
I n t r o d u c t i o n  t o

Flight
E i g h t h  E d i t i o n

John D. Anderson Jr.



Introduction to Flight

Eighth Edition

John D. Anderson, Jr.
Curator for Aerodynamics, National Air and Space Museum 
Smithsonian Institution

Professor Emeritus
University of Maryland



INTRODUCTION TO FLIGHT, EIGHTH EDITION 

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright  ©  2016 by 
McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions 
© 2012, 2005, and 2000. No part of this publication may be reproduced or distributed in any form or by 
any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill 
Education, including, but not limited to, in any network or other electronic storage or transmission, or 
broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside 
the United States.

This book is printed on acid-free paper. 

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5

ISBN 978-0-07-802767-3
MHID 0-07-802767-5

Senior Vice President, Products & Markets: Kurt L. Strand
Vice President, General Manager, Products & Markets: Marty Lange
Vice President, Content Design & Delivery: Kimberly Meriwether David
Managing Director: Thomas Timp
Brand Manager: Thomas Scaife, Ph.D.
Director, Product Development: Rose Koos
Product Developer: Lorraine Buczek
Marketing Manager: Nick McFadden
Director, Content Design & Delivery: Linda Avenarius
Executive Program Manager: Faye M. Herrig
Content Project Managers: Mary Jane Lampe, Sandy Schnee, & Tammy Juran
Buyer: Jennifer Pickel
Design: Studio Montage
Content Licensing Specialist: Ann Marie Jannette
Cover Images: Front Cover: First Flight: Library of Congress Prints & Photographs Division; X-48B: 

NASA Dryden Flight Research Center Photo Collection; Spitfire: RAF Museum of London. X-15 
hypersonic: Courtesy of the Air Force Test Center History Office. Back Cover: Wright Brothers: 
Library of Congress Prints & Photographs Division.

Compositor: MPS Limited
Typeface: 10.5/12 Times LTStd
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright 
page.

Library of Congress Cataloging-in-Publication Data

Anderson, John D., Jr. (John David), 1937-
 Introduction to flight / John D. Anderson, Jr., curator for aerodynamics,
National Air and Space Museum, Smithsonian Institution, professor emeritus,
University of Maryland. -- Eighth edition.
      pages cm
 Includes bibliographical references and index.
 ISBN 978-0-07-802767-3 (alk. paper) -- ISBN 0-07-802767-5 (alk. paper)  1.
Aerodynamics. 2.  Airplanes--Design and construction. 3.  Space flight.  I.
Title. 
 TL570.A68 2014
 629.1--dc23
                                                                                               2014041283

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a 
website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill 
Education does not guarantee the accuracy of the information presented at these sites.

www.mhhe.com 



ABOUT THE AUTHOR

John D. Anderson, Jr., was born in Lancaster, Pennsylvania, on October 1, 

1937. He attended the University of Florida, graduating in 1959 with high hon-

ors and a Bachelor of Aeronautical Engineering degree. From 1959 to 1962 

he was a lieutenant and task scientist at the Aerospace Research Laboratory 

at Wright-Patterson Air Force Base. From 1962 to 1966 he attended The Ohio 

State University under National Science Foundation and NASA Fellowships, 

graduating with a PhD in Aeronautical and Astronautical Engineering. In 

1966 he joined the U.S. Naval Ordnance Laboratory as Chief of the Hyper-

sonic Group. In 1973 he became Chairman of the Department of Aerospace 

Engineering at the University of Maryland, and from 1980 to his retirement 

in 1999 he was Professor of Aerospace Engineering at Maryland. In 1982 he 

was designated a Distinguished Scholar/Teacher by the university. During 1986–1987, 

while on sabbatical from the university, Dr. Anderson occupied the Charles Lindbergh 

Chair at the National Air and Space Museum of the Smithsonian Institution. In addition 

to his appointment in aerospace engineering, in 1993 he was elected to the faculty of the 

Committee on the History and Philosophy of Science at Maryland, and an affi liate faculty 

member in the Department of History. Since 1999, he is Professor Emeritus of Aerospace 

Engineering, and Glenn L. Martin Institute Professor of Engineering at Maryland. Also 

since 1999, he is the Curator of Aerodynamics at the National Air and Space Museum of 

the Smithsonian Institution. 

Dr. Anderson has published eleven books: Gasdynamic Lasers: An Introduction, 

Academic Press (1976), A History of Aerodynamics and Its Impact on Flying Machines, 

Cambridge University Press (1997), The Airplane: A History of Its Technology, Ameri-

can Institute of Aeronautics and Astronautics (2003), Inventing Flight, Johns Hop-

kins University Press (2004), X-15: The World’s Fastest Rocket Plane and the Pilots 
Who Ushered in the Space Age (with Richard Passman), Zenith Press (2014), and with 

McGraw-Hill, Introduction to Flight, 7th edition (2012), Modern Compressible Flow, 

3rd Edition (2003), Fundamentals of Aerodynamics, 5th edition (2011), Hypersonic and 
High Temperature Gas Dynamics (1989), Computational Fluid Dynamics: The Basics 
with Applications (1995), and Aircraft Performance and Design (1999). He is the author 

of more than 120 papers on radiative gasdynamics, entry aerothermodynamics, gas dy-

namic and chemical lasers, computational fl uid dynamics, applied aerodynamics, hyper-

sonic fl ow, and the history of aerodynamics. Dr. Anderson is in Who’s Who in America 
and is a member of the National Academy of Engineering, an Honorary Fellow of the 

American Institute of Aeronautics and Astronautics, and Fellow of the Royal Aeronauti-

cal Society. He is also a Fellow of the Washington Academy of Sciences and a member 

of Tau Beta Pi, Sigma Tau, Phi Kappa Phi, Phi Eta Sigma, The American Society for 

Engineering Education (ASEE), the Society for the History of Technology, and the 

History of Science Society. He has received the Lee Atwood Award for excellence in 

Aerospace Engineering Education from the AIAA and the ASEE, the Pendray Award 

for Aerospace Literature from the AIAA, the von Karman Lectureship from the AIAA, 

the Gardner-Lasser History Book Award from the AIAA, and the Hypersonic Systems 

Award from the AIAA.

  iii





To Sarah-Allen, Katherine, and Elizabeth Anderson 
For all their love and understanding, 

and to my two lovely granddaughters, Keegan and Tierney Glabus

JOHN D. ANDERSON, JR.





  vii

CONTENTS

About the Author iii

Preface to the Eighth Edition xiii

Preface to the First Edition xvii

Chapter 1
The First Aeronautical Engineers 1

 1.1 Introduction 1
 1.2 Very Early Developments 3
 1.3 Sir George Cayley (1773–1857)—

The True Inventor of the Airplane 6
 1.4 The Interregnum—From 1853 to 1891 13
 1.5 Otto Lilienthal (1848–1896)—The Glider 

Man 17
 1.6 Percy Pilcher (1867–1899)—Extending 

The Glider Tradition 20
 1.7 Aeronautics Comes to America 21
 1.8 Wilbur (1867–1912) and Orville (1871–

1948) Wright—Inventors of the First 
Practical Airplane 26

 1.9 The Aeronautical Triangle—Langley, 
The Wrights, and Glenn Curtiss 35

 1.10 The Problem of Propulsion 44
 1.11 Faster and Higher 45
 1.12 Summary and Review 48
  Bibliography 51

Chapter 2
Fundamental Thoughts 53

 2.1 Fundamental Physical Quantities 
of a Flowing Gas 57
2.1.1 Pressure 57

2.1.2 Density 58
2.1.3 Temperature 59
2.1.4 Flow Velocity and Streamlines 60

 2.2 The Source of All Aerodynamic 
Forces 62

 2.3 Equation of State for a Perfect Gas 64
 2.4 Discussion of Units 66
 2.5 Specific Volume 71
 2.6 Anatomy of the Airplane 82
 2.7 Anatomy of a Space Vehicle 92
 2.8 Historical Note: The NACA and 

NASA 101
 2.9 Summary and Review 104
  Bibliography 105
  Problems 106

Chapter 3
The Standard Atmosphere 110

 3.1 Definition of Altitude 112
 3.2 Hydrostatic Equation 113
 3.3 Relation Between Geopotential 

and Geometric Altitudes 115
 3.4 Definition of the Standard 

Atmosphere 116
 3.5 Pressure, Temperature, and Density 

Altitudes 125
 3.6 Historical Note: The Standard 

Atmosphere 128
 3.7 Summary and Review 130
  Bibliography 132
  Problems 132



viii Contents

Chapter 4
Basic Aerodynamics 134

 4.1 Continuity Equation 138
 4.2 Incompressible and Compressible 

Flow 139
 4.3 Momentum Equation 142
 4.4 A Comment 146
 4.5 Elementary Thermodynamics 153
 4.6 Isentropic Flow 160
 4.7 Energy Equation 166
 4.8 Summary of Equations 173
 4.9 Speed of Sound 174
 4.10 Low-Speed Subsonic Wind Tunnels 182
 4.11 Measurement of Airspeed 188

4.11.1 Incompressible Flow 191
4.11.2 Subsonic Compressible Flow 197
4.11.3 Supersonic Flow 205
4.11.4 Summary 210

 4.12 Some Additional Considerations 210
4.12.1 More about Compressible Flow 211
4.12.2 More about Equivalent Airspeed 213

 4.13 Supersonic Wind Tunnels and Rocket 
Engines 214

 4.14 Discussion of Compressibility 226
 4.15 Introduction to Viscous Flow 227
 4.16 Results for a Laminar Boundary 

Layer 236
 4.17 Results for a Turbulent Boundary 

Layer 241
 4.18 Compressibility Effects on Skin 

Friction  244
 4.19 Transition 247
 4.20 Flow Separation 250
 4.21 Summary of Viscous Effects 

on Drag 255
 4.22 Historical Note: Bernoulli 

and Euler 257
 4.23 Historical Note: The Pitot Tube 258

 4.24 Historical Note: The First Wind 
Tunnels 261

 4.25 Historical Note: Osborne Reynolds and his 
Number 267

 4.26 Historical Note: Prandtl and the 
Development of the Boundary Layer 
Concept 271

 4.27 Summary and Review 274
  Bibliography 278
  Problems 279

Chapter 5
Airfoils, Wings, and Other 
Aerodynamic Shapes 288

 5.1 Introduction 288
 5.2 Airfoil Nomenclature 290
 5.3 Lift, Drag, and Moment Coefficients 294
 5.4 Airfoil Data 300
 5.5 Infinite versus Finite Wings 315
 5.6 Pressure Coefficient 316
 5.7 Obtaining Lift Coefficient from CP 322
 5.8 Compressibility Correction for Lift 

Coefficient 326
 5.9 Critical Mach Number and Critical 

Pressure Coefficient 327
 5.10 Drag-Divergence Mach Number 339
 5.11 Wave Drag (At Supersonic Speeds) 347
 5.12 Summary of Airfoil Drag 357
 5.13 Finite Wings 359
 5.14 Calculation of Induced Drag 363
 5.15 Change in the Lift Slope 372
 5.16 Swept Wings 381
 5.17 Flaps—A Mechanism for High Lift 394
 5.18 Aerodynamics of Cylinders 

and Spheres 400
 5.19 How Lift is Produced—Some Alternative 

Explanations 405



 Contents ix

 5.20 Historical Note: Airfoils and Wings 415
5.20.1 The Wright Brothers 416
5.20.2 British and U.S. Airfoils 

(1910–1920) 417
5.20.3 1920–1930 418
5.20.4 Early NACA Four-Digit Airfoils 418
5.20.5 Later NACA Airfoils 419
5.20.6 Modern Airfoil Work 419
5.20.7 Finite Wings 420

 5.21 Historical Note: Ernst Mach 
and his Number 422

 5.22 Historical Note: The First Manned 
Supersonic Flight 426

 5.23 Historical Note: The X-15—First Manned 
Hypersonic Airplane and Stepping-Stone 
to the Space Shuttle 430

 5.24 Summary and Review 432
  Bibliography 434
  Problems 435

Chapter 6
Elements of Airplane Performance 441

 6.1 Introduction: The Drag Polar 441
 6.2 Equations of Motion 448
 6.3 Thrust Required for Level, Unaccelerated 

Flight 450
 6.4 Thrust Available and Maximum 

Velocity 458
 6.5 Power Required for Level, Unaccelerated 

Flight 461
 6.6 Power Available and Maximum 

Velocity 466
6.6.1  Reciprocating Engine–Propeller 

 Combination 466
6.6.2 Jet Engine 468

 6.7 Altitude Effects on Power Required and 
Available 470

 6.8 Rate of Climb 479

 6.9 Gliding Flight 489
 6.10 Absolute and Service Ceilings 493
 6.11 Time to Climb 499
 6.12 Range and Endurance: Propeller-Driven 

Airplane 500
6.12.1 Physical Considerations 501
6.12.2 Quantitative Formulation 502
6.12.3  Breguet Formulas (Propeller-Driven 

Airplane) 504

 6.13 Range and Endurance: Jet Airplane 508
6.13.1 Physical Considerations 509
6.13.2 Quantitative Formulation 510

 6.14 Relations Between CD,0 and CD,i 514
 6.15 Takeoff Performance 522
 6.16 Landing Performance 528
 6.17 Turning Flight and the V–n 

Diagram 531
 6.18 Accelerated Rate of Climb (Energy 

Method) 540
 6.19 Special Considerations for Supersonic 

Airplanes 547
 6.20 Uninhabited Aerial Vehicles (UAVs) 550
 6.21 Micro Air Vehicles 560
 6.22 Quest for Aerodynamic Efficiency 563

6.22.1 Measure of Aerodynamic 
Efficiency 563

6.22.2 What Dictates the Value of L/D? 564
6.22.3  Sources of Aerodynamic Drag; Drag 

Reduction 564
6.22.4  Some Innovative Aircraft 

Configurations for High L/D 569

 6.23 A Comment 571
 6.24 Historical Note: Drag Reduction—The 

NACA Cowling and the Fillet 572
 6.25 Historical Note: Early Predictions 

of Airplane Performance 576
 6.26 Historical Note: Breguet and the Range 

Formula 578
 6.27 Historical Note: Aircraft Design—

Evolution and Revolution 579



x Contents

 6.28 Summary and Review 584
  Bibliography 588
  Problems 588

Chapter 7
Principles of Stability and Control 594

 7.1 Introduction 594
 7.2 Definition of Stability and Control 600

7.2.1 Static Stability 601
7.2.2 Dynamic Stability 602
7.2.3 Control 604
7.2.4 Partial Derivative 604

 7.3 Moments on the Airplane 605
 7.4 Absolute Angle of Attack 606
 7.5 Criteria for Longitudinal Static 

Stability 608
 7.6 Quantitative Discussion: Contribution 

of the Wing to Mcg 613
 7.7 Contribution of the Tail to Mcg 617
 7.8 Total Pitching Moment About the Center 

of Gravity 620
 7.9 Equations for Longitudinal Static 

Stability 622
 7.10 Neutral Point 624
 7.11 Static Margin 625
 7.12 Concept of Static Longitudinal 

Control 629
 7.13 Calculation of Elevator Angle to 

Trim 634
 7.14 Stick-Fixed Versus Stick-Free Static 

Stability 636
 7.15 Elevator Hinge Moment 637
 7.16 Stick-Free Longitudinal Static 

Stability 639
 7.17 Directional Static Stability 643
 7.18 Lateral Static Stability 644
 7.19 A Comment 646
 7.20 Historical Note: The Wright Brothers 

Versus the European Philosophy 
of Stability and Control 647

 7.21 Historical Note: The Development 
of Flight Controls 648

 7.22 Historical Note: The “Tuck-Under” 
Problem 650

 7.23 Summary and Review 651
  Bibliography 653
  Problems 653

Chapter 8
Space Flight (Astronautics) 655

 8.1 Introduction 655
 8.2 Differential Equations 662
 8.3 Lagrange’s Equation 663
 8.4 Orbit Equation 666

8.4.1 Force and Energy 666
8.4.2 Equation of Motion 668

 8.5 Space Vehicle Trajectories—Some Basic 
Aspects 672

 8.6 Kepler’s Laws 679
 8.7 An Application: The Voyager 

Spacecraft—Their Design, Flight 
Trajectories, and Historical 
Significance 683

 8.8 Introduction to Earth and Planetary 
Entry 687

 8.9 Exponential Atmosphere 690
 8.10 General Equations of Motion for 

Atmospheric Entry 690
 8.11 Application to Ballistic Entry 694
 8.12 Entry Heating 700
 8.13 Lifting Entry, with Application 

to the Space Shuttle 708
 8.14 Historical Note: Kepler 712
 8.15 Historical Note: Newton and the Law 

of Gravitation 714
 8.16 Historical Note: Lagrange 716
 8.17 Historical Note: Unmanned Space 

Flight 716
 8.18 Historical Note: Manned Space 

Flight 721



 Contents xi

 8.19 Summary and Review 723
  Bibliography 725
  Problems 725

Chapter 9
Propulsion 728

 9.1 Introduction 728
 9.2 Propeller 731
 9.3 Reciprocating Engine 738
 9.4 Jet Propulsion—The Thrust Equation 749
 9.5 Turbojet Engine 752

9.5.1  Thrust Buildup for a Turbojet 
 Engine 757

 9.6 Turbofan Engine 763
 9.7 Ramjet Engine 765
 9.8 Rocket Engine 769
 9.9 Rocket Propellants—Some 

Considerations 776
9.9.1 Liquid Propellants 776
9.9.2 Solid Propellants 779
9.9.3 A Comment 781

 9.10 Rocket Equation 782
 9.11 Rocket Staging 783
 9.12 Quest for Engine Efficiency 787

9.12.1 Propulsive Efficiency 788
9.12.2 The Green Engine 791

 9.13 Electric Propulsion 792
9.13.1 Electron-Ion Thruster 792
9.13.2 Magnetoplasmadynamic Thruster 793
9.13.3 Arc-Jet Thruster 793
9.13.4 A Comment 794

 9.14 Historical Note: Early Propeller 
Development 795

 9.15 Historical Note: Early Development of the 
Internal Combustion Engine for 
Aviation 797

 9.16 Historical Note: Inventors of Early Jet 
Engines 800

 9.17 Historical Note: Early History of Rocket 
Engines 803

 9.18 Summary and Review 809
  Bibliography 810
  Problems 811

Chapter 10
Hypersonic Vehicles 815

 10.1 Introduction 815
 10.2 Physical Aspects of Hypersonic 

Flow 819
10.2.1 Thin Shock Layers 819
10.2.2 Entropy Layer 820
10.2.3 Viscous Interaction 821
10.2.4 High-Temperature Effects 822
10.2.5 Low-Density Flow 823
10.2.6 Recapitulation 827

 10.3 Newtonian Law for Hypersonic 
Flow 827

 10.4 Some Comments About Hypersonic-
Airplanes 833

 10.5 Summary and Review 844
  Bibliography 845
  Problems 845

Appendix A: Standard Atmosphere, 
SI Units 847

Appendix B: Standard Atmosphere, English 
Engineering Units 857

Appendix C: Symbols and Conversion 
 Factors 865

Appendix D: Airfoil Data 866

Answer Key 895

Index 899



 Powered by the intelligent and adaptive LearnSmart engine, 
McGraw-Hill Education SmartBook® is the first and only continuously adaptive 
reading experience  available today. Distinguishing what students know from 
what they do not, and honing in on concepts they are most likely to forget, Smart-
Book personalizes the reading experience for each student. Reading is no longer 
a passive and linear experience but an engaging and dynamic one, where students 
are more likely to master and retain important concepts, coming to class better 
prepared. SmartBook includes powerful reports that identify specific topics and 
learning objectives students need to study. www.learnsmartadvantage.com

McGraw-Hill Education’s Connect Engineering offers a number of powerful tools 
and features to make managing assignments easier, so you can spend more time 
teaching. Students engage with their coursework anytime from anywhere in a person-
alized way, making the learning process more accessible and efficient. Connect 
Engineering optimizes your time and energy, enabling you to focus on course content 
and learning outcomes, teaching, and student learning.

A few features that will help you maximize both your time and your 
students’ time are:

• Straightforward course and assignment set up

• Effortless Grading

• Simple LMS Integration: access your Connect assignments with one-click 

access and grade sync from your campus learning management system 

• Powerful Reporting: generate a number of powerful reports and charts that let 

you quickly review the performance of a given student or an entire section

MCGRAW-HILL CREATE™

Craft your teaching resources to match the way you teach! With McGraw-Hill 
 Create™, www.mcgrawhillcreate.com, you can easily rearrange chapters, com-
bine material from other content sources, and quickly upload content you have 
written like your course syllabus or teaching notes. Find the content you need in 
Create by searching through thousands of leading McGraw-Hill textbooks. Arrange 
your book to fit your teaching style. Create even allows you to personalize your 
book’s appearance by selecting the cover and adding your name, school, and course 
information. Order a Create book and you’ll receive a complimentary print review 
copy in 3–5 business days or a complimentary electronic review copy (eComp) via 
email in minutes. Go to www.mcgrawhillcreate.com today and register to experi-
ence how McGraw-Hill Create™ empowers you to teach your students your way.

MCGRAW-HILL DIGITAL OFFERINGS

xii



  xiii

The purpose of the present edition is the same as that of the first seven: to 
present the basic fundamentals of aerospace engineering at the introduc-
tory level in the clearest, simplest, and most motivating way possible. Be-

cause the book is meant to be enjoyed as well as understood, I have made every 
effort to ensure a clear and readable text. The choice of subject matter and its 
organization, the order in which topics are introduced, and how these ideas are 
explained have been carefully planned with the uninitiated reader in mind. I sim-
ply put myself in the shoes of the reader who has no knowledge of the subject 
matter, ask myself how I would want to hear about the subject, and then start 
“talking” to the reader. Because the book is intended as a self-contained text at 
the first- and second-year levels, I avoid tedious details and massive “handbook” 
data. Instead, I introduce and discuss fundamental concepts in a manner that is as 
straightforward and clean-cut as possible, knowing that the book has also found 
favor with those who wish to learn something about this subject outside the 
classroom.

The overwhelmingly favorable response to the earlier editions from stu-
dents, teachers, and practicing professionals both here and abroad is a source 
of gratification. Particularly pleasing is the fact that those using the book 
have enjoyed reading its treatment of the fascinating, challenging, and 
sometimes awesome discipline of aerospace engineering.

Thanks to this response, much of the content of the seventh edition has 
been carried over into the eight edition. A hallmark of this book is the use of 
specially designed devices to enhance the reader’s understanding of the 
material. In particular, these features are carried over from the seventh 
edition:

1. Road maps placed at the beginning of each chapter help guide the reader 

through the logical fl ow of the material.

2. Design boxes discuss interesting and important applications of the 

fundamental material; this matrial is literally set apart in boxes.

3. Preview boxes at the chapter beginnings give the reader insight into what 

each chapter is about and why the material is important. I intend the 

preview boxes to be motivational, to make the reader interested and curious 

enough to pay close attention to the content of the chapter. These preview 

boxes are written in an informal manner to help turn the reader on to the 

content. In these preview boxes, I am unabashedly admitting to providing 

fun for the readers.

4. Summary and Review sections at the end of the chapters contain the 

important ideas and concepts presented in each chapter, fi rst without 

PREFACE TO THE EIGHTH EDITION
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equations, to remind readers about the physical aspects of the material and 

to provide a focused intellectual background for the equations that are then 

summarized at the end of the section.

In the same spirit, the eighth edition contains new material intended to 
enhance the education and interest of the reader:

1. Two new sections, Section 6.22, “Quest for Aerodynamic Effi ciency,” and 

Section 9.12, “Quest for Engine Effi ciency,” are added to provide a look 

into the future for new, effi cient aircraft, with implications for a future 

“green airplane.”

2. A new Section 8.7, “An Application: The Voyager Spacecraft—Their 

Design, Flight Trajectories, and Historical Signifi cance,” has been added to 

highlight these important space vehicles and their missions.

3. Some additional worked examples are supplied to further help readers to 

understand how to use what they have been reading.

4. Some additional homework problems grace the end of some chapters. 

An answer key is placed at the end of the book for selected homework 

problems.

All told, the new material represents a meaningful enhancement of 
Introduction to Flight.

To allow space for this new material in the eighth edition, without inor-
dinately increasing the length of the book, some text material originally in 
Chs. 6, 8, and 9 has been removed from the eighth edition and placed on the 
book’s website.

At the University of Maryland this text is used for an introductory course 
for sophomores in aerospace engineering. It leads directly into a second 
book by the author, Fundamentals of Aerodynamics, 5th edition (McGraw-
Hill, 2011), which is used in a two- semester junior-senior aerodynamics 
course. This, in turn, feeds into a third text, Modern Compressible Flow: 
With Historical Perspective, 3rd edition (McGraw-Hill, 2003), used in a 
course for advanced undergraduates and first-year graduate students. The 
complete triad is intended to give students a reasonable technical and his-
torical perspective on aerospace engineering in general and aerodynamics in 
particular.

I am very grateful to Mrs. Susan Cunningham, who did such an excel-
lent job of typing the manuscript. I am fortunate to have such dedicated and 
professional help from one of the best scientific typists in the world. My 
gratitude also goes out to my wife of 54 years, Sarah-Allen, who has helped 
to motivate and expedite the effort that has gone into this book. Finally, spe-
cial thanks go to my very special editor, Lorraine Buczek at McGraw-Hill, 
whose dedication and hard work has been extremely helpful in getting this 
edition finished and published, and who has become a very special friend 
over the years. Lorraine and I form a great McGraw-Hill team.
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Finally, emphasizing that the study, understanding, and practice of the 
profession of aerospace engineering is one of the most gratifying of human 
endeavors and that my purpose is to instill a sense of enthusiasm, dedica-
tion, and love of the subject, let me simply say to the reader: read, learn, and 
enjoy.

John D. Anderson, Jr. 

Other Textbooks in the Anderson Series Are: 
Fundamentals of Aerodynamics, Fifth Edition, 007-3398101
Modern Compressible Flow, Third Edition, 007-2424435
Aircraft Performance & Design, 007-0019711
Computational Fluid Dynamics, 007-0016852
Modern Flight Dynamics, 007-339811X
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This book is an introduction to aerospace engineering from both the tech-
nological and historical points of view. It is written to appeal to several 
groups of people: (1) students of aerospace engineering in their freshman 

or sophomore years in college who are looking for a comprehensive introduction 
to their profession; (2) advanced high school seniors who want to learn what 
aerospace engineering is all about; (3) college undergraduate and graduate 
 students who want to obtain a wider perspective on the glories, the intellectual 
demands, and the technical maturity of aerospace engineering; and (4) working 
engineers who simply want to obtain a firmer grasp on the fundamental concepts 
and historical traditions that underlie their profession.

As an introduction to aerospace engineering, this book is unique in at 
least three ways. First, the vast majority of aerospace engineering profes-
sionals and students have little knowledge or appreciation of the historical 
traditions and background associated with the technology that they use 
 almost every day. To fill this vacuum, the present book marbles some his-
tory of aerospace engineering into the parallel technical discussions. For 
example, such questions as who Bernoulli was, where the Pitot tube origi-
nated, how wind tunnels evolved, who the first true aeronautical engineers 
were, and how wings and airfoils developed are answered. The present 
 author feels strongly that such material should be an integral part of the 
background of all aerospace engineers.

Second, this book incorporates both the SI and the English engineering 
system of units. Modern students of aerospace engineering must be 
 bilingual—on one hand, they must fully understand and feel comfortable 
with the SI units—because most modern and all future literature will deal 
with the SI system; on the other hand, they must be able to read and feel 
comfortable with the vast bulk of existing literature, which is predominantly 
in  engineering units. In this book the SI system is emphasized, but an honest 
effort is made to give the reader a feeling for and understanding of both 
systems. To this end, some example problems are worked out in the SI sys-
tem and others in the English system.

Third, the author feels that technical books do not have to be dry and 
sterile in their presentation. Instead the present book is written in a rather 
informal style. It talks to the reader. Indeed it is intended to be almost a self-
teaching, self-pacing vehicle that the reader can use to obtain a fundamental 
understanding of aerospace engineering.

This book is a product of several years of teaching the introductory 
course in aerospace engineering at the University of Maryland. Over these 

PREFACE TO THE FIRST EDITION
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years, students have constantly encouraged the author to write a book about 
the subject, and their repeated encouragement could not be denied. The 
present book is dedicated in part to these students.

Writing a book of this magnitude is a total commitment of time and 
 effort for a longer time than the author likes to remember. In this light, this 
book is dedicated to my wife, Sarah-Allen, and my two daughters, Katherine 
and Elizabeth, who relinquished untold amounts of time with their husband 
and father so that these pages could be created. To them I say thank you, and 
hello again. Also, hidden between the lines but ever-so-much present is 
Edna Brothers, who typed the manuscript in such a dedicated fashion. In 
addition, the author wishes to thank Dr. Richard Hallion and Dr. Thomas 
Crouch, curators of the National Air and Space Museum of the Smithsonian 
Institution, for their helpful comments on the historical sections of this man-
uscript, and especially Dick Hallion for opening the vast archives of the 
museum for the author’s historical research. Also, many thanks are due to 
the reviewers of this manuscript: Professor J. J. Azar of the University of 
Tulsa, Dr. R. F. Brodsky of Iowa State University, Dr. David Caughey of 
Sibley School of Mechanical and Aerospace Engineering, and Professor 
Francis J. Hale of North Carolina State University; their comments have 
been most constructive, especially those of Dr. Caughey and Professor Hale. 
Finally, the author wishes to thank his many colleagues in the profession for 
stimulating discussions about what constitutes an introduction to aerospace 
engineering. The author hopes that this book is a reasonable answer.

John D. Anderson, Jr.



1

 The First Aeronautical 
Engineers 

   Nobody will fl y for a thousand years! 

  Wilbur Wright, 1901, in a fi t of despair   

  SUCCESS FOUR FLIGHTS THURSDAY MORNING ALL AGAINST TWENTY 

ONE MILE WIND STARTED FROM LEVEL WITH ENGINE POWER ALONE 

AVERAGE SPEED THROUGH AIR THIRTY ONE MILES LONGEST 57 SECONDS 

INFORM PRESS HOME CHRISTMAS. 

     ORVILLE WRIGHT    
A telegram, with the original misprints,
    from Orville Wright to his father,
    December 17, 1903     

    1.1  INTRODUCTION 
   The scene:  Windswept sand dunes of Kill Devil Hills, 4 mi south of Kitty Hawk, 

North Carolina.  The time:  About 10:35  am  on Thursday, December 17, 1903. 

 The characters:  Orville and Wilbur Wright and fi ve local witnesses.  The action:  
Poised, ready to make history, is a fl imsy, odd-looking machine, made from 

spruce and cloth in the form of two wings, one placed above the other, a horizon-

tal elevator mounted on struts in front of the wings, and a double vertical rudder 

behind the wings (see    Fig. 1.1 ). A 12-hp engine is mounted on the top  surface 

of the bottom wing, slightly right of center. To the left of this engine lies a 

      C H A P T E R   1
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man—Orville Wright—prone on the bottom wing, facing into the brisk and cold 

December wind. Behind him rotate two ungainly looking airscrews (propellers), 

driven by two chain-and-pulley arrangements connected to the same engine. The 

machine begins to move along a 60-ft launching rail on level ground. Wilbur 

Wright runs along the right side of the machine, supporting the wing tip so it 

will not drag the sand. Near the end of the starting rail, the machine lifts into the 

air; at this moment, John Daniels of the Kill Devil Life Saving Station takes a 

photograph that preserves for all time the most historic moment in aviation his-

tory (see    Fig. 1.2 ). The machine fl ies unevenly, rising suddenly to about 10 ft, 

then ducking quickly toward the ground. This type of erratic fl ight continues for 

12 s, when the machine darts to the sand, 120 ft from the point where it lifted 

from the starting rail. Thus ends a fl ight that, in Orville Wright’s own words, 

was “the fi rst in the history of the world in which a machine carrying a man 

Figure 1.1 Three views of the Wright Flyer I, 1903.
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had raised itself by its own power into the air in full fl ight, had sailed forward 

without reduction of speed, and had fi nally landed at a point as high as that from 

which it started.” 

   The machine was the  Wright Flyer I,  which is shown in    Figs. 1.1  and    1.2  

and which is now preserved for posterity in the Air and Space Museum of the 

Smithsonian Institution in Washington, District of Columbia. The fl ight on that 

cold December 17 was momentous: It brought to a realization the dreams of 

centuries, and it gave birth to a new way of life. It was the fi rst genuine powered 

fl ight of a heavier-than-air machine. With it, and with the further successes to 

come over the next fi ve years, came the Wright brothers’ clear right to be consid-

ered the premier aeronautical engineers of history. 

 However, contrary to some popular belief, the Wright brothers did not truly 

 invent  the airplane; rather, they represent the fruition of a century’s worth of 

prior aeronautical research and development. The time was ripe for the attain-

ment of powered fl ight at the beginning of the 20th century. The Wright broth-

ers’ ingenuity, dedication, and persistence earned them the distinction of being 

fi rst. The purpose of this chapter is to look back over the years that led up to 

successful powered fl ight and to single out an important few of those inventors 

and thinkers who can rightfully claim to be the fi rst aeronautical engineers. In 

this manner, some of the traditions and heritage that underlie modern aerospace 

engineering will be more appreciated when we develop the technical concepts of 

fl ight in subsequent chapters.   

   1.2  VERY EARLY DEVELOPMENTS 
  Since the dawn of human intelligence, the idea of fl ying in the same realm as 

birds has possessed human minds. Witness the early Greek myth of Daedalus 

and his son Icarus. Imprisoned on the island of Crete in the Mediterranean Sea, 

Daedalus is said to have made wings fastened with wax. With these wings, they 

Figure 1.2 The fi rst heavier-than-air fl ight in history: the Wright Flyer I with Orville Wright 

at the controls, December 17, 1903.
(Source: Library of Congress [LC-DIG-ppprs-00626].)
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both escaped by fl ying through the air. However, Icarus, against his father’s 

warnings, fl ew too close to the sun; the wax melted, and Icarus fell to his death 

in the sea. 

 All early thinking about human fl ight centered on the imitation of birds. 

Various unsung ancient and medieval people fashioned wings and met with some-

times disastrous and always unsuccessful consequences in leaping from towers 

or roofs, fl apping vigorously. In time, the idea of strapping a pair of wings to 

arms fell out of favor. It was replaced by the concept of wings fl apped up and 

down by various mechanical mechanisms, powered by some type of human arm, 

leg, or body movement. These machines are called  ornithopters . Recent histori-

cal research has revealed that Leonardo da Vinci was possessed by the idea of 

human fl ight and that he designed vast numbers of ornithopters toward the end 

of the 15th century. In his surviving manuscripts, more than 35,000 words and 

500 sketches deal with fl ight. One of his ornithopter designs is shown in    Fig. 1.3 , 

which is an original da Vinci sketch made sometime between 1486 and 1490. It 

is not known whether da Vinci ever built or tested any of his designs. However, 

human-powered fl ight by fl apping wings was always doomed to failure. In this 

sense, da Vinci’s efforts did not make important contributions to the technical 

advancement of fl ight. 

     Human efforts to fl y literally got off the ground on November 21, 1783, 

when a balloon carrying Pilatre de Rozier and the Marquis d’Arlandes ascended 

into the air and drifted 5 mi across Paris. The balloon was infl ated and buoyed 

Figure 1.3 An ornithopter design by Leonardo da Vinci, 1486–1490.
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up by hot air from an open fi re burning in a large wicker basket underneath. 

The design and construction of the balloon were those of the Montgolfi er broth-

ers, Joseph and Etienne. In 1782 Joseph Montgolfi er, gazing into his fi replace, 

conceived the idea of using the “lifting power” of hot air rising from a fl ame to 

lift a person from the surface of the earth. The brothers instantly set to work, ex-

perimenting with bags made of paper and linen, in which hot air from a fi re was 

trapped. After several public demonstrations of fl ight without human passengers, 

including the 8-min voyage of a balloon carrying a cage containing a sheep, a 

rooster, and a duck, the Montgolfi ers were ready for the big step. At 1:54  pm  on 

November 21, 1783, the fi rst fl ight with human passengers rose majestically into 

the air and lasted for 25 min (see    Fig. 1.4 ). It was the fi rst time in history that a 

human being had been lifted off the ground for a sustained period. Very quickly 

after this, the noted French physicist J. A. C. Charles (of Charles’ gas law in 

physics) built and fl ew a hydrogen-fi lled balloon from the Tuileries Gardens in 

Paris on December 1, 1783. 

     So people were fi nally off the ground! Balloons, or “aerostatic machines” as 

they were called by the Montgolfi ers, made no real technical contributions to human 

Figure 1.4 The fi rst aerial voyage in history: The 

Montgolfi er hot-air balloon lifts from the ground 

near Paris on November 21, 1783.
(Source: Library of Congress [LC-USZ62-15243].)
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heavier-than-air fl ight. However, they served a major purpose in triggering the pub-

lic’s interest in fl ight through the air. They were living proof that people could really 

leave the ground and sample the environs heretofore exclusively reserved for birds. 

Moreover, balloons were the only means of human fl ight for almost 100 years.   

   1.3   SIR GEORGE CAYLEY (1773–1857)—THE TRUE 
INVENTOR OF THE AIRPLANE 

  The modern airplane has its origin in a design set forth by George Cayley in 

1799. It was the fi rst concept to include a  fi xed  wing for generating lift, another 

 separate  mechanism for propulsion (Cayley envisioned paddles), and a com-

bined horizontal and vertical (cruciform) tail for stability. Cayley inscribed his 

idea on a silver disk (presumably for permanence), shown in    Fig. 1.5 . On the 

reverse side of the disk is a diagram of the lift and drag forces on an inclined 

plane (the wing). The disk is now preserved in the Science Museum in London. 

Before this time, thought of mechanical fl ight had been oriented toward the fl ap-

ping wings of ornithopters, where the fl apping motion was supposed to provide 

both lift and propulsion. (Da Vinci designed his ornithopter wings to fl ap simul-

taneously downward and backward for lift and propulsion.) However, Cayley 

is responsible for breaking this unsuccessful line of thought; he separated the 

concept of lift from that of propulsion and, in so doing, set into motion a century 

of aeronautical development that culminated in the Wright brothers’ success in 

1903. George Cayley is a giant in aeronautical history: He is the parent of mod-

ern aviation and was the fi rst to introduce the basic confi guration of the modern 

airplane. Let us look at him more closely. 

Figure 1.5 The silver disk on which Cayley engraved his concept for a fi xed-

wing aircraft, the fi rst in history, in 1799. The reverse side of the disk shows the 

resultant aerodynamic force on a wing resolved into lift and drag components, 

indicating Cayley’s full understanding of the function of a fi xed wing. The disk 

is presently in the Science Museum in London.
(Source: © Science and Society/SuperStock.)
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     Cayley was born at Scarborough in Yorkshire, England, on December 27, 

1773. He was educated at York and Nottingham and later studied chemistry and 

electricity under several noted tutors. He was a scholarly man of some rank, a 

baronet who spent much of his time on the family estate, called Brompton. A por-

trait of Cayley is shown in    Fig. 1.6 . He was a well-preserved person, of extreme 

intellect and open mind, active in many pursuits over a long life of 84 years. In 

1825 he invented the caterpillar tractor, forerunner of all modern tracked ve-

hicles. In addition, he was chairman of the Whig Club of York, founded the 

Yorkshire Philosophical Society (1821), cofounded the British Association for 

the Advancement of Science (1831), was a member of Parliament, was a leading 

authority on land drainage, and published papers dealing with optics and railroad 

safety devices. Moreover, he had a social conscience: He appealed for, and do-

nated to, the relief of industrial distress in Yorkshire. 

     However, by far his major and lasting contribution to humanity was in aero-

nautics. After experimenting with model helicopters beginning in 1796, Cayley 

engraved his revolutionary fi xed-wing concept on the silver disk in 1799 (see 

   Fig.  1.5 ). This was followed by an intensive 10-year period of aerodynamic 

Figure 1.6 A portrait of Sir George Cayley, painted by 

Henry Perronet Briggs in 1841. The portrait now hangs 

in the National Portrait Gallery in London.
(Source: © Science and Society/SuperStock.)
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investigation and development. In 1804 he built a whirling-arm apparatus, 

shown in    Fig. 1.7 , for testing airfoils; this was simply a lifting surface (airfoil) 

mounted on the end of a long rod, which was rotated at some speed to generate a 

fl ow of air over the airfoil. In modern aerospace engineering, wind tunnels now 

serve this function; but in Cayley’s time the whirling arm was an important de-

velopment that allowed the measurement of aerodynamic forces and the center 

of pressure on a lifting surface. Of course these measurements were not very 

accurate, because after a number of revolutions of the arm, the surrounding air 

would begin to rotate with the device. Nevertheless, it was a fi rst step in aero-

dynamic testing. (Cayley did not invent the whirling arm; that honor belongs to 

the English military engineer Benjamin Robins in 1742.) Also in 1804, Cayley 

designed, built, and fl ew the small model glider shown in    Fig. 1.8 . This may 

seem trivial today, something that you might have done as a child;  but in 1804, it 
represented the fi rst modern-confi guration airplane of history,  with a fi xed wing, 

and a horizontal and vertical tail that could be adjusted. (Cayley generally fl ew 

his glider with the tail at a positive angle of incidence, as shown in his sketch in 

   Fig. 1.8 .) A full-scale replica of this glider is on display at the Science Museum 

in London; the model is only about 1 m long. 

         Cayley’s fi rst outpouring of aeronautical results was documented in his mo-

mentous triple paper of 1809–1810. Titled “On Aerial Navigation” and published 

in the November 1809, February 1810, and March 1810 issues of Nicholson’s 

Figure 1.7 George Cayley’s whirling-arm apparatus for testing airfoils.
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 Journal of Natural Philosophy,  this document ranks as one of the most important 

aeronautical works in history. (Note that the words  natural philosophy  in history 

are synonymous with physical science.) Cayley was prompted to write his triple 

paper after hearing reports that Jacob Degen had recently fl own in a mechani-

cal machine in Vienna. In reality, Degen fl ew in a contraption that was lifted by 

a balloon. It was of no signifi cance, but Cayley did not know the details. In an 

effort to let people know of his activities, Cayley documented many aspects of 

aerodynamics in his triple paper. It was the fi rst published treatise on theoretical 

and applied aerodynamics in history. In it, Cayley elaborated on his principle 

of the separation of lift and propulsion and his use of a fi xed wing to generate 

lift. He stated that the basic principle of a fl ying machine is “to make a surface 

support a given weight by the application of power to the resistance of air.” He 

noted that a surface inclined at some angle to the direction of motion will gener-

ate lift and that a cambered (curved) surface will do this more effi ciently than a 

fl at surface. He also stated for the fi rst time in history that lift is generated by a 

region of low pressure on the upper surface of the wing. The modern technical 

aspects of these phenomena are developed and explained in Chs. 4 and 5; how-

ever, stated by Cayley in 1809–1810, these phenomena were new and unique. 

His triple paper also addressed the matter of fl ight control and was the fi rst doc-

ument to discuss the role of the horizontal and vertical tail planes in airplane 

stability. Interestingly enough, Cayley went off on a tangent in discussing the 

use of fl appers for propulsion. Note that on the silver disk (see    Fig. 1.5 ) Cayley 

showed some paddles just behind the wing. From 1799 until his death in 1857, 

Cayley was obsessed with such fl appers for aeronautical propulsion. He gave 

little attention to the propeller (airscrew); indeed, he seemed to have an aversion 

to rotating machinery of any type. However, this should not detract from his nu-

merous positive contributions. Also in his triple paper, Cayley described the fi rst 

successful full-size glider of history, built and fl own without passengers by him 

at Brompton in 1809. However, there was no clue as to its confi guration. 

 Curiously, the period from 1810 to 1843 was a lull in Cayley’s life in regard 

to aeronautics. Presumably he was busy with his myriad other interests and ac-

tivities. During this period, he showed interest in airships (controlled balloons), 

as opposed to heavier-than-air machines. He made the prophetic statement that 

“balloon aerial navigation can be done readily, and will probably, in the order 

of things, come into use before mechanical fl ight can be rendered suffi ciently 

safe and effi cient for ordinary use.” He was correct; the fi rst successful airship, 

Figure 1.8 The fi rst modern-confi guration airplane in history: Cayley’s model glider, 1804.
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propelled by a steam engine, was built and fl own by the French engineer Henri 

Giffard in Paris in 1852, some 51 years before the fi rst successful airplane. 

 Cayley’s second outpouring of aeronautical results occurred in the period 

from 1848 to 1854. In 1849 he built and tested a full-size airplane. During some 

of the fl ight tests, a 10-year-old boy was carried along and was lifted several 

meters off the ground while gliding down a hill. Cayley’s own sketch of this 

machine, called the  boy carrier,  is shown in    Fig. 1.9 . Note that it is a triplane 

(three wings mounted on top of one another). Cayley was the fi rst to suggest such 

multiplanes (i.e., biplanes and triplanes), mainly because he was concerned with 

the possible structural failure of a single large wing (a monoplane). Stacking 

smaller, more compact, wings on top of one another made more sense to him, 

and his concept was perpetuated into the 20th century. It was not until the late 

1930s that the monoplane became the dominant airplane confi guration. Also 

note from    Fig. 1.9  that, strictly speaking, this was a “powered” airplane; that is, 

it was equipped with propulsive fl appers. 

     One of Cayley’s most important papers was published in  Mechanics’ Magazine  

on September 25, 1852. By this time he was 79 years old! The article was titled 

“Sir George Cayley’s Governable Parachutes.” It gave a full description of a large 

human-carrying glider that incorporated almost all the features of the modern air-

plane. This design is shown in    Fig. 1.10 , which is a facsimile of the illustration that 

appeared in the original issue of  Mechanics’ Magazine . This airplane had (1) a main 

wing at an angle of incidence for lift, with a dihedral for lateral stability; (2) an ad-

justable cruciform tail for longitudinal and directional stability; (3) a pilot-operated 

Figure 1.9 Cayley’s triplane from 1849—the boy carrier. Note the vertical and horizontal 

tail surfaces and the fl apperlike propulsive mechanism.
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Figure 1.10 George Cayley’s human-carrying glider, from Mechanics’ Magazine, 1852.
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elevator and rudder; (4) a fuselage in the form of a car, with a pilot’s seat and three-

wheel undercarriage; and (5) a tubular beam and box beam construction. These 

combined features were not to be seen again until the Wright brothers’ designs at 

the beginning of the 20th century. Incredibly, this 1852 paper by Cayley went virtu-

ally unnoticed, even though  Mechanics’ Magazine  had a large circulation. It was 

rediscovered by the eminent British aviation historian Charles H. Gibbs-Smith in 

1960 and republished by him in the June 13, 1960, issue of  The Times . 
     Sometime in 1853—the precise date is unknown—George Cayley built and 

fl ew the world’s fi rst human-carrying glider. Its confi guration is not known, but 

Gibbs-Smith states that it was most likely a triplane on the order of the earlier 

boy carrier (see    Fig. 1.9 ) and that the planform (top view) of the wings was prob-

ably shaped much like the glider in    Fig. 1.10 . According to several eyewitness 

accounts, a gliding fl ight of several hundred yards was made across a dale at 

Brompton with Cayley’s coachman aboard. The glider landed rather abruptly; 

and after struggling clear of the vehicle, the shaken coachman is quoted as say-

ing, “Please, Sir George, I wish to give notice. I was hired to drive, and not to 

fl y.” Very recently, this fl ight of Cayley’s coachman was reenacted for the public 

in a special British Broadcasting Corporation television show about Cayley’s 

life. While visiting the Science Museum in London in August of 1975, the pres-

ent author was impressed to fi nd the television replica of Cayley’s glider (minus 

the coachman) hanging in the entranceway. 

 George Cayley died at Brompton on December 15, 1857. During his almost 

84 years of life, he laid the basis for all practical aviation. He was called the  father 
of aerial navigation  by William Samuel Henson in 1846. However, for reasons 

that are not clear, the name of George Cayley retreated to the background soon 

after his death. His works became obscure to virtually all later aviation enthusiasts 

in the latter half of the 19th century. This is incredible, indeed unforgivable, con-

sidering that his published papers were available in known journals. Obviously 

many subsequent inventors did not make the effort to examine the literature be-

fore forging ahead with their own ideas. (This is certainly a problem for engineers 

today, with the virtual explosion of written technical papers since World War 

II.) However, Cayley’s work has been brought to light by the research of several 

modern historians in the 20th century. Notable among them is    C. H. Gibbs-Smith , 

from whose book titled  Sir George Cayley’s Aeronautics  (1962) much of the 

material in    Sec. 1.3  has been gleaned. Gibbs-Smith states that had Cayley’s work 

been extended directly by other aviation pioneers, and had they digested ideas 

espoused in his triple paper of 1809–1810 and in his 1852 paper, successful pow-

ered fl ight would most likely have occurred in the 1890s. Probably so! 

 As a fi nal tribute to George Cayley, we note that the French aviation histo-

rian Charles Dollfus said the following in 1923: 

  The aeroplane is a British invention: it was conceived in all essentials by George 

Cayley, the great English engineer who worked in the fi rst half of last century. The 

name of Cayley is little known, even in his own country, and there are very few who 

know the work of this admirable man, the greatest genius of aviation. A study of his 

publications fi lls one with absolute admiration both for his inventiveness, and for his 



 1.4  The Interregnum—from 1853 to 1891 13

logic and common sense. This great engineer, during the Second Empire, did in fact 

not only invent the aeroplane entire, as it now exists, but he realized that the problem 

of aviation had to be divided between theoretical research—Cayley made the fi rst 

aerodynamic experiments for aeronautical purposes—and practical tests, equally in 

the case of the glider as of the powered aeroplane.    

   1.4  THE INTERREGNUM—FROM 1853 TO 1891 
  For the next 50 years after Cayley’s success with the coachman-carrying glider, 

there were no major advances in aeronautical technology comparable to those 

of the previous 50 years. Indeed, as stated in    Sec. 1.3 , much of Cayley’s work 

became obscure to all but a few dedicated investigators. However, there was 

considerable activity, with numerous people striking out (sometimes blindly) in 

various uncoordinated directions to conquer the air. Some of these efforts are 

noted in the following paragraphs, just to establish the fl avor of the period. 

 William Samuel Henson (1812–1888) was a contemporary of Cayley. In 

April 1843 he published in England a design for a fi xed-wing airplane pow-

ered by a steam engine driving two propellers. Called the  aerial steam carriage,  
this design received wide publicity throughout the 19th century, owing mainly 

to a series of illustrative engravings that were reproduced and sold around the 

world. This was a publicity campaign of which Madison Avenue would have 

been proud; one of these pictures is shown in    Fig. 1.11 . Note some of the quali-

ties of modern aircraft in    Fig. 1.11 : the engine inside a closed fuselage, driving 

two propellers; tricycle landing gear; and a single rectangular wing of relatively 

Figure 1.11 Henson’s aerial steam carriage, 1842–1843.
(Source: Library of Congress [LC-DIG-ppmsca-03479].)
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high aspect ratio. (We discuss the aerodynamic characteristics of such wings in 

Ch. 5.) Henson’s design was a direct product of George Cayley’s ideas and re-

search in aeronautics. The aerial steam carriage was never built; but the design, 

along with its widely published pictures, served to engrave George Cayley’s 

fi xed-wing concept on the minds of virtually all subsequent workers. Thus, even 

though Cayley’s published papers fell into obscurity after his death, his major 

concepts were partly absorbed and perpetuated by subsequent generations of in-

ventors, even though most of these inventors did not know the true source of 

the ideas. In this manner, Henson’s aerial steam carriage was one of the most 

infl uential airplanes in history, even though it never fl ew. 

     John Stringfellow, a friend of Henson, made several efforts to bring Henson’s 

design to fruition. Stringfellow built several small steam engines and attempted 

to power some model monoplanes off the ground. He was close but unsuccess-

ful. However, his most recognized work appeared in the form of a steam-pow-

ered triplane, a model of which was shown at the 1868 aeronautical exhibition 

sponsored by the Aeronautical Society at the Crystal Palace in London. A pho-

tograph of Stringfellow’s triplane is shown in    Fig. 1.12 . This airplane was also 

unsuccessful, but again it was extremely infl uential because of worldwide pub-

licity. Illustrations of this triplane appeared throughout the end of the 19th cen-

tury.    Gibbs-Smith , in his book  Aviation: An Historical Survey from Its Origins 
to the End of World War II  (1970), states that these illustrations were later a 

strong infl uence on Octave Chanute, and through him the Wright brothers, and 

Figure 1.12 Stringfellow’s model triplane exhibited at the fi rst aeronautical exhibition in 

London, 1868.
(Source: © Science Museum/SSPL/The Image Works.)
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strengthened the concept of superimposed wings. Stringfellow’s triplane was the 

main bridge between George Cayley’s aeronautics and the modern biplane. 

     During this period, the fi rst powered airplanes actually hopped off the ground, but 

only for hops. In 1857–1858 the French naval offi cer and engineer Felix Du Temple 

fl ew the fi rst successful powered model airplane in history; it was a monoplane with 

swept-forward wings and was powered by clockwork! Then, in 1874, Du Temple 

achieved the world’s fi rst powered takeoff by a piloted, full-size airplane. Again the 

airplane had swept-forward wings, but this time it was powered by some type of hot-

air engine (the precise type is unknown). A sketch of Du Temple’s full-size airplane 

is shown in    Fig. 1.13 . The machine, piloted by a young sailor, was launched down 

an inclined plane at Brest, France; it left the ground for a moment but did not come 

close to anything resembling sustained fl ight. In the same vein, the second pow-

ered airplane with a pilot left the ground near St. Petersburg, Russia, in July 1884. 

Designed by Alexander F. Mozhaiski, this machine was a steam- powered mono-

plane, shown in    Fig. 1.14 . Mozhaiski’s design was a direct descendant of Henson’s 

aerial steam carriage; it was even powered by an English steam engine. With 

I. N. Golubev as pilot, this airplane was launched down a ski ramp and fl ew for a 

few seconds. As with Du Temple’s airplane, no sustained fl ight was achieved. At 

various times the Russians have credited Mozhaiski with the fi rst powered fl ight in 

history, but of course it did not satisfy the necessary criteria to be called such. Du 

Temple and Mozhaiski achieved the fi rst and second  assisted  powered takeoffs, 

respectively, in history, but neither experienced sustained fl ight. In his book  The 
World’s First Aeroplane Flights  (1965),    C. H. Gibbs-Smith  states the following 

criteria used by aviation historians to judge a successful powered fl ight:  

In order to qualify for having made a simple powered and sustained fl ight, a con-

ventional aeroplane should have sustained itself freely in a horizontal or rising fl ight 

path—without loss of airspeed—beyond a point where it could be infl uenced by 

any momentum built up before it left the ground: otherwise its performance can 

Figure 1.13 Du Temple’s airplane: the fi rst aircraft to make a powered but assisted 

takeoff, 1874.
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only be rated as a powered leap, i.e., it will not have made a fully self-propelled 

fl ight, but will only have followed a ballistic trajectory modifi ed by the thrust of 

its propeller and by the aerodynamic forces acting upon its aerofoils. Furthermore, 

it must be shown that the machine can be kept in satisfactory equilibrium. Simple 

sustained fl ight obviously need not include full controllability, but the maintenance 

of  adequate equilibrium in fl ight is part and parcel of sustention.  

Under these criteria, there is no doubt in the mind of any major aviation historian 

that the fi rst powered fl ight was made by the Wright brothers in 1903. However, 

the assisted “hops” just described put two more rungs in the ladder of aeronauti-

cal development in the 19th century. 

         Of particular note during this period is the creation in London in 1866 of the 

Aeronautical Society of Great Britain. Before this time, work on “aerial naviga-

tion” (a phrase coined by George Cayley) was looked upon with some disdain 

by many scientists and engineers. It was too out of the ordinary and was not to 

be taken seriously. However, the Aeronautical Society soon attracted scientists 

of stature and vision, people who shouldered the task of solving the problems of 

mechanical fl ight in a more orderly and logical fashion. In turn, aeronautics took 

on a more serious and meaningful atmosphere. The society, through its regular 

meetings and technical journals, provided a cohesive scientifi c outlet for the pre-

sentation and digestion of aeronautical engineering results. The society is still 

Figure 1.14 The second airplane to make an assisted takeoff: Mozhaiski’s aircraft, 

Russia, 1884.
(Source: Soviet Union Postal Service.)
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fl ourishing today in the form of the highly respected Royal Aeronautical Society. 

Moreover, it served as a model for the creation of both the American Rocket 

Society and the Institute of Aeronautical Sciences in the United States; both of 

these societies merged in 1964 to form the American Institute of Aeronautics 

and Astronautics (AIAA), one of the most infl uential channels for aerospace 

engineering information exchange today. 

 In conjunction with the Aeronautical Society of Great Britain, at its fi rst 

meeting on June 27, 1866, Francis H. Wenham read a paper titled “Aerial 

Locomotion,” one of the classics in aeronautical engineering literature. Wenham 

was a marine engineer who later was to play a prominent role in the society and 

who later designed and built the fi rst wind tunnel in history (see Sec. 4.24). His 

paper, which was also published in the fi rst annual report of the society, was the 

fi rst to point out that most of the lift of a wing was obtained from the portion near 

the leading edge. He also established that a wing with a high aspect ratio was the 

most effi cient for producing lift. (We will see why in Ch. 5.) 

 As noted in our previous discussion about Stringfellow, the Aeronautical 

Society started out in style: When it was only two years old, in 1868, it put on the 

fi rst aeronautical exhibition in history at the Crystal Palace. It attracted an assort-

ment of machines and balloons and for the fi rst time offered the general public 

a fi rsthand overview of the efforts being made to conquer the air. Stringfellow’s 

triplane (discussed earlier) was of particular interest. Zipping over the heads of 

the enthralled onlookers, the triplane moved through the air along an inclined 

cable strung below the roof of the exhibition hall (see    Fig. 1.12 ). However, it did 

not achieve sustained fl ight on its own. In fact, the 1868 exhibition did nothing 

to advance the technical aspects of aviation; nevertheless, it was a masterstroke 

of good public relations.   

   1.5   OTTO LILIENTHAL (1848–1896)—THE 
GLIDER MAN 

  With all the efforts that had been made in the past, it was still not until 1891 that 

a human literally jumped into the air and fl ew with wings in any type of con-

trolled fashion. This person was Otto Lilienthal, one of the giants in aeronautical 

engineering (and in aviation in general). Lilienthal designed and fl ew the fi rst 

successful controlled gliders in history. He was a man of aeronautical stature 

comparable to Cayley and the Wright brothers. Let us examine the man and his 

contributions more closely. 

 Lilienthal was born on May 23, 1848, at Anklam, Prussia (Germany). He 

obtained a good technical education at trade schools in Potsdam and Berlin, the 

latter at the Berlin Technical Academy, graduating with a degree in mechanical 

engineering in 1870. After a one-year stint in the army during the Franco-Prussian 

War, Lilienthal went to work designing machinery in his own factory. However, 

from early childhood he was interested in fl ight and performed some youthful 

experiments on ornithopters of his own design. Toward the late 1880s, his work 

and interests took a more mature turn, which ultimately led to fi xed-wing gliders. 
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 In 1889 Lilienthal published a book titled  Der Vogelfl ug als Grundlage der 
Fliegekunst  (Bird Flight as the Basis of Aviation). This is another of the early 

classics in aeronautical engineering: Not only did he study the structure and 

types of birds’ wings, but he also applied the resulting aerodynamic informa-

tion to the design of mechanical fl ight. Lilienthal’s book contained some of the 

most detailed aerodynamic data available at that time. Translated sections were 

later read by the Wright brothers, who incorporated some of his data in their fi rst 

glider designs in 1900 and 1901. 

 By 1889 Lilienthal had also come to a philosophical conclusion that was to 

have a major impact on the next two decades of aeronautical development. He 

concluded that to learn practical aerodynamics, he had to get up in the air and 

experience it himself. In his own words,  

One can get a proper insight into the practice of fl ying only by actual fl ying 

 experiments. . . . The manner in which we have to meet the irregularities of the wind, 

when soaring in the air, can only be learnt by being in the air itself. . . . The only way 

which leads us to a quick development in human fl ight is a systematic and energetic 

practice in actual fl ying experiments.  

To put this philosophy into practice, Lilienthal designed a glider in 1889 and 

another in 1890; both were unsuccessful. However, in 1891 Lilienthal’s fi rst suc-

cessful glider fl ew from a natural hill at Derwitz, Germany. (Later he was to 

build an artifi cial hill about 50 ft high near Lichterfelde, a suburb of Berlin; this 

conically shaped hill allowed glider fl ights to be made into the wind, no matter 

what the direction.) The general confi guration of his monoplane gliders is shown 

in    Fig. 1.15 , which is a photograph showing Lilienthal as the pilot. Note the 

rather birdlike planform of the wing. Lilienthal used cambered (curved) airfoil 

Figure 1.15 A monoplane hang glider by Lilienthal, 1894.
(Source: Library of Congress [LC-USZ62-19650].)
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shapes on the wing and incorporated vertical and horizontal tail planes in the 

back for stability. These machines were hang gliders, the grandparents of the 

sporting vehicles of today. Flight control was exercised by shifting one’s center 

of gravity under the glider. 

     Contrast Lilienthal’s fl ying philosophy with those of previous would-be 

aviators before him. During most of the 19th century, powered fl ight was looked 

upon in a brute-force manner: Build an engine strong enough to drive an air-

plane, slap it on an airframe strong enough to withstand the forces and to gener-

ate the lift, and presumably you could get into the air. What would happen  after  

you got into the air would be just a simple matter of steering the airplane around 

the sky like a carriage or automobile on the ground—at least this was the general 

feeling. Gibbs-Smith called the people taking this approach the  chauffeurs.  In 

contrast were the  airmen —Lilienthal was the fi rst—who recognized the need to 

get up in the air, fl y around in gliders, and obtain the “feel” of an airplane  before  

an engine was used for powered fl ight. The chauffeurs were mainly interested 

in thrust and lift, whereas the airmen were more concerned with fl ight control in 

the air. The airmen’s philosophy ultimately led to successful powered fl ight; the 

chauffeurs were singularly unsuccessful. 

 Lilienthal made more than 2000 successful glider fl ights. The aerodynamic 

data he obtained were published in papers circulated throughout the world. In 

fact, his work was timed perfectly with the rise of photography and the print-

ing industry. In 1871 the dry-plate negative was invented, which by 1890 could 

“freeze” a moving object without a blur. Also, the successful halftone method 

of printing photographs in books and journals had been developed. As a result, 

photographs of Lilienthal’s fl ights were widely distributed; indeed, Lilienthal 

was the fi rst human to be photographed in an airplane (see    Fig. 1.15 ). Such 

widespread dissemination of his results inspired other pioneers in aviation. The 

Wright brothers’ interest in fl ight did not crystallize until Wilbur fi rst read some 

of Lilienthal’s papers in about 1894. 

 On Sunday, August 9, 1896, Lilienthal was gliding from the Gollenberg hill 

near Stollen in Germany. It was a fi ne summer’s day. However, a temporary 

gust of wind brought Lilienthal’s monoplane glider to a standstill; he stalled 

and crashed to the ground. Only the wing was crumpled; the rest of the glider 

was undamaged. However, Lilienthal was carried away with a broken spine. He 

died the next day in the Bergmann Clinic in Berlin. During his life Lilienthal 

remarked several times that “sacrifi ces must be made.” This epitaph is carved on 

his gravestone in the Lichterfelde cemetery. 

 There is some feeling that had Lilienthal lived, he would have beaten the 

Wright brothers to the punch. In 1893 he built a powered machine; however, the 

prime mover was a carbonic acid gas motor that twisted six slats at each wing 

tip— obviously an ornithopter-type idea to mimic the natural mode of propulsion 

for birds. In the spring of 1895 he built a second, but larger, powered machine of 

the same type. Neither of these airplanes was ever fl own with the engine operat-

ing. It seems to this author that this mode of propulsion was doomed to failure. 

If Lilienthal had lived, would he have turned to the gasoline engine driving a 
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propeller and thus achieved powered fl ight before 1903? It is a good question 

for conversation.   

   1.6   PERCY PILCHER (1867–1899)—EXTENDING 
THE GLIDER TRADITION 

  In June 1895 Otto Lilienthal received a relatively young and very enthusias-

tic visitor in Berlin—Percy Pilcher, a Scot who lived in Glasgow and who had 

already built his fi rst glider. Under Lilienthal’s guidance, Pilcher made several 

glides from the artifi cial hill. This visit added fuel to Pilcher’s interest in avia-

tion; he returned to the British Isles and over the next four years built a series 

of successful gliders. His most noted machine was the  Hawk,  built in 1896 

(see    Fig. 1.16 ). Pilcher’s experiments with his hang gliders made him the most 

 distinguished British aeronautical engineer since George Cayley. Pilcher was an 

airman, and along with Lilienthal he underscored the importance of learning the 

practical nature of fl ight in the air before lashing an engine to the machine. 

     However, Pilcher’s sights were fi rmly set on powered fl ight. In 1897 he 

calculated that an engine of 4 hp weighing no more than 40 lb, driving a 5-ft- 

diameter propeller, would be necessary to power his  Hawk  off the ground. 

Because no such engine was available commercially, Pilcher (who was a ma-

rine engineer by training) spent most of 1898 designing and constructing one. 

Figure 1.16 Pilcher’s hang glider, the Hawk, 1896.
(Source: © The Keasbury-Gordon Photograph Archive/Alamy.)
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It was completed and bench-tested by the middle of 1899. Then, in one of 

those quirks of fate that dot many aspects of history, Pilcher was killed while 

demonstrating his  Hawk  glider at the estate of Lord Braye in Leicestershire, 

England. The weather was bad, and on his fi rst fl ight the glider was thoroughly 

water-soaked. On his second fl ight, the heavily sodden tail assembly collapsed, 

and Pilcher crashed to the ground. Like Lilienthal, Pilcher died one day after 

this disaster. Hence England and the world also lost the only man other than 

Lilienthal who might have achieved successful powered fl ight before the 

Wright brothers.   

   1.7  AERONAUTICS COMES TO AMERICA 
  Look at the geographic distribution of the early developments in aeronautics 

as portrayed in    Secs. 1.2  through    1.6 . After the advent of ballooning, due to 

the Montgolfi ers’ success in France, progress in heavier-than-air machines was 

focused in England until the 1850s: Witness the contributions of Cayley, Henson, 

and Stringfellow. This is entirely consistent with the fact that England also gave 

birth to the Industrial Revolution during this time. Then the spotlight moved 

to the European continent with Du Temple, Mozhaiski, Lilienthal, and others. 

There were some brief fl ashes again in Britain, such as those due to Wenham and 

the Aeronautical Society. In contrast, throughout this time virtually no impor-

tant progress was being made in the United States. The fl edgling nation was 

busy consolidating a new government and expanding its frontiers. There was not 

much interest in or time for serious aeronautical endeavors. 

 However, this vacuum was broken by Octave Chanute (1832–1910), a 

French-born naturalized citizen who lived in Chicago. Chanute was a civil en-

gineer who became interested in mechanical fl ight in about 1875. For the next 

35 years he collected, absorbed, and assimilated every piece of aeronautical in-

formation he could fi nd. This culminated in 1894 with the publication of his 

book titled  Progress in Flying Machines,  a work that ranks with Lilienthal’s  Der 
Vogelfl ug  as one of the great classics in aeronautics. Chanute’s book summarized 

all the important progress in aviation up to that date; in this sense, he was the fi rst 

serious aviation historian. In addition, Chanute made positive suggestions about 

the future directions necessary to achieve success in powered fl ight. The Wright 

brothers avidly read  Progress in Flying Machines  and subsequently sought out 

Chanute in 1900. A close relationship and interchange of ideas developed be-

tween them. A friendship developed that was to last in various degrees until 

Chanute’s death in 1910. 

 Chanute was an airman. Following this position, he began to design hang 

gliders, in the manner of Lilienthal, in 1896. His major specifi c contribution to 

aviation was the successful biplane glider shown in    Fig. 1.17 , which introduced 

the effective Pratt truss method of structural rigging. The Wright brothers were 

directly infl uenced by this biplane glider, and in this sense Chanute provided the 

natural bridge between Stringfellow’s triplane (1868) and the fi rst successful 

powered fl ight (1903). 
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     About 500 mi to the east, in Washington, District of Columbia, the United 

States’ second noted pre-Wright aeronautical engineer was hard at work. Samuel 

Pierpont Langley (1834–1906), secretary of the Smithsonian Institution, was 

tirelessly designing and building a series of powered aircraft, which fi nally cul-

minated in two attempted piloted fl ights, both in 1903, just weeks before the 

Wrights’ success on December 17. 

 Langley was born in Roxbury, Massachusetts, on August 22, 1834. He 

received no formal education beyond high school, but his childhood interest 

in astronomy spurred him to a lifelong program of self-education. Early in his 

career, he worked for 13 years as an engineer and architect. Then, after mak-

ing a tour of European observatories, Langley became an assistant at Harvard 

Observatory in 1865. He went on to become a mathematics professor at the 

U.S. Naval Academy, a physics and astronomy professor at the University of 

Pittsburgh, and the director of the Allegheny Observatory at Pittsburgh. By vir-

tue of his many scientifi c accomplishments, Langley was appointed secretary of 

the Smithsonian Institution in 1887. 

 In this same year, Langley, who was by now a scientist of international repu-

tation, began his studies of powered fl ight. Following the example of Cayley, he 

built a large whirling arm, powered by a steam engine, with which he made force 

tests on airfoils. He then built nearly 100 different types of rubber-band-powered 

model airplanes, graduating to steam-powered models in 1892. However, it was 

not until 1896 that Langley achieved any success with his powered models; on 

May 6 one of his aircraft made a free fl ight of 3300 ft, and on November 28 

another fl ew for more than 3–
4
                     mi. These  Aerodromes  (a term coined by Langley) 

were tandem-winged vehicles, driven by two propellers between the wings, pow-

ered by a 1-hp steam engine of Langley’s own design. (However, Langley was 

Figure 1.17 Chanute’s hang glider, 1896.
(Source: Library of Congress [LC-USZ62-104585])



 1.7  Aeronautics Comes To America 23

infl uenced by one of John Stringfellow’s small aerosteam engines, which was 

presented to the Smithsonian in 1889. After studying this historic piece of ma-

chinery, Langley set out to design a better engine.) 

 Langley was somewhat satisfi ed with his success in 1896. Recognizing 

that further work toward a piloted aircraft would be expensive in both time and 

money, he “made the fi rm resolution not to undertake the construction of a large 

man-carrying machine.” (Note that it was in this year that the Wright brothers be-

came interested in powered fl ight—another example of the fl ow and continuity of 

ideas and developments in physical science and engineering. Indeed, Wilbur and 

Orville were directly infl uenced and encouraged by Langley’s success with pow-

ered aircraft. After all, here was a well-respected scientist who believed in the 

eventual attainment of mechanical fl ight and who was doing something about it.) 

 Consequently, there was a lull in Langley’s aeronautical work until December 

1898. Then, motivated by the Spanish–American War, the War Department, 

with the personal backing of President McKinley himself, invited Langley to 

build a machine for passengers. It backed up its invitation with $50,000. Langley 

accepted. 

 Departing from his earlier use of steam, Langley correctly decided that 

the gasoline-fueled engine was the proper prime mover for aircraft. He fi rst 

 commissioned Stephan Balzer of New York to produce such an engine; dis-

satisfi ed with the results, Langley eventually had his assistant, Charles Manly, 

redesign the power plant. The resulting engine produced 52.4 hp yet weighed 

only 208 lb, a spectacular achievement for that time. Using a smaller, 1.5-hp, 

gasoline-fueled engine, Langley made a successful fl ight with a quarter-scale 

model aircraft in June 1901, and then an even more successful fl ight of the model 

powered by a 3.2-hp engine in August 1903. 

 Encouraged by this success, Langley stepped directly to the full-size air-

plane, top and side views of which are shown in    Fig. 1.18 . He mounted this 

tandem-winged aircraft on a catapult to provide an assisted takeoff. In turn, the 

airplane and catapult were placed on top of a houseboat on the Potomac River 

(see    Fig. 1.19 ). On October 7, 1903, with Manly at the controls, the airplane was 

ready for its fi rst attempt. The launching was given wide advance publicity, and 

the press was present to watch what might be the fi rst successful powered fl ight 

in history. A photograph of the  Aerodrome  a moment after launch is shown in 

   Fig. 1.20 . Here is the resulting report from the  Washington Post  the next day:

  A few yards from the houseboat were the boats of the reporters, who for three 

months had been stationed at Widewater. The newspapermen waved their hands. 

Manly looked down and smiled. Then his face hardened as he braced himself for 

the fl ight, which might have in store for him fame or death. The propeller wheels, 

a foot from his head, whirred around him one thousand times to the minute. A man 

forward fi red two skyrockets. There came an answering “toot, toot,” from the tugs. 

A mechanic stooped, cut the cable holding the catapult; there was a roaring, grind-

ing noise—and the Langley airship tumbled over the edge of the houseboat and 

disappeared in the river, sixteen feet below. It simply slid into the water like a 

handful of mortar. . . .
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  Manly was unhurt. Langley believed the airplane was fouled by the launching 

mechanism, and he tried again on December 8, 1903. Again the  Aerodrome  

fell into the river, and again Manly was fi shed out, unhurt  (see Fig. 1.21) . It is 

not entirely certain what happened this time; again the fouling of the catapult 

was blamed, but some experts maintain that the tail boom cracked due to struc-

tural weakness. (A recent structural analysis by Dr. Howard Wolko, now retired 

from the National Air and Space Museum, has proven that the large Langley 

 Aerodrome  was clearly structurally unsound.) At any rate, that was the end of 

Langley’s attempts. The War Department gave up, stating that “we are still far 

from the ultimate goal (of human fl ight).” Members of Congress and the press 

Figure 1.18 Drawing of the Langley full-size Aerodrome.
Copyright © the Smithsonian Institution. All rights reserved. Used with permission.
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Figure 1.19 Langley’s full-size Aerodrome on the houseboat launching catapult, 1903.
(Source: © Science and Society/SuperStock.)

Figure 1.20 Langley’s fi rst launch of the full-size Aerodrome, October 7, 1903.
(Source: Library of Congress [LC-DIG-ggbain-16453].)
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Figure 1.21 Langley’s second launch of the full-size Aerodrome, December 8, 1903.
(Source: © DIZ Muenchen GmbH, Sueddeutsche Zeitung Photo/Alamy.)

leveled vicious and unjustifi ed attacks on Langley (human fl ight was still looked 

upon with much derision by most people). In the face of this ridicule, Langley 

retired from the aeronautical scene. He died on February 27, 1906, a man in 

despair. 

                 In contrast to Chanute and the Wright brothers, Langley was a chauffeur. 

Most modern experts feel that his  Aerodrome  would not have been capable of 

sustained, equilibrium fl ight, had it been successfully launched. Langley made 

no experiments with gliders with passengers to get the feel of the air. He ig-

nored completely the important aspects of fl ight control. He attempted to launch 

Manly into the air on a powered machine without Manly’s having one second 

of fl ight experience. Nevertheless, Langley’s aeronautical work was of some 

importance because he lent the power of his respected technical reputation to 

the cause of mechanical fl ight, and his  Aerodromes  were to provide encourage-

ment to others. 

 Nine days after Langley’s second failure, the  Wright Flyer I  rose from the 

sands of Kill Devil Hills.   

   1.8   WILBUR (1867–1912) AND ORVILLE 
(1871–1948) WRIGHT—INVENTORS 
OF THE FIRST PRACTICAL AIRPLANE 

  The scene now shifts to the Wright brothers, the premier aeronautical engineers of 

history. Only George Cayley may be considered comparable.    Sec. 1.1  stated that 

the time was ripe for the attainment of powered fl ight at the beginning of the 20th 

century. The ensuing sections then provided numerous historical brushstrokes to 

emphasize this statement. Thus, the Wright brothers drew on an existing heritage 

that is part of every aerospace engineer today. 
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 Wilbur Wright was born on April 16, 1867 (two years after the Civil War), 

on a small farm in Millville, Indiana. Four years later, Orville was born on 

August 19, 1871, in Dayton, Ohio. The Wrights were descendants of an old 

Massachusetts family, and their father was a bishop of the United Brethren 

Church. The two brothers benefi ted greatly from the intellectual atmosphere of 

their family. Their mother was three months short of a college degree. She had 

considerable mechanical ability, enhanced by spending time in her father’s car-

riage shop. She later designed and built simple household appliances and made 

toys for her children. In the words of Tom Crouch, the defi nitive biographer of 

the Wright brothers, “When the boys wanted mechanical advice or assistance, 

they came to their mother.” Their father, Crouch says, “was one of those men 

who had diffi culty driving a nail straight.” (See    T. Crouch ,  The Bishop’s Boys,  
Norton, New York, 1989.) Interestingly enough, neither Wilbur nor Orville of-

fi cially received a high school diploma; Wilbur did not bother to go to the com-

mencement services, and Orville took a special series of courses in his junior 

year that did not lead to a prescribed degree, and he did not attend his senior 

year. Afterward, the brothers immediately sampled the business world. In 1889 

they fi rst published a weekly four-page newspaper on a printing press of their 

own design. However, Orville had talent as a prize-winning cyclist, and this 

prompted the brothers to set up a bicycle sales and repair shop in Dayton in 1892. 

Three years later they began to manufacture their own bicycle designs, using 

homemade tools. These enterprises were profi table and helped to provide the 

fi nancial resources for their later work in aeronautics. 

 In 1896 Otto Lilienthal was accidently killed during a glider fl ight (see 

   Sec. 1.5 ). In the wake of the publicity, the Wright brothers’ interest in aviation, 

which had been apparent since childhood, was given much impetus. Wilbur and 

Orville had been following Lilienthal’s progress intently; recall that Lilienthal’s 

gliders were shown in fl ight by photographs distributed around the world. In fact, 

an article about Lilienthal in an issue of  McClure’s Magazine  in 1894 was appar-

ently the fi rst to trigger Wilbur’s mature interest; it was not until 1896, though, 

that Wilbur really became a serious thinker about human fl ight. 

 Like several pioneers before him, Wilbur took up the study of bird fl ight 

as a guide on the path toward mechanical fl ight. This led him to conclude in 

1899 that birds “regain their lateral balance when partly overturned by a gust 

of wind, by a torsion of the tips of the wings.” Thus emerged one of the most 

important  developments in aviation history: the use of wing twist to control air-

planes in lateral (rolling) motion. Ailerons are used on modern airplanes for this 

purpose, but the idea is the same. (The aerodynamic fundamentals associated 

with wing twist or ailerons are discussed in Chs. 5 and 7.) In 1903 Chanute, in 

describing the work of the Wright brothers, coined the term  wing warping  for 

this idea, a term that was to become accepted but that was to cause some legal 

confusion later. 

 Anxious to pursue and experiment with the concept of wing warping, Wilbur 

wrote to the Smithsonian Institution in May 1899 for papers and books about 

aeronautics; in turn he received a brief bibliography of fl ying, including works 
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by Chanute and Langley. Most important among these was Chanute’s  Progress 
in Flying Machines  (see    Sec. 1.7 ). Also at this time, Orville became as enthu-

siastic as his brother, and they both digested all the aeronautical literature they 

could fi nd. This led to their fi rst aircraft, a biplane kite with a wingspan of 5 ft, 

in August 1899. This machine was designed to test the concept of wing warping, 

which was accomplished by means of four controlling strings from the ground. 

The concept worked! 

 Encouraged by this success, Wilbur wrote to Chanute in 1900, informing 

him of their initial, but fruitful, progress. This letter began a close friendship be-

tween the Wright brothers and Chanute, which was to benefi t both parties in the 

future. Also, following the true airman philosophy, the Wrights were convinced 

they had to gain experience in the air before applying power to an aircraft. By 

writing to the U.S. Weather Bureau, they found an ideal spot for glider experi-

ments: the area around Kitty Hawk, North Carolina, where there were strong and 

constant winds. A full-size biplane glider was ready by September 1900 and was 

fl own in October of that year at Kitty Hawk.    Figure 1.22  shows a photograph of 

the Wrights’ number 1 glider. It had a 17-ft wingspan and a horizontal elevator in 

front of the wings and was usually fl own on strings from the ground; only a few 

brief piloted fl ights were made. 

     With some success behind them, Wilbur and Orville proceeded to build their 

number 2 glider (see    Fig. 1.23 ). Moving their base of operations to Kill Devil 

Hills, 4 mi south of Kitty Hawk, they tested number 2 during July and August of 

1901. These were mostly manned fl ights, with Wilbur lying prone on the bottom 

wing, facing into the wind, as shown in    Fig. 1.23 . (Through 1901, Wilbur did 

what little fl ying was accomplished; Orville fl ew for the fi rst time a year later.) 

This new glider was somewhat larger, with a 22-ft wingspan. As with all Wright 

Figure 1.22 The Wright brothers’ number 1 glider at Kitty Hawk, North 

Carolina, 1900.
(Source: Library of Congress [LC-DIG-ppprs-00556].)
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machines, it had a horizontal elevator in front of the wings. The Wrights felt that 

a forward elevator would, among other functions, protect them from the type of 

fatal nosedive that killed Lilienthal. 

     During these July and August test fl ights, Octave Chanute visited the Wrights’ 

camp. He was much impressed by what he saw. This led to Chanute’s invitation 

to Wilbur to give a lecture in Chicago. In giving this paper on September 18, 

1901, Wilbur laid bare their experiences, including the design of their gliders and 

the concept of wing warping. Chanute described Wilbur’s presentation as “a dev-

ilish good paper which will be extensively quoted.” Chanute, as usual, was serv-

ing his very useful function as a collector and disseminator of aeronautical data. 

 However, the Wrights were not close to being satisfi ed with their results. 

When they returned to Dayton after their 1901 tests with the number 2 glider, 

both brothers began to suspect the existing data that appeared in the aeronauti-

cal literature. To this date, they had faithfully relied upon detailed aerodynamic 

information generated by Lilienthal and Langley. Now they wondered about its 

accuracy. Wilbur wrote that “having set out with absolute faith in the existing 

scientifi c data, we were driven to doubt one thing after another, until fi nally, after 

two years of experiment, we cast it all aside, and decided to rely entirely upon 

our own investigations.” And investigate they did! Between September 1901 and 

August 1902, the Wrights undertook a major program of aeronautical research. 

They built a wind tunnel (see Ch. 4) in their bicycle shop in Dayton and tested 

more than 200 different airfoil shapes. They designed a force balance to measure 

accurately the lift and drag. This period of research was a high-water mark in 

early aviation development. The Wrights learned, and with them ultimately so 

did the world. This sense of learning and achievement by the brothers is apparent 

simply from reading through  The Papers of Wilbur and Orville Wright  (1953), 

edited by    Marvin W. McFarland . The aeronautical research carried out during 

this period ultimately led to their number 3 glider, which was fl own in 1902. It 

was so successful that Orville wrote that “our tables of air pressure which we 

made in our wind tunnel would enable us to calculate in advance the perfor-

mance of a machine.” Here is the fi rst example in history of the major impact of 

Figure 1.23 The Wright brothers’ number 2 glider at Kill Devil Hills, 1901.
(Source: Library of Congress [LC-DIG-ppprs-00570].)
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wind tunnel testing on the fl ight development of a given machine, an impact that 

has been repeated for all major airplanes of the 20th century. (Very recently, it 

has been shown by    Anderson  in  A History of Aerodynamics and Its Impact on 
Flying Machines  [Cambridge University Press, 1997] that Lilienthal’s data were 

reasonable, but the Wrights misinterpreted them. Applying the data incorrectly, 

the Wrights obtained incorrect results for their 1900 and 1901 gliders. However, 

this is irrelevant because the Wrights went on to discover the correct results.) 

 The number 3 glider was a classic. It was constructed during August and 

September of 1902. It fi rst fl ew at Kill Devil Hills on September 20, 1902. It 

was a biplane glider with a 32-ft 1-in wingspan, the largest of the Wright glid-

ers to date. This number 3 glider is shown in    Fig. 1.24 . Note that, after several 

modifi cations, the Wrights added a vertical rudder behind the wings. This rudder 

was movable, and when connected to move in unison with the wing warping, it 

enabled the number 3 glider to make a smooth, banked turn. This combined use 

of rudder with wing warping (or later, ailerons) was another major contribution 

of the Wright brothers to fl ight control in particular, and aeronautics in general. 

     So the Wrights now had the most practical and successful glider in history. 

During 1902 they made more than 1000 perfect fl ights. They set a distance re-

cord of 622.5 ft and a duration record of 26 s. In the process, both Wilbur and 

Orville became highly skilled and profi cient pilots—something that would later 

be envied worldwide. 

 Powered fl ight was now just at their fi ngertips, and the Wrights knew it! 

Flushed with success, they returned to Dayton to face the last remaining problem: 

Figure 1.24 The Wright brothers’ number 3 glider, 1902.
(Source: Library of Congress [LC-DIG-ppprs-00602].)
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propulsion. As had Langley before them, they could fi nd no commercial engine 

that was suitable, so they designed and built their own during the winter months 

of 1903. It produced 12 hp and weighed about 200 lb. Moreover, they conducted 

their own research, which allowed them to design an effective propeller. These 

accomplishments, which had eluded people for a century, gushed forth from the 

Wright brothers like natural spring water. 

 With all the major obstacles behind them, Wilbur and Orville built their 

 Wright Flyer I  from scratch during the summer of 1903. It closely resembled the 

number 3 glider, but had a wingspan of 40 ft 4 in and used a double rudder be-

hind the wings and a double elevator in front of the wings. And, of course, there 

was the spectacular gasoline-fueled Wright engine, driving two pusher propel-

lers by means of bicycle-type chains. A three-view diagram and a photograph of 

the  Wright Flyer I  are shown in    Figs. 1.1  and    1.2 , respectively. 

 From September 23 to 25, the machine was transported to Kill Devil Hills, 

where the Wrights found their camp in some state of disrepair. Moreover, their 

number 3 glider had been damaged over the winter months. They made re-

pairs and afterward spent many weeks of practice with their number 3 glider. 

Finally, on December 12, everything was ready. However, this time the ele-

ments interfered: Bad weather postponed the fi rst test of the  Wright Flyer I  until 

December 14. On that day, the Wrights called witnesses to the camp and then 

fl ipped a coin to see who would be the fi rst pilot. Wilbur won. The  Wright Flyer I  
began to move along the launching rail under its own power, picking up fl ight 

speed. It lifted off the rail properly but suddenly went into a steep climb, stalled, 

and thumped back to the ground. It was the fi rst recorded case of pilot error 

in powered fl ight: Wilbur admitted that he had put on too much elevator and 

brought the nose too high. 

 With minor repairs made, and with the weather again favorable, the  Wright 
Flyer I  was again ready for fl ight on December 17. This time it was Orville’s 

turn at the controls. The launching rail was again laid on level sand. A camera 

was adjusted to take a picture of the machine as it reached the end of the rail. The 

engine was put on full throttle, the holding rope was released, and the machine 

began to move. The rest is history, as portrayed in the opening paragraphs of this 

chapter. 

 One cannot read or write about this epoch-making event without experi-

encing some of the excitement of the time. Wilbur Wright was 36 years old; 

Orville was 32. Between them, they had done what no one before them had 

 accomplished. By their persistent efforts, their detailed research, and their superb 

engineering, the Wrights had made the world’s fi rst successful heavier-than-air 

fl ight, satisfying all the necessary criteria laid down by responsible aviation 

historians. After Orville’s fi rst fl ight on that December 17, three more fl ights 

were made during the morning, the last covering 852 ft and remaining in the air 

for 59 s. The world of fl ight—and along with it the world of successful aeronauti-

cal engineering—had been born! 

 It is interesting to note that even though the press was informed of these 

events via Orville’s telegram to his father (see the introduction to this chapter), 
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virtually no notice appeared before the public; even the Dayton newspapers did 

not herald the story. This is a testimonial to the widespread cynicism and disbelief 

among the general public about fl ying. Recall that just nine days before, Langley 

had failed dismally in full view of the public. In fact, it was not until Amos I. 

Root observed the Wrights fl ying in 1904 and published his inspired account 

in a journal of which he was the editor,  Gleanings in Bee Culture  (January 1, 

1905, issue), that the public had its fi rst detailed account of the Wrights’ success. 

However, the article had no impact. 

 The Wright brothers did not stop with the  Wright Flyer I . In May 1904 their 

second powered machine, the  Wright Flyer II,  was ready. This aircraft had a 

smaller wing camber (airfoil curvature) and a more powerful and effi cient en-

gine. In outward appearance, it was essentially like the 1903 machine. During 

1904, more than 80 brief fl ights were made with the  Wright Flyer II,  all at a 

90-acre fi eld called Huffman Prairie, 8 mi east of Dayton. (Huffman Prairie still 

exists today; it is on the huge Wright-Patterson Air Force Base, a massive aero-

space development center named in honor of the Wrights.) These tests included 

the fi rst circular fl ight—made by Wilbur on September 20. The longest fl ight 

lasted 5 min 4 s, traversing more than          2     3–
4
          mi. 

 More progress was made in 1905. The  Wright Flyer III  was ready by June. 

The wing area was slightly smaller than that of the  Flyer II,  the airfoil camber was 

increased back to what it had been in 1903, the biplane elevator was made larger 

and was placed farther in front of the wings, and the double rudder was also larger 

and placed farther back behind the wings. New, improved propellers were used. 

This machine, the  Flyer III,  was the fi rst  practical  airplane in history. It made more 

than 40 fl ights during 1905, the longest being 38 min 3 s and covering 24 mi. These 

fl ights were generally terminated only after the gas was used up. C. H. Gibbs-Smith 

writes about the  Flyer III,  “The description of this machine as the world’s fi rst 

practical powered aeroplane is justifi ed by the sturdiness of its structure, which 

withstood constant takeoffs and landings; its ability to bank, turn, and perform fi g-

ures of eight; and its reliability in remaining airborne (with no trouble) for over half 

an hour.” 

 Then the Wright brothers, who heretofore had been completely open about 

their work, became secretive. They were not making any progress in convincing 

the U.S. government to buy their airplane, but at the same time various people 

and companies were beginning to make noises about copying the Wrights’ de-

sign. A patent applied for by the Wrights in 1902 to cover their ideas of wing 

warping combined with rudder action was not granted until 1906. So, between 

October 16, 1905, and May 6, 1908, neither Wilbur nor Orville fl ew, nor did they 

allow anyone to view their machines. However, their aeronautical engineering 

did not stop. During this period, they built at least six new engines. They also 

designed a new fl ying machine that was to become the standard Wright type A, 

shown in    Fig. 1.25 . This airplane was similar to the  Wright Flyer III,  but it had a 

40-hp engine and allowed two people to be seated upright between the wings. It 

also represented the progressive improvement of a basically successful design, a 

concept of airplane design carried out to present day. 
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     The public and the Wright brothers fi nally had their meeting, and in a big 

way, in 1908. The Wrights signed contracts with the U.S. Army in February 

1908, and with a French company in March of the same year. After that the 

wraps were off. Wilbur traveled to France in May, picked up a crated type A 

that had been waiting at Le Havre since July 1907, and completed the assem-

bly in a friend’s factory at Le Mans. With supreme confi dence, he announced 

Figure 1.25 A two-view of the Wright type A, 1908.
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his fi rst public fl ight in advance—to take place on August 8, 1908. Aviation 

pioneers from all over Europe, who had heard rumors about the Wrights’ suc-

cesses since 1903, the press, and the general public all fl ocked to a small race 

course at Hunaudieres, 5 mi south of Le Mans. On the appointed day, Wilbur 

took off, made an impressive, circling fl ight for almost 2 min, and landed. It 

was like a revolution. Aeronautics, which had been languishing in Europe since 

Lilienthal’s death in 1896, was suddenly alive. The Frenchman Louis Bleriot, 

soon to become famous for being fi rst to fl y across the English Channel, ex-

claimed, “For us in France and everywhere, a new era in mechanical fl ight has 

commenced—it is marvelous.” The French press, after being skeptical for years 

of the Wrights’ supposed accomplishments, called Wilbur’s fl ight “one of the 

most exciting spectacles ever presented in the history of applied science.” More 

deeply echoing the despair of many would-be French aviators who were in a race 

with the Wrights to be fi rst with powered fl ight, Leon Delagrange said, “Well, 

we are beaten. We just don’t exist.” Subsequently Wilbur made 104 fl ights in 

France before the end of 1908. The acclaim and honor due the Wright brothers 

since 1903 had fi nally arrived. 

 Orville was experiencing similar success in the United States. On 

September 3, 1908, he began a series of demonstrations for the U.S. Army at Fort 

Myer, near Washington, District of Columbia. Flying a type A machine, he made 

10 fl ights, the longest for 1 h 14 min, before September 17. On that day, Orville 

experienced a propeller failure that ultimately caused the machine to crash, seri-

ously injuring himself and killing his passenger, Lt. Thomas E. Selfridge. This 

was the fi rst crash of a powered aircraft, but it did not deter either Orville or the 

Army. Orville made a fast recovery and was back to fl ying in 1909—and the 

Army bought the airplane. 

 The public fl ights made by Wilbur in France in 1908 electrifi ed aviators in 

Europe. European airplane designers immediately adopted two of the most im-

portant technical features of the Wright machine: lateral control and the propeller. 

Prior to 1908, European fl ying-machine enthusiasts had no concept of the impor-

tance of lateral control (rolling of the airplane—see Sec. 7.1) and certainly no 

mechanical mechanism to achieve it; the Wrights achieved lateral control by their 

innovative concept of wing warping. By 1909, however, the Frenchman Henri 

Farman designed a biplane named the  Henri Farman III  that included fl aplike ai-

lerons at the trailing edge near the wing tips; ailerons quickly became the favored 

mechanical means for lateral control, continuing to the present day. Similarly, the 

European designers were quick to adopt the long, slender shape of the Wrights’ 

propellers; these were quite different from the wide, paddlelike shapes then in 

use, which had low propeller effi ciencies (defi ned in Sec. 6.6.1) on the order of 

40 to 50 percent. In 1909 the effi ciency of the Wrights’ propeller was measured 

by an engineer in Berlin to be a stunning 76 percent. Recent wind tunnel experi-

ments at the NASA Langley Research Center (carried out by researchers from 

Old Dominion University in 2002) indicated an even more impressive 84 percent 

effi ciency for the Wrights’ propeller. These two technical features—the appre-

ciation for, and a mechanical means to achieve, lateral control, and the design 
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of a highly effi cient propeller—are the two most important technical legacies 

left by the Wrights to future airplanes, and European designers quickly seized 

upon them. (See    Anderson ,  The Airplane: A History of Its Technology,  American 

Institute of Aeronautics and Astronautics, 2002, for more details.) 

 The accomplishments of the Wright brothers were monumental. Their ze-

nith occurred during the years 1908 to 1910; after that European aeronautics 

quickly caught up and went ahead in the technological race. The main rea-

son for this was that all the Wrights’ machines, from the fi rst gliders, were 

statically unstable (see Ch. 7). This meant that the Wrights’ airplanes would 

not fl y “by themselves”; rather, they had to be constantly, every instant, con-

trolled by the pilot. In contrast, European inventors believed in inherently 

 stable aircraft. After their lessons in fl ight control from Wilbur in 1908, work-

ers in France and England moved quickly to develop controllable, but stable, 

airplanes. These were basically safer and easier to fl y. The concept of static 

stability has carried over to virtually all airplane designs through the present 

century. (It is interesting to note that the new designs for military fi ghters, such 

as the  Lockheed-Martin F-22, are statically  unstable,  which represents a return 

to the Wrights’ design philosophy. However, unlike the  Wright Flyers,  these 

new aircraft are fl own constantly, every moment, by electrical means, by the 

new “fl y-by-wire”  concept.) 

 To round out the story of the Wright brothers, Wilbur died in an untimely 

fashion of typhoid fever on May 30, 1912. In a fi tting epitaph, his father said, 

“This morning, at 3:15 Wilbur passed away, aged 45 years, 1 month, and 14 days. 

A short life full of consequences. An unfailing intellect, imperturbable temper, 

great self-reliance and as great modesty. Seeing the right clearly, pursuing it 

steadily, he lived and died.” 

 Orville lived on until January 30, 1948. During World War I, he was com-

missioned a major in the Signal Corps Aviation Service. Although he sold all his 

interest in the Wright company and “retired” in 1915, he afterward performed 

research in his own shop. In 1920 he invented the split fl ap for wings, and he 

continued to be productive for many years. 

 As a fi nal footnote to this story of two great men, there occurred a dispute 

between Orville and the Smithsonian Institution concerning the proper historical 

claims on powered fl ight. As a result, Orville sent the historic  Wright Flyer I,  the 

original, to the Science Museum in London in 1928. It resided there, through the 

bombs of World War II, until 1948, when the museum sent it to the Smithsonian. 

It is now part of the National Air and Space Museum and occupies a central posi-

tion in the gallery.   

   1.9   THE AERONAUTICAL TRIANGLE—LANGLEY, 
THE WRIGHTS, AND GLENN CURTISS 

  In 1903—a milestone year for the Wright brothers, with their fi rst successful 

powered fl ight—Orville and Wilbur faced serious competition from Samuel P. 

Langley. As portrayed in    Sec. 1.7 , Langley was the secretary of the Smithsonian 
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Institution and was one of the most respected scientists in the United States at that 

time. Beginning in 1886, Langley mounted an intensive aerodynamic research 

and development program, bringing to bear the resources of the Smithsonian and 

later the War Department. He carried out this program with a dedicated zeal that 

matched the fervor that the Wrights themselves demonstrated later. Langley’s 

efforts culminated in the full-scale  Aerodrome  shown in    Figs. 1.18 ,    1.19 , and 

   1.20 . In October 1903 this  Aerodrome  was ready for its fi rst attempted fl ight, in 

the full glare of publicity in the national press. 

 The Wright brothers knew about Langley’s progress. During their prepara-

tions with the  Wright Flyer  at Kill Devil Hills in the summer and fall of 1903, 

Orville and Wilbur kept in touch with Langley’s progress via the newspapers. 

They felt this competition keenly, and the correspondence of the Wright broth-

ers at this time indicates an uneasiness that Langley might become the fi rst to 

successfully achieve powered fl ight before they would have a chance to test the 

 Wright Flyer.  In contrast, Langley felt no competition at all from the Wrights. 

Although the aeronautical activity of the Wright brothers was generally known 

throughout the small circle of aviation enthusiasts in the United States and 

Europe—thanks mainly to reports about their work by Octave Chanute—this 

activity was not taken seriously. At the time of Langley’s fi rst attempted fl ight on 

October 7, 1903, there is no recorded evidence that Langley was even aware of 

the Wrights’ powered machine sitting on the sand dunes of Kill Devil Hills, and 

certainly no appreciation by Langley of the degree of aeronautical sophistication 

achieved by the Wrights. As it turned out, as was related in    Sec. 1.7 , Langley’s 

attempts at manned powered fl ight, fi rst on October 7 and again on December 8, 

resulted in total failure. In hindsight, the Wrights had nothing to fear from com-

petition with Langley. 

     Such was not the case in their competition with another aviation pioneer, 

Glenn H. Curtiss, beginning fi ve years later. In 1908—another milestone year 

for the Wrights, with their glorious fi rst public fl ights in France and the United 

States—Orville and Wilbur faced a serious challenge and competition from 

Curtiss, which was to lead to acrimony and a fl urry of lawsuits that left a smudge 

on the Wrights’ image and resulted in a general inhibition of the development 

of early aviation in the United States. By 1910 the name of Glenn Curtiss was 

as well known throughout the world as those of Orville and Wilbur Wright, and 

indeed Curtiss-built airplanes were more popular and easier to fl y than those 

produced by the Wrights. How did these circumstances arise? Who was Glenn 

Curtiss, and what was his relationship with the Wrights? What impact did Curtiss 

have on the early development of aviation, and how did his work compare and 

intermesh with that of Langley and that of the Wrights? The historical develop-

ment of aviation in the United States can be compared to a triangle, with the 

Wrights on one apex, Langley at another, and Curtiss at the third. This “aero-

nautical triangle” is shown in    Fig. 1.26 . What was the nature of this triangular 

relationship? These and other questions are addressed in this section. They make 

a fi tting conclusion to the overall early historical development of aeronautical 

engineering as portrayed in this chapter. 
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     Let us fi rst look at Glenn Curtiss, the man. Curtiss was born in Hammondsport, 

New York, on May 21, 1878. Hammondsport at that time was a small town 

(population less than 1000) bordering on Keuka Lake, one of the Finger Lakes 

in upstate New York. (Later Curtiss was to make good use of Keuka Lake for 

the development of amphibious aircraft—one of his hallmarks.) The son of a 

harness maker who died when Curtiss was fi ve years old, Curtiss was raised 

by his mother and grandmother. Their modest fi nancial support came from a 

B
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Wilbur (left) and Orville (right) Wright

Samuel P. Langley Glenn H. Curtiss

Figure 1.26 The “aeronautical triangle,” a relationship that dominated the early 

development of aeronautics in the United States during the period from 1886 to 1916.
(Source: Top: Library of Congress [LC-USZ62-65478]; Bottom Left, Library of Congress 
[LC-H261- 9495-A]; Bottom Right, Library of Congress [LC-B2- 4922-10].)
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small vineyard that grew in their front yard. His formal education ceased with 

the eighth grade, after which he moved to Rochester, where he went to work 

for Eastman Dry Plate and Film Company (later to become Kodak), stenciling 

numbers on the paper backing of fi lm. In 1900 he returned to Hammondsport, 

where he took over a bicycle repair shop (shades of the Wright brothers). At this 

time Glenn Curtiss began to show a passion that would consume him for his 

lifetime—a passion for speed. He became active in bicycle racing and quickly 

earned a reputation as a winner. In 1901 he incorporated an engine on his bi-

cycles and became an avid motorcycle racer. By 1902 his fame was spreading, 

and he was receiving numerous orders for motorcycles with engines of his own 

design. By 1903 Curtiss had established a motorcycle factory at Hammondsport, 

and he was designing and building the best (highest horsepower-to-weight ratio) 

engines available anywhere. In January 1904, at Ormond Beach, Florida, Curtiss 

established a new world’s speed record for a ground vehicle—67 mi/h over a 

10-mi straightaway—a record that was to stand for seven years. 

 Curtiss “backed into” aviation. In the summer of 1904 he received an 

order from Thomas Baldwin, a California balloonist, for a two-cylinder engine. 

Baldwin was developing a powered balloon—a dirigible. The Baldwin dirigi-

bles, with the highly successful Curtiss engines, soon became famous around the 

country. In 1906 Baldwin moved his manufacturing facilities to Hammondsport 

to be close to the source of his engines. A lifelong friendship and cooperation 

developed between Baldwin and Curtiss and provided Curtiss with his fi rst expe-

rience in aviation, as a pilot of some of Baldwin’s powered balloons. 

 In August 1906 Baldwin traveled to the Dayton Fair in Ohio for a week of 

dirigible fl ight demonstrations; he brought Curtiss along to personally maintain the 

engines. The Wright brothers also attended the fair—specifi cally to watch Thomas 

Baldwin perform. They even lent a hand in retrieving the dirigible when it strayed 

too far afi eld. This was the fi rst face-to-face encounter between Curtiss and the 

Wrights. During that week, Baldwin and Curtiss visited the Wrights at the brothers’ 

bicycle shop and entered into long discussions about powered fl ight. Recall from 

   Sec. 1.8  that the Wrights had discontinued fl ying one year earlier;  at the time of their 

meeting with Curtiss, Orville and Wilbur were actively trying to interest the United 

States, as well as England and France, in buying their airplane. The Wrights had 

become very secretive about their airplane and allowed no one to view it. Curtiss 

and Baldwin were no exceptions. However, that week in Dayton, the Wrights were 

relatively free with Curtiss, giving him information and technical suggestions about 

powered fl ight. Years later, these conversations became the crux of the Wrights’ 

claim that Curtiss had stolen some of their ideas and used them for his own gain. 

 This claim was probably not entirely unjustifi ed, for by that time Curtiss 

had a vested interest in powered fl ight; a few months earlier he had supplied 

Alexander Graham Bell with a 15-hp motor to be used in propeller experiments, 

looking toward eventual application to a manned, heavier-than-air, powered air-

craft. The connection between Bell and Curtiss is important. Bell, renowned as 

the inventor of the telephone, had an intense interest in powered fl ight. He was a 

close personal friend of Samuel Langley and, indeed, was present for Langley’s 
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successful unmanned  Aerodrome  fl ights in 1896. By the time Langley died in 

1906, Bell was actively carrying out kite experiments and was testing air pro-

pellers on a catamaran at his Nova Scotia coastal home. In the summer of 1907 

Bell formed the Aerial Experiment Association, a group of fi ve men whose of-

fi cially avowed purpose was simply “to get into the air.” The Aerial Experiment 

Association (AEA) consisted of Bell himself, Douglas McCurdy (son of Bell’s 

personal secretary, photographer, and very close family friend), Frederick W. 

Baldwin (a freshly graduated mechanical engineer from Toronto and close friend 

of McCurdy), Thomas E. Selfridge (an Army lieutenant with an extensive en-

gineering knowledge of aeronautics), and Glenn Curtiss. The importance of 

Curtiss to the AEA is attested to by the stipends that Bell paid to each member of 

the association: Curtiss was paid fi ve times more than the others. Bell had asked 

Curtiss to join the association because of Curtiss’s excellent engine design and 

superb mechanical ability. Curtiss was soon doing much more than just design-

ing engines. The plan of the AEA was to conduct intensive research and develop-

ment on powered fl ight and to build fi ve airplanes—one for each member. The 

fi rst aircraft, the  Red Wing,  was constructed by the AEA with Selfridge as the 

chief designer. On March 12, 1908, the  Red Wing  was fl own at Hammondsport 

for the fi rst time, with Baldwin at the controls. It covered a distance of 318 ft and 

was billed as “the fi rst public fl ight” in the United States. 

 Recall that the tremendous success of the Wright brothers from 1903 to 1905 

was not known by the general public, mainly because of indifference in the press 

as well as the Wrights’ growing tendency to be secretive about their airplane 

design until they could sell an airplane to the U.S. government. However, the 

Wrights’ growing apprehension about the publicized activities of the AEA is 

refl ected in a letter from Wilbur to the editor of the  Scientifi c American  after the 

fl ight of the  Red Wing . In this letter, Wilbur states, 

  In 1904 and 1905, we were fl ying every few days in a fi eld alongside the main wagon 

road and electric trolley line from Dayton to Springfi eld, and hundreds of travel-

ers and inhabitants saw the machine in fl ight. Anyone who wished could look. We 

merely did not advertise the fl ights in the newspapers.  

 On March 17, 1908, the second fl ight of the  Red Wing  resulted in a crash 

that severely damaged the aircraft. Work on the  Red Wing  was subsequently 

abandoned in lieu of a new design of the AEA, the  White Wing,  with Baldwin 

as the chief designer. Members of the AEA were acutely aware of the Wrights’ 

patent on wing warping for lateral control, and Bell was particularly sensitive to 

making certain that his association did not infringe upon this patent. Therefore, 

instead of using wing warping, the  White Wing  utilized triangular movable sur-

faces that extended beyond the wing tips of both wings of the biplane. Beginning 

on May 18, 1908, the  White Wing  successfully made a series of fl ights piloted 

by various members of the AEA. One of these fl ights, with Glenn Curtiss at the 

controls, was reported by Selfridge to the Associated Press as follows:  

G. H. Curtiss of the Curtiss Manufacturing Company made a fl ight of 339 yards in 

two jumps in Baldwin’s White Wing this afternoon at 6:47  pm . In the fi rst jump he 
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covered 205 yards then touched, rose immediately and fl ew 134 yards further when 

the fl ight ended on the edge of a ploughed fi eld. The machine was in perfect control 

at all times and was steered fi rst to the right and then to the left before landing. The 

339 yards was covered in 19 seconds or 37 miles per hour.

  Two days later, with an  inexperienced McCurdy at the controls, the  White Wing  

crashed and never fl ew again. 

 However, by this time, the Wright brothers’ apprehension about the AEA was 

growing into bitterness toward its members. Wilbur and Orville genuinely felt 

that the AEA had pirated their ideas and was going to use them for commercial 

gain. For example, on June 7, 1908, Orville wrote to Wilbur (who was in France 

preparing for his spectacular fi rst public fl ights that summer at Le Mans—see    Sec. 

1.8 ), “I see by one of the papers that the Bell outfi t is offering Red Wings for sale 

at $5,000 each. They have some nerve.” On June 28 he related to Wilbur, “Curtiss 

et al. are using our patents, I understand, and are now offering machines for sale 

at $5,000 each, according to the  Scientifi c American . They have got good cheek.” 

 The strained relations between the Wrights and the AEA—particularly 

Curtiss—were exacerbated on July 4, 1908, when the AEA achieved its crowning 

success. A new airplane had been constructed—the  June Bug —with Glenn Curtiss 

as the chief designer. In the previous year the  Scientifi c American  had offered a 

trophy, through the Aero Club of America, worth more than $3000 to the fi rst avia-

tor making a straight fl ight of 1 km (3281 ft). On Independence Day in 1908, 

at Hammondsport, New York, Glenn Curtiss at the controls of his  June Bug  was 

ready for an attempt at the trophy. A delegation of 22 members of the Aero Club 

was present, and the offi cial starter was none other than Charles Manly, Langley’s 

dedicated assistant and pilot of the ill-fated  Aerodrome  (see    Sec. 1.7  and    Fig. 1.26 ). 

