that are rooted in physics. These include definitions of the physical quantities
of a flowing gas—that is, the language we use to talk about aerodynamics and
propulsion. We discuss the fundamental sources of aerodynamic force—how

‘ At the beginning: Some fundamental thoughts

[

|
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Physical quantities Anatomy of
of a flowing gas the airplane
1. Pressure
2. Density Anatomy of a
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. space vehicle
4. Flow velocity
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Source of
aerodynamic force

Equation of state

Specific volume

Units
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Figure 2.2 Road map for Chapter 2.



2.1 Fundamental Physical Quantities of a Flowing Gas

aerodynamic force is exerted on a vehicle. We look at some equations that
relate the physical quantities, and we also discuss the mundane (but essen-
tial) consideration of units for these physical quantities. We then move to the
right column in Fig. 2.2 and discuss some fundamental aspects of flight ve-
hicles themselves, taking a look at the anatomy of typical airplanes and space
vehicles.

2.1 FUNDAMENTAL PHYSICAL QUANTITIES
OF A FLOWING GAS

As you read through this book, you will soon begin to appreciate that the flow
of air over the surface of an airplane is the basic source of the lifting or sustain-
ing force that allows a heavier-than-air machine to fly. In fact, the shape of an
airplane is designed to encourage the airflow over the surface to produce a lifting
force in the most efficient manner possible. (You will also begin to appreciate
that the design of an airplane is in reality a compromise between many different
requirements, the production of aerodynamic lift being just one.) The science
that deals with the flow of air (or, for that matter, the flow of any gas) is called
aerodynamics, and the person who practices this science is called an aerody-
namicist. The study of the flow of gases is important in many other aerospace
applications: the design of rocket and jet engines, propellers, vehicles entering
planetary atmospheres from space, wind tunnels, and rocket and projectile con-
figurations. Even the motion of the global atmosphere and the flow of effluents
through smokestacks fall within the realm of aerodynamics. The applications are
almost limitless.

Four fundamental quantities in the language of aerodynamics are pressure,
density, temperature, and velocity. Let us look at each one.

2.1.1 Pressure

When you hold your hand outside the window of a moving automobile, with
your palm perpendicular to the incoming airstream, you can feel the air pressure
exerting a force and tending to push your hand rearward in the direction of the
airflow. The force per unit area on your palm is defined as the pressure. The
pressure exists basically because air molecules (oxygen and nitrogen molecules)
are striking the surface of your hand and transferring some of their momentum to
the surface. More precisely,

Pressure is the normal force per unit area exerted on a surface due to the time rate of
change of momentum of the gas molecules impacting on that surface.

It is important to note that even though pressure is defined as force per unit
area (for example, newtons per square meter or pounds per square foot), you do
not need a surface that is actually 1 m? or 1 ft* to talk about pressure. In fact,
pressure is usually defined at a point in the gas or a point on a surface and can
vary from one point to another. We can use the language of differential calculus
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Figure 2.3 Definition of pressure.

to see this more clearly. Referring to Fig. 2.3, we consider a point B in a volume
of gas. Let

dA = An incremental area around B
dF =Force on one side of dA due to pressure

Then the pressure p at point B in the gas is defined as
dF
=lim| — | dA—0 (2.1
g ( dA ]

Equation (2.1) says that, in reality, the pressure p is the limiting form of the force
per unit area where the area of interest has shrunk to zero around point B. In this
formalism, it is easy to see that p is a point property and can have a different
value from one point to another in the gas.

Pressure is one of the most fundamental and important variables in aerody-
namics, as we will soon see. Common units of pressure are newtons per square
meter, dynes per square centimeter, pounds per square foot, and atmospheres.
Abbreviations for these quantities are N/m?, dyn/cm?, 1b/ft?, and atm, respec-
tively. See App. C for a list of common abbreviations for physical units.

2.1.2 Density

The density of a substance (including a gas) is the mass of that substance per unit
volume.

Density will be designated by the symbol p. For example, consider air in a
room that has a volume of 250 m®. If the mass of the air in the room is 306.25 kg
and is evenly distributed throughout the space, then p = 306.25 kg/250 m® =
1.225 kg/m?® and is the same at every point in the room.
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dv

Volume of gas
Figure 2.4 Definition of density.

Analogous to the previous discussion of pressure, the definition of density
does not require an actual volume of 1 m* or 1 ft*. Rather, p is a point property
and can be defined as follows. Referring to Fig. 2.4, we consider point B inside
a volume of gas. Let

dv = Elemental volume around point B

dm = Mass of gas inside dv

Then p at point B is
pzlim(d—m) dv—0 2.2)
dv

Therefore, p is the mass per unit volume where the volume of interest has shrunk
to zero around point B. The value of p can vary from point to point in the gas.
Common abbreviated units of density are kg/m?, slug/ft}, g/cm?®, and b, /ft>.
(The pound mass, 1b,, is discussed in Sec. 2.4.)

2.1.3 Temperature

Consider a gas as a collection of molecules and atoms. These particles are in
constant motion, moving through space and occasionally colliding with one
another. Because each particle has motion, it also has kinetic energy. If we watch
the motion of a single particle over a long time during which it experiences
numerous collisions with its neighboring particles, we can meaningfully define
the average kinetic energy of the particle over this long duration. If the particle
is moving rapidly, it has a higher average kinetic energy than if it were mov-
ing slowly. The temperature T of the gas is directly proportional to the average
molecular kinetic energy. In fact, we can define T as follows:

Temperature is a measure of the average kinetic energy of the particles in the gas. If
KE is the mean molecular kinetic energy, then temperature is given by KE = 2kT,
where k is the Boltzmann constant.

The value of k is 1.38 x 1072 J/K, where J is an abbreviation for joule and K is
an abbreviation for Kelvin.
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Hence we can qualitatively visualize a high-temperature gas as one in
which the particles are randomly rattling about at high speeds, whereas in a low-
temperature gas, the random motion of the particles is relatively slow. Temper-
ature is an important quantity in dealing with the aerodynamics of supersonic
and hypersonic flight, as we will soon see. Common units of temperature are the
kelvin (K), degree Celsius (°C), degree Rankine (°R), and degree Fahrenheit (°F).

2.1.4 Flow Velocity and Streamlines

The concept of speed is commonplace: It represents the distance traveled by
some object per unit time. For example, we all know what is meant by traveling
at a speed of 55 mi/h down the highway. However, the concept of the velocity
of a flowing gas is somewhat more subtle. First, velocity connotes direction as
well as speed. The automobile is moving at a velocity of 55 mi/h due north in a
horizontal plane. To designate velocity, we must quote both speed and direction.
For a flowing gas, we must further recognize that each region of the gas does not
necessarily have the same velocity; that is, the speed and direction of the gas may
vary from point to point in the flow. Hence, flow velocity, along with p, p, and
T, is a point property.

To see this more clearly, consider the flow of air over an airfoil or the flow
of combustion gases through a rocket engine, as sketched in Fig. 2.5. To orient
yourself, lock your eyes on a specific, infinitesimally small element of mass in
the gas, and watch this element move with time. Both the speed and direction of
this element (usually called a fluid element) can vary as it moves from point to
point in the gas. Now fix your eyes on a specific fixed point in the gas flow, say
point B in Fig. 2.5. We can now define flow velocity as follows:

The velocity at any fixed point B in a flowing gas is the velocity of an infinitesimally
small fluid element as it sweeps through B.

Again we emphasize that velocity is a point property and can vary from
point to point in the flow.

Referring again to Fig. 2.5, we note that as long as the flow is steady (as
long as it does not fluctuate with time), a moving fluid element is seen to trace
out a fixed path in space. This path taken by a moving fluid element is called a
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Rocket engine Flow over an airfoil

Figure 2.5 Flow velocity

and streamlines.
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Figure 2.6 Smoke
photograph of the
low-speed flow over a
Lissaman 7769 airfoil
at 10° angle of attack.
The Reynolds number
based on chord is
150,000. This is the
airfoil used on the
Gossamer Condor
human-powered
aircraft.

(Source: © Dr. T. J.
Mueller.)

Figure 2.7 An oil
streak photograph
showing the surface
streamline pattern for
a fin mounted on a flat
plate in supersonic
flow. The parabolic
curve in front of the
fin is due to the bow
shock wave and flow
separation ahead of the
fin. Note how clearly
the streamlines can be
seen in this complex
flow pattern. Flow is
from right to left. The
Mach number is 5, and
the Reynolds number
is 6.7 x 10°.

(Source: © Allen E.
Winkelmann.)
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streamline of the flow. Drawing the streamlines of the flow field is an important
way of visualizing the motion of the gas; we will frequently sketch the stream-
lines of the flow about various objects. For example, the streamlines of the flow
about an airfoil are sketched in Fig. 2.5 and clearly show the direction of mo-
tion of the gas. Figure 2.6 is an actual photograph of streamlines over an airfoil
model in a low-speed subsonic wind tunnel. The streamlines are made visible by
injection of filaments of smoke upstream of the model; these smoke filaments
follow the streamlines in the flow. Using another flow field visualization tech-
nique, Fig. 2.7 shows a photograph of a flow where the surface streamlines are
made visible by coating the model with a mixture of white pigment in mineral
oil. Clearly, the visualization of flow streamlines is a useful aid in the study of
aerodynamics.

2.2 THE SOURCE OF ALL AERODYNAMIC
FORCES

We have just discussed the four basic aerodynamic flow quantities: p, p, T, and
V, where V is velocity, which has both magnitude and direction; that is, velocity
is a vector quantity. A knowledge of p, p, T, and V at each point of a flow fully
defines the flow field. For example, if we were concerned with the flow about
a sharp-pointed cone, as shown in Fig. 2.8, we could imagine a Cartesian xyz
three-dimensional space, where the velocity far ahead of the cone V.. is in the

Voo
Flow
= X
p = plx,y,z2)
p = plx,,2) ,
T = T(x,y,2) Flow field
V= V(x,yp, 2)

Figure 2.8 Specifications of a flow field.
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x direction and the cone axis is also along the x direction. The specification of the
following quantities then fully defines the flow field:

p=pxyz2)
p=p(xyz2)
T=T(xyz2)
V=V(,y,2)

(In practice, the flow field about a right circular cone is more conveniently
described in terms of cylindrical coordinates, but we are concerned only with the
general ideas here.)

Theoretical and experimental aerodynamicists labor to calculate and measure
flow fields of many types. Why? What practical information does knowledge of
the flow field yield with regard to airplane design or to the shape of a rocket en-
gine? A substantial part of the first five chapters of this book endeavors to answer
these questions. However, the roots of the answers lie in the following discussion.

Probably the most practical consequence of the flow of air over an object is
that the object experiences a force, an aerodynamic force, such as your hand feels
outside the open window of a moving car. Subsequent chapters discuss the na-
ture and consequences of such aerodynamic forces. The purpose here is to state
that the aerodynamic force exerted by the airflow on the surface of an airplane,
missile, or the like stems from only two simple natural sources:

1. Pressure distribution on the surface.
2. Shear stress (friction) on the surface.

We have already discussed pressure. Referring to Fig. 2.9, we see that pres-
sure exerted by the gas on the solid surface of an object always acts normal to

p

Figure 2.9 Pressure and shear stress distributions.
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the surface, as shown by the directions of the arrows. The lengths of the arrows
denote the magnitude of the pressure at each local point on the surface. Note
that the surface pressure varies with location. The net unbalance of the varying
pressure distribution over the surface creates an aerodynamic force. The second
source, shear stress acting on the surface, is due to the frictional effect of the flow
“rubbing” against the surface as it moves around the body. The shear stress 7, is
defined as the force per unit area acting tangentially on the surface due to fric-
tion, as shown in Fig. 2.9. It is also a point property; it varies along the surface;
and the net unbalance of the surface shear stress distribution creates an aerody-
namic force on the body. No matter how complex the flow field, and no matter
how complex the shape of the body, the only way nature has of communicating
an aerodynamic force to a solid object or surface is through the pressure and
shear stress distributions that exist on the surface. These are the basic fundamen-
tal sources of all aerodynamic forces. The pressure and shear stress distributions
are the two hands of nature that reach out and grab the body, exerting a force on
the body—the aerodynamic force.

Finally, we can state that a primary function of theoretical and experimental
aerodynamics is to predict and measure the aerodynamic forces on a body. In many
cases, this implies prediction and measurement of p and 7, along a given surface.
Furthermore, a prediction of p and 7, on the surface frequently requires knowledge
of the complete flow field around the body. This helps to answer our earlier ques-
tion about what practical information is yielded by knowledge of the flow field.

2.3 EQUATION OF STATE FOR A PERFECT GAS

Air under normal conditions of temperature and pressure, such as those encoun-
tered in subsonic and supersonic flight through the atmosphere, behaves very
much as a perfect gas. We can best see the definition of a perfect gas by return-
ing to the molecular picture. A gas is a collection of particles (molecules, atoms,
electrons, etc.) in random motion, where each particle is, on average, a long
distance away from its neighboring particles. Each molecule has an intermo-
lecular force field about it, a ramification of the complex interaction of the elec-
tromagnetic properties of the electrons and nucleus. The intermolecular force
field of a given particle extends a comparatively long distance through space and
changes from a strong repulsive force at close range to a weak attractive force at
long range. The intermolecular force field of a given particle reaches out and is
felt by the neighboring particles. On the one hand, if the neighboring particles are
far away, they feel only the tail of the weak attractive force; hence the motion of
the neighboring particles is only negligibly affected. On the other hand, if they
are close, their motion can be greatly affected by the intermolecular force field.
Because the pressure and temperature of a gas are tangible quantities derived
from the motion of the particles, p and T are directly influenced by intermolecu-
lar forces, especially when the molecules are packed closely together (i.e., at
high densities). This leads to the definition of a perfect gas:

A perfect gas is one in which intermolecular forces are negligible.
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Clearly, from the previous discussion, a gas in nature in which the particles
are widely separated (low densities) approaches the definition of a perfect gas.
The air in the room about you is one such case; each particle is separated, on
average, by more than 10 molecular diameters from any other. Hence, air at
standard conditions can be readily approximated by a perfect gas. Such is also
the case for the flow of air about ordinary flight vehicles at subsonic and super-
sonic speeds. Therefore, in this book, we always deal with a perfect gas for our
aerodynamic calculations.

The relation among p, p, and T for a gas is called the equation of state. For a
perfect gas, the equation of state is

p=pRT (2.3)

where R is the specific gas constant, the value of which varies from one type
of gas to another. For normal air we have

T 716 ftIb
(kg)(K) (slug)(°R)

From your earlier studies in chemistry and physics, you may be more famil-
iar with the universal gas constant R, where R = 8314 J/(kg - mole K) =4.97 x
10* (ft Ib)/(slug - mole °R), a universal value for all gases. The specific and
universal gas constants are related through R = R/M, where M is the molecular
weight (or more properly, the molecular mass) of the gas. For air, M = 28.96 kg/
(kg - mole). Note that kg - mole is a single unit; it stands for a kilogram-mole,
identifying what type of mole we are talking about. (It does not mean kilo-
grams multiplied by moles.) A kilogram-mole contains 6.02 X 10?* molecules—
Avogadro’s number for a kilogram-mole. A kilogram-mole is that amount of a
gas that has a mass in kilograms equal to the molecular weight of the gas. For air,
because M = 28.96, one kilogram-mole of air has a mass of 28.96 kilograms and
consists of 6.02 x 10% molecules. Similarly, a slug - mole of gas is that amount of
gas that has a mass in slugs equal to the molecular weight of the gas. For air, one
slug-mole has a mass of 28.96 slugs. The same litany applies to the gram-mole,
with which you may be more familiar from chemistry. The values of R for air
given at the beginning of this paragraph are obtained from

~ 8314 J/(kg-mole K) 87 J
28.96 kg/(kg-mole) (kg)(K)

R=287

R=R/M

and
4.97x 104(ft-1b)/(slug-mole°R) —1716 ft-1b

R=%R/M = e —
28.96 slug/(slug- mole) (slug)(°R)

It is interesting that the deviation of an actual gas in nature from perfect gas
behavior can be expressed approximately by the modified Berthelot equation of
state:

P__. bp

PRT T T
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Here a and b are constants of the gas; thus the deviations become smaller as
p decreases and T increases. This makes sense because if p is high, the molecules
are packed closely together, intermolecular forces become important, and the gas
behaves less as a perfect gas. In contrast, if T is high, the molecules move faster.
Thus, their average separation is larger, intermolecular forces become less sig-
nificant in comparison to the inertia forces of each molecule, and the gas behaves
more as a perfect gas.

Also, note that when the air in the room around you is heated to temperatures
above 2500 K, the oxygen molecules begin to dissociate (tear apart) into oxygen
atoms; at temperatures above 4000 K, the nitrogen begins to dissociate. For these
temperatures, air becomes a chemically reacting gas, such that its chemical com-
position becomes a function of both p and T; that is, it is no longer normal air.
As a result, R in Eq. (2.3) becomes a variable—R = R(p, T)—simply because
the gas composition is changing. The perfect gas equation of state, Eq. (2.3), is
still valid for such a case, except that R is no longer a constant. This situation is
encountered in very high-speed flight—for example, the atmospheric entry of the
Apollo capsule, in which case the temperatures in some regions of the flow field
reach 11,000 K.

Again, in this book we always assume that air is a perfect gas, obeying
Eq. (2.3), with a constant R = 287 J/(kg)(K) or 1716 ft - 1b/(slug)(°R).

2.4 DISCUSSION OF UNITS

Physical units are vital to the language of engineering. In the final analysis, the
end result of most engineering calculations or measurements is a number that
represents some physical quantity, such as pressure, velocity, or force. The num-
ber is given in terms of combinations of units: 10° N/m?, 300 m/s, or 5 N, where
the newton, meter, and second are examples of units. (See App. C.)
Historically, various branches of engineering have evolved and favored
systems of units that seemed to most conveniently fit their needs. These various
sets of “engineering” units usually differ among themselves and are different
from the metric system, preferred for years by physicists and chemists. In
the modern world of technology, where science and engineering interface on
almost all fronts, such duplicity and variety of units have become an unnec-
essary burden. Metric units are now the accepted norm in both science and
engineering in most countries outside the United States. More importantly, in
1960 the Eleventh General Conference on Weights and Measures defined and
officially established the Systéme International d’Unités (the SI units), which
was adopted as the preferred system of units by 36 participating countries,
including the United States. Since then the United States has made progress
toward the voluntary implementation of SI units in engineering. For example,
several NASA (National Aeronautics and Space Administration) laboratories
have made SI units virtually mandatory for all results contained in techni-
cal reports, although engineering units can be shown as a duplicate set. The
ATAA (American Institute of Aeronautics and Astronautics) has a policy of
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encouraging use of SI units in all papers reported or published in its techni-
cal journals. It is apparent that in a few decades the United States, along with
the rest of the world, will be using SI units almost exclusively. Indeed, the
aerospace and automobile industries in the United States are now making
extensive use of SI units, driven by the realities of an international market for
their products.

So here is the situation. Much of the past engineering literature generated in
the United States and Britain used engineering units, whereas much of the cur-
rent work uses SI units. Elsewhere in the world, SI units have been, and continue
to be, the norm. As a result, modern engineering students must do “double duty”
in regard to familiarization with units. They must be familiar with engineering
units so that they can read, understand, and use the vast bulk of existing literature
quoted in such units. At the same time, they must be intimately familiar with SI
units for present and future work. Engineering students must be bilingual with
regard to units.

To promote fluency in both the engineering and SI units, this book incorporates
both sets. It is important that you develop a natural feeling for both sets of units; for
example, you should feel as at home with pressures quoted in newtons per square
meter (pascals) as you probably already do with pounds per square inch (psi).
A mark of successful experienced engineers is their feel for correct magnitudes of
physical quantities in familiar units. It is important for you to start gaining this feel-
ing for units now, for both the engineering and SI units. A purpose of this book is
to help you develop this feeling of comfort. In the process, we will be putting a bit
more emphasis on SI units in deference to their extensive international use.

For all practical purposes, SI is a metric system based on the meter, kilo-
gram, second, and kelvin as basic units of length, mass, time, and temperature,
respectively. It is a coherent, or consistent, set of units. Such consistent sets of
units allow physical relationships to be written without the need for “conversion
factors” in the basic formulas. For example, in a consistent set of units, Newton’s
second law can be written

B!
I

= mXa
Force = Mass X Acceleration

In SI units,

F = ma 2.4)
1 newton = (I kilogram)(1 meter/second”)

The newton is a force defined such that it accelerates a mass of 1 kilogram by
1 meter per second squared.

The English engineering system of units is another consistent set of units.
Here the basic units of mass, length, time, and temperature are the slug, foot,
second, and degree Rankine, respectively. In this system,
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F = ma

2.5
1 pound = (1 slug)(1 foot/second?) )

The pound is a force defined such that it accelerates a mass of 1 slug by 1 foot
per second squared. Note that in both systems, Newton’s second law is written
simply as F' = ma, with no conversion factor on the right side.

In contrast, a nonconsistent set of units defines force and mass such that
Newton’s second law must be written with a conversion factor, or constant:

T T T T

Force Conversion Mass  Acceleration
factor

A nonconsistent set of units frequently used in the past by mechanical engineers
includes the pound force, pound mass, foot, and second:

g, = 32.2(Ib,)(ft) / (s?)(Ib))
1
= g m X a (26)
T T 7 T
b, w5 b, fit/s>

In this nonconsistent system, the unit of mass is the pound mass 1b,,. Comparing
Egs. (2.5) and (2.6), we see that 1 slug =32.2 1b,,. A slug is a large hunk of mass,
whereas the pound mass is considerably smaller, by a factor of 32.2. This is
illustrated in Fig. 2.10.

Another nonconsistent set of units that is used in international engineering
circles deals with the kilogram force, the kilogram mass, meter, and second:

m

1 Iby,

1 slug

1 slug=32.2Ib,,

Figure 2.10 Comparison between the slug and pound mass.
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g. = 9.8(kg)(m) / (s?)(kgy)
F = L m X a
8 2.7
T T 7 T
kg 55 kg m/s?

In this nonconsistent system, the unit of force is the kilogram force, kg;.

It is easy to understand why people use these nonconsistent units, the pound
mass (Ib,,) and the kilogram force (kgy). It has to do with weight. By definition,
the weight of an object, W, is

W =mg (2.8)

where g is the acceleration of gravity, a variable that depends on location around
the earth (indeed, throughout the universe). At standard sea level on earth, the
standard value of g is 9.8 m/(s)?, or 32.2 ft/(s)*. Eq. (2.8) is written in consistent
units; it is simply a natural statement of Newton’s second law, Eq. (2.4), where
the acceleration a is the acceleration of gravity g. Hence, if you held a kilogram
of chocolate candy in your hands at a location on earth where the acceleration
of gravity is the standard value of 9.8 m/sec, that “kilo” of candy would weigh

W=mg=_1kg)9.8 m/sec)=9.8 N

The “kilo” box of candy would weigh 9.8 N; this is the force exerted on your

hands holding the candy. In contrast, if we used the nonconsistent units embod-

ied in Eq. (2.7) to calculate the force exerted on your hands, we obtain
poma_ (1)(9.8) “ ik,

8 9.8)

The “kilo” box of candy would weigh 1 kg;; the force exerted on your hands
is 1 kg, What a common convenience: the force you feel on your hands is the
same number of kg, as is the mass in kg. Presto—the use of the kilogram force in
engineering work. Similarly, imagine you are holding 1 pound of chocolates. In
the United States, we go to the store and pick a “pound” box of candy off the shelf.
We feel the pound force in our hands. From Eq. (2.8), the mass of the candy is

W _  11b
g 32.2 ft/i(s%)

=0.031 slug

But if you go into a store and ask the attendant for a “0.031-slug” box of
candy, imagine the reply you will get. In contrast, using Eq. (2.6) with the non-
consistent unit of 1b,,, the mass of a 1-1b box of candy is

C

_Fg _(1)322)

a (32.2) "
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Once again, we have the everyday convenience of the mass in your hands being
the same number in 1b,, as is the force on your hands. Presto—the use of the pound
mass in engineering work. This makes sense in common everyday life; in the tech-
nical world of engineering calculations, though, using Eq. (2.7) with the noncon-
sistent unit of kg, or Eq. (2.6) with the nonconsistent unit of 1b,,, makes g. appear
in many of the equations. Nature did not plan on this; the use of g, is a human
invention. In nature, Newton’s second law appears in its pure form, F = ma, not
F =1/g.(ma). Thus, to use nature in its pure form, we must always use consistent
units. When we do this, g. will never appear in any of our equations, and there is
never any confusion in our calculations with regard to conversion factors—quite
simply, no conversion factors are needed.

For these reasons, we will always deal with a consistent set of units in this
book. We will use both the SI units from Eq. (2.4) and the English engineering
units from Eq. (2.5). As stated before, you will frequently encounter the engi-
neering units in the existing literature, whereas you will be seeing SI units with
increasing frequency in the future literature; that is, you must become bilingual.
To summarize, we will deal with the English engineering system units (Ib, slug,
ft, s, °R) and the Systéme International (SI) units (N, kg, m, s, K).

Therefore, returning to the equation of state, Eq. (2.3), where p = pRT, we
see that the units are as follows:

English Engineering System SI
p Ib/ft? N/m?
P slugs/ft® kg/m?
T °R K
R (for air) 1716 ft - Ib/(slug)(°R) 287 J/(kg)(K)

There are two final points about units to note. First, the units of a physical
quantity can frequently be expressed in more than one combination simply by
appealing to Newton’s second law. From Newton’s law, the relation between N,
kg, m, and s is

F=ma
N=kg-m/s’

Thus, a quantity such as R =287 J/(kg)(K) can also be expressed in an equivalent
way as

2

J _» N-m _» kg;m m_ 37 2m
(kg)(K) (kg)(K) s- (kg)(K) (s")K)

R can also be expressed in the equivalent terms of velocity squared divided by
temperature. In the same vein,

R=1287

ft-1b ft?

R=1716 =1716—
(slug)(°R) (s)CR)
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Second, in the equation of state, Eq. (2.3), T is always the absolute tem-
perature, where zero degrees is the absolutely lowest temperature possible. Both
K and °R are absolute temperature scales, where 0°R = 0 K = the temperature at
which almost all molecular translational motion theoretically stops. In contrast,
the familiar Fahrenheit (°F) and Celsius (°C) scales are not absolute scales:

0°F =460°R
0°C=273 K=32°F

For example,  90°F is the same as 460 +90 =550°R (2.9)
and 10°C is the same as 273+10=283 K (2.10)

Please remember: T in Eq. (2.3) must be the absolute temperature, either kelvins
or degrees Rankine.

2.5 SPECIFIC VOLUME

Density p is the mass per unit volume. The inverse of this quantity is also fre-
quently used in aerodynamics. It is called the specific volume v and is defined as
the volume per unit mass. By definition,

V=—

P

Hence, from the equation of state
1
p=pRT =—RT
v

we also have

pv=RT @2.11)

Abbreviated units for v are m*/kg and ft¥/slug.
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EXAMPLE 2.1

The air pressure and density at a point on the wing of a Boeing 747 are 1.10 x 10° N/m?
and 1.20 kg/m?, respectively. What is the temperature at that point?

H Solution
From Eq. (2.3), p = pRT; hence T = p/(pR), or

5 2
1.10x10° N/m

~(1.20 kg/m)[287 Ji(kg)(K)]
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EXAMPLE 2.3

The high-pressure air storage tank for a supersonic wind tunnel has a volume of 1000 ft’.
If air is stored at a pressure of 30 atm and a temperature of 530°R, what is the mass of gas
stored in the tank in slugs? In pound mass?

H Solution
The unit of atm for pressure is not a consistent unit. You will find it helpful to remember
that in the English engineering system,

1 atm = 2116 1b/ft’
Hence p = (30)(2116) Ib/ft? = 6.348 x 10* Ib/ft2. Also, from Eq. (2.3), p = pRT; hence
p = (P/RT), or

6.348x10* 1b/ft?

p= =6.98x107 slug/ft’
[1716 ft-1b/(slug)(°R)](530°R)

This is the density, which is mass per unit volume. The total mass M in the tank of volume

Vis
M = pV =(6.98x107* slug/ft’)(1000 ft’) =|69.8 slugs

Recall that 1 slug=32.2 1b,,. Hence

M =(69.8)(32.2)=[2248 Ib,, |

Air flowing at high speed in a wind tunnel has pressure and temperature equal to 0.3 atm
and —100°C, respectively. What is the air density? What is the specific volume?

H Solution
You are reminded again that the unit of atm for pressure is not a consistent unit. You will
find it helpful to memorize that in the SI system,

1 atm=1.01x10° N/m?
Hence

p=(0.3)(1.01x10°)=0.303x10> N/m?
Note that 7= —-100°C is not an absolute temperature. Hence

T=-100+273=173 K
From Eq. (2.3), p = pRT; hence p = p/(RT), or

_0.303x10° N/m’
P = 1287 k) (K173 K)
1 1

v= —=——=1.64 m’/kg
p 0.610

=0.610 kg/m’
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Note: It is worthwhile to remember that

1 atm = 2116 Ib/ft’
1atm=1.01x10° N/m’
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EXAMPLE 2.4

Note: In Example 2.1-2.3, the units for each number that appears internally in the cal-
culations were explicitly written out next to each of the numbers. This was done to give
you practice in thinking about the units. In the present example, and in all the remain-
ing worked examples in this book, we discontinue this practice except where necessary
for clarity. We are using consistent units in our equations, so we do not have to worry
about keeping track of all the units internally in the mathematics. If you feed numbers
expressed in terms of consistent units into your equations at the beginning of your calcu-
lation and you go through a lot of internal mathematical operations (addition, subtraction,
multiplication, differentiation, integration, division, etc.) to get your answer, that answer
will automatically be in the proper consistent units.

Consider the Concorde supersonic transport flying at twice the speed of sound at an
altitude of 16 km. At a point on the wing, the metal surface temperature is 362 K. The
immediate layer of air in contact with the wing at that point has the same temperature and
is at a pressure of 1.04 x 10* N/m?. Calculate the air density at this point.

H Solution
From Eq. (2.3),

_J
(kg)(K)

The given pressure and temperature are in the appropriate consistent SI units. Hence

4
p = L0 X0 00 ke/m’
(287)(362)

We know the answer must be in kilograms per cubic meter because these are the consis-
tent units for density in the SI system. We simply write the answer as 0.100 kg/m? without
needing to trace the units through the mathematical calculation.

p = 2 where R = 287
RT

EXAMPLE 2.5

This example deals with the conversion of units from one system to another.

An important design characteristic of an airplane is its wing loading, defined as the
weight of the airplane, W, divided by its planform wing area (the projected wing area
you see by looking directly down on the top of the wing), S. (The importance of wing
loading, W/S, on the performance of an airplane is discussed at length in Ch. 6.) Con-
sider the Lockheed-Martin F-117A stealth fighter, shown in Fig. 2.11. In most modern
international aeronautical publications, the wing loading is given in units of kg;/m?.
For the F-117A, the wing loading is 280.8 kg,/m* Calculate the wing loading in units
of Ib/ft2.
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Figure 2.11 Three-view of the Lockheed-Martin F-117A stealth fighter.

H Solution
We want to convert from kg, to 1b and from m? to ft>. Some useful intermediate conver-
sion factors obtained from App. C are itemized in the following:

1ft = 0.3048 m
11b = 4,448 N

In addition, from Eq. (2.7), a mass of 1 kg weighs 1 kg, and from Eq. (2.8), the same 1-kg
mass weighs 9.8 N. Thus we have as an additional conversion factor

kg, =9.8 N

I recommend the following ploy to carry out conversions of units easily and accurately.
Consider the ratio (1 ft/0.3048 m). Because 1 foot is exactly the same length as 0.3048 m,
this is a ratio of the “same things”’; hence philosophically you can visualize this ratio as
like “unity” (although the actual number obtained by dividing 1 by 0.3048 is obviously
not 1). Hence we can visualize that the ratios

( 1 ft j ( 11b j 1 kg,
0.3048m ) \4.448N )" \9.8 N
are like “unity.” Then, to convert the wing loading given in kg,/m? to 1b/ft>, we simply
take the given wing loading in kg,/m? and multiply it by the various factors of “unity” in

just the right fashion so that various units cancel out, and we end up with the answer in
Ib/ft>. That is,

k 2
W _ogogkes (98N] 11b (0.3048 mj .
S m® | 1kg, )| 4.448N 1 ft
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The quantitative number for W/S is, from Eq. (2.12),

- =573
4.448

w (280.8)(9.8)(0.3048)°
S

The units that go along with this number are obtained by canceling various units as they
appear in the numerators and denominators of Eq. (2.12). That is,

kg, (9. . ’
Y g0 g 9.8 N ( 1 1b ](03048 mj _ 7.31_132
S m® | 1kg, )\ 4.448 N 1 ft ft

W
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EXAMPLE 2.6

This example also deals with the conversion of units.

In common everyday life in the United States, we frequently quote velocity in units
of miles per hour. The speedometer in a car is primarily calibrated in miles per hour
(although in many new cars, the dial also shows kilometers per hour in finer print).
In popular aeronautical literature, airplane velocities are frequently given in miles per
hour. (After their successful flight on December 17, 1903, Orville telegraphed home
that the speed of the Wright Flyer was 31 miles per hour, and miles per hour has been
used for airplane flight speeds since that time.) Miles per hour, however, are not in con-
sistent units; neither miles nor hours are consistent units. To make proper calculations
using consistent units, we must convert miles per hour into feet per second or meters per
second.

Consider a Piper Cub, a small, light, general aviation airplane shown in Fig. 2.12a;
the Piper Cub is a design that dates to before World War II, and many are still flying today.
When the airplane is flying at 60 mi/h, calculate the velocity in terms of (a) ft/s and (b) m/s.

H Solution
We recall these commonly known conversion factors:

1 mi = 5280 ft
1h = 3600 s
Also, from App. C,
1 ft=0.3048 m
g V:(6OEJ( 1h j(52804ft)
: h 3600s 1 mi

V=88.0ﬁ
S
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Figure 2.12a The Piper Cub, one of the most famous light, general aviation aircraft.
(Source: © Susan & Allan Parker/Alamy.)

Figure 2.12b The North American P-51D Mustang of World War II fame.
(Source: U.S. Air Force.)
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This answer provides a useful conversion factor by itself. It is simple and helpful to
memorize that

60 mi/h =88 ft/s

For example, consider a World War II P-51 Mustang (Fig. 2.12b) flying at 400 mi/h. Its
velocity in ft/s can easily be calculated from

V= 400( 88 ft/s ] — 586.7 fi/s
60 mi/s
b. V:(ng( lh )(5280'&}(0.3048 mj
h J\ 3600 s 1 mi 1ft

v =[26.82 ms |

Hence

60 mi/h =26.82 m/s
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EXAMPLE 2.7

The next three examples further illustrate how to use proper, consistent units to solve
engineering problems.

Consider the Lockheed-Martin F-117A discussed in Example 2.5 and shown in
Fig. 2.11. The planform area of the wing is 913 ft>. Using the result from Example 2.5,
calculate the net force exerted on the F-117A required for it to achieve an acceleration of
one-third of a g (one-third the standard acceleration of gravity) in straight-line flight.

H Solution
From Example 2.5, the wing loading was calculated in English engineering units to be
W/S = 57.3 Ib/ft>. Thus the weight of the F-117A is

2
W= (E)s = (57.331(91 3 ftz) =52,3151b
S ft

The force required to achieve a given acceleration of a given object is obtained from
Newton’s second law:

F=ma

The mass of the F-117A is obtained from Eq. (2.8) written as
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where g = 32.2 ft/s>. Thus

52,315
m=-——

=1624.7 slug
322

Therefore, the net force required to accelerate the F-117A at the rate of one-third g—that
is, the rate of 1/3 (32.2) = 10.73 ft/s>—is

F=ma=(1624.7)(10.73)={17,438 1b

In level flight, the net force on the airplane is the difference between the thrust from
the engines acting forward and the aerodynamic drag acting rearward (such matters
are the subject of Ch. 6). The F-117A has two turbojet engines capable of a combined
maximum thrust of 21,600 b at sea level. When the aerodynamic drag is no more than
21,600 — 17,438 = 4612 1b, the F-117A is capable of achieving an acceleration of one-
third of a g in level flight at sea level.

This example highlights the use of the English engineering system consistent unit of
mass (namely the slug) in Newton’s second law. Furthermore, we obtained the mass in
slugs for the F-117A from its weight in 1b using Eq. (2.8).

Consider a case in which the air inside the pressurized cabin of a jet transport flying at
some altitude is at a pressure of 0.9 atm and a temperature of 15°C. The total volume of
air at any instant inside the cabin is 1800 m?. If the air in the cabin is completely recircu-
lated through the air conditioning system every 20 min, calculate the mass flow of air in
kg/s through the system.

H Solution
The density of the air is given by the equation of state, Eq. (2.3), written as

p

P= kT

In the SI system of units, consistent units of pressure and temperature are N/m? and K
respectively. (Remember that T in Eq. (2.3) is the absolute temperature.) In Example 2.3
we noted that 1 atm = 1.01 x 105 N/m?> Hence

p=(0.9atm)(1.01x10°)=0.909x10°> N/M?

and

T=273+15=288 K
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Thus

p _0.909x10° _

=P _ =1.1kg/m’
P=RT T (287)288) gm

The total mass M of air inside the cabin at any instant is pV, where V is the volume of the
cabin, given as 1800 m>. Thus

M = pV = (1.1)(1800) = 1980 kg

This mass of air is recirculated through the air conditioning system every 20 min, or every
1200 s. Hence, the mass flow m is

1980
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EXAMPLE 2.9

Consider the same airplane cabin discussed in Example 2.8. We now wish to increase
the pressure inside the cabin by pumping in extra air. Assume that the air temperature
inside the cabin remains constant at 288 K. If the time rate of increase in cabin pressure is
0.02 atm/min, calculate the time rate of change of the air density per second.

H Solution
From the equation of state,

p=pRT

Differentiating this equation with respect to time, ¢, assuming that 7 remains constant,
we have

a _ prdp
dt dt

do_L(d)
dt  RT \ dt

. . d,
Consistent units for d_p are
t

or

—— . From the given information,
m’s

dap =0.02 atm/min

dt
Changing to consistent units, noting that 1 atm = 1.01 x 10° N/m? and one minute is
60 seconds, we have

N

2
m's

p _ ) gp 2tm 1.01x10°N/m* (1 min
60 s

)z 33.67
dt min

1 atm
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Hence

d_P:L(d_P):ﬂ:4o7xlo*“ﬁ
dt ~ RT\dt ) (287)(288) | m’s

The performance of an airplane (Ch. 6) depends greatly on the power available from its
engine(s). For a reciprocating engine, such as in an automobile or in many propeller-
driven airplanes, the power available is commonly given in terms of horsepower, a hor-
ribly nonconsistent unit. This unit was developed by James Watt, the English inventor
of the first practical steam engine in the years around 1775. To help market his steam
engine, Watt compared its power output with that of a horse. He observed that a horse
could turn a mill wheel with a 12-foot radius 144 times in an hour pulling a force of
180 1b. Recalling that power, P, by definition, is energy per unit time, and energy is
force, F, times distance, d, the power output of the horse is

p= F_d _ (180)[(144)(‘217)(12)] ~32.572 ft .lb
t 60 min min

Watt rounded this number up to 33,000 ft Ib/min, which is the value we use today for the
energy equivalent to one horsepower. Using consistent units of ft Ib/sec, we have

33,000

1 hp =550 ft Ib/sec

These are the consistent units for one horsepower in the English engineering system.
From this, calculate the value for one horsepower in the SI system.

H Solution

In the SI system, the consistent units for energy (force x distance) are (N)(m), so the con-
sistent units of power are (force X distance)/t = (N)(m)/sec. This unit of power is called a
watt, in honor of James Watt, abbreviated in this example as W. From App. C, we have

1 ft=0.3048 m
11b=4.448 N

Thus

Ihp=550112 _ 550(
secC

0.3048 m j(4.448 Nj
1ft 11b
=746 W

74622 _ 726 W]

S€C
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These consistent units for 1 hp, namely

1 hp=550ﬂ= 746 W
sec

are used in Ch. 6.
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EXAMPLE 2.11

One of the important performance characteristics of a given airplane is its maximum
rate-of-climb, that is, its time rate of increase in altitude. In Sec. 6.8, we show that rate-
of-climb, denoted by R/C, is proportional to the difference in maximum power available
from the engine and the power required by the airplane to overcome aerodynamic drag;
this difference is called the excess power. Indeed, in Sec. 6.8 we show that

R/C = €xcess power

where W is the weight of the airplane. Using this equation, calculate the R/C in units of
ft/min for an airplane weighing 9000 kg, flying at the condition where the excess power
is 4700 hp. Note that all the units given here, ft/min, kg, and hp are inconsistent units;
however, the equation for R/C must use consistent units. (Also, the numbers given here
apply approximately to the twin-jet executive transport considered in Ch. 6.)

H Solution
The result from Example 2.10 is that 1 hp = 746 Watts. Hence, in the SI system,

excess power = (4700 hp)(746) = 3.506 x 10° Watts

Near the surface of the earth (see Sec. 2.4), the mass of the airplane in kg is the same
number as the weight in kg, Hence, the weight is

W =mg = (9000 kg)(9.8 m/sec’)
W=28.82x10*N

Now we have each term in the equation for rate-of-climb expressed in consistent SI units.
Hence

6
R/C = excess power _ 3.506)(104 w
\ 8.82x10°N

R/C=39.75 m/sec

The consistent units for R/C are m/sec because we used consistent SI units in the equa-
tion. Rate-of-climb is frequently quoted in the literature in terms of minutes rather than
seconds, so we have

R/C= 39.75(1]( 60 secj -2385- 1

sec min min
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We are asked in this example to calculate R/C in units of ft/min, which is still the norm
in the United States. From App. C,

1 ft=0.3048 m
Thus,

R/C = (23852)(17ﬁ) =[7824 ft/min

sec /\ 0.3048 m

2.6 ANATOMY OF THE AIRPLANE

In regard to fundamental thoughts, it is appropriate to discuss some basic nomen-
clature associated with airplanes and space vehicles—names for the machines
themselves. In this section we deal with airplanes; space vehicles are discussed
in Sec. 2.7.

The major components of a conventional airplane are identified in Fig. 2.13.
The fuselage is the center body, where most of the usable volume of the airplane
is found. The fuselage carries people, baggage, other payload, instruments, fuel,
and anything else that the airplane designer puts there. The wings are the main
lift-producing components of the airplanes; the left and right wings are identified
as you would see them from inside the airplane, facing forward. The internal
volume of the wings can be used for such items as fuel tanks and storage of
the main landing gear (the wheels and supporting struts) after the gear is re-
tracted. The horizontal and vertical stabilizers are located and sized so as to
provide the necessary stability for the airplane in flight (we consider stability in
Ch. 7). Sometimes these surfaces are called the horizontal and vertical tails, or
fins. When the engines are mounted from the wings, as shown in Fig. 2.13, they
are usually housed in a type of shroud called a nacelle. As a historical note, the
French worked hard on flying machines in the late 19th and early 20th centuries;

Vertical stabilizer
(vertical tail)

Horizontal stabilizer

(horizontal tail)
Right
wing

Engine

wing
Fuselage nacelle

Figure 2.13 Basic components of an airplane.
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Rudder

Elevator

Figure 2.14 Control surfaces and flaps.

as a result, some of our conventional airplane nomenclature today comes from
the French. Fuselage is a French word, meaning a “spindle” shape. So is the
word nacelle, meaning a “small boat.”

Flaps and control surfaces are highlighted in Fig. 2.14. These are hinged
surfaces, usually at the trailing edge (the back edge) of the wings and tail, that
can be rotated up or down. The function of a flap is to increase the lift force on
the airplane; flaps are discussed in detail in Sec. 5.17. Some aircraft are designed
with flaps at the leading edge (the front edge) of the wings as well as at the trail-
ing edge. Leading-edge flaps are not shown in Fig. 2.14. The ailerons are control
surfaces that control the rolling motion of the airplane around the fuselage. For
example, when the left aileron is deflected downward and the right aileron is de-
flected upward, lift is increased on the left wing and decreased on the right wing,
causing the airplane to roll to the right. The elevators are control surfaces that
control the nose up-and-down pitching motion; when the elevator is deflected
downward, the lift on the tail is increased, pulling the tail up and the nose of the
airplane down. The rudder is a control surface that can turn the nose of the air-
plane to the right or left (called yawing). The nature and function of these control
surfaces are discussed in greater detail in Ch. 7.

In aeronautics it is common to convey the shape of an airplane by means of
a three-view diagram, such as those shown in Fig. 2.11 and in Fig. 2.15. Proceed-
ing from the top to the bottom of Fig. 2.15, we see a front view, top view, and
side view, respectively, of the North American F-86H, a famous jet fighter from
the Korean War era. A three-view diagram is particularly important in the design
process of a new airplane because it conveys the precise shape and dimensions
of the aircraft.

The internal structure of an airplane is frequently illustrated by a cutaway
drawing, such as that shown in Fig. 2.17. Here the famous Boeing B-17 bomber
from World War II is shown with a portion of its skin cut away so that the inter-
nal structure is visible. Although the B-17 is a late 1930s design, it is shown here
because of its historical significance and because it represents a conventional
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Figure 2.15 Three-view diagram of the North American F-86H.

airplane structure. A cutaway of the Lockheed-Martin F-117A stealth fighter is
shown in Fig. 2.18; this is a modern airplane, yet its internal structure is not un-
like that of the B-17 shown in Fig. 2.17. Cutaway diagrams usually contain many
details about the internal structure and packaging for the airplane.
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DESIGN BOX

This is the first of many design boxes in this book.
These design boxes highlight information pertinent
to the philosophy, process, and details of flight ve-
hicle design, as related to the discussion at that point
in the text. The purpose of these design boxes is to
reflect on the design implications of various topics
being discussed. This is not a book about design, but
the fundamental information in this book certainly
has applications to design. The design boxes are here
to bring these applications to your attention. Design
is a vital function—indeed, usually the end product—
of engineering. These design boxes can give you a
better understanding of aerospace engineering.

This design box is associated with our discus-
sion of the anatomy of the airplane and three-view

diagrams. An example of a much more detailed three-
view diagram is that in Fig. 2.16, which shows the
Vought FAU Corsair, the famous Navy fighter from
World War II. Figure 2.16 is an example of what, in
the airplane design process, is called a configuration
layout. In Fig. 2.16, we see not only the front view,
side view, top view, and bottom view of the airplane,
but also the detailed dimensions, the cross-sectional
shape of the fuselage at different locations, the air-
foil shape of the wing at different locations, landing
gear details, and the location of various lights, radio
antenna, and so on. (A discussion of the role of the
configuration layout in airplane design can be found
in Anderson, Aircraft Performance and Design,
McGraw-Hill, New York, 1999.)

Any student of the history of aeronautics knows that airplanes have been
designed with a wide variety of shapes and configurations. It is generally true
that form follows function, and airplane designers have configured their air-
craft to meet specific requirements. However, airplane design is an open-ended
problem—there is no single “right way” or “right configuration” to achieve the
design goals. Also, airplane design is an exercise in compromise; to achieve
good airplane performance in one category, other aspects of performance may
have to be partly sacrificed. For example, an airplane designed for very high
speed may have poor landing and takeoff performance. A design feature that
optimizes the aerodynamic characteristics may overly complicate the structural
design. Convenient placement of the engines may disrupt the aerodynamics of
the airplane . . . and so forth. For this reason, airplanes come in all sizes and
shapes. An exhaustive listing of all the different types of airplane configura-
tions is not our purpose here. Over the course of your studies and work, you will
sooner or later encounter most of these types. However, there are several general
classes of airplane configurations that we do mention here.

The first is the conventional configuration. This is exemplified by the air-
craft shown in Figs. 2.13 through 2.17. Here we see monoplanes (a single set of
wings) with a horizontal and vertical tail at the back of the aircraft. The aircraft
may have a straight wing, as seen in Figs. 2.13, 2.14, 2.16, and 2.17, or a swept
wing, as seen in Fig. 2.15. Wing sweep is a design feature that reduces the aero-
dynamic drag at speeds near to or above the speed of sound, and that is why most
high-speed aircraft today have some type of swept wing. However, the idea goes
back as far as 1935. Swept wings are discussed in greater detail in Sec. 5.16.
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Figure 2.18 Cutaway view of the Lockheed-Martin F-117A stealth fighter.

Figure 2.15 illustrates an airplane with a swept-back wing. Aerodynamically,
the same benefit can be obtained by sweeping the wing forward. Figure 2.19 is
a three-view diagram of the X-29A, a research aircraft with a swept-forward
wing. Swept-forward wings are not a new idea. However, swept-forward wings
have combined aerodynamic and structural features that tend to cause the wing
to twist and fail structurally. This is why most swept-wing airplanes have used
swept-back wings. With the new, high-strength composite materials of today,
swept-forward wings can be designed strong enough to resist this problem; the

0 n
-
|

)

Figure 2.19 Three-view diagram of the Grumman X-29A research aircraft.
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swept-forward wing of the X-29A is a composite wing. There are some advan-
tages aerodynamically to a swept-forward wing, which are discussed in Sec. 5.16.
Also note by comparing Figs. 2.15 and 2.19 that the juncture of the wing and the
fuselage is farther back on the fuselage for the airplane with a swept-forward wing
than for an airplane with a swept-back wing. At the wing—fuselage juncture, there
is extra structure (such as a wing spar that goes through the fuselage) that can in-
terfere with the internal packaging in the fuselage. The swept-forward wing con-
figuration, with its more rearward fuselage—wing juncture, can allow the airplane
designer greater flexibility in placing the internal packaging inside the fuselage.
In spite of these advantages, at the time of writing, no new civilian transports or
military airplanes are being designed with swept-forward wings.

The X-29A shown in Fig. 2.19 illustrates another somewhat unconventional
feature: The horizontal stabilizer is mounted ahead of the wing rather than at the
rear of the airplane. This is defined as a canard configuration, and the horizontal
stabilizer in this location is called a canard surface. The 1903 Wright Flyer was
a canard design, as clearly seen in Figs. 1.1 and 1.2. However, other airplane
designers after the Wrights quickly placed the horizontal stabilizer at the rear
of the airplane. (There is some evidence that this was done more to avoid patent
difficulties with the Wrights than for technical reasons.) The rear horizontal tail
location is part of the conventional aircraft configuration; it has been used on the
vast majority of airplane designs since the Wright Flyer. One reason for this is
the feeling among some designers that a canard surface has a destabilizing effect
on the airplane (to call the canard a horizontal “stabilizer” might be considered
by some a misnomer). However, a properly designed canard configuration can
be just as stable as a conventional configuration. This is discussed in detail in
Ch. 7. Indeed, there are some inherent advantages of the canard configuration,
as we outline in Ch. 7. Because of this, a number of new canard airplanes have
been designed in recent years, ranging from private, general aviation airplanes to
military, high-performance fighters. (The word canard comes from the French
word for “duck.”)

Look again at the Wright Flyer in Figs. 1.1 and 1.2. This aircraft has two
wings mounted one above the other. The Wrights called this a double-decker
configuration. However, within a few years such a configuration was called a
biplane, nomenclature that persists to the present. In contrast, airplanes with just
one set of wings are called monoplanes; Figs. 2.13 through 2.19 illustrate mono-
planes, which have become the conventional configuration. However, this was
not true through the 1930s; until about 1935, biplanes were the conventional con-
figuration. Figure 2.20 is a three-view of the Grumman F3F-2 biplane designed
in 1935. It was the U.S. Navy’s last biplane fighter; it was in service as a front-
line fighter with the Navy until 1940. The popularity of biplanes over mono-
planes in the earlier years was due mainly to the enhanced structural strength
of two shorter wings trussed together compared to that of a single, longer-span
wing. However, as the cantilevered wing design, introduced by the German en-
gineer Hugo Junkers as early as 1915, gradually became more accepted, the main
technical reason for the biplane evaporated. But old habits are sometimes hard to
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Figure 2.20 Three-view of the Grumman F3F-2, the last U.S. Navy
biplane fighter.

change, and the biplane remained in vogue far longer than any technical reason
would justify. Today biplanes still have some advantages as sport aircraft for
aerobatics and as agricultural spraying aircraft. Thus, the biplane design lives on.

2.7 ANATOMY OF A SPACE VEHICLE

In Sec. 2.6 we discussed the conventional airplane configuration. In contrast, it
is difficult to define a “conventional” spacecraft configuration. The shape, size,
and arrangement of a space vehicle are determined by its particular mission, and
there are as many (if not more) different spacecraft configurations as there are
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missions. In this section we discuss a few of the better-known space vehicles;
although our coverage is far from complete, it provides some perspective on the
anatomy of space vehicles.

To date, all human-made space vehicles are launched into space by rocket
boosters. A rather conventional booster is the Delta three-stage rocket, shown
in Fig. 2.21. Built by McDonnell-Douglas (now merged with Boeing), the
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Thiokol TE 364-4
7924
motor l 312) -+
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Figure 2.21 Delta 3914 and 3920 rocket booster configurations.

M. D. Griffin and J. R. French, Space Vehicle Design. Reston, VA. AIAA, 1991 Copyright © 1991 by ATAA. All rights
reserved. Used with permission.
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Figure 2.22 Orbital Sciences Pegasus, an air-launched rocket booster.
(Source: From C. H. Eldred et al., “Future Space Transportation Systems and Launch,”
in Future Aeronautical and Space Systems, eds. A. K. Noor and S. L. Vennera, AIAA,
Progress in Astronautics and Aeronautics, vol. 172, 1997.)

Delta rocket is a product of a long design and development evolution that can
be traced to the Thor intermediate-range ballistic missile in the late 1950s.
The spacecraft to be launched into space is housed inside a fairing at the top
of the booster, which falls away after the booster is out of the earth’s atmo-
sphere. The rocket booster is really three rockets mounted on top of one an-
other. The technical reasons for having such a multistage booster (as opposed
to a single-stage rocket) are discussed in Sec. 9.11. Also, the fundamentals of
the rocket engines that power these boosters are discussed in Ch. 9.

A not-so-conventional booster is the air-launched Pegasus, shown in
Fig. 2.22. The Pegasus is a three-stage rocket that is carried aloft by an air-
plane. The booster is then launched from the airplane at some altitude within the
sensible atmosphere. The first stage of the Pegasus has wings, which assist in
boosting the rocket to higher altitudes within the sensible atmosphere.

The Delta rocket in Fig. 2.21 and the Pegasus in Fig. 2.22 are examples of
expendable launch vehicles; no part of these boosters is recovered for reuse.
There are certain economies to be realized by recovering part (if not all) of the
booster and using it again. There is great interest today in such recoverable
launch vehicles. An example of such a vehicle is the experimental X-34, shown
in Fig. 2.23. This is basically a winged booster that will safely fly back to earth
after it has launched its payload, to be used again for another launch.

In a sense, the Space Shuttle is partly a reusable system. The Space Shuttle
is part airplane and part space vehicle. The Space Shuttle flight system is shown
in Fig. 2.24. The shuttle orbiter is the airplanelike configuration that sits on the
side of the rocket booster. The system is powered by two solid rocket boosters
(SRBs) that burn out and are jettisoned after the first 2 min of flight. The SRBs
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Forward fuselage

Orbital vehicle

Payload
door

Figure 2.23 Orbital Sciences X-34 small reusable rocket booster.

A. K. Noor, S. L. Vennera, “Future Space Transportation Systems and Launch,” Future
Aeronautical and Space Systems, Progress in Astronautics and Aeronautics, vol. 172,
1997. Copyright © 1997 by AIAA. All rights reserved. Used with permission.

(2) solid rocket
External / boosters

tank \- -<-§g%- —

Figure 2.24 The Space Shuttle.
Michael D. Griffin and James R. French. Space Vehicle Design. 2nd ed. Reston, VA. ATAA,
2004. Copyright © 2004 by AIAA. All rights reserved. Used with permission.

are recovered and refurbished for use again. The external tank carries liquid oxy-
gen and liquid hydrogen for the main propulsion system, which comprises the
rocket engines mounted in the orbiter. The external tank is jettisoned just before
the system goes into orbit; the tank falls back through the atmosphere and is
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destroyed. The orbiter carries on with its mission in space. When the mission is
complete, the orbiter reenters the atmosphere and glides back to earth, making a
horizontal landing as a conventional unpowered airplane would.

Let us now examine the anatomy of the payload itself—the functioning
spacecraft that may be a satellite in orbit around earth or a deep-space vehicle
on its way to another planet or to the sun. As mentioned earlier, these spacecraft
are point designs for different specific missions, and therefore it is difficult to
define a conventional configuration for spacecraft. However, let us examine the
anatomy of a few of these point designs, just to obtain some idea of their nature.

A communications satellite is shown in Fig. 2.25. This is the FLTSATCOM
spacecraft produced by TRW for the U.S. Navy. It is placed in a geostationary
orbit—an orbit in the plane of the equator with a period (time to execute one
orbit) of 24 h. Hence, a satellite in geostationary orbit appears above the same
location on earth at all times—a desirable feature for a communications satellite.
Orbits and trajectories for space vehicles are discussed in Ch. 8. The construction
is basically aluminum. The two hexagonal compartments (buses) mounted one
above the other at the center of the satellite contain all the engineering subsys-
tems necessary for control and communications. The two antennas that project
outward from the top of the bus are pointed at earth. The two solar array arms
(solar panels) that project from the sides of the bus constantly rotate to remain

Figure 2.25 The TRW communications satellite FLTSATCOM.
(Source: Courtesy of United States Navy)
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Imager for Mars
Pathfinder (IMP) O-

Figure 2.26 The Mars Pathfinder on the surface of Mars.

M. K. Olsen et al., “Spacecraft for Solar System Exploration,” Future Aeronautical and Space.
Progress in Astronautics and Aeronautics, vol. 172, 1997. AIAA. Copyright © 1997 by AIAA.
All rights reserved. Used with permission

pointed at the sun at all times. The solar panels provide power to run the equip-
ment on the spacecraft.

The Mars Pathfinder spacecraft is sketched in Figs. 2.26 and 2.27. This
spacecraft successfully landed on the surface of Mars in 1997. The package that
entered the Martian atmosphere is shown in an exploded view in Fig. 2.27. The
aeroshell and backshell make up the aerodynamic shape of the entry body, with
the lander packaged in a folded position inside. The function of this aerodynamic
entry body is to create drag to slow the vehicle as it approaches the surface of
Mars and to protect the package inside from aerodynamic heating during atmo-
spheric entry. The dynamics of a spacecraft entering a planetary atmosphere, and
entry aerodynamic heating, are discussed in Ch. 8. Figure 2.26 shows the Path-
finder lander after deployment on the Martian surface. The rover, solar panel,
high-gain and low-gain antennas, and imager for taking the pictures transmitted
from the surface are shown in Fig. 2.26.

Some spacecraft are designed simply to fly by (rather than land on) plan-
ets in the solar system, taking pictures and transmitting detailed scientific data
back to earth. Classic examples are the Mariner 6 and 7, two identical spacecraft

97



98

CHAPTER 2 Fundamental Thoughts

Cruise stage

1.0 m  Backshell

13m Folded lander
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Figure 2.27 Components of the Mars Pathfinder space vehicle.
M. K. Olsen et al., “Spacecraft for Solar System Exploration,” Future
Aeronautical and Space. Progress in Astronautics and Aeronautics, vol.
172, 1997. AIAA. Copyright © 1997 by AIAA. All rights reserved.
Used with permission.

launched in 1969 to study the surface and atmosphere of Mars. The configura-
tion of these spacecraft is shown in Fig. 2.28. Mariner 6 flew past Mars with a
distance of closest approach of 3429 km on July 28, 1969, and Mariner 7 zipped
by Mars with a distance of closest approach of 3430 km on August 5, 1969. Both
sent back important information about the Martian atmospheric composition,
pressure, and temperature and about Mars’s heavily cratered surface. Examining
Fig. 2.28, we see the eight-sided magnesium centerbody supporting four rectan-
gular solar panels; the centerbody housed the control computer and sequencer
designed to operate Mariner independently without intervention from ground
control on earth. Attached to the centerbody are two television cameras for wide-
angle and narrow-angle scanning of the Martian surface.

Voyager 2, arguably our most spectacular and successful deep-space probe,
is shown in Fig. 2.29. Launched on August 20, 1977, this spacecraft was de-
signed to explore the outer planets of our solar system. In April 1979 it began
to transmit images of Jupiter and its moons. Speeding on to Saturn, Voyager
provided detailed images of Saturn’s rings and moons in August 1981. Although
these two planetary encounters fulfilled Voyager’s primary mission, the mission
planners at NASA’s Jet Propulsion Laboratory sent it on to Uranus, where clos-
est approach of 71,000 km occurred on January 24, 1986. From the data sent
back to earth, scientists discovered 10 new moons of Uranus. After a midcourse
correction, Voyager skimmed 4500 km over the cloud tops of Neptune and then
headed on a course that would take it out of the solar system. After the Neptune
encounter, NASA formally renamed the entire project the Voyager Interstellar
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Figure 2.28 Two views of the Mariner 6 and 7, identical spacecraft that flew by Mars in 1969.

Mission, and the spacecraft’s instruments were put on low power to conserve
energy. In November 1998 most instruments were turned off, leaving only seven
essential instruments still operating. Today Voyager is more than 10 billion km
from earth—and still going. Although data from the remaining operating instru-
ments could be obtained as late as 2020, when power levels are expected to dip
too low for reception on earth, Jet Propulsion Laboratory engineers finally turned
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Figure 2.29 Voyager 2 spacecraft.

off the switches in early 2003; Voyager had provided more than enough pioneer-
ing scientific data.

Examining the configuration of Voyager 2 shown in Fig. 2.29, we see a
classic spacecraft arrangement. Because of the multiplanet flyby, the scien-
tific instruments shown in Fig. 2.29 had to have an unobstructed view of each
planet with the planet at any position with respect to the spacecraft. This led to
the design of an articulated instrument platform shown on the right side of the
spacecraft in Fig. 2.29. The high-gain antenna shown at the top in Fig. 2.29 was
pointed toward earth by maneuvering the Voyager.

In summary, there are about as many different spacecraft configurations as
there are different missions in space. Spacecraft fly in the near vacuum of space
where virtually no aerodynamic force, no lift or drag, is exerted on the vehicle.
Hence, the spacecraft designer can make the external configuration whatever he
or she wants. This is not true for the airplane designer. The external configura-
tion of an airplane (fuselage, wings, etc.) dictates the aerodynamic lift and drag
on the airplane, and the airplane designer must optimize the configuration for
efficient flight through the atmosphere. Airplanes therefore share a much more
common anatomy than spacecraft. The anatomy of spacecraft is all over the map.
This section about the anatomy of spacecraft contains just a sampling of different
configurations to give you a feeling for their design.
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2.8 HISTORICAL NOTE: THE NACA AND NASA

NASA—four letters that have meaning to virtually the entire world. Since its
inception in 1958, the National Aeronautics and Space Administration has been
front-page news, many times good news and sometimes not so good, with the
Apollo space flight program to the moon, the Space Shuttle, the space station,
and so on. Since 1958 NASA has also been in charge of developing new tech-
nology for airplanes—technology that allows us to fly farther, faster, safer, and
cheaper. In short, the professional world of aerospace engineering is driven by
research carried out by NASA. Before NASA, there was the NACA, the National
Advisory Committee for Aeronautics, which carried out seminal research pow-
ering technical advancements in flight during the first half of the 20th century.
Before we progress further in this book dealing with an introduction to flight,
you should understand the historical underpinnings of NACA and NASA and
appreciate the impact these two agencies have had on aerospace engineering.
The NACA and NASA have been fundamental to the technology of flight. It is
fitting, therefore, that we place this particular historical note in the chapter deal-
ing with fundamental thoughts.

Let us pick up the thread of aeronautical engineering history from Ch. 1.
After Orville and Wilbur Wright’s dramatic public demonstrations in the United
States and Europe in 1908, there was a virtual explosion in aviation develop-
ments. In turn, this rapid progress had to be fed by new technical research in aero-
dynamics, propulsion, structures, and flight control. It is important to realize that
then, as well as today, aeronautical research was sometimes expensive, always
demanding in terms of intellectual talent, and usually in need of large testing
facilities. Such research in many cases either was beyond the financial resources
of, or seemed too out of the ordinary for, private industry. Thus, the fundamental
research so necessary to fertilize and pace the development of aeronautics in the
20th century had to be established and nurtured by national governments. It is
interesting to note that George Cayley himself (see Ch. 1), as long ago as 1817,
called for “public subscription” to underwrite the expense of the development of
airships. Responding about 80 years later, the British government set up a school
for ballooning and military kite flying at Farnborough, England. By 1910 the
Royal Aircraft Factory was in operation at Farnborough, with the noted Geoffrey
de Havilland as its first airplane designer and test pilot. This was the first major
government aeronautical facility in history. This operation was soon to evolve
into the Royal Aircraft Establishment (RAE), which conducted viable aeronauti-
cal research for the British government for almost a century.

In the United States, aircraft development as well as aeronautical research
languished after 1910. During the next decade, the United States embarrassingly
fell far behind Europe in aeronautical progress. This set the stage for the U.S.
government to establish a formal mechanism for pulling itself out of its aeronauti-
cal “dark ages.” On March 3, 1915, by an act of Congress, the National Advisory
Committee for Aeronautics (NACA) was created, with an initial appropriation of
$5000 per year for five years. This was at first a true committee, consisting of 12
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distinguished members who were knowledgeable about aeronautics. Among the
charter members in 1915 were Professor Joseph S. Ames of Johns Hopkins Uni-
versity (later to become president of Johns Hopkins) and Professor William F.
Durand of Stanford University, both of whom were to make major impressions
on aeronautical research in the first half-century of powered flight. This advisory
committee, NACA, was originally to meet annually in Washington, District of
Columbia, on “the Thursday after the third Monday of October of each year,”
with any special meetings to be called by the chair. Its purpose was to advise the
government on aeronautical research and development and to bring some cohe-
sion to such activities in the United States.

The committee immediately noted that a single advisory group of 12 mem-
bers was not sufficient to breathe life into U.S. aeronautics. Their insight is ap-
parent in the letter of submittal for the first annual report of NACA in 1915,
which contained the following passage:

There are many practical problems in aeronautics now in too indefinite a form to
enable their solution to be undertaken. The committee is of the opinion that one of
the first and most important steps to be taken in connection with the committee’s
work is the provision and equipment of a flying field together with aeroplanes and
suitable testing gear for determining the forces acting on full-sized machines in con-
strained and in free flight, and to this end the estimates submitted contemplate the
development of such a technical and operating staff, with the proper equipment for
the conduct of full-sized experiments.

It is evident that there will ultimately be required a well-equipped laboratory
specially suited to the solving of those problems which are sure to develop, but
since the equipment of such a laboratory as could be laid down at this time might
well prove unsuited to the needs of the early future, it is believed that such provision
should be the result of gradual development.

So the first action of this advisory committee was to call for major govern-
ment facilities for aeronautical research and development. The clouds of war
in Europe—World War I had started a year earlier—made their recommenda-
tions even more imperative. In 1917, when the United States entered the conflict,
actions followed the committee’s words. We find the following entry in the third
annual NACA report:

To carry on the highly scientific and special investigations contemplated in the

act establishing the committee, and which have, since the outbreak of the war,

assumed greater importance, and for which facilities do not already exist, or exist
in only a limited degree, the committee has contracted for a research laboratory
to be erected on the Signal Corps Experimental Station, Langley Field, Hampton,

Virginia.

The report goes on to describe a single, two-story laboratory building with
physical, chemical, and structural testing laboratories. The building contract was
for $80,900; actual construction began in 1917. Two wind tunnels and an en-
gine test stand were contemplated “in the near future.” The selection of a site
4 mi north of Hampton, Virginia, was based on general health conditions and
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the problems of accessibility to Washington and the larger industrial centers of
the East, protection from naval attack, climatic conditions, and cost of the site.

Thus the Langley Memorial Aeronautical Research Laboratory was born.
It was to remain the only NACA laboratory and the only major U.S. aeronauti-
cal laboratory of any type for the next 20 years. Named after Samuel Pierpont
Langley (see Sec. 1.7), it pioneered in wind tunnel and flight research. Of partic-
ular note is the airfoil and wing research performed at Langley during the 1920s
and 1930s. We return to the subject of airfoils in Ch. 5, at which time the reader
should note that the airfoil data included in App. D were obtained at Langley.
With the work that poured out of the Langley laboratory, the United States took
the lead in aeronautical development. High on the list of accomplishments, along
with the systematic testing of airfoils, was the development of the NACA engine
cowl (see Sec. 6.19), an aerodynamic fairing built around radial piston engines
that dramatically reduced the aerodynamic drag of such engines.

In 1936 Dr. George Lewis, who was then NACA Director of Aeronautical
Research (a position he held from 1924 to 1947), toured major European labo-
ratories. He noted that NACA’s lead in aeronautical research was quickly dis-
appearing, especially in light of advances being made in Germany. As World
War II drew close, NACA clearly recognized the need for two new laboratory
operations: an advanced aerodynamics laboratory to probe the mysteries of
high-speed (even supersonic) flight and a major engine-testing laboratory. These
needs eventually led to the construction of Ames Aeronautical Laboratory at
Moffett Field, near Mountain View, California (authorized in 1939), and Lewis
Engine Research Laboratory at Cleveland, Ohio (authorized in 1941). Along
with Langley, these two new NACA laboratories again helped to propel the
United States to the forefront of aeronautical research and development in the
1940s and 1950s.

The dawn of the space age occurred on October 4, 1957, when Russia
launched Sputnik I, the first artificial satellite to orbit the earth. Swallowing its
somewhat embarrassed technical pride, the United States moved quickly to com-
pete in the race for space. On July 29, 1958, by another act of Congress (Public
Law 85-568), the National Aeronautics and Space Administration (NASA) was
born. At this same moment, NACA came to an end. Its programs, people, and
facilities were instantly transferred to NASA. However, NASA was a larger or-
ganization than just the old NACA; it absorbed in addition numerous Air Force,
Navy, and Army projects for space. Within two years of its birth, NASA au-
thorized four new major installations: an existing Army facility at Huntsville,
Alabama, renamed the George C. Marshall Space Flight Center; the Goddard
Space Flight Center at Greenbelt, Maryland; the Manned Spacecraft Center (now
the Johnson Spacecraft Center) in Houston, Texas; and the Launch Operations
Center (now the John F. Kennedy Space Center) at Cape Canaveral, Florida.
These, in addition to the existing but slightly renamed Langley, Ames, and Lewis
research centers, were the backbone of NASA. Thus the aeronautical expertise
of NACA formed the seeds for NASA, shortly thereafter to become one of the
world’s most important forces in space technology.
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This capsule summary of the roots of NACA and NASA is included in this
chapter on fundamental thoughts because it is virtually impossible for a student
or practitioner of aerospace engineering in the United States not to be influenced
or guided by NACA or NASA data and results. The extended discussion of air-
foils in Ch. 5 is a case in point. Because NACA and NASA are fundamental to
the discipline of aerospace engineering, it is important to have some impression
of the historical roots and tradition of these organizations. This author hopes that
this short historical note provides such an impression. A much better impression
can be obtained by taking a journey through the NACA and NASA technical
reports in the library, going all the way back to the first NACA report in 1915. In
so doing, a panorama of aeronautical and space research through the years will
unfold in front of you.

2.9 SUMMARY AND REVIEW

This chapter sets out the fundamental information necessary to launch our study of aero-
space engineering. Before an artist starts to paint a picture, he or she begins to mix vari-
ous color combinations of paint on a palette, which later will come together on a canvas
or board to form a work of art. In this chapter, various ideas are laid out on our aerospace
engineering palette that later will come together in our minds, on paper, or on the com-
puter to form an engineering work of art.

The only equation discussed in this chapter is the equation of state, Eq. (2.3), but this
equation, which relates pressure, density, and temperature in a gas, is fundamental to any
analysis of a high-speed flow. Also, its introduction in this chapter acted as a springboard
for a lengthy discussion of units, a subject so important that you must master these ideas
before making any reasonable quantitative calculations.

You are strongly advised always to use consistent units in your calculations; con-
sistent units naturally fit nature’s equations in their pure physical form without the need
for conversion factors in the equations. By using consistent units, you can always write
Newton’s second law as F = ma, unencumbered by any g. conversion factor. The equa-

tion F = ma is nature’s equation, and it uses consistent units. In contrast, F = (i] ma is
8.

a manmade equation, made unnecessarily complicated by the use of nonconsistent units.

If you use nature’s equations in their most basic form, and incorporate consistent units,

your results are guaranteed to come out with consistent units, without your having to

track the detailed units throughout the details of the calculations. A case in point is the

equation of state given by Eq. (2.3),

p=pRT

This is nature’s equation; it contains no manmade conversion factors. If you feed num-
bers into this equation using consistent units, the results will be in consistent units.
Unfortunately, throughout the history of engineering over the past centuries, many
manmade, nonconsistent units have surfaced, and dealing with these units while making
calculations is frequently a challenge, especially if you want to come up with the correct
answers. To avoid mistakes due to unit mismatches, I implore you to always use consis-
tent units in your equations. In this book, we employ two systems of consistent units: the
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SI system, which uses N, kg, m, sec, and K as the units of force, mass, length, time, and
temperature; and the English engineering system, which uses the Ib, slug, ft, sec, and °R.
The SI system is, by far, the most widely used system throughout the world, whereas the
English engineering system, the mainstay in England and in the United States for the past
century, is now being gradually replaced by the SI system even in these two countries.
However, because a vast bulk of past engineering literature is in the English engineer-
ing system, and because some engineers still use that system, it is necessary for you to
become bilingual and feel comfortable using both systems. That is why, in this book,
you will find some calculations using one system, and some calculations using the other.
(There is some temptation in modern engineering textbooks to use the SI system exclu-
sively, but I feel that doing so in this book would be a disservice. Whether you are from a
country that uses SI units exclusively, or from a country that continues, at least in part, to
use the English engineering units, you must become familiar and comfortable with both
systems to operate smoothly in this international world.)

Perhaps one of the most important fundamental thoughts introduced in this chapter
is that regarding the source of all aerodynamic forces. As described in Sec. 2.2, whenever
there is a flow of a gas or liquid over an object, the object experiences an aerodynamic
force. This force is frequently resolved into two force components: liff, perpendicular to
the upstream flow direction; and drag, parallel to the upstream flow direction. Section 2.2
emphasizes that in all cases, no matter what the configuration and orientation of the
object of the flow, and no matter how slow or fast the flow is moving over the object, the
net aerodynamic force on the object, and hence the lift and drag, is due only to the pres-
sure distribution and the shear stress distribution exerted over the total surface in contact
with the flow. The pressure and shear stress distributions are the two hands with which
nature reaches out and exerts a force on an object in a flow field. This is it; there is nothing
more. Understanding and appreciating this fact right from the start of your study of aero-
space engineering will save you a lot of grief and confusion in your future study and work.

A concise summary of the major ideas in this chapter is as follows:

1. The language of aerodynamics involves pressure, density, temperature, and
velocity. An illustration of the velocity field can be enhanced by drawing
streamlines for a given flow.

2. The source of all aerodynamic forces on a body is the pressure distribution and the
shear stress distribution over the surface.

3. A perfect gas is one in which intermolecular forces can be neglected. For a perfect
gas, the equation of state that relates p, p, and T is

23

where R is the specific gas constant.

4. To avoid confusion, errors, and a number of unnecessary conversion factors in the basic
equations, always use consistent units. In this book, SI units (newton, kilogram, meter,
second) and the English engineering system (pound, slug, foot, second) are used.
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Problems

2.1 Consider the low-speed flight of the Space Shuttle as it is nearing a landing. If
the air pressure and temperature at the nose of the shuttle are 1.2 atm and 300 K,
respectively, what are the density and specific volume?

2.2 Consider 1 kg of helium at 500 K. Assuming that the total internal energy of
helium is due to the mean kinetic energy of each atom summed over all the atoms,
calculate the internal energy of this gas. Note: The molecular weight of helium is 4.
Recall from chemistry that the molecular weight is the mass per mole of gas; that
is, 1 mol of helium contains 4 kg of mass. Also, 1 mol of any gas contains
6.02 x 10* molecules or atoms (Avogadro’s number).

2.3 Calculate the weight of air (in pounds) contained within a room 20 ft long, 15 ft
wide, and 8 ft high. Assume standard atmospheric pressure and temperature of
2116 1b/ft> and 59°F, respectively.

2.4 Comparing with the case of Prob. 2.3, calculate the percentage change in the total
weight of air in the room when the air temperature is reduced to —10°F (a very
cold winter day), assuming that the pressure remains the same at 2116 Ib/ft>.

2.5 1If 1500 Ib,, of air is pumped into a previously empty 900 ft* storage tank and the
air temperature in the tank is uniformly 70°F, what is the air pressure in the tank in
atmospheres?

2.6 In Prob. 2.5, assume that the rate at which air is being pumped into the tank is
0.5 1b,,/s. Consider the instant in time at which there is 1000 Ib,, of air in the tank.
Assume that the air temperature is uniformly 50°F at this instant and is increasing
at the rate of 1°F/min. Calculate the rate of change of pressure at this instant.

2.7 Assume that, at a point on the wing of the Concorde supersonic transport, the air
temperature is —10°C and the pressure is 1.7 x 10* N/m?. Calculate the density at
this point.

2.8 Ata point in the test section of a supersonic wind tunnel, the air pressure and
temperature are 0.5 X 10° N/m? and 240 K, respectively. Calculate the specific volume.

2.9 Consider a flat surface in an aerodynamic flow (say a flat sidewall of a wind
tunnel). The dimensions of this surface are 3 ft in the flow direction (the x direction)
and 1 ft perpendicular to the flow direction (the y direction). Assume that the
pressure distribution (in pounds per square foot) is given by p =2116 — 10x and is
independent of y. Assume also that the shear stress distribution (in pounds per square
foot) is given by 7, = 90/(x + 9)”2 and is independent of y as shown in figure below.
In these expressions, x is in feet, and x = 0 at the front of the surface. Calculate the
magnitude and direction of the net aerodynamic force on the surface.

MZLYT p(x) /4
% '1;W (x) 1ft
I~ 3ft ﬁ/




2.10

2.11

2.12

Problems

A pitcher throws a baseball at 85 miles per hour. The flow field over the baseball
moving through the stationary air at 85 miles per hour is the same as that over a
stationary baseball in an airstream that approaches the baseball at 85 miles per
hour. (This is the principle of wind tunnel testing, as will be discussed in Ch. 4.)
This picture of a stationary body with the flow moving over it is what we adopt
here. Neglecting friction, the theoretical expression for the flow velocity over the
surface of a sphere (like the baseball) is V=2V, sin 6. Here V.. is the airstream
velocity (the free-stream velocity far ahead of the sphere). An arbitrary point on
the surface of the sphere is located by the intersection of the radius of the sphere
with the surface, and @ is the angular position of the radius measured from a

line through the center in the direction of the free stream (i.e., the most forward
and rearward points on the spherical surface correspond to 8= 0° and 180°,
respectively). (See figure below.) The velocity V is the flow velocity at that
arbitrary point on the surface. Calculate the values of the minimum and maximum
velocity at the surface and the location of the points at which these occur.

Flow
v, = 85 mi/hr

Consider an ordinary, helium-filled party balloon with a volume of 2.2 ft>. The
lifting force on the balloon due to the outside air is the net resultant of the pressure
distribution exerted on the exterior surface of the balloon. Using this fact, we

can derive Archimedes’ principle, namely that the upward force on the balloon is
equal to the weight of the air displaced by the balloon. Assuming that the balloon
is at sea level, where the air density is 0.002377 slug/ft, calculate the maximum
weight that can be lifted by the balloon. Note: The molecular weight of air is 28.8
and that of helium is 4.

In the four-stroke, reciprocating, internal combustion engine that powers most
automobiles as well as most small general aviation aircraft, combustion of the
fuel—air mixture takes place in the volume between the top of the piston and

the top of the cylinder. (Reciprocating engines are discussed in Ch. 9.) The gas
mixture is ignited when the piston is essentially at the end of the compression
stroke (called fop dead center), when the gas is compressed to a relatively high
pressure and is squeezed into the smallest volume that exists between the top

of the piston and the top of the cylinder. Combustion takes place rapidly before
the piston has much time to start down on the power stroke. Hence, the volume
of the gas during combustion stays constant; that is, the combustion process is
at constant volume. Consider the case where the gas density and temperature at
the instant combustion begins are 11.3 kg/m® and 625 K, respectively. At the
end of the constant-volume combustion process, the gas temperature is 4000 K.
Calculate the gas pressure at the end of the constant-volume combustion.
Assume that the specific gas constant for the fuel-air mixture is the same as
that for pure air.
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2.13

2.14

2.15

2.16

217

2.18

2.19

2.20

2.21

2.22

For the conditions of Prob. 2.12, calculate the force exerted on the top of
the piston by the gas at (a) the beginning of combustion and (b) the end of
combustion. The diameter of the circular piston face is 9 cm.

In a gas turbine jet engine, the pressure of the incoming air is increased by
flowing through a compressor; the air then enters a combustor that looks vaguely
like a long can (sometimes called the combustion can). Fuel is injected in to the
combustor and burns with the air, and then the burned fuel-air mixture exits the
combustor at a higher temperature than the air coming into the combustor. (Gas
turbine jet engines are discussed in Ch. 9.) The pressure of the flow through

the combustor remains relatively constant; that is, the combustion process is at
constant pressure. Consider the case where the gas pressure and temperature
entering the combustor are 4 x 10° N/m? and 900 K, respectively, and the gas
temperature exiting the combustor is 1500 K. Calculate the gas density at (a) the
inlet to the combustor and (b) the exit of the combustor. Assume that the specific
gas constant for the fuel-air mixture is the same as that for pure air.

Throughout this book, you will frequently encounter velocities in terms of miles
per hour. Consistent units in the English engineering system and the SI are ft/sec
and m/sec, respectively. Consider a velocity of 60 mph. What is this velocity in
ft/sec and m/sec?

You might find it convenient to remember the results from Prob. 2.15. If you do,
then you can almost instantly convert velocities in mph to ft/sec or m/sec. For
example, using just the results of Prob. 2.15 for a velocity of 60 mph, quickly
convert the maximum flight velocity of the F-86H (shown in Fig. 2.15) of

692 mph at sea level to ft/sec and m/sec.

Consider a stationary, thin, flat plate with area of 2 m? for each face oriented
perpendicular to a flow. The pressure exerted on the front face of the plate (facing
into the flow) is 1.0715 x 10° N/m?, and is constant over the face. The pressure
exerted on the back face of the plate (facing away from the flow) is 1.01 x 10° N/m?,
and is constant over the face. Calculate the aerodynamic force in pounds on the
plate. Note: The effect of shear stress is negligible for this case.

The weight of the North American P-51 Mustang shown in Fig. 2.12b is 10,100 1b
and its wing planform area is 233 ft*>. Calculate the wing loading in both English
engineering and SI units. Also, express the wing loading in terms of the
nonconsistent unit kg;.

The maximum velocity of the P-51 shown in Fig. 2.12b is 437 mph at an altitude of
25,000 ft. Calculate the velocity in terms of km/hr and the altitude in terms of km.

The velocity of the Space Shuttle (Fig. 2.24) at the instant of burnout of the rocket
booster is 26,000 ft/sec. What is this velocity in km/sec?

By examining the scale drawing of the F4U-1D Corsair in Fig. 2.16, obtain

the length of the fuselage from the tip of the propeller hub to the rear tip of the
fuselage, and also the wingspan (linear distance between the two wing tips),

in meters.

The X-15 (see Fig. 5.92) was a rocketpowered research airplane designed to probe
the mysteries of hypersonic flight. In 2014, the X-15 still holds the records for the
fastest and highest flying piloted airplane (the Space Shuttle and Spaceship One,
in this context, are space ships, not airplanes). On August 22, 1963, pilot Joseph



2.23

2.24

2.25

2.26

Problems

Walker set the unofficial world altitude record of 354,200 feet. On October 3,
1967, pilot William J. Knight set the world speed record of 4520 mph (Mach 6.7)

(a) Convert Walker’s altitude record to meters and kilometers.
(b) Convert Knight’s speed record to meters per second.

The X-15 is air-launched from under the wing of a B-52 mother ship. Immediately
after launch, the pilot starts the XLR-99 rocket engine, which provides 57,000

Ib of thrust. For the first moments, the X-15 accelerates in horizontal flight.

The gross weight of the airplane at the start is 34,000 1b. Calculate the initial
acceleration of the airplane.

Frequently the acceleration of high-speed airplanes and rocket-powered space

[P BT

vehicles is quoted in “g’s,” which is the acceleration relative to the acceleration of
gravity. For example, an acceleration of 32.2 ft/sec? is one “g.” From the results
of Problem 2.23, calculate the number of g’s experienced by the X-15 pilot during
the initial acceleration.

In the United States, the thrust of a jet engine is usually quoted in terms of pounds
of thrust. Elsewhere, the thrust is generally stated in terms of kilo-newtons. The
thrust of the Rolls-Royce Trent 900 engine turbofan is rated at 373.7 kN. What is
the thrust in pounds?

The first stage of the Saturn rocket booster used to send the Apollo astronauts to
the moon was powered by five F-1 rocket engines. The thrust of rocket engines is
sometimes given in terms of kg force. For example, the thrust of the F-1 engine is
sometimes quoted as 690,000 kg. Calculate the F-1 thrust in the consistent units of
(a) newtons, and (b) pounds.
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CHAPTER

The Standard Atmosphere

Sometimes gentle, sometimes capricious, sometimes awful, never the same for
two moments together; almost human in its passions, almost spiritual in its tenderness,
almost divine in its infinity.

John Ruskin, The Sky

erospace vehicles can be divided into two basic categories: atmospheric

vehicles such as airplanes and helicopters, which always fly within the

sensible atmosphere; and space vehicles such as satellites, the Apollo
lunar vehicle, and deep-space probes, which operate outside the sensible atmo-
sphere. However, space vehicles do encounter the earth’s atmosphere during
their blastoffs from the earth’s surface and again during their reentries and re-
coveries after completion of their missions. If the vehicle is a planetary probe, it
may encounter the atmospheres of Venus, Mars, Jupiter, and so forth. Therefore,
during the design and performance of any aerospace vehicle, the properties of the
atmosphere must be taken into account.

The earth’s atmosphere is a dynamically changing system, constantly in a
state of flux. The pressure and temperature of the atmosphere depend on altitude,
location on the globe (longitude and latitude), time of day, season, and even
solar sunspot activity. To take all these variations into account when consider-
ing the design and performance of flight vehicles is impractical. Therefore, a
standard atmosphere is defined in order to relate flight tests, wind tunnel results,
and general airplane design and performance to a common reference. The stan-
dard atmosphere gives mean values of pressure, temperature, density, and other
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PREVIEW BOX

Before you jump into a strange water pond or dive
into an unfamiliar swimming pool, there are a few
things you might like to know. How cold is the
water? How clean is it? How deep is the water?
These are things that might influence your swimming
performance in the water or even your decision to go
swimming at all. Similarly, before we can study the
performance of a flight vehicle speeding through the
air, we need to know something about the proper-
ties of the air itself. Consider an airplane flying in
the atmosphere, or a space vehicle blasting through
the atmosphere on its way up to space, or a vehicle

coming back from space through the atmosphere. In
all these cases, the performance of the flight vehicle
is going to be dictated in part by the properties of the
atmosphere—the temperature, density, and pressure
of the atmosphere.

What are the properties of the atmosphere? We
know they change with altitude, but how do they
change? How do we find out? These important ques-
tions are addressed in this chapter. Before you can go
any further in your study of flight vehicles, you need
to know about the atmosphere. Here is the story—
please read on.

properties as functions of altitude; these values are obtained from experimen-
tal balloon and sounding-rocket measurements combined with a mathematical
model of the atmosphere. To a reasonable degree, the standard atmosphere re-
flects average atmospheric conditions, but this is not its main importance. Rather,
its main function is to provide tables of common reference conditions that can be
used in an organized fashion by aerospace engineers everywhere. The purpose
of this chapter is to give you some feeling for what the standard atmosphere is all
about and how it can be used for aerospace vehicle analyses.

We might pose this rather glib question: Just what is the standard atmo-
sphere? A glib answer is this: The tables in Apps. A and B at the end of this book.
Take a look at these two appendixes. They tabulate the temperature, pressure,
and density for different altitudes. Appendix A is in SI units, and App. B is in
English engineering units. Where do these numbers come from? Were they sim-
ply pulled out of thin air by somebody in the distant past? Absolutely not. The
numbers in these tables were obtained on a rational, scientific basis. One purpose
of this chapter is to develop this rational basis. Another purpose is to show you
how to use these tables.

The road map for this chapter is given in Fig. 3.1. We first run down the left
side of the road map, establishing some definitions and an equation from basic
physics (the hydrostatic equation) that are necessary tools for constructing the
numbers in the standard atmosphere tables. Then we move to the right side of the
road map and discuss how the numbers in the tables are actually obtained. We go
through the construction of the standard atmosphere in detail. Finally, we define
some terms that are derived from the numbers in the tables—the pressure, den-
sity, and temperature altitudes—that are in almost everyday use in aeronautics.

Note that the details of this chapter are focused on the determination of the
standard atmosphere for earth. The tables in Apps. A and B are for the earth’s
atmosphere. However, the physical principles and techniques discussed in this
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| The standard atmosphere

1 I

Construction of the standard
atmosphere: Variation
Absolute altitude of p, T, and r with altitude

Some definitions

Geometric altitude

Geopotential altitude

Definition of pressure, density,
and temperature altitudes —

Some physics: The
L hydrostatic equation

Figure 3.1 Road map for Chapter 3.

chapter also apply to constructing model atmospheres for other planets, such
as Venus, Mars, and Jupiter. The applicability of this chapter thus reaches far
beyond the earth.

It should be mentioned that several different standard atmospheres exist,
compiled by different agencies at different times, each using slightly different
experimental data in the models. For all practical purposes, the differences are
insignificant below 30 km (100,000 ft), which is the domain of contemporary
airplanes. A standard atmosphere in common use is the 1959 ARDC model
atmosphere. (ARDC stands for the U.S. Air Force’s previous Air Research and
Development Command, which is now the Air Force Research Laboratory.)
The atmospheric tables used in this book are taken from the 1959 ARDC model
atmosphere.

3.1 DEFINITION OF ALTITUDE

Intuitively, we all know the meaning of altitude. We think of it as the distance
above the ground. But like so many other general terms, it must be more precisely
defined for quantitative use in engineering. In fact, in the following sections we
define and use six different altitudes: absolute, geometric, geopotential, pressure,
temperature, and density altitudes.

First imagine that we are at Daytona Beach, Florida, where the ground is at
sea level. If we could fly straight up in a helicopter and drop a tape measure to
the ground, the measurement on the tape would be, by definition, the geometric
altitude h;—that is, the geometric height above sea level.

If we bored a hole through the ground to the center of the earth and extended
our tape measure until it hit the center, then the measurement on the tape would
be, by definition, the absolute altitude h,. If r is the radius of the earth, then
h, = hg + r. This is illustrated in Fig. 3.2.

The absolute altitude is important, especially for space flight, because the
local acceleration of gravity g varies with 4,. From Newton’s law of gravitation,
g varies inversely as the square of the distance from the center of the earth. By
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Figure 3.2 Definition of altitude.

letting g, be the gravitational acceleration at sea level, the local gravitational
acceleration g at a given absolute altitude 4, is

= LZZ r ’ 3.1
8 go(haj go(r+hcj

The variation of g with altitude must be taken into account when you are deal-
ing with mathematical models of the atmosphere, as discussed in the following
sections.

3.2 HYDROSTATIC EQUATION

We will now begin to piece together a model that will allow us to calculate
variations of p, p, and T as functions of altitude. The foundation of this model
is the hydrostatic equation, which is nothing more than a force balance on an
element of fluid at rest. Consider the small stationary fluid element of air shown
in Fig. 3.3. We take for convenience an element with rectangular faces, where
the top and bottom faces have sides of unit length and the side faces have an
infinitesimally small height dh;. On the bottom face, the pressure p is felt, which
gives rise to an upward force of p X 1 X 1 exerted on the fluid element. The top
face is slightly higher in altitude (by the distance dhg); and because pressure
varies with altitude, the pressure on the top face will differ slightly from that on
the bottom face by the infinitesimally small value dp. Hence, on the top face the
pressure p + dp is felt. It gives rise to a downward force of (p + dp)(1)(1) on the
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Figure 3.3 Force diagram for the hydrostatic equation.

fluid element. Moreover, the volume of the fluid element is (1)(1) dhg; = dh; and
because p is the mass per unit volume, the mass of the fluid element is simply
p()(1)dhs = p dhg. If the local acceleration of gravity is g, then the weight of
the fluid element is gp dhg, as shown in Fig. 3.3. The three forces shown in
Fig. 3.3—pressure forces on the top and bottom, and the weight—must balance
because the fluid element is not moving. Hence

p=p+dp+pgdhg

Thus dp = —pgdhg 3.2)

Equation (3.2) is the hydrostatic equation and applies to any fluid of density p;
for example, water in the ocean as well as air in the atmosphere.

Strictly speaking, Eq. (3.2) is a differential equation; that is, it relates an
infinitesimally small change in pressure dp to a corresponding infinitesimally
small change in altitude dhg, where in the language of differential calculus, dp
and dhg are differentials. Also note that g is a variable in Eq. (3.2); g depends on
hg as given by Eq. (3.1).

To be made useful, Eq. (3.2) should be integrated to give what we want:
the variation of pressure with altitude p = p(hg). To simplify the integration, we
make the assumption that g is constant throughout the atmosphere, equal to its
value at sea level g,. This is something of a historical convention in aeronautics.
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Hence we can write Eq. (3.2) as

dp =—pg,dh (3.3)

However, to make Egs. (3.2) and (3.3) numerically identical, the altitude £ in
Eq. (3.3) must be slightly different from 4 in Eq. (3.2) to compensate for the fact
that g is slightly different from g,. Suddenly we have defined a new altitude #,
which is called the geopotential altitude and which differs from the geomet-
ric altitude. To better understand the concept of geopotential altitude, consider
a given geometric altitude, /g, where the value of pressure is p. Let us now
increase the geometric altitude by an infinitesimal amount, dhg, such that the
new geometric altitude is hg+ dhg. At this new altitude, the pressure is p + dp,
where the value of dp is given by Eq. (3.2). Let us now put this same value of dp
in Eq. (3.3). Dividing Eq. (3.3) by (3.2), we have

(o))

Clearly, because g, and g are different, dh and dh; must be different; that is, the
numerical values of dh and dh that correspond to the same change in pressure,
dp, are different. As a consequence, the numerical values of & and A that corre-
spond to the same actual physical location in the atmosphere are different values.

For the practical mind, geopotential altitude is a “fictitious” altitude, defined
by Eq. (3.3) for ease of future calculations. However, many standard atmosphere
tables quote their results in terms of geopotential altitude, and care must be taken
to make the distinction. Again, geopotential altitude can be thought of as that ficti-
tious altitude that is physically compatible with the assumption of g = const = g,

3.3 RELATION BETWEEN GEOPOTENTIAL
AND GEOMETRIC ALTITUDES

We still seek the variation of p with geometric altitude p = p(h;). However, our
calculations using Eq. (3.3) will give, instead, p = p(h). Therefore, we need to
relate A to hg, as follows. Dividing Eq. (3.3) by (3.2), we obtain

1= 80 dh
g dhg
or dh = gith (3.4)
0
We substitute Eq. (3.1) into (3.4):
r2
G

By convention, we set both 4 and A; equal to zero at sea level. Now consider a
given point in the atmosphere. This point is at a certain geometric altitude s, and
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associated with it is a certain value of & (different from h;). Integrating Eq. (3.5)
between sea level and the given point, we have

J' he  dhg

h
dh = e
J 0 (rth)

e r
——dh, =1
J (rihgy o

Thus h= d h
r+hg ¢ (3.6)

where & is geopotential altitude and 4 is geometric altitude. This is the desired
relation between the two altitudes. When we obtain relations such as p = p(h), we
can use Eq. (3.6) to subsequently relate p to hg.

A quick calculation using Eq. (3.6) shows that there is little difference
between h and A for low altitudes. For such a case, hg << r, r/(r + hg) = 1; hence
h = hg. Putting in numbers, r = 6.356766 x 10° m (at a latitude of 45°), and if h; =
7 km (about 23,000 ft), then the corresponding value of # is, from Eq. (3.6), h =
6.9923 km—about 0.1 of 1 percent difference! Only at altitudes above 65 km
(213,000 ft) does the difference exceed 1 percent. (Note that 65 km is an altitude
at which aerodynamic heating of NASA’s Space Shuttle becomes important dur-
ing reentry into the earth’s atmosphere from space.)

3.4 DEFINITION OF THE STANDARD
ATMOSPHERE

We are now in a position to obtain p, T, and p as functions of 4 for the stan-
dard atmosphere. The keystone of the standard atmosphere is a defined variation
of T with altitude, based on experimental evidence. This variation is shown in
Fig. 3.4. Note that it consists of a series of straight lines, some vertical (called
the constant-temperature, or isothermal, regions) and others inclined (called
the gradient regions). Given T = T(h) as defined by Fig. 3.4, then p = p(h) and
p = p(h) follow from the laws of physics, as shown in the following.
First consider again Eq. (3.3):

dp =—-pg,dh
Divide by the equation of state, Eq. (2.3):

dp __psdh __ & .

3.7

p pRT ~ RT

Consider first the isothermal (constant-temperature) layers of the standard atmo-
sphere, as given by the vertical lines in Fig. 3.4 and sketched in Fig. 3.5. The
temperature, pressure, and density at the base of the isothermal layer shown in
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Figure 3.4 Temperature distribution in the standard atmosphere.

Fig. 3.5 are T, p;, and p,, respectively. The base is located at a given geopo-
tential altitude %,. Now consider a given point in the isothermal layer above the
base, where the altitude is 4. We can obtain the pressure p at i by integrating
Eq. (3.7) between h, and h:

j"d—pz—ﬁ " dh 3.8)
Pp RT 4m



118

CHAPTER 3 The Standard Atmosphere

_—

/Isothermal layer
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Base of isothermal layer
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|
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Figure 3.5 Isothermal layer.
Note that gy, R, and T are constants that can be taken outside the integral. (This
clearly demonstrates the simplification obtained by assuming that g = g, = const,

and therefore dealing with geopotential altitude % in the analysis.) Performing
the integration in Eq. (3.8), we obtain

14 8o
In==-2%(p_p
n RT( )

P
or ya — e—[gO/(RT)](h—hl) (39)
P
From the equation of state,
p_pPr_p
oAl P
Thus P _ o lsolRTiei) (3.10)
P

Equations (3.9) and (3.10) give the variation of p and p versus geopotential alti-
tude for the isothermal layers of the standard atmosphere.

Considering the gradient layers, as sketched in Fig. 3.6, we find that the
temperature variation is linear and is geometrically given as

r-1,_dr_
h—h  dh
where a is a specified constant for each layer obtained from the defined tempera-

ture variation in Fig. 3.4. The value of a is sometimes called the lapse rate for
the gradient layers.
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Gradient region

Base of gradient region
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Figure 3.6 Gradient layer.
dT
a=—
dh
1
Thus dh=—dT
a
We substitute this result into Eq. (3.7):
dp __& dT (3.11)
p aR T

Integrated between the base of the gradient layer (shown in Fig. 3.6) and some
point at altitude 4, also in the gradient layer, Eq. (3.11) yields

yd_l?__& rdr
Pop a aR‘'n T

lnﬁz—g0 lnT

p aR T,

T ~80/(aR)
Thus L _ [—J (3.12)
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From the equation of state,

Hence Eq. (3.12) becomes
pT T ~80/(aR)
pT - (Tl j

E ~ [zj—[gO/(aR)J—l
o \T

~((zg/@R)I+1)
or P _ [l] (3.13)
P 1

Recall that the variation of 7 is linear with altitude and is given the specified
relation

[T =T,+a(h—h)| (3.14)

Equation (3.14) gives T = T(h) for the gradient layers; when it is plugged into
Eq. (3.12), we obtain p = p(h); similarly, from Eq. (3.13) we obtain p = p(h).

Now we can see how the standard atmosphere is pieced together. Looking
at Fig. 3.4, start at sea level (h = 0), where standard sea level values of pressure,
density, and temperature—p,, p,, and T, respectively—are

p, =1.01325%x10° N/m* =2116.2 Ib/ft?

p, =1.2250 kg/m® = 0.002377 slug/ft’
T,=288.16 K=518.69°R

These are the base values for the first gradient region. Use Eq. (3.14) to
obtain values of T as a function of 4 until T = 216.66 K, which occurs at 7 =
11.0 km. With these values of 7, use Eqgs. (3.12) and (3.13) to obtain the corre-
sponding values of p and p in the first gradient layer. Next, starting at /= 11.0 km
as the base of the first isothermal region (see Fig. 3.4), use Egs. (3.9) and (3.10)
to calculate values of p and p versus A, until # =25 km, which is the base of the
next gradient region. In this manner, with Fig. 3.4 and Egs. (3.9), (3.10), and
(3.12) to (3.14), we can construct a table of values for the standard atmosphere.

Such a table is given in App. A for SI units and App. B for English engineer-
ing units. Look at these tables carefully and become familiar with them. They
are the standard atmosphere. The first column gives the geometric altitude, and
the second column gives the corresponding geopotential altitude obtained from
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DESIGN BOX

The first step in the design process of a new aircraft
is the determination of a set of specifications, or re-
quirements, for the new vehicle. These specifications
may include such performance aspects as a stipulated
maximum velocity at a given altitude or a stipulated
maximum rate-of-climb at a given altitude. These
performance parameters depend on the aerodynamic
characteristics of the vehicle, such as lift and drag. In
turn, the lift and drag depend on the properties of the

atmosphere. When the specifications dictate certain
performance at a given altitude, this altitude is taken
to be the standard altitude in the tables. Therefore, in
the preliminary design of an airplane, the designer
uses the standard atmosphere tables to define the pres-
sure, temperature, and density at the given altitude.
In this fashion, many calculations made during the
preliminary design of an airplane contain information
from the standard altitude tables.
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Eq. (3.6). The third through fifth columns give the corresponding standard values
of temperature, pressure, and density, respectively, for each altitude, obtained
from the previous discussion.

We emphasize again that the standard atmosphere is a reference atmosphere
only and certainly does not predict the actual atmospheric properties that may exist
at a given time and place. For example, App. A says that at an altitude (geometric)
of 3 km, p=0.70121 x 105 N/m?, T=268.67 K, and p=0.90926 kg/m>. In reality,
situated where you are, if you could right now levitate yourself to 3 km above sea
level, you would most likely feel a p, 7, and p different from the values obtained
from App. A. The standard atmosphere allows us only to reduce test data and
calculations to a convenient, agreed-upon reference, as will be seen in subsequent
sections of this book.

Comment: Geometric and Geopotential Altitudes Revisited We now can
appreciate better the meaning and significance of the geometric altitude, A,
and the geopotential altitude, #. The variation of the properties in the standard
atmosphere are calculated from Eqs. (3.9) to (3.14). These equations are derived
using the simplifying assumption of a constant value of the acceleration of grav-
ity equal to its value at sea level; that is, g = constant = g,. Consequently, the alti-
tude that appears in these equations is, by definition, the geopotential altitude, 4.
Examine these equations again—you see g, and & appearing in these equations,
not g and hg. The simplification obtained by assuming a constant value of g is the
sole reason for defining the geopotential altitude. This is the only use of geopo-
tential altitude we will make in this book—for the calculation of the numbers that
appear in Apps. A and B. Moreover, because & and A are related via Eq. (3.6),
we can always obtain the geometric altitude, /g, that corresponds to a specified
value of geopotential altitude, . The geometric altitude, &g, is the actual height
above sea level and therefore is more practical. That is why the first column in
Apps. A and B is hg, and the entries are in even intervals of As. The second col-
umn gives the corresponding values of /4, and these are the values used to gener-
ate the corresponding numbers for p, p, and T via Egs. (3.9) to (3.14).
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In the subsequent chapters in this book, any dealings with altitude involving
the use of the standard atmosphere tables in Apps. A and B will be couched in
terms of the geometric altitude, ;. For example, if reference is made to a “stan-
dard altitude” of 5 km, it means a geometric altitude of s; = 5 km. Now that we
have seen how the standard atmosphere tables are generated, after the present
chapter we will have no reason to deal with geopotential altitude.

You should now have a better understanding of the statement made at the
end of Sec. 3.2 that geopotential altitude is simply a “fictitious” altitude, defined
by Eq. (3.3) for the single purpose of simplifying the subsequent derivations.

Calculate the standard atmosphere values of 7, p, and p at a geopotential altitude of 14 km.

H Solution
Remember that T is a defined variation for the standard atmosphere. Hence, we can
immediately refer to Fig. 3.4 and find that at 7 = 14 km,

T = 216.66K

To obtain p and p, we must use Eqgs. (3.9) to (3.14), piecing together the different regions
from sea level up to the given altitude with which we are concerned. Beginning at sea
level, the first region (from Fig. 3.4) is a gradient region from 4 =0 to 4 = 11.0 km. The
lapse rate is

,_dT _216.66-288.16

== =-6.5 K/km
dh 11.0-0

or a=-0.0065 K/m

Therefore, using Egs. (3.12) and (3.13), which are for a gradient region and where the
base of the region is sea level (hence p; = 1.01 x 10° N/m? and p, = 1.23 kg/m®), we find
thatat h=11.0 km

T —go/{aR) (21666 j9 8/[-0.0065(287)]
=p|— =(1.01x10°
P p'(T]j ( )(288.16

where g, = 9.8 m/s? in SI units. Hence p (at 2= 11.0 km) = 2.26 x 10* N/m>.

T ~[g0/(aR)+1]
P=hH

T
216 —{9.8/[-0.0065(287)+1}
=(1_23)( 666)

288.16

=0.367 kg/m* ath=11.0km
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These values of p and p now form the base values for the first isothermal region (see
Fig. 3.4). The equations for the isothermal region are Egs. (3.9) and (3.10), where now
p1 =226 x 10* N/m? and p, = 0.367 kg/m*. For h=14 km, h — h; =14 - 11 =3 km =
3000 m. From Eq. (3.9),

p=p o B (RTNU=h) (2.26 % 104)e—[9.8/287(2I6.66)](3000)
=p =(2.

p=1.41x10* N/m*

From Eq. (3.10),

p 1.41x10* 7
H =p—=0367T—+=10.23 kg/
ence P=p 2.26x%10*

P

These values check, within roundoff error, with the values given in App. A. Note: This
example demonstrates how the numbers in Apps. A and B are obtained.
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For approximate, closed-form engineering calculations of airplane performance (Ch. 6), a
simple equation for the variations of density with altitude is useful. Denoting the standard
sea-level density by p,, an approximate exponential variation of density with altitude %
can be written as

=e (3.15)

where n is a constant.

(a) Derive the value of n so that Eq. (3.15) gives the exact density at 2= 36,000 ft (11
km, which is the upper boundary of the first gradient region shown in Fig. 3.4).

(b) Using this value of n, calculate the density at 5000 ft, 10,000 ft, 20,000 ft,
30,000 ft, and 40,000 ft from Eq. (3.15), and compare your results with the exact numeri-
cal values from Appendix B.

H Solution
(a) From Appendix B, for 36,000 ft, p = 7.1028 x 10~ slug/ft’. From Eq. (3.15), written
at h = 36,000 ft,

7.1028 107" 36000m
2.3769x10°
02988 — 6—36,000 n
In(0.2988)=-36,000 n
L, —1.208

= =3.3555%10"°
-36,000
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P _ 33555410 1
Hence, P

or L _ s (3.16)

where 4 is in feet.
(b) Comparing the results from Eq. (3.16) with the exact results from App. B, we have

h p (Eq.3.16) p (App. B)
slug slug

@ [F] (F) Difference

5,000 0.00201 0.00205 2%
10,000 0.00170 0.00176 3.4%
20,000 0.00121 0.00127 4.7%
30,000 0.000869 0.000891 2.5%
40,000 0.000621 0.000587 -5.8%

Comment From sea level to 40,000 ft, Eq. (3.16) yields the atmospheric density to within
5.8%, or better. These results are accurate enough for approximate engineering calcula-
tions. Eq. (3.16) is used in Example 6.12 for the approximate calculation of the absolute
ceiling for an airplane.

In both the gradient and isothermal regions of the standard atmosphere, the pressure
decreases with an increase in altitude. Question: Does pressure decrease faster in the
gradient regions or in the isothermal regions?

H Solution
Consider an infinitesimally small increase in altitude, dh. The corresponding infinitesi-
mally small change in pressure is dp, and is given by Eq. (3.7), repeated here:

dp _ _ &

s RT dh 3.7
To interpret the physical meaning of the differential relationship given by Eq. (3.7),
consider a given altitude & where the pressure is p. If we increase altitude by an infini-
tesimally small amount, dh, the corresponding infinitesimally small change in pres-
sure is dp. The ratio dp/p is the fractional change in pressure. (You can also interpret
this as a “percentage change” in pressure, which in reality is given by 100 (dp/p).)
The rate of change of this fraction with respect to a change in altitude, dh, is repre-
sented by

dp
» __ & (3.17)
dh RT
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obtained from Eq. (3.7). To properly answer the question posed in this example, we need
dp

to evaluate the value of (TI) in the isothermal regions and the gradient regions. Clearly,

from Eq. (3.17), this value depends only on the local temperature at the given altitude 4.

From this, we make the following observations:

1. In the first gradient region, where T decreases with altitude (see Fig. 3.4), the absolute

()
h

rate). For example, at the base of the first gradient region, where 7 = 0 and T =
288.1 6 K, we have, from Eq. (3.17)

value of

becomes larger as & increases (i.e., the pressure decreases at a faster

dp

7__&: 98

= - —_1.185x107 per meter
dh RT (287)(288.16)

At the top of the first gradient region, where 7 =11 km and 7= 216.66 K, we have

L2 9.8
v 8o 7%  _ 1576x10*per meter
dh  RT  (287)(216.66)

Clearly, in the first gradient region, the pressure decreases at a faster rate as & increases.

In contrast, in the isothermal region, because T is constant in this region, the pressure

decreases at the same rate with altitude; that is, from 4 = 11 km to & = 25 km, the value
dp

o

of - 1.576x10" per meter; it does not change with altitude. However, examining

the second gradient region in Fig. 3.4, where T increases with an increase in A, the press-
ure decreases at a slower rate as h increases.

Conclusion: There is no pat answer to the question posed in this example. The fractional
rate of change of pressure with respect to altitude at any altitude just depends on the value
of T at that altitude.
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3.5 PRESSURE, TEMPERATURE,
AND DENSITY ALTITUDES

With the tables of Apps. A and B in hand, we can now define three new
“altitudes”—pressure, temperature, and density altitudes. This is best done by
example. Imagine that you are in an airplane flying at some real, geometric alti-
tude. The value of your actual altitude is immaterial for this discussion. However,
at this altitude, you measure the actual outside air pressure to be 6.16 x 10* N/m?,
From App. A, you find that the standard altitude that corresponds to a pressure
of 6.16 x 10* N/m? is 4 km. Therefore, by definition, you say that you are flying
at a pressure altitude of 4 km. Simultaneously, you measure the actual outside
air temperature to be 265.4 K. From App. A, you find that the standard altitude
that corresponds to a temperature of 265.4 K is 3.5 km. Therefore, by definition,
you say that you are flying at a temperature altitude of 3.5 km. Thus, you are
simultaneously flying at a pressure altitude of 4 km and a temperature altitude of
3.5 km while your actual geometric altitude is yet a different value. The definition
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of density altitude is made in the same vein. These quantities—pressure, tempera-
ture, and density altitudes—are just convenient numbers that, via App. A or B,
are related to the actual p, T, and p for the actual altitude at which you are flying.

EXAMPLE 3.5

If an airplane is flying at an altitude where the actual pressure and temperature are 4.72 X
10* N/m? and 255.7 K, respectively, what are the pressure, temperature, and density
altitudes?

H Solution
For the pressure altitude, look in App. A for the standard altitude value corresponding to
p =4.72 x 10* N/m? This is 6000 m. Hence

[Pressure altitude = 6000 m = 6 km|

For the temperature altitude, look in App. A for the standard altitude value corresponding
to T=255.7 K. This is 5000 m. Hence

Temperature altitude = 5000 m = 5 km

For the density altitude, we must first calculate p from the equation of state:
_p _ 472x10°
RT  287(255.7)

Looking in App. A and interpolating between 6.2 and 6.3 km, we find that the standard
altitude value corresponding to p = 0.643 kg/m® is about 6240 m. Hence

=0.643 kg/m’

Density altitude = 6240 m = 6.24 km

Note that temperature altitude is not a unique value. The answer for temperature alti-
tude could equally well be 5.0, 38.2, or 59.5 km because of the multivalued nature of the
altitude-versus-temperature function. In this section, only the lowest value of temperature
altitude is used.

The flight test data for a given airplane refer to a level-flight maximum-velocity run made
at an altitude that simultaneously corresponded to a pressure altitude of 30,000 ft and
density altitude of 28,500 ft. Calculate the temperature of the air at the altitude at which
the airplane was flying for the test.

H Solution
From App. B:
For pressure altitude = 30,000 ft:

p =629.66 Ib/ft’
For density altitude = 28,500 ft:

p=0.9408x107" slug/ft’
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These are the values of p and p that simultaneously existed at the altitude at which the
airplane was flying. Therefore, from the equation of state,

P 629.66 _

T = —_—=
PR (0.94082x107°)(1716)
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Consider an airplane flying at some real, geometric altitude. The outside (ambient) pres-
sure and temperature are 5.3 X 10* N/m? and 253 K, respectively. Calculate the pressure
and density altitudes at which this airplane is flying.

H Solution

Consider the ambient pressure of 5.3 x 10* N/m?. In App. A, there is no precise entry for
this number. It lies between the values p, = 5.331 x 10* N/m? at altitude &g, = 5100 m
and p, = 5.2621 x 10* N/m? at altitude %, = 5200 m. We have at least two choices. We
could simply use the nearest entry in the table, which is for an altitude &5, = 5100 m, and
say that the answer for pressure altitude is 5100 m. This is acceptable if we are making
only approximate calculations. However, if we need greater accuracy, we can interpolate
between entries. Using linear interpolation, the value of 4 corresponding to p = 5.3 X
10* N/m? is

hg = ha,1 + (haﬁz - hGl)(u]
Pr— D2

5.331-5.2621
=5100+100(0.4662) =5146.6 m

he =5100+(5200—5100)( 5.33175.3 j

The pressure altitude at which the airplane is flying is 5146.6 m. (Note that in this
example and in Examples 3.4 and 3.5, we are interpreting the word altitude in the
tables to be the geometric altitude & rather than the geopotential altitude 4. This is
for convenience because /i is tabulated in round numbers, in contrast to the column
for h. Again, at the altitudes for conventional flight, the difference between h; and &
is not significant.)

To obtain the density altitude, calculate the density from the equation of state:

p _ 53x10

=—=_—"""=0.72992 kg/m’
RT  (287)(253)

p

Once again we note that this value of p falls between two entries in the table. It falls between
he, =5000 m where p, =0.73643 kg/m® and /¢, = 5100 m where p, =0.72851 kg/m®. (Note
that these subscripts denote different lines in the table from those used in the first part of this
example. It is good never to become a slave to subscripts and symbols. Just always keep in
mind the significance of what you are doing.) We could take the nearest entry, which is for
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an altitude ;= 5100 m, and say that the answer for the density altitude is 5100 m. However,
for greater accuracy, let us linearly interpolate between the two entries:

hg =hg, + (hg, — hGl)(M]
P=P
0.73643 — 0.72992J
0.73643-0.72851
=50004+100(0.82197) =5082.2 m

=5000+(5100- 5000)(

The density altitude at which the airplane is flying is 5082.2 m.

The ambient temperature in the air ahead of an airplane in flight is 240 K. At what tem-
perature altitude is the airplane flying?

H Solution

The purpose of this example is to show the ambiguity of the use of temperature altitude.
First, just examine Fig. 3.4. Go the abscissa and find T = 240 K. Then, simply cast your
eyes upward. Within the scale of this figure, there are three different altitudes that have
a temperature of 240 K. Using App. A, these altitudes are (to the nearest entry) 7.4 km,
33 km, and (returning to Fig. 3.4) about 63 km. Of course, the airplane cannot be at all
three altitudes simultaneously. We conclude that the definition of temperature altitude
has limited usefulness.

3.6 HISTORICAL NOTE: THE STANDARD
ATMOSPHERE

With the advent of ballooning in 1783 (see Ch. 1), people suddenly became inter-
ested in acquiring a greater understanding of the properties of the atmosphere
above ground level. However, no compelling reason for such knowledge arose
until the coming of heavier-than-air flight in the 20th century. As we will see in
subsequent chapters, the flight performance of aircraft depends on such proper-
ties as the pressure and density of the air. Thus, a knowledge of these properties,
or at least some agreed-upon standard for worldwide reference, is absolutely
necessary for intelligent aeronautical engineering.

The situation in 1915 was summarized by C. F. Marvin, Chief of the U.S.
Weather Bureau and chairman of an NACA subcommittee to investigate and
report on the existing status of atmospheric data and knowledge. In his “Pre-
liminary Report on the Problem of the Atmosphere in Relation to Aeronautics,”
NACA Report No. 4, 1915, Marvin wrote;

The Weather Bureau is already in possession of an immense amount of data con-
cerning atmospheric conditions, including wind movements at the earth’s surface.
This information is no doubt of distinct value to aeronautical operations, but it needs
to be collected and put in form to meet the requirements of aviation.
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The following four years saw such efforts to collect and organize atmo-
spheric data for use by aeronautical engineers. In 1920 the Frenchman A. Tous-
saint, director of the Aerodynamic Laboratory at Saint-Cyr-1’Ecole, France,
suggested the following formula for the temperature decrease with height:

T = 15— 0.0065h

Here T is in degrees Celsius and # is the geopotential altitude in meters.
Toussaint’s formula was formally adopted by France and Italy with the Draft
of Inter-Allied Agreement on Law Adopted for the Decrease of Temperature
with Increase of Altitude, issued by the Ministere de la Guerre, Aeronautique
Militaire, Section Technique, in March 1920. One year later, England followed
suit. The United States was close behind. Since Marvin’s report in 1915, the U.S.
Weather Bureau had compiled measurements of the temperature distribution
and found Toussaint’s formula to be a reasonable representation of the observed
mean annual values. Therefore, at its executive committee meeting of December
17, 1921, NACA adopted Toussaint’s formula for airplane performance testing,
with this statement: “The subcommittee on aerodynamics recommends that for
the sake of uniform practice in different countries that Toussaint’s formula be
adopted in determining the standard atmosphere up to 10 km (33,000 ft). .. .”

Much of the technical data base that supported Toussaint’s formula was
reported in 1922, in NACA Report No. 147, “Standard Atmosphere,” by
Willis Ray Gregg. Based on free-flight tests at McCook Field in Dayton,
Ohio, and at Langley Field in Hampton, Virginia, and on the other flights at
Washington, District of Columbia, as well as artillery data from Aberdeen,
Maryland, and Dahlgren, Virginia, and sounding-balloon observations at Fort
Omaha, Nebraska, and St. Louis, Missouri, Gregg was able to compile a table
of mean annual atmospheric properties. An example of his results follows:

Mean Annual Temperature
Temperature in from Toussaint’s
Altitude, m United States, K Formula, K
0 284.5 288

1000 281.0 281.5

2000 277.0 275.0

5000 260.0 255.5
10,000 228.5 223.0

Clearly, Toussaint’s formula provided a simple and reasonable representa-
tion of the mean annual results in the United States. This was the primary mes-
sage in Gregg’s report in 1922. However, the report neither gave extensive tables
nor attempted to provide a document for engineering use.

Thus it fell to Walter S. Diehl (who later became a well-known aerodynamicist
and airplane designer as a captain in the Naval Bureau of Aeronautics) to provide
the first practical tables for a standard atmosphere for aeronautical use. In 1925, in
NACA Report No. TR 218, titled (again) “Standard Atmosphere,” Diehl presented
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extensive tables of standard atmospheric properties in both metric and English
units. The tables were in increments of 50 m up to an altitude of 10 km and then in
increments of 100 m up to 20 km. In English units, the tables were in increments
of 100 ft up to 32,000 ft and then in increments of 200 ft up to a maximum altitude
of 65,000 ft. Considering the aircraft of that day (see Fig. 1.31), these tables were
certainly sufficient. Moreover, starting from Toussaint’s formula for 7 up to 10,769
m, then assuming that 7'= const = —=55°C above 10,769 m, Diehl obtained p and p
in precisely the same fashion as described in the previous sections of this chapter.

The 1940s saw the beginning of serious rocket flights, with the German
V-2 and the initiation of sounding rockets. And airplanes were flying higher than
ever. Then, with the advent of intercontinental ballistic missiles in the 1950s and
space flight in the 1960s, altitudes began to be quoted in terms of hundreds of
miles rather than feet. Therefore, new tables of the standard atmosphere were
created, mainly extending the old tables to higher altitudes. Popular among the
various tables is the ARDC 1959 Standard Atmosphere, which is used in this
book and is given in Apps. A and B. For all practical purposes, the old and new
tables agree for altitudes of greatest interest. Indeed, it is interesting to compare
values, as shown in the following:

T from T from

Altitude, Diehl, 1925, ARDC, 1959,

m K K

0 288 288.16
1000 281.5 281.66
2000 275.0 275.16
5000 255.5 255.69
10,000 223.0 223.26
10,800 218.0 218.03
11,100 218.0 216.66
20,000 218.0 216.66

Diehl’s standard atmosphere from 1925, at least up to 20 km, is just as good
as the values today.

3.7 SUMMARY AND REVIEW

A standard atmosphere table, such as in App. A or B of this book, will prove to be among
the most useful references you have throughout your career in aerospace engineering. It
is essential for the calculation of airplane performance, as discussed and illustrated in
Ch. 6. It is essential for the rational comparison of flight test data obtained from differ-
ent sources. It helps to put data from various wind tunnel facilities on a common basis.
Also, the equations used to compile the standard atmosphere can be programmed into
your hand calculator, freeing you from having to read the tables. The tables, however,
are particularly useful for carrying out “back-of-the-envelope” engineering calculations.

No table of the standard atmosphere existed at the time of the Wright brothers. They
did not need one because all their work was done essentially at sea level. For their cal-
culations of lift and drag, they did, however, need a value of the ambient air density.



3.7 Summary and Review

This they had indirectly through a now-anachronistic empirical factor called “Smeaton’s
coefficient,” which was based in part on the value of sea-level density, along with a
reasonably accurate value of Smeaton’s coefficient as measured by Samuel Langley at the
Smithsonian Institution. (For more details, see John Anderson, A History of Aerodynamics
and Its Impact on Flying Machines, Cambridge University Press, New York, 1997.) By
the time of World War I, however, airplanes were regularly flying at altitudes of 10,000
ft and higher, and the lack of a standard table of the variation of atmospheric properties
with altitude was becoming a real stumbling block for airplane designers. This prompted
the big push for the compilation of standard atmospheric data that is described in Sec. 3.6.

The equations used for compilation of the standard altitude tables for air, as devel-
oped in this chapter, are the same as used for the calculation of the properties throughout
foreign planetary atmospheres. This should come as no surprise, as the physics underly-
ing the calculation of atmospheric properties on earth are the same as on Venus, Jupiter,
and so forth. Therefore, this chapter is relevant to space flight and the design of space
vehicles, the subject of Ch. 8.

Finally, we emphasize that the tables of the standard atmosphere in Apps. A and B did
not simply come out of thin air. The values tabulated there were obtained from the applica-
tion of physics, as embodied in the hydrostatic equation and the equation of state. To help
reinforce this concept, the following lists some of the major ideas discussed in this chapter:

1. The standard atmosphere is defined in order to relate flight tests, wind tunnel
results, and general airplane design and performance to a common reference.

2. The definitions of the standard atmospheric properties are based on a given temperature
variation with altitude, representing a mean of experimental data. In turn, the pressure
and density variations with altitude are obtained from this empirical temperature
variation by using the laws of physics. One of these laws is the hydrostatic equation:

dp =—-pg dhg (3.2)
3. In the isothermal regions of the standard atmosphere, the pressure and density
variations are given by
P _ P _ isolRDN)
—=—=c
P (3.9) and (3.10)

4. In the gradient regions of the standard atmosphere, the pressure and density
variations are given by, respectively,

—go/{aR)
r_ (1] (3.12)
)21 T
—{[g0/{aR)]+1}
P [1] ' (3.13)
p AT

where T=T, + a(h — h;) and a is the given lapse rate.

5. The pressure altitude is that altitude in the standard atmosphere that corresponds
to the actual ambient pressure encountered in flight or laboratory experiments.
For example, if the ambient pressure of a flow, no matter where it is or what it
is doing, is 393.12 1b/ft?, the flow is said to correspond to a pressure altitude
of 40,000 ft (see App. B). The same idea can be used to define density and
temperature altitudes.
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Problems

3.1.

3.2

3.3.

34.

3.5.

3.6.
3.7.

3.8.

3.9.

3.10.

3.11.

At 12 km in the standard atmosphere, the pressure, density, and temperature

are 1.9399 x 10* N/m?, 3.1194 x 107" kg/m?, and 216.66 K, respectively. Using

these values, calculate the standard atmospheric values of pressure, density, and
temperature at an altitude of 18 km, and check with the standard altitude tables.

Consider an airplane flying at some real altitude. The outside pressure and
temperature are 2.65 x 10* N/m? and 220 K, respectively. What are the pressure
and density altitudes?

During a flight test of a new airplane, the pilot radios to the ground that she is in
level flight at a standard altitude of 35,000 ft. What is the ambient air pressure far
ahead of the airplane?

Consider an airplane flying at a pressure altitude of 33,500 ft and a density altitude
of 32,000 ft. Calculate the outside air temperature.

At what value of the geometric altitude is the difference /4 — h; equal to 2 percent
of the geopotential altitude, h?

Using Toussaint’s formula, calculate the pressure at a geopotential altitude of 5 km.

The atmosphere of Jupiter is essentially made up of hydrogen, H,. For H,, the
specific gas constant is 4157 J/(kg)(K). The acceleration of gravity of Jupiter is
24.9 m/s%. Assuming an isothermal atmosphere with a temperature of 150 K and
assuming that Jupiter has a definable surface, calculate the altitude above that
surface where the pressure is one-half the surface pressure.

An F-15 supersonic fighter aircraft is in a rapid climb. At the instant it passes
through a standard altitude of 25,000 ft, its time rate of change of altitude

is 500 ft/s, which by definition is the rate-of-climb, discussed in Ch. 6.
Corresponding to this rate-of-climb at 25,000 ft is a time rate of change of ambient
pressure. Calculate this rate of change of pressure in units of pounds per square
foot per second.

Assume that you are ascending in an elevator at sea level. Your eardrums are very
sensitive to minute changes in pressure. In this case, you are feeling a 1 percent
decrease in pressure per minute. Calculate the upward speed of the elevator in
meters per minute.

Consider an airplane flying at an altitude where the pressure and temperature are
530 Ib/ft? and 390°R, respectively. Calculate the pressure and density altitudes at
which the airplane is flying.

Consider a large rectangular tank of water open to the atmosphere, 10 ft deep, with
walls of length 30 ft each. When the tank is filled to the top with water, calculate
the force (in tons) exerted on the side of each wall in contact with the water. The
tank is located at sea level. (Note: The specific weight of water is 62.4 1b,/ft*, and
1 ton = 2000 Ib,.) (Hint: Use the hydrostatic equation.)



Problems

3.12. A discussion of the entry of a space vehicle into the earth’s atmosphere after it

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

has completed its mission in space appears in Ch. 8. An approximate analysis of
the vehicle motion and aerodynamic heating during atmospheric entry assumes an
approximate atmospheric model called the exponential atmosphere, where the air
density variation with altitude is assumed to be

— RT
ﬁze 8oh/(RT)

Po

where p, is the sea-level density and 4 is the altitude measured above sea level.
This equation is only an approximation for the density variation with altitude
throughout the whole atmosphere, but its simple form makes it useful for
approximate analyses. Using this equation, calculate the density at an altitude of
45 km. Compare your result with the actual value of density from the standard
altitude tables. In the preceding equation, assume that 7'= 240 K (a reasonable
representation for the value of the temperature between sea level and 45 km,
which you can see by scanning down the standard atmosphere table).

The entries for the standard altitude in Apps. A and B are given at distinct,
regularly spaced values of 4. To obtain the values of pressure, temperature, and
density at an altitude between two adjacent entries in the table, linear interpolation
can be used as an approximation. Using the tables, obtain the pressure, density,
and temperature at a standard altitude of 3.035 km.

For a standard altitude of 3.035 km, calculate the exact values for pressure,
density, and temperature using the exact equations from Sec. 3.4 in this chapter.
Compare these exact values with the approximate values obtained in Prob. 3.13.

Section 3.3 states that only at altitudes above 65 km does the difference between
the geometric and geopotential altitudes exceed 1 percent. Calculate the exact
value of the geometric altitude at which this difference is precisely 1 percent.

For the flight of airplanes in the earth’s atmosphere, the variation of the
acceleration of gravity with altitude is generally ignored. One of the highest-flying
aircraft has been the Lockheed U-2 (see Fig. 5.52) which was designed to cruise
at 70,000 ft. How much does the acceleration of gravity at this altitude differ from
the value at sea level?

The X-15 hypersonic research airplane (see Fig. 5.92) set the altitude record for
airplanes on August 22, 1963, when test pilot Joseph Walker achieved 354,200 ft.
What is the acceleration of gravity at this altitude? How much does it differ from
that at sea level?

Toussaint’s formula was used in the early 1920s to give the temperature

variation with altitude. This was in the immediate post-World War I period when
conventional airplanes flew at altitudes on the order of 10,000 ft. or lower. Compare
the result for temperature obtained from Toussaint’s formula for a geometric
altitude of 10,000 ft. with that from the standard altitude table in Appendix B.
When X-15 test pilot William J. Knight set the world speed record on October 3,
1967, his geometric altitude was 102,100 ft. Interpolate the entries in Appendix B
to obtain the standard values of temperature, pressure, and density at this altitude.
The airstream in the test section of a wind tunnel is at a pressure of 0.92 atm.
When a test model is placed in the test section, what pressure altitude is being
simulated for this model?
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Mathematics up to the present day have been quite useless to us in regard to flying.

From the 14th Annual Report
of the Aeronautical Society
of Great Britain, 1879

Mathematical theories from the happy hunting grounds of pure mathematicians are
found suitable to describe the airflow produced by aircraft with such excellent ac-
curacy that they can be applied directly to airplane design.

Theodore von Karman, 1954

of 112 m/s (367 ft/s or 251 mi/h). At a given point on the wing, the

pressure and airflow velocity are specific values, dictated by the laws of
nature. One objective of the science of aerodynamics is to decipher these laws
and to give us methods to calculate the flow properties. In turn, such informa-
tion lets us calculate practical quantities, such as the lift and drag on the air-
plane. Another example is the flow through a rocket engine of a given size and
shape. If this engine is sitting on the launch pad at Cape Canaveral and given
amounts of fuel and oxidizer are ignited in the combustion chamber, the flow
velocity and pressure at the nozzle exit are again specific values, dictated by the
laws of nature. The basic principles of aerodynamics allow us to calculate the
exit flow velocity and pressure, which, in turn, allow us to calculate the thrust.
For reasons such as these, the study of aerodynamics is vital to the overall

Consider an airplane flying at an altitude of 3 km (9840 ft) at a velocity
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PREVIEW BOX

At the beginning of Ch. 2, we imagined a vehicle
flying through the atmosphere, and one of the first
thoughts was that there is a rush of air over the ve-
hicle. This rush of air generates an aerodynamic force
on the vehicle. This is an example of aerodynamics in
action. We went on to say that aerodynamics was one
of the four major disciplines that go into the design
of a flight vehicle, the others being flight dynamics,
propulsion, and structures.

What is aerodynamics? The American Heritage
Dictionary of the English Language defined aerody-
namics as “the dynamics of gases, especially of at-
mospheric interactions with moving objects.” What
does this mean? Dynamics means motion. Gases are
a squishy substance. Is aerodynamics the dynam-
ics of a squishy substance? To some extent, yes.
In contrast, this book is a solid object; it is easy to
pick it up and throw it across the room. In so doing,
you can easily track its velocity, acceleration, and
path through the air. This involves the dynamics of
a solid body and is a subject you might be some-
what familiar with from a previous study of physics.
But just try to scoop up a handful of air and throw it
across the room. Doesn’t make sense, does it? The
air, being a squishy substance, is just going to flow
through your fingers and go nowhere. Obviously, the
dynamics of air (or a fluid in general) is different
than the dynamics of a solid body. Aerodynamics
requires a whole new intellectual perspective. A pur-
pose of this chapter is to give you some of this new
perspective.

So, how do you get air to move? It obviously
does: When an airplane streaks past you, the air flows
over the airplane and basically does everything neces-
sary to get out of the way of the airplane. From a dif-
ferent perspective, imagine that you are riding inside
the airplane, and the airplane is flying at 400 mi/h.
If you look ahead, you see the atmospheric air com-
ing toward you at 400 mi/h. Then it flows up, down,
and around the airplane, locally accelerating and de-
celerating as it passes over the fuselage, wings, and
tail and through the engines. The air does more than
this. It also creates a pressure distribution and a shear
stress distribution over the surface of the airplane that

results in aerodynamic lift and drag exerted on the
vehicle (see again Sec. 2.2). So the air moves, and we
repeat the question: How do you get the air to move?
Keep reading this chapter to find out.

Many engineers and scientists have spent their
professional lifetimes working on aerodynamics, so
aerodynamics must be important. Moreover, there is
a lot to aerodynamics. This chapter is long, one of
the longest in the book, because there is a lot to aero-
dynamics and because it is important. Aerodynam-
ics is the dominant feature that drives the external
shape of any flight vehicle. You can hardly take your
first step into aerospace engineering without serious
consideration and understanding of aerodynamics.
The purpose of this chapter is to help you take this
first step and obtain some understanding of aerody-
namics. In this chapter you will learn how to get air
to move. You will learn how to predict the pressure
exerted on the surface of a body immersed in the
flow and how this pressure is related to the veloc-
ity of the air. You will learn about the high-speed
flow of air, with velocities greater than the speed of
sound (supersonic flow), and about shock waves that
frequently occur in supersonic flow. You will learn
how to measure the flight speed of an airplane dur-
ing flight. You will learn why the nozzles of rocket
engines are shaped the way they are (all due to aero-
dynamics). You will learn about many applications
of aerodynamics, but you will have to learn some of
the fundamentals—the concepts and equations—of
aerodynamics in the first part of this chapter before
you can deal with applications. For all these reasons,
this chapter is important; please treat it with serious
study.

A word of caution: This chapter is going to be
a challenge to you. Most likely the subject matter is
different from what you have dealt with before. There
are a lot of new concepts, ideas, and ways of looking
at things. There are a lot of new equations to help de-
scribe all this new stuff. The material is definitely not
boring, and it can be great fun if you let it be. Expect
it to be different, and go at it with enthusiasm. Simply
read on, and step through the door into the world of
aerodynamics.
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understanding of flight. The purpose of this chapter is to introduce the basic
laws and concepts of aerodynamics and show how they are applied to solving
practical problems.

The road map for this chapter is given in Fig. 4.1. Let us walk through this
road map to get a better idea of what this chapter on aerodynamics is all about.
First, we can identify two basic types of aerodynamic flows: (1) flow with no
friction (called inviscid flow) and (2) flow with friction (called viscous flow).
These two types of flow are represented by the two boxes shown near the top
of the road map. This is an important distinction in aerodynamics. Any real-life
aerodynamic flow has friction acting on the fluid elements moving within the
flow field. However, in many practical aerodynamic problems the influence of
this internal friction is very small, and it can be neglected. Such flows can be
assumed to have no friction and hence can be analyzed as inviscid flows. This
is an idealization, but for many problems a good one. By not dealing with fric-
tion, the analysis of the flow is usually simplified. However, for some flows the
influence of friction is dominant, and it must be included in any analysis of such

Basic aerodynamics

Flow with no friction Flow with friction
(inviscid flow) (viscous flow)

Continuity equation
(mass is conserved)

— Boundary layer concept

— Laminar boundary layer

Momentum equation Some thermodynamics — Turbulent boundary layer
(F= m.a) . [ — Transition from laminar
1. Euler's equatlon . Energy equation to turbulent flow
2. Bernoulli's equation o d .
(energy is conserved) L— Flow separation

Equations for
isentropic flow

Some applications

— Speed of sound

— Low-speed wind tunnels
— Measurement of airspeed

— Supersonic wind tunnels

‘— Rocket engines

Figure 4.1 Road map for this chapter.
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flows. The inclusion of friction usually makes the analysis of the flow more
complicated.

This chapter deals with basics. We will start out with the statement of
three fundamental physical principles from physics:

1. Mass is conserved.
2. Newton’s second law (force = mass X acceleration) holds.
3. Energy is conserved.

When these fundamental principles are applied to an aerodynamic flow, certain
equations result, which, in mathematical language, are statements of these prin-
ciples. We will see how this can be accomplished. We will start with the physi-
cal principle that mass is conserved and obtain a governing equation labeled
the continuity equation. This is represented by the center box in Fig. 4.1. The
continuity equation says, in mathematical symbols, that mass is conserved in
an aerodynamic flow. Mass is conserved whether or not the flow involves fric-
tion. Hence, the continuity equation is equally applicable to both types of flow,
and that is why it is centered beneath the top two boxes in Fig. 4.1.We will then
work our way down the left side of the road map, making the assumption of
an inviscid flow. We will invoke Newton’s second law and obtain the momen-
tum equation for an inviscid flow, called Euler’s equation (pronounced like
“oilers”). A specialized but important form of Euler’s equation is Bernoulli’s
famous equation. Then we will invoke the principle of conservation of energy
and obtain the energy equation for a flow. However, because the science of
energy is thermodynamics, we have to first examine some basic concepts of
thermodynamics.

After the basic equations are in hand, we will continue down the left side
of Fig. 4.1 with some applications for inviscid flows, ranging from the speed of
sound to wind tunnels and rocket engines.

Finally, we will move to the right side of our road map and discuss some im-
portant aspects of viscous flows. We will introduce the idea of a viscous bound-
ary layer, the region of flow immediately adjacent to a solid surface, where
friction is particularly dominant. We will examine two types of viscous flows
with quite different natures—Iaminar flow and turbulent flow—and how a lami-
nar flow transitions to a turbulent flow. We will discuss the impact of these flows
on the aerodynamic drag on a body. Finally, we will see how a viscous aerody-
namic flow can actually lift off (separate) from the surface—the phenomenon of
flow separation.

This has been a rather long discussion of a somewhat intricate road map.
However, the author’s experience has been that readers being introduced to the
world of basic aerodynamics can find the subject matter sometimes bewildering.
In reality, aerodynamics is a beautifully organized intellectual subject, and the
road map in Fig. 4.1 is designed to prevent some of the possible bewilderment.
As we progress through this chapter, it will be important for you to frequently
return to this road map for guidance and orientation.

137



138

CHAPTER 4 Basic Aerodynamics

Figure 4.2 Stream tube with mass conservation.

4.1 CONTINUITY EQUATION

The laws of aerodynamics are formulated by applying several basic principles
from physics to a flowing gas. For example,

Physical principle: Mass can be neither created nor destroyed.!

To apply this principle to a flowing gas, consider an imaginary circle drawn per-
pendicular to the flow direction, as shown in Fig. 4.2. Now look at all the stream-
lines that go through the circumference of the circle. These streamlines form a
tube, called a stream tube. As we move along with the gas confined inside the
stream tube, we see that the cross-sectional area of the tube may change, say, in
moving from point 1 to point 2 in Fig. 4.2. However, as long as the flow is steady
(invariant with time), the mass that flows through the cross section at point 1 must
be the same as the mass that flows through the cross section at point 2, because by
the definition of a streamline, there can be no flow across streamlines. The mass
flowing through the stream tube is confined by the streamlines of the boundary,
much as the flow of water through a flexible garden hose is confined by the wall
of the hose. This is a case of “what goes in one end must come out the other end.”

Let A, be the cross-sectional area of the stream tube at point 1. Let V, be the
flow velocity at point 1. Now, at a given instant in time, consider all the fluid
elements that are momentarily in the plane of A,. After a lapse of time dt, these
same fluid elements all move a distance V| dt, as shown in Fig. 4.2. In so doing,
the elements have swept out a volume A, V, dt downstream of point 1. The mass
of gas dm in this volume is equal to the density times the volume; that is,

dm = p,(A 'V, dr) 4.1
This is the mass of gas that has swept through area A, during time interval dft.

Definition: The mass flow m through area A is the mass crossing A per unit time.

'0f course, Einstein has shown that e = mc?, and hence mass is truly not conserved in situations where
energy is released. However, for any noticeable change in mass to occur, the energy release must be
tremendous, such as occurs in a nuclear reaction. We are generally not concerned with such a case in
practical aerodynamics.
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Stream tube

Figure 4.3 A stream tube.

Therefore, from Eq. (4.1), for area A,,
dm .
Mass flow = T =m, = p,AV, kg/s or slugs/s
t

Also, the mass flow through A,, bounded by the same streamlines that go through
the circumference of A,, is obtained in the same fashion, as

my = P,AV,

Because mass can be neither created nor destroyed, we have m, = m, . Hence

PAY, = p, AV, 4.2)

This is the continuity equation for steady fluid flow. It is a simple algebraic equa-
tion that relates the values of density, velocity, and area at one section of the
stream tube to the same quantities at any other section.

There is a caveat in the previous development. In Fig. 4.2, velocity V is as-
sumed to be uniform over the entire area A,. Similarly, the density p, is assumed
to be uniform over area A,. In the same vein, V, and p, are assumed to be uniform
over area A,. In real life, this is an approximation; in reality, V and p vary across
the cross-sectional area A. However, when using Eq. (4.2), we assume that p and
V represent mean values of density and velocity over the cross-sectional area A.
For many flow applications, this is quite reasonable. The continuity equation in
the form of Eq. (4.2) is a workhorse in the calculation of flow through all types
of ducts and tubes, such as wind tunnels and rocket engines.

The stream tube sketched in Fig. 4.2 does not have to be bounded by a solid
wall. For example, consider the streamlines of flow over an airfoil, as sketched in
Fig. 4.3. The space between two adjacent streamlines, such as the shaded space
in Fig. 4.3, is a stream tube. Equation (4.2) applies to the stream tube in Fig. 4.3,
where p; and V| are appropriate mean values over A,, and p, and V, are appropri-
ate values over A,.

4.2 INCOMPRESSIBLE AND COMPRESSIBLE FLOW

Before we proceed, it is necessary to point out that all matter in real life is com-
pressible to some greater or lesser extent. That is, if we take an element of mat-
ter and squeeze it hard enough with some pressure, the volume of the element
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Figure 4.4 Tllustration of compressibility.

of matter will decrease. However, its mass will stay the same. This is shown
schematically in Fig. 4.4. As a result, the density p of the element changes as
it is squeezed. The amount by which p changes depends on the nature of the
material of the element and how hard we squeeze it—that is, the magnitude of
the pressure. If the material is solid, such as steel, then the change in volume is
insignificantly small and p is constant for all practical purposes. If the material
is a liquid, such as water, then the change in volume is also very small and again
p1is essentially constant. (Try pushing a tight-fitting lid into a container of liquid,
and you will find out just how “solid” the liquid can be.) But if the material is a
gas, the volume can readily change and p can be a variable.

The preceding discussion allows us to characterize two classes of aerody-
namic flow: compressible flow and incompressible flow.

1. Compressible flow—flow in which the density of the fluid elements can
change from point to point. Referring to Eq. (4.2), we see if the flow is
compressible, p; # p,. The variability of density in aerodynamic flows
is particularly important at high speeds, such as for high-performance
subsonic aircraft, all supersonic vehicles, and rocket engines. Indeed, all
real-life flows, strictly speaking, are compressible. However, in some
circumstances the density changes only slightly. These circumstances lead
to the second definition.

2. Incompressible flow—flow in which the density of the fluid elements
is always constant.? Referring to Eq. (4.2), we see if the flow is
incompressible, p; = p,; hence

AV = AV, 4.3)
Incompressible flow is a myth. It can never actually occur in nature, as previ-
ously discussed. However, for those flows in which the actual variation of p is
negligibly small, it is convenient to make the assumption that p is constant, to
simplify our analysis. (Indeed, it is an everyday activity of engineering and

2In more advanced studies of aerodynamics, you will find that the definition of incompressible flow is
given by a more general statement. For the purposes of this book, we will consider incompressible flow
to be constant-density flow.



4.2 Incompressible and Compressible Flow
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Figure 4.5 Incompressible flow in a convergent duct.

physical science to make idealized assumptions about real physical systems in
order to make such systems amenable to analysis. However, care must always
be taken not to apply results obtained from such idealizations to real problems
in which the assumptions are grossly inaccurate or inappropriate.) The assump-
tion of incompressible flow is an excellent approximation for the flow of liquids,
such as water or oil. Moreover, the low-speed flow of air, where V < 100 m/s
(or V <225 mi/h) can also be assumed to be incompressible to a close approxi-
mation. A glance at Fig. 1.30 shows that such velocities were the domain of
almost all airplanes from the Wright Flyer (1903) to the late 1930s. Hence, the
early development of aerodynamics always dealt with incompressible flows,
and for this reason there exists a huge body of incompressible-flow literature
with its attendant technology. At the end of this chapter we will be able to
prove why airflow at velocities less than 100 m/s can be safely assumed to be
incompressible.

In solving and examining aerodynamic flows, you will constantly be making
distinctions between incompressible and compressible flows. It is important to
develop that habit now, because there are some striking quantitative and qualita-
tive differences between the two types of flow.

As a parenthetical comment, for incompressible flow, Eq. (4.3) explains
why all common garden-hose nozzles are convergent shapes, such as shown in
Fig. 4.5. From Eq. (4.3),

A

V.
2 A,

Vi

If A, is less than A,, then the velocity increases as the water flows through the
nozzle, as desired. The same principle is used in the design of nozzles for subsonic
wind tunnels built for aerodynamic testing, as will be discussed in Sec. 4.10.
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EXAMPLE 4.1

Consider a convergent duct with an inlet area A, = 5 m2. Air enters this duct with a veloc-
ity V, = 10 m/s and leaves the duct exit with a velocity V, = 30 m/s. What is the area of
the duct exit?
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H Solution
Because the flow velocities are less than 100 m/s, we can assume incompressible flow.
From Eq. (4.3),

AV, = A,
Vi 10

A, =A—L=0Gm")— =1.67m>
2 | ( )30

2

Consider a convergent duct with an inlet area A, = 3 ft> and an exit area A, = 2.57 ft>.
Air enters this duct with a velocity V; =700 ft/s and a density p, = 0.002 slug/ft’, and air
leaves with an exit velocity V, = 1070 ft/s. Calculate the density of the air p, at the exit.

H Solution

An inlet velocity of 700 ft/s is a high-speed flow, and we assume that the flow has to be
treated as compressible. This implies that the resulting value for p, will be different from
p1. From Eq. (4.2),

PAY, = pAY,

or P =Py AV _ 0.002—>099_ _ 500153 slug/ft’
AV, 2.57(1070)

Note: The value of p, is indeed different from p;, which clearly indicates that the flow in
this example is a compressible flow. If the flow were essentially incompressible, then the
calculation of p, from Eq. (4.2) would have produced a value essentially equal to p,. But
this is not the case. Keep in mind that Eq. (4.2) is more general than Eq. (4.3). Eq. (4.2)
applies to both compressible and incompressible flows; Eq. (4.3) is valid for an incom-
pressible flow only.

Reminder: In this example, and in all the worked examples in this book, we use con-

sistent units in the calculations. Hence we do not need to explicitly show all the units car-
ried with each term in the mathematical calculations, because we know the answer will be
in the same consistent units. In this example, the calculation involves the continuity equa-
tion; A, and A, are given in ft2, V, and V, in ft/s, and p, in slug/ft®. When these numbers are
fed into the equation, we know the answer for p, will be in slug/ft*. It has to be because we
know the consistent units for density in the English engineering system are slug/ft>.

4.3 MOMENTUM EQUATION

The continuity equation, Eq. (4.2), is only part of the story. For example, it says
nothing about the pressure in the flow; yet we know, just from intuition, that
pressure is an important flow variable. Indeed, differences in pressure from one
point to another in the flow create forces that act on the fluid elements and cause
them to move. Hence, there must be some relation between pressure and veloc-
ity, and that relation is derived in this section.
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Figure 4.6 Force diagram for the momentum equation.

Again we first state a fundamental law of physics—namely Newton’s sec-
ond law.

Physical principle: |[Force = mass x acceleration]

or F =ma “4.4)

To apply this principle to a flowing gas, consider an infinitesimally small
fluid element moving along a streamline with velocity V, as shown in Fig. 4.6. At
some given instant, the element is located at point P. The element is moving in
the x direction, where the x axis is oriented parallel to the streamline at point P.
The y and z axes are mutually perpendicular to x. The fluid element is infini-
tesimally small. However, looking at it through a magnifying glass, we see the
picture shown at the upper right of Fig. 4.6. What is the force on this element?
Physically, the force is a combination of three phenomena:

1. Pressure acting in a normal direction on all six faces of the element.
2. Frictional shear acting tangentially on all six faces of the element.
3. Gravity acting on the mass inside the element.

For the time being, we will ignore the presence of frictional forces; moreover,
gravity is generally a small contribution to the total force. Therefore, we will
assume that the only source of force on the fluid element is pressure.

To calculate this force, let the dimensions of the fluid element be dx, dy, and
dz, as shown in Fig. 4.6. Consider the left and right faces, which are perpendicu-
lar to the x axis. The pressure on the left face is p. The area of the left face is
dy dz; hence the force on the left face is p(dy dz). This force is in the positive x di-
rection. Now recall that pressure varies from point to point in the flow. Hence,
there is some change in pressure per unit length, symbolized by the derivative
dp/dx. Thus, if we move away from the left face by a distance dx along the x axis,
the change in pressure is (dp/dx) dx. Consequently, the pressure on the right face
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is p + (dp/dx) dx. The area of the right face is also dy dz; hence the force on the
right face is [p + (dp/dx) dx](dy dz). This force acts in the negative x direction, as
shown in Fig. 4.6. The net force in the x direction F is the sum of the two:

F=pdydz —[p + d—pdedy dz
dx
or F = —d—p(dx dy dz) (4.5)
dx

Equation (4.5) gives the force on the fluid element due to pressure. Because of
the convenience of choosing the x axis in the flow direction, the pressures on the
faces parallel to the streamlines do not affect the motion of the element along the
streamline.

The mass of the fluid element is the density p multiplied by the volume
dx dy dz:

m = p(dx dy dz) (4.6)

Also, the acceleration a of the fluid element is, by definition of acceleration (rate
of change of velocity), a = dV/dt. Noting that, also by definition, V = dx/dt, we
can write

a:d_V:d_Vd_x:d_Vv 4.7
dt dx dt dx
Equations (4.5) to (4.7) give the force, mass, and acceleration, respectively,
that go into Newton’s second law, Eq. (4.4):

F =ma

—d—p(dx dy dz) = p(dx dy dz)Vd—V
dx dx

or dp =—-pV dV 4.8)

Equation (4.8) is Euler’s equation. Basically, it relates rate of change of
momentum to force; hence it can also be designated as the momentum equation.
It is important to keep in mind the assumptions utilized in obtaining Eq. (4.8):
We neglected friction and gravity. For flow that is frictionless, aerodynamicists
sometimes use another term, inviscid flow. Equation (4.8) is the momentum
equation for inviscid (frictionless) flow. Moreover, the flow field is assumed to
be steady—that is, invariant with respect to time.

Please note that Eq. (4.8) relates pressure and velocity (in reality, it relates a
change in pressure dp to a change in velocity dV). Equation (4.8) is a differential
equation, and hence it describes the phenomena in an infinitesimally small
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Figure 4.7 Two points at different locations along a
streamline.

neighborhood around the given point P in Fig. 4.6. Now consider two points,
1 and 2, far removed from each other in the flow but on the same streamline. To
relate p, and V, at point 1 to p, and V, at the other, far-removed point 2, Eq. (4.8)
must be integrated between points 1 and 2. This integration is different depend-
ing on whether the flow is compressible or incompressible. Euler’s equation it-
self, Eq. (4.8), holds for both cases. For compressible flow, p in Eq. (4.8) is a
variable; for incompressible flow, p is a constant.

First consider the case of incompressible flow. Let points 1 and 2 be located
along a given streamline, such as that shown over an airfoil in Fig. 4.7. From
Eq. (4.8),

dp+pV dV =0

where p = constant. Integrating between points 1 and 2, we obtain

[Pap+p]vav=o

v: o ov?
Pz_P|+P[ 2 ——l]=0

2 2
vy Ve
Dt p ) Dtp > (4.9a)
2
p+ p7 = const along streamline (4.90)

Either form, Eq. (4.9a) or (4.9b), is called Bernoulli’s equation. Historically,
Bernoulli’s equation is one of the most fundamental equations in fluid mechanics.
The following important points should be noted:

1. Equations (4.9a) and (4.9b) hold only for inviscid (frictionless),
incompressible flow.

2. Equations (4.9a) and (4.9b) relate properties between different points along
a streamline.

3. For a compressible flow, Eq. (4.8) must be used, with p treated as a
variable. Bernoulli’s equation must not be used for compressible flow.
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4. Remember that Eqgs. (4.8) and (4.9a) and (4.9b) say that F = ma for a fluid
flow. They are essentially Newton’s second law applied to fluid dynamics.

To return to Fig. 4.7, if all the streamlines have the same values of p and
V far upstream (far to the left in Fig. 4.7), then the constant in Bernoulli’s
equation is the same for all streamlines. This would be the case, for example,
if the flow far upstream were uniform flow, such as that encountered in flight
through the atmosphere and in the test sections of well-designed wind tun-
nels. In such cases, Egs. (4.9a) and (4.9b) are not limited to the same stream-
line. Instead, points 1 and 2 can be anywhere in the flow, even on different
streamlines.

For the case of compressible flow also, Euler’s equation, Eq. (4.8), can be
integrated between points 1 and 2; however, because p is a variable, we must
in principle have some extra information about how p varies with V before
the integration can be carried out. This information can be obtained; how-
ever, there is an alternative, more convenient route to treating many practi-
cal problems in compressible flow that does not explicitly require use of the
momentum equation. Hence, in this case, we will not pursue the integration of
Eq. (4.8) further.

4.4 A COMMENT

It is important to make a philosophical distinction between the nature of the equa-
tion of state, Eq. (2.3), and the flow equations of continuity, Eq. (4.2), and momen-
tum, such as Eq. (4.9a). The equation of state relates p, T, and p to one another at
the same point; in contrast, the flow equations relate p and V (as in the continuity
equation) and p and V (as in Bernoulli’s equation) at one point in the flow to the
same quantities at another point in the flow. There is a basic difference here; keep
it in mind when setting up the solution of aerodynamic problems.

Consider an airfoil (the cross section of a wing, as shown in Fig. 4.7) in a flow of air,
where far ahead (upstream) of the airfoil, the pressure, velocity, and density are 2116 1b/ft?,
100 mi/h, and 0.002377 slug/ft?, respectively. At a given point A on the airfoil, the pres-
sure is 2070 Ib/ft>. What is the velocity at point A?

H Solution

First we must deal in consistent units; V;, = 100 mi/h is not in consistent units. However,
a convenient relation to remember is that 60 mi/h = 88 ft/s. Hence V, = 100(88/60) =
146.7 ft/s. This velocity is low enough that we can assume incompressible flow. Hence
Bernoulli’s equation, Eq. (4.9), is valid:

p_‘/]zsz+p_‘/A2

+
D ) )
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1/2
Thus, v, =|:2(P1 —Pa) i V12:|

P
_[2(2116 —2070)
0.002377

V, = 245.4 /s

1/2
+ (146.7)2}
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Consider the same convergent duct and conditions as in Example 4.1. If the air pressure
and temperature at the inlet are p; = 1.2 X 10° N/m? and T, = 330 K, respectively, calculate
the pressure at the exit.

H Solution
First we must obtain the density. From the equation of state,

5
po= b o L2XA0 g ke
RT, ~ 287(330)

Still assuming incompressible flow, we find from Eq. (4.9)

pv’ pvy
=p,+
2 PPT

pt

Py =p %p(vﬁ - v;) = 1.2x10° + (4)(1.27)(10% - 30°)
p, =1.195x 10> N/m?

Note: In accelerating from 10 to 30 m/s, the air pressure decreases only a small
amount, less than 0.45 percent. This is a characteristic of very low-velocity airflow.

EXAMPLE 4.5

Consider a long dowel with a semicircular cross section, as sketched in Fig. 4.8a. The
dowel is immersed in a flow of air, with its axis perpendicular to the flow, as shown in
perspective in Fig. 4.8a. The rounded section of the dowel is facing into the flow, as
shown in Fig. 4.8a and 4.8b. We call this rounded section the front face of the dowel.
The radius of the semicircular cross section is R = 0.5 ft. The velocity of the flow far
ahead of the dowel (called the free stream) is V,, = 100 ft/s. Assume inviscid flow; that
is, neglect the effect of friction. The velocity of the flow along the surface of the rounded
front face of the dowel is a function of location on the surface; location is denoted by
angle @ in Fig. 4.8b. Hence, along the front rounded surface, V = V(@). This variation
is given by

V =2V, sin@ (E4.5.1)
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Figure 4.8 Diagrams for the construction of the aerodynamic force on a dowel
(Example 4.5).
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The pressure distribution exerted over the surface of the cross section is sketched in
Fig. 4.8c¢. On the front face, p varies with location along the surface, where the location is
denoted by the angle ; that is, p = p(8) on the front face. On the flat back face, the pres-
sure, denoted by pj, is constant. The back face pressure is given by

Pr = Pu—0.7po V2 (E4.5.2)

where p., and p., are the pressure and density, respectively, in the free stream, far ahead
of the dowel. The free-stream density is given as p.. = 0.002378 slug/ft’. Calculate the
aerodynamic force exerted by the surface pressure distribution (illustrated in Fig. 4.8¢) on
a 1-ft segment of the dowel, shown by the shaded section in Fig. 4.8a.

H Solution
For this solution, we appeal to the discussions in Secs. 2.2 and 4.3. Examine Fig. 4.8c.
Because of the symmetry of the semicircular cross section, the pressure distribution over
the upper surface is a mirror image of the pressure distribution over the lower surface;
that is, p = p(0) for 0 < 0 < 7 /2 is the same as p = p(0) for 0 = 6 = —x /2. Owing to this
symmetry, there is no net force on the cross section in the direction perpendicular to the
free stream; that is, the force due to the pressure pushing down on the upper surface is
exactly canceled by the equal and opposite force due to the pressure pushing up on the
lower surface. Therefore, owing to this symmetry, the resultant aerodynamic force is
parallel to the free-stream direction. This resultant aerodynamic force is illustrated by the
arrow labeled D in Fig. 4.8c.

Before feeding the numbers into our calculation, we obtain an analytical formula for
D in terms of V,, and R, as follows. Our calculations will proceed in a number of logical
steps.

Step One: Calculation of the force due to pressure acting on the front face.

Here we will integrate the pressure distribution over the surface area of the front face. We
will set up an expression for the pressure force acting on an infinitesimally small element
of surface area, take the component of this force in the horizontal flow direction (the di-
rection of V,, in Fig. 4.8), and then integrate this expression over the surface area of the
front face. Consider the infinitesimal arclength segment of the surface ds and the pressure
p exerted locally on this segment, as drawn in Fig. 4.8d. A magnified view of this segment
is shown in Fig. 4.8e. Recall from Fig. 4.8a that we wish to calculate the aerodynamic
force on a 1-ft length of the dowel, as shown by the shaded region in Fig. 4.8a. As part
of the shaded region, consider a small sliver of area of width ds and length equal to 1 ft
on the curved face of the dowel, as shown in Fig. 4.8f. The surface area of this sliver is
1 ds. The force due to the pressure p on this area is p(1) ds = p ds. This force is shown
in Fig. 4.8e, acting perpendicular to the segment ds. The component of this force in the
horizontal direction is (p ds) cos8, also shown in Fig. 4.8¢. From the geometric construc-
tion shown in Fig. 4.8g, we have

ds =R db (E4.5.3)
and the vertical projection of ds, denoted by dy, is given by
dy = ds cos@ (E4.5.4)
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Substituting Eq. (E4.5.3) into (E4.5.4), we have
dy = R cos6 db (E4.5.5)

We put Eq. (E4.5.5) on the shelf temporarily. It will be used later, in Step Two of this
calculation. However, we use Eq. (E4.5.3) immediately, as follows.
Inlight of Eq. (E.4.5.3), the horizontal force (p ds)cos@in Fig. 4.8¢ can be expressed
as
(p ds)cos8 = pR cosO dO (E4.5.6)

Returning to Fig. 4.8¢, we see that the net horizontal force exerted by the pressure dis-
tribution on the rounded front face is the integral of Eq. (E4.5.6) over the front surface.
Denote this force by Dr.

Dy = | pReoso do (E4.5.7)

This force is shown in Figure 4.8A.

InEq. (E4.5.7), p is obtained from Bernoulli’s equation, Eq. (4.9), written between a
point in the free stream where the pressure and velocity are p., and V., respectively, and
the point on the body surface where the pressure and velocity are p and V, respectively.

PutipVa=ptipV?

or P=put %p(Vi - VZ) (E4.5.8)

Note: We can use Bernoulli’s equation for this solution because the free-stream velocity
of V., =100 ft/s is low, and we can comfortably assume that the flow is incompressible.
Also, because p is constant, the value of p in Eq. (E4.5.8) is the same as p., in the free
stream. Substituting Eq. (E4.5.8) into Eq. (E4.5.7), we have

—n/2]

Dy = Jm l:pm + %p(Vi - Vz)} R cos8 do (E4.5.9)

Recall that the variation of the surface velocity is given by Eq. (E4.5.1), repeated here:
V =2V,sin8 (E4.5.1)

Substituting Eq. (E4.5.1) into Eq. (E4.5.9), we have

D, = J'j:jpm + %p(\/ﬁ, — 4V2sin’ 0)}R cos8 db

or D, =] {pm + %pVi (1-4sin’ 9)}R cosf do (E4.5.10)

-n/2

Let us put this expression for Dy on the shelf for a moment; we will come back to it
shortly.
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Step Two: Calculation of the force due to pressure acting on the back face.

Here we will integrate the pressure distribution over the surface area of the back face.
Similar to Step One, we will set up an expression for the pressure force acting on an
infinitesimally small element of surface area and then integrate this expression over the
surface area of the back face.

Returning to Fig. 4.8c, we now direct our attention to the pressure on the back face
of the cross section pp. This pressure exerts a force Dy on the 1-ft length of dowel, as
sketched in Fig. 4.8h. Force D, acts toward the left, opposite to the direction of Dy. Pres-
sure pp is constant over the back face. The rectangular area of the 1-ft length of the back
face is (1)(2R). Because pj is constant over this back face, we can directly write

Dy = (D(2R)p; (E4.5.11)

However, because the resultant aerodynamic force on the cross section is given by
Dy — Dy, as seen in Fig. 4.8h, and because D, is expressed in terms of an integral in
Eq. (E4.5.10), it will be convenient to couch Dj in terms of an integral also, as follows.
Returning to Figure 4.8d, we consider a segment of the back surface area of height dy on
which pj is exerted. Over a 1-ft length of dowel (perpendicular to the page in Fig. 4.8d),
the area of a small sliver of surface is 1 dy, and the force on this sliver is py(1) dy. The
total force on the back face is obtained by integrating with respect to y from point a to
point b, as noted in Fig. 4.84d:

Dy = prg(l)dy (E4.5.12)

However, recall from Eq. (E4.5.5) that dy = R cos@ d6. Hence Eq. (E4.5.12) becomes

/2

Dy=["" py Reosé do (E4.5.13)

-n/
Please note that Eqs (E4.5.13) and (E4.5.11) are both valid expressions for Dz;—they just
look different. To see this, carry out the integration in Eq. (E4.5.13); you will obtain the
result in Eq. (E4.5.11). Also recall that p; is given by Eq. (E4.5.2), repeated here (and
dropping the subscript e on p because p is constant):

Py = Do —0.7pV.2 (E4.5.2)
Hence Eq. (E4.5.13) becomes
n/2 [ 5
Dy =™ (po—0.7p,V2)R cos6 db (E4.5.14)

Step Three: Calculation of the resultant aerodynamic force.

Here we will combine the results obtained in Steps One and Two. In Step One, we
obtained an expression for the pressure force acting on the front face. In Step Two,
we obtained an expression for the pressure force acting on the back face. Because the
force on the front face acts in one direction and the force on the back face acts in the
opposite direction, as shown in Fig. 4.8A, the net, resultant aerodynamic force is the dif-
ference between the two.
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The results of Example 4.5 illustrate certain aspects
important to the general background of airplane design:

1. It reinforces the important point made in
Sec. 2.2—namely that the resultant aerodynamic
force exerted on any object immersed in a
flowing fluid is due only to the net integration
of the pressure distribution and the shear
stress distribution exerted all over the body
surface. In Example 4.5 we assumed the flow
to be inviscid; that is, we neglected the effect
of friction. So the resultant aerodynamic force
was due to just the integrated effect of the
pressure distribution over the body surface.
This is precisely how we calculated the force
on the dowel in Example 4.5—we integrated
the pressure distribution over the surface of the
dowel. Instead of a dowel, if we had dealt with
a Boeing 747 jumbo jet, the idea would have
been the same. In airplane design, the shape
of the airplane is influenced by the desire to
create a surface pressure distribution that will
minimize drag while at the same time creating
the necessary amount of lift. We return to this
basic idea several times throughout the book.

2. Equation (E4.5.17) shows that the aerodynamic
force on the body is
(a) Directly proportional to the density of the
fluid p.

(b) Directly proportional to the square of the
free-stream velocity: D o V2.

(c) Directly proportional to the size of the
body, as reflected by the radius R.

These results are not specialized to the dowel in
Example 4.5; they are much more general in their
application. We will see in Ch. 5 that the aerody-
namic force on airfoils, wings, and whole airplanes
is indeed proportional to p., V2, and the size of the
body, where size is couched in terms of a surface area.
[In Eq. (E4.5.17), R really represents an area equal
to R(1) for the unit length of the dowel over which
the aerodynamic force is calculated.] It is interesting
to note that Eq. (E4.5.17) does not contain the free-
stream pressure p... Indeed, p., canceled out in our
derivation of Eq. (E4.5.17). This is not just a charac-
teristic of the dowel used in Example 4.5; in general,
we will see in Ch. 5 that we do not need the explicit
value of free-stream pressure to calculate the aerody-
namic force on a flight vehicle, despite the fact that
the aerodynamic force fundamentally is due (in part)
to the pressure distribution over the surface. In the
final result, it is always the value of the free-stream
density p.. that appears in the expressions for aerody-
namic force, not p,.

Returning to Fig. 4.8h, we see that the resultant aerodynamic force D is given by

D =D, — Dy (E4.5.15)
Substituting Eqs. (E4.5.10) and (E4.5.14) into Eq. (E4.5.15), we have
w2 | 1
D= JL:Q me + lpvﬁ (1 — 4sin’ B)JRCOSQ do
2 (E4.5.16)

/2 2\
- J:ﬂ/z (pw - 0.7me)RCOSQ do
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Combining the two integrals in Eq. (E4.5.16) and noting that the two terms involving p.,
cancel, we have

o | 1 2 . 2 1
D= J:n/z L(5p+0.7p]Vj —2pV.2sin” GJR cos0do

= 1.20V2R["" cos0 d6 - 2pV2R [ sin* Bcos0 0

.3 nl2
= 2.4pV2R - 2pV£R|: sin 0}
—-n/2

=2.4pViR - 2pV£R(§ + %j =1.067pV_R

Highlighting the preceding result, we have just derived an analytical expression for the
aerodynamic force D, per unit length of the dowel. It is given by

D =1.067pV.R (B4.5.17)

Putting in the numbers given in the problem, where p = p, = 0.002378 slug/ft’,
Ve =100 ft/s, and R = 0.5 ft, we obtain from Eq. (E4.5.17)

D = (1.067)(0.002377)(L00)*(0.5) = [12.68 1b per foot of length of dowel.
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As stated earlier, when the airflow velocity exceeds 100 m/s, the flow can no
longer be treated as incompressible. Later we will restate this criterion in terms
of the Mach number, which is the ratio of the flow velocity to the speed of
sound, and we will show that the flow must be treated as compressible when the
Mach number exceeds 0.3. This is the situation with the vast majority of current
aerodynamic applications; hence the study of compressible flow is of extreme
importance.

A high-speed flow of gas is also a high-energy flow. The kinetic energy
of the fluid elements in a high-speed flow is large and must be taken into ac-
count. When high-speed flows are slowed down, the consequent reduction in
kinetic energy appears as a substantial increase in temperature. As a result, high-
speed flows, compressibility, and vast energy changes are all related. Thus, to
study compressible flows, we must first examine some of the fundamentals of
energy changes in a gas and the consequent response of pressure and temperature
to these energy changes. Such fundamentals are the essence of the science of
thermodynamics.

Here the assumption is made that the reader is not familiar with thermody-
namics. Therefore, the purpose of this section is to introduce those ideas and
results of thermodynamics that are absolutely necessary for our further analysis
of high-speed, compressible flows. Caution: The material in Secs. 4.5 to 4.7 can
be intimidating; if you find it hard to understand, do not worry—you are in good
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Boundary
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{unit mass of gas) Surroundings

Figure 4.9 System of unit mass.

company. Thermodynamics is a sophisticated and extensive subject; we are just
introducing some basic ideas and equations here. View these sections as an intel-
lectual challenge, and study them with an open mind.

The pillar of thermodynamics is a relationship called the first law, which is
an empirical observation of natural phenomena. It can be developed as follows.
Consider a fixed mass of gas (for convenience, say a unit mass) contained within
a flexible boundary, as shown in Fig. 4.9. This mass is called the system, and
everything outside the boundary is the surroundings. Now, as in Ch. 2, consider
the gas that makes up the system to be composed of individual molecules moving
about with random motion. The energy of this molecular motion, summed over
all the molecules in the system, is called the internal energy of the system. Let
e denote the internal energy per unit mass of gas. The only means by which e can
be increased (or decreased) are the following:

1. Heat is added to (or taken away from) the system. This heat comes from
the surroundings and is added to the system across the boundary. Let dg be
an incremental amount of heat added per unit mass.

2. Work is done on (or by) the system. This work can be manifested by the
boundary of the system being pushed in (work done on the system) or
pushed out (work done by the system). Let w be an incremental amount
of work done on the system per unit mass.

Also, let de be the corresponding change in internal energy per unit mass.
Then, simply on the basis of common sense, confirmed by laboratory results, we

can write
Oq + Ow = de (4.10)

Equation (4.10) is termed the first law of thermodynamics. It is an energy equa-
tion stating that the change in internal energy is equal to the sum of the heat
added to and the work done on the system. (Note in the previous discussion that
¢ and d both represent infinitesimally small quantities; however, d is a “perfect
differential” and 6 is not.)

Equation (4.10) is very fundamental; however, it is not in a practical form
for use in aerodynamics, which speaks in terms of pressures, velocities, and the
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Figure 4.10 Work being done on the system by pressure.

like. To obtain more useful forms of the first law, we must first derive an expres-
sion for dw in terms of p and v (specific volume), as follows. Consider the system
sketched in Fig. 4.10. Let dA be an incremental surface area of the boundary.
Assume that work AW is being done on the system by d A being pushed in a small
distance s, as also shown in Fig. 4.10. Because work is defined as force times
distance, we have

AW = (force)(distance)

AW = (p d A)s @11

Now assume that many elemental surface areas of the type shown in Fig. 4.10
are distributed over the total surface area A of the boundary. Also assume that
all the elemental surfaces are being simultaneously displaced a small distance s
into the system. Then the total work dw done on the unit mass of gas inside the
system is the sum (integral) of each elemental surface over the whole boundary;
that is, from Eq. (4.11),

sw=] (patys=]sdaa .12)

Assume that p is constant everywhere in the system (which, in thermody-
namic terms, contributes to a state of thermodynamic equilibrium). Then, from
Eq. (4.12),

5W=pJ.AsdA (4.13)

The integral I, s dA has physical meaning. Geometrically, it is the change in vol-
ume of the unit mass of gas inside the system, created by the boundary surface
being displaced inward. Let dv be the change in volume. Because the boundary
is pushing in, the volume decreases (dv is a negative quantity) and work is done
on the gas (hence dw is a positive quantity in our development). Thus

J.As dA=—-dv (4.14)
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Substituting Eq. (4.14) into Eq. (4.13), we obtain

@19

Equation (4.15) gives the relation for work done strictly in terms of the thermo-
dynamic variables p and v.
When Eq. (4.15) is substituted into Eq. (4.10), the first law becomes

0q =de+ pdv (4.16)

Equation (4.16) is an alternative form of the first law of thermodynamics.
It is convenient to define a new quantity, called enthalpy h, as

h=e+pv=e+RT 4.17)

where pv = RT, assuming a perfect gas. Then, differentiating the definition in
Eq. (4.17), we find

Substituting Eq. (4.18) into (4.16), we obtain
6q =de+ pdv ={(dh— pdv—vdp)+ pdv

0q =dh—vdp (4.19)

Equation (4.19) is yet another alternative form of the first law.