Late in the day, at 7:30  pm , Curtiss took off and in 1 min 40 s had covered a distance 

of more than 1 mi, easily winning the  Scientifi c American  prize. A  photograph of 

the  June Bug  during this historic fl ight is shown in    Fig. 1.27 . 

     The Wright brothers could have easily won the  Scientifi c American  prize 

long before Curtiss; they simply chose not to. Indeed, the publisher of the 

 Scientifi c American,  Charles A. Munn, wrote to Orville on June 4, inviting him 

to make the fi rst attempt at the trophy, offering to delay Curtiss’s request for an 

attempt. On June 30, the Wrights responded negatively; they were too involved 

with preparations for their upcoming fl ight trials in France and at Fort Myer 

in the United States. However, Curtiss’s success galvanized the Wrights’ op-

position. Remembering their earlier conversations with Curtiss in 1906, Orville 

wrote to Wilbur on July 19, 

  I had been thinking of writing to Curtiss. I also intended to call attention of the  Sci-
entifi c American  to the fact that the Curtiss machine was a poor copy of ours; that we 

had furnished them the information as to how our older machines were constructed, 

and that they had followed this construction very closely, but have failed to mention 

the fact in any of their writings.  

 Curtiss’s publicity in July was totally eclipsed by the stunning success of 

Wilbur during his public fl ights in France beginning August 8, 1908, and by 
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Orville’s Army trials at Fort Myer beginning on September 3, 1908. During the 

trials at Fort Myer, the relationship between the Wrights and the AEA took an 

ironic twist. One member of the evaluation board assigned by the Army to ob-

serve Orville’s fl ights was Lt. Thomas Selfridge. Selfridge had been offi cially 

detailed to the AEA by the Army for a year and was now back at his duties of 

being the Army’s main aeronautical expert. As part of the offi cial evaluation, 

Orville was required to take Selfridge on a fl ight as a passenger. During this 

fl ight, on September 17, one propeller blade cracked and changed its shape, thus 

losing thrust. This imbalanced the second propeller, which cut a control cable to 

the tail. The cable subsequently wrapped around the propeller and snapped it off. 

The Wright type A went out of control and crashed. Selfridge was killed, and 

Orville was severely injured; he was in the hospital for          1    1–
2
          months. For the rest of 

his life, Orville would walk with a limp as a result of this accident. Badly shaken 

by Selfridge’s death, and somewhat overtaken by the rapid growth of aviation 

after the events of 1908, the Aerial Experiment Association dissolved itself on 

March 31, 1909. In the written words of Alexander Graham Bell, “The A.E.A. 

is now a thing of the past. It has made its mark upon the history of aviation and 

 its work will live .” 

 After this, Glenn Curtiss struck out in the aviation world on his own. Forming 

an aircraft factory at Hammondsport, Curtiss designed and built a new airplane, 

improved over the  June Bug  and named the  Golden Flyer . In August 1909 a 

massive air show was held in Reims, France, attracting huge crowds and the 

Figure 1.27 Glenn Curtiss fl ying the June Bug on July 4, 1908, on his way to the Scientifi c 
American prize for the fi rst public fl ight of greater than 1 km.
(Source: Library of Congress [LC-USZ62-59025].)
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crown princes of Europe. For the fi rst time in history, the Gordon Bennett trophy 

was offered for the fastest fl ight. Glenn Curtiss won this trophy with his  Golden 
Flyer,  averaging a speed of 75.7 km/h (47.09 mi/h) over a 20-km course and de-

feating a number of pilots fl ying the Wrights’ airplanes. This launched Curtiss on 

a meteoric career as a daredevil pilot and a successful airplane manufacturer. His 

motorcycle factory at Hammondsport was converted entirely to the manufacture 

of airplanes. His airplanes were popular with other pilots of that day because 

they were statically stable and hence easier and safer to fl y than the Wrights’ 

airplanes, which had been intentionally designed by the Wright brothers to be 

statically unstable (see Ch. 7). By 1910 aviation circles and the general public 

held Curtiss and the Wrights in essentially equal esteem. At the lower right of 

   Fig. 1.26  is a photograph of Curtiss at this time; the propeller ornament in his 

cap was a good luck charm that he took on his fl ights. By 1911 a Curtiss airplane 

had taken off from and landed on a ship. Also in that year, Curtiss developed the 

fi rst successful seaplanes and forged a lasting relationship with the U.S. Navy. 

In June 1911 the Aero Club of America issued its fi rst offi cial pilot’s license to 

Curtiss in view of the fact that he had made the fi rst public fl ight in the United 

States—an honor that otherwise would have gone to the Wrights. 

 In September 1909 the Wright brothers fi led suit against Curtiss for patent 

infringements. They argued that their wing warping patent of 1906, liberally 

interpreted, covered all forms of lateral control, including the ailerons used by 

Curtiss. This triggered fi ve years of intensive legal maneuvering, which dissi-

pated much of the energies of all the parties. Curtiss was not alone in this re-

gard. The Wrights brought suit against a number of fl edgling airplane designers 

 during this period, both in the United States and in Europe. Such litigation con-

sumed Wilbur’s attention, in particular, and effectively removed him from being 

a productive worker toward technical aeronautical improvements. It is generally 

agreed by aviation historians that this was not the Wrights’ fi nest hour. Their 

legal actions not only hurt their own design and manufacturing efforts but also 

effectively discouraged the early development of aeronautics by others, particu-

larly in the United States. (It is quite clear that when World War I began in 

1914, the United States—the birthplace of aviation—was far behind Europe in 

aviation technology.) Finally, in January 1914 the courts ruled in favor of the 

Wrights, and Curtiss was forced to pay royalties to the Wright family. (By this 

time Wilbur was dead, having succumbed to typhoid fever in 1912.) 

 In defense of the Wright brothers, their actions against Curtiss grew from a 

genuine belief on their part that Curtiss had wronged them and had consciously 

stolen their ideas, which Curtiss had subsequently parlayed into massive eco-

nomic gains. This went strongly against the grain of the Wrights’ staunchly ethi-

cal upbringing. In contrast, Curtiss bent over backward to avoid infringing on the 

letter of the Wrights’ patent, and there is much evidence that Curtiss consistently 

tried to mend relations with the Wrights. It is this author’s opinion that both sides 

became entangled in a complicated course of events that followed those heady 

days after 1908, when aviation burst on the world scene, and that neither Curtiss 

nor the Wrights should be totally faulted for their actions. These events simply 
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go down in history as a less than glorious, but nevertheless important, chapter in 

the early development of aviation. 

 An important postscript should be added here regarding the triangular re-

lationship between Langley, the Wrights, and Curtiss, as shown in    Fig. 1.26 . 

   Secs. 1.7  and    1.8  have already shown the relationship between Langley and the 

Wrights and the circumstances leading up to the race for the fi rst fl ight in 1903. 

This constitutes side A in    Fig. 1.26 . In this section we have seen the strong 

connection between Curtiss and the work of Langley, via Alexander Graham 

Bell—a close friend and follower of Langley and creator of the Aerial Experiment 

Association, which gave Curtiss a start in aviation. We have even noted that 

Charles Manly, Langley’s assistant, was the offi cial starter for Curtiss’s suc-

cessful competition for the  Scientifi c American  trophy. Such relationships form 

side B of the triangle in    Fig. 1.26 . Finally, we have seen the relationship, albeit 

somewhat acrimonious, between the Wrights and Curtiss, which forms side C in 

   Fig. 1.26 . 

 In 1914 an event occurred that simultaneously involved all three sides of the 

triangle in    Fig. 1.26 . When the Langley  Aerodrome  failed for the second time in 

1903 (see    Fig. 1.21 ), the wreckage was simply stored away in an unused room 

in the back of the Smithsonian Institution. When Langley died in 1906, he was 

replaced as secretary of the Smithsonian by Dr. Charles D. Walcott. Over the en-

suing years, Secretary Walcott felt that the Langley  Aerodrome  should be given 

a third chance. Finally, in 1914 the Smithsonian awarded a grant of $2000 for 

the repair and fl ight of the Langley  Aerodrome  to none other than Glenn Curtiss. 

The  Aerodrome  was shipped to Curtiss’s factory in Hammondsport; there not 

only was it repaired, but also 93 separate technical modifi cations were made, 

aerodynamically, structurally, and to the engine. For help during this restoration 

and modifi cation, Curtiss hired Charles Manly. Curtiss added pontoons to the 

Langley  Aerodrome  and on May 28, 1914, personally fl ew the modifi ed aircraft 

for a distance of 150 ft over Keuka Lake.    Figure 1.28  shows a photograph of 

the Langley Aerodrome in graceful fl ight over the waters of the lake. Later the 

 Aerodrome  was shipped back to the Smithsonian, where it was carefully restored 

to its original confi guration and in 1918 was placed on display in the old Arts and 

Industries Building. Underneath the  Aerodrome  was placed a plaque reading, 

“Original Langley fl ying machine, 1903. The fi rst man-carrying aeroplane in the 

history of the world capable of sustained free fl ight.” The plaque did  not  mention 

that the  Aerodrome  demonstrated its sustained fl ight capability only after the 

93 modifi cations made by Curtiss in 1914. It is no surprise that Orville Wright 

was deeply upset by this state of affairs, and this is the principal reason why the 

original 1903  Wright Flyer  was not given to the Smithsonian until 1948, the year 

of Orville’s death. Instead, from 1928 to 1948, the  Flyer  resided in the Science 

Museum in London. 

     This section ends with two ironies. In 1915 Orville sold the Wright 

Aeronautical Corporation to a group of New York businesspeople. During 

the 1920s this corporation became a losing competitor in aviation. Finally, on 

June 26, 1929, in a New York offi ce, the Wright Aeronautical Corporation was 
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offi cially merged with the successful Curtiss Aeroplane and Motor Corporation, 

forming the Curtiss-Wright Corporation. Thus, ironically, the names of Curtiss 

and Wright fi nally came together after all those earlier turbulent years. The 

Curtiss-Wright Corporation went on to produce numerous famous aircraft, per-

haps the most notable being the P-40 of World War II fame. Unfortunately the 

company could not survive the lean years immediately after World War II, and 

its aircraft development and manufacturing ceased in 1948. This leads to the 

second irony. Although the very foundations of powered fl ight rest on the work 

of Orville and Wilbur Wright and Glenn Curtiss, there is not an airplane either 

produced or in standard operation today that bears the name of either Wright or 

Curtiss.   

   1.10  THE PROBLEM OF PROPULSION 
  During the 19th century numerous visionaries predicted that manned heavier-

than-air fl ight was inevitable once a suitable power plant could be developed 

to lift the aircraft off the ground. It was just a matter of developing an engine 

having enough horsepower while at the same time not weighing too much—that 

is, an engine with a high horsepower-to-weight ratio. This indeed was the main 

stumbling block to such people as Stringfellow, Du Temple, and Mozhaiski: 

The steam engine simply did not fi t the bill. Then, in 1860, the Frenchman Jean 

Joseph Etienne Lenoir built the fi rst practical gas engine. It was a single-cylinder 

engine, burning ordinary street-lighting gas for fuel. By 1865, 400 of Lenoir’s 

Figure 1.28 The modifi ed Langley Aerodrome in fl ight over Keuka Lake in 1914.
(Source: © Science and Society/SuperStock.)
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engines were doing odd jobs around Paris. Further improvements in such internal 

combustion engines came rapidly. In 1876 N. A. Otto and E. Langen of Germany 

developed the four-cycle engine (the ancestor of all modern automobile engines), 

which also used gas as a fuel. This led to the simultaneous but separate devel-

opment in 1885 of the four-cycle gasoline-burning engine by Gottlieb Daimler 

and Karl Benz, both in Germany. Both Benz and Daimler put their engines in 

motorcars, and the automobile industry was quickly born. After these “horseless 

carriages” were given legal freedom of the roads in 1896 in France and Britain, 

the automobile industry expanded rapidly. Later this industry was to provide 

much of the technology and many of the trained mechanics for the future devel-

opment of aviation. 

 This development of the gasoline-fueled internal combustion engine was a 

godsend to aeronautics, which was beginning to gain momentum in the 1890s. 

In the fi nal analysis, it was the Wright brothers’ custom-designed and custom-

constructed gasoline engine that was responsible for lifting their  Flyer I  off the 

sands of Kill Devil Hills that fateful day in December 1903. A proper aeronauti-

cal propulsion device had fi nally been found. 

 It is interesting to note that the relationship between the automobile and the 

aircraft industries persists to the present day. For example, in June 1926 Ford in-

troduced a very successful three-engine, high-wing transport airplane—the Ford 

4-AT Trimotor. During World War II virtually all the major  automobile com-

panies built airplane engines and airframes. General Motors maintained an air-

plane engine division for many decades—the Allison Division in Indianapolis, 

Indiana—noted for its turboprop designs. Today Allison is owned by Rolls-

Royce and constitutes its North American branch. More recently, automobile 

designers are turning to aerodynamic streamlining and wind tunnel testing to re-

duce drag, hence increasing fuel economy. Thus the parallel development of the 

airplane and the automobile over the past 100 years has been mutually  benefi cial. 

 It can be argued that propulsion has paced every major advancement in the 

speed of airplanes. Certainly the advent of the gasoline engine opened the doors 

to the fi rst successful fl ight. Then, as the power of these engines increased from 

the 12-hp, Wrights’-designed engine of 1903 to the 2200-hp, radial engines of 

1945, airplane speeds correspondingly increased from 28 to more than 500 mi/h. 

Finally, jet and rocket engines today provide enough thrust to propel aircraft at 

thousands of miles per hour—many times the speed of sound. So, throughout the 

history of manned fl ight, propulsion has been the key that has opened the doors 

to fl ying faster and higher.   

   1.11  FASTER AND HIGHER 
  The development of aeronautics in general, and aeronautical engineering in par-

ticular, was exponential after the Wrights’ major public demonstrations in 1908, 

and has continued to be so to the present day. It is beyond the scope of this book 

to go into all the details. However, marbled into the engineering text in Chs. 2 

through 10 are various historical highlights of technical importance. It is hoped 
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that the following parallel presentations of the fundamentals of aerospace engi-

neering and some of their historical origins will be synergistic and that, in com-

bination with the present chapter, they will give the reader a certain appreciation 

for the heritage of this profession. 

 As a fi nal note, the driving philosophy of many advancements in aeronautics 

since 1903 has been to fl y  faster and higher . This is dramatically evident from 

   Fig. 1.29 , which gives the fl ight speeds for typical aircraft as a function of chron-

ological time. Note the continued push for increased speed over the years and the 

particular increase in recent years made possible by the jet engine. Singled out 

in    Fig. 1.29  are the winners of the Schneider Cup races between 1913 and 1931 

(with a moratorium during World War I). The Schneider Cup races were started 
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in 1913 by Jacques Schneider of France as a stimulus to the development of 

high-speed fl oat planes. They prompted some early but advanced development 

of high-speed aircraft. The winners are shown by the dashed line in    Fig. 1.29 , 

for comparison with standard aircraft of the day. Indeed, the winner of the last 

Schneider race in 1931 was the  Supermarine S.6B,  a forerunner of the famous 

Spitfi re of World War II. Of course, today the maximum speed of fl ight has been 

pushed to the extreme value of 36,000 ft/s, which is the escape velocity from the 

earth, by the Apollo lunar spacecraft. 

     Note that the almost exponential increase in speed that occurred from 1903 

to 1970 has not continued in recent years. In fact, the maximum speed of modern 

military fi ghters has actually been decreasing since 1970, as shown in    Fig. 1.29 . 

This is not due to a degradation in technology, but rather is a refl ection of the 

fact that other airplane performance parameters (not speed) are dictating the 

design. For example, air-to-air combat between opposing fi ghter airplanes ca-

pable of high supersonic speeds quickly degenerates to fl ying at subsonic or 

near-sonic speeds because of enhanced maneuverability at these lower speeds. 

Today fi ghter airplanes are being optimized for this lower-speed combat arena. 

On the commercial side, most transport airplanes are subsonic, even the newest 

(at the time of this writing) such as the Boeing 787. Only one type of supersonic 

transport, the Anglo–French Concorde, ever provided extensive service. The 

Concorde was designed with 1960s technology and carried a relatively small 

number of passengers. Hence, it was not profi table. The Concorde was with-

drawn from service in 2003. At the time of this writing, there is no commitment 

from any country to build a second- generation supersonic transport; however, in 

the United States, NASA has been carrying out an extensive research program to 

develop the basic technology for an economical high-speed supersonic transport. 

Even if an  economically viable supersonic transport could be designed, its speed 

would be limited to about Mach 2.2 or less. Above this Mach number, aerody-

namic heating becomes severe enough that titanium rather than aluminum would 

have to be used for the aircraft skin and for some internal structure. Titanium is 

expensive and hard to machine; it is not a preferred choice for a new supersonic 

transport. For these reasons, it is unlikely that the speed curve in    Fig. 1.30  will 

be pushed up by a new supersonic transport. 

 As a companion to speed, the maximum altitudes of typical manned aircraft 

are shown in    Fig. 1.30  as a function of chronological time. The same push to 

higher values in the decades between 1903 and 1970 is evident; so far the record 

is the moon in 1969. However, the same tendency to plateau after 1970, as in the 

speed data, can be seen in the altitude data in    Fig. 1.31 . 

     Hence the philosophy of  faster and higher  that has driven aeronautics 

throughout most of the 20th century is now being mitigated by practical con-

straints. To this we must add  safer,   cheaper,   more reliable,   quieter , and  more en-
vironmentally clean . Nevertheless, the eventual prospect of hypersonic aircraft 

(with Mach number greater than 5) in the 21st century is intriguing and exciting. 

Hypersonic airplanes may well be a new frontier in aeronautics in the future 

century. See Ch. 10 for a discussion of hypersonic aircraft. 
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 In this chapter we have only been able to briefl y note several important 

events and people in the historical development of aeronautics. There are many 

other places, people, and accomplishments that we simply could not mention in 

the interest of brevity. Therefore, the reader is urged to consult the short bibliog-

raphy at the end of this chapter for additional modern reading about the history 

of aeronautics.   

   1.12  SUMMARY AND REVIEW 
  The next time you see an airplane fl ying overhead, pause and refl ect for a moment. 

It is a fl ying machine that synergistically embodies the laws of physics, designed 

by a person or people who know how to apply these laws using proven engineering 

methods to obtain a vehicle that can perform a specifi ed mission. For the Wright 

brothers in 1903 (   Fig. 1.2 ), that mission was simply to get off the ground and fl y 

through the air in a controlled fashion for a sustained period of time. For Charles 

Lindbergh’s  Spirit of St. Louis  in 1927 (   Fig. 1.31 ), that mission was to fl y safely 

across the Atlantic Ocean from New York to Paris on one load of fuel. For the 

Douglas DC-3 in 1935 (   Fig. 1.32 ), that mission was to fl y more passengers safely 

and comfortably at a faster speed and lower cost than any existing airliner of that 

time, thus revolutionizing air travel for the public in the 1930s. For the Lockheed 

F-104 in the 1950s (   Fig. 1.33 ), the mission was to be the fi rst supersonic jet fi ghter 

to cruise at Mach 2 (twice the speed of sound). So it will most likely continue. 
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Figure 1.31 Charles Lindbergh’s Spirit of St. Louis (1927), hanging in the National Air and 

Space Museum.
(Source: Courtesy of John Anderson.)

Figure 1.32 The Douglas DC-3 (1935), hanging in the National Air and Space Museum.
(Source: Courtesy of John Anderson.)
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             The intellectual understanding of how and why these (and indeed all) air-

planes fl y, and to use this understanding to design new fl ight vehicles, is the 

job of aerospace engineering. Since the 1950s, this job has extended to space 

vehicles as well. You are about to embark on a study of aerospace engineering, 

and as you progress through the pages of this book, and as your understanding of 

the science and technology of fl ight gradually increases and matures, let yourself 

begin to feel the joy of this undertaking. 

 Finally, as you are watching that airplane fl ying overhead, remember from 

the history discussed in this chapter that airplane is the heritage of centuries 

of effort to understand the physics of fl ight and to design fl ying machines. 

This chapter has presented a short historical sketch of some of the heritage 

underlying modern aerospace engineering. The major stepping stones to con-

trolled, heavier-than-air, powered fl ight with a human pilot are summarized 

as follows: 

  1.   Leonardo da Vinci conceives the ornithopter and leaves more than 

500 sketches of his design, drawn from 1486 to 1490. However, this 

approach to fl ight proves to be unsuccessful over the ensuing centuries.  

  2.   The Montgolfi er hot-air balloon fl oats over Paris on November 21, 1783. 

For the fi rst time in history, a human being is lifted and carried through 

the air for a sustained period.  

Figure 1.33 The Lockheed F-104 (1956), hanging near the second-fl oor balcony at the 

National Air and Space Museum.
(Source: Courtesy of John Anderson.)
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  3.   A red-letter date in the progress of aeronautics is 1799. In that year Sir 

George Cayley in England engraves on a silver disk his concept of a 

fuselage, a fi xed wing, and horizontal and vertical tails. He is the fi rst 

person to propose separate mechanisms for the generation of lift and 

propulsion. He is the grandparent of the concept of the modern airplane.  

  4.   The fi rst two powered hops in history are achieved by the Frenchman Felix 

Du Temple in 1874 and the Russian Alexander F. Mozhaiski in 1884. 

However, they do not represent truly controlled, sustained fl ight.  

  5.   Otto Lilienthal designs the fi rst fully successful gliders in history. During 

the period from 1891 to 1896, he makes more than 2000 successful glider 

fl ights. If he had not been killed in a glider crash in 1896, Lilienthal might 

have achieved powered fl ight before the Wright brothers.  

  6.   Samuel Pierpont Langley, secretary of the Smithsonian Institution, 

achieves the fi rst sustained heavier-than-air,  unmanned,  powered fl ight in 

history with his small-scale  Aerodrome  in 1896. However, his attempts at 

manned fl ight are unsuccessful, the last one failing on December 8, 1903—

just nine days before the Wright brothers’ stunning success.  

  7.   Another red-letter date in the history of aeronautics, indeed in the history 

of humanity, is December 17, 1903. On that day, at Kill Devil Hills in 

North Carolina, Orville and Wilbur Wright achieve the fi rst controlled, 

sustained, powered, heavier-than-air, manned fl ight in history. This fl ight is 

to revolutionize life during the 20th century.  

  8.   The development of aeronautics takes off exponentially after the Wright 

brothers’ public demonstrations in Europe and the United States in 1908. 

The ongoing work of Glenn Curtiss and the Wrights and the continued 

infl uence of Langley’s early work form an important aeronautical triangle 

in the development of aeronautics before World War I.    

 Throughout the remainder of this book, various historical notes will appear, 

continuing to describe the heritage of aerospace engineering as its technology 

advanced during the 20th and 21st centuries. It is hoped that such historical notes 

will add a new dimension to your developing understanding of this technology.    
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     2  C H A P T E R 

 Fundamental Thoughts   

   Engineering:  “The application of scientifi c principles to practical ends.” From the 

Latin word “ ingenium, ” meaning inborn talent and skill, ingenious. 

  The American Heritage Dictionary 
of the English Language,  1969    

   T
 he language of engineering and physical science is a logical collection 

and assimilation of symbols, defi nitions, formulas, and concepts. To the 

average person in the street, this language is frequently esoteric and in-

comprehensible. In fact, when you become a practicing engineer, do not expect 

to converse with your spouse across the dinner table about your great technical 

accomplishments of the day. Chances are that he or she will not understand what 

you are talking about (unless your spouse happens to work in a related engineer-

ing fi eld). The language is intended to convey physical thoughts. It is our way 

of describing the phenomena of nature as observed in the world around us. It is 

a language that has evolved over at least 2500 years. For example, in 400  bc  the 

Greek philosopher Democritus introduced the word and concept of the  atom,  the 

smallest bit of matter that could not be cut. The purpose of this chapter is to in-

troduce some of the everyday language used by aerospace engineers; in turn, this 

language will be extended and applied throughout the remainder of this book. 

  Throughout this book, you will be provided with road maps to guide you 

through the thoughts and intellectual development that constitute this introduc-

tion to fl ight. Please use these road maps frequently. They will tell you where 
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you are in our discussions, where you have been, and where you are going. For 

example,    Fig. 2.1  is an overall road map for the complete book. Examining this 

road map, we can obtain an overall perspective for our introduction to fl ight as 

presented in this book. First we start out with some necessary preliminaries—

some fundamental thoughts that are used throughout the remainder of the book. 

This is the subject of this chapter. Because fl ight vehicles spend all, or at least 

some of, their time operating in the atmosphere, next we have to consider the 

properties of the atmosphere, as discussed in Ch. 3. (Airplanes spend all their 

time in the atmosphere. Space vehicles have to ascend through the atmosphere 

to get out to space; and if they carry humans or other payloads that we wish to 

recover on earth, space vehicles have to descend—at very high speeds—back 

through the atmosphere.) Now imagine a vehicle fl ying through the atmosphere. 

One of the fi rst thoughts that comes to mind is that there is a rush of air over 

 The purpose of this chapter is to help you  get going . 

For many of us, when we have a job to do or a goal 

to accomplish, the most important thing is simply to 

get started—to get going—and hopefully to get going 

in the right direction. This chapter deals with some 

fundamental thoughts to help you start learning about 

airplanes and space vehicles. 

 For example, we have to start with some basic 

defi nitions that are absolutely necessary for us to 

speak the same language when we describe, discuss, 

analyze, and design airplanes and space vehicles. 

When we talk about the  pressure  in the airfl ow around 

a Boeing 777 in fl ight, do we know what  pressure  

means? Really? If we talk about the airfl ow  velocity  

around the airplane, do we really know what we are 

talking about? Defi nitions are important, so this chap-

ter pushes defi nitions. 

 Another example: When you walk down the 

sidewalk in the face of a 40 mph gale, the wind is 

pushing you around—exerting an aerodynamic force 

on you. Every vehicle that moves through the air 

feels an aerodynamic force.  How  does the wind reach 

out and grab you?  How  does nature exert an aerody-

namic force on a Boeing 747 cruising at 500 miles 

per hour at an altitude of 35,000 feet? In this chapter 

we examine the sources of aerodynamic force and an-

swer the question  how?  

Dimensions  and  units —what dry and dull sub-

jects! Yet they are subjects of the utmost importance 

in engineering and science. You have to get them 

right. In December 1999 the Mars Polar Lander was 

lost during entry into the Martian atmosphere be-

cause of a miscommunication between the contrac-

tor in Denver and the Jet Propulsion Laboratory in 

Pasadena involving feet and meters, costing the space 

program a loss of dollars and valuable scientifi c data 

(not to mention considerable embarrassment and 

bad publicity). Dimensions and units are fundamen-

tal considerations and are discussed at length in this 

chapter. 

 Airplanes and space vehicles: Some readers are 

enthusiasts; they recognize many of these vehicles 

by sight and even know some of their performance 

characteristics. Other readers are not so sure about 

what they are seeing and are not so familiar with their 

characteristics. Just to put all readers on the same 

footing (on the same page, so to speak), this chapter 

ends with a brief description of the  anatomy  of air-

planes and space vehicles—identifying various parts 

and features of these vehicles. 

 This is how we get going—looking at some of 

the most fundamental thoughts that will be with us 

for the remainder of the book. Read on, and enjoy. 

 PREVIEW BOX 
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the vehicle. This rush of air generates a force—an aerodynamic force—on the 

vehicle. A study of  aerodynamics  is the subject of Chs. 4 and 5. The vehicle 

itself feels not only this aerodynamic force but also the force of gravity—its 

own weight. If the vehicle is powered in some fashion, it will also feel the force 

(called  thrust ) from the power plant. The vehicle moves under the infl uence of 

these forces. The study of the motion of the fl ight vehicle is labeled  fl ight dy-
namics,  which is further divided into considerations of airplane performance 

(Ch. 6) and stability and control (Ch. 7). In contrast, a space vehicle moving 

in space will, for all practical purposes, feel only the force of gravity (except 

when some on-board propulsion device is turned on for trajectory adjustment). 

The motion of a vehicle in space due to gravitational force is the subject of 

Ch. 8. Considering again a fl ight vehicle moving through the atmosphere, there 

has to be something to push it along—something to keep it going. This is the 

function of the engine, which generates thrust to keep the vehicle going. Space 

vehicles also need engines, to accelerate them into orbit or deep space and for 

midcourse trajectory corrections. Engines and how they generate thrust repre-

sent the discipline of  propulsion,  the subject of Ch. 9. Additionally, as the fl ight 

Flight vehicles — Some
main disciplines and considerations

Some preliminaries

Understanding the
atmosphere

Aerodynamics

Flight mechanics

Space flight

Propulsion

Structures

Advanced vehicle
concepts (hypersonic
vehicles)
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Stability and control

Chapter 2

Chapter 3

Chapters 4 and 5

Chapter 6
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Chapter 8

Chapter 9

Web pageWW

Chapter 10

  

  Figure 2.1  Road map for the book. 
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vehicle moves and responds to the forces acting on it, the physical structure of 

the vehicle is under a lot of stress and strain. You want this structure to be strong 

enough to not fall apart under these stresses and strains, but at the same time not 

to be so heavy as to render the fl ight vehicle ineffi cient. We address some aspects 

of  fl ight structures  in a special section of the web page for this book. All these 

major disciplines—aerodynamics, fl ight dynamics, propulsion, and structures—

are integrated into the  design  of a fl ight vehicle. Such design is indeed the fi nal 

objective of most aerospace research and development. Throughout this book, at 

appropriate places, we address pertinent aspects of vehicle design. We highlight 

these aspects by placing them in accented  design boxes.  You cannot miss them in 

your reading. Finally, looking toward the future, we discuss some advanced ve-

hicle concepts in Ch. 10. All the previous discussion is diagrammed in    Fig. 2.1 . 

This is the road map for our excursions throughout this book. From time to time, 

as you proceed through this book, fl ip back to    Fig. 2.1  for a reminder of how the 

material you are reading fi ts into the whole scheme. 

  Returning to our considerations at hand, we look at the road map for this 

chapter in    Fig. 2.2 . We treat two avenues of thought in this chapter. As shown 

in the left column of    Fig. 2.2 , we examine some basic ideas and defi nitions 

that are rooted in physics. These include defi nitions of the physical quantities 

of a fl owing gas—that is, the language we use to talk about aerodynamics and 

propulsion. We discuss the fundamental sources of aerodynamic force—how 

At the beginning: Some fundamental thoughts

Some physics

Physical quantities
of a flowing gas
    1. Pressure
    2. Density
    3. TemperatureTT
    4. Flow velocity
    5. Streamlines

Source of 
aerodynamic force

Equation of state

Specific volume

Units

Some vehicle aspects

Anatomy of
the airplane

Anatomy of a
space vehicle

  

  Figure 2.2  Road map for Chapter 2. 
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aerodynamic force is exerted on a vehicle. We look at some equations that 

relate the physical quantities, and we also discuss the mundane (but essen-

tial) consideration of units for these physical quantities. We then move to the 

right column in    Fig. 2.2  and discuss some fundamental aspects of fl ight ve-

hicles themselves, taking a look at the anatomy of typical airplanes and space 

vehicles.  

   2.1   FUNDAMENTAL PHYSICAL QUANTITIES 
OF A FLOWING GAS 

  As you read through this book, you will soon begin to appreciate that the fl ow 

of air over the surface of an airplane is the basic source of the lifting or sustain-

ing force that allows a heavier-than-air machine to fl y. In fact, the shape of an 

airplane is designed to encourage the airfl ow over the surface to produce a lifting 

force in the most effi cient manner possible. (You will also begin to appreciate 

that the design of an airplane is in reality a  compromise  between many different 

requirements, the production of aerodynamic lift being just one.) The science 

that deals with the fl ow of air (or, for that matter, the fl ow of any gas) is called 

 aerodynamics,  and the person who practices this science is called an  aerody-
namicist . The study of the fl ow of gases is important in many other aerospace 

applications: the design of rocket and jet engines, propellers, vehicles entering 

planetary atmospheres from space, wind tunnels, and rocket and projectile con-

fi gurations. Even the motion of the global atmosphere and the fl ow of effl uents 

through smokestacks fall within the realm of aerodynamics. The applications are 

almost limitless. 

 Four fundamental quantities in the language of aerodynamics are pressure, 

density, temperature, and velocity. Let us look at each one. 

   2.1.1  Pressure 

 When you hold your hand outside the window of a moving automobile, with 

your palm perpendicular to the incoming airstream, you can feel the air pressure 

exerting a force and tending to push your hand rearward in the direction of the 

airfl ow. The  force per unit area  on your palm is defi ned as the  pressure . The 

pressure exists basically because air molecules (oxygen and nitrogen molecules) 

are striking the surface of your hand and transferring some of their  momentum  to 

the surface. More precisely,

  Pressure is the  normal  force per unit area exerted on a surface due to the time rate of 

change of momentum of the gas molecules impacting on that surface.   

 It is important to note that even though pressure is defi ned as force per unit 

area (for example, newtons per square meter or pounds per square foot), you do 

not need a surface that is actually 1 m 2  or 1 ft 2  to talk about pressure. In fact, 

pressure is usually defi ned at a point in the gas or a point on a surface and can 

vary from one point to another. We can use the language of differential calculus 
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to see this more clearly. Referring to    Fig. 2.3 , we consider a point  B  in a volume 

of gas. Let

  

dA B
dF

=
=

An incremental area around 
Force on one siss de off due to pressuredA

             

Then the pressure  p  at point  B  in the gas is defi ned as

  p
dF

dA
dA= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ →lim   0  (2.1)             

   Equation (2.1)  says that, in reality, the pressure  p  is the limiting form of the force 

per unit area where the area of interest has shrunk to zero around point  B . In this 

formalism, it is easy to see that  p  is a point property and can have a different 

value from one point to another in the gas. 

  Pressure is one of the most fundamental and important variables in aerody-

namics, as we will soon see. Common units of pressure are newtons per square 

meter, dynes per square centimeter, pounds per square foot, and atmospheres. 

Abbreviations for these quantities are N/m 2 , dyn/cm 2 , lb/ft 2 , and atm, respec-

tively. See App. C for a list of common abbreviations for physical units.  

   2.1.2  Density 
   The  density  of a substance (including a gas) is the mass of that substance per unit 

volume.  

Density will be designated by the symbol  ρ . For example, consider air in a 

room that has a volume of 250 m 3 . If the mass of the air in the room is 306.25 kg 

and is evenly distributed throughout the space, then  ρ  = 306.25 kg/250 m 3  = 

1.225 kg/m 3  and is the same at every point in the room. 

  

  Figure 2.3  Defi nition of pressure. 
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 Analogous to the previous discussion of pressure, the defi nition of density 

does not require an actual volume of 1 m 3  or 1 ft 3 . Rather,  ρ  is a point property 

and can be defi ned as follows. Referring to    Fig. 2.4 , we consider point  B  inside 

a volume of gas. Let

  

B

dm

=
=

Elemental volume around point

Mass of gaf s ss inside dv
             

Then  ρ  at point  B  is

  ρ = ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ →lim

dm

dv
dv 0            (2.2)    

 Therefore,  ρ  is the mass per unit volume where the volume of interest has shrunk 

to zero around point  B . The value of  ρ  can vary from point to point in the gas. 

Common abbreviated units of density are kg/m 3 , slug/ft 3 , g/cm 3 , and lb  m  /ft 
3 . 

(The pound mass, lb  m  , is discussed in    Sec. 2.4 .)   

   2.1.3  Temperature 

 Consider a gas as a collection of molecules and atoms. These particles are in 

constant motion, moving through space and occasionally colliding with one 

another. Because each particle has motion, it also has kinetic energy. If we watch 

the motion of a single particle over a long time during which it experiences 

numerous collisions with its neighboring particles, we can meaningfully defi ne 

the average kinetic energy of the particle over this long duration. If the particle 

is moving rapidly, it has a higher average kinetic energy than if it were mov-

ing slowly. The temperature  T  of the gas is directly proportional to the average 

molecular kinetic energy. In fact, we can defi ne  T  as follows:

   Temperature  is a measure of the average kinetic energy of the particles in the gas. If 

KE is the mean molecular kinetic energy, then temperature is given by  KE = 3
2 kT       , 

where  k  is the Boltzmann constant.  

The value of  k  is 1.38 × 10 −23  J/K, where J is an abbreviation for joule and K is 

an abbreviation for Kelvin. 

  

  Figure 2.4  Defi nition of density. 
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 Hence we can qualitatively visualize a high-temperature gas as one in 

which the particles are randomly rattling about at high speeds, whereas in a low- 

temperature gas, the random motion of the particles is relatively slow. Temper-

ature is an important quantity in dealing with the aerodynamics of supersonic 

and hypersonic fl ight, as we will soon see. Common units of temperature are the 

 kelvin (K), degree Celsius (°C), degree Rankine (°R), and degree Fahrenheit (°F).  

   2.1.4  Flow Velocity and Streamlines 

 The concept of speed is commonplace: It represents the distance traveled by 

some object per unit time. For example, we all know what is meant by traveling 

at a speed of 55 mi/h down the highway. However, the concept of the velocity 

of a fl owing gas is somewhat more subtle. First, velocity connotes  direction  as 

well as speed. The automobile is moving at a velocity of 55 mi/h  due north in a 
horizontal plane . To designate velocity, we must quote both speed and direction. 

For a fl owing gas, we must further recognize that each region of the gas does not 

necessarily have the same velocity; that is, the speed and direction of the gas may 

vary from point to point in the fl ow. Hence, fl ow velocity, along with  p,   ρ,  and 

T,  is a point property. 

 To see this more clearly, consider the fl ow of air over an airfoil or the fl ow 

of combustion gases through a rocket engine, as sketched in    Fig. 2.5 . To orient 

yourself, lock your eyes on a specifi c, infi nitesimally small element of mass in 

the gas, and watch this element move with time. Both the speed and direction of 

this element (usually called a fl uid element) can vary as it moves from point to 

point in the gas. Now fi x your eyes on a specifi c fi xed point in the gas fl ow, say 

point  B  in    Fig. 2.5 . We can now defi ne fl ow velocity as follows:

  The  velocity  at any fi xed point  B  in a fl owing gas is the velocity of an infi nitesimally 

small fl uid element as it sweeps through  B .  

Again we emphasize that velocity is a point property and can vary from 

point to point in the fl ow. 

  Referring again to    Fig. 2.5 , we note that as long as the fl ow is steady (as 

long as it does not fl uctuate with time), a moving fl uid element is seen to trace 

out a fi xed  path  in space. This path taken by a moving fl uid element is called a 

Figure 2.5  Flow velocity and streamlines. 
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Figure 2.6  Smoke 

photograph of the 

low-speed fl ow over a 

Lissaman 7769 airfoil 

at 10º angle of attack. 

The Reynolds number 

based on chord is 

150,000. This is the 

airfoil used on the 

Gossamer Condor 

human-powered 

aircraft. 
(Source: © Dr. T. J. 
Mueller.)

Figure 2.7  An oil 
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streamline pattern for 
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plate in supersonic 
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fi n is due to the bow 
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the streamlines can be 

seen in this complex 
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from right to left. The 

Mach number is 5, and 

the Reynolds number 

is 6.7 × 10 6 . 
(Source: © Allen E. 
Winkelmann.)
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  streamline  of the fl ow. Drawing the streamlines of the fl ow fi eld is an important 

way of visualizing the motion of the gas; we will frequently sketch the stream-

lines of the fl ow about various objects. For example, the streamlines of the fl ow 

about an airfoil are sketched in    Fig. 2.5  and clearly show the direction of mo-

tion of the gas.    Figure 2.6  is an actual photograph of streamlines over an airfoil 

model in a low-speed subsonic wind tunnel. The streamlines are made visible by 

 injection of fi laments of smoke upstream of the model; these smoke fi laments 

follow the streamlines in the fl ow. Using another fl ow fi eld visualization tech-

nique,    Fig. 2.7  shows a photograph of a fl ow where the surface streamlines are 

made visible by coating the model with a mixture of white pigment in mineral 

oil. Clearly, the visualization of fl ow streamlines is a useful aid in the study of 

aerodynamics. 

        2.2   THE SOURCE OF ALL AERODYNAMIC 
FORCES 

  We have just discussed the four basic aerodynamic fl ow quantities:  p, ρ, T,  and 

V , where  V  is velocity, which has both magnitude and direction; that is, velocity 

is a vector quantity. A knowledge of  p, ρ, T,  and  V  at each point of a fl ow fully 

defi nes the  fl ow fi eld . For example, if we were concerned with the fl ow about 

a sharp-pointed cone, as shown in    Fig. 2.8 , we could imagine a Cartesian  xyz
three-dimensional space, where the velocity far ahead of the cone V ∞  is in the 

  

Figure 2.8  Specifi cations of a fl ow fi eld. 
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x  direction and the cone axis is also along the  x  direction. The specifi cation of the 

following quantities then fully defi nes the  fl ow fi eld: 

  

p p x y

x y

T T x y

V V x y

( ,x , )z

( ,x , )z

( ,x , )z

( ,x , )z

ρ ρ=
             

(In practice, the fl ow fi eld about a right circular cone is more conveniently 

described in terms of cylindrical coordinates, but we are concerned only with the 

general ideas here.) 

  Theoretical and experimental aerodynamicists labor to calculate and measure 

fl ow fi elds of many types. Why? What practical information does knowledge of 

the fl ow fi eld yield with regard to airplane design or to the shape of a rocket en-

gine? A substantial part of the fi rst fi ve chapters of this book endeavors to answer 

these questions. However, the roots of the answers lie in the following discussion. 

 Probably the most practical consequence of the fl ow of air over an object is 

that the object experiences a force, an aerodynamic force, such as your hand feels 

outside the open window of a moving car. Subsequent chapters discuss the na-

ture and consequences of such aerodynamic forces. The purpose here is to state 

that the aerodynamic force exerted by the airfl ow on the surface of an airplane, 

missile, or the like stems from only two simple natural sources:  

  1.   Pressure distribution on the surface.  

  2.   Shear stress (friction) on the surface.   

 We have already discussed pressure. Referring to    Fig. 2.9 , we see that pres-

sure exerted by the gas on the solid surface of an object always acts  normal  to 

  

  Figure 2.9  Pressure and shear stress distributions. 
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the surface, as shown by the directions of the arrows. The lengths of the arrows 

denote the magnitude of the pressure at each local point on the surface. Note 

that the surface pressure varies with location. The net  unbalance  of the varying 

pressure distribution over the surface creates an aerodynamic force. The second 

source, shear stress acting on the surface, is due to the frictional effect of the fl ow 

“rubbing” against the surface as it moves around the body. The shear stress τ w  is 

defi ned as the force per unit area acting  tangentially  on the surface due to fric-

tion, as shown in    Fig. 2.9 . It is also a point property; it varies along the surface; 

and the net unbalance of the surface shear stress distribution creates an aerody-

namic force on the body.  No matter how complex the fl ow fi eld, and no matter 
how complex the shape of the body, the only way nature has of communicating 
an aerodynamic force to a solid object or surface is through the pressure and 
shear stress distributions that exist on the surface.  These are the basic fundamen-

tal sources of all aerodynamic forces. The pressure and shear stress distributions 

are the two hands of nature that reach out and grab the body, exerting a force on 

the body—the aerodynamic force. 

  Finally, we can state that a primary function of theoretical and experimental 

aerodynamics is to predict and measure the aerodynamic forces on a body. In many 

cases, this implies prediction and measurement of  p  and τ w  along a given surface. 

Furthermore, a prediction of  p  and τ w  on the surface frequently requires knowledge 

of the complete fl ow fi eld around the body. This helps to answer our earlier ques-

tion about what practical information is yielded by knowledge of the fl ow fi eld.   

   2.3  EQUATION OF STATE FOR A PERFECT GAS 
  Air under normal conditions of temperature and pressure, such as those encoun-

tered in subsonic and supersonic fl ight through the atmosphere, behaves very 

much as a  perfect gas . We can best see the defi nition of a perfect gas by return-

ing to the molecular picture. A gas is a collection of particles (molecules, atoms, 

electrons, etc.) in random motion, where each particle is, on average, a long 

 distance away from its neighboring particles. Each molecule has an  intermo-
lecular force fi eld  about it, a ramifi cation of the complex interaction of the elec-

tromagnetic properties of the electrons and nucleus. The intermolecular force 

fi eld of a given particle extends a comparatively long distance through space and 

changes from a strong repulsive force at close range to a weak attractive force at 

long range. The intermolecular force fi eld of a given particle reaches out and is 

felt by the neighboring particles. On the one hand, if the neighboring particles are 

far away, they feel only the tail of the weak attractive force; hence the motion of 

the neighboring particles is only negligibly affected. On the other hand, if they 

are close, their motion can be greatly affected by the intermolecular force fi eld. 

Because the pressure and temperature of a gas are tangible quantities derived 

from the motion of the particles,  p  and  T  are directly infl uenced by intermolecu-

lar forces, especially when the molecules are packed closely together (i.e., at 

high densities). This leads to the defi nition of a perfect gas:

  A  perfect gas  is one in which intermolecular forces are negligible.   
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 Clearly, from the previous discussion, a gas in nature in which the particles 

are widely separated (low densities) approaches the defi nition of a perfect gas. 

The air in the room about you is one such case; each particle is separated, on 

average, by more than 10 molecular diameters from any other. Hence, air at 

standard conditions can be readily approximated by a perfect gas. Such is also 

the case for the fl ow of air about ordinary fl ight vehicles at subsonic and super-

sonic speeds. Therefore, in this book, we always deal with a perfect gas for our 

aerodynamic calculations. 

 The relation among  p, ρ,  and  T  for a gas is called the  equation of state . For a 

perfect gas, the equation of state is

p RTρR (2.3)

where  R  is the specifi c gas constant, the value of which varies from one type 

of gas to another. For normal air we have

R = = ⋅
°

287 1716
J

kg

ft lb

l g( )kg ( )K ( )slug ( )°R
             

From your earlier studies in chemistry and physics, you may be more famil-

iar with the universal gas constant ℜ, where ℜ = 8314 J/(kg ⋅ mole K) = 4.97 × 

10 4  (ft lb)/(slug · mole °R), a universal value for all gases. The specifi c and 

universal gas constants are related through ℜ = ℜ/M, where  M  is the molecular 

weight (or more properly, the molecular mass) of the gas. For air, M = 28.96 kg/ 

(kg ⋅ mole). Note that kg ⋅ mole is a single unit; it stands for a kilogram-mole, 

identifying what type of mole we are talking about. (It does  not  mean kilo-

grams multiplied by moles.) A kilogram-mole contains 6.02 × 10 26  molecules— 

Avogadro’s number for a kilogram-mole. A kilogram-mole is that amount of a 

gas that has a mass in kilograms equal to the molecular weight of the gas. For air, 

because  M  = 28.96, one kilogram-mole of air has a mass of 28.96 kilograms and 

consists of 6.02 × 10 26  molecules. Similarly, a slug ⋅ mole of gas is that amount of 

gas that has a mass in slugs equal to the molecular weight of the gas. For air, one 

slug-mole has a mass of 28.96 slugs. The same litany applies to the gram-mole, 

with which you may be more familiar from chemistry. The values of  R  for air 

given at the beginning of this paragraph are obtained from

  R M= ℜ =
⋅

=/
J/ kg l

 kg/ kg mole

J8314

28 6
287

( )⋅kg mole K

. ( kg/96 ) ( )(( ( )kg
             

and

  R M= ℜ = ⋅ °
/

ft lb / slug m⋅ ole R°
l g

4 9

28 6

4. (97 104 ) (/ )

. (slug/96 slss ug mole

ft lb

slug R⋅
= ⋅

°) ( )( )
1716               

 It is interesting that the  deviation  of an actual gas in nature from perfect gas 

behavior can be expressed approximately by the modifi ed Berthelot equation of 

state:

  
p

RT

ap

T

bp

TρR
= +1 3−              
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Here  a  and  b  are constants of the gas; thus the deviations become smaller as 

 p  decreases and  T  increases. This makes sense because if  p  is high, the molecules 

are packed closely together, intermolecular forces become important, and the gas 

behaves less as a perfect gas. In contrast, if  T  is high, the molecules move faster. 

Thus, their average separation is larger, intermolecular forces become less sig-

nifi cant in comparison to the inertia forces of each molecule, and the gas behaves 

more as a perfect gas. 

 Also, note that when the air in the room around you is heated to temperatures 

above 2500 K, the oxygen molecules begin to dissociate (tear apart) into  oxygen 

atoms; at temperatures above 4000 K, the nitrogen begins to dissociate. For these 

temperatures, air becomes a  chemically reacting gas,  such that its chemical com-

position becomes a function of both  p  and  T ; that is, it is no longer normal air. 

As a result,  R  in    Eq. (2.3)  becomes a variable— R  =  R ( p, T )—simply because 

the gas composition is changing. The perfect gas equation of state,    Eq. (2.3) , is 

still valid for such a case, except that  R  is no longer a constant. This situation is 

encountered in very high-speed fl ight—for example, the atmospheric entry of the 

 Apollo  capsule, in which case the temperatures in some regions of the fl ow fi eld 

reach 11,000 K. 

 Again, in this book we always assume that air is a perfect gas, obeying 

   Eq. (2.3) , with a constant  R  = 287 J/(kg)(K) or 1716 ft · lb/(slug)(°R).   

   2.4  DISCUSSION OF UNITS 
  Physical units are vital to the language of engineering. In the fi nal analysis, the 

end result of most engineering calculations or measurements is a number that 

represents some physical quantity, such as pressure, velocity, or force. The num-

ber is given in terms of combinations of units: 10 5  N/m 2 , 300 m/s, or 5 N, where 

the newton, meter, and second are examples of  units . (See App. C.) 

 Historically, various branches of engineering have evolved and favored 

systems of units that seemed to most conveniently fi t their needs. These  various 

sets of “engineering” units usually differ among themselves and are different 

from the metric system, preferred for years by physicists and chemists. In 

the modern world of technology, where science and engineering interface on 

almost all fronts, such duplicity and variety of units have become an unnec-

essary burden. Metric units are now the accepted norm in both science and 

engineering in most countries outside the United States. More  importantly, in 

1960 the Eleventh General Conference on Weights and Measures defi ned and 

offi cially established the  Système International d’Unités  (the SI units), which 

was adopted as the preferred system of units by 36 participating countries, 

including the United States. Since then the United States has made  progress 

toward the voluntary implementation of SI units in engineering. For example, 

several NASA (National Aeronautics and Space Administration) laboratories 

have made SI units virtually mandatory for all results contained in techni-

cal reports, although engineering units can be shown as a duplicate set. The 

AIAA (American Institute of Aeronautics and Astronautics) has a policy of 
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encouraging use of SI units in all papers reported or published in its techni-

cal journals. It is apparent that in a few decades the United States, along with 

the rest of the world, will be using SI units almost exclusively. Indeed, the 

aerospace and automobile industries in the United States are now making 

extensive use of SI units, driven by the realities of an international market for 

their products. 

 So here is the situation. Much of the past engineering literature generated in 

the United States and Britain used engineering units, whereas much of the cur-

rent work uses SI units. Elsewhere in the world, SI units have been, and continue 

to be, the norm. As a result, modern engineering students must do “double duty” 

in regard to familiarization with units. They must be familiar with engineering 

units so that they can read, understand, and use the vast bulk of existing literature 

quoted in such units. At the same time, they must be intimately familiar with SI 

units for present and future work. Engineering students must be  bilingual  with 

regard to units. 

 To promote fl uency in both the engineering and SI units, this book incorporates 

both sets. It is important that you develop a natural feeling for both sets of units; for 

example, you should feel as at home with pressures quoted in newtons per square 

meter (pascals) as you probably already do with pounds per square inch (psi). 

A mark of successful experienced engineers is their feel for correct magnitudes of 

physical quantities in familiar units. It is important for you to start gaining this feel-

ing for units  now,  for both the engineering and SI units. A purpose of this book is 

to help you develop this feeling of comfort. In the process, we will be putting a bit 

more emphasis on SI units in deference to their extensive international use. 

 For all practical purposes, SI is a metric system based on the meter, kilo-

gram, second, and kelvin as basic units of length, mass, time, and temperature, 

respectively. It is a  coherent,  or  consistent,  set of units. Such consistent sets of 

units allow physical relationships to be written without the need for “conversion 

factors” in the basic formulas. For example, in a consistent set of units, Newton’s 

second law can be written

F m a
Force Mass Acceleration

×

In SI units,

F ma

1 1 2newton kilogr d
=
= )(1 ilogram ( )1 2meter/second

              (2.4)

The newton is a force defi ned such that it accelerates a mass of 1 kilogram by 

1 meter per second squared. 

 The English engineering system of units is another consistent set of units. 

Here the basic units of mass, length, time, and temperature are the slug, foot, 

second, and degree Rankine, respectively. In this system,
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F ma
1 1 2pound l g f d

=
= ( )1 slug ( )1 2foot/sff econd

(2.5)

The pound is a force defi ned such that it accelerates a mass of 1 slug by 1 foot 

per second squared. Note that in both systems, Newton’s second law is written 

simply as  F  =  ma,  with no conversion factor on the right side. 

 In contrast, a nonconsistent set of units defi nes force and mass such that 

Newton’s second law must be written with a conversion factor, or constant: 

F
g

m a
c

=

↑ ↑ ↑ ↑

1
× ×m

Force Conversion
factorff

Mass Acceleration

              

A nonconsistent set of units frequently used in the past by mechanical engineers 

includes the pound force, pound mass, foot, and second:

gc

F gc
m a

=

=

↑ ↑ ↑ ↑

1

1
32.2

32.2(lbm)(ft) / (s2)(lbfb )ff

lbmlbfb

×

ft/s2

              

(2.6)

In this nonconsistent system, the unit of mass is the pound mass lb  m  . Comparing 

   Eqs. (2.5)  and    (2.6) , we see that 1 slug = 32.2 lb  m  . A slug is a large hunk of mass, 

whereas the pound mass is considerably smaller, by a factor of 32.2. This is 

illustrated in    Fig. 2.10 . 

  Another nonconsistent set of units that is used in international engineering 

circles deals with the kilogram  force,  the kilogram mass, meter, and second:

  

  Figure 2.10  Comparison between the slug and pound mass. 
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gc

F gc
m a

=

=

↑ ↑ ↑ ↑

1

1
9.8

9.8(kg)(m) / (s2)(kgfg )ff

kgkgfg

×

m/s2

 

(2.7)

In this nonconsistent system, the unit of force is the kilogram force, kg  f  . 

 It is easy to understand why people use these nonconsistent units, the pound 

mass (lb  m  ) and the kilogram force (kg  f  ). It has to do with  weight.  By defi nition, 

the weight of an object,  W,  is

W mg (2.8)

where  g  is the acceleration of gravity, a variable that depends on location around 

the earth (indeed, throughout the universe). At standard sea level on earth, the 

standard value of  g  is 9.8 m/(s) 2 , or 32.2 ft/(s) 2 .    Eq. (2.8)  is written in  consistent  
units; it is simply a natural statement of Newton’s second law,    Eq. (2.4) , where 

the acceleration  a  is the acceleration of gravity  g . Hence, if you held a kilogram 

of chocolate candy in your hands at a location on earth where the acceleration 

of gravity is the standard value of 9.8 m/sec, that “kilo” of candy would  weigh 

  
W mg =mg ( )( . ) .)( 8 ) = 8gk N

             

The “kilo” box of candy would  weigh  9.8 N; this is the force exerted on your 

hands holding the candy. In contrast, if we used the nonconsistent units embod-

ied in    Eq. (2.7)  to calculate the force exerted on your hands, we obtain

  F
ma
gc

f= = =( )( . )

( . )

)( 8

8.
1 kg              

The “kilo” box of candy would  weigh  l kg f  ; the force exerted on your hands 

is l kg f . What a common convenience: the force you feel on your hands is the 

 same number  of kg  f   as is the mass in kg. Presto—the use of the kilogram force in 

 engineering work. Similarly, imagine you are holding 1 pound of chocolates. In 

the United States, we go to the store and pick a “pound” box of candy off the shelf. 

We feel the pound force in our hands. From    Eq. (2.8) , the mass of the candy is

  m
W

g
= = =1

32
0 0312

 lb

f / s
slug

. (2 ft/ )
.              

But if you go into a store and ask the attendant for a “0.031-slug” box of 

candy, imagine the reply you will get. In contrast, using    Eq. (2.6)  with the non-

consistent unit of lb  m  , the mass of a 1-1b box of candy is

  m
Fg

a
c

m= = =( )( . )

( . )

)( 2.

2
1

lb
 lb              
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Once again, we have the everyday convenience of the mass in your hands being 

the  same number  in lb  m   as is the force on your hands. Presto—the use of the pound 

mass in engineering work. This makes sense in common everyday life; in the tech-

nical world of engineering calculations, though, using    Eq. (2.7)  with the noncon-

sistent unit of kg  f  , or    Eq. (2.6)  with the nonconsistent unit of lb  m  , makes g c  appear 

in many of the equations. Nature did not plan on this; the use of  g   c   is a human 

invention. In nature, Newton’s second law appears in its pure form,  F  =  ma,   not  
 F  = 1/ g   c   ( ma ). Thus, to use nature in its pure form, we must always use  consistent
units. When we do this,  g   c   will never appear in any of our equations, and there is 

never any confusion in our calculations with regard to conversion factors—quite 

simply,  no  conversion factors are needed. 

 For these reasons, we will always deal with a consistent set of units in this 

book. We will use both the SI units from    Eq. (2.4)  and the English engineering 

units from    Eq. (2.5) . As stated before, you will frequently encounter the engi-

neering units in the existing literature, whereas you will be seeing SI units with 

increasing frequency in the future literature; that is, you must become bilingual. 

To summarize, we will deal with the English engineering system units (lb, slug, 

ft, s, °R)  and  the Système International (SI) units (N, kg, m, s, K). 

 Therefore, returning to the equation of state,    Eq. (2.3) , where  p  =  ρRT,  we 

see that the units are as follows: 

   English Engineering System  SI 

  p   lb/ft 2   N/m 2  
 ρ  slugs/ft 3   kg/m 3  

  T   °R  K 
  R  (for air)  1716 ft · lb/(slug)(°R)  287 J/(kg)(K) 

 There are two fi nal points about units to note. First, the units of a physical 

quantity can frequently be expressed in more than one combination simply by 

appealing to Newton’s second law. From Newton’s law, the relation between N, 

kg, m, and s is

  
F ma

⋅N k= g m/s2

Thus, a quantity such as  R  = 287 J/(kg)(K) can also be expressed in an equivalent 

way as

R = = = ⋅ =287 287 287 22

J

kg

N m⋅
kg

kg m

s

m

kg( )kg ( )K ( )kg ( )K ( )kg ( )K
8788

2

2

m

( )2s2 ( )K

R  can also be expressed in the equivalent terms of velocity squared divided by 

temperature. In the same vein,

R = ⋅
°

=
°

1716 1716
2

2

ft lb

l g

ft

( )slug ( )°R ( )2s2 ( )°R°
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 Second, in the equation of state,    Eq. (2.3) ,  T  is always the  absolute  tem-

perature, where zero degrees is the absolutely lowest temperature possible. Both 

K and °R are absolute temperature scales, where 0°R = 0 K = the temperature at 

which almost all molecular translational motion theoretically stops. In contrast, 

the familiar Fahrenheit (°F) and Celsius (°C) scales are  not  absolute scales:

  
0 460
0 32

° = °
° = = °32
F R460= °
C K273= F

             

For example,  90 460 90 550° +460 = °550s the same as R               (2.9)

and  10 273 10 283° +273 =C is the same as K               (2.10)

Please remember:  T  in    Eq. (2.3)   must  be the absolute temperature, either kelvins 

or degrees Rankine.   

   2.5  SPECIFIC VOLUME 
  Density  ρ  is the  mass per unit volume . The inverse of this quantity is also fre-

quently used in aerodynamics. It is called the  specifi c volume   v  and is defi ned as 

the  volume per unit mass . By defi nition,

  � = 1

ρ              

Hence, from the equation of state

  p RT
v

RT=RTρR
1

             

we also have

  pv RT=               (2.11)

Abbreviated units for  v  are m 3 /kg and ft 3 /slug. 

   EXAMPLE 2.1  

 The air pressure and density at a point on the wing of a Boeing 747 are 1.10 × 10 5  N/m 2

and 1.20 kg/m 3 , respectively. What is the temperature at that point? 

■  Solution 
 From    Eq. (2.3) ,  p  =  ρRT;  hence  T  =  p /( ρR ), or

T = =1 10 10

1 20 287
319

5 2

3

.

( .1 )[ ( )( )]

N/m

 kg/m 2873)[ J/ kg
KK
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 The high-pressure air storage tank for a supersonic wind tunnel has a volume of 1000 ft 3 . 

If air is stored at a pressure of 30 atm and a temperature of 530°R, what is the mass of gas 

stored in the tank in slugs? In pound mass? 

   ■  Solution 
 The unit of atm for pressure is not a consistent unit. You will fi nd it helpful to remember 

that in the English engineering system,

  2116 2 atm 2116 lb/ftff              

Hence  p  = (30)(2116) lb/ft 2  = 6.348 × 10 4  lb/ft 2 . Also, from    Eq. (2.3) ,  p  =  ρ RT;  hence 

ρ  = ( p / RT ), or

ρ =
⋅ ° °

6 348 10

6 530

4 2.

[ (⋅1716 )](

× lb/ftff

f s( lug R°)( R))
= 6 9. 8 10 2 3− slug/ft

This is the density, which is mass  per unit volume . The total mass  M  in the tank of volume 

 V  is

  M V =VρVV ( . )( ) .=6 9. 8 10 1000 69 82 3 3− slug/ft ft slugs

Recall that 1 slug = 32.2 lb  m  . Hence

M m= =( . )( . )69 38)( 2. 2248 lb

   EXAMPLE 2.2  

   EXAMPLE 2.3  

 Air fl owing at high speed in a wind tunnel has pressure and temperature equal to 0.3 atm 

and −100°C, respectively. What is the air density? What is the specifi c volume? 

■  Solution 
 You are reminded again that the unit of atm for pressure is not a consistent unit. You will 

fi nd it helpful to memorize that in the SI system,

1 1 01 105 2 atm 1 01 105 N/m. ×
Hence

p = ( . )( . ) .3. 1. 0) 303 105 50) 303 10 2×.0=) 3030) 303 N/m

Note that  T  = −100°C is  not  an absolute temperature. Hence

T = + =100 273 173 K

From    Eq. (2.3) ,  p  =  ρRT;  hence  ρ  =  p /( RT ), or

  

ρ = =0 303 10

173
0 610

5 2.

[ (287 )( )]( )
.

× N/m

kg K 173)]( K
kg/m//

m /kg

3

31 1

0 610
1 64v = = =

ρ .
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Note:  It is worthwhile to remember that

1 2116

1

2

2

 atm  2116 lb/ftff

 atm 1.01 10 N/m5= ×1.01

   EXAMPLE 2.4  

Note:  In    Example 2.1 –   2.3 , the units for each number that appears internally in the cal-

culations were explicitly written out next to each of the numbers. This was done to give 

you practice in thinking about the units. In the present example, and in all the remain-

ing worked examples in this book, we discontinue this practice except where necessary 

for clarity. We are using consistent units in our equations, so we do not have to worry 

about keeping track of all the units internally in the mathematics. If you feed numbers 

expressed in terms of consistent units into your equations at the beginning of your calcu-

lation and you go through a lot of internal mathematical operations (addition, subtraction, 

multiplication, differentiation, integration, division, etc.) to get your answer, that answer 

will automatically be in the proper consistent units. 

  Consider the Concorde supersonic transport fl ying at twice the speed of sound at an 

altitude of 16 km. At a point on the wing, the metal surface temperature is 362 K. The 

immediate layer of air in contact with the wing at that point has the same temperature and 

is at a pressure of 1.04 × 10 4  N/m 2 . Calculate the air density at this point. 

■  Solution 
 From    Eq. (2.3) ,

ρ = =p

RT
R,

( )( )
where

J

kg
287              

The given pressure and temperature are in the appropriate consistent SI units. Hence

ρ = =1 04 10

362
0 100

4
3

( )287 ( )362
.  kg/m              

We know the answer must be in kilograms per cubic meter because these are the consis-

tent units for density in the SI system. We simply write the answer as 0.100 kg/m 3  without 

needing to trace the units through the mathematical calculation.   

   EXAMPLE 2.5  

 This example deals with the conversion of units from one system to another. 

  An important design characteristic of an airplane is its  wing loading,  defi ned as the 

weight of the airplane,  W,  divided by its  planform wing area  (the projected wing area 

you see by looking directly down on the top of the wing),  S . (The importance of wing 

loading,  W / S,  on the performance of an airplane is discussed at length in Ch. 6.) Con-

sider the Lockheed-Martin F-117A stealth fi ghter, shown in    Fig. 2.11 . In most modern 

 international aeronautical publications, the wing loading is given in units of kg  f   /m 2 . 

For the F-117A, the wing loading is 280.8 kg  f   /m 2 . Calculate the wing loading in units 

of lb/ft 2 . 
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    ■  Solution 
 We want to convert from kg  f   to lb and from m 2  to ft 2 . Some useful intermediate conver-

sion factors obtained from App. C are itemized in the following:

1 0 3048
1 4 448

f m
 lb N

.

.
             

In addition, from    Eq. (2.7) , a mass of 1 kg weighs 1 kg  f  , and from    Eq. (2.8) , the same 1-kg 

mass weighs 9.8 N. Thus we have as an additional conversion factor

1 9 8 kg Nf .

I recommend the following ploy to carry out conversions of units easily and accurately. 

Consider the ratio (1 ft/0.3048 m). Because 1 foot is exactly the same length as 0.3048 m, 

this is a ratio of the “same things”; hence  philosophically  you can visualize this ratio as 

like “unity” (although the actual number obtained by dividing 1 by 0.3048 is obviously 

not 1). Hence we can visualize that the ratios

  
1

0 3048

1

4 448

1

9 8

ft

m

lb

N

kg

.
,

.
,⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ f

N
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

are like “unity.” Then, to convert the wing loading given in kg  f   /m 2  to lb/ft 2 , we simply 

take the given wing loading in kg  f   /m 2  and multiply it by the various factors of “unity” in 

just the right fashion so that various units cancel out, and we end up with the answer in 

lb/ft 2 . That is,

  
W

S
f

f

=
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

280 8
9 8

1

1

4 448

0 30
2.

.

kg

m

N

kg

 lb

N

4844

1

2
m

ft
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

              (2.12)

  

  Figure 2.11  Three-view of the Lockheed-Martin F-117A stealth fi ghter. 
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The quantitative  number  for  W / S  is, from    Eq. (2.12) ,

W

S
= =( . )( . )( . )

.
.

8 9)( )( 3048

4 448
57 3

2

The units that go along with this number are obtained by canceling various units as they 

appear in the numerators and denominators of    Eq. (2.12) . That is,

W

S
f

f

=
⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

280 8
9 8

1

1

4 448

0
2.

.

kg

m

N

 kg

 lb

N

..
.

3048

1
57 3

2

2

m

ft

lb

ft
⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =

   EXAMPLE 2.6  

 This example also deals with the conversion of units. 

  In common everyday life in the United States, we frequently quote velocity in units 

of miles per hour. The speedometer in a car is primarily calibrated in miles per hour 

 (although in many new cars, the dial also shows kilometers per hour in fi ner print). 

In popular aeronautical literature, airplane velocities are frequently given in miles per 

hour. (After their successful fl ight on December 17, 1903, Orville telegraphed home 

that the speed of the  Wright Flyer  was 31 miles per hour, and miles per hour has been 

used for airplane fl ight speeds since that time.) Miles per hour, however, are not in con-

sistent units; neither miles nor hours are consistent units. To make proper calculations 

using consistent units, we must convert miles per hour into feet per second or meters per 

second. 

  Consider a Piper Cub, a small, light, general aviation airplane shown in    Fig. 2.12a ; 

the Piper Cub is a design that dates to before World War II, and many are still fl ying today. 

When the airplane is fl ying at 60 mi/h, calculate the velocity in terms of ( a ) ft/s and ( b ) m/s. 

■  Solution 
 We recall these commonly known conversion factors:

1
1 3600
mi = 5280 ft

h 3600 s 

Also, from App. C, 

a.

1 0 3048

60
1

3600

5280

f m

mi

h

h

s

ft= ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

.

V
11

88 0

 mi

ft

s

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
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  Figure 2.12a  The Piper Cub, one of the most famous light, general aviation aircraft. 
(Source:  © Susan & Allan Parker/Alamy. ) 

  

  Figure 2.12b  The North American P-51D Mustang of World War II fame. 
(Source:  U.S. Air Force. ) 
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This answer provides a useful conversion factor by itself. It is simple and helpful to 

memorize that

60 88 mi/h  ft/sff=

For example, consider a World War II P-51 Mustang (   Fig. 2.12b ) fl ying at 400 mi/h. Its 

velocity in ft/s can easily be calculated from

.V = ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =400

88

60
586 7

 ft/sff

mi/s
 ft/sff

b. 

Hence

60 26 82mi/h m/s= .

   EXAMPLE 2.7  

 The next three examples further illustrate how to use proper, consistent units to solve 

engineering problems. 

  Consider the Lockheed-Martin F-117A discussed in    Example 2.5  and shown in 

   Fig. 2.11 . The planform area of the wing is 913 ft 2 . Using the result from    Example 2.5 , 

calculate the net force exerted on the F-117A required for it to achieve an acceleration of 

one-third of a  g  (one-third the standard acceleration of gravity) in straight-line fl ight. 

   ■  Solution 
 From    Example 2.5 , the wing loading was calculated in English engineering units to be 

W/S = 57.3 lb/ft 2 . Thus the weight of the F-117A is

  W
W

S
S= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( ) =57 3 52 315
2

. ,
⎠⎠⎠

( )3 52
lb

ft
 lb              

The force required to achieve a given acceleration of a given object is obtained from 

Newton’s second law:

  F ma              

The mass of the F-117A is obtained from    Eq. (2.8)  written as

  m
W

g
=              

26 82 m/s=V .

V = ⎛
⎝
⎛⎛⎛⎛
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where  g  = 32.2 ft/s 2 . Thus

  m = =52 315

32 2
1624 7

,

.
.7 slug              

Therefore, the net force required to accelerate the F-117A at the rate of one-third  g —that 

is, the rate of 1/3 (32.2) = 10.73 ft/s 2 —is

F ma =ma ( . )( . ) ,1624 7 1)( 0. 1=) 7 438 lb

In level fl ight, the net force on the airplane is the difference between the thrust from 

the engines acting forward and the aerodynamic drag acting rearward (such matters 

are the subject of Ch. 6). The F-117A has two turbojet engines capable of a combined 

maximum thrust of 21,600 lb at sea level. When the aerodynamic drag is no more than 

21,600 − 17,438 = 4612 lb, the F-117A is capable of achieving an acceleration of one-

third of a  g  in level fl ight at sea level. 

  This example highlights the use of the English engineering system consistent unit of 

mass (namely the slug) in Newton’s second law. Furthermore, we obtained the mass in 

slugs for the F-117A from its weight in 1b using    Eq. (2.8) .   

   EXAMPLE 2.8  

 Consider a case in which the air inside the pressurized cabin of a jet transport fl ying at 

some altitude is at a pressure of 0.9 atm and a temperature of 15°C. The total volume of 

air at any instant inside the cabin is 1800 m 3 . If the air in the cabin is completely recircu-

lated through the air conditioning system every 20 min, calculate the mass fl ow of air in 

kg/s through the system. 

   ■  Solution 
 The density of the air is given by the equation of state,    Eq. (2.3) , written as

  ρ = p

RT
             

In the SI system of units, consistent units of pressure and temperature are N/m 2  and K 

respectively. (Remember that  T  in    Eq. (2.3)  is the  absolute  temperature.) In    Example 2.3  

we noted that 1 atm = 1.01 × 10 5  N/m 2 . Hence

  p = ( . )( . )9. 1. 0) 909 05 50) 909 10 2atm N)( .1. 0) 909 1050) 909 10 /M.0=) 9090) 909              

and

  T = + =273 15 288 K              
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Thus

ρ = = =p

RT

0 909 10
1 1

5
3.

( )287 ( )288
.

×
 kg/m              

The total mass  M  of air inside the cabin at any instant is  ρV,  where  V  is the volume of the 

cabin, given as 1800 m 3 . Thus

  M V =V =ρVV ( . )( )1. 1800 1980 kg              

This mass of air is recirculated through the air conditioning system every 20 min, or every 

1200 s. Hence, the mass fl ow  m  is

  m = =1980

1200
1 65 65 kg/s                 

   EXAMPLE 2.9  

 Consider the same airplane cabin discussed in    Example 2.8 . We now wish to increase 

the pressure inside the cabin by pumping in extra air. Assume that the air temperature 

inside the cabin remains constant at 288 K. If the time rate of increase in cabin pressure is 

0.02 atm/min, calculate the time rate of change of the air density per second. 

■  Solution 
 From the equation of state,

p RTρR

Differentiating this equation with respect to time,  t,  assuming that  T  remains constant, 

we have

dp

dt
RT

d

dt
= ρ

or

d

dt RT

dp

dt

ρ = ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞1

Consistent units for  
dp

dt
 are

N

m s2       . From the given information,

dp

dt
= 0 0202 atm/min

Changing to consistent units, noting that 1 atm = 1.01 × 10 5  N/m 2  and one minute is 

60 seconds, we have

  
dp

dt
=

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

0 02
1 01 10

1

1

60

5 2

min

minatm N⎛ 1 01 1× 05 /m

 atm s
⎛⎛
⎝
⎛⎛⎛⎛⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = 33 67 2.

N
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Hence

  
dp

dt RT

dp

dt
= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ = ( )( ) = −1 3dp⎛⎛⎛ ⎞⎞⎞ 3 67

4 07 1× 0 4 kg

m33s

   EXAMPLE 2.10  

 The performance of an airplane (Ch. 6) depends greatly on the power available from its 

engine(s). For a reciprocating engine, such as in an automobile or in many propeller-

driven airplanes, the power available is commonly given in terms of  horsepower,  a hor-

ribly nonconsistent unit. This unit was developed by James Watt, the English inventor 

of the fi rst practical steam engine in the years around 1775. To help market his steam 

 engine, Watt compared its power output with that of a horse. He observed that a horse 

could turn a mill wheel with a 12-foot radius 144 times in an hour pulling a force of 

180  lb. Recalling that power, P, by defi nition, is energy per unit time, and energy is 

force, F, times distance, d, the power output of the horse is

P
Fd

t min

ft lb

min
= = =( )[( )( )( )]

,
180 144 2 1)( 2

60
32 572

�
             

Watt rounded this number up to 33,000 ft lb/min, which is the value we use today for the 

energy equivalent to one horsepower. Using consistent units of ft lb/sec, we have

1
33 000

60
550

,
hp ft lb/sec= =              

These are the consistent units for one horsepower in the English engineering system. 

From this, calculate the value for one horsepower in the SI system. 

■  Solution 
 In the SI system, the consistent units for energy (force × distance) are (N)(m), so the con-

sistent units of power are (force × distance)/t = (N)(m)/sec. This unit of power is called a 

 watt,  in honor of James Watt, abbreviated in this example as W. From App. C, we have

  1 0 3048.f m              

  1 4 448.lb N              

Thus

  

1 550 550
0 3048

1

4 448

1
hp

ft lb m

ft

N= =550 ⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

sec

.4.3048 m ⎞⎞⎞
lbll

W
N m

W

⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞

=

==

746

746 746
sec
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These consistent units for 1 hp, namely

1 550 746hp
ft lb

sec
W= =550              

are used in Ch. 6.   

   EXAMPLE 2.11  

 One of the important performance characteristics of a given airplane is its maximum 

rate-of-climb, that is, its time rate of increase in altitude. In Sec. 6.8, we show that rate-

of-climb, denoted by R/C, is proportional to the difference in maximum power available 

from the engine and the power required by the airplane to overcome aerodynamic drag; 

this difference is called the  excess power . Indeed, in Sec. 6.8 we show that

R/C
W

= excess power
             

where W is the weight of the airplane. Using this equation, calculate the R/C in units of 

ft/min for an airplane weighing 9000 kg  f   fl ying at the condition where the excess power 

is 4700 hp. Note that all the units given here, ft/min, kg  f  , and hp are inconsistent units; 

however, the equation for R/C must use consistent units. (Also, the numbers given here 

apply approximately to the twin-jet executive transport considered in Ch. 6.) 

   ■  Solution 
 The result from Example 2.10 is that 1 hp = 746 Watts. Hence, in the SI system,

  excess power hp Watts= =( )hp( )hphp ( ) .6 3 506 106×              

Near the surface of the earth (see    Sec. 2.4 ), the mass of the airplane in kg is the same 

number as the weight in kg  f  . Hence, the weight is

  
W mg kg m/sec

W N

mg )kg ( . )8.

8 82 10

2

4
             

Now we have each term in the equation for rate-of-climb expressed in consistent SI units. 

Hence

  R/C
excess power

W

W

N
R/C

= =

=

3 506 10

8 82 10
39 75

6

4

.

.

×

m/secmm

             

The consistent units for R/C are m/sec because we used consistent SI units in the equa-

tion. Rate-of-climb is frequently quoted in the literature in terms of minutes rather than 

seconds, so we have

  R/C  39.75
m m⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =

sec

sec

min min

60

1
2385              



82 CHAPTER 2  Fundamental Thoughts

We are asked in this example to calculate R/C in units of ft/min, which is still the norm 

in the United States. From App. C,

  1 0 3048f m.

Thus,

R/C
m ftff

m
ft/miff= ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ ⎛

⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞
⎠⎠
⎞⎞⎞⎞ =2385

0 3048
7824

sec .⎠ ⎝ 0
nn

                  

   2.6  ANATOMY OF THE AIRPLANE 
  In regard to fundamental thoughts, it is appropriate to discuss some basic nomen-

clature associated with airplanes and space vehicles—names for the machines 

themselves. In this section we deal with airplanes; space vehicles are discussed 

in    Sec. 2.7 . 

 The major components of a conventional airplane are identifi ed in    Fig. 2.13 . 

The  fuselage  is the center body, where most of the usable volume of the airplane 

is found. The fuselage carries people, baggage, other payload, instruments, fuel, 

and anything else that the airplane designer puts there. The  wings  are the main 

lift-producing components of the airplanes; the left and right wings are identifi ed 

as you would see them from inside the airplane, facing forward. The internal 

volume of the wings can be used for such items as fuel tanks and storage of 

the main landing gear (the wheels and supporting struts) after the gear is re-

tracted. The horizontal and vertical  stabilizers  are located and sized so as to 

provide the necessary stability for the airplane in fl ight (we consider stability in 

Ch. 7). Sometimes these surfaces are called the horizontal and vertical  tails,  or 

fi ns . When the engines are mounted from the wings, as shown in    Fig. 2.13 , they 

are usually housed in a type of shroud called a  nacelle . As a historical note, the 

French worked hard on fl ying machines in the late 19th and early 20th centuries; 

Right
wing

Fuselage
Engine
nacelle

Left
wing

Horizontal stabilizer
(horizontal tail)

Vertical stabilizerVV
(vertical tail)

  

  Figure 2.13  Basic components of an airplane. 
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as a result, some of our conventional airplane nomenclature today comes from 

the French.  Fuselage  is a French word, meaning a “spindle” shape. So is the 

word  nacelle,  meaning a “small boat.” 

  Flaps and control surfaces are highlighted in    Fig. 2.14 . These are hinged 

surfaces, usually at the trailing edge (the back edge) of the wings and tail, that 

can be rotated up or down. The function of a fl ap is to increase the lift force on 

the airplane; fl aps are discussed in detail in Sec. 5.17. Some aircraft are designed 

with fl aps at the leading edge (the front edge) of the wings as well as at the trail-

ing edge. Leading-edge fl aps are not shown in    Fig. 2.14 . The ailerons are control 

surfaces that control the rolling motion of the airplane around the fuselage. For 

example, when the left aileron is defl ected downward and the right aileron is de-

fl ected upward, lift is increased on the left wing and decreased on the right wing, 

causing the airplane to roll to the right. The elevators are control surfaces that 

control the nose up-and-down pitching motion; when the elevator is defl ected 

downward, the lift on the tail is increased, pulling the tail up and the nose of the 

airplane down. The rudder is a control surface that can turn the nose of the air-

plane to the right or left (called  yawing ). The nature and function of these control 

surfaces are discussed in greater detail in Ch. 7. 

  In aeronautics it is common to convey the shape of an airplane by means of 

a  three-view  diagram, such as those shown in    Fig. 2.11  and in    Fig. 2.15 . Proceed-

ing from the top to the bottom of    Fig. 2.15 , we see a front view, top view, and 

side view, respectively, of the North American F-86H, a famous jet fi ghter from 

the Korean War era. A three-view diagram is particularly important in the design 

process of a new airplane because it conveys the precise shape and dimensions 

of the aircraft. 

  The internal structure of an airplane is frequently illustrated by a  cutaway
drawing, such as that shown in    Fig. 2.17 . Here the famous Boeing B-17 bomber 

from World War II is shown with a portion of its skin cut away so that the inter-

nal structure is visible. Although the B-17 is a late 1930s design, it is shown here 

because of its historical signifi cance and because it represents a conventional 

Rudder

Elevator

Flap
Aileron

  

  Figure 2.14  Control surfaces and fl aps. 
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airplane structure. A cutaway of the Lockheed-Martin F-117A stealth fi ghter is 

shown in    Fig. 2.18 ; this is a modern airplane, yet its internal structure is not un-

like that of the B-17 shown in    Fig. 2.17 . Cutaway diagrams usually contain many 

details about the internal structure and packaging for the airplane. 

  

  Figure 2.15  Three-view diagram of the North American F-86H. 
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    Any student of the history of aeronautics knows that airplanes have been 

designed with a wide variety of shapes and confi gurations. It is generally true 

that  form follows function,  and airplane designers have confi gured their air-

craft to meet specifi c requirements. However, airplane design is an open-ended 

 problem—there is no single “right way” or “right confi guration” to achieve the 

design goals. Also, airplane design is an exercise in compromise; to achieve 

good airplane performance in one category, other aspects of performance may 

have to be partly sacrifi ced. For example, an airplane designed for very high 

speed may have poor landing and takeoff performance. A design feature that 

 optimizes the aerodynamic characteristics may overly complicate the structural 

design. Convenient placement of the engines may disrupt the aerodynamics of 

the airplane . . . and so forth. For this reason, airplanes come in all sizes and 

shapes. An exhaustive listing of all the different types of airplane confi gura-

tions is not our purpose here. Over the course of your studies and work, you will 

sooner or later encounter most of these types. However, there are several general 

classes of airplane confi gurations that we do mention here. 

 The fi rst is the  conventional confi guration . This is exemplifi ed by the air-

craft shown in    Figs. 2.13  through    2.17 . Here we see  monoplanes  (a single set of 

wings) with a horizontal and vertical tail at the back of the aircraft. The aircraft 

may have a  straight wing,  as seen in    Figs. 2.13 ,    2.14 ,    2.16 , and    2.17 , or a  swept 
wing,  as seen in    Fig. 2.15 . Wing sweep is a design feature that reduces the aero-

dynamic drag at speeds near to or above the speed of sound, and that is why most 

high-speed aircraft today have some type of swept wing. However, the idea goes 

back as far as 1935. Swept wings are discussed in greater detail in Sec. 5.16. 

 DESIGN BOX 

 This is the fi rst of many design boxes in this book. 

These design boxes highlight information pertinent 

to the philosophy, process, and details of fl ight ve-

hicle design, as related to the discussion at that point 

in the text. The purpose of these design boxes is to 

refl ect on the design implications of various topics 

being discussed. This is not a book about design, but 

the fundamental information in this book certainly 

has applications to design. The design boxes are here 

to bring these applications to your attention. Design 

is a vital function—indeed, usually the end product—

of engineering. These design boxes can give you a 

better understanding of aerospace  engineering . 

 This design box is associated with our discus-

sion of the anatomy of the airplane and three-view 

 diagrams. An example of a much more detailed three-

view diagram is that in    Fig. 2.16 , which shows the 

Vought F4U Corsair, the famous Navy fi ghter from 

World War II.    Figure 2.16  is an example of what, in 

the airplane design process, is called a  confi guration 
layout.  In    Fig. 2.16 , we see not only the front view, 

side view, top view, and bottom view of the airplane, 

but also the detailed dimensions, the cross-sectional 

shape of the fuselage at different locations, the air-

foil shape of the wing at different locations, landing 

gear details, and the location of various lights, radio 

antenna, and so on. (A discussion of the role of the 

confi guration layout in airplane design can be found 

in    Anderson ,  Aircraft Performance and Design,
 McGraw-Hill, New York, 1999.)  
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Figure 2.18  Cutaway view of the Lockheed-Martin F-117A stealth fi ghter. 

    Figure 2.15  illustrates an airplane with a  swept-back  wing. Aerodynamically, 

the same benefi t can be obtained by sweeping the wing forward.    Figure 2.19  is 

a three-view diagram of the X-29A, a research aircraft with a  swept-forward  

wing. Swept-forward wings are not a new idea. However, swept-forward wings 

have combined aerodynamic and structural features that tend to cause the wing 

to twist and fail structurally. This is why most swept-wing airplanes have used 

swept-back wings. With the new, high-strength composite materials of today, 

swept-forward wings can be designed strong enough to resist this problem; the 

Figure 2.19  Three-view diagram of the Grumman X-29A research aircraft. 
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swept-forward wing of the X-29A is a composite wing. There are some advan-

tages aerodynamically to a swept-forward wing, which are discussed in Sec. 5.16. 

Also note by comparing    Figs. 2.15  and    2.19  that the juncture of the wing and the 

fuselage is farther back on the fuselage for the airplane with a swept-forward wing 

than for an airplane with a swept-back wing. At the wing–fuselage juncture, there 

is extra structure (such as a wing spar that goes through the fuselage) that can in-

terfere with the internal packaging in the fuselage. The swept-forward wing con-

fi guration, with its more rearward fuselage–wing juncture, can allow the airplane 

designer greater fl exibility in placing the internal packaging inside the fuselage. 

In spite of these advantages, at the time of writing, no new civilian transports or 

military airplanes are being designed with swept-forward wings. 

  The X-29A shown in    Fig. 2.19  illustrates another somewhat unconventional 

feature: The horizontal stabilizer is mounted ahead of the wing rather than at the 

rear of the airplane. This is defi ned as a  canard  confi guration, and the horizontal 

stabilizer in this location is called a  canard surface . The 1903  Wright Flyer  was 

a canard design, as clearly seen in Figs. 1.1 and 1.2. However, other airplane 

designers after the Wrights quickly placed the horizontal stabilizer at the rear 

of the airplane. (There is some evidence that this was done more to avoid patent 

diffi culties with the Wrights than for technical reasons.) The rear horizontal tail 

location is part of the conventional aircraft confi guration; it has been used on the 

vast majority of airplane designs since the  Wright Flyer . One reason for this is 

the feeling among some designers that a canard surface has a destabilizing effect 

on the airplane (to call the canard a horizontal “stabilizer” might be considered 

by some a misnomer). However, a properly designed canard confi guration can 

be just as stable as a conventional confi guration. This is discussed in detail in 

Ch. 7. Indeed, there are some inherent advantages of the canard confi guration, 

as we outline in Ch. 7. Because of this, a number of new canard airplanes have 

been designed in recent years, ranging from private, general aviation airplanes to 

military, high-performance fi ghters. (The word  canard  comes from the French 

word for “duck.”) 

 Look again at the  Wright Flyer  in Figs. 1.1 and 1.2. This aircraft has two 

wings mounted one above the other. The Wrights called this a  double-decker  

confi guration. However, within a few years such a confi guration was called a 

 biplane,  nomenclature that persists to the present. In contrast, airplanes with just 

one set of wings are called  monoplanes;     Figs. 2.13  through    2.19  illustrate mono-

planes, which have become the  conventional confi guration . However, this was 

not true through the 1930s; until about 1935, biplanes were the conventional con-

fi guration.    Figure 2.20  is a three-view of the Grumman F3F-2 biplane designed 

in 1935. It was the U.S. Navy’s last biplane fi ghter; it was in service as a front-

line fi ghter with the Navy until 1940. The popularity of biplanes over mono-

planes in the earlier years was due mainly to the enhanced structural strength 

of two shorter wings trussed together compared to that of a single, longer-span 

wing. However, as the cantilevered wing design, introduced by the German en-

gineer Hugo Junkers as early as 1915, gradually became more accepted, the main 

technical reason for the biplane evaporated. But old habits are sometimes hard to 
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change, and the biplane remained in vogue far longer than any technical reason 

would justify. Today biplanes still have some advantages as sport aircraft for 

aerobatics and as agricultural spraying aircraft. Thus, the biplane design lives on.  

   2.7  ANATOMY OF A SPACE VEHICLE 
  In    Sec. 2.6  we discussed the conventional airplane confi guration. In contrast, it 

is diffi cult to defi ne a “conventional” spacecraft confi guration. The shape, size, 

and arrangement of a space vehicle are determined by its particular mission, and 

there are as many (if not more) different spacecraft confi gurations as there are 

  

  Figure 2.20  Three-view of the Grumman F3F-2, the last U.S. Navy 

biplane fi ghter. 
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missions. In this section we discuss a few of the better-known space vehicles; 

although our coverage is far from complete, it provides some perspective on the 

anatomy of space vehicles. 

 To date, all human-made space vehicles are launched into space by rocket 

boosters. A rather conventional booster is the Delta three-stage rocket, shown 

in    Fig. 2.21 . Built by McDonnell-Douglas (now merged with Boeing), the 
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Figure 2.21  Delta 3914 and 3920 rocket booster confi gurations. 
M. D. Griffi n and J. R. French, Space Vehicle Design. Reston, VA. AIAA, 1991 Copyright © 1991 by AIAA. All rights 

reserved. Used with permission.
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Delta rocket is a product of a long design and development evolution that can 

be traced to the Thor intermediate-range ballistic missile in the late 1950s. 

The spacecraft to be launched into space is housed inside a fairing at the top 

of the booster, which falls away after the booster is out of the earth’s atmo-

sphere. The rocket booster is really three rockets mounted on top of one an-

other. The technical reasons for having such a multistage booster (as opposed 

to a single-stage rocket) are discussed in Sec. 9.11. Also, the  fundamentals of 

the rocket engines that power these boosters are discussed in Ch. 9. 

  A not-so-conventional booster is the air-launched Pegasus, shown in 

   Fig.  2.22 . The Pegasus is a three-stage rocket that is carried aloft by an air-

plane. The booster is then launched from the airplane at some altitude within the 

 sensible atmosphere. The fi rst stage of the Pegasus has wings, which assist in 

boosting the rocket to higher altitudes within the sensible atmosphere. 

  The Delta rocket in    Fig. 2.21  and the Pegasus in    Fig. 2.22  are examples of 

 expendable launch vehicles;  no part of these boosters is recovered for reuse. 

There are certain economies to be realized by recovering part (if not all) of the 

booster and using it again. There is great interest today in such  recoverable 
launch vehicles . An example of such a vehicle is the experimental X-34, shown 

in    Fig. 2.23 . This is basically a winged booster that will safely fl y back to earth 

after it has launched its payload, to be used again for another launch. 

  In a sense, the Space Shuttle is partly a reusable system. The Space Shuttle 

is part airplane and part space vehicle. The Space Shuttle fl ight system is shown 

in    Fig. 2.24 . The shuttle orbiter is the airplanelike confi guration that sits on the 

side of the rocket booster. The system is powered by two  solid rocket boosters  

(SRBs) that burn out and are jettisoned after the fi rst 2 min of fl ight. The SRBs 
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  Figure 2.22  Orbital Sciences Pegasus, an air-launched rocket booster. 
 (Source:  From C. H. Eldred et al., “Future Space Transportation Systems and Launch,” 
in  Future Aeronautical and Space Systems,  eds. A. K. Noor and S. L. Vennera, AIAA, 
Progress in Astronautics and Aeronautics, vol. 172, 1997. ) 
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are recovered and refurbished for use again. The external tank carries liquid oxy-

gen and liquid hydrogen for the main propulsion system, which comprises the 

rocket engines mounted in the orbiter. The external tank is jettisoned just before 

the system goes into orbit; the tank falls back through the atmosphere and is 
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  Figure 2.23  Orbital Sciences X-34 small reusable rocket booster. 
A. K. Noor, S. L. Vennera, “Future Space Transportation Systems and Launch,” Future 

Aeronautical and Space Systems, Progress in Astronautics and Aeronautics, vol. 172, 

1997. Copyright © 1997 by AIAA. All rights reserved. Used with permission.
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  Figure 2.24  The Space Shuttle. 
Michael D. Griffi n and James R. French. Space Vehicle Design. 2nd ed. Reston, VA. AIAA, 

2004. Copyright © 2004 by AIAA. All rights reserved. Used with permission.
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destroyed. The orbiter carries on with its mission in space. When the mission is 

complete, the orbiter reenters the atmosphere and glides back to earth, making a 

horizontal landing as a conventional unpowered airplane would. 

  Let us now examine the anatomy of the payload itself—the functioning 

spacecraft that may be a satellite in orbit around earth or a deep-space vehicle 

on its way to another planet or to the sun. As mentioned earlier, these spacecraft 

are point designs for different specifi c missions, and therefore it is diffi cult to 

defi ne a conventional confi guration for spacecraft. However, let us examine the 

anatomy of a few of these point designs, just to obtain some idea of their nature. 

 A communications satellite is shown in    Fig. 2.25 . This is the FLTSATCOM 

spacecraft produced by TRW for the U.S. Navy. It is placed in a geostationary 

orbit—an orbit in the plane of the equator with a period (time to execute one 

orbit) of 24 h. Hence, a satellite in geostationary orbit appears above the same 

location on earth at all times—a desirable feature for a communications satellite. 

Orbits and trajectories for space vehicles are discussed in Ch. 8. The construction 

is basically aluminum. The two hexagonal compartments (buses) mounted one 

above the other at the center of the satellite contain all the engineering subsys-

tems necessary for control and communications. The two antennas that project 

outward from the top of the bus are pointed at earth. The two solar array arms 

(solar panels) that project from the sides of the bus constantly rotate to remain 

  

  Figure 2.25  The TRW communications satellite FLTSATCOM. 
 (Source:  Courtesy of United States Navy ) 
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pointed at the sun at all times. The solar panels provide power to run the equip-

ment on the spacecraft. 

  The Mars  Pathfi nder  spacecraft is sketched in    Figs. 2.26  and    2.27 . This 

spacecraft successfully landed on the surface of Mars in 1997. The package that 

entered the Martian atmosphere is shown in an exploded view in    Fig. 2.27 . The 

aeroshell and backshell make up the aerodynamic shape of the entry body, with 

the lander packaged in a folded position inside. The function of this aerodynamic 

entry body is to create drag to slow the vehicle as it approaches the surface of 

Mars and to protect the package inside from aerodynamic heating during atmo-

spheric entry. The dynamics of a spacecraft entering a planetary atmosphere, and 

entry aerodynamic heating, are discussed in Ch. 8.    Figure 2.26  shows the  Path-
fi nder  lander after deployment on the Martian surface. The rover, solar panel, 

high-gain and low-gain antennas, and imager for taking the pictures transmitted 

from the surface are shown in    Fig. 2.26 . 

   Some spacecraft are designed simply to fl y by (rather than land on) plan-

ets in the solar system, taking pictures and transmitting detailed scientifi c data 

back to earth. Classic examples are the  Mariner 6  and  7,  two identical spacecraft 
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  Figure 2.26  The Mars  Pathfi nder  on the surface of Mars. 
M. K. Olsen et al., “Spacecraft for Solar System Exploration,” Future Aeronautical and Space. 

Progress in Astronautics and Aeronautics, vol. 172, 1997. AIAA. Copyright © 1997 by AIAA. 

All rights reserved. Used with permission
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launched in 1969 to study the surface and atmosphere of Mars. The confi gura-

tion of these spacecraft is shown in    Fig. 2.28 .  Mariner 6  fl ew past Mars with a 

distance of closest approach of 3429 km on July 28, 1969, and  Mariner 7  zipped 

by Mars with a distance of closest approach of 3430 km on August 5, 1969. Both 

sent back important information about the Martian atmospheric composition, 

pressure, and temperature and about Mars’s heavily cratered surface. Examining 

   Fig. 2.28 , we see the eight-sided magnesium centerbody supporting four rectan-

gular solar panels; the centerbody housed the control computer and sequencer 

designed to operate  Mariner  independently without intervention from ground 

control on earth. Attached to the centerbody are two television cameras for wide-

angle and narrow-angle scanning of the Martian surface. 

   Voyager 2,  arguably our most spectacular and successful deep-space probe, 

is shown in    Fig. 2.29 . Launched on August 20, 1977, this spacecraft was de-

signed to explore the outer planets of our solar system. In April 1979 it began 

to transmit images of Jupiter and its moons. Speeding on to Saturn,  Voyager  

provided detailed images of Saturn’s rings and moons in August 1981. Although 

these two planetary encounters fulfi lled  Voyager’s  primary mission, the mission 

planners at NASA’s Jet Propulsion Laboratory sent it on to Uranus, where clos-

est approach of 71,000 km occurred on January 24, 1986. From the data sent 

back to earth, scientists discovered 10 new moons of Uranus. After a midcourse 

correction,  Voyager  skimmed 4500 km over the cloud tops of Neptune and then 

headed on a course that would take it out of the solar system. After the Neptune 

encounter, NASA formally renamed the entire project the Voyager Interstellar 
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  Figure 2.27  Components of the Mars  Pathfi nder  space vehicle. 
M. K. Olsen et al., “Spacecraft for Solar System Exploration,” Future 

Aeronautical and Space. Progress in Astronautics and Aeronautics, vol. 

172, 1997. AIAA. Copyright © 1997 by AIAA. All rights reserved. 

Used with permission.
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Mission, and the spacecraft’s instruments were put on low power to conserve 

energy. In November 1998 most instruments were turned off, leaving only seven 

essential instruments still operating. Today  Voyager  is more than 10 billion km 

from earth—and still going. Although data from the remaining operating instru-

ments could be obtained as late as 2020, when power levels are expected to dip 

too low for reception on earth, Jet Propulsion Laboratory engineers fi nally turned 
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Figure 2.28  Two views of the  Mariner 6  and  7,  identical spacecraft that fl ew by Mars in 1969. 
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off the switches in early 2003;  Voyager  had provided more than enough pioneer-

ing scientifi c data. 

  Examining the confi guration of  Voyager 2  shown in    Fig. 2.29 , we see a 

classic spacecraft arrangement. Because of the multiplanet fl yby, the scien-

tifi c instruments shown in    Fig. 2.29  had to have an unobstructed view of each 

planet with the planet at any position with respect to the spacecraft. This led to 

the design of an articulated instrument platform shown on the right side of the 

spacecraft in    Fig. 2.29 . The high-gain antenna shown at the top in    Fig. 2.29  was 

pointed toward earth by maneuvering the  Voyager . 

 In summary, there are about as many different spacecraft confi gurations as 

there are different missions in space. Spacecraft fl y in the near vacuum of space 

where virtually no aerodynamic force, no lift or drag, is exerted on the vehicle. 

Hence, the spacecraft designer can make the external confi guration whatever he 

or she wants. This is not true for the airplane designer. The external confi gura-

tion of an airplane (fuselage, wings, etc.) dictates the aerodynamic lift and drag 

on the airplane, and the airplane designer must optimize the confi guration for 

effi cient fl ight through the atmosphere. Airplanes therefore share a much more 

common anatomy than spacecraft. The anatomy of spacecraft is all over the map. 

This section about the anatomy of spacecraft contains just a sampling of different 

confi gurations to give you a feeling for their design.   

  

  Figure 2.29   Voyager 2  spacecraft. 
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   2.8  HISTORICAL NOTE: THE NACA AND NASA 
  NASA—four letters that have meaning to virtually the entire world. Since its 

inception in 1958, the National Aeronautics and Space Administration has been 

front-page news, many times good news and sometimes not so good, with the 

Apollo space fl ight program to the moon, the Space Shuttle, the space station, 

and so on. Since 1958 NASA has also been in charge of developing new tech-

nology for airplanes—technology that allows us to fl y farther, faster, safer, and 

cheaper. In short, the professional world of aerospace engineering is driven by 

research carried out by NASA. Before NASA, there was the NACA, the National 

Advisory Committee for Aeronautics, which carried out seminal research pow-

ering technical advancements in fl ight during the fi rst half of the 20th century. 

Before we progress further in this book dealing with an introduction to fl ight, 

you should understand the historical underpinnings of NACA and NASA and 

appreciate the impact these two agencies have had on aerospace engineering. 

The NACA and NASA have been  fundamental  to the technology of fl ight. It is 

fi tting, therefore, that we place this particular historical note in the chapter deal-

ing with fundamental thoughts. 

 Let us pick up the thread of aeronautical engineering history from Ch. 1. 

After Orville and Wilbur Wright’s dramatic public demonstrations in the United 

States and Europe in 1908, there was a virtual explosion in aviation develop-

ments. In turn, this rapid progress had to be fed by new technical research in aero-

dynamics, propulsion, structures, and fl ight control. It is important to realize that 

then, as well as today, aeronautical research was sometimes expensive, always 

demanding in terms of intellectual talent, and usually in need of large testing 

facilities. Such research in many cases either was beyond the fi nancial resources 

of, or seemed too out of the ordinary for, private industry. Thus, the fundamental 

research so necessary to fertilize and pace the development of aeronautics in the 

20th century had to be established and nurtured by national governments. It is 

interesting to note that George Cayley himself (see Ch. 1), as long ago as 1817, 

called for “public subscription” to underwrite the expense of the development of 

airships. Responding about 80 years later, the British government set up a school 

for ballooning and military kite fl ying at Farnborough, England. By 1910 the 

Royal Aircraft Factory was in operation at Farnborough, with the noted Geoffrey 

de Havilland as its fi rst airplane designer and test pilot. This was the fi rst major 

government aeronautical facility in history. This operation was soon to evolve 

into the Royal Aircraft Establishment (RAE), which conducted viable aeronauti-

cal research for the British government for almost a century. 

 In the United States, aircraft development as well as aeronautical research 

languished after 1910. During the next decade, the United States embarrassingly 

fell far behind Europe in aeronautical progress. This set the stage for the U.S. 

government to establish a formal mechanism for pulling itself out of its aeronauti-

cal “dark ages.” On March 3, 1915, by an act of Congress, the National Advisory 

Committee for Aeronautics (NACA) was created, with an initial appropriation of 

$5000 per year for fi ve years. This was at fi rst a true committee, consisting of 12 
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distinguished members who were knowledgeable about aeronautics. Among the 

charter members in 1915 were Professor Joseph S. Ames of Johns Hopkins Uni-

versity (later to become president of Johns Hopkins) and Professor William F. 

Durand of Stanford University, both of whom were to make major impressions 

on aeronautical research in the fi rst half-century of powered fl ight. This advisory 

committee, NACA, was originally to meet annually in Washington, District of 

Columbia, on “the Thursday after the third Monday of October of each year,” 

with any special meetings to be called by the chair. Its purpose was to advise the 

government on aeronautical research and development and to bring some cohe-

sion to such activities in the United States. 

 The committee immediately noted that a single advisory group of 12 mem-

bers was not suffi cient to breathe life into U.S. aeronautics. Their insight is ap-

parent in the letter of submittal for the fi rst annual report of NACA in 1915, 

which contained the following passage:

  There are many practical problems in aeronautics now in too indefi nite a form to 

enable their solution to be undertaken. The committee is of the opinion that one of 

the fi rst and most important steps to be taken in connection with the committee’s 

work is the provision and equipment of a fl ying fi eld together with aeroplanes and 

suitable testing gear for determining the forces acting on full-sized machines in con-

strained and in free fl ight, and to this end the estimates submitted contemplate the 

development of such a technical and operating staff, with the proper equipment for 

the conduct of full-sized experiments. 

 It is evident that there will ultimately be required a well-equipped laboratory 

specially suited to the solving of those problems which are sure to develop, but 

since the equipment of such a laboratory as could be laid down at this time might 

well prove unsuited to the needs of the early future, it is believed that such provision 

should be the result of gradual development.   

 So the fi rst action of this advisory committee was to call for major govern-

ment facilities for aeronautical research and development. The clouds of war 

in Europe—World War I had started a year earlier—made their recommenda-

tions even more imperative. In 1917, when the United States entered the confl ict, 

 actions followed the committee’s words. We fi nd the following entry in the third 

annual NACA report: 

  To carry on the highly scientifi c and special investigations contemplated in the 

act establishing the committee, and which have, since the outbreak of the war, 

assumed greater importance, and for which facilities do not already exist, or exist 

in only a limited degree, the committee has contracted for a research laboratory 

to be erected on the Signal Corps Experimental Station, Langley Field, Hampton, 

Virginia.   

 The report goes on to describe a single, two-story laboratory building with 

physical, chemical, and structural testing laboratories. The building contract was 

for $80,900; actual construction began in 1917. Two wind tunnels and an en-

gine test stand were contemplated “in the near future.” The selection of a site 

4 mi north of Hampton, Virginia, was based on general health conditions and 
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the problems of accessibility to Washington and the larger industrial centers of 

the East, protection from naval attack, climatic conditions, and cost of the site. 

 Thus the Langley Memorial Aeronautical Research Laboratory was born. 

It was to remain the only NACA laboratory and the only major U.S. aeronauti-

cal laboratory of any type for the next 20 years. Named after Samuel Pierpont 

 Langley (see Sec. 1.7), it pioneered in wind tunnel and fl ight research. Of partic-

ular note is the airfoil and wing research performed at Langley during the 1920s 

and 1930s. We return to the subject of airfoils in Ch. 5, at which time the reader 

should note that the airfoil data included in App. D were obtained at Langley. 

With the work that poured out of the Langley laboratory, the United States took 

the lead in aeronautical development. High on the list of accomplishments, along 

with the systematic testing of airfoils, was the development of the NACA engine 

cowl (see Sec. 6.19), an aerodynamic fairing built around radial piston engines 

that dramatically reduced the aerodynamic drag of such engines. 

 In 1936 Dr. George Lewis, who was then NACA Director of  Aeronautical 

Research (a position he held from 1924 to 1947), toured major European labo-

ratories. He noted that NACA’s lead in aeronautical research was quickly dis-

appearing, especially in light of advances being made in Germany. As World 

War II drew close, NACA clearly recognized the need for two new  laboratory 

operations: an advanced aerodynamics laboratory to probe the mysteries of 

high-speed (even supersonic) fl ight and a major engine-testing laboratory. These 

needs eventually led to the construction of Ames Aeronautical Laboratory at 

Moffett Field, near Mountain View, California (authorized in 1939), and Lewis 

Engine  Research Laboratory at Cleveland, Ohio (authorized in 1941). Along 

with  Langley, these two new NACA laboratories again helped to propel the 

United States to the forefront of aeronautical research and development in the 

1940s and 1950s. 

 The dawn of the space age occurred on October 4, 1957, when Russia 

launched  Sputnik I,  the fi rst artifi cial satellite to orbit the earth. Swallowing its 

somewhat embarrassed technical pride, the United States moved quickly to com-

pete in the race for space. On July 29, 1958, by another act of Congress (Public 

Law 85-568), the National Aeronautics and Space Administration (NASA) was 

born. At this same moment, NACA came to an end. Its programs, people, and 

facilities were instantly transferred to NASA. However, NASA was a larger or-

ganization than just the old NACA; it absorbed in addition numerous Air Force, 

Navy, and Army projects for space. Within two years of its birth, NASA au-

thorized four new major installations: an existing Army facility at Huntsville, 

Alabama, renamed the George C. Marshall Space Flight Center; the Goddard 

Space Flight Center at Greenbelt, Maryland; the Manned Spacecraft Center (now 

the Johnson Spacecraft Center) in Houston, Texas; and the Launch Operations 

Center (now the John F. Kennedy Space Center) at Cape Canaveral, Florida. 

These, in addition to the existing but slightly renamed Langley, Ames, and Lewis 

research centers, were the backbone of NASA. Thus the aeronautical expertise 

of NACA formed the seeds for NASA, shortly thereafter to become one of the 

world’s most important forces in space technology. 
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 This capsule summary of the roots of NACA and NASA is included in this 

chapter on fundamental thoughts because it is virtually impossible for a student 

or practitioner of aerospace engineering in the United States not to be infl uenced 

or guided by NACA or NASA data and results. The extended discussion of air-

foils in Ch. 5 is a case in point. Because NACA and NASA are fundamental to 

the discipline of aerospace engineering, it is important to have some impression 

of the historical roots and tradition of these organizations. This author hopes that 

this short historical note provides such an impression. A much better impression 

can be obtained by taking a journey through the NACA and NASA technical 

reports in the library, going all the way back to the fi rst NACA report in 1915. In 

so doing, a panorama of aeronautical and space research through the years will 

unfold in front of you.    

    2.9  SUMMARY AND REVIEW 
 This chapter sets out the fundamental information necessary to launch our study of aero-

space engineering. Before an artist starts to paint a picture, he or she begins to mix vari-

ous color combinations of paint on a palette, which later will come together on a canvas 

or board to form a work of art. In this chapter, various ideas are laid out on our aerospace 

engineering palette that later will come together in our minds, on paper, or on the com-

puter to form an engineering work of art. 