Before we go further, remember that a substantial part of science and en-
gineering is simply the language. In this section we are presenting some of the
language of thermodynamics essential to our future aerodynamic applications.
We continue to develop this language.

Figures 4.9 and 4.10 illustrate systems to which heat §¢ is added and on
which work dw is done. At the same time, d¢ and dw may cause the pressure,
temperature, and density of the system to change. The way (or means) by which
changes of the thermodynamic variables (p, T, p, v) of a system take place is
called a process. For example, a constant-volume process is illustrated at the left
in Fig. 4.11. Here the system is a gas inside a rigid boundary, such as a hollow
steel sphere, and therefore the volume of the system always remains constant.
If an amount of heat §¢q is added to this system, p and T will change. Thus, by
definition, such changes take place at constant volume; this is a constant-volume
process. Another example is given at the right in Fig. 4.11. Here the system is
a gas inside a cylinder—piston arrangement. Consider that heat d¢ is added to
the system, and at the same time assume the piston is moved in exactly the right
way to maintain a constant pressure inside the system. When 8¢ is added to this
system, 7"and v (and hence p) will change. By definition, such changes take place
at constant pressure; this is a constant-pressure process. Many different kinds of
processes are treated in thermodynamics. These are only two examples.

The last concept to be introduced in this section is that of specific heat.
Consider a system to which a small amount of heat d¢ is added. The addition
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Assume the piston
is moving in just
the right way to

]I[ keep p constant
4

84 Heat ’
added

AN\

Rigid boundary
(such as a hollow

sphere of pT.v
constant volume)
o
7 e 5q
Constant-volume process Constant-pressure process

Figure 4.11 Illustration of constant-volume and constant-pressure
processes.

of 8g will cause a small change in temperature d7T of the system. By definition,
specific heat is the heat added per unit change in temperature of the system. Let
¢ denote specific heat. Thus

However, with this definition, ¢ is multivalued. That is, for a fixed quantity dgq,
the resulting value of dT can be different, depending on the type of process
in which dq is added. In turn, the value of ¢ depends on the type of process.
Therefore, in principle we can define more precisely a different specific heat for
each type of process. We will be interested in only two types of specific heat, one
at constant volume and the other at constant pressure, as follows.

If the heat 6q is added at constant volume and it causes a change in tempera-
ture dT, the specific heat at constant volume c, is defined as

dT constant volume

or 6q = ¢, dT (constant volume) (4.20)

In contrast, if 8¢ is added at constant pressure and it causes a change in tem-
perature dT (whose value is different from the preceding dT), the specific heat at
constant pressure c, is defined as

Cp - ( q j
dT constant pressure

or 0q = c,dT (constant pressure) (4.21)

The preceding definitions of ¢, and c,, when combined with the first law,
yield useful relations for internal energy e and enthalpy % as follows. First
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consider a constant-volume process, where by definition dv = 0. Thus, from the
alternative form of the first law, Eq. (4.16),

60g=de+pdv=de+0=de (4.22)
Substituting the definition of ¢,, Eq. (4.20), into Eq. (4.22), we get

w2

By assuming that ¢, is a constant, which is reasonable for air at normal condi-
tions, and letting ¢ = 0 when T = 0, we may integrate Eq. (4.23) to

w2

Next consider a constant-pressure process, where by definition dp = 0. From the
alternative form of the first law, Eq. (4.19),

6q=dh—vdp=dh-0=dh (4.25)

Substituting the definition of c,, Eq. (4.21), into Eq. (4.25), we find

Again, assuming that ¢, is constant and letting 4 = 0 at 7 = 0, we see that
Eq. (4.26) yields
h=c,T (4.27)
Equations (4.23) to (4.27) are very important relationships. They have
been derived from the first law, into which the definitions of specific heat
have been inserted. Look at them! They relate thermodynamic variables only
(e to T and h to T); work and heat do not appear in these equations. In fact,
Eqgs. (4.23) to (4.27) are quite general. Even though we used examples of
constant volume and constant pressure to obtain them, they hold in general
as long as the gas is a perfect gas (no intermolecular forces). Hence, for any
process,

de =c,dT

dh = c,dT
e=c,T
h=c,T

This generalization of Egs. (4.23) to (4.27) to any process may not seem logical
and may be hard to accept; nevertheless, it is valid, as can be shown by good
thermodynamic arguments beyond the scope of this book. For the remainder of
our discussions, we will make frequent use of these equations to relate internal
energy and enthalpy to temperature.
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EXAMPLE 4.6

Calculate the internal energy and enthalpy, per unit mass, for air at standard sea-level
conditions in (a) SI units and (b) English engineering units. For air at standard condi-
tions, ¢, = 720 J/(kg)(K) = 4290 ft - Ib/(slug)(°R), and ¢, = 1008 J/(kg)(K) = 6006 ft - b/
(slug)(°R).

H Solution

At standard sea level, the air temperature is

T =288 K=519°R

a. From Egs. (4.24) and (4.27), we have

e=c,T =(720)(288) = 2.07 x 10° J/kg
h=c,T = (1008)(28) = 2.90 x 10° J/kg

b. Also from Egs. (4.24) and (4.27),

e =c,T = (4290)(519) = 2.23 x 10°ft - Ib/slug
h=c,T =(6006)(519) = 3.12x 10°ft - Ib/slug

Note: For a perfect gas, e and & are functions of temperature only, as emphasized in this
worked example. If you know the temperature of the gas, you can directly calculate e and
h from Eqgs. (4.24) and (4.27). You do not have to be concerned whether the gas is going
through a constant-volume process, a constant-pressure process, or whatever. Internal
energy and enthalpy are state variables—that is, properties that depend only on the local
state of the gas as described, in this case, by the given temperature of the gas.

EXAMPLE 4.7

Consider air inside a cylinder, with a piston at the top of the cylinder. The internal energy
of the air inside the cylinder is 4 x 10° J. The piston moves into the cylinder by a distance
sufficient to do 2 x 105 J of work on the system. At the same time, 6 X 10° J of heat are
added to the system. Calculate the internal energy of the air after the work is done and
the heat added.

H Solution

This example is almost trivial, but it is intended to illustrate the use of the first law of
thermodynamics. Equation (4.10) is expressed in terms of infinitesimally small quantities
of heat added, 0 ¢, and work done, dw. It holds, however, for any quantities of heat and
work. Let AW be the total amount of work done on the system, AQ the total heat added to
the system from the surroundings, and AE the resulting finite change in internal energy.
The first law of thermodynamics, Eq. (4.10), can be expressed as

AQ + AW = AE 4.7.1)
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In this example, AQ =6 x 10° J and AW =2 x 103 J. Hence, from Eq. (4.7.1),
AE=E, —-E =AQ+AW =6x10° +2x10° =8x10°J

Because E) is given as 4 X 10° J, then
E,=E +AQ+AW =4x10° +8x10° =12x10°J

In this example, nothing is said about the processes by which the heat is added and work
is done on the system. Because the values of both work and heat are given, we did not
have to specify the process. Later we will see that to calculate Aw and Ag from the
other changes in the system, we need to specify the type of process. Both Aw and Ag are
process dependent. But in this example we know up front the values of AW and A Q. This
is all that is seen by the first law of thermodynamics, and all that is required to obtain the
change in internal energy, AE=E, - E|.

4.6 ISENTROPIC FLOW

We are almost ready to return to our consideration of aerodynamics. However,
we must introduce one more concept that bridges both thermodynamics and
compressible aerodynamics—namely, that of isentropic flow.

First consider three more definitions:

An adiabatic process is one in which no heat is added or taken away: 6g = 0.
A reversible process is one in which no frictional or other dissipative effects occur.
An isentropic process is one that is both adiabatic and reversible.

Thus, an isentropic process is one in which there is neither heat exchange nor
any effect due to friction. (The source of the word isentropic is another defined
thermodynamic variable called entropy. Entropy is constant for an isentropic
process. A discussion of entropy is not vital to our discussion here; therefore, no
further elaboration is given.)

Isentropic processes are very important in aerodynamics. For example, con-
sider the flow of air over the airfoil shown in Fig. 4.7. Imagine a fluid element
moving along one of the streamlines. No heat is being added or taken away from
this fluid element; heat exchange mechanisms such as heating by a flame, cooling
in a refrigerator, or intense radiation absorption are all ruled out by the nature of the
physical problem we are considering. Thus, the flow of the fluid element along the
streamline is adiabatic. At the same time, the shearing stress exerted on the surface
of the fluid element due to friction is generally quite small and can be neglected
(except very near the surface, as will be discussed later). Thus, the flow is also
frictionless. [Recall that this same assumption was used in obtaining the momen-
tum equation, Eq. (4.8).] Hence, the flow of the fluid element is both adiabatic and
reversible (frictionless); that is, the flow is isentropic. Other aerodynamic flows
can also be treated as isentropic, such as the flows through wind tunnel nozzles and
rocket engines.
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Note that even though the flow is adiabatic, the temperature need not be
constant. Indeed, the temperature of the fluid element can vary from point to
point in an adiabatic, compressible flow. This is because the volume of the fluid
element (of fixed mass) changes as it moves through regions of different den-
sity along the streamline; when the volume varies, work is done [Eq. (4.15)],
hence the internal energy changes [Eq. (4.10)], and hence the temperature
changes [Eq. (4.23)]. This argument holds for compressible flows, where the
density is variable. In contrast, for incompressible flow, where p = constant, the
volume of the fluid element of fixed mass does not change as it moves along a
streamline; hence no work is done and no change in temperature occurs. If the
flow over the airfoil in Fig. 4.7 were incompressible, the entire flow field would
be at constant temperature. For this reason, temperature is not an important
quantity for frictionless incompressible flow. Moreover, our present discussion
of isentropic flows is relevant to compressible flows only, as explained in the
following.

An isentropic process is more than just another definition. It gives us several
important relationships among the thermodynamic variables 7, p, and p at two
different points (say, points 1 and 2 in Fig. 4.7) along a given streamline. These
relations are obtained as follows. Because the flow is isentropic (adiabatic and
reversible), g = 0. Thus, from Eq. (4.16),

0q =de+ pdv=0

pdv = de (4.28)

Substitute Eq. (4.23) into (4.28):
—-pdv =c,dT (4.29)

In the same manner, using the fact that g = 0 in Eq. (4.19), we also obtain

6q=dh—vdp=0

vdp = dh (4.30)
Substitute Eq. (4.26) into (4.30):
vdp = ¢, dT (4.31)
Divide Eq. (4.29) by (4.31):
—pdv _ ¢,
vdp ¢,
or d_p = _C_”ﬂ (4.32)
p c, Vv

The ratio of specific heats c,/c, appears so frequently in compressible flow equa-
tions that it is given a symbol all its own, usually ¥, ¢,/c, = ¥. For air at normal
conditions, which exist for the applications treated in this book, both ¢, and c,
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are constants, and hence y = constant = 1.4 (for air). Also, c¢,/c, =y = 1.4 (for air
at normal conditions). Thus, Eq. (4.32) can be written as

ap _ v (4.33)

p v
Referring to Fig. 4.7, we integrate Eq. (4.33) between points 1 and 2:

Pzdp_ v dv
[y

P1 p Iy
In22 = _ym2 (4.34)
Di Vi

w
P _ (V_]
P Vi

Because v, = 1/p, and v, = 1/p,, Eq. (4.34) becomes

v
P _| P2 isentropic flow (4.35)
D P

From the equation of state, we have p = p/(RT). Thus, Eq. (4.35) yields

2

Y
P [ 2 EJ
b RT, p,

ok

T /(r-1)
or P _ [—2] isentropic flow (4.36)
P T,
Combining Eqgs. (4.35) and (4.36), we obtain
4 7/(r-1)
P _ [&] = [EJ isentropic flow 4.37)
P P T

The relationships given in Eq. (4.37) are powerful. They provide important infor-
mation for p, 7, and p between two different points on a streamline in an isen-
tropic flow. Moreover, if the streamlines all emanate from a uniform flow far
upstream (far to the left in Fig. 4.7), then Eq. (4.37) holds for any two points in
the flow, not necessarily those on the same streamline.
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We emphasize again that the isentropic flow relations, Eq. (4.37), are rel-
evant to compressible flows only. By contrast, the assumption of incompressible
flow (remember, incompressible flow is a myth, anyway) is not consistent with
the same physics that went into the development of Eq. (4.37). To analyze in-
compressible flows, we need only the continuity equation [say, Eq. (4.3)] and the
momentum equation [Bernoulli’s equation, Egs. (4.9a) and (4.9b)]. To analyze
compressible flows, we need the continuity equation, Eq. (4.2), the momentum
equation [Euler’s equation, Eq. (4.8)], and another soon-to-be-derived relation
called the energy equation. If the compressible flow is isentropic, then Eq. (4.37)
can be used to replace either the momentum or the energy equation. Because
Eq. (4.37) is a simpler, more useful algebraic relation than Euler’s equation,
Eq. (4.8), which is a differential equation, we frequently use Eq. (4.37) in place
of Eq. (4.8) for the analysis of compressible flows in this book.

As just mentioned, to complete the development of the fundamental rela-
tions for the analysis of compressible flow, we must now consider the energy
equation.
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EXAMPLE 4.8

An airplane is flying at standard sea-level conditions. The temperature at a point on the
wing is 250 K. What is the pressure at this point?

H Solution

The air pressure and temperature, p, and T}, far upstream of the wing correspond to
standard sea level. Hence p, = 1.01 x 10° N/m? and T, = 288.16 K. Assume that the flow
is isentropic (hence compressible). Then the relation between points 1 and 2 is obtained

from Eq. (4.37):
Yi(r-1)
p_ (Lj
P T

Yi(y-1) 1.4/(1.4-1)
T, s 250
= _ = ].lelo; -
P p'( ,] ( )(288.16j

[, = 6.14x10° N/m’®|

EXAMPLE 4.9

In a rocket engine, the fuel and oxidizer are burned in the combustion chamber, and then
the hot gas expands through a nozzle to high velocity at the exit of the engine. (Jump
ahead and see the sketch of a rocket engine nozzle in Fig. 4.32.) The flow through the
rocket engine nozzle downstream of the combustion chamber is isentropic. Consider the
case when the pressure and temperature of the burned gas in the combustion chamber
are 20 atm and 3500 K, respectively. If the pressure of the gas at the exit of the nozzle
is 0.5 atm, calculate the gas temperature at the exit. Note: The combustion gas is not air,
so the value for ¥ will be different than for air; that is, ¥ will not be equal to 1.4. For the
combustion gas in this example, y = 1.15.
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H Solution
From Eq. (4.36),

v/(y-1)
P [1]
P T,

where we will designate condition 1 to be the combustion chamber and condition 2 to be
the nozzle exit. Hence p, = 20 atm, 7, = 3500 K, and p, = 0.5 atm. Rearranging Eq. (4.36),
we have

(r-Dy 0.5 (1.15-1)/1.15
T, = Tl[&] = 2500(%] =3500(0.025)"" =[2167 K

2

Question: Atmospheres is a nonconsistent unit for pressure. Why did we not convert p,
and p, to N/m? before inserting into Eq. (4.36)? The answer is that p, and p, appear as a
ratio in the preceding calculation, namely p,/p,. As long as we use the same units for the
numerator and the denominator, the ratio is the same value, independent of what units
are used. To prove this, let us convert atmospheres to the consistent units of N/m? One
atmosphere is by definition the pressure at standard sea level. From the listing of sea-level
properties in Sec. 3.4, we see that

1 atm = 1.01 x10° N/m? (rounded to three significant figures)
Thus
p, =20(1.01x10°) = 2.02x 10° N/m’
p, =0.51.01x10°) = 5.05x 10* N/m’

From Eq. (4.36),

(r-)y 505%10* (1.15-1)/1.15
T, = TIE&J = 3500(72‘02 106) =3500(0.025)"" = 2167 K
P 02 %

which is the same answer as first obtained.

A cylinder with a piston moving inside the cylinder, as considered in Example 4.7, is the
basic power-producing mechanism in the reciprocating engine found in most automo-
biles and in many small general aviation aircraft. The basic principle of the reciprocat-
ing engine is described in Sec. 9.3, and the elements of a four-stroke engine cycle are
sketched in Fig. 9.11. Without being concerned with the details (you will be able to digest
and enjoy the details when you study Ch. 9), just note that the four strokes are intake,
compression, power, and exhaust. In particular, examine Fig. 9.11b, which illustrates the
compression stroke. At the beginning of the compression stroke, the piston is at the bot-
tom of the cylinder, and the cylinder is full of the gas—air mixture. Denote the volume of
this mixture by V,. When the piston has moved its maximum distance toward the top of
the cylinder at the end of the compression stroke, the volume of the gas—air mixture above
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the piston is V3. By definition, in an internal combustion engine, the all-important com-
pression ratio is V,/V;. Consider the case where the fuel-air mixture has been brought
into the cylinder at standard sea-level conditions during the intake stroke. The design
compression ratio is 10. Calculate the pressure and temperature of the gas—air mixture in
the cylinder at the end of the compression stroke, assuming that the compression process
takes place isentropically. Because most of the mixture is air and very little is fuel (typical
fuel-to-air ratios by mass are 0.05), it is safe to assume a value of ¥ = 1.4.

H Solution

Denote conditions at the beginning of the compression stroke by the subscript 2 and those
at the end of the stoke by the subscript 3. From Eq. (4.37) and the definition of specific
volume, v, in Sec. 2.5, we have

Y Y 14
L =[—(”V3)} =(ﬁj (E 4.10.1)
P2\ P 1/ vy) vy

The specific volume is the volume per unit mass. Because the mass inside the cylin-
der is constant during the compression stroke, we can write v,/v; = V,/V;. Hence, from
Eq. (E 4.10.1), we have

'é
P [%] (E 4.10.2)
P> 3

The compression ratio is 10. The gas—air mixture at the beginning of the compression
stroke is at standard sea-level conditions, that is, p, = 1.02 X 10° N/m?2. From Eq. (E 4.10.2),

Y
Py = pz[%] = (1.02x 10310 =|25.6 x 10° N/m’

3

Note: Because we are dealing with ratios in the equation, we can use the nonconsistent
unit of atmospheres for pressure, that is, p, = 1 atm, and

= (OO =

Check: Since 1 atm = 1.02 x 10° N/m?, then
Py =(25.1)1.02x10° = 25.6 x 10° N/m’

which agrees with our first answer.
To calculate the temperature at the end of the compression stroke, return to Eq. (4.37),

where we can write
& 4 _ [5]}’/(71)
P> T,

(ﬁjz p " [&]M
T, P2 Vi

or,
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At standard sea-level conditions, 7, = 288 K. Thus,

(r-1
T, = T{%J =288(10)"* =723 K

3

It is interesting to note that during the isentropic compression process where the compres-
sion ratio is 10, the pressure increases by a much larger factor—a factor of 25.1—than the
temperature, which increases by a factor of only 2.51.

Comment By way of the totally different examples in this section, dealing with
three different practical applications, we can begin to appreciate the importance
of isentropic flow and isentropic changes in a system. This is just the beginning;
we will see many other applications of isentropic flow as we proceed with our
discussion of aerodynamics and propulsion.

4.7 ENERGY EQUATION

Recall that our approach to the derivation of the fundamental equations for fluid
flow is to state a fundamental principle and then to proceed to cast that principle
in terms of flow variables p, T, p, and V. Also recall that compressible flow,
high-speed flow, and massive changes in energy go hand in hand. Therefore,
the last fundamental physical principle that we must take into account is as
follows:

Physical principle: Energy can be neither created nor destroyed. It can only
change form.

In quantitative form, this principle is nothing more than the first law of ther-
modynamics, Eq. (4.10). To apply this law to fluid flow, consider again a fluid
element moving along a streamline, as shown in Fig. 4.6. Let us apply the first
law of thermodynamics

8q + Ow = de
to this fluid element. Recall that an alternative form of the first law is Eq. (4.19):
0q = dh—vdp
Again we consider an adiabatic flow, where d¢g = 0. Hence, from Eq. (4.19),
dh—vdp=0 (4.38)
Recalling Euler’s equation, Eq. (4.8),
dp =—-pVdVv
we can combine Egs. (4.38) and (4.8) to obtain
dh+vpVdV =0 (4.39)
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However, v = 1/p; hence Eq. (4.39) becomes
dh+VdvV =0 (4.40)
Integrating Eq. (4.40) between two points along the streamline, we obtain
["an+ ["vav =0
h Wi

i Ve

hy —hy + 2 =0
2 2

h, + v = v
e “4.41)
h+— = const

Equation (4.41) is the energy equation for frictionless, adiabatic flow. We can
write it in terms of 7 by using Eq. (4.27), h = ¢,T. Hence, Eq. (4.41) becomes

2 2
o, +3Vi"=¢, T, +3V;

4.42
¢, T ++V? = const (42

Equation (4.42) relates the temperature and velocity at two different points
along a streamline. Again, if all the streamlines emanate from a uniform flow far
upstream, then Eq. (4.42) holds for any two points in the flow, not necessarily on
the same streamline. Moreover, Eq. (4.42) is just as powerful and necessary for
the analysis of compressible flow as Eq. (4.37).
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EXAMPLE 4.11

A supersonic wind tunnel is sketched in Fig. 4.32. The air temperature and pressure in
the reservoir of the wind tunnel are 7, = 1000 K and p, = 10 atm, respectively. The static
temperatures at the throat and exit are 7* = 833 K and 7, = 300 K, respectively. The mass
flow through the nozzle is 0.5 kg/s. For air, ¢, = 1008 J/(kg)(K). Calculate

a. The velocity at the throat V*.
b. The velocity at the exit V..

c. The area of the throat A*.

d. The area of the exit A,.

H Solution
Because the problem deals with temperatures and velocities, the energy equation seems
useful.

a. From Eq. (4.42), written between the reservoir and the throat,

2 « 2
e,y +3Vy =c,T*+LV*
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However, in the reservoir, V, = 0. Hence

Ve = [2c (T, — T%)

= /2(1008)(1000 — 833) = 580 m/s

b. From Eq. (4.42), written between the reservoir and the exit,

- 1y/2
c”T0 =c,I,+5V,

V,=2¢,(T,-T,)

= V/2(1008)(1000 —300) =1188 m/s

c. The basic equation dealing with mass flow and area is the continuity equation,
Eq. (4.2). Note that the velocities are certainly large enough for us to consider the flow
compressible, so Eq. (4.2), rather than Eq. (4.3), is appropriate:

m=p*A*V*
or A=
p*v*

In the preceding, 7 is given and V* is known from part a. However, p* must be obtained
before we can calculate A * as desired. To obtain p*, note that, from the equation of state,

po  10(1.01x10°)
Po = =———"=

= 3.52 kg/m®
RT, 287(1000)

Assuming that the nozzle flow is isentropic, which is a good approximation for the real
case, from Eq. (4.37), we get

p* T 1(r-1)
(E]_ (TJ

.\ (D) 1/(1.4-1)
T* 833 3
* = =(3.52)] —— =2.23kg/m’
p po[jb ] ( )(1000] g

m 0.5

= =3.87%x10"m* = 3.87 cm?
pEVE  (2.23)(580)

Thus A* =

d. Finding A, is similar to the previous solution for A*

m=pAV,
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where, for isentropic flow,

1(y-1) 1/(1.4-1)
T 300 3
, = e =(3.52)| —— =0.174kg/m"
p po[Tn] ( )[mooj g

m 0.5

- = =242x10*m* =242 cm’
p.V, 0.174(1188)

or

e
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EXAMPLE 4.12

Consider an airfoil in a flow of air, where far ahead of the airfoil (the free stream), the
pressure, velocity, and density are 2116 1b/ft>, 500 mi/h, and 0.002377 slug/ft*, respec-
tively. At a given point A on the airfoil, the pressure is 1497 1b/ft>. What is the velocity at
point A? Assume isentropic flow. For air, ¢, = 6006 ft - 1b/(slug)(°R).

H Solution

This example is identical to Example 4.3, except here the velocity is 500 mi/h—high
enough that we have to treat the flow as compressible, in contrast to Example 4.3, in
which we dealt with incompressible flow. Because the flow is isentropic, we can use
Eq. (4.37) evaluated between the free stream and point A:

7/(v-1)
Pa_|Th
P\ I

(r-1)1y 0.4/1.4
or T _|Pa [T 2 (0.7075)"% = 0.9058
. |p. 2116

The value of T, can be found from the equation of state:

r oo Pe _ 2116 ~
" p.R 0.002377(1716)

o

Hence T, =0.9058(519) = 470.1°R

From the energy equation, Eq. (4.42), evaluated between the free stream and point A, and
noting that V,, = 500(88/60) = 733.3 ft/s, we have

V2 V2
c,To+—==c¢,T, +—2*
1 ) prA )

VA:,‘/ch(Tm ~T)+V2

=/2(6006)(519-470.1)+(733.3)* =1061 ft/s

or
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Note: The calculational procedure for this problem, where we are dealing with com-
pressible flow, is completely different from that for Example 4.3, where we were deal-
ing with incompressible flow. In Example 4.3, we could use Bernoulli’s equation, which
holds only for incompressible flow. We cannot use Bernoulli’s equation to solve the pres-
ent problem because this is a compressible-flow problem and Bernoulli’s equation is not
valid for a compressible flow. If we had used Bernoulli’s equation to solve the present
problem, following exactly the method in Example 4.3, we would have obtained a veloc-
ity of 1029 ft/s at point A—an incorrect answer. Check this yourself.

Consider the Space Shuttle (see Figs. 2.24, 8.6, and 8.48) as it returns to earth after
completing a mission in orbit. At a point on its entry path through the atmosphere, its
velocity is 6.4 km/sec at an altitude of 60 km. At some point on the bottom surface,
near the nose of the shuttle, the flow velocity is zero. This point is defined as a stagna-
tion point. The stagnation point is usually the location of maximum temperature in the
flow. The flow along the streamline that comes from the free stream and goes through
the stagnation point is called the stagnation streamline. The flow along this stream-
line, as well as throughout the flow field, is adiabatic; no outside mechanism adds or
takes away heat from a fluid element moving along the streamline. (The only exception
is when the temperature of the fluid element becomes so hot that it loses significant
energy by radiation, but this phenomenon is not important in the atmospheric reentry of
the Space Shuttle.) Assuming a constant specific heat of ¢, = 1008 J/(kg)(K), calculate
the temperature of the air at the stagnation point. (How reasonable is the assumption
of constant specific heat for this problem? We will discuss this matter at the end of the
example.)

H Solution

In Eq. (4.42), let point 1 denote the free stream and point 2 denote the stagnation point.
We obtain the temperature of the free stream from the standard altitude table in App. A.
Note that the altitude tabulation in App. A stops just short of 60 km. From App. A, at
h =59 km, T=258.10 K, and at 7 = 59.5 km, T = 255.89 K. By linear extrapolation, at
h =60 km, we have

T, = 255.89 — (258.10 — 255.89) = 253.68 K

Returning to the energy equation,

i+ iV =¢, T, + 1V (4.42)

Point 2 is the stagnation point, where by definition V, = 0. The temperature at point 2 is

therefore the stagnation temperature, denoted by 7.

2
c, i ++V7 =¢,T,

V2 (6.4 x10%)
or EJ:]}+2—=253A68+W: 20,571K
c

P
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This is our answer, based on the energy equation using a constant value of specific heat.
This answer gives a very high temperature, more than three times the surface temperature
of the sun. At such temperatures, air becomes a chemically reactive gas (see Sec. 10.2.4),
and the assumption of constant specific heat is not valid for such a gas. In reality, properly
taking into account the chemical reactions, the stagnation temperature is about 6000 K, still
a very high temperature, but considerably less than that calculated on the basis of constant
specific heat. Thus we can see that Eq. (4.42), which assumes constant c,, is not valid for
this application. In contrast, no such assumption is made for the derivation of Eq. (4.41),
which holds for an adiabatic flow in general. The calculation of a chemically reactive flow
is beyond the scope of this book. For an in-depth discussion of such flows and their proper
calculation, see Anderson, Hypersonic and High Temperature Gas Dynamics, 2nd ed.,
American Institute of Aeronautics and Astronautics, Reston, VA, 2006.
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The author and his wife had the joy of flying in the Anglo-French Concorde Supersonic
Transport (SST) from New York to London (a flight that took only three hours compared
to the more than six hours in a conventional subsonic jet transport). The SST cruised at a
velocity of 1936 ft/s at an altitude of 50,000 ft. Calculate the stagnation temperature for
the SST at cruise, assuming a constant specific heat for air of 6006 ft 1b/(slug)(°R). (The
concept of stagnation temperature was introduced in Example 4.13.)

H Solution
From Eq. (4.42), we have

e, T, +1Vi =, + 1V, =¢,T,

2
Tb:Tl+V_1

2c,

From App. B, at & = 50,000 ft, T, = 389.99°R. Thus,

(1936)*
T, =389.99+ ——"_ =[702°R]
0 2(6006)

In Fahrenheit, this temperature is

T, = 702 — 460 = 242°F

which is higher than the boiling temperature of water at sea level. Indeed, the skin tem-
perature of the SST was high enough that, after landing, the airplane was left to cool
down for about a half an hour before the skin was safe to touch with your hand.

Note: From Sec. 10.2.4, we know that the temperature at which chemical reactions first
occur in air is about 2000 K = 3600°R = 3140°F. For the temperature in this example, we
are very safe in assuming a constant value of c,. Indeed, the specific heat of air remains
essentially constant up to 1000 K, above which the excitation of vibrational energy of the
O, and N, molecules causes some variation of c,, but this is minor compared to the large
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variation due to chemical reactions. For the vast majority of aerodynamic applications,
especially those dealing with airplanes, the assumption of constant specific heat is quite
valid. This will be the case for all applications treated in this book.

EXAMPLE 4.16

Consider a flow with heat addition, that is, a nonadiabatic flow. Derive the energy equa-
tion for such a flow.

H Solution

Consider a fluid element moving along a streamline. Let d¢ be the heat added per unit
mass to the fluid element. We can apply the first law of thermodynamics as given by
Eq. (4.19), repeated here:

6q = dh—vdp (4.19)
From Euler’s equation, Eq. (4.8), repeated here,
dp =—-pVdV 4.8)
Eq. (4.19) becomes
Oq = dh —v(—pVdV)
or

0q = dh+Vdv (E4.15.1)

Integrating Eq. (E 4.15.1) from point 1 to point 2 along the streamline, we have

[78q=["an+ [ vav (E4.152)

In Eq. (E 4.15.2), 6 ¢ integrated from point 1 to point 2 is the total heat added per unit
mass to the fluid element between points 1 and 2. Denote this total heat added per unit
mass by Q,. Eq. (E 4.15.2) can then be written as

v v
= —h o+
On,=h—h 5 5
V2 13
or b+ 0, + —; =h+ 72 (E 4.15.3)

This is a form of the energy equation for a non-adiabatic flow. Note that it is similar to
Eq. (4.41), but with a heat addition term, Q,,, on the left-hand side.

Consider the combustion chamber (burner) in a turbojet engine. The elements of a
turbojet are discussed in Sec. 9.5, and the combustion chamber is illustrated sche-
matically in Figs. 9.16, 9.18, and 9.19. (It is worth your while to flip over to these
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figures for a few moments before you proceed further with this example.) Consider
the case where air, having passed through the compressor, enters the combustor
at a temperature of 1200°R. As it flows through the combustor, heat is added per
unit mass in the amount of 2.1 x 107 ft Ib/slug. The flow velocity at the entrance
to the combustor is 300 ft/s, and decreases to 200 ft/s at the exit of the combustor.
Calculate the temperature of the flow at the exit, assuming constant specific heat
¢, = 6006 ft 1b/(slug)(°R).

H Solution

Using the energy equation with heat addition derived in Example 4.15, namely Eq. (4.15.3),
assuming constant specific heat so that 7 =c, T, and using the subscripts 3 and 4 to denote
the entrance and exit, respectively, of the combustor consistent with the diagrams in
Figs. 9.16 and 9.18, we have

2
c, T + M+V7‘:C7T4+—

where 75 = 1200°R, O3, =2.1 x 107 ft Ib/slug, V5 =300 ft/s and V, = 200 ft/s. Hence,

2 12 7 2 2
1o e Qe VEoVE 0, 2.1X10 +{(300) (200) }:
c 2¢, 6006 2 (6006)

p

1200 + 3497 + 4 = |4701°R
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We have just finished applying some basic physical principles to obtain
equations for the analysis of flowing gases. The reader is cautioned not to
be confused by the multiplicity of equations; they are useful, indeed neces-
sary, tools to examine and solve various aerodynamic problems of interest.
It is important for an engineer or scientist to look at such equations and see
not just a mathematical relationship, but primarily a physical relationship.
These equations talk! For example, Eq. (4.2) says that mass is conserved;
Eq. (4.42) says that energy is conserved for an adiabatic, frictionless flow;
and so on. Never lose sight of the physical implications and limitations of
these equations.

To help set these equations in your mind, here is a compact summary of our
results so far:

1. For the steady incompressible flow of a frictionless fluid in a stream tube
of varying area, p and V are the meaningful flow variables; p and T are
constants throughout the flow. To solve for p and V, use

AV, = AV, continuity
m+ %pV,2 =p,+ %szz Bernoulli's equation
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2. For steady isentropic (adiabatic and frictionless) compressible flow in
a stream tube of varying area, p, p, T, and V are all variables. They are
obtained from

pA VY = p,AY, continuity
¥ 7l (y=1)
PP o (Ej isentropic relations
D> P2 T,
o,y + 4V =¢,T, + 1V energy

= p\RT,
Pr= plth equation of state
P2 = PoRT,

Let us now apply these relations to study some basic aerodynamic phenomena
and problems.

4.9 SPEED OF SOUND

Sound waves travel through the air at a definite speed—the speed of sound. This
is obvious from natural observation: A lightning bolt is observed in the distance,
and thunder is heard at some later instant. In many aerodynamic problems, the
speed of sound plays a pivotal role. How do we calculate the speed of sound?
What does it depend on: pressure, temperature, density, or some combination
thereof? Why is it so important? Answers to these questions are discussed in this
section.

First let us derive a formula to calculate the speed of sound. Consider a
sound wave moving into a stagnant gas, as shown in Fig. 4.12. This sound
wave is created by some source, say a small firecracker in the corner of a
room. The air in the room is motionless and has density p, pressure p, and
temperature 7. If you are standing in the middle of the room, the sound wave
sweeps by you at velocity a m/s, ft/s, or some other unit. The sound wave
itself is a thin region of disturbance in the air, across which the pressure,
temperature, and density change slightly. (The change in pressure is what
activates your eardrum and allows you to hear the sound wave.) Imagine
that you now hop on the sound wave and move with it. As you are sitting
on the moving wave, look to the left in Fig. 4.12—that is, look in the direc-
tion in which the wave is moving. From your vantage point on the wave, the
sound wave seems to stand still, and the air in front of the wave appears to
be coming at you with velocity a; that is, you see the picture shown in Fig.
4.13, where the sound wave is standing still and the air ahead of the wave is
moving toward the wave with velocity a. Now return to Fig. 4.12 for a mo-
ment. Sitting on top of and riding with the moving wave, look to the right—
that is, look behind the wave. From your vantage point, the air appears to
be moving away from you. This appearance is sketched in Fig. 4.13, where
the wave is standing still. Here the air behind the motionless wave is mov-
ing to the right, away from the wave. However, in passing through the wave,
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14 a ptdp
2 ¢ o tdp
T+dT
Source of
sound wave

Sound wave moving
to the left with
velocity a into

a stagnant gas

Figure 4.12 Model of a sound wave moving into a stagnant gas.

Ahead of wave 1 2 Behind the wave
r ptdp
a
> = atda
T p+dp
T+ dT

Motionless sound wave

Figure 4.13 Model with the sound wave stationary.

the pressure, temperature, and density of the air are slightly changed by the
amounts dp, dT, and dp, respectively. From our previous discussions, you
would then expect the airspeed a to change slightly, say by an amount da.
Thus, the air behind the wave is moving away from the wave with velocity
a + da, as shown in Fig. 4.13. Figures 4.12 and 4.13 are completely analo-
gous pictures; only their perspectives are different. Figure 4.12 is what you
see by standing in the middle of the room and watching the wave go by;
Fig. 4.13 is what you see by riding on top of the wave and watching the air go
by. Both pictures are equivalent. However, Fig. 4.13 is easier to work with,
so we will concentrate on it.

Let us apply our fundamental equations to the gas flow shown in Fig. 4.13.
Our objective is to obtain an equation for a, where a is the speed of the sound
wave, the speed of sound. Let points 1 and 2 be ahead of and behind the wave,
respectively, as shown in Fig. 4.13. Applying the continuity equation, Eq. (4.2),
we find

PiAY = P ALY,

or pAa=(p+dp)A,(a+da) (4.43)

Here A, and A, are the areas of a stream tube running through the wave. Just
looking at the picture shown in Fig. 4.13, we see no geometric reason why the
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stream tube should change area in passing through the wave. Indeed it does not;
the area of the stream tube is constant; hence A = A, = A, = constant. (This is an
example of a type of flow called one-dimensional, or constant-area, flow.) Thus
Eq. (4.43) becomes

pa=(p+dp)a+da)
or pa=pa+adp+pda+dpda (4.44)
The product of two small quantities dp da is very small in comparison to the
other terms in Eq. (4.44) and hence can be ignored. Thus, from Eq. (4.44),
a=-p— (4.45)

Now apply the momentum equation in the form of Euler’s equation, Eq. (4.8):

dp = —pada

dp
or da = ——
a (4.46)

Substitute Eq. (4.46) into (4.45):
_P
dp pa
2 dP

or a = ap (4.47)

On a physical basis, the flow through a sound wave involves no heat addition,
and the effect of friction is negligible. Hence, the flow through a sound wave is
isentropic. Thus, from Eq. (4.47), the speed of sound is given by

dp
a=\7A (4.48)

p isentropic

Equation (4.48) is fundamental and important. However, it does not give us a
straightforward formula for computing a number for . We must proceed further.
For isentropic flow, Eq. (4.37) gives

¥
P (&]
D P1

P2 _ PL_ const=c (4.49)

ol pl

or
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Equation (4.49) says that the ratio p/p”is the same constant value at every point
in an isentropic flow. Thus we can write everywhere

o (4.50)
dp ] d Y y-1
N =——cp =
Hence (dp isentropic dp (45 1)
Substituting for ¢ in Eq. (4.51) the ratio of Eq. (4.50), we obtain
dap _P 1 _ TP
[dp Jiscmmpic py ,}/p p (452)

Substitute Eq. (4.52) into (4.48):

(4.53)

Q

I

\<
o |

However, for a perfect gas, p and p are related through the equation of state; p =
p RT; hence p/p = RT. Substituting this result into Eq. (4.53) yields

a=.yR (4.54)

E

Equations (4.48), (4.53), and (4.54) are important results for the speed of
sound; however, Eq. (4.54) is the most useful. It also demonstrates a fundamental
result: The speed of sound in a perfect gas depends only on the temperature of
the gas. This simple result may appear surprising at first. However, it is to be ex-
pected on a physical basis, as follows. The propagation of a sound wave through
a gas takes place via molecular collisions. For example, consider again a small
firecracker in the corner of the room. When the firecracker is set off, some of its
energy is transferred to the neighboring gas molecules in the air, thus increasing
their kinetic energy. In turn, these energetic gas molecules are moving randomly
about, colliding with some of their neighboring molecules and transferring some
of their extra energy to these new molecules. Thus, the energy of a sound wave is
transmitted through the air by molecules that collide with one another. Each mol-
ecule is moving at a different velocity; but if they are summed over a large num-
ber of molecules, a mean or average molecular velocity can be defined. Therefore,
looking at the collection of molecules as a whole, we see that the sound energy
released by the firecracker will be transferred through the air at something ap-
proximating this mean molecular velocity. Recall from Ch. 2 that temperature
is a measure of the mean molecular kinetic energy, hence of the mean molecular
velocity; then temperature should also be a measure of the speed of a sound wave
transmitted by molecular collisions. Equation (4.54) proves this to be a fact.
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For example, consider air at standard sea-level temperature 7, = 288.16 K.
From Eq. (4.54), the speed of sound is ¢ = \/yRT = \/1,4(287)(288.16) =
340.3 m/s. From the results of the kinetic theory of gases, the mean molecular
velocity canbe obtainedas V = \/(8 /) RT = /(8/m)287 (288.16) =458.9 m/s.
Thus, the speed of sound is of the same order of magnitude as the mean molecu-
lar velocity and is smaller by about 26 percent.

Again we emphasize that the speed of sound is a point property of the flow,
just as T is a point property (as described in Ch. 2). It is also a thermodynamic
property of the gas, defined by Eqs. (4.48) to (4.54). In general, the value of the
speed of sound varies from point to point in the flow.

The speed of sound leads to another vital definition for high-speed gas
flows—namely, the Mach number. Consider a point B in a flow field. The flow
velocity at B is V, and the speed of sound is a. By definition, the Mach number M
at point B is the flow velocity divided by the speed of sound:

M=— (4.55)
a

We will find that M is one of the most powerful quantities in aerodynamics. We
can immediately use it to define three different regimes of aerodynamic flows:

1. If M < 1, the flow is subsonic.
2. If M =1, the flow is sonic.
3. If M > 1, the flow is supersonic.

Each of these regimes is characterized by its own special phenomena, as will
be discussed in subsequent sections. In addition, two other specialized aerody-
namic regimes are commonly defined: transonic flow, where M generally ranges
from slightly less than to slightly greater than 1 (for example, 0.8 <M < 1.2), and
hypersonic flow, where generally M > 5. The definitions of subsonic, sonic, and
supersonic flows in terms of M as given are precise; the definitions of transonic
and hypersonic flows in terms of M are a bit more imprecise and really refer to
sets of specific aerodynamic phenomena rather than to just the value of M. This
distinction will be clarified in subsequent sections.

A jet transport is flying at a standard altitude of 30,000 ft with a velocity of 550 mi/h.
What is its Mach number?

H Solution
From the standard atmosphere table, App. B, at 30,000 ft, 7., = 411.86°R. Hence, from
Eq. (4.54),

a., =+[yRT, =J1.4(1716)(411.86) =995ft/s
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The airplane velocity is V., = 550 mi/h; however, in consistent units, remembering that
88 ft/s = 60 mi/h, we find that
V. =550 ﬁ = 807 ft/s
60

From Egq. (4.55),

M. = 2= = 50 = [03811]

oo
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In the nozzle flow described in Example 4.11, calculate the Mach number of the flow at
the throat, M*, and at the exit, M.,.

H Solution
From Example 4.11, at the throat, V* =580 m/s and T* = 833 K. Hence, from Eq. (4.54),

a* = \JyRT* = /1.4(287)(833) = 580 m/s
From Eq. (4.55),

V* 580
M = — =""" =|]
a* 580

Note: The flow is sonic at the throat. We will soon prove that the Mach number at the
throat is always sonic in supersonic nozzle flows (except in special, nonequilibrium,
high-temperature flows, which are beyond the scope of this book).

Also from Example 4.11, at the exit, V, = 1188 m/s and T, = 300 K. Hence

a, = JYRT, = JT.4287)(300) = 347m/s
_ Ve 1188
347

M

e

3.42
a

e

Comment Examples 4.17 and 4.18 illustrate two common uses of Mach num-
ber. The speed of an airplane is frequently given in terms of Mach number. In
Example 4.17, the Mach number of the jet transport is calculated; here the Mach
number of the airplane is the velocity of the airplane through the air divided
by the speed of sound in the ambient air far ahead of the airplane. This use
of Mach number is frequently identified as the free-stream Mach number. In
Example 4.18, the local Mach number is calculated at two different points in a
flow field: at the throat and at the exit of the nozzle flow. At any given point in
a flow, the local Mach number is the local flow velocity at that point divided by
the local value of the speed of sound at that point. Here Mach number is used
as a local flow property in a flow field, and its value varies from point to point
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throughout the flow because both velocity and the local speed of sound (which
depends on the local temperature) vary throughout the flow.

Consider a vehicle moving at a velocity of 1000 m/s through (a) air, and (b) hydrogen.
The molecular weight (mass) of diatonic hydrogen is 2 kg/(kg mole). Calculate the Mach
number of the vehicle in (a) air, and (b) hydrogen. Comment on the implication of the
results.

N Solution
From chemistry, as mentioned in Sec. 2.3, the specific gas constant R is related to the
universal gas constant R by

R=R/M

where M is the molecular weight of the gas and R = 8314 J/(kg mole)(K).
a. Air: For air, M = 28.97. Hence,

R 8314
R=—=—"""_=287 J/(kg)(K
M 28.97 (ke)(K)
Note that R = 287 J/(kg)(K) was first given in Sec. 2.3, and we have used that value in

subsequent examples. We calculate it here from R and M just for consistency.

a = JRT = /(1.4)(287)(300) = 347.2 m/s
m =Y 1900 _ %R
a 3472

b. Hydrogen: For H,, M = 2. Hence,

R _ 8314
R=— =" =4157 J/(kg)(K
v 2 (kg)(K)

For all diatomic gases, the ratio of specific heats ¥ = 1.4. Thus, for H, at T=300 K,

a = JyRT =/(1.4)(4157)(300) = 1321 m/s

m =Y 1000155

a 1321

Comment The speed of sound in a light gas such as H, is much higher than
that in a heavier gas such as air. As a result, an object moving at a given velocity
through a light gas will have a lower Mach number than if it were moving through
a heavier gas. Indeed, in this example, the vehicle moving at 1000 m/s is super-
sonic in air, but subsonic in H,. This has a tremendous effect on the aerodynamics
of the vehicle. As will be explained in Sec. 4.11.3, shock waves will appear around
the supersonic vehicle, thus causing a large increase in the aerodynamic drag of
the vehicle. This increase is due to wave drag, as will be explained in Sec. 5.11.
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Comment A potential practical application of the result calculated in
Example 4.19 is illustrated in Fig. 4.14. In Fig. 4.14a, a vehicle is shown flying
through air at a velocity of 1000 m/s. The Mach number is supersonic, equal
to 2.88. There will be a bow shock wave at the nose of the vehicle, creating
a large supersonic wave drag on the vehicle (as discussed in Sec. 5.11). In
Fig. 4.14b, the same vehicle is shown flying at the same velocity of 1000 m/s, but
through H, contained in a tube. The Mach number is subsonic, equal to 0.757.
There is no shock wave, and no wave drag is exerted on the body. Hence, the
thrust required to propel this vehicle inside the tube at a velocity of 1000 m/s
through H, will be much less than that required to propel the vehicle at 1000 m/s
through air. The vehicle in Fig. 4.14b is flying supersonically relative to the air
outside the tube but subsonically relative to the H, inside the tube. This idea
for a hydrogen-tube vehicle for supersonic transport is currently being studied
(see, for example, Arnold R. Miller, “Hydrogen Tube Vehicle for Supersonic
Transport: 2. Speed and Energy,” International Journal of Hydrogen Energy,
vol. 35 (2010), pp. 5745-5753). For our introduction to the basic principles of
flight, it is simply a “cool” application of this section on the speed of sound
and Mach number.

AIR
T, =300 K
M, =2.88

Supersonic
flow

1000 m/s
(@)

WAVE DRAG

H2
T,=300k
M,,=0.757 1000 m/s

(b)

Subsonic
flow

Figure 4.14 Sketch of a vehicle flying (a) at a
supersonic velocity in air, and (b) at a subsonic velocity
in hydrogen, in both cases at the same velocity.
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4.10 LOW-SPEED SUBSONIC WIND TUNNELS

Throughout the remainder of this book, the aerodynamic fundamentals and tools
(equations) developed in previous sections will be applied to specific problems
of interest. The first will be a discussion of low-speed subsonic wind tunnels.

What are wind tunnels? In the most basic sense, they are ground-based ex-
perimental facilities designed to produce flows of air (or sometimes other gases)
that simulate natural flows occurring outside the laboratory. For most aerospace
engineering applications, wind tunnels are designed to simulate flows encoun-
tered in the flight of airplanes, missiles, or space vehicles. Because these flows
have ranged from the 27 mi/h speed of the early Wright Flyer to the 25,000 mi/h
reentry velocity of the Apollo lunar spacecraft, obviously many different types
of wind tunnels, from low subsonic to hypersonic, are necessary for laboratory
simulation of actual flight conditions. However, referring again to Fig. 1.30, we
see that flow velocities of 300 mi/h or less were the flight regime of interest until
about 1940. So, during the first four decades of human flight, airplanes were
tested and developed in wind tunnels designed to simulate low-speed subsonic
flight. Such tunnels are still in use today but now are complemented by transonic,
supersonic, and hypersonic wind tunnels.

The essence of a typical low-speed subsonic wind tunnel is sketched in
Fig. 4.15. The airflow with pressure p, enters the nozzle at a low velocity V|,
where the area is A,. The nozzle converges to a smaller area A, at the test section.
Because we are dealing with low-speed flows, where M is generally less than 0.3,
the flow is assumed to be incompressible. Hence, Eq. (4.3) dictates that the flow
velocity increases as the air flows through the convergent nozzle. The velocity in
the test section is then, from Eq. (4.3),

A
v, " v, (4.56)
After flowing over an aerodynamic model (which may be a model of a complete
airplane or part of an airplane, such as a wing, tail, or engine nacelle), the air

Settling

chamber

(reservoir)
¥y v, £
- e ] -
pi P2, Az P3
Ay A3z

Test section

Nozzle Diffuser

Figure 4.15 Simple schematic of a subsonic wind tunnel.
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passes into a diverging duct called a diffuser, where the area increases and veloc-
ity decreases to A; and V;, respectively. Again, from continuity,

V=2,
A
The pressure at various locations in the wind tunnel is related to the velocity
through Bernoulli’s equation, Eq. (4.9a), for incompressible flow:

P+ EpVE = py+1pVE = pa+EpVs (4.57)

From Eq. (4.57), as Vincreases, p decreases; hence p, < p,; that is, the test-section
pressure is smaller than the reservoir pressure upstream of the nozzle. In many
subsonic wind tunnels, all or part of the test section is open, or vented, to the
surrounding air in the laboratory. In such cases, the outside air pressure is com-
municated directly to the flow in the test section, and p, = 1 atm. Downstream
of the test section, in the diverging area diffuser, the pressure increases as veloc-
ity decreases. Hence p; > p,. If A; = A}, then from Eq. (4.56), V; = V; and from
Eq. (4.57), p; = p;. (Note: In actual wind tunnels, the aerodynamic drag created
by the flow over the model in the test section causes a loss of momentum not
included in the derivation of Bernoulli’s equation. Therefore, in reality, p; is
slightly less than p, because of such losses.)

In practical operation of this type of wind tunnel, the test-section velocity is
governed by the pressure difference p, — p, and the area ratio of the nozzle A,/A,
as follows. From Eq. (4.57),

2
W=Em—mﬂ%2 (4.58)

From Eq. (4.56), V, = (A,/A|)V,. Substituting this into the right side of Eq. (4.58),
we obtain

2
., 2 A
V; = ;(Pl -p)+ [f} sz (4.59)

Solving Eq. (4.59) for V, yields

v, = [ 2Pmp) (4.60)
pll— (A /A)]

The area ratio A,)/A, is a fixed quantity for a wind tunnel of given design. The
“control knob” of the wind tunnel controls p, — p,, which allows the wind tunnel
operator to control the value of test-section velocity V, via Eq. (4.60).

In subsonic wind tunnels, a convenient method of measuring the pressure dif-
ference p, — p,, and hence of measuring V, via Eq. (4.60), is by means of a ma-
nometer. A basic type of manometer is the U tube shown in Fig. 4.16. Here the left
side of the tube is connected to a pressure p,, the right side of the tube is connected
to a pressure p,, and the difference Ak in the heights of a fluid in both sides of

183



184

EXAMPLE 4.20

CHAPTER 4 Basic Aerodynamics

D1

A +{ARAw

Figure 4.16 Force diagram for a manometer.

the U tube is a measurement of the pressure difference p, — p;. This can easily be
demonstrated by considering the force balance on the liquid in the tube at the two
cross sections cut by plane B—B, shown in Fig. 4.16. Plane B—B is drawn tangent
to the top of the column of fluid on the left. If A is the cross-sectional area of the
tube, then p,A is the force exerted on the left column of fluid. The force on the right
column at plane B—B is the sum of the weight of the fluid above plane B—B and the
force due to the pressure p,A. The volume of the fluid in the right column above
B-B is A Ah. The specific weight (weight per unit volume) of the fluid is w = p\g,
where p, is the density of the fluid and g is the acceleration of gravity. Hence, the
total weight of the column of fluid above B-B is the specific weight times the
volume—that is, wA Ah. The total force on the right cross section at plane B—B is
DP2A + wA Ah. Because the fluid is stationary in the tube, the forces on the left and
right cross sections must balance; that is, they are the same. Hence

DA = p,A+wA Ah
or P — P, = wAh 4.61)

If the left side of the U-tube manometer were connected to the reservoir in a
subsonic tunnel (point 1 in Fig. 4.15) and the right side were connected to the
test section (point 2), then Ak of the U tube would directly measure the velocity
of the airflow in the test section via Egs. (4.61) and (4.60).

In modern wind tunnels, manometers have been replaced by pressure trans-
ducers and electrical digital displays for reading pressures and pressure differ-
ences. The basic principle of the manometer, however, remains an integral part
of the study of fluid dynamics, and that is why we discuss it here.

In a low-speed subsonic wind tunnel, one side of a mercury manometer is connected to
the settling chamber (reservoir) and the other side is connected to the test section. The
contraction ratio of the nozzle A,/A, equals 1s. The reservoir pressure and temperature
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are p; = 1.1 atm and 7, = 300 K, respectively. When the tunnel is running, the height dif-
ference between the two columns of mercury is 10 cm. The density of liquid mercury is
1.36 x 10* kg/m®. Calculate the airflow velocity in the test section V.

H Solution

Ah=10cm =0.1m
w (for mercury) = p,g = (1.36 x 10* kg/m*)(9.8 m/s?)
=1.33x10° N/m’

From Eq. (4.61),

p—p, = wAh = (1.33x 10°N/m*)(0.1m) = 1.33 x 10* N/m’

To find the velocity V,, use Eq. (4.60). However, in Eq. (4.60) we need a value of
density p. This can be found from the reservoir conditions by using the equation of state.
(Remember: 1 atm = 1.01 x 10° N/m?2.)

1.1(1.01x10°
p, =P 110.01x107)

= =1.29kg/m’
RT, 287(300)

Because we are dealing with a low-speed subsonic flow, assume p, = p= constant. Hence,
from Eq. (4.60),

2(p, — p») 2(1.33x 10%)
V, = = = -1 44m/s
PP (A AT 1290 ()] [H44mh]
Note: This answer corresponds to a Mach number of approximately 0.4 in the test section,

one slightly above the value of 0.3 that bounds incompressible flow. Thus, our assump-
tion of p = constant in this example is inaccurate by about § percent.
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Referring to Fig. 4.15, consider a low-speed subsonic wind tunnel designed with a res-
ervoir cross-sectional area A; = 2 m? and a test-section cross-sectional area A, = 0.5 m?.
The pressure in the test section is p, = 1 atm. Assume constant density equal to standard
sea-level density. (a) Calculate the pressure required in the reservoir, p;, necessary to
achieve a flow velocity V, =40 m/s in the test section. (b) Calculate the mass flow through
the wind tunnel.

H Solution
a. From the continuity equation, Eq. (4.3),

AV, = AV,

A 0.5
or ‘/1 = Vz[f]: (40)(Ej: 10 m/s

1
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From Bernoulli’s equation, Eq. (4.9a),
14 1%
4+ p-2 = + oL
p,tp > p+p >
Using consistent units,
p, = latm =1.01x 10° N/m?
and at standard sea level,
p =1.23kg/m’

we have

po=p+ g(vf -V

=1.01x10° + %[(40)2 -(10)°]

=1.019 x 10°> N/m?

As a check on this calculation, let us insert p, = 1.019 x 10° N/m? into Eq. (4.60) and see
if we obtain the required value of V, =40 m/s. From Eq. (4.60),

_[2(1.019-1.01)x 10
2 2
a.23)|1-[ 22
A 2.0
This checks.

Note: The pressure difference, p, — p,, required to produce a velocity of 40 m/s in the
test section is very small, equal to 1.019 x 10° — 1.01 x 105 = 900 N/m?. In atmospheres,
this is 900/(1.01 x 10°) = 0.0089 atm, less than a hundredth of an atmosphere pressure
difference. This is characteristic of low-speed flows, where it takes only a small pressure
difference to produce a substantial flow velocity.

b. From Eq. (4.2), the mass flow can be calculated from the product p AV evaluated
at any location in the wind tunnel. We choose the test section, where A, = 0.5 m?, V, =
40 m/s, and p=1.23 kg/m>.

=40 m/s

[ = pALV, = (1.23)(0.5)(40) = 24.6 kgs

We could just as well have chosen the reservoir to evaluate the mass flow, where A, =
2m?and V, =10 m/s.
m = pAV, = (1.23)(2)(10) = 24.6 kg/s

which checks with the result obtained in the test section.

For the wind tunnel in Example 4.21, (a) if the pressure difference (p, — p,) is dou-
bled, calculate the flow velocity in the test section. (b) The ratio A,/A, is defined as the
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contraction ratio for the wind tunnel nozzle. If the contraction ratio is doubled, keeping
the same pressure difference as in Example 4.21, calculate the flow velocity in the test
section.

H Solution
a. From Eq. (4.60), V, is clearly proportional to the square root of the pressure difference:

Vy o< P =

When p, — p, is doubled from its value in Example 4.21, where V, = 40 m/s, then

V= V20 =

b. The original contraction ratio from Example 4.21 is A|/A, = 2.0/0.5 = 4. Doubling this
value, we have A,/A, = 8. The original pressure difference is p, — p; = 900 N/m?. From
Eq. (4.60), we have

v, = 2(”‘_”2)2 | 20900) — =[38.6ms
p{l _[Az] } 1.23{1 —(1j }
A 8

Note: By doubling only the pressure difference, a 42 percent increase in velocity in the
test section occurred. In contrast, by doubling only the contraction ratio, a 3.5 percent
decrease in the velocity in the test section occurred. Once again we see an example of
the power of the pressure difference in dictating flow velocity in a low-speed flow. Also,
the decrease in the test-section velocity when the contraction ratio is increased, keep-
ing the pressure difference the same, seems counterintuitive. Why does the velocity not
increase when the nozzle is “necked down” further? To resolve this apparent anomaly,
let us calculate the velocity in the reservoir for the increased contraction ratio. From the
continuity equation, A,V, = A,V,. Hence

vi=| Ay, =[L (38.6) = 4.83 m/s
A 8

When the contraction ratio is increased, keeping the pressure difference constant, the
reservoir velocity decreases even more than the test-section velocity, resulting in a
larger velocity change across the nozzle. For the case in Example 4.21 with a contrac-
tion ratio of 4,

V,-V, =40-10=30m/s
For the present case with a contraction ratio of 8,
V,—-V, =38.6-4.83 =33.8m/s

By increasing the contraction ratio while keeping the pressure difference constant, we
increase the velocity difference across the nozzle, although the actual velocities at the
inlet and exit of the nozzle are decreased.
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4.11 MEASUREMENT OF AIRSPEED

In Sec. 4.10 we demonstrated that we can obtain the airflow velocity in the test
section of a low-speed wind tunnel (assuming incompressible flow) by measur-
ing p, — p,. However, the previous analysis implicitly assumes that the flow
properties are reasonably constant over any given cross section of the flow in
the tunnel (so-called quasi-one-dimensional flow). If the flow is not constant
over a given cross section—for example, if the flow velocity in the middle of
the test section is higher than that near the walls—then V, obtained from the pre-
ceding section is only a mean value of the test-section velocity. For this reason,
and for many other aerodynamic applications, it is important to obtain a point
measurement of velocity at a given spatial location in the flow. This measure-
ment can be made by an instrument called a Pitot-static tube, as described in
the following.

First, though, we must add to our inventory of aerodynamic definitions. We
have been glibly talking about the pressures at points in flows, such as points
1 and 2 in Fig. 4.7. However, these pressures are of a special type, called static.
Static pressure at a given point is the pressure we would feel if we were moving
along with the flow at that point. It is the ramification of gas molecules moving
about with random motion and transferring their momentum to or across sur-
faces, as discussed in Ch. 2. If we look more closely at the molecules in a flowing
gas, we see that they have a purely random motion superimposed on a directed
motion due to the velocity of the flow. Static pressure is a consequence of just the
purely random motion of the molecules. When an engineer or scientist uses the
word pressure, it always means static pressure unless otherwise identified, and
we will continue such practice here. In all our previous discussions, the pressures
have been static pressures.

A second type of pressure is commonly utilized in aerodynamics: total pres-
sure. To define and understand total pressure, consider again a fluid element
moving along a streamline, as shown in Fig. 4.6. The pressure of the gas in this
fluid element is the static pressure. However, now imagine that we grab this fluid
element and slow it down to zero velocity. Moreover, imagine that we do this
isentropically. Intuitively, the thermodynamic properties p, T, and p of the fluid
element will change as we bring the element to rest; they will follow the conser-
vation laws previously discussed in this chapter. Indeed, as the fluid element is
isentropically brought to rest, p, T, and p would all increase above their original
values when the element was moving freely along the streamline. The values of
p, T, and p of the fluid element after it has been brought to rest are called fotal
values—that is, total pressure p,, total temperature 7, and so on. Thus we are led
to the following precise definition:

Total pressure at a given point in a flow is the pressure that would exist if the flow
were slowed down isentropically to zero velocity.

There is a perspective to be gained here. Total pressure p, is a property of
the gas flow at a given point. It is something that is associated with the flow
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itself. The process of isentropically bringing the fluid element to rest is just an
imaginary mental process we use to define the total pressure. It does not mean
that we actually have to do it in practice. In other words, if we consider again the
flow sketched in Fig. 4.7, there are two pressures we can consider at points 1, 2,
and so on associated with each point of the flow: a static pressure p and a total
pressure p,, where p, > p.

For the special case of a gas that is not moving (i.e., the fluid element has
no velocity in the first place), static and total pressures are synonymous: p, = p.
This is the case in common situations such as the stagnant air in a room and gas
confined in a cylinder.

The following analogy might help to further illustrate the difference between
the definitions of static and total pressure. Assume that you are driving down the
highway at 60 mi/h. The windows of your automobile are closed. Inside the
automobile, along with you, there is a fly buzzing around in a very random fash-
ion. Your speed is 60 mi/h, and in the mean, so is that of the fly, moving down
the highway at 60 mi/h. However, the fly has its random buzzing-about motion
superimposed on top of its mean directed speed of 60 mi/h. To you in the au-
tomobile, all you see is the random, buzzing-about motion of the fly. If the fly
hits your skin with this random motion, you will feel a slight impact. This slight
impact is analogous to the sfatic pressure in a flowing gas, where the static pres-
sure is due simply to the random motion of the molecules. Now assume that you
open the window of your automobile, and the fly buzzes out. There is a person
standing along the side of the road. If the fly that has just left your automobile
hits the skin of this person, the impact will be strong (it may even really hurt)
because the fly will hit this person with a mean velocity of 60 mi/h plus whatever
its random velocity may be. The strength of this impact is analogous to the total
pressure of a gas.

There is an aerodynamic instrument that actually measures the total pres-
sure at a point in the flow: a Pitot tube. A basic sketch of a Pitot tube is shown in
Fig. 4.17. It consists of a tube placed parallel to the flow and open to the flow at
one end (point A). The other end of the tube (point B) is closed. Now imagine that
the flow is first started. Gas will pile up inside the tube. After a few moments,
there will be no motion inside the tube because the gas has nowhere to go—the
gas will stagnate once steady-state conditions have been reached. In fact, the gas
will be stagnant everywhere inside the tube, including at point A. As a result, the
flow field sees the open end of the Pitot tube (point A) as an obstruction, and a
fluid element moving along the streamline, labeled C, has no choice but to stop
when it arrives at point A. Because no heat has been exchanged, and friction is
negligible, this process will be isentropic; that is, a fluid element moving along
streamline C will be isentropically brought to rest at point A by the very presence
of the Pitot tube. Therefore, the pressure at point A is, truly speaking, the total
pressure p,. This pressure will be transmitted throughout the Pitot tube; and if a
pressure gauge is placed at point B, it will in actuality measure the total pressure
of the flow. In this fashion, a Pitot tube is an instrument that measures the total
pressure of a flow.
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Pitot tube

Open end

Closed end B
T b
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gauge

Figure 4.17 Sketch of a Pitot tube.

Total pressure measured here
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Pitot tube
Static

pressure
measured here

Differential pressure gauge

Figure 4.18 Schematic of a Pitot-static measurement.

By definition, any point of a flow where V = 0 is called a stagnation point.
In Fig. 4.17, point A is a stagnation point.

Consider the arrangement shown in Fig. 4.18. Here we have a uniform flow
with velocity V; moving over a flat surface parallel to the flow. There is a small
hole in the surface at point A, called a static pressure orifice. Because the surface
is parallel to the flow, only the random motion of the gas molecules will be felt
by the surface itself. In other words, the surface pressure is indeed the static pres-
sure p. This will be the pressure at the orifice at point A. In contrast, the Pitot tube
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Total pressure
felt here

\ ez ==
iz 0

Pitot-static probe

Static pressure felt here

Figure 4.19 Schematic of a Pitot-static probe.

at point B in Fig. 4.18 will feel the total pressure p,, as previously discussed. If
the static pressure orifice at point A and the Pitot tube at point B are connected
across a pressure gauge, as shown in Fig. 4.18, the gauge will measure the differ-
ence between total and static pressure p, — p.

Now we arrive at the main thrust of this section. The pressure difference
Do —p, as measured in Fig. 4.18, gives a measure of the flow velocity V,. A com-
bination of a total pressure measurement and a static pressure measurement
allows us to measure the velocity at a given point in a flow. These two measure-
ments can be combined in the same instrument, a Piftot-static probe, as illus-
trated in Fig. 4.19. A Pitot-static probe measures p, at the nose of the probe and
p at a point on the probe surface downstream of the nose. The pressure difference
Ppo — p yields the velocity V|, but the quantitative formulation differs depend-
ing on whether the flow is low speed (incompressible), high-speed subsonic, or
supersonic.

4.11.1 Incompressible Flow

Consider again the sketch shown in Fig. 4.18. At point A, the pressure is p and
the velocity is V). At point B, the pressure is p, and the velocity is zero. Applying
Bernoulli’s equation, Eq. (4.9a), at points A and B, we obtain

1 2 —
p*+ P = P
Static Dynamic Total (4.62)
pressure pressure pressure

In Eq. (4.62), for dynamic pressure g we have the definition
g=1ipV? (4.63)

which is frequently employed in aerodynamics; the grouping % pV? is termed
the dynamic pressure for flows of all types, incompressible to hypersonic. From

Eq. (4.62),
ot
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This relation holds for incompressible flow only. The total pressure equals the
sum of the static and the dynamic pressure. Also from Eq. (4.62),

V, = M (4.65)
\ »p

Equation (4.65) is the desired result; it allows the calculation of flow veloc-
ity from a measurement of p, — p, obtained from a Pitot-static tube. Again we
emphasize that Eq. (4.65) holds only for incompressible flow.

A Pitot tube can be used to measure the flow velocity at various points in the
test section of a low-speed wind tunnel, as shown in Fig. 4.20. The total pres-
sure at point B is obtained by the Pitot probe; the static pressure, also at point B,
is obtained from a static pressure orifice located at point A on the wall of the
closed test section, assuming that the static pressure is constant throughout the
test section. This assumption of constant static pressure is fairly safe for subsonic
wind tunnel test sections and is commonly made. If the test section is open to the
room, as also sketched in Fig. 4.20, then the static pressure at all points in the
test section is p = 1 atm. In either case, the velocity at point A is calculated from
Eq. (4.65). The density p in Eq. (4.65) is a constant (incompressible flow). We
can obtain its value by measuring p and 7 somewhere in the tunnel, using the

/Pitot probe

_F‘_‘I&W____.- Lel—)] ———

o

Static pressure orifice

() Closed test section

-~

Flow Ae

/ P=1atm \

(#) Open test section

Figure 4.20 Pressure measurements in open and closed test sections
of subsonic wind tunnels.
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Pitot tube

—_— ]|

Flight
direction

Figure 4.21 Sketch of wing-mounted Pitot
probe.

equation of state to calculate p = p/(RT). These measurements are usually made
in the reservoir upstream of the nozzle.

Either a Pitot tube or a Pitot-static tube can be used to measure the airspeed
of airplanes. Such tubes can be seen extending from airplane wing tips, with the
tube oriented in the flight direction, as shown in Fig. 4.21. Pitot tubes were used
for airspeed measurements as early as World War 1, at that time principally by the
British. Figure 4.22 focuses on the dual Pitot and static pressure tubes mounted
on one of the interplane struts of the Sopwith Snipe, an airplane from the period
around 1917. Figure 4.23 shows the wing-mounted Pitot tube facing forward
from the leading edge of the right wing of the North American F-100 from the
1950s. Returning to the drawing of the World War II Corsair in Fig. 2.16, note
the Pitot tube extending from the left wing. These airplanes are typical examples
of low-speed aircraft for which the equation developed in this section, assuming
incompressible flow, are valid for airspeed measurements.

If a Pitot tube by itself is used instead of a Pitot-static tube, then the ambient
static pressure in the atmosphere around the airplane is obtained from a static pres-
sure orifice placed strategically on the airplane surface. It is placed where the surface
pressure is nearly the same as the pressure of the surrounding atmosphere. Such a
location is found by experience. It is generally on the fuselage somewhere between
the nose and the wing. The values of p, obtained from the wing-tip Pitot probe and
p obtained from the static pressure orifice on the surface enable calculation of the
airplane’s speed through the air using Eq. (4.65), as long as the airplane’s velocity
is low enough to justify the assumption of incompressible flow—that is, for veloci-
ties less than 300 ft/s. In actual practice, the measurements of p, and p are joined
across a differential pressure gauge that is calibrated in terms of airspeed, using
Eq. (4.65). This airspeed indicator is a dial in the cockpit, with units of velocity,
say miles per hour, on the dial. However, in determining the calibration (i.e., in
determining what values of miles per hour go along with given values of p, — p),
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Figure 4.22 Detail of the wing of the World War I Sopwith Snipe hanging in the World
War I gallery of the National Air and Space Museum, showing the Pitot-static tube on one of
the interwing struts.

(Source: Courtesy of John Anderson.)

Figure 4.23 A North American F-100 from the 1950s. The Pitot tube extending ahead of the
right wing leading edge is easily visible.
(Source: U.S. Air Force.)
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the engineer must decide what value of p to use in Eq. (4.65). If p is the true value,
somehow measured in the actual air around the airplane, then Eq. (4.65) gives the
true airspeed of the airplane:

Viewe = /72(’7 () (4.66)
p

However, measurement of atmospheric air density directly at the airplane’s
location is difficult. Therefore, for practical reasons, the airspeed indicators on
low-speed airplanes are calibrated by using the standard sea-level value of p; in
Eq. (4.65). This gives a value of velocity called the equivalent airspeed:

-

The equivalent airspeed V, differs slightly from V., the difference being the fac-
tor (p/p,)2. At altitudes near sea level, this difference is small.
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The altimeter on a low-speed Cessna 150 private aircraft reads 5000 ft. By an indepen-
dent measurement, the outside air temperature is 505°R. If a Pitot tube mounted on the
wing tip measures a pressure of 1818 1b/ft?, what is the true velocity of the airplane? What
is the equivalent airspeed?

H Solution

An altimeter measures the pressure altitude (see the discussion in Ch. 3). From the stan-
dard atmosphere table in App. B, at 5000 ft, p = 1761 1b/ft>. Also, the Pitot tube measures
total pressure; hence

po— p=1818—-1761=571b/ft’

The true airspeed can be obtained from Eq. (4.66); however, we need p, which is obtained
from the equation of state. For the outside ambient air,

po_ 1761 635107 stug/te

P=RT T 1716(05)

From Eq. (4.66),

2p, — p) 2(57)
Vi =\/ o T\ zosxio7 T 237

p

Note: Because 88 ft/s = 60 mi/h, V. =237(60/88) = 162 mi/h.

The equivalent airspeed (that which would be read on the airspeed indicator in the
cockpit) is obtained from Eq. (4.67), where p, = 0.002377 slug/ft* (the standard sea-level
value). Hence, from Eq. (4.67),

2Apo— Pp) [ 2657
V= = =[219 /s
| ERITE

Ps

Note the 7.6 percent difference between V.. and V..
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EXAMPLE 4.25

In a low-speed subsonic wind tunnel with a closed test section (Fig. 4.20a), a static pres-
sure tap on the wall of the tunnel test section measures 0.98 atm. The temperature of the
air in the test section is 80°F. A Pitot tube is inserted in the middle of the flow in the test
section in order to measure the flow velocity. The pressure measured by the Pitot tube is
2200 1b/ft. Calculate the flow velocity in the test section.

H Solution
We first change the inconsistent units of atm and °F into consistent units in the English
engineering system:

p = 0.98(2116) = 2074 1b/ft*
T = 80 + 460 = 540°R

Thus, from the equation of state

D 2074

=L - =% —0.002238 slug/ft’
RT  (1716)(540)

P

The Pitot tube measures the total pressure;

Po = 2200 Ib/ft*

From Eq. (4.65), we have

V, = Jz(pﬂ —p) _ \/2 (2200 = 2078) _ 355 6 hs

P 0.002238

Wind tunnel operators sometimes like to talk about air velocities in terms of miles per
hour. Recalling that 88 ft/s = 60 mph, we have

60
Vi =|—{(335.6) = (229 mph
=[G Josso

Consider a low-speed subsonic wind tunnel with an open test section (Fig. 4.20b). The
ambient pressure in the room is 1 atm, and the temperature of the air in the test section
is 15°C. A Pitot tube is mounted in the test section. The tunnel is turned on, and the air
velocity in the test section is adjusted to be 110 m/sec. What is the subsequent reading
from the Pitot tube?

H Solution
Change to consistent units.

p=1atm = (1.01x10°)(1) =1.01x10° N/m*

T=15C=273+15=288 K
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Thus,

5
p=2L = Lo1x10” 5, kg/m’
RT  (287)(288)

From Eq. (4.62),

Po=p+Lip V=1.01x10" +L(1.22)(110)

Po =|1.084 x 10° N/m’]|

In units of atmospheres, we have

5
po = FOY _ [(07 atm]

1.01x10°

EXAMPLE 4.26

An airplane is flying at sea level at a speed of 100 m/s. Calculate the free-stream dynamic
pressure and total pressure.

H Solution
Dynamic pressure is defined by Eq. (4.63).

g. = Lp. V> =1(1.23)(100)° = |6.15x10° N/m’

Total pressure, for incompressible flow, is given by the sum of the static and dynamic
pressures, that is, Eq. (4.64). The total pressure of the free stream is

Po = Pot oo =1.01x10° +0.0615x10° = [1.07 x10° N/m’

4.11.2 Subsonic Compressible Flow

The results of Sec. 4.11.1 are valid for airflows where M < 0.3—that is, where the
flow can reasonably be assumed to be incompressible. This is the flight regime
of small, piston-engine private aircraft. For higher-speed flows, but where the
Mach number is still less than 1 (high-speed subsonic flows), other equations
must be used. This is the flight regime of commercial jet transports such as the
Boeing 747 and the McDonnell-Douglas DC-10 and of many military aircraft.
For these cases, compressibility must be taken into account, as follows.

Consider the definition of enthalpy: & = e + pv. Because h = ¢,T and e = ¢,T,
then ¢,T=c¢,T + RT, or

» =6 =R (4.68)
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Divide Eq. (4.68) by c,:

- R
c,/c, c,
oL _r=1_R
14 Y Cp
or c, = yy—f] (4.69)

Equation (4.69) holds for a perfect gas with constant specific heats. It is a neces-
sary thermodynamic relation for use in the energy equation, as follows.

Consider again a Pitot tube in a flow, as shown in Figs. 4.17 and 4.19.
Assume that the flow velocity V; is high enough that compressibility must be
taken into account. As usual, the flow is isentropically compressed to zero
velocity at the stagnation point on the nose of the probe. The values of the
stagnation, or total, pressure and temperature at this point are p, and 7, re-
spectively. From the energy equation, Eq. (4.42), written between a point
in the free-stream flow where the temperature and velocity are 7 and V|,
respectively, and the stagnation point, where the velocity is zero and the tem-
perature is Ty,

1y2 —
¢, +5Vi" =¢,T,

2
or L _1, % (4.70)
T 2¢,T;
Substitute Eq. (4.69) for ¢, in Eq. (4.70):
2 2
5y Vi P dul S0 @71
L 2[yR/(y—DIT, 2 YRT,
However, from Eq. (4.54) for the speed of sound,
ai = yYRT,
Thus, Eq. (4.71) becomes
2
Loy vV 4.72)
T 2 q

Because the Mach number M, = V\/a,, Eq. (4.72) becomes

LIS el YV (4.73)
T, 2

1
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Because the gas is isentropically compressed at the nose of the Pitot probe in
Figs. 4.17 and 4.18, Eq. (4.37) holds between the free stream and the stagnation
point. That is, py/p, = (po/p1)? = (Ty/T;)""7". Therefore, from Eq. (4.73), we obtain

_ 7/(r-1)
Po _ (1 + yTlej (4.74)
b
_ 1{r-1)
%=(1+y21M'2j (4.75)
1

Equations (4.73) to (4.75) are fundamental and important relations for com-
pressible, isentropic flow. They apply to many other practical problems in ad-
dition to the Pitot tube. Note that Eq. (4.73) holds for adiabatic flow, whereas
Egs. (4.74) and (4.75) contain the additional assumption of frictionless (hence
isentropic) flow. Also, from a slightly different perspective, Eqs. (4.73) to (4.75)
determine the total temperature, density, and pressure—7;, Py, and p,—at any
point in the flow where the static temperature, density, and pressure are T, py,
and p, and where the Mach number is M,. In other words, reflecting the earlier
discussion of the definition of total conditions, Eqs. (4.73) to (4.75) give the
values of p,, Ty, and p, that are associated with a point in the flow where the pres-
sure, temperature, density, and Mach number are p,, T}, p;, and M|, respectively.
These equations also demonstrate the powerful influence of Mach number in
aerodynamic flow calculations. It is very important to note that the ratios 7o/T7,
Dpo/p1, and py/p, are functions of M, only (assuming that y is known; y = 1.4 for
normal air).

Returning to our objective of measuring airspeed, and solving Eq. (4.74)

for M,, we obtain
) { (r-D)/y
M2 =_=_ [&] ~1 (4.76)
y=1|\p

Hence, for subsonic compressible flow, the ratio of total to static pressure
Po/p1 1s a direct measure of Mach number. Thus, individual measurements of p,
and p, in conjunction with Eq. (4.76) can be used to calibrate an instrument in the
cockpit of an airplane called a Mach meter, where the dial reads directly in terms
of the flight Mach number of the airplane.

To obtain the actual flight velocity, recall that M, = V,/a;; so Eq. (4.76)

becomes
> [ (r-)iy
V2 = 2a, (&] —1} 4.77a)

y=1{p

Equation (4.77) can be rearranged algebraically as

2[12 _ (r-1)/7
v2 =24 [M+ 1) —1 (4.77a)
y-1 P
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Equations (4.77a) and (4.77b) give the true airspeed of the airplane. However,
they require a knowledge of @, and hence T,. The static temperature in the air
surrounding the airplane is difficult to measure. Therefore, all high-speed (but
subsonic) airspeed indicators are calibrated from Eq. (4.77b), assuming that a, is
equal to the standard sea-level value a, = 340.3 m/s = 1116 ft/s. Moreover, the
airspeed indicator is designed to sense the actual pressure difference p, — p; in
Eq. (4.77b), not the pressure ratio py/p,, as appears in Eq. (4.77a). Hence, the
form of Eq. (4.77b) used to define a calibrated airspeed is as follows:

2a2 ( _ (r-1)/y
V2 = P Ly lj ~1 4.78)
- Ds

where a, and p, are the standard sea-level values of the speed of sound and static
pressure, respectively.

Again we emphasize that Eqgs. (4.76) to (4.78) must be used to measure
airspeed when M, > 0.3—that is, when the flow is compressible. Equations
based on Bernoulli’s equation, such as Eqs. (4.66) and (4.67), are not valid
when M, > 0.3.

So once again, just as in the case of low-speed airplanes flying in the incom-
pressible flow regime, we see that a Pitot tube is used on high-speed subsonic air-
planes for airspeed measurement. The first mass-produced American jet fighter,
the Lockheed P-80 (later designated the F-80), went into service beginning in
1945, and was the first American jet fighter to participate in the Korean War,
beginning in 1950. The F-80s shown in Fig. 4.24 have the Pitot tube mounted on
the leading edge of the vertical tail, as shown in the detail in Fig. 4.25. Also, re-
turn to Fig. 2.15, which shows the North American F-86, America’s first swept-
wing jet fighter, introduced during the Korean War with great success. Note
the Pitot tube extending ahead of the right wing tip. The F-86 was a high-speed
subsonic airplane capable of exceeding the speed of sound in a dive.

A high-speed subsonic McDonnell-Douglas DC-10 airliner is flying at a pressure altitude
of 10 km. A Pitot tube on the wing tip measures a pressure of 4.24 x 10* N/m?. Calculate
the Mach number at which the airplane is flying. If the ambient air temperature is 230 K,
calculate the true airspeed and the calibrated airspeed.

H Solution
From the standard atmosphere table, App. A, at an altitude of 10,000 m, p =2.65 x 10* N/m?.
Hence, from Eq. (4.76),

o 2 |[m ”’”’7_] _ 2 |(424x10° “'286_]
"oy—1|lp 1.4-1{|2.65%10*

=0.719
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Figure 4.24 Lockheed F-80s.
(Source: Department of Defense.)

Figure 4.25 A detail of the vertical tail of the F-80 showing the Pitot tube. The airplane is
on display at the National Air and Space Museum.
(Source: Courtesy of John Anderson.)
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Thus M, =0.848

It is given that T, = 230 K; hence

a, = JyRT, = J1.4(287)(230) = 304.0 m/s

From Eq. (4.77),

oo 2a | (|77 2030407 (424
oy Lp] 14-1 |[\2.65

|V1 =258 m/s true airspeed|

Note: As a check, from the definition of Mach number,
Vi = M,a, = 0.848(304.0) = 258 m/s

The calibrated airspeed can be obtained from Eq. (4.78):

2 (r-D7y
Vc%x] — . [p() P + IJ 1
7/— Dy

2(340.3) {[4.24 x10*-2.65x10° | ]]”'28“ B ]}

14-1 1.01x10°

V. =157 m/s

The difference between true and calibrated airspeeds is 39 percent. Note: Just out of
curiosity, let us calculate V, the wrong way; that is, let us apply Eq. (4.66), which was
obtained from Bernoulli’s equation for incompressible flow. Equation (4.66) does not
apply to the high-speed case of this problem, but let us see what result we get anyway:

p="2 _265x10° _ = 0.4 kg/m’
RT,  287(230)

From Eq. (4.66),

4
Virue /2(]70 P) \/2(4 24-2 65) x10 =282 m/s incorrect answer

Compared with V; = 258 m/s, an error of 9.3 percent is introduced in the calculation of
true airspeed by using the incorrect assumption of incompressible flow. This error grows
rapidly as the Mach number approaches unity, as discussed in a subsequent section.
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EXAMPLE 4.28

Consider an F-80 (Fig. 4.24) flying at 594 mph at standard sea level. (This is the maxi-
mum speed of the F-80C at sea level.) Calculate the pressure and temperature at the
stagnation point on the nose of the airplane.

H Solution
At standard sea level, p,, = 2116 Ib/ft> and T., = 519°R.

oo = \/}/RTM = \/(1.4)(1716)(519) = 1117 ft/s

Note: This is the standard sea-level speed of sound in the English engineering system of
units. In Sec. 4.9 we gave the standard sea-level speed of sound in SI units, namely a., =
340.3 m/s. You will find it convenient to know the sea-level speed of sound:

a. =340 m/s = 1117 ft/s = 762 mph

Mo =Y 229 g
a., 162

Note: Because Mach number is a dimensionless ratio, we can use inconsistent units
such as miles per hour, as long as both the numerator and denominator are in the same
units.

From Eq. (4.74), we obtain the total pressure, which is the pressure at the stagnation
point.

1.4

B
Do _ (1 + %IMZQJ"' = [1 + 1‘42_ ! (0.78)2}"4’I = (1.122)*" = 1.496
Poo

P = 1496 p., = 1.496 (2116) = |3166 1b/ft>

From Eq. (4.73), we obtain the total temperature, which is the temperature at the
stagnation point:

;_0 =1+ %IMEQ = 1+(0.2)(0.78)* = 1.122

o

T, =1.122 T.. = 1.122 (519) = [582.3°R

Note: We can check the accuracy of these answers by calculating the stagnation density
first from the equation of state:

py =P - _ 3166 _ 5 68%10° slug/ft’

CRT, (1716)(582.3)
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then from Eq. (4.75),

1
— 1
P _ (1+%1Mi]71 =[1+0.2(0.78)°]1%4 = (1.1217)*° =1.3326

P

po =1.3326 p_ =1.3326 (0.002377) ={3.168 x 107 slug/ft’

The numbers check.

At a given point in a flow field of air, the Mach number, velocity, and density are 0.9,
300 m/s, and 1.2 kg/m?, respectively. Calculate at this point (@) the total pressure, and
(b) the dynamic pressure.

H Solution
a. First, we need the static pressure, and to obtain this from the equation of state, we need
the temperature.

V = Ma = M\JyRT

2 2
r=Y - G0 sk
YRM® (1.4)(287)(0.9)

Thus,
p = pRT =(1.2)(287)(276.5) = 0.952 % 10° N/m?

From Eq. (4.74),

a
Do _ [1 + YT_IMZJ” =[140.2 (0.9 = (1.162)*° =1.691
P

Po =1.691 p=1.691 (0.952x10%) = |1.61x10° N/m*

b. The dynamic pressure is defined by Eq. (4.63) as

q="%pV’

g = +(1.2)(300)* = 5.4 x 10* N/m’
Important Note: For a compressible flow, the dynamic pressure is not equal to the differ-
ence between total and static pressure. Only for an incompressible flow is this true. We
emphasize that Eq. (4.64) holds only for an incompressible flow. In the present example,

we have p, = 1.61 x 10° N/m? and p = 0.95222 X 10° N/m> Thus, the difference between
total and static pressures is

Po—p=(1.61-0952)x10° =6.58 x10* N/m?

This is not equal to the value of ¢ = 5.4 x 10* N/m?, obtained above.
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4.11.3 Supersonic Flow

Airspeed measurements in supersonic flow (i.e., for M > 1) are qualitatively dif-
ferent from those for subsonic flow. In supersonic flow, a shock wave will form
ahead of the Pitot tube, as shown in Fig. 4.26. Shock waves are very thin regions
of the flow (for example, 10~ cm) across which some severe changes in the
flow properties take place. Specifically, as a fluid element flows through a shock
wave,

The Mach number decreases.

The static pressure increases.

The static temperature increases.

The flow velocity decreases.

The total pressure p, decreases.

The total temperature 7, stays the same for a perfect gas.

YR Wb

These changes across a shock wave are shown in Fig. 4.27.

How and why does a shock wave form in supersonic flow? There are vari-
ous answers with various degrees of sophistication. However, the essence is as
follows. Refer to Fig. 4.17, which shows a Pitot tube in subsonic flow. The gas
molecules that collide with the probe set up a disturbance in the flow. This dis-
turbance is communicated to other regions of the flow, away from the probe,
by means of weak pressure waves (essentially sound waves) propagating at the
local speed of sound. If the flow velocity V; is less than the speed of sound, as
in Fig. 4.17, then the pressure disturbances (which are traveling at the speed of
sound) will work their way upstream and eventually will be felt in all regions of
the flow. In contrast, refer to Fig. 4.26, which shows a Pitot tube in supersonic
flow. Here V, is greater than the speed of sound. Thus, pressure disturbances that
are created at the probe surface and that propagate away at the speed of sound
cannot work their way upstream. Instead, these disturbances coalesce at a finite
distance from the probe and form a natural phenomenon called a shock wave, as
shown in Figs. 4.26 and 4.27. The flow upstream of the shock wave (to the left

Shock wave
Shock wave
Ml > 1 Mz < My
P P22 p1
T Ty> Ty
M>1 % Vi< ¥
- 1, - Pitot
! tub.
P Py, Poy < Foy e
i Tol TDZ = TO]
Figure 4.26 Pitot tube in supersonic flow. Figure 4.27 Changes across a shock wave in

front of a Pitot tube in supersonic flow.
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of the shock) does not feel the pressure disturbance; that is, the presence of the
Pitot tube is not communicated to the flow upstream of the shock. The presence
of the Pitot tube is felt only in the regions of flow behind the shock wave. The
shock wave is a thin boundary in a supersonic flow, across which major changes
in flow properties take place and which divides the region of undisturbed flow
upstream from the region of disturbed flow downstream.

Whenever a solid body is placed in a supersonic stream, shock waves will
occur. Figure 4.28 shows photographs of the supersonic flow over several aero-
dynamic shapes. The shock waves, which are generally not visible to the naked
eye, are made visible in Fig. 4.28 by means of a specially designed optical sys-
tem, called a schlieren system, and a shadow graph system. (An example in
which shock waves are sometimes visible to the naked eye is on the wing of a
high-speed subsonic transport such as a Boeing 707. As we will discuss shortly,
there are regions of local supersonic flow on the upper surface of the wing, and
these supersonic regions are generally accompanied by weak shock waves. If the
sun is almost directly overhead and if you look out the window along the span
of the wing, you can sometimes see these waves dancing back and forth on the
wing surface.)

Consider again the measurement of airspeed in a supersonic flow. The mea-
surement is complicated by the presence of the shock wave in Fig. 4.26 because
the flow through a shock wave is nonisentropic. Within the thin structure of a
shock wave itself, very large friction and thermal conduction effects are taking
place. Hence, neither adiabatic nor frictionless conditions hold; therefore, the
flow is not isentropic. As a result, Eq. (4.74) and hence Egs. (4.76) and (4.77a)
do not hold across the shock wave. A major consequence is that the total pres-
sure p, is smaller behind the shock wave than in front of it. In turn, the total
pressure measured at the nose of the Pitot probe in supersonic flow will not
be the same value as that associated with the free stream—that is, as associ-
ated with M,. Consequently, a separate shock wave theory must be applied to
relate the Pitot tube measurement to the value of M,. This theory is beyond the
scope of our presentation, but the resulting formula is given here for the sake of
completeness:

v [y
p_:{ (r+1) 11)} r+ M, wo

p L4vM? - 2(y - y+1

This equation is called the Rayleigh Pitot tube formula. 1t relates the Pitot tube
measurement of total pressure behind the shock wave, p,, and a measurement of
free-stream static pressure (again obtained by a static pressure orifice somewhere
on the surface of the airplane) to the free-stream supersonic Mach number M,.
In this fashion, measurements of po, and p,, along with Eq. (4.79), allow the
calibration of a Mach meter for supersonic flight.

The delta-winged supersonic F-102A fighter is shown in Fig. 4.29. Extending
forward of the pointed nose is a Pitot tube for airspeed measurement. As in the case
of subsonic compressible flow, for supersonic flow the Pitot tube measurement



4.11 Measurement of Airspeed 207

Figure 4.28 (a) Shock
waves on a swept-wing
airplane (left) and on a
straight-wing airplane
(right). Schlieren pictures
taken in a supersonic
wind tunnel at NASA
Ames Research Center.
(b) Shock waves on a
blunt body (left) and
sharp-nosed body (right).
(c) Shock waves on a
model of the Gemini
manned space capsule.
Parts b and ¢ are shadow
graphs of the flow.
(Source: NASA Ames
Research Center.)
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Figure 4.29 Convair F-102A supersonic fighter from the 1950s and 1960s.
(Source: NASA.)

in conjunction with a free-stream static pressure measurement leads directly to
a measurement of the free-stream Mach number. The Mach number in the cock-
pit of the airplane, however, is calibrated according to Eq. (4.76) for subsonic
flight, and according to Eq. (4.79) for supersonic flight. In both cases, the Mach
number is the quantity that is obtained directly. To obtain the velocity, additional
information is required.

An experimental rocket-powered aircraft is flying at a velocity of 3000 mi/h at an alti-
tude where the ambient pressure and temperature are 151 Ib/ft> and 390°R, respectively.
A Pitot tube is mounted in the nose of the aircraft. What is the pressure measured by the
Pitot tube?
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H Solution
First we ask: Is the flow supersonic or subsonic? That is, what is M,? From Eq. (4.54),

a, = J7RT, = [1.4(1716)(390) = 968.0 ft/s

V; =3000 88\ 4400 ft/s
60

_ Vi _ 4400 _

M
" g 968.0

4.54

Hence M, > 1; the flow is supersonic. There is a shock wave in front of the Pitot tube;
therefore Eq. (4.74) developed for isentropic flow does not hold. Instead, Eq. (4.79) must
be used:

Y(r-1)
o, | (y+1) M} 1= y+2yM;
12 4yM} - 2(y-1) y+1

27

_{ (2.4 (4.54)° r1—1.4+2(1.4)(4.54)2 B
L4(1.4)(4.54)" - 2(0.4) 2.4 -

Thus po, =27p, = 27(151) = |4077 1b/ft’

Note: Again, out of curiosity, let us calculate the wrong answer. If we had not taken into
account the shock wave in front of the Pitot tube at supersonic speeds, then Eq. (4.74)
would give

_ 7/(r-1) 35
Do :(1+_7’ IMEJ =[1+%(4‘54)2} =304.2
P 2 2

Thus po=304.2 p, =304.2(151) = 45,931 Ib/ft® incorrect answer

Note that the incorrect answer is off by a factor of more than 10!

EXAMPLE 4.31

Consider the F-102A shown in Fig. 4.29. The airplane is flying at a supersonic speed at a
standard altitude of 8 km. The pressure measured by the Pitot tube is 9.27 x 10* N/m?2. At
what Mach number is the airplane flying?

H Solution
From App. A, for an altitude of 8 km, p = 3.5651 x 10* N/m?. Hence, in Eq. (4.79),

P, _ 9.27x10*

p 3.5651x10*
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Eq. (4.79) is an implicit relation for M,; there is no easy way that we can turn the equa-
tion inside out and obtain an explicit analytic relation for M, = f (Po,/p,). So let us solve
Eq. (4.79) for M, by trial and error, by assuming various values of M, and ultimately
finding the value that gives (Po,/p;) = 2.6. Repeating Eq. 4.79,

v
&_{ (y+ 1M} }7' 1—y+2yM;}
D 4yM? —2(y 1) y+1

For y = 1.4, this equation becomes

Do, _{ 5.76M}

35
f} (-0.1667 +1.1667 M;)
p L5.6M7-0.38

Results from this equation are shown in the following table:

{ 5.76 M} r Py

M, (assumed) L5-6 M —0.8 (-0.1667 + 1.1667 M2 P
1 1.893 1 1.893
1.1 1.713 1.245 2.133
1.2 1.591 1513 2.408
1.3 1.503 1.805 2.71
1.25 1.544 1.656 2.557
1.26 1.535 1.686 2.587
1.27 1.527 1.715 2619

Comparing the right-hand column with the given value of p,/p, = 2.6, we see that, to
three significant figures, the value of Po,/p,;= 2.587 is the closest. This corresponds to the
assumed value of M, = 1.26. Hence, the Mach number of the F-102A in this case is

4.11.4 Summary

As a summary of the measurement of airspeed, note that different results apply to
different regimes of flight: low speed (incompressible), high-speed subsonic, and
supersonic. These differences are fundamental and serve as excellent examples
of the application of the different laws of aerodynamics developed in previous
sections. Moreover, many of the formulas developed in this section apply to
other practical problems, as discussed in Sec. 4.12.

4.12 SOME ADDITIONAL CONSIDERATIONS

Section 4.11 contains information that is considerably more general than just the
application to airspeed measurements. The purpose of this section is to elaborate
on some of the ideas and results discussed in Sec. 4.11.
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4.12.1 More about Compressible Flow

Equations (4.73) through (4.75), relating the ratios of T,/T, py/p, and p,/p; to the
local Mach number M, apply in general to any isentropic flow. We state without
proof that the values of Ty, p,, and p, are constant throughout a given isentropic
flow. In conjunction with Eqgs. (4.73) to (4.75), this fact gives us a powerful tool
for the analysis of an isentropic flow. For example, let us again consider the
isentropic flow over an airfoil, which was the problem solved in Example 4.12.
But now we have more information and a broader perspective from which to
approach this problem.

211

EXAMPLE 4.32

Consider the isentropic flow over the airfoil sketched in Fig. 4.30. The free-stream pres-
sure, velocity, and density are 2116 1b/ft?, 500 mi/h, and 0.002377 slug/ft®, respectively.
At a given point A on the airfoil, the pressure is 1497 1b/ft>. What are the Mach number
and the velocity at point A?

H Solution

This example is the same as Example 4.12, with the additional requirement to calculate
the Mach number at point A. However, we use a different solution procedure in this
example. First we calculate the free-stream Mach number, as follows:

_ Pe 2116
PR 0.002377(1716)

a. = JYRT. = J(1.4)(1716)(518.8) = 1116.4 ft/s

V.o =500mi/h = 500(%)&/5 =733.3 ft/s

=518.8°R

V. 7333
M,=—= =0.6568
a.. 1116.4
Isentropic flow
Po= constant = p_
T, = constant = T},
M.,
Ve
P __/—\
R ——
Tw I
Poc
To.,

Figure 4.30 Total pressure and total temperature are
constant throughout an isentropic flow.
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The free-stream total temperature is, from Eq. (4.73),
T
T,
T, =1.0863T, = 1.0863(518.8) =563.6°R

=1+ %IM; =1+0.2(0.6568)" = 1.0863

The free-stream total pressure is, from Eq. (4.74),

_ v/(y=1)
Poe (1 + %]Mij = (1.0863)™ = 1.336
Poo

P, = 1.336(2116) = 28271b/ft°

Because the total temperature and total pressure are constant throughout the isentropic
flow over the airfoil, the total temperature and total pressure at point A are the same as
the free-stream values:

T, =T, =563.6°R

A

Po, = Po.. =2827 1b/ft*

We can solve for the Mach number at point A by applying Eq. (4.74) at point A:

Pos _ (1 L=y jym
2

Pa
2827 _ (1+0.20m3)"
1497
or 1+0.2M; = (1.888)"*° = (1.888)"*7 =1.1991

or m, = |F191= 1 1579977]

02

Note: The Mach number at point A is essentially 1; we have nearly sonic flow at point A.
The static temperature at point A can be obtained from Eq. (4.73):

T. —
Do 1+ 72 2 1402(0.9955) = 1.1982
T, 2

T,, _ 563.6

= = =470.4°R
1.1982 1.1982

A

(Note: This result for TA = 470.4°R agrees well with the value of 470.1°R calculated in
Example 4.12; the difference is due to roundoff error produced by carrying just four sig-
nificant figures and the author’s doing the calculations on a hand calculator.)
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The velocity at point A can be obtained as follows:

a, = YRT, = J1.4(1716)(470.4) = 1063 ft/s

V, = a,M, = 1063(0.9955) = [1058 ft/s

(Note: This agrees well with the result V, = 1061 ft/s calculated in Example 4.12.)

The calculation procedure used in Example 4.32 is slightly longer than that used in
Example 4.12; however, it is a more fundamental approach than that used in Example 4.12.
Return to Example 4.12, and note that we had to employ a value of the specific heat c,
to solve the problem. However, in the present calculation we did not need a value of c,.
Indeed, the explicit use of ¢, is not necessary in solving isentropic compressible flows.
Instead, we used ¥ and M to solve this example. The ratio of specific heats ¥ and the Mach
number M are both examples of similarity parameters in aerodynamics. The concept and
power of the similarity parameters for governing fluid flows are something you will study
in more advanced treatments than this book. Suffice it to say here that Mach number is
a powerful governing parameter for compressible flow and that the results depend on the
value of % which is usually a fixed value for a given gas (¥ = 1.4 for air, as we use here).
Example 4.32 shows the power of using M and ¥ for solving compressible flow problems.
We will continue to see the power of M and ¥ in some of our subsequent discussions.
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4.12.2 More about Equivalent Airspeed

Equivalent airspeed was introduced in Sec. 4.11.1 and expressed by Eq. (4.67)
for low-speed flight, where the flow is assumed to be incompressible. However,
the concept of equivalent airspeed has a broader meaning than just a value that
comes from an airspeed indicator, which uses the standard sea-level density to
determine its readout, as first explained in Sec. 4.11.1.

The general definition of equivalent airspeed can be introduced by the fol-
lowing example. Consider a Lockheed-Martin F-16 fighter cruising at a velocity
of 300 m/s at an altitude of 7 km, where the free-stream density is 0.59 kg/m®. The
velocity of 300 m/s is the airplane’s true airspeed. At this speed and altitude,
the dynamic pressure is 1p. V.2 = 1(0.50)(300)" = 2.655x 10*N/m”. It is im-
portant to reinforce that dynamic pressure is a definition, defined by the quantity
1 P..V. . This definition holds no matter what the flight regime is—subsonic, su-
personic, or whatever—and whether the flow is incompressible or compressible.
Dynamic pressure q.. is just the definition

Goo = 1PV
Now imagine the F-16 flying at standard sea level, where the free-stream density
is 1.23 kg/m®. Question: What velocity would it have to have at standard sea

level to experience the same dynamic pressure that it had when flying at 300 m/s
at the altitude of 7 km? The answer is easy to calculate:

(q“)sea level = (q°°)7 km
(%p""v‘j’) - (%PmViL km

sea level
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Dropping the subscripts e for convenience, we have

1/2
‘/sea level — ‘/7 km (ﬂj

s

where p is the density at 7 km and p, is the standard sea-level density. Putting in
the numbers, we have

1/2
Voo =300 2221 2 207.8 mys
1.23

Hence, the F-16 flying at 300 m/s at 7-km altitude would have to fly at a velocity of
207.8 m/s at standard sea level to experience the same dynamic pressure. By definition,
the F-16 flying at 300 m/s at 7-km altitude has an equivalent airspeed of 207.8 m/s.
This leads to the more general definition of equivalent airspeed, as fol-
lows. Consider an airplane flying at some true airspeed at some altitude. Its
equivalent airspeed at this condition is defined as the velocity at which it
would have to fly at standard sea level to experience the same dynamic pres-
sure. The equation for equivalent airspeed is straightforward, as obtained in

the preceding. It is
1/2
‘ (p ]
s

where V, is the equivalent airspeed, V is the true velocity at some altitude, pis the
density at that altitude, and p; is the standard sea-level density.

In retrospect, our first discussion of V, in Sec. 4.11.1 is consistent with our
discussions here; however, in Sec. 4.11.1, our discussion was focused on air-
speed measurements in an incompressible flow.

The concept of equivalent airspeed is useful in studies of airplane per-
formance that involve the aerodynamic lift and drag of airplanes. The lift and
drag depend on the dynamic pressure, g.., as we will see in Ch. 5. Giving the
equivalent airspeed of an airplane is the same as stating its dynamic pressure,
as discussed previously. Therefore, equivalent airspeed is sometimes used as a
convenience in reporting and analyzing airplane performance data.

4.13 SUPERSONIC WIND TUNNELS
AND ROCKET ENGINES

For more than a century, projectiles such as bullets and artillery shells have been
fired at supersonic velocities. However, the main aerodynamic interest in super-
sonic flows arose after World War II with the advent of jet aircraft and rocket-
propelled guided missiles. As a result, almost every aerodynamic laboratory
has an inventory of supersonic and hypersonic wind tunnels to simulate mod-
ern high-speed flight. In addition to their practical importance, supersonic wind
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tunnels are an excellent example of the application of the fundamental laws of
aerodynamics. The flow through rocket engine nozzles is another example of the
same laws. In fact, the basic aerodynamics of supersonic wind tunnels and rocket
engines are essentially the same, as discussed in this section.

First consider isentropic flow in a stream tube, as sketched in Fig. 4.2. From
the continuity equation, Eq. (4.2),

PAV = const
or Inp+InA+1InV = In (const)
Differentiating, we obtain
d dA dV
LA (4.80)
p A \%

Recalling the momentum equation, Eq. (4.8) (Euler’s), we obtain

dp =—-pVdV
p = _d—p (4 81)
Hence Vdv .
Substitute Eq. (4.81) into (4.80):
dpVdv dA dV
——t—+—=0 (4.82)
dp A 1%
Because the flow is isentropic,
dp 1 1 1
N =7

dp - dp/dp - (dp/dp)isentropic a

Thus, Eq. (4.82) becomes

Vdav dA  dV
—+t—+—=0
a A 1%

Rearranging, we get

a_vav_av _(v:_ Jav
e e T

dA 5 dv
@A _ -y n
or 1 ( ) v (4.83)
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Equation (4.83) is called the area—velocity relation, and it contains a wealth
of information about the flow in the stream tube shown in Fig. 4.2. First note
the mathematical convention that an increasing velocity and an increasing area
correspond to positive values of dV and dA, respectively, whereas a decreasing
velocity and a decreasing area correspond to negative values of dV and dA. This
is the normal convention for differentials from differential calculus. With this in
mind, Eq. (4.83) yields the following physical phenomena:

1.

If the flow is subsonic (M < 1), for the velocity to increase (dV positive),
the area must decrease (dA negative); that is, when the flow is subsonic,
the area must converge for the velocity to increase. This is sketched in
Fig. 4.31a. This same result was observed in Sec. 4.2 for incompressible
flow. Of course incompressible flow is, in a sense, a singular case of
subsonic flow, where M — 0.

If the flow is supersonic (M > 1), for the velocity to increase (dV
positive), the area must also increase (dA positive); that is, when the flow

is supersonic, the area must diverge for the velocity to increase. This is
sketched in Fig. 4.31b.

If the flow is sonic (M = 1), then Eq. (4.83) yields for the velocity

av__ 1 dA_1ldA (4.84)
V. M-1A 0A
which at first glance says that dV/V is infinitely large. However, on a
physical basis, the velocity, and hence the change in velocity dV, at
all times must be finite. This is only common sense. Thus, looking at
Eq. (4.84), we see that the only way for dV/V to be finite is to have
dA/A =0; so

dv 1dA 0 .
—— = _—=" = — = finite number
\% 0A O

That is, in the language of differential calculus, dV/V is an indeterminate
form of 0/0 and hence can have a finite value. In turn, if dA/A = 0, the
stream tube has a minimum area at M = 1. This minimum area is called a
throat and is sketched in Fig. 4.31c.

\L&

o *P————————

V1 V2 V} V’Z
/ ‘—L\ e _\\
Vo> Vy
(a)

Vy> 1y

(5 ()

Figure 4.31 Results from the area—velocity relation.
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Figure 4.32 Supersonic nozzle shapes.

Therefore, to expand a gas to supersonic speeds, starting with a stagnant
gas in a reservoir, the preceding discussion says that a duct of a sufficiently
converging—diverging shape must be used. This is sketched in Fig. 4.32, where
typical shapes for supersonic wind tunnel nozzles and rocket engine nozzles are
shown. In both cases, the flow starts out with a very low velocity V = 0 in the
reservoir, expands to high subsonic speeds in the convergent section, reaches
Mach 1 at the throat, and then goes supersonic in the divergent section down-
stream of the throat. In a supersonic wind tunnel, smooth, uniform flow at the
nozzle exit is usually desired; therefore, a long, gradually converging and diverg-
ing nozzle is employed, as shown at the top of Fig. 4.32. For rocket engines, the
flow quality at the exit is not quite as important; but the weight of the nozzle is
a major concern. For the weight to be minimized, the engine’s length is mini-
mized, which gives rise to a rapidly diverging, bell-like shape for the supersonic
section, as shown at the bottom of Fig. 4.32. A photograph of a typical rocket
engine is shown in Fig. 4.33.

The real flow through nozzles such as those sketched in Fig. 4.32 is
closely approximated by isentropic flow, because little or no heat is added
or taken away through the nozzle walls and a vast core of the flow is virtu-
ally frictionless. Therefore, Eqgs. (4.73) to (4.75) apply to nozzle flows. Here
the total pressure and temperature p, and 7, remain constant throughout the
flow, and Eqgs. (4.73) to (4.75) can be interpreted as relating conditions at any
point in the flow to the stagnation conditions in the reservoir. For example,
consider Fig. 4.32, which illustrates the reservoir conditions p, and T, where
V = 0. Consider any cross section downstream of the reservoir. The static
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Figure 4.33 A typical rocket engine. Shown is a small rocket designed by
Messerschmitt-Bolkow-Blohm for European satellite launching.
(Source: Courtesy of John Anderson.)

temperature, density, and pressure at this section are 7y, p,, and p,, respec-
tively. If the Mach number M, is known at this point, then T, p;, and p, can be
found from Eqgs. (4.73) to (4.75) as

T, = To[l + 5 (Y- l)M,ZT (4.85)

p = pol1+sy=m " (4.86)
Y=

p= Po[l + 3y - l)Mf] (4.87)

Again, Eqgs. (4.85) to (4.87) demonstrate the power of the Mach number in mak-
ing aerodynamic calculations. The variation of Mach number itself through the
nozzle is strictly a function of the ratio of the cross-sectional area to the throat
area A/A.. This relation can be developed from the aerodynamic fundamentals
already discussed; the resulting form is

2 (r+0)/(r-1)
A 1| 2 =1, }
AT R P P Ay Y
(A, ] M L/+ 1 ( 2 ] (4.88)

Therefore, the analysis of isentropic flow through a nozzle is relatively
straightforward. The procedure is summarized in Fig. 4.34. Consider that the
nozzle shape, and hence A/A,, is given as shown in Fig. 4.34a. Then, from
Eq. (4.88), the Mach number can be obtained (implicitly). Its variation is sketched
in Fig. 4.34b. Because M is now known through the nozzle, Eqs. (4.85) to (4.87)
give the variations of 7, p, and p, which are sketched in Fig. 4.34c¢ to e. The
directions of these variations are important and should be noted. From Fig. 4.34,
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Figure 4.34 Variation of Mach number, pressure, temperature,
and density through a supersonic nozzle.

the Mach number continuously increases through the nozzle, going from near
zero in the reservoir to M = 1 at the throat and to supersonic values downstream
of the throat. In turn, p, 7, and p begin with their stagnation values in the reser-
voir and continuously decrease to low values at the nozzle exit. Hence, a super-
sonic nozzle flow is an expansion process in which pressure decreases through
the nozzle. In fact, this pressure decrease provides the mechanical force for push-
ing the flow through the nozzle. If the nozzle shown in Fig. 4.34a is simply
set out by itself in a laboratory, obviously nothing will happen; the air will not
start to rush through the nozzle of its own accord. Instead, to establish the flow
sketched in Fig. 4.34, we must provide a high-pressure source at the inlet, and/or
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a low-pressure source at the exit, with the pressure ratio at just the right value, as
prescribed by Eq. (4.87) and sketched in Fig. 4.34c.

EXAMPLE 4.34

You are given the job of designing a supersonic wind tunnel that has a Mach 2 flow at
standard sea-level conditions in the test section. What reservoir pressure and temperature
and what area ratio A,/A, are required to obtain these conditions?

H Solution
The static pressure p, =1 atm = 1.01 x 10° N/m?, and the static temperature T, =288.16 K,
from conditions at standard sea level. These are the desired conditions at the exit of the
nozzle (the entrance to the test section). The necessary reservoir conditions are obtained
from Eqgs. (4.85) and (4.87):

T,

:1+—y_]MZ=1+]'4_]
2 2

(2°)=18

e

Thus T, = 1.8T, = 1.8(288.16) =[518.7K

_ vHr=1)
&Z[H_”lejj = (1.8)"° =782
Pe

Thus Py =7.82p, =7.82(1.01x10°) = 7.9 x 10’ N/m?

The area ratio is obtained from Eq. (4.88):

2 (r0)/(r-1)
Al L{L gy }
A, M’ Ly+1 2
2.4/0.4
= i{i 14+ 245 } =2.85
2’ 2.4 2

Hence A, =1.69
A

1

The reservoir temperature and pressure of a supersonic wind tunnel are 600°R and
10 atm, respectively. The Mach number of the flow in the test section is 3. A blunt-
nosed model like that shown at the left in Fig. 4.28b is inserted in the test section flow.
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Calculate the pressure, temperature, and density at the stagnation point (at the nose of
the body).

H Solution

The flow conditions in the test section are the same as those at the nozzle exit. Hence,
in the test section, we obtain the exit pressure from Eq. (4.87), recalling that 1 atm =
2116 Ib/ft?:

yI(y=1)

p. = p0[1+%(y_ I)Mﬁ
=10(2116)[1+ 0.5(0.4)(3)*T
= 576 Ib/ft>

The pressure at the stagnation point on the model is the total pressure behind a normal
wave because the stagnation streamline has traversed the normal portion of the curved
bow shock wave in Fig. 4.28b and then has been isentropically compressed to zero
velocity between the shock and the body. This is the same situation as that existing at the
mouth of a Pitot tube in supersonic flow, as described in Sec. 4.11.3. Hence the stagnation
pressure is given by Eq. (4.79):

Do, _ Pug _{ 7+ > M }W” 1- g+ 2yM?

=12.06

Pag :[ 2.45(3Y) T'51—1.4+2(144)(32)
p 4(1.4)(3%) = 2(0.4) 2.4

Pawe = 12.06p, = 12.06(576) = 6947 Ib/ft>

The total temperature (not the static temperature) at the nozzle exit is the same as the
reservoir temperature

&

TO,E = TE)

because the flow through the nozzle is isentropic and hence adiabatic. For an adiabatic
flow, the fotal temperature is constant, as demonstrated by Eq. (4.42), where at two dif-
ferent points in an adiabatic flow with different velocities if the flow is adiabatically
slowed to zero velocity at both points, we obtain
CI)T(M = CPT\;)z

Hence T, = T,,; that is, the total temperature at the two different points is the same.
Therefore, in the present problem, the total temperature associated with the test section
flow is equal to the total temperature throughout the nozzle expansion: T,, = T, = 600°R.
[Note that the static temperature of the test section flow is 214.3°R, obtained from
Eq. (4.85).] Moreover, in traversing a shock wave (see Fig. 4.27), the total tempera-
ture is unchanged; that is, the total temperature behind the shock wave on the model
is also 600°R (although the static temperature behind the shock is less than 600°R).
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Finally, because the flow is isentropically compressed to zero velocity at the stag-
nation point, the stagnation point temperature is the total temperature, which also
stays constant through the isentropic compression. Hence, the gas temperature at the
stagnation point is

’I;mg = TO =

From the equation of state,

Putag = Pug _ 9947 _[4 0067 slug/ft’
RT, 1716(600)

stag

In the combustion chamber of a rocket engine, kerosene and oxygen are burned, resulting
in a hot, high-pressure gas mixture in the combustion chamber with the following condi-
tions and properties: T, = 3144 K, p, =20 atm, R =378 J/(kg)(K), and y = 1.26. The pres-
sure at the exit of the rocket nozzle is 1 atm, and the throat area of the nozzle is 0.1 m?.
Assuming isentropic flow through the rocket nozzle, calculate (a) the velocity at the exit
and (b) the mass flow through the nozzle.

H Solution

a. To obtain the velocity at the exit, let us first obtain the temperature, next the speed of
sound, and then the Mach number, leading to the velocity. We note that the combustion
chamber conditions are the “reservoir” conditions sketched in Fig. 4.32; this is why the
combustion chamber pressure and temperature have been denoted by p, and T, respec-
tively. Because the flow is isentropic, from Eq. (4.46) we have

P _ (1]
Po Ty

viy-1 1 0.26/1.26
=T 2| =(3144) — = 1694 K
Po 20

or a, = JyYRT, = J1.26(378)(1694) = 898.2 m/s

The Mach number at the exit is given by Eq. (4.73):

£=1+V;1M62
i} 2
or Mj:i Ly 2 (3144 1) 6584
y—1\T, 1.26 -1(1694

or M, =2.566
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Hence V, = Ma, =2.566(898.2) =[2305m/s

b. The mass flow is given by the product p AV evaluated at any cross section of the
nozzle. Because we are given the area of the throat, the obvious location at which to
evaluate p AV is the throat; that is,

m=p*A*V*
where p*, A*, and V* are the density, area, and velocity, respectively, at the throat. We

will use the fact that the Mach number at the throat is M* = 1. The pressure at the throat
p* is given by Eq. (4.74):

_ y/(y=1) 1.26/0.26
Po [ XLy =1+226 2 = (1.13)*%6 = 1.808
p* 2 2

Hence pr = po _ 20(1.01x10%)

= = =1.117x10° N/m*
1.808 1.808

The temperature at the throat is given by Eq. (4.73):

o 2 e 23

T* Y

s To 3144 o005 3k
113 1.13

a* = JyRT* = /1.26(378)(2782.3) = 1151 m/s

_op*  1L117x10°
RT*  378(2782.3)

p* =1.062 kg/m’

Because M* =1, V¥ =qg* =1151 m/s. Hence

m=p*A* V¥ =1.062(0.1)1151) =|122.2 kg/s
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A supersonic wind tunnel is sketched in Fig. 4.35; this includes not only the convergent—
divergent nozzle sketched in Fig. 4.32, but also a constant-area test section downstream
of the nozzle, and a convergent—divergent supersonic diffuser downstream of the test sec-
tion. The function of the supersonic diffuser is to slow the supersonic flow from the test
section to a relatively benign low-speed subsonic flow at the exit of the diffuser. A super-
sonic wind tunnel has two locations where a local minimum cross-sectional area exists.
In Fig. 4.35, location 1 in the nozzle is called the first throat, with area A, ;. Shock waves
occur at the entrance to the diffuser, as sketched in Fig. 4.35, and the flow Mach number
is progressively reduced as the flow passes through these shock waves. Also, because
the total pressure decreases across a shock wave, as described in Section 4.11.3, there
is a net loss of total pressure in the diffuser upstream of the second throat. As a result
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Figure 4.35 Schematic of a supersonic wind tunnel, showing the first and
second throats.

of this total pressure loss, the second throat area, A,,, must be larger than the first throat
area, A, ;. Prove this statement by deriving an equation for the ratio A,,/A,; as a function
of total pressure at the second throat, P.,, and total pressure at the first throat, Po,. Assume
locally sonic flow at both locations.

H Solution
The mass flow through the tunnel is constant, so that at the first and second throats,

my = n, (E 4.36.1)
Because m= pAV, Eq. (E 4.36.1) becomes
PA V= ALY, (E 4.36.2)

The first and second throats are local minimum areas in the tunnel, so we assume that the
local Mach numbers are M, = M,, = 1. That is, the velocity at each of the throats is sonic
velocity. Hence, from Eq. (E 4.36.2)

PiAL G =p A, a
or

pr A NYRT, = p, A, JYRT, (E 4.36.3)

From the equation of state, p = pRT, Eq. (E 4.36.3) can be written as

P |
Pp JRT, = P A, [yRT.
RT YR RT, 2 VI

or
PAL _ PA

nJn

(E 4.36.4)
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At the first throat, from Egs. (4.73) and (4.74), with M,, = 1, we have

Toy 1LY 1M,21—1+y 1_y+l
! ' 2
2
" h=——T (E 4.36.5)
y+1
. e
Por _ (] + _y; ! Mfzjy] = (; 1 ]yl
and P
1 v
> = (—y; ]yl Pos (E 4.36.6)

Through a similar derivation at the second throat, with M,, = 1, we have

T, = . T, (E 4.36.7)
y+1 -
1 e
and Py = (%j"l o (E 4.36.8)

Substituting Eqgs. (E 4.36.5), (E 4.36.6), (E 4.36.7), and (E 4.36.8) into (E 4.36.4), we get

PorAi _ PosAis

e = S E 4.36.9
T T (£4.369)

The flow in the wind tunnel sketched in Fig. 4.35 is adiabatic; no heat is being added
or taken away in the tunnel. This applies also to the shock waves in the diffuser; the flow
across a shock wave is adiabatic (but not isentropic). As demonstrated in Example 4.34,
the total temperature is constant in an adiabatic flow. Thus, throughout the flow in the
wind tunnel, the total temperature remains constant. In particular,

Ty =T,
With this, we get
A
2 _ Pox (E 4.36.10)
A, Po2

Because there is a loss of total pressure in the diffuser, p,, < p,, and from Eq. (E 4.36.10)
we know that the second throat is larger than the first throat. Indeed, if A;, were made
smaller than that dictated by Eq. (E 4.36.10), the diffuser would not be able to pass the
mass flow that comes from the nozzle; the flow in the tunnel would break down and
the supersonic flow in the test section would become subsonic. In such a case, the tun-
nel is said to be “choked.” Further discussion of this subject is beyond the scope of this
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book. See Anderson, Modern Compressible Flow with Historical Perspective, 3rd ed.,
McGraw-Hill, New York, 2003, for more details.

Consider a supersonic wind tunnel as sketched in Fig. 4.35. The reservoir pressure is 5 atm.
The area of the first throat (location 1 in Fig. 4.35) is 100 cm?. The static pressure measured
at a pressure tap in the wall of the second throat (location 2 in Fig. 4.35) is 0.87 atm. The local
Mach number at the second throat is M,, = 1. Calculate the area of the second throat, A, ,.

H Solution

From Eq. (E 4.36.10) in Example 4.36, we have
An _ Por (E 4.36.10)
A, Po2

The total pressure at the first throat is equal to the reservoir pressure; thus

p,, =5 atm

The total pressure at the second throat, p,,, where the local Mach number M,, = 1, can be
calculated from the given static pressure at the second throat, p,. From Eq. (4.74),

2 r
Por [ X2y et [ XEL s _ ) go3
P> 2 ’ 2

Thus, po, = 1.893 p, = 1.893 (0.87) = 1.6468 atm. Substituting these results into
Eq. (E 4.36.10), we have

A, = A,,.(ﬂjz (100)( > j: 303.6 cm?

Do 1.6468

4.14 DISCUSSION OF COMPRESSIBILITY

We have been stating all along that flows in which M < 0.3 can be treated as
essentially incompressible and, conversely, that flows in which M = 0.3 should
be treated as compressible. We are now in a position to prove this.

Consider a gas at rest (V = 0) with density p,. Now accelerate this gas
isentropically to some velocity V and Mach number M. Obviously the thermody-
namic properties of the gas will change, including the density. In fact, the change
in density will be given by Eq. (4.75):

1(r-1
Po _ (1 . Y;le]
p 2

For y = 1.4, this variation of p/p, is given in Fig. 4.36. Note that for M < 0.3, the
density change in the flow is less than 5 percent; that is, the density is essentially
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Figure 4.36 Density variation with Mach number for ¥ = 1.4, showing region where the
density change is less than 5 percent.

constant for M < 0.3, and for all practical purposes the flow is incompressible.
Therefore, we have just demonstrated the validity of this statement:

For M < 0.3, the flow can be treated as incompressible.

4.15 INTRODUCTION TO VISCOUS FLOW

This is a good time to look back to our road map in Fig. 4.1. We have now
completed the left side of this road map—inviscid flow with some applica-
tions. Examine again the boxes on the left side, and make certain that you
feel comfortable with the material represented by each box. There are many
aerodynamic applications in which the neglect of friction is quite reasonable
and in which the assumption of inviscid flow leads to useful and reasonably
accurate results.
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Figure 4.37 Comparison between ideal frictionless flow and real flow with the effects of
friction.
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the surface slips over the surface.

Figure 4.38 Frictionless flow.

However, in numerous other practical problems the effect of friction is
dominant, and we now turn our attention to such problems. This constitutes
the right side of our road map in Fig. 4.1—viscous flow, which is flow with
friction. Indeed, in some flows the fundamental behavior is governed by the
presence of friction between the airflow and a solid surface. A classic example
is sketched in Fig. 4.37, which shows the low-speed flow over a sphere. At the
left is sketched the flow field that would exist if the flow were inviscid. For such
an ideal, frictionless flow, the streamlines are symmetric; and amazingly, there
is no aerodynamic force on the sphere. The pressure distribution over the for-
ward surface exactly balances that over the rear surface, and hence there is no
drag (no force in the flow direction). However, this purely theoretical result is
contrary to common sense; in real life there is a drag force on the sphere tending
to retard the motion of the sphere. The failure of the theory to predict drag was
bothersome to early 19th-century aerodynamicists and was even given a name:
d’Alembert’s paradox. The problem is caused by not including friction in the
theory. The real flow over a sphere is sketched on the right in Fig. 4.37. The
flow separates on the rear surface of the sphere, setting up a complicated flow in
the wake and causing the pressure on the rear surface to be less than that on the
forward surface. Hence, a drag force is exerted on the sphere, as shown by D in
Fig. 4.37. The difference between the two flows in Fig. 4.37 is simply friction,
but what a difference!

Consider the flow of a gas over a solid surface, such as the airfoil sketched
in Fig. 4.38. According to our previous considerations of frictionless flows, we
considered the flow velocity at the surface as being a finite value, such as V,
shown in Fig. 4.38; that is, because of the lack of friction, the streamline right at
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Figure 4.39 Flow in real life, with friction. The thickness of the boundary layer is greatly
overemphasized for clarity.

the surface slips over the surface. In fact, we stated that if the flow is incompress-
ible, V, can be calculated from Bernoulli’s equation:

nt %pvl2 =p,t %pvzz

However, in real life, the flow at the surface adheres to the surface because
of friction between the gas and the solid material; that is, right at the surface, the
flow velocity is zero, and there is a thin region of retarded flow in the vicinity of
the surface, as sketched in Fig. 4.39. This region of viscous flow that has been
retarded owing to friction at the surface is called a boundary layer. The inner
edge of the boundary layer is the solid surface itself, such as point a in Fig. 4.39,
where V = 0. The outer edge of the boundary layer is given by point b, where the
flow velocity is essentially the value given by V, in Fig. 4.38. That is, point b in
Fig. 4.39 is essentially equivalent to point 2 in Fig. 4.38. In this fashion, the flow
properties at the outer edge of the boundary layer in Fig. 4.39 can be calculated
from a frictionless flow analysis, as pictured in Fig. 4.38. This leads to an impor-
tant conceptual point in theoretical aerodynamics: A flow field can be split into
two regions, one region in which friction is important (in the boundary layer near
the surface) and another region of frictionless flow (sometimes called potential
flow) outside the boundary layer. This concept was first introduced by Ludwig
Prandtl in 1904, and it revolutionized modern theoretical aerodynamics.

It can be shown experimentally and theoretically that the pressure through
the boundary layer in a direction perpendicular to the surface is constant. That
is, if we let p, and p, be the static pressures at points a and b, respectively, in
Fig. 4.39, then p, = p,. This is an important phenomenon. This is why a surface
pressure distribution calculated from frictionless flow (Fig. 4.38) many times
gives accurate results for the real-life surface pressures; it is because the fric-
tionless calculations give the correct pressures at the outer edge of the boundary
layer (point b), and these pressures are impressed without change through the
boundary layer right down to the surface (point a). The preceding statements
are reasonable for slender aerodynamic shapes such as the airfoil in Fig. 4.39;
they do not hold for regions of separated flow over blunt bodies, as previously
sketched in Fig. 4.37. Such separated flows are discussed in Sec. 4.20.

Refer again to Fig. 4.39. The boundary layer thickness & grows as the flow
moves over the body; that is, more and more of the flow is affected by friction
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Figure 4.40 Velocity profile through a boundary layer.

as the distance along the surface increases. In addition, the presence of friction
creates a shear stress at the surface T,. This shear stress has dimensions of force/
area and acts in a direction tangential to the surface. Both ¢ and Tt,, are important
quantities, and a large part of boundary layer theory is devoted to their calcula-
tion. As we will see, T, gives rise to a drag force called skin friction drag, hence
attesting to its importance. Subsequent sections will give equations for the cal-
culation of d and T,

Looking more closely at the boundary layer, we see that a velocity profile
through the boundary layer is sketched in Fig. 4.40. The velocity starts out at
zero at the surface and increases continuously to its value of V, at the outer edge.
Let us set up coordinate axes x and y such that x is parallel to the surface and
y is normal to the surface, as shown in Fig. 4.40. By definition, a velocity profile
gives the variation of velocity in the boundary layer as a function of y. In general,
the velocity profiles at different x stations are different.

The slope of the velocity profile at the wall is of particular importance be-
cause it governs the wall shear stress. Let (dV/dy),-, be defined as the velocity
gradient at the wall. Then the shear stress at the wall is given by

- (dV]
w T . 4.89
o). (4.89)

where U is called the absolute viscosity coefficient (or simply the viscosity) of the
gas. The viscosity coefficient has dimensions of mass/(length)(time), as can be
verified from Eq. (4.89) combined with Newton’s second law. It is a physical prop-
erty of the fluid; u is different for different gases and liquids. Also, y varies with 7.
For liquids, u decreases as T increases (we all know that oil gets “thinner” when
the temperature is increased). But for gases, u increases as T increases (air gets
“thicker” when temperature is increased). For air at standard sea-level temperature,

1 =1.7894 x 107 kg/(m)(s) = 3.7373 x 107 slug/(ft)(s)

The variation of y with temperature for air is given in Fig. 4.41.

In this section we are simply introducing the fundamental concepts of boundary
layer flows; such concepts are essential to the practical calculation of aerodynamic
drag, as we will soon appreciate. In this spirit, we introduce another important
dimensionless “number,” a number of importance and impact on aerodynamics
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Figure 4.41 Variation of viscosity coefficient with temperature.

Leading

Figure 4.42 Growth of the boundary layer thickness.

equal to those of the Mach number discussed earlier—the Reynolds number.
Consider the development of a boundary layer on a surface, such as the flat plate
sketched in Fig. 4.42. Let x be measured from the leading edge—that is, the front
tip of the plate. Let V., be the flow velocity far upstream of the plate. (The subscript
oo is commonly used to denote conditions far upstream of an aerodynamic body, the
free-stream conditions.) The Reynolds number Re, is defined as

_ PoVeok
Re, = u (4.90)

Note that Re, is dimensionless and that it varies linearly with x. For this
reason, Re, is sometimes called a local Reynolds number, because it is based on
the local coordinate x.
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Up to this point in our discussion of aerodynamics, we have always con-
sidered flow streamlines to be smooth and regular curves in space. However, in
a viscous flow, and particularly in boundary layers, life is not quite so simple.
There are two basic types of viscous flow:

1. Laminar flow, in which the streamlines are smooth and regular and a fluid
element moves smoothly along a streamline (Fig. 4.43a).

2. Turbulent flow, in which the streamlines break up and a fluid element
moves in a random, irregular, and tortuous fashion (Fig. 4.43b).

The differences between laminar and turbulent flow are dramatic, and they have
a major impact on aerodynamics. For example, consider the velocity profiles
through a boundary layer, as sketched in Fig. 4.44. The profiles differ depending
on whether the flow is laminar or turbulent. The turbulent profile is “fatter,” or
fuller, than the laminar profile. For the turbulent profile, from the outer edge to
a point near the surface, the velocity remains reasonably close to the free-stream
velocity; it then rapidly decreases to zero at the surface. In contrast, the laminar
velocity profile gradually decreases to zero from the outer edge to the surface.
Now consider the velocity gradient at the wall, (dV/dy),-,, which is the reciprocal
of the slope of the curves shown in Fig. 4.44 evaluated at y = 0. From Fig. 4.44,
it is clear that

(d_V] for laminar flow < (d_VJ for turbulent flow
dy y=0 dy y=0

(a) Laminar flow

7777
(b) Turbulent flow

Figure 4.43 (a) Smooth motion of fluid
elements in a laminar flow. (b) Tortuous,
irregular motion of fluid elements in a
turbulent flow.
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Figure 4.44 Velocity profiles for laminar and turbulent boundary
layers. Note that the turbulent boundary layer thickness is larger
than the laminar boundary layer thickness.

Recalling Eq. (4.89) for 1,, leads us to the fundamental and highly important fact
that laminar shear stress is less than turbulent shear stress:

T <7

w turbulent

w laminar

This obviously implies that the skin friction exerted on an airplane wing or body
will depend on whether the boundary layer on the surface is laminar or turbulent,
with laminar flow yielding the smaller skin friction drag.

It appears to be almost universal in nature that systems with the maximum
amount of disorder are favored. For aerodynamics, this means that the vast
majority of practical viscous flows are turbulent. The boundary layers on most
practical airplanes, missiles, ship hulls, and the like are turbulent, with the excep-
tion of small regions near the leading edge, as we will soon see. Consequently,
the skin friction on these surfaces is the higher, turbulent value. For the aerody-
namicist, who is usually striving to reduce drag, this is unfortunate. However,
the skin friction on slender shapes, such as wing cross sections (airfoils), can be
reduced by designing the shape in such a manner as to encourage laminar flow.
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Figure 4.45 Comparison of conventional and laminar flow airfoils. The pressure
distributions shown are the theoretical results obtained by NACA and are for 0° angle of
attack. The airfoil shapes are drawn to scale.

Figure 4.45 indicates how this can be achieved. Here two airfoils are shown; the
standard airfoil (Fig. 4.45a) has a maximum thickness near the leading edge,
whereas the laminar flow airfoil (Fig. 4.45b) has its maximum thickness near the
middle of the airfoil. The pressure distributions on the top surface, of the airfoils
are sketched above the airfoils in Fig. 4.45. Note that for the standard airfoil,
the minimum pressure occurs near the leading edge, and there is a long stretch
of increasing pressure from this point to the trailing edge. Turbulent bound-
ary layers are encouraged by such increasing pressure distributions. Hence, the
standard airfoil is generally bathed in long regions of turbulent flow, with the
attendant high skin friction drag. However, note that for the laminar flow airfoil,
the minimum pressure occurs near the trailing edge, and there is a long stretch
of decreasing pressure from the leading edge to the point of minimum pressure.
Laminar boundary layers are encouraged by such decreasing pressure distribu-
tions. Hence, the laminar flow airfoil can be bathed in long regions of laminar
flow, thus benefiting from the reduced skin friction drag.
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Figure 4.45 (continued)

The North American P-51 Mustang (Fig. 4.46), designed at the outset of
World War II, was the first production aircraft to employ a laminar flow airfoil.
However, laminar flow is a sensitive phenomenon,; it readily gets unstable and
tries to change to turbulent flow. For example, the slightest roughness of the
airfoil surface caused by such real-life effects as protruding rivets, imperfections
in machining, and bug spots can cause a premature transition to turbulent flow
in advance of the design condition. Therefore, most laminar flow airfoils used
on production aircraft do not yield the extensive regions of laminar flow that are
obtained in controlled laboratory tests using airfoil models with highly polished,
smooth surfaces. From this point of view, the early laminar flow airfoils were
not successful. However, they were successful from an entirely different point
of view: They were found to have excellent high-speed properties, postponing
to a higher flight Mach number the large drag rise due to shock waves and flow
separation encountered near Mach 1. (Such high-speed effects are discussed in
Secs. 5.9 to 5.11.) As a result, the early laminar flow airfoils were extensively
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Figure 4.46 The first airplane to incorporate a laminar flow airfoil for the wing section, the
North American P-51 Mustang. Shown is a late-model Mustang, the P-51D.
(Source: Jim Ross/NASA.)

used on jet-propelled airplanes during the 1950s and 1960s and are still em-
ployed on some modern high-speed aircraft.

Given a laminar or turbulent flow over a surface, how do we actually cal-
culate the skin friction drag? The answer is given in the following two sections.

4.16 RESULTS FOR A LAMINAR
BOUNDARY LAYER

Consider again the boundary layer flow over a flat plate, as sketched in Fig. 4.42.
Assume that the flow is laminar. The two physical quantities of interest are the
boundary layer thickness ¢ and shear stress T,, at location x. Formulas for these
quantities can be obtained from laminar boundary layer theory, which is beyond
the scope of this book. However, the results, which have been verified by experi-
ment, are as follows. The laminar boundary layer thickness is

5.2x .
o= = laminar @.91)

X

where Re, = p..V..x/ll.., as defined in Eq. (4.90). It is remarkable that a phe-
nomenon as complex as the development of a boundary layer, which depends
at least on density, velocity, viscosity, and length of the surface, should be
described by a formula as simple as Eq. (4.91). In this vein, Eq. (4.91) dem-
onstrates the powerful influence of the Reynolds number, Re,, in aerodynamic
calculations.
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Note from Eq. (4.91) that the laminar boundary layer thickness varies inversely
as the square root of the Reynolds number. Also, because Re, = p..V..x/l.., then
from Eq. (4.91) d o< x"%; that is, the laminar boundary layer grows parabolically.

The local shear stress T, is also a function of x, as sketched in Fig. 4.47.
Rather than deal with 1, directly, aerodynamicists find it more convenient to
define a local skin friction coefficient c;, as

T, _1
1o V2 G

w w

€ (4.92)

The skin friction coefficient is dimensionless and is defined as the local shear
stress divided by the dynamic pressure at the outer edge of the boundary. From
laminar boundary layer theory,

cp = 0.664 laminar

"= JRe, (4.93)

where, as usual, Re, = p..V..x/lL... Equation (4.93) demonstrates the convenience
of defining a dimensionless skin friction coefficient. On the one hand, the dimen-
sional shear stress T, (as sketched in Fig. 4.47) depends on several quantities,
such as p.., V.., and Re,; on the other hand, from Eq. (4.93), ¢/, is a function of
Re, only. This convenience, obtained from using dimensionless coefficients and
numbers, reverberates throughout aerodynamics. Relations between dimension-
less quantities such as those given in Eq. (4.93) can be substantiated by dimen-
sional analysis, a formal procedure to be discussed in Sec. 5.3.
Combining Egs. (4.92) and (4.93), we can obtain values of 1, from

0.6644..
T, = f(x) = Teq (4.94)

Note from Egs. (4.93) and (4.94) that both ¢, and 7, for laminar boundary
layers vary as x%; that is, ¢, and 1, decrease along the surface in the flow direc-
tion, as sketched in Fig. 4.47. The shear stress near the leading edge of a flat plate
is greater than that near the trailing edge.

Tw

Ty = f{x). What is F(x)?

Figure 4.47 Variation of shear stress with distance
along the surface.
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The variation of local shear stress 7T,, along the surface allows us to calculate
the total skin friction drag due to the airflow over an aerodynamic shape. Recall
from Sec. 2.2 that the net aerodynamic force on any body is fundamentally due
to the pressure and shear stress distributions on the surface. In many cases, it
is this total aerodynamic force that is of primary interest. For example, if you
mount a flat plate parallel to the airstream in a wind tunnel and measure the force
exerted on the plate by means of a balance of some sort, you are not measuring
the local shear stress T,; rather, you are measuring the total drag due to skin
friction being exerted over all the surface. This total skin friction drag can be
obtained as follows.

Consider a flat plate of length L and unit width oriented parallel to the flow,
as shown in perspective in Fig. 4.48. Consider also an infinitesimally small sur-
face element of the plate of length dx and width unity, as shown in Fig. 4.48. The
local shear stress on this element is T,, a function of x. Hence, the force on this
element due to skin friction is T, dx(1) = T, dx. The total skin friction drag is the
sum of the forces on all the infinitesimal elements from the leading to the trailing
edge; that is, we obtain the total skin friction drag D, by integrating T, along the
surface:

D, = JOL r. dx (4.95)

Combining Egs. (4.94) and (4.95) yields

Cdx _ 0664g. [rdx
o JRe,  JpValti. 70 Jx

1.328¢..L (4.96)

D, = =7 der
! PV LIl

D, = 0.664q. |

Let us define a total skin friction drag coefficient C; as

C,=—= 4.97)

=~
1

Figure 4.48 Total drag is the integral of the local shear stress over the
surface.
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where S is the total area of the plate, S = L(1). Thus, from Egs. (4.96) and (4.97),

Dy 1328q.L

¢

C, = 1.328 laminar

JRe, (4.98)

where the Reynolds number is now based on the total length L; that is, Re; =
Poo VoLl L.

Do not confuse Eq. (4.98) with Eq. (4.93); they are different quantities. The
local skin friction coefficient ¢, in Eq. (4.93) is based on the local Reynolds num-
ber Re, = p..V..x/lL., and is a function of x. However, the total skin friction coef-
ficient C;is based on the Reynolds number for the plate length L: Re;, = p..V.L/ L.

We emphasize that Egs. (4.91), (4.93), and (4.98) apply to laminar boundary
layers only; for turbulent flow, the expressions are different. Also, these equa-
tions are exact only for low-speed (incompressible) flow. However, they have
been shown to be reasonably accurate for high-speed subsonic flows as well. For
supersonic and hypersonic flows, where the velocity gradients within the bound-
ary layer are so extreme and where the presence of frictional dissipation creates
very large temperatures within the boundary layer, the form of these equations
can still be used for engineering approximations; but p and ¢ must be evaluated
at some reference conditions germane to the flow inside the boundary layer. Such
matters are beyond the scope of this book.

or
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EXAMPLE 4.38

Consider the flow of air over a small flat plate that is 5 cm long in the flow direction
and 1 m wide. The free-stream conditions correspond to standard sea level, and the flow
velocity is 120 m/s. Assuming laminar flow, calculate

(a) The boundary layer thickness at the downstream edge (the trailing edge).

(b) The drag force on the plate.

H Solution
a. At the trailing edge of the plate, where x =5 cm = 0.05 m, the Reynolds number is,
from Eq. (4.90),

_ pVex  (1.225 kg/m®)(120 m/s)(0.05 m)
Uoo 1.789 x 107 kg/(m)(s)

=4.11%x10°

Re

x

From Eq. (4.91),

52 52x _ 5-2(0405)”2 =14.06x10"*m

~Re? (4.11x10%)
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Note how thin the boundary layer is—only 0.0406 cm at the trailing edge.
b. To obtain the skin friction drag, Eq. (4.98) gives, with L = 0.05 m,

1.328 1.328
Rel?  (4.11x10%)"?

;= =2.07x107

The drag can be obtained from the definition of the skin friction drag coefficient,
Eq. (4.97), once g.. and S are known.
=1p. V2 = 1(1.225)(120)* = 8820 N/m’
0.05(1) = 0.05m’

Thus, from Eq. (4.97), the drag on one surface of the plate (say the top surface) is
Top D, = q..SC; = 8820(0.05)(2.07 x 107 =0.913N

Because both the top and bottom surfaces are exposed to the flow, the total friction drag
will be double the above result:

Total D, =2(0.913) = [1.826 N

For the flat plate in Example 4.38, calculate and compare the local shear stress at the
locations 1 and 5 cm from the front edge (the leading edge) of the plate, measured in the
flow direction.

H Solution
The location x = 1 cm is near the front edge of the plate. The local Reynolds number at
this location, where x =1 cm = 0.01 m, is

PVoox  1.225(120)(0.01)

Re, = = — =8.217x10*
Ueo 1.789 x 10

From Eq. (4.93),
. = 0.664 _ 0664 _ 0.664 _  10oai
JRe,  8217x10* 286.65

From Eq. (4.92), with g.. = 8820 N/m? from Example 4.38,

T, = guc, =8820(0.002316) = [20.43 N/m’

At the location x = 5 cm = 0.05 m, the local Reynolds number is

2
Re, = P=Vor _ 1.2_5(120)(0.?5) L 11x10°
[hor 1.789x 10~
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(This is the same value as that calculated in Example 4.38.) From Eq. (4.93),
_0.664 _ 0.664

c, = =
o JRe,  Ja11x10°

=0.001036

From Eq. (4.92),

T, = guc, =8820(0.001036) = [9.135N/m’

By comparison, note that the local shear stress at x =5 cm—that is, at the back end of the
plate (the trailing edge)—is less than that at x = 1 cm near the front edge. This confirms
the trend sketched in Fig. 4.47 that t,, decreases with distance in the flow direction along
the plate.

As a check on our calculation, we note from Eq. (4.94) that t,, varies inversely as x'2.
Thus, once we have calculated t,, = 20.43 N/m? at x = 1 cm, we can directly obtain T, at
x =5 cm from the ratio

Setting condition 1 at x = 1 cm and condition 2 at x = 5 cm, we have

T, =T /x__, = 20.43.\Jg =9.135 N/m’

Wy Wy
\{ X2

which verifies our original calculation of T, at x =5 cm.
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4.17 RESULTS FOR A TURBULENT
BOUNDARY LAYER

Under the same flow conditions, a turbulent boundary layer will be thicker than
a laminar boundary layer. This comparison is sketched in Fig. 4.49. Unlike in the
case for laminar flows, no exact theoretical results can be presented for turbulent
boundary layers. The study of turbulence is a major effort in fluid dynamics
today; so far, turbulence is still an unsolved theoretical problem and is likely to
remain so for an indefinite time. In fact, turbulence is one of the major unsolved
problems in theoretical physics. As a result, our knowledge of § and 1, for

6 turbulent

i

SIT7777777 7777777777 777777777 77777777777 77777

Figure 4.49 Turbulent boundary layers are thicker than laminar boundary layers.
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turbulent boundary layers must rely on experimental results. Such results yield
the following approximate formula for turbulent flow:

~0.37x
- ReoAz

X

1) turbulent (4.99)

Note from Eq. (4.99) that a turbulent boundary grows approximately as x*°. This is
in contrast to the slower x"* variation for a laminar boundary layer. As a result, tur-
bulent boundary layers grow faster and are thicker than laminar boundary layers.

The local skin friction coefficient for turbulent flow over a flat plate can be
approximated by

o = 0.0592
fx (Re )0.2

X

turbulent (4.100)

The total skin friction coefficient is given approximately as

c, = 0074

=" turbulent 4.101)
J Re(,);2

Note that for turbulent flow, C; varies as L™'*; this is in contrast to the L™
variation for laminar flow. Hence, C; is larger for turbulent flow, which pre-
cisely confirms our reasoning at the end of Sec. 4.15, where we noted that 1,
(laminar) < 1,, (turbulent). Also note that C,in Eq. (4.101) is once again a func-
tion of Re;. Values of C; for both laminar and turbulent flows are commonly
plotted in the form shown in Fig. 4.50. Note the magnitude of the numbers
involved in Fig. 4.50. The values of Re; for actual flight situations may vary
from 10° to 10® or higher; the values of C;are generally much less than unity,
on the order of 102 to 1073
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0002 —
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| | | I | |
0.001
103 108 107 108 10? 1010
Reynolds number, pooVFoo L too

Figure 4.50 Variation of skin friction coefficient with Reynolds
number for low-speed flow. Comparison of laminar and turbulent flow.
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EXAMPLE 4.40

Consider the same flow over the same flat plate as in Example 4.38; however, assume that
the boundary layer is now completely turbulent. Calculate the boundary layer thickness at
the trailing edge and the drag force on the plate.

H Solution
From Example 4.38, Re, =4.11 x 10°. From Eq. (4.99), for turbulent flow,

5= 037x _ _0.37(0.05) _ 139%10°m

~ Re”? (4.11x10%)"2

Note: Compare this result with the laminar flow result from Example 4.38:

-3
Sun _ 1.39x10° _ )

8., 4.06x107"

Note that the turbulent boundary layer at the trailing edge is 3.42 times thicker than the
laminar boundary layer—quite a sizable amount! From Eq. (4.101),

_0.074 _ 0.074
Red?  (4.11x10%)°2

: = 0.00558

On the top surface,

D; = q.SC, = 8820(0.05)(0.00558) = 2.46 N

Considering both top and bottom surfaces, we have

Total D, = 2(2.46) =

Note that the turbulent drag is 2.7 times larger than the laminar drag.

EXAMPLE 4.41

Repeat Example 4.39, except now assume that the boundary layer is completely turbulent.

H Solution
From Example 4.39, at x =1 cm, Re, = 8.217 x 10 The local turbulent skin friction coef-
ficient at this location is, from Eq. (4.100),

. _00592_ 00592
e Re%2 (8.217 x 104)0.2

X

=0.00616

From Example 4.39, ., = 8820 N/m? Hence

T, = guc, =8820(0.00616) = |54.33 N/m”



244

CHAPTER 4 Basic Aerodynamics

Note: In comparison to the laminar flow result from Example 4.39, the turbulent shear
stress is 54.33/20.43 = 2.7 times larger. By coincidence, this is the same ratio as the
total drag comparison made between turbulent and laminar boundary layer cases in
Example 4.39.

At x =5 cm, from Example 4.39, Re, = 4.11 x 10°. The local turbulent skin friction
coefficient at this location is, from Eq. (4.100),

. _0.0592 00592
AR (4.11x 102

Hence T, = quc; = 8820(0.00446) = (39.34 N/m’

Note: In comparison to the laminar flow result from Example 4.39, the turbulent shear
stress at x = 5 cm is 39.34/9.135 = 4.3 times larger.

Comparing the present results with those of Example 4.39, we see that over a given
length of plate, the percentage drop in shear stress for the laminar case is larger than
that for the turbulent case. Specifically, the percentage drop over the 4-cm space from
x=1cmto x =15 cm for the laminar case (Example 4.39) is

= 0.00446

Decrease = 204379135 100 = 5539

20.43

For the turbulent case (Example 4.41),

Decrease = w X100 =27.6%

54.33

4.18 COMPRESSIBILITY EFFECTS
ON SKIN FRICTION

Let us examine again the expressions for laminar and turbulent skin friction coef-
ficients given by Eqs. (4.93) and (4.100), respectively. These equations shout the
important fact that ¢, is a function of Reynolds number only; that is,

. 1
Laminar Crol——
' Re,
1
Turbulent C/cK QW
TR

X

Once again we see the power of the Reynolds number in governing viscous
flows. However, this is not the whole story. Equations (4.91), (4.93), and (4.98)
give expressions for 9, ¢, and Cy, respectively, for a flat-plate boundary layer
in an incompressible laminar flow. Similarly, Egs. (4.99), (4.100), and (4.101)
give expressions for &, ¢, , and Cy, respectively, for a flat-plate boundary layer
in an incompressible turbulent flow. Mainly for the benefit of simplicity, we did
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not emphasize in Secs. 4.16 and 4.17 that these equations apply to an incom-
pressible flow. However, we are now bringing this to your attention. Indeed,
you might want to go back to these equations and mark them in the margins as
“incompressible.”

This raises the question: What are the effects of compressibility on a flat-
plate boundary layer? The answer lies in the Mach number, which, as we have
already seen in Secs. 4.11 to 4.13, is the powerful parameter governing high-
speed, compressible inviscid flows. Specifically, for a flat-plate boundary layer
in a compressible flow, &, ¢,, and C; are functions of both Mach number and
Reynolds number. The effect of Mach number is not given by a nice, clean for-
mula; rather, it must be evaluated from detailed numerical solutions of the com-
pressible boundary layer flow, which are beyond the scope of this book. It is
sufficient to note that for a flat-plate compressible boundary layer, the constant
0.664 in the numerator of Eq. (4.93) is replaced by some other number that de-
pends on the value of the free-stream Mach number; that is,

¢, = i)

X = laminar, compressible (4.102)

X

Similarly, the constant 0.0592 in the numerator of Eq. (4.100) is replaced by
some other number that depends on the value of M..; that is,

— fl(MOO)
T R

X

turbulent, compressible (4.103)

These variations are plotted in Fig. 4.51. Here the ratio of compressible to incom-
pressible skin friction coefficients at the same Reynolds number is plotted versus

1.0

0.8 Laminar

0.6 -

e Turbulent
(Cj;()inc
04
0.2
| | | | | |

0 1 2 3 4 5 6

Figure 4.51 Approximate theoretical results for the
compressibility effect on laminar and turbulent flat-plate
skin friction coefficients.
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free-stream Mach number for both laminar and turbulent flows. Note the follow-
ing trends, shown in Fig. 4.51:

1. For a constant Reynolds number, the effect of increasing M., is to decrease c, .

2. The decrease in c;, is much more pronounced for turbulent flow than for
laminar flow.

A three-view of the Lockheed F-104A Starfighter is shown in Fig. 4.52. This was the first
fighter aircraft designed for sustained Mach 2 flight. The airfoil section of the wing is
very thin, with an extremely sharp leading edge. Assume that the wing is an infinitely thin
flat plate. Consider the F-104 flying at Mach 2 at a standard altitude of 35,000 ft. Assume
that the boundary layer over the wing is turbulent. Estimate the shear stress at a point 2 ft
downstream of the leading edge.

H Solution

At 35,000 ft, from App. B, p.. = 7.382 x 10~ slug/ft* and T., = 394.08°R. To calculate
the Reynolds number, we need both V., and the viscosity coefficient ... The free-stream
velocity is obtained from the speed of sound as follows:

JYRT., = J1.4(1716)(394.08) = 973 ft/s
a.M., = 973(2) = 1946 ft/s

[£5

Vo

We obtain .. from Fig. 4.41, which shows the variation of ¢ with 7. Note that the ambi-
ent temperature in kelvins is obtained from 394.08/1.8 =219 K. Extrapolating the linear
curve in Fig. 4.41 to a temperature of 219 K, we find that g, = 1.35 x 107 kg/(m)(s).
Converting to English engineering units, we note that as given in Sec. 4.15 at standard
sea level, i =1.7894 x 107 kg/(m)(s) = 3.7373 x 1077 slug/(ft)(s). The ratio of these two
values gives us the conversion factor; so at 7= 219 K =394.08°R,

3.7373 x 1077 slug/(ft)(s)
1.7894 x 107" kg/(m)(s)
=2.82x 107 slug/(ft)(s)

1 =11.35x10" kg/(m)(s)]

Figure 4.52 Three-view of the Lockheed F-104 supersonic fighter.
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_ PVox _ (7.382X 107)(1946)(2)

Hence Re -
Hoo 2.82x10”

=1.02x10’

x

From Eq. (4.100), the incompressible skin friction coefficient is

0.0592 _ 0.0592

€ Ve = = =0.00235
) Re’?  1.02x10’

From Fig. 4.51, for a turbulent boundary layer at M., = 2,

S =074
(Cfx)inc

Hence, the value of ¢ 4 at Mach 2 is
c;, =0.74(0.00235) = 0.00174

The dynamic pressure is

G = 1P V2 = 1(7.382x107)(1946%) = 1398 Ib/ft’

Thus T, = goc, = 1398(0.00174) = [2.43 Ib/ft’

ro]—
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4.19 TRANSITION

In Sec. 4.16 we discussed the flow over a flat plate as if it were all laminar.
Similarly, in Sec. 4.17 we assumed all-turbulent flow. In reality, the flow always
starts out from the leading edge as laminar. Then, at some point downstream
of the leading edge, the laminar boundary layer becomes unstable and small
“bursts” of turbulent flow begin to grow in the flow. Finally, over a certain region
called the transition region, the boundary layer becomes completely turbulent.
For analysis we usually draw the picture shown in Fig. 4.53, where a laminar
boundary starts out from the leading edge of a flat plate and grows parabolically
downstream. Then, at the transition point, it becomes a turbulent boundary layer
growing at a faster rate, on the order of x** downstream. The value of x where

Transition
—_— Turbulent
Laminar

Figure 4.53 Transition from laminar to turbulent flow. The boundary
layer thickness is exaggerated for clarity.
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transition is said to take place is the critical value x,,. In turn, x,, allows the defini-
tion of a critical Reynolds number for transition as

—_ pwvwxcr
Re, = T (4.104)

Volumes of literature have been written about the phenomenon of transi-
tion from laminar to turbulent flow. Obviously, because 7, is different for the
two flows, knowledge of where on the surface the transition occurs is vital to
anaccurate prediction of skin friction drag. The location of the transition point
(in reality, a finite region) depends on many quantities, such as the Reynolds
number, Mach number, heat transfer to or from the surface, turbulence in the
free stream, surface roughness, and pressure gradient. A comprehensive dis-
cussion of transition is beyond the scope of this book. However, if the critical
Reynolds number is given to you (usually from experiments for a given type of
flow), then the location of transition x., can be obtained directly from the defini-
tion, Eq. (4.104).

For example, assume that you have an airfoil of given surface roughness
in a flow at a free-stream velocity of 150 m/s and you wish to predict how far
from the leading edge the transition will take place. After searching through the
literature for low-speed flows over such surfaces, you may find that the critical
Reynolds number determined from experience is approximately Re, =5x10’.
Applying this “experience” to your problem, using Eq. (4.104), and assuming
that the thermodynamic conditions of the airflow correspond to standard sea
level, you find

_ HeRe,, [1.789 % 107" kg/(m)(s)1(5 x 10%)

=0.047m
PooVeo (1.225kg/m*)(150m/s)

X

cr

Note that the region of laminar flow in this example is small—only 4.7 cm
between the leading edge and the transition point. If you double the free-stream
velocity to 300 m/s, the transition point is still governed by the critical Reynolds
number Re, = 5x 10" Thus

(1789 x 107)(5x 10°)
1.225(300)

=0.0235m

cr

Hence, when the velocity is doubled, the transition point moves forward one-half
the distance to the leading edge.

In summary, once you know the critical Reynolds number, you can find x,,
from Eq. (4.104). However, an accurate value of Re, applicable to your prob-
lem must come from somewhere—experiment, free flight, or some semiempiri-
cal theory—and this may be difficult to obtain. This situation provides a little
insight into why basic studies of transition and turbulence are needed to advance
our understanding of such flows and to allow us to apply more valid reasoning to
the prediction of transition in practical problems.
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The wingspan of the Wright Flyer I biplane is 40 ft 4 in, and the planform area of each
wing is 255 ft* (see Figs. 1.1 and 1.2). Assume that the wing is rectangular (obviously not
quite the case, but not bad), as shown in Fig. 4.54. If the Flyer is moving with a velocity
of 30 mi/h at standard sea-level conditions, calculate the skin friction drag on the wings.
Assume that the transition Reynolds number is 6.5 X 10°. The areas of laminar and turbu-
lent flow are illustrated by areas A and B, respectively, in Fig. 4.54.

H Solution

The general procedure is this:

a. Calculate D, for the combined area A + B, assuming that the flow is completely turbulent.

b. Obtain the turbulent D; for area B only, by calculating the turbulent D; for area A and sub-

tracting this from the result of part (a).

c. Calculate the laminar D, for area A.

d. Add the results from parts (b) and (c) to obtain the total drag on the complete surface A + B.
First obtain some useful numbers in consistent units: b = 40 ft 4 in = 40.33 ft. Let

S = planform area = A + B = 255 ft>. Hence, ¢ = S/b = 255/40.33 = 6.32 ft. At standard

sea level, p.. = 0.002377 slug/ft* and p., = 3.7373 x 1077 slug/(ft)(s). Also, V., = 30 mi/h =

30(88/60) = 44 ft/s. Thus

_ pVe _ 0.002377(44)(6.32)
oo 3.7373x 10’

=1.769x10°

Re

c

This is the Reynolds number at the trailing edge. To find x,,,

Rexu = —pmvocx”
Moo
Re, U
xCl’ = e/\cr u
PooVeo

_(6.5x 10°)(3.7373x107)
0.002377(44)

= 2.32ft

Voo

[
o

Figure 4.54 Planform view of surface experiencing transition from
laminar to turbulent flow.



250

CHAPTER 4 Basic Aerodynamics

We are now ready to calculate the drag. Assume that the wings of the Wright Flyer I are
thin enough that the flat-plate formulas apply.
a. To calculate turbulent drag over the complete surface S = A + B, use Eq. (4.101):

_0.074 _ 0.074
Rey’  (1.769x10%)"?
G = Lp. V.2 = 1(0.002377)(44%) = 2.30 Ib/ft?

(D), = g..SC; = 2.30(255)(0.00417) = 2.446 Ib

=0.00417

f

b. For area A only, assuming turbulent flow,
0.074 0.074
Cf = 02 50.2
Re, (6.5x10°)™
(Df)a = G.AC, = 2.30(2.32 x 40.33)(0.00509) = 1.095 1b

= 0.00509

Hence, the turbulent drag on area B only is

(Dp)p = (D), — (Dy), = 2.446 —1.095 =1.3511b

c. Considering the drag on area A, which is in reality a laminar drag, we obtain
from Eq. (4.98)

c 1328 1328
T Re®”  (6.5x10°)"

Xe

(D)), = q.AC, = 2.30(2.32 X 40.33)(0.00165) = 0.354 Ib

=0.00165

d. The total drag D, on the surface is
D; = (laminar drag on A) + (turbulent drag on B)

=0.3541b+1.3511b =1.7051b

This is the drag on one surface. Each wing has a top and bottom surface, and there are two
wings. Hence, the total skin friction drag on the complete biplane wing configuration is

D, = 4(1.705) =

4.20 FLOW SEPARATION

We have seen that the presence of friction in the flow causes a shear stress at
the surface of a body, which in turn contributes to the aerodynamic drag of the
body: skin friction drag. However, friction also causes another phenomenon,
called flow separation, which in turn creates another source of aerodynamic
drag, called pressure drag due to separation. The real flow field about a sphere
sketched in Fig. 4.37 is dominated by the separated flow on the rearward surface.



4.20 Flow Separation

Consequently, the pressure on the rearward surface is less than the pressure on
the forward surface, and this imbalance of pressure forces causes a drag—hence
the term pressure drag due to separation. In comparison, the skin friction drag
on the sphere is very small.

Another example of where flow separation is important is the flow over an
airfoil. Consider an airfoil at a low angle of attack (low angle of incidence) to the
flow, as sketched in Fig. 4.55. The streamlines move smoothly over the airfoil.
The pressure distribution over the top surface is also shown in Fig. 4.55. Note
that the pressure at the leading edge is high; the leading edge is a stagnation re-
gion, and the pressure is essentially stagnation pressure. This is the highest pres-
sure anywhere on the airfoil. As the flow expands around the top surface of the
airfoil, the surface pressure decreases dramatically, dipping to a minimum pres-
sure, which is below the free-stream static pressure p... Then, as the flow moves
farther downstream, the pressure gradually increases, reaching a value slightly
above free-stream pressure at the trailing edge. This region of increasing pres-
sure is called a region of adverse pressure gradient, defined as a region where

/—wod flow
5 /ED\

pm
________4..___________‘—-_-_________.—-—'—'_'_-__
-
NASA LS(1)-0417 airfoil
Angle of attack = 0°
P~ P
| | | ! /
8 02 04 06 087 10 x/c
Here dp/dx is (+); this
is an adverse pressure gradient.
but it is moderate.
10 =

Figure 4.55 Pressure distribution over the top surface for attached flow over
an airfoil. Theoretical data for a modern NASA low-speed airfoil, from NASA
Conference Publication 2046, Advanced Technology Airfoil Research, vol. 11,
March 1978, p. 11.

(Source: After McGhee, Beasley, and Whitcomb.)
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dp/dx is positive. This region is so identified in Fig. 4.55. The adverse pressure
gradient is moderate; that is, dp/dx is small, and for all practical purposes the
flow remains attached to the airfoil surface, as sketched in Fig. 4.55. The drag on
this airfoil is therefore mainly skin friction drag D.

Now consider the same airfoil at a very high angle of attack, as shown
in Fig. 4.56. First assume that we had some magic fluid that would remain

__,,,,/“”"‘“%3___,_

\_) Separated flow

NASA LS(1)-0417 airfoil
Angle of attack = 18.4°

P—Pw 1.0
1 1) V 2
20 02 04 06 08 1.0
0 I | | | 27 |
-~ x/c
-~
>
1k ”~
Ve
7
\
2k 7’ Pressure distribution
/ with separation
/
3 !
/
il
51 "\ Pressure distribution if there
| were no separation; dp/dx
Il is (+) and large.
f‘l — *
|
LI
o
I
sH
N

Figure 4.56 Pressure distribution over the top surface for separated
flow over an airfoil. Theoretical data for a modern NASA low-speed
airfoil, from NASA Conference Publication 2045, Part 1, Advanced
Technology Airfoil Research, vol. 1, March 1978, p. 380.

(Source: After Zumwalt and Nack.)
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attached to the surface—purely an artificial situation. If this were the case, then
the pressure distribution on the top surface would follow the dashed line in
Fig. 4.56. The pressure would drop precipitously downstream of the leading edge
to a value far below the free-stream static pressure p... Farther downstream the
pressure would rapidly recover to a value above p.,. However, in this recovery,
the adverse pressure gradient would no longer be moderate, as was the case in
Fig. 4.55. Instead, in Fig. 4.56 the adverse pressure gradient would be severe; that
is, dp/dx would be large. In such cases the real flow field tends to separate from
the surface. Therefore, in Fig. 4.56 the real flow field is sketched with a large
region of separated flow over the top surface of the airfoil. In this real separated
flow, the actual surface pressure distribution is given by the solid curve. In com-
parison to the dashed curve, note that the actual pressure distribution does not
dip to as low a pressure minimum and that the pressure near the trailing edge
does not recover to a value above p... This has two major consequences, as can
be seen in Fig. 4.57. Here the airfoil at a large angle of attack (thus with flow
separation) is shown with the real surface pressure distribution, symbolized by
the solid arrows. Pressure always acts normal to a surface, so the arrows are all
perpendicular to the local surface. The length of the arrow denotes the magnitude
of the pressure. A solid curve is drawn through the base of the arrows to form an
“envelope” to make the pressure distribution easier to visualize. However, if the

1 L:\!tncm‘d flow
|

|

| Attached flow — — — —
|

L separated flow Separated flow

/ Dsc]marud

Note: The length of the arrows denoting
pressure is proportional to p — p_.,
where p is an arbitrary reference
pressure slightly less than the minimum
pressure on the airfoil.

Figure 4.57 Qualitative comparison of pressure distribution, lift, and drag for attached and
separated flows. Note that for separated flow, the lift decreases and the drag increases.
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flow were not separated (i.e., if the flow were attached), then the pressure dis-
tribution would be that shown by the dashed arrows (and the dashed envelope).
The solid and dashed arrows in Fig. 4.57 qualitatively correspond to the solid and
dashed pressure distribution curves, respectively, in Fig. 4.56.

The solid and dashed arrows in Fig. 4.57 should be looked at carefully. They
explain the two major consequences of separated flow over the airfoil. The first
consequence is a loss of lift. The aerodynamic lift (the vertical force shown in
Fig. 4.57) is derived from the net component of a pressure distribution in the
vertical direction. High lift is obtained when the pressure on the bottom surface is
large and the pressure on the top surface is small. Separation does not affect the
bottom surface pressure distribution. However, comparing the solid and dashed
arrows on the fop surface just downstream of the leading edge, we find that the
solid arrows indicate a higher pressure when the flow is separated. This higher
pressure is pushing down, hence reducing the lift. This reduction of lift is also
compounded by the geometric effect that the portion of the top surface of the air-
foil near the leading edge is approximately horizontal in Fig. 4.57. When the flow
is separated, causing a higher pressure on this part of the airfoil surface, the direc-
tion in which the pressure is acting is closely aligned to the vertical, and hence
almost the full effect of the increased pressure is felt by the lift. The combined
effect of the increased pressure on the top surface near the leading edge, and the
fact that this portion of the surface is approximately horizontal, leads to the rather
dramatic loss of lift that occurs when the flow separates. Note in Fig. 4.57 that the
lift for separated flow (the solid vertical arrow) is smaller than the lift that would
exist if the flow were attached (the dashed vertical arrow).

Now let us concentrate on that portion of the top surface near the trailing edge.
On this portion of the airfoil surface, the pressure for the separated flow is now
smaller than the pressure that would exist if the flow were attached. Moreover, the
top surface near the trailing edge is geometrically inclined to the horizontal and, in
fact, somewhat faces in the horizontal direction. Recall that drag is in the horizontal
direction in Fig. 4.57. Because of the inclination of the top surface near the trailing
edge, the pressure exerted on this portion of the surface has a strong component in
the horizontal direction. This component acts toward the left, tending to counter the
horizontal component of force due to the high pressure acting on the nose of the
airfoil pushing toward the right. The net pressure drag on the airfoil is the differ-
ence between the force exerted on the front pushing toward the right and the force
exerted on the back pushing toward the left. When the flow is separated, the pres-
sure at the back is lower than it would be if the flow were attached. Hence, for the
separated flow, there is less force on the back pushing toward the left, and the net
drag acting toward the right is therefore increased. Note in Fig. 4.57 that the drag
for separated flow (the solid horizontal arrow) is larger than the drag that would
exist if the flow were attached (the dashed horizontal arrow).

Therefore, two major consequences of the flow separating over an airfoil are

1. A drastic loss of lift (stalling).
2. A major increase in drag, caused by pressure drag due to separation.



4.21 Summary of Viscous Effects on Drag

When the wing of an airplane is pitched to a high angle of attack, the wing can
stall; that is, there can be a sudden loss of lift. Our previous discussion gives the
physical reasons for this stalling phenomenon. Additional ramifications of stall-
ing are discussed in Ch. 5.

Before ending this discussion of separated flow, we ask: Why does a flow
separate from a surface? The answer is combined in the concept of an adverse
pressure gradient (dp/dx is positive) and the velocity profile through the bound-
ary layer, as shown in Fig. 4.44. If dp/dx is positive, then the fluid elements
moving along a streamline have to work their way “uphill” against an increas-
ing pressure. Consequently, the fluid elements will slow down under the influ-
ence of an adverse pressure gradient. For the fluid elements moving outside the
boundary layer, where the velocity (and hence kinetic energy) is high, this is
not much of a problem. The fluid element keeps moving downstream. However,
consider a fluid element deep inside the boundary layer. Looking at Fig. 4.44,
we see that its velocity is small. It has been retarded by friction forces. The fluid
element still encounters the same adverse pressure gradient, but its velocity is
too low to negotiate the increasing pressure. As a result, the element comes to
a stop somewhere downstream and then reverses its direction. Such reversed
flow causes the flow field in general to separate from the surface, as shown in
Fig. 4.56. This is physically how separated flow develops.

Reflecting once again on Fig. 4.44, we note that turbulent boundary layers
have fuller velocity profiles. At a given distance from the surface (a given value
of y), the velocity of a fluid element in a turbulent boundary is higher than that
in a laminar boundary layer. Hence, in turbulent boundary layers there is more
flow kinetic energy nearer the surface, and the flow is less inclined to separate.
This leads to a fundamental fact: Laminar boundary layers separate more easily
than turbulent boundary layers. Therefore, to help prevent flow field separation,
we want a turbulent boundary layer.

4.21 SUMMARY OF VISCOUS EFFECTS ON DRAG

We have seen that the presence of friction in a flow produces two sources of drag:

1. Skin friction drag D, due to shear stress at the wall.
2. Pressure drag due to flow separation D,, sometimes identified as form drag.

The total drag caused by viscous effects is then

D = D, + D,
Total drag Drag due Drag due to (4105)
due to viscous to skin separation
effects friction (pressure drag)

Equation (4.105) contains one of the classic compromises of aerodynamics.
In previous sections we pointed out that skin friction drag is reduced by main-
taining a laminar boundary layer over a surface. However, we also pointed out
at the end of Sec. 4.20 that turbulent boundary layers inhibit flow separation;
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hence pressure drag due to separation is reduced by establishing a turbulent
boundary layer on the surface. Therefore, in Eq. (4.105) we have the following
compromise:

D = D, + D,
Less for laminar, More for laminar,
more for turbulent less for turbulent

Consequently, as discussed at the end of Sec. 4.15, it cannot be said in general
that either laminar or turbulent flow is preferable. Any preference depends on
the specific application. On the one hand, for a blunt body such as the sphere in
Fig. 4.37, the drag is mainly pressure drag due to separation; turbulent boundary
layers reduce the drag on spheres and are therefore preferable. (We discuss this
again in Ch. 5.) On the other hand, for a slender body such as a sharp, slender
cone or a thin airfoil at small angles of attack to the flow, the drag is mainly skin
friction drag; laminar boundary layers are preferable in this case. For in-between
cases, the ingenuity of the designer and practical experience help to determine
what compromises are best.

As a final note to this section, the total drag D given by Eq. (4.105) is
called profile drag because both skin friction and pressure drag due to separa-
tion are ramifications of the shape and size of the body—that is, the “profile”
of the body. The profile drag D is the total drag on an aerodynamic shape due
to viscous effects. However, it is not in general the total aerodynamic drag on
the body. There is one more source of drag, induced drag, which is discussed
in Ch 5.

Consider the NASA LS (1)-0417 airfoil, shown in Fig. 4.55, mounted in the test sec-
tion of a wind tunnel. The length of the model in the flow direction (the chord length
as defined in Sec. 5.2) is 0.6 m, and its width across the flow (wingspan as defined in
Sec. 5.3) is 1.0 m. The tips of the model are flush with the vertical sidewalls of the wind
tunnel; in this fashion the induced drag (discussed in Sec. 5.13) is zero, and the total drag
on the airfoil model is the profile drag, D, defined by Eq. (4.105). When the airflow in the
test section of the wind tunnel is 97 m/s at standard sea-level conditions, the profile drag
on the airfoil at zero degress angle of attack is 34.7 N. (a) For these conditions, calculate
the drag on the airfoil due to skin friction D, Assume that D, is the same as the turbulent
skin friction drag on a flat plate of equal length and width. (b) Calculate the pressure drag
due to flow separation, D,, on the airfoil. (¢) Compare and comment on the results.