 The only equation discussed in this chapter is the equation of state,    Eq. (2.3) , but this 

equation, which relates pressure, density, and temperature in a gas, is fundamental to any 

analysis of a high-speed fl ow. Also, its introduction in this chapter acted as a springboard 

for a lengthy discussion of units, a subject so important that you must master these ideas 

before making any reasonable quantitative calculations. 

 You are strongly advised always to use consistent units in your calculations; con-

sistent units naturally fi t nature’s equations in their pure physical form without the need 

for conversion factors in the equations. By using consistent units, you can always write 

Newton’s second law as F = ma, unencumbered by any g c  conversion factor. The equa-

tion F = ma is nature’s equation, and it uses consistent units. In contrast,  F =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1

gc

       ma is 

a manmade equation, made unnecessarily complicated by the use of nonconsistent units. 

If you use nature’s equations in their most basic form, and incorporate consistent units, 

your results are guaranteed to come out with consistent units, without your having to 

track the detailed units throughout the details of the calculations. A case in point is the 

equation of state given by    Eq. (2.3) ,

  p = ρRTρ              

This is nature’s equation; it contains no manmade conversion factors. If you feed num-

bers into this equation using consistent units, the results will be in consistent units. 

 Unfortunately, throughout the history of engineering over the past centuries, many 

manmade, nonconsistent units have surfaced, and dealing with these units while making 

calculations is frequently a challenge, especially if you want to come up with the correct 

answers. To avoid mistakes due to unit mismatches, I implore you to always use consis-

tent units in your equations. In this book, we employ two systems of consistent units: the 
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SI system, which uses N, kg, m, sec, and K as the units of force, mass, length, time, and 

temperature; and the English engineering system, which uses the lb, slug, ft, sec, and °R. 

The SI system is, by far, the most widely used system throughout the world, whereas the 

English engineering system, the mainstay in England and in the United States for the past 

century, is now being gradually replaced by the SI system even in these two countries. 

However, because a vast bulk of past engineering literature is in the English engineer-

ing system, and because some engineers still use that system, it is necessary for you to 

become bilingual and feel comfortable using both systems. That is why, in this book, 

you will fi nd some calculations using one system, and some calculations using the other. 

(There is some temptation in modern engineering textbooks to use the SI system exclu-

sively, but I feel that doing so in this book would be a disservice. Whether you are from a 

country that uses SI units exclusively, or from a country that continues, at least in part, to 

use the English engineering units, you must become familiar and comfortable with both 

systems to operate smoothly in this international world.) 

 Perhaps one of the most important fundamental thoughts introduced in this chapter 

is that regarding the source of all aerodynamic forces. As described in    Sec. 2.2 , whenever 

there is a fl ow of a gas or liquid over an object, the object experiences an aerodynamic 

force. This force is frequently resolved into two force components:  lift,  perpendicular to 

the upstream fl ow direction; and  drag,  parallel to the upstream fl ow direction.    Section 2.2  

emphasizes that in  all cases,  no matter what the confi guration and orientation of the 

 object of the fl ow, and no matter how slow or fast the fl ow is moving over the object, the 

net aerodynamic force on the object, and hence the lift and drag, is due  only  to the pres-

sure distribution and the shear stress distribution exerted over the total surface in contact 

with the fl ow. The pressure and shear stress distributions are the two hands with which 

nature reaches out and exerts a force on an object in a fl ow fi eld. This is it; there is nothing 

more. Understanding and appreciating this fact right from the start of your study of aero-

space engineering will save you a lot of grief and confusion in your future study and work. 

 A concise summary of the major ideas in this chapter is as follows: 

1.   The language of aerodynamics involves pressure, density, temperature, and 

velocity. An illustration of the velocity fi eld can be enhanced by drawing 

streamlines for a given fl ow.  

2.   The source of all aerodynamic forces on a body is the pressure distribution and the 

shear stress distribution over the surface.  

3.   A perfect gas is one in which intermolecular forces can be neglected. For a perfect 

gas, the equation of state that relates  p, ρ,  and  T  is

  p RTρR               (2.3)

 where  R  is the specifi c gas constant.  

4.   To avoid confusion, errors, and a number of unnecessary conversion factors in the basic 

equations, always use consistent units. In this book, SI units (newton, kilogram, meter, 

second) and the English engineering system (pound, slug, foot, second) are used.     
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  Problems  
  2.1   Consider the low-speed fl ight of the Space Shuttle as it is nearing a landing. If 

the air pressure and temperature at the nose of the shuttle are 1.2 atm and 300 K, 

respectively, what are the density and specifi c volume?  

  2.2   Consider 1 kg of helium at 500 K. Assuming that the total internal energy of 

helium is due to the mean kinetic energy of each atom summed over all the atoms, 

calculate the internal energy of this gas.  Note:  The molecular weight of helium is 4. 

Recall from chemistry that the molecular weight is the mass per mole of gas; that 

is, 1 mol of helium contains 4 kg of mass. Also, 1 mol of any gas contains 

6.02 × 10 23  molecules or atoms (Avogadro’s number).  

  2.3   Calculate the weight of air (in pounds) contained within a room 20 ft long, 15 ft 

wide, and 8 ft high. Assume standard atmospheric pressure and temperature of 

2116 lb/ft 2  and 59°F, respectively.  

  2.4   Comparing with the case of Prob. 2.3, calculate the percentage change in the total 

weight of air in the room when the air temperature is reduced to −10°F (a very 

cold winter day), assuming that the pressure remains the same at 2116 lb/ft 2 .  

  2.5   If 1500 lb  m   of air is pumped into a previously empty 900 ft 3  storage tank and the 

air temperature in the tank is uniformly 70°F, what is the air pressure in the tank in 

atmospheres?  

  2.6   In Prob. 2.5, assume that the rate at which air is being pumped into the tank is 

0.5 lb  m  /s. Consider the instant in time at which there is 1000 lb  m   of air in the tank. 

Assume that the air temperature is uniformly 50°F at this instant and is increasing 

at the rate of 1°F/min. Calculate the rate of change of pressure at this instant.  

2.7   Assume that, at a point on the wing of the Concorde supersonic transport, the air 

temperature is −10°C and the pressure is 1.7 × 10 4  N/m 2 . Calculate the density at 

this point.  

  2.8   At a point in the test section of a supersonic wind tunnel, the air pressure and 

temperature are 0.5 × 10 5  N/m 2  and 240 K, respectively. Calculate the specifi c volume.  

  2.9   Consider a fl at surface in an aerodynamic fl ow (say a fl at sidewall of a wind 

tunnel). The dimensions of this surface are 3 ft in the fl ow direction (the  x  direction) 

and 1 ft perpendicular to the fl ow direction (the  y  direction). Assume that the 

pressure distribution (in pounds per square foot) is given by  p  = 2116 − 10 x  and is 

independent of  y . Assume also that the shear stress distribution (in pounds per square 

foot) is given by τ  w   = 90/( x  + 9) 1/2  and is independent of  y  as shown in fi gure below. 

In these expressions,  x  is in feet, and  x  = 0 at the front of the surface. Calculate the 

magnitude and direction of the net aerodynamic force on the surface.  

τw (x)

y
p (x)xFlow

1 ft

3 ft
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2.10   A pitcher throws a baseball at 85 miles per hour. The fl ow fi eld over the baseball 

moving through the stationary air at 85 miles per hour is the same as that over a 

stationary baseball in an airstream that approaches the baseball at 85 miles per 

hour. (This is the principle of wind tunnel testing, as will be discussed in Ch. 4.) 

This picture of a stationary body with the fl ow moving over it is what we adopt 

here. Neglecting friction, the theoretical expression for the fl ow velocity over the 

surface of a sphere (like the baseball) is  V V3
2 ∞VV sin �       . Here V ∞  is the airstream 

velocity (the free-stream velocity far ahead of the sphere). An arbitrary point on 

the surface of the sphere is located by the intersection of the radius of the sphere 

with the surface, and θ  is the angular position of the radius measured from a 

line through the center in the direction of the free stream (i.e., the most forward 

and rearward points on the spherical surface correspond to θ = 0° and 180°, 

respectively). (See fi gure below.) The velocity  V  is the fl ow velocity at that 

arbitrary point on the surface. Calculate the values of the minimum and maximum 

velocity at the surface and the location of the points at which these occur.  

Flow

v∞ = 85 mi/hr

π
θ

2.11   Consider an ordinary, helium-fi lled party balloon with a volume of 2.2 ft 3 . The 

lifting force on the balloon due to the outside air is the net resultant of the pressure 

distribution exerted on the exterior surface of the balloon. Using this fact, we 

can derive Archimedes’ principle, namely that the upward force on the balloon is 

equal to the weight of the air displaced by the balloon. Assuming that the balloon 

is at sea level, where the air density is 0.002377 slug/ft 3 , calculate the maximum 

weight that can be lifted by the balloon.  Note:  The molecular weight of air is 28.8 

and that of helium is 4.  

  2.12   In the four-stroke, reciprocating, internal combustion engine that powers most 

automobiles as well as most small general aviation aircraft, combustion of the 

fuel–air mixture takes place in the volume between the top of the piston and 

the top of the cylinder. (Reciprocating engines are discussed in Ch. 9.) The gas 

mixture is ignited when the piston is essentially at the end of the compression 

stroke (called  top dead center ), when the gas is compressed to a relatively high 

pressure and is squeezed into the smallest volume that exists between the top 

of the piston and the top of the cylinder. Combustion takes place rapidly before 

the piston has much time to start down on the power stroke. Hence, the volume 

of the gas during combustion stays constant; that is, the combustion process is 

at  constant volume.  Consider the case where the gas density and temperature at 

the instant combustion begins are 11.3 kg/m 3  and 625 K, respectively. At the 

end of the constant-volume combustion process, the gas temperature is 4000 K. 

Calculate the gas pressure at the end of the constant-volume combustion. 

Assume that the specifi c gas constant for the fuel–air mixture is the same as 

that for pure air.  
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  2.13   For the conditions of Prob. 2.12, calculate the force exerted on the top of 

the piston by the gas at ( a ) the beginning of combustion and ( b ) the end of 

combustion. The diameter of the circular piston face is 9 cm.  

  2.14   In a gas turbine jet engine, the pressure of the incoming air is increased by 

fl owing through a compressor; the air then enters a combustor that looks vaguely 

like a long can (sometimes called the  combustion can ). Fuel is injected in to the 

combustor and burns with the air, and then the burned fuel–air mixture exits the 

combustor at a higher temperature than the air coming into the combustor. (Gas 

turbine jet engines are discussed in Ch. 9.) The pressure of the fl ow through 

the combustor remains relatively constant; that is, the combustion process is at 

 constant pressure . Consider the case where the gas pressure and temperature 

entering the combustor are 4 × 10 6  N/m 2  and 900 K, respectively, and the gas 

temperature exiting the combustor is 1500 K. Calculate the gas density at ( a ) the 

inlet to the combustor and ( b ) the exit of the combustor. Assume that the specifi c 

gas constant for the fuel–air mixture is the same as that for pure air.  

  2.15   Throughout this book, you will frequently encounter velocities in terms of miles 

per hour. Consistent units in the English engineering system and the SI are ft/sec 

and m/sec, respectively. Consider a velocity of 60 mph. What is this velocity in 

ft/sec and m/sec?  

  2.16   You might fi nd it convenient to remember the results from Prob. 2.15. If you do, 

then you can almost instantly convert velocities in mph to ft/sec or m/sec. For 

example, using just the results of Prob. 2.15 for a velocity of 60 mph, quickly 

convert the maximum fl ight velocity of the F-86H (shown in    Fig. 2.15 ) of 

692 mph at sea level to ft/sec and m/sec.  

  2.17   Consider a stationary, thin, fl at plate with area of 2 m 2  for each face oriented 

perpendicular to a fl ow. The pressure exerted on the front face of the plate (facing 

into the fl ow) is 1.0715 × 10 5  N/m 2 , and is constant over the face. The pressure 

exerted on the back face of the plate (facing away from the fl ow) is 1.01 × 10 5  N/m 2 , 

and is constant over the face. Calculate the aerodynamic force in pounds on the 

plate.  Note:  The effect of shear stress is negligible for this case.  

  2.18   The weight of the North American P-51 Mustang shown in    Fig. 2.12b  is 10,100 lb 

and its wing planform area is 233 ft 2 . Calculate the wing loading in both English 

engineering and SI units. Also, express the wing loading in terms of the 

nonconsistent unit kg  f  .  
  2.19   The maximum velocity of the P-51 shown in    Fig. 2.12b  is 437 mph at an altitude of 

25,000 ft. Calculate the velocity in terms of km/hr and the altitude in terms of km.  

  2.20   The velocity of the Space Shuttle (   Fig. 2.24 ) at the instant of burnout of the rocket 

booster is 26,000 ft/sec. What is this velocity in km/sec?  

  2.21   By examining the scale drawing of the F4U-1D Corsair in    Fig. 2.16 , obtain 

the length of the fuselage from the tip of the propeller hub to the rear tip of the 

fuselage, and also the wingspan (linear distance between the two wing tips), 

in meters.              

2.22 The X-15 (see Fig. 5.92) was a rocketpowered research airplane designed to probe 

the mysteries of hypersonic fl ight. In 2014, the X-15 still holds the records for the 

fastest and highest fl ying piloted airplane (the Space Shuttle and Spaceship One, 

in this context, are space ships, not airplanes). On August 22, 1963, pilot Joseph 
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Walker set the unoffi cial world altitude record of 354,200 feet. On October 3, 

1967, pilot William J. Knight set the world speed record of 4520 mph (Mach 6.7) 

(a) Convert Walker’s altitude record to meters and kilometers.

(b) Convert Knight’s speed record to meters per second.

2.23 The X-15 is air-launched from under the wing of a B-52 mother ship. Immediately 

after launch, the pilot starts the XLR-99 rocket engine, which provides 57,000 

lb of thrust. For the fi rst moments, the X-15 accelerates in horizontal fl ight. 

The gross weight of the airplane at the start is 34,000 lb. Calculate the initial 

acceleration of the airplane.

2.24 Frequently the acceleration of high-speed airplanes and rocket-powered space 

vehicles is quoted in “g’s,” which is the acceleration relative to the acceleration of 

gravity. For example, an acceleration of 32.2 ft/sec2 is one “g.” From the results 

of Problem 2.23, calculate the number of g’s experienced by the X-15 pilot during 

the initial acceleration.

2.25 In the United States, the thrust of a jet engine is usually quoted in terms of pounds 

of thrust. Elsewhere, the thrust is generally stated in terms of kilo-newtons. The 

thrust of the Rolls-Royce Trent 900 engine turbofan is rated at 373.7 kN. What is 

the thrust in pounds?

2.26 The fi rst stage of the Saturn rocket booster used to send the Apollo astronauts to 

the moon was powered by fi ve F-1 rocket engines. The thrust of rocket engines is 

sometimes given in terms of kg force. For example,  the thrust of the F-1 engine is 

sometimes quoted as 690,000 kg. Calculate the F-1 thrust in the consistent units of 

(a) newtons, and (b) pounds.
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     3 C H A P T E R  

 The Standard Atmosphere  

  Sometimes gentle, sometimes capricious, sometimes awful, never the same for 

two moments together; almost human in its passions, almost spiritual in its tenderness, 

almost divine in its infi nity. 

  John Ruskin,  The Sky  

  A
 erospace vehicles can be divided into two basic categories: atmospheric 

vehicles such as airplanes and helicopters, which always fl y within the 

sensible atmosphere; and space vehicles such as satellites, the Apollo 

lunar vehicle, and deep-space probes, which operate outside the sensible atmo-

sphere. However, space vehicles do encounter the earth’s atmosphere during 

their blastoffs from the earth’s surface and again during their reentries and re-

coveries after completion of their missions. If the vehicle is a planetary probe, it 

may encounter the atmospheres of Venus, Mars, Jupiter, and so forth. Therefore, 

during the design and performance of any aerospace vehicle, the properties of the 

atmosphere must be taken into account. 

 The earth’s atmosphere is a dynamically changing system, constantly in a 

state of fl ux. The pressure and temperature of the atmosphere depend on altitude, 

location on the globe (longitude and latitude), time of day, season, and even 

solar sunspot activity. To take all these variations into account when consider-

ing the design and performance of fl ight vehicles is impractical. Therefore, a 

 standard atmosphere  is defi ned in order to relate fl ight tests, wind tunnel results, 

and  general airplane design and performance to a common reference. The stan-

dard atmosphere gives mean values of pressure, temperature, density, and other 
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properties as functions of altitude; these values are obtained from experimen-

tal balloon and sounding-rocket measurements combined with a mathematical 

model of the atmosphere. To a reasonable degree, the standard atmosphere re-

fl ects average atmospheric conditions, but this is not its main importance. Rather, 

its main function is to provide tables of common reference conditions that can be 

used in an organized fashion by aerospace engineers everywhere. The purpose 

of this chapter is to give you some feeling for what the standard atmosphere is all 

about and how it can be used for aerospace vehicle analyses. 

  We might pose this rather glib question:  Just what is the standard atmo-
sphere?  A glib answer is this:  The tables in Apps. A and B at the end of this book.  
Take a look at these two appendixes. They tabulate the temperature, pressure, 

and density for different altitudes. Appendix A is in SI units, and App. B is in 

English engineering units. Where do these numbers come from? Were they sim-

ply pulled out of thin air by somebody in the distant past? Absolutely not. The 

numbers in these tables were obtained on a rational, scientifi c basis. One purpose 

of this chapter is to develop this rational basis. Another purpose is to show you 

how to use these tables. 

 The road map for this chapter is given in    Fig. 3.1 . We fi rst run down the left 

side of the road map, establishing some defi nitions and an equation from basic 

physics (the hydrostatic equation) that are necessary tools for constructing the 

numbers in the standard atmosphere tables. Then we move to the right side of the 

road map and discuss how the numbers in the tables are actually obtained. We go 

through the construction of the standard atmosphere in detail. Finally, we defi ne 

some terms that are derived from the numbers in the tables—the pressure, den-

sity, and temperature altitudes—that are in almost everyday use in aeronautics. 

  Note that the details of this chapter are focused on the determination of the 

standard atmosphere for earth. The tables in Apps. A and B are for the earth’s 

atmosphere. However, the physical principles and techniques discussed in this 

 Before you jump into a strange water pond or dive 

into an unfamiliar swimming pool, there are a few 

things you might like to know. How cold is the 

water? How clean is it? How deep is the water? 

These are things that might infl uence your swimming 

performance in the water or even your decision to go 

swimming at all. Similarly, before we can study the 

performance of a fl ight vehicle speeding through the 

air, we need to know something about the proper-

ties of the air itself. Consider an airplane fl ying in 

the atmosphere, or a space vehicle blasting through 

the atmosphere on its way up to space, or a vehicle 

coming back from space through the atmosphere. In 

all these cases, the performance of the fl ight vehicle 

is going to be dictated in part by the properties of the 

atmosphere—the temperature, density, and pressure 

of the atmosphere. 

 What are the properties of the atmosphere? We 

know they change with altitude, but how do they 

change? How do we fi nd out? These important ques-

tions are addressed in this chapter. Before you can go 

any further in your study of fl ight vehicles, you need 

to know about the atmosphere. Here is the story—

please read on. 

 PREVIEW BOX 
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chapter also apply to constructing model atmospheres for other planets, such 

as Venus, Mars, and Jupiter. The applicability of this chapter thus reaches far 

beyond the earth. 

 It should be mentioned that several different standard atmospheres exist, 

compiled by different agencies at different times, each using slightly different 

experimental data in the models. For all practical purposes, the differences are 

insignifi cant below 30 km (100,000 ft), which is the domain of contemporary 

airplanes. A standard atmosphere in common use is the 1959 ARDC model 

atmosphere. (ARDC stands for the U.S. Air Force’s previous Air Research and 

Development Command, which is now the Air Force Research Laboratory.) 

The atmospheric tables used in this book are taken from the 1959 ARDC model 

atmosphere.  

    3.1  DEFINITION OF ALTITUDE 
  Intuitively, we all know the meaning of  altitude . We think of it as the distance 

above the ground. But like so many other general terms, it must be more precisely 

defi ned for quantitative use in engineering. In fact, in the following  sections we 

defi ne and use six different altitudes: absolute, geometric, geopotential, pressure, 

temperature, and density altitudes. 

 First imagine that we are at Daytona Beach, Florida, where the ground is at 

sea level. If we could fl y straight up in a helicopter and drop a tape measure to 

the ground, the measurement on the tape would be, by defi nition, the  geometric 
altitude h G   —that is, the geometric height above sea level. 

 If we bored a hole through the ground to the center of the earth and extended 

our tape measure until it hit the center, then the measurement on the tape would 

be, by defi nition, the  absolute altitude h a  . If  r  is the radius of the earth, then 

 h a   =  h G   +  r . This is illustrated in    Fig. 3.2 . 

  The absolute altitude is important, especially for space fl ight, because the 

local acceleration of gravity  g  varies with  h a  . From Newton’s law of gravitation, 

 g  varies inversely as the square of the distance from the center of the earth. By 

The standard atmosphere

Some definitions

Some physics: The
hydrostatic equation

Absolute altitude

Geometric altitude

Geopotential altitude

Construction of the standard
atmosphere: Variation
of p, T, and r with altitude

Definition of pressure, density,
and temperature altitudes

  

  Figure 3.1  Road map for Chapter 3. 
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letting  g 0   be the gravitational acceleration at  sea level,  the local gravitational 

acceleration  g  at a given absolute altitude  h a   is

  g g
r

h
g

r

r ha Gr h
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              (3.1)

The variation of  g  with altitude must be taken into account when you are deal-

ing with mathematical models of the atmosphere, as discussed in the following 

sections.   

   3.2  HYDROSTATIC EQUATION 
  We will now begin to piece together a model that will allow us to calculate 

variations of  p , ρ, and  T  as functions of altitude. The foundation of this model 

is the hydrostatic equation, which is nothing more than a force balance on an 

element of fl uid at rest. Consider the small stationary fl uid element of air shown 

in    Fig. 3.3 . We take for convenience an element with rectangular faces, where 

the top and bottom faces have sides of unit length and the side faces have an 

infi nitesimally small height  dh G  . On the bottom face, the pressure  p  is felt, which 

gives rise to an upward force of  p × 1 × 1  exerted on the fl uid element. The top 

face is slightly higher in altitude (by the distance  dh G  ); and because pressure 

varies with altitude, the pressure on the top face will differ slightly from that on 

the bottom face by the infi nitesimally small value  dp . Hence, on the top face the 

pressure  p + dp  is felt. It gives rise to a downward force of  (p + dp)(1)(1)  on the 

  

  Figure 3.2  Defi nition of altitude. 
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fl uid element. Moreover, the volume of the fl uid element is (1)(1)  dh G   =  dh G  ; and 

because ρ is the mass per unit volume, the mass of the fl uid element is simply 

ρ(1)(1) dh   G   = ρ  dh   G  . If the local acceleration of gravity is  g , then the weight of 

the fl uid element is  g ρ  dh   G  , as shown in    Fig. 3.3 . The three forces shown in 

   Fig. 3.3 —pressure forces on the top and bottom, and the weight—must balance 

because the fl uid element is not moving. Hence

  p p dp g dhG= +p + ρ              

 

Thus  dp g dhG= −ρ               (3.2)

   Equation (3.2)  is the  hydrostatic equation  and applies to any fl uid of density ρ ; 

for example, water in the ocean as well as air in the atmosphere. 

  Strictly speaking,    Eq. (3.2)  is a differential equation; that is, it relates an 

infi nitesimally small change in pressure  dp  to a corresponding infi nitesimally 

small change in altitude  dh G  , where in the language of differential calculus,  dp  

and  dh G   are differentials. Also note that  g  is a variable in    Eq. (3.2) ;  g  depends on 

 h G   as given by    Eq. (3.1) . 

 To be made useful,    Eq. (3.2)  should be integrated to give what we want: 

the variation of pressure with altitude  p  =  p ( h   G  ). To simplify the integration, we 

make the  assumption  that  g  is constant throughout the atmosphere, equal to its 

value at sea level  g 0  . This is something of a historical convention in aeronautics. 

  

  Figure 3.3  Force diagram for the hydrostatic equation. 
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 Hence we can write    Eq. (3.2)  as

dp g dh= −ρ 0               (3.3)

However, to make    Eqs. (3.2)  and    (3.3)  numerically identical, the altitude  h  in 

   Eq. (3.3)  must be slightly different from  h   G   in    Eq. (3.2)  to compensate for the fact 

that  g  is slightly different from  g 0  . Suddenly we have defi ned a new altitude  h , 

which is called the  geopotential altitude  and which differs from the geomet-

ric altitude. To better understand the concept of geopotential altitude, consider 

a given geometric altitude,  h   G  , where the value of pressure is  p . Let us now 

increase the geometric altitude by an infi nitesimal amount,  dh   G  , such that the 

new geometric altitude is  h   G   +  dh   G  . At this new altitude, the pressure is  p  +  dp , 

where the value of  dp  is given by    Eq. (3.2) . Let us now put this  same value  of  dp
in    Eq. (3.3) . Dividing    Eq. (3.3)  by    (3.2) , we have

1 0=
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⎝⎝
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⎠⎟
⎞⎞
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⎞
⎠⎟
⎞⎞
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g

g

dh

dhG

Clearly, because  g 0   and  g  are different,  dh  and  dh   G   must be different; that is, the 

numerical values of  dh  and  dh   G   that correspond to the  same  change in pressure, 

 dp , are different. As a consequence, the numerical values of  h  and  h   G   that corre-

spond to the same actual physical location in the atmosphere are different values. 

 For the practical mind, geopotential altitude is a “fi ctitious” altitude, defi ned 

by    Eq. (3.3)  for ease of future calculations. However, many standard atmosphere 

tables quote their results in terms of geopotential altitude, and care must be taken 

to make the distinction. Again, geopotential altitude can be thought of as that fi cti-

tious altitude that is physically compatible with the assumption of  g  = const =  g  0 .   

   3.3   RELATION BETWEEN GEOPOTENTIAL 
AND GEOMETRIC ALTITUDES 

  We still seek the variation of  p  with geometric altitude  p  =  p ( h   G  ). However, our 

calculations using    Eq. (3.3)  will give, instead,  p  =  p ( h ). Therefore, we need to 

relate  h  to  h   G  , as follows. Dividing    Eq. (3.3)  by    (3.2) , we obtain

  1 0= g

g

dh

dhG

             

or  dh
g

g
dhG=

0

              (3.4)

We substitute    Eq. (3.1)  into    (3.4) :

  dh
r

h
dh

G
G=

2

2( )r hG

              (3.5)

By convention, we set both  h  and  h   G   equal to zero at sea level. Now consider a 

given point in the atmosphere. This point is at a certain geometric altitude  h   G  , and 
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associated with it is a certain value of  h  (different from  h   G  ). Integrating    Eq. (3.5)  

between sea level and the given point, we have
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Thus  h
r

r h
h

G
G=               (3.6)

where  h  is geopotential altitude and  h   G   is geometric altitude. This is the desired 

relation between the two altitudes. When we obtain relations such as  p  =  p ( h ), we 

can use    Eq. (3.6)  to subsequently relate  p  to  h   G  . 

 A quick calculation using    Eq. (3.6)  shows that there is little difference 

between  h  and  h   G   for low altitudes. For such a case,  h   G   <<  r ,  r /( r  +  h   G  ) ≈ 1; hence 

 h  ≈  h   G  . Putting in numbers,  r  = 6.356766 × 10 6  m (at a latitude of 45°), and if  h   G   = 

7 km (about 23,000 ft), then the corresponding value of  h  is, from    Eq. (3.6) ,  h  = 

6.9923 km—about 0.1 of 1 percent difference! Only at altitudes above 65 km 

(213,000 ft) does the difference exceed 1 percent. (Note that 65 km is an altitude 

at which aerodynamic heating of NASA’s Space Shuttle becomes important dur-

ing reentry into the earth’s atmosphere from space.)   

   3.4   DEFINITION OF THE STANDARD 
ATMOSPHERE 

  We are now in a position to obtain  p ,  T , and ρ as functions of  h  for the stan-

dard atmosphere. The keystone of the standard atmosphere is a  defi ned  variation 

of  T  with altitude, based on experimental evidence. This variation is shown in 

   Fig. 3.4 . Note that it consists of a series of straight lines, some vertical (called 

the constant-temperature, or  isothermal,  regions) and others inclined (called 

the  gradient  regions). Given  T  =  T ( h ) as  defi ned  by    Fig. 3.4 , then  p  =  p ( h ) and 

ρ = ρ ( h ) follow  from the laws of physics, as shown in the following. 

  First consider again    Eq. (3.3) :

  dp g dh= −ρ 0              

Divide by the equation of state, Eq. (2.3):

  
dp

p

g dh

RT

g

RT
dh= = −=ρ

ρR
0 0dh g

              (3.7)

Consider fi rst the isothermal (constant-temperature) layers of the standard atmo-

sphere, as given by the vertical lines in    Fig. 3.4  and sketched in    Fig. 3.5 . The 

temperature, pressure, and density at the base of the isothermal layer shown in 
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   Fig. 3.5  are  T 1  ,  p 1  , and ρ 1 , respectively. The base is located at a given geopo-

tential altitude  h 1  . Now consider a given point in the isothermal layer above the 

base, where the altitude is  h . We can obtain the pressure  p  at  h  by integrating 

   Eq. (3.7)  between  h 1   and  h :

  
dp

p

g

RT
dh

p

p

h

h

1 1p RT h∫ ∫
dp

p

g

RTp

p

h1 p RT h

0               (3.8)

  

  Figure 3.4  Temperature distribution in the standard atmosphere. 
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Note that  g 0  ,  R , and  T  are constants that can be taken outside the integral. (This 

clearly demonstrates the simplifi cation obtained by assuming that  g  =  g  0  = const, 

and therefore dealing with geopotential altitude  h  in the analysis.) Performing 

the integration in    Eq. (3.8) , we obtain

ln
p

p

g

RT1

0= ( )h h1− (h

or  
p

p1

= [ ]( ) ( )e ( ]) (−[ ]( ) ((( ]) (]) (( ]) (               (3.9)

From the equation of state,

p

p

T

T1T1 1 1TT
= =ρT

ρ
ρ
ρ

Thus   
ρ
ρ1

= −[ ]0 ( ) ( )1e 0 ( ]) (
              (3.10)

   Equations (3.9)  and    (3.10)  give the variation of  p  and ρ versus geopotential alti-

tude for the isothermal layers of the standard atmosphere. 

  Considering the gradient layers, as sketched in    Fig. 3.6 , we fi nd that the 

temperature variation is linear and is geometrically given as

  
T T

h h

dT

dh
a≡1TT

1

=              

where  a  is a  specifi ed  constant for each layer obtained from the defi ned tempera-

ture variation in    Fig. 3.4 . The value of  a  is sometimes called the  lapse rate  for 

the gradient layers.

  

  Figure 3.5  Isothermal layer. 
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a
dT

dh
≡

Thus   dh
a

dT= 1

We substitute this result into    Eq. (3.7) :

dp

p

g

aR

dT

T
= − 0               (3.11)

Integrated between the base of the gradient layer (shown in    Fig. 3.6 ) and some 

point at altitude  h , also in the gradient layer,    Eq. (3.11)  yields

dp

p

g

aR

dT

T

p

p

g

aR

T

T

p

p

T

T

1 1p aR TT

1

0

1TT

∫ ∫
dp

p

g

aRp

p

T1 p aR T

0

= −ln ln
             

Thus   
p

p

T

T

g

1 1TT

0

=
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− ( )aR/

              (3.12)

Figure 3.6  Gradient layer. 
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From the equation of state,

  
p

p

T

T1T1 1TT
= ρT

ρ              

Hence    Eq. (3.12)  becomes

ρ
ρ

ρ
ρ

Tρρ
T

T

T

T

T

g

g aR

1 1TT 1TT

1 1TT

0

0
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⎞
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⎞
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( )aR

(
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or   
ρ
ρ1 1

10

=
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

− +
T

T1

g a00 R{[ /( )] }

              (3.13)

Recall that the variation of  T  is linear with altitude and is given the specifi ed 

relation

T T a+T ( )h h1 a+TT (h h               (3.14)

   Equation (3.14)  gives  T  =  T ( h ) for the gradient layers; when it is plugged into 

   Eq. (3.12) , we obtain  p  =  p ( h ); similarly, from    Eq. (3.13)  we obtain ρ = ρ ( h ).  

 Now we can see how the standard atmosphere is pieced together. Looking 

at    Fig. 3.4 , start at sea level ( h  = 0), where standard sea level values of pressure, 

density, and temperature— p   s  , ρ s , and  T   s  , respectively—are

  

ps

s

=
=

1 01325 10 2116

1 2250

5 2 2. .01325 10 2116

.

× N/m l= 2116 22 .2116 b/ft

kg/mρ 3 333 0 002377

288 16 518 69

=
= 288 16 °

.

. .16 518

slug/ft

K R518 69= °.518TsTT

             

These are the base values for the fi rst gradient region. Use    Eq. (3.14)  to 

obtain values of  T  as a function of  h  until  T  = 216.66 K, which occurs at  h  = 

11.0 km. With these values of  T , use    Eqs. (3.12)  and    (3.13)  to obtain the corre-

sponding values of  p  and ρ in the fi rst gradient layer. Next, starting at  h  = 11.0 km 

as the base of the fi rst isothermal region (see    Fig. 3.4 ), use    Eqs. (3.9)  and    (3.10)  

to calculate values of  p  and ρ versus  h , until  h  = 25 km, which is the base of the 

next gradient region. In this manner, with    Fig. 3.4  and    Eqs. (3.9) ,    (3.10) , and 

   (3.12)  to    (3.14) , we can construct a table of values for the standard atmosphere. 

 Such a table is given in App. A for SI units and App. B for English engineer-

ing units. Look at these tables carefully and become familiar with them. They 

 are  the standard atmosphere. The fi rst column gives the geometric altitude, and 

the second column gives the corresponding geopotential altitude obtained from 
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   Eq. (3.6) . The third through fi fth columns give the corresponding standard values 

of temperature, pressure, and density, respectively, for each altitude, obtained 

from the previous discussion. 

  We emphasize again that the standard atmosphere is a reference atmosphere 

only and certainly does not predict the actual atmospheric properties that may exist 

at a given time and place. For example, App. A says that at an altitude  (geometric) 

of 3 km,  p  = 0.70121 × 10 5  N/m 2 ,  T  = 268.67 K, and ρ = 0.90926 kg/m 3 . In reality, 

situated where you are, if you could right now levitate yourself to 3 km above sea 

level, you would most likely feel a  p ,  T , and ρ different from the values obtained 

from App. A. The standard atmosphere allows us only to reduce test data and 

calculations to a convenient, agreed-upon reference, as will be seen in subsequent 

sections of this book. 

     Comment: Geometric and Geopotential Altitudes Revisited   We now can 

appreciate better the meaning and signifi cance of the geometric altitude,  h   G  , 

and the geopotential altitude,  h . The variation of the properties in the standard 

 atmosphere are calculated from    Eqs. (3.9)  to    (3.14) . These equations are derived 

using the simplifying assumption of a constant value of the acceleration of grav-

ity equal to its value at sea level; that is,  g  = constant =  g  0 . Consequently, the alti-

tude that appears in these equations is, by defi nition, the geopotential altitude,  h . 

Examine these equations again—you see  g 0   and  h  appearing in these equations, 

not  g  and  h   G  . The simplifi cation obtained by assuming a constant value of  g  is the 

 sole reason  for defi ning the geopotential altitude. This is the only use of geopo-

tential altitude we will make in this book—for the calculation of the numbers that 

appear in Apps. A and B. Moreover, because  h  and  h   G   are related via    Eq. (3.6) , 

we can always obtain the geometric altitude,  h   G  , that corresponds to a specifi ed 

value of geopotential altitude,  h . The geometric altitude,  h   G  , is the actual height 

above sea level and therefore is more practical. That is why the fi rst column in 

Apps. A and B is  h   G  , and the entries are in even intervals of  h   G  . The second col-

umn gives the corresponding values of  h , and these are the values used to gener-

ate the corresponding numbers for  p , ρ, and  T  via    Eqs. (3.9)  to    (3.14) . 

 DESIGN BOX 

 The fi rst step in the design process of a new aircraft 

is the determination of a set of  specifi cations,  or  re-
quirements,  for the new vehicle. These specifi cations 

may include such performance aspects as a stipulated 

maximum velocity at a given altitude or a stipulated 

maximum rate-of-climb at a given altitude. These 

performance parameters depend on the aerodynamic 

characteristics of the vehicle, such as lift and drag. In 

turn, the lift and drag depend on the properties of the 

atmosphere. When the specifi cations dictate certain 

performance at a given altitude, this altitude is taken 

to be the standard altitude in the tables. Therefore, in 

the preliminary design of an airplane, the designer 

uses the standard atmosphere tables to defi ne the pres-

sure, temperature, and density at the given altitude. 

In this fashion, many calculations made during the 

preliminary design of an airplane contain information 

from the standard altitude tables. 
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 In the subsequent chapters in this book, any dealings with altitude involving 

the use of the standard atmosphere tables in Apps. A and B will be couched in 

terms of the geometric altitude,  h   G  . For example, if reference is made to a “stan-

dard altitude” of 5 km, it means a geometric altitude of  h   G   = 5 km. Now that we 

have seen how the standard atmosphere tables are generated, after the present 

chapter we will have no reason to deal with geopotential altitude. 

 You should now have a better understanding of the statement made at the 

end of    Sec. 3.2  that geopotential altitude is simply a “fi ctitious” altitude, defi ned 

by    Eq. (3.3)  for the single purpose of simplifying the subsequent derivations. 

   EXAMPLE 3.1  

 Calculate the standard atmosphere values of  T ,  p , and ρ at a geopotential altitude of 14 km. 

■ Solution 
 Remember that  T  is a  defi ned  variation for the standard atmosphere. Hence, we can 

 immediately refer to    Fig. 3.4  and fi nd that at  h  = 14 km,

T = 216 66. K66              

To obtain  p  and ρ, we must use    Eqs. (3.9)  to    (3.14) , piecing together the different regions 

from sea level up to the given altitude with which we are concerned. Beginning at sea 

level, the fi rst region (from    Fig. 3.4 ) is a gradient region from  h  = 0 to  h  = 11.0 km. The 

lapse rate is

  a
dT

dh
= = =216 66 288 16

11 0 0
6 5

. .66 288

.

− − K/km              

or   a = −0 0065. K0065 /m              

Therefore, using    Eqs. (3.12)  and    (3.13) , which are for a gradient region and where the 

base of the region is sea level (hence  p  1  = 1.01 × 10 5  N/m 2  and ρ 1  = 1.23 kg/m 3 ), we fi nd 

that at  h  = 11.0 km

  p p
T

T

g
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ( )⎛
⎝
⎛⎛⎛⎛
⎝⎝
⎛⎛⎛⎛

− ( )aR

1
1TT

× 216 66

288 16

/
.

.
⎞⎞
⎠
⎞⎞⎞⎞⎞
⎠⎠
⎞⎞⎞⎞⎞⎞⎞

− ( )9 8 0 0065/8 [ .−0 ]
             

where  g  0  = 9.8 m/s 2  in SI units. Hence  p  (at  h  = 11.0 km) = 2.26 × 10 4  N/m 2 .

ρ ρ ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
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= ( )⎛

− ( )+

1
1

1
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T
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g (0[ /g0 ]

.

.⎝⎝
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⎝⎝⎝⎝
⎛⎛⎛⎛⎛⎛⎛ ⎞

⎠
⎞⎞⎞⎞
⎠⎠
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=

− − +{ . /[ . ( )] }

.

8. 0 65 287 1

0 367 kg/m a3 t ktt m0.
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These values of  p  and ρ now form the  base  values for the fi rst isothermal region (see 

   Fig. 3.4 ). The equations for the isothermal region are    Eqs. (3.9)  and    (3.10) , where now 

p  1  = 2.26 × 10 4  N/m 2  and ρ 1  = 0.367 kg/m 3 . For  h  = 14 km,  h  −  h  1  = 14 − 11 = 3 km = 

3000 m. From    Eq. (3.9) ,

  
p p e eRT h hp e1

4 9e 8 2161 2 26 10−hRT−[g[ /gg ( )]( ) [ .9 / (287 .( .2 ) 6666 3000

41 41 10

)]( )

.p = 1 41 N/m2
             

From    Eq. (3.10) ,

  
ρ
ρ1 1

= p

p
             

Hence   ρ ρ =ρ =1
1

4

40 367
1 41 10

2 26 10
0 23

p

p
.

.

.
kg/m3              

These values check, within roundoff error, with the values given in App. A.  Note:  This 

example demonstrates how the numbers in Apps. A and B are obtained.   

   EXAMPLE 3.2  

 For approximate, closed-form engineering calculations of airplane performance (Ch. 6), a 

simple equation for the variations of density with altitude is useful. Denoting the standard 

sea-level density by ρ 0 , an approximate exponential variation of density with altitude h
can be written as

ρ
ρ0

= e nh−
              (3.15)

where  n  is a constant. 

  (a) Derive the value of  n  so that    Eq. (3.15)  gives the exact density at h = 36,000 ft (11 

km, which is the upper boundary of the fi rst gradient region shown in    Fig. 3.4 ). 

  (b) Using this value of  n , calculate the density at 5000 ft, 10,000 ft, 20,000 ft, 

30,000 ft, and 40,000 ft from Eq. (3.15), and compare your results with the exact numeri-

cal values from Appendix B. 

  ■ Solution 
 (a) From Appendix B, for 36,000 ft, ρ = 7.1028 × 10 –4  slug/ft 3 . From Eq. (3.15), written 

at  h  = 36,000 ft,

  

7 1028 10

2 3769 10

0 2988

4

3
36 000

36 00

.

.

.

,

,

×
×

−

−
−

−

=

=

e

e

n

00

2988 36 000

1 208

36 000
3 3555

n

ln n

n

( .0 ) ,36

.

,
.= =−

−
×1011 5−
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Hence,
  

ρ
ρ0

3 3555 10 5

=
−

e h− ×3 3555.

or
ρ
ρ0

29 800= e
h−

,

              

(3.16)

where  h  is in feet. 

  (b) Comparing the results from    Eq. (3.16)  with the exact results from App. B, we have

h
(ft)

ρρρρ (Eq. 3.16)
slug

ft3

⎛
qq

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠    

ρρρρ (App. B)
slug

ft3
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠                  Difference  

   5,000    0.00201    0.00205       2%  
  10,000    0.00170    0.00176    3.4%  
  20,000    0.00121    0.00127    4.7%  
  30,000    0.000869    0.000891    2.5%  
  40,000    0.000621    0.000587    –5.8%  

Comment  From sea level to 40,000 ft,    Eq. (3.16)  yields the atmospheric density to within 

5.8%, or better. These results are accurate enough for approximate engineering calcula-

tions.    Eq. (3.16)  is used in Example 6.12 for the approximate calculation of the absolute 

ceiling for an airplane.   

  EXAMPLE 3.3  

 In both the gradient and isothermal regions of the standard atmosphere, the pressure 

decreases with an increase in altitude.  Question : Does pressure decrease faster in the 

gradient regions or in the isothermal regions? 

  ■ Solution 
 Consider an infi nitesimally small increase in altitude,  dh . The corresponding infi nitesi-

mally small change in pressure is  dp , and is given by    Eq. (3.7) , repeated here:

  

dp

p

g

RT
dh= − 0

              

(3.7)

To interpret the physical meaning of the differential relationship given by    Eq. (3.7) , 

consider a given altitude  h  where the pressure is  p . If we increase altitude by an infi ni-

tesimally small amount,  dh , the corresponding infi nitesimally small change in pres-

sure is  dp . The ratio  dp/p  is the fractional change in pressure. (You can also interpret 

this as a “percentage change” in pressure, which in reality is given by 100 ( dp/p ).) 

The rate of change of this fraction with respect to a change in altitude,  dh , is repre-

sented by
dp
p

dh

g

RT
= − 0  (3.17)
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obtained from    Eq. (3.7) . To properly answer the question posed in this example, we need 

to evaluate the value of  

dh

( )dp
p               in the isothermal regions and the gradient regions. Clearly, 

from    Eq. (3.17) , this value depends only on the local temperature at the given altitude  h . 

From this, we make the following observations: 

  1.    In the fi rst gradient region, where  T  decreases with altitude (see Fig. 3.4), the absolute

value of  
dh

( )dp
p

              becomes larger as  h  increases (i.e., the pressure decreases at a faster

rate). For example, at the base of the fi rst gradient region, where  h  = 0 and  T  =
 288.1 6 K, we have, from    Eq. (3.17) 

dp
p

dh

g

RT
= = =−=0 4× −9 8

16
1

( )287 ( .288 )
. p× 4×185 10 er metett r

              

At the top of the fi rst gradient region, where  h  = 11 km and  T  = 216.66 K, we have

dp
p

dh

g

RT
= = =−=0 4× −9 8

216 66
1

( )287 ( .216 )
. p× 4×576 10 er metett r

              

Clearly, in the fi rst gradient region, the pressure decreases at a faster rate as  h   increases. 

In contrast, in the isothermal region, because  T  is constant in this region, the pressure 

decreases at the same rate with altitude; that is, from  h  = 11 km to  h  = 25 km, the value 

of  
dp
p

dh
= × −1 576 10 4.               per meter; it does not change with altitude. However, examining 

the second gradient region in Fig. 3.4, where  T  increases with an increase in  h , the press-

ure decreases at a  slower rate  as  h  increases. 

Conclusion : There is no pat answer to the question posed in this example. The fractional 

rate of change of pressure with respect to altitude at any altitude just depends on the value 

of  T  at that altitude.          

   3.5   PRESSURE, TEMPERATURE, 
AND DENSITY ALTITUDES 

  With the tables of Apps. A and B in hand, we can now defi ne three new 

 “altitudes”—pressure, temperature, and density altitudes. This is best done by 

example. Imagine that you are in an airplane fl ying at some real, geometric alti-

tude. The value of your actual altitude is immaterial for this discussion. However, 

at this altitude, you measure the actual outside air pressure to be 6.16 × 10 4  N/m 2 . 

From App. A, you fi nd that the standard altitude that corresponds to a pressure 

of 6.16 × 10 4  N/m 2  is 4 km. Therefore, by  defi nition,  you say that you are fl ying 

at a  pressure altitude  of 4 km. Simultaneously, you measure the actual outside 

air temperature to be 265.4 K. From App. A, you fi nd that the standard altitude 

that corresponds to a temperature of 265.4 K is 3.5 km. Therefore, by defi nition, 

you say that you are fl ying at a  temperature altitude  of 3.5 km. Thus, you are 

 simultaneously fl ying at a pressure altitude of 4 km and a temperature altitude of 

3.5 km while your actual geometric altitude is yet a different value. The defi nition 
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  If an airplane is fl ying at an altitude where the actual pressure and temperature are 4.72 ×
10 4  N/m 2  and 255.7 K, respectively, what are the pressure, temperature, and density 

 altitudes? 

■ Solution 
 For the pressure altitude, look in App. A for the standard altitude value corresponding to 

p  = 4.72 × 10 4  N/m 2 . This is 6000 m. Hence

Pressure altitude = 6000 m = 6 km
              

For the temperature altitude, look in App. A for the standard altitude value corresponding 

to  T  = 255.7 K. This is 5000 m. Hence

Temperature altitude = 5000 m = 5 km

For the density altitude, we must fi rst calculate ρ from the equation of state:

  

ρ = = =p

RT

4 72 10

287 55 7
0 643

4
3.

( .255 )
. kg/m

Looking in App. A and interpolating between 6.2 and 6.3 km, we fi nd that the standard 

altitude value corresponding to ρ = 0.643 kg/m 3  is about 6240 m. Hence

  
Density altitude m km= m6240 6 2

              

Note that temperature altitude is not a unique value. The answer for temperature alti-

tude could equally well be 5.0, 38.2, or 59.5 km because of the multivalued nature of the 

altitude- versus-temperature function. In this section, only the lowest value of temperature 

altitude is used.   

  EXAMPLE 3.4  

EXAMPLE 3.5

  The fl ight test data for a given airplane refer to a level-fl ight maximum-velocity run made 

at an altitude that simultaneously corresponded to a pressure altitude of 30,000 ft and 

density altitude of 28,500 ft. Calculate the temperature of the air at the altitude at which 

the airplane was fl ying for the test. 

■ Solution 
 From App. B: 

 For pressure altitude = 30,000 ft:

p = 629 66 2. l66 b/ft

For density altitude = 28,500 ft:

ρ = 0 9408 10 3 3. × − slug/ft

of  density altitude  is made in the same vein. These quantities—pressure, tempera-

ture, and density altitudes—are just convenient numbers that, via App. A or B, 

are related to the actual  p ,  T , and ρ for the actual altitude at which you are fl ying. 
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  Consider an airplane fl ying at some real, geometric altitude. The outside (ambient) pres-

sure and temperature are 5.3 × 10 4  N/m 2  and 253 K, respectively. Calculate the pressure 

and density altitudes at which this airplane is fl ying. 

■ Solution 
 Consider the ambient pressure of 5.3 × 10 4  N/m 2 . In App. A, there is no precise entry for 

this number. It lies between the values  p  1  = 5.331 × 10 4  N/m 2  at altitude  h    G ,1  = 5100 m 

and  p  2  = 5.2621 × 10 4  N/m 2  at altitude  h    G ,2  = 5200 m. We have at least two choices. We 

could simply use the nearest entry in the table, which is for an altitude  h    G ,2  = 5100 m, and 

say that the answer for pressure altitude is 5100 m. This is acceptable if we are making 

only approximate calculations. However, if we need greater accuracy, we can  interpolate  

between entries. Using linear interpolation, the value of  h    G   corresponding to  p  = 5.3 × 

10 4  N/m 2  is
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The pressure altitude at which the airplane is fl ying is 5146.6 m. (Note that in this 

example and in    Examples 3.4  and    3.5 , we are interpreting the word  altitude  in the 

tables to be the geometric altitude  h    G   rather than the geopotential altitude  h . This is 

for convenience because  h    G   is tabulated in round numbers, in contrast to the column 

for  h . Again, at the altitudes for conventional fl ight, the difference between  h    G   and  h  

is not signifi cant.) 

 To obtain the density altitude, calculate the density from the equation of state:
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Once again we note that this value of ρ falls between two entries in the table. It falls between 

 h    G ,1  = 5000 m where ρ 1  = 0.73643 kg/m 3  and  h    G ,2  = 5100 m where ρ 2  = 0.72851 kg/m 3 . (Note 

that these subscripts denote different lines in the table from those used in the fi rst part of this 

example. It is good never to become a slave to subscripts and symbols. Just always keep in 

mind the signifi cance of what you are doing.) We could take the nearest entry, which is for 

EXAMPLE 3.6

These are the values of  p  and ρ that simultaneously existed at the altitude at which the 

airplane was fl ying. Therefore, from the equation of state,
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an altitude  h    G   = 5100 m, and say that the answer for the density altitude is 5100 m. However, 

for greater accuracy, let us linearly interpolate between the two entries:
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The density altitude at which the airplane is fl ying is 5082.2 m.   

  The ambient temperature in the air ahead of an airplane in fl ight is 240 K. At what tem-

perature altitude is the airplane fl ying? 

  ■ Solution 
 The purpose of this example is to show the ambiguity of the use of temperature altitude. 

First, just examine    Fig. 3.4 . Go the abscissa and fi nd  T  = 240 K. Then, simply cast your 

eyes upward. Within the scale of this fi gure, there are three different altitudes that have 

a temperature of 240 K. Using App. A, these altitudes are (to the nearest entry) 7.4 km, 

33 km, and (returning to    Fig. 3.4 ) about 63 km. Of course, the airplane cannot be at all 

three altitudes simultaneously. We conclude that the defi nition of temperature altitude 

has limited usefulness.     

   3.6   HISTORICAL NOTE: THE STANDARD 
ATMOSPHERE 

  With the advent of ballooning in 1783 (see Ch. 1), people suddenly became inter-

ested in acquiring a greater understanding of the properties of the atmosphere 

above ground level. However, no compelling reason for such knowledge arose 

until the coming of heavier-than-air fl ight in the 20th century. As we will see in 

subsequent chapters, the fl ight performance of aircraft depends on such proper-

ties as the pressure and density of the air. Thus, a knowledge of these properties, 

or at least some agreed-upon standard for worldwide reference, is absolutely 

necessary for intelligent aeronautical engineering. 

 The situation in 1915 was summarized by C. F. Marvin, Chief of the U.S. 

Weather Bureau and chairman of an NACA subcommittee to investigate and 

report on the existing status of atmospheric data and knowledge. In his “Pre-

liminary Report on the Problem of the Atmosphere in Relation to Aeronautics,” 

NACA Report No. 4, 1915, Marvin wrote; 

  The Weather Bureau is already in possession of an immense amount of data con-

cerning atmospheric conditions, including wind movements at the earth’s surface. 

This information is no doubt of distinct value to aeronautical operations, but it needs 

to be collected and put in form to meet the requirements of aviation.  

EXAMPLE 3.7
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 The following four years saw such efforts to collect and organize atmo-

spheric data for use by aeronautical engineers. In 1920 the Frenchman A. Tous-

saint, director of the Aerodynamic Laboratory at Saint-Cyr-l’Ecole, France, 

suggested the following formula for the temperature decrease with height:

 T h55 0 0065.              

Here  T  is in degrees Celsius and  h  is the geopotential altitude in meters. 

Toussaint’s formula was formally adopted by France and Italy with the Draft 

of Inter-Allied Agreement on Law Adopted for the Decrease of Temperature 

with Increase of Altitude, issued by the Ministere de la Guerre, Aeronautique 

Militaire, Section Technique, in March 1920. One year later, England followed 

suit. The United States was close behind. Since Marvin’s report in 1915, the U.S. 

Weather Bureau had compiled measurements of the temperature distribution 

and found Toussaint’s formula to be a reasonable representation of the observed 

mean annual values. Therefore, at its executive committee meeting of December 

17, 1921, NACA adopted Toussaint’s formula for airplane performance testing, 

with this statement: “The subcommittee on aerodynamics recommends that for 

the sake of uniform practice in different countries that Toussaint’s formula be 

adopted in determining the standard atmosphere up to 10 km (33,000 ft). . . .” 

 Much of the technical data base that supported Toussaint’s formula was 

reported in 1922, in NACA Report No. 147, “Standard Atmosphere,” by 

Willis Ray Gregg. Based on free-fl ight tests at McCook Field in Dayton, 

Ohio, and at Langley Field in Hampton, Virginia, and on the other fl ights at 

Washington, District of Columbia, as well as artillery data from Aberdeen, 

Maryland, and Dahlgren, Virginia, and sounding-balloon observations at Fort 

Omaha, Nebraska, and St. Louis, Missouri, Gregg was able to compile a table 

of mean annual atmospheric properties. An example of his results follows: 

  Altitude, m  

  Mean Annual 
Temperature in 
United States, K  

  Temperature 
from Toussaint’s 

Formula, K  

  0    284.5    288  
  1000    281.0    281.5  
  2000    277.0    275.0  
  5000    260.0    255.5  

  10,000    228.5    223.0  

 Clearly, Toussaint’s formula provided a simple and reasonable representa-

tion of the mean annual results in the United States. This was the primary mes-

sage in Gregg’s report in 1922. However, the report neither gave extensive tables 

nor attempted to provide a document for engineering use. 

 Thus it fell to Walter S. Diehl (who later became a well-known aerodynamicist 

and airplane designer as a captain in the Naval Bureau of Aeronautics) to provide 

the fi rst practical tables for a standard atmosphere for aeronautical use. In 1925, in 

NACA Report No. TR 218, titled (again) “Standard Atmosphere,” Diehl presented 
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extensive tables of standard atmospheric properties in both metric and English 

units. The tables were in increments of 50 m up to an altitude of 10 km and then in 

increments of 100 m up to 20 km. In English units, the tables were in increments 

of 100 ft up to 32,000 ft and then in increments of 200 ft up to a maximum altitude 

of 65,000 ft. Considering the aircraft of that day (see Fig. 1.31), these tables were 

certainly suffi cient. Moreover, starting from Toussaint’s formula for  T  up to 10,769 

m, then assuming that  T  = const = −55°C above 10,769 m, Diehl obtained  p  and ρ 

in precisely the same fashion as described in the previous sections of this chapter. 

 The 1940s saw the beginning of serious rocket fl ights, with the German 

V-2 and the initiation of sounding rockets. And airplanes were fl ying higher than 

ever. Then, with the advent of intercontinental ballistic missiles in the 1950s and 

space fl ight in the 1960s, altitudes began to be quoted in terms of hundreds of 

miles rather than feet. Therefore, new tables of the standard atmosphere were 

created, mainly extending the old tables to higher altitudes. Popular among the 

various tables is the ARDC 1959 Standard Atmosphere, which is used in this 

book and is given in Apps. A and B. For all practical purposes, the old and new 

tables agree for altitudes of greatest interest. Indeed, it is interesting to compare 

values, as shown in the following: 

  Altitude, 
m  

   T  from 
Diehl, 1925, 

K  

   T  from 
ARDC, 1959, 

K  

  0    288    288.16  
  1000    281.5    281.66  
  2000    275.0    275.16  
  5000    255.5    255.69  

  10,000    223.0    223.26  
  10,800    218.0    218.03  
  11,100    218.0    216.66  
  20,000    218.0    216.66  

 Diehl’s standard atmosphere from 1925, at least up to 20 km, is just as good 

as the values today.   

   3.7  SUMMARY AND REVIEW 
  A standard atmosphere table, such as in App. A or B of this book, will prove to be among 

the most useful references you have throughout your career in aerospace engineering. It 

is essential for the calculation of airplane performance, as discussed and illustrated in 

Ch. 6. It is essential for the rational comparison of fl ight test data obtained from differ-

ent sources. It helps to put data from various wind tunnel facilities on a common basis. 

Also, the equations used to compile the standard atmosphere can be programmed into 

your hand calculator, freeing you from having to read the tables. The tables, however, 

are particularly useful for carrying out “back-of-the-envelope” engineering calculations. 

 No table of the standard atmosphere existed at the time of the Wright brothers. They 

did not need one because all their work was done essentially at sea level. For their cal-

culations of lift and drag, they did, however, need a value of the ambient air density. 
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This they had indirectly through a now-anachronistic empirical factor called “Smeaton’s 

coeffi cient,“ which was based in part on the value of sea-level density, along with a 

reasonably accurate value of Smeaton’s coeffi cient as measured by Samuel Langley at the 

Smithsonian Institution. (For more details, see John Anderson,  A History of Aerodynamics 
and Its Impact on Flying Machines , Cambridge University Press, New York, 1997.) By 

the time of World War I, however, airplanes were regularly fl ying at altitudes of 10,000 

ft and higher, and the lack of a standard table of the variation of atmospheric properties 

with altitude was becoming a real stumbling block for airplane designers. This prompted 

the big push for the compilation of standard atmospheric data that is described in    Sec. 3.6 . 

 The equations used for compilation of the standard altitude tables for air, as devel-

oped in this chapter, are the same as used for the calculation of the properties throughout 

foreign planetary atmospheres. This should come as no surprise, as the physics underly-

ing the calculation of atmospheric properties on earth are the same as on Venus, Jupiter, 

and so forth. Therefore, this chapter is relevant to space fl ight and the design of space 

vehicles, the subject of Ch. 8. 

 Finally, we emphasize that the tables of the standard atmosphere in Apps. A and B did 

not simply come out of thin air. The values tabulated there were obtained from the applica-

tion of physics, as embodied in the hydrostatic equation and the equation of state. To help 

reinforce this concept, the following lists some of the major ideas discussed in this chapter:  

1.   The standard atmosphere is defi ned in order to relate fl ight tests, wind tunnel 

results, and general airplane design and performance to a common reference.  

2.   The defi nitions of the standard atmospheric properties are based on a given temperature 

variation with altitude, representing a mean of experimental data. In turn, the pressure 

and density variations with altitude are obtained from this empirical temperature 

variation by using the laws of physics. One of these laws is the hydrostatic equation:

dp g dhG= −ρ
                (3.2)

3.   In the isothermal regions of the standard atmosphere, the pressure and density 

variations are given by
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(3.13)

 where  T  =  T  1  +  a  ( h  −  h  1 ) and  a  is the given lapse rate.  

5.   The pressure altitude is that altitude in the standard atmosphere that corresponds 

to the actual ambient pressure encountered in fl ight or laboratory experiments. 

For example, if the ambient pressure of a fl ow, no matter where it is or what it 

is doing, is 393.12 lb/ft 2 , the fl ow is said to correspond to a pressure altitude 

of 40,000 ft (see App. B). The same idea can be used to defi ne density and 

temperature altitudes.      
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   Problems  

  3.1.   At 12 km in the standard atmosphere, the pressure, density, and temperature 

are 1.9399 × 10 4  N/m 2 , 3.1194 × 10 −1  kg/m 3 , and 216.66 K, respectively. Using 

these values, calculate the standard atmospheric values of pressure, density, and 

temperature at an altitude of 18 km, and check with the standard altitude tables.  

  3.2.   Consider an airplane fl ying at some real altitude. The outside pressure and 

temperature are 2.65 × 10 4  N/m 2  and 220 K, respectively. What are the pressure 

and density altitudes?  

  3.3.   During a fl ight test of a new airplane, the pilot radios to the ground that she is in 

level fl ight at a standard altitude of 35,000 ft. What is the ambient air pressure far 

ahead of the airplane?  

  3.4.   Consider an airplane fl ying at a pressure altitude of 33,500 ft and a density altitude 

of 32,000 ft. Calculate the outside air temperature.  

  3.5.   At what value of the geometric altitude is the difference  h  −  h   G   equal to 2 percent 

of the geopotential altitude,  h ?  

  3.6.   Using Toussaint’s formula, calculate the pressure at a geopotential altitude of 5 km.  

  3.7.   The atmosphere of Jupiter is essentially made up of hydrogen, H 2 . For H 2 , the 

specifi c gas constant is 4157 J/(kg)(K). The acceleration of gravity of Jupiter is 

24.9 m/s 2 . Assuming an isothermal atmosphere with a temperature of 150 K and 

assuming that Jupiter has a defi nable surface, calculate the altitude above that 

surface where the pressure is one-half the surface pressure.  

  3.8.   An F-15 supersonic fi ghter aircraft is in a rapid climb. At the instant it passes 

through a standard altitude of 25,000 ft, its time rate of change of altitude 

is 500 ft/s, which by defi nition is the  rate-of-climb,  discussed in Ch. 6. 

Corresponding to this rate-of-climb at 25,000 ft is a time rate of change of ambient 

pressure. Calculate this rate of change of pressure in units of pounds per square 

foot per second.  

  3.9.   Assume that you are ascending in an elevator at sea level. Your eardrums are very 

sensitive to minute changes in pressure. In this case, you are feeling a 1 percent 

decrease in pressure per minute. Calculate the upward speed of the elevator in 

meters per minute.  

  3.10.   Consider an airplane fl ying at an altitude where the pressure and temperature are 

530 lb/ft 2  and 390°R, respectively. Calculate the pressure and density altitudes at 

which the airplane is fl ying.  

  3.11.   Consider a large rectangular tank of water open to the atmosphere, 10 ft deep, with 

walls of length 30 ft each. When the tank is fi lled to the top with water, calculate 

the force (in tons) exerted on the side of each wall in contact with the water. The 

tank is located at sea level. ( Note:  The specifi c weight of water is 62.4 lb  f   /ft 3 , and 

1 ton = 2000 lb  f  .) ( Hint:  Use the hydrostatic equation.)  
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3.12.   A discussion of the entry of a space vehicle into the earth’s atmosphere after it 

has completed its mission in space appears in Ch. 8. An approximate analysis of 

the vehicle motion and aerodynamic heating during atmospheric entry assumes an 

approximate atmospheric model called the  exponential atmosphere , where the air 

density variation with altitude is assumed to be

ρ
ρ0

= e g h0 RT− /( )

 where ρ 0  is the sea-level density and  h  is the altitude measured above sea level. 

This equation is only an approximation for the density variation with altitude 

throughout the whole atmosphere, but its simple form makes it useful for 

approximate analyses. Using this equation, calculate the density at an altitude of 

45 km. Compare your result with the actual value of density from the standard 

altitude tables. In the preceding equation, assume that  T  = 240 K (a reasonable 

representation for the value of the temperature between sea level and 45 km, 

which you can see by scanning down the standard atmosphere table).  

  3.13.   The entries for the standard altitude in Apps. A and B are given at distinct, 

regularly spaced values of  h . To obtain the values of pressure, temperature, and 

density at an altitude between two adjacent entries in the table, linear interpolation 

can be used as an approximation. Using the tables, obtain the pressure, density, 

and temperature at a standard altitude of 3.035 km.  

  3.14.   For a standard altitude of 3.035 km, calculate the exact values for pressure, 

density, and temperature using the exact equations from    Sec. 3.4  in this chapter. 

Compare these exact values with the approximate values obtained in Prob. 3.13.  

  3.15.      Section 3.3  states that only at altitudes above 65 km does the difference between 

the geometric and geopotential altitudes exceed 1 percent. Calculate the exact 

value of the geometric altitude at which this difference is precisely 1 percent.  

  3.16.   For the fl ight of airplanes in the earth’s atmosphere, the variation of the 

acceleration of gravity with altitude is generally ignored. One of the highest-fl ying 

aircraft has been the Lockheed U-2 (see Fig. 5.52) which was designed to cruise 

at 70,000 ft. How much does the acceleration of gravity at this altitude differ from 

the value at sea level?

3.17. The X-15 hypersonic research airplane (see Fig. 5.92) set the altitude record for 

airplanes on August 22, 1963, when test pilot Joseph Walker achieved 354,200 ft. 

What is the acceleration of gravity at this altitude? How much does it differ from 

that at sea level?

3.18. Toussaint’s formula was used in the early 1920s to give the temperature 

variation with altitude. This was in the immediate post-World War I period when 

conventional airplanes fl ew at altitudes on the order of 10,000 ft. or lower. Compare 

the result for temperature obtained from Toussaint’s formula for a geometric 

altitude of 10,000 ft.  with that from the standard altitude table in Appendix B.

3.19. When X-15 test pilot William J. Knight set the world speed record on October 3, 

1967, his geometric altitude was 102,100 ft. Interpolate the entries in Appendix B 

to obtain the standard values of temperature, pressure, and density at this altitude.

3.20. The airstream in the test section of a wind tunnel is at a pressure of 0.92 atm. 

When a test model is placed in the test section, what pressure altitude is being 

simulated for this model?                   
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 Basic Aerodynamics 

   Mathematics up to the present day have been quite useless to us in regard to fl ying. 

   From the 14th Annual Report 

of the Aeronautical Society 

of Great Britain, 1879    

  Mathematical theories from the happy hunting grounds of pure mathematicians are 

found suitable to describe the airfl ow produced by aircraft with such excellent ac-

curacy that they can be applied directly to airplane design. 

   Theodore von Karman, 1954    

  C
 onsider an airplane fl ying at an altitude of 3 km (9840 ft) at a velocity 

of 112 m/s (367 ft/s or 251 mi/h). At a given point on the wing, the 

pressure and airfl ow velocity are specifi c values, dictated by the laws of 

nature. One objective of the science of aerodynamics is to decipher these laws 

and to give us methods to calculate the fl ow properties. In turn, such informa-

tion lets us calculate practical quantities, such as the lift and drag on the air-

plane. Another example is the fl ow through a rocket engine of a given size and 

shape. If this engine is sitting on the launch pad at Cape Canaveral and given 

amounts of fuel and oxidizer are ignited in the combustion chamber, the fl ow 

velocity and pressure at the nozzle exit are again specifi c values, dictated by the 

laws of nature. The basic principles of aerodynamics allow us to calculate the 

exit fl ow velocity and pressure, which, in turn, allow us to calculate the thrust. 

For reasons such as these, the study of aerodynamics is vital to the overall 

     4  C H A P T E R 
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At the beginning of Ch. 2, we imagined a vehicle 

fl ying through the atmosphere, and one of the fi rst 

thoughts was that there is a rush of air over the ve-

hicle. This rush of air generates an aerodynamic force 

on the vehicle. This is an example of aerodynamics in 

action. We went on to say that aerodynamics was one 

of the four major disciplines that go into the design 

of a fl ight vehicle, the others being fl ight dynamics, 

propulsion, and structures.

What is aerodynamics? The American Heritage 
Dictionary of the English Language defi ned aerody-

namics as “the dynamics of gases, especially of at-

mospheric interactions with moving objects.” What 

does this mean? Dynamics means motion. Gases are 

a squishy substance. Is aerodynamics the dynam-

ics of a squishy substance? To some extent, yes. 

In contrast, this book is a solid object; it is easy to 

pick it up and throw it across the room. In so doing, 

you can easily track its velocity, acceleration, and 

path through the air. This involves the dynamics of 

a solid body and is a subject you might be some-

what familiar with from a previous study of physics. 

But just try to scoop up a handful of air and throw it 
across the room. Doesn’t make sense, does it? The 

air, being a squishy substance, is just going to fl ow 

through your fi ngers and go nowhere. Obviously, the 

dynamics of air (or a fl uid in general) is different 

than the dynamics of a solid body. Aerodynamics 

requires a whole new intellectual perspective. A pur-

pose of this chapter is to give you some of this new 

perspective.

So, how do you get air to move? It obviously 

does: When an airplane streaks past you, the air fl ows 

over the airplane and basically does everything neces-

sary to get out of the way of the airplane. From a dif-

ferent perspective, imagine that you are riding inside 

the airplane, and the airplane is fl ying at 400 mi/h. 

If you look ahead, you see the atmospheric air com-

ing toward you at 400 mi/h. Then it fl ows up, down, 

and around the airplane, locally accelerating and de-

celerating as it passes over the fuselage, wings, and 

tail and through the engines. The air does more than 

this. It also creates a pressure distribution and a shear 

stress distribution over the surface of the airplane that 

results in aerodynamic lift and drag exerted on the 

vehicle (see again Sec. 2.2). So the air moves, and we 

repeat the question: How do you get the air to move? 

Keep reading this chapter to fi nd out.

Many engineers and scientists have spent their 

professional lifetimes working on aerodynamics, so 

aerodynamics must be important. Moreover, there is 

a lot to aerodynamics. This chapter is long, one of 

the longest in the book, because there is a lot to aero-

dynamics and because it is important. Aerodynam-

ics is the dominant feature that drives the external 

shape of any fl ight vehicle. You can hardly take your 

fi rst step into aerospace engineering without serious 

consideration and understanding of aerodynamics. 

The purpose of this chapter is to help you take this 

fi rst step and obtain some understanding of aerody-

namics. In this chapter you will learn how to get air 

to move. You will learn how to predict the pressure 

exerted on the surface of a body immersed in the 

fl ow and how this pressure is related to the veloc-

ity of the air. You will learn about the high-speed 

fl ow of air, with velocities greater than the speed of 

sound (supersonic fl ow), and about shock waves that 

frequently occur in supersonic fl ow. You will learn 

how to measure the fl ight speed of an airplane dur-

ing fl ight. You will learn why the nozzles of rocket 

engines are shaped the way they are (all due to aero-

dynamics). You will learn about many applications 

of aerodynamics, but you will have to learn some of 

the fundamentals—the concepts and equations—of 

aerodynamics in the fi rst part of this chapter before 

you can deal with applications. For all these reasons, 

this chapter is important; please treat it with serious 

study.

A word of caution: This chapter is going to be 

a challenge to you. Most likely the subject matter is 

different from what you have dealt with before. There 

are a lot of new concepts, ideas, and ways of looking 

at things. There are a lot of new equations to help de-

scribe all this new stuff. The material is defi nitely not 

boring, and it can be great fun if you let it be. Expect 

it to be different, and go at it with enthusiasm. Simply 

read on, and step through the door into the world of 

aerodynamics.

PREVIEW BOX
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understanding of fl ight. The purpose of this chapter is to introduce the basic 

laws and concepts of aerodynamics and show how they are applied to solving 

practical problems. 

 The road map for this chapter is given in    Fig. 4.1 . Let us walk through this 

road map to get a better idea of what this chapter on aerodynamics is all about. 

First, we can identify two basic types of aerodynamic fl ows: (1) fl ow with no 

friction (called  inviscid  fl ow) and (2) fl ow with friction (called  viscous  fl ow). 

These two types of fl ow are represented by the two boxes shown near the top 

of the road map. This is an important distinction in aerodynamics. Any real-life 

aerodynamic fl ow has friction acting on the fl uid elements moving within the 

fl ow fi eld. However, in many practical aerodynamic problems the infl uence of 

this internal friction is very small, and it can be neglected. Such fl ows can be 

 assumed  to have  no  friction and hence can be analyzed as  inviscid fl ows . This 

is an idealization, but for many problems a good one. By not dealing with fric-

tion, the analysis of the fl ow is usually simplifi ed. However, for some fl ows the 

infl uence of friction is dominant, and it must be included in any analysis of such 

Basic aerodynamics

Flow with no friction
(inviscid flow)

Flow with friction
(viscous flow)

Some thermodynamics

Energy equation
(energy is conserved)

Equations for
isentropic flow

Some applications

Continuity equation
(mass is conserved) Boundary layer concept

Laminar boundary layer

Turbulent boundary layer

Transition from laminar
  to turbulent flow

Flow separation

Speed of sound

Low-speed wind tunnels

Measurement of airspeed

Supersonic wind tunnels

Rocket engines

Momentum equation
  (F    ma)
1. Euler's equation
2. Bernoulli's equation

Figure 4.1 Road map for this chapter.



 CHAPTER 4   Basic Aerodynamics 137

fl ows. The inclusion of friction usually makes the analysis of the fl ow more 

complicated. 

     This chapter deals with  basics . We will start out with the statement of 

three fundamental physical principles from physics: 

  1.   Mass is conserved.  

  2.   Newton’s second law (force = mass × acceleration) holds.  

  3.   Energy is conserved.   

When these fundamental principles are applied to an aerodynamic fl ow, certain 

equations result, which, in mathematical language, are statements of these prin-

ciples. We will see how this can be accomplished. We will start with the physi-

cal principle that mass is conserved and obtain a governing equation labeled 

the  continuity equation.  This is represented by the center box in    Fig. 4.1 . The 

continuity equation says, in mathematical symbols, that mass is conserved in 

an aerodynamic fl ow. Mass is conserved whether or not the fl ow involves fric-

tion. Hence, the continuity equation is equally applicable to both types of fl ow, 

and that is why it is centered beneath the top two boxes in    Fig. 4.1 .We will then 

work our way down the left side of the road map, making the assumption of 

an inviscid fl ow. We will invoke Newton’s second law and obtain the momen-

tum equation for an inviscid fl ow, called  Euler’s equation  (pronounced like 

“oilers”). A specialized but important form of Euler’s equation is Bernoulli’s 

famous equation. Then we will invoke the principle of conservation of energy 

and obtain the energy equation for a fl ow. However, because the science of 

energy is  thermodynamics,  we have to fi rst examine some basic concepts of 

thermodynamics. 

 After the basic equations are in hand, we will continue down the left side 

of    Fig. 4.1  with some applications for inviscid fl ows, ranging from the speed of 

sound to wind tunnels and rocket engines. 

 Finally, we will move to the right side of our road map and discuss some im-

portant aspects of viscous fl ows. We will introduce the idea of a viscous  bound-
ary layer,  the region of fl ow immediately adjacent to a solid surface, where 

friction is particularly dominant. We will examine two types of viscous fl ows 

with quite different natures— laminar  fl ow and  turbulent  fl ow—and how a lami-

nar fl ow transitions to a turbulent fl ow. We will discuss the impact of these fl ows 

on the aerodynamic drag on a body. Finally, we will see how a viscous aerody-

namic fl ow can actually lift off (separate) from the surface—the phenomenon of 

 fl ow separation . 

 This has been a rather long discussion of a somewhat intricate road map. 

However, the author’s experience has been that readers being introduced to the 

world of basic aerodynamics can fi nd the subject matter sometimes bewildering. 

In reality, aerodynamics is a beautifully organized intellectual subject, and the 

road map in    Fig. 4.1  is designed to prevent some of the possible bewilderment. 

As we progress through this chapter, it will be important for you to frequently 

return to this road map for guidance and orientation.  
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    4.1  CONTINUITY EQUATION 
  The laws of aerodynamics are formulated by applying several basic principles 

from physics to a fl owing gas. For example, 

  Physical principle: Mass can be neither created nor destroyed.  1  

     To apply this principle to a fl owing gas, consider an imaginary circle drawn per-

pendicular to the fl ow direction, as shown in    Fig. 4.2 . Now look at all the stream-

lines that go through the circumference of the circle. These streamlines form a 

tube, called a  stream tube . As we move along with the gas confi ned inside the 

stream tube, we see that the cross-sectional area of the tube may change, say, in 

moving from point 1 to point 2 in    Fig. 4.2 . However, as long as the fl ow is steady 

(invariant with time), the mass that fl ows through the cross section at point 1 must 

be the same as the mass that fl ows through the cross section at point 2, because by 

the defi nition of a streamline, there can be no fl ow across streamlines. The mass 

fl owing through the stream tube is confi ned by the streamlines of the boundary, 

much as the fl ow of water through a fl exible garden hose is confi ned by the wall 

of the hose. This is a case of “what goes in one end must come out the other end.” 

     Let  A  1  be the cross-sectional area of the stream tube at point 1. Let  V  1  be the 

fl ow velocity at point 1. Now, at a given instant in time, consider all the fl uid 

elements that are momentarily in the plane of  A  1 . After a lapse of time  dt , these 

same fl uid elements all move a distance  V  1   dt , as shown in    Fig. 4.2 . In so doing, 

the elements have swept out a volume  A  1   V  1   dt  downstream of point 1. The  mass  

of gas  dm  in this volume is equal to the density times the volume; that is,

  dm d= ρ1 1 1( )A V dt1A 1VV   (4.1)        

This is the mass of gas that has  swept through  area  A  1  during time interval  dt . 

 Defi nition: The  mass fl ow   m     through area  A  is the mass crossing  A  per unit time. 

Figure 4.2 Stream tube with mass conservation.

1Of course, Einstein has shown that e = mc2, and hence mass is truly not conserved in situations where 

energy is released. However, for any noticeable change in mass to occur, the energy release must be 

tremendous, such as occurs in a nuclear reaction. We are generally not concerned with such a case in 

practical aerodynamics.
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 Therefore, from    Eq. (4.1) , for area  A  1 ,

Mass flow kg/s or slugs/s= ≡dm

dt
m A= V& 11 = 1 1VVρ

Also, the mass fl ow through  A  2 , bounded by the same streamlines that go through 

the circumference of  A  1 , is obtained in the same fashion, as

 
&m A& V22 2 2VVρ

       

Because mass can be neither created nor destroyed, we have  & &m m1 2m    . Hence

ρ ρρρ 2ρ 2 2A V A V2 2  (4.2)

This is the  continuity equation  for steady fl uid fl ow. It is a simple algebraic equa-

tion that relates the values of density, velocity, and area at one section of the 

stream tube to the same quantities at any other section. 

 There is a caveat in the previous development. In    Fig. 4.2 , velocity  V  1  is as-

sumed to be uniform over the entire area  A  1 . Similarly, the density ρ 1  is assumed 

to be uniform over area  A  1 . In the same vein,  V  2  and ρ 2  are assumed to be uniform 

over area  A  2 . In real life, this is an approximation; in reality,  V  and ρ vary across 

the cross-sectional area  A . However, when using    Eq. (4.2) , we assume that ρ and 

 V  represent  mean  values of density and velocity over the cross-sectional area  A . 

For many fl ow applications, this is quite reasonable. The continuity equation in 

the form of    Eq. (4.2)  is a workhorse in the calculation of fl ow through all types 

of ducts and tubes, such as wind tunnels and rocket engines. 

 The stream tube sketched in    Fig. 4.2  does not have to be bounded by a solid 

wall. For example, consider the streamlines of fl ow over an airfoil, as sketched in 

   Fig. 4.3 . The space between two adjacent streamlines, such as the shaded space 

in    Fig. 4.3 , is a stream tube.    Equation (4.2)  applies to the stream tube in    Fig. 4.3 , 

where ρ 1  and  V  1  are appropriate mean values over  A  1 , and ρ 2  and  V  2  are appropri-

ate values over  A  2 . 

         4.2  INCOMPRESSIBLE AND COMPRESSIBLE FLOW 
  Before we proceed, it is necessary to point out that all matter in real life is  com-
pressible  to some greater or lesser extent. That is, if we take an element of mat-

ter and squeeze it hard enough with some pressure, the volume of the element 

Stream tube

�2

�1

V1

V2

A1

A2

Figure 4.3 A stream tube.
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of matter will decrease. However, its mass will stay the same. This is shown 

schematically in    Fig. 4.4 . As a result, the  density  ρ of the element changes as 

it is squeezed. The amount by which ρ changes depends on the nature of the 

material of the element and how hard we squeeze it—that is, the magnitude of 

the pressure. If the material is solid, such as steel, then the change in volume is 

insignifi cantly small and ρ is constant for all practical purposes. If the material 

is a liquid, such as water, then the change in volume is also very small and again 

ρ is essentially constant. (Try pushing a tight-fi tting lid into a container of liquid, 

and you will fi nd out just how “solid” the liquid can be.) But if the material is a 

gas, the volume can readily change and ρ can be a variable. 

     The preceding discussion allows us to characterize two classes of aerody-

namic fl ow: compressible fl ow and incompressible fl ow.  

  1.    Compressible fl ow —fl ow in which the density of the fl uid elements can 

change from point to point. Referring to    Eq. (4.2) , we see if the fl ow is 

compressible, ρ 1  ≠ ρ 2 . The variability of density in aerodynamic fl ows 

is particularly important at high speeds, such as for high-performance 

subsonic aircraft, all supersonic vehicles, and rocket engines. Indeed, all 

real-life fl ows, strictly speaking, are compressible. However, in some 

circumstances the density changes only slightly. These circumstances lead 

to the second defi nition.  

  2.    Incompressible fl ow —fl ow in which the density of the fl uid elements 

is always constant.  2     Referring to    Eq. (4.2) , we see if the fl ow is 

incompressible, ρ 1  = ρ 2 ; hence

  A V A V1 1VV 2 2VV=   (4.3)           

 Incompressible fl ow is a myth. It can never actually occur in nature, as previ-

ously discussed. However, for those fl ows in which the actual variation of ρ is 

negligibly small, it is convenient to make the  assumption  that ρ is constant, to 

simplify our analysis. (Indeed, it is an everyday activity of engineering and 

Figure 4.4 Illustration of compressibility.

2 In more advanced studies of aerodynamics, you will fi nd that the defi nition of incompressible fl ow is 

given by a more general statement. For the purposes of this book, we will consider incompressible fl ow 

to be constant-density fl ow.
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physical science to make idealized assumptions about real physical systems in 

order to make such systems amenable to analysis. However, care must always 

be taken not to apply results obtained from such idealizations to real problems 

in which the assumptions are grossly inaccurate or inappropriate.) The assump-

tion of incompressible fl ow is an excellent approximation for the fl ow of liquids, 

such as water or oil. Moreover, the low-speed fl ow of air, where  V  < 100 m/s 

(or  V  < 225 mi/h) can also be assumed to be incompressible to a close approxi-

mation. A glance at Fig. 1.30 shows that such velocities were the domain of 

almost all airplanes from the  Wright Flyer  (1903) to the late 1930s. Hence, the 

early development of aerodynamics always dealt with incompressible fl ows, 

and for this reason there exists a huge body of incompressible-fl ow literature 

with its attendant technology. At the end of this chapter we will be able to 

prove  why  airfl ow at velocities less than 100 m/s can be safely assumed to be 

incompressible. 

 In solving and examining aerodynamic fl ows, you will constantly be making 

distinctions between incompressible and compressible fl ows. It is important to 

develop that habit now, because there are some striking quantitative and qualita-

tive differences between the two types of fl ow. 

 As a parenthetical comment, for incompressible fl ow,    Eq. (4.3)  explains 

why all common garden-hose nozzles are convergent shapes, such as shown in 

   Fig. 4.5 . From    Eq. (4.3) ,

V
A

A
V2VV 1

2
1VV=

If  A  2  is less than  A  1 , then the velocity increases as the water fl ows through the 

nozzle, as desired. The same principle is used in the design of nozzles for subsonic 

wind tunnels built for aerodynamic testing, as will be discussed in    Sec. 4.10 . 

Figure 4.5 Incompressible fl ow in a convergent duct.

EXAMPLE 4.1

 Consider a convergent duct with an inlet area  A  1  = 5 m 2 . Air enters this duct with a veloc-

ity  V  1  = 10 m/s and leaves the duct exit with a velocity  V  2  = 30 m/s. What is the area of 

the duct exit? 
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   ■  Solution 
 Because the fl ow velocities are less than 100 m/s, we can assume incompressible fl ow. 

From    Eq. (4.3) ,

 

A V A V

A A
V

V

1 1VV 2 2VV

2 1A 1VV

2VV
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1 67

=

=A1A ( )25 m1 67=)2

EXAMPLE 4.2

  Consider a convergent duct with an inlet area  A  1  = 3 ft 2  and an exit area  A  2  = 2.57 ft 2 . 

Air enters this duct with a velocity  V  1  = 700 ft/s and a density ρ 1  = 0.002 slug/ft 3 , and air 

leaves with an exit velocity  V  2  = 1070 ft/s. Calculate the density of the air ρ 2  at the exit. 

   ■  Solution 
 An inlet velocity of 700 ft/s is a high-speed fl ow, and we assume that the fl ow has to be 

treated as compressible. This implies that the resulting value for ρ 2  will be different from 

ρ 1 . From    Eq. (4.2) ,

 
ρ ρρρ 2ρ 2 2A V A V2 2        

or
  

ρ ρ1ρ ρρ 1 1

2 2

0 002
3

2 5 1070
0 00153=ρ1ρ 0 002

A V1 1

A V2 2

.
( )700

. (57 )
. s00153 lug/gg ft3

        

  Note:  The value of ρ 2  is indeed different from ρ 1 , which clearly indicates that the fl ow in 

this example is a compressible fl ow.  If  the fl ow were essentially incompressible, then the 

calculation of ρ 2  from    Eq. (4.2)  would have produced a value essentially equal to ρ 1 . But 

this is not the case. Keep in mind that    Eq. (4.2)  is more general than    Eq. (4.3) .    Eq. (4.2)  

applies to both compressible and incompressible fl ows;    Eq. (4.3)  is valid for an incom-

pressible fl ow only. 

   Reminder:  In this example, and in all the worked examples in this book, we use con-

sistent units in the calculations. Hence we do not need to explicitly show all the units car-

ried with each term in the mathematical calculations, because we know the answer will be 

in the same consistent units. In this example, the calculation involves the continuity equa-

tion;  A  1  and  A  2  are given in ft 2 ,  V  1  and  V  2  in ft/s, and ρ 1  in slug/ft 3 . When these numbers are 

fed into the equation, we know the answer for ρ 2  will be in slug/ft 3 . It has to be because we 

know the consistent units for density in the English engineering system are slug/ft 3 .     

   4.3  MOMENTUM EQUATION 
  The continuity equation,    Eq. (4.2) , is only part of the story. For example, it says 

nothing about the pressure in the fl ow; yet we know, just from intuition, that 

pressure is an important fl ow variable. Indeed, differences in pressure from one 

point to another in the fl ow create forces that act on the fl uid elements and cause 

them to move. Hence, there must be some relation between pressure and veloc-

ity, and that relation is derived in this section. 
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 Again we fi rst state a fundamental law of physics—namely Newton’s sec-

ond law. 

 Physical principle:  Force mass acceleration= ×mass

or  F ma   (4.4)

 To apply this principle to a fl owing gas, consider an infi nitesimally small 

fl uid element moving along a streamline with velocity  V , as shown in    Fig. 4.6 . At 

some given instant, the element is located at point  P . The element is moving in 

the  x  direction, where the  x  axis is oriented parallel to the streamline at point  P . 

The  y  and  z  axes are mutually perpendicular to  x . The fl uid element is infi ni-

tesimally small. However, looking at it through a magnifying glass, we see the 

picture shown at the upper right of    Fig. 4.6 . What is the force on this element? 

Physically, the force is a combination of three phenomena: 

  1.   Pressure acting in a normal direction on all six faces of the element.  

  2.   Frictional shear acting tangentially on all six faces of the element.  

  3.   Gravity acting on the mass inside the element.   

For the time being, we will ignore the presence of frictional forces; moreover, 

gravity is generally a small contribution to the total force. Therefore, we will 

assume that the only source of force on the fl uid element is pressure. 

     To calculate this force, let the dimensions of the fl uid element be  dx ,  dy , and 

 dz , as shown in    Fig. 4.6 . Consider the left and right faces, which are perpendicu-

lar to the  x  axis. The pressure on the left face is  p . The area of the left face is 

 dy dz ; hence the force on the left face is  p ( dy dz ). This force is in the positive  x  di-

rection. Now recall that pressure varies from point to point in the fl ow. Hence, 

there is some change in pressure per unit length, symbolized by the derivative 

 dp / dx . Thus, if we move away from the left face by a distance  dx  along the  x  axis, 

the  change  in pressure is ( dp / dx )  dx . Consequently, the pressure on the right face 

Figure 4.6 Force diagram for the momentum equation.
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is  p  + ( dp / dx )  dx . The area of the right face is also  dy dz ; hence the force on the 

right face is [ p  + ( dp / dx )  dx ]( dy dz ). This force acts in the negative  x  direction, as 

shown in    Fig. 4.6 . The net force in the  x  direction  F  is the sum of the two:

  
F p dy dz p

dp

dx
dx dy dz+pp dy dz

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

       

or  F
dp

dx
d dy d= − ( )dx dy dz   (4.5)        

   Equation (4.5)  gives the force on the fl uid element due to pressure. Because of 

the convenience of choosing the  x  axis in the fl ow direction, the pressures on the 

faces parallel to the streamlines do not affect the motion of the element along the 

streamline. 

 The mass of the fl uid element is the density ρ multiplied by the volume 

dx dy dz :

dd y ddρ( )dx ddd y dd z  (4.6)

Also, the acceleration  a  of the fl uid element is, by defi nition of acceleration (rate 

of change of velocity),  a  =  dV / dt . Noting that, also by defi nition,  V  =  dx / dt , we 

can write

a
dV

dt

dV

dx

dx

dt

dV

dx
V= = =  (4.7)

    Equations (4.5)  to    (4.7)  give the force, mass, and acceleration, respectively, 

that go into Newton’s second law,    Eq. (4.4) :

F ma
dp

dx
d dy d d dy d V

dV

dx
=− ( )dx dy dz ( )dx dy dzρ

or  dp V dV= −ρ  (4.8)

    Equation (4.8)  is  Euler’s equation . Basically, it relates rate of change of 

momentum to force; hence it can also be designated as the  momentum equation . 

It is important to keep in mind the assumptions utilized in obtaining    Eq. (4.8) : 

We neglected friction and gravity. For fl ow that is frictionless, aerodynamicists 

sometimes use another term,  inviscid fl ow .    Equation (4.8)  is the momentum 

equation for inviscid (frictionless) fl ow. Moreover, the fl ow fi eld is assumed to 

be steady—that is, invariant with respect to time. 

 Please note that    Eq. (4.8)  relates pressure and velocity (in reality, it relates a 

change in pressure  dp  to a change in velocity  dV ).    Equation (4.8)  is a  differential 

equation, and hence it describes the phenomena in an infi nitesimally small 
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neighborhood around the given point  P  in    Fig. 4.6 . Now consider two points, 

1 and 2, far removed from each other in the fl ow but on the same streamline. To 

relate  p  1  and  V  1  at point 1 to  p  2  and  V  2  at the other, far-removed point 2,    Eq. (4.8)  

must be integrated between points 1 and 2. This integration is different depend-

ing on whether the fl ow is compressible or incompressible. Euler’s equation it-

self,    Eq. (4.8) , holds for both cases. For compressible fl ow, ρ in    Eq. (4.8)  is a 

variable; for incompressible fl ow, ρ is a constant. 

 First consider the case of incompressible fl ow. Let points 1 and 2 be located 

along a given streamline, such as that shown over an airfoil in    Fig. 4.7 . From 

   Eq. (4.8) ,

dp V dV+ =V dVρ 0

where ρ = constant. Integrating between points 1 and 2, we obtain

V dV
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ρ = const along streamline (4.9b)

Either form,    Eq. (4.9  a ) or    (4.9  b ), is called  Bernoulli’s equation . Historically, 

Bernoulli’s equation is one of the most fundamental equations in fl uid mechanics. 

 The following important points should be noted:  

1.      Equations (4.9  a ) and    (4.9  b ) hold only for inviscid (frictionless), 

incompressible fl ow.  

2.      Equations (4.9  a ) and    (4.9  b ) relate properties between different points along 

a streamline.  

3.   For a compressible fl ow,    Eq. (4.8)  must be used, with ρ treated as a 

variable. Bernoulli’s equation  must not  be used for compressible fl ow.  

(4.9a)

Figure 4.7 Two points at different locations along a 

streamline.
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  4.   Remember that    Eqs. (4.8)  and    (4.9  a ) and    (4.9  b ) say that  F  =  ma  for a fl uid 

fl ow. They are essentially Newton’s second law applied to fl uid dynamics.   

 To return to    Fig. 4.7 , if all the streamlines have the same values of  p  and 

 V  far upstream (far to the left in    Fig. 4.7 ), then the constant in Bernoulli’s 

equation is the  same for all streamlines . This would be the case, for example, 

if the fl ow far upstream were uniform fl ow, such as that encountered in fl ight 

through the atmosphere and in the test sections of well-designed wind tun-

nels. In such cases,    Eqs. (4.9  a ) and    (4.9  b ) are not limited to the same stream-

line. Instead, points 1 and 2 can be anywhere in the fl ow, even on different 

streamlines. 

 For the case of compressible fl ow also, Euler’s equation,    Eq. (4.8) , can be 

integrated between points 1 and 2; however, because ρ is a variable, we must 

in principle have some extra information about how ρ varies with  V  before 

the integration can be carried out. This information can be obtained; how-

ever, there is an alternative, more convenient route to treating many practi-

cal problems in compressible fl ow that does not explicitly require use of the 

momentum equation. Hence, in this case, we will not pursue the integration of 

   Eq. (4.8)  further.   

   4.4  A COMMENT 
  It is important to make a philosophical distinction between the nature of the equa-

tion of state, Eq. (2.3), and the fl ow equations of continuity,    Eq. (4.2) , and momen-

tum, such as    Eq. (4.9  a ). The equation of state relates  p ,  T , and ρ to one another at 

the  same  point; in contrast, the fl ow equations relate ρ and  V  (as in the continuity 

equation) and  p  and  V  (as in Bernoulli’s equation) at one point in the fl ow to the 

same quantities at another point in the fl ow. There is a basic difference here; keep 

it in mind when setting up the solution of aerodynamic problems. 

EXAMPLE 4.3

  Consider an airfoil (the cross section of a wing, as shown in    Fig. 4.7 ) in a fl ow of air, 

where far ahead (upstream) of the airfoil, the pressure, velocity, and density are 2116 lb/ft 2 , 

100 mi/h, and 0.002377 slug/ft 3 , respectively. At a given point  A  on the airfoil, the pres-

sure is 2070 lb/ft 2 . What is the velocity at point  A ? 

■  Solution 
 First we must deal in consistent units;  V  1  = 100 mi/h is  not  in consistent units. However, 

a convenient relation to remember is that 60 mi/h = 88 ft/s. Hence  V  1  = 100(88/60) = 

146.7 ft/s. This velocity is low enough that we can assume incompressible fl ow. Hence 

Bernoulli’s equation,    Eq. (4.9) , is valid:
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Thus,
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  Consider the same convergent duct and conditions as in    Example 4.1.  If the air pressure 

and temperature at the inlet are  p  1  = 1.2 × 10 5  N/m 2  and  T  1  = 330 K, respectively, calculate 

the pressure at the exit. 

   ■  Solution 
 First we must obtain the density. From the equation of state,
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Still assuming incompressible fl ow, we fi nd from    Eq. (4.9) 
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  Note:  In accelerating from 10 to 30 m/s, the air pressure decreases only a small 

amount, less than 0.45 percent. This is a characteristic of very low-velocity airfl ow.   

  Consider a long dowel with a semicircular cross section, as sketched in    Fig. 4.8  a . The 

dowel is immersed in a fl ow of air, with its axis perpendicular to the fl ow, as shown in 

perspective in    Fig. 4.8  a . The rounded section of the dowel is facing into the fl ow, as 

shown in    Fig. 4.8  a  and    4.8  b . We call this rounded section the  front face  of the dowel. 

The radius of the semicircular cross section is  R  = 0.5 ft. The velocity of the fl ow far 

ahead of the dowel (called the  free stream ) is  V  ∞  = 100 ft/s. Assume inviscid fl ow; that 

is, neglect the effect of friction. The velocity of the fl ow along the surface of the rounded 

front face of the dowel is a function of location on the surface; location is denoted by 

angle θ in    Fig. 4.8  b . Hence, along the front rounded surface,  V  =  V (θ  ). This variation 

is given by

  V V2 ∞VV sinθ   (E4.5.1)        

EXAMPLE 4.4

EXAMPLE 4.5
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Figure 4.8 Diagrams for the construction of the aerodynamic force on a dowel 

(Example 4.5).
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The pressure distribution exerted over the surface of the cross section is sketched in 

   Fig. 4.8  c . On the front face,  p  varies with location along the surface, where the location is 

denoted by the angle θ; that is,  p  =  p (θ ) on the front face. On the fl at back face, the pres-

sure, denoted by  p   B  , is constant. The back face pressure is given by

  p p V−p∞ ∞ ∞VV0 7 2ρ  (E4.5.2)

where  p  ∞  and ρ ∞  are the pressure and density, respectively, in the free stream, far ahead 

of the dowel. The free-stream density is given as ρ ∞  = 0.002378 slug/ft 3 . Calculate the 

aerodynamic force exerted by the surface pressure distribution (illustrated in    Fig. 4.8  c ) on 

a 1-ft segment of the dowel, shown by the shaded section in    Fig. 4.8  a . 

       ■  Solution 
 For this solution, we appeal to the discussions in Secs. 2.2 and    4.3 . Examine    Fig. 4.8  c . 

Because of the symmetry of the semicircular cross section, the pressure distribution over 

the upper surface is a mirror image of the pressure distribution over the lower surface; 

that is,  p  =  p (θ ) for 0 ≤ θ  ≤ π  /2 is the same as  p  =  p (θ ) for 0 ≥ θ ≥ −π  /2. Owing to this 

symmetry, there is no net force on the cross section in the direction perpendicular to the 

free stream; that is, the force due to the pressure pushing down on the upper surface is 

exactly canceled by the equal and opposite force due to the pressure pushing up on the 

lower surface. Therefore, owing to this symmetry, the resultant aerodynamic force is 

parallel to the free-stream direction. This resultant aerodynamic force is illustrated by the 

arrow labeled  D  in    Fig. 4.8  c . 

  Before feeding the numbers into our calculation, we obtain an analytical formula for 

 D  in terms of  V  ∞  and  R , as follows. Our calculations will proceed in a number of logical 

steps. 

  Step One: Calculation of the force due to pressure acting on the front face.  
 Here we will integrate the pressure distribution over the surface area of the front face. We 

will set up an expression for the pressure force acting on an infi nitesimally small element 

of surface area, take the component of this force in the horizontal fl ow direction (the di-

rection of  V  ∞  in    Fig. 4.8 ), and then integrate this expression over the surface area of the 

front face. Consider the infi nitesimal arclength segment of the surface  ds  and the pressure 

 p  exerted locally on this segment, as drawn in    Fig. 4.8  d . A magnifi ed view of this segment 

is shown in    Fig. 4.8  e . Recall from    Fig. 4.8  a  that we wish to calculate the aerodynamic 

force on a 1-ft length of the dowel, as shown by the shaded region in    Fig. 4.8  a . As part 

of the shaded region, consider a small sliver of area of width  ds  and length equal to 1 ft 

on the curved face of the dowel, as shown in    Fig. 4.8  f . The surface area of this sliver is 

1  ds . The force due to the pressure  p  on this area is  p (1)  ds  =  p ds . This force is shown 

in    Fig. 4.8  e , acting perpendicular to the segment  ds . The component of this force in the 

horizontal direction is ( p ds ) cosθ, also shown in    Fig. 4.8  e . From the geometric construc-

tion shown in    Fig. 4.8  g , we have

  ds R d= θd   (E4.5.3)        

and the vertical projection of  ds , denoted by  dy , is given by

  dy ds= cosθ   (E4.5.4)        
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Substituting    Eq. (E4.5.3)  into    (E4.5.4) , we have

  dy R= θ θd (E4.5.5)        

We put    Eq. (E4.5.5)  on the shelf temporarily. It will be used later, in Step Two of this 

calculation. However, we use    Eq. (E4.5.3)  immediately, as follows. 

 In light of    Eq. (E.4.5.3) , the horizontal force ( p ds )cosθ in    Fig. 4.8  e  can be  expressed 

as

( )cosp ds p)cos dθ θpR cos θd   (E4.5.6)        

Returning to    Fig. 4.8  c , we see that the net horizontal force exerted by the pressure dis-

tribution on the rounded front face is the integral of    Eq. (E4.5.6)  over the front surface. 

Denote this force by  D   F  .

  R
/

/
θ θd

π

π

−∫ 2

2
(E4.5.7)        

This force is shown in    Figure 4.8  h . 

 In    Eq. (E4.5.7) ,  p  is obtained from Bernoulli’s equation,    Eq. (4.9) , written  between a 

point in the free stream where the pressure and velocity are  p  ∞  and  V  ∞ ,  respectively, and 

the point on the body surface where the pressure and velocity are  p  and  V ,  respectively.

p V p VV1
2

2 1
2

2ρ ρp∞VV =V∞VV 2

or  p p= +p∞ + ( )V V∞VV1
2 Vρ   (E4.5.8)         

Note:  We can use Bernoulli’s equation for this solution because the free-stream velocity 

of  V  ∞  = 100 ft/s is low, and we can comfortably assume that the fl ow is incompressible. 

Also, because ρ is constant, the value of ρ in    Eq. (E4.5.8)  is the same as ρ ∞  in the free 

stream. Substituting    Eq. (E4.5.8)  into    Eq. (E4.5.7) , we have

D p d+p
− ∞ + ( )⎡

⎣⎣⎣
⎤
⎦⎦⎦∫ 1

22

2
ρ θR( )V V∞VV

⎤
⎦⎥
⎤⎤
⎦⎦

V θd
π

π

/

/
  (E4.5.9)        

Recall that the variation of the surface velocity is given by    Eq. (E4.5.1) , repeated here:

V V2 ∞VV sinθ (E4.5.1)        

Substituting    Eq. (E4.5.1)  into    Eq. (E4.5.9) , we have

D p R+p
−π

π
∞ + ( )⎡

⎣⎣⎣
⎤
⎦⎥
⎤⎤
⎦⎦∫ 1

22

2
ρ (V V∞VV ∞VVV θ θdR)⎦⎥⎦⎦/

/

or
  

D p R+p
−π

π
∞ + ( )⎡

⎣⎣⎣
⎤
⎦⎦⎦∫ 1

2
2 (2

2
ρV∞VV (2 ( θ θdcR os

/

/
(E4.5.10)

Let us put this expression for  D  F  on the shelf for a moment; we will come back to it 

shortly. 
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Step Two: Calculation of the force due to pressure acting on the back face.  
 Here we will integrate the pressure distribution over the surface area of the back face. 

Similar to Step One, we will set up an expression for the pressure force acting on an 

infi nitesimally small element of surface area and then integrate this expression over the 

surface area of the back face. 

  Returning to    Fig. 4.8  c , we now direct our attention to the pressure on the back face 

of the cross section  p   B  . This pressure exerts a force  D   B   on the 1-ft length of dowel, as 

sketched in    Fig. 4.8  h . Force  D   B   acts toward the left, opposite to the direction of  D   F  . Pres-

sure  p   B   is constant over the back face. The rectangular area of the 1-ft length of the back 

face is (1)(2 R ). Because  p   B   is constant over this back face, we can directly write

D pB Bp( )( )RR)( (E4.5.11)        

However, because the resultant aerodynamic force on the cross section is given by 

D   F   −  D   B  , as seen in    Fig. 4.8  h , and because  D   F   is expressed in terms of an integral in 

   Eq. (E4.5.10) , it will be convenient to couch  D   B   in terms of an integral also, as follows. 

Returning to    Figure 4.8  d , we consider a segment of the back surface area of height  dy  on 

which  p   B   is exerted. Over a 1-ft length of dowel (perpendicular to the page in    Fig. 4.8  d ), 

the area of a small sliver of surface is 1  dy , and the force on this sliver is  p   B  (1)  dy . The 

total force on the back face is obtained by integrating with respect to  y  from point  a  to 

point  b , as noted in    Fig. 4.8  d :

D p dyBp
a

b
(1)∫  (E4.5.12)

However, recall from    Eq. (E4.5.5)  that  dy  =  R  cosθ  d θ. Hence    Eq. (E4.5.12)  becomes

RBp
π

π

/

/
θ θd

−∫ 2

2
 (E4.5.13)

Please note that    Eqs (E4.5.13)  and    (E4.5.11)  are both valid expressions for  D   B   —they just 

look different. To see this, carry out the integration in    Eq. (E4.5.13) ; you will obtain the 

result in    Eq. (E4.5.11) . Also recall that  p   B   is given by    Eq. (E4.5.2) , repeated here (and 

dropping the subscript ∞ on ρ because ρ is constant):

p p V−p∞ ∞pp VV0 7 2ρ  (E4.5.2)

Hence    Eq. (E4.5.13)  becomes

D d
π

π ( )p −p∞pp
−∫ 2

2

/

/
θR)V∞VV cRVVV os θ   (E4.5.14)

Step Three: Calculation of the resultant aerodynamic force.  
 Here we will combine the results obtained in Steps One and Two. In Step One, we 

 obtained an expression for the pressure force acting on the front face. In Step Two, 

we obtained an expression for the pressure force acting on the back face. Because the 

force on the front face acts in one direction and the force on the back face acts in the 

opposite direction, as shown in    Fig. 4.8  h , the net, resultant aerodynamic force is the dif-

ference between the two. 
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 Returning to    Fig. 4.8  h , we see that the resultant aerodynamic force  D  is given by

D D DF BD−DF (E4.5.15)        

Substituting    Eqs. (E4.5.10)  and    (E4.5.14)  into    Eq. (E4.5.15) , we have

D p R+p
−π

π
∞pp +pp ( )⎡

⎣⎣⎣
⎤
⎦⎦⎦

−

∫ 1

2
2 (2

2
ρV∞VV (2 ( θ θdcR os

/

/

2

2

/

/
θcos θdθ( )p∞pp −p 0 700 27ρ 222

−∫ π

π
(E4.5.16)        

 The results of    Example 4.5  illustrate certain aspects 

important to the general background of airplane  design:  

1.   It reinforces the important point made in 

Sec. 2.2—namely that the resultant aerodynamic 

force exerted on any object immersed in a 

fl owing fl uid is due  only  to the net integration 

of the pressure distribution and the shear 

stress distribution exerted all over the body 

surface. In    Example 4.5  we assumed the fl ow 

to be inviscid; that is, we neglected the effect 

of friction. So the resultant aerodynamic force 

was due to just the integrated effect of the 

pressure distribution over the body surface. 

This is precisely how we calculated the force 

on the dowel in    Example  4.5 —we integrated 

the pressure distribution over the surface of the 

dowel. Instead of a dowel, if we had dealt with 

a Boeing 747 jumbo jet, the idea would have 

been the same. In airplane design, the shape 

of the airplane is infl uenced by the desire to 

create a surface pressure distribution that will 

minimize drag while at the same time creating 

the necessary amount of lift. We return to this 

basic idea several times throughout the book.  

  2.      Equation (E4.5.17)  shows that the aerodynamic 

force on the body is 

  (a)   Directly proportional to the density of the 

fl uid ρ.  

  (b)   Directly proportional to the  square  of the 

free-stream velocity:  D Vα ∞VV 2    .  

  (c)   Directly proportional to the  size  of the 

body, as refl ected by the radius  R .      

 These results are not specialized to the dowel in 

    Example 4.5 ; they are much more general in their 

 application. We will see in Ch. 5 that the aerody-

namic force on airfoils, wings, and whole airplanes 

is  indeed proportional to ρ ∞ ,  V∞VV 2    , and the size of the 

body, where size is couched in terms of a surface area. 

[In    Eq. (E4.5.17) ,  R  really represents an area equal 

to  R (1) for the unit length of the dowel over which 

the aerodynamic force is calculated.] It is  interesting 

to note that    Eq. (E4.5.17)  does not contain the free-

stream pressure  p  ∞ . Indeed,  p  ∞  canceled out in our 

derivation of    Eq. (E4.5.17) . This is not just a charac-

teristic of the dowel used in    Example 4.5 ; in general, 

we will see in Ch. 5 that we do not need the explicit 

value of free-stream pressure to calculate the aerody-

namic force on a fl ight vehicle, despite the fact that 

the aerodynamic force fundamentally is due (in part) 

to the  pressure  distribution over the surface. In the 

fi nal result, it is always the value of the free-stream 

density ρ ∞  that appears in the expressions for aerody-

namic force, not  p  ∞ .  

  DESIGN BOX 
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Combining the two integrals in    Eq. (E4.5.16)  and noting that the two terms involving  p  ∞
cancel, we have
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 Highlighting the preceding result, we have just derived an analytical expression for the 

aerodynamic force  D , per unit length of the dowel. It is given by

D V R1 067 2ρ ∞VV  (E4.5.17)

Putting in the numbers given in the problem, where ρ = ρ ∞  = 0.002378 slug/ft 3 , 

 V  ∞  = 100 ft/s, and  R  = 0.5 ft, we obtain from    Eq. (E4.5.17) 

  D = ( . )( . )( ) ( . ) .=067 0 0 5. 682 lb per footff t ott f length of dowel            .

   4.5  ELEMENTARY THERMODYNAMICS 
  As stated earlier, when the airfl ow velocity exceeds 100 m/s, the fl ow can no 

longer be treated as incompressible. Later we will restate this criterion in terms 

of the  Mach number , which is the ratio of the fl ow velocity to the speed of 

sound, and we will show that the fl ow must be treated as compressible when the 

Mach number exceeds 0.3. This is the situation with the vast majority of current 

aerodynamic applications; hence the study of compressible fl ow is of extreme 

importance. 

 A high-speed fl ow of gas is also a high-energy fl ow. The kinetic energy 

of the fl uid elements in a high-speed fl ow is large and must be taken into ac-

count. When high-speed fl ows are slowed down, the consequent reduction in 

kinetic energy appears as a substantial increase in temperature. As a result, high-

speed fl ows, compressibility, and vast energy changes are all related. Thus, to 

study compressible fl ows, we must fi rst examine some of the fundamentals of 

energy changes in a gas and the consequent response of pressure and temperature 

to these energy changes. Such fundamentals are the essence of the science of 

 thermodynamics. 

 Here the assumption is made that the reader is not familiar with thermody-

namics. Therefore, the purpose of this section is to introduce those ideas and 

results of thermodynamics that are absolutely necessary for our further analysis 

of high-speed, compressible fl ows.  Caution:  The material in    Secs. 4.5  to    4.7  can 

be intimidating; if you fi nd it hard to understand, do not worry—you are in good 
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company. Thermodynamics is a sophisticated and extensive subject; we are just 

introducing some basic ideas and equations here. View these sections as an intel-

lectual challenge, and study them with an open mind. 

 The pillar of thermodynamics is a relationship called the  fi rst law,  which is 

an empirical observation of natural phenomena. It can be developed as follows. 

Consider a fi xed mass of gas (for convenience, say a unit mass) contained within 

a fl exible  boundary,  as shown in    Fig. 4.9 . This mass is called the  system,  and 

everything outside the boundary is the  surroundings . Now, as in Ch. 2, consider 

the gas that makes up the system to be composed of individual molecules moving 

about with random motion. The energy of this molecular motion, summed over 

all the molecules in the system, is called the  internal energy  of the system. Let 

 e  denote the internal energy per unit mass of gas. The  only  means by which  e  can 

be increased (or decreased) are the following: 

       1.   Heat is added to (or taken away from) the system. This heat comes from 

the surroundings and is added to the system across the boundary. Let δ  q  be 

an incremental amount of heat added per unit mass.  

  2.   Work is done on (or by) the system. This work can be manifested by the 

boundary of the system being pushed in (work done on the system) or 

pushed out (work done by the system). Let δ  w  be an incremental amount 

of work done on the system per unit mass.   

 Also, let  de  be the corresponding change in internal energy per unit mass. 

Then, simply on the basis of common sense, confi rmed by laboratory results, we 

can write

  δ δq dδ δδ eδδδ   (4.10)        

   Equation (4.10)  is termed the  fi rst law of thermodynamics . It is an energy equa-

tion stating that the change in internal energy is equal to the sum of the heat 

added to and the work done on the system. (Note in the previous discussion that 

δ and  d  both represent infi nitesimally small quantities; however,  d  is a “perfect 

differential” and δ  is not.) 

    Equation (4.10)  is very fundamental; however, it is not in a practical form 

for use in aerodynamics, which speaks in terms of pressures, velocities, and the 

Figure 4.9 System of unit mass.
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like. To obtain more useful forms of the fi rst law, we must fi rst derive an expres-

sion for δ  w  in terms of  p  and  v  (specifi c volume), as follows. Consider the system 

sketched in    Fig. 4.10 . Let  dA  be an incremental surface area of the boundary. 

Assume that work Δ W  is being done on the system by  d A  being pushed in a small 

distance  s , as also shown in    Fig. 4.10 . Because work is defi ned as force times 

distance, we have

  
Δ
Δ

W
W p d s

= ( )( )
( )p d A
f e d)( i

 (4.11)

Now assume that many elemental surface areas of the type shown in    Fig. 4.10  

are distributed over the total surface area  A  of the boundary. Also assume that 

all the elemental surfaces are being simultaneously displaced a small distance  s
into the system. Then the total work δ  w  done on the unit mass of gas inside the 

system is the sum (integral) of each elemental surface over the whole boundary; 

that is, from    Eq. (4.11) ,

wδδ s d A
A A∫ ∫d s
A

p( )p d Ap
  

(4.12)

Assume that  p  is constant everywhere in the system (which, in thermody-

namic terms, contributes to a state of thermodynamic equilibrium). Then, from 

   Eq. (4.12) ,

  
δw pδδ s d A

A∫   
(4.13)

The integral ∫  A    s dA  has physical meaning. Geometrically, it is the change in vol-

ume of the unit mass of gas inside the system, created by the boundary surface 

being displaced inward. Let  dv  be the change in volume. Because the boundary 

is pushing in, the volume decreases ( dv  is a negative quantity) and work is done 

on the gas (hence δ  w  is a positive quantity in our development). Thus

  s d A dv
A∫   (4.14)

Figure 4.10 Work being done on the system by pressure.
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Substituting    Eq. (4.14)  into    Eq. (4.13) , we obtain

  δw pδδ dv  (4.15)

   Equation (4.15)  gives the relation for work done strictly in terms of the thermo-

dynamic variables  p  and  v . 

 When    Eq. (4.15)  is substituted into    Eq. (4.10) , the fi rst law becomes

δq dδ e pdv+de  (4.16)

   Equation (4.16)  is an alternative form of the fi rst law of thermodynamics. 

 It is convenient to defi ne a new quantity, called  enthalpy   h , as

h e pv e RT+e = e   (4.17)

where  pv  =  RT , assuming a perfect gas. Then, differentiating the defi nition in 

   Eq. (4.17) , we fi nd

dh de pdv v dp= +de +   (4.18)

Substituting    Eq. (4.18)  into    (4.16) , we obtain

δq dδ e pdv dh pd dp pdv+de = +( )dh pdv v )dp−dh − v dp

δq dδ h v dpdh  (4.19)

   Equation (4.19)  is yet another alternative form of the fi rst law. 

 Before we go further, remember that a substantial part of science and en-

gineering is simply the language. In this section we are presenting some of the 

language of thermodynamics essential to our future aerodynamic applications. 

We continue to develop this language. 

    Figures 4.9  and    4.10  illustrate systems to which heat δ  q  is added and on 

which work δ  w  is done. At the same time, δ  q  and δ  w  may cause the pressure, 

temperature, and density of the system to change. The way (or means) by which 

changes of the thermodynamic variables ( p , T, ρ,  v ) of a system take place is 

called a  process . For example, a  constant-volume process  is illustrated at the left 

in    Fig. 4.11 . Here the system is a gas inside a rigid boundary, such as a hollow 

steel sphere, and therefore the volume of the system always remains constant. 

If an amount of heat δ  q  is added to this system,  p  and  T  will change. Thus, by 

defi nition, such changes take place at constant volume; this is a constant-volume 

process. Another example is given at the right in    Fig. 4.11 . Here the system is 

a gas inside a cylinder–piston arrangement. Consider that heat δ  q  is added to 

the system, and at the same time assume the piston is moved in exactly the right 

way to maintain a constant pressure inside the system. When δ  q  is added to this 

 system,  T  and  v  (and hence ρ) will change. By defi nition, such changes take place 

at constant pressure; this is a constant-pressure process. Many different kinds of 

processes are treated in thermodynamics. These are only two examples. 

 The last concept to be introduced in this section is that of specifi c heat. 

Consider a system to which a small amount of heat δ  q  is added. The addition 
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of δ  q  will cause a small change in temperature  dT  of the system. By defi nition, 

 specifi c heat  is the heat added per unit change in temperature of the system. Let 

 c  denote specifi c heat. Thus

 
c

q

dT
≡ δq

       

However, with this defi nition,  c  is multivalued. That is, for a fi xed quantity δ  q , 

the resulting value of  dT  can be different, depending on the type of process 

in which δ  q  is added. In turn, the value of  c  depends on the type of process. 

Therefore, in principle we can defi ne more precisely a different specifi c heat for 

each type of process. We will be interested in only two types of specifi c heat, one 

at constant volume and the other at constant pressure, as follows. 

 If the heat δ  q  is added at  constant volume  and it causes a change in tempera-

ture  dT , the  specifi c heat at constant volume   c   v   is defi ned as

 

c
q

dT
v ≡ ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

δq

c⎠⎠ onstant volume

or  δq cδ dTv l( )constant volume  (4.20)

In contrast, if δ  q  is added at constant pressure and it causes a change in tem-

perature  dT  (whose value is different from the preceding  dT ), the  specifi c heat at 
constant pressure   c   p   is defi ned as

 

c
q

dT
p ≡ δq⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠c⎠⎠ onstant pressure        

or  δq cδ dTp p( )constant pressure   (4.21)        

The preceding defi nitions of  c   v   and  c   p  , when combined with the fi rst law, 

yield useful relations for internal energy  e  and enthalpy  h  as follows. First 

Figure 4.11 Illustration of constant-volume and constant-pressure 

processes.
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consider a constant-volume process, where by defi nition  dv  = 0. Thus, from the 

alternative form of the fi rst law,    Eq. (4.16) ,

  δq dδ e p dv de de+de = +de =0   (4.22)        

Substituting the defi nition of  c   v  ,    Eq. (4.20) , into    Eq. (4.22) , we get

  de c dTv=   (4.23)        

By assuming that  c   v   is a constant, which is reasonable for air at normal condi-

tions, and letting  e  = 0 when  T  = 0, we may integrate    Eq. (4.23)  to

  e c Tv   (4.24)        

Next consider a constant-pressure process, where by defi nition  dp  = 0. From the 

alternative form of the fi rst law,    Eq. (4.19) ,

  δq dδ h v dp dh dhdh = −dh =0   (4.25)        

Substituting the defi nition of  c   p  ,    Eq. (4.21) , into    Eq. (4.25) , we fi nd

  dh c dTp=   (4.26)        

Again, assuming that  c   p   is constant and letting  h  = 0 at  T  = 0, we see that 

   Eq. (4.26)  yields

  h c Tp   (4.27)         

    Equations (4.23)  to    (4.27)  are very important relationships. They have 

been derived from the fi rst law, into which the defi nitions of specifi c heat 

have been inserted. Look at them! They relate thermodynamic variables  only  

( e  to  T  and  h  to  T  ); work and heat do not appear in these equations. In fact, 

   Eqs. (4.23)  to    (4.27)  are quite general. Even though we used examples of 

constant volume and constant pressure to obtain them, they hold  in general  
as long as the gas is a perfect gas (no intermolecular forces). Hence, for  any  

process,

 

de c dT
dh c dT

e c T
h c T

v

p

v

p

=
=

       

This generalization of    Eqs. (4.23)  to    (4.27)  to any process may not seem logical 

and may be hard to accept; nevertheless, it is valid, as can be shown by good 

thermodynamic arguments beyond the scope of this book. For the remainder of 

our discussions, we will make frequent use of these equations to relate internal 

energy and enthalpy to temperature. 
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  Calculate the internal energy and enthalpy, per unit mass, for air at standard sea-level 

conditions in ( a ) SI units and ( b ) English engineering units. For air at standard condi-

tions,  c   v   = 720 J/(kg)(K) = 4290 ft · lb/(slug)(°R), and  c   p   = 1008 J/(kg)(K) = 6006 ft · lb/ 

(slug)(°R). 

■     Solution 
 At standard sea level, the air temperature is

 T = °288 519 R°K 519         

  a.  From    Eqs. (4.24)  and    (4.27) , we have

 

e c T

h c T
v

p

=c T =
=c T =

( )( )

( )( )

2 0. 7 105 J/kg

2 922 0 105 J/kg
        

  b.  Also from    Eqs. (4.24)  and    (4.27) ,

 

e c T

h c T

v

p

=c T =

=c T

( )( ) .

(

5 2 2. 3 1× 0

6006

6 ft lb/slug⋅

)()) ) .519 1. 2 1061. 2 ft lb/slug⋅
        

  Note:  For a perfect gas,  e  and  h  are functions of temperature only, as emphasized in this 

worked example. If you know the temperature of the gas, you can directly calculate  e  and 

 h  from    Eqs. (4.24)  and    (4.27) . You do not have to be concerned whether the gas is going 

through a constant-volume process, a constant-pressure process, or whatever. Internal 

energy and enthalpy are state variables—that is, properties that depend only on the local 

state of the gas as described, in this case, by the given temperature of the gas.   

EXAMPLE 4.6

EXAMPLE 4.7

  Consider air inside a cylinder, with a piston at the top of the cylinder. The internal energy 

of the air inside the cylinder is 4 × 10 5  J. The piston moves into the cylinder by a distance 

suffi cient to do 2 × 10 5  J of work on the system. At the same time, 6 × 10 5  J of heat are 

added to the system. Calculate the internal energy of the air after the work is done and 

the heat added. 

■  Solution 
 This example is almost trivial, but it is intended to illustrate the use of the fi rst law of 

thermodynamics. Equation (4.10) is expressed in terms of infi nitesimally small quantities 

of heat added, δ  q , and work done, δ  w . It holds, however, for any quantities of heat and 

work. Let ΔW be the total amount of work done on the system, ΔQ the total heat added to 

the system from the surroundings, and ΔE the resulting fi nite change in internal energy. 

The fi rst law of thermodynamics, Eq. (4.10), can be expressed as

  Δ Δ ΔQ EΔ ΔΔ   (4.7.1)
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In this example, Δ Q = 6 × 10 5  J and ΔW = 2 × 10 5  J. Hence, from Eq. (4.7.1),

 Δ Δ Δ =QΔ + WΔQΔ + Δ2 1
5 5 56 0 0 8 1× 0 J5        

Because E 1  is given as 4 × 10 5  J, then

 E E + Q + W2 1E 5 54 10 8+5 10 J=WE +1E ×10 8+5 + = ×Q +Δ ΔQ +Q + 12 105
       

In this example, nothing is said about the processes by which the heat is added and work 

is done on the system. Because the values of both work and heat are given, we did not 

have to specify the process. Later we will see that to  calculate  Δw and Δ q from the 

other changes in the system, we need to specify the type of process. Both Δw and Δ q are 

 process dependent. But in this example we know up front the values of ΔW and Δ Q. This 

is all that is seen by the fi rst law of thermodynamics, and all that is required to obtain the 

change in internal energy, Δ E = E 2  – E 1 .     

   4.6  ISENTROPIC FLOW 
  We are almost ready to return to our consideration of aerodynamics. However, 

we must introduce one more concept that bridges both thermodynamics and 

compressible aerodynamics—namely, that of  isentropic fl ow . 

 First consider three more defi nitions: 

    An  adiabatic process  is one in which no heat is added or taken away: δ  q  = 0.  

    A  reversible process  is one in which no frictional or other dissipative effects occur.  

    An  isentropic process  is one that is both adiabatic and reversible.   

Thus, an isentropic process is one in which there is neither heat exchange nor 

any effect due to friction. (The source of the word  isentropic  is another defi ned 

thermodynamic variable called  entropy . Entropy is constant for an isentropic 

process. A discussion of entropy is not vital to our discussion here; therefore, no 

further elaboration is given.) 

 Isentropic processes are very important in aerodynamics. For example, con-

sider the fl ow of air over the airfoil shown in    Fig. 4.7 . Imagine a fl uid element 

moving along one of the streamlines.  No  heat is being added or taken away from 

this fl uid element; heat exchange mechanisms such as heating by a fl ame, cooling 

in a refrigerator, or intense radiation absorption are all ruled out by the nature of the 

physical problem we are considering. Thus, the fl ow of the fl uid element along the 

streamline is  adiabatic . At the same time, the shearing stress exerted on the surface 

of the fl uid element due to friction is generally quite small and can be neglected 

(except very near the surface, as will be discussed later). Thus, the fl ow is also 

frictionless. [Recall that this same assumption was used in obtaining the momen-

tum equation,    Eq. (4.8) .] Hence, the fl ow of the fl uid element is both adiabatic and 

reversible (frictionless); that is, the fl ow is  isentropic . Other aerodynamic fl ows 

can also be treated as isentropic, such as the fl ows through wind tunnel nozzles and 

rocket engines. 
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 Note that even though the fl ow is adiabatic, the temperature need not be 

constant. Indeed, the temperature of the fl uid element can vary from point to 

point in an adiabatic, compressible fl ow. This is because the volume of the fl uid 

element (of fi xed mass) changes as it moves through regions of different den-

sity along the streamline; when the volume varies, work is done [   Eq. (4.15) ], 

hence the internal energy changes [   Eq. (4.10) ], and hence the temperature 

changes [   Eq. (4.23) ]. This argument holds for compressible fl ows, where the 

density is variable. In contrast, for incompressible fl ow, where ρ = constant, the 

volume of the fl uid element of fi xed mass does not change as it moves along a 

streamline; hence no work is done and no change in temperature occurs. If the 

fl ow over the airfoil in    Fig. 4.7  were incompressible, the entire fl ow fi eld would 

be at constant temperature. For this reason, temperature is not an important 

quantity for frictionless incompressible fl ow. Moreover, our present discussion 

of isentropic fl ows is relevant to  compressible  fl ows only, as explained in the 

following. 

 An isentropic process is more than just another defi nition. It gives us several 

important relationships among the thermodynamic variables  T ,  p , and ρ at two 

different points (say, points 1 and 2 in    Fig. 4.7 ) along a given streamline. These 

relations are obtained as follows. Because the fl ow is isentropic (adiabatic and 

reversible), δ  q  = 0. Thus, from    Eq. (4.16) ,

δq dδ e pdv
pdv de

=pdvde +
−

0
(4.28)

Substitute    Eq. (4.23)  into    (4.28) :

−pdv c= dTv   (4.29)

In the same manner, using the fact that δ  q  = 0 in    Eq. (4.19) , we also obtain

  
δq dδ h v dp

v dp dd h
=dh v dp 0

  (4.30)

Substitute    Eq. (4.26)  into    (4.30) :

v dp cd dTp  (4.31)

Divide    Eq. (4.29)  by    (4.31) :

− =pdv

v dpd

c

c
v

p

or

  

dp

p

c

c

dv

v
p

v

= −
  

(4.32)

The ratio of specifi c heats  c   p   /c  v   appears so frequently in compressible fl ow equa-

tions that it is given a symbol all its own, usually γ;  c   p   /c  v   ≡ γ. For air at normal 

conditions, which exist for the applications treated in this book, both  c   p   and  c   v
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are constants, and hence γ   = constant = 1.4 (for air). Also,  c   p  /c  v   ≡ γ   = 1.4 (for air 

at normal conditions). Thus,    Eq. (4.32)  can be written as

  dp

p

dv

v
= −γ   (4.33)        

Referring to    Fig. 4.7 , we integrate    Eq. (4.33)  between points 1 and 2:
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  (4.34)        

Because  v  1  = 1/ρ 1  and  v  2  = 1/ρ 2 ,    Eq. (4.34)  becomes
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(4.35)        

From the equation of state, we have ρ =  p /( RT ). Thus,    Eq. (4.35)  yields
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or
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(4.36)        

Combining    Eqs. (4.35)  and    (4.36) , we obtain
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(4.37)        

The relationships given in    Eq. (4.37)  are powerful. They provide important infor-

mation for  p ,  T , and ρ between two different points on a streamline in an isen-

tropic fl ow. Moreover, if the streamlines all emanate from a uniform fl ow far 

upstream (far to the left in    Fig. 4.7 ), then    Eq. (4.37)  holds for any two points in 

the fl ow, not necessarily those on the same streamline. 
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 We emphasize again that the isentropic fl ow relations,    Eq. (4.37) , are rel-

evant to compressible fl ows only. By contrast, the assumption of incompressible 

fl ow (remember, incompressible fl ow is a myth, anyway) is not consistent with 

the same physics that went into the development of    Eq. (4.37) . To analyze in-

compressible fl ows, we need only the continuity equation [say,    Eq. (4.3) ] and the 

momentum equation [Bernoulli’s equation,    Eqs. (4.9  a ) and    (4.9  b )]. To analyze 

compressible fl ows, we need the continuity equation,    Eq. (4.2) , the momentum 

equation [Euler’s equation,    Eq. (4.8) ], and another soon-to-be-derived relation 

called the  energy equation . If the compressible fl ow is isentropic, then    Eq. (4.37)  

can be used to replace either the momentum or the energy equation. Because 

   Eq. (4.37)  is a simpler, more useful algebraic relation than Euler’s equation, 

   Eq. (4.8) , which is a differential equation, we frequently use    Eq. (4.37)  in place 

of    Eq. (4.8)  for the analysis of compressible fl ows in this book. 

 As just mentioned, to complete the development of the fundamental rela-

tions for the analysis of compressible fl ow, we must now consider the energy 

equation. 

EXAMPLE 4.8

  An airplane is fl ying at standard sea-level conditions. The temperature at a point on the 

wing is 250 K. What is the pressure at this point? 

■  Solution 
 The air pressure and temperature,  p  1  and  T  1 , far upstream of the wing correspond to 

standard sea level. Hence  p  1  = 1.01 × 10 5  N/m 2  and  T  1  = 288.16 K. Assume that the fl ow 

is isentropic (hence compressible). Then the relation between points 1 and 2 is obtained 

from    Eq. (4.37) :
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EXAMPLE 4.9

  In a rocket engine, the fuel and oxidizer are burned in the combustion chamber, and then 

the hot gas expands through a nozzle to high velocity at the exit of the engine. (Jump 

ahead and see the sketch of a rocket engine nozzle in    Fig. 4.32 .) The fl ow through the 

rocket engine nozzle downstream of the combustion chamber is isentropic. Consider the 

case when the pressure and temperature of the burned gas in the combustion chamber 

are 20 atm and 3500 K, respectively. If the pressure of the gas at the exit of the nozzle 

is 0.5 atm, calculate the gas temperature at the exit.  Note:  The combustion gas is not air, 

so the value for γ   will be different than for air; that is, γ   will  not  be equal to 1.4. For the 

combustion gas in this example, γ   = 1.15. 
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   ■  Solution 
 From    Eq. (4.36) ,
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where we will designate condition 1 to be the combustion chamber and condition 2 to be 

the nozzle exit. Hence  p  1  = 20 atm,  T  1  = 3500 K, and  p  2  = 0.5 atm. Rearranging    Eq. (4.36) , 

we have
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  Question:  Atmospheres is a nonconsistent unit for pressure. Why did we not convert  p  1  

and  p  2  to N/m 2  before inserting into    Eq. (4.36) ? The answer is that  p  1  and  p  2  appear as a 

ratio  in the preceding calculation, namely  p  1 / p  2 . As long as we use the  same  units for the 

numerator and the denominator, the ratio is the same value, independent of what units 

are used. To prove this, let us convert atmospheres to the consistent units of N/m 2 . One 

atmosphere is by defi nition the pressure at standard sea level. From the listing of sea-level 

properties in Sec. 3.4, we see that

 1 1 5atm 1 rounded to three significan21. (01 105 N01 105 /m201 t ftt iff gures)        

Thus
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From    Eq. (4.36) ,
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which is the same answer as fi rst obtained.   

  A cylinder with a piston moving inside the cylinder, as considered in Example 4.7, is the 

basic power-producing mechanism in the reciprocating engine found in most automo-

biles and in many small general aviation aircraft. The basic principle of the reciprocat-

ing engine is described in Sec. 9.3, and the elements of a four-stroke engine cycle are 

sketched in Fig. 9.11. Without being concerned with the details (you will be able to digest 

and enjoy the details when you study Ch. 9), just note that the four strokes are intake, 

compression, power, and exhaust. In particular, examine Fig. 9.11 b , which illustrates the 

compression stroke. At the beginning of the compression stroke, the piston is at the bot-

tom of the cylinder, and the cylinder is full of the gas–air mixture. Denote the volume of 

this mixture by  V  2 . When the piston has moved its maximum distance toward the top of 

the cylinder at the end of the compression stroke, the volume of the gas–air mixture above 

EXAMPLE 4.10
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the piston is  V  3 . By defi nition, in an internal combustion engine, the all-important  com-
pression ratio  is  V  2 / V  3 . Consider the case where the fuel–air mixture has been brought 

into the cylinder at standard sea-level conditions during the intake stroke. The design 

compression ratio is 10. Calculate the pressure and temperature of the gas–air mixture in 

the cylinder at the end of the compression stroke, assuming that the compression process 

takes place isentropically. Because most of the mixture is air and very little is fuel (typical 

fuel-to-air ratios by mass are 0.05), it is safe to assume a value of γ   = 1.4. 

■  Solution 
 Denote conditions at the beginning of the compression stroke by the subscript 2 and those 

at the end of the stoke by the subscript 3. From Eq. (4.37) and the defi nition of specifi c 

volume,  v , in Sec. 2.5, we have
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  (E 4.10.1)        

The specifi c volume is the volume per unit mass. Because the mass inside the cylin-

der is constant during the compression stroke, we can write  v  2 / v  3  =  V2 /V 3 . Hence, from 

Eq. (E 4.10.1), we have

  p

p

V

V
3

2

2VV

3VV
=

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

γ⎞
        (E 4.10.2)      

The compression ratio is 10. The gas–air mixture at the beginning of the compression 

stroke is at standard sea-level conditions, that is,  p  2  = 1.02 × 10 5  N/m 2 . From Eq. (E 4.10.2),
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 Note:  Because we are dealing with ratios in the equation, we can use the nonconsistent 

unit of atmospheres for pressure, that is,  p  2  = 1 atm, and

 
p3

1 41 10 21 4 5 1= ( )1(11 ( )1010 atm
       

 Check : Since 1 atm = 1.02 × 10 5  N/m 2 , then

 p3
5 525 1 1 02 10 25 6 0×021= = 25( .25(2525 ) .111 N5.6 106 /m2

       

which agrees with our fi rst answer. 

 To calculate the temperature at the end of the compression stroke, return to Eq. (4.37), 

where we can write
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or,

  

T

T

V

V
3TT

2TT
3

2

2VV

3VV

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
=

⎛

⎝
⎜
⎛⎛

⎝⎝
⎜⎜
⎝⎝⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
⎟⎟
⎠⎠⎠⎠

=
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
ρ
ρ

γ γ( )1−γ ( )1−γ

       



166 CHAPTER 4  Basic Aerodynamics

At standard sea-level conditions,  T  2  = 288 K. Thus,

 

T T
V

V
3 2T TT T 2VV

3VV
0 4288 723

⎛

⎝
⎜
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⎞

⎠
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γ
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It is interesting to note that during the isentropic compression process where the compres-

sion ratio is 10, the pressure increases by a much larger factor—a factor of 25.1—than the 

temperature, which increases by a factor of only 2.51.   

     Comment    By way of the totally different examples in this section, dealing with 

three different practical applications, we can begin to appreciate the importance 

of isentropic fl ow and isentropic changes in a system. This is just the beginning; 

we will see many other applications of isentropic fl ow as we proceed with our 

discussion of aerodynamics and propulsion.     

   4.7  ENERGY EQUATION 
  Recall that our approach to the derivation of the fundamental equations for fl uid 

fl ow is to state a fundamental principle and then to proceed to cast that principle 

in terms of fl ow variables  p , T, ρ, and  V . Also recall that compressible fl ow, 

high-speed fl ow, and massive changes in energy go hand in hand. Therefore, 

the last fundamental physical principle that we must take into account is as 

follows: 

  Physical principle: Energy can be neither created nor destroyed. It can only 

change form.  

 In quantitative form, this principle is nothing more than the fi rst law of ther-

modynamics,    Eq. (4.10) . To apply this law to fl uid fl ow, consider again a fl uid 

element moving along a streamline, as shown in    Fig. 4.6 . Let us apply the fi rst 

law of thermodynamics

δ δq wδ δδ de=δwδδ        

to this fl uid element. Recall that an alternative form of the fi rst law is    Eq. (4.19) :

δq dδ h v dpdh

Again we consider an adiabatic fl ow, where δ  q  = 0. Hence, from    Eq. (4.19) ,

dh v dpd− =v dpd 0   (4.38)

Recalling Euler’s equation,    Eq. (4.8) ,

dp V dV= −ρ        

we can combine    Eqs. (4.38)  and    (4.8)  to obtain

dh v V dV+ =v V dVρ 0   (4.39)
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However,  v  = 1/ρ ; hence    Eq. (4.39)  becomes

dh V dV+ =V dV 0  (4.40)

Integrating    Eq. (4.40)  between two points along the streamline, we obtain

dh V dV

h h
V V

V

V

h

h
+

+h −

1VV

2VV
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2
0

2 2
02 1hh 2VV 2

1VV 2

∫∫ =

=
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1VV 2

2
2VV 2

2
2 2

2

2

+ +h1
2

+ = const
  (4.41)

   Equation (4.41)  is the energy equation for frictionless, adiabatic fl ow. We can 

write it in terms of  T  by using    Eq. (4.27) ,  h  =  c   p   T . Hence,    Eq. (4.41)  becomes

c T V c T V

c T V
p pT V c

p

1TTTT 1
2 VVVV 2

2T 1
2 2VV 2

1
2

2

+
+

c Tpc TT

= const
  (4.42)

   Equation (4.42)  relates the temperature and velocity at two different points 

along a streamline. Again, if all the streamlines emanate from a uniform fl ow far 

upstream, then    Eq. (4.42)  holds for any two points in the fl ow, not necessarily on 

the same streamline. Moreover,    Eq. (4.42)  is just as powerful and necessary for 

the analysis of compressible fl ow as    Eq. (4.37) . 

EXAMPLE 4.11

  A supersonic wind tunnel is sketched in    Fig. 4.32 . The air temperature and pressure in 

the reservoir of the wind tunnel are  T  0  = 1000 K and  p  0  = 10 atm, respectively. The static 

temperatures at the throat and exit are  T  * = 833 K and  T  e  = 300 K, respectively. The mass 

fl ow through the nozzle is 0.5 kg/s. For air,  c   p   = 1008 J/(kg)(K). Calculate 

  a.   The velocity at the throat  V *.  

  b.   The velocity at the exit  V  e .  

  c.   The area of the throat  A *.  

  d.   The area of the exit  A  e .    

   ■  Solution 
 Because the problem deals with temperatures and velocities, the energy equation seems 

useful. 

  a.  From    Eq. (4.42) , written between the reservoir and the throat,

  
c T V T Vp pT V c0TTTT 1 VV 2 1

2
2+ V c TpV c1

2 VVVV * *V1
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However, in the reservoir,  V  0  ≈ 0. Hence

 

V T Tp* (cp *)

( )( ))((= 2 580
0TT

= m/s
        

b.  From    Eq. (4.42) , written between the reservoir and the exit,

 

c T c T V

V c

p p eTT eVV

e pV cV e

0TT 1
2

2

02

2 1188

=

= 2 =

+

( )T TeT0TT

( )10081008 ( )1000 300−1000  m/s
        

c.  The basic equation dealing with mass fl ow and area is the continuity equation, 

   Eq. (4.2) . Note that the velocities are certainly large enough for us to consider the fl ow 

compressible, so    Eq. (4.2) , rather than    Eq. (4.3) , is appropriate:

 
&m A& Vρ * *A *

       

or

 

A
m

V
*

* *V
=

&

ρ

In the preceding,  &m     is given and  V  * is known from part  a . However, ρ* must be obtained 

before we can calculate  A * as desired. To obtain ρ*, note that, from the equation of state,

ρ0
0

0

5
310 1 01 10

287
3 52= = =p

RT0

( .1 )

( )1000
kg/m

Assuming that the nozzle fl ow is isentropic, which is a good approximation for the real 

case, from    Eq. (4.37) , we get
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Thus

  

A
m

V
*AA

* *V ( . )( )
.= = =

&

ρ
0 5.

2. 3 580
3 8. 7 10 3− 874 2 2c.3 87 m

        

d.  Finding  A    e   is similar to the previous solution for  A *

&m A& Ve eA eVVρe
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where, for isentropic fl ow,

ρ ρρρ eTe

T
=ρ0

0TT

1 1300

1000

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
( )3 52

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

( )γ 1γ −/ /

= 30 174
( )4.1 −−1

. kg/m

or A
m

V
e

e eVV
= = =

&

ρ
0 5

0 1188
24 2 1× 0 24 24 2 2

. (174 )
. .2 1× 0 2 c2= 4 2.24 m

EXAMPLE 4.12

  Consider an airfoil in a fl ow of air, where far ahead of the airfoil (the free stream), the 

pressure, velocity, and density are 2116 lb/ft 2 , 500 mi/h, and 0.002377 slug/ft 3 , respec-

tively. At a given point  A  on the airfoil, the pressure is 1497 lb/ft 2 . What is the velocity at 

point  A ? Assume isentropic fl ow. For air,  c   p   = 6006 ft · lb/(slug)(°R). 

■     Solution 
 This example is identical to    Example 4.3 , except here the velocity is 500 mi/h—high 

enough that we have to treat the fl ow as compressible, in contrast to    Example 4.3 , in 

which we dealt with incompressible fl ow. Because the fl ow is isentropic, we can use 

   Eq. (4.37)  evaluated between the free stream and point  A :
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The value of  T  ∞  can be found from the equation of state:
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Hence  TAT = 0 5 519 1. (9058 ) .= 470 °R        

From the energy equation,    Eq. (4.42) , evaluated between the free stream and point  A , and 

noting that  V  ∞  = 500(88/60) = 733.3 ft/s, we have
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  Note:  The calculational procedure for this problem, where we are dealing with com-

pressible fl ow, is completely different from that for    Example 4.3 , where we were deal-

ing with incompressible fl ow. In    Example 4.3 , we could use Bernoulli’s equation, which 

holds only for incompressible fl ow.  We cannot use Bernoulli’s equation to solve the pres-
ent problem because this is a compressible-fl ow problem and Bernoulli’s equation is not 
valid for a compressible fl ow.  If we had used Bernoulli’s equation to solve the present 

problem, following exactly the method in    Example 4.3 , we would have obtained a veloc-

ity of 1029 ft/s at point  A —an  incorrect  answer. Check this yourself.   

  Consider the Space Shuttle (see Figs. 2.24, 8.6, and 8.48) as it returns to earth after 

completing a mission in orbit. At a point on its entry path through the atmosphere, its 

velocity is 6.4 km/sec at an altitude of 60 km. At some point on the bottom surface, 

near the nose of the shuttle, the fl ow velocity is zero. This point is defi ned as a  stagna-
tion point . The stagnation point is usually the location of maximum temperature in the 

fl ow. The fl ow along the streamline that comes from the free stream and goes through 

the stagnation point is called the  stagnation streamline.  The fl ow along this stream-

line, as well as throughout the fl ow fi eld, is adiabatic; no outside mechanism adds or 

takes away heat from a fl uid element moving along the streamline. (The only exception 

is when the temperature of the fl uid element becomes so hot that it loses signifi cant 

 energy by radiation, but this phenomenon is not important in the atmospheric reentry of 

the Space Shuttle.) Assuming a constant specifi c heat of  c p   = 1008 J/(kg)(K), calculate 

the temperature of the air at the stagnation point. (How reasonable is the assumption 

of constant specifi c heat for this problem? We will discuss this matter at the end of the 

example.) 

   ■  Solution 
 In Eq. (4.42), let point 1 denote the free stream and point 2 denote the stagnation point. 

We obtain the temperature of the free stream from the standard altitude table in App. A. 

Note that the altitude tabulation in App. A stops just short of 60 km. From App. A, at 

 h  = 59 km,  T  = 258.10 K, and at h = 59.5 km,  T  = 255.89 K. By linear extrapolation, at 

 h  = 60 km, we have

 T1TT 255 258 10 255 89 253 68= 255 − 255 89. (89 −89 . .10 255 ) .253= K        

Returning to the energy equation,

  c T V c T Vp pT V c1TTTT 1 VV 2
2TT 1

2 2VV 2+ VV1
2 VVVV   (4.42)        

Point 2 is the stagnation point, where by defi nition  V  2  = 0. The temperature at point 2 is 

therefore the stagnation temperature, denoted by  T  o .

  c T V c Tp pT V c1TTTT 1 VV 2+ VV1
2 VVVV 0TT          

or T T
V

cp
0 1TT 1VV 2 3 2

2
253 68

4 10

2
20 571+T1TT = +253 68

× =.
( .6 )

( )1008
, K571

EXAMPLE 4.13
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This is our answer, based on the energy equation using a constant value of specifi c heat. 

This answer gives a very high temperature, more than three times the surface temperature 

of the sun. At such temperatures, air becomes a chemically reactive gas (see Sec. 10.2.4), 

and the assumption of constant specifi c heat is not valid for such a gas. In reality, properly 

taking into account the chemical reactions, the stagnation temperature is about 6000 K, still 

a very high temperature, but considerably less than that calculated on the basis of constant 

specifi c heat. Thus we can see that Eq. (4.42), which assumes constant  c p  , is not valid for 

this application. In contrast, no such assumption is made for the derivation of Eq. (4.41), 

which holds for an adiabatic fl ow in general. The calculation of a chemically reactive fl ow 

is beyond the scope of this book. For an in-depth discussion of such fl ows and their proper 

calculation, see Anderson,  Hypersonic and High Temperature Gas  Dynamics,  2nd ed., 

American Institute of Aeronautics and Astronautics, Reston, VA, 2006.   

  The author and his wife had the joy of fl ying in the Anglo-French Concorde Supersonic 

Transport (SST) from New York to London (a fl ight that took only three hours compared 

to the more than six hours in a conventional subsonic jet transport). The SST cruised at a 

velocity of 1936 ft/s at an altitude of 50,000 ft. Calculate the stagnation temperature for 

the SST at cruise, assuming a constant specifi c heat for air of 6006 ft lb/(slug)( o R). (The 

concept of stagnation temperature was introduced in Example 4.13.) 

■     Solution 
 From Eq. (4.42), we have

 
c T V c T V c Tp pT V c p1TTTT 1 VV 2
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2 2V 2+ VV1
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From App. B, at  h  = 50,000 ft,  T  1  = 389.99°R. Thus,

T0TT
2

389 99
6

2 6006
702= +389 99 = °702.

( )1936

( )6006
R

In Fahrenheit, this temperature is

 T0TT 702 460 242= −702 = °242 F        

which is higher than the boiling temperature of water at sea level. Indeed, the skin tem-

perature of the SST was high enough that, after landing, the airplane was left to cool 

down for about a half an hour before the skin was safe to touch with your hand. 

Note:  From Sec. 10.2.4, we know that the temperature at which chemical reactions fi rst 

occur in air is about 2000 K = 3600 ° R = 3140 ° F. For the temperature in this  example, we 

are very safe in assuming a constant value of  c p  . Indeed, the specifi c heat of air  remains 

essentially constant up to 1000 K, above which the excitation of vibrational energy of the 

O 2  and N 2  molecules causes some variation of  c p  , but this is minor compared to the large 

EXAMPLE 4.14
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variation due to chemical reactions.  For the vast majority of aerodynamic applications, 
especially those dealing with airplanes, the assumption of constant specifi c heat is quite 
valid.  This will be the case for all applications treated in this book.   

EXAMPLE 4.15

  Consider a fl ow with heat addition, that is, a  nonadiabatic  fl ow. Derive the energy equa-

tion for such a fl ow. 

■ Solution 
 Consider a fl uid element moving along a streamline. Let δ  q  be the heat added per unit 

mass to the fl uid element. We can apply the fi rst law of thermodynamics as given by 

Eq. (4.19), repeated here:

  δq dδ h v dpdh   (4.19)        

From Euler’s equation, Eq. (4.8), repeated here,

dp V dV= −ρ (4.8)        

Eq. (4.19) becomes

δ ρδδ d )ρV dV        

or

δq dδ h V dVdh   (E 4.15.1)        

Integrating Eq. (E 4.15.1) from point 1 to point 2 along the streamline, we have

δqδ V dV
V

V∫ ∫dhdh∫ h1 1VV

2VV

1

2
  (E 4.15.2)        

In Eq. (E 4.15.2), δ  q  integrated from point 1 to point 2 is the total heat added per unit 

mass to the fl uid element between points 1 and 2. Denote this total heat added per unit 

mass by  Q  12 . Eq. (E 4.15.2) can then be written as

  
Q h h

V V
12 2 1h 2VV 2

1VV 2

2 2
−h2 + −2

or
  

h Q
V

h
V

1 1Q 2
1VV 2

2
2VV 2

2 2
2+Q1Q 2 = +h2 (E 4.15.3)        

This is a form of the energy equation for a non-adiabatic fl ow. Note that it is similar to 

Eq. (4.41), but with a heat addition term,  Q  12 , on the left-hand side.   

EXAMPLE 4.16

  Consider the combustion chamber (burner) in a turbojet engine. The elements of a 

turbojet are discussed in Sec. 9.5, and the combustion chamber is illustrated sche-

matically in Figs. 9.16, 9.18, and 9.19. (It is worth your while to fl ip over to these 
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fi gures for a few moments before you proceed further with this example.) Consider 

the case where air, having passed through the compressor, enters the combustor 

at a temperature of 1200 ° R. As it fl ows through the combustor, heat is added per 

unit mass in the amount of 2.1 × 10 7  ft lb/slug. The fl ow velocity at the entrance 

to the combustor is 300 ft/s, and decreases to 200 ft/s at the exit of the combustor. 

Calculate the temperature of the fl ow at the exit, assuming constant specifi c heat 

c p   = 6006 ft lb/(slug)( ° R). 

■  Solution 
 Using the energy equation with heat addition derived in Example 4.15, namely Eq. (4.15.3), 

assuming constant specifi c heat so that  h  =  c p  T , and using the subscripts 3 and 4 to  denote 

the entrance and exit, respectively, of the combustor consistent with the diagrams in 

Figs. 9.16 and 9.18, we have

c T Q
V

c T
V

p pT c3TTTT Q 3VV 2

4TT 4VV 2

2 2
p 4+ +Q3QQ 4 = +c Tc 4TT

where  T  3  = 1200 ° R,  Q  34  = 2.1 × 10 7  ft lb/slug,  V  3  = 300 ft/s and  V  4  = 200 ft/s. Hence,
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   4.8  SUMMARY OF EQUATIONS 
  We have just fi nished applying some basic physical principles to obtain 

equations for the analysis of fl owing gases. The reader is cautioned not to 

be confused by the multiplicity of equations; they are useful, indeed neces-

sary, tools to examine and solve various aerodynamic problems of interest. 

It is important for an engineer or scientist to look at such equations and see 

not just a mathematical relationship, but primarily a physical relationship. 

These equations talk! For example,    Eq. (4.2)  says that mass is conserved; 

   Eq.  (4.42)  says that energy is conserved for an adiabatic, frictionless fl ow; 

and so on. Never lose sight of the physical implications and limitations of 

these  equations. 

 To help set these equations in your mind, here is a compact summary of our 

results so far:  

1.   For the steady incompressible fl ow of a frictionless fl uid in a stream tube 

of varying area,  p  and  V  are the meaningful fl ow variables; ρ and  T  are 

constants throughout the fl ow. To solve for  p  and  V , use

 

A V A V

p V p V
1 1VV 2 2VV
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BernoulliV 2ρ ρV p1VV 2V p1VV 2 = ''s equation
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  2.   For steady isentropic (adiabatic and frictionless) compressible fl ow in 

a stream tube of varying area,  p , ρ,  T , and  V  are all variables. They are 

obtained from
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Let us now apply these relations to study some basic aerodynamic phenomena 

and problems.     

   4.9  SPEED OF SOUND 
  Sound waves travel through the air at a defi nite speed—the speed of sound. This 

is obvious from natural observation: A lightning bolt is observed in the distance, 

and thunder is heard at some later instant. In many aerodynamic problems, the 

speed of sound plays a pivotal role. How do we calculate the speed of sound? 

What does it depend on: pressure, temperature, density, or some combination 

thereof? Why is it so important? Answers to these questions are discussed in this 

section. 

 First let us derive a formula to calculate the speed of sound. Consider a 

sound wave moving into a stagnant gas, as shown in    Fig. 4.12 . This sound 

wave is created by some source, say a small fi recracker in the corner of a 

room. The air in the room is motionless and has density ρ, pressure  p , and 

temperature  T . If you are standing in the middle of the room, the sound wave 

sweeps by you at velocity  a  m/s, ft/s, or some other unit. The sound wave 

itself is a thin region of disturbance in the air, across which the pressure, 

temperature, and density change slightly. (The change in pressure is what 

activates your eardrum and allows you to hear the sound wave.) Imagine 

that you now hop on the sound wave and move with it. As you are sitting 

on the moving wave, look to the left in    Fig. 4.12 —that is, look in the direc-

tion in which the wave is moving. From your vantage point on the wave, the 

sound wave seems to stand still, and the air in front of the wave appears to 

be coming at you with velocity  a ; that is, you see the picture shown in    Fig. 

4.13 , where the sound wave is standing still and the air ahead of the wave is 

moving toward the wave with velocity  a . Now return to    Fig. 4.12  for a mo-

ment. Sitting on top of and riding with the moving wave, look to the right—

that is, look behind the wave. From your vantage point, the air appears to 

be moving away from you. This appearance is sketched in    Fig. 4.13 , where 

the wave is standing still. Here the air behind the motionless wave is mov-

ing to the right, away from the wave. However, in passing through the wave, 
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the  pressure, temperature, and density of the air are slightly changed by the 

amounts  dp ,   dT , and  dρ , respectively. From our previous discussions, you 

would then expect the airspeed  a  to change slightly, say by an amount  da . 

Thus, the air behind the wave is moving away from the wave with velocity 

a  +  da , as shown in    Fig. 4.13 .    Figures 4.12  and    4.13  are completely analo-

gous pictures; only their perspectives are different.    Figure 4.12  is what you 

see by standing in the middle of the room and watching the wave go by; 

   Fig. 4.13  is what you see by riding on top of the wave and watching the air go 

by. Both pictures are equivalent. However,    Fig. 4.13  is easier to work with, 

so we will concentrate on it. 

 Let us apply our fundamental equations to the gas fl ow shown in    Fig. 4.13 . 

Our objective is to obtain an equation for  a , where  a  is the speed of the sound 

wave, the speed of sound. Let points 1 and 2 be ahead of and behind the wave, 

respectively, as shown in    Fig. 4.13 . Applying the continuity equation,    Eq. (4.2) ,

we fi nd

 ρ ρ2ρ 2 2A V A V2 2        

or  ρ ρ ρA d A d2ρ ρ A( dρρ ρdρ+ρρ ( )a da  (4.43)

Here  A  1  and  A  2  are the areas of a stream tube running through the wave. Just 

looking at the picture shown in    Fig. 4.13 , we see no geometric reason why the 

Figure 4.12 Model of a sound wave moving into a stagnant gas.

Figure 4.13 Model with the sound wave stationary.
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stream tube should change area in passing through the wave. Indeed it does not; 

the area of the stream tube is constant; hence  A  =  A  1  =  A  2  = constant. (This is an 

example of a type of fl ow called  one-dimensional , or  constant-area , fl ow.) Thus 

   Eq. (4.43)  becomes

 
ρ ρ ρd d)ρ ρdρρ ( )a da

       

or  ρ ρ ρ ρ ρaρ ad da d dρ a= +ρaρ + +ρ da   (4.44)        

The product of two small quantities  d ρ  da  is very small in comparison to the 

other terms in    Eq. (4.44)  and hence can be ignored. Thus, from    Eq. (4.44) ,

  

a
da

d
= −ρ

ρ   
(4.45)        

Now apply the momentum equation in the form of Euler’s equation,    Eq. (4.8) :

  
dp ada= −ρ

       

or

  

da
dp

a
= −

ρ   
(4.46)        

Substitute    Eq. (4.46)  into    (4.45) :

  

a
d

dp

a
= ρ

ρ ρ        

or

  

a
dp

d
2 =

ρ   
(4.47)        

On a physical basis, the fl ow through a sound wave involves no heat addition, 

and the effect of friction is negligible. Hence, the fl ow through a sound wave is 

isentropic. Thus, from    Eq. (4.47) , the speed of sound is given by

  

a
dp

d
=

⎛⎛

⎝
⎜
⎛⎛

⎝⎝

⎞⎞

⎠
⎟
⎞⎞

⎠⎠ρ
isentropic

 

 (4.48)        

   Equation (4.48)  is fundamental and important. However, it does not give us a 

straightforward formula for computing a number for  a . We must proceed further. 

 For isentropic fl ow,    Eq. (4.37)  gives

  

p

p
2

1

2

1

=
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
ρ
ρ

γ⎞

       

or  
p p

c1

1ρ ρ2
γ γρ ρ

= = =const   (4.49)        
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   Equation (4.49)  says that the ratio  p /ρ γ  is the same constant value at every point 

in an isentropic fl ow. Thus we can write everywhere

p
c

ργ = (4.50)

Hence  
dp

d

d

d
c

ρ ρd
ρ γc ργ γγc ρ

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
= c −

isentropic

1

  (4.51)

Substituting for  c  in    Eq. (4.51)  the ratio of    Eq. (4.50) , we obtain

dp

d

p p

ρ ρ
γρ γ pp

ργ
γ⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
= =γργ

isentropic
(4.52)

Substitute    Eq. (4.52)  into    (4.48) :

a
p= γ
ρ

  

(4.53)

However, for a perfect gas,  p  and ρ are related through the equation of state;  p  =
ρ  RT ; hence  p /ρ =  RT . Substituting this result into    Eq. (4.53)  yields

a RTγRR (4.54)

    Equations (4.48) ,    (4.53) , and    (4.54)  are important results for the speed of 

sound; however,    Eq. (4.54)  is the most useful. It also demonstrates a fundamental 

result:  The speed of sound in a perfect gas depends only on the temperature of 
the gas.  This simple result may appear surprising at fi rst. However, it is to be ex-

pected on a physical basis, as follows. The propagation of a sound wave through 

a gas takes place via molecular collisions. For example, consider again a small 

fi recracker in the corner of the room. When the fi recracker is set off, some of its 

energy is transferred to the neighboring gas molecules in the air, thus increasing 

their kinetic energy. In turn, these energetic gas molecules are moving randomly 

about, colliding with some of their neighboring molecules and transferring some 

of their extra energy to these new molecules. Thus, the energy of a sound wave is 

transmitted through the air by molecules that collide with one another. Each mol-

ecule is moving at a different velocity; but if they are summed over a large num-

ber of molecules, a mean or average molecular velocity can be defi ned. Therefore, 

looking at the collection of molecules as a whole, we see that the sound energy 

released by the fi recracker will be transferred through the air at something ap-

proximating this mean molecular velocity. Recall from Ch. 2 that temperature 

is a measure of the mean molecular kinetic energy, hence of the mean molecular 

velocity; then temperature should also be a measure of the speed of a sound wave 

transmitted by molecular collisions.    Equation (4.54)  proves this to be a fact. 
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 For example, consider air at standard sea-level temperature  T   s   = 288.16 K. 

From    Eq. (4.54) , the speed of sound is  a RT =RTγ 1 4 287 288 6. (4 )( . )16    = 

340.3 m/s. From the results of the kinetic theory of gases, the mean molecular 

velocity can be obtained as  V (( / ) ( / ) ( . )/ 8) (RT 287 16π ) ( /8(RT =RT     = 458.9 m/s. 

Thus, the speed of sound is of the same order of magnitude as the mean molecu-

lar velocity and is smaller by about 26 percent. 

 Again we emphasize that the speed of sound is a point property of the fl ow, 

just as  T  is a point property (as described in Ch. 2). It is also a thermodynamic 

property of the gas, defi ned by    Eqs. (4.48)  to    (4.54) . In general, the value of the 

speed of sound varies from point to point in the fl ow. 

 The speed of sound leads to another vital defi nition for high-speed gas 

fl ows—namely, the  Mach number.  Consider a point  B  in a fl ow fi eld. The fl ow 

velocity at  B  is  V , and the speed of sound is  a . By defi nition, the Mach number  M
at point  B  is the fl ow velocity divided by the speed of sound:

M
V

a
=

  
(4.55)

We will fi nd that  M  is one of the most powerful quantities in aerodynamics. We 

can immediately use it to defi ne three different regimes of aerodynamic fl ows:  

  1.   If  M  < 1, the fl ow is  subsonic .  

2.   If  M  = 1, the fl ow is  sonic .  

3.   If  M  > 1, the fl ow is  supersonic .   

 Each of these regimes is characterized by its own special phenomena, as will 

be discussed in subsequent sections. In addition, two other specialized aerody-

namic regimes are commonly defi ned:  transonic  fl ow, where  M  generally ranges 

from slightly less than to slightly greater than 1 (for example, 0.8 ≤ M ≤ 1.2), and 

hypersonic  fl ow, where generally  M  > 5. The defi nitions of subsonic, sonic, and 

supersonic fl ows in terms of  M  as given are precise; the defi nitions of transonic 

and hypersonic fl ows in terms of  M  are a bit more imprecise and really refer to 

sets of specifi c aerodynamic phenomena rather than to just the value of  M . This 

distinction will be clarifi ed in subsequent sections. 

  A jet transport is fl ying at a standard altitude of 30,000 ft with a velocity of 550 mi/h. 

What is its Mach number? 

■  Solution 
 From the standard atmosphere table, App. B, at 30,000 ft,  T  ∞  = 411.86°R. Hence, from 

   Eq. (4.54) ,

 
a RT∞ ∞RTT =RT =γ RRRRR 1 4 1716 411 995. (4 )( . )86 ft/s

       

EXAMPLE 4.17
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The airplane velocity is  V  ∞  = 550 mi/h; however, in consistent units, remembering that 

88 ft/s = 60 mi/h, we fi nd that

V∞VV = ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=550
88

60
807 ft/sff

From    Eq. (4.55) ,

M
V

a
∞MM ∞VV

∞
= = =807

995
0 811.

EXAMPLE 4.18

  In the nozzle fl ow described in    Example 4.11 , calculate the Mach number of the fl ow at 

the throat,  M *, and at the exit,  M   e  . 

■  Solution 
 From    Example 4.11 , at the throat,  V  * = 580 m/s and  T  * = 833 K. Hence, from    Eq. (4.54) ,

 
a RT* *RT . ( )( )=RT *RT =γRRRRRR 1. 287 833 580 m/s

       

From    Eq. (4.55) ,

 
M

V

a
*MM

*

*
= = =580

580
1

        

Note:  The fl ow is sonic at the throat. We will soon prove that the Mach number at the 

throat is always sonic in supersonic nozzle fl ows (except in special, nonequilibrium, 

high-temperature fl ows, which are beyond the scope of this book). 

 Also from    Example 4.11 , at the exit,  V   e   = 1188 m/s and  T   e   = 300 K. Hence

 

a RT

M
V

a

e eRTT

e
eVV

e

=RT =

= = =

γRRRRR 1 4 287 300 347
1188

347
3 4

. (4 )( ) m/s

22
          

     Comment      Examples 4.17  and    4.18  illustrate two common uses of Mach num-

ber. The speed of an airplane is frequently given in terms of Mach number. In 

   Example 4.17 , the Mach number of the jet transport is calculated; here the Mach 

number of the airplane is the velocity of the airplane through the air divided 

by the speed of sound in the ambient air far ahead of the airplane. This use 

of Mach number is frequently identifi ed as the  free-stream Mach number.  In 

    Example 4.18 , the  local  Mach number is calculated at two different points in a 

fl ow fi eld: at the throat and at the exit of the nozzle fl ow. At any given point in 

a fl ow, the local Mach number is the local fl ow velocity at that point divided by 

the local value of the speed of sound at that point. Here Mach number is used 

as a local fl ow property in a fl ow fi eld, and its value varies from point to point 
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throughout the fl ow because both velocity and the local speed of sound (which 

depends on the local temperature) vary throughout the fl ow.   

  Consider a vehicle moving at a velocity of 1000 m/s through  (a)  air, and  (b)  hydrogen. 

The molecular weight (mass) of diatonic hydrogen is 2 kg/(kg mole). Calculate the Mach 

number of the vehicle in  (a)  air, and  (b)  hydrogen. Comment on the implication of the 

results. 

■  Solution 
 From chemistry, as mentioned in Sec. 2.3, the specifi c gas constant R is related to the 

universal gas constant  R  by

 R = R M/        

where  M  is the molecular weight of the gas and  R  = 8314 J/(kg mole)(K). 

  a.    Air:  For air,  M  = 28.97. Hence,

 
R J/(kg)(K)

R

M

8314

28 97
287

.        

Note that R = 287 J/(kg)(K) was fi rst given in Sec. 2.3, and we have used that value in 

subsequent examples. We calculate it here from  R  and  M  just for consistency.

 

a 347.2 m/s= = =

= = =

γ RTγγ

M
V

a

( . )( )( )4. 287 300
1000

3472
2 8. 8

         

  b.    Hydrogen:  For H 2 ,  M  = 2. Hence,

R 4157 J/(kg)(K)= = =R

M

8314

2

For all  diatomic  gases, the ratio of specifi c heats γ   = 1.4. Thus, for H 2  at  T  = 300 K,

a 1321 m/s= = =γ RTγγ ( . )( )( )4. 4157 300
       

M
V

a
= = =1000

1321
0 757.

EXAMPLE 4.19

     Comment   The speed of sound in a light gas such as H 2  is much higher than 

that in a heavier gas such as air. As a result, an object moving at a given velocity 

through a light gas will have a lower Mach number than if it were moving through 

a heavier gas. Indeed, in this example, the vehicle moving at 1000 m/s is  super-
sonic  in air, but  subsonic  in H 2 . This has a tremendous effect on the aerodynamics 

of the vehicle. As will be explained in Sec. 4.11.3, shock waves will appear around 

the supersonic vehicle, thus causing a large increase in the aerodynamic drag of 

the vehicle. This increase is due to wave drag, as will be explained in Sec. 5.11.   
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     Comment   A potential practical application of the result calculated in 

Example 4.19 is illustrated in    Fig. 4.14 . In    Fig. 4.14  a , a vehicle is shown fl ying 

through air at a velocity of 1000 m/s. The Mach number is supersonic, equal 

to 2.88. There will be a bow shock wave at the nose of the vehicle, creating 

a large supersonic wave drag on the vehicle (as discussed in Sec. 5.11). In 

   Fig. 4.14  b , the same vehicle is shown fl ying at the same velocity of 1000 m/s, but 

through H 2  contained in a tube. The Mach number is subsonic, equal to 0.757. 

There is no shock wave, and no wave drag is exerted on the body. Hence, the 

thrust required to propel this vehicle inside the tube at a velocity of 1000 m/s 

through H 2  will be much less than that required to propel the vehicle at 1000 m/s 

through air. The vehicle in    Fig. 4.14  b  is fl ying supersonically relative to the air 

outside the tube but subsonically relative to the H 2  inside the tube. This idea 

for a hydrogen-tube vehicle for supersonic transport is currently being studied 

(see, for example, Arnold R. Miller, “Hydrogen Tube Vehicle for Supersonic 

Transport: 2. Speed and Energy,”  International Journal of Hydrogen Energy , 

vol. 35 (2010), pp. 5745–5753). For our introduction to the basic principles of 

fl ight, it is simply a “cool” application of this section on the speed of sound 

and Mach number.   

1000 m/s

1000 m/s

WAVE DRAG

(a)

(b)

AIR
T∞ = 300 K
M∞ = 2.88  

Supersonic
flow

H2
T∞ = 300 k
M∞ = 0.757

Subsonic
flow

SHOCK WAVE

Figure 4.14 Sketch of a vehicle fl ying (a) at a 

supersonic velocity in air, and (b) at a subsonic velocity 

in hydrogen, in both cases at the same velocity.
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         4.10  LOW-SPEED SUBSONIC WIND TUNNELS 
  Throughout the remainder of this book, the aerodynamic fundamentals and tools 

(equations) developed in previous sections will be applied to specifi c problems 

of interest. The fi rst will be a discussion of low-speed subsonic wind tunnels. 

 What are wind tunnels? In the most basic sense, they are ground-based ex-

perimental facilities designed to produce fl ows of air (or sometimes other gases) 

that simulate natural fl ows occurring outside the laboratory. For most aerospace 

engineering applications, wind tunnels are designed to simulate fl ows encoun-

tered in the fl ight of airplanes, missiles, or space vehicles. Because these fl ows 

have ranged from the 27 mi/h speed of the early  Wright Flyer  to the 25,000 mi/h 

reentry velocity of the  Apollo  lunar spacecraft, obviously many different types 

of wind tunnels, from low subsonic to hypersonic, are necessary for laboratory 

simulation of actual fl ight conditions. However, referring again to Fig. 1.30, we 

see that fl ow velocities of 300 mi/h or less were the fl ight regime of interest until 

about 1940. So, during the fi rst four decades of human fl ight, airplanes were 

tested and developed in wind tunnels designed to simulate low-speed subsonic 

fl ight. Such tunnels are still in use today but now are complemented by transonic, 

supersonic, and hypersonic wind tunnels. 

 The essence of a typical low-speed subsonic wind tunnel is sketched in 

   Fig. 4.15 . The airfl ow with pressure  p  1  enters the nozzle at a low velocity  V  1 , 

where the area is  A  1 . The nozzle converges to a smaller area  A  2  at the test section. 

Because we are dealing with low-speed fl ows, where  M  is generally less than 0.3, 

the fl ow is assumed to be incompressible. Hence,    Eq. (4.3)  dictates that the fl ow 

velocity increases as the air fl ows through the convergent nozzle. The velocity in 

the test section is then, from    Eq. (4.3) ,

V
A

A
V2VV 1

2
1VV= (4.56)

After fl owing over an aerodynamic model (which may be a model of a complete 

airplane or part of an airplane, such as a wing, tail, or engine nacelle), the air 

Figure 4.15 Simple schematic of a subsonic wind tunnel.
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passes into a diverging duct called a  diffuser , where the area increases and veloc-

ity decreases to  A  3  and  V  3 , respectively. Again, from continuity,

 

V
A

A
V3VV 2

3
2VV=

        

 The pressure at various locations in the wind tunnel is related to the velocity 

through Bernoulli’s equation,    Eq. (4.9  a ), for incompressible fl ow:

p V p V p V1
2

2 1
2 2V 2

3
1
2 3VV 2V 2 =V2VV 2ρ ρV p1VV 2=V1VV 2 ρ  (4.57)

From    Eq. (4.57) , as  V  increases,  p  decreases; hence  p  2  <  p  1 ; that is, the test-section 

pressure is smaller than the reservoir pressure upstream of the nozzle. In many 

subsonic wind tunnels, all or part of the test section is open, or vented, to the 

surrounding air in the laboratory. In such cases, the outside air pressure is com-

municated directly to the fl ow in the test section, and  p  2  = 1 atm. Downstream 

of the test section, in the diverging area diffuser, the pressure increases as veloc-

ity decreases. Hence  p  3  >  p  2 . If  A  3  =  A  1 , then from    Eq. (4.56) ,  V  3  =  V  1 ; and from 

   Eq. (4.57) ,  p  3  =  p  1 . ( Note:  In actual wind tunnels, the aerodynamic drag created 

by the fl ow over the model in the test section causes a loss of momentum not 

included in the derivation of Bernoulli’s equation. Therefore, in reality,  p  3  is 

slightly less than  p  1  because of such losses.) 

 In practical operation of this type of wind tunnel, the test-section velocity is 

governed by the pressure difference  p  1  −  p  2  and the area ratio of the nozzle  A  2 / A  1
as follows. From    Eq. (4.57) ,

V p p VVV 2
1 p 1VV 22

ρ
p1 p( )p p1 p

  

(4.58)

From    Eq. (4.56) ,  V  1  = ( A  2 / A  1 ) V  2 . Substituting this into the right side of    Eq. (4.58) , 

we obtain

V p p
A

A
VVV 2

1 2p 2

1

2

2VV 22 +
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠ρ
( )p1 2pp p1 2p

  

(4.59)

Solving    Eq. (4.59)  for  V  2  yields

V
p p

A A
2VV 2p

2 1A 2

2= ( )p p2p

[ (1 − ) ]2ρ /
  

(4.60)

The area ratio  A  2 / A  1  is a fi xed quantity for a wind tunnel of given design. The 

“control knob” of the wind tunnel controls  p  1  − p 2 , which allows the wind tunnel 

operator to control the value of test-section velocity  V  2  via    Eq. (4.60) . 

 In subsonic wind tunnels, a convenient method of measuring the pressure dif-

ference  p  1  −  p  2 , and hence of measuring  V  2  via    Eq. (4.60) , is by means of a  ma-
nometer.  A basic type of manometer is the U tube shown in    Fig. 4.16 . Here the left 

side of the tube is connected to a pressure  p  1 , the right side of the tube is connected 

to a pressure  p  2 , and the difference Δ h  in the heights of a fl uid in both sides of 
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the U tube is a measurement of the pressure difference  p  2  −  p  1 . This can easily be 

demonstrated by considering the force balance on the liquid in the tube at the two 

cross sections cut by plane  B − B , shown in    Fig. 4.16 . Plane  B − B  is drawn tangent 

to the top of the column of fl uid on the left. If  A  is the cross-sectional area of the 

tube, then  p  1  A  is the force exerted on the left column of fl uid. The force on the right 

column at plane  B − B  is the sum of the weight of the fl uid above plane  B − B  and the 

force due to the pressure  p  2  A . The volume of the fl uid in the right column above 

 B − B  is  A  Δ h . The specifi c weight (weight per unit volume) of the fl uid is  w  = ρ  l  g , 

where ρ  l   is the density of the fl uid and  g  is the acceleration of gravity. Hence, the 

total weight of the column of fl uid above  B − B  is the specifi c weight times the 

 volume—that is,  wA  Δ  h . The total force on the right cross section at plane  B − B  is 

 p  2   A  +  w  A  Δ  h . Because the fl uid is stationary in the tube, the forces on the left and 

right cross sections must balance; that is, they are the same. Hence

 
p A p A wA hA p= +p Ap Δ

       

or  p p w h2p =p2p Δ   (4.61)        

If the left side of the U-tube manometer were connected to the reservoir in a 

subsonic tunnel (point 1 in    Fig. 4.15 ) and the right side were connected to the 

test section (point 2), then Δ h  of the U tube would directly measure the velocity 

of the airfl ow in the test section via    Eqs. (4.61)  and    (4.60) . 

     In modern wind tunnels, manometers have been replaced by pressure trans-

ducers and electrical digital displays for reading pressures and pressure differ-

ences. The basic principle of the manometer, however, remains an integral part 

of the study of fl uid dynamics, and that is why we discuss it here. 

Figure 4.16 Force diagram for a manometer.

EXAMPLE 4.20

  In a low-speed subsonic wind tunnel, one side of a mercury manometer is connected to 

the settling chamber (reservoir) and the other side is connected to the test section. The 

contraction ratio of the nozzle  A  2 / A  1  equals  1
15    . The reservoir pressure and temperature 
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are  p  1  = 1.1 atm and  T  1  = 300 K, respectively. When the tunnel is running, the height dif-

ference between the two columns of mercury is 10 cm. The density of liquid mercury is 

1.36 × 10 4  kg/m 3 . Calculate the airfl ow velocity in the test section  V  2 . 

■  Solution 

  

Δ = =
=

h

w g=
10 0 1

1 36 1× 04 3

cm m

f y kg/m( )for mercury ( .1 )(ρ 9 899
3

. )8

1.33 10 N/m

2

5= ×1.33
       

From    Eq. (4.61) ,

p p w h2p 5 3 4 21 33 10 05 3 1 1 33 10− Δp w2p =hw 3105 0 ×( .1 )( . )11 .003 .11 N/m

To fi nd the velocity  V  2 , use    Eq. (4.60) . However, in    Eq. (4.60)  we need a value of 

 density ρ. This can be found from the reservoir conditions by using the equation of state. 

 (Remember: 1 atm = 1.01 × 10 5  N/m 2 .)

 

ρ1
1

1

5
31 1 1 0

287
1 29= = =p

RT1

. (1 . )501 10

( )300
. kg/m

       

Because we are dealing with a low-speed subsonic fl ow, assume ρ 1  = ρ = constant. Hence, 

from    Eq. (4.60) ,

 

V
p p

A
2VV 2p

2 1
2

4

1
15

2 2 1 33 10

1 29 1
= = ×

− (
( )p p2p

[ (1 − / )A1A ]

( .1 )

. [29ρ ))
=2 144

]
m/s

        

Note:  This answer corresponds to a Mach number of approximately 0.4 in the test section, 

one slightly above the value of 0.3 that bounds incompressible fl ow. Thus, our assump-

tion of ρ = constant in this example is inaccurate by about 8 percent.   

EXAMPLE 4.21

  Referring to    Fig. 4.15 , consider a low-speed subsonic wind tunnel designed with a res-

ervoir cross-sectional area  A  1  = 2 m 2  and a test-section cross-sectional area  A  2  = 0.5 m 2 . 

The pressure in the test section is  p  2  = 1 atm. Assume constant density equal to standard 

sea-level density. ( a ) Calculate the pressure required in the reservoir,  p  1 , necessary to 

achieve a fl ow velocity  V  2  = 40 m/s in the test section. ( b ) Calculate the mass fl ow through 

the wind tunnel. 

■  Solution 
a.  From the continuity equation,    Eq. (4.3) ,

 A V A V1 1VV 2 2VV=        

or
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From Bernoulli’s equation,    Eq. (4.9  a ),

 
p

V V
2

2VV 2
1VV 2

2 2
+ =2 +ρ ρp1

2
p1=2 +

       

Using consistent units,

 p2
5 21 1 01 10= 1 atm N51 01 10× /m        

and at standard sea level,

 
ρ = 1 23 3. kg/m

       

we have
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As a check on this calculation, let us insert  p  1  = 1.019 × 10 5  N/m 2  into    Eq. (4.60)  and see 

if we obtain the required value of  V  2  = 40 m/s. From    Eq. (4.60) ,
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This checks. 

  Note:  The pressure difference,  p  2  −  p  1 , required to produce a velocity of 40 m/s in the 

test section is very small, equal to 1.019 × 10 5  − 1.01 × 10 5  = 900 N/m 2 . In atmospheres, 

this is 900/(1.01 × 10 5 ) = 0.0089 atm, less than a hundredth of an atmosphere pressure 

difference. This is characteristic of low-speed fl ows, where it takes only a small pressure 

difference to produce a substantial fl ow velocity. 

  b.  From    Eq. (4.2) , the mass fl ow can be calculated from the product ρ  AV  evaluated 

at any location in the wind tunnel. We choose the test section, where  A  2  = 0.5 m 2 ,  V  2  = 

40 m/s, and ρ = 1.23 kg/m 3 .

 
&m A& V =A Vρ 2 2VVVV 1 23 0 5 40 2= 4 6( .1 )( . )5 ( )40 kg/s

       

We could just as well have chosen the reservoir to evaluate the mass fl ow, where  A  1  = 

2 m 2  and  V  1  = 10 m/s.

 &m A& V =A Vρ 1 1VVVV 1 23 2 10 6( .1 )( )( ) .= 24 kg/s        

which checks with the result obtained in the test section.   

EXAMPLE 4.22

  For the wind tunnel in    Example 4.21 , ( a ) if the pressure difference ( p  1  −  p  2 ) is dou-

bled, calculate the fl ow velocity in the test section. ( b ) The ratio  A  1 / A  2  is defi ned as the 
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 contraction ratio for the wind tunnel nozzle. If the contraction ratio is doubled, keeping 

the same pressure difference as in    Example 4.21 , calculate the fl ow velocity in the test 

section. 

■  Solution 
a.  From    Eq. (4.60) ,  V  2  is clearly proportional to the square root of the pressure difference:

V p p1V pV ppp −

When  p  2  −  p  1  is doubled from its value in    Example 4.21 , where  V  2  = 40 m/s, then

V2VV 2 40 56 6= 2 ( )4040 . /6 s/

b.  The original contraction ratio from    Example 4.21  is  A  1 / A  2  = 2.0/0.5 = 4. Doubling this 

value, we have  A  1 / A  2  = 8. The original pressure difference is  p  2  −  p  1  = 900 N/m 2 . From 

   Eq. (4.60) , we have
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Note:  By doubling only the pressure difference, a 42 percent increase in velocity in the 

test section occurred. In contrast, by doubling only the contraction ratio, a 3.5 percent 

decrease  in the velocity in the test section occurred. Once again we see an example of 

the power of the pressure difference in dictating fl ow velocity in a low-speed fl ow. Also, 

the decrease in the test-section velocity when the contraction ratio is increased, keep-

ing the pressure difference the same, seems counterintuitive. Why does the velocity not 

increase when the nozzle is “necked down” further? To resolve this apparent anomaly, 

let us calculate the velocity in the reservoir for the increased contraction ratio. From the 

continuity equation,  A  1  V  1  =  A  2 V 2 . Hence
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When the contraction ratio is increased, keeping the pressure difference constant, the 

reservoir velocity decreases even more than the test-section velocity, resulting in a 

larger velocity change across the nozzle. For the case in    Example 4.21  with a contrac-

tion ratio of 4,

 V V2 1V VV V 40 10 30=V1VV − =10 m/s        

For the present case with a contraction ratio of 8,

V V2 1V VV V 38 6 4 83 33 8= − =38 6 4 83. .6 4 . m/s

By increasing the contraction ratio while keeping the pressure difference constant, we 

increase the velocity  difference  across the nozzle, although the actual velocities at the 

inlet and exit of the nozzle are decreased.     
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   4.11  MEASUREMENT OF AIRSPEED 
  In    Sec. 4.10  we demonstrated that we can obtain the airfl ow velocity in the test 

section of a low-speed wind tunnel (assuming incompressible fl ow) by measur-

ing  p  1  −  p  2 . However, the previous analysis implicitly assumes that the fl ow 

properties are reasonably constant over any given cross section of the fl ow in 

the tunnel (so-called quasi-one-dimensional fl ow). If the fl ow is not constant 

over a given cross section—for example, if the fl ow velocity in the middle of 

the test section is higher than that near the walls—then  V  2  obtained from the pre-

ceding section is only a mean value of the test-section velocity. For this reason, 

and for many other aerodynamic applications, it is important to obtain a  point  
measurement of velocity at a given spatial location in the fl ow. This measure-

ment can be made by an instrument called a  Pitot-static tube,  as described in 

the following. 

 First, though, we must add to our inventory of aerodynamic defi nitions. We 

have been glibly talking about the pressures at points in fl ows, such as points 

1 and 2 in    Fig. 4.7 . However, these pressures are of a special type, called  static . 

Static pressure at a given point is the pressure we would feel if we were moving 

along with the fl ow at that point. It is the ramifi cation of gas molecules moving 

about with random motion and transferring their momentum to or across sur-

faces, as discussed in Ch. 2. If we look more closely at the molecules in a fl owing 

gas, we see that they have a purely random motion superimposed on a directed 

motion due to the velocity of the fl ow. Static pressure is a consequence of just the 

purely random motion of the molecules. When an engineer or scientist uses the 

word  pressure,  it always means static pressure unless otherwise identifi ed, and 

we will continue such practice here. In all our previous discussions, the pressures 

have been static pressures. 

 A second type of pressure is commonly utilized in aerodynamics:  total  pres-

sure. To defi ne and understand total pressure, consider again a fl uid element 

moving along a streamline, as shown in    Fig. 4.6 . The pressure of the gas in this 

fl uid element is the static pressure. However, now imagine that we grab this fl uid 

element and slow it down to zero velocity. Moreover, imagine that we do this 

isentropically. Intuitively, the thermodynamic properties  p ,  T , and ρ of the fl uid 

element will change as we bring the element to rest; they will follow the conser-

vation laws previously discussed in this chapter. Indeed, as the fl uid element is 

isentropically brought to rest,  p ,  T , and ρ would all increase above their original 

values when the element was moving freely along the streamline. The values of 

 p ,  T , and ρ of the fl uid element after it has been brought to rest are called  total  
values—that is, total pressure  p  0 , total temperature  T  0 , and so on. Thus we are led 

to the following precise defi nition: 

  Total pressure at a given point in a fl ow is the pressure that would exist if the fl ow 

were slowed down isentropically to zero velocity.  

 There is a perspective to be gained here. Total pressure  p  0  is a property of 

the gas fl ow at a given point. It is something that is associated with the fl ow 
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itself. The process of isentropically bringing the fl uid element to rest is just an 

imaginary mental process we use to defi ne the total pressure. It does not mean 

that we actually have to do it in practice. In other words, if we consider again the 

fl ow sketched in    Fig. 4.7 , there are  two  pressures we can consider at points 1, 2, 

and so on associated with each point of the fl ow: a static pressure  p  and a total 

pressure  p  0 , where  p  0  >  p . 

 For the special case of a gas that is not moving (i.e., the fl uid element has 

no velocity in the fi rst place), static and total pressures are synonymous:  p  0  =  p . 

This is the case in common situations such as the stagnant air in a room and gas 

confi ned in a cylinder. 

 The following analogy might help to further illustrate the difference between 

the defi nitions of static and total pressure. Assume that you are driving down the 

highway at 60 mi/h. The windows of your automobile are closed. Inside the 

automobile, along with you, there is a fl y buzzing around in a very random fash-

ion. Your speed is 60 mi/h, and in the mean, so is that of the fl y, moving down 

the highway at 60 mi/h. However, the fl y has its random buzzing-about motion 

superimposed on top of its mean directed speed of 60 mi/h. To you in the au-

tomobile, all you see is the random, buzzing-about motion of the fl y. If the fl y 

hits your skin with this random motion, you will feel a slight impact. This slight 

impact is analogous to the  static  pressure in a fl owing gas, where the static pres-

sure is due simply to the  random  motion of the molecules. Now assume that you 

open the window of your automobile, and the fl y buzzes out. There is a person 

standing along the side of the road. If the fl y that has just left your automobile 

hits the skin of this person, the impact will be strong (it may even really hurt) 

because the fl y will hit this person with a mean velocity of 60 mi/h plus whatever 

its random velocity may be. The strength of this impact is analogous to the  total  
pressure of a gas. 

 There is an aerodynamic instrument that actually measures the total pres-

sure at a point in the fl ow: a  Pitot tube . A basic sketch of a Pitot tube is shown in 

   Fig. 4.17 . It consists of a tube placed parallel to the fl ow and open to the fl ow at 

one end (point  A ). The other end of the tube (point  B ) is closed. Now imagine that 

the fl ow is fi rst started. Gas will pile up inside the tube. After a few moments, 

there will be no motion inside the tube because the gas has nowhere to go—the 

gas will stagnate once steady-state conditions have been reached. In fact, the gas 

will be stagnant everywhere inside the tube, including at point  A . As a result, the 

fl ow fi eld sees the open end of the Pitot tube (point  A ) as an obstruction, and a 

fl uid element moving along the streamline, labeled  C , has no choice but to stop 

when it arrives at point  A . Because no heat has been exchanged, and friction is 

negligible, this process will be isentropic; that is, a fl uid element moving along 

streamline  C  will be isentropically brought to rest at point  A  by the very presence 

of the Pitot tube. Therefore, the pressure at point  A  is, truly speaking, the total 

pressure  p  0 . This pressure will be transmitted throughout the Pitot tube; and if a 

pressure gauge is placed at point  B , it will in actuality measure the  total pressure  

of the fl ow. In this fashion, a Pitot tube is an instrument that measures the total 

pressure of a fl ow. 
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     By defi nition, any point of a fl ow where  V  = 0 is called a  stagnation point . 
In    Fig. 4.17 , point  A  is a stagnation point. 

 Consider the arrangement shown in    Fig. 4.18 . Here we have a uniform fl ow 

with velocity  V  1  moving over a fl at surface parallel to the fl ow. There is a small 

hole in the surface at point  A , called a  static pressure orifi ce . Because the surface 

is parallel to the fl ow, only the random motion of the gas molecules will be felt 

by the surface itself. In other words, the surface pressure is indeed the static pres-

sure  p . This will be the pressure at the orifi ce at point  A . In contrast, the Pitot tube 

Figure 4.17 Sketch of a Pitot tube.

Figure 4.18 Schematic of a Pitot-static measurement.
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at point  B  in    Fig. 4.18  will feel the total pressure  p  0 , as previously discussed. If 

the static pressure orifi ce at point  A  and the Pitot tube at point  B  are connected 

across a pressure gauge, as shown in    Fig. 4.18 , the gauge will measure the differ-

ence between total and static pressure  p  0  −  p . 

     Now we arrive at the main thrust of this section. The pressure difference 

 p  0  − p , as measured in    Fig. 4.18 , gives a measure of the fl ow velocity  V  1 . A com-

bination of a total pressure measurement and a static pressure measurement 

allows us to measure the velocity at a given point in a fl ow. These two measure-

ments can be combined in the same instrument, a  Pitot-static probe , as illus-

trated in    Fig. 4.19 . A Pitot-static probe measures  p  0  at the nose of the probe and 

p  at a point on the probe surface downstream of the nose. The pressure difference 

p  0  −  p  yields the velocity  V  1 , but the quantitative formulation differs depend-

ing on whether the fl ow is low speed (incompressible), high-speed subsonic, or 

supersonic. 

       4.11.1  Incompressible Flow 

 Consider again the sketch shown in    Fig. 4.18 . At point  A , the pressure is  p  and 

the velocity is  V  1 . At point  B , the pressure is  p  0  and the velocity is zero. Applying 

Bernoulli’s equation,    Eq. (4.9  a ), at points  A  and  B , we obtain

  

p V p=V1
2 1VVVV 2

0ρ

Static

pressure

Dynamic

pressure

Total

preessure

(4.62)

In    Eq. (4.62) , for  dynamic pressure   q  we have the defi nition

q V1
2

2ρ   (4.63)

which is frequently employed in aerodynamics; the grouping  1
2     ρV   2  is termed 

the  dynamic pressure for fl ows of all types,  incompressible to hypersonic. From 

   Eq. (4.62) ,

p p q0 = +p   (4.64)

Figure 4.19 Schematic of a Pitot-static probe.
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 This relation holds for incompressible fl ow only.  The total pressure equals the 

sum of the static and the dynamic pressure. Also from    Eq. (4.62) ,

  
V

p p
1VV 02= ( )p p

ρ   
(4.65)

   Equation (4.65)  is the desired result; it allows the calculation of fl ow veloc-

ity from a measurement of  p  0  −  p , obtained from a Pitot-static tube. Again we 

emphasize that    Eq. (4.65)  holds only for incompressible fl ow. 

 A Pitot tube can be used to measure the fl ow velocity at various points in the 

test section of a low-speed wind tunnel, as shown in    Fig. 4.20 . The total pres-

sure at point  B  is obtained by the Pitot probe; the static pressure, also at point  B , 

is obtained from a static pressure orifi ce located at point  A  on the wall of the 

closed test section, assuming that the static pressure is constant throughout the 

test section. This assumption of constant static pressure is fairly safe for subsonic 

wind tunnel test sections and is commonly made. If the test section is open to the 

room, as also sketched in    Fig. 4.20 , then the static pressure at all points in the 

test section is  p  = 1 atm. In either case, the velocity at point  A  is calculated from 

   Eq. (4.65) . The density ρ in    Eq. (4.65)  is a constant (incompressible fl ow). We 

can obtain its value by measuring  p  and  T  somewhere in the tunnel, using the 

Figure 4.20 Pressure measurements in open and closed test sections 

of subsonic wind tunnels.
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equation of state to calculate ρ =  p /( RT ). These measurements are usually made 

in the reservoir upstream of the nozzle. 

     Either a Pitot tube or a Pitot-static tube can be used to measure the airspeed 

of airplanes. Such tubes can be seen extending from airplane wing tips, with the 

tube oriented in the fl ight direction, as shown in    Fig. 4.21 . Pitot tubes were used 

for airspeed measurements as early as World War I, at that time principally by the 

British.    Figure 4.22  focuses on the dual Pitot and static pressure tubes mounted 

on one of the interplane struts of the Sopwith Snipe, an airplane from the period 

around 1917.    Figure 4.23  shows the wing-mounted Pitot tube facing forward 

from the leading edge of the right wing of the North American F-100 from the 

1950s. Returning to the drawing of the World War II Corsair in Fig. 2.16, note 

the Pitot tube extending from the left wing. These airplanes are typical examples 

of low-speed aircraft for which the equation developed in this section, assuming 

incompressible fl ow, are valid for airspeed measurements. 

If a Pitot tube by itself is used instead of a Pitot-static tube, then the ambient 

static pressure in the atmosphere around the airplane is obtained from a static pres-

sure orifi ce placed strategically on the airplane surface. It is placed where the surface 

pressure is nearly the same as the pressure of the surrounding atmosphere. Such a 

location is found by experience. It is generally on the fuselage somewhere between 

the nose and the wing. The values of  p  0  obtained from the wing-tip Pitot probe and 

 p  obtained from the static pressure orifi ce on the surface enable calculation of the 

airplane’s speed through the air using    Eq. (4.65) ,  as long as the airplane’s velocity 
is low enough to justify the assumption of incompressible fl ow— that is, for veloci-

ties less than 300 ft/s. In actual practice, the measurements of  p  0  and  p  are joined 

across a differential pressure gauge that is calibrated in terms of airspeed, using 

   Eq. (4.65) . This airspeed indicator is a dial in the cockpit, with units of velocity, 

say miles per hour, on the dial. However, in determining the calibration (i.e., in 

determining what values of miles per hour go along with given values of  p  0  −  p ), 

Figure 4.21 Sketch of wing-mounted Pitot 

probe.
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Figure 4.22 Detail of the wing of the World War I Sopwith Snipe hanging in the World 

War I gallery of the National Air and Space Museum, showing the Pitot-static tube on one of 

the interwing struts.
(Source: Courtesy of John Anderson.)

Figure 4.23 A North American F-100 from the 1950s. The Pitot tube extending ahead of the 

right wing leading edge is easily visible.
(Source:  U.S. Air Force.)
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the engineer must decide what value of ρ to use in    Eq. (4.65) . If ρ is the true value, 

somehow measured in the actual air around the airplane, then    Eq. (4.65)  gives the 

true airspeed  of the airplane:   

V
p p

trVV ue = 2 0( )p p

ρ
(4.66)

However, measurement of atmospheric air density directly at the airplane’s 

location is diffi cult. Therefore, for practical reasons, the airspeed indicators on 

low-speed airplanes are calibrated by using the standard sea-level value of ρ  s   in 

   Eq. (4.65) . This gives a value of velocity called the  equivalent airspeed: 

V
p p

eVV
s

= 2 0( )p p

ρ
(4.67)

The equivalent airspeed  V   e   differs slightly from  V  true , the difference being the fac-

tor (ρ/ρ   s  ) 
1/2 . At altitudes near sea level, this difference is small. 

EXAMPLE 4.23

 The altimeter on a low-speed Cessna 150 private aircraft reads 5000 ft. By an indepen-

dent measurement, the outside air temperature is 505°R. If a Pitot tube mounted on the 

wing tip measures a pressure of 1818 lb/ft 2 , what is the true velocity of the airplane? What 

is the equivalent airspeed? 

■  Solution 
 An altimeter measures the pressure altitude (see the discussion in Ch. 3). From the stan-

dard atmosphere table in App. B, at 5000 ft,  p  = 1761 lb/ft 2 . Also, the Pitot tube measures 

total pressure; hence

 p p0
21818 1761 57=p − =1761 lb ft/        

The true airspeed can be obtained from    Eq. (4.66) ; however, we need ρ, which is obtained 

from the equation of state. For the outside ambient air,

 
ρ = = = −p

RT

1761

1716 505
2 03 1× 0 3 3

( )505
s03 1× 0 3 lug/ft

       

From    Eq. (4.66) ,

 
V

p p
trVV ue ft/sff= = =−

2 2 5

2 03 1× 0
2370

3

)p(pp p ( )57

ρ         

  Note:  Because 88 ft/s = 60 mi/h,  V  true  = 237(60/88) = 162 mi/h. 

  The equivalent airspeed (that which would be read on the airspeed indicator in the 

cockpit) is obtained from    Eq. (4.67) , where ρ s  = 0.002377 slug/ft 3  (the standard sea-level 

value). Hence, from    Eq. (4.67) ,
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p p
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= =
×

=−
2 2 5

2 377 10
2190

3

)p(pp p ( )57

.ρ
ft/sff

       

Note the 7.6 percent difference between  V  true  and  V  e .    
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  In a low-speed subsonic wind tunnel with a closed test section (   Fig. 4.20  a ), a static pres-

sure tap on the wall of the tunnel test section measures 0.98 atm. The temperature of the 

air in the test section is 80 ° F. A Pitot tube is inserted in the middle of the fl ow in the test 

section in order to measure the fl ow velocity. The pressure measured by the Pitot tube is 

2200 lb/ft 2 . Calculate the fl ow velocity in the test section. 

■     Solution 
 We fi rst change the inconsistent units of atm and  ° F into consistent units in the English 

engineering system:

  p = 0 9 2116. (98 ) l= 2074 b/ft2

       

  T = + = °80 460 540 R        

Thus, from the equation of state

 

ρ = = =p

RT

2074

1 16 540
0 002238 3

( )1716 ( )540
. s002238 lug/ft

       

The Pitot tube measures the total pressure;

 p0 2200= lb/ftff 2

       

From Eq. (4.65), we have

 

V
p p

1VV 02 2
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335 6= = =( )p pp p ( )2200 2074−

.
.

ρ
 ft/s

       

Wind tunnel operators sometimes like to talk about air velocities in terms of miles per 

hour. Recalling that 88 ft/s = 60 mph, we have

 

V1VV
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⎟
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( .335 ) m229= ph
          

EXAMPLE 4.24

EXAMPLE 4.25

  Consider a low-speed subsonic wind tunnel with an open test section (   Fig. 4.20  b ). The 

ambient pressure in the room is 1 atm, and the temperature of the air in the test section 

is 15 o C. A Pitot tube is mounted in the test section. The tunnel is turned on, and the air 

velocity in the test section is adjusted to be 110 m/sec. What is the subsequent reading 

from the Pitot tube? 

■     Solution 
 Change to consistent units.

p = = × = ×1 atm (1.01 10 )(1) 1.01 10 N/m5 5×)(1) 1 01 10 2

T +° =+15 C 273 15 288 K



4.11  Measurement of Airspeed 197

Thus,

ρ = = =p

RT

1 01 1× 0
1 22

5
3

( )287 ( )288
. kg/m

From Eq. (4.62),

p p + V +0
1
2

1
2=Vp + ×ρ 1.01 10 (1.22)(110)2 5×1 01 10 2

p0
5 21 084 10= 1 N5.084 10×084 /m

In units of atmospheres, we have

p0

5

5

1 084 10

1 01 10
1 07= × =.

a07 tm

EXAMPLE 4.26

  An airplane is fl ying at sea level at a speed of 100 m/s. Calculate the free-stream  dynamic 

pressure and total pressure. 

■  Solution 
 Dynamic pressure is defi ned by Eq. (4.63).

q V =V =∞
1
2

2 1
2

3 26 15 1× 0ρ (1.23)(100) N/m2

Total pressure, for  incompressible fl ow , is given by the sum of the static and dynamic 

pressures, that is, Eq. (4.64). The total pressure of the free stream is

 
p q 5 5 20 0615 10 1 07 10× + ×0 0615 = 1 07∞qρ + =q∞qq 1.01 10 N/m5 .0615 10 1×0615 1

   4.11.2  Subsonic Compressible Flow 

 The results of    Sec. 4.11.1  are valid for airfl ows where  M  < 0.3—that is, where the 

fl ow can reasonably be assumed to be incompressible. This is the fl ight regime 

of small, piston-engine private aircraft. For higher-speed fl ows, but where the 

Mach number is still less than 1 (high-speed subsonic fl ows), other equations 

must be used. This is the fl ight regime of commercial jet transports such as the 

Boeing 747 and the McDonnell-Douglas DC-10 and of many military aircraft. 

For these cases, compressibility must be taken into account, as follows. 

 Consider the defi nition of enthalpy:  h  =  e  +  pv . Because  h  =  c   p   T  and  e  =  c   v   T , 

then  c   p   T  = c  v   T  +  RT , or

  c c Rp vc =c   (4.68)        
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Divide    Eq. (4.68)  by  c  p :

 

1
1

1
1 1

− =

− = =

c c

R

c

R
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p vc p

p

/

γ
γ

γ

or  c
R

p =
−

γRR

γ 1
  (4.69)

   Equation (4.69)  holds for a perfect gas with constant specifi c heats. It is a neces-

sary thermodynamic relation for use in the energy equation, as follows. 

 Consider again a Pitot tube in a fl ow, as shown in    Figs. 4.17  and    4.19 . 

Assume that the fl ow velocity  V  1  is high enough that compressibility must be 

taken into account. As usual, the fl ow is isentropically compressed to zero 

velocity at the stagnation point on the nose of the probe. The values of the 

stagnation, or total, pressure and temperature at this point are  p  0  and  T  0 , re-

spectively. From the energy equation,    Eq. (4.42) , written between a point 

in the free-stream fl ow where the temperature and velocity are  T  1  and  V  1 , 

respectively, and the stagnation point, where the velocity is zero and the tem-

perature is  T  0 ,

 
c T V c Tp pT V c1TTTT 1 VV 2

0TT+ VV1
2 VVVV

       

or 
T

T

V

c Tp

0TT

1TT
1VV 2

1TT
1

2
= +1  (4.70)

Substitute    Eq. (4.69)  for  c   p   in    Eq. (4.70) :

T

T

V
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2
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γ
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 (4.71)

However, from    Eq. (4.54)  for the speed of sound,

a RT1
2

1TTγ        

Thus,    Eq. (4.71)  becomes

T

T

V

a
0TT

1TT
1VV 2

1
2

1
1

2
= +1

−γ
  (4.72)

Because the Mach number  M  1  =  V  1 / a  1 ,    Eq. (4.72)  becomes

  
T

T
M0TT

1TT
1
21

1

2
= +1

−γ
  (4.73)        
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Because the gas is  isentropically  compressed at the nose of the Pitot probe in 

   Figs. 4.17  and    4.18 ,    Eq. (4.37)  holds between the free stream and the stagnation 

point. That is,  p  0 / p  1  = (ρ 0 /ρ 1 ) 
γ  = ( T  0 / T  1 ) 

γ /(γ −1) . Therefore, from    Eq. (4.73) , we obtain
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1
1

2

1
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−⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

= +1
−⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

( )1−γ

ρ
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γ⎞ (/γγ

111/( )1γ

(4.74)

(4.75)

    Equations (4.73)  to    (4.75)  are fundamental and important relations for com-

pressible, isentropic fl ow. They apply to many other practical problems in ad-

dition to the Pitot tube. Note that    Eq. (4.73)  holds for adiabatic fl ow, whereas 

   Eqs.  (4.74)  and    (4.75)  contain the additional assumption of frictionless (hence 

isentropic) fl ow. Also, from a slightly different perspective,    Eqs. (4.73)  to    (4.75)  

determine the total temperature, density, and pressure— T  0 , ρ 0 , and  p  0 —at any 

point in the fl ow where the static temperature, density, and pressure are  T  1 , ρ 1 , 

and  p  1  and where the Mach number is  M  1 . In other words, refl ecting the earlier 

discussion of the defi nition of total conditions,    Eqs. (4.73)  to    (4.75)  give the 

values of  p  0 , T 0 , and ρ 0  that are associated with a point in the fl ow where the pres-

sure, temperature, density, and Mach number are  p  1 ,  T  1 , ρ 1 , and  M  1 , respectively. 

These equations also demonstrate the powerful infl uence of Mach number in 

aerodynamic fl ow calculations. It is very important to note that the ratios  T  0 /T 1 , 

p  0 / p  1 , and ρ 0 /ρ 1  are functions of  M  1  only (assuming that γ   is known; γ   = 1.4 for 

normal air). 

 Returning to our objective of measuring airspeed, and solving    Eq. (4.74)  

for  M  1 , we obtain
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 (4.76)

Hence, for subsonic compressible fl ow, the ratio of total to static pressure 

p  0 / p  1  is a direct measure of Mach number. Thus, individual measurements of  p  0
and  p  1  in conjunction with    Eq. (4.76)  can be used to calibrate an instrument in the 

cockpit of an airplane called a  Mach meter,  where the dial reads directly in terms 

of the fl ight Mach number of the airplane. 

 To obtain the actual fl ight velocity, recall that  M  1  =  V  1 / a  1 ; so    Eq. (4.76)  

becomes
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 (4.77a)

   Equation (4.77)  can be rearranged algebraically as
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   Equations (4.77  a ) and    (4.77  b ) give the  true  airspeed of the airplane. However, 

they require a knowledge of  a  1  and hence  T  1 . The static temperature in the air 

surrounding the airplane is diffi cult to measure. Therefore, all high-speed (but 

subsonic) airspeed indicators are calibrated from    Eq. (4.77  b ), assuming that  a  1  is 

equal to the standard sea-level value  a  s  = 340.3 m/s = 1116 ft/s. Moreover, the 

airspeed indicator is designed to sense the actual pressure  difference   p  0  −  p  1  in 

   Eq. (4.77  b ), not the pressure  ratio   p  0 / p  1 , as appears in    Eq. (4.77  a ). Hence, the 

form of    Eq. (4.77  b ) used to defi ne a calibrated airspeed is as follows:
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(4.78)        

where  a  s  and  p  s  are the standard sea-level values of the speed of sound and static 

pressure, respectively. 

 Again we emphasize that    Eqs. (4.76)  to    (4.78)  must be used to measure 

airspeed when  M  1  > 0.3—that is, when the fl ow is compressible. Equations 

based on Bernoulli’s equation, such as    Eqs. (4.66)  and    (4.67) ,  are not valid  

when  M  1  > 0.3. 

 So once again, just as in the case of low-speed airplanes fl ying in the incom-

pressible fl ow regime, we see that a Pitot tube is used on high-speed subsonic air-

planes for airspeed measurement. The fi rst mass-produced American jet fi ghter, 

the Lockheed P-80 (later designated the F-80), went into service beginning in 

1945, and was the fi rst American jet fi ghter to participate in the Korean War, 

beginning in 1950. The F-80s shown in    Fig. 4.24  have the Pitot tube mounted on 

the leading edge of the vertical tail, as shown in the detail in    Fig. 4.25 . Also, re-

turn to Fig. 2.15, which shows the North American F-86, America’s fi rst swept-

wing jet fi ghter, introduced during the Korean War with great success. Note 

the Pitot tube extending ahead of the right wing tip. The F-86 was a high-speed 

subsonic airplane capable of exceeding the speed of sound in a dive.  

 A high-speed subsonic McDonnell-Douglas DC-10 airliner is fl ying at a pressure altitude 

of 10 km. A Pitot tube on the wing tip measures a pressure of 4.24 × 10 4  N/m 2 . Calculate 

the Mach number at which the airplane is fl ying. If the ambient air temperature is 230 K, 

calculate the true airspeed and the calibrated airspeed. 

■     Solution 
 From the standard atmosphere table, App. A, at an altitude of 10,000 m,  p  = 2.65 × 10 4  N/m 2 . 

Hence, from    Eq. (4.76) ,
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EXAMPLE 4.27
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Figure 4.24 Lockheed F-80s.
(Source: Department of Defense.)

Figure 4.25 A detail of the vertical tail of the F-80 showing the Pitot tube. The airplane is 

on display at the National Air and Space Museum.
(Source: Courtesy of John Anderson.)
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Thus  M1 0 848= .

It is given that  T  1  = 230 K; hence

a RT1 1RTT 1 4 287 230 0=RT1RTTγ . (4 )( ) .304= m/s

From    Eq. (4.77) ,
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Note:  As a check, from the defi nition of Mach number,
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The calibrated airspeed can be obtained from    Eq. (4.78) :
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VcalVV m/s= 157

The difference between true and calibrated airspeeds is 39 percent.  Note:  Just out of 

curiosity, let us calculate  V  1  the  wrong  way; that is, let us apply    Eq. (4.66) , which was 

obtained from Bernoulli’s equation for incompressible fl ow.    Equation (4.66)  does  not
apply to the high-speed case of this problem, but let us see what result we get anyway:
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From    Eq. (4.66) ,
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Compared with  V  1  = 258 m/s, an error of 9.3 percent is introduced in the calculation of 

true airspeed by using the  incorrect  assumption of incompressible fl ow. This error grows 

rapidly as the Mach number approaches unity, as discussed in a subsequent section.   
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EXAMPLE 4.28

  Consider an F-80 (   Fig. 4.24 ) fl ying at 594 mph at standard sea level. (This is the maxi-

mum speed of the F-80C at sea level.) Calculate the pressure and temperature at the 

stagnation point on the nose of the airplane. 

■  Solution 
 At standard sea level,  p  ∞  = 2116 lb/ft 2  and  T  ∞  = 519 o R.

a RT∞ ∞RTT =RT =γ RRRRR ( . )( )( )4. 1716 519 1117 ft/s        

Note:  This is the standard sea-level speed of sound in the English engineering system of 

units. In Sec. 4.9 we gave the standard sea-level speed of sound in SI units, namely  a  ∞  =
340.3 m/s. You will fi nd it convenient to know the sea-level speed of sound:

a∞ = 340 m/s 1117 ft/s 762 mph= =1117 ft/s

M
V

a
∞

∞VV

∞
= = =594

762
0 78

Note:  Because Mach number is a dimensionless ratio, we can use inconsistent units 

such as miles per hour, as long as both the numerator and denominator are in the same 

units. 

 From Eq. (4.74), we obtain the total pressure, which is the pressure at the stagnation 

point.
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From Eq. (4.73), we obtain the total temperature, which is the temperature at the 

stagnation point:
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Note:  We can check the accuracy of these answers by calculating the stagnation density 

fi rst from the equation of state:
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then from Eq. (4.75),
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The numbers check.   

EXAMPLE 4.29

  At a given point in a fl ow fi eld of air, the Mach number, velocity, and density are 0.9, 

300 m/s, and 1.2 kg/m 3 , respectively. Calculate at this point  (a)  the total pressure, and 

 (b)  the dynamic pressure. 

   ■  Solution  
  a.   First, we need the static pressure, and to obtain this from the equation of state, we need 

the temperature.
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p RT =RT = ×ρ (1.2)(287)(276.5) 0.952 10 N/m5 2N/m

From Eq. (4.74),
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  b.   The dynamic pressure is  defi ned  by Eq. (4.63) as

  
q V1

2
2ρ

       

 
q = = ×1

2
4 25 4 10(1.2)(300) N/m2

       

Important Note:  For a  compressible  fl ow, the dynamic pressure is  not  equal to the differ-

ence between total and static pressure.  Only  for an incompressible fl ow is this true. We 

emphasize that Eq. (4.64) holds  only  for an incompressible fl ow. In the present example, 

we have  p  0  = 1.61 × 10 5  N/m 2  and  p  = 0.95222 × 10 5  N/m 2 . Thus, the difference between 

total and static pressures is

 p p0 =p − × = ×(1.61 0.952) 10 6.58 10 N/m5 4×6 58 10 2
       

This is  not  equal to the value of  q  = 5.4 × 10 4  N/m 2 , obtained above.     
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   4.11.3  Supersonic Flow 

 Airspeed measurements in supersonic fl ow (i.e., for  M  > 1) are qualitatively dif-

ferent from those for subsonic fl ow. In supersonic fl ow, a  shock wave  will form 

ahead of the Pitot tube, as shown in    Fig. 4.26 . Shock waves are very thin regions 

of the fl ow (for example, 10 −4  cm) across which some severe changes in the 

fl ow properties take place. Specifi cally, as a fl uid element fl ows through a shock 

wave, 

  1.   The Mach number  decreases .  

  2.   The static pressure  increases .  

  3.   The static temperature  increases .  

  4.   The fl ow velocity  decreases .  

  5.   The total pressure  p  0   decreases .  

  6.   The total temperature  T  0   stays the same  for a perfect gas.    

These changes across a shock wave are shown in    Fig. 4.27 . 

         How and why does a shock wave form in supersonic fl ow? There are vari-

ous answers with various degrees of sophistication. However, the essence is as 

follows. Refer to    Fig. 4.17 , which shows a Pitot tube in subsonic fl ow. The gas 

molecules that collide with the probe set up a disturbance in the fl ow. This dis-

turbance is communicated to other regions of the fl ow, away from the probe, 

by means of weak pressure waves (essentially sound waves) propagating at the 

local speed of sound. If the fl ow velocity  V  1  is less than the speed of sound, as 

in    Fig. 4.17 , then the pressure disturbances (which are traveling at the speed of 

sound) will work their way upstream and eventually will be felt in all regions of 

the fl ow. In contrast, refer to    Fig. 4.26 , which shows a Pitot tube in supersonic 

fl ow. Here  V  1  is greater than the speed of sound. Thus, pressure disturbances that 

are created at the probe surface and that propagate away at the speed of sound 

 cannot  work their way upstream. Instead, these disturbances coalesce at a fi nite 

distance from the probe and form a natural phenomenon called a  shock wave,  as 

shown in    Figs. 4.26  and    4.27 . The fl ow upstream of the shock wave (to the left 

Shock wave

M1 > 1

p1
�1

V1

Figure 4.26 Pitot tube in supersonic fl ow. Figure 4.27 Changes across a shock wave in 

front of a Pitot tube in supersonic fl ow.
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of the shock) does not feel the pressure disturbance; that is, the presence of the 

Pitot tube is not communicated to the fl ow upstream of the shock. The presence 

of the Pitot tube is felt only in the regions of fl ow behind the shock wave. The 

shock wave is a thin boundary in a supersonic fl ow, across which major changes 

in fl ow properties take place and which divides the region of undisturbed fl ow 

upstream from the region of disturbed fl ow downstream. 

 Whenever a solid body is placed in a supersonic stream, shock waves will 

occur.    Figure 4.28  shows photographs of the supersonic fl ow over several aero-

dynamic shapes. The shock waves, which are generally not visible to the naked 

eye, are made visible in    Fig. 4.28  by means of a specially designed optical sys-

tem, called a  schlieren system,  and a  shadow graph system . (An example in 

which shock waves are sometimes visible to the naked eye is on the wing of a 

high-speed subsonic transport such as a Boeing 707. As we will discuss shortly, 

there are regions of local supersonic fl ow on the upper surface of the wing, and 

these supersonic regions are generally accompanied by weak shock waves. If the 

sun is almost directly overhead and if you look out the window along the span 

of the wing, you can sometimes see these waves dancing back and forth on the 

wing surface.) 

 Consider again the measurement of airspeed in a supersonic fl ow. The mea-

surement is complicated by the presence of the shock wave in    Fig. 4.26  because 

the fl ow through a shock wave is  nonisentropic . Within the thin structure of a 

shock wave itself, very large friction and thermal conduction effects are taking 

place. Hence, neither adiabatic nor frictionless conditions hold; therefore, the 

fl ow is  not  isentropic. As a result,    Eq. (4.74)  and hence    Eqs. (4.76)  and    (4.77  a ) 

do not hold across the shock wave. A major consequence is that the total pres-

sure  p  0  is smaller behind the shock wave than in front of it. In turn, the total 

pressure measured at the nose of the Pitot probe in supersonic fl ow will  not  
be the same value as that associated with the free stream—that is, as associ-

ated with  M  1 . Consequently, a separate shock wave theory must be applied to 

relate the Pitot tube measurement to the value of  M  1 . This theory is beyond the 

scope of our presentation, but the resulting formula is given here for the sake of 

 completeness:

  
p

p

M M0

1

2
1
2

2
2

4 2M 2

1 2= ( )1+
( )1−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

( )1−
(

γ 1 2MM1
2 2(

γ γMM2
γ (/γ

11
2

1γ +
  (4.79)        

This equation is called the  Rayleigh Pitot tube formula.  It relates the Pitot tube 

measurement of total pressure behind the shock wave,  p02
    and a measurement of 

free-stream static pressure (again obtained by a static pressure orifi ce somewhere 

on the surface of the airplane) to the free-stream supersonic Mach number  M  1 . 

In this fashion, measurements of  p02     and  p  1 , along with    Eq. (4.79) , allow the 

calibration of a Mach meter for supersonic fl ight. 

 The delta-winged supersonic F-102A fi ghter is shown in    Fig. 4.29 . Extending 

forward of the pointed nose is a Pitot tube for airspeed measurement. As in the case 

of subsonic compressible fl ow, for supersonic fl ow the Pitot tube measurement 
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Figure 4.28 (a) Shock 

waves on a swept-wing 

airplane (left) and on a 

straight-wing airplane 

(right). Schlieren pictures 

taken in a supersonic 

wind tunnel at NASA 

Ames Research Center. 

(b) Shock waves on a 

blunt body (left) and 

sharp-nosed body (right). 

(c) Shock waves on a 

model of the Gemini 
manned space capsule. 

Parts b and c are shadow 

graphs of the fl ow.
(Source: NASA Ames 
Research Center.)

(a)

(b)

(c)
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in conjunction with a free-stream static pressure measurement leads directly to 

a measurement of the free-stream Mach number. The Mach number in the cock-

pit of the airplane, however, is calibrated according to Eq. (4.76) for subsonic 

fl ight, and according to Eq. (4.79) for supersonic fl ight. In both cases, the Mach 

number is the quantity that is obtained directly. To obtain the velocity, additional 

information is required. 

Figure 4.29 Convair F-102A supersonic fi ghter from the 1950s and 1960s.
(Source: NASA.)