H Solution

a. The skin friction drag depends on the Reynolds number based on the length of the air-
foil in the flow direction, L, which is 0.6 m. The airstream in the test section of the wind
tunnel is at a velocity of 97 m/s at standard sea-level conditions. Hence

_ pVul _ (1.23)O0.6) _

= =4x10°
Hoo (1.7894 x107%)

Re,;
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The turbulent flat-plate total skin friction drag coefficient is given by Eq. (4.101) as

_0.074 _ 0.074 —3.539%10°

~ Re??  (4x10%%?

f

The total skin friction drag on one side of the plate is D;= g oo § C;, where the surface
area of one side of the plate is its length times its width: § = (0.6)(1.0) = 0.6 m2 Thus, on
one side of the plate,

D, = q.5C; = %pmvjscf = %(1 23)(97)%(0.6)(3.539x107°) =12.29 N

Counting both sides of the plate, the total skin friction drag is

D, =2(12.29) =

b.  The pressure drag due to flow separation is obtained simply from Eq. (4.105):

D,=D-D;=347-24.6=|10.1N

c¢. The ratio of pressure drag to total profile drag on the LS(1) —0417 airfoil for the
given conditions is 10.1/34.7 = 0.29; that is, the pressure drag is 29 percent of the total
profile drag. This is reasonable for a rather thick airfoil (17 percent thick) with the cusped
trailing edge on the bottom surface. For a thinner, more conventionally shaped airfoil,
pressure drag constitutes a smaller percentage—typically 15 percent of the profile drag at
low angles of attack.

4.22 HISTORICAL NOTE: BERNOULLI AND EULER

Equation (4.9) is one of the oldest and most powerful equations in fluid dynam-
ics. It is credited to Daniel Bernoulli, who lived during the 18th century; little
did Bernoulli know that his concept would find widespread application in the
aeronautics of the 20th century. Who was Bernoulli, and how did Bernoulli’s
equation come about? Let us briefly look into these questions; the answers will
lead us to a rather unexpected conclusion.

Daniel Bernoulli (1700-1782) was born in Groningen, the Netherlands, on
January 29, 1700. He was a member of a remarkable family. His father, Johann
Bernoulli, was a noted mathematician who made contributions to differential and
integral calculus and who later became a doctor of medicine. Jakob Bernoulli, who
was Johann’s brother (Daniel’s uncle), was an even more accomplished mathemati-
cian; he made major contributions to calculus, and he coined the term integral. Sons
of both Jakob and Johann, including Daniel, went on to become noted mathema-
ticians and physicists. The entire family was Swiss and made its home in Basel,
Switzerland, where they held various professorships at the University of Basel.
Daniel Bernoulli was born away from Basel only because his father spent 10 years
as professor of mathematics in the Netherlands. With this type of pedigree, Daniel
could hardly avoid making contributions to mathematics and science himself.
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And indeed he did make contributions. For example, he had insight into the ki-
netic theory of gases; he theorized that a gas was a collection of individual particles
moving about in an agitated fashion, and he correctly associated the increased tem-
perature of a gas with the increased energy of the particles. These ideas, originally
published in 1738, were to lead a century later to a mature understanding of the nature
of gases and heat and helped lay the foundation for the elegant kinetic theory of gases.

Daniel’s thoughts on the kinetic motion of gases were published in his book
Hydrodynamica (1738). However, this book was to etch his name more deeply
in association with fluid mechanics than with kinetic theory. The book was
started in 1729, when Daniel was a professor of mathematics at Leningrad (then
St. Petersburg) in Russia. By this time he was already well recognized; he had
won 10 prizes offered by the Royal Academy of Sciences in Paris for his solution
of various mathematical problems. In his Hydrodynamica (which was written en-
tirely in Latin), Bernoulli ranged over such topics as jet propulsion, manometers,
and flow in pipes. He also attempted to obtain a relationship between pressure and
velocity, but his derivation was obscure. In fact, even though Bernoulli’s equa-
tion, Eq. (4.9), is usually ascribed to Daniel via his Hydrodynamica, the precise
equation is not to be found in the book! The picture is further complicated by his
father, Johann, who published a book in 1743 titled Hydraulica. It is clear from
this latter book that the father understood Bernoulli’s theorem better than the son
did; Daniel thought of pressure strictly in terms of the height of a manometer col-
umn, whereas Johann had the more fundamental understanding that pressure was
a force acting on the fluid. However, neither of the Bernoullis understood that
pressure is a point property. That was to be left to Leonhard Euler.

Leonhard Euler (1707-1783) was also a Swiss mathematician. He was born
in Basel, Switzerland, on April 15, 1707, seven years after the birth of Daniel
Bernoulli. Euler went on to become one of the mathematical giants of history, but
his contributions to fluid dynamics are of interest here. Euler was a close friend
of the Bernoullis; he was a student of Johann Bernoulli at the University of Basel.
Later Euler followed Daniel to St. Petersburg, where he became a professor of
mathematics. Here Euler was influenced by the work of the Bernoullis in hydro-
dynamics, but was more influenced by Johann than by Daniel. Euler originated
the concept of pressure acting at a point in a gas. This quickly led to his differ-
ential equation for a fluid accelerated by gradients in pressure, the same equa-
tion we derived as Eq. (4.8). In turn, Euler integrated the differential equation
to obtain, for the first time in history, Bernoulli’s equation, just as we obtained
Eq. (4.9). Hence, we see that Bernoulli’s equation, Eq. (4.9), is really a historical
misnomer. Credit for Bernoulli’s equation is legitimately shared by Euler.

4.23 HISTORICAL NOTE: THE PITOT TUBE

The use of a Pitot tube to measure airspeed is described in Sec. 4.11; indeed, the
Pitot tube today is so commonly used in aerodynamic laboratories and on aircraft
that it is almost taken for granted. However, this simple little device has a rather
interesting and somewhat obscure history.
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The Pitot tube is named after its inventor, Henri Pitot (1695—-1771). Born
in Aramon, France, in 1695, Pitot began his career as an astronomer and math-
ematician. He was accomplished enough to be elected to the Royal Academy of
Sciences, Paris, in 1724. About this time, Pitot became interested in hydraulics
and, in particular, in the flow of water in rivers and canals. However, he was not
satisfied with the existing technique of measuring the flow velocity, which was to
observe the speed of a floating object on the surface of the water. So, he devised
an instrument consisting of two tubes. One was simply a straight tube open at one
end, which was inserted vertically into the water (to measure static pressure), and
the other was a tube with one end bent at right angles, with the open end facing
directly into the flow (to measure total pressure). In 1732, between two piers of
a bridge over the Seine River in Paris, he used this instrument to measure the
flow velocity of the river. This invention and the first use of the Pitot tube were
announced by Pitot to the Academy on November 12, 1732. He also presented
some data of major importance on the variation of water flow velocity with depth.
Contemporary theory, based on experience of some Italian engineers, held that
the flow velocity at a given depth was proportional to the mass above it; hence
the velocity was thought to increase with depth. Pitot reported the stunning (and
correct) results, measured with his instrument, that in reality the flow velocity
decreased as the depth increased. So the Pitot tube was introduced with style.

Interestingly enough, Pitot’s invention soon fell into disfavor with the en-
gineering community. A number of investigators attempted to use just the Pitot
tube itself, without a local static pressure measurement. Others, using the device
under uncontrolled conditions, produced spurious results. Various shapes and
forms other than a simple tube were sometimes used for the mouth of the instru-
ment. Moreover, there was no agreed-upon rational theory of the Pitot tube. Note
that Pitot developed his instrument in 1732, six years before Daniel Bernoulli’s
Hydrodynamica and well before Euler had developed the Bernoullis’ concepts
into Eq. (4.9), as discussed in Sec. 4.22. Hence, Pitot used intuition, not theory, to
establish that the pressure difference measured by his instrument was an indication
of the square of the local flow velocity. Of course, as described in Sec. 4.11, we
now clearly understand that a Pitot-static device measures the difference between
total and static pressures and that for incompressible flow, this difference is related
to the velocity squared through Bernoulli’s equation; that is, from Eq. (4.62),

po—p=4pV’

However, for more than 150 years after Pitot’s introduction of the instrument,
various engineers attempted to interpret readings in terms of

Py —p=%KpV?

where K was an empirical constant, generally much different from unity.
Controversy was still raging as late as 1913, when John Airey, a professor of
mechanical engineering from the University of Michigan, finally performed a
series of well-controlled experiments in a water tow tank, using Pitot probes of
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six different shapes. These shapes are shown in Fig. 4.58, which is taken from
Airey’s paper in the April 17, 1913, issue of the Engineering News, titled “Notes
on the Pitot Tube.” In this paper Airey states that all his measurements indicate
that K = 1.0 within 1 percent accuracy, independent of the shape of the tube.
Moreover, he presents a rational theory based on Bernoulli’s equation. Further
comments on these results are made in a paper titled “Origin and Theory of the
Pitot Tube” by A. E. Guy, the chief engineer of a centrifugal pump company in
Pittsburgh, in a June 5, 1913, issue of the Engineering News. This paper also
helped to establish the Pitot tube on firmer technical grounds.

It is interesting to note that neither of these papers in 1913 mentioned what
was to become the most prevalent use of the Pitot tube: the measurement of
airspeed for airplanes and wind tunnels. The first practical airspeed indica-
tor, a Venturi tube, was used on an aircraft by the French Captain A. Eteve in
January 1911, more than seven years after the first powered flight. Later in 1911,
British engineers at the Royal Aircraft Establishment (RAE) at Farnborough em-
ployed a Pitot tube on an airplane for the first time. This was eventually to evolve
into the primary instrument for flight speed measurement.

Water surface

12 in—] r«—llin-—--|_) I‘_mnﬁi

() (b} (e}

Water surface
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Figure 4.58 Six forms of Pitot tubes tested by John Airey.
(Source: From Engineering News, vol. 69, no. 16, p. 783, April 1913.)
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There was still controversy over Pitot tubes, as well as the need for reli-
able airspeed measurements, in 1915, when the brand-new National Advisory
Committee for Aeronautics (NACA) stated in its First Annual Report that “an
important problem to aviation in general is the devising of accurate, reliable
and durable air speed meters. . . . The Bureau of Standards is now engaged in
investigation of such meters, and attention is invited to the report of Professor
Herschel and Dr. Buckingham of the bureau on Pitot tubes.” The aforementioned
report was NACA Report No. 2, Part 1, “The Pitot Tube and other Anemometers
for Aeroplanes,” by W. H. Herschel, and Part 2, “The Theory of the Pitot and
Venturi Tubes,” by E. Buckingham. Part 2 is of particular interest. In clear terms,
it gives a version of the theory we developed in Sec. 4.11 for the Pitot tube;
moreover, it develops for the first time the theory for compressible subsonic
flow—quite unusual for 1915! Buckingham showed that to obtain 0.5 percent
accuracy with the incompressible relations, V.. should not exceed 148 mi/h =
66.1 m/s. However, he went on to state that “since the accuracy of better than
1.0 percent can hardly be demanded of an airplane speedometer, it is evident that
for all ordinary speeds of flight, no correction for compressibility is needed. . . .”
This was certainly an appropriate comment for the “ordinary” airplanes of that
day; indeed, it was accurate for most aircraft until the 1930s.

In retrospect, we see that the Pitot tube was invented almost 250 years ago
but that its use was controversial and obscure until the second decade of pow-
ered flight. Then, between 1911 and 1915, one of those “explosions” in technical
advancement occurred. Pitot tubes found a major home on airplanes, and the
appropriate theory for their correct use was finally established. Since then Pitot
tubes have become commonplace: The Pitot tube is usually the first aecrodynamic
instrument introduced to students of aerospace engineering in laboratory studies.

4.24 HISTORICAL NOTE: THE FIRST
WIND TUNNELS

Aerospace engineering in general, and aerodynamics in particular, is an empiri-
cally based discipline. Discovery and development by experimental means have
been its lifeblood, extending all the way back to George Cayley (see Ch. 1).
In turn, the workhorse for such experiments has been predominantly the wind
tunnel—so much so that today most aerospace industrial, government, and
university laboratories have a complete spectrum of wind tunnels ranging from
low subsonic to hypersonic speeds.

It is interesting to reach back briefly into history and look at the evolution
of wind tunnels. Amazingly enough, this history goes back more than 400 years.
The cardinal principle of wind tunnel testing was stated by Leonardo da Vinci
near the beginning of the 16th century as follows:

For since the action of the medium upon the body is the same whether the body
moves in a quiescent medium, or whether the particles of the medium impinge with
the same velocity upon the quiescent body; let us consider the body as if it were qui-
escent and see with what force it would be impelled by the moving medium.
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It is almost self-evident today that the lift and drag of an aerodynamic body
are the same whether it moves through stagnant air at 100 mi/h or whether the air
moves over the stationary body at 100 mi/h. This concept is the very foundation
of wind tunnel testing.

The first actual wind tunnel in history was designed and built more than
100 years ago by Francis Wenham in Greenwich, England, in 1871. We met
Wenham once before, in Sec. 1.4, where we noted his activity in the Aeronautical
Society of Great Britain. Wenham’s tunnel was nothing more than a 10-ft-long
wooden box with a square cross section, 18 in on a side. A steam-driven fan
at the front end blew air through the duct. There was no contour and hence no
aerodynamic control or enhancement of flow. Plane aerodynamic surfaces were
placed in the airstream at the end of the box, where Wenham measured the lift
and drag on weighing beams linked to the model.

Thirteen years later, Horatio F. Phillips, also an Englishman, built the sec-
ond known wind tunnel in history. Again the flow duct was a box, but Phillips
used steam ejectors (high-speed steam nozzles) downstream of the test section to
suck air through the tunnel. Phillips went on to conduct some pioneering airfoil
testing in his tunnel, which will be mentioned again in Sec. 5.20.

Other wind tunnels were built before the turning point in aviation in 1903.
For example, the first wind tunnel in Russia was due to Nikolai Joukowski at the
University of Moscow in 1891 (it had a 2-in diameter). A larger, 7 in X 10 in tun-
nel was built in Austria in 1893 by Ludwig Mach, son of the famed scientist and
philosopher Ernst Mach, after whom the Mach number is named. The first tun-
nel in the United States was built at the Massachusetts Institute of Technology
in 1896 by Alfred J. Wells, who used the machine to measure the drag on a flat
plate as a check on the whirling-arm measurements of Langley (see Sec. 1.8).
Another tunnel in the United States was built by Dr. A. Heb Zahm at the Catholic
University of America in 1901. In light of these activities, it is obvious that at
the turn of the 20th century, aerodynamic testing in wind tunnels was poised and
ready to burst forth with the same energy that accompanied the development of
the airplane itself.

It is fitting that the same two people responsible for getting the airplane off
the ground should also have been responsible for the first concentrated series
of wind tunnel tests. As noted in Sec. 1.8, the Wright brothers in late 1901 con-
cluded that a large part of the existing aerodynamic data was erroneous. This
led to their construction of a 6-ft-long, 16-in-square wind tunnel powered by a
two-blade fan connected to a gasoline engine. A replica of the Wrights’ wind
tunnel is shown in Fig. 4.59. (Their original wind tunnel no longer exists.) They
designed and built their own balance to measure the ratios of lift to drag. Using
this apparatus, Wilbur and Orville undertook a major program of aeronautical re-
search between September 1901 and August 1902. During this time, they tested
more than 200 different airfoil shapes manufactured out of steel. The results
from these tests constitute the first major impact of wind tunnel testing on the
development of a successful airplane. As we quoted in Sec. 1.8, Orville said
about their results, “Our tables of air pressure which we made in our wind tunnel
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Figure 4.59 A replica of the Wright brothers” wind tunnel.
(Source: U.S. Air Force.)

would enable us to calculate in advance the performance of a machine.” What
a fantastic development! This was a turning point in the history of wind tunnel
testing, and it had as much impact on that discipline as the December 17, 1903,
flight had on the airplane.

The rapid growth in aviation after 1903 was paced by the rapid growth of
wind tunnels, both in numbers and in technology. For example, tunnels were
built at the National Physical Laboratory in London in 1903; in Rome in 1903;
in Moscow in 1905; in Géttingen, Germany (by the famous Dr. Ludwig Prandtl,
originator of the boundary layer concept in fluid dynamics) in 1908; in Paris in
1909 (including two built by Gustave FEiffel, of tower fame); and again at the
National Physical Laboratory in 1910 and 1912.

All these tunnels, quite naturally, were low-speed facilities, but they were pi-
oneering for their time. Then, in 1915, with the creation of NACA (see Sec. 2.8),
the foundation was laid for some major spurts in wind tunnel design. The first
NACA wind tunnel became operational at the Langley Memorial Aeronautical
Laboratory at Hampton, Virginia, in 1920. It had a 5-ft-diameter test section that
accommodated models up to 3.5 ft wide. In 1923, to simulate the higher Reynolds
numbers associated with flight, NACA built the first variable-density wind tun-
nel, a facility that could be pressurized to 20 atm in the flow and therefore obtain
a 20-fold increase in density, and hence Re, in the test section. During the 1930s
and 1940s, subsonic wind tunnels grew larger and larger. In 1931 a NACA wind
tunnel with a 30 ft x 60 ft oval test section went into operation at Langley with a
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129 mi/h maximum flow velocity. This was the first million-dollar tunnel in his-
tory. In 1944 a 40 ft x 80 ft tunnel with a flow velocity of 265 mi/h was initiated
at Ames Aeronautical Laboratory at Moffett Field, California. This is still the
largest wind tunnel in the world today. Figure 4.60 shows the magnitude of such
tunnels: Whole airplanes can be mounted in the test section!

The tunnels just mentioned were low-speed, essentially incompressible-flow
tunnels. They were the cornerstone of aeronautical testing until the 1930s and re-
main an important part of the aerodynamic scene today. However, airplane speeds
were progressively increasing, and new wind tunnels with higher-velocity capa-
bility were needed. Indeed, the first requirement for high-speed subsonic tunnels
was established by propellers: In the 1920s and 1930s the propeller diameters
and rotational speeds were both increasing so as to encounter compressibility
problems at the tips. This problem led NACA to build a 12-in-diameter high-
speed tunnel at Langley in 1927. It could produce a test section flow of 765 mi/h.
In 1936, to keep up with increasing airplane speeds, Langley built a large 8-ft
high-speed wind tunnel providing 500 mi/h. This was increased to 760 mi/h in
1945. An important facility was built at Ames in 1941: a 16-ft tunnel with an air-
speed of 680 mi/h. A photograph of the Ames 16-ft tunnel is shown in Fig. 4.61
just to give a feeling for the massive size of such a facility.

In the early 1940s, the advent of the V-2 rocket as well as the jet engine put
supersonic flight in the minds of aeronautical engineers. Suddenly the require-
ment for supersonic tunnels became a major factor. However, supersonic flows
in the laboratory and in practice date farther back than this. The first supersonic
nozzle was developed by Laval about 1880 for use with steam turbines. This is
why the convergent—divergent nozzles are frequently called Laval nozzles. In
1905 Prandtl built a small Mach 1.5 tunnel at Gottingen to study steam turbine
flows and (of all things) the moving of sawdust around sawmills.

The first practical supersonic wind tunnel for aerodynamic testing was devel-
oped by Dr. A. Busemann at Braunschweig, Germany, in the mid-1930s. Using
the “method of characteristics” technique, which he had developed in 1929,
Busemann designed the first smooth supersonic nozzle contour that produced
shock-free isentropic flow. He had a diffuser with a second throat downstream to
decelerate the flow and to obtain efficient operation of the tunnel. A photograph
of Busemann’s tunnel is shown in Fig. 4.62. All supersonic tunnels today look
essentially the same.

Working from Busemann’s example, the Germans built two major super-
sonic tunnels at their research complex at Peenemiinde during World War II.
These were used for research and development of the V-2 rocket. After the war,
these tunnels were moved almost in total to the U.S. Naval Ordnance Laboratory
(one was later moved to the University of Maryland), where they were used
until the end of the 20th century. However, the first supersonic tunnel built in
the United States was designed by Theodore von Karman and his colleagues
at the California Institute of Technology in 1944 and was built and operated at
the Army Ballistics Research Laboratory at Aberdeen, Maryland, under contract
with Cal Tech. Then the 1950s saw a virtual bumper crop of supersonic wind
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Figure 4.60 A subsonic wind tunnel large enough to test a full-size airplane. The NASA
Langley Research Center 30 ft x 60 ft tunnel.
(Source: NASA.)

tunnels, one of the largest being the 16 ft X 16 ft continuously operated super-
sonic tunnel of the Air Force at the Arnold Engineering Development Center
(AEDC) in Tennessee.

About this time, the development of the intercontinental ballistic missile
(ICBM) was on the horizon, soon to be followed by the space program of the
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Figure 4.61 The Ames 16-ft high-speed subsonic wind tunnel, illustrating the massive size
that goes along with such a wind tunnel complex.
(Source: NASA Ames Research Center.)

Figure 4.62 The first practical supersonic wind tunnel, built by A. Busemann in the
mid-1930s.
(Source: Courtesy of Adolf Busemann.)
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1960s. Flight vehicles were soon to encounter velocities as high as 36,000 ft/s in the
atmosphere—hypersonic velocities. In turn, hypersonic wind tunnels (M > 5) were
suddenly in demand. The first hypersonic wind tunnel was operated by NACA
at Langley in 1947. It had an 11-in-square test section capable of Mach 7. Three
years later, another hypersonic tunnel went into operation at the Naval Ordnance
Laboratory. These tunnels are distinctly different from their supersonic relatives in
that, to obtain hypersonic speeds, the flow has to be expanded so far that the tem-
perature decreases to the point of liquefying the air. To prevent this, all hypersonic
tunnels, both old and new, have to heat the reservoir gas to temperatures far above
room temperature before its expansion through the nozzle. Heat transfer is a prob-
lem for high-speed flight vehicles, and such heating problems feed right down to
the ground-testing facilities for such vehicles.

In summary, modern wind tunnel facilities range across the whole spectrum
of flight velocities, from low subsonic to hypersonic speeds. These facilities are
part of the everyday life of aerospace engineering; this brief historical sketch has
provided some insight into their tradition and development.

4.25 HISTORICAL NOTE: OSBORNE REYNOLDS
AND HIS NUMBER

In Secs. 4.15 to 4.19 we observed that the Reynolds number, defined in Eq. (4.90)
as Re = p.,Vx/ll., was the governing parameter for viscous flow. Boundary layer
thickness, skin friction drag, transition to turbulent flow, and many other charac-
teristics of viscous flow depend explicitly on the Reynolds number. Indeed, we can
readily show that the Reynolds number itself has physical meaning: it is proportional
to the ratio of inertia forces to viscous forces in a fluid flow. Clearly, the Reynolds
number is an extremely important dimensionless parameter in fluid dynamics.
Where did the Reynolds number come from? When was it first introduced, and
under what circumstances? The Reynolds number is named after a man—QOsborne
Reynolds. Who was Reynolds? This section answers these questions.

First let us look at Osborne Reynolds, the man. He was born on October 23,
1842, in Belfast, Ireland. He was raised in an intellectual family atmosphere; his
father had been a fellow of Queens College, Cambridge; a principal of Belfast
Collegiate School; headmaster of Dedham Grammar School in Essex; and finally
rector at Debach-with-Boulge in Suffolk. Anglican clerics were a tradition in the
Reynolds family; in addition to his father, his grandfather and great-grandfather
had been rectors at Debach. Against this background, Osborne Reynolds’s early
education was carried out by his father at Dedham. In his teens, Osborne already
showed an intense interest in the study of mechanics, for which he had a natural
aptitude. At the age of 19 he served a short apprenticeship in mechanical en-
gineering before attending Cambridge University a year later. Reynolds was a
highly successful student at Cambridge, graduating with the highest honors in
mathematics. In 1867 he was elected a fellow of Queens College, Cambridge (an
honor earlier bestowed upon his father). He went on to serve one year as a prac-
ticing civil engineer in the office of John Lawson in London. However, in 1868
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Owens College in Manchester (later to become the University of Manchester) es-
tablished its chair of engineering—the second of its kind in any English university
(the first was the chair of civil engineering established at the University College,
London, in 1865). Reynolds applied for this chair, writing in his application,

From my earliest recollection I have had an irresistible liking for mechanics and the
physical laws on which mechanics as a science are based. In my boyhood I had the
advantage of the constant guidance of my father, also a lover of mechanics and a
man of no mean attainment in mathematics and their application to physics.

Despite his youth and relative lack of experience, Reynolds was appointed to the
chair at Manchester. For the next 37 years he served as a professor at Manchester
until his retirement in 1905.

During those 37 years, Reynolds distinguished himself as one of history’s
leading practitioners of classical mechanics. During his first years at Manchester,
he worked on problems involving electricity, magnetism, and the electromag-
netic properties of solar and cometary phenomena. After 1873 he focused on fluid
mechanics—the area in which he made his lasting contributions. For example, he
(1) developed Reynolds’s analogy in 1874, a relation between heat transfer and
frictional shear stress in a fluid; (2) measured the average specific heat of water
between freezing and boiling, which ranks among the classic determinations of
physical constants; (3) studied water currents and waves in estuaries; (4) devel-
oped turbines and pumps; and (5) studied the propagation of sound waves in flu-
ids. However, his most important work, and the one that gave birth to the concept
of the Reynolds number, was reported in 1883 in a paper titled “An Experimental
Investigation of the Circumstances which Determine whether the Motion of Water
in Parallel Channels Shall Be Direct or Sinuous, and of the Law of Resistance in
Parallel Channels.” Published in Proceedings of the Royal Society, this paper
was the first to demonstrate the transition from laminar to turbulent flow and to
relate this transition to a critical value of a dimensionless parameter—Ilater to
become known as the Reynolds number. Reynolds studied this phenomenon in
water flow through pipes. His experimental apparatus is illustrated in Fig. 4.63,
taken from his original 1883 paper. (Note that before the day of modern photo-
graphic techniques, some technical papers contained rather elegant hand sketches
of experimental apparatus, of which Fig. 4.63 is an example.) Reynolds filled a
large reservoir with water, which fed into a glass pipe through a larger bell-mouth
entrance. As the water flowed through the pipe, Reynolds introduced dye into the
middle of the stream, at the entrance of the bell mouth. What happened to this
thin filament of dye as it flowed through the pipe is illustrated in Fig. 4.64, also
from Reynolds’s original paper. The flow is from right to left. If the flow veloc-
ity was small, the thin dye filament would travel downstream in a smooth, neat,
orderly fashion, with a clear demarcation between the dye and the rest of the
water, as illustrated in Fig. 4.64a. However, if the flow velocity increased beyond
a certain value, the dye filament would suddenly become unstable and would fill
the entire pipe with color, as shown in Fig. 4.64b. Reynolds clearly pointed out
that the smooth dye filament in Fig. 4.64a corresponded to laminar flow in the
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Figure 4.63 Osborne Reynolds’s apparatus for his famous pipe flow
experiments. This figure is from his original paper, referenced in the text.
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Figure 4.64 Development of turbulent flow in pipes, as
observed and sketched by Reynolds. This figure is from his
original paper, referenced in the text.
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pipe, whereas the agitated and totally diffused dye filament in Fig. 4.64b was
due to turbulent flow in the pipe. Furthermore, Reynolds studied the details of
this turbulent flow by visually observing the pipe flow illuminated by a momen-
tary electric spark, much as we would use a strobe light today. He saw that the
turbulent flow consisted of many distinct eddies, as sketched in Fig. 4.64c. The
transition from laminar to turbulent flow occurred when the parameter defined by
p VD/u exceeded a certain critical value, where p was the density of the water,
V was the mean flow velocity, ¢ was the viscosity coefficient, and D was the di-
ameter of the pipe. This dimensionless parameter, first introduced by Reynolds,
later became known as the Reynolds number. Reynolds measured the critical
value of this number, above which turbulent flow occurred, as 2300. This original
work of Reynolds initiated the study of transition from laminar to turbulent flow
as a new field of research in fluid dynamics—a field that is still today one of the
most important and insufficiently understood areas of aerodynamics.

Reynolds was a scholarly man with high standards. Engineering education
was new to English universities at that time, and Reynolds had definite ideas
about its proper form. He felt that all engineering students, no matter what their
specialty, should have a common background based on mathematics, physics,
and, in particular, the fundamentals of classical mechanics. At Manchester he
organized a systematic engineering curriculum covering the basics of civil and
mechanical engineering. Ironically, despite his intense interest in education, as
a lecturer in the classroom Reynolds left something to be desired. His lectures
were hard to follow, and his topics frequently wandered with little or no connec-
tion. He was known to come up with new ideas during a lecture and to spend the
remainder of the lecture working out these ideas on the board, seemingly oblivi-
ous to the students in the classroom. That is, he did not “spoon-feed” his students,
and many of the poorer students did not pass his courses. In contrast, the best
students enjoyed his lectures and found them stimulating. Many of Reynolds’s
successful students went on to become distinguished engineers and scientists, the
most notable being Sir J. J. Thomson, later the Cavendish Professor of Physics
at Cambridge; Thomson is famous for first demonstrating the existence of the
electron in 1897, for which he received the Nobel Prize in 1906.

Inregard to Reynolds’s interesting research approach, his student, colleague,
and friend Professor A. H. Gibson had this to say in his biography of Reynolds,
written for the British Council in 1946:

Reynolds’ approach to a problem was essentially individualistic. He never began by
reading what others thought about the matter, but first thought this out for himself.
The novelty of his approach to some problems made some of his papers difficult to
follow, especially those written during his later years. His more descriptive physical
papers, however, make fascinating reading, and when addressing a popular audi-
ence, his talks were models of clear exposition.

At the turn of the century, Reynolds’s health began to fail, and he subse-
quently had to retire in 1905. The last years of his life were ones of considerably
diminished physical and mental capabilities—a particularly sad state for such
a brilliant and successful scholar. He died at Somerset, England, in 1912. Sir
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Horace Lamb, one of history’s most famous fluid dynamicists and a long-time
colleague of Reynolds, wrote after Reynolds’s death,

The character of Reynolds was, like his writings, strongly individual. He was con-
scious of the value of his work, but was content to leave it to the mature judgement
of the scientific world. For advertisement he had no taste, and undue pretensions on
the part of others only elicited a tolerant smile. To his pupils he was most generous
in the opportunities for valuable work which he put in their way, and in the share
of co-operation. Somewhat reserved in serious or personal matters and occasionally
combative and tenacious in debate, he was in the ordinary relations of life the most
kindly and genial of companions. He had a keen sense of humor and delighted in
startling paradoxes, which he would maintain, half seriously and half playfully, with
astonishing ingenuity and resource. The illness which at length compelled his retire-
ment was felt as a grievous calamity by his pupils, his colleagues and other friends
throughout the country.

The purpose of this section has been to relate the historical beginnings of the
Reynolds number in fluid mechanics. From now on, when you use the Reynolds
number, view it not only as a powerful dimensionless parameter governing vis-
cous flow, but also as a testimonial to its originator—one of the famous fluid
dynamicists of the 19th century.

4.26 HISTORICAL NOTE: PRANDTL
AND THE DEVELOPMENT OF THE
BOUNDARY LAYER CONCEPT

The modern science of aerodynamics has roots as far back as Isaac Newton,
who devoted the entire second book of his Principia (1687) to fluid
dynamics—especially to the formulation of “laws of resistance” (drag). He noted
that drag is a function of fluid density, velocity, and the shape of the body in
motion. However, Newton was unable to formulate the correct equation for drag.
He derived a formula that gave the drag on an inclined object as proportional to
the sine squared of the angle of attack. Later Newton’s sine-squared law was
used to demonstrate the “impossibility of heavier-than-air flight” and hindered
the intellectual advancement of flight in the 19th century. Ironically, the physi-
cal assumptions used by Newton in deriving his sine-squared law approximately
reflect the conditions of hypersonic flight, and the Newtonian law has been used
since 1950 in the design of high-Mach-number vehicles. However, Newton cor-
rectly reasoned the mechanism of shear stress in a fluid. In section 9 of book 2 of
Principia, Newton states the following hypothesis: “The resistance arising from
want of lubricity in the parts of a fluid is . . . proportional to the velocity with
which the parts of the fluid are separated from each other.” This is the first state-
ment in history of the friction law for laminar flow; it is embodied in Eq. (4.89),
which describes a “Newtonian fluid.”

Further attempts to understand fluid dynamic drag were made by the French
mathematician Jean le Rond d’ Alembert, who is noted for developing the cal-
culus of partial differences (leading to the mathematics of partial differential
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equations). In 1768 d’Alembert applied the equations of motion for an incom-
pressible, inviscid (frictionless) flow about a two-dimensional body in a moving
fluid and found that no drag is obtained. He wrote, “I do not see then, I admit,
how one can explain the resistance of fluids by the theory in a satisfactory man-
ner. It seems to me on the contrary that this theory, dealt with and studied with
profound attention gives, at least in most cases, resistance absolutely zero: a
singular paradox which I leave to geometricians to explain.” That this theoreti-
cal result of zero drag is truly a paradox was clearly recognized by d’ Alembert,
who also conducted experimental research on drag and who was among the first
to discover that drag is proportional to the square of the velocity, as derived in
Sec. 5.3 and given in Eq. (5.18).

D’ Alembert’s paradox arose due to the neglect of friction in classical theory.
It was not until a century later that the effect of friction was properly incorpo-
rated in the classical equations of motion by the work of M. Navier (1785-1836)
and Sir George Stokes (1819-1903). The so-called Navier—Stokes equations
stand today as the classical formulation of fluid dynamics. However, in general
they are nonlinear equations and are extremely difficult to solve; indeed, only
with the numerical power of modern high-speed digital computers are “exact”
solutions of the Navier—Stokes equations finally being obtained for general flow
fields. Also in the 19th century, the first experiments on transition from laminar
to turbulent flow were carried out by Osborne Reynolds (1842—-1912), as related
in Sec. 4.25. In his classic paper of 1883 titled “An Experimental Investigation
of the Circumstances which Determine whether the Motion of Water in Parallel
Channels Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel
Channels,” Reynolds observed a filament of colored dye in a pipe flow and noted
that transition from laminar to turbulent flow always corresponded to approx-
imately the same value of a dimensionless number pVD/u, where D was the
diameter of the pipe. This was the origin of the Reynolds number, defined in
Sec. 4.15 and discussed at length in Sec. 4.25.

Therefore, at the beginning of the 20th century, when the Wright brothers
were deeply involved in the development of the first successful airplane, the
development of theoretical fluid dynamics still had not led to practical results for
aerodynamic drag. It was this environment into which Ludwig Prandtl was born
on February 4, 1875, at Freising, in Bavaria, Germany. Prandtl was a genius who
had the talent of cutting through a maze of complex physical phenomena to ex-
tract the most salient points and put them in simple mathematical form. Educated
as a physicist, Prandtl was appointed in 1904 as professor of applied mechanics
at Gottingen University in Germany, a post he occupied until his death in 1953.

In the period from 1902 to 1904, Prandtl made one of the most important
contributions to fluid dynamics. Thinking about the viscous flow over a body,
he reasoned that the flow velocity right at the surface was zero and that if the
Reynolds number was high enough, the influence of friction was limited to a thin
layer (Prandtl first called it a transition layer) near the surface. Therefore, the
analysis of the flow field could be divided into two distinct regions: one close to
the surface, which included friction, and the other farther away, in which friction
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could be neglected. In one of the most important fluid dynamics papers in history,
titled “Uber Flussigkeitsbewegung bei sehr kleiner Reibung,” Prandtl reported
his thoughts to the Third International Mathematical Congress at Heidelberg in
1904. In this paper Prandtl observed,

A very satisfactory explanation of the physical process in the boundary layer
(Grenzschicht) between a fluid and a solid body could be obtained by the hypothesis
of an adhesion of the fluid to the walls, that is, by the hypothesis of a zero relative
velocity between fluid and wall. If the viscosity is very small and the fluid path along
the wall not too long, the fluid velocity ought to resume its normal value at a very
short distance from the wall. In the thin transition layer however, the sharp changes
of velocity, even with small coefficient of friction, produce marked results.

In the same paper, Prandtl’s theory is applied to the prediction of flow separation:

In given cases, in certain points fully determined by external conditions, the fluid
flow ought to separate from the wall. That is, there ought to be a layer of fluid which,
having been set in rotation by the friction on the wall, insinuates itself into the free
fluid, transforming completely the motion of the latter. . . .

Prandtl’s boundary layer hypothesis allows the Navier—Stokes equations
to be reduced to a simpler form; by 1908 Prandtl and one of his students, H.
Blasius, had solved these simpler boundary layer equations for laminar flow
over a flat plate, yielding the equations for boundary layer thickness and skin
friction drag given by Eqgs. (4.91) and (4.93). Finally, after centuries of effort,
the first rational resistance laws describing fluid dynamic drag due to friction
had been obtained.

Prandtl’s work was a stroke of genius, and it revolutionized theoretical aero-
dynamics. However, possibly due to the language barrier, it only slowly diffused
through the worldwide technical community. Serious work on boundary layer
theory did not emerge in England and the United States until the 1920s. By that
time, Prandtl and his students at Gottingen had applied it to various aerodynamic
shapes and were including the effects of turbulence.

Prandtl has been called the father of aerodynamics, and rightly so. His con-
tributions extend far beyond boundary layer theory; for example, he pioneered
the development of wing lift and drag theory, as seen in Ch. 5. Moreover, he was
interested in more fields than just fluid dynamics—he made several important
contributions to structural mechanics as well.

As a note on Prandtl’s personal life, he had the singleness of purpose
that seems to drive many giants of humanity. However, his almost complete
preoccupation with his work led to a somewhat naive outlook on life. Theodore
von Karman, one of Prandtl’s most illustrious students, relates that Prandtl would
rather find fancy in the examination of children’s toys than participate in social
gatherings. When Prandtl was almost 40, he suddenly decided that it was time to
get married, and he wrote to a friend for the hand of one of his two daughters—
Prandtl did not care which one! During the 1930s and early 1940s, Prandtl had
mixed emotions about the political problems of the day. He continued his re-
search work at Gottingen under Hitler’s Nazi regime but became continually
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confused about the course of events. Von Karman writes about Prandtl in his
autobiography,

I saw Prandtl once again for the last time right after the Nazi surrender. He was a
sad figure. The roof of his house in Gottingen, he mourned, had been destroyed by
an American bomb. He couldn’t understand why this had been done to him! He was
also deeply shaken by the collapse of Germany. He lived only a few years after that,
and though he did engage in some research work in meteorology, he died, I believe,
a broken man, still puzzled by the ways of mankind.

Prandtl died in Gottingen on August 15, 1953. Of any fluid dynamicist or
aerodynamicist in history, Prandtl came closest to deserving a Nobel Prize. Why
he never received one is an unanswered question. However, as long as there are
flight vehicles, and as long as people study the discipline of fluid dynamics, the
name of Ludwig Prandtl will be enshrined for posterity.

4.27 SUMMARY AND REVIEW

Sit back, get comfortable, and just think about the basic concepts in aerodynamics that
have been introduced in this chapter. We will begin this section with a review of these
intellectual concepts without burdening your mind with equations; that is, we offer a
discussion of “aerodynamics without formula.” The equations are reviewed later in this
section.

One of my professors once told me, as I was studying aerodynamics, that “aerody-
namics is easy because it just uses three equations: continuity, momentum, and energy.”
Over the years, I have come more and more to appreciate this wisdom. All of aerodynam-
ics is indeed based on three fundamental principles: (1) mass is conserved; (2) Newton’s
second law—namely, force equals mass times acceleration; and (3) energy is conserved.
We began this chapter with these three physical principles, and couched them in mathe-
matical language, namely the continuity, momentum, and energy equations, respectively.
Virtually all the other equations derived and discussed throughout the rest of this chapter
originated in one form or another from the continuity, momentum, and energy equations.
This is why we took the time and space to derive from first principles almost all the equa-
tions presented and used in this chapter. If you go back and review these derivations,
you can trace them in one aspect or another from the continuity, momentum, and energy
equations.

What makes aerodynamics so interesting is that, although it is based on just three
fundamental principles, the application of these principles to the virtually unlimited num-
ber of different types of flows can be challenging. These applications (at first impression)
lead to the almost overwhelming number of different equations found in this chapter. But
do not be overwhelmed. One reason for the road map in Fig. 4.1 is to help you navigate
through the different concepts, and ultimately to better appreciate all the different equa-
tions. Moreover, never lose sight of the physics; each one of the equations is steeped in
physics.

Another important aspect of this chapter, as well as all the other chapters in this
book, is simply definitions. You are in the process of expanding your intellectual hori-
zons and your technical vocabulary. Definitions are an essential part of learning a new
subject. Also, for the most part, definitions are hard and fast. They may take the form
of words, or an equation, or both, but they are what they are. They are your means of
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communicating with other scientists and engineers who speak your technical language,
and who also know the definitions. Some of the more important definitions presented in
this chapter are:

1. Incompressible flow: flow with constant density.

2. Compressible flow: flow with variable density.

Mass flow: the mass crossing an area A in the flow per unit time.

Adiabatic process: a process in which no heat is added or taken away.

. Reversible process: a process in which no frictional or other dissipative effects

occur.

Isentropic flow: flow that is both adiabatic and reversible.

Mach number: velocity divided by the speed of sound.

Subsonic flow: flow where the Mach number is less than one.

Sonic flow: flow where the Mach number is equal to one.

. Supersonic flow: flow where the Mach number is greater than one.

. Static pressure: the pressure that we would feel at a given point in a flow if we
were moving along with the flow through that point. It is due to the random motion
of the molecules, not the directed motion.

12. Total pressure: The pressure at a given point in a flow that would exist if the flow
were slowed down isentropically to zero velocity at that point. (The key word here
is “isentropically.”)

13. Dynamic pressure: V2 p V*

14. Equivalent airspeed: the airspeed of an airplane flying at a given altitude that it
would have to have at standard sea level to experience the same dynamic pressure.

15. Reynolds number: pVx/u

16. Local skin friction coefficient: 1,/qe

17. Total skin friction coefficient: D;/q.S

18. Adverse pressure gradient: a region in a flow where the pressure increases with
distance along the flow.

19. Favorable pressure gradient: a region in a flow where the pressure decreases with
distance along the flow.

v bW
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Note: There are many more definitions scattered throughout this chapter; the preceding
list just reminds us of some of the ones more frequently encountered in our introduction
to basic aerodynamics.

This chapter has discussed various types of flow, and we have defined and cat-
egorized different types of flow. Nature makes no real distinction among these flows,
but we have to in order to intellectually study and calculate such flows. In many ways,
incompressible flow is the simplest flow to calculate because p is constant. Pressure
and velocity are directly related through Bernoulli’s equation. Most low-speed flows,
where M < 0.3, can readily be assumed to be incompressible. In contrast, high-speed
flow is accompanied by significant density and temperature changes, and must be
treated as compressible. For a compressible flow, p, p, V and T in the flow are inti-
mately coupled, and the continuity, momentum, and energy equations, along with the
equation of state, must be solved simultaneously for such flows. Fortunately, in many
real compressible-flow applications, nature creates conditions that are very closely
reversible and adiabatic. This allows us to assume that such flows are isentropic. The
special relations between pressure, density, and temperature for an isentropic flow
greatly simplify the analysis of a compressible flow. This helps us to calculate nozzle
flows, rocket engine flows, and subsonic compressible flow over airplanes, and to
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make subsonic airspeed measurements using a Pitot tube. In contrast, many supersonic
flows involve shock waves. Shock waves are not isentropic, and require their own
special analysis.

Finally, superimposed over these different types of flow is the question: how impor-
tant is the effect of friction? The first 80 percent of this chapter deals with flows where we
assume that the effect of friction is negligible. These are defined as inviscid flows. How-
ever, friction is always important in that region of the flow near a surface, where friction
acts to retard the flow. We model that region as a boundary layer, a thin region adjacent
to a surface. Boundary layers require a totally different analysis, as discussed in the last
part of this chapter. Flows with friction are defined as viscous flows. For example, we can
have incompressible viscous flow or compressible viscous flow. The calculation of skin
friction on a surface, and aspects of separated flow with its associated pressure drag due
to flow separation, require us to deal with viscous flows.

Let us now summarize some of the more important equations that come from the
concepts just reviewed. It will help to return to our road map in Fig. 4.1. Run your mind
over all the items shown there. Make yourself feel comfortable with these items. Then
proceed with this chapter summary, putting each equation and each concept in its proper
perspective relative to our road map.

A few of the important concepts from this chapter are summarized as follows:

1. The basic equations of aerodynamics, in the form derived here, are as follows:

Continuity PAV, = p, AV, “4.2)
Momentum dp =—-pVdVv 4.8)
Energy o+ 4V =, T, + 1V (4.42)

These equations hold for a compressible flow. For an incompressible flow, we have
these:

Continuity AV, =AYV, 4.3)
2 2
Momentum P+ p% =p,+ p% (4.9a)

Equation (4.9a) is called Bernoulli’s equation.
2. The change in pressure, density, and temperature between two points in an
isentropic process is given by

P [&]7 _ [L]”
P P T

3. The speed of sound is given by

(4.48)

isentropic
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For a perfect gas, this becomes
a=/YRT (4.54)

. The speed of a gas flow can be measured by a Pitot tube, which senses the total
pressure p,. For incompressible flow,

2(po — 1)
V1 = (= F7
\ P (4.66)

For subsonic compressible flow,

Vz ~ 2a12 & (7*1)/}'_]
=, 4.77a)

For supersonic flow, a shock wave exists in front of the Pitot tube, and Eq. (4.79)
must be used in lieu of Eq. (4.77a) to find the Mach number of the flow.

. The area—velocity relation for isentropic flow is

dA

- (M* - 1)d7v (4.83)

From this relation, we observe that (1) for a subsonic flow, the velocity increases
in a convergent duct and decreases in a divergent duct; (2) for a supersonic flow,
the velocity increases in a divergent duct and decreases in a convergent duct; and
(3) the flow is sonic only at the minimum area.

. The isentropic flow of a gas is governed by

Ty _ y-1, .,

71—”7’”1 (4.74)
{y=-1)

Po y-1. ., i’

P14+ Xy

’ ( 5 M ] 4.73)
1/{y-1)

P _ (1 s w]

- 1
o 5 (4.75)

Here T, p,, and p, are the total temperature, pressure, and density, respectively.
For an isentropic flow, p, = constant throughout the flow. Similarly, p, = constant
and 7, = constant throughout the flow.

. Viscous effects create a boundary layer along a solid surface in a flow. In this
boundary layer, the flow moves slowly and the velocity goes to zero right at the
surface. The shear stress at the wall is given by

v, —ul Y 4.89
v i ), (4.89)

The shear stress is larger for a turbulent boundary layer than for a laminar
boundary layer.
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8.

10.

For a laminar incompressible boundary layer, on a flat plate,

5= 2 4.91)
Re, ’
1.328
and ¢ = \/R— (4.98)
€L

where Jis the boundary layer thickness, C;is the total skin friction drag coefficient,
and Re is the Reynolds number:

Re, = PeVeuk local Reynolds number

U

Re; = p--Vel

plate Reynolds number

oo

Here x is the running length along the plate, and L is the total length of the
plate.

. For a turbulent incompressible boundary layer on a flat plate,

5= —(;232‘ (4.99)
0.074

C, = (4.101)
Reg‘2

Any real flow along a surface starts out as laminar but then changes into a turbulent
flow. The point at which this transition effectively occurs (in reality, transition
occurs over a finite length) is designated x,,. In turn, the critical Reynolds number
for transition is defined as

mVooxcr
Re, = pT (4.104)

Whenever a boundary layer encounters an adverse pressure gradient (a region
of increasing pressure in the flow direction), it can readily separate from the
surface. On an airfoil or wing, such flow separation decreases the lift and
increases the drag.
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Problems

4.1 Consider the incompressible flow of water through a divergent duct. The inlet
velocity and area are 5 ft/s and 10 ft?, respectively. If the exit area is 4 times the
inlet area, calculate the water flow velocity at the exit.

4.2 In Prob. 4.1, calculate the pressure difference between the exit and the inlet. The
density of water is 62.4 1b,,/ft*.

4.3 Consider an airplane flying with a velocity of 60 m/s at a standard altitude of
3 km. At a point on the wing, the airflow velocity is 70 m/s. Calculate the pressure
at this point. Assume incompressible flow.

4.4 An instrument used to measure the airspeed on many early low-speed airplanes,
principally during 1919 to 1930, was the venturi tube. This simple device is a
convergent—divergent duct. (The front section’s cross-sectional area A decreases
in the flow direction, and the back section’s cross-sectional area increases in
the flow direction. Somewhere between the inlet and exit of the duct, there is a
minimum area called the throat.) See figure below. Let A, and A, denote the inlet
and throat areas, respectively. Let p, and p, be the pressures at the inlet and throat,
respectively. The venturi tube is mounted at a specific location on the airplane
(generally on the wing or near the front of the fuselage) where the inlet velocity
Vi is essentially the same as the free-stream velocity—that is, the velocity of the
airplane through the air. With a knowledge of the area ratio A,/A, (a fixed design
feature) and a measurement of the pressure difference p, — p,, we can determine
the airplane’s velocity. For example, assume A,/A; = § and p, — p, = 80 Ib/ft>.
If the airplane is flying at standard sea level, what is its velocity?

THROAT
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4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

4.16

4.17
4.18

Consider the flow of air through a convergent—divergent duct, such as the venturi
tube described in Prob. 4.4. The inlet, throat, and exit areas are 3, 1.5, and 2 m?,
respectively. The inlet and exit pressures are 1.02 x 105 and 1.00 x 10° N/m?,
respectively. Calculate the flow velocity at the throat. Assume incompressible flow
with standard sea-level density.

An airplane is flying at a velocity of 130 mi/h at a standard altitude of 5000 ft. At a
point on the wing, the pressure is 1750.0 1b/ft>. Calculate the velocity at that point,
assuming incompressible flow.

Imagine that you have designed a low-speed airplane with a maximum velocity

at sea level of 90 m/s. For your airspeed instrument, you plan to use a venturi

tube with a 1.3 : 1 area ratio. Inside the cockpit is an airspeed indicator—a dial
that is connected to a pressure gauge sensing the venturi tube pressure difference
p1 — p» and properly calibrated in terms of velocity. What is the maximum pressure
difference you would expect the gauge to experience?

A supersonic nozzle is also a convergent—divergent duct, which is fed by a large
reservoir at the inlet to the nozzle. In the reservoir of the nozzle, the pressure and
temperature are 10 atm and 300 K, respectively. At the nozzle exit, the pressure is
1 atm. Calculate the temperature and density of the flow at the exit. Assume that
the flow is isentropic and (of course) compressible.

Derive an expression for the exit velocity of a supersonic nozzle in terms
of the pressure ratio between the reservoir and exit py/p, and the reservoir
temperature 7.

Consider an airplane flying at a standard altitude of 5 km with a velocity of

270 m/s. At a point on the wing of the airplane, the velocity is 330 m/s. Calculate
the pressure at this point.

The mass flow of air through a supersonic nozzle is 1.5 1b,/s. The exit velocity
is 1500 ft/s, and the reservoir temperature and pressure are 1000°R and 7 atm,
respectively. Calculate the area of the nozzle exit. For air, ¢, = 6000 ft - 1b/
(slug)(°R).

A supersonic transport is flying at a velocity of 1500 mi/h at a standard altitude
of 50,000 ft. The temperature at a point in the flow over the wing is 793.32°R.
Calculate the flow velocity at that point.

For the airplane in Prob. 4.12, the total cross-sectional area of the inlet to the jet
engines is 20 ft>. Assume that the flow properties of the air entering the inlet are
those of the free stream ahead of the airplane. Fuel is injected inside the engine at
a rate of 0.05 Ib of fuel for every pound of air flowing through the engine (i.e., the
fuel—air ratio by mass is 0.05). Calculate the mass flow (in slugs/per second) that
comes out the exit of the engine.

Calculate the Mach number at the exit of the nozzle in Prob. 4.11.

A Boeing 747 is cruising at a velocity of 250 m/s at a standard altitude of 13 km.
What is its Mach number?

A high-speed missile is traveling at Mach 3 at standard sea level. What is its
velocity in miles per hour?

Calculate the flight Mach number for the supersonic transport in Prob. 4.12.
Consider a low-speed subsonic wind tunnel with a nozzle contraction ratio of

1 : 20. One side of a mercury manometer is connected to the settling chamber and
the other side to the test section. The pressure and temperature in the test section
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are 1 atm and 300 K, respectively. What is the height difference between the two
columns of mercury when the test section velocity is 80 m/s?

4.19 We wish to operate a low-speed subsonic wind tunnel so that the flow in the test

section has a velocity of 200 mi/h. Consider two different types of wind tunnels
(see figure below): (@) a nozzle and a constant-area test section, where the flow

at the exit of the test section simply dumps out to the surrounding atmosphere
(that is, there is no diffuser); and (b) a conventional arrangement of nozzle, test
section, and diffuser, where the flow at the exit of the diffuser dumps out to the
surrounding atmosphere. For both wind tunnels (a) and (b), calculate the pressure
differences across the entire wind tunnel required to operate them so as to have
the given flow conditions in the test section. For tunnel (a), the cross-sectional
area of the entrance is 20 ft?, and the cross-sectional area of the test section is 4 ft>.
For tunnel (b), a diffuser is added to (a) with a diffuser exit area of 18 ft>. After
completing your calculations, examine and compare your answers for tunnels (a)
and (b). Which requires the smaller overall pressure difference? What does this
say about the value of a diffuser in a subsonic wind tunnel?

(a)

N OZZLE —*

A= ! ~—— TEST SECTION —|
|
2017 | A2 =42
V, = 200 mi/h
P '_’ Vi > ' P2

OPERATING PRESSURE
DIFFERENCE=p,—p, \ — ™

(b)

Pi

'«—— NOZZLE —»{=<—— TEST SECTION —»’7 DIFFUSER 4>‘

|
| Az =
| 1817
|
V2 = 200 mi/hr !
—V —_— =
P2 1P3

Ay=4f7P

- gOPERATING PRESSURE DIFFERENCE = p,—p; E - ‘
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4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

A Pitot tube is mounted in the test section of a low-speed subsonic wind tunnel.
The flow in the test section has a velocity, static pressure, and temperature of
150 mi/h, 1 atm, and 70°F, respectively. Calculate the pressure measured by the
Pitot tube.

The altimeter on a low-speed Piper Aztec reads 8000 ft. A Pitot tube mounted on
the wing tip measures a pressure of 1650 1b/ft>. If the outside air temperature is
500°R, what is the true velocity of the airplane? What is the equivalent airspeed?
The altimeter on a low-speed airplane reads 2 km. The airspeed indicator reads
50 m/s. If the outside air temperature is 280 K, what is the true velocity of the
airplane?

A Pitot tube is mounted in the test section of a high-speed subsonic wind tunnel.
The pressure and temperature of the airflow are 1 atm and 270 K, respectively. If
the flow velocity is 250 m/s, what is the pressure measured by the Pitot tube?

A high-speed subsonic Boeing 777 airliner is flying at a pressure altitude of

12 km. A Pitot tube on the vertical tail measures a pressure of 2.96 x 10* N/m> At
what Mach number is the airplane flying?

A high-speed subsonic airplane is flying at Mach 0.65. A Pitot tube on the wing tip
measures a pressure of 2339 1b/ft>. What is the altitude reading on the altimeter?
A high-performance F-16 fighter is flying at Mach 0.96 at sea level. What is the
air temperature at the stagnation point at the leading edge of the wing?

An airplane is flying at a pressure altitude of 10 km with a velocity of 596 m/s.
The outside air temperature is 220 K. What is the pressure measured by a Pitot
tube mounted on the nose of the airplane?

The dynamic pressure is defined as g = 0.5pV2. For high-speed flows, where Mach
number is used frequently, it is convenient to express ¢ in terms of pressure p and
Mach number M rather than p and V. Derive an equation for ¢ = g(p, M).

After completing its mission in orbit around the earth, the Space Shuttle enters

the earth’s atmosphere at a very high Mach number and, under the influence

of aerodynamic drag, slows as it penetrates more deeply into the atmosphere.
(These matters are discussed in Ch. 8.) During its atmospheric entry, assume that
the shuttle is flying at Mach number M corresponding to the altitudes h:

mkm | 60 | s0 | 40 | 30 | 20
M| 17 | 9s | ss | 3 | 1

Calculate the corresponding values of the free-stream dynamic pressure at each
one of these flight path points. Suggestion: Use the result from Prob. 4.28.
Examine and comment on the variation of g.. as the shuttle enters the atmosphere.

Consider a Mach 2 airstream at standard sea-level conditions. Calculate the total
pressure of this flow. Compare this result with (a) the stagnation pressure that
would exist at the nose of a blunt body in the flow and () the erroneous result
given by Bernoulli’s equation, which of course does not apply here.

Consider the flow of air through a supersonic nozzle. The reservoir pressure and
temperature are 5 atm and 500 K, respectively. If the Mach number at the nozzle
exit is 3, calculate the exit pressure, temperature, and density.

Consider a supersonic nozzle across which the pressure ratio is p,/p, = 0.2.
Calculate the ratio of exit area to throat area.
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Problems

Consider the expansion of air through a convergent—divergent supersonic nozzle.
The Mach number varies from essentially zero in the reservoir to Mach 2.0 at the
exit. Plot on graph paper the variation of the ratio of dynamic pressure to total
pressure as a function of Mach number; that is, plot g/p, versus M from M =0 to
M=2.0.

The wing of the Fairchild Republic A-10A twin-jet close-support airplane is
approximately rectangular with a wingspan (the length perpendicular to the flow
direction) of 17.5 m and a chord (the length parallel to the flow direction) of 3 m.
The airplane is flying at standard sea level with a velocity of 200 m/s. If the flow
is considered to be completely laminar, calculate the boundary layer thickness

at the trailing edge and the total skin friction drag. Assume that the wing is
approximated by a flat plate. Assume incompressible flow.

Using the scenario and values from Prob. 4.34, assume that the flow is completely
turbulent. Calculate the boundary layer thickness at the trailing edge and the total
skin friction drag. Compare these turbulent results with the laminar results from
Prob. 4.34.

If the critical Reynolds number for transition is 108, calculate the skin friction drag
for the wing in Prob. 4.34.

Reflect back to the fundamental equations of fluid motion dicussed in the early
sections of this chapter. Sometimes these equations were expressed in terms of
differential equations; for the most part, though, we obtained algebraic relations
by integrating the differential equations. However, it is useful to think of the
differential forms as relations that govern the change in flow field variables in an
infinitesimally small region around a point in the flow. (a) Consider a point in

an inviscid flow, where the local density is 1.1 kg/m>. As a fluid element sweeps
through this point, it is experiencing a spatial change in velocity of 2 percent per
millimeter. Calculate the corresponding spatial change in pressure per millimeter
at this point if the velocity at the point is 100 m/s. (b) Repeat the calculation for
the case in which the velocity at the point is 1000 m/s. What can you conclude by
comparing your results for the low-speed flow in part (a) with the results for the
high-speed flow in part (b)?

The type of calculation in Prob. 4.3 is a classic one for low-speed, incompressible
flow; that is, given the free-stream pressure and velocity and the velocity at

some other point in the flow, calculate the pressure at that point. In a high-speed
compressible flow, Mach number is more fundamental than velocity. Consider an
airplane flying at Mach 0.7 at a standard altitude of 3 km. At a point on the wing,
the airflow Mach number is 1.1. Calculate the pressure at this point. Assume an
isentropic flow.

Consider an airplane flying at a standard altitude of 25,000 ft at a velocity of

800 ft/s. To experience the same dynamic pressure at sea level, how fast must the
airplane be flying?

In Sec. 4.9 we defined hypersonic flow as that flow where the Mach number is 5 or
greater. Wind tunnels with a test-section Mach number of 5 or greater are called
hypersonic wind tunnels. From Eq. (4.88), the exit-to-throat area ratio for supersonic
exit Mach numbers increases as the exit Mach number increases. For hypersonic
Mach numbers, the exit-to-throat ratio becomes extremely large, so hypersonic

wind tunnels are designed with long, high-expansion-ratio nozzles. In this and the
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441
4.42

4.43

4.44

445

4.46

following problems, we examine some special characteristics of hypersonic wind
tunnels. Assume that wish to design a Mach 10 hypersonic wind tunnel using air as
the test medium. We want the static pressure and temperature in the test stream to

be that for a standard altitude of 55 km. Calculate (a) the exit-to-throat area ratio,

(b) the required reservoir pressure (in atm), and (c) the required reservoir temperature.
Examine these results. What do they tell you about the special (and sometimes
severe) operating requirements for a hypersonic wind tunnel?

Calculate the exit velocity of the hypersonic tunnel in Prob. 4.40.

Let us double the exit Mach number of the tunnel in Prob. 4.40 simply by adding
a longer nozzle section with the requisite expansion ratio. Keep the reservoir
properties the same as those in Prob. 4.40. Then we have a Mach 20 wind tunnel,
with test-section pressure and temperature considerably lower than in Prob. 4.40;
that is, the test-section flow no longer corresponds to conditions at a standard
altitude of 55 km. Be that as it may, we have at least doubled the Mach number
of the tunnel. Calculate (a) the exit-to-throat area ratio of the Mach 20 nozzle and
(b) the exit velocity. Compare these values with those for the Mach 10 tunnel in
Probs. 4.40 and 4.41. What can you say about the differences? In particular, note
the exit velocities for the Mach 10 and Mach 20 tunnels. You will see that they are
not much different. What is causing the big increase in exit Mach number?

The results of Example 4.4 showed that the aerodynamic force on a body is
proportional to the square of the free-stream velocity. This is strictly true,
however, only when the aerodynamic force is due to the pressure exerted on the
surface and when the flow is incompressible. When the aerodynamic force is also
due to the distribution of frictional shear stress over the surface and/or the flow is
compressible, the “velocity squared” law does not strictly hold. The purpose of
this problem is to examine how the friction drag on a body varies with free-stream
velocity for an incompressible flow.

Consider a square flat plate at zero incidence angle to a low-speed incompressible
flow. The length of each side is 4 m. Assume that the transition Reynolds number
is 5 x 10° and that the free-stream properties are those at standard sea level.
Calculate the friction drag on the flat plate when the free-stream velocity is

(a) 20 m/s and when it is (b) 40 m/s. (c) Assuming that the friction drag, D;, varies
with velocity as V , calculate the value of the exponent n based on the answers
from (a) and (b). How close does n come to 2? That is, how close is the friction
drag to obeying the velocity squared law?

Consider the incompressible viscous flow over a flat plate. Following the theme set
in Prob. 4.43, show analytically that (a) for fully turbulent flow, skin friction drag
varies as V.* , and (b) for fully laminar flow, skin friction drag varies as V- .
Consider compressible viscous flow over the same flat plate as in Prob. 4.43.
Assume a completely turbulent boundary layer on the plate. The free-stream
properties are those at standard sea level. Calculate the friction drag on the flat
plate when (a) M., = 1 and (b) M., = 3. (c) Assuming that the friction drag, D;,
varies with velocity as V , calculate the value of the exponent n based on the
answers from (a) and (b). Note: This problem examines the combined effect of
compressibility and friction on the “velocity squared” law, in the same spirit of
Probs. 4.43 and 4.44, which isolated the effect of friction in an incompressible flow.
Consider a long pipe filled with air at standard sea-level conditions. Let x be

the longitudinal coordinate measured along the pipe. The air is stationary inside



Problems

the pipe, that is, the flow velocity is zero everywhere inside the pipe. A small
firecracker is mounted inside the tube at an axial location x = 0. When the
firecracker is detonated, two weak pressure disturbances (pressure waves) are
created at x = 0 that propagate along the pipe, one to the right and the other to
the left. Assume that these weak pressure distributions travel at the local speed
of sound. Using SI units, calculate: (a) the speed of the waves relative to the
pipe, and (b) the x-location of each wave 0.2 seconds after detonation of the
firecrackers.

4.47 Repeat Prob. 4.46 for the case in which the air inside the pipe is flowing from left
to right in the direction of the positive x-axis with a flow velocity of: (a) 30 m/s,
and (b) 400 m/s.

4.48 Consider an element of air in the standard atmosphere at a standard altitude
of 1000 m. Assume that you somehow raise this element of air isentropically
to a standard altitude of 2000 m, where the element now takes on the standard
pressure at 2000 m. Calculate the density of this isentropically raised element of
air and compare it with the density of its neighboring elements of air that all have
a density equal to the standard density at 2000 m. What does this say about the
stability of the atmosphere in this case?

NOTE: The properties of the standard atmosphere are based on statics, that is,

an element of fluid that is stationary, where the pressure change is dictated by

the hydrostatic equation, Eq. (3.2). An isentropic process is not relevant to the
establishment of the standard atmosphere. Indeed, a purpose of this question is to
demonstrate that the changes in atmospheric properties with altitude are quite different
from the changes corresponding to an isentropic process.

4.49 Consider a low-speed wind tunnel (see Fig. 4.15) that is a constant width of 2 m
throughout its length (i.e., each cross section of the tunnel is a rectangle of width
2 m). The entrance and exit heights of the nozzle are 4 and 0.5 m, respectively.
The airflow velocity in the test section is 120 mph. Calculate the airflow velocity
in m/sec at the entrance to the nozzle.

4.50 The air pressure in the reservoir of the tunnel considered in Prob. 4.49 is 1 atm.
Calculate the pressure in the test section in N/m?. Assume that the air in the tunnel
is at standard sea-level density.

4.51 The wind tunnel in Probs. 4.49 and 4.50 has a diffuser that is slightly rounded
at the inlet (a sharp corner at the inlet in a subsonic flow will cause undesirable
flow separation), and then diverges with straight upper and lower walls, each at
15° relative to the horizontal. Calculate the rate of change of area with respect to
distance along the diffuser length (ignore the slightly rounded entrance). Note:
This is simply a problem in geometry, not aerodynamics.

4.52 Consider the flow through the wind tunnel in Prob. 4.49. The entrance and exit
heights of the diffuser are 0.5 and 3.5 m, respectively. What are the flow velocities
at the entrance and exit of the diffuser?

4.53 Consider the wind tunnel and flow conditions described in Probs. 4.49-4.52.
Calculate the rate of change of velocity with respect to distance at (a) the diffuser
inlet, and (b) the diffuser exit.

4.54 Continuing with the wind tunnel described in Probs. 4.49-4.53, calculate the rate
of change of pressure with respect to distance at (@) the diffuser inlet, and (b) the
diffuser exit.
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4.55

Calculate the length of the diffuser of the wind tunnel described in Probs.
4.49-4.54.

4.56 The diffuser of a wind tunnel or at the inlet of an air-breathing jet engine is

4.57

4.58

4.59

4.60

4.61

4.62

4.63

designed to slow the flow. Consequently, from Euler’s equation, Eq. (4.8) in
the text, the pressure always increases with distance along the diffuser. Hence,
in terms of the discussion in Sec. 4.20, the flow in the diffuser is experiencing
an adverse pressure gradient, which encourages the boundary layer to separate
from the wall of the diffuser, thus resulting in a loss of total pressure and
reducing the aerodynamic efficiency of the diffuser. For the wind tunnel

and flow conditions described in Probs. 4.49-4.55, a criterion that predicts
approximately the location along the wall of the diffuser where a laminar
boundary will separate is given by x, = 183(dp/dx)~,,. where x, is the separation
location in m and (dp/dx),,. is the average of the pressure gradients in N/m? at
the entrance and exit of the diffuser assuming no flow separation. Assuming a
laminar boundary layer along the diffuser wall, calculate the location of flow
separation in the diffuser.

For the conditions of Prob. 4.56, but assuming a turbulent boundary layer, an
approximate criterion for the separation point is x, = 506(dp/dx) .., where x; is in
m. Calculate the location of flow separation for a turbulent boundary layer along
the diffuser wall.

The maximum velocity of the Douglas DC-3 (see Figs. 1.33 and 6.80) is 229 mph
at an altitude of 7500 ft. Calculate the Mach number of the airplane and the
pressure sensed by a Pitot tube on the airplane.

The cruising velocity of the Boeing 727 (see Fig. 5.70) is 610 mph at an altitude of
25,000 ft. Calculate the Mach number of the airplane and the pressure sensed by a
Pitot tube on the airplane.

The maximum velocity of the Lockheed F-104 (see Figs. 1.34 and 5.40) is

1328 mph at an altitude of 35,000 ft. Calculate the Mach number of the airplane
and the pressure sensed by a Pitot tube on the airplane.

On October 3, 1967, test pilot William “Pete” Knight flew the X-15 hypersonic
research vehicle to a world’s speed record for an airplane; he achieved Mach 6.7 at
an altitude of 102,100 ft.

(a) What was the maximum velocity in ft/s?
(b) What was the flow temperature at the nose of the vehicle?

The F-80 subsonic jet fighter is shown in Fig. 4.24. The air inlets on both sides of
the fuselage are designed to slow the airflow through the inlets to a lower Mach
number before feeding into the engine inside the fuselage. Consider a case where
the flow entering the inlet is at Mach 0.6 where the inlet cross-sectional area is

3 ft>. At a given location inside the inlet, the cross-sectional area is 4 ft*>. Calculate
the flow Mach number at this location. Hint: Use Eq. (4.88).

The Lockheed F-80, designed by the famous airplane designer Kelly Johnson at
the Lockheed Skunk Works, was one of the first jet airplanes to use a boundary
layer bleed device. This was a duct with a rectangular entrance mounted on the
side of the fuselage at the entrance of each side inlet. The boundary layer bleed
duct was designed to entrain the low energy boundary layer on the fuselage before
it could enter the inlet. This way, the flow entering the inlet and passing into the jet
engine was of a higher aerodynamic quality with a minimal loss of total pressure.
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4.65

Problems

Consider the F-80 flying at Mach 0.6 at 20,000 ft. The boundary layer bleed duct
is located 2.89 m downstream of the nose of the F-80. The surface of the fuselage
is the bottom surface of the rectangular bleed duct. In order to ingest the boundary
layer that grows along the fuselage surface, calculate the necessary height of the
rectangular entrance of the boundary layer bleed device. Assume the fuselage
boundary layer is turbulent, incompressible, and its growth is the same as that on a
flat plate.

Consider the incompressible laminar flow over a flat plate of length 3 m at
standard sea level conditions. The flow velocity is 100 m/s. For the laminar
boundary layer, calculate:

(a) The boundary layer thickness at the downstream edge of the plate.

(b) The total skin friction drag coefficient.

(c) The drag per unit span.

Consider the same flat plate boundary layer as described in Problem 4.64. Along
each streamline within the boundary layer, there is a loss of total pressure due to
frictional dissipation. Assume that the velocity profile across the boundary layer is
given by

yI8=(VIV.)

where Ve is the velocity at the edge of the boundary layer, equal to the freestream
velocity. (Note: The velocity profile given here is only a crude approximation in
order to have an analytic expression to use in this problem. Do not use it for any
other application.) Using some of the results from Problem 4.64, calculate the

loss of total pressure (per unit span) integrated across the boundary layer at the
downstream edge of the plate. Compare your result with the total skin friction drag
per unit span exerted on the plate as obtained in Problem 4.64.
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CHAPTER

Airfoils, Wings, and Other
Aerodynamic Shapes

There can be no doubt that the inclined plane is the true principle of aerial navigation
by mechanical means.

Sir George Cayley, 1843

5.1 INTRODUCTION

It is remarkable that the modern airplane as we know it today, with its fixed wing
and vertical and horizontal tail surfaces, was first conceived by George Cayley
in 1799, more than 200 years ago. He inscribed his first concept on a silver
disk (presumably for permanence), shown in Fig. 1.5. It is also remarkable that
Cayley recognized that a curved surface (as shown on the silver disk) creates
more lift than a flat surface. Cayley’s fixed-wing concept was a true revolution
in the development of heavier-than-air flight machines. Prior to his time, aviation
enthusiasts had been doing their best to imitate mechanically the natural flight of
birds, which led to a series of human-powered flapping-wing designs (ornithop-
ters), which never had any real possibility of working. In fact, even Leonardo da
Vinci devoted a considerable effort to the design of many types of ornithopters in
the late 15th century, of course to no avail. In such ornithopter designs, the flap-
ping of the wings was supposed to provide simultaneously both lift (to sustain the
machine in the air) and propulsion (to push it along in flight). Cayley is responsi-
ble for directing people’s minds away from imitating bird flight and for separat-
ing the two principles of lift and propulsion. He proposed and demonstrated that



PREVIEW BOX

This chapter deals with lift and drag on aerody-
namic bodies, principally airfoil shapes and wings.
These are real aerospace engineering applications—
applications that extend the basic material from
Chs. 1 to 4 well into the practical engineering world.
In this chapter, you will learn

1. How to calculate lift and drag on airfoil shapes.
How to calculate lift and drag on a whole wing
of an airplane.

3. Why lift and drag for a wing are different
values from that for the airfoil shape that makes
up the wing.

4. What happens to lift and drag when an airfoil or
a wing flies near or beyond the speed of sound.

5.  Why some airplanes have swept wings and
others have straight wings.

6. Why some airplanes have thin airfoils and
others have thick airfoils.

7. Why optimum wing shapes for supersonic flight
are different than for subsonic flight.

5.1 Introduction 289

This is all good stuff—some of the bread and but-
ter of aerospace engineering. You will learn all
this, and more, in this chapter. For example, at
the Smithsonian’s National Air and Space Mu-
seum, this author is frequently asked by visitors
how a wing produces lift—a natural and perfectly
innocent question. Unfortunately, there is no sat-
isfactory one-liner for an answer. Even a single
paragraph does not suffice. After a hundred years
since the Wright Flyer, different people take dif-
ferent points of view about what is the most funda-
mental mechanism that produces lift, some pressing
their views with almost religious fervor. A whole
section of this chapter (Sec. 5.19) addresses how
lift is produced, what this author considers to be the
most fundamental explanation, and how it relates to
alternate explanations.

With this chapter, you will begin to concen-
trate on airplanes, winged space vehicles such as the
Space Shuttle, and any vehicle that flies through the
atmosphere. This chapter greatly accelerates our in-
troduction to flight. Hang on, and enjoy the ride.

lift can be obtained from a fixed, straight wing inclined to the airstream, while
propulsion can be provided by some independent mechanism such as paddles
or airscrews. For this concept and for his many other thoughts and inventions in
aeronautics, Sir George Cayley is called the parent of modern aviation. A more
detailed discussion of Cayley’s contributions appears in Ch. 1. However, we
emphasize that much of the technology discussed in the present chapter had its
origins at the beginning of the 19th century—technology that came to fruition on
December 17, 1903, near Kitty Hawk, North Carolina.

The following sections develop some of the terminology and basic aerody-
namic fundamentals of airfoils and wings. These concepts form the heart of air-
plane flight, and they represent a major excursion into aeronautical engineering.
The road map for this chapter is shown in Fig. 5.1. There are basically three main
topics in Ch. 5, each having to do with the aerodynamic characteristics of a class
of geometric shapes: airfoils, wings, and general body shapes. These three topics
are shown in the three boxes at the top of our road map. We first examine the
aerodynamic characteristics of airfoils and then run down the various aspects
noted in the left column in Fig. 5.1. This is a long list, but we will find that many
thoughts on this list carry over to wings and bodies as well. We then move to the
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| Aerodynamic shapes |

Airfoils

— Nomenclature Induced drag Cylinders
- Aerodynamic coefficients Change in lift slope Spheres
— Experimental data Swept wings

- Obtaining lift coefficient Flaps

from pressure coefficient |

— Compressibility corrections :
L Transonic speeds :
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- Supersonic speeds |
a. Lift |
b. Wave drag :
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|

b= -| How lift is produced |» ——

Figure 5.1 Road map for Ch. 5.

central column for a discussion of finite wings, and we will see how the aerody-
namics of a wing differs from that of an airfoil. Both airfoils and wings can be
classified as slender bodies. In contrast, the third column in Fig. 5.1 deals with a
few examples of blunt bodies: cylinders and spheres. We define and examine the
distinctions between slender and blunt aerodynamic shapes. Finally, we discuss
how aerodynamic lift is produced. Although we have alluded to this in previous
chapters, it is appropriate at the end of the chapter dealing with the aerodynam-
ics of various shapes to have a definitive discussion on how nature generates
lift. Various physical explanations have been used in the past to explain how
lift is generated, and there have been many spirited discussions in the literature
about which is proper or more fundamental. We attempt to put all these views in
perspective at the end of this chapter, as represented by the box at the bottom of
Fig. 5.1. As you progress through this chapter, make certain to check our road
map frequently so you can see how the details of our discussions fit into the
grand scheme laid out in Fig. 5.1.

5.2 AIRFOIL NOMENCLATURE

Consider the wing of an airplane, as sketched in Fig. 5.2. The cross-sectional
shape obtained by the intersection of the wing with the perpendicular plane
shown in Fig. 5.2 is called an airfoil. Such an airfoil is sketched in Fig. 5.3,
which illustrates some basic terminology. The major design feature of an airfoil
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Leading
edge
Plane perpendicular

to wing
/ Veo

Figure 5.2 Sketch of a wing and airfoil.

Thickness

Mean camber line

Leading edge Trailing edge

k_‘r_____‘—-%'

Chord line

I‘— Chord ¢ =

Figure 5.3 Airfoil nomenclature. The shape shown here is a NACA 4415 airfoil.

is the mean camber line, which is the locus of points halfway between the upper
and lower surfaces, as measured perpendicular to the mean camber line itself.
The most forward and rearward points of the mean camber line are the leading
and trailing edges, respectively. The straight line connecting the leading and
trailing edges is the chord line of the airfoil, and the precise distance from the
leading to the trailing edge measured along the chord line is simply designated
the chord of the airfoil, given by the symbol c. The camber is the maximum
distance between the mean camber line and the chord line, measured perpen-
dicular to the chord line. The camber, the shape of the mean camber line, and to
a lesser extent the thickness distribution of the airfoil essentially control the lift
and moment characteristics of the airfoil.

More definitions are illustrated in Fig. 5.4a, which shows an airfoil in-
clined to a stream of air. The free-stream velocity V., is the velocity of the air
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Figure 5.4 Sketch showing the definitions of (a) lift, drag, moments, angle of attack, and
relative wind; (b) normal and axial force.

far upstream of the airfoil. The direction of V., is defined as the relative wind.
The angle between the relative wind and the chord line is the angle of attack o
of the airfoil. As described in Chs. 2 and 4, an aerodynamic force is created by
the pressure and shear stress distributions over the wing surface. This resultant
force is shown by the vector R in Fig. 5.4a. In turn, the aerodynamic force R can
be resolved into two forces, parallel and perpendicular to the relative wind. The
drag D is always defined as the component of the aerodynamic force parallel to
the relative wind. The lift L is always defined as the component of the aerody-
namic force perpendicular to the relative wind.

In addition to lift and drag, the surface pressure and shear stress distribu-
tions create a moment M that tends to rotate the wing. To see more clearly how
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Note: Length of the arrow denoting pressure
is proportional to p — p,.s, Where p,.;is an
arbitrary reference pressure slightly less than
the minimum pressure on the airfoil.

£

Figure 5.5 The physical origin of moments on an airfoil.

this moment is created, consider the surface pressure distribution over an airfoil, as
sketched in Fig. 5.5 (we will ignore the shear stress for this discussion). Consider
just the pressure on the top surface of the airfoil. This pressure gives rise to a net
force F) in the general downward direction. Moreover, F, acts through a given point
on the chord line, point 1, which can be found by integrating the pressure times
distance over the surface (analogous to finding the centroid or center of pressure
from integral calculus). Now consider just the pressure on the bottom surface of
the airfoil. This pressure gives rise to a net force F), in the general upward direction,
acting through point 2. The total aerodynamic force on the airfoil is the summation
of F, and F,, and lift is obtained when F, > F,. However, note from Fig. 5.5 that
F, and F, will create a moment that will tend to rotate the airfoil. The value of this
aerodynamically induced moment depends on the point about which we choose to
take moments. For example, if we take moments about the leading edge, the aerody-
namic moment is designated M, g. It is more common in the case of subsonic airfoils
to take moments about a point on the chord at a distance c¢/4 from the leading edge,
the quarter-chord point, as illustrated in Fig. 5.4a. This moment about the quarter
chord is designated M_,,. In general, M,y # M_,,. Intuition will tell you that lift, drag,
and moments on a wing will change as the angle of attack ¢ changes. In fact, the
variations of these aerodynamic quantities with o represent some of the most im-
portant information an airplane designer needs to know. We will address this matter
in the following sections. However, we point out that although M, ; and M., are both
functions of ¢, there exists a certain point on the airfoil about which moments es-
sentially do not vary with o This point is defined as the aerodynamic center, and the
moment about the aerodynamic center is designated M, . By definition,

M, =const
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independent of the angle of attack. The location of the aerodynamic center for
real aerodynamic shapes can be found from experiment. For low-speed sub-
sonic airfoils, the aerodynamic center is generally very close to the quarter-
chord point.

Returning to Fig. 5.4a, we recall that the resultant aerodynamic force R can
be resolved into components perpendicular and parallel to the relative wind—
the lift and drag, respectively. An alternative to this system is to resolve R into
components perpendicular and parallel to the chord line, as shown in Fig. 5.4b.
These components are called the normal force and axial force and are denoted by
N and A, respectively, in Fig. 5.4b, shown by the heavy solid arrows. Also shown
in Fig. 5.4b are the lift and drag, L and D, respectively, represented by the heavy
dashed arrows. Lift and drag are easily expressed in terms of N and A from the
geometry shown in Fig. 5.4b:

L=Ncoso—-Asinuo .1
D=Nsino+ Acosa 5.2)

For airfoils and wings, the use of N and A to describe the aerodynamic force dates
back as early as the work of Otto Lilienthal in 1889, as published in his book
Bird Flight as the Basis of Aviation (see Sec. 1.5). Indeed, the famous “Lilienthal
tables,” which were used by the Wright brothers to design their early gliders
(see Sec. 1.8), were tables dealing with normal and axial forces. The Wrights
preferred to think in terms of lift and drag, and they converted Lilienthal’s results
by using Egs. (5.1) and (5.2). Today the use of N and A to describe the aerody-
namic force on airfoils and wings is generally passé; L and D are almost always
the system used by choice. However, N and A are still frequently used to denote
the aerodynamic force on bodies of revolution, such as missiles and projectiles.
Thus, it is useful to be familiar with both systems of expressing the aerodynamic
force on a body.

5.3 LIFT, DRAG, AND MOMENT COEFFICIENTS

Again appealing to intuition, we note that it makes sense that for an airplane in
flight, the actual magnitudes of L, D, and M depend not only on ¢, but also on
velocity and altitude. In fact, we can expect that the variations of L, D, and M
depend at least on

1. Free-stream velocity V...
2. Free-stream density p.. (that is, altitude).

3. Size of the aerodynamic surface. For airplanes, we will use the wing area S
to indicate size.

4. Angle of attack o.
5. Shape of the airfoil.

6. Viscosity coefficient fL., (because the aerodynamic forces are generated in
part from skin friction distributions).
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7. Compressibility of the airflow. In Ch. 4 we demonstrated that
compressibility effects are governed by the value of the free-stream Mach
number M., = V../a... Because V., is already listed, we can designate a., as
our index for compressibility.

Hence, we can write that for a given shape of airfoil at a given angle of attack,

sz(VOC7 pw’S7uoca aoo) (53)

and D and M are similar functions.

In principle, for a given airfoil at a given angle of attack, we could find the
variation of L by performing myriad wind tunnel experiments wherein V.., p..,
S, U.., and a., are individually varied, and then we could try to make sense out of
the resulting huge collection of data. This is the hard way. Instead we ask: Are
there groupings of the quantities V.., P, S, leo, deo, and L such that Eq. (5.3) can
be written in terms of fewer parameters? The answer is yes. In the process of
developing this answer, we will gain some insight into the beauty of nature as
applied to aerodynamics.

The technique we will apply is a simple example of a more general theoreti-
cal approach called dimensional analysis. Let us assume that Eq. (5.3) is of the
functional form

L=7VipLS'alul, (5.4)

where Z, a, b, d, e, and f are dimensionless constants. However, no matter what
the values of these constants may be, it is a physical fact that the dimensions
of the left and right sides of Eq. (5.4) must match; that is, if L is a force (say
in newtons), then the net result of all the exponents and multiplication on the
right side must also produce a result with the dimensions of a force. This con-
straint will ultimately give us information about the values of a, b, and so on.
If we designate the basic dimensions of mass, length, and time by m, [, and ¢,
respectively, then the dimensions of various physical quantities are as given in
the following:

Physical Quantity Dimensions

L ml/t? (from Newton’s second law)
Veo 1/t

Doo mll3?

S ?

oo I/t

Hoo m/(If)

Thus equating the dimensions of the left and right sides of Eq. (5.4), we obtain

(O () (1]
1 _(tj (l”j @) t)\ it (5-5)
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Consider mass m. The exponent of m on the left side is 1, so the exponents of
m on the right must add to 1. Hence

l=b+f (5.6)
Similarly, for time ¢ we have
—2=—a-e-f (5.7)
and for length /,
1=(l—3b+2d+e—f (5.8)
Solving Egs. (5.6) to (5.8) for a, b, and d in terms of e and f yields
b=1-f (5.9
a=2-e—f (5.10)
/
d=1-= 5.11
=7 (5.11)

Substituting Egs. (5.9) to (5.11) into (5.4) gives
L=Z(V..y pL's" " atul, (5.12)
Rearranging Eq. (5.12), we find

e f
L=27p.v2s | %= | | M= 5.13
g [Vw] (poonS‘”} o

Note that a../V., = 1/M,,, where M., is the free-stream Mach number. Also note
that the dimensions of S are /*; hence the dimension of S'* is [, purely a length.
Let us choose this length to be the chord ¢ by convention. Hence, t../(p.. V.. S¥?)
can be replaced in our consideration by the equivalent quantity

,Ll'oc
PocVeool

However, U../(p. V. c) = 1/Re, where Re is based on the chord length c.
Equation (5.13) thus becomes

1 Y1 Y
L=Zp. VS| — || — 5.14
p [Moo] (Rej ( )

We now define a new quantity, called the lift coefficient c,, as
e f
oz L[ L (5.15)
2 M. ) \Re

L=1p. V2S¢, (5.16)

Then Eq. (5.14) becomes
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Recalling from Ch. 4 that the dynamic pressure is g.. =% p.V., we trans-
form Eq. (5.16) into

L= ¢g. X S X ¢
T 1 T T

Dynamic Wing Lift

(5.17)

Lift .
pressure area  coefficient

Look what has happened! Equation (5.3), written from intuition but not very
useful, has cascaded to the simple, direct form of Eq. (5.17), which contains a tre-
mendous amount of information. In fact, Eq. (5.17) is one of the most important
relations in applied aerodynamics. It says that the lift is directly proportional to
the dynamic pressure (and hence to the square of the velocity). It is also directly
proportional to the wing area S and to the lift coefficient ¢,. In fact, Eq. (5.17) can
be turned around and used as a definition for the lift coefficient:

¢ =——
[ 78 (5.18)

That is, the lift coefficient is always defined as the aerodynamic lift divided by
the dynamic pressure and some reference area (for wings, the convenient refer-
ence area S, as we have been using).