EXAMPLE 4.30

  An experimental rocket-powered aircraft is fl ying at a velocity of 3000 mi/h at an alti-

tude where the ambient pressure and temperature are 151 lb/ft 2  and 390°R, respectively. 

A Pitot tube is mounted in the nose of the aircraft. What is the pressure measured by the 

Pitot tube? 
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■  Solution 
 First we ask: Is the fl ow supersonic or subsonic? That is, what is  M  1 ? From    Eq. (4.54) ,
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Hence  M  1  > 1; the fl ow is supersonic. There is a shock wave in front of the Pitot tube; 

therefore    Eq. (4.74)  developed for isentropic fl ow does  not  hold. Instead,    Eq. (4.79)  must 

be used:

 

p

p

M0

1

2
1
2

2
2

4 2M 2

1 2= ( )1+
( )1−

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎥⎥
⎦⎦⎦⎦

( )1−
(

γ 1 2MM1
2 2(

γ
γ (/γγ

γγ
γ

Mγγ 1
2

2 2

2

1

4 2

+

= ( )2 4 ( )4 54

( )1 4 ( )4 54 − ( )0 4

⎡

⎣
⎢
⎡⎡

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤)4 (4
)4 (4 ⎦⎦

⎥
⎤⎤

⎦⎦⎦⎦
⎥⎥
⎦⎦⎦⎦⎦⎦⎦

( )( ) =
3 5 21 1− 4 2+

2 4
27

. (4 2+
.

       

Thus
  

p p0 1p 2
2

27 27 4077=p1p ( )151 = lb/ftff
       

 Note:  Again, out of curiosity, let us calculate the  wrong  answer. If we had  not  taken into 

account the shock wave in front of the Pitot tube at supersonic speeds, then    Eq. (4.74)  

would give
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Thus  p0 = 304.2 p1 = 304.2(151) = 45,931 lb/ft2  incorrect answer

        Note that the incorrect answer is off by a factor of more than 10!   

EXAMPLE 4.31

  Consider the F-102A shown in    Fig. 4.29 . The airplane is fl ying at a supersonic speed at a 

standard altitude of 8 km. The pressure measured by the Pitot tube is 9.27 × 10 4  N/m 2 . At 

what Mach number is the airplane fl ying? 

■   Solution 
 From App. A, for an altitude of 8 km,  p  = 3.5651 × 10 4  N/m 2 . Hence, in Eq. (4.79),
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               4.11.4  Summary 

 As a summary of the measurement of airspeed, note that different results apply to 

different regimes of fl ight: low speed (incompressible), high-speed subsonic, and 

supersonic. These differences are fundamental and serve as excellent examples 

of the application of the different laws of aerodynamics developed in previous 

sections. Moreover, many of the formulas developed in this section apply to 

other practical problems, as discussed in    Sec. 4.12 .    

   4.12  SOME ADDITIONAL CONSIDERATIONS 
     Section 4.11  contains information that is considerably more general than just the 

application to airspeed measurements. The purpose of this section is to elaborate 

on some of the ideas and results discussed in    Sec. 4.11 . 

Eq. (4.79) is an implicit relation for  M  1 ; there is no easy way that we can turn the equa-

tion inside out and obtain an explicit analytic relation for  M  1  =  f  ( p02    / p  1 ). So let us solve 

Eq.  (4.79) for  M  1  by trial and error, by assuming various values of  M  1  and ultimately 

fi nding the value that gives ( 02    /p 1 ) = 2.6. Repeating Eq. 4.79,
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For  y  = 1.4, this equation becomes
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        Results from this equation are shown in the following table: 

 M  1  (assumed)

5.76
5.6 0.8

1
2

1
2

3.5
M

M −−−−
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⎣
⎢
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⎦
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⎤⎤

⎦⎦ (−0.1667 + 1.1667 M1
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p

p
o

1

2

 1  1.893  1  1.893 

 1.1  1.713  1.245  2.133 

 1.2  1.591  1.513  2.408 

 1.3  1.503  1.805  2.71 

 1.25  1.544  1.656  2.557 

 1.26  1.535  1.686  2.587 

 1.27  1.527  1.715  2.619 

 Comparing the right-hand column with the given value of po2
    / p  1  = 2.6, we see that, to 

three signifi cant fi gures, the value of         po2/ p  1 = 2.587 is the closest. This corresponds to the 

assumed value of  M  1  = 1.26. Hence, the Mach number of the F-102A in this case is

M1 1 26= .
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   4.12.1  More about Compressible Flow 

    Equations (4.73)  through    (4.75) , relating the ratios of  T  0  / T  1 ,  p  0 / p  1 , and ρ 0  /ρ 1  to the 

local Mach number  M  1 , apply in general to any isentropic fl ow. We state without 

proof that the values of  T  0 ,  p  0 , and ρ 0  are constant throughout a given isentropic 

fl ow. In conjunction with    Eqs. (4.73)  to    (4.75) , this fact gives us a powerful tool 

for the analysis of an isentropic fl ow. For example, let us again consider the 

isentropic fl ow over an airfoil, which was the problem solved in    Example 4.12 . 

But now we have more information and a broader perspective from which to 

approach this problem. 

  Consider the isentropic fl ow over the airfoil sketched in    Fig. 4.30 . The free-stream pres-

sure, velocity, and density are 2116 lb/ft 2 , 500 mi/h, and 0.002377 slug/ft 3 , respectively. 

At a given point  A  on the airfoil, the pressure is 1497 lb/ft 2 . What are the Mach number 

and the velocity at point  A ? 

    ■ Solution 
 This example is the same as    Example 4.12 , with the additional requirement to calculate 

the Mach number at point  A . However, we use a different solution procedure in this 

 example. First we calculate the free-stream Mach number, as follows:
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EXAMPLE 4.32

Figure 4.30 Total pressure and total temperature are 

constant throughout an isentropic fl ow.
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The free-stream total temperature is, from    Eq. (4.73) ,
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The free-stream total pressure is, from    Eq. (4.74) ,
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Because the total temperature and total pressure are constant throughout the isentropic 

fl ow over the airfoil, the total temperature and total pressure at point  A  are the same as 

the free-stream values:
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We can solve for the Mach number at point  A  by applying    Eq. (4.74)  at point  A :
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 Note:  The Mach number at point  A  is essentially 1; we have nearly sonic fl ow at point  A . 

The static temperature at point  A  can be obtained from    Eq. (4.73) :
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 ( Note:  This result for  T   A   = 470.4°R agrees well with the value of 470.1°R calculated in 

   Example 4.12 ; the difference is due to roundoff error produced by carrying just four sig-

nifi cant fi gures and the author’s doing the calculations on a hand calculator.) 
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 The velocity at point  A  can be obtained as follows:
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( Note:  This agrees well with the result  V   A   = 1061 ft/s calculated in    Example 4.12 .) 

 The calculation procedure used in    Example 4.32  is slightly longer than that used in 

   Example 4.12 ; however, it is a more fundamental approach than that used in     Example 4.12 . 

Return to    Example 4.12 , and note that we had to employ a value of the specifi c heat  c   p  

to solve the problem. However, in the present calculation we did not need a value of  c   p  . 

 Indeed, the explicit use of  c   p   is not necessary in solving isentropic compressible fl ows. 

 Instead, we used  γ    and  M  to solve this example. The ratio of specifi c heats  γ    and the Mach 

number  M  are both examples of  similarity parameters  in aerodynamics. The concept and 

power of the similarity parameters for governing fl uid fl ows are something you will study 

in more advanced treatments than this book. Suffi ce it to say here that  Mach number  is 

a powerful governing parameter for compressible fl ow and that the results depend on the 

value of  γ , which is usually a fi xed value for a given gas ( γ    = 1.4 for air, as we use here). 

   Example 4.32  shows the power of using  M  and  γ   for solving compressible fl ow problems. 

We will continue to see the power of  M  and  γ   in some of our subsequent discussions.    

   4.12.2  More about Equivalent Airspeed 

 Equivalent airspeed was introduced in    Sec. 4.11.1  and expressed by    Eq. (4.67)  

for low-speed fl ight, where the fl ow is assumed to be incompressible. However, 

the concept of equivalent airspeed has a broader meaning than just a value that 

comes from an airspeed indicator, which uses the standard sea-level density to 

determine its readout, as fi rst explained in    Sec. 4.11.1 . 

 The general defi nition of equivalent airspeed can be introduced by the fol-

lowing example. Consider a Lockheed-Martin F-16 fi ghter cruising at a velocity 

of 300 m/s at an altitude of 7 km, where the free-stream density is 0.59 kg/m 3 . The 

velocity of 300 m/s is the airplane’s true airspeed. At this speed and altitude, 

the dynamic pressure is  1
2

2 1
2

2 4 20 50 300 655 10ρ∞ ∞ 30050= 1 ×V∞ ( .0(00 )( ) .2 2= N/m    . It is im-

portant to reinforce that dynamic pressure is a  defi nition,  defi ned by the  quantity 

 1
2

2ρ∞ ∞V∞    . This defi nition holds no matter what the fl ight regime is— subsonic, su-

personic, or whatever—and whether the fl ow is incompressible or compressible. 

Dynamic pressure  q  ∞  is just the defi nition

  
q Vqq ∞VV1

2
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Now imagine the F-16 fl ying at standard sea level, where the free-stream density 

is 1.23 kg/m 3 .  Question:  What velocity would it have to have at standard sea 

level to  experience the  same dynamic pressure  that it had when fl ying at 300 m/s 

at the altitude of 7 km? The answer is easy to calculate:
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Dropping the subscripts ∞ for convenience, we have
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where ρ is the density at 7 km and  ρ s   is the standard sea-level density. Putting in 

the numbers, we have
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Hence, the F-16 fl ying at 300 m/s at 7-km altitude would have to fl y at a velocity of 

207.8 m/s at standard sea level to experience the same dynamic pressure. By defi nition, 

the F-16 fl ying at 300 m/s at 7-km altitude has an  equivalent airspeed  of 207.8 m/s. 

 This leads to the more general defi nition of equivalent airspeed, as fol-

lows. Consider an airplane fl ying at some true airspeed at some altitude. Its 

 equivalent airspeed  at this condition is defi ned as the velocity at which it 

would have to fl y at standard sea level to  experience the same dynamic pres-
sure . The equation for equivalent airspeed is straightforward, as obtained in 

the preceding. It is
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where  V   e   is the equivalent airspeed,  V  is the true velocity at some altitude, ρ is the 

density at that altitude, and ρ  s   is the standard sea-level density. 

 In retrospect, our fi rst discussion of  V   e   in    Sec. 4.11.1  is consistent with our 

discussions here; however, in    Sec. 4.11.1 , our discussion was focused on air-

speed measurements in an incompressible fl ow. 

 The concept of equivalent airspeed is useful in studies of airplane per-

formance that involve the aerodynamic lift and drag of airplanes. The lift and 

drag depend on the dynamic pressure,  q  ∞ , as we will see in Ch. 5. Giving the 

 equivalent airspeed  of an airplane is the same as stating its dynamic pressure, 

as  discussed previously. Therefore, equivalent airspeed is sometimes used as a 

convenience in reporting and analyzing airplane performance data.    

   4.13   SUPERSONIC WIND TUNNELS 
AND ROCKET ENGINES 

  For more than a century, projectiles such as bullets and artillery shells have been 

fi red at supersonic velocities. However, the main aerodynamic interest in super-

sonic fl ows arose after World War II with the advent of jet aircraft and rocket-

propelled guided missiles. As a result, almost every aerodynamic laboratory 

has an inventory of supersonic and hypersonic wind tunnels to simulate mod-

ern high-speed fl ight. In addition to their practical importance, supersonic wind 
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tunnels are an excellent example of the application of the fundamental laws of 

aerodynamics. The fl ow through rocket engine nozzles is another example of the 

same laws. In fact, the basic aerodynamics of supersonic wind tunnels and rocket 

engines are essentially the same, as discussed in this section. 

 First consider isentropic fl ow in a stream tube, as sketched in    Fig. 4.2 . From 

the continuity equation,    Eq. (4.2) ,

ρAV = const

or  ln l l ln ( )ρ + ln =A Vln+        

Differentiating, we obtain
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Recalling the momentum equation,    Eq. (4.8)  (Euler’s), we obtain
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Substitute    Eq. (4.81)  into    (4.80) :
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Thus,    Eq. (4.82)  becomes
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   Equation (4.83)  is called the  area–velocity relation,  and it contains a wealth 

of information about the fl ow in the stream tube shown in    Fig. 4.2 . First note 

the mathematical convention that an increasing velocity and an increasing area 

correspond to positive values of  dV  and  dA , respectively, whereas a decreasing 

velocity and a decreasing area correspond to negative values of  dV  and  dA . This 

is the normal convention for differentials from differential calculus. With this in 

mind,    Eq. (4.83)  yields the following physical phenomena:  

  1.   If the fl ow is subsonic ( M  < 1), for the velocity to increase ( dV  positive), 

the area must decrease ( dA  negative); that is, when the fl ow is subsonic, 

the area must converge for the velocity to increase. This is sketched in 

   Fig. 4.31  a . This same result was observed in    Sec. 4.2  for incompressible 

fl ow. Of course incompressible fl ow is, in a sense, a singular case of 

subsonic fl ow, where  M  → 0.  

  2.   If the fl ow is supersonic ( M  > 1), for the velocity to increase ( dV  

positive), the area must also increase ( dA  positive); that is, when the fl ow 

is supersonic, the area must diverge for the velocity to increase. This is 

sketched in    Fig. 4.31  b .  

  3.   If the fl ow is sonic ( M  = 1), then    Eq. (4.83)  yields for the velocity

  dV
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−
=1

1

1

02
  (4.84)        

which at fi rst glance says that  dV/V  is infi nitely large. However, on a 

physical basis, the velocity, and hence the change in velocity  dV , at 

all times must be fi nite. This is only common sense. Thus, looking at 

   Eq. (4.84) , we see that the only way for  dV/V  to be fi nite is to have 

 dA / A  = 0; so

  

dV

V
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A
= = =1

0

0

0
finite number

       

That is, in the language of differential calculus,  dV/V  is an indeterminate 

form of 0/0 and hence can have a fi nite value. In turn, if  dA / A  = 0, the 

stream tube has a  minimum  area at  M  = 1. This minimum area is called a 

 throat  and is sketched in    Fig. 4.31  c .   

Figure 4.31 Results from the area–velocity relation.
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 Therefore, to expand a gas to supersonic speeds, starting with a stagnant 

gas in a reservoir, the preceding discussion says that a duct of a suffi ciently 

 converging–diverging shape must be used. This is sketched in    Fig. 4.32 , where 

typical shapes for supersonic wind tunnel nozzles and rocket engine nozzles are 

shown. In both cases, the fl ow starts out with a very low velocity  V  ≈ 0 in the 

reservoir, expands to high subsonic speeds in the convergent section, reaches 

Mach 1 at the throat, and then goes supersonic in the divergent section down-

stream of the throat. In a supersonic wind tunnel, smooth, uniform fl ow at the 

nozzle exit is usually desired; therefore, a long, gradually converging and diverg-

ing nozzle is employed, as shown at the top of    Fig. 4.32 . For rocket engines, the 

fl ow quality at the exit is not quite as important; but the weight of the nozzle is 

a major concern. For the weight to be minimized, the engine’s length is mini-

mized, which gives rise to a rapidly diverging, bell-like shape for the supersonic 

section, as shown at the bottom of    Fig. 4.32 . A photograph of a typical rocket 

engine is shown in    Fig. 4.33 . 

             The real fl ow through nozzles such as those sketched in    Fig. 4.32  is 

closely approximated by isentropic fl ow, because little or no heat is added 

or taken away through the nozzle walls and a vast core of the fl ow is virtu-

ally frictionless. Therefore,    Eqs. (4.73)  to    (4.75)  apply to nozzle fl ows. Here 

the total pressure and temperature  p  0  and  T  0  remain constant throughout the 

fl ow, and    Eqs. (4.73)  to    (4.75)  can be interpreted as relating conditions at any 

point in the fl ow to the stagnation conditions in the reservoir. For example, 

consider    Fig. 4.32 , which illustrates the reservoir conditions  p  0  and  T  0  where 

 V  ≈ 0. Consider any cross section downstream of the reservoir. The static 

Figure 4.32 Supersonic nozzle shapes.
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temperature, density, and pressure at this section are  T  1 , ρ 1 , and  p  1 , respec-

tively. If the Mach number  M  1  is known at this point, then  T  1 , ρ 1 , and  p  1  can be 

found from    Eqs. (4.73)  to    (4.75)  as

T T M1 0TT 1
2 1

2 1
1 11

2+T0TT 1⎡⎣⎡⎡ ⎤⎦⎤⎤
−⎤⎤( )1γ( (4.85)
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2 1

2 1 1γ
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γ−1⎤⎤( )γγ 1γ
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γ γ/(/
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Again,    Eqs. (4.85)  to    (4.87)  demonstrate the power of the Mach number in mak-

ing aerodynamic calculations. The variation of Mach number itself through the 

nozzle is strictly a function of the ratio of the cross-sectional area to the throat 

area  A/A t  . This relation can be developed from the aerodynamic fundamentals 

already discussed; the resulting form is
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(4.88)

 Therefore, the analysis of isentropic fl ow through a nozzle is relatively 

straightforward. The procedure is summarized in    Fig. 4.34 . Consider that the 

nozzle shape, and hence  A/A t  , is given as shown in    Fig. 4.34  a . Then, from 

   Eq. (4.88) , the Mach number can be obtained (implicitly). Its variation is sketched 

in    Fig. 4.34  b . Because  M  is now known through the nozzle,    Eqs. (4.85)  to    (4.87)  

give the variations of  T , ρ, and  p , which are sketched in    Fig. 4.34  c  to  e . The 

 directions of these variations are important and should be noted. From    Fig. 4.34 , 

Figure 4.33 A typical rocket engine. Shown is a small rocket designed by 

Messerschmitt-Bolkow-Blohm for European satellite launching.
(Source: Courtesy of John Anderson.)
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the Mach number continuously increases through the nozzle, going from near 

zero in the reservoir to  M  = 1 at the throat and to supersonic values downstream 

of the throat. In turn,  p ,  T , and ρ begin with their stagnation values in the reser-

voir and continuously decrease to low values at the nozzle exit. Hence, a super-

sonic nozzle fl ow is an expansion process in which pressure decreases through 

the nozzle. In fact, this pressure decrease provides the mechanical force for push-

ing the fl ow through the nozzle. If the nozzle shown in    Fig. 4.34  a  is simply 

set out by itself in a laboratory, obviously nothing will happen; the air will not 

start to rush through the nozzle of its own accord. Instead, to establish the fl ow 

sketched in    Fig. 4.34 , we must provide a high-pressure source at the inlet, and/or 

Figure 4.34 Variation of Mach number, pressure, temperature, 

and density through a supersonic nozzle.
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a low-pressure source at the exit, with the pressure ratio at just the right value, as 

prescribed by    Eq. (4.87)  and sketched in    Fig. 4.34  c . 

EXAMPLE 4.33

 You are given the job of designing a supersonic wind tunnel that has a Mach 2 fl ow at 

standard sea-level conditions in the test section. What reservoir pressure and temperature 

and what area ratio  A   e   / A   t   are required to obtain these conditions? 

■  Solution 
 The static pressure  p   e   = 1 atm = 1.01 × 10 5  N/m 2 , and the static temperature  T   e   = 288.16 K, 

from conditions at standard sea level. These are the desired conditions at the exit of the 

nozzle (the entrance to the test section). The necessary reservoir conditions are obtained 

from    Eqs. (4.85)  and    (4.87) :
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The area ratio is obtained from    Eq. (4.88) :
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Hence

  

A

A
e

t

= 1 69

          

EXAMPLE 4.34

  The reservoir temperature and pressure of a supersonic wind tunnel are 600°R and 

10 atm, respectively. The Mach number of the fl ow in the test section is 3. A blunt-

nosed model like that shown at the left in    Fig. 4.28  b  is inserted in the test section fl ow. 
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Calculate the pressure, temperature, and density at the stagnation point (at the nose of 

the body). 

■  Solution 
 The fl ow conditions in the test section are the same as those at the nozzle exit. Hence, 

in the test section, we obtain the exit pressure from    Eq. (4.87) , recalling that 1 atm  =
2116 lb/ft 2 :

p p Mep M= pp ⎡⎣⎡⎡ ⎤⎦⎤⎤
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= lb/ftff

The pressure at the stagnation point on the model is the total pressure  behind a normal 
wave  because the stagnation streamline has traversed the normal portion of the curved 

bow shock wave in    Fig. 4.28  b  and then has been isentropically compressed to zero 

 velocity between the shock and the body. This is the same situation as that existing at the 

mouth of a Pitot tube in supersonic fl ow, as described in    Sec. 4.11.3 . Hence the stagnation 

pressure is given by    Eq. (4.79) :
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The  total  temperature (not the static temperature) at the nozzle exit is the same as the 

reservoir temperature

 
T T0 0T TT Te,        

because the fl ow through the nozzle is isentropic and hence adiabatic. For an adiabatic 

fl ow, the  total  temperature is constant, as demonstrated by    Eq. (4.42) , where at two dif-

ferent points in an adiabatic fl ow with different velocities if the fl ow is adiabatically 

slowed to zero velocity at both points, we obtain

c T c Tp pT0 0TT c TTTT c
2p 0TTpc=

Hence  T T0 0T TT T
1 20TT    ; that is, the total temperature at the two different points is the same. 

Therefore, in the present problem, the total temperature associated with the test section 

fl ow is equal to the total temperature throughout the nozzle expansion: T0e = T0 = 600°R    . 

[Note that the  static  temperature of the test section fl ow is 214.3°R, obtained from 

   Eq. (4.85) .] Moreover, in traversing a shock wave (see    Fig. 4.27 ), the total tempera-

ture is unchanged; that is, the total temperature behind the shock wave on the model 

is also 600°R (although the static temperature behind the shock is less than 600°R). 
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Finally, because the fl ow is isentropically compressed to zero velocity at the stag-

nation point, the stagnation point temperature is the  total temperature,  which also 

stays constant through the isentropic compression. Hence, the gas temperature at the 

stagnation point is

 
T TstagTT R=T °0TTTT 600

       

From the equation of state,
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EXAMPLE 4.35

  In the combustion chamber of a rocket engine, kerosene and oxygen are burned, resulting 

in a hot, high-pressure gas mixture in the combustion chamber with the following condi-

tions and properties:  T  0  = 3144 K,  p  0  = 20 atm,  R  = 378 J/(kg)(K), and  γ    = 1.26. The pres-

sure at the exit of the rocket nozzle is 1 atm, and the throat area of the nozzle is 0.1 m 2 . 

Assuming isentropic fl ow through the rocket nozzle, calculate ( a ) the velocity at the exit 

and ( b ) the mass fl ow through the nozzle. 

■     Solution 
  a.  To obtain the velocity at the exit, let us fi rst obtain the temperature, next the speed of 

sound, and then the Mach number, leading to the velocity. We note that the combustion 

chamber conditions are the “reservoir” conditions sketched in    Fig. 4.32 ; this is why the 

combustion chamber pressure and temperature have been denoted by  p  0  and  T  0 , respec-

tively. Because the fl ow is isentropic, from    Eq. (4.46)  we have
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or  a RTe eRTT =RTγRRRR 1 26 378 1694 2. (26 )( ) .= 898 m/s        

The Mach number at the exit is given by    Eq. (4.73) :

 

T

T
M

eTT
e

0TT 21
1

2
= +1

−γ

       

or

  

M
T

T
e

eTT
2 0TT2

1
1

2

1 26 1

3144

1694
1 6=

−
−

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
= −⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠γ .

.558455
       

or  Me = 2 566.        
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Hence  V M ae eV MV M e =M a =2 566 898 2305. (566 . )2 m/s        

b.  The mass fl ow is given by the product ρ   AV  evaluated at any cross section of the 

 nozzle. Because we are given the area of the throat, the obvious location at which to 

evaluate ρ   AV  is the throat; that is,

 
m A& Vρ * *A *

       

where ρ*,  A *, and  V * are the density, area, and velocity, respectively, at the throat. We 

will use the fact that the Mach number at the throat is  M * = 1. The pressure at the throat 

p * is given by    Eq. (4.74) :
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The temperature at the throat is given by    Eq. (4.73) :
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Because  M * = 1,  V * =  a * = 1151 m/s. Hence

&m A& VA Vρ * *AA * .= ( . )( ) .=062 1. 1151 2 kg/s

  A supersonic wind tunnel is sketched in    Fig. 4.35 ; this includes not only the convergent–

divergent nozzle sketched in    Fig. 4.32 , but also a constant-area test section downstream 

of the nozzle, and a convergent–divergent supersonic diffuser downstream of the test sec-

tion. The function of the supersonic diffuser is to slow the supersonic fl ow from the test 

section to a relatively benign low-speed subsonic fl ow at the exit of the diffuser. A super-

sonic wind tunnel has two locations where a local minimum cross-sectional area exists. 

In    Fig. 4.35 , location 1 in the nozzle is called the  fi rst throat , with area  A  t,1 . Shock waves 

occur at the entrance to the diffuser, as sketched in    Fig. 4.35 , and the fl ow Mach number 

is progressively reduced as the fl ow passes through these shock waves. Also, because 

the total pressure decreases across a shock wave, as described in Section 4.11.3, there 

is a net loss of total pressure in the diffuser upstream of the second throat. As a result 

EXAMPLE 4.36
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of this total pressure loss, the second throat area,  A  t,2 , must be larger than the fi rst throat 

area,  A  t,1 . Prove this statement by deriving an equation for the ratio  A  t,2 / A  t,1  as a function 

of total pressure at the second throat,     po2, and total pressure at the fi rst throat,     po1. Assume 

 locally sonic fl ow at both locations. 

       ■  Solution 
 The mass fl ow through the tunnel is constant, so that at the fi rst and second throats,

   & &m m1 2  (E 4.36.1)        

Because m
.
     =  ρ AV , Eq. (E 4.36.1) becomes

   ρρ 2ρ 2 2A V A V2 2t2ρ A, ,ρ tρ2ρ  (E 4.36.2)        

The fi rst and second throats are local minimum areas in the tunnel, so we assume that the 

local Mach numbers are  M  t,1  =  M  t,2  = 1. That is, the velocity at each of the throats is sonic 

velocity. Hence, from Eq. (E 4.36.2)

ρ ρρρ 2ρ 2 2A A a2t2ρ A, ,ρ tρ2ρ
        

or 

   ρ γρρ 2γA Rγ T Aρ1 ρρ RTγ 2γγ 1 ρRγ T1 ρρ, ,γ ργ ρ1 ρρ  (E 4.36.3)        

From the equation of state,  p  =  ρ RT , Eq. (E 4.36.3) can be written as
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Figure 4.35 Schematic of a supersonic wind tunnel, showing the fi rst and 

second throats.
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At the fi rst throat, from Eqs. (4.73) and (4.74), with  M  t,1  = 1, we have
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(E 4.36.6)        

Through a similar derivation at the second throat, with  M  t,2  = 1, we have
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Substituting Eqs. (E 4.36.5), (E 4.36.6), (E 4.36.7), and (E 4.36.8) into (E 4.36.4), we get
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The fl ow in the wind tunnel sketched in    Fig. 4.35  is adiabatic; no heat is being added 

or taken away in the tunnel. This applies also to the shock waves in the diffuser; the fl ow 

across a shock wave is adiabatic (but  not  isentropic). As demonstrated in Example 4.34, 

the total temperature is constant in an adiabatic fl ow. Thus, throughout the fl ow in the 

wind tunnel, the total temperature remains constant. In particular,

T T0,TT 1 0TT ,2         

With this, we get
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= (E 4.36.10)        

Because there is a loss of total pressure in the diffuser,  p  o,2  <  p  o,1 , and from Eq. (E 4.36.10) 

we know that the second throat is larger than the fi rst throat. Indeed, if  A  i,2  were made 

smaller than that dictated by Eq. (E 4.36.10), the diffuser would not be able to pass the 

mass fl ow that comes from the nozzle; the fl ow in the tunnel would break down and 

the supersonic fl ow in the test section would become subsonic. In such a case, the tun-

nel is said to be “choked.” Further discussion of this subject is beyond the scope of this 
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book. See Anderson,  Modern Compressible Flow with Historical Perspective , 3rd ed., 

McGraw-Hill, New York, 2003, for more details.   

  Consider a supersonic wind tunnel as sketched in    Fig. 4.35 . The reservoir pressure is 5 atm. 

The area of the fi rst throat (location 1 in    Fig. 4.35 ) is 100 cm 2 . The static pressure measured 

at a pressure tap in the wall of the second throat (location 2 in    Fig. 4.35 ) is 0.87 atm. The local 

Mach number at the second throat is  Mt,2 = 1. Calculate the area of the second throat,  A  t,2 . 

■    Solution 
 From Eq. (E 4.36.10) in Example 4.36, we have
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The total pressure at the fi rst throat is equal to the reservoir pressure; thus

p
0,1
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The total pressure at the second throat,  p  0,2 , where the local Mach number  M  t,2  = 1, can be 

calculated from the given static pressure at the second throat,  p  2 . From Eq. (4.74),
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Thus,  p  0,2  = 1.893  p  2  = 1.893 (0.87) = 1.6468 atm. Substituting these results into 

Eq. (E 4.36.10), we have
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   4.14  DISCUSSION OF COMPRESSIBILITY 
  We have been stating all along that fl ows in which  M  < 0.3 can be treated as 

essentially incompressible and, conversely, that fl ows in which  M  ≥ 0.3 should 

be treated as compressible. We are now in a position to prove this. 

 Consider a gas at rest ( V  = 0) with density ρ 0 . Now accelerate this gas 

isentropically to some velocity  V  and Mach number  M . Obviously the thermody-

namic properties of the gas will change, including the density. In fact, the change 

in density will be given by    Eq. (4.75) :
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For  γ    = 1.4, this variation of ρ/ρ 0  is given in    Fig. 4.36 . Note that for  M  < 0.3, the 

density change in the fl ow is less than 5 percent; that is, the density is essentially 

EXAMPLE 4.37
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constant for  M  < 0.3, and for all practical purposes the fl ow is incompressible. 

Therefore, we have just demonstrated the validity of this statement: 

     For  M  < 0.3, the fl ow can be treated as incompressible.   

   4.15  INTRODUCTION TO VISCOUS FLOW 
  This is a good time to look back to our road map in    Fig. 4.1 . We have now 

completed the left side of this road map—inviscid fl ow with some applica-

tions. Examine again the boxes on the left side, and make certain that you 

feel comfortable with the material represented by each box. There are many 

aerodynamic applications in which the neglect of friction is quite reasonable 

and in which the assumption of inviscid fl ow leads to useful and reasonably 

accurate results. 

Figure 4.36 Density variation with Mach number for γ   = 1.4, showing region where the 

density change is less than 5 percent.
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 However, in numerous other practical problems the effect of friction is 

dominant, and we now turn our attention to such problems. This constitutes 

the right side of our road map in    Fig. 4.1 —viscous fl ow, which is fl ow with 

friction. Indeed, in some fl ows the  fundamental  behavior is governed by the 

presence of friction between the airfl ow and a solid surface. A classic example 

is sketched in    Fig. 4.37 , which shows the low-speed fl ow over a sphere. At the 

left is sketched the fl ow fi eld that would exist if the fl ow were inviscid. For such 

an ideal, frictionless fl ow, the streamlines are symmetric; and amazingly, there 

is no aerodynamic force on the sphere. The pressure distribution over the for-

ward surface exactly balances that over the rear surface, and hence there is no 

drag (no force in the fl ow direction). However, this purely theoretical result is 

contrary to common sense; in real life there is a drag force on the sphere tending 

to retard the motion of the sphere. The failure of the theory to predict drag was 

bothersome to early 19th-century aerodynamicists and was even given a name: 

 d’Alembert’s paradox . The problem is caused by not including friction in the 

theory. The real fl ow over a sphere is sketched on the right in    Fig. 4.37 . The 

fl ow separates on the rear surface of the sphere, setting up a complicated fl ow in 

the wake and causing the pressure on the rear surface to be less than that on the 

forward surface. Hence, a drag force is exerted on the sphere, as shown by  D  in 

   Fig. 4.37 . The difference between the two fl ows in    Fig. 4.37  is simply friction, 

but what a difference! 

     Consider the fl ow of a gas over a solid surface, such as the airfoil sketched 

in    Fig. 4.38 . According to our previous considerations of frictionless fl ows, we 

considered the fl ow velocity at the surface as being a fi nite value, such as  V  2  

shown in    Fig. 4.38 ; that is, because of the lack of friction, the streamline right at 

Figure 4.37 Comparison between ideal frictionless fl ow and real fl ow with the effects of 

friction.

Figure 4.38 Frictionless fl ow.
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the surface slips over the surface. In fact, we stated that if the fl ow is incompress-

ible,  V  2  can be calculated from Bernoulli’s equation:

 
p V p V1

2
2 1

2 2VV 2V 2ρ ρV p1VV 2=V1VV 2

        

     However, in real life,  the fl ow at the surface adheres to the surface  because 

of friction between the gas and the solid material; that is, right at the surface, the 

fl ow velocity is zero, and there is a thin region of retarded fl ow in the vicinity of 

the surface, as sketched in    Fig. 4.39 . This region of viscous fl ow that has been 

retarded owing to friction at the surface is called a  boundary layer . The inner 

edge of the boundary layer is the solid surface itself, such as point  a  in    Fig. 4.39 , 

where  V  = 0. The outer edge of the boundary layer is given by point  b , where the 

fl ow velocity is essentially the value given by  V  2  in    Fig. 4.38 . That is, point  b  in 

   Fig. 4.39  is essentially equivalent to point 2 in    Fig. 4.38 . In this fashion, the fl ow 

properties at the outer edge of the boundary layer in    Fig. 4.39  can be calculated 

from a frictionless fl ow analysis, as pictured in    Fig. 4.38 . This leads to an impor-

tant conceptual point in theoretical aerodynamics: A fl ow fi eld can be split into 

two regions, one region in which friction is important (in the boundary layer near 

the surface) and another region of frictionless fl ow (sometimes called  potential 
fl ow ) outside the boundary layer. This concept was fi rst introduced by Ludwig 

Prandtl in 1904, and it revolutionized modern theoretical aerodynamics. 

     It can be shown experimentally and theoretically that the pressure through 

the boundary layer in a direction perpendicular to the surface is constant. That 

is, if we let  p   a   and  p   b   be the static pressures at points  a  and  b , respectively, in 

   Fig. 4.39 , then  p   a   =  p   b  . This is an important phenomenon. This is why a surface 

pressure distribution calculated from frictionless fl ow (   Fig. 4.38 ) many times 

gives accurate results for the real-life surface pressures; it is because the fric-

tionless calculations give the correct pressures at the outer edge of the boundary 

layer (point  b ), and these pressures are impressed without change through the 

boundary layer right down to the surface (point  a ). The preceding statements 

are reasonable for slender aerodynamic shapes such as the airfoil in    Fig. 4.39 ; 

they do not hold for regions of separated fl ow over blunt bodies, as previously 

sketched in    Fig. 4.37 . Such separated fl ows are discussed in    Sec. 4.20 . 

 Refer again to    Fig. 4.39 . The  boundary layer thickness  δ grows as the fl ow 

moves over the body; that is, more and more of the fl ow is affected by friction 

Figure 4.39 Flow in real life, with friction. The thickness of the boundary layer is greatly 

overemphasized for clarity.



230 CHAPTER 4  Basic Aerodynamics

as the distance along the surface increases. In addition, the presence of friction 

creates a  shear stress  at the surface  τ w  . This shear stress has dimensions of force/

area and acts in a direction tangential to the surface. Both δ and  τ w   are important 

quantities, and a large part of boundary layer theory is devoted to their calcula-

tion. As we will see,  τ w   gives rise to a drag force called  skin friction drag,  hence 

attesting to its importance. Subsequent sections will give equations for the cal-

culation of δ and  τ w  . 
 Looking more closely at the boundary layer, we see that a  velocity profi le  

through the boundary layer is sketched in    Fig. 4.40 . The velocity starts out at 

zero at the surface and increases continuously to its value of  V  2  at the outer edge. 

Let us set up coordinate axes  x  and  y  such that  x  is parallel to the surface and 

 y  is normal to the surface, as shown in    Fig. 4.40 . By defi nition, a  velocity profi le  

gives the variation of velocity in the boundary layer as a function of  y . In general, 

the velocity profi les at different  x  stations are different. 

     The slope of the velocity profi le at the wall is of particular importance be-

cause it governs the wall shear stress. Let  (dV / dy )  y =0  be defi ned as the velocity 

gradient at the wall. Then the shear stress at the wall is given by
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(4.89)        

where μ is called the  absolute viscosity coeffi cient  (or simply the  viscosity ) of the 

gas. The viscosity coeffi cient has dimensions of mass/(length)(time), as can be 

verifi ed from    Eq. (4.89)  combined with Newton’s second law. It is a physical prop-

erty of the fl uid; μ is different for different gases and liquids. Also, μ varies with  T . 

For liquids, μ decreases as  T  increases (we all know that oil gets “thinner” when 

the temperature is increased). But for gases, μ increases as  T  increases (air gets 

“thicker” when temperature is increased). For air at standard sea-level temperature,

 
μ = × −1 7894 10 5 7. ×7894 10 kg/(m)(s) s×) = 3 7373 10 7−×3 7373 10.3 lug/(ft)(s)

       

The variation of μ with temperature for air is given in    Fig. 4.41 . 

     In this section we are simply introducing the fundamental concepts of boundary 

layer fl ows; such concepts are essential to the practical calculation of aerodynamic 

drag, as we will soon appreciate. In this spirit, we introduce another important 

dimensionless “number,” a number of importance and impact on aerodynamics 

Figure 4.40 Velocity profi le through a boundary layer.
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equal to those of the Mach number discussed earlier—the  Reynolds number . 
Consider the development of a boundary layer on a surface, such as the fl at plate 

sketched in    Fig. 4.42 . Let  x  be measured from the leading edge—that is, the front 

tip of the plate. Let  V  ∞  be the fl ow velocity far upstream of the plate. (The subscript 

 ∞  is commonly used to denote conditions far upstream of an aerodynamic body, the 

 free-stream conditions .) The  Reynolds number  Re  x   is defi ned as

Re x
V x= ∞ ∞VV

∞

ρ
μ∞

(4.90)

Note that Re  x   is dimensionless and that it varies linearly with  x . For this 

reason, Re  x   is sometimes called a  local  Reynolds number, because it is based on 

the local coordinate  x . 

Figure 4.41 Variation of viscosity coeffi cient with temperature.

Figure 4.42 Growth of the boundary layer thickness.
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     Up to this point in our discussion of aerodynamics, we have always con-

sidered fl ow streamlines to be smooth and regular curves in space. However, in 

a viscous fl ow, and particularly in boundary layers, life is not quite so simple. 

There are two basic types of viscous fl ow: 

  1.    Laminar fl ow,  in which the streamlines are smooth and regular and a fl uid 

element moves smoothly along a streamline (   Fig. 4.43  a ).  

  2.    Turbulent fl ow,  in which the streamlines break up and a fl uid element 

moves in a random, irregular, and tortuous fashion (   Fig. 4.43  b ).   

The differences between laminar and turbulent fl ow are dramatic, and they have 

a major impact on aerodynamics. For example, consider the velocity profi les 

through a boundary layer, as sketched in    Fig. 4.44 . The profi les differ depending 

on whether the fl ow is laminar or turbulent. The turbulent profi le is “fatter,” or 

fuller, than the laminar profi le. For the turbulent profi le, from the outer edge to 

a point near the surface, the velocity remains reasonably close to the free-stream 

velocity; it then rapidly decreases to zero at the surface. In contrast, the laminar 

velocity profi le gradually decreases to zero from the outer edge to the surface. 

Now consider the velocity gradient at the wall,  (dV / dy )  y =0 , which is the reciprocal 

of the slope of the curves shown in    Fig. 4.44  evaluated at  y  = 0. From    Fig. 4.44 , 

it is clear that
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(a) Laminar flow

(b) Turbulent flow

Figure 4.43 (a) Smooth motion of fl uid 

elements in a laminar fl ow. (b) Tortuous, 

irregular motion of fl uid elements in a 

turbulent fl ow.
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Recalling    Eq. (4.89)  for  τ w   leads us to the fundamental and highly important fact 

that  laminar shear stress is less than turbulent shear stress :

 
τ τw w tτ wτ urbulent<

       

This obviously implies that the skin friction exerted on an airplane wing or body 

will depend on whether the boundary layer on the surface is laminar or turbulent, 

with laminar fl ow yielding the smaller skin friction drag. 

 It appears to be almost universal in nature that systems with the maximum 

amount of  disorder  are favored. For aerodynamics, this means that the vast 

majority of practical viscous fl ows are turbulent. The boundary layers on most 

practical airplanes, missiles, ship hulls, and the like are turbulent, with the excep-

tion of small regions near the leading edge, as we will soon see. Consequently, 

the skin friction on these surfaces is the higher, turbulent value. For the aerody-

namicist, who is usually striving to reduce drag, this is unfortunate. However, 

the skin friction on slender shapes, such as wing cross sections (airfoils), can be 

reduced by designing the shape in such a manner as to encourage laminar fl ow. 

Figure 4.44 Velocity profi les for laminar and turbulent boundary 

layers. Note that the turbulent boundary layer thickness is larger 

than the laminar boundary layer thickness.
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   Figure 4.45  indicates how this can be achieved. Here two airfoils are shown; the 

standard airfoil (   Fig. 4.45  a ) has a maximum thickness near the leading edge, 

whereas the laminar fl ow airfoil (   Fig. 4.45  b ) has its maximum thickness near the 

middle of the airfoil. The pressure distributions on the top surface, of the airfoils 

are sketched above the airfoils in    Fig. 4.45 . Note that for the standard airfoil, 

the minimum pressure occurs near the leading edge, and there is a long stretch 

of increasing pressure from this point to the trailing edge. Turbulent bound-

ary layers are encouraged by such increasing pressure distributions. Hence, the 

standard airfoil is generally bathed in long regions of turbulent fl ow, with the 

attendant high skin friction drag. However, note that for the laminar fl ow airfoil, 

the minimum pressure occurs near the trailing edge, and there is a long stretch 

of decreasing pressure from the leading edge to the point of minimum pressure. 

Laminar boundary layers are encouraged by such decreasing pressure distribu-

tions. Hence, the laminar fl ow airfoil can be bathed in long regions of laminar 

fl ow, thus benefi ting from the reduced skin friction drag. 

(a)

Figure 4.45 Comparison of conventional and laminar fl ow airfoils. The pressure 

distributions shown are the theoretical results obtained by NACA and are for 0° angle of 

attack. The airfoil shapes are drawn to scale.
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   The North American P-51 Mustang (   Fig. 4.46 ), designed at the outset of 

World War II, was the fi rst production aircraft to employ a laminar fl ow airfoil. 

However, laminar fl ow is a sensitive phenomenon; it readily gets unstable and 

tries to change to turbulent fl ow. For example, the slightest roughness of the 

airfoil surface caused by such real-life effects as protruding rivets, imperfections 

in machining, and bug spots can cause a premature transition to turbulent fl ow 

in advance of the design condition. Therefore, most laminar fl ow airfoils used 

on production aircraft do not yield the extensive regions of laminar fl ow that are 

obtained in controlled laboratory tests using airfoil models with highly polished, 

smooth surfaces. From this point of view, the early laminar fl ow airfoils were 

not successful. However, they were successful from an entirely different point 

of view: They were found to have excellent high-speed properties, postponing 

to a higher fl ight Mach number the large drag rise due to shock waves and fl ow 

separation encountered near Mach 1. (Such high-speed effects are discussed in 

Secs. 5.9 to 5.11.) As a result, the early laminar fl ow airfoils were extensively 

(b)

Figure 4.45 (continued )
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used on jet-propelled airplanes during the 1950s and 1960s and are still em-

ployed on some modern high-speed aircraft. 

     Given a laminar or turbulent fl ow over a surface, how do we actually cal-

culate the skin friction drag? The answer is given in the following two sections.   

   4.16   RESULTS FOR A LAMINAR 
BOUNDARY LAYER 

  Consider again the boundary layer fl ow over a fl at plate, as sketched in    Fig. 4.42 . 

Assume that the fl ow is laminar. The two physical quantities of interest are the 

boundary layer thickness δ and shear stress  τ w   at location  x . Formulas for these 

quantities can be obtained from laminar boundary layer theory, which is beyond 

the scope of this book. However, the results, which have been verifi ed by experi-

ment, are as follows. The laminar boundary layer thickness is

  

δ = 5 2

Re

x

x

laminar

  

(4.91)        

where Re  x   = ρ ∞  V  ∞  x /μ ∞ , as defi ned in    Eq. (4.90) . It is remarkable that a phe-

nomenon as complex as the development of a boundary layer, which depends 

at least on density, velocity, viscosity, and length of the surface, should be 

described by a formula as simple as    Eq. (4.91) . In this vein,    Eq. (4.91)  dem-

onstrates the powerful infl uence of the Reynolds number, Re  x  , in aerodynamic 

calculations. 

Figure 4.46 The fi rst airplane to incorporate a laminar fl ow airfoil for the wing section, the 

North American P-51 Mustang. Shown is a late-model Mustang, the P-51D.
(Source: Jim Ross/NASA.)
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 Note from    Eq. (4.91)  that the laminar boundary layer thickness varies inversely 

as the square root of the Reynolds number. Also, because Re  x   = ρ ∞  V  ∞  x /μ ∞ , then 

from    Eq. (4.91)  δ ∝  x  1/2 ; that is, the laminar boundary layer grows  parabolically . 

 The local shear stress  τ w   is also a function of  x , as sketched in    Fig. 4.47 . 

Rather than deal with  τ w   directly, aerodynamicists fi nd it more convenient to 

defi ne a local skin friction  coeffi cient   cfxff     as
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∞VV ∞qq
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The skin friction coeffi cient is dimensionless and is defi ned as the local shear 

stress divided by the dynamic pressure at the outer edge of the boundary. From 

laminar boundary layer theory,

cf
x

xff = 0 664.

Re
laminar

  

(4.93)

where, as usual, Re  x   = ρ ∞  V  ∞  x /μ ∞ .    Equation (4.93)  demonstrates the convenience 

of defi ning a dimensionless skin friction coeffi cient. On the one hand, the dimen-

sional shear stress  τ w   (as sketched in    Fig. 4.47 ) depends on several quantities, 

such as ρ ∞ ,  V  ∞ , and Re  x  ; on the other hand, from    Eq. (4.93) ,  cfxff     is a function of 

Re  x    only . This convenience, obtained from using dimensionless coeffi cients and 

numbers, reverberates throughout aerodynamics. Relations between dimension-

less quantities such as those given in    Eq. (4.93)  can be substantiated by  dimen-
sional analysis,  a formal procedure to be discussed in Sec. 5.3. 

 Combining    Eqs. (4.92)  and    (4.93) , we can obtain values of  τ w   from

τ w
x

f x
q= =f ∞qq

)xx
.

Re

0 664

  

(4.94)

Note from    Eqs. (4.93)  and    (4.94)  that both  c fxff     and  τ w   for laminar boundary 

layers vary as  x  −1/2 ; that is,  c fxff     and  τ w   decrease along the surface in the fl ow direc-

tion, as sketched in    Fig. 4.47 . The shear stress near the leading edge of a fl at plate 

is greater than that near the trailing edge. 

Figure 4.47 Variation of shear stress with distance 

along the surface.
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 The variation of local shear stress τ  w   along the surface allows us to calculate 

the total skin friction drag due to the airfl ow over an aerodynamic shape. Recall 

from Sec. 2.2 that the net aerodynamic force on any body is fundamentally due 

to the pressure and shear stress distributions on the surface. In many cases, it 

is this total aerodynamic force that is of primary interest. For example, if you 

mount a fl at plate parallel to the airstream in a wind tunnel and measure the force 

exerted on the plate by means of a balance of some sort, you are not measuring 

the local shear stress τ  w  ; rather, you are measuring the total drag due to skin 

friction being exerted over all the surface. This  total skin friction drag  can be 

obtained as follows. 

 Consider a fl at plate of length  L  and unit width oriented parallel to the fl ow, 

as shown in perspective in    Fig. 4.48 . Consider also an infi nitesimally small sur-

face element of the plate of length  dx  and width unity, as shown in    Fig. 4.48 . The 

local shear stress on this element is τ  x  , a function of  x . Hence, the force on this 

element due to skin friction is τ  w    dx (1) = τ  w    dx . The total skin friction drag is the 

sum of the forces on all the infi nitesimal elements from the leading to the trailing 

edge; that is, we obtain the total skin friction drag  D   f   by integrating τ  x   along the 

surface:

  
xddf w

L∫0   

(4.95)        

Combining    Eqs. (4.94)  and    (4.95)  yields
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(4.96)        

Let us defi ne a  total skin friction drag coeffi cient   C   f   as
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(4.97)        

Figure 4.48 Total drag is the integral of the local shear stress over the 

surface.
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where  S  is the total area of the plate,  S = L (1). Thus, from    Eqs. (4.96)  and    (4.97) ,
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or

  

C fC
L

= 1 328.

Re
laminar

(4.98)

where the Reynolds number is now based on the total length  L ; that is, Re  L   ≡
ρ ∞  V  ∞  L /μ ∞ . 

     Do not confuse    Eq. (4.98)  with    Eq. (4.93) ; they are different quantities. The 

local skin friction coeffi cient  c fxff     in    Eq. (4.93)  is based on the local Reynolds num-

ber Re  x   = ρ ∞  V  ∞  x /μ ∞  and is a function of  x . However, the total skin friction coef-

fi cient  C   f   is based on the Reynolds number for the plate length  L : Re  L   = ρ ∞  V  ∞  L /μ ∞ . 

 We emphasize that    Eqs. (4.91) ,    (4.93) , and    (4.98)  apply to laminar boundary 

layers only; for turbulent fl ow, the expressions are different. Also, these equa-

tions are exact only for low-speed (incompressible) fl ow. However, they have 

been shown to be reasonably accurate for high-speed subsonic fl ows as well. For 

supersonic and hypersonic fl ows, where the velocity gradients within the bound-

ary layer are so extreme and where the presence of frictional dissipation creates 

very large temperatures within the boundary layer, the form of these equations 

can still be used for engineering approximations; but ρ and μ must be evaluated 

at some reference conditions germane to the fl ow inside the boundary layer. Such 

matters are beyond the scope of this book. 

EXAMPLE 4.38

  Consider the fl ow of air over a small fl at plate that is 5 cm long in the fl ow direction 

and 1 m wide. The free-stream conditions correspond to standard sea level, and the fl ow 

 velocity is 120 m/s. Assuming laminar fl ow, calculate 

(a)  The boundary layer thickness at the downstream edge (the trailing edge). 

(b)  The drag force on the plate. 

■  Solution 
a.  At the trailing edge of the plate, where  x  = 5 cm = 0.05 m, the Reynolds number is, 

from    Eq. (4.90) ,
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From    Eq. (4.91) ,
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Note how thin the boundary layer is—only 0.0406 cm at the trailing edge. 

  b.  To obtain the skin friction drag,    Eq. (4.98)  gives, with  L  = 0.05 m,

 

C f
L

= = = −1 328 1 328

11 1× 0
2 07 1× 0

1 2 5 2
3.

Re

.

( .4 )/ /4 11 1× 02 5 1(4
       

The drag can be obtained from the defi nition of the skin friction drag coeffi cient, 

   Eq. (4.97) , once  q  ∞  and  S  are known.
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Thus, from    Eq. (4.97) , the drag  on one surface  of the plate (say the top surface) is

 
Top NSCf f 8820 0 05 2 0 9133(0 )07 10 3

       

Because both the top and bottom surfaces are exposed to the fl ow, the total friction drag 

will be double the above result:

 
Total Nf 9 3 826(0 )

          

EXAMPLE 4.39

  For the fl at plate in    Example 4.38 , calculate and compare the local shear stress at the 

locations 1 and 5 cm from the front edge (the leading edge) of the plate, measured in the 

fl ow direction. 

■  Solution 
 The location  x  = 1 cm is near the front edge of the plate. The local Reynolds number at 

this location, where  x  = 1 cm = 0.01 m, is

 

Re
. ( )( . )

.
.xe

V x= =
×

= ×.∞ ∞VV

∞
−

ρ
μ

1 225 120 0.

1 789 10
8 217 10

5
44

From    Eq. (4.93) ,

 

cf

x
xff = =

×
= =0 664 0 664

8 217 10

0 664

286 65
0

4

.

Re

.

.

.

.
. 60023166

       

From    Eq. (4.92) , with  q  ∞  = 8820 N/m 2  from    Example 4.38 ,

 
τ w fq c

xff= =fq c 8820 002316 43 2( .0 ) .= 20 N/m
       

At the location  x  = 5 cm = 0.05 m, the local Reynolds number is

 

Re
. ( )( . )

.
.x

V x= =
×

=∞ ∞VV

∞
−

ρ
μ

1 225 120 0. 5

1 789 10
4 1.. 1 1× 0

5
5
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(This is the same value as that calculated in    Example 4.38 .) From    Eq. (4.93) ,

 

cf
x

xff = = =0 664 0 664

4 11 1× 0
0 001036

5

.

Re

.

.
.

       

From    Eq. (4.92) ,

 
τ w fq c

xff= =fq c 8820 001036 135 2( .0 ) .= 9 N/m
       

By comparison, note that the local shear stress at  x  = 5 cm—that is, at the back end of the 

plate (the trailing edge)—is less than that at  x  = 1 cm near the front edge. This confi rms 

the trend sketched in    Fig. 4.47  that τ  w    decreases  with distance in the fl ow direction along 

the plate. 

 As a check on our calculation, we note from    Eq. (4.94)  that τ  w   varies inversely as  x  1/2 . 

Thus, once we have calculated τ  w   = 20.43 N/m 2  at  x  = 1 cm, we can directly obtain τ  w   at 

 x  = 5 cm from the ratio

 

τ
τ

w

w

x

x
2

1

1

2

=
       

Setting condition 1 at  x  = 1 cm and condition 2 at  x  = 5 cm, we have

 

τ τw wτ x

x2 1wτ 1

2

220 43
1

5
9 135=τ = ..43 9 N/m

       

which verifi es our original calculation of τ  w   at  x  = 5 cm.     

   4.17   RESULTS FOR A TURBULENT 
BOUNDARY LAYER 

  Under the same fl ow conditions, a turbulent boundary layer will be  thicker  than 

a laminar boundary layer. This comparison is sketched in    Fig. 4.49 . Unlike in the 

case for laminar fl ows, no exact theoretical results can be presented for turbulent 

boundary layers. The study of turbulence is a major effort in fl uid dynamics 

today; so far, turbulence is still an unsolved theoretical problem and is likely to 

remain so for an indefi nite time. In fact, turbulence is one of the major unsolved 

problems in theoretical physics. As a result, our knowledge of δ and τ  w    for 

Figure 4.49 Turbulent boundary layers are thicker than laminar boundary layers.
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 turbulent boundary layers must rely on experimental results. Such results yield 

the following approximate formula for turbulent fl ow:

  

δ = 0 37
0 2Re

x

x

turbulent (4.99)

Note from    Eq. (4.99)  that a turbulent boundary grows approximately as  x  4/5 . This is 

in contrast to the slower  x  1/2  variation for a laminar boundary layer. As a result, tur-

bulent boundary layers grow faster and are thicker than laminar boundary layers. 

 The local skin friction coeffi cient for turbulent fl ow over a fl at plate can be 

approximated by

cf
x

xff = 0 0592
0 2

.

(Re )x

turbulent

  

(4.100)

 The total skin friction coeffi cient is given approximately as

C fC
L

= 0 074
0 2

.

Re
turbulent

  

(4.101)

Note that for turbulent fl ow,  C   f   varies as  L  −1/5 ; this is in contrast to the  L  −1/2

variation for laminar fl ow. Hence,  C   f   is larger for turbulent fl ow, which pre-

cisely confi rms our reasoning at the end of    Sec. 4.15 , where we noted that τ  w
(laminar) < τ  w   (turbulent). Also note that  C   f   in    Eq. (4.101)  is once again a func-

tion of Re  L  . Values of  C   f   for both laminar and turbulent fl ows are commonly 

plotted in the form shown in    Fig. 4.50 . Note the magnitude of the numbers 

involved in    Fig. 4.50 . The values of Re  L   for actual fl ight situations may vary 

from 10 5  to 10 8  or higher; the values of  C   f   are generally much less than unity, 

on the order of 10 −2  to 10 −3 . 

Figure 4.50 Variation of skin friction coeffi cient with Reynolds 

number for low-speed fl ow. Comparison of laminar and turbulent fl ow.
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 Consider the same fl ow over the same fl at plate as in    Example 4.38 ; however, assume that 

the boundary layer is now completely turbulent. Calculate the boundary layer thickness at 

the trailing edge and the drag force on the plate. 

■  Solution 
 From    Example 4.38 , Re  x   = 4.11 × 10 5 . From    Eq. (4.99) , for turbulent fl ow,

δ = = = −0 37 0 0 05

4 11 1× 0
1 39 1× 0

0 2 5 0 2
3

Re

. (37 . )05

( .4(4 ) .011 1× 052 (4x

mm

Note:  Compare this result with the laminar fl ow result from    Example 4.38 :

δ
δ

turb

laδδ m

= =
−

−
1 39 1× 0

4 06 1× 0
3 42

3

4

Note that the turbulent boundary layer at the trailing edge is 3.42 times thicker than the 

laminar boundary layer—quite a sizable amount! From    Eq. (4.101) ,

 

C f
L

= = =0 074 0 074

4 11 1× 0
0 00558

0 2 5 0 2

.

Re

.

( .4(4 )
.

.011 1× 052 (4
       

On the top surface,

D q SCf fq SC =q SC fq SC =qq 8820 0 05 0 00558 2 46( .0 )( . )00558 . N46

Considering both top and bottom surfaces, we have

Total Nf 66 9( )

Note that the turbulent drag is 2.7 times larger than the laminar drag.   

EXAMPLE 4.40

EXAMPLE 4.41

  Repeat    Example 4.39 , except now assume that the boundary layer is completely turbulent. 

■  Solution 
 From    Example 4.39 , at  x  = 1 cm, Re  x   = 8.217 × 10 4 . The local turbulent skin friction coef-

fi cient at this location is, from    Eq. (4.100) ,

 

cf
x

xff = =
×

=0 0592 0 0592

217 10
0 00616

0 2 4 0 2

.

Re

.

( .8(8 )
.

.0×217 1042 (8

From    Example 4.39 ,  q  ∞  = 8820 N/m 2 . Hence

τ w fq c
xff= =fq c 8820 00616 54 33 2( .0 ) .= 54 N/m
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 Note:  In comparison to the laminar fl ow result from    Example 4.39 , the turbulent shear 

stress is 54.33/20.43 = 2.7 times larger. By  coincidence,  this is the same ratio as the 

 total  drag comparison made between turbulent and laminar boundary layer cases in 

   Example 4.39 . 

 At  x  = 5 cm, from    Example 4.39 , Re  x   = 4.11 × 10 5 . The local turbulent skin friction 

coeffi cient at this location is, from    Eq. (4.100) ,

 

cf
x

xff = = =0 0592 0 0592

4 11 1×1 1× 0
0 00446

0 2 4 0 2

.

Re

.

( .4(4 )
.

.011 1× 042 (4

Hence
 

τ w fq c
xff= =fq c 8820 00446 34 2( .0 ) .= 39 N/m

Note:  In comparison to the laminar fl ow result from    Example 4.39 , the turbulent shear 

stress at  x  = 5 cm is 39.34/9.135 = 4.3 times larger. 

 Comparing the present results with those of    Example 4.39 , we see that over a given 

length of plate, the  percentage  drop in shear stress for the laminar case is larger than 

that for the turbulent case. Specifi cally, the percentage drop over the 4-cm space from 

x  = 1 cm to  x  = 5 cm  for the laminar case  (   Example 4.39 ) is

Decrease = − × =20 43 9 135

20 43
100 55 3

. .43 9

.
. %3

For the  turbulent case  (   Example 4.41 ),

Decrease = − × =54 33 39 34

54 33
100 27 6

. .33 39

.
. %6

   4.18   COMPRESSIBILITY EFFECTS 
ON SKIN FRICTION 

  Let us examine again the expressions for laminar and turbulent skin friction coef-

fi cients given by    Eqs. (4.93)  and    (4.100) , respectively. These equations shout the 

important fact that  cfxff     is a function of Reynolds number  only;  that is,

 

Laminar

Turbulent

c

c

f
x

f
x

xff

xff

α

α

1

1
0 2

Re

Re
       

Once again we see the power of the Reynolds number in governing viscous 

fl ows. However, this is not the whole story.    Equations (4.91) ,    (4.93) , and    (4.98)  

give expressions for δ,  cfxff    , and  C   f   , respectively, for a fl at-plate boundary layer 

in an  incompressible  laminar fl ow. Similarly,    Eqs. (4.99) ,    (4.100) , and    (4.101)  

give expressions for δ,  c fxff    , and  C   f   , respectively, for a fl at-plate boundary layer 

in an  incompressible  turbulent fl ow. Mainly for the benefi t of simplicity, we did 
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not emphasize in    Secs. 4.16  and    4.17  that these equations apply to an incom-

pressible fl ow. However, we are now bringing this to your attention. Indeed, 

you might want to go back to these equations and mark them in the margins as 

“incompressible.” 

 This raises the question: What are the effects of compressibility on a fl at-

plate boundary layer? The answer lies in the  Mach number , which, as we have 

already seen in    Secs. 4.11  to    4.13 , is  the  powerful parameter governing high-

speed, compressible inviscid fl ows. Specifi cally, for a fl at-plate boundary layer 

in a compressible fl ow, δ,  c fxff    , and  C   f   are functions of both Mach number and 

Reynolds number. The effect of Mach number is not given by a nice, clean for-

mula; rather, it must be evaluated from detailed numerical solutions of the com-

pressible boundary layer fl ow, which are beyond the scope of this book. It is 

suffi cient to note that for a fl at-plate compressible boundary layer, the constant 

0.664 in the numerator of    Eq. (4.93)  is replaced by some other number that de-

pends on the value of the free-stream Mach number; that is,

C
f M

fC
x

xff = ff )M∞MM

Re
laminar, compressible

  
(4.102)

Similarly, the constant 0.0592 in the numerator of    Eq. (4.100)  is replaced by 

some other number that depends on the value of  M  ∞ ; that is,

  

C
f M

fC
x

xff = ff
0 2

)M∞MM

Re
,turbulent c, ompressible (4.103)

These variations are plotted in    Fig. 4.51 . Here the ratio of compressible to incom-

pressible skin friction coeffi cients at the same Reynolds number is plotted versus 

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

M∞

cfx
(cfx)inc

Turbulent

Laminar

Figure 4.51 Approximate theoretical results for the 

compressibility effect on laminar and turbulent fl at-plate 

skin friction coeffi cients.
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free-stream Mach number for both laminar and turbulent fl ows. Note the follow-

ing trends, shown in    Fig. 4.51 : 

       1.   For a constant Reynolds number, the effect of increasing  M  ∞  is to  decrease   fxff    .  

2.   The decrease in  c fxff     is much more pronounced for turbulent fl ow than for 

laminar fl ow.   

EXAMPLE 4.42

 A three-view of the Lockheed F-104A Starfi ghter is shown in    Fig. 4.52 . This was the fi rst 

fi ghter aircraft designed for sustained Mach 2 fl ight. The airfoil section of the wing is 

very thin, with an extremely sharp leading edge. Assume that the wing is an infi nitely thin 

fl at plate. Consider the F-104 fl ying at Mach 2 at a standard altitude of 35,000 ft. Assume 

that the boundary layer over the wing is turbulent. Estimate the shear stress at a point 2 ft 

downstream of the leading edge. 

■    Solution 
 At 35,000 ft, from App. B, ρ ∞  = 7.382 × 10 −4  slug/ft 3  and  T  ∞  = 394.08°R. To calculate 

the Reynolds number, we need both  V  ∞  and the viscosity coeffi cient μ ∞ . The free-stream 

velocity is obtained from the speed of sound as follows:

 

a RT

V a M

∞ ∞RTT

∞ ∞V aV ∞MM

=RT =
=a M

γRRRR 1 4 1716 394 973

973

. (4 )( . )08

( )2

ft/sff

== 1946 ft/sff
       

We obtain μ ∞  from    Fig. 4.41 , which shows the variation of μ with  T . Note that the ambi-

ent temperature in kelvins is obtained from 394.08/1.8 = 219 K. Extrapolating the linear 

curve in    Fig. 4.41  to a temperature of 219 K, we fi nd that μ ∞  = 1.35 × 10 −5  kg/(m)(s). 

Converting to English engineering units, we note that as given in    Sec. 4.15  at standard 

sea level, μ = 1.7894 × 10 −5  kg/(m)(s) = 3.7373 × 10 −7  slug/(ft)(s). The ratio of these two 

values gives us the conversion factor; so at  T  = 219 K = 394.08°R,

 

μ = −[ . )]
. )× −

.
1 3. 5 1× 0

3

1
5

7

kg/(m)(s
l g (f

789477 10

2 82 10

5

7

×

= 2 82

−

−

kg/(m)(s

slug/(ft)(s)

)

       

Figure 4.52 Three-view of the Lockheed F-104 supersonic fi ghter.
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Hence

  

Re
( . )( )( )

x
V x= = × =∞ ∞VV

∞

−

−
ρ

μ
382 10 1946 2

2 8. 2 1× 0
1 0. 2

4

7
×× 107

       

From    Eq. (4.100) , the  incompressible  skin friction coeffi cient is

( )
.

Re

.
.f

x
xff inc = = =0 0592 0 0592

1 0. 2 1× 0
0 00235

0 2. 7

From    Fig. 4.51 , for a turbulent boundary layer at  M  ∞  = 2,

cf

f

xff

xff( )cfxff inc

= 0 7. 4

Hence, the value of     cfxff  at Mach 2 is

cfxff = =0 74 0 00235 0 00174. (74 . )00235 .

The dynamic pressure is

q Vqq ∞VV =V × −1
2

2 1
2

4 2 2382 10 1946ρ ( .7 )( ) l= 1398 b/ft

Thus τ w fq c
xff= =fq c 1398 00174 2 43 2( .0 ) .= 2 lb/ftff

   4.19  TRANSITION 
  In    Sec. 4.16  we discussed the fl ow over a fl at plate as if it were all laminar. 

Similarly, in    Sec. 4.17  we assumed all-turbulent fl ow. In reality, the fl ow  always
starts out from the leading edge as laminar. Then, at some point downstream 

of the leading edge, the laminar boundary layer becomes unstable and small 

“bursts” of turbulent fl ow begin to grow in the fl ow. Finally, over a certain region 

called the  transition region,  the boundary layer becomes completely turbulent. 

For analysis we usually draw the picture shown in    Fig. 4.53 , where a laminar 

boundary starts out from the leading edge of a fl at plate and grows parabolically 

downstream. Then, at the  transition point,  it becomes a turbulent boundary layer 

growing at a faster rate, on the order of  x  4/5  downstream. The value of  x  where 

Figure 4.53 Transition from laminar to turbulent fl ow. The boundary 

layer thickness is exaggerated for clarity.
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transition is said to take place is the  critical value   x  cr . In turn,  x  cr  allows the defi ni-

tion of a  critical Reynolds number  for transition as 

  

Re x
V x

cr

cr= ∞ ∞VV

∞

ρ
μ∞   

(4.104)        

 Volumes of literature have been written about the phenomenon of transi-

tion from laminar to turbulent fl ow. Obviously, because τ  w   is different for the 

two fl ows, knowledge of where on the surface the transition occurs is vital to 

anaccurate prediction of skin friction drag. The location of the transition point 

(in reality, a fi nite region) depends on many quantities, such as the Reynolds 

number, Mach number, heat transfer to or from the surface, turbulence in the 

free stream, surface roughness, and pressure gradient. A comprehensive dis-

cussion of transition is beyond the scope of this book. However, if the critical 

Reynolds number is given to you (usually from experiments for a given type of 

fl ow), then the location of transition  x  cr  can be obtained directly from the defi ni-

tion,    Eq. (4.104) . 

 For example, assume that you have an airfoil of given surface roughness 

in a fl ow at a free-stream velocity of 150 m/s and you wish to predict how far 

from the leading edge the transition will take place. After searching through the 

literature for low-speed fl ows over such surfaces, you may fi nd that the critical 

Reynolds number determined from experience is approximately  Re xcr
= 5 1× 05   . 

Applying this “experience” to your problem, using    Eq. (4.104) , and assuming 

that the thermodynamic conditions of the airfl ow correspond to standard sea 

level, you fi nd

 

x
V

x
cr

cr kg/ s= =cr × kg/ s∞

∞ ∞VV

−μ
ρ

Re [ . ( )mm ( )]( )

( .

1 789 10 5 1× 05 5k /kg/ s( )m ( )](5 1× 0

22522 150
0 047

3kg/m m/s
m

)( )
.=

       

Note that the region of laminar fl ow in this example is small—only 4.7 cm 

between the leading edge and the transition point. If you double the free-stream 

velocity to 300 m/s, the transition point is still governed by the critical Reynolds 

number  Re xcr
= 5 1× 05   . Thus

 

xcr m= × =
−( . )( )

. ( )
.

789 10 5 1× 0

1 225 300
0 0235

5 5)(5 1× 0

       

Hence, when the velocity is doubled, the transition point moves forward one-half 

the distance to the leading edge. 

 In summary, once you know the critical Reynolds number, you can fi nd  x  cr  

from    Eq. (4.104) . However, an accurate value of  Re xcr
    applicable to your prob-

lem must come from somewhere—experiment, free fl ight, or some semiempiri-

cal theory—and this may be diffi cult to obtain. This situation provides a little 

insight into why basic studies of transition and turbulence are needed to advance 

our understanding of such fl ows and to allow us to apply more valid reasoning to 

the prediction of transition in practical problems. 



4.19  Transition 249

  The wingspan of the  Wright Flyer I  biplane is 40 ft 4 in, and the planform area of each 

wing is 255 ft 2  (see Figs. 1.1 and 1.2). Assume that the wing is rectangular (obviously not 

quite the case, but not bad), as shown in    Fig. 4.54 . If the  Flyer  is moving with a velocity 

of 30 mi/h at standard sea-level conditions, calculate the skin friction drag on the wings. 

Assume that the transition Reynolds number is 6.5 × 10 5 . The areas of laminar and turbu-

lent fl ow are illustrated by areas  A  and  B , respectively, in    Fig. 4.54 . 

  ■   Solution 
 The general procedure is this: 

  a.  Calculate  D   f   for the combined area  A + B , assuming that the fl ow is completely turbulent. 

  b.  Obtain the turbulent  D   f   for area  B  only, by calculating the turbulent  D   f   for area  A  and sub-

tracting this from the result of part (a). 

  c.  Calculate the laminar  D   f   for area  A . 

  d.  Add the results from parts (b) and (c) to obtain the total drag on the complete surface  A  +  B . 

 First obtain some useful numbers in consistent units:  b  = 40 ft 4 in = 40.33 ft. Let 

 S  = planform area =  A  +  B  = 255 ft 2 . Hence,  c  =  S/b  = 255/40.33 = 6.32 ft. At standard 

sea level, ρ ∞  = 0.002377 slug/ft 3  and μ ∞  = 3.7373 × 10 −7  slug/(ft)(s). Also,  V  ∞  = 30 mi/h = 

30(88/60) = 44 ft/s. Thus
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This is the Reynolds number at the trailing edge. To fi nd  x  cr ,

Re
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( . )( .
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V x
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cr

cr
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= ×

∞ ∞VV
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∞
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μ
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6 5. 10 3 73735 ×× =
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. (002377 )
. f32 tff

Figure 4.54 Planform view of surface experiencing transition from 

laminar to turbulent fl ow.

EXAMPLE 4.43
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We are now ready to calculate the drag. Assume that the wings of the  Wright Flyer I  are 

thin enough that the fl at-plate formulas apply. 

  a.  To calculate turbulent drag over the complete surface  S  =  A  +  B , use    Eq. (4.101) :
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  b.  For area  A  only, assuming turbulent fl ow,

 

C f
x

f A

= =
×

=0 074 0 074

6 5 10
0 00509
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Re
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Hence, the turbulent drag on area  B  only is

 
( ) ( ) ( ) . . .) (f B)) f s) f A)−)( ) = − =2 446446 1 095 1 351 lb

        

  c.  Considering the drag on area  A , which is in reality a laminar drag, we obtain 

from    Eq. (4.98) 
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  d.  The total drag  D   f   on the surface is

 

Df +

=

( )AA ( )Bl i d g b l d g

0.35433 1 351 1 705lb lb lb+ 1 351 =lb. .351 1lb351 lb
       

This is the drag on one surface. Each wing has a top and bottom surface, and there are two 

wings. Hence, the total skin friction drag on the complete biplane wing confi guration is 

 
Df = 4 1 705 6 820( .1 ) .= 6 lb

       

       4.20  FLOW SEPARATION 
  We have seen that the presence of friction in the fl ow causes a shear stress at 

the surface of a body, which in turn contributes to the aerodynamic drag of the 

body: skin friction drag. However, friction also causes another phenomenon, 

called  fl ow separation,  which in turn creates another source of aerodynamic 

drag, called  pressure drag due to separation . The real fl ow fi eld about a sphere 

sketched in    Fig. 4.37  is dominated by the separated fl ow on the rearward surface. 
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Consequently, the pressure on the rearward surface is less than the pressure on 

the forward surface, and this imbalance of pressure forces causes a drag—hence 

the term  pressure drag due to separation . In comparison, the skin friction drag 

on the sphere is very small. 

 Another example of where fl ow separation is important is the fl ow over an 

airfoil. Consider an airfoil at a low angle of attack (low angle of incidence) to the 

fl ow, as sketched in    Fig. 4.55 . The streamlines move smoothly over the airfoil. 

The pressure distribution over the top surface is also shown in    Fig. 4.55 . Note 

that the pressure at the leading edge is high; the leading edge is a stagnation re-

gion, and the pressure is essentially stagnation pressure. This is the highest pres-

sure anywhere on the airfoil. As the fl ow expands around the top surface of the 

airfoil, the surface pressure decreases dramatically, dipping to a minimum pres-

sure, which is below the free-stream static pressure  p  ∞ . Then, as the fl ow moves 

farther downstream, the pressure gradually increases, reaching a value slightly 

above free-stream pressure at the trailing edge. This region of increasing pres-

sure is called a region of  adverse  pressure gradient, defi ned as a region where 

Figure 4.55 Pressure distribution over the top surface for attached fl ow over 

an airfoil. Theoretical data for a modern NASA low-speed airfoil, from NASA 

Conference Publication 2046, Advanced Technology Airfoil Research, vol. II, 

March 1978, p. 11.
(Source: After McGhee, Beasley, and Whitcomb.)



252 CHAPTER 4  Basic Aerodynamics

 dp/dx  is positive. This region is so identifi ed in    Fig. 4.55 . The adverse pressure 

gradient is moderate; that is,  dp/dx  is small, and for all practical purposes the 

fl ow remains attached to the airfoil surface, as sketched in    Fig. 4.55 . The drag on 

this airfoil is therefore mainly skin friction drag  D   f  . 

     Now consider the same airfoil at a very high angle of attack, as shown 

in    Fig.  4.56 . First assume that we had some magic fl uid that would remain 

Figure 4.56 Pressure distribution over the top surface for separated 

fl ow over an airfoil. Theoretical data for a modern NASA low-speed 

airfoil, from NASA Conference Publication 2045, Part 1, Advanced 
Technology Airfoil Research, vol. 1, March 1978, p. 380.
(Source: After Zumwalt and Nack.)
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attached to the surface—purely an artifi cial situation. If this were the case, then 

the  pressure distribution on the top surface would follow the dashed line in 

   Fig. 4.56 . The pressure would drop precipitously downstream of the leading edge 

to a value far below the free-stream static pressure  p  ∞ . Farther downstream the 

pressure would rapidly recover to a value above  p  ∞ . However, in this recovery, 

the adverse pressure gradient would no longer be moderate, as was the case in 

   Fig. 4.55 . Instead, in    Fig. 4.56  the adverse pressure gradient would be severe; that 

is,  dp/dx  would be large. In such cases the  real  fl ow fi eld tends to separate from 

the surface. Therefore, in    Fig. 4.56  the real fl ow fi eld is sketched with a large 

region of separated fl ow over the top surface of the airfoil. In this real separated 

fl ow, the  actual  surface pressure distribution is given by the  solid  curve. In com-

parison to the dashed curve, note that the actual pressure distribution does not 

dip to as low a pressure minimum and that the pressure near the trailing edge 

does not recover to a value above  p  ∞ . This has two major consequences, as can 

be seen in    Fig. 4.57 . Here the airfoil at a large angle of attack (thus with fl ow 

separation) is shown with the real surface pressure distribution, symbolized by 

the solid arrows. Pressure always acts normal to a surface, so the arrows are all 

perpendicular to the local surface. The length of the arrow denotes the magnitude 

of the pressure. A solid curve is drawn through the base of the arrows to form an 

“envelope” to make the pressure distribution easier to visualize. However, if the 

Figure 4.57 Qualitative comparison of pressure distribution, lift, and drag for attached and 

separated fl ows. Note that for separated fl ow, the lift decreases and the drag increases.
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fl ow were  not  separated (i.e., if the fl ow were attached), then the pressure dis-

tribution would be that shown by the dashed arrows (and the dashed envelope). 

The solid and dashed arrows in    Fig. 4.57  qualitatively correspond to the solid and 

dashed pressure distribution curves, respectively, in    Fig. 4.56 . 

         The solid and dashed arrows in    Fig. 4.57  should be looked at carefully. They 

explain the two major consequences of separated fl ow over the airfoil. The fi rst 

consequence is a loss of lift. The aerodynamic lift (the vertical force shown in 

   Fig. 4.57 ) is derived from the net component of a pressure distribution in the 

vertical direction. High lift is obtained when the pressure on the bottom surface is 

large and the pressure on the top surface is small. Separation does not affect the 

bottom surface pressure distribution. However, comparing the solid and dashed 

arrows on the  top surface just downstream of the leading edge,  we fi nd that the 

solid arrows indicate a higher pressure when the fl ow is separated. This higher 

pressure is pushing down, hence reducing the lift. This reduction of lift is also 

compounded by the geometric effect that the portion of the top surface of the air-

foil near the leading edge is approximately horizontal in    Fig. 4.57 . When the fl ow 

is separated, causing a higher pressure on this part of the airfoil surface, the direc-

tion in which the pressure is acting is closely aligned to the vertical, and hence 

almost the full effect of the increased pressure is felt by the lift. The combined 

effect of the increased pressure on the top surface near the leading edge, and the 

fact that this portion of the surface is approximately horizontal, leads to the rather 

dramatic loss of lift that occurs when the fl ow separates. Note in    Fig. 4.57  that the 

lift for separated fl ow (the solid vertical arrow) is smaller than the lift that would 

exist if the fl ow were attached (the dashed vertical arrow). 

 Now let us concentrate on that portion of the top surface  near the trailing edge . 

On this portion of the airfoil surface, the pressure for the separated fl ow is now 

 smaller  than the pressure that would exist if the fl ow were attached. Moreover, the 

top surface near the trailing edge is geometrically inclined to the horizontal and, in 

fact, somewhat faces in the horizontal direction. Recall that drag is in the horizontal 

direction in    Fig. 4.57 . Because of the inclination of the top surface near the trailing 

edge, the pressure exerted on this portion of the surface has a strong component in 

the horizontal direction. This component acts toward the left, tending to counter the 

horizontal component of force due to the high pressure acting on the nose of the 

airfoil pushing toward the right. The net pressure drag on the airfoil is the differ-

ence between the force exerted on the front pushing toward the right and the force 

exerted on the back pushing toward the left. When the fl ow is separated, the pres-

sure at the back is lower than it would be if the fl ow were attached. Hence, for the 

separated fl ow, there is  less  force on the back pushing toward the left, and the net 

drag acting toward the right is therefore  increased . Note in    Fig. 4.57  that the drag 

for separated fl ow (the solid horizontal arrow) is larger than the drag that would 

exist if the fl ow were attached (the dashed horizontal arrow). 

 Therefore, two major consequences of the fl ow separating over an airfoil are 

  1.   A drastic loss of lift (stalling).  

  2.   A major increase in drag, caused by pressure drag due to separation.   
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When the wing of an airplane is pitched to a high angle of attack, the wing can 

stall; that is, there can be a sudden loss of lift. Our previous discussion gives the 

physical reasons for this stalling phenomenon. Additional ramifi cations of stall-

ing are discussed in Ch. 5. 

 Before ending this discussion of separated fl ow, we ask: Why does a fl ow 

separate from a surface? The answer is combined in the concept of an adverse 

pressure gradient ( dp/dx  is positive) and the velocity profi le through the bound-

ary layer, as shown in    Fig. 4.44 . If  dp/dx  is positive, then the fl uid elements 

moving along a streamline have to work their way “uphill” against an increas-

ing pressure. Consequently, the fl uid elements will slow down under the infl u-

ence of an adverse pressure gradient. For the fl uid elements moving outside the 

boundary layer, where the velocity (and hence kinetic energy) is high, this is 

not much of a problem. The fl uid element keeps moving downstream. However, 

consider a fl uid element deep inside the boundary layer. Looking at    Fig. 4.44 , 

we see that its velocity is small. It has been retarded by friction forces. The fl uid 

element still encounters the same adverse pressure gradient, but its velocity is 

too low to negotiate the increasing pressure. As a result, the element comes to 

a stop somewhere downstream and then reverses its direction. Such reversed 

fl ow causes the fl ow fi eld in general to separate from the surface, as shown in 

   Fig. 4.56 . This is physically how separated fl ow develops. 

 Refl ecting once again on    Fig. 4.44 , we note that turbulent boundary layers 

have fuller velocity profi les. At a given distance from the surface (a given value 

of  y ), the velocity of a fl uid element in a turbulent boundary is higher than that 

in a laminar boundary layer. Hence, in turbulent boundary layers there is more 

fl ow kinetic energy nearer the surface, and the fl ow is less inclined to separate. 

This leads to a fundamental fact: Laminar boundary layers separate more easily 

than turbulent boundary layers.  Therefore, to help prevent fl ow fi eld separation, 
we want a turbulent boundary layer .   

   4.21  SUMMARY OF VISCOUS EFFECTS ON DRAG 
  We have seen that the presence of friction in a fl ow produces two sources of drag: 

1.   Skin friction drag  D   f   due to shear stress at the wall.  

2.   Pressure drag due to fl ow separation  D   p  , sometimes identifi ed as  form  drag.   

The  total  drag caused by viscous effects is then

D D Df pD= +Df

Total drag Drag due Drag due to

due to viscousoo to skin separation

effects friction p d( rpressure d arr g)

 (4.105)

    Equation (4.105)  contains one of the classic compromises of aerodynamics. 

In previous sections we pointed out that skin friction drag is reduced by main-

taining a laminar boundary layer over a surface. However, we also pointed out 

at the end of    Sec. 4.20  that turbulent boundary layers inhibit fl ow separation; 
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hence pressure drag due to separation is reduced by establishing a turbulent 

boundary layer on the surface. Therefore, in    Eq. (4.105)  we have the following 

compromise:

 

D D Df pD= +Df

Less for laminar More for laminar

more f

, ,More for laminar

oroo turbulent less for turbulent        

Consequently, as discussed at the end of    Sec. 4.15 , it cannot be said in general 

that either laminar or turbulent fl ow is preferable. Any preference depends on 

the specifi c application. On the one hand, for a blunt body such as the sphere in 

   Fig. 4.37 , the drag is mainly pressure drag due to separation; turbulent boundary 

layers reduce the drag on spheres and are therefore preferable. (We discuss this 

again in Ch. 5.) On the other hand, for a slender body such as a sharp, slender 

cone or a thin airfoil at small angles of attack to the fl ow, the drag is mainly skin 

friction drag; laminar boundary layers are preferable in this case. For in-between 

cases, the ingenuity of the designer and practical experience help to determine 

what compromises are best. 

 As a fi nal note to this section, the total drag  D  given by    Eq. (4.105)  is 

called  profi le drag  because both skin friction and pressure drag due to separa-

tion are ramifi cations of the shape and size of the body—that is, the “profi le” 

of the body. The profi le drag  D  is the total drag on an aerodynamic shape due 

to viscous effects. However, it is not in general the total aerodynamic drag on 

the body. There is one more source of drag, induced drag, which is discussed 

in Ch 5. 

EXAMPLE 4.44

 Consider the NASA LS (1)-0417 airfoil, shown in    Fig. 4.55 , mounted in the test sec-

tion of a wind tunnel. The length of the model in the fl ow direction (the  chord length
as defi ned in Sec. 5.2) is 0.6 m, and its width across the fl ow ( wingspan  as defi ned in 

Sec. 5.3) is 1.0 m. The tips of the model are fl ush with the vertical sidewalls of the wind 

tunnel; in this fashion the induced drag (discussed in Sec. 5.13) is zero, and the total drag 

on the airfoil model is the profi le drag,  D , defi ned by    Eq. (4.105) . When the airfl ow in the 

test section of the wind tunnel is 97 m/s at standard sea-level conditions, the profi le drag 

on the airfoil at zero degress angle of attack is 34.7 N.  (a)  For these conditions, calculate 

the drag on the airfoil due to skin friction  D   f  . Assume that  D   f   is the same as the turbulent 

skin friction drag on a fl at plate of equal length and width.  (b)  Calculate the pressure drag 

due to fl ow separation,  D   p  , on the airfoil.  (c)  Compare and comment on the results. 

   ■  Solution 
  a.  The skin friction drag depends on the Reynolds number based on the length of the air-

foil in the fl ow direction,  L , which is 0.6 m. The airstream in the test section of the wind 

tunnel is at a velocity of 97 m/s at standard sea-level conditions. Hence
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The turbulent fl at-plate total skin friction drag coeffi cient is given by    Eq. (4.101)  as

C f
L

= = = × −0 074 0 074
3 539 10

0 2 6 0 2
3.

Re
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( )4 1× 06(4 1× 06
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.02 (4 1× 06

The total skin friction drag on one side of the plate is  D   f   =  q  ∞  S C f  , where the surface 

area of one side of the plate is its length times its width:  S  = (0.6)(1.0) = 0.6 m 2 . Thus, on 

one side of the plate,

D q SC V SCf fq SC f=q SC fq SC = ×∞fqq SC ∞VV
1

2
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1
1 23 97ρ ( .11 )( ) ( . )6 ( .3 −−3 29) .= 12 N

Counting both sides of the plate, the total skin friction drag is

Df = 2 12 29 4 6( .12 ) .2= 4 N

b.  The pressure drag due to fl ow separation is obtained simply from    Eq. (4.105) :

D D Dp fD D−DD = =34 7 2− 4 6 10 1.7 24 . N1

c.  The ratio of pressure drag to total profi le drag on the LS(1) −0417 airfoil for the 

given conditions is 10.1/34.7 = 0.29; that is, the pressure drag is 29 percent of the total 

profi le drag. This is reasonable for a rather thick airfoil (17 percent thick) with the cusped 

trailing edge on the bottom surface. For a thinner, more conventionally shaped airfoil, 

pressure drag constitutes a smaller percentage—typically 15 percent of the profi le drag at 

low angles of attack.     

   4.22  HISTORICAL NOTE: BERNOULLI AND EULER 
     Equation (4.9)  is one of the oldest and most powerful equations in fl uid dynam-

ics. It is credited to Daniel Bernoulli, who lived during the 18th century; little 

did Bernoulli know that his concept would fi nd widespread application in the 

aeronautics of the 20th century. Who was Bernoulli, and how did Bernoulli’s 

equation come about? Let us briefl y look into these questions; the answers will 

lead us to a rather unexpected conclusion. 

 Daniel Bernoulli (1700–1782) was born in Groningen, the Netherlands, on 

January 29, 1700. He was a member of a remarkable family. His father, Johann 

Bernoulli, was a noted mathematician who made contributions to differential and 

integral calculus and who later became a doctor of medicine. Jakob Bernoulli, who 

was Johann’s brother (Daniel’s uncle), was an even more accomplished mathemati-

cian; he made major contributions to calculus, and he coined the term  integral . Sons 

of both Jakob and Johann, including Daniel, went on to become noted mathema-

ticians and physicists. The entire family was Swiss and made its home in Basel, 

Switzerland, where they held various professorships at the University of Basel. 

Daniel Bernoulli was born away from Basel only because his father spent 10 years 

as professor of mathematics in the Netherlands. With this type of pedigree, Daniel 

could hardly avoid making contributions to mathematics and science himself. 
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 And indeed he did make contributions. For example, he had insight into the ki-

netic theory of gases; he theorized that a gas was a collection of individual particles 

moving about in an agitated fashion, and he correctly associated the increased tem-

perature of a gas with the increased energy of the particles. These ideas, originally 

published in 1738, were to lead a century later to a mature understanding of the nature 

of gases and heat and helped lay the foundation for the elegant kinetic theory of gases. 

 Daniel’s thoughts on the kinetic motion of gases were published in his book 

 Hydrodynamica  (1738). However, this book was to etch his name more deeply 

in association with fl uid mechanics than with kinetic theory. The book was 

started in 1729, when Daniel was a professor of mathematics at Leningrad (then 

St. Petersburg) in Russia. By this time he was already well recognized; he had 

won 10 prizes offered by the Royal Academy of Sciences in Paris for his solution 

of various mathematical problems. In his  Hydrodynamica  (which was written en-

tirely in Latin), Bernoulli ranged over such topics as jet propulsion, manometers, 

and fl ow in pipes. He also attempted to obtain a relationship between pressure and 

velocity, but his derivation was obscure. In fact, even though Bernoulli’s equa-

tion,    Eq. (4.9) , is usually ascribed to Daniel via his  Hydrodynamica,  the precise 

equation is not to be found in the book! The picture is further complicated by his 

father, Johann, who published a book in 1743 titled  Hydraulica . It is clear from 

this latter book that the father understood Bernoulli’s theorem better than the son 

did; Daniel thought of pressure strictly in terms of the height of a manometer col-

umn, whereas Johann had the more fundamental understanding that pressure was 

a force acting on the fl uid. However, neither of the Bernoullis understood that 

pressure is a point property. That was to be left to Leonhard Euler. 

 Leonhard Euler (1707–1783) was also a Swiss mathematician. He was born 

in Basel, Switzerland, on April 15, 1707, seven years after the birth of Daniel 

Bernoulli. Euler went on to become one of the mathematical giants of history, but 

his contributions to fl uid dynamics are of interest here. Euler was a close friend 

of the Bernoullis; he was a student of Johann Bernoulli at the University of Basel. 

Later Euler followed Daniel to St. Petersburg, where he became a professor of 

mathematics. Here Euler was infl uenced by the work of the Bernoullis in hydro-

dynamics, but was more infl uenced by Johann than by Daniel. Euler originated 

the concept of pressure acting at a point in a gas. This quickly led to his differ-

ential equation for a fl uid accelerated by gradients in pressure, the same equa-

tion we derived as    Eq. (4.8) . In turn, Euler integrated the differential equation 

to obtain, for the fi rst time in history, Bernoulli’s equation, just as we obtained 

   Eq. (4.9) . Hence, we see that Bernoulli’s equation,    Eq. (4.9) , is really a historical 

misnomer. Credit for Bernoulli’s equation is legitimately shared by Euler.   

   4.23  HISTORICAL NOTE: THE PITOT TUBE 
  The use of a Pitot tube to measure airspeed is described in    Sec. 4.11 ; indeed, the 

Pitot tube today is so commonly used in aerodynamic laboratories and on aircraft 

that it is almost taken for granted. However, this simple little device has a rather 

interesting and somewhat obscure history. 
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 The Pitot tube is named after its inventor, Henri Pitot (1695–1771). Born 

in Aramon, France, in 1695, Pitot began his career as an astronomer and math-

ematician. He was accomplished enough to be elected to the Royal Academy of 

Sciences, Paris, in 1724. About this time, Pitot became interested in hydraulics 

and, in particular, in the fl ow of water in rivers and canals. However, he was not 

satisfi ed with the existing technique of measuring the fl ow velocity, which was to 

observe the speed of a fl oating object on the surface of the water. So, he devised 

an instrument consisting of two tubes. One was simply a straight tube open at one 

end, which was inserted vertically into the water (to measure static pressure), and 

the other was a tube with one end bent at right angles, with the open end facing 

directly into the fl ow (to measure total pressure). In 1732, between two piers of 

a bridge over the Seine River in Paris, he used this instrument to measure the 

fl ow velocity of the river. This invention and the fi rst use of the Pitot tube were 

announced by Pitot to the Academy on November 12, 1732. He also presented 

some data of major importance on the variation of water fl ow velocity with depth. 

Contemporary theory, based on experience of some Italian engineers, held that 

the fl ow velocity at a given depth was proportional to the mass above it; hence 

the velocity was thought to increase with depth. Pitot reported the stunning (and 

correct) results, measured with his instrument, that in reality the fl ow velocity 

decreased  as the depth increased. So the Pitot tube was introduced with style. 

 Interestingly enough, Pitot’s invention soon fell into disfavor with the en-

gineering community. A number of investigators attempted to use just the Pitot 

tube itself, without a local static pressure measurement. Others, using the device 

under uncontrolled conditions, produced spurious results. Various shapes and 

forms other than a simple tube were sometimes used for the mouth of the instru-

ment. Moreover, there was no agreed-upon rational theory of the Pitot tube. Note 

that Pitot developed his instrument in 1732, six years  before  Daniel Bernoulli’s 

Hydrodynamica  and well before Euler had developed the Bernoullis’ concepts 

into    Eq. (4.9) , as discussed in    Sec. 4.22 . Hence, Pitot used intuition, not theory, to 

establish that the pressure difference measured by his instrument was an indication 

of the square of the local fl ow velocity. Of course, as described in    Sec. 4.11 , we 

now clearly understand that a Pitot-static device measures the difference between 

total and static pressures and that for incompressible fl ow, this difference is related 

to the velocity squared through Bernoulli’s equation; that is, from    Eq. (4.62) ,

p p V0
1
2

2=p ρ

However, for more than 150 years after Pitot’s introduction of the instrument, 

various engineers attempted to interpret readings in terms of

p p K V0
1
2

2=p ρ

where  K  was an empirical constant, generally much different from unity. 

Controversy was still raging as late as 1913, when John Airey, a professor of 

mechanical engineering from the University of Michigan, fi nally performed a 

series of well-controlled experiments in a water tow tank, using Pitot probes of 
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six different shapes. These shapes are shown in    Fig. 4.58 , which is taken from 

   Airey’s  paper in the April 17, 1913, issue of the  Engineering News,  titled “Notes 

on the Pitot Tube.” In this paper Airey states that all his measurements indicate 

that  K  = 1.0 within 1 percent accuracy, independent of the shape of the tube. 

Moreover, he presents a rational theory based on Bernoulli’s equation. Further 

comments on these results are made in a paper titled “Origin and Theory of the 

Pitot Tube” by    A. E. Guy , the chief engineer of a centrifugal pump company in 

Pittsburgh, in a June 5, 1913, issue of the  Engineering News . This paper also 

helped to establish the Pitot tube on fi rmer technical grounds. 

     It is interesting to note that neither of these papers in 1913 mentioned what 

was to become the most prevalent use of the Pitot tube: the measurement of 

airspeed for airplanes and wind tunnels. The fi rst practical airspeed indica-

tor, a Venturi tube, was used on an aircraft by the French Captain A. Eteve in 

January 1911, more than seven years after the fi rst powered fl ight. Later in 1911, 

British engineers at the Royal Aircraft Establishment (RAE) at Farnborough em-

ployed a Pitot tube on an airplane for the fi rst time. This was eventually to evolve 

into the primary instrument for fl ight speed measurement. 

Figure 4.58 Six forms of Pitot tubes tested by John Airey.
(Source: From Engineering News, vol. 69, no. 16, p. 783, April 1913.)
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 There was still controversy over Pitot tubes, as well as the need for reli-

able airspeed measurements, in 1915, when the brand-new National Advisory 

Committee for Aeronautics (NACA) stated in its First Annual Report that “an 

important problem to aviation in general is the devising of accurate, reliable 

and durable air speed meters. . . . The Bureau of Standards is now engaged in 

investigation of such meters, and attention is invited to the report of Professor 

Herschel and Dr. Buckingham of the bureau on Pitot tubes.” The aforementioned 

report was NACA Report No. 2, Part 1, “The Pitot Tube and other Anemometers 

for Aeroplanes,” by W. H. Herschel, and Part 2, “The Theory of the Pitot and 

Venturi Tubes,” by E. Buckingham. Part 2 is of particular interest. In clear terms, 

it gives a version of the theory we developed in    Sec. 4.11  for the Pitot tube; 

moreover, it develops for the fi rst time the theory for  compressible  subsonic 

fl ow—quite unusual for 1915! Buckingham showed that to obtain 0.5 percent 

accuracy with the incompressible relations,  V  ∞  should not exceed 148 mi/h  =  

66.1 m/s. However, he went on to state that “since the accuracy of better than 

1.0 percent can hardly be demanded of an airplane speedometer, it is evident that 

for all ordinary speeds of fl ight, no correction for compressibility is needed. . . .” 

This was certainly an appropriate comment for the “ordinary” airplanes of that 

day; indeed, it was accurate for most aircraft until the 1930s. 

 In retrospect, we see that the Pitot tube was invented almost 250 years ago 

but that its use was controversial and obscure until the second decade of pow-

ered fl ight. Then, between 1911 and 1915, one of those “explosions” in technical 

advancement occurred. Pitot tubes found a major home on airplanes, and the 

appropriate theory for their correct use was fi nally established. Since then Pitot 

tubes have become commonplace: The Pitot tube is usually the fi rst aerodynamic 

instrument introduced to students of aerospace engineering in laboratory studies.   

   4.24   HISTORICAL NOTE: THE FIRST 
WIND TUNNELS 

  Aerospace engineering in general, and aerodynamics in particular, is an empiri-

cally based discipline. Discovery and development by experimental means have 

been its lifeblood, extending all the way back to George Cayley (see Ch. 1). 

In turn, the workhorse for such experiments has been predominantly the wind 

tunnel—so much so that today most aerospace industrial, government, and 

 university laboratories have a complete spectrum of wind tunnels ranging from 

low subsonic to hypersonic speeds. 

 It is interesting to reach back briefl y into history and look at the evolution 

of wind tunnels. Amazingly enough, this history goes back more than 400 years. 

The cardinal principle of wind tunnel testing was stated by Leonardo da Vinci 

near the beginning of the 16th century as follows: 

  For since the action of the medium upon the body is the same whether the body 

moves in a quiescent medium, or whether the particles of the medium impinge with 

the same velocity upon the quiescent body; let us consider the body as if it were qui-

escent and see with what force it would be impelled by the moving medium.  
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 It is almost self-evident today that the lift and drag of an aerodynamic body 

are the same whether it moves through stagnant air at 100 mi/h or whether the air 

moves over the stationary body at 100 mi/h. This concept is the very foundation 

of wind tunnel testing. 

 The fi rst actual wind tunnel in history was designed and built more than 

100 years ago by Francis Wenham in Greenwich, England, in 1871. We met 

Wenham once before, in Sec. 1.4, where we noted his activity in the Aeronautical 

Society of Great Britain. Wenham’s tunnel was nothing more than a 10-ft-long 

wooden box with a square cross section, 18 in on a side. A steam-driven fan 

at the front end blew air through the duct. There was no contour and hence no 

aerodynamic control or enhancement of fl ow. Plane aerodynamic surfaces were 

placed in the airstream at the end of the box, where Wenham measured the lift 

and drag on weighing beams linked to the model. 

 Thirteen years later, Horatio F. Phillips, also an Englishman, built the sec-

ond known wind tunnel in history. Again the fl ow duct was a box, but Phillips 

used steam ejectors (high-speed steam nozzles) downstream of the test section to 

suck air through the tunnel. Phillips went on to conduct some pioneering airfoil 

testing in his tunnel, which will be mentioned again in Sec. 5.20. 

 Other wind tunnels were built before the turning point in aviation in 1903. 

For example, the fi rst wind tunnel in Russia was due to Nikolai Joukowski at the 

University of Moscow in 1891 (it had a 2-in diameter). A larger, 7 in × 10 in tun-

nel was built in Austria in 1893 by Ludwig Mach, son of the famed scientist and 

philosopher Ernst Mach, after whom the Mach number is named. The fi rst tun-

nel in the United States was built at the Massachusetts Institute of Technology 

in 1896 by Alfred J. Wells, who used the machine to measure the drag on a fl at 

plate as a check on the whirling-arm measurements of Langley (see Sec. 1.8). 

Another tunnel in the United States was built by Dr. A. Heb Zahm at the Catholic 

University of America in 1901. In light of these activities, it is obvious that at 

the turn of the 20th century, aerodynamic testing in wind tunnels was poised and 

ready to burst forth with the same energy that accompanied the development of 

the airplane itself. 

 It is fi tting that the same two people responsible for getting the airplane off 

the ground should also have been responsible for the fi rst concentrated series 

of wind tunnel tests. As noted in Sec. 1.8, the Wright brothers in late 1901 con-

cluded that a large part of the existing aerodynamic data was erroneous. This 

led to their construction of a 6-ft-long, 16-in-square wind tunnel powered by a 

two-blade fan connected to a gasoline engine. A replica of the Wrights’ wind 

tunnel is shown in    Fig. 4.59 . (Their original wind tunnel no longer exists.) They 

designed and built their own balance to measure the ratios of lift to drag. Using 

this apparatus, Wilbur and Orville undertook a major program of aeronautical re-

search between September 1901 and August 1902. During this time, they tested 

more than 200  different airfoil shapes manufactured out of steel. The results 

from these tests constitute the fi rst major impact of wind tunnel testing on the 

development of a successful airplane. As we quoted in Sec. 1.8, Orville said 

about their results, “Our tables of air pressure which we made in our wind tunnel 
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would enable us to calculate in advance the performance of a machine.” What 

a fantastic development! This was a turning point in the history of wind tunnel 

testing, and it had as much impact on that discipline as the December 17, 1903, 

fl ight had on the airplane. 

     The rapid growth in aviation after 1903 was paced by the rapid growth of 

wind tunnels, both in numbers and in technology. For example, tunnels were 

built at the National Physical Laboratory in London in 1903; in Rome in 1903; 

in Moscow in 1905; in Göttingen, Germany (by the famous Dr. Ludwig Prandtl, 

originator of the boundary layer concept in fl uid dynamics) in 1908; in Paris in 

1909 (including two built by Gustave Eiffel, of tower fame); and again at the 

National Physical Laboratory in 1910 and 1912. 

 All these tunnels, quite naturally, were low-speed facilities, but they were pi-

oneering for their time. Then, in 1915, with the creation of NACA (see Sec. 2.8), 

the foundation was laid for some major spurts in wind tunnel design. The fi rst 

NACA wind tunnel became operational at the Langley Memorial Aeronautical 

Laboratory at Hampton, Virginia, in 1920. It had a 5-ft-diameter test section that 

accommodated models up to 3.5 ft wide. In 1923, to simulate the higher Reynolds 

numbers associated with fl ight, NACA built the fi rst variable-density wind tun-

nel, a facility that could be pressurized to 20 atm in the fl ow and therefore obtain 

a 20-fold increase in density, and hence Re, in the test section. During the 1930s 

and 1940s, subsonic wind tunnels grew larger and larger. In 1931 a NACA wind 

tunnel with a 30 ft × 60 ft oval test section went into operation at Langley with a 

Figure 4.59 A replica of the Wright brothers’ wind tunnel.
(Source: U.S. Air Force.)
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129 mi/h maximum fl ow velocity. This was the fi rst million-dollar tunnel in his-

tory. In 1944 a 40 ft × 80 ft tunnel with a fl ow velocity of 265 mi/h was initiated 

at Ames Aeronautical Laboratory at Moffett Field, California. This is still the 

largest wind tunnel in the world today.    Figure 4.60  shows the magnitude of such 

tunnels: Whole airplanes can be mounted in the test section! 

     The tunnels just mentioned were low-speed, essentially incompressible-fl ow 

tunnels. They were the cornerstone of aeronautical testing until the 1930s and re-

main an important part of the aerodynamic scene today. However, airplane speeds 

were progressively increasing, and new wind tunnels with higher- velocity capa-

bility were needed. Indeed, the fi rst requirement for high-speed subsonic tunnels 

was established by propellers: In the 1920s and 1930s the propeller diameters 

and rotational speeds were both increasing so as to encounter  compressibility 

problems at the tips. This problem led NACA to build a 12-in-diameter high-

speed tunnel at Langley in 1927. It could produce a test section fl ow of 765 mi/h. 

In 1936, to keep up with increasing airplane speeds, Langley built a large 8-ft 

high-speed wind tunnel providing 500 mi/h. This was increased to 760 mi/h in 

1945. An important facility was built at Ames in 1941: a 16-ft tunnel with an air-

speed of 680 mi/h. A photograph of the Ames 16-ft tunnel is shown in    Fig. 4.61  

just to give a feeling for the massive size of such a facility. 

 In the early 1940s, the advent of the V-2 rocket as well as the jet engine put 

supersonic fl ight in the minds of aeronautical engineers. Suddenly the require-

ment for supersonic tunnels became a major factor. However, supersonic fl ows 

in the laboratory and in practice date farther back than this. The fi rst supersonic 

nozzle was developed by Laval about 1880 for use with steam turbines. This is 

why the convergent–divergent nozzles are frequently called  Laval nozzles . In 

1905 Prandtl built a small Mach 1.5 tunnel at Göttingen to study steam turbine 

fl ows and (of all things) the moving of sawdust around sawmills. 

 The fi rst practical supersonic wind tunnel for aerodynamic testing was devel-

oped by Dr. A. Busemann at Braunschweig, Germany, in the mid-1930s. Using 

the “method of characteristics” technique, which he had developed in 1929, 

Busemann designed the fi rst smooth supersonic nozzle contour that produced 

shock-free isentropic fl ow. He had a diffuser with a second throat downstream to 

decelerate the fl ow and to obtain effi cient operation of the tunnel. A photograph 

of Busemann’s tunnel is shown in    Fig. 4.62 . All supersonic tunnels today look 

essentially the same. 

     Working from Busemann’s example, the Germans built two major super-

sonic tunnels at their research complex at Peenemünde during World War II. 

These were used for research and development of the V-2 rocket. After the war, 

these tunnels were moved almost in total to the U.S. Naval Ordnance Laboratory 

(one was later moved to the University of Maryland), where they were used 

until the end of the 20th century. However, the fi rst supersonic tunnel built in 

the United States was designed by Theodore von Karman and his colleagues 

at the California Institute of Technology in 1944 and was built and operated at 

the Army Ballistics Research Laboratory at Aberdeen, Maryland, under contract 

with Cal Tech. Then the 1950s saw a virtual bumper crop of supersonic wind 
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tunnels, one of the largest being the 16 ft × 16 ft continuously operated super-

sonic tunnel of the Air Force at the Arnold Engineering Development Center 

(AEDC) in Tennessee. 

 About this time, the development of the intercontinental ballistic missile 

(ICBM) was on the horizon, soon to be followed by the space program of the 

Figure 4.60 A subsonic wind tunnel large enough to test a full-size airplane. The NASA 

Langley Research Center 30 ft × 60 ft tunnel.
(Source: NASA.)
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Figure 4.61 The Ames 16-ft high-speed subsonic wind tunnel, illustrating the massive size 

that goes along with such a wind tunnel complex.
(Source: NASA Ames Research Center.)

Figure 4.62 The fi rst practical supersonic wind tunnel, built by A. Busemann in the   

mid-1930s.
(Source: Courtesy of Adolf Busemann.)
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1960s. Flight vehicles were soon to encounter velocities as high as 36,000 ft/s in the 

atmosphere—hypersonic velocities. In turn, hypersonic wind tunnels ( M  > 5) were 

suddenly in demand. The fi rst hypersonic wind tunnel was operated by NACA 

at Langley in 1947. It had an 11-in-square test section capable of Mach 7. Three 

years later, another hypersonic tunnel went into operation at the Naval Ordnance 

Laboratory. These tunnels are distinctly different from their supersonic relatives in 

that, to obtain hypersonic speeds, the fl ow has to be expanded so far that the tem-

perature decreases to the point of liquefying the air. To prevent this, all hypersonic 

tunnels, both old and new, have to heat the reservoir gas to temperatures far above 

room temperature before its expansion through the nozzle. Heat transfer is a prob-

lem for high-speed fl ight vehicles, and such heating problems feed right down to 

the ground-testing facilities for such vehicles. 

 In summary, modern wind tunnel facilities range across the whole spectrum 

of fl ight velocities, from low subsonic to hypersonic speeds. These facilities are 

part of the everyday life of aerospace engineering; this brief historical sketch has 

provided some insight into their tradition and development.   

   4.25   HISTORICAL NOTE: OSBORNE REYNOLDS 
AND HIS NUMBER 

  In    Secs. 4.15  to    4.19  we observed that the Reynolds number, defi ned in    Eq. (4.90)  

as Re = ρ ∞  V  ∞  x /μ ∞ , was the governing parameter for viscous fl ow. Boundary layer 

thickness, skin friction drag, transition to turbulent fl ow, and many other charac-

teristics of viscous fl ow depend explicitly on the Reynolds number. Indeed, we can 

readily show that the Reynolds number itself has physical meaning: it is proportional 

to the ratio of inertia forces to viscous forces in a fl uid fl ow. Clearly, the Reynolds 

number is an extremely important dimensionless parameter in fl uid dynamics. 

Where did the Reynolds number come from? When was it fi rst introduced, and 

under what circumstances? The Reynolds number is named after a man—Osborne 

Reynolds. Who was Reynolds? This section answers these questions. 

 First let us look at Osborne Reynolds, the man. He was born on October 23, 

1842, in Belfast, Ireland. He was raised in an intellectual family atmosphere; his 

father had been a fellow of Queens College, Cambridge; a principal of Belfast 

Collegiate School; headmaster of Dedham Grammar School in Essex; and fi nally 

rector at Debach-with-Boulge in Suffolk. Anglican clerics were a tradition in the 

Reynolds family; in addition to his father, his grandfather and great-grandfather 

had been rectors at Debach. Against this background, Osborne Reynolds’s early 

education was carried out by his father at Dedham. In his teens, Osborne already 

showed an intense interest in the study of mechanics, for which he had a natural 

aptitude. At the age of 19 he served a short apprenticeship in mechanical en-

gineering before attending Cambridge University a year later. Reynolds was a 

highly successful student at Cambridge, graduating with the highest honors in 

mathematics. In 1867 he was elected a fellow of Queens College, Cambridge (an 

honor earlier bestowed upon his father). He went on to serve one year as a prac-

ticing civil engineer in the offi ce of John Lawson in London. However, in 1868 
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Owens College in Manchester (later to become the University of Manchester) es-

tablished its chair of engineering—the second of its kind in any English university 

(the fi rst was the chair of civil engineering established at the University College, 

London, in 1865). Reynolds applied for this chair, writing in his application, 

  From my earliest recollection I have had an irresistible liking for mechanics and the 

physical laws on which mechanics as a science are based. In my boyhood I had the 

advantage of the constant guidance of my father, also a lover of mechanics and a 

man of no mean attainment in mathematics and their application to physics.  

 Despite his youth and relative lack of experience, Reynolds was appointed to the 

chair at Manchester. For the next 37 years he served as a professor at Manchester 

until his retirement in 1905. 

 During those 37 years, Reynolds distinguished himself as one of history’s 

leading practitioners of classical mechanics. During his fi rst years at Manchester, 

he worked on problems involving electricity, magnetism, and the electromag-

netic properties of solar and cometary phenomena. After 1873 he focused on fl uid 

mechanics—the area in which he made his lasting contributions. For example, he 

(1) developed Reynolds’s analogy in 1874, a relation between heat transfer and 

frictional shear stress in a fl uid; (2) measured the average specifi c heat of water 

between freezing and boiling, which ranks among the classic determinations of 

physical constants; (3) studied water currents and waves in estuaries; (4) devel-

oped turbines and pumps; and (5) studied the propagation of sound waves in fl u-

ids. However, his most important work, and the one that gave birth to the concept 

of the Reynolds number, was reported in 1883 in a paper titled “An Experimental 

Investigation of the Circumstances which Determine whether the Motion of Water 

in Parallel Channels Shall Be Direct or Sinuous, and of the Law of Resistance in 

Parallel Channels.” Published in  Proceedings of the Royal Society,  this paper 

was the fi rst to demonstrate the transition from laminar to turbulent fl ow and to 

relate this transition to a critical value of a dimensionless parameter—later to 

become known as the Reynolds number. Reynolds studied this phenomenon in 

water fl ow through pipes. His experimental apparatus is illustrated in    Fig. 4.63 , 

taken from his original 1883 paper. (Note that before the day of modern photo-

graphic techniques, some technical papers contained rather elegant hand sketches 

of experimental apparatus, of which    Fig. 4.63  is an example.) Reynolds fi lled a 

large reservoir with water, which fed into a glass pipe through a larger bell-mouth 

entrance. As the water fl owed through the pipe, Reynolds introduced dye into the 

middle of the stream, at the entrance of the bell mouth. What happened to this 

thin fi lament of dye as it fl owed through the pipe is illustrated in    Fig. 4.64 , also 

from Reynolds’s original paper. The fl ow is from right to left. If the fl ow veloc-

ity was small, the thin dye fi lament would travel downstream in a smooth, neat, 

orderly fashion, with a clear demarcation between the dye and the rest of the 

water, as illustrated in    Fig. 4.64  a . However, if the fl ow velocity increased beyond 

a certain value, the dye fi lament would suddenly become unstable and would fi ll 

the entire pipe with color, as shown in    Fig. 4.64  b . Reynolds clearly pointed out 

that the smooth dye fi lament in    Fig. 4.64  a  corresponded to laminar fl ow in the 



 4.25  Historical Note: Osborne Reynolds and his Number 269

Figure 4.63 Osborne Reynolds’s apparatus for his famous pipe fl ow 

experiments. This fi gure is from his original paper, referenced in the text.

Figure 4.64 Development of turbulent fl ow in pipes, as 

observed and sketched by Reynolds. This fi gure is from his 

original paper, referenced in the text.
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pipe, whereas the agitated and totally diffused dye fi lament in    Fig. 4.64  b  was 

due to turbulent fl ow in the pipe. Furthermore, Reynolds studied the details of 

this turbulent fl ow by visually observing the pipe fl ow illuminated by a momen-

tary electric spark, much as we would use a strobe light today. He saw that the 

turbulent fl ow consisted of many distinct eddies, as sketched in    Fig. 4.64  c . The 

transition from laminar to turbulent fl ow occurred when the parameter defi ned by 

 ρ VD/μ  exceeded a certain critical value, where ρ was the density of the water,  

V  was the mean fl ow velocity, μ was the  viscosity coeffi cient, and  D  was the di-

ameter of the pipe. This dimensionless parameter, fi rst introduced by Reynolds, 

later became known as the Reynolds number. Reynolds measured the critical 

value of this number, above which turbulent fl ow occurred, as 2300. This original 

work of Reynolds initiated the study of transition from laminar to turbulent fl ow 

as a new fi eld of research in fl uid dynamics—a fi eld that is still today one of the 

most important and insuffi ciently understood areas of aerodynamics. 

         Reynolds was a scholarly man with high standards. Engineering education 

was new to English universities at that time, and Reynolds had defi nite ideas 

about its proper form. He felt that all engineering students, no matter what their 

specialty, should have a common background based on mathematics, physics, 

and, in particular, the fundamentals of classical mechanics. At Manchester he 

organized a systematic engineering curriculum covering the basics of civil and 

mechanical engineering. Ironically, despite his intense interest in education, as 

a lecturer in the classroom Reynolds left something to be desired. His lectures 

were hard to follow, and his topics frequently wandered with little or no connec-

tion. He was known to come up with new ideas during a lecture and to spend the 

remainder of the lecture working out these ideas on the board, seemingly oblivi-

ous to the students in the classroom. That is, he did not “spoon-feed” his students, 

and many of the poorer students did not pass his courses. In contrast, the best 

students enjoyed his lectures and found them stimulating. Many of Reynolds’s 

successful students went on to become distinguished engineers and scientists, the 

most notable being Sir J. J. Thomson, later the Cavendish Professor of Physics 

at Cambridge; Thomson is famous for fi rst demonstrating the existence of the 

electron in 1897, for which he received the Nobel Prize in 1906. 

 In regard to Reynolds’s interesting research approach, his student, colleague, 

and friend Professor A. H. Gibson had this to say in his biography of Reynolds, 

written for the British Council in 1946: 

  Reynolds’ approach to a problem was essentially individualistic. He never began by 

reading what others thought about the matter, but fi rst thought this out for himself. 

The novelty of his approach to some problems made some of his papers diffi cult to 

follow, especially those written during his later years. His more descriptive physical 

papers, however, make fascinating reading, and when addressing a popular audi-

ence, his talks were models of clear exposition.  

 At the turn of the century, Reynolds’s health began to fail, and he subse-

quently had to retire in 1905. The last years of his life were ones of considerably 

diminished physical and mental capabilities—a particularly sad state for such 

a brilliant and successful scholar. He died at Somerset, England, in 1912. Sir 
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Horace Lamb, one of history’s most famous fl uid dynamicists and a long-time 

colleague of Reynolds, wrote after Reynolds’s death, 

  The character of Reynolds was, like his writings, strongly individual. He was con-

scious of the value of his work, but was content to leave it to the mature judgement 

of the scientifi c world. For advertisement he had no taste, and undue pretensions on 

the part of others only elicited a tolerant smile. To his pupils he was most generous 

in the opportunities for valuable work which he put in their way, and in the share 

of co-operation. Somewhat reserved in serious or personal matters and occasionally 

combative and tenacious in debate, he was in the ordinary relations of life the most 

kindly and genial of companions. He had a keen sense of humor and delighted in 

startling paradoxes, which he would maintain, half seriously and half playfully, with 

astonishing ingenuity and resource. The illness which at length compelled his retire-

ment was felt as a grievous calamity by his pupils, his colleagues and other friends 

throughout the country.  

 The purpose of this section has been to relate the historical beginnings of the 

Reynolds number in fl uid mechanics. From now on, when you use the Reynolds 

number, view it not only as a powerful dimensionless parameter governing vis-

cous fl ow, but also as a testimonial to its originator—one of the famous fl uid 

dynamicists of the 19th century.   

   4.26   HISTORICAL NOTE: PRANDTL 
AND THE DEVELOPMENT OF THE 
BOUNDARY LAYER CONCEPT 

  The modern science of aerodynamics has roots as far back as Isaac Newton, 

who devoted the entire second book of his  Principia  (1687) to fl uid 

 dynamics— especially to the formulation of “laws of resistance” (drag). He noted 

that drag is a function of fl uid density, velocity, and the shape of the body in 

motion. However, Newton was unable to formulate the correct equation for drag. 

He derived a formula that gave the drag on an inclined object as proportional to 

the sine squared of the angle of attack. Later Newton’s sine-squared law was 

used to demonstrate the “impossibility of heavier-than-air fl ight” and hindered 

the intellectual advancement of fl ight in the 19th century. Ironically, the physi-

cal assumptions used by Newton in deriving his sine-squared law approximately 

refl ect the conditions of hypersonic fl ight, and the Newtonian law has been used 

since 1950 in the design of high-Mach-number vehicles. However, Newton cor-

rectly reasoned the mechanism of shear stress in a fl uid. In section 9 of book 2 of 

 Principia,  Newton states the following hypothesis: “The resistance arising from 

want of lubricity in the parts of a fl uid is . . . proportional to the velocity with 

which the parts of the fl uid are separated from each other.” This is the fi rst state-

ment in history of the friction law for laminar fl ow; it is embodied in    Eq. (4.89) , 

which describes a “Newtonian fl uid.” 

 Further attempts to understand fl uid dynamic drag were made by the French 

mathematician Jean le Rond d’Alembert, who is noted for developing the cal-

culus of partial differences (leading to the mathematics of partial differential 
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equations). In 1768 d’Alembert applied the equations of motion for an incom-

pressible, inviscid (frictionless) fl ow about a two-dimensional body in a moving 

fl uid and found that no drag is obtained. He wrote, “I do not see then, I admit, 

how one can explain the resistance of fl uids by the theory in a satisfactory man-

ner. It seems to me on the contrary that this theory, dealt with and studied with 

profound attention gives, at least in most cases, resistance absolutely zero: a 

singular paradox which I leave to geometricians to explain.” That this theoreti-

cal result of zero drag is truly a paradox was clearly recognized by d’Alembert, 

who also conducted experimental research on drag and who was among the fi rst 

to discover that drag is proportional to the square of the velocity, as derived in 

Sec. 5.3 and given in Eq. (5.18). 

 D’Alembert’s paradox arose due to the neglect of friction in classical theory. 

It was not until a century later that the effect of friction was properly incorpo-

rated in the classical equations of motion by the work of M. Navier (1785–1836) 

and Sir George Stokes (1819–1903). The so-called Navier–Stokes equations 

stand today as the classical formulation of fl uid dynamics. However, in general 

they are nonlinear equations and are extremely diffi cult to solve; indeed, only 

with the numerical power of modern high-speed digital computers are “exact” 

solutions of the Navier–Stokes equations fi nally being obtained for general fl ow 

fi elds. Also in the 19th century, the fi rst experiments on transition from laminar 

to turbulent fl ow were carried out by Osborne Reynolds (1842–1912), as related 

in    Sec. 4.25 . In his classic paper of 1883 titled “An Experimental Investigation 

of the Circumstances which Determine whether the Motion of Water in Parallel 

Channels Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel 

Channels,” Reynolds observed a fi lament of colored dye in a pipe fl ow and noted 

that transition from laminar to turbulent fl ow always corresponded to approx-

imately the same value of a dimensionless number ρ VD /μ, where  D  was the 

diameter of the pipe. This was the origin of the Reynolds number, defi ned in 

   Sec. 4.15  and discussed at length in    Sec. 4.25 . 

 Therefore, at the beginning of the 20th century, when the Wright brothers 

were deeply involved in the development of the fi rst successful airplane, the 

development of theoretical fl uid dynamics still had not led to practical results for 

aerodynamic drag. It was this environment into which Ludwig Prandtl was born 

on February 4, 1875, at Freising, in Bavaria, Germany. Prandtl was a genius who 

had the talent of cutting through a maze of complex physical phenomena to ex-

tract the most salient points and put them in simple mathematical form. Educated 

as a physicist, Prandtl was appointed in 1904 as professor of applied mechanics 

at Göttingen University in Germany, a post he occupied until his death in 1953. 

 In the period from 1902 to 1904, Prandtl made one of the most important 

contributions to fl uid dynamics. Thinking about the viscous fl ow over a body, 

he reasoned that the fl ow velocity right at the surface was zero and that if the 

Reynolds number was high enough, the infl uence of friction was limited to a thin 

layer (Prandtl fi rst called it a transition layer) near the surface. Therefore, the 

analysis of the fl ow fi eld could be divided into two distinct regions: one close to 

the surface, which included friction, and the other farther away, in which friction 
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could be neglected. In one of the most important fl uid dynamics papers in history, 

titled “Uber Flussigkeitsbewegung bei sehr kleiner Reibung,” Prandtl reported 

his thoughts to the Third International Mathematical Congress at Heidelberg in 

1904. In this paper Prandtl observed, 

  A very satisfactory explanation of the physical process in the boundary layer 

 (Grenzschicht) between a fl uid and a solid body could be obtained by the hypothesis 

of an adhesion of the fl uid to the walls, that is, by the hypothesis of a zero relative 

velocity between fl uid and wall. If the viscosity is very small and the fl uid path along 

the wall not too long, the fl uid velocity ought to resume its normal value at a very 

short distance from the wall. In the thin transition layer however, the sharp changes 

of velocity, even with small coeffi cient of friction, produce marked results.  

 In the same paper, Prandtl’s theory is applied to the prediction of fl ow separation: 

  In given cases, in certain points fully determined by external conditions, the fl uid 

fl ow ought to separate from the wall. That is, there ought to be a layer of fl uid which, 

having been set in rotation by the friction on the wall, insinuates itself into the free 

fl uid, transforming completely the motion of the latter. . . .  

 Prandtl’s boundary layer hypothesis allows the Navier–Stokes equations 

to be reduced to a simpler form; by 1908 Prandtl and one of his students, H. 

Blasius, had solved these simpler boundary layer equations for laminar fl ow 

over a fl at plate, yielding the equations for boundary layer thickness and skin 

friction drag given by    Eqs. (4.91)  and    (4.93) . Finally, after centuries of effort, 

the fi rst rational resistance laws describing fl uid dynamic drag due to friction 

had been obtained. 

 Prandtl’s work was a stroke of genius, and it revolutionized theoretical aero-

dynamics. However, possibly due to the language barrier, it only slowly diffused 

through the worldwide technical community. Serious work on boundary layer 

theory did not emerge in England and the United States until the 1920s. By that 

time, Prandtl and his students at Göttingen had applied it to various aerodynamic 

shapes and were including the effects of turbulence. 

 Prandtl has been called the  father of aerodynamics,  and rightly so. His con-

tributions extend far beyond boundary layer theory; for example, he pioneered 

the development of wing lift and drag theory, as seen in Ch. 5. Moreover, he was 

interested in more fi elds than just fl uid dynamics—he made several important 

contributions to structural mechanics as well. 

 As a note on Prandtl’s personal life, he had the singleness of purpose 

that seems to drive many giants of humanity. However, his almost complete 

 preoccupation with his work led to a somewhat naive outlook on life. Theodore 

von Karman, one of Prandtl’s most illustrious students, relates that Prandtl would 

rather fi nd fancy in the examination of children’s toys than participate in social 

gatherings. When Prandtl was almost 40, he suddenly decided that it was time to 

get married, and he wrote to a friend for the hand of one of his two  daughters—

Prandtl did not care which one! During the 1930s and early 1940s, Prandtl had 

mixed emotions about the political problems of the day. He continued his re-

search work at Göttingen under Hitler’s Nazi regime but became continually 
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confused about the course of events. Von Karman writes about Prandtl in his 

autobiography, 

  I saw Prandtl once again for the last time right after the Nazi surrender. He was a 

sad fi gure. The roof of his house in Göttingen, he mourned, had been destroyed by 

an American bomb. He couldn’t understand why this had been done to him! He was 

also deeply shaken by the collapse of Germany. He lived only a few years after that, 

and though he did engage in some research work in meteorology, he died, I believe, 

a broken man, still puzzled by the ways of mankind.  

 Prandtl died in Göttingen on August 15, 1953. Of any fl uid dynamicist or 

aerodynamicist in history, Prandtl came closest to deserving a Nobel Prize. Why 

he never received one is an unanswered question. However, as long as there are 

fl ight vehicles, and as long as people study the discipline of fl uid dynamics, the 

name of Ludwig Prandtl will be enshrined for posterity.    

    4.27  SUMMARY AND REVIEW 
 Sit back, get comfortable, and just think about the basic concepts in aerodynamics that 

have been introduced in this chapter. We will begin this section with a review of these 

intellectual concepts without burdening your mind with equations; that is, we offer a 

discussion of “aerodynamics without formula.” The equations are reviewed later in this 

section. 

 One of my professors once told me, as I was studying aerodynamics, that “aerody-

namics is easy because it just uses three equations: continuity, momentum, and energy.” 

Over the years, I have come more and more to appreciate this wisdom. All of aerodynam-

ics is indeed based on three fundamental principles: (1) mass is conserved; (2) Newton’s 

second law—namely, force equals mass times acceleration; and (3) energy is conserved. 

We began this chapter with these three physical principles, and couched them in mathe-

matical language, namely the continuity, momentum, and energy equations, respectively. 

Virtually all the other equations derived and discussed throughout the rest of this chapter 

originated in one form or another from the continuity, momentum, and energy equations. 

This is why we took the time and space to derive from fi rst principles almost all the equa-

tions presented and used in this chapter. If you go back and review these derivations, 

you can trace them in one aspect or another from the continuity, momentum, and energy 

equations. 

 What makes aerodynamics so interesting is that, although it is based on just three 

fundamental principles, the application of these principles to the virtually unlimited num-

ber of different types of fl ows can be challenging. These applications (at fi rst impression) 

lead to the almost overwhelming number of different equations found in this chapter. But 

do not be overwhelmed. One reason for the road map in    Fig. 4.1  is to help you navigate 

through the different concepts, and ultimately to better appreciate all the different equa-

tions. Moreover, never lose sight of the physics; each one of the equations is steeped in 

physics. 

 Another important aspect of this chapter, as well as all the other chapters in this 

book, is simply  defi nitions . You are in the process of expanding your intellectual hori-

zons and your technical vocabulary. Defi nitions are an essential part of learning a new 

subject. Also, for the most part, defi nitions are hard and fast. They may take the form 

of words, or an equation, or both, but they are what they are. They are your means of 
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communicating with other scientists and engineers who speak your technical language, 

and who also know the defi nitions. Some of the more important defi nitions presented in 

this chapter are:  

   1.    Incompressible fl ow : fl ow with constant density.  

   2.    Compressible fl ow : fl ow with variable density.  

   3.    Mass fl ow : the mass crossing an area A in the fl ow per unit time.  

   4.    Adiabatic process : a process in which no heat is added or taken away.  

   5.    Reversible process : a process in which no frictional or other dissipative effects 

occur.  

   6.    Isentropic fl ow : fl ow that is both adiabatic and reversible.  

   7.    Mach number : velocity divided by the speed of sound.  

   8.    Subsonic fl ow : fl ow where the Mach number is less than one.  

   9.    Sonic fl ow : fl ow where the Mach number is equal to one.  

  10.    Supersonic fl ow : fl ow where the Mach number is greater than one.  

  11.    Static pressure : the pressure that we would feel at a given point in a fl ow if we 

were moving along with the fl ow through that point. It is due to the random motion 

of the molecules, not the directed motion.  

  12.    Total pressure : The pressure at a given point in a fl ow that would exist if the fl ow 

were slowed down  isentropically  to zero velocity at that point. (The key word here 

is “isentropically.”)  

  13.    Dynamic pressure : ½  ρ V   2   

  14.    Equivalent airspeed : the airspeed of an airplane fl ying at a given altitude that it 

would have to have at standard sea level to experience the same dynamic pressure.  

  15.    Reynolds number :       ρ Vx / μ 

  16.    Local skin friction coeffi cient : τ w / q  ∞   

  17.    Total skin friction coeffi cient :  D f  /q  ∞  S   

  18.    Adverse pressure gradient : a region in a fl ow where the pressure increases with 

distance along the fl ow.  

  19.    Favorable pressure gradient : a region in a fl ow where the pressure decreases with 

distance along the fl ow.   

  Note:  There are many more defi nitions scattered throughout this chapter; the preceding 

list just reminds us of some of the ones more frequently encountered in our introduction 

to basic aerodynamics. 

 This chapter has discussed various types of fl ow, and we have defi ned and cat-

egorized different types of fl ow. Nature makes no real distinction among these fl ows, 

but we have to in order to intellectually study and calculate such fl ows. In many ways, 

 incompressible fl ow is the simplest fl ow to calculate because  ρ  is constant. Pressure 

and velocity are directly related through Bernoulli’s equation. Most low-speed fl ows, 

where  M  < 0.3, can readily be assumed to be incompressible. In contrast, high-speed 

fl ow is accompanied by signifi cant density and temperature changes, and must be 

treated as compressible. For a compressible fl ow,  p, ρ, V  and  T  in the fl ow are inti-

mately coupled, and the continuity, momentum, and energy equations, along with the 

equation of state, must be solved simultaneously for such fl ows. Fortunately, in many 

real compressible-fl ow applications, nature creates conditions that are very closely 

reversible and adiabatic. This allows us to assume that such fl ows are isentropic. The 

special relations between pressure, density, and temperature for an isentropic fl ow 

greatly simplify the analysis of a compressible fl ow. This helps us to calculate nozzle 

fl ows, rocket engine fl ows, and subsonic compressible fl ow over airplanes, and to 
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make subsonic airspeed measurements using a Pitot tube. In contrast, many supersonic 

fl ows involve shock waves. Shock waves are  not  isentropic, and require their own 

special analysis. 

 Finally, superimposed over these different types of fl ow is the question: how impor-

tant is the effect of friction? The fi rst 80 percent of this chapter deals with fl ows where we 

assume that the effect of friction is negligible. These are defi ned as  inviscid  fl ows. How-

ever, friction is always important in that region of the fl ow near a surface, where friction 

acts to retard the fl ow. We model that region as a  boundary layer , a thin region adjacent 

to a surface. Boundary layers require a totally different analysis, as discussed in the last 

part of this chapter. Flows with friction are defi ned as  viscous  fl ows. For example, we can 

have incompressible viscous fl ow or compressible viscous fl ow. The calculation of skin 

friction on a surface, and aspects of separated fl ow with its associated pressure drag due 

to fl ow separation, require us to deal with viscous fl ows. 

 Let us now summarize some of the more important equations that come from the 

concepts just reviewed. It will help to return to our road map in    Fig. 4.1 . Run your mind 

over all the items shown there. Make yourself feel comfortable with these items. Then 

proceed with this chapter summary, putting each equation and each concept in its proper 

perspective relative to our road map. 

 A few of the important concepts from this chapter are summarized as follows:  

   1.   The basic equations of aerodynamics, in the form derived here, are as follows:
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These equations hold for a compressible fl ow. For an incompressible fl ow, we have 

these:
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    Equation (4.9  a ) is called Bernoulli’s equation.  

2.   The change in pressure, density, and temperature between two points in an 

isentropic process is given by
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3.   The speed of sound is given by
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 For a perfect gas, this becomes

a RTγRR   (4.54          )

4.   The speed of a gas fl ow can be measured by a Pitot tube, which senses the total 

pressure  p  0 . For incompressible fl ow,

V
p

1VV 0 1p2= ( )p p1p

ρ (4.66)

 For subsonic compressible fl ow,
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 For supersonic fl ow, a shock wave exists in front of the Pitot tube, and    Eq. (4.79)  

must be used in lieu of    Eq. (4.77  a ) to fi nd the Mach number of the fl ow.  

5.   The area–velocity relation for isentropic fl ow is

dA

A

dV

V
= ( )M −M 2

  
(4.83)

 From this relation, we observe that (1) for a subsonic fl ow, the velocity increases 

in a convergent duct and decreases in a divergent duct; (2) for a supersonic fl ow, 

the velocity increases in a divergent duct and decreases in a convergent duct; and 

(3) the fl ow is sonic only at the minimum area.  

6.   The isentropic fl ow of a gas is governed by
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 Here  T  0 ,  p  0 , and ρ 0  are the total temperature, pressure, and density, respectively. 

For an isentropic fl ow,  p  0  = constant throughout the fl ow. Similarly, ρ 0  = constant 

and  T  0  = constant throughout the fl ow.  

7.   Viscous effects create a boundary layer along a solid surface in a fl ow. In this 

boundary layer, the fl ow moves slowly and the velocity goes to zero right at the 

surface. The shear stress at the wall is given by
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 The shear stress is larger for a turbulent boundary layer than for a laminar 

boundary layer.  
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   8.   For a laminar incompressible boundary layer, on a fl at plate,
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and
  

C f
L

= 1 328.

Re
(4.98)        

 where δ is the boundary layer thickness,  C   f   is the total skin friction drag coeffi cient, 

and Re is the Reynolds number:
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 Here  x  is the running length along the plate, and  L  is the total length of the 

plate.  

9.   For a turbulent incompressible boundary layer on a fl at plate,
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(4.101)        

 Any real fl ow along a surface starts out as laminar but then changes into a turbulent 

fl ow. The point at which this transition effectively occurs (in reality, transition 

occurs over a fi nite length) is designated  x   cr  . In turn, the critical Reynolds number 

for transition is defi ned as

  

Re x
cr

cr

V x= ∞ ∞VV

∞

ρ
μ

  
(4.104)          

  10.   Whenever a boundary layer encounters an adverse pressure gradient (a region 

of increasing pressure in the fl ow direction), it can readily separate from the 

surface. On an airfoil or wing, such fl ow separation decreases the lift and 

increases the drag.    
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   Problems  

4.1   Consider the incompressible fl ow of water through a divergent duct. The inlet 

velocity and area are 5 ft/s and 10 ft 2 , respectively. If the exit area is 4 times the 

inlet area, calculate the water fl ow velocity at the exit.  

4.2   In    Prob. 4.1 , calculate the pressure difference between the exit and the inlet. The 

density of water is 62.4 lb  m  /ft 
3 .  

4.3   Consider an airplane fl ying with a velocity of 60 m/s at a standard altitude of 

3 km. At a point on the wing, the airfl ow velocity is 70 m/s. Calculate the pressure 

at this point. Assume incompressible fl ow.  

4.4   An instrument used to measure the airspeed on many early low-speed airplanes, 

principally during 1919 to 1930, was the venturi tube. This simple device is a 

convergent–divergent duct. (The front section’s cross-sectional area  A  decreases 

in the fl ow direction, and the back section’s cross-sectional area increases in 

the fl ow direction. Somewhere between the inlet and exit of the duct, there is a 

minimum area called the  throat .) See    fi gure below.  Let  A  1  and  A  2  denote the inlet 

and throat areas, respectively. Let  p  1  and  p  2  be the pressures at the inlet and throat, 

respectively. The venturi tube is mounted at a specifi c location on the airplane 

(generally on the wing or near the front of the fuselage) where the inlet velocity 

 V  1  is essentially the same as the free-stream velocity—that is, the velocity of the 

airplane through the air. With a knowledge of the area ratio  A  2 / A  1  (a fi xed design 

feature) and a measurement of the pressure difference  p  1  −  p  2 , we can determine 

the airplane’s velocity. For example, assume  A A2 1A 1
4/AAA =     and  p  1  −  p  2  = 80 lb/ft 2 . 

If the airplane is fl ying at standard sea level, what is its velocity? 

INLET

THROAT

p2

p1

V∞

FLOW V1 = V∞

A1

A2

EXIT
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          4.5   Consider the fl ow of air through a convergent–divergent duct, such as the venturi 

tube described in    Prob. 4.4 . The inlet, throat, and exit areas are 3, 1.5, and 2 m 2 , 

respectively. The inlet and exit pressures are 1.02 × 10 5  and 1.00 × 10 5  N/m 2 , 

respectively. Calculate the fl ow velocity at the throat. Assume incompressible fl ow 

with standard sea-level density.  

   4.6   An airplane is fl ying at a velocity of 130 mi/h at a standard altitude of 5000 ft. At a 

point on the wing, the pressure is 1750.0 lb/ft 2 . Calculate the velocity at that point, 

assuming incompressible fl ow.  

   4.7   Imagine that you have designed a low-speed airplane with a maximum velocity 

at sea level of 90 m/s. For your airspeed instrument, you plan to use a venturi 

tube with a 1.3 : 1 area ratio. Inside the cockpit is an airspeed indicator—a dial 

that is connected to a pressure gauge sensing the venturi tube pressure difference 

 p  1  −  p  2  and properly calibrated in terms of velocity. What is the maximum pressure 

difference you would expect the gauge to experience?  

   4.8   A supersonic nozzle is also a convergent–divergent duct, which is fed by a large 

reservoir at the inlet to the nozzle. In the reservoir of the nozzle, the pressure and 

temperature are 10 atm and 300 K, respectively. At the nozzle exit, the pressure is 

1 atm. Calculate the temperature and density of the fl ow at the exit. Assume that 

the fl ow is isentropic and (of course) compressible.  

   4.9   Derive an expression for the exit velocity of a supersonic nozzle in terms 

of the pressure ratio between the reservoir and exit  p  0 / p   e   and the reservoir 

temperature  T  0 .  

  4.10   Consider an airplane fl ying at a standard altitude of 5 km with a velocity of 

270 m/s. At a point on the wing of the airplane, the velocity is 330 m/s. Calculate 

the pressure at this point.  

  4.11   The mass fl ow of air through a supersonic nozzle is 1.5 lb  m  /s. The exit velocity 

is 1500 ft/s, and the reservoir temperature and pressure are 1000°R and 7 atm, 

respectively. Calculate the area of the nozzle exit. For air,  c   p   = 6000 ft · lb/

(slug)(°R).  

  4.12   A supersonic transport is fl ying at a velocity of 1500 mi/h at a standard altitude 

of 50,000 ft. The temperature at a point in the fl ow over the wing is 793.32°R. 

Calculate the fl ow velocity at that point.  

  4.13   For the airplane in    Prob. 4.12 , the total cross-sectional area of the inlet to the jet 

engines is 20 ft 2 . Assume that the fl ow properties of the air entering the inlet are 

those of the free stream ahead of the airplane. Fuel is injected inside the engine at 

a rate of 0.05 lb of fuel for every pound of air fl owing through the engine (i.e., the 

fuel–air ratio by mass is 0.05). Calculate the mass fl ow (in slugs/per second) that 

comes out the exit of the engine.  

  4.14   Calculate the Mach number at the exit of the nozzle in    Prob. 4.11 .  

  4.15   A Boeing 747 is cruising at a velocity of 250 m/s at a standard altitude of 13 km. 

What is its Mach number?  

  4.16   A high-speed missile is traveling at Mach 3 at standard sea level. What is its 

velocity in miles per hour?  

  4.17   Calculate the fl ight Mach number for the supersonic transport in    Prob. 4.12 .  

  4.18   Consider a low-speed subsonic wind tunnel with a nozzle contraction ratio of 

1 : 20. One side of a mercury manometer is connected to the settling chamber and 

the other side to the test section. The pressure and temperature in the test section 
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are 1 atm and 300 K, respectively. What is the height difference between the two 

columns of mercury when the test section velocity is 80 m/s?  

  4.19   We wish to operate a low-speed subsonic wind tunnel so that the fl ow in the test 

section has a velocity of 200 mi/h. Consider two different types of wind tunnels 

(see    fi gure below ): ( a ) a nozzle and a constant-area test section, where the fl ow 

at the exit of the test section simply dumps out to the surrounding atmosphere 

(that is, there is no diffuser); and ( b ) a conventional arrangement of nozzle, test 

section, and diffuser, where the fl ow at the exit of the diffuser dumps out to the 

surrounding atmosphere. For both wind tunnels ( a ) and ( b ), calculate the pressure 

differences across the entire wind tunnel required to operate them so as to have 

the given fl ow conditions in the test section. For tunnel ( a ), the cross-sectional 

area of the entrance is 20 ft 2 , and the cross-sectional area of the test section is 4 ft 2 . 

For tunnel ( b ), a diffuser is added to ( a ) with a diffuser exit area of 18 ft 2 . After 

completing your calculations, examine and compare your answers for tunnels ( a ) 

and ( b ). Which requires the smaller overall pressure difference? What does this 

say about the value of a diffuser in a subsonic wind tunnel? 

NOZZLE

TEST SECTION

OPERATING PRESSURE
DIFFERENCE = p1 – p2

A2 = 4 ft2
A1=

20 ft2

V2 = 200 mi/h
V1p1 p2

(a)

NOZZLE

OPERATING PRESSURE DIFFERENCE = p1 – p3

A3 =
18 ft2

A1 =
20 ft2

A2 = 4 ft2

V2 = 200 mi/hr
V1 V3

p1
p2 p3

TEST SECTION DIFFUSER

(b)
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         4.20   A Pitot tube is mounted in the test section of a low-speed subsonic wind tunnel. 

The fl ow in the test section has a velocity, static pressure, and temperature of 

150 mi/h, 1 atm, and 70°F, respectively. Calculate the pressure measured by the 

Pitot tube.  

  4.21   The altimeter on a low-speed Piper Aztec reads 8000 ft. A Pitot tube mounted on 

the wing tip measures a pressure of 1650 lb/ft 2 . If the outside air temperature is 

500°R, what is the true velocity of the airplane? What is the equivalent airspeed?  

  4.22   The altimeter on a low-speed airplane reads 2 km. The airspeed indicator reads 

50 m/s. If the outside air temperature is 280 K, what is the true velocity of the 

airplane?  

  4.23   A Pitot tube is mounted in the test section of a high-speed subsonic wind tunnel. 

The pressure and temperature of the airfl ow are 1 atm and 270 K, respectively. If 

the fl ow velocity is 250 m/s, what is the pressure measured by the Pitot tube?  

  4.24   A high-speed subsonic Boeing 777 airliner is fl ying at a pressure altitude of 

12 km. A Pitot tube on the vertical tail measures a pressure of 2.96 × 10 4  N/m 2 . At 

what Mach number is the airplane fl ying?  

  4.25   A high-speed subsonic airplane is fl ying at Mach 0.65. A Pitot tube on the wing tip 

measures a pressure of 2339 lb/ft 2 . What is the altitude reading on the altimeter?  

  4.26   A high-performance F-16 fi ghter is fl ying at Mach 0.96 at sea level. What is the 

air temperature at the stagnation point at the leading edge of the wing?  

  4.27   An airplane is fl ying at a pressure altitude of 10 km with a velocity of 596 m/s. 

The outside air temperature is 220 K. What is the pressure measured by a Pitot 

tube mounted on the nose of the airplane?  

  4.28   The dynamic pressure is defi ned as  q  = 0.5 ρV  2 . For high-speed fl ows, where Mach 

number is used frequently, it is convenient to express  q  in terms of pressure  p  and 

Mach number  M  rather than ρ and  V . Derive an equation for  q = q(p, M) .  
  4.29   After completing its mission in orbit around the earth, the Space Shuttle enters 

the earth’s atmosphere at a very high Mach number and, under the infl uence 

of aerodynamic drag, slows as it penetrates more deeply into the atmosphere. 

(These matters are discussed in Ch. 8.) During its atmospheric entry, assume that 

the shuttle is fl ying at Mach number  M  corresponding to the altitudes  h :  

  h , km  60  50  40  30  20 

  M   17  9.5  5.5  3  1 

   Calculate the corresponding values of the free-stream dynamic pressure at each 

one of these fl ight path points.  Suggestion:  Use the result from    Prob. 4.28 . 

Examine and comment on the variation of  q  ∞  as the shuttle enters the atmosphere.  

  4.30   Consider a Mach 2 airstream at standard sea-level conditions. Calculate the total 

pressure of this fl ow. Compare this result with ( a ) the stagnation pressure that 

would exist at the nose of a blunt body in the fl ow and ( b ) the erroneous result 

given by Bernoulli’s equation, which of course does not apply here.  

  4.31   Consider the fl ow of air through a supersonic nozzle. The reservoir pressure and 

temperature are 5 atm and 500 K, respectively. If the Mach number at the nozzle 

exit is 3, calculate the exit pressure, temperature, and density.  

  4.32   Consider a supersonic nozzle across which the pressure ratio is  p   e   / p  0  = 0.2. 

Calculate the ratio of exit area to throat area.  
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  4.33   Consider the expansion of air through a convergent–divergent supersonic nozzle. 

The Mach number varies from essentially zero in the reservoir to Mach 2.0 at the 

exit. Plot on graph paper the variation of the ratio of dynamic pressure to total 

pressure as a function of Mach number; that is, plot  q / p  0  versus  M  from  M  = 0 to 

 M  = 2.0.  

  4.34   The wing of the Fairchild Republic A-10A twin-jet close-support airplane is 

approximately rectangular with a wingspan (the length perpendicular to the fl ow 

direction) of 17.5 m and a chord (the length parallel to the fl ow direction) of 3 m. 

The airplane is fl ying at standard sea level with a velocity of 200 m/s. If the fl ow 

is considered to be completely laminar, calculate the boundary layer thickness 

at the trailing edge and the total skin friction drag. Assume that the wing is 

approximated by a fl at plate. Assume incompressible fl ow.  

  4.35   Using the scenario and values from    Prob. 4.34 , assume that the fl ow is completely 

turbulent. Calculate the boundary layer thickness at the trailing edge and the total 

skin friction drag. Compare these turbulent results with the laminar results from 

   Prob. 4.34 .  

  4.36   If the critical Reynolds number for transition is 10 6 , calculate the skin friction drag 

for the wing in    Prob. 4.34 .  

  4.37   Refl ect back to the fundamental equations of fl uid motion dicussed in the early 

sections of this chapter. Sometimes these equations were expressed in terms of 

differential equations; for the most part, though, we obtained algebraic relations 

by integrating the differential equations. However, it is useful to think of the 

differential forms as relations that govern the change in fl ow fi eld variables in an 

infi nitesimally small region around a point in the fl ow. ( a ) Consider a point in 

an inviscid fl ow, where the local density is 1.1 kg/m 3 . As a fl uid element sweeps 

through this point, it is experiencing a spatial change in velocity of 2 percent per 

millimeter. Calculate the corresponding spatial change in pressure per millimeter 

at this point if the velocity at the point is 100 m/s. ( b ) Repeat the calculation for 

the case in which the velocity at the point is 1000 m/s. What can you conclude by 

comparing your results for the low-speed fl ow in part ( a ) with the results for the 

high-speed fl ow in part ( b )?  

  4.38   The type of calculation in    Prob. 4.3  is a classic one for low-speed, incompressible 

fl ow; that is, given the free-stream pressure and velocity and the velocity at 

some other point in the fl ow, calculate the pressure at that point. In a high-speed 

compressible fl ow, Mach number is more fundamental than velocity. Consider an 

airplane fl ying at Mach 0.7 at a standard altitude of 3 km. At a point on the wing, 

the airfl ow Mach number is 1.1. Calculate the pressure at this point. Assume an 

isentropic fl ow.  

  4.39   Consider an airplane fl ying at a standard altitude of 25,000 ft at a velocity of 

800 ft/s. To experience the same dynamic pressure at sea level, how fast must the 

airplane be fl ying?  

  4.40   In    Sec. 4.9  we defi ned hypersonic fl ow as that fl ow where the Mach number is 5 or 

greater. Wind tunnels with a test-section Mach number of 5 or greater are called 

hypersonic wind tunnels. From    Eq. (4.88) , the exit-to-throat area ratio for supersonic 

exit Mach numbers increases as the exit Mach number increases. For hypersonic 

Mach numbers, the exit-to-throat ratio becomes extremely large, so hypersonic 

wind tunnels are designed with long, high-expansion-ratio nozzles. In this and the 
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following problems, we examine some special characteristics of hypersonic wind 

tunnels. Assume that wish to design a Mach 10 hypersonic wind tunnel using air as 

the test medium. We want the static pressure and temperature in the test stream to 

be that for a standard altitude of 55 km. Calculate ( a ) the exit-to-throat area ratio, 

( b ) the required reservoir pressure (in atm), and ( c ) the required reservoir temperature. 

Examine these results. What do they tell you about the special (and sometimes 

severe) operating requirements for a hypersonic wind tunnel?  

  4.41   Calculate the exit velocity of the hypersonic tunnel in    Prob. 4.40 .  

  4.42   Let us double the exit Mach number of the tunnel in    Prob. 4.40  simply by adding 

a longer nozzle section with the requisite expansion ratio. Keep the reservoir 

properties the same as those in    Prob. 4.40 . Then we have a Mach 20 wind tunnel, 

with test-section pressure and temperature considerably lower than in    Prob. 4.40 ; 

that is, the test-section fl ow no longer corresponds to conditions at a standard 

altitude of 55 km. Be that as it may, we have at least doubled the Mach number 

of the tunnel. Calculate ( a ) the exit-to-throat area ratio of the Mach 20 nozzle and 

( b ) the exit velocity. Compare these values with those for the Mach 10 tunnel in 

   Probs. 4.40  and    4.41 . What can you say about the differences? In particular, note 

the exit velocities for the Mach 10 and Mach 20 tunnels. You will see that they are 

not much different. What is causing the big increase in exit Mach number?  

  4.43   The results of    Example 4.4  showed that the aerodynamic force on a body is 

proportional to the square of the free-stream velocity. This is strictly true, 

however, only when the aerodynamic force is due to the pressure exerted on the 

surface and when the fl ow is incompressible. When the aerodynamic force is also 

due to the distribution of frictional shear stress over the surface and/or the fl ow is 

compressible, the “velocity squared” law does not strictly hold. The purpose of 

this problem is to examine how the friction drag on a body varies with free-stream 

velocity for an incompressible fl ow. 

  Consider a square fl at plate at zero incidence angle to a low-speed incompressible 

fl ow. The length of each side is 4 m. Assume that the transition Reynolds number 

is 5 × 10 5  and that the free-stream properties are those at standard sea level. 

Calculate the friction drag on the fl at plate when the free-stream velocity is 

( a ) 20 m/s and when it is ( b ) 40 m/s. ( c ) Assuming that the friction drag,  D   f  , varies 

with velocity as  V n
∞VV    , calculate the value of the exponent  n  based on the answers 

from ( a ) and ( b ). How close does  n  come to 2? That is, how close is the friction 

drag to obeying the velocity squared law?  

  4.44   Consider the incompressible viscous fl ow over a fl at plate. Following the theme set 

in    Prob. 4.43 , show  analytically  that ( a ) for fully turbulent fl ow, skin friction drag 

varies as  V∞VV 1 8    , and ( b ) for fully laminar fl ow, skin friction drag varies as  V∞
1.    .  

4.45   Consider compressible viscous fl ow over the same fl at plate as in    Prob. 4.43 . 

Assume a completely turbulent boundary layer on the plate. The free-stream 

properties are those at standard sea level. Calculate the friction drag on the fl at 

plate when ( a )  M ∞   = 1 and ( b )  M ∞   = 3. ( c ) Assuming that the friction drag,  D   f  , 

varies with velocity as  V n
∞VV    , calculate the value of the exponent  n  based on the 

answers from ( a ) and ( b ).  Note:  This problem examines the combined effect of 

compressibility and friction on the “velocity squared” law, in the same spirit of 

   Probs. 4.43  and    4.44 , which isolated the effect of friction in an incompressible fl ow.  

  4.46   Consider a long pipe fi lled with air at standard sea-level conditions. Let x be 

the longitudinal coordinate measured along the pipe. The air is stationary inside 
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the pipe, that is, the fl ow velocity is zero everywhere inside the pipe. A small 

fi recracker is mounted inside the tube at an axial location x = 0. When the 

fi recracker is detonated, two weak pressure disturbances (pressure waves) are 

created at x = 0 that propagate along the pipe, one to the right and the other to 

the left. Assume that these weak pressure distributions travel at the local speed 

of sound. Using SI units, calculate:  (a)  the speed of the waves relative to the 

pipe, and  (b)  the x-location of each wave 0.2 seconds after detonation of the 

fi recrackers.  

  4.47   Repeat    Prob. 4.46  for the case in which the air inside the pipe is fl owing from left 

to right in the direction of the positive x-axis with a fl ow velocity of:  (a)  30 m/s, 

and  (b)  400 m/s.  

  4.48   Consider an element of air in the standard atmosphere at a standard altitude 

of 1000 m. Assume that you somehow raise this element of air  isentropically  

to a standard altitude of 2000 m, where the element now takes on the standard 

pressure at 2000 m. Calculate the density of this isentropically raised element of 

air and compare it with the density of its neighboring elements of air that all have 

a density equal to the standard density at 2000 m. What does this say about the 

stability of the atmosphere in this case?  

  NOTE:  The properties of the standard atmosphere are based on statics, that is, 

an element of fl uid that is stationary, where the pressure change is dictated by 

the hydrostatic equation, Eq. (3.2). An isentropic process is not relevant to the 

establishment of the standard atmosphere. Indeed, a purpose of this question is to 

demonstrate that the changes in atmospheric properties with altitude are quite different 

from the changes corresponding to an isentropic process. 

  4.49   Consider a low-speed wind tunnel (see    Fig. 4.15 ) that is a constant width of 2 m 

throughout its length (i.e., each cross section of the tunnel is a rectangle of width 

2 m). The entrance and exit heights of the nozzle are 4 and 0.5 m, respectively. 

The airfl ow velocity in the test section is 120 mph. Calculate the airfl ow velocity 

in m/sec at the entrance to the nozzle.  

  4.50   The air pressure in the reservoir of the tunnel considered in Prob. 4.49 is 1 atm. 

Calculate the pressure in the test section in N/m 2 . Assume that the air in the tunnel 

is at standard sea-level density.  

  4.51   The wind tunnel in Probs. 4.49 and 4.50 has a diffuser that is slightly rounded 

at the inlet (a sharp corner at the inlet in a subsonic fl ow will cause undesirable 

fl ow separation), and then diverges with straight upper and lower walls, each at 

15° relative to the horizontal. Calculate the rate of change of area with respect to 

distance along the diffuser length (ignore the slightly rounded entrance).  Note:  
This is simply a problem in geometry, not aerodynamics.  

  4.52   Consider the fl ow through the wind tunnel in Prob. 4.49. The entrance and exit 

heights of the diffuser are 0.5 and 3.5 m, respectively. What are the fl ow velocities 

at the entrance and exit of the diffuser?  

  4.53   Consider the wind tunnel and fl ow conditions described in Probs. 4.49–4.52. 

Calculate the rate of change of velocity with respect to distance at  (a)  the diffuser 

inlet, and  (b)  the diffuser exit.  

  4.54   Continuing with the wind tunnel described in Probs. 4.49–4.53, calculate the rate 

of change of pressure with respect to distance at  (a)  the diffuser inlet, and  (b)  the 

diffuser exit.  
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  4.55   Calculate the length of the diffuser of the wind tunnel described in Probs. 

4.49–4.54.  

  4.56   The diffuser of a wind tunnel or at the inlet of an air-breathing jet engine is 

designed to slow the fl ow. Consequently, from Euler’s equation, Eq. (4.8) in 

the text, the pressure always increases with distance along the diffuser. Hence, 

in terms of the discussion in Sec. 4.20, the fl ow in the diffuser is experiencing 

an  adverse  pressure gradient, which encourages the boundary layer to separate 

from the wall of the diffuser, thus resulting in a loss of total pressure and 

reducing the aerodynamic effi ciency of the diffuser. For the wind tunnel 

and fl ow conditions described in Probs. 4.49–4.55, a criterion that predicts 

approximately the location along the wall of the diffuser where a laminar 

boundary will separate is given by x s  = 183( dp/dx ) −1  ave  where x s  is the separation 

location in m and ( dp/dx ) ave  is the average of the pressure gradients in N/m 3  at 

the entrance and exit of the diffuser assuming no fl ow separation. Assuming a 

laminar boundary layer along the diffuser wall, calculate the location of fl ow 

separation in the diffuser.  

  4.57   For the conditions of Prob. 4.56, but assuming a turbulent boundary layer, an 

approximate criterion for the separation point is x s  = 506( dp/dx ) –1  ave , where x s  is in 

m. Calculate the location of fl ow separation for a turbulent boundary layer along 

the diffuser wall.  

  4.58   The maximum velocity of the Douglas DC-3 (see Figs. 1.33 and 6.80) is 229 mph 

at an altitude of 7500 ft. Calculate the Mach number of the airplane and the 

pressure sensed by a Pitot tube on the airplane.  

  4.59   The cruising velocity of the Boeing 727 (see Fig. 5.70) is 610 mph at an altitude of 

25,000 ft. Calculate the Mach number of the airplane and the pressure sensed by a 

Pitot tube on the airplane.  

  4.60   The maximum velocity of the Lockheed F-104 (see Figs. 1.34 and 5.40) is 

1328 mph at an altitude of 35,000 ft. Calculate the Mach number of the airplane 

and the pressure sensed by a Pitot tube on the airplane.  

 4.61    On October 3, 1967, test pilot William “Pete” Knight fl ew the X-15 hypersonic 

research vehicle to a world’s speed record for an airplane; he achieved Mach 6.7 at 

an altitude of 102,100 ft.  

 (a) What was the maximum velocity in ft/s?

 (b) What was the fl ow temperature at the nose of the vehicle?

 4.62    The  F-80 subsonic jet fi ghter is shown in Fig. 4.24. The air inlets on both sides of 

the fuselage are designed to slow the airfl ow through the inlets to a lower Mach 

number before feeding into the engine inside the fuselage. Consider a case where 

the fl ow entering the inlet is at Mach 0.6 where the inlet cross-sectional area is 

3 ft2. At a given location inside the inlet, the cross-sectional area is 4 ft2.  Calculate 

the fl ow Mach number at this location. Hint: Use Eq. (4.88).  

 4.63    The Lockheed F-80, designed by the famous airplane designer Kelly Johnson at 

the Lockheed Skunk Works, was one of the fi rst jet airplanes to use a boundary 

layer bleed device. This was a duct with a rectangular entrance mounted on the 

side of the fuselage at the entrance of each side inlet. The boundary layer bleed 

duct was designed to entrain the low energy boundary layer on the fuselage before 

it could enter the inlet. This way, the fl ow entering the inlet and passing into the jet 

engine was of a higher aerodynamic quality with a minimal loss of total pressure. 
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Consider the F-80 fl ying at Mach 0.6 at 20,000 ft. The boundary layer bleed duct 

is located 2.89 m downstream of the nose of the F-80. The surface of the fuselage 

is the bottom surface of the rectangular bleed duct. In order to ingest the boundary 

layer that grows along the fuselage surface, calculate the necessary height of the 

rectangular entrance of the boundary layer bleed device. Assume the fuselage 

boundary layer is turbulent, incompressible, and its growth is the same as that on a 

fl at plate.  

 4.64    Consider the incompressible laminar fl ow over a fl at plate of length 3 m at 

standard sea level conditions. The fl ow velocity is 100 m/s. For the laminar 

boundary layer, calculate:  

 (a) The boundary layer thickness at the downstream edge of the plate.

 (b) The total skin friction drag coeffi cient.

 (c) The drag per unit span.

 4.65    Consider the same fl at plate boundary layer as described in Problem 4.64. Along 

each streamline within the boundary layer, there is a loss of total pressure due to 

frictional dissipation. Assume that the velocity profi le across the boundary layer is 

given by  

 y/δ = (V/Ve)
2

  where Ve is the velocity at the edge of the boundary layer, equal to the freestream 

velocity. (Note: The velocity profi le given here is only a crude approximation in 

order to have an analytic expression to use in this problem. Do not use it for any 

other application.) Using some of the results from Problem 4.64, calculate the 

loss of total pressure (per unit span) integrated across the boundary layer at the 

downstream edge of the plate. Compare your result with the total skin friction drag 

per unit span exerted on the plate as obtained in Problem 4.64.      
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 Airfoils, Wings, and Other 
Aerodynamic Shapes 

   There can be no doubt that the inclined plane is the true principle of aerial navigation 

by mechanical means. 

   Sir George Cayley, 1843     

    5.1  INTRODUCTION 
  It is remarkable that the modern airplane as we know it today, with its fi xed wing 
and vertical and horizontal tail surfaces, was fi rst conceived by George Cayley 
in 1799, more than 200 years ago. He inscribed his fi rst concept on a silver 
disk (presumably for permanence), shown in Fig. 1.5. It is also remarkable that 
Cayley recognized that a curved surface (as shown on the silver disk) creates 
more lift than a fl at surface. Cayley’s fi xed-wing concept was a true revolution 
in the development of heavier-than-air fl ight machines. Prior to his time, aviation 
enthusiasts had been doing their best to imitate mechanically the natural fl ight of 
birds, which led to a series of human-powered fl apping-wing designs (ornithop-
ters), which never had any real possibility of working. In fact, even Leonardo da 
Vinci devoted a considerable effort to the design of many types of ornithopters in 
the late 15th century, of course to no avail. In such ornithopter designs, the fl ap-
ping of the wings was supposed to provide simultaneously both lift (to sustain the 
machine in the air) and propulsion (to push it along in fl ight). Cayley is responsi-
ble for directing people’s minds away from imitating bird fl ight and for separat-
ing the two principles of lift and propulsion. He  proposed and  demonstrated that 
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lift can be obtained from a fi xed, straight wing inclined to the airstream, while 
propulsion can be provided by some independent mechanism such as paddles 
or airscrews. For this concept and for his many other thoughts and inventions in 
aeronautics, Sir George Cayley is called the parent of modern aviation. A more 
detailed discussion of Cayley’s contributions appears in Ch. 1. However, we 
emphasize that much of the technology discussed in the present chapter had its 
origins at the beginning of the 19th century—technology that came to fruition on 
December 17, 1903, near Kitty Hawk, North Carolina. 

 The following sections develop some of the terminology and basic aerody-

namic fundamentals of airfoils and wings. These concepts form the heart of air-

plane fl ight, and they represent a major excursion into aeronautical engineering. 

The road map for this chapter is shown in    Fig. 5.1 . There are basically three main 

topics in Ch. 5, each having to do with the aerodynamic characteristics of a class 

of geometric shapes: airfoils, wings, and general body shapes. These three topics 

are shown in the three boxes at the top of our road map. We fi rst examine the 

aerodynamic characteristics of airfoils and then run down the various aspects 

noted in the left column in    Fig. 5.1 . This is a long list, but we will fi nd that many 

thoughts on this list carry over to wings and bodies as well. We then move to the 

This chapter deals with lift and drag on aerody-

namic bodies, principally airfoil shapes and wings. 

These are real aerospace engineering applications— 

applications that extend the basic material from 

Chs. 1 to 4 well into the practical engineering world. 

In this chapter, you will learn

1. How to calculate lift and drag on airfoil shapes.

2. How to calculate lift and drag on a whole wing 

of an airplane.

3. Why lift and drag for a wing are different 

values from that for the airfoil shape that makes 

up the wing.

4. What happens to lift and drag when an airfoil or 

a wing fl ies near or beyond the speed of sound.

5. Why some airplanes have swept wings and 

others have straight wings.

6. Why some airplanes have thin airfoils and 

others have thick airfoils.

7. Why optimum wing shapes for supersonic fl ight 

are different than for subsonic fl ight. 

This is all good stuff—some of the bread and but-

ter of aerospace engineering. You will learn all 

this, and more, in this chapter. For example, at 

the Smithsonian’s National Air and Space Mu-

seum, this author is frequently asked by visitors 

how a wing produces lift—a natural and perfectly 

innocent question. Unfortunately, there is no sat-

isfactory one-liner for an answer. Even a single 

 paragraph does not suffi ce. After a hundred years 

since the Wright Flyer, different people take dif-

ferent points of view about what is the most funda-
mental mechanism that produces lift, some pressing 

their views with almost religious fervor. A whole 

section of this chapter (Sec. 5.19) addresses how 

lift is produced, what this author considers to be the 

most fundamental explanation, and how it relates to 

alternate explanations.

With this chapter, you will begin to concen-

trate on airplanes, winged space vehicles such as the 

Space Shuttle, and any vehicle that fl ies through the 

atmosphere. This chapter greatly accelerates our in-

troduction to fl ight. Hang on, and enjoy the ride.

PREVIEW BOX
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central column for a discussion of fi nite wings, and we will see how the aerody-

namics of a wing differs from that of an airfoil. Both airfoils and wings can be 

classifi ed as slender bodies. In contrast, the third column in    Fig. 5.1  deals with a 

few examples of  blunt bodies : cylinders and spheres. We defi ne and examine the 

distinctions between slender and blunt aerodynamic shapes. Finally, we discuss 

how aerodynamic lift is produced. Although we have alluded to this in previous 

chapters, it is appropriate at the end of the chapter dealing with the aerodynam-

ics of various shapes to have a  defi nitive  discussion on how nature generates 

lift. Various physical explanations have been used in the past to explain how 

lift is generated, and there have been many spirited discussions in the literature 

about which is proper or more fundamental. We attempt to put all these views in 

perspective at the end of this chapter, as represented by the box at the bottom of 

   Fig. 5.1 . As you progress through this chapter, make certain to check our road 

map frequently so you can see how the details of our discussions fi t into the 

grand scheme laid out in    Fig. 5.1 . 

         5.2  AIRFOIL NOMENCLATURE 
  Consider the wing of an airplane, as sketched in    Fig. 5.2 . The cross-sectional 
shape obtained by the intersection of the wing with the perpendicular plane 
shown in    Fig. 5.2  is called an  airfoil . Such an airfoil is sketched in    Fig. 5.3 , 
which illustrates some basic terminology. The major design feature of an airfoil 

Aerodynamic shapes

WingsAirfoils Bodies

Nomenclature Induced drag Cylinders

SpheresChange in lift slope

Swept wings

Flaps

Aerodynamic coefficients
Experimental data

Compressibility corrections

Supersonic speeds
a. Lift
b. Wave drag

Transonic speeds
a. Critical Mach number
b. Drag-divergence
    

Obtaining lift coefficient

How lift is produced

from pressure coefficient

Mach number

Figure 5.1 Road map for Ch. 5.
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is the  mean camber line,  which is the locus of points halfway between the upper 
and lower surfaces, as measured perpendicular to the mean camber line itself. 
The most forward and rearward points of the mean camber line are the  leading  
and  trailing edges,  respectively. The straight line connecting the leading and 
trailing edges is the  chord line  of the airfoil, and the precise distance from the 
leading to the trailing edge measured along the chord line is simply designated 
the  chord  of the airfoil, given by the symbol  c . The  camber  is the maximum 
distance between the mean camber line and the chord line, measured perpen-
dicular to the chord line. The camber, the shape of the mean camber line, and to 
a lesser extent the thickness distribution of the airfoil essentially control the lift 
and moment characteristics of the airfoil. 

         More defi nitions are illustrated in    Fig. 5.4  a , which shows an airfoil in-

clined to a stream of air. The free-stream velocity  V  ∞  is the velocity of the air 

Figure 5.2 Sketch of a wing and airfoil.

Figure 5.3 Airfoil nomenclature. The shape shown here is a NACA 4415 airfoil.
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far upstream of the airfoil. The  direction  of  V  ∞  is defi ned as the  relative wind . 

The angle between the relative wind and the chord line is the  angle of attack  α 

of the airfoil. As described in Chs. 2 and 4, an aerodynamic force is created by 

the pressure and shear stress distributions over the wing surface. This resultant 

force is shown by the vector  R  in    Fig. 5.4  a . In turn, the aerodynamic force  R  can 

be resolved into two forces, parallel and perpendicular to the relative wind. The 

 drag D  is always defi ned as the component of the aerodynamic force  parallel to 
the relative wind . The  lift L  is always defi ned as the component of the aerody-

namic force  perpendicular to the relative wind . 

     In addition to lift and drag, the surface pressure and shear stress distribu-

tions create a  moment M  that tends to  rotate  the wing. To see more clearly how 

(a)

V∞

�

L N
R

D

A �

(b)

Figure 5.4 Sketch showing the defi nitions of (a) lift, drag, moments, angle of attack, and 

relative wind; (b) normal and axial force.



5.2  Airfoil Nomenclature 293

this moment is created, consider the surface pressure distribution over an airfoil, as 

sketched in    Fig. 5.5  (we will ignore the shear stress for this discussion). Consider 

just the pressure on the top surface of the airfoil. This pressure gives rise to a net 

force  F  1  in the general downward direction. Moreover,  F  1  acts through a given point 

on the chord line, point 1, which can be found by integrating the pressure times 

distance over the surface (analogous to fi nding the centroid or center of pressure 

from integral calculus). Now consider just the pressure on the bottom surface of 

the airfoil. This pressure gives rise to a net force  F  2  in the general upward direction, 

acting through point 2. The total aerodynamic force on the airfoil is the  summation  

of  F  1  and  F  2 , and lift is obtained when  F  2  >  F  1 . However, note from    Fig. 5.5  that 

 F  1  and  F  2  will create a moment that will tend to rotate the airfoil. The value of this 

aerodynamically induced moment depends on the point about which we choose to 

take moments. For example, if we take moments about the leading edge, the aerody-

namic moment is designated  M  LE . It is more common in the case of subsonic airfoils 

to take moments about a point on the chord at a distance  c /4 from the leading edge, 

the  quarter-chord point,  as illustrated in    Fig. 5.4  a . This moment about the quarter 

chord is designated  M   c /4 . In general,  M  LE  ≠  M   c /4 . Intuition will tell you that lift, drag, 

and moments on a wing will change as the angle of attack α changes. In fact, the 

variations of these aerodynamic quantities with α  represent some of the most im-

portant information an airplane designer needs to know. We will address this matter 

in the following sections. However, we point out that although  M  LE  and  M   c /4  are both 

functions of α , there exists a certain point on the airfoil about which moments es-

sentially  do not  vary with α . This point is defi ned as the  aerodynamic center,  and the 

moment about the aerodynamic center is designated  M  ac . By defi nition,

 
Mac const=

       

Note:  Length of the arrow denoting pressure
is proportional to p – pref, where pref is an
arbitrary reference pressure slightly less than
the minimum pressure on the airfoil.

Figure 5.5 The physical origin of moments on an airfoil.
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independent of the angle of attack. The location of the aerodynamic center for 
real aerodynamic shapes can be found from experiment. For low-speed sub-
sonic airfoils, the aerodynamic center is generally very close to the quarter-
chord point. 

     Returning to    Fig. 5.4  a , we recall that the resultant aerodynamic force  R  can 

be resolved into components perpendicular and parallel to the relative wind—

the lift and drag, respectively. An alternative to this system is to resolve  R  into 

components perpendicular and parallel to the  chord line,  as shown in    Fig. 5.4  b . 

These components are called the  normal force  and  axial force  and are denoted by 

 N  and  A , respectively, in    Fig. 5.4  b , shown by the heavy solid arrows. Also shown 

in    Fig. 5.4  b  are the lift and drag,  L  and  D , respectively, represented by the heavy 

dashed arrows. Lift and drag are easily expressed in terms of  N  and  A  from the 

geometry shown in    Fig. 5.4  b :

  L N AN cos iα αA sA− in   (5.1)        

  D N A+N sin α αA+ cA+ os   (5.2)        

For airfoils and wings, the use of  N  and  A  to describe the aerodynamic force dates 
back as early as the work of Otto Lilienthal in 1889, as published in his book 
Bird Flight as the Basis of Aviation  (see Sec. 1.5). Indeed, the famous “Lilienthal 
tables,” which were used by the Wright brothers to design their early gliders 
(see Sec. 1.8), were tables dealing with normal and axial forces. The Wrights 
preferred to think in terms of lift and drag, and they converted Lilienthal’s results 
by using    Eqs. (5.1)  and    (5.2) . Today the use of  N  and  A  to describe the aerody-
namic force on airfoils and wings is generally passé;  L  and  D  are almost always 
the system used by choice. However,  N  and  A  are still frequently used to denote 
the aerodynamic force on bodies of revolution, such as missiles and projectiles. 
Thus, it is useful to be familiar with both systems of expressing the aerodynamic 
force on a body.   

   5.3  LIFT, DRAG, AND MOMENT COEFFICIENTS 
  Again appealing to intuition, we note that it makes sense that for an airplane in 
fl ight, the actual magnitudes of  L ,  D , and  M  depend not only on α, but also on 
velocity and altitude. In fact, we can expect that the variations of  L ,  D , and  M
depend at least on 

1.   Free-stream velocity  V  ∞ .  

2.   Free-stream density ρ ∞  (that is, altitude).  

3.   Size of the aerodynamic surface. For airplanes, we will use the  wing area S  

to indicate size.  

4.   Angle of attack α.  

5.   Shape of the airfoil.  

6.   Viscosity coeffi cient μ ∞  (because the aerodynamic forces are generated in 

part from skin friction distributions).  
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7.   Compressibility of the airfl ow. In Ch. 4 we demonstrated that 

compressibility effects are governed by the value of the free-stream Mach 

number  M  ∞  =  V  ∞ / a  ∞ . Because  V  ∞  is already listed, we can designate  a  ∞  as 

our index for compressibility.   

Hence, we can write that for a given shape of airfoil at a given angle of attack,

L f S ∞( ,V∞VV , )a∞aρ μS∞ , ,S   (5.3)

and  D  and  M  are similar functions. 
 In principle, for a given airfoil at a given angle of attack, we could fi nd the 

variation of  L  by performing myriad wind tunnel experiments wherein  V  ∞ , ρ ∞ , 

S , μ ∞ , and  a  ∞  are individually varied, and then we could try to make sense out of 

the resulting huge collection of data. This is the hard way. Instead we ask: Are 

there  groupings  of the quantities  V  ∞ , ρ ∞ ,  S , μ ∞ ,  a  ∞ , and  L  such that    Eq. (5.3)  can 

be written in terms of fewer parameters? The answer is yes. In the process of 

developing this answer, we will gain some insight into the beauty of nature as 

applied to aerodynamics. 

 The technique we will apply is a simple example of a more general theoreti-

cal approach called  dimensional analysis . Let us assume that    Eq. (5.3)  is of the 

functional form

  L Z V Sa b d e f
∞VV ∞ρ μS ad e f

∞ ∞  (5.4)

where  Z ,  a ,  b ,  d ,  e , and  f  are dimensionless constants. However, no matter what 
the values of these constants may be, it is a physical fact that the dimensions 
of the left and right sides of    Eq. (5.4)  must match; that is, if  L  is a force (say 
in newtons), then the net result of all the exponents and multiplication on the 
right side must also produce a result with the dimensions of a force. This con-
straint will ultimately give us information about the values of  a ,  b , and so on. 
If we designate the basic dimensions of mass, length, and time by  m ,  l , and  t , 
respectively, then the dimensions of various physical quantities are as given in 
the following:    

 Physical Quantity  Dimensions 

  L    ml  /  t   2  (from Newton’s second law) 
  V  ∞    l  /  t  
 ρ ∞    m  /  l   3  
  S    l   2  
  a  ∞    l  /  t  
 μ ∞    m  / ( lt ) 

  Thus equating the  dimensions  of the left and right sides of    Eq. (5.4) , we obtain
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Consider mass  m . The exponent of  m  on the left side is 1, so the exponents of 
 m  on the right must add to 1. Hence

  1= b f+  (5.6)

Similarly, for time  t  we have

− = − −2 a e− f  (5.7)

and for length  l ,

1 3 2+ 2 −a b3 d e+ f  (5.8)

Solving    Eqs. (5.6)  to    (5.8)  for  a ,  b , and  d  in terms of  e  and  f  yields

  b f   (5.9)        

  a e f−2   (5.10)        

  d
f= −1
2

  (5.11)        

Substituting    Eqs. (5.9)  to    (5.11)  into    (5.4)  gives

  L Z f f fS e f
∞S( )V∞VV 2 1e f 2f /ρ μS afS e f

∞ ∞
/2f /

  (5.12)        

Rearranging    Eq. (5.12) , we fi nd
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(5.13)        

Note that  a  ∞  /  V  ∞  = 1/ M  ∞ , where  M  ∞  is the free-stream Mach number. Also note 
that the dimensions of  S  are  l  2 ; hence the dimension of  S  1/2  is  l , purely a length. 
Let us choose this length to be the chord  c  by convention. Hence, μ ∞  /(ρ ∞   V  ∞   S  1/2 ) 
can be replaced in our consideration by the equivalent quantity

 

μ
ρ

∞

∞ ∞V c∞        

However, μ ∞  /(ρ ∞    V  ∞    c ) ≡ 1/Re, where Re is based on the chord length  c . 
   Equation (5.13)  thus becomes
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We now  defi ne  a new quantity, called the  lift coeffi cient c   l  , as
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Then    Eq. (5.14)  becomes

  
L V Scl∞ ∞VV1
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(5.16)        
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Recalling from Ch. 4 that the dynamic pressure is  q Vqq ∞VV1
2

2ρ    , we trans-

form    Eq. (5.16)  into

L q S cl×q

↑ ↑ ↑ ↑
∞qqqq

Lift
Dynamic

pressure

Wing

area

LiLL ft

coefficient
  

(5.17)

 Look what has happened!    Equation (5.3) , written from intuition but not very 

useful, has cascaded to the simple, direct form of    Eq. (5.17) , which contains a tre-

mendous amount of information. In fact,    Eq. (5.17)  is one of the most important 

relations in applied aerodynamics. It says that the lift is directly proportional to 

the dynamic pressure (and hence to the square of the velocity). It is also directly 

proportional to the wing area  S  and to the lift coeffi cient  c   l  . In fact,    Eq. (5.17)  can 

be turned around and used as a  defi nition  for the lift coeffi cient:

c
L

q S
l ≡

qq
  

(5.18)

That is, the lift coeffi cient is always defi ned as the aerodynamic lift divided by 
the dynamic pressure and some reference area (for wings, the convenient refer-
ence area  S , as we have been using). 

 The lift coeffi cient is a function of  M  ∞  and Re as refl ected in    Eq. (5.15) . 

Moreover, because  M  ∞  and Re are dimensionless and because  Z  was assumed 

initially as a dimensionless constant, from    Eq. (5.15)   c   l   is dimensionless. This is 

also consistent with    Eqs. (5.17)  and    (5.18) . Also recall that our derivation was 

carried out for an airfoil of given shape and at a given angle of attack α. If α were 

to vary, then  c   l   would also vary. Hence, for a given airfoil,

c f M∞MM( , ,Re)  (5.19)

This relation is important. Fix in your mind that lift coeffi cient is a function of 
angle of attack, Mach number, and Reynolds number. 

 To appreciate the value of the relationship expressed by    Eq. (5.19) , let us as-

sume that we are given a particular aerodynamic shape, and we wish to measure 

the lift and how it varies with the different parameters. So we go to the laboratory 

and set up a series of wind tunnel tests to measure the lift on our given shape. 

Refl ecting on    Eq. (5.3) , we know that the lift of the given shape at a given orien-

tation (angle of attack) to the fl ow depends on the free-stream velocity, density, 

reference area, viscosity coeffi cient, and speed of sound; but we do not know 

precisely  how L  varies with a change in these parameters. We wish to fi nd out 

how. We begin by running a set of wind tunnel tests, making measurements of 

 L  where  V  ∞  is varied but  S , m ∞ , and  a  ∞  are held fi xed. This gives us a stack of 

wind tunnel data from which we can obtain a correlation of the variation of  L
with  V  ∞ . Next we run another set of wind tunnel tests in which r ∞  is varied but 

V  ∞ ,  S , m ∞ , and  a  ∞  are held fi xed. This gives us a second stack of wind tunnel 
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data from which we can obtain a correlation of the variation of  L  with r ∞ . Then 

we run a third set of wind tunnel tests in which  S  is varied, holding everything 

else constant. This gives us a third stack of wind tunnel data from which we can 

obtain a correlation of the variation of  L  with  S . We repeat this process two more 

times, alternately holding m ∞  constant and then  a  ∞  constant. When we are fi n-

ished, we end up with fi ve individual stacks of wind tunnel data from which we 

can (in principle) obtain the precise variation of  L  with  V  ∞ , r ∞ ,  S , m ∞ , and  a  ∞ , as 

represented by the functional relation in    Eq. (5.3) . As you can probably already 

appreciate, this represents a lot of personal effort and a lot of wind tunnel testing 

at great fi nancial expense. However, if we use our knowledge obtained from our 

dimensional analysis—namely    Eq. (5.19) —we can realize a great savings of ef-

fort, time, and expense. Instead of measuring  L  in fi ve sets of wind tunnel tests 

as previously described, let us measure the variation of  lift coeffi cient  [obtained 

from  c   l   =  L /( q  ∞   S )]. Keying on    Eq. (5.19)  for a given shape at a given angle of 

attack, we run a set of wind tunnel tests in which  c   l   is measured, with  M  ∞  varied 

but Re held constant. This gives us one stack of wind tunnel data from which 

we can obtain a correlation of the variation of  c   l   with  M  ∞ . Then we run a second 

set of wind tunnel tests, varying Re and keeping  M  ∞  constant. This gives us a 

second stack of data from which we can obtain a correlation of the variation of  c   l   

with Re. And this is all we need; we now know how  c   l   varies with  M  ∞  and Re 

for the given shape at the given angle of attack. With  c   l   we can obtain the lift 

from    Eq. (5.17) . By dealing with the lift coeffi cient instead of the lift itself, and 

with  M  ∞  and Re instead of r ∞ ,  V  ∞ ,  S , m ∞ , and  a  ∞ , we have ended up with only two 

stacks of wind tunnel data rather than the fi ve we had earlier. Clearly, by using 

the dimensionless quantities  c   l  ,  M  ∞ , and Re, we have achieved a great economy 

of effort and wind tunnel time. 

 But the moral to this story is deeper yet. Dimensional analysis shows that  c   l   is a 

function of  Mach number  and  Reynolds number,  as stated in    Eq. (5.19) , rather than 

just individually of ρ ∞ ,  V  ∞ , μ ∞ ,  a  ∞ , and the size of the body. It is the  combination  of 

these physical variables in the form of  M  ∞  and Re that counts. The Mach number 

and the Reynolds number are powerful quantities in aerodynamics. They are called 

 similarity parameters  for reasons that are discussed at the end of this section. We 

have already witnessed, in Ch. 4, the power of  M  ∞  in governing compressible fl ows. 

For example, just look at Eqs. (4.73) through (4.75) and (4.79); only the  Mach num-
ber  and the ratio of specifi c heats appear on the right sides of these equations. 

 Performing a similar dimensional analysis on drag and moments, beginning 

with relations analogous to    Eq. (5.3) , we fi nd that

  D q Scd∞qq   (5.20)        

where  c   d   is a dimensionless  drag coeffi cient  and

  M q Sccm∞qq   (5.21)        

where  c   m   is a dimensionless  moment coeffi cient . Note that    Eq. (5.21)  differs 
slightly from    Eqs. (5.17)  and    (5.20)  by the inclusion of the chord length  c . This 
is because  L  and  D  have dimensions of a force, whereas  M  has dimensions of a 
force–length product. 
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 The importance of    Eqs. (5.17)  to    (5.21)  cannot be overemphasized. They 

are fundamental to all applied aerodynamics. They are readily obtained from 

dimensional analysis, which essentially takes us from loosely defi ned functional 

relationships [such as    Eq. (5.3) ] to well-defi ned relations between dimensionless 

quantities [   Eqs. (5.17)  to    (5.21) ]. In summary, for an airfoil of given shape, the 

dimensionless lift, drag, and moment coeffi cients have been defi ned as

c
L

q S
c

D

q S
c

M

q Sc
l d

S
c m= =cdc =

q Sq qq qq
(5.22)

where

c f M f M c f Ml dfff ∞MM ∞MMffdffff ffd 3ff( R ) ,Re) ( , ,Re)M c f=M cdM cMM ffdc =dc ffdcMM  (5.23)

 Refl ecting for an instant, we fi nd that there may be a confl ict in our aerody-

namic philosophy. On the one hand, Chs. 2 and 4 emphasized that lift, drag, and 

moments on an aerodynamic shape stem from the detailed pressure and shear 

stress distributions on the surface and that measurements and/or calculations of 

these distributions, especially for complex confi gurations, are not trivial under-

takings. On the other hand, the equations in    Eq. (5.22)  indicate that lift, drag, and 

moments can be quickly obtained from simple formulas. The bridge between 

these two outlooks is, of course, the lift, drag, and moment coeffi cients. All the 

physical complexity of the fl ow fi eld around an aerodynamic body is implicitly 

buried in  c   l  ,  c   d  , and  c   m  . Before the simple equations in    Eq. (5.22)  can be used to 

calculate lift, drag, and moments for an airfoil, wing, and body, the appropriate 

aerodynamic coeffi cients must be known. From this point of view, the simplicity 

of    Eq. (5.22)  is a bit deceptive. These equations simply shift the forces of aero-

dynamic rigor from the forces and moments themselves to the appropriate coef-

fi cients instead. So we are now led to these questions: How do we obtain values 

of  c   l  ,  c   d  , and  c   m   for given confi gurations, and how do they vary with α,  M  ∞ , and 

Re? The answers are introduced in the following sections. 

 However, before we leave our discussion of dimensional analysis, it is 

important to elaborate on why  M  ∞  and Re are called  similarity parameters . 

Consider that we have two different fl ows (say a red fl ow and a green fl ow) over 

two bodies that are geometrically similar but are different sizes for the red and 

green fl ows. The red and green fl ows have different values of  V  ∞ , ρ ∞ , μ ∞ , and  a  ∞ , 

but they both have the  same M  ∞  and Re. If  M  ∞  is the same for the red and green 

fl ows and if Re is the same for the red and green fl ows, then from    Eq. (5.23) , 

 c   l  ,  c   d  , and  c   m   measured in the red fl ow will be the  same values  as the  c   l  ,  c   d  , and  c   m   

measured in the green fl ow, even though the red and green fl ows are different 

fl ows. In this case the red and green fl ows are called  dynamically similar  fl ows; 

hence  M  ∞  and Re are called  similarity parameters . The concept of dynamic fl ow 

similarity is elegant, and it goes well beyond the scope of this book. But it is 

mentioned here because of its importance in aerodynamics. The concept of dy-

namic similarity allows measurements obtained in wind tunnel tests of a small-

scale model of an airplane to be applied to the real airplane in free fl ight. If in the 

wind tunnel test (say the red fl ow) the values of  M  ∞  and Re are the  same  as those 
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for the real airplane in free fl ight (say the green fl ow), then  c   l  ,  c   d  , and  c   m   measured 

in the wind tunnel will be  precisely  the same as those values in free fl ight. The 

concept of dynamic similarity is essential to wind tunnel testing. 

 In most wind tunnel tests of small-scale models of real airplanes, every ef-

fort is made to simulate the values of  M  ∞  and Re encountered by the real airplane 

in free fl ight. Unfortunately, due to the realities of wind tunnel design and opera-

tion, this is frequently not possible. In such cases the wind tunnel data must be 

“extrapolated” to the conditions of free fl ight. Such extrapolations are usually ap-

proximations, and they introduce a degree of error when the wind tunnel data are 

used to describe the conditions of full-scale free fl ight. The problem of not being 

able to simultaneously simulate free-fl ight values of  M  ∞  and Re in the same wind 

tunnel is still pressing today, in spite of the fact that wind tunnel testing has been 

going on for almost 150 years. Among other reasons, this is why there are so 

many different wind tunnels at different laboratories around the world.   

   5.4  AIRFOIL DATA 
  A goal of theoretical aerodynamics is to predict values of  c   l  ,  c   d  , and  c   m   from the 
basic equations and concepts of physical science, some of which were discussed 
in previous chapters. However, simplifying assumptions is usually necessary to 
make the mathematics tractable. Therefore, when theoretical results are obtained, 
they are generally not exact. The use of high-speed digital computers to solve the 
governing fl ow equations is now bringing us much closer to the accurate calcu-
lation of aerodynamic characteristics; however, limitations are still imposed by 
the numerical methods themselves, and the storage and speed capacity of current 
computers are still not suffi cient to solve many complex aerodynamic fl ows. As 
a result, the practical aerodynamicist has to rely on direct  experimental  measure-
ments of  c   l  ,  c   d  , and  c   m   for specifi c bodies of interest. 

 A large bulk of experimental airfoil data was compiled over the years by the 

National Advisory Committee for Aeronautics (NACA), which was absorbed in the 

creation of the National Aeronautics and Space Administration (NASA) in 1958. 

Lift, drag, and moment coeffi cients were systematically measured for many airfoil 

shapes in low-speed subsonic wind tunnels. These measurements were carried out on 

straight, constant-chord wings that completely spanned the tunnel test section from 

one side wall to the other. In this fashion, the fl ow essentially “saw” a wing with no 

wingtips, and the experimental airfoil data were thus obtained for “infi nite wings.” 

(The distinction between infi nite and fi nite wings will be made in subsequent sec-

tions.) Some results of these airfoil measurements are given in App. D. The fi rst page 

of App. D gives data for  c   l   and  c   m ,  c /4  versus angle of attack for the NACA 1408 airfoil. 

The second page gives  c   d   and  c   m , ac  versus  c   l   for the same airfoil. Because  c   l   is known 

as a function of α from the fi rst page, the data from both pages can be cross-plotted 

to obtain the variations of  c   d   and  c   m , ac  versus α. The remaining pages of App. D give 

the same type of data for different standard NACA airfoil shapes. 

 Let us examine the variation of  c   l   with α more closely. This variation is 

sketched in    Fig. 5.6 . The experimental data indicate that  c   l   varies  linearly  with 
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α over a large range of angle of attack. Thin-airfoil theory, which is the subject 

of more advanced books on aerodynamics, also predicts the same type of linear 

variation. The slope of the linear portion of the lift curve is designated as  a  0  ≡ 

 dc   l  / d α ≡ lift slope. Note that in    Fig. 5.6 , when α = 0, there is still a positive 

value of  c   l  ; that is, there is still some lift even when the airfoil is at zero angle of 

attack to the fl ow. This is due to the positive camber of the airfoil. All airfoils 

with such camber have to be pitched to some negative angle of attack before 

zero lift is obtained. The value of α when lift is zero is defi ned as the  zero-lift 
angle of attack  α  L =0  and is illustrated in    Fig. 5.6 . This effect is further demon-

strated in    Fig. 5.7 , where the lift curve for a cambered airfoil is compared with 

Figure 5.6 Sketch of a typical lift curve.

Figure 5.7 Comparison of lift curves for cambered and symmetric airfoils.
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that for a symmetric (no camber) airfoil. Note that the lift curve for a symmetric 

airfoil goes through the origin. Refer again to    Fig. 5.6  at the other extreme: For 

large values of α, the linearity of the lift curve breaks down. As α is increased 

beyond a certain value,  c   l   peaks at some maximum value  c   l ,max  and then drops 

precipitously as α is further increased. In this situation, where the lift is rapidly 

decreasing at high α, the airfoil is  stalled . 

         The phenomenon of airfoil stall is of critical importance in airplane design. 

It is caused by fl ow separation on the upper surface of the airfoil. This is illus-

trated in    Fig. 5.8 , which again shows the variation of  c   l   versus α for an airfoil. 

At point 1 on the linear portion of the lift curve, the fl ow fi eld over the airfoil is 

attached to the surface, as pictured in    Fig. 5.8 . However, as discussed in Ch. 4, 

Figure 5.8 Flow mechanism associated with stalling.
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the effect of friction is to slow the airfl ow near the surface; in the presence of 

an adverse pressure gradient, there will be a tendency for the boundary layer to 

separate from the surface. As the angle of attack is increased, the adverse pres-

sure gradient on the top surface of the airfoil will become stronger; and at some 

value of α—the stalling angle of attack—the fl ow becomes separated from the 

top surface. When separation occurs, the lift decreases drastically and the drag 

increases suddenly. This is the picture associated with point 2 in    Fig. 5.8 . (This 

is a good time for the reader to review the discussion of fl ow separation and its 

effect on pressure distribution, lift, and drag in Sec. 4.21.) 

     The nature of the fl ow fi eld over the wing of an airplane that is below, 

just beyond, and way beyond the stall is shown in    Fig. 5.9  a ,  b , and  c , respec-

tively. These fi gures are photographs of a wind tunnel model with a wingspan 

of 6 ft. The entire model has been painted with a mixture of mineral oil and a 

fl uorescent powder, which glows under ultraviolet light. After the wind tunnel 

is turned on, the fl uorescent oil indicates the streamline pattern on the surface 

of the model. In    Fig. 5.9  a , the angle of attack is below the stall; the fl ow is 

fully attached, as evidenced by the fact that the high surface shear stress has 

scrubbed most of the oil from the surface. In    Fig. 5.9  b , the angle of attack is 

Figure 5.9 Surface oil fl ow patterns on a wind tunnel model of a Grumman American 

Yankee, taken by Dr. Allen Winkelmann in the Glenn L. Martin Wind Tunnel at the 

University of Maryland. The mixture is mineral oil and a fl uorescent powder, and the 

photographs were taken under ultraviolet light. (a) Below the stall. The wing is at α = 4°, 

where the fl ow is attached. (continued )

(a)
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(b)

Figure 5.9 (concluded ) (b) Very near the stall. The wing is at α = 11°, where the highly 

three-dimensional separated fl ow is developing in a mushroom cell pattern. (c) Far above the 

stall. The wing is at α = 24°, where the fl ow over almost the entire wing has separated.
(Source: © Allen E. Winkelmann.)

(c)
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slightly beyond the stall. A large, mushroom-shaped, separated fl ow pattern 

has developed over the wing, with attendant highly three-dimensional, low-

energy recirculating fl ow. In    Fig. 5.9  c , the angle of attack is far beyond the 

stall. The fl ow over almost the entire wing has separated. These photographs 

are striking examples of different types of fl ow that can occur over an airplane 

wing at different angles of attack, and they graphically show the extent of the 

fl ow fi eld separation that can occur. 

           The lift curves sketched in    Figs. 5.6  to    5.8  illustrate the type of variation ob-

served experimentally in the data of App. D. Returning to App. D, we note that 

the lift curves are all virtually linear up to the stall. Singling out a given airfoil—

say the NACA 2412 airfoil—also note that  c   l   versus α is given for three differ-

ent values of the Reynolds number from 3.1 × 10 6  to 8.9 × 10 6 . The lift curves 

for all three values of Re fall on top of one another in the linear region; that is, 

Re has little infl uence on  c   l   when the fl ow is attached. However, fl ow separation 

is a viscous effect; and as discussed in Ch. 4, Re is a governing parameter for 

viscous fl ow. Therefore, it is not surprising that the experimental data for  c   l ,max  

in the stalling region are affected by Re, as can be seen by the slightly different 

variations of  c   l   at high α for different values of Re. In fact, these lift curves at 

different Re values answer part of the question posed in    Eq. (5.19) : The data 

represent  c   l   =  f (Re). Again Re exerts little or no effect on  c   l   except in the stalling 

region. 

 On the same page as  c   l   versus α, the variation of  c   m , c /4  versus α is also 

given. It has only a slight variation with α and is almost completely unaf-

fected by Re. Also note that the values of  c   m , c /4  are slightly negative. By con-

vention, a positive moment is in a clockwise direction; it pitches the airfoil 

toward larger angles of attack, as shown in    Fig. 5.4 . Therefore, for the NACA 

2412 airfoil, with  c   m , c /4  negative, the moments are counterclockwise, and the 

airfoil tends to pitch downward. This is characteristic of all airfoils with posi-

tive camber. 

 On the page following  c   l   and  c   m , c /4 , the variation of  c   d   and  c   m , ac  is given 

versus  c   l  . Because  c   l   varies linearly with α, the reader can visualize these 

curves of  c   d   and  c   m , ac  as being plotted versus α as well; the shapes will be the 

same. Note that the drag curves have a “bucket” type of shape, with minimum 

drag occurring at small values of  c   l   (hence there are small angles of attack). 

As α goes to large negative or positive values,  c   d   increases. Also note that  c   d   

is strongly affected by Re, there being a distinct drag curve for each Re. This 

is to be expected because the drag for a slender aerodynamic shape is mainly 

skin friction drag, and from Ch. 4 we have seen that Re strongly governs 

skin friction. With regard to  c   m ,ac , the defi nition of the aerodynamic center is 

clearly evident:  c   m ,ac  is constant with respect to α. It is also insensitive to Re 

and has a small negative value. 

 Refer to    Eq. (5.23) : The airfoil data in App. D experimentally provide 

the variation of  c   l  ,  c   d  , and  c   m   with α and Re. The effect of  M  ∞  on the airfoil 

coeffi cients will be discussed later. However, we emphasize that the data in 

App. D were measured in low-speed subsonic wind tunnels; hence the fl ow 
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was essentially incompressible. Thus,  c   l  ,  c   m , c /4 ,  c   d  , and  c   m ,ac  given in App. D 

are incompressible fl ow values. Keep this in mind during our subsequent 

discussions. 

 In this section we have discussed the properties of an  airfoil . As already 

noted in    Fig. 5.2 , an airfoil is simply the shape of a wing section. The airfoils 

in    Figs. 5.3  through    5.5  and    Figs. 5.7  and    5.8  are paper-thin sections—simple 

drawings on a sheet of paper. So what does it mean when we talk about the lift, 

drag, and moments on an airfoil? How can there be a lift on an airfoil that is 

paper-thin? When we write    Eq. (5.17)  for the lift of an airfoil, what really is  L ? 

The answer is given in    Fig. 5.10 . Here we see a section of a wing of constant 

chord  c . The length of the section along the span of the wing is unity (1 ft, 1 m, 

or the like). The lift on this wing section  L , as shown in    Fig. 5.10  a , is the  lift per 
unit span . The lift, drag, and moments on an  airfoil  are always understood to be 

the lift, drag, and moments  per unit span,  as sketched in    Fig. 5.10 . The planform 

area of the segment of unit span is the projected area seen by looking at the wing 

from above—namely  S  =  c (1) =  c , as sketched in    Fig. 5.10  b . Hence, when we 

c

V∞

L (per unit span)

1

S = c(1)

c

V∞

1

(a)

(b)

Figure 5.10 A wing segment of unit span.
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write    Eq. (5.17)  for an airfoil, we interpret  L  as the lift per unit span and  S  as the 

planform area of a unit span; that is,

L q c cl( ) ( )p i p ∞qq (5.24)

or

 

c
L

q c
l =

qq

( )p i p

     

(5.25)

 Finally, return to our road map in    Fig. 5.1 . We have begun to work our way 

down the left column under airfoils. We have already accomplished a lot. We 

have become familiar with airfoil nomenclature. Using dimensional analysis, 

we have introduced the very important concept of aerodynamic  coeffi cients,  and 

we have examined some experimental data for these coeffi cients. Make certain 

you feel comfortable with these concepts before you continue. 

  A model wing of constant chord length is placed in a low-speed subsonic wind tunnel, 

spanning the test section. The wing has an NACA 2412 airfoil and a chord length of 

1.3 m. The fl ow in the test section is at a velocity of 50 m/s at standard sea-level condi-

tions. If the wing is at a 4° angle of attack, calculate ( a )  c   l  ,  c   d  , and  c   m , c /4  and ( b ) the lift, 

drag, and moments about the quarter chord, per unit span. 

■  Solution 
a . From App. D, for an NACA 2412 airfoil at a 4° angle of attack,

c
c

l

m

=
= −

0 63
0 0354 ., /c

To obtain  c   d  , we must fi rst check the value of the Reynolds number:

Re
( . )( )( . )

.
= =

×
∞ ∞

∞

ρ
μ
V c∞ 225 50 1.

1 789 10

kg/m m/s3

−− =
5

64 45 1× 0
kg/(m)(s)

.

For this value of Re and for  c   l   = 0.63, from App. D,

cd = 0 007.

b . Because the chord is 1.3 m and we want the aerodynamic forces and moments  per 
unit span  (a unit length along the wing, perpendicular to the fl ow),  S  =  c (1) = 1.3(1) =
1.3 m 2 . Also

q Vqq ∞VV =V1
2

2 1
2

2225 50 1531ρ ( .1 )( ) N=2 1531 /m2

From    Eq. (5.22) ,

L q Scl =q Scl =∞qq 1531 1 3 0 6 1254( .1 )( . )63 N

EXAMPLE 5.1
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Because 1 N = 0.2248 lb, also

 

L

D q Scd

=
=q Scd∞qq

( )( . ) .

( .

1254 8 9

1531

N l)( .2248 b/N l) .= 9 b

3 033 13 9

13 9 0 3 13

)( . )007 .

. (9 . )2248)2248

=
= =13 09 )2248

N

lb

Note:  The ratio of lift to drag, which is an important aerodynamic quantity, is

 

L

D

c

c

M q Sc c

l

d

MM c

= = =

=q Sc c

1254

13 9
90 2

1531 1 34c

.
.

( .1 )(/ ,q mqq Scmq Scq Sc∞qqq / −−

= −

0 5 1 3

90 64

. )035 ( .1 )

./McMM N m⋅
          

  The same wing in the same fl ow as in    Example 5.1  is pitched to an angle of attack such 

that the lift per unit span is 700 N (157 lb). 

a . What is the angle of attack? 

b . To what angle of attack must the wing be pitched to obtain zero lift? 

■  Solution 
a . From the previous example,

q Sqq 1531 1 3 2/ mS =S 1 32

Thus
  

c
L

q S
l = = =

qq

700

1531 1 3
0 352

( .1 )
.

       

From App. D for the NACA 2412 airfoil, the angle of attack corresponding to  c   l   = 0.352 is

 
α = °1

        

b . Also from App. D, for zero lift (that is,  c   l   = 0),

 
αL= = − °0 2 2.

          

EXAMPLE 5.2

EXAMPLE 5.3

  The shape of the NASA LS(1)-0417 airfoil is shown in Fig. 4.55; this airfoil is the sub-

ject of Example 4.44. In that example, a constant-chord wing model with the NASA 

LS(1)-0417 airfoil shape is mounted in a wind tunnel where both wing tips are fl ush with 

the vertical sidewalls of the tunnel. Based on our discussion in the present section, the 

measured data are therefore for an infi nite wing. At a zero angle of attack, the drag on the 

wing model is given in Example 4.44 to be 34.7 N when the fl ow in the test section is at 

a velocity of 97 m/s at standard sea-level conditions. The chord length is 0.6 m and the 

wingspan across the test section is 1 m. Hence, the measured drag of 34.7 N is the drag 

per unit span, as discussed in the present section. Calculate the drag coeffi cient. 
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■  Solution 

q V

c
D

q S
d

qq ∞VV

qq

=V

= =

1

2

1

2
23 97 5 86 5

34 7

5

2 21
1 23 97ρ ( .11 )( ) .= 57862

.

(

N

78677 5 0 6 1
0 01

. )5 ( .0 )( )
=

 This result agrees with the measured drag coeffi cient for the LS(1)-0417 airfoil at 

a zero angle of attack reported by Robert McGhee, William Beasley, and Richard Whit-

comb in “NASA Low- and Medium-Speed Airfoil Development,”  Advanced Technology 
 Airfoil Research , vol. 2, NASA CP2046, March 1978, p. 13. This value of  c   d   = 0.01 is 

slightly higher than the corresponding values for the more conventional NACA airfoils 

in App. D. We remarked in Example 4.44 that the LS(1)-0417 airfoil appears to have a 

higher percentage of pressure drag than more conventional airfoil shapes.   

EXAMPLE 5.4

  For some of the airfoils in App. D, additional data are provided that pertain to the case of 

a simulated split fl ap defl ected 60°. (The nature of fl aps and their operation are discussed 

in    Sec. 5.17 .) The effect of defl ecting downward a fl ap at the trailing edge is to increase 

both the lift and the magnitude of the moment at a given angle of attack of the airfoil. For 

example, consider the data shown in App. D for the NACA 4412 airfoil. From the code 

shown on the graph, the data for the simulated split fl ap defl ected 60° are given by the 

upside-down triangles. Calculate ( a ) the percentage increase in maximum lift coeffi cient 

and ( b ) the percentage increase in the magnitude of the moment coeffi cient about the 

quarter chord due to the fl ap defl ection of 60°. 

■  Solution 
a . From App. D for the NACA 4412 airfoil, letting ( C   / , max ) 1  and ( C   / , max ) 2  denote the maxi-

mum lift coeffi cient with and without fl ap defl ection, respectively, we have

 

( ) .

( ) .

,max

,max

/

/

1

2

2 7.

1 7.

=

=
       

The percentage increase in maximum lift coeffi cient due to fl ap defl ection is

 

Increase percent
2 7 1 7

1 7
59

. .7 1

.
( )100

−⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠         

  b . Similarly, denoting the moment coeffi cient about the quarter chord for the cases with 

and without fl ap defl ection, denoted by  ( )
/mc 4 1     and  ( )

/mc 4 2,    respectively, we have

 

( ) .
( )

/

/

m

m

c

c

4

4

1

2

0 305
0 0. 9

= −
= −

       

The percentage increase in the magnitude of the moment coeffi cient due to fl ap defl ection is

             

Increas pe ercent
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

( )0 305

0 09
239

. − 0.09
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  For some of the airfoils given in App. D, additional given data pertain to the case of  stan-
dard roughness . In this case, 0.011-in carborundum grains were applied to both the upper 

and lower surfaces of the model from the leading edge to a location 0.08 c  downstream of 

the leading edge. In this fashion the NACA researchers examined the infl uence of surface 

roughness on airfoil performance, simulating a case more severe than the usual surface 

roughness caused by manufacturing processes and ordinary deterioration in service, but 

much less severe than the accumulation of ice, mud, or damage in military service. (For 

more details, see the book by    Abbott and von Doenhoff , pp. 143–148, listed in the bibli-

ography at the end of this chapter.) For the NACA 4412 airfoil in App. D at a Reynolds 

number of 6×10 6 , calculate ( a ) the percentage decrease in maximum lift coeffi cient and 

( b ) the percentage increase in minimum drag coeffi cient due to the standard roughness. 

   ■  Solution 
  a . In App. D for the NACA 4412 airfoil, note that the data for standard roughness are 

given for Re = 6 × 10 6 . Letting ( C   / ,max ) 1  and ( C   / ,max ) 2  denote the maximum lift coeffi cient 

with and without standard roughness, respectively, at Re = 6 × 10 6 , we have

 

( )
( )

,

,

/

/

max

max

1

2

1 3. 9
1 6. 3

=
=

       

The percentage decrease in maximum lift coeffi cient due to standard roughness is

Decrease percent
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

( )1 63

1 63
14 7.

−1.39

             b . Similarly, denoting the minimum drag coeffi cient for the cases with and without stan-

dard roughness by ( C   d , min ) 1  and ( C   d , min ) 2 , respectively, we have

 

( )
( ) .

,

,

((
((

d

d

min

min

1

2

0 0. 1
0 0062

=
=

       

The percentage increase in minimum drag coeffi cient due to standard roughness is

Increase  percent
0 01

0 0062
61

.
( )100

− 0.0062

            Please note that in this book the subsequent use of App. D for further worked 

 examples and the homework problems at the end of the chapters will  not  involve the 

airfoil data for simulated fl ap defl ection or standard roughness. These are special cases 

examined in    Examples 5.4  and    5.5  only; these examples are designed simply to increase 

your familiarity with the graphs in App. D.   

EXAMPLE 5.5

EXAMPLE 5.6

  Consider an NACA 23012 airfoil at 8 degrees of angle of attack. Calculate the normal and 

axial force coeffi cients. Assume that Re = 8.8 × 10 6 . 
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■  Solution 
 From App. D, for the NACA 23012 airfoil at α = 8°,

 c/ = 1.0        

 cd = 0 00700 8

From    Eq. (5.1) , repeated here,

L N AN cos iα αAsA− in         (5.11)

L

q S

N

q S

A

q Sq Sq qq qq
= cos iα αs− in

c cn a/ c cocos iα αac scac− in (E 5.6.1)

where  c  n  and  c  a  are the section normal and axial force coeffi cients. Similarly,    Eq. (5.2)  

leads to

cd nc a= +cnc sin α αca+ cca+ os         (E 5.6.2)

Inserting  c  <  and  c  d  at α = 8 o  into Eqs. (E 5.6.1) and (E 5.6.2),

1 cos 8 sin 8.0 c cos 8cos 8n a8cos 8ο οsin 8

or  1 99 268 13917302680 0268 0990268 c139173.00n a39 300 c139173.00         (E 5.6.3)

and  0 00 0 0 0.000 139173 268+0.0 139173 c c00 268+n a0 099 68 c00 268+         (E 5.6.4)

Solving Eqs. (E 5.6.3) and (E 5.6.4) simultaneously for  c  n  and  c  a , we get

 

c
c

n

a

=
= −

0 991
0 131
.

.
       

A more direct approach to solving this problem that does not involve solving two 

 algebraic equations simultaneously is obtained by reexamining    Fig. 5.4  b , and expressing 

 N  and  A  in terms of  L  and  D , essentially the inverse of    Eqs. (5.1)  and    (5.2) . From    Fig. 5.4 ,

  D+L cos iα αD+ sD+ in         (E 5.6.5)

  A L D+sin α αD+ cD+ os         (E 5.6.6)

Thus,  cn dc= +cc i αdc+ scdc+ in         (E 5.6.7)

and  c ca dc +/ sin αdcα + ccdc+ os         (E 5.6.8)

From Eq. (E 5.6.7),

  cn = ° + °1 7+ 8 s 8.0 08cos 8° +cos 8 +        

  
cn = 1 9 268( . )99 . (78 . )1391730+)268 0

       

  
cn = 0 991.

       



312 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

From Eq. (E 5.6.8),

 ca = +1 ( 139173) ( 99 268).0(0(( 0 0. 0 8 (078 (78 ( 0

 
ca = −0 131.

       

These numbers agree with those obtained earlier in the example.   

Question:  Why is the axial force coeffi cient negative; that is, why is the axial force 

directed toward the leading edge? We can see the answer directly by examining    Fig. 5.4  b . 

Note that the component of  L  projected along the chord line acts  forward . The component 

of  D  projected along the chord line acts  rearward . In this example, lift is 128 times larger 

than the drag, so the forward-facing component due to lift dominates the axial force, and 

the axial force therefore acts forward. This is the case for many airfoils at suffi ciently 

positive angles of attack. 

EXAMPLE 5.7

 Laminar fl ow airfoils are discussed in Sec. 4.15, and a typical laminar fl ow airfoil is 
shown in Fig. 4.45 b . In the NACA airfoil nomenclature, the designation numbers for 
laminar fl ow airfoils start with 6; these are the so-called “6-series” airfoils, some of which 
are treated in App. D. In particular, for Re = 9 × 10 6 , compare the lift and drag coeffi cients 
of two symmetric airfoils at zero angle of attack: the classic four-digit NACA 0009 airfoil 
and the laminar fl ow NACA 65-009 airfoil. 

■  Solution 
 From App. D, for the NACA 0009 airfoil at α = 0°,

c/ = 0

This is really a trivial result; for  all  symmetric airfoils at zero angle of attack,  c  ,  = 0. Mov-

ing to the drag coeffi cient graph, for  c  ,  = 0,

 cd = 0. 500 2        

For the NACA 65-009 airfoil,  c  ,  = 0 and

cd = 0 00400

Note that the drag coeffi cient for the laminar fl ow airfoil is 23 percent lower than for the 

standard four-digit airfoil. Also, study carefully the variation of  c  d  for the laminar fl ow 

airfoil. There is a rather sudden drop and bottoming-out of  c  d  at small values of  c  ,  (hence 

small values of angle of attack). This part of the curve is called the  drag bucket , and is 

characteristic of laminar fl ow airfoils. Note also the drag buckets for the 63-210, 64-210, 

65-210, and 65-006 airfoils shown in App. D.   

EXAMPLE 5.8

  Consider the aerodynamic moments exerted on an airfoil, as discussed in    Sec. 5.2 . There 

we noted that the value of the moment depends on the point on the airfoil about which 

moments are taken. In the airfoil data in App. D, two moment coeffi cients are given: one 
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about the quarter-chord point,  cmc /4
   , and the other about the aerodynamic center,  cmac

   . 

Another convenient point on the airfoil about which to take moments is the leading edge, 

as mentioned in    Sec. 5.2 . Derive an equation relating the moment coeffi cient about the 

leading edge to lift coeffi cient and the moment coeffi cient about the quarter-chord point. 

■  Solution 
 Examine    Fig. 5.11 . Here, the lift  L  is shown acting through the quarter-chord point, 

along with the moment about the quarter-chord point,  M  c/4 . ( Note:  The lift and moment 

acting on the airfoil can be mechanically represented by the lift acting through  any  point 

on the airfoil and the moment acting at that same point. In this example we choose to 

put the lift acting through the quarter-chord point because the airfoil data in App. D 

give the experimentally measured moment coeffi cient about the quarter-chord point.) 

Keep in mind the convention that any moment that tends to increase the angle of attack 

is positive, and that which tends to decrease the angle of attack is negative. With this, 

from    Fig. 5.11 , we have

M L
c

McLE

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
4

4/ (E 5.8.1)

Dividing Eq. (E 5.8.1) by  q  ∞   S c , we have

 

M

q Sc

L

q Sc

c M

q Sc
cLE /

qq qqq Sq c
= − ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

+
4

4

       

or

  

c
c

cm mc
cLE

= − +/
4 4/

           
(E 5.8.2)

LE Mc/4

c/4

L

Figure 5.11 Sketch of lift and moments on an airfoil.

 Consider the NACA 63-210 airfoil at 6 o  angle of attack. Calculate the moment coeffi cient 

about the leading edge. 

■  Solution 
 From App. D, for the NACA 63-210 airfoil at α = 6 o , we have

c cmc/ =c −00 8 0 04
4

. ;88
/

EXAMPLE 5.9
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From Eq. (E 5.8.2) obtained in    Example 5.8 ,

 
c

c
m mc

cLE
= − + =cmc − −/

4

0 8

4
0 0 04 0= − 24

4/
.04 0

          

EXAMPLE 5.10

  The question is sometimes asked: Can an airfoil product lift when it is fl ying upside-

down? In this example, we answer that question.  

  a.   Consider, for example, an NACA 2415 airfoil fl ying right side up at an angle of  attack 

of 6 o , as shown in    Fig. 5.12  a . The airfoil has a chord length of 1.5 m and is fl ying at a 

standard altitude of 2 km at a velocity of 150 m/s. Calculate the lift per unit span.  

  b.   Now, turn this airfoil upside-down, at the same fl ight conditions at an angle of attack 

of 6 o . Calculate the lift per unit span.  

  c.   Compare and discuss the results.   

■  Solution  
  a.   From App. D at α = 6 o ,  c  ,  = 0.8. From App. A at a standard altitude of 2 km,  ρ  =
0.90926 kg/km 3 . Therefore

q Vqq =V ×1
2

1
2 0 0ρ 2 21 0 0 4 29 200 6 150 120 23 1 N04 /m( .00 )( ) =

Thus,  L q q c( ) ( )p i p q S c q c) (q S c =∞qq S cqq S c/ /q c c( )q c(qqqq        

( . )( . )( )( ) .2. 1.1 5 9)( .)( 926 N40 023 1 09.9 395 104))()(1. )( 926401 09. ×

  b.   Examine the  c  ,  data for the NACA 2415 airfoil in App. D. Note that at an angle of 

attack of –6 o , the airfoil has  c  ,  = –0.44; this is  negative  lift with the lift vector pointing 

downward. Now simply rotate this airfoil 180 o  about the relative wind direction so that 

we see the picture shown in    Fig. 5.12  b , which is the upside-down airfoil at an angle of 

attack of 6 o . Now the lift vector points upward. For this case,

 
L q S c( ) ( . )( . )( )p i p q S c) ( 1 1)( )(5 4)(4q S c .1)( )(∞qqqq / 0 023 1×1 0)4.44 =)4. 4 .675.. 104× N

         

  c.   Clearly, an airfoil fl ying upside-down can produce lift. The answer to the question 

originally posed is clearly  yes . However, for a positively cambered airfoil such as the 

NACA 2415, because the zero-lift angle is a negative value (α L = 0 = –2 o  in this case), in 

NACA 2415

L

RIGHT-SIDE UP

(a) (b)

UPSIDE DOWN

6�

V�

NACA 2415

L

6�

V�

Figure 5.12 An NACA 2415 airfoil fl ying (a) right side up, and (b) upside-down.
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its upside-down orientation, the airfoil will produce a smaller lift than when it is right side 

up at the same angle of attack. In this example,   

 Right side up:  L = 1 395 1 N40×.395 1     

 Upside-down:  L = 0 695 1 N40×.695 1     

 In its upside-down orientation, the airfoil produces 48 percent of the lift produced in the 

right-side-up orientation.   