The lift coefficient is a function of M., and Re as reflected in Eq. (5.15).
Moreover, because M., and Re are dimensionless and because Z was assumed
initially as a dimensionless constant, from Eq. (5.15) ¢, is dimensionless. This is
also consistent with Egs. (5.17) and (5.18). Also recall that our derivation was
carried out for an airfoil of given shape and at a given angle of attack c. If o were
to vary, then ¢; would also vary. Hence, for a given airfoil,

¢, = f(o, M., Re)] (5.19)

This relation is important. Fix in your mind that lift coefficient is a function of
angle of attack, Mach number, and Reynolds number.

To appreciate the value of the relationship expressed by Eq. (5.19), let us as-
sume that we are given a particular aerodynamic shape, and we wish to measure
the lift and how it varies with the different parameters. So we go to the laboratory
and set up a series of wind tunnel tests to measure the lift on our given shape.
Reflecting on Eq. (5.3), we know that the lift of the given shape at a given orien-
tation (angle of attack) to the flow depends on the free-stream velocity, density,
reference area, viscosity coefficient, and speed of sound; but we do not know
precisely how L varies with a change in these parameters. We wish to find out
how. We begin by running a set of wind tunnel tests, making measurements of
L where V., is varied but S, m.,, and a.. are held fixed. This gives us a stack of
wind tunnel data from which we can obtain a correlation of the variation of L
with V... Next we run another set of wind tunnel tests in which r., is varied but
V., S, m..,, and a.. are held fixed. This gives us a second stack of wind tunnel
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data from which we can obtain a correlation of the variation of L with r... Then
we run a third set of wind tunnel tests in which § is varied, holding everything
else constant. This gives us a third stack of wind tunnel data from which we can
obtain a correlation of the variation of L with S. We repeat this process two more
times, alternately holding m.. constant and then a., constant. When we are fin-
ished, we end up with five individual stacks of wind tunnel data from which we
can (in principle) obtain the precise variation of L with V., r.,, S, m.,, and a.., as
represented by the functional relation in Eq. (5.3). As you can probably already
appreciate, this represents a lot of personal effort and a lot of wind tunnel testing
at great financial expense. However, if we use our knowledge obtained from our
dimensional analysis—namely Eq. (5.19)—we can realize a great savings of ef-
fort, time, and expense. Instead of measuring L in five sets of wind tunnel tests
as previously described, let us measure the variation of lift coefficient [obtained
from cl = L/(g.. S)]. Keying on Eq. (5.19) for a given shape at a given angle of
attack, we run a set of wind tunnel tests in which ¢/ is measured, with M., varied
but Re held constant. This gives us one stack of wind tunnel data from which
we can obtain a correlation of the variation of ¢/ with M... Then we run a second
set of wind tunnel tests, varying Re and keeping M., constant. This gives us a
second stack of data from which we can obtain a correlation of the variation of ¢/
with Re. And this is all we need; we now know how c/ varies with M,, and Re
for the given shape at the given angle of attack. With ¢/ we can obtain the lift
from Eq. (5.17). By dealing with the lift coefficient instead of the lift itself, and
with M., and Re instead of r.,, V.., S, m.., and a.., we have ended up with only two
stacks of wind tunnel data rather than the five we had earlier. Clearly, by using
the dimensionless quantities ¢/, M.., and Re, we have achieved a great economy
of effort and wind tunnel time.

But the moral to this story is deeper yet. Dimensional analysis shows that ¢, is a
function of Mach number and Reynolds number; as stated in Eq. (5.19), rather than
just individually of p.., V.., U, @, and the size of the body. It is the combination of
these physical variables in the form of M., and Re that counts. The Mach number
and the Reynolds number are powerful quantities in aerodynamics. They are called
similarity parameters for reasons that are discussed at the end of this section. We
have already witnessed, in Ch. 4, the power of M., in governing compressible flows.
For example, just look at Egs. (4.73) through (4.75) and (4.79); only the Mach num-
ber and the ratio of specific heats appear on the right sides of these equations.

Performing a similar dimensional analysis on drag and moments, beginning
with relations analogous to Eq. (5.3), we find that

20

where ¢, is a dimensionless drag coefficient and

@2

where ¢, is a dimensionless moment coefficient. Note that Eq. (5.21) differs
slightly from Eqgs. (5.17) and (5.20) by the inclusion of the chord length c. This
is because L and D have dimensions of a force, whereas M has dimensions of a
force—length product.
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The importance of Egs. (5.17) to (5.21) cannot be overemphasized. They
are fundamental to all applied aerodynamics. They are readily obtained from
dimensional analysis, which essentially takes us from loosely defined functional
relationships [such as Eq. (5.3)] to well-defined relations between dimensionless
quantities [Egs. (5.17) to (5.21)]. In summary, for an airfoil of given shape, the
dimensionless lift, drag, and moment coefficients have been defined as

L D o = M
oS oS " GoSC

(5.22)

where

lo= fit.M..Re) ¢, = fi(a, M. Re) ¢, = fi(a. M. Re)| (5.23)

Reflecting for an instant, we find that there may be a conflict in our aerody-
namic philosophy. On the one hand, Chs. 2 and 4 emphasized that lift, drag, and
moments on an aerodynamic shape stem from the detailed pressure and shear
stress distributions on the surface and that measurements and/or calculations of
these distributions, especially for complex configurations, are not trivial under-
takings. On the other hand, the equations in Eq. (5.22) indicate that lift, drag, and
moments can be quickly obtained from simple formulas. The bridge between
these two outlooks is, of course, the lift, drag, and moment coefficients. All the
physical complexity of the flow field around an aerodynamic body is implicitly
buried in ¢, ¢,, and c,. Before the simple equations in Eq. (5.22) can be used to
calculate lift, drag, and moments for an airfoil, wing, and body, the appropriate
aerodynamic coefficients must be known. From this point of view, the simplicity
of Eq. (5.22) is a bit deceptive. These equations simply shift the forces of aero-
dynamic rigor from the forces and moments themselves to the appropriate coef-
ficients instead. So we are now led to these questions: How do we obtain values
of ¢;, ¢4, and c,, for given configurations, and how do they vary with &, M., and
Re? The answers are introduced in the following sections.

However, before we leave our discussion of dimensional analysis, it is
important to elaborate on why M., and Re are called similarity parameters.
Consider that we have two different flows (say a red flow and a green flow) over
two bodies that are geometrically similar but are different sizes for the red and
green flows. The red and green flows have different values of V.., po., U, and a..,
but they both have the same M., and Re. If M., is the same for the red and green
flows and if Re is the same for the red and green flows, then from Eq. (5.23),
¢, ¢4 and c¢,, measured in the red flow will be the same values as the ¢,, ¢, and ¢,
measured in the green flow, even though the red and green flows are different
flows. In this case the red and green flows are called dynamically similar flows;
hence M., and Re are called similarity parameters. The concept of dynamic flow
similarity is elegant, and it goes well beyond the scope of this book. But it is
mentioned here because of its importance in aerodynamics. The concept of dy-
namic similarity allows measurements obtained in wind tunnel tests of a small-
scale model of an airplane to be applied to the real airplane in free flight. If in the
wind tunnel test (say the red flow) the values of M., and Re are the same as those
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for the real airplane in free flight (say the green flow), then ¢, c,, and c,, measured
in the wind tunnel will be precisely the same as those values in free flight. The
concept of dynamic similarity is essential to wind tunnel testing.

In most wind tunnel tests of small-scale models of real airplanes, every ef-
fort is made to simulate the values of M., and Re encountered by the real airplane
in free flight. Unfortunately, due to the realities of wind tunnel design and opera-
tion, this is frequently not possible. In such cases the wind tunnel data must be
“extrapolated” to the conditions of free flight. Such extrapolations are usually ap-
proximations, and they introduce a degree of error when the wind tunnel data are
used to describe the conditions of full-scale free flight. The problem of not being
able to simultaneously simulate free-flight values of M., and Re in the same wind
tunnel is still pressing today, in spite of the fact that wind tunnel testing has been
going on for almost 150 years. Among other reasons, this is why there are so
many different wind tunnels at different laboratories around the world.

5.4 AIRFOIL DATA

A goal of theoretical aerodynamics is to predict values of ¢, ¢,, and c,, from the
basic equations and concepts of physical science, some of which were discussed
in previous chapters. However, simplifying assumptions is usually necessary to
make the mathematics tractable. Therefore, when theoretical results are obtained,
they are generally not exact. The use of high-speed digital computers to solve the
governing flow equations is now bringing us much closer to the accurate calcu-
lation of aerodynamic characteristics; however, limitations are still imposed by
the numerical methods themselves, and the storage and speed capacity of current
computers are still not sufficient to solve many complex aerodynamic flows. As
a result, the practical aerodynamicist has to rely on direct experimental measure-
ments of ¢, ¢, and ¢, for specific bodies of interest.

A large bulk of experimental airfoil data was compiled over the years by the
National Advisory Committee for Aeronautics (NACA), which was absorbed in the
creation of the National Aeronautics and Space Administration (NASA) in 1958.
Lift, drag, and moment coefficients were systematically measured for many airfoil
shapes in low-speed subsonic wind tunnels. These measurements were carried out on
straight, constant-chord wings that completely spanned the tunnel test section from
one side wall to the other. In this fashion, the flow essentially “saw” a wing with no
wingtips, and the experimental airfoil data were thus obtained for “infinite wings.”
(The distinction between infinite and finite wings will be made in subsequent sec-
tions.) Some results of these airfoil measurements are given in App. D. The first page
of App. D gives data for ¢, and ¢, .4 versus angle of attack for the NACA 1408 airfoil.
The second page gives ¢, and ¢, ,. versus ¢, for the same airfoil. Because c; is known
as a function of ¢ from the first page, the data from both pages can be cross-plotted
to obtain the variations of ¢, and c,, . versus ¢. The remaining pages of App. D give
the same type of data for different standard NACA airfoil shapes.

Let us examine the variation of ¢; with & more closely. This variation is
sketched in Fig. 5.6. The experimental data indicate that ¢, varies linearly with
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Figure 5.7 Comparison of lift curves for cambered and symmetric airfoils.

a over a large range of angle of attack. Thin-airfoil theory, which is the subject
of more advanced books on aerodynamics, also predicts the same type of linear
variation. The slope of the linear portion of the lift curve is designated as a, =
dc/do = lift slope. Note that in Fig. 5.6, when « = 0, there is still a positive
value of ¢;; that is, there is still some lift even when the airfoil is at zero angle of
attack to the flow. This is due to the positive camber of the airfoil. All airfoils
with such camber have to be pitched to some negative angle of attack before
zero lift is obtained. The value of o when lift is zero is defined as the zero-lift
angle of attack oy, and is illustrated in Fig. 5.6. This effect is further demon-
strated in Fig. 5.7, where the lift curve for a cambered airfoil is compared with

301



302

CHAPTER 5 Airfoils, Wings, and Other Aerodynamic Shapes

Separated flow

=9
===v
./

C

——

e
m

Attached flow

/

V4 a

Figure 5.8 Flow mechanism associated with stalling.

that for a symmetric (no camber) airfoil. Note that the lift curve for a symmetric
airfoil goes through the origin. Refer again to Fig. 5.6 at the other extreme: For
large values of ¢, the linearity of the lift curve breaks down. As « is increased
beyond a certain value, ¢, peaks at some maximum value ¢;,,, and then drops
precipitously as « is further increased. In this situation, where the lift is rapidly
decreasing at high ¢, the airfoil is stalled.

The phenomenon of airfoil stall is of critical importance in airplane design.
It is caused by flow separation on the upper surface of the airfoil. This is illus-
trated in Fig. 5.8, which again shows the variation of ¢, versus « for an airfoil.
At point 1 on the linear portion of the lift curve, the flow field over the airfoil is
attached to the surface, as pictured in Fig. 5.8. However, as discussed in Ch. 4,
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the effect of friction is to slow the airflow near the surface; in the presence of
an adverse pressure gradient, there will be a tendency for the boundary layer to
separate from the surface. As the angle of attack is increased, the adverse pres-
sure gradient on the top surface of the airfoil will become stronger; and at some
value of a—the stalling angle of attack—the flow becomes separated from the
top surface. When separation occurs, the lift decreases drastically and the drag
increases suddenly. This is the picture associated with point 2 in Fig. 5.8. (This
is a good time for the reader to review the discussion of flow separation and its
effect on pressure distribution, lift, and drag in Sec. 4.21.)

The nature of the flow field over the wing of an airplane that is below,
just beyond, and way beyond the stall is shown in Fig. 5.94, b, and c, respec-
tively. These figures are photographs of a wind tunnel model with a wingspan
of 6 ft. The entire model has been painted with a mixture of mineral oil and a
fluorescent powder, which glows under ultraviolet light. After the wind tunnel
is turned on, the fluorescent oil indicates the streamline pattern on the surface
of the model. In Fig. 5.94, the angle of attack is below the stall; the flow is
fully attached, as evidenced by the fact that the high surface shear stress has
scrubbed most of the oil from the surface. In Fig. 5.9b, the angle of attack is

Figure 5.9 Surface oil flow patterns on a wind tunnel model of a Grumman American
Yankee, taken by Dr. Allen Winkelmann in the Glenn L. Martin Wind Tunnel at the
University of Maryland. The mixture is mineral oil and a fluorescent powder, and the
photographs were taken under ultraviolet light. (@) Below the stall. The wing is at or=4°,
where the flow is attached. (continued)
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Figure 5.9 (concluded) (b) Very near the stall. The wing is at o= 11°, where the highly
three-dimensional separated flow is developing in a mushroom cell pattern. (¢) Far above the
stall. The wing is at o= 24°, where the flow over almost the entire wing has separated.
(Source: © Allen E. Winkelmann.)
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slightly beyond the stall. A large, mushroom-shaped, separated flow pattern
has developed over the wing, with attendant highly three-dimensional, low-
energy recirculating flow. In Fig. 5.9¢, the angle of attack is far beyond the
stall. The flow over almost the entire wing has separated. These photographs
are striking examples of different types of flow that can occur over an airplane
wing at different angles of attack, and they graphically show the extent of the
flow field separation that can occur.

The lift curves sketched in Figs. 5.6 to 5.8 illustrate the type of variation ob-
served experimentally in the data of App. D. Returning to App. D, we note that
the lift curves are all virtually linear up to the stall. Singling out a given airfoil—
say the NACA 2412 airfoil—also note that ¢, versus « is given for three differ-
ent values of the Reynolds number from 3.1 x 10° to 8.9 x 10°. The lift curves
for all three values of Re fall on top of one another in the linear region; that is,
Re has little influence on ¢; when the flow is attached. However, flow separation
is a viscous effect; and as discussed in Ch. 4, Re is a governing parameter for
viscous flow. Therefore, it is not surprising that the experimental data for c; .,
in the stalling region are affected by Re, as can be seen by the slightly different
variations of ¢; at high ¢ for different values of Re. In fact, these lift curves at
different Re values answer part of the question posed in Eq. (5.19): The data
represent ¢; = f(Re). Again Re exerts little or no effect on ¢, except in the stalling
region.

On the same page as ¢; versus ¢, the variation of ¢, 4 versus « is also
given. It has only a slight variation with ¢ and is almost completely unaf-
fected by Re. Also note that the values of c,, 4 are slightly negative. By con-
vention, a positive moment is in a clockwise direction; it pitches the airfoil
toward larger angles of attack, as shown in Fig. 5.4. Therefore, for the NACA
2412 airfoil, with c,, 4 negative, the moments are counterclockwise, and the
airfoil tends to pitch downward. This is characteristic of all airfoils with posi-
tive camber.

On the page following ¢; and c,, .4, the variation of ¢, and c,, ,. is given
versus c¢,. Because c¢; varies linearly with ¢, the reader can visualize these
curves of ¢, and c,, ,. as being plotted versus « as well; the shapes will be the
same. Note that the drag curves have a “bucket” type of shape, with minimum
drag occurring at small values of ¢, (hence there are small angles of attack).
As « goes to large negative or positive values, ¢, increases. Also note that ¢,
is strongly affected by Re, there being a distinct drag curve for each Re. This
is to be expected because the drag for a slender aerodynamic shape is mainly
skin friction drag, and from Ch. 4 we have seen that Re strongly governs
skin friction. With regard to c,,,., the definition of the aerodynamic center is
clearly evident: c,,,. is constant with respect to ¢. It is also insensitive to Re
and has a small negative value.

Refer to Eq. (5.23): The airfoil data in App. D experimentally provide
the variation of ¢;, ¢,;, and c¢,, with o and Re. The effect of M., on the airfoil
coefficients will be discussed later. However, we emphasize that the data in
App. D were measured in low-speed subsonic wind tunnels; hence the flow
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was essentially incompressible. Thus, ¢, ¢4, €4 and ¢, given in App. D
are incompressible flow values. Keep this in mind during our subsequent
discussions.

In this section we have discussed the properties of an airfoil. As already
noted in Fig. 5.2, an airfoil is simply the shape of a wing section. The airfoils
in Figs. 5.3 through 5.5 and Figs. 5.7 and 5.8 are paper-thin sections—simple
drawings on a sheet of paper. So what does it mean when we talk about the lift,
drag, and moments on an airfoil? How can there be a lift on an airfoil that is
paper-thin? When we write Eq. (5.17) for the lift of an airfoil, what really is L?
The answer is given in Fig. 5.10. Here we see a section of a wing of constant
chord c. The length of the section along the span of the wing is unity (1 ft, 1 m,
or the like). The lift on this wing section L, as shown in Fig. 5.10a, is the lift per
unit span. The lift, drag, and moments on an airfoil are always understood to be
the lift, drag, and moments per unit span, as sketched in Fig. 5.10. The planform
area of the segment of unit span is the projected area seen by looking at the wing
from above—namely S = ¢(1) = ¢, as sketched in Fig. 5.10b. Hence, when we

L (per unit span)

(a)

—_— S=c()

f— — —=]

(b)

Figure 5.10 A wing segment of unit span.
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write Eq. (5.17) for an airfoil, we interpret L as the lift per unit span and § as the
planform area of a unit span; that is,

L (per unit span) = g..c{l)c, (5.24)

or o = L (per unit span) (5.25)

qeC

Finally, return to our road map in Fig. 5.1. We have begun to work our way
down the left column under airfoils. We have already accomplished a lot. We
have become familiar with airfoil nomenclature. Using dimensional analysis,
we have introduced the very important concept of aerodynamic coefficients, and
we have examined some experimental data for these coefficients. Make certain
you feel comfortable with these concepts before you continue.
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EXAMPLE 5.1

A model wing of constant chord length is placed in a low-speed subsonic wind tunnel,
spanning the test section. The wing has an NACA 2412 airfoil and a chord length of
1.3 m. The flow in the test section is at a velocity of 50 m/s at standard sea-level condi-
tions. If the wing is at a 4° angle of attack, calculate (@) c;, ¢4 and ¢, 4 and (b) the lift,
drag, and moments about the quarter chord, per unit span.

H Solution
a. From App. D, for an NACA 2412 airfoil at a 4° angle of attack,

¢, =0.63
Cpross =—0.035

To obtain c,;, we must first check the value of the Reynolds number:

_ PoVee _ (1.225 kg/m*)(50 m/s)(1.3 m)

1.789%10° k =4.45%10°
e 789%10° kg/(m)(s)

Re

For this value of Re and for ¢, = 0.63, from App. D,

b. Because the chord is 1.3 m and we want the aerodynamic forces and moments per
unit span (a unit length along the wing, perpendicular to the flow), S = ¢(1) = 1.3(1) =
1.3 m% Also

Ge =L P V.2 =1(1.225)(50)* =1531 N/m’

From Eq. (5.22),

L=q.Sc,=1531(1.3)(0.63) =
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Because 1 N =0.2248 1b, also

L=(1254 N)(0.2248 1b/N)=281.9 Ib
D=g.Sc, =1531(1.3)(0.007)=13.9 N
=13.9(0.2248)=3.13 Ib

Note: The ratio of lift to drag, which is an important aerodynamic quantity, is

L_a _1254_ 44,5

D ¢, 13.9
M.y = oS¢,y uc =1531(1.3)(=0.035)(1.3)
M., =—-90.6 N-m

EXAMPLE 5.3

The same wing in the same flow as in Example 5.1 is pitched to an angle of attack such
that the lift per unit span is 700 N (157 1b).

a. What is the angle of attack?

b. To what angle of attack must the wing be pitched to obtain zero lift?

H Solution
a. From the previous example,

¢ =1531 N/m® S=13m’

Thus Cl:L:&:O_:ﬂSZ
7S 1531(1.3)

From App. D for the NACA 2412 airfoil, the angle of attack corresponding to ¢;=0.352 is
a=1°

b. Also from App. D, for zero lift (that is, ¢; = 0),

The shape of the NASA LS(1)-0417 airfoil is shown in Fig. 4.55; this airfoil is the sub-
ject of Example 4.44. In that example, a constant-chord wing model with the NASA
LS(1)-0417 airfoil shape is mounted in a wind tunnel where both wing tips are flush with
the vertical sidewalls of the tunnel. Based on our discussion in the present section, the
measured data are therefore for an infinite wing. At a zero angle of attack, the drag on the
wing model is given in Example 4.44 to be 34.7 N when the flow in the test section is at
a velocity of 97 m/s at standard sea-level conditions. The chord length is 0.6 m and the
wingspan across the test section is 1 m. Hence, the measured drag of 34.7 N is the drag
per unit span, as discussed in the present section. Calculate the drag coefficient.



5.4 Airfoil Data

H Solution
1
Goo = Epmv; = %(1 .23)(97)’ =5786.5 N

D 34.7
TS (5786.5)0.6)1)

This result agrees with the measured drag coefficient for the LS(1)-0417 airfoil at
a zero angle of attack reported by Robert McGhee, William Beasley, and Richard Whit-
comb in “NASA Low- and Medium-Speed Airfoil Development,” Advanced Technology
Airfoil Research, vol. 2, NASA CP2046, March 1978, p. 13. This value of ¢, = 0.01 is
slightly higher than the corresponding values for the more conventional NACA airfoils
in App. D. We remarked in Example 4.44 that the LS(1)-0417 airfoil appears to have a
higher percentage of pressure drag than more conventional airfoil shapes.
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EXAMPLE 5.4

For some of the airfoils in App. D, additional data are provided that pertain to the case of
a simulated split flap deflected 60°. (The nature of flaps and their operation are discussed
in Sec. 5.17.) The effect of deflecting downward a flap at the trailing edge is to increase
both the lift and the magnitude of the moment at a given angle of attack of the airfoil. For
example, consider the data shown in App. D for the NACA 4412 airfoil. From the code
shown on the graph, the data for the simulated split flap deflected 60° are given by the
upside-down triangles. Calculate (a) the percentage increase in maximum lift coefficient
and (b) the percentage increase in the magnitude of the moment coefficient about the
quarter chord due to the flap deflection of 60°.

B Solution
a. From App. D for the NACA 4412 airfoil, letting (C, nax)1 and (Cy max)> denote the maxi-
mum lift coefficient with and without flap deflection, respectively, we have

(Cf,mux )1 = 27
(C(?,max )2 = ] 7

The percentage increase in maximum lift coefficient due to flap deflection is

2.7-1.7
Increase =| ——— [(100) =59 percent
(255 oo

b. Similarly, denoting the moment coefficient about the quarter chord for the cases with

and without flap deflection, denoted by (C,, ,,), and (C, _, ), respectively, we have
(C,,, )i ==0.305
(C,.,.).=-0.09

The percentage increase in the magnitude of the moment coefficient due to flap deflection is

Increase = [WJ(IOO) =
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EXAMPLE 5.6

For some of the airfoils given in App. D, additional given data pertain to the case of stan-
dard roughness. In this case, 0.011-in carborundum grains were applied to both the upper
and lower surfaces of the model from the leading edge to a location 0.08¢ downstream of
the leading edge. In this fashion the NACA researchers examined the influence of surface
roughness on airfoil performance, simulating a case more severe than the usual surface
roughness caused by manufacturing processes and ordinary deterioration in service, but
much less severe than the accumulation of ice, mud, or damage in military service. (For
more details, see the book by Abbott and von Doenhoff, pp. 143—148, listed in the bibli-
ography at the end of this chapter.) For the NACA 4412 airfoil in App. D at a Reynolds
number of 6x10°, calculate (a) the percentage decrease in maximum lift coefficient and
(b) the percentage increase in minimum drag coefficient due to the standard roughness.

H Solution

a. In App. D for the NACA 4412 airfoil, note that the data for standard roughness are
given for Re = 6 x 10°. Letting (Cy )1 and (Cy ), denote the maximum lift coefficient
with and without standard roughness, respectively, at Re = 6 x 10°, we have

(C{,max)l = 139
(Cé,max)Z = 163

The percentage decrease in maximum lift coefficient due to standard roughness is

Decrease = [%j(mo) =|14.7 percent

b. Similarly, denoting the minimum drag coefficient for the cases with and without stan-
dard roughness by (C, min)1 and (C, min)2, respectively, we have

(Cd,min )l = 001
(Cd,min )2 = 00062

The percentage increase in minimum drag coefficient due to standard roughness is

0.01-0.0062
Increase =—— (100) = |61 percent
o0y (100

Please note that in this book the subsequent use of App. D for further worked
examples and the homework problems at the end of the chapters will not involve the
airfoil data for simulated flap deflection or standard roughness. These are special cases
examined in Examples 5.4 and 5.5 only; these examples are designed simply to increase
your familiarity with the graphs in App. D.

Consider an NACA 23012 airfoil at 8 degrees of angle of attack. Calculate the normal and
axial force coefficients. Assume that Re = 8.8 x 10°.
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H Solution
From App. D, for the NACA 23012 airfoil at = 8°,
c, =10
¢, =0.0078
From Eq. (5.1), repeated here,
L=Ncoso— Asina (5.11)
L N A .
——=—_—_cosag———sina
4..S .S GosS

C¢=C,C08 OX—c,sin o (E5.6.1)

where ¢, and ¢, are the section normal and axial force coefficients. Similarly, Eq. (5.2)
leads to

c;=c,sin &+ c,cos a (E5.6.2)
Inserting ¢, and ¢, at o= 8° into Egs. (E 5.6.1) and (E 5.6.2),

1.0=¢,cos 8" —¢,sin 8°
or 1.0=0.990268 ¢,—00.139173 ¢, (E5.6.3)

and 0.0078=0.139173 ¢, +0.990268 ¢, (E 5.6.4)

Solving Egs. (E 5.6.3) and (E 5.6.4) simultaneously for ¢, and c,, we get

¢, =0.991
¢,=-0.131

A more direct approach to solving this problem that does not involve solving two
algebraic equations simultaneously is obtained by reexamining Fig. 5.4b, and expressing
N and A in terms of L and D, essentially the inverse of Egs. (5.1) and (5.2). From Fig. 5.4,

N=Lcos a+ D sin o (E5.6.5)
A=—L sin a¢+ D cos o (E5.6.6)
Thus, c,=C; COS O{+ ¢, sin (E5.6.7)
and ¢, =—C; sin ¢+ ¢, cos (E5.6.8)

From Egq. (E 5.6.7),
¢, =10 cos 8°+0.078 sin &°

¢, =1.0(0.990268)+0.0078 (0.139173)

¢, =[0.991

311



312

EXAMPLE 5.7

CHAPTER 5 Airfoils, Wings, and Other Aerodynamic Shapes

From Eq. (E 5.6.8),
c, =10 (0.139173)+0.0078 (0.990268)

¢, =[=0.131]

These numbers agree with those obtained earlier in the example.

Question: Why is the axial force coefficient negative; that is, why is the axial force
directed toward the leading edge? We can see the answer directly by examining Fig. 5.4b.
Note that the component of L projected along the chord line acts forward. The component
of D projected along the chord line acts rearward. In this example, lift is 128 times larger
than the drag, so the forward-facing component due to lift dominates the axial force, and
the axial force therefore acts forward. This is the case for many airfoils at sufficiently
positive angles of attack.

EXAMPLE 5.8

Laminar flow airfoils are discussed in Sec. 4.15, and a typical laminar flow airfoil is
shown in Fig. 4.45b. In the NACA airfoil nomenclature, the designation numbers for
laminar flow airfoils start with 6; these are the so-called “6-series” airfoils, some of which
are treated in App. D. In particular, for Re =9 X 10°, compare the lift and drag coefficients
of two symmetric airfoils at zero angle of attack: the classic four-digit NACA 0009 airfoil
and the laminar flow NACA 65-009 airfoil.

N Solution
From App. D, for the NACA 0009 airfoil at o= 0°,

¢, =0
This is really a trivial result; for all symmetric airfoils at zero angle of attack, ¢, =0. Mov-
ing to the drag coefficient graph, for ¢, =0,
¢, =0.0052

For the NACA 65-009 airfoil, ¢, =0 and
¢, =0.004

Note that the drag coefficient for the laminar flow airfoil is 23 percent lower than for the
standard four-digit airfoil. Also, study carefully the variation of ¢, for the laminar flow
airfoil. There is a rather sudden drop and bottoming-out of ¢, at small values of ¢, (hence
small values of angle of attack). This part of the curve is called the drag bucket, and is
characteristic of laminar flow airfoils. Note also the drag buckets for the 63-210, 64-210,
65-210, and 65-006 airfoils shown in App. D.

Consider the aerodynamic moments exerted on an airfoil, as discussed in Sec. 5.2. There
we noted that the value of the moment depends on the point on the airfoil about which
moments are taken. In the airfoil data in App. D, two moment coefficients are given: one
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LE (T M,,y
P ——

cl4 —=

Figure 5.11 Sketch of lift and moments on an airfoil.

about the quarter-chord point, c,, ,, and the other about the aerodynamic center, c,, .
Another convenient point on the airfoil about which to take moments is the leading edge,
as mentioned in Sec. 5.2. Derive an equation relating the moment coefficient about the
leading edge to lift coefficient and the moment coefficient about the quarter-chord point.

H Solution

Examine Fig. 5.11. Here, the lift L is shown acting through the quarter-chord point,
along with the moment about the quarter-chord point, M. (Note: The lift and moment
acting on the airfoil can be mechanically represented by the lift acting through any point
on the airfoil and the moment acting at that same point. In this example we choose to
put the lift acting through the quarter-chord point because the airfoil data in App. D
give the experimentally measured moment coefficient about the quarter-chord point.)
Keep in mind the convention that any moment that tends to increase the angle of attack
is positive, and that which tends to decrease the angle of attack is negative. With this,
from Fig. 5.11, we have

My =—LG)+ M,, (E5.8.1)

Dividing Eq. (E 5.8.1) by ¢.. S ¢, we have

Mg __ L (c + M.,
q..S¢ ¢..Sc\4 ) q.Sc
Ce
or Conir =_Z+Cmu/4 (E5.8.2)
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EXAMPLE 5.9

Consider the NACA 63-210 airfoil at 6° angle of attack. Calculate the moment coefficient
about the leading edge.

H Solution
From App. D, for the NACA 63-210 airfoil at o= 6°, we have

¢, =038; ¢, , =-0.04

Me/4
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From Eq. (E 5.8.2) obtained in Example 5.8,

Oy =——Ltc =_¥—0.04= -0.24

EXAMPLE 5.10

The question is sometimes asked: Can an airfoil product lift when it is flying upside-
down? In this example, we answer that question.

a. Consider, for example, an NACA 2415 airfoil flying right side up at an angle of attack
of 6°, as shown in Fig. 5.12a. The airfoil has a chord length of 1.5 m and is flying at a
standard altitude of 2 km at a velocity of 150 m/s. Calculate the lift per unit span.

b. Now, turn this airfoil upside-down, at the same flight conditions at an angle of attack
of 6°. Calculate the lift per unit span.

c. Compare and discuss the results.

H Solution
a. From App. D at a = 6°, ¢, = 0.8. From App. A at a standard altitude of 2 km, p =
0.90926 kg/km®. Therefore

Ge =+pV?=1(0.9026)(150)* =1.023%x10* N/m*

Thus, L{per unit span)=q., S ¢, =q.. c(1) ¢, =

(1.023x10*)(1.5)(1)(0.90926)={1.395 x 10* N

b. Examine the ¢, data for the NACA 2415 airfoil in App. D. Note that at an angle of
attack of —6°, the airfoil has ¢, = —0.44; this is negative lift with the lift vector pointing
downward. Now simply rotate this airfoil 180° about the relative wind direction so that
we see the picture shown in Fig. 5.12b, which is the upside-down airfoil at an angle of
attack of 6°. Now the lift vector points upward. For this case,

L(per unit span)=q.. S ¢, = (1.023x10*)(1.5)(0.44) =|0.675x10* N

c. Clearly, an airfoil flying upside-down can produce lift. The answer to the question
originally posed is clearly yes. However, for a positively cambered airfoil such as the
NACA 2415, because the zero-lift angle is a negative value (¢r;-, = —2° in this case), in

L
L
e NACA 2415 -
6 NACA 24735
Voo RIGHT-SIDE UP Ve UPSIDE DOWN

(@) (b)
Figure 5.12 An NACA 2415 airfoil flying (a) right side up, and (b) upside-down.
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its upside-down orientation, the airfoil will produce a smaller lift than when it is right side
up at the same angle of attack. In this example,

Right side up: L=1.395x10* N
Upside-down: L=0.695x10* N

In its upside-down orientation, the airfoil produces 48 percent of the lift produced in the
right-side-up orientation.
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5.5 INFINITE VERSUS FINITE WINGS

As stated in Sec. 5.4, the airfoil data in App. D were measured in low-speed sub-
sonic wind tunnels where the model wing spanned the test section from one side-
wall to the other. In this fashion, the flow sees essentially a wing with no wing
tips; that is, the wing in principle could be stretching from plus infinity to minus
infinity in the spanwise direction. Such an infinite wing is sketched in Fig. 5.13,
where the wing stretches to *ec in the z direction. The flow about this wing varies
only in the x and y directions; for this reason the flow is called two-dimensional.
Thus, the airfoil data in App. D apply only to such infinite (or two-dimensional)
wings. This is an important point to keep in mind.

In contrast, all real airplane wings are obviously finite, as sketched in
Fig. 5.14. Here the top view (planform view) of a finite wing is shown, where
the distance between the two wing tips is defined as the wingspan b. The area
of the wing in this planform view is designated, as before, by S. This leads to
an important definition that pervades all aerodynamic wing considerations—the
aspect ratio AR:

2

Aspect ratio= AR = % (5.26)

The importance of AR will come to light in subsequent sections.

Figure 5.13 Infinite (two-dimensional) wing.
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Right wing tip

Lfm -
————— b = Wingspan

Left wing tip

Figure 5.14 Finite wing; plan view (top).

The flow field about a finite wing is three-dimensional and is therefore inher-
ently different from the two-dimensional flow about an infinite wing. As a result,
the lift, drag, and moment coefficients for a finite wing with a given airfoil shape
at a given o differ from the lift, drag, and moment coefficients for an infinite wing
with the same airfoil shape at the same . For this reason the aerodynamic coef-
ficients for a finite wing are designated by capital letters C;, Cp, and C,; this is
in contrast to those for an infinite wing, which we have been designating as ¢,
cq and c,,. Note that the data in App. D are for infinite (two-dimensional) wings;
that is, the data are for ¢, ¢, and c,. In a subsequent section we will show how
to obtain the finite-wing aerodynamic coefficients from the infinite-wing data
in App. D. Our purpose in this section is simply to underscore that there is a
difference.

5.6 PRESSURE COEFFICIENT

We continue with our parade of aerodynamic definitions. Consider the pressure
distribution over the top surface of an airfoil. Instead of plotting the actual pres-
sure (say in units of newtons per square meter), we define a new dimensionless
quantity called the pressure coefficient C,:

P— P _ PP
c PP 5.27
T e 1PV 27
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Upper surface

0 x/e

Lower surface

1LOF

Figure 5.15 Distribution of pressure coefficient over the top
and bottom surfaces of an NACA 0012 airfoil at 3.93° angle of
attack. M., = 0.345, Re = 3.245 x 10°. Experimental data from
Ohio State University, in NACA Conference Publication 2045,
part I, Advanced Technology Airfoil Research, vol. 1, p. 1590.
(Source: After Freuler and Gregorek.)

The pressure distribution is sketched in terms of C, in Fig. 5.15. This figure
is worth looking at closely because pressure distributions found in the aerody-
namic literature are usually given in terms of the dimensionless pressure coef-
ficient. Note from Fig. 5.15 that C, at the leading edge is positive because p > p...
However, as the flow expands around the top surface of the airfoil, p decreases
rapidly, and C, goes negative in those regions where p < p... By convention, plots
of C, for airfoils are usually shown with negative values above the abscissa, as
shown in Fig. 5.15.

The pressure coefficient is an important quantity; for example, the distri-
bution of C, over the airfoil surface leads directly to the value of ¢, as will be
discussed in Sec. 5.11. Moreover, considerations of C, lead directly to the cal-
culation of the effect of Mach number M., on the lift coefficient. To set the stage
for this calculation, consider C, at a given point on an airfoil surface. The airfoil
is a given shape at a fixed angle of attack. We can measure the value of C, by
testing the airfoil in a wind tunnel. Assume that, at first, V.. in the tunnel test sec-
tion is low, say M., < 0.3, such that the flow is essentially incompressible. The
measured value of C, at the point on the airfoil will therefore be a low-speed
value. Let us designate the low-speed (incompressible) value of C, by C,,. If
V. is increased but M., is still less than 0.3, then C, will not change; that is, C,
is essentially constant with velocity at low speeds. However, if we now increase
V.. such that M., > 0.3, then compressibility becomes a factor, and the effect of
compressibility is to increase the absolute magnitude of C, as M., increases. This
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variation of C, with M., is shown in Fig. 5.16. Note that at M., = 0, C, = C,,.
As M., increases to M., = 0.3, essentially C, is constant. However, as M., is in-
creased beyond 0.3, C, increases dramatically. (That is, the absolute magnitude
increases: If C,, is negative, C, will become an increasingly negative number as
M., increases, whereas if C, is positive, C, will become an increasingly positive
number as M., increases.) The variation of C, with M., for high subsonic Mach
numbers was a major focus of aerodynamic research after World War II. An ap-
proximate theoretical analysis yields

c,=—Cro

N Y

Equation (5.28) is called the Prandtl-Glauert rule. It is reasonably accurate for
0.3<M.. <0.7. For M., > 0.7, its accuracy rapidly diminishes; indeed, Eq. (5.28)
predicts that C, becomes infinite as M., goes to unity—an impossible physical
situation. (Nature abhors infinities as well as discontinuities that are sometimes
predicted by mathematical, but approximate, theories in physical science.) There
are more accurate, but more complicated, formulas than Eq. (5.28) for near-sonic
Mach numbers. However, Eq. (5.28) will be sufficient for our purposes.
Formulas such as Eq. (5.28), which attempt to predict the effect of M., on C,
for subsonic speeds, are called compressibility corrections; that is, they modify
(correct) the low-speed pressure coefficient C, to take into account the effects of
compressibility, which are so important at high subsonic Mach numbers.

(5.28)

|
<
=

T

C, at a point on an airfoil of fixed shape

and angle of attack

1 | | |
0 0.2 0.4 0.6 0.8 1.0 M.

Figure 5.16 Plot of the Prandtl-Glauert rule for C,, =-0.5.
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EXAMPLE 5.11

The pressure at a point on the wing of an airplane is 7.58 x 10* N/m?. The airplane is fly-
ing with a velocity of 70 m/s at conditions associated with a standard altitude of 2000 m.
Calculate the pressure coefficient at this point on the wing.

H Solution
For a standard altitude of 2000 m,

P =7.95%x10* N/m>
P =1.0066 kg/m®
Thus g.. = Lp..V2 =1(1.0066)(70)> = 2466 N/m’. From Eq. (5.27),
_ p—pe _(1.58-7.95)x10*
" g 2466
C,=-1.5

P

EXAMPLE 5.12

Consider an airfoil mounted in a low-speed subsonic wind tunnel. The flow velocity in
the test section is 100 ft/s, and the conditions are standard sea level. If the pressure at a
point on the airfoil is 2102 Ib/ft?, what is the pressure coefficient?

H Solution
Qoo = L P V.2 =1(0.002377 slug/ft*)(100 ft/s)* =11.89 Ib/ft>
From Eq. (5.27),

Cp: P~ Do _ 2102—21]6:
oo 11.89

EXAMPLE 5.13

In Example 5.12, if the flow velocity is increased so that the free-stream Mach number is
0.6, what is the pressure coefficient at the same point on the airfoil?

H Solution
First, what is the Mach number of the flow in Example 5.12? At standard sea level,

T.=518.69° R

Hence a.. = \JYRT., =/1.4(1716)(518.69) = 1116 ft/s

Thus, in Example 5.12, M., = V../a..= 100/1116 = 0.09—a very low value. Hence the flow
in Example 5.12 is essentially incompressible, and the pressure coefficient is a low-speed
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value; that is, C,, = —1.18. If the flow Mach number is increased to 0.6, from the Prandtl—-
Glauert rule, Eq. (5.28),

EXAMPLE 5.15

An airplane is flying at a velocity of 100 m/s at a standard altitude of 3 km. The pressure
coefficient at a point on the fuselage is —2.2. What is the pressure at this point?

H Solution
For a standard altitude of 3 km = 3000 m, p., = 7.0121 x 10* N/m? and p.. =
0.90926 kg/m?*. Thus

Goe = L p..V.2 =1(0.90926)(100)* = 4546 N/m”

From Eq. (5.27),

sz P~ Do
(oo

or P=GuCp+ poo =(4546)(=2.2)+7.10121x10* =[6.01x10* N/m”

Note: This example illustrates a useful physical interpretation of pressure coefficient.
The pressure coefficient represents the local pressure in terms of the “number of
dynamic pressure units” above or below the free-stream pressure. In this example, the
local pressure was found to be 6.01 x 10* N/m?. This value of p is equivalent to the free-
stream pressure minus 2.2 times the dynamic pressure; p is 2.2 “dynamic pressures”
below the free-stream pressure. So, when you see a number for C,, that number gives
you an instant feel for the pressure itself in terms of multiples of g., above or below the
free-stream pressure. In this example, C, is negative, so the pressure is below the free-
stream pressure. If C, = 1.5, the pressure would be 1.5 “dynamic pressures” above the
free-stream pressure.

Consider two different points on the surface of an airplane wing flying at 80 m/s. The
pressure coefficient and flow velocity at point 1 are —1.5 and 110 m/s, respectively. The
pressure coefficient at point 2 is —0.8. Assuming incompressible flow, calculate the flow
velocity at point 2.

H Solution
From Eq. 5.27,

” :g O P|— Poo =l]°oC,,1
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Similarly,

Py = Pe
Cpl :Z— Or Dr — Do :qoocpz

oo

Subtracting,
p=r=4.(C, =C,)
From Bernoulli’s equation,

Pt %Pvlz =D +%pV22

or pi—p=%p(Vs = V)

2 2
p=p_| Vo | |V
Goo Vo |7

Substituting the earlier expression for p, — p, in terms of C,, and C,,, we have
2 2
w(CuC) (V') (v
Goo V. V.

2 2
V, Vi
. er-co it

Note: This expression by itself is interesting. In a low-speed incompressible flow, the dif-
ference between the pressure coefficients at two different points is equal to the difference
in the squares of the velocities, nondimensionalized by the free-stream velocity, between
the two points.

Putting in the numbers, we have

2 2
_1.5_<_0.8):[%] (L)
[&J 119
V.

vV, =1.19V2 =1.19(80)

V,=87.3m/s

Note: The solution did not require explicit knowledge of the density. This is because we
dealt with pressure difference in terms of the difference in pressure coefficient, which, in
turn, is related to the difference of the squares of the nondimensional velocity through
Bernoulli’s equation.

2
Because ¢..=+pV.., we have
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5.7 OBTAINING LIFT COEFFICIENT FROM C,

If you are given the distribution of the pressure coefficient over the top and
bottom surfaces of an airfoil, you can calculate ¢, in a straightforward manner.
Consider a segment of an infinite wing, as shown in Fig. 5.17. Assume that the
segment has unit span and chord c. The wing is at an angle of attack o. Let x
be the direction measured along the chord, and let s be the distance measured
along the surface from the leading edge, as shown in Fig. 5.17. Consider the
infinitesimally small sliver of surface area of length ds and unit length in the
span direction, as shown by the shaded area in Fig. 5.17. The area of this sur-
face is 1 ds. The dashed line ab is perpendicular to chord c. The solid line ac is
locally perpendicular to the shaded area. The angle between ab and ac is 6. The
aerodynamic force on the shaded area is p(1) ds, which acts in the direction of
ac, normal to the surface. Its component in the direction normal to the chord
is (p cos 6)(1) ds. Adding a subscript u to designate the pressure on the upper
surface of the airfoil, as well as a minus sign to indicate that the force is directed
downward (we use the convention that a positive force is directed upward), we
see that the contribution to the normal force of the pressure on the infinitesimal
strip is —p, cos @ ds. If all the contributions from all the strips on the upper sur-
face are added from the leading edge to the trailing edge, we obtain, by letting ds
approach 0, the integral

— " 6d
COS R)
LE Pu

Figure 5.17 Sketch showing how the pressure distribution can be
integrated to obtain normal force per unit span, leading to lift per
unit span.



5.7 Obtaining Lift Coefficient from Cp

This is the force in the normal direction due to the pressure distribution acting
on the upper surface of the wing, per unit span. Recall the definition of normal
and axial forces N and A, respectively, discussed in Sec. 5.2 and sketched in
Fig. 5.4a. The integral just given is the part of NV that is due to the pressure acting
on the upper surface. A similar term is obtained that is due to the pressure dis-
tribution acting on the lower surface of the airfoil. Letting p, denote the pressure
on the lower surface, we can write for the total normal force acting on an airfoil
of unit span

TE [TE
N=["p coso ds— [ p, cos ds (5.29)

From the small triangle in the box in Fig. 5.17, we see the geometric relationship
ds cos 0 = dx. Thus, in Eq. (5.29) the variable of integration s can be replaced by
x, and at the same time the x coordinates of the leading and trailing edges become
0 and c, respectively. Thus, Eq. (5.29) becomes

N=| pdc-] pdx (5.30)
Adding and subtracting p.., we find that Eq. (5.30) becomes

N= [t podx=[ (p, - prax (5.31)

Putting Eq. (5.31) on the shelf for a moment, we return to the definition of
normal and axial forces N and A, respectively, in Fig. 5.4b. We can define the
normal and axial force coefficients for an airfoil, ¢, and c,, respectively, in the
same manner as the lift and drag coefficients given by Eq. (5.22); that is,

n:i:i (5.32)
4sS gt

ca:i:i (5.33)
4.5 guC

Hence, the normal force coefficient ¢, can be calculated from Egs. (5.31) and
(5.32) as

1 (cp —po, 1 (ep,— P
g == [T e gy 2 [ PuT P gy (5.34)
€% Qo €7 g
Note that
Pr7 P =C,, =pressure coefficient on lower surface
(oo
Do Pe =C, , =pressure coefficient on lower surface

e
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Hence Eq. (5.34) becomes

[
¢== Jic,i—c,dx (5.35)

Equation (5.35) gives the normal force coefficient directly in terms of the inte-
gral of the pressure coefficient over the surface of the airfoil.

How is this related to the lift coefficient? The answer is given by Eq. (5.1),
repeated here:

L=N cosa—Asino 5.1

Dividing Eq. (5.1) by g.. S = g..c, we have

L N A .
—— =——coso———sina
GoC  GsC GsoC
or ’c, =c,co80—c,sino (5.36)

Given ¢, and c,, Eq. (5.36) allows the direct calculation of ¢, Equation (5.35)
is an expression for ¢, in terms of the integral of the pressure coefficients. [In
Eq. (5.35) we have ignored the influence of shear stress, which contributes very
little to normal force.] A similar expression can be obtained for ¢, involving
an integral of the pressure coefficient and an integral of the skin friction coef-
ficient. Such an expression is derived in Ch. 1 of Anderson, Fundamentals of
Aerodynamics, 4th ed., McGraw-Hill, 2007; this is beyond the scope of our dis-
cussion here.

Consider the case of small angle of attack—say o« < 5°. Then, in Eq. (5.36),
cos o= 1 and sin = 0. Eq. (5.36) yields

¢ =c, (5.37)
and combining Eqs. (5.37) and (5.35), we have

[
== Jic,i~c,dx (5.38)

Most conventional airplanes cruise at angles of attack of less than 5°, so
for such cases, Eq. (5.38) is a reasonable representation of the lift coefficient in
terms of the integral of the pressure coefficient. This leads to a useful graphical
construction for ¢;. Consider a combined plot of C,, and C,; as a function of x/c,
as sketched in Fig. 5.18. The area between these curves is precisely the integral
on the right side of Eq. (5.35). Hence, this area, shown as the shaded region in
Fig. 5.18, is precisely equal to the normal force coefficient. In turn, for small
angles of attack, from Eq. (5.38), this area is essentially the lift coefficient, as
noted in Fig. 5.18.
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Pt

i,’f"f;oeff.c,en

Pressure coefficient C,,

Figure 5.18 Sketch of the pressure coefficient over the upper and
lower surfaces of an airfoil showing that the area between the two
curves is the lift coefficient for small angles of attack.

EXAMPLE 5.16

Consider an airfoil with chord length ¢ and the running distance x measured along the
chord. The leading edge is located at x/c = 0 and the trailing edge at x/c = 1. The pressure
coefficient variations over the upper and lower surfaces are given, respectively, as

2
C,. =1—300(1] for0<X<0.1
c C
C,,=-22277+2.2777%  for0.1<2<1.0
C c
C,, =1-0.95 for0<Z<1.0
C c

Calculate the normal force coefficient.

H Solution
From Eq. (5.39),

X
Cc

1 (e
:;jo(‘cpl c,ndx=['c,,-c, )d(—]

r(fiomsZ )21l ()

—j1‘“(—2.2277+2.2777£]d(£]
0.1 c

c
xl X :
- —0.475(—]
Clo C

1

X 0.1 X 3
_x +100(—J
. clo ¢

¢, =1-0.475-0.1+0.1+2.2277-0.22277-1.1388+0.011388 =

0.1 1.0

C

n

1.0 2
1222774 _1.1388(i]
Clog c

0 0.1
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Note that the C, variations given analytically in this problem are only crude representa-
tions of a realistic case and should not be taken too seriously; the purpose of this example
is simply to illustrate the use of Eq. (5.35).

EXAMPLE 5.17

5.8 COMPRESSIBILITY CORRECTION
FOR LIFT COEFFICIENT

The pressure coefficients in Eq. (5.38) can be replaced by the compressibility
correction given in Eq. (5.28), as follows:
c = 1 ¢ (Cp,l _Cp,u )() d.x _ ]
== | el e =
c 0 Ji-M2 JI-M.

where again the subscript O denotes low-speed incompressible flow values.
However, referring to the form of Eq. (5.38), we see that

I fe
- [ic,i~c, 00 ax (539

1 re
ZJ.O (Cp,l - Cp,u)o dx=c¢;,

where ¢, is the low-speed value of the lift coefficient. Thus, Eq. (5.39) becomes

=k (5.40)

J1-M2

Equation (5.40) gives the compressibility correction for the lift coefficient. It
is subject to the same approximations and accuracy restrictions as the Prandtl-
Glauert rule, Eq. (5.28). Also note that the airfoil data in App. D were obtained
at low speeds; hence the values of lift coefficient obtained from App. D are cy.
Finally, in reference to Eq. (5.19), we now have a reasonable answer to how
¢; varies with Mach number. For subsonic speeds, except near Mach 1, the lift

coefficient varies inversely as (1-M2)">.

Consider an NACA 4412 airfoil at an angle of attack of 4°. If the free-stream Mach num-
ber is 0.7, what is the lift coefficient?

H Solution
From App. D, for ov=4°, ¢, = 0.83. However, the data in App. D were obtained at low
speeds; hence the lift coefficient value obtained (0.83) is really c¢;:

=083

For high Mach numbers, this must be corrected according to Eq. (5.40):
T 083
(l—Mozo)”z (1_0.72)1/2

lc=1.16 atM.=0.7]

(9]
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EXAMPLE 5.18

For the same NACA 4412 airfoil at the same conditions given in Example 5.17, obtain
the moment coefficient about the quarter-chord point.

H Solution

As shown in Fig. 5.5, the moments on an airfoil are generated by the pressure distribution
over the surface; the influence of shear stress is negligible. Therefore, the compressibility
effect on moment coefficients should be the same as the compressibility effect on pres-
sure coefficient; in other words, the Prandtl-Glauert rule applies to moment coefficients.
Thus, we can write

c — (C"‘r/4 )o
me /4 (1 _ Mi

where (cm, u )0 is the incompressible value of the moment coefficient and ¢ is

mer4

the compressible value of the moment coefficient. From App. D for o = 4°, we have
(€. )o =—0.99 . Thus

_ (Cm(~/4)(1 — —0.09 =1-0.126

Cmc -
fo-m2 1-0.77

EXAMPLE 5.19

Consider an NACA 23012 airfoil in a Mach 0.8 free stream. The lift coefficient is 0.92.
What is the angle of attack of the airfoil?

H Solution
The value of ¢, =0.92 is the real, compressible value at M., = 0.8. In turn, the equivalent
incompressible value is found from

Cy 0

J1-M2
or Cra=coy1-M2 =0.92 \1-(0.8)° =0.92 (0.6)=0.552

The incompressible value is what is plotted in App. D. Hence, for App. D, for ¢,,=0.552,

Cy =

o

o=4

5.9 CRITICAL MACH NUMBER AND CRITICAL
PRESSURE COEFFICIENT

Consider the flow of air over an airfoil. We know that as the gas expands around
the top surface near the leading edge, the velocity and hence the Mach number
will increase rapidly. Indeed, there are regions on the airfoil surface where the
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local Mach number can be greater than M... Imagine that we put a given airfoil
in a wind tunnel where M., = 0.3 and that we observe the peak local Mach num-
ber on the top surface of the airfoil to be 0.435. This is sketched in Fig. 5.19a.
Imagine that we now increase M., to 0.5; the peak local Mach number will cor-
respondingly increase to 0.772, as shown in Fig. 5.19b. If we further increase M.,
to a value of 0.61, we observe that the peak local Mach number is 1.0: locally
sonic flow on the surface of the airfoil. This is sketched in Fig. 5.19¢. Note that
the flow over an airfoil can locally be sonic (or higher) even though the free-
stream Mach number is subsonic. By definition, the free-stream Mach number
at which sonic flow is first obtained somewhere on the airfoil surface is called
the critical Mach number of the airfoil. In the preceding example, the critical
Mach number M, for the airfoil is 0.61. As we will see later, M, is an important
quantity because at some free-stream Mach number above M., the airfoil will
experience a dramatic increase in drag.

Returning to Fig. 5.19, we see that the point on the airfoil where the local M
is a peak value is also the point of minimum surface pressure. From the defini-
tion of the pressure coefficient, Eq. (5.27), C, will correspondingly have its most
negative value at this point. Moreover, according to the Prandtl-Glauert rule,
Eq. (5.28), as M., is increased from 0.3 to 0.61, the value of C, at this point will
become increasingly negative. This is sketched in Fig. 5.20. The specific value
of C, that corresponds to sonic flow is defined as the critical pressure coefficient
C, o In Fig. 5.19a and 5.19b, C, at the minimum pressure point on the airfoil is
less negative than C,,; however, in Fig. 5.19¢, C, = C,, (by definition).

Mpcak =0.435

My=023
> C:A

(a)

Mpear = 0.772
70 (-.x
——r
(b)
e —— - Mpear. = 1.0, sonic flow first encountered on airfoil

———— e

Critical Mach number
for the airfoil

(c}

Figure 5.19 Illustration of critical Mach number.
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I Here the flow goes

: sonic at the minimum
| pressure point on

: the airfoil

(' at point of maximum velocity
(minimum pressure) on the airfoil

|
|
|
ler

A

+)| i

Figure 5.20 Illustration of critical pressure coefficient.

Consider now three different airfoils ranging from thin to thick, as shown in
Fig. 5.21. Concentrate first on the thin airfoil. Because of the thin, streamlined
profile, the flow over the thin airfoil is only slightly perturbed from its free-
stream values. The expansion over the top surface is mild; the velocity increases
only slightly; the pressure decreases only a relatively small amount; and hence
the magnitude of C, at the minimum pressure point is small. Thus, the variation
of C, with M., is shown as the bottom curve in Fig. 5.21. For the thin airfoil, C,,
is small in magnitude, and the rate of increase of C, as M., increases is also rela-
tively small. In fact, because the flow expansion over the thin airfoil surface is
mild, M., can be increased to a large subsonic value before sonic flow is encoun-
tered on the airfoil surface. The point corresponding to sonic flow conditions on
the thin airfoil is labeled point @ in Fig. 5.21. The values of C, and M., at point a
are C, ., and M,,, respectively, for the thin airfoil, by definition.

Now consider the airfoil of medium thickness. The flow expansion over the
leading edge for this medium airfoil will be stronger; the velocity will increase
to larger values; the pressure will decrease to lower values; and the absolute
magnitude of C, is larger. Thus, the pressure coefficient curve for the medium-
thickness airfoil will lie above that for a thin airfoil, as demonstrated in Fig. 5.21.
Moreover, because the flow expansion is stronger, sonic conditions will be ob-
tained sooner (at a lower M.,.). Sonic conditions for the medium airfoil are la-
beled as point b in Fig. 5.21. Note that point b is to the left of point a; that is, the
critical Mach number for the medium-thickness airfoil is less than M., for the
thin airfoil. The same logic holds for the pressure coefficient curve for the thick
airfoil, where C,, and M, are given by point c. We emphasize that the thinner
airfoils have higher values of M. As we will see, this is desirable; that is why all
airfoils on modern, high-speed airplanes are relatively thin.

The pressure coefficient curves in Fig. 5.21 are shown as solid curves. On
these curves, only points a, b, and c are critical pressure coefficients, by defini-
tion. However, these critical points by themselves form a locus represented by
the dotted curve in Fig. 5.21; that is, the critical pressure coefficients themselves
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Thick airfoil

-1.5

Medium airfoil

C, at minimum pressure point on the airfoil

Thin airfoii

R —
\
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|| | \\
b | ~
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Figure 5.21 Critical pressure coefficient and critical Mach numbers for airfoils of different

thicknesses.

are given by a curve of C,, = f(M..), as labeled in Fig. 5.21. Let us proceed to
derive this function. It is an important result, and it also represents an interesting

application of our aerodynamic relationships developed in Ch. 4.

First consider the definition of C, from Eq. (5.27):

_P=Pe_Dw| P
cp____(__lj
72 oo \ Peo

From the definition of dynamic pressure,

2
qmzlpmvj’—lpm 1 Ve

2777 2 9p, 2 YPeo /P

(YPIVit = = —=—(¥Ps)

(5.41)
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However, from Eq. (4.53), a2, = ¥p../ p.. Thus

1 Vof Y 2
S R v
q 22 144 2p (5.42)

We will return to Eq. (5.42) in a moment. Now recall Eq. (4.74) for isentropic

flow:
_ yi(r-1
P _ (1 e j
p 2

This relates the total pressure p, at a point in the flow to the static pressure p and
local Mach number M at the same point. Also, from the same relation,

_ Y-
Po _ (l I aLyVi J
Peo 2

This relates the total pressure p, in the free stream to the free-stream static pres-
sure p., and Mach number M... For an isentropic flow, which is a close approxi-
mation to the actual, real-life, subsonic flow over an airfoil, the total pressure
remains constant throughout. (We refer to more advanced books in aerodynam-
ics for proof of this fact.) Thus, if the two previous equations are divided, p, will
cancel, yielding

» {H;(y— 1)M30T”” (5.43)

Pe L1+ir-DM’

Substitute Egs. (5.42) and (5.43) into Eq. (5.41):

Yy
c =p_m(i_1]= Pes {Hi(?’—l)Mi} 1

" e\ P JYPME [ 1+4(y-1)M°

For a given free-stream Mach number M.., Eq. (5.44) relates the local value
of C, to the local M at any given point in the flow field and hence at any given
point on the airfoil surface. Let us pick the particular point on the surface where
M = 1. Then, by definition, C, = C,,. Putting M = 1 into Eq. (5.44), we obtain

2 2+ (p-nym2 "
c { =1 } -1 (5.45)

P M2 y+1
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Equation (5.45) gives the desired relation C, ., = f(M..). When numbers are fed
into Eq. (5.45), the dotted curve in Fig. 5.21 results. Note that as M., increases,
C, . decreases.

Commentary Pause for a moment, and let us review what all this means. In the
author’s experience, the concepts of critical Mach number and critical pressure
coefficients are difficult for the first-time reader to fully understand. So let us
elaborate. Equations (5.44) and (5.45) are strictly aerodynamics; they have noth-
ing to do with the shape or angle of attack of a given airfoil. Indeed, Eq. (5.44)
for a compressible flow plays a role analogous to that of Bernoulli’s equation
for an incompressible flow. For an incompressible flow, Bernoulli’s equation,
Eq. (4.9), written between the free-stream point where the pressure and velocity
are p.. and V.., respectively, and another arbitrary point in the flow field where
the pressure and velocity are p and V, respectively, is

P—Du=1p(V2-V?) (5.46)

For the given free-stream conditions of p.. and V.., at any other point in the incom-
pressible flow where the local velocity is V, the pressure p at that point is obtained
from Eq. (5.46). Now focus on Eq. (5.44). Here we are dealing with a compress-
ible flow, where Mach number rather than velocity plays the controlling role. For
the given free-stream M., at any other point in the compressible flow where the
local Mach number is M, the pressure coefficient at that point is obtained from
Eq. (5.44); hence the analogy with Bernoulli’s equation. This in turn reflects on
Eq. (5.45). Consider a flow with a free-stream Mach number M... Assume that at
some local point in this flow, the local Mach number is 1. Equation (5.45) gives
the value of the pressure coefficient at this local point where we have Mach 1.
Again we define the value of the pressure coefficient at a point where M =1 as the
critical pressure coefficient C, .. Hence, when M in Eq. (5.44) is set equal to 1, the
corresponding value of the pressure coefficient at that same point where M = 1 is,
by definition, the critical pressure coefficient. It is given by Eq. (5.45), obtained
by setting M = 1 in Eq. (5.44). If we graph the function given in Eq. (5.45)—that
is, if we make a plot of C,, versus M..—we obtain the dashed curve in Fig. 5.21.
The fact that C,, decreases as M., increases makes physical sense. For ex-
ample, consider a free stream at M., =0.5. To expand this flow to Mach 1 requires
arelatively large pressure change p — p.. and therefore a relatively large (in mag-
nitude) pressure coefficient because, by definition, C, = (p — p..)/q... However,
consider a free stream at M., = 0.9. To expand this flow to Mach 1 requires a
much smaller pressure change; that is, p — p.. is much smaller in magnitude.
Hence, the pressure coefficient C, = (p — p..)/q.. will be smaller in magnitude.
As aresult, C,., decreases with M.., as shown by the dashed curve in Fig. 5.21.
Moreover, this dashed curve is a fixed “universal” curve—it is simply rooted in
pure aerodynamics, independent of any given airfoil shape or angle of attack.

How to Estimate the Critical Mach Number for an Airfoil Consider
a given airfoil at a given angle of attack. How can we estimate the criti-
cal Mach number for this airfoil at the specified angle of attack? We will
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discuss two approaches to the solution: a graphical solution and an analytical
solution.
The graphical solution involves several steps:

1. Obtain a plot of C,, versus M., from Eq. (5.45). This is illustrated by curve
A in Fig. 5.22. As discussed previously, this curve is a fixed “universal”
curve that you can use for all such problems.

2. For low-speed, essentially incompressible flow, obtain the value of the
minimum pressure coefficient on the surface of the airfoil. The minimum
pressure coefficient corresponds to the point of maximum velocity on
the airfoil surface. This minimum value of C, must be given to you from
either experimental measurement or theory. This is C,, shown as point B in
Fig. 5.22.

3. Using Eq. (5.28), plot the variation of this minimum coefficient versus M...
This is illustrated by curve C in Fig. 5.22.

4. Where curve C intersects curve A, the minimum pressure coefficient on
the surface of the airfoil is equal to the critical pressure coefficient. This
intersection point is denoted by point D in Fig. 5.22. For the conditions
associated with this point, the maximum velocity on the airfoil surface is
exactly sonic. The value of M., at point D is then, by definition, the critical
Mach number.

The analytical solution for M., is obtained as follows. Equation (5.28), re-
peated here, gives the variation of C, at a given point on the airfoil surface as a
function of M..:

(5.28)

Cpo

Mcr Mw

Figure 5.22 Determination of critical Mach number.
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At some location on the airfoil surface, C,, will be a minimum value correspond-
ing to the point of maximum velocity on the surface. The value of the mini-
mum pressure coefficient will increase in absolute magnitude as M. is increased,
owing to the compressibility effect discussed in Sec. 5.6. Hence, Eq. (5.28) with
C,, being the minimum value on the surface of the airfoil at essentially incom-
pressible flow conditions (M., < 0.3) gives the value of the minimum pressure
coefficient at a higher Mach number M... However, at some value of M., the
flow velocity will become sonic at the point of minimum pressure coefficient.
The value of the pressure coefficient at sonic conditions is the critical pressure
coefficient, given by Eq. (5.45). When the flow becomes sonic at the point of
minimum pressure, the pressure coefficient given by Eq. (5.28) is precisely the
value given by Eq. (5.45). Equating these two relations, we have

o 2 [l

N A y+1

The value of M., that satisfies Eq. (5.47) is the value at which the flow becomes
sonic at the point of maximum velocity (minimum pressure). That is, the value
of M., obtained from Eq. (5.47) is the critical Mach number for the airfoil. To
emphasize this, we write Eq. (5.47) with M., replaced by M.,:

(5.47)

(5.48)

Coo___2 J2eg=nme |7
JI-M2 YM;, y+1

Equation (5.48) allows a direct analytical estimate for the critical Mach number
of a given airfoil at a given angle of attack. Note that Eq. (5.48) must be solved
implicitly for M.,—for example, by trial and error, guessing at a value of M,
seeing if it satisfies Eq. (5.48), and then trying again.

Please note that Eq. (5.48) is simply an analytical representation of point D
in Fig. 5.22, where curves A and C intersect.

Consider the NACA 0012 airfoil, the shape of which is shown at the top of Fig. 5.23. The
pressure coefficient distribution over the surface of the airfoil at a zero angle of attack is
shown at the bottom of Fig. 5.23. These are low-speed values measured in a wind tun-
nel at Re = 3.65 x 10°. From this information, estimate the critical Mach number of the
NACA 0012 airfoil at a zero angle of attack.

H Solution

First we will carry out a graphical solution, and then we will check the answer by carrying
out an analytical solution.

a. Graphical solution
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al=

al=

Figure 5.23 Low-speed pressure coefficient
distribution over the surface of a NACA
0012 airfoil at zero angle of attack.

Re =3.65 x 10°.

(Source: After R. J. Freuler and

G. M. Gregorek, “An Evaluation of Four

Single Element Airfoil Analytical Methods,” in
Advanced Technology Airfoil Research, NASA CP
2045, 1978, pp. 133-162.)

Let us accurately plot the curve of C,. versus M., represented by curve A in
Fig. 5.22. From Eq. (5.45), repeated here,

2 e
yM2 y+1

C

p.cr

for y = 1.4, we can tabulate

Mm| 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0
-3.66 | -2.13 | -129 | -0779 | -0435 | -0.188 | 0

Cp,cr

The curve generated by these numbers is given in Fig. 5.24, labeled curve A.

Next let us measure the minimum C, on the surface of the airfoil from Fig. 5.23;
this value is (C,)min = —0.43. The experimental values for pressure coefficient shown
in Fig. 5.23 are for low-speed, essentially incompressible flow. Hence in Eq. (5.28),
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Figure 5.24 Graphical solution for the critical Mach
number, from Example 5.20.

(Cp0)min = —0.43. As the Mach number is increased, the location of the point of minimum
pressure stays essentially the same, but the value of the minimum pressure coefficient
varies according to Eq. (5.28). Hence

C,0)ni —0.
(Cp)min = ( on)mm = O 43
Ji-m2 J1-m2

Some values of (C,)min are tabulated in the following:
M. | 0 | 0.2 | 0.4 | 0.6 | 0.8
(Cun | —0.43 | —0.439 | -0.469 | -0.538 | ~0.717

The curve generated by these numbers is given in Fig. 5.24, labeled curve C. The inter-
section of curves A and C is at point D. The free-stream Mach number associated with
point D is the critical Mach number. From Fig. 5.24, we have
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b. Analytical solution
Solve Eq. (5.48) for M,,, with C,,=-0.43. We can do this by trial and error. Assume
different values for M., and find by iteration the value that satisfies Eq. (5.48):

—0.43 2 [|: 24 ('y_l)M:r i|‘}'/(71) 1]

Me VI-ML Ml T y+1

0.72 -0.6196 -0.6996
0.73 -0.6292 -0.6621
0.74 -0.6393 -0.6260
0.738 -0.6372 -0.6331
0.737 -0.6362 -0.6367
0.7371 -0.6363 -0.6363

To four-place accuracy, when M, = 0.7371, both the left and right sides of Eq. (5.48)
agree, also to four-place accuracy. Hence, from the analytical solution, we have

M, =0.7371

Note: Compare the results from the graphical solution and the analytical solution. To the
two-place accuracy of the graphical solution, both answers agree.
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Question: How accurate is the estimate of the critical Mach number obtained
in Example 5.207 The pressure coefficient data in Fig. 5.25a and b provide an
answer. Wind tunnel measurements of the surface pressure distributions on an
NACA 0012 airfoil at a zero angle of attack in a high-speed flow are shown
in Fig. 5.25; for Fig. 5.25a, M., = 0.575, and for Fig. 5.25b, M., = 0.725. In
Fig. 5.25a, the value of C,, = —1.465 at M., = 0.575 is shown as the dashed
horizontal line. From the definition of critical pressure coefficient, any local
value of C, above this horizontal line corresponds to locally supersonic flow, and
any local value below the horizontal line corresponds to locally subsonic flow.
Clearly, from the measured surface pressure coefficient distribution at M, =
0.575 shown in Fig. 5.254, the flow is locally subsonic at every point on the sur-
face. Hence, M., = 0.575 is below the critical Mach number. In Fig. 5.25b, which
is for a higher Mach number, the value of C, ., = —0.681 at M., = 0.725 is shown
as the dashed horizontal line. Here the local pressure coefficient is higher than
C,. at every point on the surface except at the point of minimum pressure, where
(C))min 1s essentially equal to C,. This means that for M., = 0.725, the flow
is locally subsonic at every point on the surface except the point of minimum
pressure, where the flow is essentially sonic. These experimental measurements
indicate that the critical Mach number of the NACA 0012 airfoil at a zero angle
of attack is approximately 0.73. Comparing this experimental result with the cal-
culated value of M, = 0.74 from Example 5.20, we see that our calculations are
amazingly accurate, to within about 1 percent.
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Figure 5.25 Wind tunnel measurements of surface
pressure coefficient distribution for the NACA
0012 airfoil at a zero angle of attack.

(Source: Experimental data of Frueler and Gregorek,
NASA CP 2045 (a) M..= 0.575, (b) M..= 0.725.)

Location of Point of Maximum Velocity (Minimum Pressure) One final
observation in this section can be made from studying the pressure coefficient
distributions, shown in Figs. 5.23 and 5.25, and the shape of the NACA 0012
airfoil, shown at the top of Fig. 5.23. Note that the minimum pressure (hence
maximum velocity) does not occur at the location of maximum thickness of the
airfoil. From the airfoil shape given in Fig. 5.23, the maximum thickness is at
x/c =0.3. From the surface pressure coefficient distributions shown in Figs. 5.23
and 5.25, the point of minimum pressure (maximum velocity) on the surface
is at x/c = 0.11, considerably ahead of the point of maximum thickness. Your
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intuition might at first suggest that the point of maximum velocity (minimum
pressure) might be at the point of maximum thickness, but this intuition is wrong.
Nature places the maximum velocity at a point that satisfies the physics of the
whole flow field, not just what is happening in a local region of flow. The point
of maximum velocity is dictated by the complete shape of the airfoil, not just by
the shape in a local region.

5.10 DRAG-DIVERGENCE MACH NUMBER

We now turn our attention to the airfoil drag coefficient c,. Figure 5.26 sketches
the variation of ¢, with M.,. At low Mach numbers, less than M, c, is virtually
constant and is equal to its low-speed value given in App. D. The flow field about
the airfoil for this condition (say point a in Fig. 5.26) is noted in Fig. 5.27a,
where M < 1 everywhere in the flow. If M., is increased slightly above M.,
a “bubble” of supersonic flow will occur, surrounding the minimum pressure
point, as shown in Fig. 5.27b. Correspondingly, ¢, will still remain reasonably
low, as indicated by point b in Fig. 5.26. However, if M., is still further increased,
a very sudden and dramatic rise in the drag coefficient will be observed, as
noted by point ¢ in Fig. 5.26. Here shock waves suddenly appear in the flow,
as sketched in Fig. 5.27¢. The effect of the shock wave on the surface pressure
distribution can be seen in the experimental data given in Fig. 5.28. Here the
surface pressure coefficient is given for an NACA 0012 airfoil at a zero angle of
attack in a free stream with M., = 0.808. (Figure 5.28 is a companion figure to
Figs. 5.23 and 5.25.) Comparing the result of Example 5.20 and the data shown
in Fig. 5.25b, we know that M., = 0.808 is above the critical Mach number for
the NACA 0012 airfoil at a zero angle of attack. The pressure distribution in
Fig. 5.28 clearly shows that fact; the shape of the pressure distribution curve
is quite different from that in the previous figures. The dashed horizontal line
in Fig. 5.28 corresponds to the value of C,, at M., = 0.808. Note that the flow
velocity at the surface is locally supersonic in the region 0.11 < x/c < 0.45. Recall
from our discussion of shock waves in Sec. 4.11.3 that the pressure increases
and the velocity decreases across a shock wave. We clearly see these phenomena
in Fig. 5.28; the large and rather sudden increase in pressure at x/c = 0.45 indi-
cates the presence of a shock wave at that location, and the flow velocity drops
from supersonic in front of the shock to subsonic behind the shock. (The drop
in velocity to subsonic behind the shock, rather than just a decrease to a smaller
supersonic value, is a characteristic of shock waves that are essentially normal to
the flow, as occurs here.)

The shock waves themselves are dissipative phenomena that increase drag
on the airfoil. But in addition, the sharp pressure increase across the shock waves
creates a strong adverse pressure gradient, causing the flow to separate from the
surface. As discussed in Sec. 4.20, such flow separation can create substantial
increases in drag. Thus, the sharp increase in ¢, shown in Fig. 5.26 is a combined
effect of shock waves and flow separation. The free-stream Mach number at
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Figure 5.26 Variation of drag coefficient with Mach number.
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Figure 5.27 Physical mechanism of drag divergence.
a. Flow field associated with point a in Fig. 5.21.
b. Flow field associated with point b in Fig. 5.21.
c. Flow field associated with point ¢ in Fig. 5.21.
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Figure 5.28 Wind tunnel measurements of the
surface pressure coefficient distribution for the
NACA 0012 airfoil at a zero angle of attack for
M., = 0.808, which is above the critical Mach
number.

(Source: Experimental data are from Freuler and
Gregorek, NASA 2045, and are a companion to the
data shown in Figs. 5.23 and 5.25.)

which ¢, begins to increase rapidly is defined as the drag-divergence Mach num-
ber and is noted in Fig. 5.26. Note that

Mcr < Mdrug divergence < 10

The shock pattern sketched in Fig. 5.27¢ is characteristic of a flight re-
gime called transonic. When 0.8 < M., < 1.2, the flow is generally designated
as transonic flow, and it is characterized by some very complex effects only
hinted at in Fig. 5.27¢. To reinforce these comments, Fig. 5.29 shows the
variation of both ¢, and ¢, as a function of Mach number with angle of attack
as a parameter. The airfoil is a standard NACA 2315 airfoil. Figure 5.29,
which shows actual wind tunnel data, illustrates the massive transonic flow
effects on both lift and drag coefficients. The analysis of transonic flows has
been one of the major challenges in modern aerodynamics. Only in recent
years, since about 1970, have computer solutions for transonic flows over
airfoils come into practical use; these numerical solutions are still in a state
of development and improvement. Transonic flow has been a hard nut to
crack.
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Figure 5.29 Variation of (a) lift coefficient and (b) drag coefficient versus Mach number with angle of attack as a
parameter for an NACA 2315 airfoil.
(Source: Wind tunnel measurements at the NACA Langley Memorial Laboratory.)

DESIGN BOX

The designers of transonic airplanes are frequently
looking for ways to get the speed closer to Mach 1
without encountering the large transonic drag rise.
These designers have two options in regard to the
choice of an airfoil that will delay drag divergence
to a higher Mach number: (1) Make the airfoil thin
and (2) adopt a specially shaped airfoil called a
supercritical airfoil. These options can be used sin-
gly or in combination.

In regard to airfoil thickness, the generic trend
sketched in Fig. 5.21 clearly shows that M, is
increased by making the airfoil thinner. An increase
in M, usually means an increase in the drag-
divergence Mach number. Hence, everything else
being equal, a transonic airplane with a thinner airfoil
can fly at a higher Mach number before encountering
drag divergence. This knowledge was incorporated
in the design of the famous Bell X-1, which was the
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first airplane to fly faster than sound (see Sec. 5.22).
The X-1 was designed with two sets of wings: one
with a 10 percent thick airfoil for more routine flights
and another with an 8 percent thick airfoil for flights
intended to penetrate through Mach 1. The airfoil
sections were NACA 65-110 and NACA 65-108,
respectively. Moreover, the horizontal tail was even
thinner in both cases, being an NACA 65-008 (8 per-
cent thickness) and an NACA 65-006 (6 percent
thickness), respectively. This was done to ensure that
when the wing encountered major compressibility
effects, the horizontal tail and elevator would still be
free of such problems and would be functional for
stability and control. A three-view of the Bell X-1 is
shown in Fig. 5.30.

The adverse compressibility effects that cause
the dramatic increase in drag and precipitous
decrease in lift, shown in Fig. 5.29, can be delayed
by decreasing the airfoil thickness. The knowl-
edge of this fact dates back as early as 1918. In
that year, as World War I was coming to an end,
Frank Caldwell and Elisha Fales, two engineers at
the U.S. Army’s McCook Field in Dayton, Ohio,
measured these effects in a high-speed wind tun-
nel capable of producing a test stream of 465 mi/h.
This knowledge was reinforced by subsequent high-
speed wind tunnel tests carried out by NACA in the
1920s and 1930s. (For a detailed historical treatment
of the evolution of our understanding of compress-
ibility effects during this period, see Anderson, A
History of Aerodynamics and Its Impact on Flying
Machines, Cambridge University Press, 1997. See
also Anderson, “Research in Supersonic Flight and
the Breaking of the Sound Barrier,” chapter 3 in
From Engineering Science to Big Science, edited by
Pamela Mack, NASA SP-4219, 1998.)

Thinner airfoils are also advantageous for
supersonic airplanes, for reasons to be discussed in
Sec. 5.11. Indeed, in airplane design, the higher the
design Mach number, usually the thinner the airfoil
section. This is dramatically shown in Fig. 5.31, which
is a plot of airfoil thickness versus design Mach num-
ber for a variety of high-speed airplanes since World
War II. As the design Mach number of airplanes
increased, thinner airfoils became a design necessity.

The supercritical airfoil is a different approach to
the increase in drag-divergence Mach number. Here

the shape of the airfoil is designed with a relatively
flat top surface, as shown in Fig. 5.32. When the free-
stream Mach number exceeds M,;, a pocket of super-
sonic flow occurs over the top surface as usual; but
because the top is relatively flat, the local supersonic
Mach number is a lower value than would exist in the
case of a conventional airfoil. As a result, the shock
wave that terminates the pocket of supersonic flow is
weaker. In turn, the supercritical airfoil can penetrate
closer to Mach 1 before drag divergence occurs. In
essence, the increment in Mach number (the “grace
period”) between M., and Mg divergence (S€€ Fig. 5.26) is
increased by the shape of the supercritical airfoil. One
way to think about this is that the supercritical airfoil
is “more comfortable” than conventional airfoils in
the region above M., and it can fly closer to Mach 1
before drag divergence is encountered. Because they
are more comfortable in the flight regime above the
critical Mach number and because they can penetrate
closer to Mach 1 after exceeding M,,, these airfoils
are called supercritical airfoils. They are designed to
cruise in the Mach number range above M.,.

The pressure coefficient distribution over the top
surface of a supercritical airfoil flying above M., but
below Mg ivereence 19 Sketched in Fig. 5.32. After a
sharp decrease in pressure around the leading edge,
the pressure remains relatively constant over a sub-
stantial portion of the top surface. This contrasts with
the pressure coefficient distribution for a conven-
tional airfoil flying above M,,, such as that shown in
Fig. 5.28. Clearly, the flow over the supercritical air-
foil is carefully tailored to achieve the desired results.

The early aerodynamic research on supercriti-
cal airfoils was carried out by Richard Whitcomb,
an aeronautical engineer at NASA Langley Research
Center, during the middle 1960s. This work by Whit-
comb is described in a NASA document titled “An
Airfoil Shape for Efficient Flight at Supercritical
Mach Numbers” (NASA TM X-1109, July 1965,
by R.T. Whitcomb and L.R. Clark). Whitcomb’s de-
sign of supercritical airfoils was pioneering; today
all modern civilian jet transports are designed with
supercritical wings, incorporating custom-designed
supercritical airfoil sections that have their genes in
the original design by Richard Whitcomb.

The effectiveness of the supercritical airfoil
was clearly established by an Air Force/NASA

(continued on next page)
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(continued from page 343)

Figure 5.30 Three- 1§
view of the Bell X-1.
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Figure 5.31 Variation of thickness-to-chord ratio with Mach number for a representative
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(Source: After Ray Whitford, Design for Air Combat, Jane’s Information Group, Surrey, England, 1989.)

wind tunnel and flight test program carried out in the
early 1970s called the Transonic Aircraft Technology
(TACT) program. A standard General Dynamics F-111
(sketched at the top of Fig. 5.33) was modified with
a supercritical wing. Wind tunnel data for the varia-
tion of Cp with M_, for both the standard F-111 and the
TACT aircraft (the F-111 modified with a supercritical
wing) are shown in Fig. 5.33. The standard airfoil on
the F-111 is an NACA 64-210; the supercritical airfoil
on the TACT aircraft had the same 10 percent thick-
ness. The use of the supercritical wing increased the
drag-divergence Mach number from 0.76 to 0.88—a
stunning 16 percent increase—as noted in Fig. 5.33.

Designers of transonic aircraft can use super-
critical airfoils to accomplish one of two objectives:
(1) For a given airfoil thickness, the supercriti-
cal airfoil shape allows a higher cruise velocity;
or (2) for a given lower cruise velocity, the air-
foil thickness can be larger. The latter option has
some design advantages. The structural design of a
thicker wing is more straightforward and actually
results in a lighter-weight (albeit thicker) wing.
Also, a thicker wing provides more volume for an
increased fuel capacity. Clearly, the use of a super-
critical airfoil provides a larger “design space” for
transonic airplanes.

(continued on next page)
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Figure 5.32 Shape of a typical supercritical airfoil and its pressure
coefficient distribution over the top surface.
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Figure 5.33 Increase in drag-divergence Mach number obtained by the
TACT aircraft with a supercritical wing compared to a standard F-111.
Wind tunnel data obtained at the NASA Langley Research Center. Wing
sweep = 26°. C; held constant at 0.0465.

(Source: Reported in Symposium on Transonic Aircraft Technology (TACT),
AFFDL-TR-78-100, Air Force Flight Dynamics Laboratory, August 1978.)
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5.11 WAVE DRAG (AT SUPERSONIC SPEEDS)

To this point we have discussed airfoil properties at subsonic speeds—that
is, for M., < 1. When M., is supersonic, a major new physical phenomenon is
introduced: shock waves. We previously alluded to shock waves in Sec. 4.11.3
in conjunction with the Pitot tube measurement of supersonic airspeeds. With
respect to airfoils (as well as all other aerodynamic bodies), shock waves in
supersonic flow create a new source of drag, called wave drag. In this section,
we highlight some of the ideas involving shock waves and the consequent wave
drag; a detailed study of shock wave phenomena is left to more advanced texts
in aerodynamics.

To obtain a feel for how a shock is produced, imagine that we have a small
source of sound waves: a tiny “beeper” (something like a tuning fork). At time
t =0 assume that the beeper is at point P in Fig. 5.34. At this point let the beeper
emit a sound wave, which will propagate in all directions at the speed of sound
a. Also let the beeper move with velocity V, where V is less than the speed of
sound. At time ¢, the sound wave will have moved outward by a distance at, as
shown in Fig. 5.34. At the same time ¢, the beeper will have moved a distance
Vt to point Q. Because V < a, the beeper will always stay inside the sound
wave. If the beeper is constantly emitting sound waves as it moves along, these
waves will constantly move outward, ahead of the beeper. As long as V < a, the
beeper will always be inside the envelope formed by the sound waves.

Now, we change the situation: assume that the beeper is moving at super-
sonic speed; that is, V > a. At time ¢ = 0, assume that the beeper is at point R in
Fig. 5.35. At this point let the beeper emit a sound wave, which, as before, will

Location of sound
wave at time ¢

Locatien of
beeper at
time #

Location of beeper
at time = Q; it gives
off a sound wave

at 1 =0

Beeper stays inside
the sound wave

Figure 5.34 Beeper moving at less than the speed of
sound.
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Beeper stays outside
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Figure 5.35 The origin of Mach waves and shock waves. The beeper is moving
faster than the speed of sound.

propagate in all directions at the speed of sound a. At time ¢, the sound wave
will have moved outward by a distance at, as shown in Fig. 5.35. At the same
time ¢, the beeper will have moved a distance Vr to point S. However, because
V > a, the beeper will now be outside the sound wave. If the beeper is con-
stantly emitting sound waves as it moves along, these waves will now pile up
inside an envelope formed by a line from point S tangent to the circle formed
by the first sound wave, centered at point R. This tangent line, the line where
the pressure disturbances are piling up, is called a Mach wave. The vertex of
the wave is fixed to the moving beeper at point S. In supersonic flight, the air
ahead of the beeper in Fig. 5.35 has no warning of the approach of the beeper.
Only the air behind the Mach wave has felt the presence of the beeper, and
this presence is communicated by pressure (sound) waves confined inside the
conical region bounded by the Mach wave. In contrast, in subsonic flight, the
air ahead of the beeper in Fig. 5.34 is forewarned about the oncoming beeper
by the sound waves. In this case there is no piling up of pressure waves; there
is no Mach wave.