   5.5  INFINITE VERSUS FINITE WINGS 
  As stated in    Sec. 5.4 , the airfoil data in App. D were measured in low-speed sub-
sonic wind tunnels where the model wing spanned the test section from one side-
wall to the other. In this fashion, the fl ow sees essentially a wing with no wing 
tips; that is, the wing in principle could be stretching from plus infi nity to minus 
infi nity in the spanwise direction. Such an  infi nite wing  is sketched in    Fig. 5.13 , 
where the wing stretches to ±∞ in the  z  direction. The fl ow about this wing varies 
only in the  x  and  y  directions; for this reason the fl ow is called  two-dimensional . 
Thus, the airfoil data in App. D apply only to such infi nite (or two-dimensional) 
wings. This is an important point to keep in mind. 

 In contrast, all real airplane wings are obviously fi nite, as sketched in 

   Fig. 5.14 . Here the top view (planform view) of a fi nite wing is shown, where 

the distance between the two wing tips is defi ned as the  wingspan b . The area 

of the wing in this planform view is designated, as before, by  S . This leads to 

an important defi nition that pervades all aerodynamic wing considerations—the 

aspect ratio AR:

  

Aspect ratio AR≡ ≡AR
b

S

2

  

(5.26)        

The importance of AR will come to light in subsequent sections. 

Figure 5.13 Infi nite (two-dimensional) wing.
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     The fl ow fi eld about a fi nite wing is three-dimensional and is therefore inher-

ently different from the two-dimensional fl ow about an infi nite wing. As a result, 

the lift, drag, and moment coeffi cients for a fi nite wing with a given airfoil shape 

at a given α differ from the lift, drag, and moment coeffi cients for an infi nite wing 

with the same airfoil shape at the same α. For this reason the aerodynamic coef-

fi cients for a fi nite wing are designated by capital letters  C   L  ,  C   D  , and  C   M  ; this is 

in contrast to those for an infi nite wing, which we have been designating as  c   l  , 

 c   d  , and  c   m  . Note that the data in App. D are for infi nite (two-dimensional) wings; 

that is, the data are for  c   l  ,  c   d  , and  c   m  . In a subsequent section we will show how 

to obtain the fi nite-wing aerodynamic coeffi cients from the infi nite-wing data 

in App.  D. Our purpose in this section is simply to underscore that there is a 

difference.   

   5.6  PRESSURE COEFFICIENT 
  We continue with our parade of aerodynamic defi nitions. Consider the pressure 
distribution over the top surface of an airfoil. Instead of plotting the actual pres-
sure (say in units of newtons per square meter), we defi ne a new dimensionless 
quantity called the  pressure coeffi cient C   p  :

  

C
p p

q

p p

V
p ≡ ≡∞pp

∞qq
∞pp

∞ ∞VV1
2

2ρ
  

(5.27)        

Figure 5.14 Finite wing; plan view (top).
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The pressure distribution is sketched in terms of  C   p   in    Fig. 5.15 . This fi gure 
is worth looking at closely because pressure distributions found in the aerody-
namic literature are usually given in terms of the dimensionless pressure coef-
fi cient. Note from    Fig. 5.15  that  C   p   at the leading edge is positive because  p  >  p  ∞ . 
However, as the fl ow expands around the top surface of the airfoil,  p  decreases 
rapidly, and  C   p   goes negative in those regions where  p  <  p  ∞ . By convention, plots 
of  C   p   for airfoils are usually shown with negative values above the abscissa, as 
shown in    Fig. 5.15 . 

     The pressure coeffi cient is an important quantity; for example, the distri-

bution of  C   p   over the airfoil surface leads directly to the value of  c   l  , as will be 

 discussed in    Sec. 5.11 . Moreover, considerations of  C   p   lead directly to the cal-

culation of the effect of Mach number  M  ∞  on the lift coeffi cient. To set the stage 

for this calculation, consider  C   p   at a given point on an airfoil surface. The airfoil 

is a given shape at a fi xed angle of attack. We can measure the value of  C   p   by 

testing the airfoil in a wind tunnel. Assume that, at fi rst,  V  ∞  in the tunnel test sec-

tion is low, say  M  ∞  < 0.3, such that the fl ow is essentially incompressible. The 

measured value of  C   p   at the point on the airfoil will therefore be a low-speed 

value. Let us designate the low-speed (incompressible) value of  C   p   by  C   p ,0 . If 

 V  ∞  is increased but  M  ∞  is still less than 0.3, then  C   p   will not change; that is,  C   p   

is essentially constant with velocity at low speeds. However, if we now increase 

 V  ∞  such that  M  ∞  > 0.3, then compressibility becomes a factor, and the effect of 

compressibility is to increase the absolute magnitude of  C   p   as  M  ∞  increases. This 

Figure 5.15 Distribution of pressure coeffi cient over the top 

and bottom surfaces of an NACA 0012 airfoil at 3.93° angle of 

attack. M∞ = 0.345, Re = 3.245 × 106. Experimental data from 

Ohio State University, in NACA Conference Publication 2045, 

part I, Advanced Technology Airfoil Research, vol. I, p. 1590.
(Source: After Freuler and Gregorek.)



318 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

variation of  C   p   with  M  ∞  is shown in    Fig. 5.16 . Note that at  M  ∞  ≈ 0,  C   p   =   C   p ,0 . 

As  M  ∞  increases to  M  ∞  ≈ 0.3, essentially  C   p   is constant. However, as  M  ∞  is in-

creased beyond 0.3,  C   p   increases dramatically. (That is, the absolute magnitude 

increases: If  C   p ,0  is negative,  C   p   will become an increasingly negative number as 

 M  ∞  increases, whereas if  C   p ,0  is positive,  C   p   will become an increasingly positive 

number as  M  ∞  increases.) The variation of  C   p   with  M  ∞  for high subsonic Mach 

numbers was a major focus of aerodynamic research after World War II. An ap-

proximate theoretical analysis yields

C
C

M
p

p=
− ∞MM

,0

21
(5.28)

   Equation (5.28)  is called the  Prandtl–Glauert rule . It is reasonably accurate for 
0.3 <  M  ∞  < 0.7. For  M  ∞  > 0.7, its accuracy rapidly diminishes; indeed,    Eq. (5.28)  
predicts that  C   p   becomes infi nite as  M  ∞  goes to unity—an impossible physical 
situation. (Nature abhors infi nities as well as discontinuities that are sometimes 
predicted by mathematical, but approximate, theories in physical science.) There 
are more accurate, but more complicated, formulas than    Eq. (5.28)  for near-sonic 
Mach numbers. However,    Eq. (5.28)  will be suffi cient for our purposes. 

     Formulas such as    Eq. (5.28) , which attempt to predict the effect of  M  ∞  on  C   p   

for subsonic speeds, are called  compressibility corrections;  that is, they modify 

(correct) the low-speed pressure coeffi cient  C   p ,0  to take into account the effects of 

compressibility, which are so important at high subsonic Mach numbers. 

Figure 5.16 Plot of the Prandtl–Glauert rule for Cp,0 = −0.5.
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 The pressure at a point on the wing of an airplane is 7.58 × 10 4  N/m 2 . The airplane is fl y-

ing with a velocity of 70 m/s at conditions associated with a standard altitude of 2000 m. 

Calculate the pressure coeffi cient at this point on the wing. 

■  Solution 
 For a standard altitude of 2000 m,

p∞pp

∞

=
=

7 95 1× 0

1 0066

4 2

3.

N/m

kg/mρ

Thus  q Vqq ∞VV =V1
2

2 1
2

2 20066 70ρ ( .1 )( ) N=2 2466 /m    . From    Eq. (5.27) ,

C
p p

q

C

p

p

= = ×

= −

∞pp

∞qq

( . . )7 5. 8 7− 95 10

2466

1 5.

4

          

   EXAMPLE 5.11  

   EXAMPLE 5.12  

 Consider an airfoil mounted in a low-speed subsonic wind tunnel. The fl ow velocity in 

the test section is 100 ft/s, and the conditions are standard sea level. If the pressure at a 

point on the airfoil is 2102 lb/ft 2 , what is the pressure coeffi cient? 

■  Solution 

q Vqq ∞VV =V1
2

2 1
2

3 2002377 100ρ ( .0 )( ) .=2 11slug/ft ft/sff 8988 2lb/ftff        

From    Eq. (5.27) ,

C
p p

q
p = = − = −∞pp

∞qq

2102 2116

11 89
1 18

.
.           

   EXAMPLE 5.13  

 In    Example 5.12 , if the fl ow velocity is increased so that the free-stream Mach number is 

0.6, what is the pressure coeffi cient at the same point on the airfoil? 

■  Solution 
 First, what is the Mach number of the fl ow in    Example 5.12 ? At standard sea level,

TsTT = °518 69 R°.69        

Hence  a RT∞ ∞RTT =RT =γRRRRR 1 4 1716 518 69 1116. (4 )( . )69 ft/sff     

 Thus, in    Example 5.12 ,  M  ∞  =  V  ∞  / a  ∞  = 100/1116 = 0.09—a very low value. Hence the fl ow 

in    Example 5.12  is essentially incompressible, and the pressure coeffi cient is a  low-speed 
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value; that is,  C   p ,0  = −1.18. If the fl ow Mach number is increased to 0.6, from the Prandtl–

Glauert rule,    Eq. (5.28) ,

  

C
C

p
p= = −,

/ /( )M− ∞MM

.

( . )
0
2 1) 2/

1 1. 8

− 6

CCp = −1 48.

   EXAMPLE 5.14  

 An airplane is fl ying at a velocity of 100 m/s at a standard altitude of 3 km. The pressure 

coeffi cient at a point on the fuselage is −2.2. What is the pressure at this point? 

   ■  Solution 
 For a standard altitude of 3 km = 3000 m,  p  ∞  = 7.0121 × 10 4  N/m 2 , and ρ ∞  = 

0.90926 kg/m 3 . Thus

  q Vqq ∞VV =V1
2

2 1
2

290926 100 4546ρ ( .0 )( ) N=2 4546 /m2        

From    Eq. (5.27) ,

  C
p p

q
p = ∞pp

∞qq
       

or  p q C pp= q C = × = ×∞ ∞qq C ppqq C ( )( .− ) .+4546 2. 10121 6 0. 110 10 N/m4×4 6 01 10 22        

 Note:  This example illustrates a useful physical interpretation of pressure coeffi cient. 

The pressure coeffi cient represents the local pressure in terms of the “number of 

 dynamic pressure units” above or below the free-stream pressure. In this example, the 

local pressure was found to be 6.01 × 10 4  N/m 2 . This value of  p  is equivalent to the free-

stream pressure minus 2.2 times the dynamic pressure;  p  is 2.2 “dynamic pressures” 

below the free-stream pressure. So, when you see a number for  C   p  , that number gives 

you an instant feel for the pressure itself in terms of multiples of  q  ∞  above or below the 

free-stream pressure. In this example,  C   p   is negative, so the pressure is below the free-

stream pressure. If  C   p   = 1.5, the pressure would be 1.5 “dynamic pressures”  above  the 

free-stream pressure.   

   EXAMPLE 5.15  

 Consider two different points on the surface of an airplane wing fl ying at 80 m/s. The 

pressure coeffi cient and fl ow velocity at point 1 are −1.5 and 110 m/s, respectively. The 

pressure coeffi cient at point 2 is −0.8. Assuming incompressible fl ow, calculate the fl ow 

velocity at point 2. 

   ■  Solution 
 From    Eq. 5.27 ,

  C
p p

q
p p q Cp pp p C

1pp p q C= =p∞pp

∞qq
∞p qpp qpp qqor        
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Similarly,

C
p p

q
p p q Cp pp p C

2pp p q C= =p∞pp

∞qq
∞p qpp qqpp qqor        

Subtracting,

p p q Cp p2p
2p=p2p qq ( )C Cp pC
2pC−

From Bernoulli’s equation,

p V p V1
2

2 1
2 2VV 2V 2ρ ρV p V1VV 2=V1VV 2        

or  p p2p 1
2 2

2
1
2=p2p ρ( )V V2VV 2

1VV 2        

Because  q V∞q Vq V1
2

2ρ    , we have

p p

q

V

V

V

V
2p 2VV

2

1VV
2
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⎝
⎜
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⎝⎝
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⎟
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⎜
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⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠∞VV∞qq ⎝ ∞VV

Substituting the earlier expression for  p  1  −  p  2  in terms of  Cp1
    and  Cp2

   , we have

q C

q

V

V

V

V
p pqq

∞ ∞qq VV ∞VV
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Note:  This expression by itself is interesting. In a low-speed incompressible fl ow, the dif-

ference between the pressure coeffi cients at two different points is equal to the difference 

in the squares of the velocities, nondimensionalized by the free-stream velocity, between 

the two points. 

 Putting in the numbers, we have

− − =
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⎟
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1 5 0 8
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2 2
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2
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V2

V∞

V2

V∞
==

=
∞

1 19

9 ∞ 1=∞ 19

87 3
2
2 21 19 2

2

.

.1∞ ( )80

.

V = 1 19 ∞9 ∞2
2 1 19.19 ∞

V2 m/s

       

Note:  The solution did not require explicit knowledge of the density. This is because we 

dealt with pressure difference in terms of the difference in pressure  coeffi cient,  which, in 

turn, is related to the difference of the squares of the nondimensional velocity through 

Bernoulli’s equation.     
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   5.7  OBTAINING LIFT COEFFICIENT FROM  C   P   
  If you are given the distribution of the pressure coeffi cient over the top and 
bottom surfaces of an airfoil, you can calculate  c   l   in a straightforward manner. 
Consider a segment of an infi nite wing, as shown in    Fig. 5.17 . Assume that the 
segment has unit span and chord  c . The wing is at an angle of attack α. Let  x  
be the direction measured along the chord, and let  s  be the distance measured 
along the  surface  from the leading edge, as shown in    Fig. 5.17 . Consider the 
infi nitesimally small sliver of surface area of length  ds  and unit length in the 
span direction, as shown by the shaded area in    Fig. 5.17 . The area of this sur-
face is 1  ds . The dashed line  ab  is perpendicular to chord  c . The solid line  ac  is 
locally perpendicular to the shaded area. The angle between  ab  and  ac  is θ. The 
aerodynamic force on the shaded area is  p (1)  ds , which acts in the direction of 
 ac ,  normal to the surface. Its component in the direction normal to the chord 
is ( p  cos θ  )(1)  ds . Adding a subscript  u  to designate the pressure on the upper 
surface of the airfoil, as well as a minus sign to indicate that the force is directed 
downward (we use the convention that a positive force is directed upward), we 
see that the contribution to the normal force of the pressure on the infi nitesimal 
strip is − p   u   cos θ  ds . If all the contributions from all the strips on the upper sur-
face are added from the leading edge to the trailing edge, we obtain, by letting  ds
approach 0, the integral

−∫ p dsu
LE∫∫
TE

θ

Leading edge (LE) 

Trailing edge (TE) 

ds 

dx

� b

c

�

1c

s

x ds

�

V∞

a

  
  Figure 5.17  Sketch showing how the pressure distribution can be 

integrated to obtain normal force per unit span, leading to lift per 

unit span. 
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This is the force in the  normal  direction due to the pressure distribution acting 
on the upper surface of the wing, per unit span. Recall the defi nition of normal 
and axial forces  N  and  A , respectively, discussed in    Sec. 5.2  and sketched in 
   Fig. 5.4  a . The integral just given is the part of  N  that is due to the pressure acting 
on the upper surface. A similar term is obtained that is due to the pressure dis-
tribution acting on the lower surface of the airfoil. Letting  p   l   denote the pressure 
on the lower surface, we can write for the total normal force acting on an airfoil 
of unit span

N dsup∫ ∫p∫ ∫plplLE LE

TE
θpp∫dds pp∫dsds −dsds   (5.29)

From the small triangle in the box in    Fig. 5.17 , we see the geometric relationship 
ds  cos θ  =  dx . Thus, in    Eq. (5.29)  the variable of integration  s  can be replaced by 
x , and at the same time the  x  coordinates of the leading and trailing edges become 
0 and  c , respectively. Thus,    Eq. (5.29)  becomes

  N p dxddu

c∫ ∫p dxl

c
−p dxl0 0∫pl   (5.30)

Adding and subtracting  p  ∞ , we fi nd that    Eq. (5.30)  becomes

N p p dxddu

c∫∫ ∫p dxd
c

dxddp pl −pl pp (p pu −pp ppu0 0∫p plp pl p  (5.31)

  Putting    Eq. (5.31)  on the shelf for a moment, we return to the defi nition of 

normal and axial forces  N  and  A , respectively, in    Fig. 5.4  b . We can defi ne the 

normal and axial force coeffi cients for an airfoil,  c   n   and  c   a  , respectively, in the 

same manner as the lift and drag coeffi cients given by    Eq. (5.22) ; that is,

  c
N

q S

N

q c
n = =

qq
 (5.32)

c
A

q S

A

q c
a = =

qq
 (5.33)

Hence, the normal force coeffi cient  c   n   can be calculated from    Eqs. (5.31)  and 
   (5.32)  as

c
c q c

p p

q
dxn o

u

o

c
=

∞qq
∞pp

∞qq
∫ ∫p p

dxl

o
−∞pp1 1∫ p p

d
c ∞pp

  (5.34)

Note that 
p p

q
Cl

p l≡ ≡C l
∞pp

∞qq
pressure coefficient on lower surfaceaa

pressure coefficient on lower
p p

q
Cu

p u≡ ≡C∞pp

∞qq
suss rface
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Hence    Eq. (5.34)  becomes

  c
c

dxn pc p u

c
= ∫∫1

0
( )C CpC l pC uC , ,l pl p  (5.35)

   Equation (5.35)  gives the normal force coeffi cient directly in terms of the inte-
gral of the pressure coeffi cient over the surface of the airfoil. 

 How is this related to the lift coeffi cient? The answer is given by    Eq. (5.1) , 

repeated here:

L N AN cos iα αA sA− in   (5.1)

Dividing    Eq. (5.1)  by  q  ∞  S =  q  ∞  c , we have

  
L

q c

N

q c

A

q cq cq qq qq
= cos iα αs− in        

or  c cl nc acc cos iα αca sca− in   (5.36)

Given  c   n   and  c   a  ,    Eq. (5.36)  allows the direct calculation of  c   l  .    Equation (5.35)  
is an expression for  c   n   in terms of the integral of the pressure coeffi cients. [In 
   Eq. (5.35)  we have ignored the infl uence of shear stress, which contributes very 
little to normal force.] A similar expression can be obtained for  c   a   involving 
an integral of the pressure coeffi cient and an integral of the skin friction coef-
fi cient. Such an expression is derived in Ch. 1 of Anderson,  Fundamentals of 
Aerodynamics,  4th ed., McGraw-Hill, 2007; this is beyond the scope of our dis-
cussion here. 

 Consider the case of small angle of attack—say α ≤ 5°. Then, in    Eq. (5.36) , 

cos α ≈ 1 and sin α ≈ 0.    Eq. (5.36)  yields

l nc  (5.37)

and combining    Eqs. (5.37)  and    (5.35) , we have

c
c

dxl p p u

c
≈ ∫∫1

0
( )C CpC l pC uCC , ,l pl p   (5.38)

Most conventional airplanes cruise at angles of attack of less than 5°, so 

for such cases,    Eq. (5.38)  is a reasonable representation of the lift coeffi cient in 

terms of the integral of the pressure coeffi cient. This leads to a useful graphical 

construction for  c   l  . Consider a combined plot of  C   pu   and  C   pl   as a function of  x / c , 

as sketched in    Fig. 5.18 . The area between these curves is precisely the integral 

on the right side of    Eq. (5.35) . Hence, this area, shown as the shaded region in 

   Fig. 5.18 , is precisely equal to the normal force coeffi cient. In turn, for small 

angles of attack, from    Eq. (5.38) , this area is essentially the lift coeffi cient, as 

noted in    Fig. 5.18 . 
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Figure 5.18  Sketch of the pressure coeffi cient over the upper and 

lower surfaces of an airfoil showing that the area between the two 

curves is the lift coeffi cient for small angles of attack. 

 Consider an airfoil with chord length  c  and the running distance  x  measured along the 

chord. The leading edge is located at  x / c  = 0 and the trailing edge at  x / c  = 1. The pressure 

coeffi cient variations over the upper and lower surfaces are given, respectively, as
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Calculate the normal force coeffi cient. 

■  Solution 
 From    Eq. (5.35) ,

c
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    EXAMPLE 5.16  
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Note that the  C   p   variations given analytically in this problem are only crude representa-

tions of a realistic case and should not be taken too seriously; the purpose of this example 

is simply to illustrate the use of    Eq. (5.35) .     

   5.8   COMPRESSIBILITY CORRECTION 
FOR LIFT COEFFICIENT 

  The pressure coeffi cients in    Eq. (5.38)  can be replaced by the compressibility 
correction given in    Eq. (5.28) , as follows:

  c
c M

dx
M c

C Cl
p l p uc

p l p u=
−

=
−∞ ∞MM MM

∫1

1

1

1

10

20 2

( )C Cp l p u (l pl p
l p ))00

c
dx∫  (5.39)

where again the subscript 0 denotes low-speed incompressible fl ow values. 
However, referring to the form of    Eq. (5.38) , we see that

1
0 0

0c
d cp l p u l

c
( )C Cp l p ul pl p ,≡0 dx)C∫0

       

where  c   l ,0  is the low-speed value of the lift coeffi cient. Thus,    Eq. (5.39)  becomes

c
c

M
l

l=
− ∞MM

, 0

21
  (5.40)

   Equation (5.40)  gives the compressibility correction for the lift coeffi cient. It 
is subject to the same approximations and accuracy restrictions as the Prandtl– 
Glauert rule,    Eq. (5.28) . Also note that the airfoil data in App. D were obtained 
at low speeds; hence the values of lift coeffi cient obtained from App. D are  c   l ,0 . 

 Finally, in reference to    Eq. (5.19) , we now have a reasonable answer to how 

c   l   varies with Mach number. For subsonic speeds, except near Mach 1, the lift 

coeffi cient varies inversely as  ( ) /2 1) 2
   . 

   EXAMPLE 5.17  

 Consider an NACA 4412 airfoil at an angle of attack of 4°. If the free-stream Mach num-

ber is 0.7, what is the lift coeffi cient? 

■  Solution 
 From App. D, for α = 4°,  c   l   = 0.83. However, the data in App. D were obtained at low 

speeds; hence the lift coeffi cient value obtained (0.83) is really  c   l ,0 :

  cl ,0 0 8. 3=        

For high Mach numbers, this must be corrected according to    Eq. (5.40) :

c
c

c

l
l

l

= =

=

,
/ /( )M− ∞MM ( . )

.

0
2 1) 2/

0 8. 3

− 7

1 1. 6 at MM∞MM = 0 7
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 For the same NACA 4412 airfoil at the same conditions given in    Example 5.17 , obtain 

the moment coeffi cient about the quarter-chord point. 

■  Solution 
 As shown in    Fig. 5.5 , the moments on an airfoil are generated by the pressure distribution 

over the surface; the infl uence of shear stress is negligible. Therefore, the compressibility 

effect on moment coeffi cients should be the same as the compressibility effect on pres-

sure coeffi cient; in other words, the Prandtl–Glauert rule applies to moment coeffi cients. 

Thus, we can write

c
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m
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c /4
= ( )cmc /4

− ∞MM1 2
       

where  
o( )cmc /4

    is the incompressible value of the moment coeffi cient and  cmc /4
    is 

the compressible value of the moment coeffi cient. From App. D for α = 4 o , we have 

( )mc /4 o = −0 9. 9    . Thus
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   EXAMPLE 5.18  

   EXAMPLE 5.19  

 Consider an NACA 23012 airfoil in a Mach 0.8 free stream. The lift coeffi cient is 0.92. 

What is the angle of attack of the airfoil? 

■  Solution 
 The value of  c  /  = 0.92 is the real, compressible value at  M  ∞  = 0.8. In turn, the equivalent 

incompressible value is found from

c
c

M

o
/

/=
− ∞MM

,

1 2

or  c c/ /c, . ( . ) .o (0.6) 0.552c/c ∞1 0M− =∞MM 0( 0) = 922 2( )0 0( ) =        

The incompressible value is what is plotted in App. D. Hence, for App. D, for  c  ℓ,o  = 0.552,

α = 4ο

   5.9   CRITICAL MACH NUMBER AND CRITICAL 
PRESSURE COEFFICIENT 

  Consider the fl ow of air over an airfoil. We know that as the gas expands around 
the top surface near the leading edge, the velocity and hence the Mach number 
will increase rapidly. Indeed, there are regions on the airfoil surface where the 
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local Mach number can be greater than  M  ∞ . Imagine that we put a given airfoil 
in a wind tunnel where  M  ∞  = 0.3 and that we observe the peak local Mach num-
ber on the top surface of the airfoil to be 0.435. This is sketched in    Fig. 5.19  a . 
Imagine that we now increase  M  ∞  to 0.5; the peak local Mach number will cor-
respondingly increase to 0.772, as shown in    Fig. 5.19  b . If we further increase  M  ∞  
to a value of 0.61, we observe that the peak local Mach number is 1.0: locally 
sonic fl ow on the surface of the airfoil. This is sketched in    Fig. 5.19  c . Note that 
the fl ow over an airfoil can locally be sonic (or higher) even though the free-
stream Mach number is subsonic. By defi nition, the free-stream Mach number 
at which sonic fl ow is fi rst obtained somewhere on the airfoil surface is called 
the  critical Mach number  of the airfoil. In the preceding example, the critical 
Mach number  M  cr  for the airfoil is 0.61. As we will see later,  M  cr  is an important 
quantity because at some free-stream Mach number above  M  cr  the airfoil will 
experience a dramatic increase in drag. 

  Returning to    Fig. 5.19 , we see that the point on the airfoil where the local  M  

is a peak value is also the point of minimum surface pressure. From the defi ni-

tion of the pressure coeffi cient,    Eq. (5.27) ,  C   p   will correspondingly have its most 

negative value at this point. Moreover, according to the Prandtl–Glauert rule, 

   Eq. (5.28) , as  M  ∞  is increased from 0.3 to 0.61, the value of  C   p   at this point will 

become increasingly negative. This is sketched in    Fig. 5.20 . The specifi c value 

of  C   p   that corresponds to sonic fl ow is defi ned as the  critical pressure coeffi cient 
C   p ,cr . In    Fig. 5.19  a  and    5.19  b ,  C   p   at the minimum pressure point on the airfoil is 

less negative than  C   p ,cr ; however, in    Fig. 5.19  c ,  C   p   = C  p ,cr  (by defi nition). 

  

  Figure 5.19  Illustration of critical Mach number. 
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  Consider now three different airfoils ranging from thin to thick, as shown in 

   Fig. 5.21 . Concentrate fi rst on the thin airfoil. Because of the thin, streamlined 

profi le, the fl ow over the thin airfoil is only slightly perturbed from its free-

stream values. The expansion over the top surface is mild; the velocity increases 

only slightly; the pressure decreases only a relatively small amount; and hence 

the magnitude of  C   p   at the minimum pressure point is small. Thus, the variation 

of  C   p   with  M  ∞  is shown as the bottom curve in    Fig. 5.21 . For the thin airfoil,  C   p ,0  

is small in magnitude, and the rate of increase of  C   p   as  M  ∞  increases is also rela-

tively small. In fact, because the fl ow expansion over the thin airfoil surface is 

mild,  M  ∞  can be increased to a large subsonic value before sonic fl ow is encoun-

tered on the airfoil surface. The point corresponding to sonic fl ow conditions on 

the thin airfoil is labeled point  a  in    Fig. 5.21 . The values of  C   p   and  M  ∞  at point  a  

are  C   p ,cr  and  M  cr , respectively, for the thin airfoil, by defi nition. 

  Now consider the airfoil of medium thickness. The fl ow expansion over the 

leading edge for this medium airfoil will be stronger; the velocity will increase 

to larger values; the pressure will decrease to lower values; and the absolute 

magnitude of  C   p   is larger. Thus, the pressure coeffi cient curve for the medium-

thickness airfoil will lie above that for a thin airfoil, as demonstrated in    Fig. 5.21 . 

Moreover, because the fl ow expansion is stronger, sonic conditions will be ob-

tained sooner (at a lower  M  ∞ ). Sonic conditions for the medium airfoil are la-

beled as point  b  in    Fig. 5.21 . Note that point  b  is to the left of point  a ; that is, the 

critical Mach number for the medium-thickness airfoil is less than  M  cr  for the 

thin airfoil. The same logic holds for the pressure coeffi cient curve for the thick 

airfoil, where  C   p ,cr  and  M  cr  are given by point  c . We emphasize that the thinner 

airfoils have higher values of  M  cr . As we will see, this is desirable; that is why all 

airfoils on modern, high-speed airplanes are relatively thin. 

 The pressure coeffi cient curves in    Fig. 5.21  are shown as solid curves. On 

these curves, only points  a ,  b , and  c  are critical pressure coeffi cients, by defi ni-

tion. However, these critical points by themselves form a locus represented by 

the dotted curve in    Fig. 5.21 ; that is, the critical pressure coeffi cients themselves 

  

  Figure 5.20  Illustration of critical pressure coeffi cient. 
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are given by a curve of  C   p ,cr  =  f  ( M  ∞ ), as labeled in    Fig. 5.21 . Let us proceed to 

derive this function. It is an important result, and it also represents an interesting 

application of our aerodynamic relationships developed in Ch. 4. 

 First consider the defi nition of  C   p   from    Eq. (5.27) :

  C
p p

q

p

q

p

p
p = = −

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∞pp

∞qq
∞pp

∞pp∞qq ⎝
1  (5.41)

From the defi nition of dynamic pressure,
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Figure 5.21  Critical pressure coeffi cient and critical Mach numbers for airfoils of different 

thicknesses. 
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However, from Eq. (4.53),  a ∞
2 γ ρpp∞pp /    . Thus
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We will return to    Eq. (5.42)  in a moment. Now recall Eq. (4.74) for isentropic 
fl ow:
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This relates the total pressure  p  0  at a point in the fl ow to the static pressure  p  and 
local Mach number  M  at the same point. Also, from the same relation,
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This relates the total pressure  p  0  in the free stream to the free-stream static pres-
sure  p  ∞  and Mach number  M  ∞ . For an isentropic fl ow, which is a close approxi-
mation to the actual, real-life, subsonic fl ow over an airfoil, the total pressure 
remains constant throughout. (We refer to more advanced books in aerodynam-
ics for proof of this fact.) Thus, if the two previous equations are divided,  p  0  will 
cancel, yielding
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Substitute    Eqs. (5.42)  and    (5.43)  into    Eq. (5.41) :

C
p

q

p

p

p

p M

M
p −=

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
= ( )

+
∞pp

∞ ∞qq pp⎝
∞pp

∞p Mp M
∞MM

1
1+ ( −
11

2
2

1
2

2

1
2γ pp

(
1

2

1

( )−γ 11

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
−

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

−

M

γ γ−/(γγ )

C
M

M

M
p = ( )

( )
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
−

⎧
⎨

∞MM
∞MM

( )−
2 1+ ( −

1+ ( −
1

2

1
2

2

1
2

2γMM

(
(

γγ ( −
⎪⎪⎧⎧⎧⎧
⎨⎨⎨⎨
⎩⎪
⎨⎨
⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

  

(5.44)

For a given free-stream Mach number  M  ∞ ,    Eq. (5.44)  relates the local value 
of  C   p   to the local  M  at any given point in the fl ow fi eld and hence at any given 
point on the airfoil surface. Let us pick the particular point on the surface where 
 M  = 1. Then, by defi nition,  C   p   = C  p ,cr . Putting  M  = 1 into    Eq. (5.44) , we obtain
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(5.45)        



332 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

   Equation (5.45)  gives the desired relation  C   p ,cr  =  f  ( M  ∞ ). When numbers are fed 
into    Eq. (5.45) , the dotted curve in    Fig. 5.21  results. Note that as  M  ∞  increases, 
 C   p ,cr  decreases. 

     Commentary   Pause for a moment, and let us review what all this means. In the 
author’s experience, the concepts of critical Mach number and critical pressure 
coeffi cients are diffi cult for the fi rst-time reader to fully understand. So let us 
elaborate.    Equations (5.44)  and    (5.45)  are strictly  aerodynamics;  they have noth-
ing to do with the shape or angle of attack of a given airfoil. Indeed,    Eq. (5.44)  
for a compressible fl ow plays a role analogous to that of Bernoulli’s equation 
for an incompressible fl ow. For an incompressible fl ow, Bernoulli’s equation, 
Eq. (4.9), written between the free-stream point where the pressure and velocity 
are  p  ∞  and  V  ∞ , respectively, and another arbitrary point in the fl ow fi eld where 
the pressure and velocity are  p  and  V , respectively, is

  p p =p∞pp 1
2

2 2ρ( )V V∞VV 2 2V   (5.46)        

For the given free-stream conditions of  p  ∞  and  V  ∞ , at any other point in the incom-
pressible fl ow where the local velocity is  V , the pressure  p  at that point is obtained 
from    Eq. (5.46) . Now focus on    Eq. (5.44) . Here we are dealing with a  compress-
ible fl ow,  where Mach number rather than velocity plays the controlling role. For 
the given free-stream  M  ∞ , at any other point in the compressible fl ow where the 
local Mach number is  M , the pressure coeffi cient at that point is obtained from 
   Eq. (5.44) ; hence the analogy with Bernoulli’s equation. This in turn refl ects on 
   Eq. (5.45) . Consider a fl ow with a free-stream Mach number  M  ∞ . Assume that at 
some local point in this fl ow, the local Mach number is 1.    Equation (5.45)  gives 
the value of the pressure coeffi cient at this local point where we have Mach 1. 
Again we defi ne the value of the pressure coeffi cient at a point where  M  = 1 as the 
 critical  pressure coeffi cient  C   p ,cr . Hence, when  M  in    Eq. (5.44)  is set equal to 1, the 
corresponding value of the pressure coeffi cient at that same point where  M  = 1 is, 
 by defi nition,  the  critical  pressure coeffi cient. It is given by    Eq. (5.45) , obtained 
by setting  M  = 1 in    Eq. (5.44) . If we graph the function given in    Eq. (5.45) —that 
is, if we make a plot of  C   p ,cr  versus  M  ∞ —we obtain the dashed curve in    Fig. 5.21 . 

 The fact that  C   p ,cr  decreases as  M  ∞  increases makes physical sense. For ex-

ample, consider a free stream at  M  ∞  = 0.5. To expand this fl ow to Mach 1 requires 

a relatively large pressure change  p  −  p  ∞  and therefore a relatively large (in mag-

nitude) pressure coeffi cient because, by defi nition,  C   p   = ( p  −  p  ∞ )/ q  ∞ . However, 

consider a free stream at  M  ∞  = 0.9. To expand this fl ow to Mach 1 requires a 

much smaller pressure change; that is,  p  −  p  ∞  is much smaller in magnitude. 

Hence, the pressure coeffi cient  C   p   = ( p  −  p  ∞ )/ q  ∞  will be smaller in magnitude. 

As a result,  C   p ,cr   decreases  with  M  ∞ , as shown by the dashed curve in    Fig. 5.21 . 

Moreover, this dashed curve is a fi xed “universal” curve—it is simply rooted in 

pure aerodynamics, independent of any given airfoil shape or angle of attack.  

  How to Estimate the Critical Mach Number for an Airfoil   Consider 

a given airfoil at a given angle of attack. How can we estimate the criti-

cal Mach number for this airfoil at the specified angle of attack? We will 
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 discuss two approaches to the solution: a graphical solution and an analytical 

 solution. 

 The graphical solution involves several steps: 

1.   Obtain a plot of  C   p ,cr  versus  M  ∞  from    Eq. (5.45) . This is illustrated by curve 

A  in    Fig. 5.22 . As discussed previously, this curve is a fi xed “universal” 

curve that you can use for all such problems.  

2.   For low-speed, essentially incompressible fl ow, obtain the value of the 

minimum  pressure coeffi cient on the surface of the airfoil. The minimum 

pressure coeffi cient corresponds to the point of maximum velocity on 

the airfoil surface. This minimum value of  C   p   must be given to you from 

either experimental measurement or theory. This is  C   p ,0  shown as point  B  in 

   Fig. 5.22 .  

3.   Using    Eq. (5.28) , plot the variation of this minimum coeffi cient versus  M  ∞ . 

This is illustrated by curve  C  in    Fig. 5.22 .  

4.   Where curve  C  intersects curve  A , the minimum pressure coeffi cient on 

the surface of the airfoil is equal to the critical pressure coeffi cient. This 

intersection point is denoted by point  D  in    Fig. 5.22 . For the conditions 

associated with this point, the maximum velocity on the airfoil surface is 

exactly sonic. The value of  M  ∞  at point  D  is then, by defi nition, the critical 

Mach number.    

 The analytical solution for  M  cr  is obtained as follows.    Equation (5.28) , re-

peated here, gives the variation of  C   p   at a given point on the airfoil surface as a 

function of  M  ∞ :

C
C

M
p

p=
− ∞MM

, 0

21
(5.28)

Figure 5.22 Determination of critical Mach number.
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At some location on the airfoil surface,  C   p ,0  will be a minimum value correspond-
ing to the point of maximum velocity on the surface. The value of the mini-
mum pressure coeffi cient will increase in absolute magnitude as  M  ∞  is increased, 
owing to the compressibility effect discussed in    Sec. 5.6 . Hence,    Eq. (5.28)  with 
 C   p ,0  being the  minimum  value on the surface of the airfoil at essentially incom-
pressible fl ow conditions ( M  ∞  < 0.3) gives the value of the minimum pressure 
coeffi cient at a higher Mach number  M  ∞ . However, at some value of  M  ∞ , the 
fl ow velocity will become sonic at the point of minimum pressure coeffi cient. 
The value of the pressure coeffi cient at sonic conditions is the critical pressure 
coeffi cient, given by    Eq. (5.45) . When the fl ow becomes sonic at the point of 
minimum pressure, the pressure coeffi cient given by    Eq. (5.28)  is precisely the 
value given by    Eq. (5.45) . Equating these two relations, we have
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The value of  M  ∞  that satisfi es    Eq. (5.47)  is the value at which the fl ow becomes 
sonic at the point of maximum velocity (minimum pressure). That is, the value 
of  M  ∞  obtained from    Eq. (5.47)   is  the critical Mach number for the airfoil. To 
emphasize this, we write    Eq. (5.47)  with  M  ∞  replaced by  M  cr :
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(5.48)

   Equation (5.48)  allows a direct analytical estimate for the critical Mach number 
of a given airfoil at a given angle of attack. Note that    Eq. (5.48)  must be solved 
implicitly for  M  cr —for example, by trial and error, guessing at a value of  M  cr , 
seeing if it satisfi es    Eq. (5.48) , and then trying again. 

 Please note that    Eq. (5.48)  is simply an analytical representation of point  D
in    Fig. 5.22 , where curves  A  and  C  intersect. 

EXAMPLE 5.20

  Consider the NACA 0012 airfoil, the shape of which is shown at the top of    Fig. 5.23 . The 

pressure coeffi cient distribution over the surface of the airfoil at a zero angle of attack is 

shown at the bottom of    Fig. 5.23 . These are low-speed values measured in a wind tun-

nel at Re = 3.65 × 10 6 . From this information, estimate the critical Mach number of the 

NACA 0012 airfoil at a zero angle of attack. 

■  Solution 
 First we will carry out a graphical solution, and then we will check the answer by carrying 

out an analytical solution. 

a . Graphical solution 
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 Let us accurately plot the curve of  C   p ,cr  versus  M  ∞ , represented by curve  A  in 

   Fig. 5.22 . From    Eq. (5.45) , repeated here,
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for γ   = 1.4, we can tabulate    

  M  ∞   0.4  0.5  0.6  0.7  0.8  0.9  1.0 

  C   p ,cr   −3.66  −2.13  −1.29  −0.779  −0.435  −0.188  0 

  The curve generated by these numbers is given in    Fig. 5.24 , labeled curve  A . 

     Next let us measure the minimum  C   p   on the surface of the airfoil from    Fig. 5.23 ; 

this value is ( C   p  ) min  = −0.43. The experimental values for pressure coeffi cient shown 

in    Fig.  5.23  are for low-speed, essentially incompressible fl ow. Hence in    Eq. (5.28) , 
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Figure 5.23 Low-speed pressure coeffi cient 

distribution over the surface of a NACA 

0012 airfoil at zero angle of attack. 

Re = 3.65 × 106.
(Source: After R. J. Freuler and 
G. M. Gregorek, “An Evaluation of Four 
Single Element Airfoil Analytical Methods,” in 

Advanced Technology Airfoil Research, NASA CP 
2045, 1978, pp. 133–162.)
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 (C   p ,0 ) min  = −0.43. As the Mach number is increased, the location of the point of minimum 

pressure stays  essentially the same, but the value of the minimum pressure coeffi cient 

varies  according to    Eq. (5.28) . Hence
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Some values of ( C   p  ) min  are tabulated in the following:    

  M  ∞   0  0.2  0.4  0.6  0.8 

 ( C   p  ) min   −0.43  −0.439  −0.469  −0.538  −0.717 

  The curve generated by these numbers is given in    Fig. 5.24 , labeled curve  C . The inter-

section of curves  A  and  C  is at point  D . The free-stream Mach number associated with 

point  D  is the critical Mach number. From    Fig. 5.24 , we have

Mcr = 0 74
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Figure 5.24 Graphical solution for the critical Mach 

number, from Example 5.20.
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b . Analytical solution 

 Solve    Eq. (5.48)  for  M  cr , with  C   p ,0  = −0.43. We can do this by trial and error. Assume 

different values for  M  cr , and fi nd by iteration the value that satisfi es    Eq. (5.48) :    

   M  cr   
   

−−−−
−−−−
0.43

1 cr
2M         

2 2 1
1

1
cr
2

cr
2 /( 1)

γγγγ
γγγγ
γγγγ

γγ γ/ (/γγ //// γγγ
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⎨
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⎩⎪
⎨⎨
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⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

( )1γγγγγ
++++

−−−−
−γγ −−−

     
 0.72  −0.6196  −0.6996 
 0.73  −0.6292  −0.6621 
 0.74  −0.6393  −0.6260 
 0.738  −0.6372  −0.6331 
 0.737  −0.6362  −0.6367 
 0.7371  −0.6363  −0.6363 

  To four-place accuracy, when  M  cr  = 0.7371, both the left and right sides of    Eq. (5.48)  

agree, also to four-place accuracy. Hence, from the analytical solution, we have

 
M cr = 0 7371.

       

 Note:  Compare the results from the graphical solution and the analytical solution. To the 

two-place accuracy of the graphical solution, both answers agree.   

Question:  How accurate is the estimate of the critical Mach number obtained 

in    Example 5.20 ? The pressure coeffi cient data in    Fig. 5.25  a  and  b  provide an 

answer. Wind tunnel measurements of the surface pressure distributions on an 

NACA 0012 airfoil at a zero angle of attack in a high-speed fl ow are shown 

in    Fig.  5.25 ; for    Fig. 5.25  a ,  M  ∞  =  0.575, and for    Fig. 5.25  b ,  M  ∞  = 0.725. In 

   Fig. 5.25  a , the value of  C   p ,cr  = −1.465 at  M  ∞  = 0.575 is shown as the dashed 

horizontal line. From the defi nition of critical pressure coeffi cient, any local 

value of  C   p   above this horizontal line corresponds to locally supersonic fl ow, and 

any local value below the horizontal line corresponds to locally subsonic fl ow. 

Clearly, from the measured surface pressure coeffi cient distribution at  M  ∞   = 
0.575 shown in    Fig. 5.25  a , the fl ow is locally subsonic at every point on the sur-

face. Hence,  M  ∞  = 0.575 is  below  the critical Mach number. In    Fig. 5.25  b , which 

is for a higher Mach number, the value of  C   p ,cr  = −0.681 at  M  ∞  = 0.725 is shown 

as the dashed horizontal line. Here the local pressure coeffi cient is higher than 

C   p ,cr  at every point on the surface  except  at the point of minimum pressure, where 

( C   p  ) min  is essentially equal to  C   p ,cr . This means that for  M  ∞  = 0.725, the fl ow 

is locally subsonic at every point on the surface  except  the point of minimum 

pressure, where the fl ow is essentially sonic. These experimental measurements 

indicate that the critical Mach number of the NACA 0012 airfoil at a zero angle 

of attack is approximately 0.73. Comparing this experimental result with the cal-

culated value of  M  cr  = 0.74 from    Example 5.20 , we see that our calculations are 

amazingly accurate, to within about 1 percent. 
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       Location of Point of Maximum Velocity (Minimum Pressure)   One fi nal 

observation in this section can be made from studying the pressure coeffi cient 

distributions, shown in    Figs. 5.23  and    5.25 , and the shape of the NACA 0012 

airfoil, shown at the top of    Fig. 5.23 . Note that the minimum pressure (hence 

maximum velocity) does  not  occur at the location of maximum thickness of the 

airfoil. From the airfoil shape given in    Fig. 5.23 , the maximum thickness is at 

 x / c  = 0.3. From the surface pressure coeffi cient distributions shown in    Figs. 5.23  

and    5.25 , the point of minimum pressure (maximum velocity) on the surface 

is at  x / c  = 0.11, considerably ahead of the point of maximum thickness. Your 
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Figure 5.25 Wind tunnel measurements of surface 

pressure coeffi cient distribution for the NACA 

0012 airfoil at a zero angle of attack.
(Source: Experimental data of Frueler and Gregorek, 
NASA CP 2045 (a) M∞ = 0.575, (b) M∞ = 0.725.)
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intuition might at fi rst suggest that the point of maximum velocity (minimum 

pressure) might be at the point of maximum thickness, but this intuition is wrong. 

Nature places the maximum velocity at a point that satisfi es the physics of the 

 whole fl ow fi eld,  not just what is happening in a local region of fl ow. The point 

of maximum velocity is dictated by the  complete  shape of the airfoil, not just by 

the shape in a local region.     

   5.10  DRAG-DIVERGENCE MACH NUMBER 
  We now turn our attention to the airfoil drag coeffi cient  c   d  .    Figure 5.26  sketches 
the variation of  c   d   with  M  ∞ . At low Mach numbers, less than  M  cr ,  c   d   is virtually 
constant and is equal to its low-speed value given in App. D. The fl ow fi eld about 
the airfoil for this condition (say point  a  in    Fig. 5.26 ) is noted in    Fig. 5.27  a , 
where  M  < 1 everywhere in the fl ow. If  M  ∞  is increased slightly above  M  cr , 
a “bubble” of supersonic fl ow will occur, surrounding the minimum pressure 
point, as shown in    Fig. 5.27  b . Correspondingly,  c   d   will still remain reasonably 
low, as indicated by point  b  in    Fig. 5.26 . However, if  M  ∞  is still further increased, 
a very sudden and dramatic rise in the drag coeffi cient will be observed, as 
noted by point  c  in    Fig. 5.26 . Here shock waves suddenly appear in the fl ow, 
as sketched in    Fig. 5.27  c . The effect of the shock wave on the surface pressure 
distribution can be seen in the experimental data given in    Fig. 5.28 . Here the 
surface pressure coeffi cient is given for an NACA 0012 airfoil at a zero angle of 
attack in a free stream with  M  ∞  = 0.808. (   Figure 5.28  is a companion fi gure to 
   Figs. 5.23  and    5.25 .) Comparing the result of    Example 5.20  and the data shown 
in    Fig. 5.25  b , we know that  M  ∞  = 0.808 is  above  the critical Mach number for 
the NACA 0012 airfoil at a zero angle of attack. The pressure distribution in 
   Fig. 5.28  clearly shows that fact; the shape of the pressure distribution curve 
is quite different from that in the previous fi gures. The dashed horizontal line 
in    Fig. 5.28  corresponds to the value of  C   p ,cr  at  M  ∞  = 0.808. Note that the fl ow 
velocity at the surface is locally supersonic in the region 0.11 <  x / c  < 0.45. Recall 
from our discussion of shock waves in Sec. 4.11.3 that the pressure increases 
and the velocity decreases across a shock wave. We clearly see these phenomena 
in    Fig. 5.28 ; the large and rather sudden increase in pressure at  x / c  = 0.45 indi-
cates the presence of a shock wave at that location, and the fl ow velocity drops 
from supersonic in front of the shock to subsonic behind the shock. (The drop 
in velocity to  subsonic  behind the shock, rather than just a decrease to a smaller 
supersonic value, is a characteristic of shock waves that are essentially normal to 
the fl ow, as occurs here.) 

             The shock waves themselves are dissipative phenomena that increase drag 

on the airfoil. But in addition, the sharp pressure increase across the shock waves 

creates a strong adverse pressure gradient, causing the fl ow to separate from the 

surface. As discussed in Sec. 4.20, such fl ow separation can create substantial 

increases in drag. Thus, the sharp increase in  c   d   shown in    Fig. 5.26  is a combined 

effect of shock waves and fl ow separation. The  free-stream  Mach number at 
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Figure 5.26 Variation of drag coeffi cient with Mach number.

Figure 5.27 Physical mechanism of drag divergence.

a. Flow fi eld associated with point a in Fig. 5.21.

b. Flow fi eld associated with point b in Fig. 5.21.

c. Flow fi eld associated with point c in Fig. 5.21.
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Figure 5.28 Wind tunnel measurements of the 

surface pressure coeffi cient distribution for the 

NACA 0012 airfoil at a zero angle of attack for 

M∞ = 0.808, which is above the critical Mach 

number.
(Source: Experimental data are from Freuler and 
Gregorek, NASA  2045, and are a companion to the 
data shown in Figs. 5.23 and 5.25.)

which  c   d   begins to increase rapidly is defi ned as the  drag-divergence Mach num-
ber  and is noted in    Fig. 5.26 . Note that

           
M Mcr drag divergence< <Mdrag divergence 1 0

 The shock pattern sketched in    Fig. 5.27  c  is characteristic of a fl ight re-

gime called  transonic.  When 0.8 ≤  M  ∞  ≤ 1.2, the fl ow is generally designated 

as transonic fl ow, and it is characterized by some very complex effects only 

hinted at in    Fig. 5.27  c . To reinforce these comments,    Fig. 5.29  shows the 

variation of both  c   l 
  and  c   d   as a function of Mach number with angle of attack 

as a parameter. The airfoil is a standard NACA 2315 airfoil.    Figure  5.29 , 

which shows actual wind tunnel data, illustrates the massive transonic fl ow 

effects on both lift and drag coeffi cients. The analysis of transonic fl ows has 

been one of the major challenges in modern aerodynamics. Only in recent 

years, since about 1970, have computer solutions for transonic fl ows over 

airfoils come into practical use; these numerical solutions are still in a state 

of development and improvement. Transonic fl ow has been a hard nut to 

crack. 
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DESIGN BOX

The designers of transonic airplanes are frequently 

looking for ways to get the speed closer to Mach 1 

without encountering the large transonic drag rise. 

These designers have two options in regard to the 

choice of an airfoil that will delay drag divergence 

to a higher Mach number: (1) Make the airfoil thin 

and (2) adopt a specially shaped airfoil called a 

 supercritical airfoil. These options can be used sin-

gly or in combination.

In regard to airfoil thickness, the generic trend 

sketched in Fig. 5.21 clearly shows that Mcr is 

 increased by making the airfoil thinner. An  increase 

in Mcr usually means an increase in the drag- 

divergence Mach number. Hence, everything else 

being equal, a transonic airplane with a thinner airfoil 

can fl y at a higher Mach number before encountering 

drag  divergence. This knowledge was incorporated 

in the design of the famous Bell X-1, which was the 

Figure 5.29 Variation of (a) lift coeffi cient and (b) drag coeffi cient versus Mach number with angle of attack as a 

parameter for an NACA 2315 airfoil.
(Source: Wind tunnel measurements at the NACA Langley Memorial Laboratory.)
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fi rst airplane to fl y faster than sound (see Sec. 5.22). 

The X-1 was designed with two sets of wings: one 

with a 10 percent thick airfoil for more routine fl ights 

and another with an 8 percent thick airfoil for fl ights 

intended to penetrate through Mach 1. The airfoil 

sections were NACA 65-110 and NACA 65-108, 

respectively. Moreover, the horizontal tail was even 

thinner in both cases, being an NACA 65-008 (8 per-

cent thickness) and an NACA 65-006 (6 percent 

thickness), respectively. This was done to ensure that 

when the wing encountered major compressibility 

 effects, the horizontal tail and elevator would still be 

free of such problems and would be functional for 

stability and control. A three-view of the Bell X-1 is 

shown in Fig. 5.30.

The adverse compressibility effects that cause 

the dramatic increase in drag and precipitous 

 decrease in lift, shown in Fig. 5.29, can be delayed 

by decreasing the airfoil thickness. The knowl-

edge of this fact dates back as early as 1918. In 

that year, as World War I was coming to an end, 

Frank Caldwell and Elisha Fales, two engineers at 

the U.S. Army’s  McCook Field in Dayton, Ohio, 

measured these  effects in a high-speed wind tun-

nel capable of producing a test stream of 465 mi/h. 

This knowledge was reinforced by subsequent high-

speed wind tunnel tests carried out by NACA in the 

1920s and 1930s. (For a detailed historical treatment 

of the evolution of our understanding of compress-

ibility effects during this period, see Anderson, A 
History of Aerodynamics and Its Impact on Flying 
Machines, Cambridge University Press, 1997. See 

also Anderson, “ Research in Supersonic Flight and 

the Breaking of the Sound Barrier,” chapter 3 in 

From  Engineering Science to Big Science, edited by 

 Pamela Mack, NASA  SP-4219, 1998.)

Thinner airfoils are also advantageous for 

 supersonic airplanes, for reasons to be discussed in 

Sec. 5.11. Indeed, in airplane design, the higher the 

 design Mach number, usually the thinner the airfoil 

section. This is dramatically shown in Fig. 5.31, which 

is a plot of airfoil thickness versus design Mach num-

ber for a variety of high-speed airplanes since World 

War II. As the design Mach number of airplanes 

 increased, thinner airfoils became a design necessity.

The supercritical airfoil is a different approach to 

the increase in drag-divergence Mach number. Here 

the shape of the airfoil is designed with a relatively 

fl at top surface, as shown in Fig. 5.32. When the free-

stream Mach number exceeds Mcr, a pocket of super-

sonic fl ow occurs over the top surface as usual; but 

because the top is relatively fl at, the local supersonic 

Mach number is a lower value than would exist in the 

case of a conventional airfoil. As a result, the shock 

wave that terminates the pocket of supersonic fl ow is 

weaker. In turn, the supercritical airfoil can penetrate 

closer to Mach 1 before drag divergence occurs. In 

essence, the increment in Mach number (the “grace 

period”) between Mcr and Mdrag divergence (see Fig. 5.26) is 

increased by the shape of the supercritical airfoil. One 

way to think about this is that the supercritical airfoil 

is “more comfortable” than conventional airfoils in 

the region above Mcr, and it can fl y closer to Mach 1 

before drag divergence is encountered.  Because they 

are more comfortable in the fl ight regime above the 

critical Mach number and because they can penetrate 

closer to Mach 1 after exceeding Mcr, these airfoils 

are called supercritical airfoils. They are designed to 

cruise in the Mach number range above Mcr.

The pressure coeffi cient distribution over the top 

surface of a supercritical airfoil fl ying above Mcr but 

below Mdrag divergence is sketched in Fig. 5.32. After a 

sharp decrease in pressure around the leading edge, 

the pressure remains relatively constant over a sub-

stantial portion of the top surface. This contrasts with 

the pressure coeffi cient distribution for a conven-

tional airfoil fl ying above Mcr, such as that shown in 

Fig. 5.28. Clearly, the fl ow over the supercritical air-

foil is carefully tailored to achieve the desired results.

The early aerodynamic research on supercriti-

cal airfoils was carried out by Richard Whitcomb, 

an aeronautical engineer at NASA Langley Research 

Center, during the middle 1960s. This work by Whit-

comb is described in a NASA document titled “An 

Airfoil Shape for Effi cient Flight at Supercritical 

Mach Numbers” (NASA TM X-1109, July 1965, 

by R.T. Whitcomb and L.R. Clark). Whitcomb’s de-

sign of supercritical airfoils was pioneering; today 

all modern civilian jet transports are designed with 

supercritical wings, incorporating custom-designed 

supercritical airfoil sections that have their genes in 

the original design by Richard Whitcomb.

The effectiveness of the supercritical airfoil 

was clearly established by an Air Force/NASA 

(continued on next page)
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(continued from page 343)

Figure 5.30 Three-

view of the Bell X-1.
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Figure 5.31 Variation of thickness-to-chord ratio with Mach number for a representative 

sampling of different airplanes.
(Source: After Ray Whitford, Design for Air Combat, Jane’s Information Group, Surrey, England, 1989.)

(continued on next page)

wind  tunnel and fl ight test program carried out in the 

early 1970s called the Transonic Aircraft Technology 

(TACT) program. A standard General Dynamics F-111 

(sketched at the top of Fig. 5.33) was modifi ed with 

a supercritical wing. Wind tunnel data for the varia-

tion of CD with M∞ for both the standard F-111 and the 

TACT aircraft (the F-111 modifi ed with a supercritical 

wing) are shown in Fig. 5.33. The standard airfoil on 

the F-111 is an NACA 64-210; the supercritical airfoil 

on the TACT aircraft had the same 10 percent thick-

ness. The use of the supercritical wing increased the 

drag-divergence Mach number from 0.76 to 0.88—a 

stunning 16 percent increase—as noted in Fig. 5.33.

Designers of transonic aircraft can use super-

critical airfoils to accomplish one of two  objectives: 

(1) For a given airfoil thickness, the supercriti-

cal airfoil shape allows a higher cruise velocity; 

or (2)  for a given lower cruise velocity, the air-

foil thickness can be larger. The latter option has 

some design  advantages. The structural design of a 

thicker wing is more straightforward and actually 

results in a lighter-weight (albeit thicker) wing. 

Also, a thicker wing provides more volume for an 

increased fuel capacity. Clearly, the use of a super-

critical airfoil provides a larger “design space” for 

transonic  airplanes.
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(continued from page 345)

Figure 5.32 Shape of a typical supercritical airfoil and its pressure 

coeffi cient distribution over the top surface.
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Figure 5.33 Increase in drag-divergence Mach number obtained by the 

TACT aircraft with a supercritical wing compared to a standard F-111. 

Wind tunnel data obtained at the NASA Langley Research Center. Wing 

sweep = 26°. CL held constant at 0.0465.
(Source: Reported in Symposium on Transonic Aircraft Technology (TACT), 

AFFDL-TR-78-100, Air Force Flight Dynamics Laboratory, August 1978.)
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     5.11  WAVE DRAG (AT SUPERSONIC SPEEDS) 
  To this point we have discussed airfoil properties at subsonic speeds—that 
is, for  M  ∞  < 1. When  M  ∞  is supersonic, a major new physical phenomenon is 
introduced: shock waves. We previously alluded to shock waves in Sec. 4.11.3 
in conjunction with the Pitot tube measurement of supersonic airspeeds. With 
respect to airfoils (as well as all other aerodynamic bodies), shock waves in 
supersonic fl ow create a new source of drag, called  wave drag . In this section, 
we highlight some of the ideas involving shock waves and the consequent wave 
drag; a detailed study of shock wave phenomena is left to more advanced texts 
in aerodynamics. 

 To obtain a feel for how a shock is produced, imagine that we have a small 

source of sound waves: a tiny “beeper” (something like a tuning fork). At time 

 t  = 0 assume that the beeper is at point  P  in    Fig. 5.34 . At this point let the beeper 

emit a sound wave, which will propagate in all directions at the speed of sound 

 a . Also let the beeper move with velocity  V , where  V  is less than the speed of 

sound. At time  t , the sound wave will have moved outward by a distance  at , as 

shown in    Fig. 5.34 . At the same time  t , the beeper will have moved a distance 

 Vt  to point  Q . Because  V  <  a , the beeper will always stay inside the sound 

wave. If the beeper is constantly emitting sound waves as it moves along, these 

waves will constantly move outward, ahead of the beeper. As long as  V  <  a , the 

beeper will always be inside the envelope formed by the sound waves. 

     Now, we change the situation: assume that the beeper is moving at super-

sonic speed; that is,  V  >  a . At time  t  = 0, assume that the beeper is at point  R  in 

   Fig. 5.35 . At this point let the beeper emit a sound wave, which, as before, will 

Figure 5.34 Beeper moving at less than the speed of 

sound.
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propagate in all directions at the speed of sound  a . At time  t , the sound wave 

will have moved outward by a distance  at , as shown in    Fig. 5.35 . At the same 

time  t , the beeper will have moved a distance  Vt  to point  S . However, because 

V  >  a , the beeper will now be outside the sound wave. If the beeper is con-

stantly emitting sound waves as it moves along, these waves will now pile up 

inside an envelope formed by a line from point  S  tangent to the circle formed 

by the fi rst sound wave, centered at point  R . This tangent line, the line where 

the pressure disturbances are piling up, is called a  Mach wave . The vertex of 

the wave is fi xed to the moving beeper at point  S . In supersonic fl ight, the air 

ahead of the beeper in    Fig. 5.35  has no warning of the approach of the beeper. 

Only the air behind the Mach wave has felt the presence of the beeper, and 

this presence is communicated by pressure (sound) waves confi ned inside the 

conical region bounded by the Mach wave. In contrast, in subsonic fl ight, the 

air ahead of the beeper in    Fig. 5.34  is forewarned about the oncoming beeper 

by the sound waves. In this case there is no piling up of pressure waves; there 

is no Mach wave. 

     Hence we can begin to feel that the coalescing, or piling up, of pressure 

waves in supersonic fl ight can create sharply defi ned waves of some sort. In 

   Fig. 5.35  the Mach wave that is formed makes an angle μ with the direction of 

movement of the beeper. This angle, defi ned as the  Mach angle,  is easily ob-

tained from the geometry of    Fig. 5.35 :

 
sin μ = = =at

Vt

a

V M

1

       

Figure 5.35 The origin of Mach waves and shock waves. The beeper is moving 

faster than the speed of sound.
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Hence

     

Mach angle ≡ ≡μ arcsin
1

M
(5.49)

 In real life, a very thin object (such as a thin needle) moving at  M  ∞  > 1 

creates a very weak disturbance in the fl ow, limited to a Mach wave. This is 

sketched in    Fig. 5.36 . In contrast, a thicker object such as the wedge shown in 

   Fig. 5.37 , moving at supersonic speeds will create a strong disturbance, called 

a  shock wave . The shock wave will be inclined at an oblique angle β, where β > 

μ, as shown in    Fig. 5.37 . As the fl ow moves across the oblique shock wave, the 

pressure, temperature, and density increase, and the velocity and Mach number 

decrease. 

 Consider now the pressure on the surface of the wedge, as sketched in 

   Fig. 5.38 . Because  p  increases across the oblique shock wave, at the wedge sur-

face,  p  >  p  ∞ . Because the pressure acts normal to the surface and the surface itself 

is inclined to the relative wind, a net drag will be produced on the wedge, as seen 

Figure 5.36 Mach waves on a needlelike body.

Figure 5.37 Oblique shock waves on a wedge-type 

body.

Figure 5.38 Pressure distribution on a wedge at supersonic speeds; origin of 

wave drag.
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by simple inspection of    Fig. 5.38 . This drag is called  wave drag  because it is 

inherently due to the pressure increase across the shock wave. 

     To minimize the strength of the shock wave, all supersonic airfoil profi les 

are thin, with relatively sharp leading edges. (The leading edge of the Lockheed 

F-104 supersonic fi ghter is almost razor-thin.) Let us approximate a thin super-

sonic airfoil by the fl at plate illustrated in    Fig. 5.39 . The fl at plate is inclined 

at a small angle of attack α to the supersonic free stream. On the top surface 

of the plate, the fl ow fi eld is turned away from the free stream through an  ex-
pansion wave  at the leading edge; an expansion wave is a fan-shaped region 

through which the pressure decreases. At the trailing edge on the top side, the 

fl ow is turned back toward the free-stream direction through an oblique shock 

wave. On the bottom surface of the plate, the fl ow is turned into the free stream, 

 causing an oblique shock wave with an increase in pressure. At the trailing 

edge, the fl ow is turned back toward the free-stream direction through an expan-

sion wave. (Details and theory for expansion waves, as well as shock waves, 

are beyond the scope of this book—you will have to simply accept on faith 

the fl ow fi eld sketched in    Fig. 5.39  until your study of aerodynamics becomes 

Figure 5.39 Flow fi eld and pressure distribution for a fl at plate at angle of attack in 

supersonic fl ow. There is a net lift and drag due to the pressure distribution set up by the 

shock and expansion waves.
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more advanced.) The expansion and shock waves at the leading edge result in 

a surface pressure distribution in which the pressure on the top surface is less 

than  p  ∞ , whereas the pressure on the bottom surface is greater than  p  ∞ . The net 

effect is an aerodynamic force normal to the plate. The components of this force 

perpendicular and parallel to the relative wind are the lift and supersonic wave 

drag, respectively. Approximate relations for the lift and drag coeffi cients are, 

respectively,

cl = 4
2 1 2

α
( )M −∞MM 12 1

(5.50)

and

  

cd w,
( )M

=
MM

4 2

2 1) 2

α2

(5.51)

A subscript  w  has been added to the drag coeffi cient to emphasize that it is the 
wave drag coeffi cient.    Equations (5.50)  and    (5.51)  are approximate expressions, 
useful for thin airfoils at small to moderate angles of attack in supersonic fl ow. 
Note that as  M  ∞  increases, both  c   l   and  c   d   decrease. This is not to say that the lift 
and drag forces themselves decrease with  M  ∞ . Quite the contrary. For any fl ight 
regime, as the fl ight velocity increases,  L  and  D  usually increase because the 
dynamic pressure  q  ∞  =  q V∞q Vq V1

2
2ρ     increases. In the supersonic regime,  L  and 

D  increase with velocity, even though  c   l   and  c   d ,  w   decrease with  M  ∞  according to 
   Eqs. (5.50)  and    (5.51) . 

EXAMPLE 5.21

 Consider a thin supersonic airfoil with chord length  c  = 5 ft in a Mach 3 free stream at a 

standard altitude of 20,000 ft. The airfoil is at an angle of attack of 5°. 

  (a)  Calculate the lift and wave drag coeffi cients and the lift and wave drag per unit span. 

  (b)  Compare these results with the same airfoil at the same conditions, except at Mach 2. 

   ■  Solution 
  a.  In    Eqs. (5.50)  and    (5.51) , the angle of attack α must be in radians. Hence

α = ° =5
5

57 3
0 08 3

.
.rad r= 0 0873. ad

          Also

 

M
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2 2
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1 3= 1 2= 828
4
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2 828
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.
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At 20,000 ft, ρ ∞  = 1.2673 × 10 −3  slug/ft 3 , and  T  = 447.43°R. Hence
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b. 
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Note:  At Mach 2,  c   l   and  c   d ,  w   are  higher  than at Mach 3. This is a general result; both  c   l   and 

c   d , w   decrease with increasing Mach number, as clearly seen from    Eqs. (5.50)  and    (5.51) . 

Does this mean that  L  and  D   w   also decrease with increasing Mach number? Intuitively 

this does not seem correct. Let us fi nd out:

 

V a M

q V

∞ ∞V aV ∞MM

qq ∞VV
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=V ×

1037 2074

2673 11
2

2 1
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( )2
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= lb

(p i pan)D q(p q=er unit span) ccd∞q= ∞(per unit span) cc ww = 2726 5 0 0176( )5 ( .0 ) l= 240 b
       

There is no confl ict with our intuition. As the supersonic Mach numbers increase,  L  and 

D   w   also increase, although the lift and drag  coeffi cients  decrease.   

  The Lockheed F-104 supersonic fi ghter is shown in three-view in Fig. 4.45 and in the 

photograph in    Fig. 5.40 . It is the fi rst fi ghter aircraft designed for sustained fl ight at 

Mach 2. Its wing planform area is 19.5 m 2 . Consider the F-104 in steady, level fl ight, and 

assume that its weight is 7262 kg  f  . Calculate its angle of attack at Mach 2 when it is fl ying 

at ( a ) sea level and ( b ) 10 km. 

       ■  Solution 
 We assume that the F-104 wing in supersonic fl ight can be represented by a fl at plate 

and that the wing lift coeffi cient is given by    Eq. (5.50) . Although this equation holds 

for a fl at-plate airfoil section, we assume that it gives a reasonable estimate for the 

straight wing of the F-104. Keep in mind that    Eq. (5.50)  is only an approximation for 

the fi nite wing. 

EXAMPLE 5.22
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 The weight is given in kg  f  , a nonconsistent unit. As shown in Example 2.5, 

1 kg   f   = 9.8 N. Also, in steady, level fl ight, the lift equals the weight of the airplane. Hence

 =W 7262 9 8 7 12 1× 04( .9 ) .= 7 N         

a.  At sea level, ρ  ∞  = 1.23 kg/m 3  and  T  ∞  = 288 K. The speed of sound is given by

a RT∞ ∞RTT =RT =γRRRRR ( . )( )( )4. 287 288 340 m/s
       

Thus
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From    Eq. (5.50) ,
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or
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−c
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l

4
1

0 014

4
1− 6 06 1× 02 21

0 014
2 3( )22 r06 1× 0 3 ad

In degrees,

α = = °( . )( . )6 0. 6 1× 0 5− )( 7. 0 3. 53

Figure 5.40 The fi rst airplane to be designed for sustained fl ight at Mach 2: the Lockheed 

F-104 Starfi ghter.
(Source:  Courtesy of John Anderson.)
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 Note:  This is a very small angle of attack. At Mach 2 at sea level, the dynamic pressure is 

so large that only a very small lift coeffi cient, and hence a very small angle of attack, is 

needed to sustain the airplane in the air. 

  b.  At 10 km, from App. A, ρ ∞  = 0.41351 kg/m 3  and  T  ∞  = 223.26 K.
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 α = °( . )( . ) .021 57 1=) 2        
Note:  At an altitude of 10 km, where the dynamic pressure is smaller than at sea level, 

the required angle of attack to sustain the airplane in fl ight is still relatively small: only 

slightly above 1 degree. We learn from this example that airplanes in steady level fl ight 

at supersonic speeds fl y at very small angles of attack.   

EXAMPLE 5.23

  If the pilot of the F-104 in    Example 5.22 , fl ying in steady, level fl ight at Mach 2 at an 

altitude of 10 km, suddenly pitched the airplane to an angle of attack of 10°, calculate the 

instantaneous lift exerted on the airplane, and comment on the possible consequences. 

■  Solution 

= =10

57 3
0 175

.
.  175 rad

 From    Eq. (5.50) ,
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From    Example 5.22 , at Mach 2 and an altitude of 10 km,  q  ∞  = 7.44 × 10 4  N/m 2 :

 L q Scl =q Scl∞qq ( . )( . )( . ) .=4. 4 1× 0 1)( 9. 404 8. 6 1× 04 5)( )1)( 9 5 404 5 86 1× 0 N        

Compare this value of lift with the weight of the airplane:

L

W
= =5 86 1× 0

7 12 1× 0
8 2

5

4.

When the pilot suddenly increases the angle of attack to 10°, the lift increases to a 

value  8.2 larger than the weight. The pilot will feel a sudden acceleration equal to 

8.2 times the acceleration of gravity, sometimes stated as an acceleration of 8.2 g’s. The 
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human body can withstand this acceleration for only a few seconds before becoming 

unconscious. Moreover, the structure of the airplane will be under great stress. These 

are reasons why, in supersonic fl ight, the angle of attack is usually maintained at low 

values.   

EXAMPLE 5.24

  The lift coefficient of any object in flight is a function of angle of attack. The 

 purpose of this example is to examine how the angle of attack varies with flight 

velocity for an airfoil, holding the lift constant for all values of velocity, consider-

ing both subsonic and supersonic velocities. (We note in Ch. 6 that, for an airplane 

in steady flight, the lift must always equal the weight of the airplane, no matter at 

what velocity the airplane is flying. So, the results of this example give some insight 

into the angle-of-attack variation of an airplane in steady, level flight over a range 

of flight velocity.)  

  a.    Subsonic Case  Consider a unit span of an infi nite wing of chord 1.5 m with an NACA 

64–210 airfoil at standard sea-level conditions. The lift per unit span is 3300 N, and is 

held constant with velocity. Calculate and plot the variation of angle of attack as a func-

tion of velocity as  V  ∞  varies from 50 to 250 m/s, taking into account compressibility 

effects.  

  b.    Supersonic Case  Consider a unit span of a fl at-plate infi nite wing of chord 1.5 m at 

standard sea-level conditions. The lift per unit span is 3300 N, and is held constant with 

velocity. Calculate and plot the variation of angle of attack as a function of velocity as 

 V  ∞  varies from 500 to 1000 m/s.   

   ■  Solution 
 The following information applies to both the subsonic and supersonic cases. The stan-

dard sea-level speed of sound, from Sec. 4.9, is  a  ∞  = 340.3 m/s. Hence

  M V∞ ∞M VM V / .3         (E 5.24.1)

Also,

q V Vqq ∞VV ∞VV=V1
2

1
2ρ 2 21 223 615( .1 ) .V∞VV 02V

The lift coeffi cient is given by    Eq. (5.25) :

c
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q c V
/ = = =

∞q cq VV
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( . )( . )
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615 1 5.

35
2

7777
2V∞VV

(E 5.24.2)

 a.    Subsonic Case  The angle-of-attack variation must be obtained from the airfoil data 

for the NACA 64-210 airfoil given in App. D. The lift coeffi cient given in App. D is 

the low-speed value,  c  /,0 , whereas the lift coeffi cient  c  /  calculated by Eq. (E 5.24.2) is 

the actual lift coeffi cient, and hence includes the compressibility effects discussed in 

   Sec. 5.8 . To use App. D, we calculate the relevant low-speed value of lift coeffi cient, 

 c  /,0 , from    Eq. (5.40) 

  c c M/ /c,0
21−c/c 1 ∞MM         (E 5.24.3)
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and then for this value of  c  /,0  obtain the angle of attack from App. D. Some tabulated 

results are:  

V∞(m/s) 
    M V∞MM∞ ∞VV∞∞ ∞∞∞VVVV / 340.3         c//// ==== ∞∞∞∞3577/ V∞∞∞

2

        c c M// /c// ///,0
21 −c/c/// 1 −−− ∞MM∞∞∞      

         α
(App. D) 

  50  0.147  1.43  1.41  12 o  
  75  0.22  0.636  0.605  4 o  
 100  0.294  0.358  0.342  1.5 o  
 150  0.44  0.159  0.143  –0.5 o  
 200  0.588  0.089  0.072  –1 o  
 250  0.735  0.057  0.0386  –1.5 o  

  b.    Supersonic Case  Assuming an infi nitely thin fl at plate for the airfoil, from    Eq. (5.50) ,

 

c
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/ =
−

4

12

α

α        

Hence,

  α = −∞c M∞/
2 1

4
        (E 5.24.4)

where  α  is in radians. Recall that

 1 rad 57.3= °57 3        

Some tabulated results are:  

       V∞(m/s) 
   M V∞MM∞ ∞VV∞∞ ∞∞∞VVVV / 340.3         c//// ==== ∞∞∞∞3577/V∞∞∞

2

        

αααα == −== −−−∞∞∞∞
c

M∞
////

4
1

(rad)

2

        

αααα
(deg)      

  500  1.47  0.0143  3.85 × 10 –3   0.221 
  600  1.76  9.94 × 10 –3   3.60 × 10 –3   0.206 
  700  2.06  7.30 × 10 –3   3.28 × 10 –3   0.188 
  800  2.35  5.59 × 10 –3   2.97 × 10 –3   0.170 
  900  2.64  4.42 × 10 –3   2.70 × 10 –3   0.155 
 1000  2.94  3.58 × 10 –3   2.47 × 10 –3   0.142 

  Comment   The results from  (a)  and  (b)  are plotted in    Fig. 5.41 . For the subsonic case, 

there is a relatively large decrease in angle of attack as the airspeed increases. This is 

because, as the speed increases, more of the lift is obtained from the increasing dynamic 

pressure,  q  ∞ ; hence, a smaller lift coeffi cient and therefore a smaller angle of attack 

are required to maintain the constant lift. The decrease in  α  is further accentuated by 

the compressibility effect: as  M  ∞  increases, the value of  c  /,0  is further diminished via 

Eq. (E 5.24.3). 

 For the supersonic case, the required value of  c  / , and therefore  α , is very small com-

pared to the subsonic case, because of the much larger  q  ∞ . As  V  ∞  increases, there is a 
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small decrease in  α . Examining Eq. (E 5.24.4), we see that  α  decreases as  c  /  decreases 

and increases as  M  ∞  increases. The competing trends result in a relatively fl at variation 

of  α  as  V  ∞  increases. 

 From these results, we deduce that a subsonic airplane in steady, level fl ight over a 

wide range of fl ight velocity will experience a wide range of angle-of-attack change. In 

contrast, a supersonic airplane in steady, level fl ight over a wide range of velocity will 

experience a much smaller change in angle of attack, and the angle of attack will be of a 

small magnitude.  
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Figure 5.41 Typical variations of angle of attack for subsonic and supersonic 

airfoils.

   5.12  SUMMARY OF AIRFOIL DRAG 
  Amplifying Eq. (4.105), we can write the total drag of an airfoil as the sum of 
three contributions:

 
D D D Df pD w= D
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where

          

D

D

D
f

p

=
=
=

total drag on airfoil

skin friction drag

prpp essure drag due to flow separation

wave drDw = agaa (present only at transonic and supersonic sppeeds; zero
for subsonic speeds below the drag-gg divergence Mach number)

In terms of the drag coeffi cients, we can write

 
c c cd dc f dcc p dc w= +cc +, , ,f d p d        

where  c   d  ,  c   d ,  f  ,  c   d , p  , and  c   d , w   are the total drag, skin friction drag, pressure drag, and 
wave drag coeffi cients, respectively. The sum  c   d , f   + c  d , p   is called the  profi le drag 
coeffi cient;  this is the quantity given by the data in App. D. The profi le drag coef-
fi cient is relatively constant with  M  ∞  at subsonic speeds. 

 The variation of  c   d   with  M  ∞  from incompressible to supersonic speeds 

is sketched in    Fig. 5.42 . It is important to note the qualitative variation of 

this curve. For  M  ∞  ranging from zero to drag divergence,  c   d   is relatively 

 constant; it consists entirely of profi le drag. For  M  ∞  from drag divergence 

to slightly above 1, the value of  c   d   skyrockets; indeed, the peak value of  c   d   

around  M  ∞  = 1 can be an order of magnitude larger than the profi le drag it-

self. This large increase in  c   d   is due to wave drag associated with the presence 

of shock waves. For supersonic Mach numbers,  c   d   decreases approximately 

as  
/2 1)− 2

   . 

DESIGN BOX

Good design of supersonic airplanes concentrates on 

minimizing wave drag. It is emphasized in Fig. 5.42 

that a substantial portion of the total drag at super-

sonic speeds is wave drag. The way to reduce wave 

drag is to reduce the strength of the shock waves 

that occur at the nose, along the leading edges of the 

wing and tail, and at any other part of the aircraft 

that protrudes into the locally supersonic fl ow. The 

shock wave strength is reduced by having a sharp 

nose, slender (almost needlelike) fuselage, and very 

sharp wing and tail leading edges. The Lockheed 

F-104, shown in three-view in Fig. 4.52 and in the 

photograph in Fig. 5.40, is an excellent example of 

good supersonic airplane design. The F-104 was the 

fi rst aircraft designed for sustained speeds at Mach 2. 

 Examining Figs. 4.52 and 5.40, we see an aircraft 

with a sharp, needlelike nose, slender fuselage, and 

very thin wings and tails with sharp leading edges. 

The wing airfoil section is a thin biconvex shape 

with a thickness-to-chord ratio of 0.035 (3.5 percent 

thickness). The leading edge is almost razor-sharp, 

actually sharp enough to pose a hazard to ground 

crew working around the airplane. Design of the 

F-104 began in 1953 at the famous Lockheed “Skunk 

Works”; it entered service with the U.S. Air Force in 

1958. Now retired from the Air Force inventory, at 

the time of writing, F-104’s are still in service with 

the air forces of a few other nations around the globe.
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 The large increase in the drag coeffi cient near Mach 1 gave rise to the term 

sound barrier  in the 1940s. At that time a camp of professionals felt that the 

sound barrier could not be pierced—that we could not fl y faster than the speed 

of sound. Certainly a glance at    Eq. (5.28)  for the pressure coeffi cient in subsonic 

fl ow, as well as    Eq. (5.51)  for wave drag in supersonic fl ow, would hint that the 

drag coeffi cient might become infi nitely large as  M  ∞  approaches 1 from either 

the subsonic or supersonic side. However, such reasoning is an example of a 

common pitfall in science and engineering: the application of equations outside 

their ranges of validity. Neither    Eq. (5.28)  nor    Eq. (5.51)  is valid in the transonic 

range near  M  ∞  = 1. Moreover, remember that nature abhors infi nities. In real 

life,  c   d   does not become infi nitely large. To get past the sound barrier, all that is 

needed (in principle) is an engine with enough thrust to overcome the high (but 

fi nite) drag.   

   5.13  FINITE WINGS 
  We now return to the discussion initiated in    Sec. 5.5 . Our considerations so far 
have dealt mainly with airfoils, where the aerodynamic properties are directly 
applicable to infi nite wings. However, all real wings are fi nite; and for practical 
reasons, we must translate our knowledge about airfoils to the case where the 
wing has wing tips. This is the purpose of    Secs. 5.14  and    5.15 . 

 Let us pose the following questions. Consider a fi nite wing with a specifi ed 

aspect ratio [defi ned by    Eq. (5.26) ] at an angle of attack of 6°. The airfoil section 

of the fi nite wing is an NACA 2412 section. For α = 6°, the airfoil lift and drag 

coeffi cients, from App. D, are

 
c d/ 0 80 85 0d5 0cd =cd 0077.5 0cd        

Figure 5.42 Variation of drag coeffi cient with Mach number for 

subsonic and supersonic speeds.
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 Question : Because the fi nite wing is made up of the NACA 2412 airfoil sec-

tion, should not the wing lift and drag coeffi cients be the same as those for the 

airfoil? That is, for the wing at α = 6°, are the following true?

 
CL DC

? ?
.0DC 0CDC =CDC

?
CDC 0077

       

(Recall from    Sec. 5.5  that it is conventional to denote the aerodynamic coef-
fi cients for a fi nite wing with capital letters.) On an intuitive basis, it may sound 
reasonable that  C   L   and  C   D   for the wing might be the same as  c   l   and  c   d  , respec-
tively, for the airfoil section that makes up the wing. But intuition is not always 
correct. We will answer the preceding questions in the next few paragraphs. 

 The fundamental difference between fl ows over fi nite wings as opposed to 

infi nite wings can be seen as follows. Consider the front view of a fi nite wing as 

sketched in    Fig. 5.43  a . If the wing has lift, then obviously the average pressure 

over the bottom surface is greater than that over the top surface. Consequently, 

there is some tendency for the air to “leak,” or fl ow, around the wing tips from 

the high- to the low-pressure sides, as shown in    Fig. 5.43  a . This fl ow establishes 

a circulatory motion that trails downstream of the wing. The trailing circular 

motion is called a  vortex . There is a major trailing vortex from each wing tip, as 

sketched in    Fig. 5.43  b  and as shown in the photograph in    Fig. 5.44 . 

-

Figure 5.43 Origin of wing-tip vortices on a fi nite wing.
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         These wing-tip vortices downstream of the wing induce a small downward 

component of air velocity in the neighborhood of the wing itself. This can be 

seen intuitively from    Fig. 5.43  b ; the two wing-tip vortices tend to drag the 

 surrounding air around with them, and this secondary movement induces a small 

velocity component in the downward direction at the wing. This downward 

 component is called  downwash  and given the symbol  w . 

 An effect of downwash can be seen in    Fig. 5.45 . As usual,  V  ∞  designates 

the relative wind. However, in the immediate vicinity of the wing,  V  ∞  and  w  add 

Figure 5.44 Wing-tip vortices made visible by smoke ejected at the wing tips of a Boeing 

727 test airplane.
(Source: NASA.)

Figure 5.45 The origin of downwash.
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vectorally to produce a “local” relative wind that is canted downward from the 

original direction of  V  ∞ . This has several consequences: 

       1.   The angle of attack of the airfoil sections of the wing is effectively reduced 

in comparison to the angle of attack of the wing referenced to  V  ∞ .  

2.   There is an increase in the drag. The increase is called  induced drag,  
which has at least three physical interpretations. First, the wing-tip vortices 

simply alter the fl ow fi eld about the wing to change the surface pressure 

distributions in the direction of increased drag. An alternative explanation 

is that because the local relative wind is canted downward (see    Fig. 5.45 ), 

the lift vector itself is “tilted back.” Hence, it contributes a certain 

component of force parallel to  V  ∞ —that is, a drag force. A third physical 

explanation of the source of induced drag is that the wing-tip vortices 

contain a certain amount of rotational kinetic energy. This energy has to 

come from somewhere; it is supplied by the aircraft propulsion system, 

where extra power has to be added to overcome the extra increment in drag 

due to induced drag. All three of these outlooks of the physical mechanism 

of induced drag are synonymous.   

 We can now answer the questions posed at the beginning of this section. 

Returning to the fi nite wing made up of the NACA 2412 airfoil section, where 

the wing is at α  = 6°, we now recognize that because of the downwash, the local 

airfoil sections of the wing see an angle of attack  lower  than 6°. Clearly, the  local  
airfoil lift coeffi cient will be less than 0.85. Because the lift of the wing is an in-

tegration of the lift from each local segment, we can state that for the  fi nite wing 

 L < 0 85
       

Also, the presence of induced drag for the fi nite wing, which is not present for 
an infi nite wing,  adds  to the already existing skin friction drag and pressure drag 
due to fl ow separation, which is experienced by the airfoil section itself. The 
value  c   d   = 0.0077 is the profi le drag coeffi cient, which is the sum of the skin fric-
tion and pressure drag due to fl ow separation. For the fi nite wing, the induced 
drag must be added to the profi le drag. So, for the fi nite wing in this case,

 
CD > 0 0077.

       

Now we can rest our case. The lift coeffi cient for a fi nite wing is  less  than that 
for its airfoil section, and the drag coeffi cient for a fi nite wing is  greater  than that 
for its airfoil section. 

  In    Secs. 5.14  and    5.15  we will show how the drag coeffi cient and the lift 

coeffi cient, respectively, for a fi nite wing can be calculated. With this, we now 

move to the center column of our chapter road map in    Fig. 5.1 . Return to    Fig. 5.1  

for a moment, and note all the different aspects of airfoils that we have covered, 

as represented by the left column of the road map. We are now ready to use this 

knowledge to examine the characteristics of fi nite wings, as represented by the 

middle column.   
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   5.14  CALCULATION OF INDUCED DRAG 
  A way of conceptualizing induced drag is shown in    Fig. 5.46 . Consider a fi nite 
wing as sketched in    Fig. 5.46 . The dashed arrow labeled  R  1  represents the resul-
tant aerodynamic force on the wing for the  imaginary  situation of  no vortices  
from the wing tips. The component of  R  1  parallel to  V  ∞  is the drag  D  1 , which in 

 DESIGN BOX 

 For some airplane designs, the  shape  of the airfoil 

section  changes  along the span of the wing. For 

example, for the F-111 shown at the top of    Fig. 5.33 , 

the airfoil section at the root of the wing is an NACA 

64A210, whereas the airfoil section at the tip of the 

wing is an NACA 64A209. The famous British Spit-

fi re of World War II fame had a 13 percent thick 

airfoil at the root and a 7 percent thick airfoil at the 

tip. When a designer chooses to vary the airfoil shape 

along the span, it is usually for one or both of the 

 following reasons: 

  1.   To achieve a particular  distribution  of lift 

across the span of the wing, which will improve 

the aerodynamic effi ciency of the wing and/or 

reduce the structural weight of the wing.  

  2.   To delay the onset of high-speed compress-

ibility effects in the region near the wing tips. 

A thinner airfoil in the tip region will result in 

the “shock stall” pattern shown in    Fig. 5.27  c  

being delayed in that region to a higher Mach 

number, preserving aileron control effective-

ness while the section of the wing closer to the 

root may be experiencing considerable fl ow 

 separation.   

In reference to our previous discussion, note that the 

possible variation of the airfoil shape along the span 

of a fi nite wing is yet another reason why the aerody-

namic coeffi cients for a fi nite wing differ from those 

of an airfoil making up part of the wing itself. 

V∞

D1 Di

D

R1

R

  

  Figure 5.46  Illustration of the induced drag,  D   i  . 
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this imaginary case is due to skin friction and pressure drag due to fl ow separa-
tion. The solid arrow labeled  R  represents the  actual  resultant aerodynamic force, 
 including  the effect of wing-tip vortices. The presence of the vortices changes 
the pressure distribution over the surface of the wing in such a fashion that  R  is 
tilted backward relative to  R  1 . The component of  R  parallel to  V  ∞ , denoted by 
 D  in    Fig. 5.46 , is the  actual  total drag, which includes the effect of the changed 
pressure distribution due to the wing-tip vortices as well as friction drag and 
pressure drag due to fl ow separation. Because  R  is tilted backward relative to  R  1 , 
 D  >  D  1 . The  induced drag D   i   is the difference between  D  and  D  1 :  D   i   =  D  −  D  1 . 
Keep in mind that induced drag is a type of  pressure drag . 

  To calculate the magnitude of  D   i  , we will take the following perspective. 

Consider a section of a fi nite wing as shown in    Fig. 5.47 . The angle of attack 

defi ned between the mean chord of the wing and the direction of  V  ∞  (the rela-

tive wind) is called the  geometric angle of attack  α. However, in the vicinity of 

the wing, the local fl ow is (on the average) defl ected downward by angle αi   be-

cause of downwash. This angle α  i  , defi ned as the  induced angle of attack,  is the 

 difference between the local fl ow direction and the free-stream direction. Hence, 

although the naked eye sees the wing at an angle of attack α, the airfoil section 

itself is seeing an  effective angle of attack,  which is smaller than α. Letting α eff

denote the effective angle of attack, we see from    Fig. 5.47  that α eff  = α − α  i  . 

  Let us now adopt the point of view that because the local fl ow direction in 

the vicinity of the wing is inclined downward with respect to the free stream, 

the lift vector remains perpendicular to the local relative wind and is there-

fore tilted back through angle α   i  . This is shown in    Fig. 5.47 . However, still 

 considering drag to be parallel to the free stream, we see that the tilted-lift vec-

tor contributes a certain component of drag. This drag is the  induced drag D   i  . 

From    Fig. 5.47 ,

D Li iL sinα        

  

  Figure 5.47  The origin of induced drag. 
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Values of α  i   are generally small; hence sin α  i   ≈ α  i  . Thus

  D Li iLα  (5.52)

Note that in    Eq. (5.52) , α  i   must be in radians. Hence  D   i   can be calculated from 
   Eq. (5.52)  once α  i   is obtained. 

 The calculation of α  i   is beyond the scope of this book. However, it can be 

shown that the value of α  i   for a given section of a fi nite wing depends on the 

distribution of downwash along the span of the wing. In turn, the downwash 

 distribution is governed by the distribution of lift over the span of the wing. To see 

this more clearly, consider    Fig. 5.48 , which shows the front view of a fi nite wing. 

The lift per unit span may vary as a function of distance along the wing because 

  1.   The chord may vary in length along the wing.  

  2.   The wing may be twisted so that each airfoil section of the wing is at a 

different geometric angle of attack.  

  3.   The shape of the airfoil section may change along the span.   

Shown in    Fig. 5.48  is the case of an elliptical lift distribution (the lift per unit 
span varies elliptically along the span), which in turn produces a uniform down-
wash distribution. For this case, incompressible fl ow theory predicts that

  α
πi

LC=
AR

  (5.53)        

where  C   L   is the lift coeffi cient of the fi nite wing and AR =  b  2 / S  is the aspect ratio, 
defi ned in    Eq. (5.26) . Substituting    Eq. (5.53)  into    (5.52)  yields

  D L L
C

i iL L=L iLα
πAR

  (5.54)        

However,  L  =  q  ∞   SC   L  ; hence, from    Eq. (5.54) ,

  D q S
CL

∞qq
2

πAR
       

or  
D

q S

Ci LC

qq
=

2

πAR
  (5.55)         

  

  Figure 5.48  Lift distribution and downwash distribution. 



366 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

  Defi ning the  induced drag coeffi cient  as  C   D , i   =  D   i  /( q  ∞   S ), we can write    Eq. (5.55)  as

  C
C

D i
L

, =
2

πAR
  (5.56)

This result holds for an elliptical lift distribution, as sketched in    Fig. 5.48 . For 
a wing with the same airfoil shape across the span and with no twist, an ellipti-
cal lift distribution is characteristic of an elliptical wing planform. (The famous 
British Spitfi re of World War II was one of the few aircraft in history designed 
with an elliptical wing planform. Wings with straight leading and trailing edges 
are more economical to manufacture.) 

 For all wings in general, a  span effi ciency factor e  can be defi ned such that

C
C

e
D i

L
, =

2

π AR
  (5.57)

For elliptical planforms,  e  = 1; for all other planforms,  e  < 1. Thus,  C   D , i   and hence 
induced drag are a  minimum for an elliptical planform . For typical  subsonic 
 aircraft,  e  ranges from 0.85 to 0.95.    Equation (5.57)  is an important relation. It 
demonstrates that induced drag varies as the square of the lift coeffi cient; at high 
lift, such as near  C   L ,max , the induced drag can be a substantial portion of the total 
drag.    Equation (5.57)  also demonstrates that as AR is increased, induced drag is 
decreased. Hence, subsonic airplanes designed to minimize induced drag have 
high–aspect-ratio wings (such as the long, narrow wings of the Lockheed U-2 
high-altitude reconnaissance aircraft). 

 It is clear from    Eq. (5.57)  that induced drag is intimately related to lift. In 

fact, another expression for induced drag is  drag due to lift . In a fundamental 

sense, the power provided by the engines of the airplane to overcome induced 

drag is the power required to sustain a heavier-than-air vehicle in the air—the 

power necessary to produce lift equal to the weight of the airplane in fl ight. 

 In light of    Eq. (5.57) , we can now write the total drag coeffi cient for a fi nite 

wing at subsonic speeds as

  
C c

C

eD dc L+cdc
2

π AR
Total Profileff Induced

drag drag drag

  (5.58)        

Keep in mind that profi le drag is composed of two parts: drag due to skin fric-
tion  c   d ,  f   and pressure drag due to separation  c   d , p  ; that is,  c   d   = c  d ,  f   + c  d , p  . Also keep 
in mind that  c   d   can be obtained from the data in App. D. The quadratic variation 
of  C   D   with  C L   given in    Eq. (5.58) , when plotted on a graph, leads to a curve as 
shown in    Fig. 5.49 . Such a plot of  C   D   versus  C L   is called a  drag polar . Much of 
the basic aerodynamics of an airplane is refl ected in the drag polar, and such 
curves are essential to the design of airplanes. You should become familiar with 
the concept of drag polar. Note that the drag data in App. D are given in terms of 
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drag polars for infi nite wings—that is,  c   d   is plotted versus  c l  . However, induced 
drag is not included in App. D because  C   D ,  i   for an infi nite wing (infi nite aspect 
ratio) is zero. 

  

  Figure 5.49  Sketch of a drag polar—that is, a plot of 

drag coeffi cient versus lift coeffi cient. 

    EXAMPLE 5.25  

 Consider the Northrop F-5 fi ghter airplane, which has a wing area of 170 ft 2 . The wing is 

generating 18,000 lb of lift. For a fl ight velocity of 250 mi/h at standard sea level, calcu-

late the lift coeffi cient. 

■  Solution 
 The velocity in consistent units is

V

q V

∞VV

qq ∞VV

= ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=

=V

250
88

60
366 7

00231
2

2 1
2

.

( .0

ft/sff

ρ 7777 366 159 82 2159 8)( . )7 .= lb/ftff

       

Hence   C
L

q S
L = = =

qq

18 000

159 170
0 6626

,

. (8 )
.           

   EXAMPLE 5.26  

 The wingspan of the Northrop F-5 is 25.25 ft. Calculate the induced drag coeffi cient and 

the induced drag itself for the conditions of    Example 5.25 . Assume that  e  = 0.8. 

■  Solution 
 The aspect ratio is AR =  b  2 / S  = (25.25) 2 /170 = 3.75. Because  C   L   = 0.6626 from    Example 

5.25 , then from    Eq. (5.57) ,

  C
C

D i
L

,

( . )

( . )( . )
.= = =

2 2( )6626

8. 3. 5
0 0466

π πeAR
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From    Example 5.25 ,  q  ∞  = 159.8 lb/ft 2 . Hence

  D q SCDq SC i =q SCDq SC i =qq , . ( )( . )159 170 0 0466 1266 lb           

   EXAMPLE 5.27  

 Consider a fl ying wing (such as the Northrop YB-49 of the early 1950s) with a wing area 

of 206 m 2 , an aspect ratio of 10, a span effectiveness factor of 0.95, and an NACA 4412 

airfoil. The weight of the airplane is 7.5 × 10 5  N. If the density altitude is 3 km and the 

fl ight velocity is 100 m/s, calculate the total drag on the aircraft. 

   ■  Solution 
 First obtain the lift coeffi cient. At a density altitude of 3 km = 3000 m, ρ ∞   = 0.909 kg/m 3  

(from App. A).

  

q V

L W

qq ∞VV =V =

=W ×

1
2

2 1
2

2 2

5

909 100 4545

7 5 10

ρ ( .0 )( ) N/m

N

C
L

q S
L = = × =

qq

7 5 10

4545 206
0 8

5

( )206

       

 Note:  This is a rather high lift coeffi cient, but the velocity is low—near the landing speed. 

Hence, the airplane is pitched to a rather high angle of attack to generate enough lift to 

keep the airplane fl ying. 

 Next, obtain the induced drag coeffi cient:

  C
C

D i
L

,
( . )( )

.= = =
2 20 8.

9. 5 1)( 0
0 021

π πeAR
        

 The profi le drag coeffi cient must be estimated from the aerodynamic data in App. D. 

Assume that  c   d   is given by the highest Reynolds number data shown for the NACA 4412 

airfoil in App. D; furthermore, assume that it is in the drag bucket. Hence, from App. D,

  cd ≈ 0 006.        

Thus, from    Eq. (5.58) , the total drag coeffi cient is

  C c CD dc D i+cdc = + =, .+. .0 006 0 021 0 027        

Note that the induced drag is about 3.5 times larger than profi le drag for this case, thus 

underscoring the importance of induced drag. 

 Therefore, the total drag is

  D q SCD =q SCD∞qq 4545 6 027 2 53 1× 04( )206 ( .0 ) .= 2 N           

   EXAMPLE 5.28  

 The North American P-51 Mustang, shown in Fig. 4.46, was the fi rst production-

line  airplane designed with a laminar fl ow wing, as discussed in Sec. 4.15. The North 

 American aerodynamicists used the NACA laminar fl ow airfoil theory to obtain their own 
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 custom-designed laminar fl ow airfoil shape, slightly modifi ed from the NACA shapes. 

(The airfoils listed in App. D with designation numbers beginning with 6—the so-called 

six-series airfoils—are from the NACA laminar fl ow airfoil series.) For this example we 

assume that the airfoil used on the P-51 is represented by the NACA 65-210 laminar fl ow 

airfoil. The gross weight of the P-51 is 10,100 lb, the wing planform area is 233 ft 2 , and 

the wing span is 37 ft. The wing of the P-51 has a highly effi cient shape, giving it a span 

effi ciency factor of 0.99. At an altitude of 25,000 ft, the maximum velocity of the P-51 is 

437 mi/h. ( a ) For this altitude and velocity, calculate and compare the induced drag and 

the profi le drag of the wing. ( b ) Consider the P-51 starting its landing approach at sea 

level. Calculate and compare the induced drag and the profi le drag of the wing at a fl ight 

velocity of 140 mi/h. ( c ) Compare the drag results from ( a ) and ( b ) and comment on the 

relative importance of induced drag. 

   ■  Solution 

 a.   V∞VV = ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=437 640 9 mi/h 437
88

60
 ft/s.= .        

From App. B for 25,000 ft, ρ ∞  = 1.0663 × 10 −3  slug/ft 3 .

  q Vqq ∞VV =V × =1

2

1

2
0663 10 640 2192 3× −1
0663 10 2 2219ρ ( .11 )( . )9 lb/ftff        

Assuming level fl ight, weight,  W,  equals the lift. Thus
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π πeAR
021400

       

The profi le drag coeffi cient is obtained from the data for the NACA 65-210 airfoil in 

App. D. Once again we use the data for the highest Re considered in App. D. Also, 

the calculated lift coeffi cient of 0.198 for the wing, which is essentially the section lift 

 coeffi cient, puts the profi le drag coeffi cient at the bottom of the pronounced drag bucket 

(such  pronounced drag buckets are characteristic of laminar fl ow airfoils) as seen in 

App. D. Hence

  cd = 0 0037.        

The total drag coeffi cient for the wing is

  C C CD dC D i+CdC = + =, .+. .0 0037 0 00214 0 0058        

For this high-velocity case, the profi le drag (skin friction drag plus the pressure drag due 

to fl ow separation) is a factor of 1.73 larger than the induced drag. The induced drag is 

36.6 percent of the total wing drag, the remainder being the profi le drag. In turn, the profi le 

drag is mainly skin friction drag for this high-velocity case, because the wing is fl ying at a 

low value of  C   L   and hence a low angle of attack, where pressure drag due to fl ow  separation 
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is relatively small. This example underscores the relative importance of skin friction drag 

and explains why strong efforts have been made to design laminar fl ow airfoils. 

   
b . 
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From App. D for the NACA 65-210 airfoil, the calculated value of  C   L   = 0.865 is approxi-

mately the section lift coeffi cient, which for the highest Re data given for the airfoil in 

App. D gives

cd = 0 008.

The total drag coeffi cient for the wing is

C c CD dc D i+cdc = + =, .+. .0 008 0 041 0 049

For this low-velocity case, the induced drag is a factor of 5.1 larger than the profi le drag. 

The induced drag is 83.7 percent of the total wing drag. 

c . Comparing the results of parts ( a ) and ( b ), we see the rather classic case in 

which the induced drag is a relatively small percentage of the total wing drag at high 

speeds but is by far the major component of wing drag at low speeds. In the design 

of subsonic airplanes, this example illustrates why the reduction of both induced drag 

and profi le drag is important. Note that (as discussed in Sec. 4.15), due to the realities 

of manufacturing processes and actual fl ight operation, the wing of the P-51 did not 

produce any meaningful large regions of laminar fl ow. But this does not change our 

conclusion here.   

   EXAMPLE 5.29  

 The Vought F4U-1D, shown in Fig. 2.16, is a classic World War II Navy fi ghter airplane. 

Some data for this airplane are: weight = 5,461 kg f , wing planform area = 29.17  m 2 , 

 wingspan = 12.49 m, maximum velocity at an altitude of 6 km = 684 km/h. At these 

 conditions, the total wing drag coeffi cient is 0.00757. Calculate the profi le drag coeffi cient 

for the wing. Assume that  e  = 0.9. 

   ■  Solution 
 First, let us put some of these data in terms of consistent SI units.

  VmaVV x 684 km/h
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Recall from Sec. 2.4 that 1 kg   f   = 9.8 N. Thus,

  W f f
f

= =f

⎛

⎝
⎜
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N
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, .

9 8.

1
5 3518 10004 N

Now we are ready to make some calculations.

AR 5 35= = =b

S
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29 17

( .12 )

.
       

At  h  = 6 km, from App. A we have ρ ∞  = 0.66011 kg/m 3 
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From    Eq. (5.57) 

C
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,
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= = =

2 2( )154

9. 5 3. 5
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π πeAR
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From    Eq. (5.58) , we have

c C Cd DC D i−CDC = − =, . .0 0. 0 0−− 00 0 0065 157

Note:  In Fig. 2.16, the airfoil section used for the wing of the Corsair is shown to be an 

NACA 23018 at the root, an NACA 23015 at the outer panel, and an NACA 23000 at 

the theoretical tip. In App. D, the only “230-secton” airfoil shown is the NACA 23012. 

 However, the profi le drag coeffi cient for the wing of the Corsair where the airfoil sec-

tion starts at an NACA 23018 at the root and ends at an NACA 23000 at the tip should 

be about the same as shown in App. D for the NACA 23012. Turn to App. D, and read 

off the value of  c d   for an approximate section lift coeffi cient for 0.154 (ignoring the dif-

ference between  c  /  and  C L  , which will be examined in the next section). The value from 

App. D is  c d   = 0.006, the same as the answer obtained in this example.   

 In    Example 5.28 , to obtain the profi le drag coeffi cient from the airfoil data in 

App. D, we used the section lift coeffi cient on the abscissa,  c  / , as the same value 

of the wing lift coeffi cient,  C L  . This is a reasonable approximation, especially for 

a wing with a high span effi ciency factor,  e , very near unity. However,  examining 

again the geometric picture in    Fig. 5.47  and also    Fig. 5.50 , we see that the ef-

fective angle of attack seen by the airfoil section is smaller than the geometric 

angle of attack of the wing, the difference being the induced angle of attack. In 

   Example 5.28  b,  the lift coeffi cient for the wing was 0.865. From App. D, a  section 

lift coeffi cient of 0.865 corresponds to a section angle of attack of 6.5 o . This is the 

effective angle of attack seen by the airfoil section as sketched in    Figs. 5.47  and 

   5.50 . The actual geometric angle of attack of the wing is larger than 6.5 o . Because 

we dealt with lift coeffi cient in    Example 5.28 , we did not have to be concerned 
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about angle of attack; hence we did not have to deal with the change in the lift 

slope for the fi nite wing. Such matters are the subject of the next section.    

   5.15  CHANGE IN THE LIFT SLOPE 
  The aerodynamic properties of a fi nite wing differ in two major respects from 
the data of App. D, which apply to infi nite wings. The fi rst difference has already 
been discussed: the addition of induced drag for a fi nite wing. The second 
 difference is that the lift curve for a fi nite wing has a smaller slope than the 
corresponding lift curve for an infi nite wing with the same airfoil cross section. 
This change in the lift slope can be examined as follows. Recall that because of 
the presence of downwash, which is induced by the trailing wing-tip vortices, 
the fl ow in the local vicinity of the wing is canted downward with respect to the 
free-stream relative wind. As a result, the angle of attack that the airfoil section 
effectively sees, called the  effective angle of attack  α eff , is less than the geometric 
angle of attack α. This situation is sketched in    Fig. 5.50 . The difference between 
α and α eff  is the  induced angle of attack  α  i  , fi rst introduced in Sec 5.14, where 
α  i   = α − α eff . Moreover, for an elliptical lift distribution,    Eq. (5.53)  gives values 
for the induced angle of attack α  i   =  C   L  /(π AR). Extending    Eq. (5.53)  to wings of 
any general planform, we can defi ne a new span effectiveness factor  e  1  such that

  α
πi

LC

e
=

1AR
  (5.59)        

where  e  1  and  e  [defi ned for induced drag in    Eq. (5.57) ] are theoretically  different 
but are in practice approximately the same value for a given wing. Note that 
   Eq. (5.59)  gives α  i   in radians. For α  i   in degrees,

  α
πi

LC

e
= 57 3

1

.

AR
  (5.60)         

 We emphasize that the fl ow over a fi nite wing at an angle of attack α is 

essentially the same as the fl ow over an infi nite wing at an angle of attack α eff . 

Keeping this in mind, assume that we plot the lift coeffi cient for the fi nite wing 

 C L   versus the effective angle of attack α eff  = α − α  i  , as shown in    Fig. 5.51  a . 

Figure 5.50  Relation between the geometric, effective, and induced angles of attack. 
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Because we are using α eff , the lift curve should correspond to that for an infi nite 

wing; hence the lift curve slope in    Fig. 5.51  a  is  a  0 , obtained from App. D for the 

given airfoil. However, in real life our naked eyes cannot see α eff ; instead, what 

we actually observe is a fi nite wing at the geometric angle of attack α (the actual 

angle between the free-stream relative wind and the mean chord line). Hence, 

for a fi nite wing it makes much more sense to plot  C L   versus α, as shown in 

   Fig. 5.51  b , than  C L   versus α eff , as shown in    Fig. 5.51  a . For example,  C L   versus 

α would be the result most directly obtained from testing a fi nite wing in a wind 

tunnel, because α (and not α eff ) can be measured directly. Hence, the lift curve 

slope for a fi nite wing is defi ned as  a  ≡  dC   L  / d α, where  a  ≠  a  0 . Noting that α > α eff  

from    Fig. 5.50 , we see that the abscissa of    Fig. 5.51  b  is stretched out more than 

the abscissa of    Fig. 5.51  a . The lift curve of    Fig. 5.51  b  is less inclined; that is, 

 a  <  a  0 .  The effect of a fi nite wing is to reduce the lift curve slope . However, when 

the lift is zero,  C   L   = 0, and from    Eq. (5.53) , α  i   = 0. Thus, at zero lift α = α eff . In 

  
  Figure 5.51  Distinction between the lift curve slopes for infi nite and 

fi nite wings. 
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terms of    Fig. 5.51  a  and 5.51 b , this means that the angle of attack for zero lift 

α  L   = 0 is the same for the fi nite and infi nite wings. So, for fi nite wings, α  L =0  can 

be obtained directly from App. D. 