Hence we can begin to feel that the coalescing, or piling up, of pressure
waves in supersonic flight can create sharply defined waves of some sort. In
Fig. 5.35 the Mach wave that is formed makes an angle u with the direction of
movement of the beeper. This angle, defined as the Mach angle, is easily ob-
tained from the geometry of Fig. 5.35:

a

sin _at_a_ 1
H i V. M
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Figure 5.36 Mach waves on a needlelike body. body.
> Pop Wave drag —

P net drag due to
higher pressure
behind the

Moo > 1 _ shock wave
Z= D
Poo
FZEAN o
Figure 5.38 Pressure distribution on a wedge at supersonic speeds; origin of
wave drag.
L1
Hence Mach angle=u= arcsmﬁ (5.49)

In real life, a very thin object (such as a thin needle) moving at M., > 1
creates a very weak disturbance in the flow, limited to a Mach wave. This is
sketched in Fig. 5.36. In contrast, a thicker object such as the wedge shown in
Fig. 5.37, moving at supersonic speeds will create a strong disturbance, called
a shock wave. The shock wave will be inclined at an oblique angle f, where >
M, as shown in Fig. 5.37. As the flow moves across the oblique shock wave, the
pressure, temperature, and density increase, and the velocity and Mach number
decrease.

Consider now the pressure on the surface of the wedge, as sketched in
Fig. 5.38. Because p increases across the oblique shock wave, at the wedge sur-
face, p > p... Because the pressure acts normal to the surface and the surface itself
is inclined to the relative wind, a net drag will be produced on the wedge, as seen
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Figure 5.39 Flow field and pressure distribution for a flat plate at angle of attack in
supersonic flow. There is a net lift and drag due to the pressure distribution set up by the
shock and expansion waves.

by simple inspection of Fig. 5.38. This drag is called wave drag because it is
inherently due to the pressure increase across the shock wave.

To minimize the strength of the shock wave, all supersonic airfoil profiles
are thin, with relatively sharp leading edges. (The leading edge of the Lockheed
F-104 supersonic fighter is almost razor-thin.) Let us approximate a thin super-
sonic airfoil by the flat plate illustrated in Fig. 5.39. The flat plate is inclined
at a small angle of attack « to the supersonic free stream. On the top surface
of the plate, the flow field is turned away from the free stream through an ex-
pansion wave at the leading edge; an expansion wave is a fan-shaped region
through which the pressure decreases. At the trailing edge on the top side, the
flow is turned back toward the free-stream direction through an oblique shock
wave. On the bottom surface of the plate, the flow is turned into the free stream,
causing an oblique shock wave with an increase in pressure. At the trailing
edge, the flow is turned back toward the free-stream direction through an expan-
sion wave. (Details and theory for expansion waves, as well as shock waves,
are beyond the scope of this book—you will have to simply accept on faith
the flow field sketched in Fig. 5.39 until your study of aerodynamics becomes
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more advanced.) The expansion and shock waves at the leading edge result in
a surface pressure distribution in which the pressure on the top surface is less
than p.., whereas the pressure on the bottom surface is greater than p... The net
effect is an aerodynamic force normal to the plate. The components of this force
perpendicular and parallel to the relative wind are the lift and supersonic wave
drag, respectively. Approximate relations for the lift and drag coefficients are,
respectively,

4o
C = W (550)
4
and Caw= (Mi _1)1/2 (551)

A subscript w has been added to the drag coefficient to emphasize that it is the
wave drag coefficient. Equations (5.50) and (5.51) are approximate expressions,
useful for thin airfoils at small to moderate angles of attack in supersonic flow.
Note that as M., increases, both ¢, and ¢, decrease. This is not to say that the lift
and drag forces themselves decrease with M... Quite the contrary. For any flight
regime, as the flight velocity increases, L and D usually increase because the
dynamic pressure ge, = ¢o =35 p V2 increases. In the supersonic regime, L and
D increase with velocity, even though ¢, and ¢, ,, decrease with M., according to
Eqgs. (5.50) and (5.51).
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EXAMPLE 5.21

Consider a thin supersonic airfoil with chord length ¢ = 5 ft in a Mach 3 free stream at a
standard altitude of 20,000 ft. The airfoil is at an angle of attack of 5°.

(a) Calculate the lift and wave drag coefficients and the lift and wave drag per unit span.
(b) Compare these results with the same airfoil at the same conditions, except at Mach 2.

H Solution
a. In Egs. (5.50) and (5.51), the angle of attack o must be in radians. Hence

— §0 —

> rad=0.0873 rad
57.3

Also
JM2—1=43-1=2.828
¢ = 4o _ 4(0.0873) :

Jmi-1 2828

_ 40’ :4(0.0873)2:

CW
M1 2.828
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EXAMPLE 5.22
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At 20,000 ft, p., = 1.2673 x 107 slug/ft*, and T = 447.43°R. Hence

oo =\[YRT., =J1.4(1716)(447.43) =1037 ft/s
V.. =M.a.=3(1037)=3111 ft/s
Goo =L P V.2 =1(1.2673x107)(3111)* =6133 Ib/ft’

L (per unit span) = g..cc; =6133(5)(0.123)=|3772 Ib
D,, (per unit span) = g..cc,,, =6133(5)(0.0108)=[331.2 Ib

b. JM2-1=+22-1=1.732

4o 4(0.0873) 0.207]
= = = 0207
Mo 1732
407 4(0.0873)*
Cpw= = =[0.0176
v Mior 1732

Note: At Mach 2, ¢, and ¢, ,, are higher than at Mach 3. This is a general result; both ¢, and
¢4, decrease with increasing Mach number, as clearly seen from Eqgs. (5.50) and (5.51).
Does this mean that L and D,, also decrease with increasing Mach number? Intuitively
this does not seem correct. Let us find out:

V., = a.M,, =1037(2)=2074 ft/s
Qo = 1P V2 =1(1.2673%x107)(2074)° =2726 1b/ft
L (per unit span) = g..cc, =2726(5)(0.207) =
D, (per unit span) = g..cc,,, =2726(5)(0.0176) =240 1b

There is no conflict with our intuition. As the supersonic Mach numbers increase, L and
D, also increase, although the lift and drag coefficients decrease.

The Lockheed F-104 supersonic fighter is shown in three-view in Fig. 4.45 and in the
photograph in Fig. 5.40. It is the first fighter aircraft designed for sustained flight at
Mach 2. Its wing planform area is 19.5 m2. Consider the F-104 in steady, level flight, and
assume that its weight is 7262 kg, Calculate its angle of attack at Mach 2 when it is flying
at (a) sea level and (b) 10 km.

N Solution

We assume that the F-104 wing in supersonic flight can be represented by a flat plate
and that the wing lift coefficient is given by Eq. (5.50). Although this equation holds
for a flat-plate airfoil section, we assume that it gives a reasonable estimate for the
straight wing of the F-104. Keep in mind that Eq. (5.50) is only an approximation for
the finite wing.
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Figure 5.40 The first airplane to be designed for sustained flight at Mach 2: the Lockheed
F-104 Starfighter.

(Source: Courtesy of John Anderson.)

The weight is given in kg, a nonconsistent unit. As shown in Example 2.5,
1 kg,=9.8 N. Also, in steady, level flight, the lift equals the weight of the airplane. Hence

L=W =7262(9.8)=7.12x10* N

a. Atsealevel, p.. =1.23 kg/m? and T.. = 288 K. The speed of sound is given by

o = JYRT., =+/(1.4)(287)(288) =340 m/s
Thus
V., = a..M., =(340)(2) =680 m/s
Go = L P V.2 =1(1.23)(680)* =2.84x10° N/m’
L 7.12x10*

== —0.014
¢S  (2.84x10°)(19.5)
From Eq. (5.50),
4o
cl:f
JMZ -1
or a:%JMi—l:% (2)2-1=6.06x10" rad

In degrees,

a=(6.06x107)(57.3) =
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Note: This is a very small angle of attack. At Mach 2 at sea level, the dynamic pressure is
so large that only a very small lift coefficient, and hence a very small angle of attack, is
needed to sustain the airplane in the air.

b. At 10 km, from App. A, p.. = 0.41351 kg/m® and T.. = 223.26 K.

.. = JYRT.. =4/(1.4)(287)(223.26) =300 m/s

V.. = a.M., =(300)(2) =600 m/s

Goo = 1P V.2 =1(0.41351)(600)* =7.44x10* N/m*
L 7.12x10*

cl:—:—i :0049
.S (7.44x107)(19.5)

—M - M~ (2) —-1=0.02 rad

In degrees,
£ o =(0.021)(57.3)=[1.2°]

Note: At an altitude of 10 km, where the dynamic pressure is smaller than at sea level,

the required angle of attack to sustain the airplane in flight is still relatively small: only

slightly above 1 degree. We learn from this example that airplanes in steady level flight

at supersonic speeds fly at very small angles of attack.

If the pilot of the F-104 in Example 5.22, flying in steady, level flight at Mach 2 at an
altitude of 10 km, suddenly pitched the airplane to an angle of attack of 10°, calculate the
instantaneous lift exerted on the airplane, and comment on the possible consequences.

H Solution

a:£:0.175 rad
57.3

From Egq. (5.50),

_ 4o _4(0.179)
CdmME1 Joro

From Example 5.22, at Mach 2 and an altitude of 10 km, g., = 7.44 x 10* N/m*

L=q.Sc; =(7.44x10%)(19.5)(0.404) =|5.86x 10°N

=0.404

Compare this value of lift with the weight of the airplane:
L 5.86x10°

W 7.12x10°

When the pilot suddenly increases the angle of attack to 10°, the lift increases to a
value 8.2 larger than the weight. The pilot will feel a sudden acceleration equal to
8.2 times the acceleration of gravity, sometimes stated as an acceleration of 8.2 g’s. The
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human body can withstand this acceleration for only a few seconds before becoming
unconscious. Moreover, the structure of the airplane will be under great stress. These
are reasons why, in supersonic flight, the angle of attack is usually maintained at low
values.
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EXAMPLE 5.24

The lift coefficient of any object in flight is a function of angle of attack. The
purpose of this example is to examine how the angle of attack varies with flight
velocity for an airfoil, holding the lift constant for all values of velocity, consider-
ing both subsonic and supersonic velocities. (We note in Ch. 6 that, for an airplane
in steady flight, the lift must always equal the weight of the airplane, no matter at
what velocity the airplane is flying. So, the results of this example give some insight
into the angle-of-attack variation of an airplane in steady, level flight over a range
of flight velocity.)

a. Subsonic Case Consider a unit span of an infinite wing of chord 1.5 m with an NACA
64-210 airfoil at standard sea-level conditions. The lift per unit span is 3300 N, and is
held constant with velocity. Calculate and plot the variation of angle of attack as a func-
tion of velocity as V., varies from 50 to 250 m/s, taking into account compressibility
effects.

b. Supersonic Case Consider a unit span of a flat-plate infinite wing of chord 1.5 m at
standard sea-level conditions. The lift per unit span is 3300 N, and is held constant with
velocity. Calculate and plot the variation of angle of attack as a function of velocity as
V., varies from 500 to 1000 m/s.

H Solution
The following information applies to both the subsonic and supersonic cases. The stan-
dard sea-level speed of sound, from Sec. 4.9, is a., = 340.3 m/s. Hence

M..=V./340.3 (E5.24.1)
Also,
Go=1p.. V2=1(123) V2=0615 V2

The lift coefficient is given by Eq. (5.25):

_ L (per unit span) _ 3300 _ 35717

- E5.24.2
ool (0.615V2)(1.5) V2 ( )

Ce

a. Subsonic Case The angle-of-attack variation must be obtained from the airfoil data
for the NACA 64-210 airfoil given in App. D. The lift coefficient given in App. D is
the low-speed value, c¢q,, whereas the lift coefficient ¢, calculated by Eq. (E 5.24.2) is
the actual lift coefficient, and hence includes the compressibility effects discussed in
Sec. 5.8. To use App. D, we calculate the relevant low-speed value of lift coefficient,

ceo, from Eq. (5.40)
Ceo =c1-M2 (E 5.24.3)
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and then for this value of ¢, obtain the angle of attack from App. D. Some tabulated
results are:

(24
V..(m/s) M, =V,/340.3 ¢,=3577/V: ¢, =c\J1-M2 (App. D)
50 0.147 1.43 1.41 120
75 0.22 0.636 0.605 40
100 0.294 0.358 0.342 1.5°
150 0.4 0.159 0.143 -0.5°
200 0.588 0.089 0.072 10
250 0.735 0.057 0.0386 _1.5°

b. Supersonic Case Assuming an infinitely thin flat plate for the airfoil, from Eq. (5.50),
o = 4o
=
yM2 -1

Hence,

2
q=CVMs—1 (E 5.24.4)

4

where « is in radians. Recall that

1 rad =57.3°
Some tabulated results are:
a=5 M2 -1
4 o

V..(m/s) M. =V_./340.3 ¢, = 3577/V2 (rad) (deg)
500 1.47 0.0143 3.85%x 107 0.221
600 1.76 9.94 x 1073 3.60 x 1073 0.206
700 2.06 7.30x 1073 3.28 x 1073 0.188
800 2.35 5.59 x 1073 297 x 1073 0.170
900 2.64 442 x 1073 2.70 x 1073 0.155
1000 2.94 3.58 x 107 247 x 1073 0.142

Comment The results from (a) and (b) are plotted in Fig. 5.41. For the subsonic case,
there is a relatively large decrease in angle of attack as the airspeed increases. This is
because, as the speed increases, more of the lift is obtained from the increasing dynamic
pressure, ¢q..; hence, a smaller lift coefficient and therefore a smaller angle of attack
are required to maintain the constant lift. The decrease in « is further accentuated by
the compressibility effect: as M., increases, the value of ¢, is further diminished via
Eq. (E 5.24.3).

For the supersonic case, the required value of ¢, and therefore ¢, is very small com-
pared to the subsonic case, because of the much larger g... As V., increases, there is a
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Figure 5.41 Typical variations of angle of attack for subsonic and supersonic
airfoils.

small decrease in . Examining Eq. (E 5.24.4), we see that « decreases as ¢, decreases
and increases as M., increases. The competing trends result in a relatively flat variation
of o as V., increases.

From these results, we deduce that a subsonic airplane in steady, level flight over a
wide range of flight velocity will experience a wide range of angle-of-attack change. In
contrast, a supersonic airplane in steady, level flight over a wide range of velocity will

experience a much smaller change in angle of attack, and the angle of attack will be of a
small magnitude.

5.12 SUMMARY OF AIRFOIL DRAG

Amplifying Eq. (4.105), we can write the total drag of an airfoil as the sum of
three contributions:

D=D,+D,+D,
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where

D =total drag on airfoil
D, =skin friction drag
D, =pressure drag due to flow separation

D,, = wave drag (present only at transonic and supersonic speeds; zero
for subsonic speeds below the drag-divergence Mach number)

In terms of the drag coefficients, we can write

Cq=CartCaptcyy

where ¢, ¢, f, cap, and ¢, are the total drag, skin friction drag, pressure drag, and
wave drag coefficients, respectively. The sum ¢, + c,, is called the profile drag
coefficient; this is the quantity given by the data in App. D. The profile drag coef-
ficient is relatively constant with M., at subsonic speeds.

The variation of ¢, with M., from incompressible to supersonic speeds
is sketched in Fig. 5.42. It is important to note the qualitative variation of
this curve. For M., ranging from zero to drag divergence, c, is relatively
constant; it consists entirely of profile drag. For M., from drag divergence
to slightly above 1, the value of ¢, skyrockets; indeed, the peak value of ¢,
around M., = 1 can be an order of magnitude larger than the profile drag it-
self. This large increase in c, is due to wave drag associated with the presence
of shozck wal\/fzes. For supersonic Mach numbers, ¢, decreases approximately
as (M, —1)y""".

DESIGN BOX

Good design of supersonic airplanes concentrates on
minimizing wave drag. It is emphasized in Fig. 5.42
that a substantial portion of the total drag at super-
sonic speeds is wave drag. The way to reduce wave
drag is to reduce the strength of the shock waves
that occur at the nose, along the leading edges of the
wing and tail, and at any other part of the aircraft
that protrudes into the locally supersonic flow. The
shock wave strength is reduced by having a sharp
nose, slender (almost needlelike) fuselage, and very
sharp wing and tail leading edges. The Lockheed
F-104, shown in three-view in Fig. 4.52 and in the
photograph in Fig. 5.40, is an excellent example of
good supersonic airplane design. The F-104 was the

first aircraft designed for sustained speeds at Mach 2.
Examining Figs. 4.52 and 5.40, we see an aircraft
with a sharp, needlelike nose, slender fuselage, and
very thin wings and tails with sharp leading edges.
The wing airfoil section is a thin biconvex shape
with a thickness-to-chord ratio of 0.035 (3.5 percent
thickness). The leading edge is almost razor-sharp,
actually sharp enough to pose a hazard to ground
crew working around the airplane. Design of the
F-104 began in 1953 at the famous Lockheed “Skunk
Works”; it entered service with the U.S. Air Force in
1958. Now retired from the Air Force inventory, at
the time of writing, F-104’s are still in service with
the air forces of a few other nations around the globe.
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Mainly wave drag
Sound barrier

On the supersonic
side, ¢g varies
approximately as

Profile drag
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divergence

Figure 5.42 Variation of drag coefficient with Mach number for

subsonic and supersonic speeds.

The large increase in the drag coefficient near Mach 1 gave rise to the term
sound barrier in the 1940s. At that time a camp of professionals felt that the
sound barrier could not be pierced—that we could not fly faster than the speed
of sound. Certainly a glance at Eq. (5.28) for the pressure coefficient in subsonic
flow, as well as Eq. (5.51) for wave drag in supersonic flow, would hint that the
drag coefficient might become infinitely large as M., approaches 1 from either
the subsonic or supersonic side. However, such reasoning is an example of a
common pitfall in science and engineering: the application of equations outside
their ranges of validity. Neither Eq. (5.28) nor Eq. (5.51) is valid in the transonic
range near M., = 1. Moreover, remember that nature abhors infinities. In real
life, ¢, does not become infinitely large. To get past the sound barrier, all that is
needed (in principle) is an engine with enough thrust to overcome the high (but
finite) drag.

5.13 FINITE WINGS

We now return to the discussion initiated in Sec. 5.5. Our considerations so far
have dealt mainly with airfoils, where the aerodynamic properties are directly
applicable to infinite wings. However, all real wings are finite; and for practical
reasons, we must translate our knowledge about airfoils to the case where the
wing has wing tips. This is the purpose of Secs. 5.14 and 5.15.

Let us pose the following questions. Consider a finite wing with a specified
aspect ratio [defined by Eq. (5.26)] at an angle of attack of 6°. The airfoil section
of the finite wing is an NACA 2412 section. For o= 6°, the airfoil lift and drag
coefficients, from App. D, are

c,=0.85  ¢,=0.0077
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Question: Because the finite wing is made up of the NACA 2412 airfoil sec-
tion, should not the wing lift and drag coefficients be the same as those for the
airfoil? That is, for the wing at &= 6°, are the following true?

C,~0.85 C,=0.0077

(Recall from Sec. 5.5 that it is conventional to denote the aerodynamic coef-
ficients for a finite wing with capital letters.) On an intuitive basis, it may sound
reasonable that C; and Cp, for the wing might be the same as ¢, and c¢,, respec-
tively, for the airfoil section that makes up the wing. But intuition is not always
correct. We will answer the preceding questions in the next few paragraphs.

The fundamental difference between flows over finite wings as opposed to
infinite wings can be seen as follows. Consider the front view of a finite wing as
sketched in Fig. 5.43a. If the wing has lift, then obviously the average pressure
over the bottom surface is greater than that over the top surface. Consequently,
there is some tendency for the air to “leak,” or flow, around the wing tips from
the high- to the low-pressure sides, as shown in Fig. 5.43a. This flow establishes
a circulatory motion that trails downstream of the wing. The trailing circular
motion is called a vortex. There is a major trailing vortex from each wing tip, as
sketched in Fig. 5.43b and as shown in the photograph in Fig. 5.44.

Vortex
Low pressure
High pressure
Front view of wing
(a)
>

Wing-tip
vortices

(b)

Figure 5.43 Origin of wing-tip vortices on a finite wing.
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Figure 5.44 Wing-tip vortices made visible by smoke ejected at the wing tips of a Boeing
727 test airplane.
(Source: NASA.)

These wing-tip vortices downstream of the wing induce a small downward
component of air velocity in the neighborhood of the wing itself. This can be
seen intuitively from Fig. 5.43b; the two wing-tip vortices tend to drag the
surrounding air around with them, and this secondary movement induces a small
velocity component in the downward direction at the wing. This downward
component is called downwash and given the symbol w.

An effect of downwash can be seen in Fig. 5.45. As usual, V., designates
the relative wind. However, in the immediate vicinity of the wing, V., and w add

Voo
—
Relative wind
(free stream)
Tip vortex

TOT T

*———————The wing-tip
vortex that trails
downstream causes
downwash, w

Local flow in
vicinity of wing

Figure 5.45 The origin of downwash.
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vectorally to produce a “local” relative wind that is canted downward from the
original direction of V... This has several consequences:

1. The angle of attack of the airfoil sections of the wing is effectively reduced
in comparison to the angle of attack of the wing referenced to V...

2. There is an increase in the drag. The increase is called induced drag,
which has at least three physical interpretations. First, the wing-tip vortices
simply alter the flow field about the wing to change the surface pressure
distributions in the direction of increased drag. An alternative explanation
is that because the local relative wind is canted downward (see Fig. 5.45),
the lift vector itself is “tilted back.” Hence, it contributes a certain
component of force parallel to V..—that is, a drag force. A third physical
explanation of the source of induced drag is that the wing-tip vortices
contain a certain amount of rotational kinetic energy. This energy has to
come from somewhere; it is supplied by the aircraft propulsion system,
where extra power has to be added to overcome the extra increment in drag
due to induced drag. All three of these outlooks of the physical mechanism
of induced drag are synonymous.

We can now answer the questions posed at the beginning of this section.
Returning to the finite wing made up of the NACA 2412 airfoil section, where
the wing is at & = 6°, we now recognize that because of the downwash, the local
airfoil sections of the wing see an angle of attack lower than 6°. Clearly, the local
airfoil lift coefficient will be less than 0.85. Because the lift of the wing is an in-
tegration of the lift from each local segment, we can state that for the finite wing

C, <0.85

Also, the presence of induced drag for the finite wing, which is not present for
an infinite wing, adds to the already existing skin friction drag and pressure drag
due to flow separation, which is experienced by the airfoil section itself. The
value ¢, =0.0077 is the profile drag coefficient, which is the sum of the skin fric-
tion and pressure drag due to flow separation. For the finite wing, the induced
drag must be added to the profile drag. So, for the finite wing in this case,

C, >0.0077

Now we can rest our case. The lift coefficient for a finite wing is less than that
for its airfoil section, and the drag coefficient for a finite wing is greater than that
for its airfoil section.

In Secs. 5.14 and 5.15 we will show how the drag coefficient and the lift
coefficient, respectively, for a finite wing can be calculated. With this, we now
move to the center column of our chapter road map in Fig. 5.1. Return to Fig. 5.1
for a moment, and note all the different aspects of airfoils that we have covered,
as represented by the left column of the road map. We are now ready to use this
knowledge to examine the characteristics of finite wings, as represented by the
middle column.
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DESIGN BOX

For some airplane designs, the shape of the airfoil
section changes along the span of the wing. For
example, for the F-111 shown at the top of Fig. 5.33,
the airfoil section at the root of the wing is an NACA
64A210, whereas the airfoil section at the tip of the

2. To delay the onset of high-speed compress-
ibility effects in the region near the wing tips.
A thinner airfoil in the tip region will result in
the “shock stall” pattern shown in Fig. 5.27¢
being delayed in that region to a higher Mach
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wing is an NACA 64A209. The famous British Spit-
fire of World War II fame had a 13 percent thick
airfoil at the root and a 7 percent thick airfoil at the
tip. When a designer chooses to vary the airfoil shape
along the span, it is usually for one or both of the
following reasons:

number, preserving aileron control effective-
ness while the section of the wing closer to the
root may be experiencing considerable flow
separation.

In reference to our previous discussion, note that the
possible variation of the airfoil shape along the span
of a finite wing is yet another reason why the aerody-
namic coefficients for a finite wing differ from those
of an airfoil making up part of the wing itself.

1. To achieve a particular distribution of lift
across the span of the wing, which will improve
the aerodynamic efficiency of the wing and/or
reduce the structural weight of the wing.

5.14 CALCULATION OF INDUCED DRAG

A way of conceptualizing induced drag is shown in Fig. 5.46. Consider a finite
wing as sketched in Fig. 5.46. The dashed arrow labeled R, represents the resul-
tant aerodynamic force on the wing for the imaginary situation of no vortices
from the wing tips. The component of R, parallel to V., is the drag D,, which in

Figure 5.46 Illustration of the induced drag, D..
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this imaginary case is due to skin friction and pressure drag due to flow separa-
tion. The solid arrow labeled R represents the actual resultant aerodynamic force,
including the effect of wing-tip vortices. The presence of the vortices changes
the pressure distribution over the surface of the wing in such a fashion that R is
tilted backward relative to R,. The component of R parallel to V.., denoted by
D in Fig. 5.46, is the actual total drag, which includes the effect of the changed
pressure distribution due to the wing-tip vortices as well as friction drag and
pressure drag due to flow separation. Because R is tilted backward relative to Ry,
D > D,. The induced drag D; is the difference between D and D\: D, =D — D,.
Keep in mind that induced drag is a type of pressure drag.

To calculate the magnitude of D;, we will take the following perspective.
Consider a section of a finite wing as shown in Fig. 5.47. The angle of attack
defined between the mean chord of the wing and the direction of V., (the rela-
tive wind) is called the geometric angle of attack o. However, in the vicinity of
the wing, the local flow is (on the average) deflected downward by angle ¢; be-
cause of downwash. This angle «;, defined as the induced angle of attack, is the
difference between the local flow direction and the free-stream direction. Hence,
although the naked eye sees the wing at an angle of attack ¢, the airfoil section
itself is seeing an effective angle of attack, which is smaller than ¢. Letting O
denote the effective angle of attack, we see from Fig. 5.47 that o, = 0 — .

Let us now adopt the point of view that because the local flow direction in
the vicinity of the wing is inclined downward with respect to the free stream,
the lift vector remains perpendicular to the local relative wind and is there-
fore tilted back through angle ¢;. This is shown in Fig. 5.47. However, still
considering drag to be parallel to the free stream, we see that the tilted-lift vec-
tor contributes a certain component of drag. This drag is the induced drag D,.
From Fig. 5.47,

D, = Lsino,

Geometric angle of attack

2 L

Relative wind

Figure 5.47 The origin of induced drag.
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Values of ¢; are generally small; hence sin ¢; = ¢;. Thus
D, = Lg; (5.52)

Note that in Eq. (5.52), ¢; must be in radians. Hence D, can be calculated from
Eq. (5.52) once ¢; is obtained.

The calculation of ¢; is beyond the scope of this book. However, it can be
shown that the value of ¢; for a given section of a finite wing depends on the
distribution of downwash along the span of the wing. In turn, the downwash
distribution is governed by the distribution of lift over the span of the wing. To see
this more clearly, consider Fig. 5.48, which shows the front view of a finite wing.
The lift per unit span may vary as a function of distance along the wing because

1. The chord may vary in length along the wing.

2. The wing may be twisted so that each airfoil section of the wing is at a
different geometric angle of attack.

3. The shape of the airfoil section may change along the span.

Shown in Fig. 5.48 is the case of an elliptical lift distribution (the lift per unit
span varies elliptically along the span), which in turn produces a uniform down-
wash distribution. For this case, incompressible flow theory predicts that

_ CL
AR

where C, is the lift coefficient of the finite wing and AR = %S is the aspect ratio,
defined in Eq. (5.26). Substituting Eq. (5.53) into (5.52) yields

C,
AR
However, L = ¢., SC;; hence, from Eq. (5.54),

(5.53)

i

D, =Lg; =L

t 1

(5.54)

or =L (5.55)

Front view of wing Lift per unit span as a function of

distance along the span—this is the

ey 7’ T it distribation
A | [

w, the downwash distribution, which
L results from the given lift distribution

Figure 5.48 Lift distribution and downwash distribution.
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Defining the induced drag coefficient as Cp; = Di/(q..S), we can write Eq. (5.55) as

C;
TAR

Cp, = (5.56)

This result holds for an elliptical lift distribution, as sketched in Fig. 5.48. For
a wing with the same airfoil shape across the span and with no twist, an ellipti-
cal lift distribution is characteristic of an elliptical wing planform. (The famous
British Spitfire of World War II was one of the few aircraft in history designed
with an elliptical wing planform. Wings with straight leading and trailing edges
are more economical to manufacture.)

For all wings in general, a span efficiency factor e can be defined such that

Ci

Cp. =
P4 reAR

(5.57)

For elliptical planforms, e = 1; for all other planforms, e < 1. Thus, Cp,; and hence
induced drag are a minimum for an elliptical planform. For typical subsonic
aircraft, e ranges from 0.85 to 0.95. Equation (5.57) is an important relation. It
demonstrates that induced drag varies as the square of the lift coefficient; at high
lift, such as near C, ,,,, the induced drag can be a substantial portion of the total
drag. Equation (5.57) also demonstrates that as AR is increased, induced drag is
decreased. Hence, subsonic airplanes designed to minimize induced drag have
high—aspect-ratio wings (such as the long, narrow wings of the Lockheed U-2
high-altitude reconnaissance aircraft).

It is clear from Eq. (5.57) that induced drag is intimately related to lift. In
fact, another expression for induced drag is drag due to lift. In a fundamental
sense, the power provided by the engines of the airplane to overcome induced
drag is the power required to sustain a heavier-than-air vehicle in the air—the
power necessary to produce lift equal to the weight of the airplane in flight.

In light of Eq. (5.57), we can now write the total drag coefficient for a finite
wing at subsonic speeds as

2
Cp = ¢ L
mweAR ( 55 8)
Total Profile Induced
drag drag drag

Keep in mind that profile drag is composed of two parts: drag due to skin fric-
tion ¢, and pressure drag due to separation c,,; that is, ¢, = ¢, + c,,. Also keep
in mind that ¢, can be obtained from the data in App. D. The quadratic variation
of Cp with C, given in Eq. (5.58), when plotted on a graph, leads to a curve as
shown in Fig. 5.49. Such a plot of C;, versus C, is called a drag polar. Much of
the basic aerodynamics of an airplane is reflected in the drag polar, and such
curves are essential to the design of airplanes. You should become familiar with
the concept of drag polar. Note that the drag data in App. D are given in terms of
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Cp

Prrag polar

3

Figure 5.49 Sketch of a drag polar—that is, a plot of
drag coefficient versus lift coefficient.

drag polars for infinite wings—that is, ¢, is plotted versus c¢;. However, induced
drag is not included in App. D because Cp; for an infinite wing (infinite aspect
ratio) is zero.
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EXAMPLE 5.25

Consider the Northrop F-5 fighter airplane, which has a wing area of 170 ft*. The wing is
generating 18,000 b of lift. For a flight velocity of 250 mi/h at standard sea level, calcu-
late the lift coefficient.

H Solution
The velocity in consistent units is
V.. =250 88 =366.7 ft/s
60
¢ =% p..V.o =1(0.002377)(366.7)* =159.8 Ib/ft’
Hence C, :L—w: 0.6626

¢..S 159.8(170)

EXAMPLE 5.26

The wingspan of the Northrop F-5 is 25.25 ft. Calculate the induced drag coefficient and
the induced drag itself for the conditions of Example 5.25. Assume that e = 0.8.

H Solution
The aspect ratio is AR = b*/S = (25.25)*/170 = 3.75. Because CL = 0.6626 from Example
5.25, then from Eq. (5.57),

2 2
Cp. €. __(0.6626) =10.0466

" 7eAR  7(0.8)(3.75)
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From Example 5.25, g., = 159.8 Ib/ft>. Hence

D, =g..8C,, =159.8(170)(0.0466) =[1266 1b

EXAMPLE 5.28

Consider a flying wing (such as the Northrop YB-49 of the early 1950s) with a wing area
of 206 m?, an aspect ratio of 10, a span effectiveness factor of 0.95, and an NACA 4412
airfoil. The weight of the airplane is 7.5 x 105 N. If the density altitude is 3 km and the
flight velocity is 100 m/s, calculate the total drag on the aircraft.

H Solution
First obtain the lift coefficient. At a density altitude of 3 km = 3000 m, p., = 0.909 kg/m?
(from App. A).

G = L PV =1(0.909)(100)* = 4545 N/m*
L=W=7.5x10" N

_ L _ 75x10° _
g.S 4545(206)

L

Note: This is a rather high lift coefficient, but the velocity is low—near the landing speed.
Hence, the airplane is pitched to a rather high angle of attack to generate enough lift to
keep the airplane flying.

Next, obtain the induced drag coefficient:

_Cc 08
meAR  7(0.95)(10)

0.021

D.i

The profile drag coefficient must be estimated from the aerodynamic data in App. D.
Assume that ¢, is given by the highest Reynolds number data shown for the NACA 4412
airfoil in App. D; furthermore, assume that it is in the drag bucket. Hence, from App. D,

¢, =0.006
Thus, from Eq. (5.58), the total drag coefficient is
Cp=c¢;+Cp; =0.006+0.021=0.027

Note that the induced drag is about 3.5 times larger than profile drag for this case, thus
underscoring the importance of induced drag.
Therefore, the total drag is

D=q.SC, =4545(206)(0.027)=(2.53x10* N

The North American P-51 Mustang, shown in Fig. 4.46, was the first production-
line airplane designed with a laminar flow wing, as discussed in Sec. 4.15. The North
American aerodynamicists used the NACA laminar flow airfoil theory to obtain their own
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custom-designed laminar flow airfoil shape, slightly modified from the NACA shapes.
(The airfoils listed in App. D with designation numbers beginning with 6—the so-called
six-series airfoils—are from the NACA laminar flow airfoil series.) For this example we
assume that the airfoil used on the P-51 is represented by the NACA 65-210 laminar flow
airfoil. The gross weight of the P-51 is 10,100 Ib, the wing planform area is 233 ft?, and
the wing span is 37 ft. The wing of the P-51 has a highly efficient shape, giving it a span
efficiency factor of 0.99. At an altitude of 25,000 ft, the maximum velocity of the P-51 is
437 mi/h. (a) For this altitude and velocity, calculate and compare the induced drag and
the profile drag of the wing. (b) Consider the P-51 starting its landing approach at sea
level. Calculate and compare the induced drag and the profile drag of the wing at a flight
velocity of 140 mi/h. (c) Compare the drag results from (@) and (b) and comment on the
relative importance of induced drag.

H Solution
. 88
a. V, =437 mi/h=437 o =640.9 ft/s.
From App. B for 25,000 ft, p.. = 1.0663 x 10~ slug/ft’.
Goo = %pmVﬁ, = %(1.0663x10’3)(64049)2 =219 b/t

Assuming level flight, weight, W, equals the lift. Thus

L W _ 10,100

Cp=—=—"=—" " =0.198
4.5 ¢S (219)(233)
2 2
R=2_0OT 544
s 233
2 2
P A (A L) P

" 7eAR  7(0.99)(5.88)

The profile drag coefficient is obtained from the data for the NACA 65-210 airfoil in
App. D. Once again we use the data for the highest Re considered in App. D. Also,
the calculated lift coefficient of 0.198 for the wing, which is essentially the section lift
coefficient, puts the profile drag coefficient at the bottom of the pronounced drag bucket
(such pronounced drag buckets are characteristic of laminar flow airfoils) as seen in
App. D. Hence

¢4 =0.0037]

The total drag coefficient for the wing is
C,=C,+Cp,; =0.0037+0.00214 =0.0058

For this high-velocity case, the profile drag (skin friction drag plus the pressure drag due
to flow separation) is a factor of 1.73 larger than the induced drag. The induced drag is
36.6 percent of the total wing drag, the remainder being the profile drag. In turn, the profile
drag is mainly skin friction drag for this high-velocity case, because the wing is flying at a
low value of C; and hence a low angle of attack, where pressure drag due to flow separation
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is relatively small. This example underscores the relative importance of skin friction drag
and explains why strong efforts have been made to design laminar flow airfoils.

b. V.=140 88 =205.3 ft/s
60

Goo = % PV = %(0.002377)(205.3)2 =50.1 Ib/ft>

c = b oW __ 10100 0
7S g.S  (50.1)(233)
C; _ (0.865)°

Cp; = - =0.
' meAR  m(0.99)(5.88)

From App. D for the NACA 65-210 airfoil, the calculated value of C;, =0.865 is approxi-
mately the section lift coefficient, which for the highest Re data given for the airfoil in
App. D gives

¢, =[0.008]

The total drag coefficient for the wing is
Cp=c,+Cp; =0.008+0.041=0.049

For this low-velocity case, the induced drag is a factor of 5.1 larger than the profile drag.
The induced drag is 83.7 percent of the total wing drag.

¢. Comparing the results of parts (a) and (b), we see the rather classic case in
which the induced drag is a relatively small percentage of the total wing drag at high
speeds but is by far the major component of wing drag at low speeds. In the design
of subsonic airplanes, this example illustrates why the reduction of both induced drag
and profile drag is important. Note that (as discussed in Sec. 4.15), due to the realities
of manufacturing processes and actual flight operation, the wing of the P-51 did not
produce any meaningful large regions of laminar flow. But this does not change our
conclusion here.

The Vought F4U-1D, shown in Fig. 2.16, is a classic World War II Navy fighter airplane.
Some data for this airplane are: weight = 5,461 kg, wing planform area = 29.17 m?,
wingspan = 12.49 m, maximum velocity at an altitude of 6 km = 684 km/h. At these
conditions, the total wing drag coefficient is 0.00757. Calculate the profile drag coefficient
for the wing. Assume that e =0.9.

H Solution
First, let us put some of these data in terms of consistent SI units.

3
v :684km/h=684km(10mJ( Lh J:190m/s

" h 1 km |{ 3600 s
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Recall from Sec. 2.4 that 1 kg,=9.8 N. Thus,

W =5.461 kg, =5461 kg, [?E N

=5.3518x10* N
g

Now we are ready to make some calculations.

2 2
AR =2 - (12497
S 29.17

At h =6 km, from App. A we have p., =0.66011 kg/m?

=5.35

G =1 p.. V2 =1(0.66011)(190)> =1.1915x10* N/m’

co_ L _W _ 53518x10°  _
TS g.S  (1.1915x10%)(29.17)

From Eq. (5.57)

C; _ (0.154)

- = =0.00157
TeAR  7(0.9)(5.35)

D.i

From Eq. (5.58), we have
c;=Cp—Cp,;=0.00757-0.00157={0.006

Note: In Fig. 2.16, the airfoil section used for the wing of the Corsair is shown to be an
NACA 23018 at the root, an NACA 23015 at the outer panel, and an NACA 23000 at
the theoretical tip. In App. D, the only “230-secton” airfoil shown is the NACA 23012.
However, the profile drag coefficient for the wing of the Corsair where the airfoil sec-
tion starts at an NACA 23018 at the root and ends at an NACA 23000 at the tip should
be about the same as shown in App. D for the NACA 23012. Turn to App. D, and read
off the value of ¢, for an approximate section lift coefficient for 0.154 (ignoring the dif-
ference between ¢, and C;, which will be examined in the next section). The value from
App. D is ¢, = 0.006, the same as the answer obtained in this example.

In Example 5.28, to obtain the profile drag coefficient from the airfoil data in
App. D, we used the section lift coefficient on the abscissa, ¢, as the same value
of the wing lift coefficient, C.. This is a reasonable approximation, especially for
a wing with a high span efficiency factor, e, very near unity. However, examining
again the geometric picture in Fig. 5.47 and also Fig. 5.50, we see that the ef-
fective angle of attack seen by the airfoil section is smaller than the geometric
angle of attack of the wing, the difference being the induced angle of attack. In
Example 5.28b, the lift coefficient for the wing was 0.865. From App. D, a section
lift coefficient of 0.865 corresponds to a section angle of attack of 6.5°. This is the
effective angle of attack seen by the airfoil section as sketched in Figs. 5.47 and
5.50. The actual geometric angle of attack of the wing is larger than 6.5°. Because
we dealt with lift coefficient in Example 5.28, we did not have to be concerned
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Figure 5.50 Relation between the geometric, effective, and induced angles of attack.

about angle of attack; hence we did not have to deal with the change in the lift
slope for the finite wing. Such matters are the subject of the next section.

5.15 CHANGE IN THE LIFT SLOPE

The aerodynamic properties of a finite wing differ in two major respects from
the data of App. D, which apply to infinite wings. The first difference has already
been discussed: the addition of induced drag for a finite wing. The second
difference is that the lift curve for a finite wing has a smaller slope than the
corresponding lift curve for an infinite wing with the same airfoil cross section.
This change in the lift slope can be examined as follows. Recall that because of
the presence of downwash, which is induced by the trailing wing-tip vortices,
the flow in the local vicinity of the wing is canted downward with respect to the
free-stream relative wind. As a result, the angle of attack that the airfoil section
effectively sees, called the effective angle of attack Oy, 1s less than the geometric
angle of attack . This situation is sketched in Fig. 5.50. The difference between
a and o, is the induced angle of attack o, first introduced in Sec 5.14, where
;= 0. — Q. Moreover, for an elliptical lift distribution, Eq. (5.53) gives values
for the induced angle of attack ¢; = C;/(w AR). Extending Eq. (5.53) to wings of
any general planform, we can define a new span effectiveness factor e, such that

G
o =
me, AR

(5.59)

where e, and e [defined for induced drag in Eq. (5.57)] are theoretically different
but are in practice approximately the same value for a given wing. Note that
Eq. (5.59) gives ¢; in radians. For ¢; in degrees,
57.3C,
o =
e, AR

(5.60)

We emphasize that the flow over a finite wing at an angle of attack « is
essentially the same as the flow over an infinite wing at an angle of attack .
Keeping this in mind, assume that we plot the lift coefficient for the finite wing
C, versus the effective angle of attack o, = o — ¢, as shown in Fig. 5.51a.
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ay, lift curve slope for an infinite wing
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a - oy, effective angle of attack
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a, lift curve slope for the finite wing
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Figure 5.51 Distinction between the lift curve slopes for infinite and
finite wings.

Because we are using oy, the lift curve should correspond to that for an infinite
wing; hence the lift curve slope in Fig. 5.51a is a,, obtained from App. D for the
given airfoil. However, in real life our naked eyes cannot see ¢; instead, what
we actually observe is a finite wing at the geometric angle of attack ¢ (the actual
angle between the free-stream relative wind and the mean chord line). Hence,
for a finite wing it makes much more sense to plot C; versus ¢, as shown in
Fig. 5.51b, than C; versus ¢y, as shown in Fig. 5.51a. For example, C; versus
o would be the result most directly obtained from testing a finite wing in a wind
tunnel, because ¢ (and not ¢) can be measured directly. Hence, the lift curve
slope for a finite wing is defined as a = dC;/da, where a # a,. Noting that o> O
from Fig. 5.50, we see that the abscissa of Fig. 5.51b is stretched out more than
the abscissa of Fig. 5.51a. The lift curve of Fig. 5.51b is less inclined; that is,
a < ay. The effect of a finite wing is to reduce the lift curve slope. However, when
the lift is zero, C; = 0, and from Eq. (5.53), &; = 0. Thus, at zero lift & = & In
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terms of Fig. 5.51a and 5.51b, this means that the angle of attack for zero lift
o; = 0 is the same for the finite and infinite wings. So, for finite wings, ¢, can
be obtained directly from App. D.

Question: If we know q, (say from App. D), how do we find a for a finite
wing with a given aspect ratio? We can obtain the answer by examining Fig. 5.51.
From Fig. 5.51a,

dc,
e
d(o—oy)
Integrating, we find
C, =a,(0— o) +const (5.61)

Substituting Eq. (5.60) into Eq. (5.61), we obtain

C,Jzao(oc—ﬂ + const (5.62)
L e, AR

Solving Eq. (5.62) for C; yields

_ a,o N const (5.63)
1+57.3a,/ @e,AR) 1+57.3a,/ @e,AR )

C.
Differentiating Eq. (5.63) with respect to ¢, we get

dC, _ g (5.64)
do.  1+573a,/ @e,AR )

However, from Fig. 5.51b, by definition, dC,/do = a. Hence, from Eq. (5.64),

ay
a=
1+57.3a,/(mwe,AR)

(5.65)

Equation (5.65) gives the desired lift slope for a finite wing of given aspect ratio
AR when we know the corresponding slope a, for an infinite wing. Remember:
a, is obtained from airfoil data such as in App. D. Also note that Eq. (5.65) veri-
fies our previous qualitative statement that a < a,.

In summary, a finite wing introduces two major changes to the airfoil data
in App. D:

1. Induced drag must be added to the finite wing:
Cr
meAR

Total Profile Induced
drag drag drag

CD = (4

2. The slope of the lift curve for a finite wing is less than that for an infinite
wing; a < ay.
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EXAMPLE 5.30

Consider a wing with an aspect ratio of 10 and an NACA 23012 airfoil section. Assume
that Re = 5 x 10°. The span efficiency factor is e = ¢; = 0.95. If the wing is at a 4° angle
of attack, calculate C, and C),.

H Solution
Because we are dealing with a finite wing but have airfoil data (App. D) for infinite wings
only, the first job is to obtain the slope of this lift curve for the finite wing, modifying the
data from App. D.

The infinite wing lift slope can be obtained from any two points on the linear curve.
For the NACA 23012 airfoil, for example (from App. D),

=12  at g, =10°
¢,=0.14 at g =0°

d 1.2-0.14 1.06
Hence a, = a _em 0 D 0,106 per degree
do 10-0 10

Also from App. D,
oy =—1.5° and ¢, =0.006

The lift slope for the finite wing can now be obtained from Eq. (5.65):

e ay ~ 0.106
1+57.3a,/(me, AR)  1+57.3(0.106) / [7(0.95)(10)]

=0.088 per degree

At a=4°,
C, =a(a—0,_)=0.088[4°—(~1.5)] = 0.088(5.5)
C,=0.484

The total drag coefficient is given by Eq. (5.58):

2 2
C. =OAOO6+&
weAR 7(0.95)(10)

Cp=c,+ =0.006+0.0078 ={0.0138

EXAMPLE 5.31

In Example 4.43 we calculated the skin friction drag exerted on the biplane wings of the
1903 Wright Flyer. For the flight conditions given in Example 4.43 (that is, V., = 30 mi/h
at sea level), calculate the induced drag exerted on the wings of the Wright Flyer, and com-
pare this with the friction drag calculated earlier. For its historic first flight on December
17, 1903, the total weight of the Flyer including the pilot (Orville) was 750 1b. Assume
that the span efficiency for the wing is e = 0.93.
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H Solution
From the data given in Example 4.43, for the Wright Flyer the wingspan is b = 40.33 ft
and the planform area of each wing is 255 ft>. Hence, the aspect ratio of each wing is

b*  (40.33)°

AR="—
S 255

6.38

For level flight, the airplane must produce a lift to counter its weight; for the flight of the
Wright Flyer, the lift was equal to its weight, namely 750 Ib. Also, the Flyer is a biplane
configuration, and both wings produce lift. Let us assume that the lift is evenly divided
between the two wings; hence the lift of each wing is 750/2 = 375 1b. The velocity is

Ve = 30 mi/h = 44 ft/s. The dynamic pressure is

oo = 3P V.2 =1(0.002377)(44%) = 2.3 Ib/ft>

The lift coefficient of each wing is

From Eq. (5.57),

D.i

C;  (0.639)

L 375

=——=—"—"—=0.639
q.S 2.3(255)

T 7eAR  71(0.93)(6.38)

=0.0219

DESIGN BOX

It is good practice to design conventional subsonic
airplanes with high—aspect-ratio wings. The reasons
are clear from Eqgs. (5.57) and (5.65). The induced
drag coefficient Cp; is inversely proportional to AR,
as shown in Eqs. (5.57) and (5.58). This is a strong
effect; if the aspect ratio is doubled, Cp; is reduced by
a factor of 2. By comparison, the impact of the span
efficiency factor e is minor, because changes in the
wing planform and airfoil design result in only a few
percent change in e, and, in turn, through Eq. (5.57),
result in only a few percent change in Cp;. (Of course,
when the designer is looking for every ounce of per-
formance, the wing is designed to have a lift distri-
bution as close to elliptical as practical, making e as
close to unity as practical.) The aspect ratio is the
big design feature that controls Cp;. The same can
be said about the lift slope. Increasing the aspect
ratio increases the lift slope, as seen from Eq. (5.65).
Clearly, on an aerodynamic basis, the designer of a

conventional subsonic airplane would prefer to make
the aspect ratio as large as possible.

However, what does as large as possible mean?
Why do the wings of existing airplanes not look
like the long and narrow slats from a venetian blind,
which have very large aspect ratios? The answer
is driven by structural considerations. Imagine the
left and right wings on an airplane in flight; the lift
acting on each wing acts to bend the wing upward,
creating a bending moment where the wing joins
the fuselage. The wing structure and the structure
through the fuselage must be strong enough to resist
this bending moment. Now imagine the lift acting
on a venetian blind; the blind slat will easily buckle
under the load unless the designer adds enough ma-
terial stiffness to resist the buckling. This increase
in wing stiffness can be obtained at the cost of in-
creased wing structural weight. Consequently, the
design aspect ratio for a conventional airplane is a



5.15 Change in the Lift Slope

compromise between competing values in aerody-
namics and structures.

The usual outcome of this compromise is
subsonic airplanes with aspect ratios on the order of
5 to 7. The following is a tabulation of wing aspect
ratios for various subsonic airplane designs:

Airplane Aspect Ratio
Wright Flyer (Fig. 1.1) 6.4
Vought F4U Corsair (Fig. 2.16) 5.35
Boeing B-17 (Fig. 2.17) 7.58
Grumman X-29 (Fig. 2.19) 391
Grumman F3F-2 (Fig. 2.20) 7.85
Boeing 727 (Fig. 5.44) 7.1

A dramatic example of the importance of a
high aspect ratio can be seen in the Lockheed U-2
high-altitude reconnaissance airplane, shown in the
three-view in Fig. 5.52. The U-2 was designed with
an unusually high aspect-ratio of 14.3 because of its
mission. In 1954 the United States had an urgent need
for a reconnaissance vehicle that could overfly the
Soviet Union; the time was at an early stage of the

Cold War, and Russia had recently tested a hydrogen
bomb. However, such a reconnaissance vehicle would
have to fly at an altitude high enough that it could not
be reached by interceptor aircraft or ground-to-air mis-
siles; in 1954 this meant cruising at 70,000 ft or higher.
The U-2 was designed by Lockheed Skunk Works, a
small elite design group at Lockheed known for its
innovative and advanced thinking. The airplane was
essentially a point design: It was designed to achieve
this extremely high-altitude cruise. In turn, the need
for incorporating a very high—aspect-ratio wing was
paramount. The reason is explained in the following.
In steady, level flight, the airplane lift must equal
its weight L = W. In this case, from Eq. (5.18) written
for the whole airplane,
L=W=1p VISC, (5.66)
Consider an airplane at a constant velocity V... As
it flies higher, p.. decreases; hence, from Eq. (5.66),
C, must be increased to keep the lift constant, equal
to the weight. That is, as p., decreases, the angle of
attack of the airplane increases to increase C;. There

Figure 5.52 Three-view of the Lockheed U-2 high-altitude reconnaissance airplane. Aspect ratio = 14.3.

(continued on next page)
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(continued from page 377)

is some maximum altitude (minimum p..) at which
C; reaches its maximum value; if the angle of attack
is increased beyond this point, the airplane will stall.
At its high-altitude cruise condition, the U-2 is flying
at a high value of C, with a concurrent high angle of
attack, just on the verge of stalling. (This is in stark
contrast to the normal cruise conditions of conven-
tional airplanes at conventional altitudes, where the
cruise lift coefficient and angle of attack are rela-
tively small.) A high value of C;, means a high in-
duced drag coefficient; note from Eq. (5.57) that Cp;
varies directly as the square of C;. As a result, at the
design high-altitude cruise condition of the U-2, the
induced drag is a major factor. To reduce the cruise
value of Cp;, the designers of the U-2 had to opt for
as high an aspect ratio as possible. The wing design
shown in Fig. 5.52 was the result.

It is interesting to note that at the high-altitude
operating condition of the U-2, the highest velocity
allowed by drag divergence and the lowest velocity
allowed by stalling were almost the same; only about
7 mi/h separated these two velocities, which was not
an easy situation for the pilot.

In contrast to the extreme high-altitude mission
of the U-2, the opposite extreme is high-speed flight
at altitudes on the order of hundreds of feet above
the ground. Consider a subsonic military aircraft de-
signed for low-altitude, high-speed penetration of an
enemy’s defenses, flying close enough to the ground
to avoid radar detection. The aircraft is flying at high
speed in the high-density air near sea level, so it is
flying at a very low C; and very small angle of attack,
as dictated by Eq. (5.66). Under these conditions, in-
duced drag is very small compared to profile drag.
At this design point, it is beneficial to have a low—
aspect-ratio wing with a relatively small surface area,
which will reduce the profile drag. Moreover, the low
aspect ratio provides another advantage under these
flight conditions: it makes the aircraft less sensitive to
atmospheric turbulence encountered at low altitudes.
This is achieved through the effect of the aspect-ratio
on the lift slope, given by Eq. (5.65). The lift slope is
smaller for a low—aspect-ratio wing, as sketched in
Fig. 5.53. Imagine the airplane encountering an at-
mospheric gust that momentarily perturbs its angle

of attack by an amount A¢, as sketched in Fig. 5.53.
The lift coefficient will be correspondingly perturbed
by the amount AC,. However, because of its larger
lift slope, the high—aspect-ratio wing will experience
a larger perturbation (AC;), than the low—aspect-ratio
wing, which experiences the smaller perturbation
(ACp),. This is shown schematically in Fig. 5.53.
The smaller change in C, due to a gust for the low—
aspect-ratio wing results in a smoother ride, which is
good for both the flight crew and the structure of the
airplane.

In summary, the consideration of aspect ratio in
airplane design is not a matter of “one size fits all.”
Quite the contrary; we have just discussed two totally
different flight conditions that reflect two different
design points, one demanding a high—aspect-ratio
wing and the other a low—aspect-ratio wing. It is
clear that aspect ratio is one of the most important
considerations for an airplane designer. The choice
of what aspect ratio to use for a given airplane design
depends on a number of factors and compromises.
We have pointed out some of these considerations in
this discussion.

(ACp),> (ACY),

7

Figure 5.53 Effect of aspect ratio on the lift slope.
For a given perturbation in ¢, the high—aspect-ratio
wing experiences a larger perturbation in C; than the
low—aspect-ratio wing.
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The induced drag of each wing is

D, =q..SCp, =2.3(255)(0.0219)=12.84 1b

The induced drag, accounting for both wings, is

D, =2(12.84)=[25.7 1b]

Compare this with the friction drag of 6.82 Ib calculated in Example 4.43. Clearly, the
induced drag is much larger than the friction drag; this is because the velocity of 30 mi/h
was relatively small, requiring a rather large lift coefficient to help generate the 750 1b of
lift; and because the induced drag coefficient varies as the square of C;, the induced drag
is large compared to the friction drag at the relatively low flight speed.

Note: There is an aerodynamic interaction between the two wings of a biplane that
is relatively complex; a discussion of the phenomenon is beyond the scope of this book.
Because of this interaction, the induced drag of the biplane configuration is not equal
to the sum of the induced drags acting on the single wings individually in isolation, as
we have assumed in this example. Rather, the induced drag of the biplane configuration
is slightly higher than the sum based on our calculations, and there is also a loss of lift.
However, the preceding calculation is a reasonable first approximation for the biplane’s
induced drag.
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EXAMPLE 5.32

Consider two wings with an NACA 23012 airfoil section, (@) one with an aspect ratio of
4 and () the other with an aspect ratio of 10. The span efficiency factor for both wings is
e =¢,;=0.95. Both wings are flying at an angle of attack of 2°. Calculate and compare the
change in lift coefficient for both wings if the angle of attack is perturbed by an amount
Ao =0.5° that is, referring to Fig. 5.53, calculate (AC}), and (AC,), for Acx = 0.5°.

H Solution
a. Let us first deal with the wing with aspect ratio 4. The lift slope and zero-lift angle of
attack for the NACA 23012 airfoil were obtained in Example 5.30 as

a, =0.106 per degree
and
o, =—1.5°
The lift slope for the finite wing with AR =4 is, from Eq. (5.65),

a= %
1+57.3a,/ (e, AR)
~ 0.106
 1457.3(0.106) /[1(0.95)(4)]

=0.07 per degree

At o= 2°, the lift coefficient is

C, =a(o—o;_o)=0.07[2—(~1.5)]=0.245
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When the angle of attack is perturbed by Aa= 0.5°, the new angle of attack is 2.5°. The
lift coefficient for this angle of attack is
C, =0.7[2.5-(-1.5)]1=0.28

Hence, referring to Fig. 5.53,

(AC;), =0.28-0.245=0.035
b. For the wing with aspect ratio 10, the lift slope was obtained in Example 5.30 as

a=0.088 per degree
At x=12°,
C,=alo—0o,_,)=0.088[2—-(-1.5)]=0.308
At a=2.5°,
Cp=a(o—0,_y)=0.088[2.5-(-1.5)]=0.352
(AC, ), =0.352-0.308 =]0.044

Comparing the results from parts (a) and (), the high—aspect-ratio wing experiences a
26 percent higher increase in C; than the low—aspect-ratio wing.

In Example 5.29, the lift coefficient for the Vought F4U-1D Corsair flying at maximum
velocity at an altitude of 6 km was calculated as C; = 0.154. Estimate the angle of attack
at which the airplane is flying. Assume that e, = 0.9.

H Solution
From Example 5.29, AR = 5.35. Also, assuming that the airfoil data for the Corsair is
given by the NACA 23012 airfoil in App. D, we have, from Example 5.30,

a, = 0.106 per degree, and o,_, =—1.5°
From Eq. (5.65),

a= o = 0.106 =0.0756 per degree
1+57.3ay/ (e, AR) 1+57.3 (0.106)/[7(0.9)5.35)]
Because
Cp = a(0— o),
we have
C, 0.154
o=—40_y = +(-1.5
T = g7 T

a=2.037-15 =[0.537°]
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Note: Because the airplane is flying at its maximum velocity, most of the lift is being
generated via the dynamic pressure. The required lift coefficient is small (only 0.154),
and hence the corresponding angle of attack is small, namely 0.537°.
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Almost all modern high-speed aircraft have swept-back wings, such as shown in
Fig. 5.54b. Why? We are now in a position to answer this question.

We first consider subsonic flight. Consider the planview of a straight wing,
as sketched in Fig. 5.54a. Assume that this wing has an airfoil cross section with
a critical Mach number M., = 0.7. (Remember from Sec. 5.10 that for M., slightly
greater than M, there is a large increase in drag; hence it is desirable to increase
M., as much as possible in high-speed subsonic airplane design.) Now assume
that we sweep the wing back through an angle of 30°, as shown in Fig. 5.54b.
The airfoil, which still has a value of M., = 0.7, now “sees” essentially only the
component of the flow normal to the leading edge of the wing; that is, the aero-
dynamic properties of the local section of the swept wing are governed mainly
by the flow normal to the leading edge. Hence, if M., is the free-stream Mach

Assume that M, for
wing =0.7.

| | Airfoil section

be—" 1 ith M. =07

Now sweep the same wing by 30°,

(a)

0.7

s 30°
_ 07 _
~ 0.866 0509

Airfoil “sees” only
this component
of velocity.

M., for swept wing =
co

Airfoil section
with M, = 0.7

(b)

Figure 5.54 Effect of a swept wing on critical Mach number.
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number, the airfoil in Fig. 5.54b is seeing effectively a smaller Mach number:
M., cos 30°. As a result, the actual free-stream Mach number can be increased
above 0.7 before critical phenomena on the airfoil are encountered. In fact, we
could expect that the critical Mach number for the swept wing itself would be as
high as 0.7/cos 30° = 0.808, as shown in Fig. 5.54b. This means that the large
increase in drag (as sketched in Fig. 5.26) would be delayed to M., much larger
than M., for the airfoil—in terms of Fig. 5.54, something much larger than 0.7
and maybe even as high as 0.808. Thus we see the main function of a swept
wing: By sweeping the wings of subsonic aircraft, we delay drag divergence to
higher Mach numbers.

In real life, the flow over the swept wing sketched in Fig. 5.54b is a fairly
complex three-dimensional flow; to say that the airfoil sees only the component
normal to the leading edge is a sweeping simplification. However, it leads to a
good rule of thumb. If Q is the sweep angle, as shown in Fig. 5.54b, the actual
critical Mach number for the swept wing is bracketed by

M., for airfoil

M., for airfoil < Actual M, for swept wing <
cos Q2

There is an alternative explanation of how the critical Mach number is
increased by sweeping the wing. Consider the segment of a straight wing

Segment of
swept wing

Segment of
straight wing

(a) (®)

Figure 5.55 With a swept wing, a streamline effectively sees a thinner airfoil.
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sketched in Fig. 5.55a. The airfoil section, with a thickness-to-chord ratio of
ti/c; = 0.15, is sketched at the left. The arrowed line AB represents a stream-
line flowing over the straight wing. This streamline “sees” the airfoil section
with a 15 percent thickness. Now consider this same wing, but swept through
the angle Q = 45°, as shown in Fig. 5.55b. The arrowed line CD represents a
streamline flowing over the swept wing. (We draw streamlines AB and CD as
straight lines in the free-stream direction, ignoring for simplicity any three-
dimensional flow effects.) Streamline CD now travels a longer distance over
the swept wing. The airfoil section that streamline CD effectively “sees” is
sketched at the left in Fig. 5.55b. It has the same thickness but a longer ef-
fective chord. Hence, the effective airfoil section that streamline CD sees is
thinner than that seen in the case of the straight wing. Indeed, for a sweep
angle of 45°, the effective airfoil section seen by streamline CD has a thick-
ness-to-chord ratio of t,/c, = 0.106. If we simply take the straight wing in
Fig. 5.55a and sweep it through an angle of 45°, the swept wing looks to the
flow as if the effective airfoil section is almost one-third thinner than it is when
the sweep angle is 0°. From our discussion in Sec. 5.9, making the airfoil thin-
ner increases the critical Mach number. Hence, by sweeping the wing, we can
increase the critical Mach number of the wing.

Following the usual axiom that “we cannot get something for nothing,” for
subsonic flight, increasing the wing sweep reduces the lift. Although wing sweep
is beneficial in terms of increasing the drag-divergence Mach number, it de-
creases C;. This is demonstrated in Fig. 5.56, which gives the variation of L/D
with sweep angle for a representative airplane configuration at M, = 0.6 flying at
30,000 ft. There is a considerable decrease in L/D as the sweep angle increases,
mainly due to the decrease in C;.

For supersonic flight, swept wings are also advantageous, but not quite
from the same point of view as just described for subsonic flow. Consider the
two swept wings sketched in Fig. 5.57. For a given M., > 1, there is a Mach
cone with vertex angle i, equal to the Mach angle [recall Eq. (5.49)]. If the
leading edge of a swept wing is outside the Mach cone, as shown in Fig. 5.57a,
the component of the Mach number normal to the leading edge is supersonic.
As a result, a fairly strong oblique shock wave will be created by the wing
itself, with an attendant large wave drag. In contrast, if the leading edge of the
swept wing is inside the Mach cone, as shown in Fig. 5.57b, the component
of the Mach number normal to the leading edge is subsonic. As a result, the
wave drag produced by the wing is less. Therefore, the advantage of sweeping
the wings for supersonic flight is in general to obtain a decrease in wave drag;
and if the wing is swept inside the Mach cone, a considerable decrease can be
obtained.

The quantitative effects of maximum thickness and wing sweep on the wave
drag coefficient are shown in Fig. 5.58a and b, respectively. For all cases the
wing aspect ratio is 3.5, and the taper ratio (tip to root chord) is 0.2. Clearly, thin
wings with large angles of sweepback have the smallest wave drag.
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M = 0.6 at 30,000 ft
2
)
2
:‘E 12 =
&
S
e
& 8B
=
4=
| | ] | | |
0 20 40 60 80 100 120

Wing sweepback angle, deg

Figure 5.56 Variation of lift-to-drag ratio with wing sweep. Wind tunnel measurements
at the NASA Langley Research Center.
(Source: From Loftin, NASA SP 468, 1985.)

My = 1 My > 1

(a) (&)

Figure 5.57 Swept wings for supersonic flow. (@) Wing swept outside the Mach cone.
(b) Wing swept inside the Mach cone.
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Sweep angle measured at quarter-chord line

Q=11° 0 =35° Q=a7°
A=35A2=0.2
£ _
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Figure 5.58 Sketch of the variation of minimum wing drag coefficient versus Mach number with (a) wing
thickness as a parameter (2 = 47°) and (b) wing sweepback angle as a parameter (#/c = 4 percent).
(Source: From L. Loftin, Quest for Performance, NASA SP 468, 1985.)

DESIGN BOX

The designer of supersonic airplanes has two basic
choices of wing planform: low—aspect-ratio straight
wing, or swept wing (including a delta wing). Both
classes of wing planform result in lower wave drag
compared to a high—aspect-ratio straight wing. Let us
examine these choices in greater detail.

First consider a low—aspect-ratio straight wing
at supersonic speeds. From Eq. (5.51), the wave drag
coefficient for a flat plate of infinite span is

C 4

PO \/ﬁ (5.67)

where « is the angle of attack in radians. The same
theory gives the wave drag coefficient for a flat plate
of finite aspect ratio AR as

Cow___4 [, 1
o’ M2-1\ 2R

R=ARJM2 -1

(See Hilton, High-Speed Aerodynamics, Longman,
Green and Co., 1951.) Note that Eq. (5.68) reduces to

(5.68)

where

(continued on next page)
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Eq. (5.67) for an aspect ratio going to infinity. Equa-
tion (5.68) is graphed in Fig. 5.59, giving C), /o as
a function of the aspect ratio for the case of M., = 2.
Note the dramatic drop in the wave drag coefficient
at very low aspect ratios. This curve, which is for an
infinitely thin flat plate, should be viewed as mainly
qualitative when dealing with real wings with thick-
ness. However, it clearly shows the advantage of
low—aspect-ratio wings for supersonic flight. This is
the exact opposite of the recommended practice for
subsonic airplane design, as discussed earlier. How-
ever, because of the occurrence of shock waves at
supersonic speeds, supersonic wave drag is usually
much more important than induced drag; hence the
use of low—aspect-ratio wings is good practice in su-
personic airplane design. A case in point is the Lock-
heed F-104 supersonic fighter, shown in Figs. 5.40
and 4.52. Return to Fig. 4.52, and study the wing
planform for the F-104. This airplane was the first
to be designed for sustained flight at Mach 2, and
the designers at Lockheed Skunk Works chose to go
with a straight wing of low aspect ratio. The F-104

25—

2.0 —

05—

wing has an aspect ratio of 2.45. The airfoil section
is a very thin biconvex shape; the thickness-to-chord
ratio is only 0.0336. The leading edge is exception-
ally sharp; the leading-edge radius of 0.016 is so
small that it poses some danger to the ground crew
working around the airplane. All these features have
one goal: to reduce the supersonic wave drag. They
are classic examples of good supersonic airplane
design.

We note that the supersonic lift coefficient is
also reduced when the aspect ratio is reduced. This
is illustrated in Fig. 5.60a, which gives the variation
of the lift slope dC;/dc as a function of aspect ratio
for straight, tapered wings at M., = 1.53. Shown here
are some of the first experimental data obtained in
the United States for wings at supersonic speeds.
These data were obtained in the 1-ft by 3-ft super-
sonic tunnel at NACA Ames Laboratory by Walter
Vincenti in 1947, but owing to military classification
were not released until 1949. In Fig. 5.60q, the dashed
triangles shown emanating from the wing leading-
edge apex represent the Mach cones at M., = 1.53.

3 4 5 6

Figure 5.59
flat plates.

Aspect ratio

Variation of supersonic wave drag with aspect ratio for
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(The Mach cones are cones with a semivertex angle
equal to the Mach angle u.) Note that as AR is re-
duced, more of the wing is contained inside the Mach
cones. The effect of decreasing AR on the lift slope

at supersonic speeds is qualitatively the same as that
for subsonic speeds. Recall from Sec. 5.15 that the
lift slope is smaller for lower—aspect-ratio wings in
subsonic flight. Clearly, from Fig. 5.60a the same

M._,=153

Experiment

— —— Linear theory (wing alone)

0.08 !
0.06 . i s

A

dCL : 7D —
da 0.04 ‘ ; Theory and\
é)er : o experiment |
ce: // coincide
0.02
0
0 1 2 3 4 5 6

Aspect ratio AR

(@)

M, =153

Experiment

——— Linear theory (wing alone)

7
e

[ X~ Theoretical
pressure drag
0.01 }
Sweepforward Sweepback]|
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0
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Sweep angle at midchord A, /,, deg.

()

Figure 5.60 (a) Effect of aspect ratio on the lift curve for straight wings at supersonic speeds. M = 1.53. After
W. G. Vincenti, “Comparison between Theory and Experiment for Wings at Supersonic Speeds,” NACA TR

1033. (b) Effect of wing sweep on supersonic drag. The drag
minimum drag.
(Source: Data from Vincenti.)

coefficient quoted is for an angle of attack that gives

(continued on next page)
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trend prevails for supersonic flight, even though the
physical nature of the aerodynamic flow field is com-
pletely different.

The other option for a wing planform for super-
sonic airplanes is the swept wing. (We will consider
the delta, or triangular planform, as a subset under
swept wings.) In regard to Fig. 5.57, we have already
discussed that supersonic wave drag can be con-
siderably reduced by sweeping the wing inside the
Mach cone—that is, by having a subsonic leading
edge. This is clearly seen in the experimental data
shown in Fig. 5.60b, taken from the pioneering su-
personic wind tunnel work of Vincenti. In Fig. 5.600,
the minimum total drag coefficient is plotted ver-
sus wing sweep angle for M., = 1.53. Keep in mind
that the total drag coefficient is due to both pressure
drag (essentially wave drag) and skin friction drag.
Positive sweep angles represent swept-back wings,
and negative sweep angles represent swept-forward
wings. Note the near symmetry of the data in regard
to positive and negative sweep angles; the supersonic
drag coefficient is essentially the same for the same
degree of sweepback as it is for the same degree of

sweepforward. The important message in Fig. 5.60b
is the decrease in Cp,,;, at sweep angles greater than
49° or less than —49°. The Mach angle for M., = 1.53
is given by u = sin'(1/M..) = sin”!(1/1.53) = 41°.
Hence, wings with a sweep angle of 49° or larger will
be inside the Mach cone. Note the lower drag coef-
ficient at a sweep angle of £60°; for this case the wing
is comfortably inside the Mach cone, with a subsonic
leading edge. These data also show that when the
wings are swept outside the Mach cone (supersonic
leading edge), the drag coefficient is relatively flat,
independent of the sweep angle. So for supersonic
flight, to realize the drag reduction associated with
a swept wing, the sweep angle must be large enough
that the wing is swept inside the Mach cones.

A classic example of this design feature is the
English Electric Lightning, a Mach 2 interceptor used
by the British Royal Air Force in the 1960s and 1970s.
As shown in Fig. 5.61, the Lightning has a highly
swept wing, with a sweep angle € = 60°. At Mach 2
the Mach angle is g =sin'(1/M.)=sin"'1=30°.
A swept wing, to be just inside the Mach cone at
M., =2, must have a sweep angle of Q = 60° or larger.

Figure 5.61 Three-view of the English Electric Lightning supersonic fighter.
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Because Mach 2 was the design point, it is no surprise
that the designers of the Lightning chose a sweep
angle of 60°. In addition, the wing of the Lightning
has a relatively low aspect ratio of 3.19, and the air-
foil section is thin, with a thickness-to-chord ratio of
5 percent—both good design practices for supersonic
airplanes.

Look closely at the Lightning in Fig. 5.61,
and then go back and closely examine the F-104 in
Fig. 4.52. Here we see classic examples of the two
different wing planforms, swept wing and low—
aspect-ratio straight wing, from which designers of
supersonic airplanes can choose.

We examined the effect of wing sweep on the
subsonic lift coefficient (via the lift-to-drag ratio) in
Fig. 5.56. What is the effect of sweep on the super-
sonic lift coefficient? The answer is provided by the
experimental data of Vincenti, shown in Fig. 5.62.
In a trend similar to that for the drag coefficient, we
see from Fig. 5.62 that as long as the wing is swept
outside the Mach cone (supersonic leading edge), the
lift slope is relatively constant, independent of sweep

angle. When the wing is swept inside the Mach cone
(subsonic leading edge), the lift slope decreases with
increasing sweep angle, similar to the case for sub-
sonic flight.

The results shown in Figs. 5.60 and 5.62 clearly
show a distinct change in the wing aerodynamic
characteristics when the sweep angle is large enough
that the wing is inside the Mach cone. This is be-
cause the pressure distribution over the wing surface
changes radically when the transition is made from
a supersonic to a subsonic leading edge. The nature
of this change is sketched in Fig. 5.63, which shows
three flat-plate wing planforms labeled A, B, C and
of progressively increased sweep angle in a super-
sonic free stream. Wing A is a straight wing. The
influence of the Mach cones is limited to a small
region at the tips; most of the wing is feeling the
type of two-dimensional supersonic flow over a flat
plate that was discussed in Sec. 5.11 and sketched
in Fig. 5.39. Hence, the pressure distribution over
most of the surface of wing is the constant pres-
sure distribution illustrated by the vertical shaded

M, =153
Experiment

— —— Linear theory (wing alone)
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Figure 5.62 Effect of wing sweep on the lift slope at
supersonic speed. Data from Vincenti.

(continued on next page)
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I c!

— == Mach line
——1 Region of two-dimensional flow

=3 Pressure distribution

Figure 5.63 Change in chordwise pressure distribution
as a wing at supersonic speeds is progressively swept
from outside to inside the Mach cone—that is, as the
leading edge progressively changes from supersonic

to subsonic.

area shown near the right tip of the wing. Wing B
is a swept wing with a supersonic leading edge. A
considerable portion of the wing is still outside the
Mach cones. In the shaded region, the same constant
pressure distribution associated with a flat plate in
supersonic flow still prevails. However, wing C is a
swept wing with a subsonic leading edge; the entire
wing is swept inside the Mach cone from the apex.
The pressure distribution over this wing is similar
to that for subsonic flow, even though the wing is
immersed in a supersonic free stream. Note that the
shaded area at the right on wing C traces out the
type of subsonic pressure coefficient distribution
familiar to us from our earlier discussions; for ex-
ample, compare it with Fig. 5.15. This change in the
aerodynamic behavior of the flow over a wing swept
inside the Mach cone leads to the decrease in wave
drag and lift coefficient associated with swept wings
in supersonic flow.

There is yet another design benefit of a wing
with a subsonic leading edge: The leading-edge
radius can be larger, similar to that for a subsonic
airplane. This has benefits at low speeds, especially

for landing and takeoff, for airplanes designed for
supersonic flight. A wing with a sharp leading edge
and a thin airfoil, such as that used on the F-104
(Figs. 4.52 and 5.40), experiences early flow separa-
tion at moderate angles of attack at subsonic speeds.
This reduces the value of (CL),. and forces the
airplane to have higher landing and takeoff speeds.
(For example, over its operational history, the F-104
experienced an inordinate number of accidents due
to wing stall at low-speed flight conditions.) In con-
trast, a wing with a blunter, more rounded leading
edge has much better low-speed stall characteristics.
Supersonic airplanes having swept wings with sub-
sonic leading edges can be designed with blunter,
more rounded leading edges, and hence have better
low-speed stalling behavior.

Recall from Figs. 5.60 and 5.62 that the su-
personic drag and lift coefficients associated with
swept-forward wings are essentially the same as
those for swept-back wings. Indeed, the same can
be said for high-speed subsonic flight. However,
airplane designers have almost always chosen
sweepback rather than sweepforward. Why? The
answer has to do with aeroelastic deformation of
swept wings under load. For a swept-back wing,
the location of the effective lift force causes the
wing to twist near the tips so as to decrease the
angle of attack of the outer portion of the wing.
This tends to unload that portion of the wing when
lift is increased—a stable situation. In contrast,
for a swept-forward wing, the location of the ef-
fective lift force causes the wing to twist near the
tips so as to increase the angle of attack of the
outer portion of the wing, thus causing the lift to
increase, which further increases the wing twist.
This is an unstable situation that tends to twist the
swept-forward wing right off the airplane. These
aeroelastic deformation effects are evident in the
experimental data shown in Fig. 5.62. Note that
the experimental data are not symmetric for swept-
forward and swept-back wings. The lift slope is
smaller for the swept-back wings due to aeroelas-
tic deformation of the wind tunnel models. Hence,
for structural reasons swept-forward wings have
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Figure 5.64 An example of a swept-forward wing: the Grumman X-29.

not been the planform of choice. However, mod-
ern advances in composite materials now allow the
design of very strong, lightweight wings, and this
has let designers of high-speed airplanes consider
the use of swept-forward wings. Indeed, swept-
forward wings have certain design advantages.
For example, the wing root can be placed farther
back on the fuselage, allowing greater flexibility
in designing the internal packaging inside the fu-
selage. Also, the details of the three-dimensional
flow over a swept-forward wing result in flow
separation occurring first near the root, preserving
aileron control at the tips; in contrast, for a swept-
back wing, flow separation tends to occur first
near the tips, causing a loss of aileron control. In
the 1980s an experimental airplane, the Grumman
X-29, was designed with swept-forward wings to
allow closer examination of the practical aspects
of swept-forward wing design. A three-view of the
X-29 is shown in Fig. 5.64. The X-29 research pro-
gram has been successful, but as yet there has been
no rush on the part of airplane designers to go to
swept-forward wings.

Return to Fig. 5.61, and examine again the highly
swept wing of the English Electric Lightning. It is
not much of an intellectual leap to imagine the empty
notch between the wing trailing edge and the fuselage
filled in with wing structure, producing a wing with
a triangular planform. Such wings are called delta
wings. Since the advent of the jet engine, there has
been interest in delta wings for high-speed airplanes,
both subsonic and supersonic. One design advantage
of the delta wing is that filling in that notch consider-
ably lengthens the chord length of the wing root. For
a fixed #/c ratio, this means the wing thickness at the
root can be made larger, providing greater volume for
structure, fuel, and so on. The list of advantages and
disadvantages of a delta wing is too long to discuss
here. See the following book for a thorough and read-
able discussion of this list: Ray Whitford, Design for
Air Combat, Janes Information Group Limited, 1989.
Suffice it to say that a number of subsonic and su-
personic delta wing aircraft have been designed and
used extensively. An example is the French Dassault-
Breguet Mirage 2000C, shown in Fig. 5.65. The Mi-
rage 2000C is a supersonic fighter with a top speed

(continued on next page)
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of Mach 2.2. The leading-edge sweep angle is Q =
58°. Dassault is well known for its long line of suc-
cessful delta wing airplanes since the 1950s. Note
from Fig. 5.65 that the Mirage 2000C has no hori-
zontal stabilizer; this is characteristic of many delta
wing airplanes. The trailing-edge control surfaces are
called elevons, which, when deflected uniformly in
the same direction (up or down) act as elevators and
when deflected in opposite directions (one up and the
other down) act as ailerons.

In many respects the wing is the heart of the
airplane. Great care goes into the design of the wing.
Today the design of wing shapes for supersonic
airplanes is sophisticated and fine-tuned. Consider,
for example, the Anglo—French Concorde supersonic
transport, shown in Fig. 5.66. The Concorde was
the only commercial supersonic transport in regu-
lar service. Manufactured jointly by British Aircraft
Corporation in England and Aerospatiale in France,
the Concorde first flew on March 2, 1969, and went

into service with British Airways and Air France
in 1976. As shown in Fig. 5.66, the wing of the
Concorde is a highly swept ogival delta planform
with complex camber and wing droop (anhedral).
The airfoil section is thin, with a thickness-to-chord
ratio of 3 percent at the root and 2.15 percent from
the nacelle outward. (A personal note: This author
and his wife flew on the Concorde during the sum-
mer of 1998—what an exciting experience! The
flight time between New York and London was
only 3 h 15 min—too short even to show an in-
flight movie. Unfortunately, the Concorde fare was
very expensive, and by most measures the airplane
was an economic failure. For this reason, in 2003
the Concorde was phased out of service. It will be
one of the most demanding design challenges in the
21st century to design an economically and envi-
ronmentally viable second-generation supersonic
transport. Perhaps some readers of this book will
successfully rise to this challenge.)

Figure 5.65 An example of a delta wing: the French Dassault-Breguet Mirage 2000C, with
an added side view (lower right) of the Mirage 2000N.
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5.17 FLAPS—A MECHANISM FOR HIGH LIFT

An airplane normally encounters its lowest flight velocities at takeoff or
landing—two periods that are most critical for aircraft safety. The slowest speed
at which an airplane can fly in straight and level flight is defined as the stalling
speed V. The calculation of V,, as well as aerodynamic methods of making
Vi as small as possible, is of vital importance.

The stalling velocity is readily obtained in terms of the maximum lift coef-
ficient. From the definition of C,,

L=q.,SC,=1pV.2SC,

Thus v, - |2k (5.69)
PSCy,

In steady, level flight, the lift is just sufficient to support the weight W of the

aircraft; that is, L = W. Thus
vo= |2V (5.70)
PSC,

Examining Eq. (5.70), for an airplane of given weight and size at a given altitude,
we find that the only recourse to minimize V.. is to maximize C;. Hence, stalling
speed corresponds to the angle of attack that produces Cj .:

Y (5.71)

pOOSCL,max

To decrease Vi, Crmax must be increased. However, for a wing with a given
airfoil shape, C; .., is fixed by nature; that is, the lift properties of an airfoil,
including maximum lift, depend on the physics of the flow over the airfoil. To
assist nature, the lifting properties of a given airfoil can be greatly enhanced by
the use of “artificial” high-lift devices. The most common of these devices is the
flap at the trailing edge of the wing, as sketched in Fig. 5.67. When the flap is
deflected downward through the angle &, as sketched in Fig. 5.67b, the lift coef-
ficient is increased for the following reasons:

1. The camber of the airfoil section is effectively increased, as sketched in
Fig. 5.67¢c. The more camber an airfoil shape has at a given angle of attack,
the higher the lift coefficient.

2.  When the flap is deflected, we can visualize a line connecting the leading
edge of the airfoil and the trailing edge of the flap: points A and B,
respectively, in Fig. 5.67d. Line AB constitutes a virtual chord line, rotated
clockwise relative to the actual chord line of the airfoil, making the airfoil
section with the deflected flap see a “virtual” increase in angle of attack.
Hence the lift coefficient is increased.
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Figure 5.67 When a plain flap is deflected, the increase in lift is due
to an effective increase in camber and a virtual increase in angle of
attack.

For these reasons, when the flap is deflected downward through the flap deflec-
tion angle &, the value of C,,, is increased and the zero-lift angle of attack is
shifted to a more negative value, as shown in Fig. 5.68. In Fig. 5.68 the lift
curves for a wing with and without flaps are compared. Note that when the flaps
are deflected, the lift curve shifts to the left, the value of C, ,,, increases, and the
stalling angle of attack at which C; ., is achieved is decreased. However, the lift
slope remains unchanged; trailing-edge flaps do not change the value of dC;/dc.
Also note that for some of the airfoils given in App. D, lift curves are shown with
the effect of flap deflection included.

The increase in C; ,,, due to flaps can be dramatic. If the flap is designed
not only to rotate downward, but also to translate rearward so as to increase the
effective wing area, then C; ,,,, can be increased by approximately a factor of 2.
If additional high-lift devices are used, such as slats at the leading edge, slots
in the surface, or mechanical means of boundary layer control, then C; . can
sometimes be increased by a factor of 3 or more, as shown in Fig. 5.69. For an
interesting and more detailed discussion of various high-lift devices, the reader is
referred to the books by McCormick and Shevell (see the bibliography at the end
of this chapter), as well as this author’s book: Anderson, Aircraft Performance
and Design, McGraw-Hill, Boston, 1999.
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EXAMPLE 5.34

Consider the Lockheed F-104 shown in three-view in Fig. 4.52 and in the photograph in
Fig. 5.40. With a full load of fuel, the airplane weighs 10,258 kg, Its empty weight (no
fuel) is 6071 kg The wing area is 18.21 m? The wing of the F-104 is very thin, with a
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Figure 5.68 Illustration of the effect of flaps on the lift curve. The numbers shown are typical of a modern medium-
range jet transport.

thickness of 3.4 percent, and has a razor-sharp leading edge, both designed to minimize
wave drag at supersonic speeds. A thin wing with a sharp leading edge, however, has very
poor low-speed aerodynamic performance; such wings tend to stall at low angle of attack,
thus limiting the maximum lift coefficient. The F-104 has both leading-edge and trailing-
edge flaps; but in spite of these high-lift devices, the maximum lift coefficient at subsonic
speeds is only 1.15. Calculate the stalling speed at standard sea level when the airplane
has (a) a full fuel tank and (b) an empty fuel tank. Compare the results.
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Figure 5.69 Typical values of airfoil maximum lift coefficient for
various types of high-lift devices: (1) airfoil only, (2) plain flap,

(3) split flap, (4) leading-edge slat, (5) single-slotted flap, (6) double-
slotted flap, (7) double-slotted flap in combination with a leading-edge
slat, (8) addition of boundary-layer suction at the top of the airfoil.
(Source: From Loftin, NASA SP 468, 1985.)

N Solution
a. Recall that kg, is a nonconsistent unit of force; we need to convert it to newtons,

remembering from Sec. 2.4 that 1 kg,=9.8 N:
W =10,258(9.8)=1.005x10> N

At standard sea level, p., = 1.23 kg/m®. Thus, from Eq. (5.71),

5
Vo = |—2 =\/ 20.005x10°7)  _ reg 37

PSCrme N (1.23)18.21)(1.15)

In miles per hour, using the conversion factor from Example 2.6 that 60 mi/h =26.82 m/s,

Vian = (88.3 m/s)(MJ: 197.6 mi/h
S

26.82 m/
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b. W =6071(9.8)=5.949x10*N

4
_[aw :\/ 25.949x100 _ _ ez

N PuSCrm N (1.23)(18.21)(1.15)

‘/stall

or Vian = (68)(6—0]2 152 mi/h

26.82

Note: The difference between parts (a) and (b) is the weight. Because Vi, «< W"? from
Eq. (5.71), a shorter calculation for part (), using the answer from part (a), is simply

4
Vo = (88.3), [ 2210 68 s
1.005x10
which is a check on the preceding result.

Comparing the results from parts (a) and (b), we note the trend that the lighter the
airplane, everything else being equal, the lower the stalling speed. Because stalling speed
varies with the square root of the weight, however, the reduction in stalling speed is pro-
portionally less than the reduction in weight. In this example, a 41 percent reduction in
weight leads to a 23 percent reduction in stalling speed.

Consider the Boeing 727 trijet transport shown in the photograph in Fig. 5.44 and in the
three-view in Fig. 5.70. This airplane was designed in the 1960s to operate out of airports
with relatively short runways, bringing jet service to smaller municipal airports. To mini-
mize the takeoff and landing distances, the 727 had to be designed with a relatively low
stalling speed. From Eq. (5.71), alow V,,, can be achieved by designing a wing with a large
planform area, S, and/or with a very high value of C; ,,,x. A large wing area, however, leads

S Tn

.

Figure 5.70 Three-view of the Boeing 727 three-engine commercial jet transport.
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to a structurally heavier wing and increased skin friction drag—both undesirable features.
The Boeing engineers instead opted to achieve the highest possible C; ., by designing
the most sophisticated high-lift mechanism at that time, consisting of triple-slotted flaps
at the wing trailing edge and flaps and slots at the leading edge. With these devices fully
deployed, the Boeing 727 had a maximum lift coefficient of 3.0. For a weight of 160,000 1b
and a wing planform area of 1650 ft?, calculate the stalling speed of the Boeing 727 at
standard sea level. Compare this result with that obtained for the F-104 in Example 5.34.

H Solution
From Eq. (5.71),

Vian =\/ W 2(160,000) =165 ft/s

PSCrmee \(0.002377)(1650)(3.0)

In miles per hour,

Vit = 165(@j =112.5 mi/h
88

In Example 5.34a for the Lockheed F-104, we found V,; = 197.6 mi/h, a much higher
value than the Boeing 727. The airplanes in these two examples, a point-designed Mach 2
fighter and a short-field commercial jet transport, represent high and low extremes in
stalling speeds for conventional jet airplanes.

Note: Computed streamline patterns over the Boeing 727 airfoil section are shown
in Fig. 5.71, showing the high-lift devices deployed for landing configuration at an angle

Slat \( Foreflap
/ \El\\\y/ Midflap
Yi == N
‘ 5’//; %% 3is 5%\\/

: 24¢% R 5

Landing é‘%‘ ‘%;\ \(\\S\\ Aft flap
)
A

Takeoff

Figure 5.71 Streamline patterns over the Boeing 727 airfoil with
and without high-lift devices deployed, comparing the cases for
landing, takeoff, and cruise.

Copyright © by AIAA. All rights reserved. Used with permission.
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of attack of 6°, takeoff configuration at an angle of attack of 10°, and with the clear con-
figuration (no deployment of the high-lift devices) for cruise at an angle of attack of 3°.
Notice how much the flow field is changed when the high-lift devices are deployed; the
streamline curvature is greatly increased, reflecting the large increase in lift coefficient.

5.18 AERODYNAMICS OF CYLINDERS
AND SPHERES

Consider the low-speed subsonic flow over a sphere or an infinite cylinder with its
axis normal to the flow. If the flow were inviscid (frictionless), the theoretical flow
pattern would look qualitatively as sketched in Fig. 5.72a. The streamlines would
form a symmetric pattern; hence the pressure distributions over the front and rear
surfaces would also be symmetric, as sketched in Fig. 5.72b. This symmetry creates
a momentous phenomenon: namely, that there is no pressure drag on the sphere
if the flow is frictionless. This can be seen by simple inspection of Fig. 5.72b: The
pressure distribution on the front face (—90° < 8 < 90° creates a force in the drag
direction, but the pressure distribution on the rear face (90° < 6 < 270°), which
is identical to that on the front face, creates an equal and opposite force. Thus we
obtain the curious theoretical result that there is no drag on the body, quite contrary
to everyday experience. This conflict between theory and experiment was well
known at the end of the 19th century and is called d’Alembert’s paradox.

The actual flow over a sphere or cylinder is sketched in Fig. 4.37; as discussed
in Sec. 4.20, the presence of friction leads to separated flows in regions of adverse

-
N
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) 0 180 360
8
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Figure 5.72 Ideal frictionless flow over a sphere.
(a) Flow field. (b) Pressure coefficient distribution.
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Figure 5.73 Real separated flow over a sphere;
separation is due to friction. (a) Flow field.
(b) Pressure coefficient distribution.

pressure gradients. Examining the theoretical inviscid pressure distribution shown
in Fig. 5.72b, we find that on the rear surface (90° < 8 < 270°), the pressure in-
creases in the flow direction; that is, an adverse pressure gradient exists. Thus, it is
entirely reasonable that the real-life flow over a sphere or cylinder would be sepa-
rated from the rear surface. This is indeed the case, as first shown in Fig. 4.37 and
as sketched again in Fig. 5.73a. The real pressure distribution that corresponds to
this separated flow is shown as the solid curve in Fig. 5.73b. Note that the average
pressure is much higher on the front face (-90° < 8 < 90°) than on the rear face
(90° < 8<270°). As aresult, a net drag force is exerted on the body. Hence nature
and experience are again reconciled, and d’ Alembert’s paradox is removed by a
proper account of the presence of friction.

The flow over a sphere or cylinder, and therefore the drag, is dominated by
flow separation on the rear face. This leads to an interesting variation of C;, with
the Reynolds number. Let the Reynolds number be defined in terms of the sphere
diameter d: Re = p.., V.. d/lL.. If a sphere is mounted in a low-speed subsonic
wind tunnel and the free-stream velocity is varied so that Re increases from 10°
to 108, then a curious, almost discontinuous drop in Cj, is observed at about Re =
3 x 10°. This is called the critical Reynolds number for the sphere. This behavior
is sketched in Fig. 5.74. What causes this precipitous decrease in drag? The an-
swer lies in the different effects of laminar and turbulent boundary layers on flow
separation. At the end of Sec. 4.20, we noted that laminar boundary layers separate
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Figure 5.74 Variation of drag coefficient with Reynolds
number for a sphere in low-speed flow.
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Figure 5.75 Laminar and turbulent flow over a sphere.
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DESIGN BOX

The large pressure drag associated with blunt bodies
such as the cylinders and spheres discussed in this sec-
tion leads to the design concept of streamlining. Con-
sider a body of cylindrical cross section of diameter d,
with the axis of the cylinder oriented perpendicular to
the flow. There will be separated flow on the back face
of the cylinder, with a relatively fat wake and with the
associated high-pressure drag; this case is sketched in
Fig. 5.76a. The bar to the right of Fig. 5.76a denotes
the total drag of the cylinder; the shaded portion of the
bar represents skin friction drag, and the open portion
represents the pressure drag. Note that for the case of
a blunt body, the drag is relatively large, and most of
this drag is due to pressure drag. However, look at what
happens when we wrap a long, mildly tapered afterbody
on the back of the cylinder, creating the teardrop-shaped
body sketched in Fig. 5.76b. This shape is a streamlined
body, of the same thickness d as the cylinder. Howeyver,
because of the tapered afterbody, the adverse pressure
gradient along the back of the streamlined body will be
much milder than that for the back surface of the cylin-
der, and hence flow separation on the streamlined body
will be delayed until much closer to the trailing edge, as
sketched in Fig. 5.76b, with an attendant, much smaller

wake. As a result, the pressure drag of the streamlined
body will be much smaller than that for the cylinder.
Indeed, as shown by the bar to the right of Fig. 5.76b,
the total drag of the streamlined body in a low-speed
flow will be almost a factor of 10 smaller than that of
a cylinder of the same thickness. The friction drag of
the streamlined body will be larger due to its increased
surface area, but the pressure drag is so much less that it
dominates this comparison.

This is why so much attention is placed on stream-
lining in airplane design. The value of streamlining
was not totally recognized by airplane designers until
the late 1920s. Jump ahead to Figs. 6.79 and 6.80. In
Fig. 6.79 a typical strut-and-wire biplane from World
War I, the French SPAD XIII, is shown. This airplane
is definitely not streamlined. In contrast, by the middle
1930s streamlined airplanes were in vogue, and the
Douglas DC-3 shown in Fig. 6.80 is a classic example.
The evolution of our understanding of streamlining,
and how it was eventually applied in airplane design,
is one of the more interesting stories in the history of
aerodynamics. For this story, see Anderson, A History
of Aerodynamics and Its Impact on Flying Machines,
Cambridge University Press, New York, 1997.

Relative drag
force

—_—
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Figure 5.76 Comparison of the drag for a blunt body and a streamlined body.
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much more readily than turbulent boundary layers. In the flow over a sphere
at Re < 3 x 10°, the boundary layer is laminar. Hence the flow is totally sepa-
rated from the rear face, and the wake behind the body is large, as sketched in
Fig. 5.75a. In turn, the value of Cj, is large, as noted at the left of Fig. 5.74 for
Re < 3 x 10°. However, as Re increases above 3 x 10°, transition takes place on
the front face, the boundary layer becomes turbulent, and the separation point
moves rearward. (Turbulent boundary layers remain attached for longer dis-
tances in the face of adverse pressure gradients.) In this case the wake behind the
body is much smaller, as sketched in Fig. 5.75b. In turn the pressure drag is less,
and Cp, decreases as noted at the right of Fig. 5.74.

Therefore, to decrease the drag on a sphere or cylinder, a turbulent boundary
layer must be obtained on the front surface. This can be made to occur naturally
by increasing Re until transition occurs on the front face. It can also be forced
artificially at lower values of Re by using a rough surface to encourage early
transition or by wrapping wire or other protuberances around the surface to cre-
ate turbulence. (The use of such artificial devices is sometimes called tripping
the boundary layer.)

It is interesting to note that the dimples on the surface of a golf ball are
designed to promote turbulence and hence reduce the drag on the ball in flight.
Indeed, some recent research has shown that polygonal dimples result in less
drag than the conventional circular dimples on golf balls; but a dimple of any
shape leads to less pressure drag than a smooth surface does (table tennis balls
have more drag than golf balls).

A standard American-sized golf ball has a diameter of 1.68 in. The velocity of the golf
ball immediately after coming off the face of the driver after impact of the club face
with the ball is typically 148 mi/h. Calculate the Reynolds number of the ball, assuming
standard sea-level conditions, and compare this value with the critical Reynolds number
for a sphere.

H Solution

The diameter d = 1.68 in = 0.14 ft. The velocity is V = 148 mi/h = 148 (88/60) =
217.1 ft/s. The standard sea-level values of p.. and ., are 0.002377 slug/ft* and 3.7373
x 1077 slug/ft s (from Sec. 4.15).

PVed  (0.002377)(217.1)(0.14) 5
Re= = =(1.933x10
3.7373)(1077

Moo

This value is slightly below the critical Reynolds number of 3 x 10°. If the natural phe-
nomenon were left to itself, the golf ball would have a laminar boundary layer with the
consequent early flow separation shown in Fig. 5.75a, resulting in the large value of drag
coefficient at Reynolds numbers less than 3 x 10° as shown in Fig. 5.74. However, the
dimples on the surface of a golf ball serve to trip the boundary layer to a turbulent flow
at Reynolds numbers less than 3 x 10, creating a larger region of attached flow, as seen
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in Fig. 5.75b. This in turn reduces the drag coefficient to the lower value seen at the right
in Fig. 5.74. The dimples are a manmade mechanism for tripping the boundary layer that
effectively lowers the Reynolds number at which transition to a turbulent boundary layer
takes place.

405

EXAMPLE 5.37

For the golf ball in Example 5.36, calculate the drag for two cases: (a) a hypothetical ball
with a perfectly smooth skin, and () a real ball with dimples.

B Solution

a. Because Re = 1.933 x 10° is slightly below the critical value, and there is no rough-
ness on the surface to artificially trip the boundary layer, the value of the sphere drag
coefficient from Fig. 5.74 is about 0.4. For the flow conditions given in Example 5.36,

Goo = L P V.2 =1(0.002377)(217.10)> = 56 1b/ft’

For a sphere, the reference area used to define the drag coefficient is the cross-sectional

area. Thus

rd® _ m(0.14)
4

S= =0.0154 ft?

Therefore,

D=q.SC,;=(56)(0.0154)(0.4)=]0.3451b

b. In this case, there are dimples on the surface of the golf ball, and these will trip the
boundary layer to a turbulent flow, yielding the much lower drag coefficient of 0.1 shown
in Fig. 5.74. Thus

D=q.SC,=(56)(0.0154)(0.1)=[0.086 1b

Readers who play golf can understand the significance of this result. You can drive the
low-drag ball with dimples a much larger distance down the fairway than if the ball had
a smooth skin with a correspondingly high drag.

5.19 HOW LIFT IS PRODUCED—SOME
ALTERNATIVE EXPLANATIONS

Return to our road map in Fig. 5.1. We have covered all the milestones on this
map except the one at the bottom labeled “How lift is produced.” This is the
subject of this present section.

It is amazing that today, more than 100 years after the first flight of the
Wright Flyer, groups of engineers, scientist, pilots, and others can gather to-
gether and have a spirited debate on how an airplane wing generates lift. Various
explanations are put forth, and the debate centers on which explanation is the
most fundamental. The purpose of this section is to attempt to put these various
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explanations in perspective and to resolve the debate. In our previous discussions
in this book we have consistently put forth one explanation as the most funda-
mental, and we have intentionally not burdened your thinking with any alterna-
tives. So, you may be wondering what the big deal is here. You already know
how lift is produced. However, because the literature is replete with various dif-
ferent (and sometimes outright incorrect) explanations of how lift is produced,
you need to be aware of some of the alternative thinking.

First let us consider what this author advocates as the most fundamental
explanation of lift. It is clear from our discussion in Sec. 2.2 that the two hands
of nature that reach out and grab hold of a body moving through a fluid (liquid or
gas) are the pressure and shear stress distributions exerted all over the exposed
surface of the body. The resultant aerodynamic force on the body is the net, inte-
grated effect of the pressure and shear stress distributions on the surface. Because
the lift is the component of this resultant force perpendicular to the relative wind,
and because the pressure on the surface of an airfoil at reasonable angles of at-
tack acts mainly in the lift direction (whereas the shear stress acts mainly in the
drag direction), we are comfortable in saying that for lift the effect of shear stress
is secondary and that lift is mainly due to the imbalance of the pressure distribu-
tions over the top and bottom surfaces of the airfoil. Specifically, the pressure
on the top surface of the airfoil is lower than the pressure on the bottom surface,
and presto—Ilift! However, this raises the question of why the pressure is lower
on the top of the airfoil and higher on the bottom. The answer is simply that the
aerodynamic flow over the airfoil is obeying the laws of nature: mass continuity
and Newton’s second law. Let us look at this more closely and see how nature
applies these laws to produce lift on an airplane wing. Three intellectual thoughts
follow in sequence:

1. Consider the flow over an airfoil as sketched in Fig. 5.77a. Consider the
stream tubes A and B shown here. The shaded stream tube A flows over
the top surface, and the unshaded stream tube B flows over the bottom
surface. Both stream tubes originate in the free stream ahead of the airfoil.
As stream tube A flows toward the airfoil, it senses the upper portion of the
airfoil as an obstruction, and stream tube A must move out of the way of
this obstruction. In so doing, stream tube A is squashed to a smaller cross-
sectional area as it flows over the nose of the airfoil. In turn, because of
mass continuity (p AV = constant), the velocity of the flow in the stream
tube must increase in the region where the stream tube is being squashed.
This higher velocity is shown by the long arrow at point a in Fig. 5.77a.
As the stream tube flows downstream of point a, its cross-sectional area
gradually increases and the flow velocity decreases, as shown by the
shorter arrow at point b. Note that stream tube A is squashed the most in
the nose region, ahead of the maximum thickness of the airfoil. Hence, the
maximum velocity occurs ahead of the maximum thickness of the airfoil.
Now consider stream tube B, which flows over the bottom surface of the
airfoil. The airfoil is designed with positive camber; hence the bottom
surface of the airfoil presents less of an obstruction to stream tube B, so
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Note: The length of the arrows denoting pressure is proportional to
D — Pref» Where p ¢ is an arbitrary reference pressure slightly
less than the minimum pressure on the airfoil.

Figure 5.77 (a) Flow velocity on the upper surface is on

the average higher than that on the bottom surface due to
squashing of streamline A compared to streamline B.

(b) As aresult, the pressure on the top surface is lower than
the pressure on the bottom surface, creating lift in the upward
direction.

stream tube B is not squashed as much as stream tube A in flowing over the
nose of the airfoil. As a result, the flow velocity in stream tube B remains
less than that in stream tube A. Therefore, we can state the following:

Because of the law of mass continuity—that is, the continuity equation—the flow
velocity increases over the top surface of the airfoil more than it does over the
bottom surface.

To see the squashing of the stream tube in an actual flow, return to the
smoke flow photograph in Fig. 2.6. It is clear that the stream tube flowing
over the top surface of the airfoil is being squashed in the region just
downstream of the leading edge, and this is where the maximum flow
velocity is occurring.

For an incompressible flow, from Bernoulli’s equation p+ 1 pV* = constant,
clearly where the velocity increases, the static pressure decreases. This trend
is the same for compressible flow. From Euler’s equation dp = —p V dV, when
the velocity increases (dV positive), the pressure decreases (dp negative).
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We can label this general trend—namely, when the velocity increases, the
pressure decreases—the Bernoulli effect. Recall that Bernoulli’s equation and
Euler’s equation are statements of Newton’s second law. Because we have
shown in item 1 that the flow velocity is higher over the top surface than it is
over the bottom surface, we can state the following:

Because of the Bernoulli effect, the pressure over the top surface of the airfoil is
less than the pressure over the bottom surface.

This is illustrated in Fig. 5.77b, which is a schematic of the pressure
distribution over the top and bottom surfaces. Note that the minimum
pressure occurs at point a.

3. Finally, it follows that

Owing to the lower pressure over the top surface and the higher pressure over the
bottom surface, the airfoil experiences a lift force in the upward direction.

This lift force is shown schematically in Fig. 5.77b.

The sequence of preceding items 1 through 3 are the fundamental laws of
nature that result in lift being produced on an airplane wing. You cannot get more
fundamental than this—mass conservation and Newton’s second law.

We also note that the preceding explanation shows why most of the lift of
the wing is produced by the first 20 or 30 percent of the wing just downstream
of the leading edge. This is shown in Fig. 5.77b, where the largest difference in
pressure between the top and bottom surfaces is on the front part of the airfoil.
That most of the lift is generated by the forward portion of the airfoil is also seen
in Figs. 5.18, 4.55, and 4.56, which demonstrate that the minimum pressure on
the top surface occurs over the forward portion of the airfoil just downstream of
the leading edge. In a sense, the main function of the back portion of the airfoil
is to simply form a streamlined shape to avoid flow separation.

We dispel here a common misconception about why the flow velocity in-
creases over the top surface of the airfoil. It is sometimes written that a fluid
element that comes into the stagnation region splits into two elements, one of
which flows over the top surface and the other over the bottom surface. It is
then assumed that these two elements must meet up at the trailing edge; and be-
cause the running distance over the top surface of the airfoil is longer than that
over the bottom surface, the element over the top surface must move faster.
This is simply not true. Experimental results and computational fluid dynamic
calculations clearly show that a fluid element moving over the top surface of an
airfoil leaves the trailing edge long before its companion element moving over
the bottom surface arrives at the trailing edge. This is illustrated in Fig. 5.78.
Consider a combined fluid element CD at time ¢, in the stagnation region at the
leading edge of the airfoil, as sketched in Fig. 5.78. This element splits into
element C moving over the top surface and element D moving over the bottom
surface. At a later time t,, element C has moved downstream of the trailing
edge, and element D has not yet arrived at the trailing edge. The two elements
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simply do not meet at the trailing edge, so any explanation that depends on
their meeting is flawed.

The preceding explanation of the generation of lift applies also to flat plates
as well as curved airfoil shapes. Contrary to statements in some popular litera-
ture, the curved shape of an airfoil is not necessary for the production of lift.
A thin flat plate at an angle of attack produces lift. A schematic of the streamline
pattern over a flat plate at angle of attack is shown in Fig. 5.79. The stagnation
point (labeled s.p. in Fig. 5.79) is located on the bottom surface, downstream
of the leading edge. The streamline through the stagnation point is called the
dividing streamline; the flow above the dividing streamline flows up and over
the top of the plate, whereas the flow below the dividing streamline flows over
the bottom of the plate. The shaded stream tube shown in Fig. 5.79 is analogous
to the shaded stream tube A in Fig. 5.77. The flow in the shaded stream tube in
Fig. 5.70 moves upstream from the stagnation point along the surface, curls
around the leading edge where, in terms of our previous discussions, it experi-
ences extreme squashing, and then flows downstream over the top of the plate.
As a result at the squashing, the flow velocity at the leading edge is very large,
with a correspondingly low pressure. As the stream tube flows downstream over
the top of the plate, its cross-sectional area gradually increases; hence the flow

Time 1,

Figure 5.78 The tracking of two fluid elements in the flow over
an airfoil. Element C moves over the top, and element D over the
bottom.

Figure 5.79 Schematic of the streamline flow over a flat plate at angle of
attack.
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L = time rate of change of
momentum of airflow in
the downward direction

Voo
av
14
Figure 5.80 Relationship of lift to the time rate of change of momentum of the airflow.

velocity gradually decreases from its initially high value at the leading edge, and
the surface pressure gradually increases from its initially low value. The pres-
sure on the top surface, however, remains, on the average, lower than that on the
bottom surface; as usual, this pressure difference produces lift on the plate. This
question is naturally raised: Why then do we not fly around on thin flat plates
as airplane wings? The answer, besides the obvious practical requirement for
wing thickness to allow room for internal structure and for fuel and landing gear
storage, is that the flat plate also produces drag—Iots of it. The flow over the
top surface tends to separate at the leading edge at fairly small angles of attack,
causing massive pressure drag. Consequently, although the flat plate at angle of
attack produces lift, the lift-to-drag ratio is much lower than conventional thick
airfoils with their streamlined shapes.

There are several alternative explanations of the generation of lift that are
in reality not the fundamental explanation but rather are more of an effect of lift
being produced, not the cause. Let us examine these alternative explanations.

The following alternative explanation is sometimes given: The wing deflects
the airflow so that the mean velocity vector behind the wing is canted slightly
downward, as sketched in Fig. 5.80. Hence, the wing imparts a downward com-
ponent of momentum to the air; that is, the wing exerts a force on the air, pushing
the flow downward. From Newton’s third law, the equal and opposite reaction
produces a lift. However, this explanation really involves the effect of lift, not the
cause. In reality, the air pressure on the surface is pushing on the surface, creat-
ing lift in the upward direction. As a result of the equal-and-opposite principle,
the airfoil surface pushes on the air, imparting a downward force on the airflow,
which deflects the velocity downward. Hence, the net rate of change of down-
ward momentum created in the airflow because of the presence of the wing can
be thought of as an effect due to the surface pressure distribution; the pressure
distribution by itself is the fundamental cause of lift.

A third argument, called the circulation theory of lift, is sometimes given for
the source of lift. However, this turns out to be not so much an explanation of lift



5.19 How Lift is Produced—Some Alternative Explanations

Curve C

—
-~ ~a

Ve ~

p—

T i

Figure 5.81 Diagram for the circulation theory of lift.

per se, but rather more of a mathematical formulation for the calculation of lift
for an airfoil of given shape. Moreover, it is mainly applicable to incompress-
ible flow. The circulation theory of lift is elegant and well developed; it is also
beyond the scope of this book. However, some of its flavor is given as follows.
Consider the flow over a given airfoil, as shown in Fig. 5.81. Imagine a
closed curve C drawn around the airfoil. At a point on this curve, the flow veloc-
ity is V, and the angle between V and a tangent to the curve is 6. Let ds be an
incremental distance along C. A quantity called the circulation I is defined as

I'=s % Vcos@ds (5.72)
C

That is, I" is the line integral of the component of flow velocity along the closed
curve C. After a value of I" is obtained, the lift per unit span can be calculated

from
g8

Equation (5.73) is the Kutta—Joukowsky theorem; it is a pivotal relation in the
circulation theory of lift. The object of the theory is to (somehow) calculate T"
for a given V., and airfoil shape. Then Eq. (5.73) yields the lift. A major thrust
of ideal incompressible flow theory, many times called potential flow theory, is
to calculate I'. Such matters are discussed in more advanced aerodynamics texts
(see Anderson, Fundamentals of Aerodynamics, 5th ed., McGraw-Hill, 2011).
The circulation theory of lift is compatible with the true physical nature of
the flow over an airfoil, as any successful mathematical theory must be. In the
simplest sense, we can visualize the true flow over an airfoil, shown at the right
of Fig. 5.82, as the superposition of a uniform flow and a circulatory flow, shown
at the left of Fig. 5.82. The circulatory flow is clockwise, which when added to
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Uniform flow

Pure circulation Incompressible flow over an airfoil

Figure 5.82 Addition of two elementary flows to synthesize a more complex flow. If one or more of the
elementary flows have circulation, then the synthesized flow also has the same circulation. The lift is directly
proportional to the circulation.

EXAMPLE 5.38

the uniform flow yields a higher velocity above the airfoil and a lower velocity
below the airfoil. From Bernoulli’s equation, this implies a lower pressure on
the top surface of the airfoil and a higher pressure on the bottom surface, hence
generating upward lift. The strength of the circulatory contribution, defined by
Eq. (5.72), is just the precise value such that when it is added to the uniform flow
contribution, the actual flow over the airfoil leaves the trailing edge smoothly, as
sketched at the right of Fig. 5.82. This is called the Kutta condition and is one of
the major facets of the circulation theory of lift.

Again, keep in mind that the actual mechanism that nature has of com-
municating a lift to the airfoil is the pressure distribution over the surface of
the airfoil, as sketched in Fig. 5.77b. In turn, this pressure distribution ulti-
mately causes a time rate of change of momentum of the airflow, as shown
in Fig. 5.80—a principle that can be used as an alternative way of visualizing
the generation of lift. Finally, even the circulation theory of lift stems from the
pressure distribution over the surface of the airfoil because the derivation of the
Kutta—Joukowsky theorem, Eq. (5.73), involves the surface pressure distribu-
tion. Again, for more details, consult Anderson, Fundamentals of Aerodynamics,
5th ed., McGraw-Hill, 2011.

In Example 5.10, we demonstrated that an NACA 2415 airfoil can produce lift when
it is flying upside down, but not as effectively. Let us revisit this matter in the present
example, but for a different airfoil shape and for the purpose of addressing the airfoil
shapes usually found on aerobatic airplanes. Consider the NACA 4412 airfoil shown
right side up and upside down in Fig. 5.83a and b, respectively. Both are shown at the
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(b) Upside down

Figure 5.83 Illustration of (a) an airfoil flying right
side up and (b) flying upside down. Both are at the
same angle of attack.

same angle of attack relative to the free stream. For an angle of attack of 6°, obtain the lift
coefficient for each case shown in (a) and (b).

H Solution
a. From App. D, for the NACA 4412 airfoil at o= 6°,

b. Take Fig. 5.83b and turn it upside down. What you see is the NACA 4412 airfoil right
side up but at a negative angle of attack. Therefore, the lift coefficient for the upside-
down airfoil at the positive angle of attack shown in Fig. 5.83b is given by the data in
App. D for negative angles of attack. For o= —6°, App. D shows ¢, = —0.22; the negative
¢; connotes a downward lift on the ordinary right-side-up airfoil when pitched to a nega-
tive angle of attack of —6°. In the upside-down orientation shown in Fig. 5.83b, this lift
is directed upward. Hence, for the NACA 4412 airfoil flying upside down at an angle of
attack of 6°,

Note: The airfoil flying upside down as shown in Fig. 5.83b produces lift, but not as much
as the same airfoil flying right side up at the same angle of attack. For the upside-down
airfoil in Fig. 5.83b to produce the same lift as the right-side-up airfoil in Fig. 5.83a, it
must be pitched to a higher angle of attack.

Aerobatic airplanes spend a lot of time flying upside down. For this reason, the
designers of such airplanes frequently choose a symmetric airfoil for the wing section.
Also, the horizontal and vertical tails on airplanes of all types usually have symmetric
airfoil shapes. An aerobatic airplane flown by the famous aerobatic pilot and three-time
U.S. National Champion Patty Wagstaff is pictured in Fig. 5.84, which shows the wing
with a symmetric airfoil section.
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(b

Figure 5.84 Patty Wagstaff’s aerobatic airplane, the Extra 260, on display at the National
Air and Space Museum. (a) Full view of the airplane. (b) Left wing, showing the squared-off
wing tip. (continued)
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(©)

Figure 5.84 (concluded) (c) Detail of the left wing tip, showing the symmetric airfoil
section.
(Source: Courtesy of John Anderson.)
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5.20 HISTORICAL NOTE: AIRFOILS AND WINGS

We know that George Cayley introduced the concept of a fixed-wing aircraft in
1799; this has been discussed at length in Secs. 1.3 and 5.1. Moreover, Cayley
appreciated the fact that lift is produced by a region of low pressure on the top
surface of the wing and high pressure on the bottom surface and that a cambered
shape produces more lift than a flat surface. Indeed, Fig. 1.5 shows that Cayley
was thinking of a curved surface for a wing, although the curvature was due
to the wind billowing against a loosely fitting fabric surface. However, neither
Cayley nor any of his immediate followers performed work even closely resem-
bling airfoil research or development.

It was not until 1884 that the first serious airfoil developments were made. In
that year Horatio F. Phillips, an Englishman, was granted a patent for a series of
double-surface, cambered airfoils. Figure 5.85 shows Phillip’s patent drawings
for his airfoil section. Phillips was an important figure in late 19th-century aero-
nautical engineering; we met him before, in Sec. 4.24, in conjunction with his
ejector-driven wind tunnel. In fact, the airfoil shapes in Fig. 5.85 were the result
of numerous wind tunnel experiments in which Phillips examined curved wings
of “every conceivable form and combination of forms.” Phillips widely published
his results, which had a major impact on the aeronautics community. Continuing
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Figure 5.85 Double-surface airfoil sections by Phillips. The
six upper shapes were patented by Phillips in 1884; the lower
airfoil was patented in 1891.

with his work, Phillips patented more airfoil shapes in 1891. Then, moving into
airplane design in 1893, he built and tested a large multiplane model, consisting
of a large number of wings, each with a 19-ft span and a chord of only 11 in,
which looked like a venetian blind! The airplane was powered by a steam engine
with a 6.5-ft propeller. The vehicle ran on a circular track and actually lifted a
few feet off the ground momentarily. After this demonstration, Phillips gave up
until 1907, when he made the first tentative hop flight in England in a similar, but
gasoline-powered, machine, staying airborne for about 500 ft. This was his last
contribution to aeronautics. However, his pioneering work during the 1880s and
1890s clearly earns Phillips the title of grandparent of the modern airfoil.

After Phillips, the work on airfoils shifted to a search for the most efficient
shapes. Work is still being done today on this very problem, although much
progress has been made. This progress covers several historical periods, as de-
scribed in the following Secs. 5.20.1 to 5.20.6.

5.20.1 The Wright Brothers

As noted in Secs. 1.8 and 4.24, Wilbur and Orville Wright, after their early expe-
rience with gliders, concluded in 1901 that many of the existing “air pressure”
data on airfoil sections were inadequate and frequently incorrect. To rectify
these deficiencies, they constructed their own wind tunnel (see Fig. 4.59), in
which they tested several hundred different airfoil shapes between September
1901 and August 1902. From their experimental results, the Wright brothers
chose an airfoil with a 1:20 maximum camber-to-chord ratio for their successful
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Figure 5.86 Typical airfoils in 1917.

Wright Flyer I in 1903. These wind tunnel tests by the Wright brothers consti-
tuted a major advance in airfoil technology at the turn of the century.

5.20.2 British and U.S. Airfoils (1910-1920)

In the early days of powered flight, airfoil design was basically customized and
personalized; little concerted effort was made to find a standardized, efficient
section. However, some early work was performed by the British government
at the National Physical Laboratory (NPL), leading to a series of Royal Aircraft
Factory (RAF) airfoils used on World War I airplanes. Figure 5.86 illustrates the
shape of the RAF 6 airfoil. Until 1915, most aircraft in the United States used
either an RAF section or a shape designed by the Frenchman Alexandre Gustave
Eiffel. This tenuous status of airfoils led the NACA, in its first annual report in
1915, to emphasize the need for “the evolution of more efficient wing sections of
practical form, embodying suitable dimensions for an economical structure, with
moderate travel of the center of pressure and still affording a large angle of attack
combined with efficient action.” To this day, more than 100 years later, NASA
is still pursuing such work.

The first NACA work on airfoils was reported in NACA Report No. 18,
“Aerofoils and Aerofoil Structural Combinations,” by Lt. Col. Edgar S. Gorrell
and Major H. S. Martin, prepared at the Massachusetts Institute of Technology
(MIT) in 1917. Gorrell and Martin summarized the contemporary airfoil status
as follows:

Mathematical theory has not, as yet, been applied to the discontinuous motion past a
cambered surface. For this reason, we are able to design aerofoils only by consider-
ation of those forms which have been successful, by applying general rules learned
by experience, and by then testing the aerofoils in a reliable wind tunnel.

In NACA Report No. 18, Gorrell and Martin disclosed a series of tests on
the largest single group of airfoils to that date, except for the work done at NPL
and by Eiffel. They introduced the USA airfoil series and reported wind tunnel
data for the USA 1 through USA 6 sections. Figure 5.86 illustrates the shape of
the USA 6 airfoil. The airfoil models were made of brass and were finite wings
with a span of 18 in and a chord of 3 in; that is, AR = 6. Lift and drag coefficients
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were measured at a velocity of 30 mi/h in the MIT wind tunnel. These airfoils
represented the first systematic series originated and studied by NACA.

5.20.3 1920-1930

Based on their wind tunnel observations in 1917, Gorrell and Martin stated that
slight variations in airfoil design make large differences in aerodynamic perfor-
mance. This is the underlying problem of airfoil research, and it led in the 1920s
to a proliferation of airfoil shapes. In fact, as late as 1929, F. A. Louden, in his
NACA Report No. 331, titled “Collection of Wind Tunnel Data on Commonly
Used Wing Sections,” stated that “the wing sections most commonly used in this
country are the Clark Y, Clark Y-15, Gottingen G-387, G-398, G-436, N.A.C.A.
M-12, Navy N-9, N-10, N-22, R.A.F.-15, Sloane, U.S.A.-27, U.S.A.-35A,
U.S.A.-35B.” However, help was on its way. As noted in Sec. 4.24, the NACA
built a variable-density wind tunnel at Langley Aeronautical Laboratory in
1923—a wind tunnel that was to become a workhorse in future airfoil research,
as emphasized in Sec. 5.20.4.

5.20.4 Early NACA Four-Digit Airfoils

In a classic work in 1933, order and logic were finally brought to airfoil
design in the United States. This was reported in NACA Report No. 460, “The
Characteristics of 78 Related Airfoil Sections from Tests in the Variable-
Density Wind Tunnel,” by Eastman N. Jacobs, Kenneth E. Ward, and Robert M.
Pinkerton. Their philosophy on airfoil design was as follows:

Airfoil profiles may be considered as made up of certain profile-thickness forms
disposed about certain mean lines. The major shape variables then become two,
the thickness form and the mean-line form. The thickness form is of particular
importance from a structural standpoint. On the other hand, the form of the mean line
determines almost independently some of the most important aerodynamic proper-
ties of the airfoil section, e.g., the angle of zero lift and the pitching-moment charac-
teristics. The related airfoil profiles for this investigation were derived by changing
systematically these shape variables.

They then proceeded to define and study for the first time in history the
famous NACA four-digit airfoil series, some of which are given in App. D of
this book. For example, NACA 2412 is defined as a shape that has a maximum
camber of 2 percent of the chord (the first digit); the maximum camber oc-
curs at a position of 0.4 chord from the leading edge (the second digit); and
the maximum thickness is 12 percent (the last two digits). Jacobs and his col-
leagues tested these airfoils in the NACA variable-density tunnel using a 5-in
by 30-in finite wing (again an aspect ratio of 6). In NACA Report No. 460, they
gave curves of C,, Cp, and L/D for the finite wing. Moreover, using the same
formulas developed in Sec. 5.15, they corrected their data to give results for
the infinite-wing case also. After this work was published, the standard NACA
four-digit airfoils were widely used. Even today the NACA 2412 is used on
several light aircraft.
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5.20.5 Later NACA Airfoils

In the late 1930s NACA developed a new camber line family to increase maxi-
mum lift, with the 230 camber line being the most popular. Combining with the
standard NACA thickness distribution, this gave rise to the NACA five-digit air-
foil series, such as the 23012, some of which are still flying today (for example,
on the Cessna Citation and the Beech King Air). This work was followed by
families of high-speed airfoils and laminar flow airfoils in the 1940s.

To reinforce its airfoil development, in 1939 NACA constructed a new low-
turbulence two-dimensional wind tunnel at Langley exclusively for airfoil test-
ing. This tunnel has a rectangular test section 3 ft wide and 74 ft high and can be
pressurized up to 10 atm for high—Reynolds-number testing. Most importantly,
this tunnel allows airfoil models to span the test section completely, thus directly
providing infinite-wing data. This is in contrast to the earlier tests previously
described, which used a finite wing of AR =6 and then corrected the data to cor-
respond to infinite-wing conditions. Such corrections are always compromised
by tip effects. (For example, what is the precise span efficiency factor for a given
wing?) With the new two-dimensional tunnel, vast numbers of tests were per-
formed in the early 1940s on both old and new airfoil shapes over a Reynolds
number range from 3 to 9 million and at Mach numbers less than 0.17 (incom-
pressible flow). The airfoil models generally had a 2-ft chord and completely
spanned the 3-ft width of the test section. It is interesting to note that the lift and
drag are not obtained on a force balance. Rather, the lift is calculated by integrat-
ing the measured pressure distribution on the top and bottom walls of the wind
tunnel, and the drag is calculated from Pitot pressure measurements made in the
wake downstream of the trailing edge. However, the pitching moments are mea-
sured directly on a balance. A vast amount of airfoil data obtained in this fashion
from the two-dimensional tunnel at Langley were compiled and published in a
book titled Theory of Wing Sections Including a Summary of Airfoil Data, by
Abbott and von Doenhoff, in 1949 (see the bibliography at end of this chapter).
It is important to note that all the airfoil data in App. D are obtained from this
reference; that is, all the data in App. D are direct measurements for an infinite
wing at essentially incompressible flow conditions.

5.20.6 Modern Airfoil Work

Priorities for supersonic and hypersonic aerodynamics put a stop to the NACA
airfoil development in 1950. Over the next 15 years, specialized equipment for
airfoil testing was dismantled. Virtually no systematic airfoil research was done
in the United States during this period.

However, in 1965 Richard T. Whitcomb made a breakthrough with the
NASA supercritical airfoil. This revolutionary development, which allowed the
design of wings with high critical Mach numbers (see Sec. 5.10), reactivated
interest in airfoils within NASA. Since that time a healthy program in modern
airfoil development has been reestablished. The low-turbulence, pressurized,
two-dimensional wind tunnel at Langley is back in operation. Moreover, a new
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dimension has been added to airfoil research: the high-speed digital computer.
In fact, computer programs for calculating the flow field around airfoils at sub-
sonic speeds are so reliable that they shoulder some of the routine testing duties
heretofore exclusively carried by wind tunnels. The same cannot yet be said
about transonic cases, but current research is focusing on this problem. An in-
teresting survey of modern airfoil activity within NASA is given by Pierpont in
Astronautics and Aeronautics (see the bibliography).

Of special note is the modern low-speed airfoil series, designated LS(1),
developed by NASA for use by general aviation on light airplanes. The shape
of a typical LS(1) airfoil is contrasted with a “‘conventional” airfoil in Fig. 5.87.
Its lifting characteristics, illustrated in Fig. 5.88, are clearly superior and should
allow smaller wing areas, and hence less drag, for airplanes of the type shown
in Fig. 5.87.

In summary, airfoil development over the past 100 years has moved from an
ad hoc individual process to a very systematic and logical engineering process.
It is alive and well today, with the promise of major advancements in the future
using both wind tunnels and computers.

5.20.7 Finite Wings

Some historical comments about the finite wing are in order. Francis Wenham
(see Ch. 1), in his classic paper titled Aerial Locomotion, given to the Aeronautical
Society of Great Britain on June 27, 1866, theorized (correctly) that most of the
lift of a wing occurs from the portion near the leading edge; hence a long, narrow
wing would be most efficient. In this fashion he was the first person in history to
appreciate the value of high—aspect-ratio wings for subsonic flight. Moreover, he
suggested stacking a number of long, thin wings above one another to generate

Smaller wing area

<l :.ivinced technology airfoil [LS(1)~0417)

—cgll» Conventional airfoil (65 series)

Figure 5.87 Shape comparison between the modern LS(1)-0417 and a conventional
airfoil. The higher lift obtained with the LS(1)-0417 allows a smaller wing area and
hence lower drag. (Source: NASA.)
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Figure 5.88 Comparison of maximum lift coefficients

between the LS(1)-0417 and conventional airfoils.
(Source: NASA.)

the required lift; thus he became an advocate of the multiplane concept. In turn,
he built two full-size gliders in 1858, both with five wings each, and successfully
demonstrated the validity of his ideas.

However, the true aerodynamic theory and understanding of finite wings did
not come until 1907, when the Englishman Frederick W. Lanchester published
his book Aerodynamics. In it he outlined the circulation theory of lift, developed
independently about the same time by Kutta in Germany and by Joukowsky in
Russia. More importantly, Lanchester discussed for the first time the effect of
wing-tip vortices on finite-wing aerodynamics. Unfortunately, Lanchester was
not a clear writer; his ideas were extremely difficult to understand, and they did
not find application in the aeronautical community.

In 1908 Lanchester visited Gottingen, Germany, and fully discussed his
wing theory with Ludwig Prandtl and his student, Theodore von Karman. Prandtl
spoke no English, Lanchester spoke no German, and in light of Lanchester’s
unclear ways of explaining his ideas, there appeared to be little chance of under-
standing between the two parties. However, in 1914 Prandtl set forth a simple,
clear, and correct theory for calculating the effect of tip vortices on the aero-
dynamic characteristics of finite-wings. It is virtually impossible to assess how
much Prandtl was influenced by Lanchester; but to Prandtl must go the credit of
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first establishing a practical finite-wing theory, a theory that is fundamental to
our discussion of finite wings in Secs. 5.13 to 5.15. Indeed, Prandtl’s first pub-
lished words on the subject were these:

The lift generated by the airplane is, on account of the principle of action and reaction,
necessarily connected with a descending current in all its details. It appears that the
descending current is formed by a pair of vortices, the vortex filaments of which start
from the airplane wingtips. The distance of the two vortices is equal to the span of the
airplane, their strength is equal to the circulation of the current around the airplane,
and the current in the vicinity of the airplane is fully given by the superposition of the
uniform current with that of a vortex consisting of three rectilinear sections.

Prandtl’s pioneering work on finite-wing theory, along with his ingenious
concept of the boundary layer, has earned him the title parent of aerodynamics.
In the four years following 1914, he went on to show that an elliptical lift distri-
bution results in the minimum induced drag. Indeed, the terms induced drag and
profile drag were coined in 1918 by Max Munk, in a note titled “Contribution to
the Aerodynamics of the Lifting Organs of the Airplane.” Munk was a colleague
of Prandtl’s, and the note was one of several classified German wartime reports
about airplane aerodynamics.

For more details about the history of airfoils and wings, see Anderson,
A History of Aerodynamics and Its Impact on Flying Machines, Cambridge
University Press, New York, 1997.

5.21 HISTORICAL NOTE: ERNST MACH
AND HIS NUMBER

Airplanes that fly at Mach 2 are commonplace today. High-performance military
aircraft such as the Lockheed SR-71 Blackbird can exceed Mach 3. As a result,
the term Mach number has become part of our general language—the average
person in the street understands that Mach 2 means twice the speed of sound.
On a more technical basis, the dimensional analysis described in Sec. 5.3 dem-
onstrated that aerodynamic lift, drag, and moments depend on two important
dimensionless products: the Reynolds number and the Mach number. In a more
general treatment of fluid dynamics, the Reynolds number and Mach number
can be shown as the major governing parameters for any realistic flow field;
they are among a series of governing dimensionless parameters called similarity
parameters. We already examined the historical source of the Reynolds number
in Sec. 4.25; let us do the same for the Mach number in this present section.

The Mach number is named after Ernst Mach, a famous 19th-century
physicist and philosopher. Mach was an illustrious figure with widely varying
interests. He was the first person in history to observe supersonic flow and to
understand its basic nature. Let us take a quick look at this man and his contribu-
tions to supersonic aerodynamics.

Ernst Mach was born at Turas, Moravia, in Austria, on February 18, 1838.
Mach’s father and mother were both extremely private and introspective
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intellectuals. His father was a student of philosophy and classical literature; his
mother was a poet and musician. The family was voluntarily isolated on a farm,
where Mach’s father pursued an interest of raising silkworms—pioneering the
beginning of silkworm culture in Europe. At an early age Mach was not a partic-
ularly successful student. Later Mach described himself as a “weak pitiful child
who developed very slowly.” Through extensive tutoring by his father at home,
Mach learned Latin, Greek, history, algebra, and geometry. After marginal per-
formances in grade school and high school (due not to any lack of intellectual
ability but rather to a lack of interest in the material usually taught by rote),
Mach entered the University of Vienna. There he blossomed, spurred by interest
in mathematics, physics, philosophy, and history. In 1860 he received a PhD in
physics, writing a thesis titled “On Electrical Discharge and Induction.” By 1864
he was a professor of physics at the University of Graz. (The variety and depth of
his intellectual interests at this time are attested by the fact that he turned down
the position of a chair in surgery at the University of Salzburg to go to Graz.)
In 1867 Mach became a professor of experimental physics at the University of
Prague—a position he would occupy for the next 28 years.

In today’s modern technological world, where engineers and scientists are
virtually forced, out of necessity, to peak their knowledge in narrow areas of
extreme specialization, it is interesting to reflect on the personality of Mach,
who was the supreme generalist. Here is only a partial list of Mach’s contri-
butions, as demonstrated in his writings: physical optics, history of science,
mechanics, philosophy, origins of relativity theory, supersonic flow, physiol-
ogy, thermodynamics, sugar cycle in grapes, physics of music, and classical
literature. He even wrote about world affairs. (One of Mach’s papers com-
mented on the “absurdity committed by the statesman who regards the indi-
vidual as existing solely for the sake of the state”; for this Mach was severely
criticized at that time by Lenin.) We can only sit back with awe and envy of
Mach, who—in the words of U.S. philosopher William James—knew “every-
thing about everything.”

Mach’s contributions to supersonic aerodynamics were highlighted in a
paper titled “Photographische Fixierung der durch Projektile in der Luft einge-
leiten Vorgange,” given to the Academy of Sciences in Vienna in 1887. Here, for
the first time in history, Mach showed a photograph of a shock wave in front of a
bullet moving at supersonic speeds. This historic photograph, taken from Mach’s
original paper, is shown in Fig. 5.89. Also visible are weaker waves at the rear
of the projectile and the structure of the turbulent wake downstream of the base
region. The two vertical lines are trip wires designed to time the photographic
light source (or spark) with the passing of the projectile. Mach was a precise and
careful experimenter; the quality of the picture shown in Fig. 5.89, along with
the fact that he was able to make the shock waves visible (he used an innova-
tive technique called the shadowgram), attests to his exceptional experimental
abilities. Note that Mach was able to carry out such experiments involving split-
second timing without the benefit of electronics—indeed, the vacuum tube had
not yet been invented.
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Figure 5.89 Photograph of a bullet in supersonic flight, published by Ernst Mach in 1887.
(Source: Courtesy of John Anderson.)

Mach was the first to understand the basic characteristics of supersonic flow.
He was the first to point out the importance of the flow velocity V relative to the
speed of sound a and to note the discontinuous and marked changes in a flow
field as the ratio V/a changes from less than 1 to greater than 1. He did not, how-
ever, call this ratio the Mach number. The term Mach number was not coined
until 1929, when the well-known Swiss engineer Jacob Ackeret introduced this
terminology, in honor of Mach, at a lecture at the Eidgenossiche Technische
Hochschule in Zurich. Hence the term Mach number is of fairly recent use, not
introduced into the English literature until 1932.

Mach was an active thinker, lecturer, and writer up to the time of his death
on February 19, 1916, near Munich, one day after his 78th birthday. His con-
tributions to human thought were many, and his general philosophy about
epistemology—a study of knowledge itself—is still discussed in college classes
in philosophy today. Aeronautical engineers know him as the originator of su-
personic aerodynamics; the rest of the world knows him as a man who originated
the following philosophy, as paraphrased by Richard von Mises, himself a well-
known mathematician and aerodynamicist of the early 20th century:

Mach does not start out to analyze statements, systems of sentences, or theories, but
rather the world of phenomena itself. His elements are not the simplest sentences,
and hence the building stones of theories, but rather—at least according to his way
of speaking—the simplest facts, phenomena, and events of which the world in which
we live and which we know is composed. The world open to our observation and
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Figure 5.90 Ernst Mach (1838-1916).

(Source: Courtesy of John Anderson.)

experience consists of “colors, sounds, warmths, pressure, spaces, times, etc.” and
their components in greater and smaller complexes. All we make statements or
assertions about, or formulate questions and answers to, are the relations in which
these elements stand to each other. That is Mach’s point of view.'

We end this section with a photograph of Mach, taken about 1910, shown
in Fig. 5.90. It is a picture of a thoughtful, sensitive man; no wonder that his
philosophy of life emphasized observation through the senses, as discussed by
von Mises. To honor his memory, an entire research institute, the Ernst Mach
Institute in Germany, was named for him. This institute hosts research in experi-
mental gas dynamics, ballistics, high-speed photography, and cinematography.
For a much more extensive review of the technical accomplishments of Mach,
see the paper authored by a member of the Ernst Mach Institute, H. Reichenbach,
titled “Contributions of Ernst Mach to Fluid Mechanics,” in Annual Reviews of
Fluid Mechanics, vol. 15, 1983, pp. 1-28 (published by Annual Reviews, Inc.,
Palo Alto, California).

"From Richard von Mises, Positivism, A Study in Human Understanding, Braziller, New York, 1956.
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5.22 HISTORICAL NOTE: THE FIRST MANNED
SUPERSONIC FLIGHT

On October 14, 1947, a human being flew faster than the speed of sound for
the first time in history. Imagine the magnitude of this accomplishment—just
60 years after Ernst Mach observed shock waves on supersonic projectiles (see
Sec. 5.21) and a scant 44 years after the Wright brothers achieved their first suc-
cessful powered flight (see Secs. 1.1 and 1.8). It is almost certain that Mach was
not thinking at all about heavier-than-air manned flight of any kind, which in
his day was still considered to be virtually impossible and the essence of foolish
dreams. It is also almost certain that the Wright brothers had not the remotest
idea that their fledgling 30 mi/h flight on December 17, 1903, would ultimately
lead to a manned supersonic flight in Orville’s lifetime (although Wilbur died in
1912, Orville lived an active life until his death in 1948). Compared to the total
spectrum of manned flight reaching all the way back to the ideas of Leonardo da
Vinci in the 15th century (see Sec. 1.2), this rapid advancement into the realm of
supersonic flight is truly phenomenal. How did this advancement occur? What
were the circumstances surrounding the first supersonic flight? Why was it so
important? This section addresses these questions.

Supersonic flight did not happen by chance; it was an inevitable result of
the progressive advancement of aeronautical technology over the years. On one
hand, we have the evolution of high-speed aerodynamic theory, starting with
the pioneering work of Mach, as described in Sec. 5.21. This was followed by
the development of supersonic nozzles by two European engineers, Carl G. P.
de Laval in Sweden and A. B. Stodola in Switzerland. In 1887 de Laval used a
convergent—divergent supersonic nozzle to produce a high-velocity flow of steam
to drive a turbine. In 1903 Stodola was the first person in history to definitely
prove (by means of a series of laboratory experiments) that such convergent—di-
vergent nozzles did indeed produce supersonic flow. From 1905 to 1908, Prandtl
in Germany took pictures of Mach waves inside supersonic nozzles and devel-
oped the first rational theory for oblique shock waves and expansion waves.
After World War I, Prandtl studied compressibility effects in high-speed sub-
sonic flow. This work, in conjunction with independent studies by the English
aerodynamicist Herman Glauert, led to the publishing of the Prandtl-Glauert
rule in the late 1920s (see Sec. 5.6 for a discussion of the Prandtl-Glauert rule
and its use as a compressibility correction). These milestones, among others,
established a core of aerodynamic theory for high-speed flow—a core that was
well established at least 20 years before the first supersonic flight. (For more
historical details concerning the evolution of aerodynamic theory pertaining to
supersonic flight, see Anderson, Modern Compressible Flow: With Historical
Perspective, 3rd ed., McGraw-Hill, 2003.)

On the other hand, we also have the evolution of hardware necessary for
supersonic flight. The development of high-speed wind tunnels, starting with the
small 12-in-diameter high-speed subsonic tunnel at NACA Langley Memorial
Aeronautical Laboratory in 1927 and continuing with the first practical supersonic
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wind tunnels developed by Adolf Busemann in Germany in the early 1930s, is
described in Sec. 4.24. The exciting developments leading to the first success-
ful rocket engines in the late 1930s are discussed in Sec. 9.17. The concurrent
invention and development of the jet engine, which would ultimately provide
the thrust necessary for everyday supersonic flight, are related in Sec. 9.16.
Hence, on the basis of the theory and hardware existing at that time, the advent
of manned supersonic flight in 1947 was a natural progression in the advance-
ment of aeronautics.

However, in 1947 there was one missing link in both the theory and the
hardware—the transonic regime, near Mach 1. The governing equations for tran-
sonic flow are highly nonlinear and hence are difficult to solve. No practical so-
lution of these equations existed in 1947. This theoretical gap was compounded
by a similar gap in wind tunnels. The sensitivity of a flow near Mach 1 makes the
design of a proper transonic tunnel difficult. In 1947 no reliable transonic wind
tunnel data were available. This gap of knowledge was of great concern to the
aeronautical engineers who designed the first supersonic airplane, and it was the
single most important reason for the excitement, apprehension, uncertainty, and
outright bravery that surrounded the first supersonic flight.

The unanswered questions about transonic flow did nothing to dispel the
myth of the “sound barrier” that arose in the 1930s and 1940s. As discussed in
Sec. 5.12, the very rapid increase in drag coefficient beyond the drag-divergence
Mach number led some people to believe that humans would never fly faster
than the speed of sound. Grist was lent to their arguments when, on September
27, 1946, Geoffrey deHavilland, son of the famous British airplane designer,
took the D.H. 108 Swallow up for an attack on the world’s speed record. The
Swallow was an experimental jet-propelled aircraft, with swept wings and no
horizontal tail. Attempting to exceed 615 mi/h on its first high-speed, low-alti-
tude run, the Swallow encountered major compressibility problems and broke
up in the air. DeHavilland was killed instantly. The sound barrier had taken its
toll. It was against this background that the first supersonic flight was attempted
in 1947.

During the late 1930s, and all through World War II, some visionaries clearly
saw the need for an experimental airplane designed to probe the mysteries of su-
personic flight. Finally, in 1944 their efforts prevailed; the Army Air Force, in
conjunction with NACA, awarded a contract to Bell Aircraft Corporation for the
design, construction, and preliminary testing of a manned supersonic airplane.
Designated the XS-1 (Experimental Sonic-1), this design had a fuselage shaped
like a 50-caliber bullet, mated to a pair of very thin (thickness-to-chord ratio
of 0.08), low—aspect-ratio, straight wings, as shown in Fig. 5.91. The aircraft
was powered by a four-chamber liquid-propellant rocket engine mounted in the
tail. This engine, made by Reaction Motors and designated the XLLR11, produced
6000 1b of thrust by burning a mixture of liquid oxygen and diluted alcohol.

The Bell XS-1 was designed to be carried aloft by a parent airplane, such as
the giant Boeing B-29, and then launched at altitude; this saved the extra weight
of fuel that would have been necessary for takeoff and climb to altitude, allowing

427



428

CHAPTER 5 Airfoils, Wings, and Other Aerodynamic Shapes

Figure 5.91 The Bell XS-1, the first supersonic airplane, 1947.
(Source: NASA.)

the designers to concentrate on one performance aspect—speed. Three XS-1s
were ultimately built, the first one being completed just after Christmas 1945.
There followed a year and a half of gliding and then powered tests, wherein the
XS-1 was cautiously nudged toward the speed of sound.

Muroc Dry Lake is a large expanse of flat, hard lake bed in the Mojave Desert
in California. Site of a U.S. Army high-speed flight test center during World War
II, Muroc was later to become known as Edwards Air Force Base, now the site
of the Air Force Test Pilots School and the home of all experimental high-speed
flight testing for both the Air Force and NASA. On Tuesday, October 14, 1947,
the Bell XS-1, nestled under the fuselage of a B-29, was waiting on the flight
line at Muroc. After intensive preparations by a swarm of technicians, the B-29
with its cargo took off at 10:00 AM. On board the XS-1 was Captain Charles E.
(Chuck) Yeager. That morning Yeager was in excruciating pain from two broken
ribs fractured during a horseback riding accident earlier that week; however, he
told virtually no one. At 10:26 AM, at an altitude of 20,000 ft, the Bell XS-1, with
Yeager as its pilot, was dropped from the B-29. What happened next is one of
the major milestones in aviation history. Let us see how Yeager himself recalled
events, as stated in his written flight report:

Date: 14 October 1947
Pilot: Capt. Charles E. Yeager
Time: 14 Minutes

9th Powered Flight

1. After normal pilot entry and the subsequent climb, the XS-1 was dropped from
the B-29 at 20,000 ft and at 250 MPH IAS. This was slower than desired.

2. Immediately after drop, all four cylinders were turned on in rapid sequence, their
operation stabilizing at the chamber and line pressures reported in the last flight. The
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ensuing climb was made at .85—-.88 Mach, and as usual it was necessary to change the
stabilizer setting to 2 degrees nose down from its pre-drop setting of 1 degree nose
down. Two cylinders were turned off between 35,000 ft and 40,000 ft, but speed had
increased to .92 Mach as the airplane was leveled off at 42,000 ft. Incidentally, dur-
ing the slight push-over at this altitude, the lox line pressure dropped perhaps 40 psi
and the resultant rich mixture caused the chamber pressures to decrease slightly.
The effect was only momentary, occurring at .6 G’s, and all pressures returned to
normal at 1 G.
3. In anticipation of the decrease in elevator effectiveness at all speeds above
.93 Mach, longitudinal control by means of the stabilizer was tried during the climb
at .83, .88, and .92 Mach. The stabilizer was moved in increments of % —% degree
and proved to be very effective; also, no change in effectiveness was noticed at the
different speeds.
4. At 42,000 ft in approximately level flight, a third cylinder was turned on.
Acceleration was rapid and speed increased to .98 Mach. The needle of the mach-
meter fluctuated at this reading momentarily, then passed off the scale. Assuming
that the off-scale reading remained linear, it is estimated that 1.05 Mach was attained
at this time. Approximately 30 percent of fuel and lox remained when this speed was
reached and the motor was turned off.
5. While the usual lift buffet and instability characteristics were encountered in
the .88-.90 Mach range and elevator effectiveness was very greatly decreased at
.94 Mach, stability about all three axes was good as speed increased and elevator
effectiveness was regained above .97 Mach. As speed decreased after turning off
the motor, the various phenomena occurred in reverse sequence at the usual speeds,
and in addition, a slight longitudinal porpoising was noticed from .98 to .96 Mach
which was controllable by elevators alone. Incidentally, the stabilizer setting was not
changed from its 2 degrees nose down position after trial at .92 Mach.
6. After jettisoning the remaining fuel and lox at 1 G stall was performed at
45,000 ft. The flight was concluded by the subsequent glide and a normal landing
on the lakebed.

CHARLES E. YEAGER

Capt. Air Corps

In reality the Bell SX-1 had reached M., = 1.06, as determined from official
NACA tracking data. The duration of its supersonic flight was 20.5 s, almost
twice as long as the Wright brothers’ entire first flight just 44 years earlier. On
that day Chuck Yeager became the first person to fly faster than the speed of
sound. It is a fitting testimonial to the aeronautical engineers at that time that the
flight was smooth and without unexpected consequences. An aircraft had finally
been properly designed to probe the “sound barrier,” which it penetrated with
relative ease. Less than a month later, Yeager reached Mach 1.35 in the same
airplane. The sound barrier had not only been penetrated—it had been virtually
destroyed as the myth it really was.

As a final note, the whole story of the human and engineering challenges
that revolved about the quest for and eventual achievement of supersonic flight is
fascinating, and it is a living testimonial to the glory of aeronautical engineering.
The story is brilliantly spelled out by Dr. Richard Hallion, earlier a curator at the
Air and Space Museum of the Smithsonian Institution and now chief historian of
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the U.S. Air Force (now retired), in his book Supersonic Flight (see the bibliog-
raphy at the end of this chapter). The reader should study Hallion’s story of the
events leading to and following Yeager’s flight in 1947.

5.23 HISTORICAL NOTE: THE X-15—FIRST
MANNED HYPERSONIC AIRPLANE AND
STEPPING-STONE TO THE SPACE SHUTTLE

Faster and higher—for all practical purposes, this has been the driving potential
behind the development of aviation since the Wrights’ first successful flight in
1903. (See Sec. 1.11 and Figs. 1.30 and 1.31.) This credo was never more true
than during the 15 years following Chuck Yeager’s first supersonic flight in the
Bell XS-1, described in Sec. 5.22. Once the sound barrier was broken, it was left
far behind in the dust. The next goal became manned hypersonic flight—Mach 5
and beyond.

To accomplish this goal, NACA initiated a series of preliminary studies in
the early 1950s for an aircraft to fly beyond Mach 5, the definition of the hyper-
sonic flight regime. This definition is essentially a rule of thumb; unlike the se-
vere and radical flow field changes that take place when an aircraft flies through
Mach 1, nothing dramatic happens when Mach 5 is exceeded. Rather, the hyper-
sonic regime is simply a very high—-Mach-number regime, where shock waves are
particularly strong and the gas temperatures behind these shock waves are high.
For example, consider Eq. (4.73), which gives the total temperature 7,—that
is, the temperature of a gas that was initially at a Mach number M, and that has
been adiabatically slowed to zero velocity. This is essentially the temperature
at the stagnation point on a body. If M, =7, Eq. (4.73) shows that (for y = 1.4)
T,/T, = 10.8. If the flight altitude is, say, 100,000 ft where 7|, = 419°R, then T,, =
4525°R = 4065°F—far above the melting point of stainless steel. Therefore, as
flight velocities increase far above the speed of sound, they gradually approach
a thermal barrier: velocities beyond which skin temperatures become too high
and structural failure can occur. As in the case of the sound barrier, the thermal
barrier is only a figure of speech—it is not an inherent limitation on flight speed.
With proper design to overcome the high rates of aerodynamic heating, vehicles
today have flown at Mach numbers as high as 36 (for example, the Apollo lunar
return capsule). (For more details about high-speed reentry aerodynamic heating,
see Sec. 8.12.)

Nevertheless, in the early 1950s manned hypersonic flight was a goal to be
achieved—an untried and questionable regime characterized by high tempera-
tures and strong shock waves. The basic NACA studies fed into an industrywide
design competition for a hypersonic airplane. In 1955 North American Aircraft
Corporation was awarded a joint NACA—Air Force—Navy contract to design and
construct three prototypes of a manned hypersonic research airplane capable of
Mach 7 and a maximum altitude of 264,000 ft. This airplane was designated the
X-15 and is shown in Fig. 5.92. The first two aircraft were powered by Reaction



5.23 Historical Note: The X-15—First Manned Hypersonic Airplane and Stepping-Stone to the Space Shuttle 431

Figure 5.92 The North American X-15, the first manned hypersonic airplane.
(Source: U.S. Air Force.)

Motors LR11 rocket engines with 8000 1b of thrust (essentially the same as the
engine used for the Bell XS-1). Along with the third prototype, the two air-
craft were later reengined with a more powerful rocket motor, the Reaction
Motors XLR99, capable of 57,000 Ib of thrust. The basic internal structure of
the airplane was made from titanium and stainless steel, but the airplane skin
was Inconel X—a nickel-alloy steel capable of withstanding temperatures up to
1200°F. (Although the theoretical stagnation temperature at Mach 7 is 4065°F,
as discussed previously, the actual skin temperature is cooler because of heat
sink and heat dissipation effects.) The wings had a low aspect ratio of 2.5 and a
thickness-to-chord ratio of 0.05—both intended to reduce supersonic wave drag.

The first X-15 was rolled out of the North American factory at Los Angeles
on October 15, 1958. Vice President Richard M. Nixon was the guest of honor
at the rollout ceremonies. The X-15 had become a political as well as a technical
accomplishment because the United States was attempting to heal its wounded
pride after the Russians, launch of the first successful unmanned satellite,
Sputnik 1, just a year earlier (see Sec. 8.21). The next day the X-15 was trans-
ported by truck to the nearby Edwards Air Force Base (the site at Muroc that saw
the first supersonic flights of the Bell XS-1).

Like the XS-1, the X-15 was designed to be carried aloft by a parent air-
plane, this time a Boeing B-52 jet bomber. The first free flight, without power,
was made by Scott Crossfield on June 8, 1959. This was soon followed by the
first powered flight on September 17, 1959, when the X-15 reached Mach 2.1 in
a shallow climb to 52,341 ft. Powered with the smaller LR11 rocket engines, the
X-15 set a speed record of Mach 3.31 on August 4, 1960, and an altitude record
of 136,500 ft just eight days later. However, these records were transitory. After
November 1960 the X-15 received the more powerful XLR99 engine. The first
flight with this rocket was made on November 15, 1960; on this flight, with
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power adjusted to its lowest level and with the air brakes fully extended, the
X-15 still hit 2000 mi/h. Finally, on June 23, 1961, hypersonic flight was fully
achieved when U.S. Air Force test pilot Major Robert White flew the X-15 at
Mach 5.3 and in so doing accomplished the first “mile-per-second” flight in an
airplane, reaching a maximum velocity of 3603 mi/h. This began an illustri-
ous series of hypersonic flight tests, which peaked in a flight at Mach 6.72 on
October 3, 1967, with Air Force Major Pete Knight at the controls.
Experimental aircraft are just that—vehicles designed for specific experi-
mental purposes, which, after they are achieved, lead to the end of the program.
This happened to the X-15 when, on October 24, 1968, the last flight was carried
out—the 199th of the entire program. A 200th flight was planned, partly for rea-
sons of nostalgia; however, technical problems delayed this planned flight until
December 20, when the X-15 was ready to go, attached to its B-52 parent plane as
usual. However, of all things, a highly unusual snow squall suddenly hit Edwards,
and the flight was canceled. The X-15 never flew again. In 1969 the first X-15 was
given to the National Air and Space Museum of the Smithsonian, where it now
hangs with distinction in the Milestones of Flight Gallery, along with the Bell XS-1.
The X-15 opened the world of manned hypersonic flight. The next hyper-
sonic airplane was the Space Shuttle. The vast bulk of aerodynamic and flight
dynamic data generated during the X-15 program carried over to the Space
Shuttle design. The pilots’ experience with low-speed flights in a high-speed
aircraft with low lift-to-drag ratio set the stage for flight preparations with the
Space Shuttle. In these respects the X-15 was clearly the major stepping-stone
to the Space Shuttle of the 1980s. For more details on the X-15, see X-15: The
World’s Fastest Rocket Plane and the Pilots Who Ushered in the Space Age, by
John Anderson and Richard Passman, Zenith Press, Minneapolis, MN, 2014.

5.24 SUMMARY AND REVIEW

Aerospace engineering deals with flight vehicles and related applications, in general, and
with airplanes and space vehicles in particular. The concepts and applications found in
this chapter are oriented toward flight vehicles traveling within the atmosphere—mainly
airplanes. All space vehicles launched from the surface of the earth, however, also spend
some time within the atmosphere, where they experience aerodynamic lift and drag. Also,
some space vehicles are designed to land on other planets, where they encounter foreign
planetary atmospheres and experience lift and drag to some extent.

Lift and drag are the main substance of this chapter. We intellectually split our study
into sections (literally, in this text). We start with just an airfoil section, and examine the
lift, drag, and moments of the section (per unit span). Rather than the forces and moments
themselves, however, we deal with lift, drag, and moment coefficients, defined in such a
fashion as to be much more useful for engineering and calculations. These aerodynamic
coefficients depend only on the shape and orientation (angle of attack) of the airfoil,
Mach number, and Reynolds number. To help us make calculations for some specific
airfoils, data for section lift, drag, and moment coefficients for various NACA airfoils is
given in App. D.

We then extended our attention to a complete finite wing, and found that the lift and
drag coefficients for a wing are different from the lift and drag coefficients for the airfoil
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section used on the wing. This difference is due to the vortices that trail downstream from
the tips of the wing. These wing-tip vortices modify the flow over the wing in such a
fashion to increase the drag and decrease the lift. The drag increase is due to the presence
of induced drag (sometimes called vortex drag). Induced drag is the result of the pressure
distribution over the surface of the wing being modified in the presence of the wing-tip
vortices so as to slightly tilt the resultant aerodynamic force vector backward, creating
an additional component of force in the drag direction. This additional component is the
induced drag. The lift is decreased because the wing-tip vortices induce a downward
component of the flow over the wing called downwash, which causes the relative wind
in the proximity of the airfoil section to be inclined slightly downward through a small
angle called the induced angle of attack. This in turn reduces the angle of attack felt by
the local airfoil section to a value smaller than the geometric angle of attack (the angle of
attack that we see with our naked eyes—the angle between the chord line and the undis-
turbed free-stream direction far ahead of the airfoil). This smaller angle of attack is called
the effective angle of attack because this angle dictates the local lift, drag, and moment
coefficients of each airfoil section of the wing. Indeed, for a given airfoil section of a
finite wing, the lift, drag, and moment coefficients are given by the airfoil data in App. D,
where the section angle of attack given on the abscissa is literally the effective angle of
attack (not the geometric angle of attack).

Finally, we recall that the aerodynamic coefficients for a finite wing are a function
of a special geometric feature of the wing: the aspect ratio, defined as the square of
the wingspan divided by the planform area. The higher the aspect ratio, the farther the
wing-tip vortices are removed from the rest of the wing, and the smaller are the induced
aerodynamic effects such as induced drag and the induced angle of attack. For subsonic
airplanes, high aspect ratios are aerodynamically a good design feature. (Structurally,
however, higher—aspect-ratio wings require beefy, heavier internal structure to provide
more strength along the wing. Therefore, the design aspect ratio is always a compromise
between aerodynamics and structures.)

The aerodynamic coefficients are strongly affected by Mach number. Drag coeffi-
cient increases dramatically as the Mach number is increased to 1 and higher. The Mach
number at which the drag coefficient starts to go out of sight is called the drag-divergence
Mach number. We define the critical Mach number as that free-stream Mach number at
which sonic flow is first obtained somewhere on the body. The drag-divergence Mach
number usually occurs just slightly above the critical Mach number. At supersonic
speeds, shock waves occur on the body, causing a large increase in drag that is termed
wave drag. As a result, the shapes of airfoils, wings, and bodies designed for supersonic
flight are much different from those intended for subsonic flight.

Some of the equations and ideas of this chapter are highlighted in the following list:

1. For an airfoil, the lift, drag, and moment coefficients are defined as
L D M

G=—— Cc=—— ¢, =
GooS oS g..Sc¢

where L, D, and M are the lift, drag, and moments per unit span, respectively, and
S=c(1).
For a finite wing, the lift, drag, and moment coefficients are defined as
L D M

C,=—— C,=—— (C,, =
) q..S P qo.S Y q..Sc
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where L, D, and M are the lift, drag, and moments, respectively, for the complete
wing and S is the wing planform area.
For a given shape, these coefficients are a function of angle of attack, Mach
number, and Reynolds number.
2. The pressure coefficient is defined as

_ P P
Gt (5.27)

3. The Prandtl-Glauert rule is a compressibility correction for subsonic flow:

C

C,=—20 o)
N (5.28)

where C,, and C, are the incompressible and compressible pressure coefficients,
respectively. The same rule holds for the lift and moment coefficients—that is,

Clo
(1 —M2 (5.40)

4. The critical Mach number is the free-stream Mach number at which sonic flow is
first achieved at some point on a body. The drag-divergence Mach number is the
free-stream Mach number at which the drag coefficient begins to rapidly increase
due to the occurrence of transonic shock waves. For a given body, the drag-
divergence Mach number is slightly higher than the critical Mach number.

5. The Mach angle is defined as

C =

u= arcsin% (5.49)

6. The total drag coefficient for a finite wing is equal to

C2
Cr=cy AR /;R (5.58)

where ¢, is the profile drag coefficient and C;/(eAR) is the induced drag
coefficient.
7. The lift slope for a finite wing a is given by

dy

a=
1+57.3a,/me, AR)

(5.65)

where g is the lift slope for the corresponding infinite wing.
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Problems

5.1 By the method of dimensional analysis, derive the expression M = q., Scc,, for
the aerodynamic moment on an airfoil, where c is the chord and c,, is the moment
coefficient.

5.2 Consider an infinite wing with a NACA 1412 airfoil section and a chord length
of 3 ft. The wing is at an angle of attack of 5° in an airflow velocity of 100 ft/s
at standard sea-level conditions. Calculate the lift, drag, and moment about the
quarter-chord per unit span.

5.3 Consider a rectangular wing mounted in a low-speed subsonic wing tunnel. The
wing model completely spans the test-section so that the flow “sees” essentially
an infinite wing. If the wing has a NACA 23012 airfoil section and a chord of
0.3 m, calculate the lift, drag, and moment about the quarter-chord per unit span
when the airflow pressure, temperature, and velocity are 1 atm, 303 K, and 42 m/s,
respectively. The angle of attack is 8°.

5.4 The wing model in Prob. 5.3 is pitched to a new angle of attack, where the lift
on the entire wing is measured as 200 N by the wind tunnel force balance. If the
wingspan is 2 m, what is the angle of attack?

5.5 Consider a rectangular wing with a NACA 0009 airfoil section spanning the test
section of a wind tunnel. The test-section airflow conditions are standard sea level
with a velocity of 120 mi/h. The wing is at an angle of attack of 4°, and the wind
tunnel force balance measures a lift of 29.5 1b. What is the area of the wing?

5.6 The ratio of lift to drag L/D for a wing or airfoil is an important aerodynamic
parameter; indeed, it is a direct measure of the aerodynamic efficiency of the
wing. If a wing is pitched through a range of angle of attack, L/D first increases,
then goes through a maximum, and then decreases. Consider an infinite wing with
an NACA 2412 airfoil. Estimate the maximum value of L/D. Assume that the
Reynolds number is 9 x 10°.

5.7 Consider an airfoil in a free stream with a velocity of 50 m/s at standard sea-level
conditions. At a point on the airfoil, the pressure is 9.5 x 10* N/m?. What is the
pressure coefficient at this point?
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5.8 Consider a low-speed airplane flying at a velocity of 55 m/s. If the velocity at a
point on the fuselage is 62 m/s, what is the pressure coefficient at this point?

5.9 Consider a wing mounted in the test-section of a subsonic wind tunnel. The
velocity of the airflow is 160 ft/s. If the velocity at a point on the wing is 195 ft/s,
what is the pressure coefficient at this point?

5.10 Consider the same wing in the same wind tunnel as in Prob. 5.9. If the test-section
air temperature is 510°R and the flow velocity is increased to 700 ft/s, what is the
pressure coefficient at the same point?

5.11 Consider a wing in a high-speed wind tunnel. At a point on the wing, the velocity
is 850 ft/s. If the test-section flow is at a velocity of 780 ft/s, with a pressure and
temperature of 1 atm and 505°R, respectively, calculate the pressure coefficient at
the point.

5.12 If the test-section flow velocity in Prob. 5.11 is reduced to 100 ft/s, what will the
pressure coefficient become at the same point on the wing?

5.13 Consider an NACA 1412 airfoil at an angle of attack of 4°. If the free-stream
Mach number is 0.8, calculate the lift coefficient.

5.14 An NACA 4415 airfoil is mounted in a high-speed subsonic wind tunnel. The lift
coefficient is measured as 0.85. If the test-section Mach number is 0.7, at what
angle of attack is the airfoil?

5.15 Consider an airfoil at a given angle of attack, say ¢;. At low speeds, the minimum
pressure coefficient on the top surface of the airfoil is —0.90. What is the critical
Mach number of the airfoil?

5.16 Consider the airfoil in Prob. 5.15 at a smaller angle of attack, say o,. At low
speeds, the minimum pressure coefficient is —0.65 at this lower angle of attack.
What is the critical Mach number of the airfoil?

5.17 Consider a uniform flow with a Mach number of 2. What angle does a Mach wave
make with respect to the flow direction?

5.18 Consider a supersonic missile flying at Mach 2.5 at an altitude of 10 km
(see Fig. P5.18). Assume that the angle of the shock wave from the nose is
approximated by the Mach angle (this is a very weak shock). How far behind the
nose of the vehicle will the shock wave impinge upon the ground? (Ignore the fact
that the speed of sound, and hence the Mach angle, changes with altitude.)

M,=25 ‘

h=10km

EaN

5.19 The wing area of the Lockheed F-104 straight-wing supersonic fighter is
approximately 210 ft. If the airplane weighs 16,000 Ib and is flying in level
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flight at Mach 2.2 at a standard altitude of 36,000 ft, estimate the wave drag on
the wings.

5.20 Consider a flat plate at an angle of attack of 2° in a Mach 2.2 airflow. (Mach 2.2 is
the cruising Mach number of the Concorde supersonic transport.) The length
of the plate in the flow direction is 202 ft, which is the length of the Concorde.
Assume that the free-stream conditions correspond to a standard altitude of
50,000 ft. The total drag on this plate is the sum of wave drag and skin friction
drag. Assume that a turbulent boundary layer exists over the entire plate. The
results given in Ch. 4 for skin friction coefficients hold for incompressible flow
only; there is a compressibility effect on C,such that its value decreases with
increasing Mach number. Specifically, at Mach 2.2 assume that the C; given in
Ch. 4 is reduced by 20 percent.

a. Given all the preceding information, calculate the total drag coefficient for
the plate.

b. If the angle of attack is increased to 5°, assuming that Cstays the same,
calculate the total drag coefficient.

c¢. For these cases, what can you conclude about the relative influence of wave
drag and skin friction drag?

5.21 The Cessna Cardinal, a single-engine light plane, has a wing with an area of
16.2 m? and an aspect ratio of 7.31. Assume that the span efficiency factor is
0.62. If the airplane is flying at standard sea-level conditions with a velocity of
251 km/h, what is the induced drag when the total weight is 9800 N?

5.22 For the Cessna Cardinal in Prob. 5.21, calculate the induced drag when the
velocity is 85.5 km/h (stalling speed at sea level with flaps down).

5.23 Consider a finite wing with an area and aspect ratio of 21.5 m? and 5, respectively
(this is comparable to the wing on a Gates Learjet, a twin-jet executive transport).
Assume that the wing has a NACA 65-210 airfoil, a span efficiency factor of 0.9,
and a profile drag coefficient of 0.004. If the wing is at a 6° angle of attack,
calculate C; and C).

5.24 During the 1920s and early 1930s, the NACA obtained wind tunnel data on
different airfoils by testing finite wings with an aspect ratio of 6. These data were
then “corrected” to obtain infinite-wing airfoil characteristics. Consider such a
finite wing with an area and aspect ratio of 1.5 ft> and 6, respectively, mounted in
a wind tunnel where the test-section flow velocity is 100 ft/s at standard sea-level
conditions. When the wing is pitched to & = —2°, no lift is measured. When the
wing is pitched to o = 10°, a lift of 17.9 1b is measured. Calculate the lift slope for
the airfoil (the infinite wing) if the span effectiveness factor is 0.95.

5.25 A finite wing of area 1.5 ft? and aspect ratio of 6 is tested in a subsonic wind
tunnel at a velocity of 130 ft/s at standard sea-level conditions. At an angle
of attack of —1°, the measured lift and drag are O and 0.181 1b, respectively.

At an angle of attack of 2°, the lift and drag are measured as 5.0 and 0.23 Ib,
respectively. Calculate the span efficiency factor and the infinite-wing lift slope.

5.26 Consider a light, single-engine airplane such as the Piper Super Cub. If the maximum
gross weight of the airplane is 7780 N, the wing area is 16.6 m?, and the maximum
lift coefficient is 2.1 with flaps down, calculate the stalling speed at sea level.

5.27 The airfoil on the Lockheed F-104 straight-wing supersonic fighter is a thin,
symmetric airfoil with a thickness ratio of 3.5 percent. Consider this airfoil in a
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5.28

5.29

5.30

5.31

5.32

5.33

flow at an angle of attack of 5°. The incompressible lift coefficient for the airfoil
is given approximately by ¢, = 2m¢, where o is the angle of attack in radians.
Estimate the airfoil lift coefficient for (a) M = 0.2, (b) M = 0.7, and (¢) M =2.0.

The whirling-arm test device used in 1804 by Sir George Cayley is shown in
Figure 1.7. Cayley was the first person to make measurements of the lift on
inclined surfaces. In his 1804 notebook, he wrote that on a flat surface moving
through the air at 21.8 ft/s at 3° angle of attack, a lift force of 1 ounce was
measured. The flat surface was a 1 ft by 1 ft square. Calculate the lift coefficient
for this condition. Compare this measured value with that predicted by the
expression for lift coefficient for a flat-plate airfoil in incompressible flow given
by ¢; =2ne, where o is in radians. What are the reasons for the differences in the
two results? (See Anderson, A History of Aerodynamics and Its Impact on Flying
Machines, Cambridge University Press, 1997, pp. 68-71, for a detailed discussion
of this matter.)

Consider a finite wing at an angle of attack of 6°. The normal and axial force
coefficients are 0.8 and 0.06, respectively. Calculate the corresponding lift and
drag coefficients. What comparison can you make between the lift and normal
force coefficients?

Consider a finite wing with an aspect of ratio of 7; the airfoil section of the wing is
a symmetric airfoil with an infinite-wing lift slope of 0.11 per degree. The lift-to-
drag ratio for this wing is 29 when the lift coefficient is equal to 0.35. If the angle
of attack remains the same and the aspect ratio is simply increased to 10 by adding
extensions to the span of the wing, what is the new value of the lift-to-drag ratio?
Assume that the span efficiency factors e = ¢, = 0.9 for both cases.

Consider a flat plate oriented at a 90° angle of attack in a low-speed
incompressible flow. Assume that the pressure exerted over the front of the plate
(facing into the flow) is a constant value over the front surface, equal to the
stagnation pressure. Assume that the pressure exerted over the back of the plate

is also a constant value, but equal to the free-stream static pressure. (In reality,
these assumptions are only approximations to the real flow over the plate. The
pressure over the front face is neither exactly constant nor exactly equal to the
stagnation pressure, and the pressure over the back of the plate is neither constant
nor exactly equal to the free-stream pressure. The preceding approximate model of
the flow, however, is useful for our purpose here.) Note that the drag is essentially
all pressure drag; due to the 90° orientation of the plate, skin friction drag is not

a factor. For this model of the flow, prove that the drag coefficient for the flat
plate is Cp = 1.

In some aerodynamic literature, the drag of an airplane is couched in terms of the
“drag area” instead of the drag coefficient. By definition, the drag area, f, is the
area of a flat plate at 90° to the flow that has a drag force equal to the drag of the
airplane. As part of this definition, the drag coefficient of the plate is assumed to
be equal to 1, as shown in Prob. 5.31. If C}, is the drag coefficient of the airplane
based on wing planform area S, prove that f = CpS.

One of the most beautifully streamlined airplanes ever designed is the North
American P-51 Mustang shown in Fig. 4.46. The Mustang has one of the lowest
minimum drag coefficients of any airplane in history: C, = 0.0163. The wing
planform area of the Mustang is 233 ft>. Using the result from Prob. 5.32, show
that the drag area for the Mustang is 3.8 ft?; that is, drag on the whole P-51
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airplane is the same as the drag on a flat plate perpendicular to the flow of an area
of only 3.8 ft2.

5.34 Consider an NACA 2412 airfoil in a low-speed flow at zero degrees angle of
attack and a Reynolds number of 8.9 x 10°. Calculate the percentage of drag
from pressure drag due to flow separation (form drag). Assume a fully turbulent
boundary layer over the airfoil. Assume that the airfoil is thin enough that the
skin-friction drag can be estimated by the flat-plate results discussed in Ch. 4.

5.35 Repeat Problem 5.34, assuming that the airfoil is at an angle of attack of 6
degrees. What does this tell you about the rapid increase in c, as the angle of
attack of the airfoil is increased?

5.36 Returning to the conditions of Problem 5.34, where the boundary layer was
assumed to be fully turbulent, let us now consider the real situation where the
boundary layer starts out as laminar, and then makes a transition to turbulent
somewhere downstream of the leading edge. Assume a transition Reynolds
number of 500,000. For this case, calculate the percentage of drag that is due to
flow separation (form drag).

5.37 Here we continue in the vein of Probs. 5.34 to 5.36, except we examine a thicker
airfoil and look at the relative percentages of skin friction and pressure drag for
a thicker airfoil. Estimate the skin friction drag coefficient for the NACA 2415
airfoil in low-speed incompressible flow at Re =9 x 10° and zero angle of attack
for (a) a laminar boundary layer, and (b) a turbulent boundary layer. Compare the
results with the experimentally measured section drag coefficient given in App. D
for the NACA 2415 airfoil. What does this tell you about the relative percentages
of pressure drag and skin friction drag on the airfoil for each case?

5.38 In reality, the boundary layer on the airfoil discussed in Prob. 5.37 is neither
fully laminar nor fully turbulent. The boundary layer starts out as laminar, and
then transitions to turbulent at some point downstream of the leading edge
(see the discussion in Sec. 4.19). Assume that the critical Reynolds number
for transition is 650,000. Calculate t