Question:  If we know  a  0  (say from App. D), how do we fi nd  a  for a fi nite 

wing with a given aspect ratio? We can obtain the answer by examining    Fig. 5.51 . 

From    Fig. 5.51  a ,

  
dC

d
aL

i( )i

= 0

Integrating, we fi nd

C aL iaaa +0 ( )i− const  (5.61)

Substituting    Eq. (5.60)  into    Eq. (5.61) , we obtain

C a
C

e
L

L−a
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
+0

1

57 3α
⎝ π

.

AR
const  (5.62)

Solving    Eq. (5.62)  for  C L   yields

C
a

L = +0

0 1 0 11 5+ 7 3 1 5+ 7 3

α
01 5+ 7. /a03 ( )1πe1e /3a03 ( )e1eππ

const
  (5.63)

Differentiating    Eq. (5.63)  with respect to α, we get

dC

d

aL

α
= 0

0 11 5+ 7 3 /a3 ( )eππ 1eππ
  (5.64)

 However, from    Fig. 5.51  b , by defi nition,  dC   L  /dα =  a . Hence, from    Eq. (5.64) ,

  a
a= 0

0 11 5+ 7 3. /a03 ( )e1e
 (5.65)

   Equation (5.65)  gives the desired lift slope for a fi nite wing of given aspect ratio 
AR when we know the corresponding slope  a  0  for an infi nite wing. Remember: 
 a  0  is obtained from airfoil data such as in App. D. Also note that    Eq. (5.65)  veri-
fi es our previous qualitative statement that  a  <  a  0 . 

 In summary, a fi nite wing introduces two major changes to the airfoil data 

in App. D:  

  1.   Induced drag must be added to the fi nite wing:

  

C c
C

e
D dc L+cdc

2

π AR
Total Profileff Induced
drag drag drag

2.   The slope of the lift curve for a fi nite wing is less than that for an infi nite 

wing;  a  <  a  0 .   
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   EXAMPLE 5.30  

 Consider a wing with an aspect ratio of 10 and an NACA 23012 airfoil section. Assume 

that Re ≈ 5 × 10 6 . The span effi ciency factor is  e  =  e  1  = 0.95. If the wing is at a 4° angle 

of attack, calculate  C L   and  C   D  . 

   ■  Solution 
 Because we are dealing with a fi nite wing but have airfoil data (App. D) for infi nite wings 

only, the fi rst job is to obtain the slope of this lift curve for the fi nite wing, modifying the 

data from App. D. 

 The infi nite wing lift slope can be obtained from any two points on the linear curve. 
For the NACA 23012 airfoil, for example (from App. D),

  
c
c

l

l

= = °
= °

1 2 10
0 14 0=
. at effff

effff

α
α        

Hence  a
dc

d
l

0

1 2 0 14

10 0

1 06

10
0 106= = −

−
= =

αd

.2 0
.106 per degree        

Also from App. D,

αL d= − ° ≈dc0 1 5 0 006.d 0

 The lift slope for the fi nite wing can now be obtained from    Eq. (5.65) :

a
a= =0

0 11 5+ 7 3

0 106

1 5+ 7 3 0 106 0 95. /a03 ( )1

.

(3 . )106 / [ ( .0π1 5+ 7 3 0)e1e (33 . )106 / [ )()) )]
.

10
0 088= per degree

 At α = 4°,

C

C

L L

L

= = °

=

α ( )L− =α α . [ ( . )] . ( . )0 0 4° − (− 5 0=)] 5 5.

0 4. 844

The total drag coeffi cient is given by    Eq. (5.58) :

C c
C

D dc L+cdc = + = +
2 2

0 006
0 484

0 95 10
0 006 0 0

π πeAR
.

.

( .0 )( )
+.006 0 07800 0 0138= .           

   EXAMPLE 5.31  

 In Example 4.43 we calculated the skin friction drag exerted on the biplane wings of the 

1903  Wright Flyer . For the fl ight conditions given in Example 4.43 (that is,  V  ∞  = 30 mi/h 

at sea level), calculate the induced drag exerted on the wings of the  Wright Flyer,  and com-

pare this with the friction drag calculated earlier. For its historic fi rst fl ight on  December 

17, 1903, the total weight of the  Flyer  including the pilot (Orville) was 750 lb. Assume 

that the span effi ciency for the wing is  e  = 0.93. 
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   ■  Solution 
 From the data given in Example 4.43, for the  Wright Flyer  the wingspan is  b  = 40.33 ft 

and the planform area of  each  wing is 255 ft 2 . Hence, the aspect ratio of each wing is

AR
2

= = =b

S

( . )33

255
6 3. 8

2

For level fl ight, the airplane must produce a lift to counter its weight; for the fl ight of the 

Wright Flyer,  the lift was equal to its weight, namely 750 lb. Also, the  Flyer  is a biplane 

confi guration, and both wings produce lift. Let us assume that the lift is evenly divided 

between the two wings; hence the lift of  each  wing is 750/2 = 375 lb. The velocity is 

 V  ∞  = 30 mi/h = 44 ft/s. The dynamic pressure is

  q Vqq ∞VV =V1
2

2 1
2

2002377 44 2 3ρ ( .0 )( ) .= 2 lb/ftff 2        

The lift coeffi cient of each wing is

  C
L

q S
L = = =

qq

375

2 3 255
0 639

. (3 )
.        

From    Eq. (5.57) ,

  C
C

D i
L

,

( . )

( . )( . )
.= = =

2 2( )639

9. 3 6)(
0 0219

π πeAR
       

 DESIGN BOX 

 It is good practice to design conventional subsonic 

airplanes with high–aspect-ratio wings. The reasons 

are clear from    Eqs. (5.57)  and    (5.65) . The induced 

drag coeffi cient  C   D , i   is inversely proportional to AR, 

as shown in    Eqs. (5.57)  and    (5.58) . This is a strong 

effect; if the aspect ratio is doubled, CD,i is reduced by 

a factor of 2. By comparison, the impact of the span 

effi ciency factor  e  is minor, because changes in the 

wing planform and airfoil design result in only a few 

percent change in  e , and, in turn, through    Eq. (5.57) , 

result in only a few percent change in  C D,i  . (Of course, 

when the designer is looking for every ounce of per-

formance, the wing is designed to have a lift distri-

bution as close to elliptical as practical,  making e as 

close to unity as practical.) The aspect ratio is the 

big design feature that controls  C D,i  . The same can 

be said about the lift slope. Increasing the aspect 

ratio increases the lift slope, as seen from    Eq. (5.65) . 

Clearly, on an aerodynamic basis, the designer of a 

conventional subsonic airplane would prefer to make 

the aspect ratio as large as possible. 

 However, what does  as large as possible  mean? 

Why do the wings of existing airplanes not look 

like the long and narrow slats from a venetian blind, 

which have very large aspect ratios? The answer 

is driven by structural considerations. Imagine the 

left and right wings on an airplane in fl ight; the lift 

acting on each wing acts to bend the wing upward, 

creating a bending moment where the wing joins 

the fuselage. The wing structure and the structure 

through the fuselage must be strong enough to resist 

this bending moment. Now imagine the lift acting 

on a venetian blind; the blind slat will easily buckle 

under the load unless the designer adds enough ma-

terial stiffness to resist the buckling. This increase 

in wing stiffness can be obtained at the cost of in-

creased wing structural weight. Consequently, the 

design aspect ratio for a conventional airplane is a 
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compromise between competing values in aerody-

namics and structures. 

 The usual outcome of this compromise is 

 subsonic airplanes with aspect ratios on the order of 

5 to 7. The following is a tabulation of wing aspect 

ratios for various subsonic airplane designs: 

  Airplane    Aspect Ratio  

   Wright Flyer  (Fig. 1.1)    6.4  
  Vought F4U Corsair (Fig. 2.16)    5.35  
  Boeing B-17 (Fig. 2.17)    7.58  
  Grumman X-29 (Fig. 2.19)    3.91  
  Grumman F3F-2 (Fig. 2.20)    7.85  
  Boeing 727 (   Fig. 5.44 )    7.1  

 A dramatic example of the importance of a 

high aspect ratio can be seen in the Lockheed U-2 

high- altitude reconnaissance airplane, shown in the 

three-view in    Fig. 5.52 . The U-2 was designed with 

an unusually high aspect-ratio of 14.3 because of its 

 mission. In 1954 the United States had an urgent need 

for a reconnaissance vehicle that could overfl y the 

Soviet Union; the time was at an early stage of the 

Cold War, and Russia had recently tested a hydrogen 

bomb. However, such a reconnaissance vehicle would 

have to fl y at an altitude high enough that it could not 

be reached by interceptor aircraft or ground-to-air mis-

siles; in 1954 this meant cruising at 70,000 ft or higher. 

The U-2 was designed by Lockheed Skunk Works, a 

small elite design group at Lockheed known for its 

innovative and advanced thinking. The airplane was 

essentially a  point design:  It was designed to achieve 

this extremely high-altitude cruise. In turn, the need 

for incorporating a very high–aspect-ratio wing was 

paramount. The reason is explained in the following. 

  In steady, level fl ight, the airplane lift must equal 

its weight  L  =  W . In this case, from    Eq. (5.18)  written 

for the whole airplane,

L W V SCL=W ∞ ∞VV1
2

2ρ   (5.66)        

Consider an airplane at a constant velocity  V  ∞ . As 

it fl ies higher, ρ ∞  decreases; hence, from    Eq. (5.66) , 

C L   must be increased to keep the lift constant, equal 

to the weight. That is, as ρ ∞  decreases, the angle of 

attack of the airplane increases to increase  C L  . There 

  

  Figure 5.52  Three-view of the Lockheed U-2 high-altitude reconnaissance airplane. Aspect ratio = 14.3. 

(continued on next page)
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  Figure 5.53  Effect of aspect ratio on the lift slope. 

For a given perturbation in α, the high–aspect-ratio 

wing experiences a larger perturbation in  C L   than the 

low–aspect-ratio wing. 

is some maximum altitude (minimum ρ ∞ ) at which 

C L   reaches its maximum value; if the angle of attack 

is increased beyond this point, the airplane will stall. 

At its high-altitude cruise condition, the U-2 is fl ying 

at a high value of  C L   with a concurrent high angle of 

attack, just on the verge of stalling. (This is in stark 

contrast to the normal cruise conditions of conven-

tional airplanes at conventional altitudes, where the 

cruise lift coeffi cient and angle of attack are rela-

tively small.) A high value of  C L   means a high in-

duced drag coeffi cient; note from    Eq. (5.57)  that  C D,i

varies directly as the  square  of  C L  . As a result, at the 

design high-altitude cruise condition of the U-2, the 

induced drag is a major factor. To reduce the cruise 

value of  C D,i  , the designers of the U-2 had to opt for 

as high an aspect ratio as possible. The wing design 

shown in    Fig. 5.52  was the result. 

 It is interesting to note that at the high-altitude 

operating condition of the U-2, the highest velocity 

allowed by drag divergence and the lowest velocity 

allowed by stalling were almost the same; only about 

7 mi/h separated these two velocities, which was not 

an easy situation for the pilot. 

 In contrast to the extreme high-altitude mission 

of the U-2, the opposite extreme is high-speed fl ight 

at altitudes on the order of hundreds of feet above 

the ground. Consider a subsonic military aircraft de-

signed for low-altitude, high-speed penetration of an 

enemy’s defenses, fl ying close enough to the ground 

to avoid radar detection. The aircraft is fl ying at high 

speed in the high-density air near sea level, so it is 

fl ying at a very low  C L   and very small angle of attack, 

as dictated by    Eq. (5.66) . Under these conditions, in-

duced drag is very small compared to profi le drag. 

At this design point, it is benefi cial to have a low–

aspect-ratio wing with a relatively small surface area, 

which will reduce the profi le drag. Moreover, the low 

aspect ratio provides another advantage under these 

fl ight conditions: it makes the aircraft less sensitive to 

atmospheric turbulence encountered at low altitudes. 

This is achieved through the effect of the aspect-ratio 

on the lift slope, given by    Eq. (5.65) . The lift slope is 

smaller for a low–aspect-ratio wing, as sketched in 

   Fig. 5.53 . Imagine the airplane encountering an at-

mospheric gust that momentarily perturbs its angle 

of attack by an amount Δα, as sketched in    Fig. 5.53 . 

The lift coeffi cient will be correspondingly perturbed 

by the amount Δ C L  . However, because of its larger 

lift slope, the high–aspect-ratio wing will experience 

a larger perturbation (Δ C L  ) 2  than the low–aspect-ratio 

wing, which experiences the smaller  perturbation 

(Δ C L  ) 1 . This is shown schematically in    Fig. 5.53 . 

The smaller change in CL due to a gust for the low–

aspect-ratio wing results in a smoother ride, which is 

good for both the fl ight crew and the structure of the 

airplane. 

  In summary, the consideration of aspect ratio in 

airplane design is  not  a matter of “one size fi ts all.” 

Quite the contrary; we have just discussed two totally 

different fl ight conditions that refl ect two  different 

design points, one demanding a high–aspect-ratio 

wing and the other a low–aspect-ratio wing. It is 

clear that aspect ratio is one of the most important 

considerations for an airplane designer. The choice 

of what aspect ratio to use for a given airplane design 

depends on a number of factors and compromises. 

We have pointed out some of these considerations in 

this discussion. 

(continued from page 377)
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The induced drag of each wing is

D q SCDq SC i =q SCDq SC i =qq , . ( )( . ) .2. 255 0 12 84 lb        

The induced drag, accounting for  both  wings, is

Di = 2 12 84 5 7( .12 ) .2= 5  lb        

Compare this with the friction drag of 6.82 lb calculated in Example 4.43. Clearly, the 

induced drag is much larger than the friction drag; this is because the velocity of 30 mi/h 

was relatively small, requiring a rather large lift coeffi cient to help generate the 750 lb of 

lift; and because the induced drag coeffi cient varies as the  square  of  C L  , the induced drag 

is large compared to the friction drag at the relatively low fl ight speed. 

   Note:  There is an aerodynamic interaction between the two wings of a biplane that 
is relatively complex; a discussion of the phenomenon is beyond the scope of this book. 
Because of this interaction, the induced drag of the biplane confi guration is  not  equal 
to the sum of the induced drags acting on the single wings individually in isolation, as 
we have assumed in this example. Rather, the induced drag of the biplane confi guration 
is slightly higher than the sum based on our calculations, and there is also a loss of lift. 
However, the preceding calculation is a reasonable fi rst approximation for the biplane’s 
induced drag.   

   EXAMPLE 5.32  

 Consider two wings with an NACA 23012 airfoil section, ( a ) one with an aspect ratio of 

4 and ( b ) the other with an aspect ratio of 10. The span effi ciency factor for both wings is 

 e  =  e  1  = 0.95. Both wings are fl ying at an angle of attack of 2°. Calculate and compare the 

change in lift coeffi cient for both wings if the angle of attack is perturbed by an amount 

Δα = 0.5° that is, referring to    Fig. 5.53 , calculate (Δ C   L  ) 2  and (Δ C  Δ ) 1  for Δα  = 0.5°. 

■  Solution 
a . Let us fi rst deal with the wing with aspect ratio 4. The lift slope and zero-lift angle of 

attack for the NACA 23012 airfoil were obtained in    Example 5.30  as

a0 0 106= .  106 per degree        

and

αL= = − °0 1 5

The lift slope for the fi nite wing with AR = 4 is, from    Eq. (5.65) ,

a
a=

=

0

0 11 5+ 7 3

0 106

1 5+ 7 3 0 106 0 95

. /a03 ( )e1e

.

. (3 . )106 / [ ( .0π )()) )]4
0 0. 7= per degree

At α = 2°, the lift coeffi cient is

C aL Laaa = − =( )L= . [ ( .− )] .− 0 0 0. 7 2[ 1 5. 0 245        
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When the angle of attack is perturbed by Δα = 0.5°, the new angle of attack is 2.5°. The 

lift coeffi cient for this angle of attack is

  CL = −0 7 2 5 1 5 0 28. [7 . (−5 . )5 ] .= 0

Hence, referring to    Fig. 5.53 ,

( ) . .Δ =) =L 1 0 2. 8 0− 245 0 035

b.  For the wing with aspect ratio 10, the lift slope was obtained in    Example 5.30  as

a = 0 088.  088 per degree

At α = 2°,

C aL Laaa =( )L= . [ ( . )] .− 0 0 088 2 − (− 5 0=)] 308

At α = 2.5°,

C aL La

L

aa = −
Δ =

( )L= . [ . (− . )] .=
( )CLΔCL

− 0

2

0 088 2 5. 1 5. 0 352

0 3. 52 022 308 0 044=0 308 ..308 0

Comparing the results from parts ( a ) and ( b ), the high–aspect-ratio wing experiences a 

26 percent higher increase in  C L   than the low–aspect-ratio wing.   

   EXAMPLE 5.33  

 In    Example 5.29 , the lift coeffi cient for the Vought F4U-1D Corsair fl ying at maximum 

velocity at an altitude of 6 km was calculated as  C L   = 0.154. Estimate the angle of attack 

at which the airplane is fl ying. Assume that  e  1  = 0.9. 

   ■  Solution 
 From    Example 5.29 , AR = 5.35. Also, assuming that the airfoil data for the Corsair is 

given by the NACA 23012 airfoil in App. D, we have, from    Example 5.30 ,

  a L0 1 6 per degree  and 1 5=L= 6 per degree and −=0 11 0. ,6 per degree01 α ο        

From    Eq. (5.65) ,

  a
a= =0

0 11 5+ 7 3

0 106

1 5+ 7 3 0 106. /a03 ( )1

.

. (3 . )106 / [ ( .0π1 5+ 7 0)e1e . (3 . )106 / [ 99
0 0

) ]5 35)
756 per degree=        

Because

  C aL Laaa( )L= ,− 0        

we have

  α α+ = +=
C

a
L

L 0
0 154

0 756

.

.
( .− )1 5.        

  α = = °2 3 5 .0 0=337 1− 5 .37 1 537         



 5.16  Swept Wings 381

  Note:  Because the airplane is fl ying at its maximum velocity, most of the lift is being 

generated via the dynamic pressure. The required lift coeffi cient is small (only 0.154), 

and hence the corresponding angle of attack is small, namely 0.537 o .     

   5.16  SWEPT WINGS 
  Almost all modern high-speed aircraft have swept-back wings, such as shown in 
   Fig. 5.54  b . Why? We are now in a position to answer this question. 

  We fi rst consider subsonic fl ight. Consider the planview of a straight wing, 

as sketched in    Fig. 5.54  a . Assume that this wing has an airfoil cross section with 

a critical Mach number  M  cr  = 0.7. (Remember from    Sec. 5.10  that for  M  ∞  slightly 

greater than  M  cr , there is a large increase in drag; hence it is desirable to increase 

 M  cr  as much as possible in high-speed subsonic airplane design.) Now assume 

that we sweep the wing back through an angle of 30°, as shown in    Fig. 5.54  b . 

The airfoil, which still has a value of  M  cr  = 0.7, now “sees” essentially only the 

component of the fl ow normal to the leading edge of the wing; that is, the aero-

dynamic properties of the local section of the swept wing are governed mainly 

by the fl ow normal to the leading edge. Hence, if  M  ∞  is the free-stream Mach 

Assume that Mcr for
wing = 0.7.

  
  Figure 5.54  Effect of a swept wing on critical Mach number. 
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number, the airfoil in    Fig. 5.54  b  is seeing effectively a smaller Mach number: 

M  ∞  cos 30°. As a result, the actual free-stream Mach number can be increased 

above  0.7 before critical phenomena on the airfoil are encountered. In fact, we 

could expect that the critical Mach number for the  swept wing itself  would be as 

high as 0.7/cos 30° = 0.808, as shown in    Fig. 5.54  b . This means that the large 

increase in drag (as sketched in    Fig. 5.26 ) would be delayed to  M  ∞  much larger 

than  M  cr  for the airfoil—in terms of    Fig. 5.54 , something much larger than 0.7 

and maybe even as high as 0.808. Thus we see the main function of a swept 

wing:  By sweeping the wings of subsonic aircraft, we delay drag divergence to 
higher Mach numbers.  

 In real life, the fl ow over the swept wing sketched in    Fig. 5.54  b  is a fairly 

complex three-dimensional fl ow; to say that the airfoil sees only the component 

normal to the leading edge is a sweeping simplifi cation. However, it leads to a 

good rule of thumb. If Ω is the sweep angle, as shown in    Fig. 5.54  b , the actual 

critical Mach number for the swept wing is bracketed by

M M
M

cr cr
crfor airfoil Actual for swept wing

fo<Mcr for swept wing
r arr irfoil

cos Ω
        

 There is an alternative explanation of how the critical Mach number is 

increased by sweeping the wing. Consider the segment of a straight wing 

t1
c1

= 0.15

t 1

c 1

A

B

Segment of
straight wing

(a) (b)

t2
c2

= 0.106

C

D

Segment of
swept wing

t 2
 =

 t 1

c 2
 =

 1
.4

1c
1

Ω = 45°

  
  Figure 5.55  With a swept wing, a streamline effectively sees a thinner airfoil. 
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sketched in    Fig. 5.55  a . The airfoil section, with a thickness-to-chord ratio of 

 t  1 / c  1  = 0.15, is sketched at the left. The arrowed line  AB  represents a stream-

line fl owing over the straight wing. This streamline “sees” the airfoil section 

with a 15 percent thickness. Now consider this  same wing,  but swept through 

the angle Ω = 45°, as shown in    Fig. 5.55  b . The arrowed line  CD  represents a 

streamline fl owing over the swept wing. (We draw streamlines  AB  and  CD  as 

straight lines in the free-stream direction, ignoring for simplicity any three-

dimensional fl ow effects.) Streamline  CD  now travels a longer distance over 

the swept wing. The airfoil section that streamline  CD  effectively “sees” is 

sketched at the left in    Fig. 5.55  b . It has the same thickness but a longer ef-

fective chord. Hence, the effective airfoil section that streamline  CD  sees is 

  thinner  than that seen in the case of the straight wing. Indeed, for a sweep 

angle of 45°, the effective airfoil section seen by streamline  CD  has a thick-

ness-to-chord ratio of  t  2 / c  2  = 0.106. If we simply take the straight wing in 

   Fig. 5.55  a  and sweep it through an angle of 45°, the swept wing looks to the 

fl ow as if the effective airfoil section is almost one-third thinner than it is when 

the sweep angle is 0°. From our discussion in    Sec. 5.9 , making the airfoil thin-

ner increases the critical Mach number. Hence, by sweeping the wing, we can 

increase the critical Mach number of the wing. 

  Following the usual axiom that “we cannot get something for nothing,” for 

subsonic fl ight, increasing the wing sweep reduces the lift. Although wing sweep 

is benefi cial in terms of increasing the drag-divergence Mach number, it de-

creases  C L  . This is demonstrated in    Fig. 5.56 , which gives the variation of  L / D  

with sweep angle for a representative airplane confi guration at  M  ∞  = 0.6 fl ying at 

30,000 ft. There is a considerable decrease in  L / D  as the sweep angle increases, 

mainly due to the decrease in  C L  . 
  For supersonic fl ight, swept wings are also advantageous, but not quite 

from the same point of view as just described for subsonic fl ow. Consider the 

two swept wings sketched in    Fig. 5.57 . For a given  M  ∞  > 1, there is a Mach 

cone with vertex angle μ, equal to the Mach angle [recall    Eq. (5.49) ]. If the 

leading edge of a swept wing is  outside  the Mach cone, as shown in    Fig. 5.57  a , 

the component of the Mach number normal to the leading edge is supersonic. 

As a result, a fairly strong oblique shock wave will be created by the wing 

itself, with an attendant large wave drag. In contrast, if the leading edge of the 

swept wing is  inside  the Mach cone, as shown in    Fig. 5.57  b , the component 

of the Mach number normal to the leading edge is subsonic. As a result, the 

wave drag produced by the wing is less. Therefore, the advantage of sweeping 

the wings for supersonic fl ight is in general to obtain a decrease in wave drag; 

and if the wing is swept inside the Mach cone, a considerable decrease can be 

obtained. 

    The quantitative effects of maximum thickness and wing sweep on the wave 

drag coeffi cient are shown in    Fig. 5.58  a  and  b , respectively. For all cases the 

wing aspect ratio is 3.5, and the taper ratio (tip to root chord) is 0.2. Clearly, thin 

wings with large angles of sweepback have the smallest wave drag.   
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  Figure 5.57  Swept wings for supersonic fl ow. ( a ) Wing swept outside the Mach cone. 

( b ) Wing swept inside the Mach cone. 

  
  Figure 5.56  Variation of lift-to-drag ratio with wing sweep. Wind tunnel measurements 

at the NASA Langley Research Center. 
 (Source:  From Loftin, NASA SP 468, 1985. ) 
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Figure 5.58  Sketch of the variation of minimum wing drag coeffi cient versus Mach number with ( a ) wing 

thickness as a parameter (Ω = 47°) and ( b ) wing sweepback angle as a parameter (t/c = 4 percent). 
(Source:  From L. Loftin,  Quest for Performance,  NASA SP 468, 1985. ) 

 DESIGN BOX 

 The designer of supersonic airplanes has two basic 

choices of wing planform: low–aspect-ratio straight 

wing, or swept wing (including a delta wing). Both 

classes of wing planform result in lower wave drag 

compared to a high–aspect-ratio straight wing. Let us 

examine these choices in greater detail. 

 First consider a low–aspect-ratio straight wing 

at supersonic speeds. From    Eq. (5.51) , the wave drag 

coeffi cient for a fl at plate of infi nite span is

c

M

d w,

α2α 2

4

1
=

−∞MM
  (5.67)        

where α is the angle of attack in  radians . The same 

theory gives the wave drag coeffi cient for a fl at plate 

of fi nite aspect ratio AR as

C

M R
D W,

α2α 2

4

1
1

1

2
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−
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⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∞MM

(5.68)        

where  MR M −M∞MMMAR 2 1        

(See Hilton,  High-Speed Aerodynamics , Longman, 

Green and Co., 1951.) Note that    Eq. (5.68)  reduces to 

(continued on next page)
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   Eq. (5.67)  for an aspect ratio going to infi nity.    Equa-

tion (5.68)  is graphed in    Fig. 5.59 , giving CD, w /α 2 as 

a function of the aspect ratio for the case of  M ∞ = 2. 

Note the dramatic drop in the wave drag coeffi cient 

at very low aspect ratios. This curve, which is for an 

infi nitely thin fl at plate, should be viewed as mainly 

qualitative when dealing with real wings with thick-

ness. However, it clearly shows the advantage of 

low–aspect-ratio wings for supersonic fl ight. This is 

the exact opposite of the recommended practice for 

subsonic airplane design, as discussed earlier. How-

ever, because of the occurrence of shock waves at 

supersonic speeds, supersonic wave drag is usually 

much more important than induced drag; hence the 

use of low–aspect-ratio wings is good practice in su-

personic airplane design. A case in point is the Lock-

heed F-104 supersonic fi ghter, shown in    Figs. 5.40  

and 4.52. Return to Fig. 4.52, and study the wing 

planform for the F-104. This airplane was the fi rst 

to be designed for sustained fl ight at Mach  2, and 

the designers at Lockheed Skunk Works chose to go 

with a straight wing of low aspect ratio. The F-104 

wing has an aspect ratio of 2.45. The airfoil section 

is a very thin biconvex shape; the thickness-to-chord 

ratio is only 0.0336. The leading edge is exception-

ally sharp; the leading-edge radius of 0.016 is so 

small that it poses some danger to the ground crew 

working around the airplane. All these features have 

one goal: to reduce the supersonic wave drag. They 

are classic examples of good supersonic airplane 

design. 

  We note that the supersonic lift coeffi cient is 

also reduced when the aspect ratio is reduced. This 

is illustrated in    Fig. 5.60  a , which gives the variation 

of the lift slope  dC L  / d α as a function of aspect ratio 

for straight, tapered wings at  M ∞ = 1.53. Shown here 

are some of the fi rst experimental data obtained in 

the United States for wings at supersonic speeds. 

These data were obtained in the 1-ft by 3-ft super-

sonic  tunnel at NACA Ames Laboratory by Walter 

Vincenti in 1947, but owing to military classifi cation 

were not released until 1949. In    Fig. 5.60  a , the dashed 

triangles shown emanating from the wing leading-

edge apex represent the Mach cones at  M ∞ = 1.53. 

(continued from page 385)
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  Figure 5.59  Variation of supersonic wave drag with aspect ratio for 

fl at plates. 
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(The  Mach cones  are cones with a semivertex angle 

equal to the Mach angle μ.) Note that as AR is re-

duced, more of the wing is contained inside the Mach 

cones. The effect of decreasing AR on the lift slope 

at supersonic speeds is qualitatively the same as that 

for subsonic speeds. Recall from    Sec. 5.15  that the 

lift slope is smaller for lower–aspect-ratio wings in 

subsonic fl ight. Clearly, from    Fig. 5.60  a  the same 
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(b)   
  Figure 5.60  ( a ) Effect of aspect ratio on the lift curve for straight wings at supersonic speeds.  M   = 1.53. After 

W. G. Vincenti, “Comparison between Theory and Experiment for Wings at Supersonic Speeds,” NACA TR 

1033. ( b ) Effect of wing sweep on supersonic drag. The drag coeffi cient quoted is for an angle of attack that gives 

minimum drag. 
 (Source:  Data from Vincenti. ) 

(continued on next page)
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(continued from page 387)

trend prevails for supersonic fl ight, even though the 

physical nature of the aerodynamic fl ow fi eld is com-

pletely different. 

  The other option for a wing planform for super-

sonic airplanes is the swept wing. (We will consider 

the delta, or triangular planform, as a subset under 

swept wings.) In regard to    Fig. 5.57 , we have already 

discussed that supersonic wave drag can be con-

siderably reduced by sweeping the wing inside the 

Mach cone—that is, by having a subsonic leading 

edge. This is clearly seen in the experimental data 

shown in    Fig. 5.60  b , taken from the pioneering su-

personic wind tunnel work of Vincenti. In    Fig. 5.60  b , 

the minimum total drag coeffi cient is plotted ver-

sus wing sweep angle for  M ∞ = 1.53. Keep in mind 

that the total drag coeffi cient is due to both pressure 

drag (essentially wave drag) and skin friction drag. 

Positive sweep angles represent  swept-back  wings, 

and negative sweep angles represent  swept-forward
wings. Note the near symmetry of the data in regard 

to positive and negative sweep angles; the supersonic 

drag coeffi cient is essentially the same for the same 

degree of sweepback as it is for the same degree of 

sweepforward. The important message in    Fig. 5.60  b
is the decrease in CDmin at sweep angles greater than 

49° or less than −49°. The Mach angle for  M ∞ = 1.53 

is given by μ  = sin −1 (1/ M  ∞ ) = sin −1 (1/1.53) = 41°. 

Hence, wings with a sweep angle of 49° or larger will 

be inside the Mach cone. Note the lower drag coef-

fi cient at a sweep angle of ±60°; for this case the wing 

is comfortably inside the Mach cone, with a subsonic 

leading edge. These data also show that when the 

wings are swept outside the Mach cone (supersonic 

leading edge), the drag coeffi cient is relatively fl at, 

independent of the sweep angle. So for supersonic 

fl ight, to realize the drag reduction associated with 

a swept wing, the sweep angle must be large enough 

that the wing is swept  inside  the Mach cones. 

 A classic example of this design feature is the 

English Electric Lightning, a Mach 2 interceptor used 

by the British Royal Air Force in the 1960s and 1970s. 

As shown in    Fig. 5.61 , the Lightning has a highly 

swept wing, with a sweep angle Ω = 60°. At Mach 2 

the Mach angle is  μ = = °sin (− )∞
1 1( i 1

2 3= =1 / )∞ sin 1−/ ) sin 1
2 0∞    . 

A swept wing, to be just inside the Mach cone at 

M ∞ = 2, must have a sweep angle of Ω = 60° or larger. 

Figure 5.61  Three-view of the English Electric Lightning supersonic fi ghter. 
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Because Mach 2 was the design point, it is no surprise 

that the designers of the Lightning chose a sweep 

angle of 60°. In addition, the wing of the Lightning 

has a relatively low aspect ratio of 3.19, and the air-

foil section is thin, with a thickness-to-chord ratio of 

5 percent—both good design practices for supersonic 

airplanes. 

  Look closely at the Lightning in    Fig. 5.61 , 

and then go back and closely examine the F-104 in 

Fig. 4.52. Here we see classic examples of the two 

 different wing planforms, swept wing and low–

aspect-ratio straight wing, from which designers of 

supersonic airplanes can choose. 

 We examined the effect of wing sweep on the 

 subsonic  lift coeffi cient (via the lift-to-drag ratio) in 

   Fig. 5.56 . What is the effect of sweep on the  super-
sonic  lift coeffi cient? The answer is provided by the 

experimental data of Vincenti, shown in    Fig. 5.62 . 

In a trend similar to that for the drag coeffi cient, we 

see from    Fig. 5.62  that as long as the wing is swept 

outside the Mach cone (supersonic leading edge), the 

lift slope is relatively constant, independent of sweep 

angle. When the wing is swept inside the Mach cone 

(subsonic leading edge), the lift slope decreases with 

increasing sweep angle, similar to the case for sub-

sonic fl ight. 

  The results shown in    Figs. 5.60  and    5.62  clearly 

show a distinct change in the wing  aerodynamic 

 characteristics when the sweep angle is large enough 

that the wing is inside the Mach cone. This is be-

cause the pressure distribution over the wing surface 

changes radically when the transition is made from 

a supersonic to a subsonic leading edge. The nature 

of this change is sketched in    Fig. 5.63 , which shows 

three fl at-plate wing planforms labeled  A ,  B ,  C  and 

of progressively increased sweep angle in a super-

sonic free stream. Wing  A  is a straight wing. The 

infl uence of the Mach cones is limited to a small 

region at the tips; most of the wing is feeling the 

type of two-dimensional supersonic fl ow over a fl at 

plate that was discussed in    Sec. 5.11  and sketched 

in    Fig.  5.39 . Hence, the pressure distribution over 

most of the surface of wing is the constant pres-

sure distribution illustrated by the vertical shaded 
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  Figure 5.62  Effect of wing sweep on the lift slope at 

supersonic speed. Data from Vincenti. 

(continued on next page)



390 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

(continued from page 389)

area shown near the right tip of the wing. Wing  B  

is a swept wing with a supersonic leading edge. A 

considerable portion of the wing is still outside the 

Mach cones. In the shaded region, the same constant 

pressure distribution associated with a fl at plate in 

supersonic fl ow still  prevails. However, wing  C  is a 

swept wing with a subsonic leading edge; the entire 

wing is swept inside the Mach cone from the apex. 

The pressure distribution over this wing is similar 

to that for subsonic fl ow, even though the wing is 

immersed in a supersonic free stream. Note that the 

shaded area at the right on wing  C  traces out the 

type of subsonic pressure coeffi cient distribution 

familiar to us from our earlier discussions; for ex-

ample, compare it with    Fig. 5.15 . This change in the 

aerodynamic behavior of the fl ow over a wing swept 

inside the Mach cone leads to the decrease in wave 

drag and lift coeffi cient associated with swept wings 

in supersonic fl ow. 

  There is yet another design benefi t of a wing 

with a subsonic leading edge: The leading-edge 

radius can be larger, similar to that for a subsonic 

airplane. This has benefi ts at low speeds, especially 

for landing and takeoff, for airplanes designed for 

supersonic fl ight. A wing with a sharp leading edge 

and a thin airfoil, such as that used on the F-104 

(Figs. 4.52 and    5.40 ), experiences early fl ow separa-

tion at moderate angles of attack at subsonic speeds. 

This reduces the value of ( C   L  ) max  and forces the 

airplane to have higher landing and takeoff speeds. 

(For example, over its operational history, the F-104 

experienced an inordinate number of accidents due 

to wing stall at low-speed fl ight conditions.) In con-

trast, a wing with a blunter, more rounded leading 

edge has much better low-speed stall characteristics. 

Supersonic airplanes having swept wings with sub-

sonic leading edges can be designed with blunter, 

more rounded leading edges, and hence have better 

low-speed stalling behavior. 

 Recall from    Figs. 5.60  and    5.62  that the su-

personic drag and lift coefficients associated with 

swept-forward wings are essentially the same as 

those for swept-back wings. Indeed, the same can 

be said for high-speed subsonic flight. However, 

airplane designers have almost always chosen 

sweepback rather than sweepforward. Why? The 

answer has to do with aeroelastic deformation of 

swept wings under load. For a swept-back wing, 

the location of the effective lift force causes the 

wing to twist near the tips so as to decrease the 

angle of attack of the outer portion of the wing. 

This tends to unload that portion of the wing when 

lift is increased—a stable situation. In contrast, 

for a swept-forward wing, the location of the ef-

fective lift force causes the wing to twist near the 

tips so as to increase the angle of attack of the 

outer portion of the wing, thus causing the lift to 

increase, which further increases the wing twist. 

This is an unstable situation that tends to twist the 

swept-forward wing right off the airplane. These 

aeroelastic deformation effects are evident in the 

experimental data shown in    Fig. 5.62 . Note that 

the experimental data are not symmetric for swept-

forward and swept-back wings. The lift slope is 

 smaller  for the swept-back wings due to aeroelas-

tic deformation of the wind tunnel models. Hence, 

for  structural reasons  swept-forward wings have 

A

B

C
Mach line
Region of two-dimensional flow
Pressure distribution   

  Figure 5.63  Change in chordwise pressure distribution 

as a wing at supersonic speeds is progressively swept 

from outside to inside the Mach cone—that is, as the 

leading edge progressively changes from supersonic 

to subsonic. 
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  Figure 5.64  An example of a swept-forward wing: the Grumman X-29. 

not been the planform of choice. However, mod-

ern advances in composite materials now allow the 

design of very strong, lightweight wings, and this 

has let designers of high-speed airplanes consider 

the use of swept-forward wings. Indeed, swept-

forward wings have certain design advantages. 

For example, the wing root can be placed farther 

back on the fuselage, allowing greater flexibility 

in designing the internal packaging inside the fu-

selage. Also, the details of the three-dimensional 

flow over a swept-forward wing result in flow 

separation occurring first near the root, preserving 

aileron control at the tips; in contrast, for a swept-

back wing, flow separation tends to occur first 

near the tips, causing a loss of aileron control. In 

the 1980s an experimental airplane, the Grumman 

X-29, was designed with swept-forward wings to 

allow closer examination of the practical aspects 

of swept-forward wing design. A three-view of the 

X-29 is shown in    Fig. 5.64 . The X-29 research pro-

gram has been successful, but as yet there has been 

no rush on the part of airplane designers to go to 

swept-forward wings. 

  Return to    Fig. 5.61 , and examine again the highly 

swept wing of the English Electric Lightning. It is 

not much of an intellectual leap to imagine the empty 

notch between the wing trailing edge and the fuselage 

fi lled in with wing structure, producing a wing with 

a triangular planform. Such wings are called  delta 
wings . Since the advent of the jet engine, there has 

been interest in delta wings for high-speed airplanes, 

both subsonic and supersonic. One design advantage 

of the delta wing is that fi lling in that notch consider-

ably lengthens the chord length of the wing root. For 

a fi xed  t / c  ratio, this means the wing thickness at the 

root can be made larger, providing greater volume for 

structure, fuel, and so on. The list of advantages and 

disadvantages of a delta wing is too long to discuss 

here. See the following book for a thorough and read-

able discussion of this list: Ray Whitford,  Design for 
Air Combat,  Janes Information Group Limited, 1989. 

Suffi ce it to say that a number of subsonic and su-

personic delta wing aircraft have been designed and 

used extensively. An example is the French Dassault-

Breguet Mirage 2000C, shown in    Fig. 5.65 . The Mi-

rage 2000C is a supersonic fi ghter with a top speed 

(continued on next page)
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(continued from page 391)

of Mach 2.2. The leading-edge sweep angle is Ω = 

58°. Dassault is well known for its long line of suc-

cessful delta wing airplanes since the 1950s. Note 

from    Fig. 5.65  that the Mirage 2000C has no hori-

zontal stabilizer; this is characteristic of many delta 

wing airplanes. The trailing-edge control surfaces are 

called  elevons,  which, when defl ected uniformly in 

the same direction (up or down) act as elevators and 

when defl ected in opposite directions (one up and the 

other down) act as ailerons. 

  In many respects the wing is the heart of the 

airplane. Great care goes into the design of the wing. 

Today the design of wing shapes for supersonic 

 airplanes is sophisticated and fi ne-tuned. Consider, 

for example, the Anglo–French Concorde supersonic 

transport, shown in    Fig. 5.66 . The Concorde was 

the only commercial supersonic transport in regu-

lar service. Manufactured jointly by British Aircraft 

Corporation in England and Aerospatiale in France, 

the Concorde fi rst fl ew on March 2, 1969, and went 

into service with British Airways and Air France 

in 1976. As shown in    Fig. 5.66 , the wing of the 

Concorde is a highly swept ogival delta planform 

with complex camber and wing droop  (anhedral). 

The airfoil section is thin, with a thickness-to-chord 

ratio of 3  percent at the root and 2.15 percent from 

the nacelle outward. (A personal note: This author 

and his wife fl ew on the Concorde during the sum-

mer of 1998—what an exciting experience! The 

fl ight time between New York and London was 

only 3 h 15 min—too short even to show an in-

fl ight movie. Unfortunately, the Concorde fare was 

very expensive, and by most measures the airplane 

was an economic failure. For this reason, in 2003 

the Concorde was phased out of service. It will be 

one of the most demanding design challenges in the 

21st  century to design an economically and envi-

ronmentally viable second-generation supersonic 

transport. Perhaps some readers of this book will 

successfully rise to this challenge.)  

  
  Figure 5.65  An example of a delta wing: the French Dassault-Breguet Mirage 2000C, with 

an added side view (lower right) of the Mirage 2000N. 
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   5.17  FLAPS—A MECHANISM FOR HIGH LIFT 
  An airplane normally encounters its lowest fl ight velocities at takeoff or 
 landing—two periods that are most critical for aircraft safety. The slowest speed 
at which an airplane can fl y in straight and level fl ight is defi ned as the  stalling 
speed V  stall . The calculation of  V  stall , as well as aerodynamic methods of making 
V  stall  as small as possible, is of vital importance. 

 The stalling velocity is readily obtained in terms of the maximum lift coef-

fi cient. From the defi nition of  C   L  ,

  L q SC V SCL LV SC=q SCL∞qq SCL VV1
2

2ρρ        

Thus  V
L

SCL
∞VV

∞
= 2

ρ
  (5.69)

In steady, level fl ight, the lift is just suffi cient to support the weight  W  of the 
aircraft; that is,  L  =  W . Thus

V
W

SCL
∞VV

∞
= 2

ρ
  (5.70)

 Examining    Eq. (5.70) , for an airplane of given weight and size at a given altitude, 
we fi nd that the only recourse to minimize  V  ∞  is to maximize  C   L  . Hence, stalling 
speed corresponds to the angle of attack that produces  C   L ,max :

  V
W

SCL
stalVV l

max

=
∞

2

ρ ,

  (5.71)         

 To decrease  V  stall ,  C   L ,max  must be increased. However, for a wing with a given 

airfoil shape,  C   L ,max  is fi xed by nature; that is, the lift properties of an airfoil, 

including maximum lift, depend on the physics of the fl ow over the airfoil. To 

assist nature, the lifting properties of a given airfoil can be greatly enhanced by 

the use of “artifi cial” high-lift devices. The most common of these devices is the 

fl ap at the trailing edge of the wing, as sketched in    Fig. 5.67 . When the fl ap is 

defl ected downward through the angle  δ , as sketched in    Fig. 5.67  b , the lift coef-

fi cient is increased for the following reasons: 

  1.   The camber of the airfoil section is effectively increased, as sketched in 

   Fig. 5.67  c . The more camber an airfoil shape has at a given angle of attack, 

the higher the lift coeffi cient.  

  2.   When the fl ap is defl ected, we can visualize a line connecting the leading 

edge of the airfoil and the trailing edge of the fl ap: points  A  and  B , 

respectively, in    Fig. 5.67  d . Line  AB  constitutes a  virtual chord line,  rotated 

clockwise relative to the actual chord line of the airfoil, making the airfoil 

section with the defl ected fl ap see a “virtual” increase in angle of attack. 

Hence the lift coeffi cient is increased.   
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For these reasons, when the fl ap is defl ected downward through the fl ap defl ec-
tion angle  δ , the value of  C   L ,max  is increased and the zero-lift angle of attack is 
shifted to a more negative value, as shown in    Fig. 5.68 . In    Fig. 5.68  the lift 
curves for a wing with and without fl aps are compared. Note that when the fl aps 
are defl ected, the lift curve shifts to the left, the value of  C   L ,max  increases, and the 
stalling angle of attack at which  C   L ,max  is achieved is decreased. However, the lift 
slope remains unchanged; trailing-edge fl aps do not change the value of  dC   L  / d α. 
Also note that for some of the airfoils given in App. D, lift curves are shown with 
the effect of fl ap defl ection included. 

   The increase in  C   L ,max  due to fl aps can be dramatic. If the fl ap is designed 

not only to rotate downward, but also to translate rearward so as to increase the 

effective wing area, then  C   L ,max  can be increased by approximately a factor of 2. 

If additional high-lift devices are used, such as slats at the leading edge, slots 

in the surface, or mechanical means of boundary layer control, then  C   L ,max  can 

sometimes be increased by a factor of 3 or more, as shown in    Fig. 5.69 . For an 

interesting and more detailed discussion of various high-lift devices, the reader is 

referred to the books by    McCormick  and    Shevell  (see the bibliography at the end 

of this chapter), as well as this author’s book: Anderson,  Aircraft Performance 
and Design,  McGraw-Hill, Boston, 1999. 

Flap

�

Camber
line

"Virtual" increase in
angle of attack

A
B

(a)

(b)
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  Figure 5.67  When a plain fl ap is defl ected, the increase in lift is due 

to an effective increase in camber and a virtual increase in angle of 

attack. 

    EXAMPLE 5.34  

 Consider the Lockheed F-104 shown in three-view in Fig. 4.52 and in the photograph in 

   Fig. 5.40 . With a full load of fuel, the airplane weighs 10,258 kg  f  . Its empty weight (no 

fuel) is 6071 kg  f  . The wing area is 18.21 m 2 . The wing of the F-104 is very thin, with a 



396 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

thickness of 3.4 percent, and has a razor-sharp leading edge, both designed to minimize 

wave drag at supersonic speeds. A thin wing with a sharp leading edge, however, has very 

poor low-speed aerodynamic performance; such wings tend to stall at low angle of attack, 

thus limiting the maximum lift coeffi cient. The F-104 has both leading-edge and trailing-

edge fl aps; but in spite of these high-lift devices, the maximum lift coeffi cient at subsonic 

speeds is only 1.15. Calculate the stalling speed at standard sea level when the airplane 

has ( a ) a full fuel tank and ( b ) an empty fuel tank. Compare the results. 

  

  Figure 5.68  Illustration of the effect of fl aps on the lift curve. The numbers shown are typical of a modern medium-

range jet transport. 
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■  Solution 
a.  Recall that kg  f   is a nonconsistent unit of force; we need to convert it to newtons, 

 remembering from Sec. 2.4 that 1 kg   f   = 9.8 N:

W = = ×10 258 9 8 1 005 105, (258 . )8 ×.005 10 N

At standard sea level, ρ ∞  = 1.23 kg/m 3 . Thus, from    Eq. (5.71) ,
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 In miles per hour, using the conversion factor from Example 2.6 that 60 mi/h = 26.82 m/s,
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  Figure 5.69  Typical values of airfoil maximum lift coeffi cient for 

various types of high-lift devices: (1) airfoil only, (2) plain fl ap, 

(3) split fl ap, (4) leading-edge slat, (5) single-slotted fl ap, (6) double-

slotted fl ap, (7) double-slotted fl ap in combination with a leading-edge 

slat, (8) addition of boundary-layer suction at the top of the airfoil. 
 (Source:  From Loftin, NASA SP 468, 1985. ) 
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Note:  The difference between parts ( a ) and ( b ) is the weight. Because  V  stall  ∝  W  1/2  from 

   Eq. (5.71) , a shorter calculation for part ( b ), using the answer from part ( a ), is simply
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68

4

5
       

which is a check on the preceding result. 

 Comparing the results from parts ( a ) and ( b ), we note the trend that the lighter the 

airplane, everything else being equal, the lower the stalling speed. Because stalling speed 

varies with the square root of the weight, however, the reduction in stalling speed is pro-

portionally less than the reduction in weight. In this example, a 41 percent reduction in 

weight leads to a 23 percent reduction in stalling speed.   

   EXAMPLE 5.35  

 Consider the Boeing 727 trijet transport shown in the photograph in    Fig. 5.44  and in the 

three-view in    Fig. 5.70 . This airplane was designed in the 1960s to operate out of airports 

with relatively short runways, bringing jet service to smaller municipal airports. To mini-

mize the takeoff and landing distances, the 727 had to be designed with a relatively low 

stalling speed. From    Eq. (5.71) , a low  V  stall  can be achieved by designing a wing with a large 

planform area,  S , and/or with a very high value of  C   L ,max . A large wing area, however, leads 

  

Figure 5.70  Three-view of the Boeing 727 three-engine commercial jet transport. 
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to a structurally heavier wing and increased skin friction drag—both undesirable features. 

The Boeing engineers instead opted to achieve the highest possible  C   L ,max  by designing 

the most sophisticated high-lift mechanism at that time, consisting of triple-slotted fl aps 

at the wing trailing edge and fl aps and slots at the leading edge. With these devices fully 

deployed, the Boeing 727 had a maximum lift coeffi cient of 3.0. For a weight of 160,000 lb 

and a wing planform area of 1650 ft 2 , calculate the stalling speed of the Boeing 727 at 

standard sea level. Compare this result with that obtained for the F-104 in    Example 5.34 .  

■  Solution 
 From    Eq. (5.71) ,
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In    Example 5.34  a  for the Lockheed F-104, we found  V  stall  = 197.6 mi/h, a much higher 

value than the Boeing 727. The airplanes in these two examples, a point-designed Mach 2 

fi ghter and a short-fi eld commercial jet transport, represent high and low extremes in 

stalling speeds for conventional jet airplanes. 

Note:  Computed streamline patterns over the Boeing 727 airfoil section are shown 
in    Fig. 5.71 , showing the high-lift devices deployed for landing confi guration at an angle 

Slat Foreflap

Midflap

Aft flapLanding

Takeoff

Cruise

� � 6°

� � 10°

� � 3°

  

  Figure 5.71  Streamline patterns over the Boeing 727 airfoil with 

and without high-lift devices deployed, comparing the cases for 

landing, takeoff, and cruise. 
Copyright © by AIAA. All rights reserved. Used with permission.
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of attack of 6°, takeoff confi guration at an angle of attack of 10°, and with the clear con-
fi guration (no deployment of the high-lift devices) for cruise at an angle of attack of 3°. 
Notice how much the fl ow fi eld is changed when the high-lift devices are deployed; the 
streamline curvature is greatly increased, refl ecting the large increase in lift coeffi cient. 

        5.18   AERODYNAMICS OF CYLINDERS 
AND SPHERES 

  Consider the low-speed subsonic fl ow over a sphere or an infi nite cylinder with its 
axis normal to the fl ow. If the fl ow were inviscid (frictionless), the theoretical fl ow 
pattern would look qualitatively as sketched in    Fig. 5.72  a . The streamlines would 
form a symmetric pattern; hence the pressure distributions over the front and rear 
surfaces would also be symmetric, as sketched in    Fig. 5.72  b . This symmetry creates 
a momentous phenomenon: namely, that there is  no pressure drag on the sphere  
if the fl ow is frictionless. This can be seen by simple inspection of    Fig. 5.72  b : The 
pressure distribution on the front face (−90° ≤ θ  ≤ 90° creates a force in the drag 
direction, but the pressure distribution on the rear face (90° ≤ θ ≤ 270°), which 
is identical to that on the front face, creates an equal and opposite force. Thus we 
obtain the curious theoretical result that there is no drag on the body, quite contrary 
to everyday experience. This confl ict between theory and experiment was well 
known at the end of the 19th century and is called  d’Alembert’s paradox . 

  The actual fl ow over a sphere or cylinder is sketched in Fig. 4.37; as discussed 

in Sec. 4.20, the presence of friction leads to separated fl ows in regions of adverse 

  

  Figure 5.72  Ideal frictionless fl ow over a sphere. 

( a ) Flow fi eld. ( b ) Pressure coeffi cient distribution. 



 5.18  Aerodynamics of Cylinders and Spheres 401

pressure gradients. Examining the theoretical inviscid pressure distribution shown 

in    Fig. 5.72  b , we fi nd that on the rear surface (90° ≤ θ ≤ 270°), the pressure in-

creases in the fl ow direction; that is, an adverse pressure gradient exists. Thus, it is 

entirely reasonable that the real-life fl ow over a sphere or cylinder would be sepa-

rated from the rear surface. This is indeed the case, as fi rst shown in Fig. 4.37 and 

as sketched again in    Fig. 5.73  a . The real pressure distribution that corresponds to 

this separated fl ow is shown as the solid curve in    Fig. 5.73  b . Note that the average 

pressure is much higher on the front face (−90° < θ < 90°) than on the rear face 

(90° < θ < 270°). As a result, a net drag force is exerted on the body. Hence nature 

and experience are again reconciled, and d’Alembert’s paradox is removed by a 

proper account of the presence of friction. 

  The fl ow over a sphere or cylinder, and therefore the drag, is dominated by 

fl ow separation on the rear face. This leads to an interesting variation of  C   D   with 

the Reynolds number. Let the Reynolds number be defi ned in terms of the sphere 

diameter  d : Re = ρ ∞   V  ∞   d /μ ∞ . If a sphere is mounted in a low-speed subsonic 

wind tunnel and the free-stream velocity is varied so that Re increases from 10 5  

to 10 6 , then a curious, almost discontinuous drop in  C   D   is observed at about Re = 

3 × 10 5 . This is called the  critical  Reynolds number for the sphere. This behavior 

is sketched in    Fig. 5.74 . What causes this precipitous decrease in drag? The an-

swer lies in the different effects of laminar and turbulent boundary layers on fl ow 

separation. At the end of Sec. 4.20, we noted that laminar boundary layers  separate 

  
  Figure 5.73  Real separated fl ow over a sphere; 

separation is due to friction. ( a ) Flow fi eld. 

( b ) Pressure coeffi cient distribution. 
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  Figure 5.74  Variation of drag coeffi cient with Reynolds 

number for a sphere in low-speed fl ow. 

  
  Figure 5.75  Laminar and turbulent fl ow over a sphere. 
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DESIGN BOX

The large pressure drag associated with blunt bodies 

such as the cylinders and spheres discussed in this sec-

tion leads to the design concept of streamlining. Con-

sider a body of cylindrical cross section of  diameter d, 

with the axis of the cylinder oriented perpendicular to 

the fl ow. There will be separated fl ow on the back face 

of the cylinder, with a relatively fat wake and with the 

associated high-pressure drag; this case is sketched in 

Fig. 5.76a. The bar to the right of Fig. 5.76a denotes 

the total drag of the cylinder; the shaded portion of the 

bar represents skin friction drag, and the open portion 

represents the pressure drag. Note that for the case of 

a blunt body, the drag is relatively large, and most of 

this drag is due to pressure drag. However, look at what 

happens when we wrap a long, mildly tapered afterbody 

on the back of the cylinder, creating the teardrop-shaped 

body sketched in Fig. 5.76b. This shape is a streamlined 
body, of the same thickness d as the cylinder. However, 

because of the tapered afterbody, the adverse pressure 

gradient along the back of the streamlined body will be 

much milder than that for the back surface of the cylin-

der, and hence fl ow separation on the streamlined body 

will be delayed until much closer to the trailing edge, as 

sketched in Fig. 5.76b, with an  attendant, much smaller 

wake. As a result, the pressure drag of the streamlined 

body will be much smaller than that for the cylinder. 

Indeed, as shown by the bar to the right of Fig. 5.76b, 

the total drag of the streamlined body in a low-speed 

fl ow will be almost a factor of 10 smaller than that of 

a cylinder of the same thickness. The friction drag of 

the streamlined body will be larger due to its increased 

surface area, but the pressure drag is so much less that it 

dominates this comparison.

This is why so much attention is placed on stream-
lining in airplane design. The value of streamlining 

was not totally recognized by airplane designers until 

the late 1920s. Jump ahead to Figs. 6.79 and 6.80. In 

Fig. 6.79 a typical strut-and-wire biplane from World 

War I, the French SPAD XIII, is shown. This airplane 

is defi nitely not streamlined. In contrast, by the middle 

1930s streamlined airplanes were in vogue, and the 

Douglas DC-3 shown in Fig. 6.80 is a classic example. 

The evolution of our understanding of streamlining, 

and how it was eventually applied in airplane design, 

is one of the more interesting stories in the history of 

aerodynamics. For this story, see Anderson, A History 
of Aerodynamics and Its Impact on Flying Machines, 
Cambridge University Press, New York, 1997.

d

d

Relative drag
force

Separated
flow

Separated flow

(a) Blunt body

(b) Streamlined body Code

Skin friction drag

Pressure drag

Figure 5.76 Comparison of the drag for a blunt body and a streamlined body.
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much more readily than turbulent boundary layers. In the fl ow over a sphere 

at Re < 3 × 10 5 , the boundary layer is laminar. Hence the fl ow is totally sepa-

rated from the rear face, and the wake behind the body is large, as sketched in 

   Fig. 5.75  a . In turn, the value of  C   D   is large, as noted at the left of    Fig. 5.74  for 

Re < 3 × 10 5 . However, as Re increases above 3 × 10 5 , transition takes place on 

the front face, the boundary layer becomes turbulent, and the separation point 

moves rearward. (Turbulent boundary layers remain attached for longer dis-

tances in the face of adverse pressure gradients.) In this case the wake behind the 

body is much smaller, as sketched in    Fig. 5.75  b . In turn the pressure drag is less, 

and  C   D   decreases as noted at the right of    Fig. 5.74 . 

  Therefore, to decrease the drag on a sphere or cylinder, a turbulent boundary 

layer must be obtained on the front surface. This can be made to occur naturally 

by increasing Re until transition occurs on the front face. It can also be forced 

artifi cially at lower values of Re by using a rough surface to encourage early 

transition or by wrapping wire or other protuberances around the surface to cre-

ate turbulence. (The use of such artifi cial devices is sometimes called  tripping 
the boundary layer. ) 

 It is interesting to note that the dimples on the surface of a golf ball are 

designed to promote turbulence and hence reduce the drag on the ball in fl ight. 

Indeed, some recent research has shown that polygonal dimples result in less 

drag than the conventional circular dimples on golf balls; but a dimple of any 

shape leads to less pressure drag than a smooth surface does (table tennis balls 

have more drag than golf balls). 

EXAMPLE 5.36

   A standard American-sized golf ball has a diameter of 1.68 in. The velocity of the golf 

ball immediately after coming off the face of the driver after impact of the club face 

with the ball is typically 148 mi/h. Calculate the Reynolds number of the ball, assuming 

standard sea-level conditions, and compare this value with the critical Reynolds number 

for a sphere. 

■  Solution 
 The diameter  d  = 1.68 in = 0.14 ft. The velocity is  V  = 148 mi/h = 148 (88/60) = 

217.1 ft/s. The standard sea-level values of  ρ  ∞  and  μ  ∞  are 0.002377 slug/ft 3  and 3.7373 

× 10 −7  slug/ft s (from Sec. 4.15).

  Re = =
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∞ ∞
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This value is slightly  below  the critical Reynolds number of 3 × 10 5 . If the natural phe-

nomenon were left to itself, the golf ball would have a laminar boundary layer with the 

consequent early fl ow separation shown in    Fig. 5.75  a , resulting in the large value of drag 

coeffi cient at Reynolds numbers less than 3 × 10 5 , as shown in    Fig. 5.74 . However, the 

dimples on the surface of a golf ball serve to trip the boundary layer to a turbulent fl ow 

at Reynolds numbers less than 3 × 10 5 , creating a larger region of attached fl ow, as seen 
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in    Fig. 5.75  b . This in turn reduces the drag coeffi cient to the lower value seen at the right 

in    Fig. 5.74 . The dimples are a manmade mechanism for tripping the boundary layer that 

effectively lowers the Reynolds number at which transition to a turbulent boundary layer 

takes place.   

EXAMPLE 5.37

  For the golf ball in    Example 5.36 , calculate the drag for two cases:  (a)  a hypothetical ball 

with a perfectly smooth skin, and  (b)  a real ball with dimples. 

■  Solution  
a.   Because Re = 1.933 × 10 5  is slightly below the critical value, and there is no rough-

ness on the surface to artifi cially trip the boundary layer, the value of the sphere drag 

coeffi cient from    Fig. 5.74  is about 0.4. For the fl ow conditions given in    Example 5.36 ,

  q Vqq =V∞VV1
2

1
2 00ρ 2 21 0 00 25=2 6 lb/ft( .00 )( )100        

For a sphere, the reference area used to defi ne the drag coeffi cient is the cross-sectional 

area. Thus
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Therefore,

D q SCd =q SCd∞qq ( )( . )( ) .56 154 4 l. b0. 00. ) =) 345          

  b.   In this case, there are dimples on the surface of the golf ball, and these will trip the 

boundary layer to a turbulent fl ow, yielding the much lower drag coeffi cient of 0.1 shown 

in    Fig. 5.74 . Thus

D q SCd =q SCd =∞qq ( )( . )( . ) .56 154 lb0. 0. 0 086        

Readers who play golf can understand the signifi cance of this result. You can drive the 

low-drag ball with dimples a much larger distance down the fairway than if the ball had 

a smooth skin with a correspondingly high drag.       

   5.19   HOW LIFT IS PRODUCED—SOME 
ALTERNATIVE EXPLANATIONS 

  Return to our road map in    Fig. 5.1 . We have covered all the milestones on this 
map except the one at the bottom labeled “How lift is produced.” This is the 
subject of this present section. 

 It is amazing that today, more than 100 years after the fi rst fl ight of the 

Wright Flyer,  groups of engineers, scientist, pilots, and others can gather to-

gether and have a spirited debate on how an airplane wing generates lift. Various 

explanations are put forth, and the debate centers on which explanation is the 

most fundamental. The purpose of this section is to attempt to put these various 
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 explanations in perspective and to resolve the debate. In our previous discussions 

in this book we have consistently put forth one explanation as the most funda-

mental, and we have intentionally not burdened your thinking with any alterna-

tives. So, you may be wondering what the big deal is here. You already know 

how lift is produced. However, because the literature is replete with various dif-

ferent (and sometimes outright incorrect) explanations of how lift is produced, 

you need to be aware of some of the alternative thinking. 

 First let us consider what this author advocates as the most fundamental 

explanation of lift. It is clear from our discussion in Sec. 2.2 that the two hands 

of nature that reach out and grab hold of a body moving through a fl uid (liquid or 

gas) are the pressure and shear stress distributions exerted all over the exposed 

surface of the body. The resultant aerodynamic force on the body is the net, inte-

grated effect of the pressure and shear stress distributions on the surface. Because 

the lift is the component of this resultant force perpendicular to the relative wind, 

and because the pressure on the surface of an airfoil at reasonable angles of at-

tack acts mainly in the lift direction (whereas the shear stress acts mainly in the 

drag direction), we are comfortable in saying that for lift the effect of shear stress 

is secondary and that lift is mainly due to the imbalance of the pressure distribu-

tions over the top and bottom surfaces of the airfoil. Specifi cally, the pressure 

on the top surface of the airfoil is lower than the pressure on the bottom surface, 

and presto—lift! However, this raises the question of  why  the pressure is lower 

on the top of the airfoil and higher on the bottom. The answer is simply that the 

aerodynamic fl ow over the airfoil is obeying the laws of nature: mass continuity 

and Newton’s second law. Let us look at this more closely and see how nature 

applies these laws to produce lift on an airplane wing. Three intellectual thoughts 

follow in sequence:  

  1.   Consider the fl ow over an airfoil as sketched in    Fig. 5.77  a . Consider the 

stream tubes  A  and  B  shown here. The shaded stream tube  A  fl ows over 

the top surface, and the unshaded stream tube  B  fl ows over the bottom 

surface. Both stream tubes originate in the free stream ahead of the airfoil. 

As stream tube  A  fl ows toward the airfoil, it senses the upper portion of the 

airfoil as an obstruction, and stream tube  A  must move out of the way of 

this obstruction. In so doing, stream tube  A  is squashed to a smaller cross-

sectional area as it fl ows over the nose of the airfoil. In turn, because of 

 mass continuity  (ρ  AV  = constant), the velocity of the fl ow in the stream 

tube must  increase  in the region where the stream tube is being squashed. 

This higher velocity is shown by the long arrow at point  a  in    Fig. 5.77  a . 

As the stream tube fl ows downstream of point  a , its cross-sectional area 

gradually increases and the fl ow velocity decreases, as shown by the 

shorter arrow at point  b . Note that stream tube  A  is squashed the most in 

the nose region,  ahead  of the maximum thickness of the airfoil. Hence, the 

maximum velocity occurs  ahead  of the maximum thickness of the airfoil. 

Now consider stream tube  B , which fl ows over the bottom surface of the 

airfoil. The airfoil is designed with positive camber; hence the bottom 

surface of the airfoil presents less of an obstruction to stream tube  B , so 
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stream tube  B  is not squashed as much as stream tube  A  in fl owing over the 

nose of the airfoil. As a result, the fl ow velocity in stream tube  B  remains 

less  than that in stream tube  A . Therefore, we can state the following:

  Because of the law of mass continuity—that is, the continuity equation—the fl ow 

velocity increases over the top surface of the airfoil more than it does over the 

bottom surface.  

 To see the squashing of the stream tube in an actual fl ow, return to the 

smoke fl ow photograph in Fig. 2.6. It is clear that the stream tube fl owing 

over the top surface of the airfoil is being squashed in the region just 

downstream of the leading edge, and this is where the maximum fl ow 

velocity is occurring.  

2.   For an incompressible fl ow, from Bernoulli’s equation  p V =V1
2

2ρV constant    , 

clearly where the velocity increases, the static pressure decreases. This trend 

is the same for compressible fl ow. From Euler’s equation  dp  = −ρ  V dV , when 

the velocity increases ( dV  positive), the pressure decreases ( dp  negative). 

a b
A

B

(a)

(b)

L

a
V∞

Note: The length of the arrows denoting pressure is proportional to
p − pref, where pref is an arbitrary reference pressure slightly
less than the minimum pressure on the airfoil.   

  Figure 5.77  ( a ) Flow velocity on the upper surface is on 

the average higher than that on the bottom surface due to 

squashing of streamline A compared to streamline B. 

( b ) As a result, the pressure on the top surface is lower than 

the pressure on the bottom surface, creating lift in the upward 

direction. 
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We can label this general trend—namely, when the velocity increases, the 

pressure decreases—the  Bernoulli effect . Recall that Bernoulli’s equation and 

Euler’s equation are statements of Newton’s second law. Because we have 

shown in item 1 that the fl ow velocity is higher over the top surface than it is 

over the bottom surface, we can state the following:

  Because of the Bernoulli effect, the pressure over the top surface of the airfoil is 

less than the pressure over the bottom surface.  

 This is illustrated in    Fig. 5.77  b , which is a schematic of the pressure 

distribution over the top and bottom surfaces. Note that the minimum 

pressure occurs at point  a .  

  3.   Finally, it follows that

  Owing to the lower pressure over the top surface and the higher pressure over the 

bottom surface, the airfoil experiences a lift force in the upward direction.  

 This lift force is shown schematically in    Fig. 5.77  b .   

  The sequence of preceding items 1 through 3 are the fundamental laws of 

nature that result in lift being produced on an airplane wing. You cannot get more 

fundamental than this—mass conservation and Newton’s second law. 

 We also note that the preceding explanation shows why most of the lift of 

the wing is produced by the fi rst 20 or 30 percent of the wing just downstream 

of the leading edge. This is shown in    Fig. 5.77  b , where the largest  difference  in 

pressure between the top and bottom surfaces is on the front part of the airfoil. 

That most of the lift is generated by the forward portion of the airfoil is also seen 

in    Figs. 5.18 , 4.55, and 4.56, which demonstrate that the minimum pressure on 

the top surface occurs over the forward portion of the airfoil just downstream of 

the leading edge. In a sense, the main function of the back portion of the airfoil 

is to simply form a streamlined shape to avoid fl ow separation. 

 We dispel here a common  misconception  about why the fl ow velocity in-

creases over the top surface of the airfoil. It is sometimes written that a fl uid 

element that comes into the stagnation region splits into two elements, one of 

which fl ows over the top surface and the other over the bottom surface. It is 

then assumed that these two elements must meet up at the trailing edge; and be-

cause the running distance over the top surface of the airfoil is longer than that 

over the bottom surface, the element over the top surface must move faster. 

This is simply  not true . Experimental results and computational fl uid dynamic 

calculations clearly show that a fl uid element moving over the top surface of an 

airfoil leaves the trailing edge  long before  its companion element moving over 

the bottom surface arrives at the trailing edge. This is illustrated in    Fig. 5.78 . 

Consider a combined fl uid element  CD  at time  t , in the stagnation region at the 

leading edge of the airfoil, as sketched in    Fig. 5.78 . This element splits into 

element  C  moving over the top surface and element  D  moving over the bottom 

surface. At a later time  t  2 , element  C  has moved downstream of the trailing 

edge, and element  D  has not yet arrived at the trailing edge. The two elements 



 5.19  How Lift is Produced—Some Alternative Explanations 409

simply do  not  meet at the trailing edge, so any explanation that depends on 

their meeting is fl awed. 

     The preceding explanation of the generation of lift applies also to fl at plates 

as well as curved airfoil shapes. Contrary to statements in some popular litera-

ture, the curved shape of an airfoil is not necessary for the production of lift. 

A thin fl at plate at an angle of attack produces lift. A schematic of the streamline 

pattern over a fl at plate at angle of attack is shown in    Fig. 5.79 . The stagnation 

point (labeled s.p. in    Fig. 5.79 ) is located on the bottom surface, downstream 

of the leading edge. The streamline through the stagnation point is called the 

 dividing streamline;  the fl ow above the dividing streamline fl ows up and over 

the top of the plate, whereas the fl ow below the dividing streamline fl ows over 

the bottom of the plate. The shaded stream tube shown in    Fig. 5.79  is analogous 

to the shaded stream tube  A  in    Fig. 5.77 . The fl ow in the shaded stream tube in    

Fig. 5.70   moves  upstream  from the stagnation point along the surface, curls 

around the leading edge where, in terms of our previous discussions, it experi-

ences extreme squashing, and then fl ows downstream over the top of the plate. 

As a result at the squashing, the fl ow velocity at the leading edge is very large, 

with a correspondingly low pressure. As the stream tube fl ows downstream over 

the top of the plate, its cross-sectional area gradually increases; hence the fl ow 

C C

D
D

Time t1

Time t2

Figure 5.78 The tracking of two fl uid elements in the fl ow over 

an airfoil. Element C moves over the top, and element D over the 

bottom.

Dividing streamline 

s.p.

Figure 5.79 Schematic of the streamline fl ow over a fl at plate at angle of 

attack.
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velocity gradually decreases from its initially high value at the leading edge, and 

the surface pressure gradually increases from its initially low value. The pres-

sure on the top surface, however, remains, on the average, lower than that on the 

bottom surface; as usual, this pressure difference produces lift on the plate. This 

question is naturally raised: Why then do we not fl y around on thin fl at plates 

as airplane wings? The answer, besides the obvious practical requirement for 

wing thickness to allow room for internal structure and for fuel and landing gear 

storage, is that the fl at plate also produces drag—lots of it. The fl ow over the 

top surface tends to separate at the leading edge at fairly small angles of attack, 

causing massive pressure drag. Consequently, although the fl at plate at angle of 

attack produces lift, the lift-to-drag ratio is much lower than conventional thick 

airfoils with their streamlined shapes. 

     There are several alternative explanations of the generation of lift that are 

in reality not  the fundamental explanation  but rather are more of an  effect  of lift 

being produced, not the  cause . Let us examine these alternative explanations. 

 The following alternative explanation is sometimes given: The wing defl ects 

the airfl ow so that the mean velocity vector behind the wing is canted slightly 

downward, as sketched in    Fig. 5.80 . Hence, the wing imparts a downward com-

ponent of momentum to the air; that is, the wing exerts a force on the air, pushing 

the fl ow downward. From Newton’s third law, the equal and opposite reaction 

produces a lift. However, this explanation really involves the  effect  of lift, not the 

cause. In reality, the air pressure on the surface is pushing on the surface, creat-

ing lift in the upward direction. As a result of the equal-and-opposite principle, 

the airfoil surface pushes on the air, imparting a downward force on the airfl ow, 

which defl ects the velocity downward. Hence, the net rate of change of down-

ward momentum created in the airfl ow because of the presence of the wing can 

be thought of as an  effect  due to the surface pressure distribution; the pressure 

distribution by itself is the fundamental cause of lift. 

     A third argument, called the  circulation theory of lift,  is sometimes given for 

the source of lift. However, this turns out to be not so much an  explanation  of lift 

Figure 5.80 Relationship of lift to the time rate of change of momentum of the airfl ow.
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per se, but rather more of a mathematical formulation for the calculation of lift 

for an airfoil of given shape. Moreover, it is mainly applicable to incompress-

ible fl ow. The circulation theory of lift is elegant and well developed; it is also 

beyond the scope of this book. However, some of its fl avor is given as follows. 

 Consider the fl ow over a given airfoil, as shown in    Fig. 5.81 . Imagine a 

closed curve  C  drawn around the airfoil. At a point on this curve, the fl ow veloc-

ity is  V , and the angle between  V  and a tangent to the curve is θ. Let  ds  be an 

incremental distance along  C . A quantity called the  circulation  Γ is defi ned as

Γ ≡ 
∮

  
C
 V cosθ ds  (5.72)

That is, Γ is the line integral of the component of fl ow velocity along the closed 
curve  C . After a value of Γ is obtained, the lift  per unit span  can be calculated 
from

L V∞ ∞VV ∞ρ Γ  (5.73)

   Equation (5.73)  is the  Kutta–Joukowsky theorem;  it is a pivotal relation in the 
circulation theory of lift. The object of the theory is to (somehow) calculate Γ 
for a given  V  ∞  and airfoil shape. Then    Eq. (5.73)  yields the lift. A major thrust 
of ideal incompressible fl ow theory, many times called  potential fl ow theory,  is 
to calculate Γ. Such matters are discussed in more advanced aerodynamics texts 
(see Anderson,  Fundamentals of Aerodynamics,  5th ed., McGraw-Hill, 2011). 

     The circulation theory of lift is compatible with the true physical nature of 

the fl ow over an airfoil, as any successful mathematical theory must be. In the 

simplest sense, we can visualize the true fl ow over an airfoil, shown at the right 

of    Fig. 5.82 , as the superposition of a uniform fl ow and a circulatory fl ow, shown 

at the left of    Fig. 5.82 . The circulatory fl ow is clockwise, which when added to 

Figure 5.81 Diagram for the circulation theory of lift.
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the uniform fl ow yields a higher velocity above the airfoil and a lower velocity 

below the airfoil. From Bernoulli’s equation, this implies a lower pressure on 

the top surface of the airfoil and a higher pressure on the bottom surface, hence 

generating upward lift. The strength of the circulatory contribution, defi ned by 

   Eq. (5.72) , is just the precise value such that when it is added to the uniform fl ow 

contribution, the actual fl ow over the airfoil leaves the trailing edge smoothly, as 

sketched at the right of    Fig. 5.82 . This is called the  Kutta condition  and is one of 

the major facets of the circulation theory of lift. 

     Again, keep in mind that the actual mechanism that nature has of com-

municating a lift to the airfoil is the pressure distribution over the surface of 

the airfoil, as sketched in    Fig. 5.77  b . In turn, this pressure distribution ulti-

mately causes a time rate of change of momentum of the airfl ow, as shown 

in    Fig. 5.80 —a principle that can be used as an alternative way of visualizing 

the generation of lift. Finally, even the circulation theory of lift stems from the 

pressure distribution over the surface of the airfoil because the derivation of the 

Kutta–Joukowsky theorem,    Eq. (5.73) , involves the surface pressure distribu-

tion. Again, for more details, consult Anderson,  Fundamentals of Aerodynamics , 

5th ed.,  McGraw-Hill, 2011. 

Figure 5.82 Addition of two elementary fl ows to synthesize a more complex fl ow. If one or more of the 

elementary fl ows have circulation, then the synthesized fl ow also has the same circulation. The lift is directly 

proportional to the circulation.

EXAMPLE 5.38

  In    Example 5.10 , we demonstrated that an NACA 2415 airfoil can produce lift when 

it is fl ying upside down, but not as effectively. Let us revisit this matter in the present 

 example, but for a different airfoil shape and for the purpose of addressing the airfoil 

shapes usually found on aerobatic airplanes. Consider the NACA 4412 airfoil shown 

right side up and upside down in    Fig. 5.83  a  and  b , respectively. Both are shown at the 
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same angle of attack relative to the free stream. For an angle of attack of 6°, obtain the lift 

coeffi cient for each case shown in ( a ) and ( b ). 

■  Solution 
a.  From App. D, for the NACA 4412 airfoil at α = 6°,

  cl = 1 02

b.  Take    Fig. 5.83  b  and turn it upside down. What you see is the NACA 4412 airfoil right 

side up but at a  negative  angle of attack. Therefore, the lift coeffi cient for the upside-

down airfoil at the positive angle of attack shown in    Fig. 5.83  b  is given by the data in 

App. D for  negative angles of attack.  For α = −6°, App. D shows  c l   = −0.22; the negative 

 c   l   connotes a downward lift on the ordinary right-side-up airfoil when pitched to a nega-

tive angle of attack of −6°. In the upside-down orientation shown in    Fig. 5.83  b , this lift 

is directed upward. Hence, for the NACA 4412 airfoil fl ying upside down at an angle of 

attack of 6°,

  cl = 0 22         

  Note:  The airfoil fl ying upside down as shown in    Fig. 5.83  b  produces lift, but not as much 

as the same airfoil fl ying right side up at the same angle of attack. For the upside-down 

airfoil in    Fig. 5.83  b  to produce the same lift as the right-side-up airfoil in    Fig. 5.83  a , it 

must be pitched to a higher angle of attack. 

 Aerobatic airplanes spend a lot of time fl ying upside down. For this reason, the 
designers of such airplanes frequently choose a symmetric airfoil for the wing section. 
Also, the horizontal and vertical tails on airplanes of all types usually have symmetric 
airfoil shapes. An aerobatic airplane fl own by the famous aerobatic pilot and three-time 
U.S. National Champion Patty Wagstaff is pictured in    Fig. 5.84 , which shows the wing 
with a symmetric airfoil section. 

NACA 4412

NACA 4412

�

(a) Right side up

(b) Upside down

�

Figure 5.83 Illustration of (a) an airfoil fl ying right 

side up and (b) fl ying upside down. Both are at the 

same angle of attack.



414 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

(a)

Figure 5.84 Patty Wagstaff’s aerobatic airplane, the Extra 260, on display at the National 

Air and Space Museum. (a) Full view of the airplane. (b) Left wing, showing the squared-off 

wing tip. (continued )

(b)
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               5.20  HISTORICAL NOTE: AIRFOILS AND WINGS 
  We know that George Cayley introduced the concept of a fi xed-wing aircraft in 
1799; this has been discussed at length in Secs. 1.3 and    5.1 . Moreover, Cayley 
appreciated the fact that lift is produced by a region of low pressure on the top 
surface of the wing and high pressure on the bottom surface and that a cambered 
shape produces more lift than a fl at surface. Indeed, Fig. 1.5 shows that Cayley 
was thinking of a curved surface for a wing, although the curvature was due 
to the wind billowing against a loosely fi tting fabric surface. However, neither 
Cayley nor any of his immediate followers performed work even closely resem-
bling airfoil research or development. 

 It was not until 1884 that the fi rst serious airfoil developments were made. In 

that year Horatio F. Phillips, an Englishman, was granted a patent for a series of 

double-surface, cambered airfoils.    Figure 5.85  shows Phillip’s patent drawings 

for his airfoil section. Phillips was an important fi gure in late 19th-century aero-

nautical engineering; we met him before, in Sec. 4.24, in conjunction with his 

ejector-driven wind tunnel. In fact, the airfoil shapes in    Fig. 5.85  were the result 

of numerous wind tunnel experiments in which Phillips examined curved wings 

of “every conceivable form and combination of forms.” Phillips widely published 

his results, which had a major impact on the aeronautics community. Continuing 

(c)

Figure 5.84 (concluded ) (c) Detail of the left wing tip, showing the symmetric airfoil 

section. 
(Source: Courtesy of John Anderson.)
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with his work, Phillips patented more airfoil shapes in 1891. Then, moving into 

airplane design in 1893, he built and tested a large multiplane model, consisting 

of a large number of wings, each with a 19-ft span and a chord of only  1 1
2     in, 

which looked like a venetian blind! The airplane was powered by a steam engine 

with a 6.5-ft propeller. The vehicle ran on a circular track and actually lifted a 

few feet off the ground momentarily. After this demonstration, Phillips gave up 

until 1907, when he made the fi rst tentative hop fl ight in England in a similar, but 

gasoline-powered, machine, staying airborne for about 500 ft. This was his last 

contribution to aeronautics. However, his pioneering work during the 1880s and 

1890s clearly earns Phillips the title of grandparent of the modern airfoil. 

 After Phillips, the work on airfoils shifted to a search for the most effi cient 

shapes. Work is still being done today on this very problem, although much 

progress has been made. This progress covers several historical periods, as de-

scribed in the following    Secs. 5.20.1  to    5.20.6 . 

   5.20.1  The Wright Brothers 

 As noted in Secs. 1.8 and 4.24, Wilbur and Orville Wright, after their early expe-
rience with gliders, concluded in 1901 that many of the existing “air pressure” 
data on airfoil sections were inadequate and frequently incorrect. To rectify 
these defi ciencies, they constructed their own wind tunnel (see Fig. 4.59), in 
which they tested several hundred different airfoil shapes between September 
1901 and August 1902. From their experimental results, the Wright brothers 
chose an airfoil with a 1:20 maximum camber-to-chord ratio for their successful 

Figure 5.85 Double-surface airfoil sections by Phillips. The 

six upper shapes were patented by Phillips in 1884; the lower 

airfoil was patented in 1891.
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 Wright Flyer I  in 1903. These wind tunnel tests by the Wright brothers consti-
tuted a major advance in airfoil technology at the turn of the century.  

   5.20.2  British and U.S. Airfoils (1910–1920) 

 In the early days of powered fl ight, airfoil design was basically customized and 
personalized; little concerted effort was made to fi nd a standardized, effi cient 
section. However, some early work was performed by the British government 
at the National Physical Laboratory (NPL), leading to a series of Royal Aircraft 
Factory (RAF) airfoils used on World War I airplanes.    Figure 5.86  illustrates the 
shape of the RAF 6 airfoil. Until 1915, most aircraft in the United States used 
either an RAF section or a shape designed by the Frenchman Alexandre Gustave 
Eiffel. This tenuous status of airfoils led the NACA, in its fi rst annual report in 
1915, to emphasize the need for “the evolution of more effi cient wing sections of 
practical form, embodying suitable dimensions for an economical structure, with 
moderate travel of the center of pressure and still affording a large angle of attack 
combined with effi cient action.” To this day, more than 100 years later, NASA 
is still pursuing such work. 

     The fi rst NACA work on airfoils was reported in NACA Report No. 18, 

“Aerofoils and Aerofoil Structural Combinations,” by Lt. Col. Edgar S. Gorrell 

and Major H. S. Martin, prepared at the Massachusetts Institute of Technology 

(MIT) in 1917. Gorrell and Martin summarized the contemporary airfoil status 

as follows:

  Mathematical theory has not, as yet, been applied to the discontinuous motion past a 

cambered surface. For this reason, we are able to design aerofoils only by consider-

ation of those forms which have been successful, by applying general rules learned 

by experience, and by then testing the aerofoils in a reliable wind tunnel.   

 In NACA Report No. 18, Gorrell and Martin disclosed a series of tests on 

the largest single group of airfoils to that date, except for the work done at NPL 

and by Eiffel. They introduced the USA airfoil series and reported wind tunnel 

data for the USA 1 through USA 6 sections.    Figure 5.86  illustrates the shape of 

the USA 6 airfoil. The airfoil models were made of brass and were fi nite wings 

with a span of 18 in and a chord of 3 in; that is, AR = 6. Lift and drag coeffi cients 

Figure 5.86 Typical airfoils in 1917.



418 CHAPTER 5  Airfoils, Wings, and Other Aerodynamic Shapes

were measured at a velocity of 30 mi/h in the MIT wind tunnel. These airfoils 

represented the fi rst systematic series originated and studied by NACA.  

   5.20.3  1920–1930 

 Based on their wind tunnel observations in 1917, Gorrell and Martin stated that 
slight variations in airfoil design make large differences in aerodynamic perfor-
mance. This is the underlying problem of airfoil research, and it led in the 1920s 
to a proliferation of airfoil shapes. In fact, as late as 1929, F. A. Louden, in his 
NACA Report No. 331, titled “Collection of Wind Tunnel Data on Commonly 
Used Wing Sections,” stated that “the wing sections most commonly used in this 
country are the Clark Y, Clark Y-15, Gottingen G-387, G-398, G-436, N.A.C.A. 
M-12, Navy N-9, N-10, N-22, R.A.F.-15, Sloane, U.S.A.-27, U.S.A.-35A, 
U.S.A.-35B.” However, help was on its way. As noted in Sec. 4.24, the NACA 
built a variable-density wind tunnel at Langley Aeronautical Laboratory in 
1923—a wind tunnel that was to become a workhorse in future airfoil research, 
as emphasized in    Sec. 5.20.4 .  

   5.20.4  Early NACA Four-Digit Airfoils 

 In a classic work in 1933, order and logic were fi nally brought to airfoil 
design in the United States. This was reported in NACA Report No. 460, “The 
Characteristics of 78 Related Airfoil Sections from Tests in the Variable-
Density Wind Tunnel,” by Eastman N. Jacobs, Kenneth E. Ward, and Robert M. 
Pinkerton. Their philosophy on airfoil design was as follows: 

  Airfoil profi les may be considered as made up of certain profi le-thickness forms 

disposed about certain mean lines. The major shape variables then become two, 

the thickness form and the mean-line form. The thickness form is of particular 

 importance from a structural standpoint. On the other hand, the form of the mean line 

determines almost independently some of the most important aerodynamic proper-

ties of the airfoil section, e.g., the angle of zero lift and the pitching-moment charac-

teristics. The related airfoil profi les for this investigation were derived by changing 

systematically these shape variables.  

 They then proceeded to defi ne and study for the fi rst time in history the 

famous NACA four-digit airfoil series, some of which are given in App. D of 

this book. For example, NACA 2412 is defi ned as a shape that has a maximum 

camber of 2 percent of the chord (the fi rst digit); the maximum camber oc-

curs at a position of 0.4 chord from the leading edge (the second digit); and 

the maximum thickness is 12 percent (the last two digits). Jacobs and his col-

leagues tested these airfoils in the NACA variable-density tunnel using a 5-in 

by 30-in fi nite wing (again an aspect ratio of 6). In NACA Report No. 460, they 

gave curves of  C   L  ,  C   D  , and  L / D  for the fi nite wing. Moreover, using the same 

formulas developed in    Sec. 5.15 , they corrected their data to give results for 

the infi nite-wing case also. After this work was published, the standard NACA 

four-digit airfoils were widely used. Even today the NACA 2412 is used on 

several light aircraft.  
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   5.20.5  Later NACA Airfoils 

 In the late 1930s NACA developed a new camber line family to increase maxi-
mum lift, with the 230 camber line being the most popular. Combining with the 
standard NACA thickness distribution, this gave rise to the NACA fi ve-digit air-
foil series, such as the 23012, some of which are still fl ying today (for example, 
on the Cessna Citation and the Beech King Air). This work was followed by 
families of high-speed airfoils and laminar fl ow airfoils in the 1940s. 

 To reinforce its airfoil development, in 1939 NACA constructed a new low-

turbulence two-dimensional wind tunnel at Langley exclusively for airfoil test-

ing. This tunnel has a rectangular test section 3 ft wide and  7 1
2     ft high and can be 

pressurized up to 10 atm for high–Reynolds-number testing. Most importantly, 

this tunnel allows airfoil models to span the test section completely, thus directly 

providing infi nite-wing data. This is in contrast to the earlier tests previously 

described, which used a fi nite wing of AR = 6 and then corrected the data to cor-

respond to infi nite-wing conditions. Such corrections are always compromised 

by tip effects. (For example, what is the  precise  span effi ciency factor for a given 

wing?) With the new two-dimensional tunnel, vast numbers of tests were per-

formed in the early 1940s on both old and new airfoil shapes over a Reynolds 

number range from 3 to 9 million and at Mach numbers less than 0.17 (incom-

pressible fl ow). The airfoil models generally had a 2-ft chord and completely 

spanned the 3-ft width of the test section. It is interesting to note that the lift and 

drag are not obtained on a force balance. Rather, the lift is calculated by integrat-

ing the measured pressure distribution on the top and bottom walls of the wind 

tunnel, and the drag is calculated from Pitot pressure measurements made in the 

wake downstream of the trailing edge. However, the pitching moments are mea-

sured directly on a balance. A vast amount of airfoil data obtained in this fashion 

from the two-dimensional tunnel at Langley were compiled and published in a 

book titled  Theory of Wing Sections Including a Summary of Airfoil Data,  by 

   Abbott and von Doenhoff , in 1949 (see the bibliography at end of this chapter). 

It is important to note that all the airfoil data in App. D are obtained from this 

reference; that is, all the data in App. D are direct measurements for an infi nite 

wing at essentially incompressible fl ow conditions.  

   5.20.6  Modern Airfoil Work 

 Priorities for supersonic and hypersonic aerodynamics put a stop to the NACA 
airfoil development in 1950. Over the next 15 years, specialized equipment for 
airfoil testing was dismantled. Virtually no systematic airfoil research was done 
in the United States during this period. 

 However, in 1965 Richard T. Whitcomb made a breakthrough with the 

NASA supercritical airfoil. This revolutionary development, which allowed the 

design of wings with high critical Mach numbers (see    Sec. 5.10 ), reactivated 

interest in airfoils within NASA. Since that time a healthy program in modern 

airfoil development has been reestablished. The low-turbulence, pressurized, 

two-dimensional wind tunnel at Langley is back in operation. Moreover, a new 
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dimension has been added to airfoil research: the high-speed digital computer. 

In fact, computer programs for calculating the fl ow fi eld around airfoils at sub-

sonic speeds are so reliable that they shoulder some of the routine testing duties 

heretofore exclusively carried by wind tunnels. The same cannot yet be said 

about transonic cases, but current research is focusing on this problem. An in-

teresting survey of modern airfoil activity within NASA is given by    Pierpont  in 

 Astronautics and Aeronautics  (see the bibliography). 

 Of special note is the modern low-speed airfoil series, designated LS(1), 

developed by NASA for use by general aviation on light airplanes. The shape 

of a typical LS(1) airfoil is contrasted with a “conventional” airfoil in    Fig. 5.87 . 

Its lifting characteristics, illustrated in    Fig. 5.88 , are clearly superior and should 

allow smaller wing areas, and hence less drag, for airplanes of the type shown 

in    Fig. 5.87 . 

       In summary, airfoil development over the past 100 years has moved from an 

ad hoc individual process to a very systematic and logical engineering process. 

It is alive and well today, with the promise of major advancements in the future 

using both wind tunnels and computers.  

   5.20.7  Finite Wings 

 Some historical comments about the fi nite wing are in order. Francis Wenham 
(see Ch. 1), in his classic paper titled  Aerial Locomotion,  given to the Aeronautical 
Society of Great Britain on June 27, 1866, theorized (correctly) that most of the 
lift of a wing occurs from the portion near the leading edge; hence a long, narrow 
wing would be most effi cient. In this fashion he was the fi rst person in history to 
appreciate the value of high–aspect-ratio wings for subsonic fl ight. Moreover, he 
suggested stacking a number of long, thin wings above one another to generate 

Figure 5.87 Shape comparison between the modern LS(1)-0417 and a conventional 

airfoil. The higher lift obtained with the LS(1)-0417 allows a smaller wing area and 

hence lower drag. (Source: NASA.)



 5.20  Historical Note: Airfoils and Wings 421

the required lift; thus he became an advocate of the multiplane concept. In turn, 
he built two full-size gliders in 1858, both with fi ve wings each, and successfully 
demonstrated the validity of his ideas. 

 However, the true aerodynamic theory and understanding of fi nite wings did 

not come until 1907, when the Englishman Frederick W. Lanchester published 

his book  Aerodynamics . In it he outlined the circulation theory of lift, developed 

independently about the same time by Kutta in Germany and by Joukowsky in 

Russia. More importantly, Lanchester discussed for the fi rst time the effect of 

wing-tip vortices on fi nite-wing aerodynamics. Unfortunately, Lanchester was 

not a clear writer; his ideas were extremely diffi cult to understand, and they did 

not fi nd application in the aeronautical community. 

 In 1908 Lanchester visited Göttingen, Germany, and fully discussed his 

wing theory with Ludwig Prandtl and his student, Theodore von Karman. Prandtl 

spoke no English, Lanchester spoke no German, and in light of Lanchester’s 

unclear ways of explaining his ideas, there appeared to be little chance of under-

standing between the two parties. However, in 1914 Prandtl set forth a simple, 

clear, and correct theory for calculating the effect of tip vortices on the aero-

dynamic characteristics of fi nite-wings. It is virtually impossible to assess how 

much Prandtl was infl uenced by Lanchester; but to Prandtl must go the credit of 

Figure 5.88 Comparison of maximum lift coeffi cients 

between the LS(1)-0417 and conventional airfoils.
(Source: NASA.)
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fi rst establishing a practical fi nite-wing theory, a theory that is fundamental to 

our discussion of fi nite wings in    Secs. 5.13  to    5.15 . Indeed, Prandtl’s fi rst pub-

lished words on the subject were these:

  The lift generated by the airplane is, on account of the principle of action and reaction, 

necessarily connected with a descending current in all its details. It appears that the 

descending current is formed by a pair of vortices, the vortex fi laments of which start 

from the airplane wingtips. The distance of the two vortices is equal to the span of the 

airplane, their strength is equal to the circulation of the current around the airplane, 

and the current in the vicinity of the airplane is fully given by the superposition of the 

uniform current with that of a vortex consisting of three rectilinear sections.   

 Prandtl’s pioneering work on fi nite-wing theory, along with his ingenious 

concept of the boundary layer, has earned him the title  parent of aerodynamics . 

In the four years following 1914, he went on to show that an elliptical lift distri-

bution results in the minimum induced drag. Indeed, the terms  induced drag  and 

 profi le drag  were coined in 1918 by Max Munk, in a note titled “Contribution to 

the Aerodynamics of the Lifting Organs of the Airplane.” Munk was a colleague 

of Prandtl’s, and the note was one of several classifi ed German wartime reports 

about airplane aerodynamics. 

 For more details about the history of airfoils and wings, see    Anderson , 

 A History of Aerodynamics and Its Impact on Flying Machines,  Cambridge 

University Press, New York, 1997.    

   5.21   HISTORICAL NOTE: ERNST MACH 
AND HIS NUMBER 

  Airplanes that fl y at Mach 2 are commonplace today. High-performance military 
aircraft such as the Lockheed SR-71 Blackbird can exceed Mach 3. As a result, 
the term  Mach number  has become part of our general language—the average 
person in the street understands that Mach 2 means twice the speed of sound. 
On a more technical basis, the dimensional analysis described in    Sec. 5.3  dem-
onstrated that aerodynamic lift, drag, and moments depend on two important 
dimensionless products: the Reynolds number and the Mach number. In a more 
general treatment of fl uid dynamics, the Reynolds number and Mach number 
can be shown as the major governing parameters for any realistic fl ow fi eld; 
they are among a series of governing dimensionless parameters called  similarity 
parameters . We already examined the historical source of the Reynolds number 
in Sec. 4.25; let us do the same for the Mach number in this present section. 

 The Mach number is named after Ernst Mach, a famous 19th-century 

physicist and philosopher. Mach was an illustrious fi gure with widely varying 

 interests. He was the fi rst person in history to observe supersonic fl ow and to 

understand its basic nature. Let us take a quick look at this man and his contribu-

tions to supersonic aerodynamics. 

 Ernst Mach was born at Turas, Moravia, in Austria, on February 18, 1838. 

Mach’s father and mother were both extremely private and introspective 
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 intellectuals. His father was a student of philosophy and classical literature; his 

mother was a poet and musician. The family was voluntarily isolated on a farm, 

where Mach’s father pursued an interest of raising silkworms—pioneering the 

beginning of silkworm culture in Europe. At an early age Mach was not a partic-

ularly successful student. Later Mach described himself as a “weak pitiful child 

who developed very slowly.” Through extensive tutoring by his father at home, 

Mach learned Latin, Greek, history, algebra, and geometry. After marginal per-

formances in grade school and high school (due not to any lack of intellectual 

ability but rather to a lack of interest in the material usually taught by rote), 

Mach entered the University of Vienna. There he blossomed, spurred by interest 

in mathematics, physics, philosophy, and history. In 1860 he received a PhD in 

physics, writing a thesis titled “On Electrical Discharge and Induction.” By 1864 

he was a professor of physics at the University of Graz. (The variety and depth of 

his intellectual interests at this time are attested by the fact that he turned down 

the position of a chair in  surgery  at the University of Salzburg to go to Graz.) 

In 1867 Mach became a professor of experimental physics at the University of 

Prague—a position he would occupy for the next 28 years. 

 In today’s modern technological world, where engineers and scientists are 

virtually forced, out of necessity, to peak their knowledge in narrow areas of 

extreme specialization, it is interesting to refl ect on the personality of Mach, 

who was the supreme generalist. Here is only a partial list of Mach’s contri-

butions, as demonstrated in his writings: physical optics, history of science, 

mechanics, philosophy, origins of relativity theory, supersonic fl ow, physiol-

ogy, thermodynamics, sugar cycle in grapes, physics of music, and classical 

literature. He even wrote about world affairs. (One of Mach’s papers com-

mented on the “absurdity committed by the statesman who regards the indi-

vidual as existing solely for the sake of the state”; for this Mach was severely 

criticized at that time by Lenin.) We can only sit back with awe and envy of 

Mach, who—in the words of U.S. philosopher William James—knew “every-

thing about everything.” 

 Mach’s contributions to supersonic aerodynamics were highlighted in a 

paper titled “Photographische Fixierung der durch Projektile in der Luft einge-

leiten Vorgange,” given to the Academy of Sciences in Vienna in 1887. Here, for 

the fi rst time in history, Mach showed a photograph of a shock wave in front of a 

bullet moving at supersonic speeds. This historic photograph, taken from Mach’s 

original paper, is shown in    Fig. 5.89 . Also visible are weaker waves at the rear 

of the projectile and the structure of the turbulent wake downstream of the base 

region. The two vertical lines are trip wires designed to time the photographic 

light source (or spark) with the passing of the projectile. Mach was a precise and 

careful experimenter; the quality of the picture shown in    Fig. 5.89 , along with 

the fact that he was able to make the shock waves visible (he used an innova-

tive technique called the  shadowgram ), attests to his exceptional experimental 

abilities. Note that Mach was able to carry out such experiments involving split-

second timing without the benefi t of electronics—indeed, the vacuum tube had 

not yet been invented. 
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     Mach was the fi rst to understand the basic characteristics of supersonic fl ow. 

He was the fi rst to point out the importance of the fl ow velocity  V  relative to the 

speed of sound  a  and to note the discontinuous and marked changes in a fl ow 

fi eld as the ratio  V / a  changes from less than 1 to greater than 1. He did not, how-

ever, call this ratio the Mach number. The term  Mach number  was not coined 

until 1929, when the well-known Swiss engineer Jacob Ackeret introduced this 

terminology, in honor of Mach, at a lecture at the Eidgenossiche Technische 

Hochschule in Zurich. Hence the term  Mach number  is of fairly recent use, not 

introduced into the English literature until 1932. 

 Mach was an active thinker, lecturer, and writer up to the time of his death 

on February 19, 1916, near Munich, one day after his 78th birthday. His con-

tributions to human thought were many, and his general philosophy about 

 epistemology—a study of knowledge itself—is still discussed in college classes 

in philosophy today. Aeronautical engineers know him as the originator of su-

personic aerodynamics; the rest of the world knows him as a man who originated 

the following philosophy, as paraphrased by Richard von Mises, himself a well-

known mathematician and aerodynamicist of the early 20th century:

  Mach does not start out to analyze statements, systems of sentences, or theories, but 

rather the world of phenomena itself. His elements are not the simplest sentences, 

and hence the building stones of theories, but rather—at least according to his way 

of speaking—the simplest facts, phenomena, and events of which the world in which 

we live and which we know is composed. The world open to our observation and 

Figure 5.89 Photograph of a bullet in supersonic fl ight, published by Ernst Mach in 1887.

(Source:  Courtesy of John Anderson.)
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 experience consists of “colors, sounds, warmths, pressure, spaces, times, etc.” and 

their components in greater and smaller complexes. All we make statements or 

 assertions about, or formulate questions and answers to, are the relations in which 

these elements stand to each other. That is Mach’s point of view.     1      

 We end this section with a photograph of Mach, taken about 1910, shown 

in    Fig. 5.90 . It is a picture of a thoughtful, sensitive man; no wonder that his 

philosophy of life emphasized observation through the senses, as discussed by 

von Mises. To honor his memory, an entire research institute, the Ernst Mach 

Institute in Germany, was named for him. This institute hosts research in experi-

mental gas dynamics, ballistics, high-speed photography, and cinematography. 

For a much more extensive review of the technical accomplishments of Mach, 

see the paper authored by a member of the Ernst Mach Institute, H. Reichenbach, 

titled “Contributions of Ernst Mach to Fluid Mechanics,” in  Annual Reviews of 
Fluid Mechanics,  vol. 15, 1983, pp. 1–28 (published by Annual Reviews, Inc., 

Palo Alto, California). 

Figure 5.90 Ernst Mach (1838–1916).
(Source:  Courtesy of John Anderson.)

1From Richard von Mises, Positivism, A Study in Human Understanding, Braziller, New York, 1956.
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         5.22   HISTORICAL NOTE: THE FIRST MANNED 
SUPERSONIC FLIGHT 

  On October 14, 1947, a human being fl ew faster than the speed of sound for 
the fi rst time in history. Imagine the magnitude of this accomplishment—just 
60 years after Ernst Mach observed shock waves on supersonic projectiles (see 
   Sec. 5.21 ) and a scant 44 years after the Wright brothers achieved their fi rst suc-
cessful powered fl ight (see Secs. 1.1 and 1.8). It is almost certain that Mach was 
not thinking at all about heavier-than-air manned fl ight of any kind, which in 
his day was still considered to be virtually impossible and the essence of foolish 
dreams. It is also almost certain that the Wright brothers had not the remotest 
idea that their fl edgling 30 mi/h fl ight on December 17, 1903, would ultimately 
lead to a manned supersonic fl ight in Orville’s lifetime (although Wilbur died in 
1912, Orville lived an active life until his death in 1948). Compared to the total 
spectrum of manned fl ight reaching all the way back to the ideas of Leonardo da 
Vinci in the 15th century (see Sec. 1.2), this rapid advancement into the realm of 
supersonic fl ight is truly phenomenal. How did this advancement occur? What 
were the circumstances surrounding the fi rst supersonic fl ight? Why was it so 
important? This section addresses these questions. 

 Supersonic fl ight did not happen by chance; it was an inevitable result of 

the progressive advancement of aeronautical technology over the years. On one 

hand, we have the evolution of high-speed aerodynamic theory, starting with 

the pioneering work of Mach, as described in    Sec. 5.21 . This was followed by 

the development of supersonic nozzles by two European engineers, Carl G. P. 

de Laval in Sweden and A. B. Stodola in Switzerland. In 1887 de Laval used a 

 convergent–divergent supersonic nozzle to produce a high-velocity fl ow of steam 

to drive a turbine. In 1903 Stodola was the fi rst person in history to defi nitely 

prove (by means of a series of laboratory experiments) that such  convergent–di-

vergent nozzles did indeed produce supersonic fl ow. From 1905 to 1908, Prandtl 

in Germany took pictures of Mach waves inside supersonic nozzles and devel-

oped the fi rst rational theory for oblique shock waves and expansion waves. 

After World War I, Prandtl studied compressibility effects in high-speed sub-

sonic fl ow. This work, in conjunction with independent studies by the English 

aerodynamicist Herman Glauert, led to the publishing of the Prandtl–Glauert 

rule in the late 1920s (see    Sec. 5.6  for a discussion of the Prandtl–Glauert rule 

and its use as a compressibility correction). These milestones, among others, 

established a core of aerodynamic theory for high-speed fl ow—a core that was 

well established at least 20 years before the fi rst supersonic fl ight. (For more 

historical details concerning the evolution of aerodynamic theory pertaining to 

supersonic fl ight, see Anderson,  Modern Compressible Flow: With Historical 
Perspective,  3rd ed., McGraw-Hill, 2003.) 

 On the other hand, we also have the evolution of hardware necessary for 

supersonic fl ight. The development of high-speed wind tunnels, starting with the 

small 12-in-diameter high-speed subsonic tunnel at NACA Langley Memorial 

Aeronautical Laboratory in 1927 and continuing with the fi rst  practical  supersonic 
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wind tunnels developed by Adolf Busemann in Germany in the early 1930s, is 

described in Sec. 4.24. The exciting developments leading to the fi rst success-

ful rocket engines in the late 1930s are discussed in Sec. 9.17. The concurrent 

invention and development of the jet engine, which would ultimately provide 

the thrust necessary for everyday supersonic fl ight, are related in Sec.  9.16. 

Hence, on the basis of the theory and hardware existing at that time, the advent 

of manned supersonic fl ight in 1947 was a natural progression in the advance-

ment of aeronautics. 

 However, in 1947 there was one missing link in both the theory and the 

 hardware—the transonic regime, near Mach 1. The governing equations for tran-

sonic fl ow are highly nonlinear and hence are diffi cult to solve. No practical so-

lution of these equations existed in 1947. This theoretical gap was compounded 

by a similar gap in wind tunnels. The sensitivity of a fl ow near Mach 1 makes the 

design of a proper transonic tunnel diffi cult. In 1947 no reliable transonic wind 

tunnel data were available. This gap of knowledge was of great concern to the 

aeronautical engineers who designed the fi rst supersonic airplane, and it was the 

single most important reason for the excitement, apprehension, uncertainty, and 

outright bravery that surrounded the fi rst supersonic fl ight. 

 The unanswered questions about transonic fl ow did nothing to dispel the 

myth of the “sound barrier” that arose in the 1930s and 1940s. As discussed in 

   Sec. 5.12 , the very rapid increase in drag coeffi cient beyond the drag-divergence 

Mach number led some people to believe that humans would never fl y faster 

than the speed of sound. Grist was lent to their arguments when, on September 

27, 1946, Geoffrey deHavilland, son of the famous British airplane designer, 

took the  D.H. 108 Swallow  up for an attack on the world’s speed record. The 

 Swallow  was an experimental jet-propelled aircraft, with swept wings and no 

horizontal tail. Attempting to exceed 615 mi/h on its fi rst high-speed, low-alti-

tude run, the Swallow encountered major compressibility problems and broke 

up in the air. DeHavilland was killed instantly. The sound barrier had taken its 

toll. It was against this background that the fi rst supersonic fl ight was attempted 

in 1947. 

 During the late 1930s, and all through World War II, some visionaries clearly 

saw the need for an experimental airplane designed to probe the mysteries of su-

personic fl ight. Finally, in 1944 their efforts prevailed; the Army Air Force, in 

conjunction with NACA, awarded a contract to Bell Aircraft Corporation for the 

design, construction, and preliminary testing of a manned supersonic airplane. 

Designated the XS-1 (Experimental Sonic-1), this design had a fuselage shaped 

like a 50-caliber bullet, mated to a pair of very thin (thickness-to-chord ratio 

of 0.08), low–aspect-ratio, straight wings, as shown in    Fig. 5.91 . The aircraft 

was powered by a four-chamber liquid-propellant rocket engine mounted in the 

tail. This engine, made by Reaction Motors and designated the XLR11, produced 

6000 lb of thrust by burning a mixture of liquid oxygen and diluted alcohol. 

     The Bell XS-1 was designed to be carried aloft by a parent airplane, such as 

the giant Boeing B-29, and then launched at altitude; this saved the extra weight 

of fuel that would have been necessary for takeoff and climb to altitude, allowing 
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the designers to concentrate on one performance aspect—speed. Three XS-1s 

were ultimately built, the fi rst one being completed just after Christmas 1945. 

There followed a year and a half of gliding and then powered tests, wherein the 

XS-1 was cautiously nudged toward the speed of sound. 

 Muroc Dry Lake is a large expanse of fl at, hard lake bed in the Mojave Desert 

in California. Site of a U.S. Army high-speed fl ight test center during World War 

II, Muroc was later to become known as Edwards Air Force Base, now the site 

of the Air Force Test Pilots School and the home of all experimental high-speed 

fl ight testing for both the Air Force and NASA. On Tuesday, October 14, 1947, 

the Bell XS-1, nestled under the fuselage of a B-29, was waiting on the fl ight 

line at Muroc. After intensive preparations by a swarm of technicians, the B-29 

with its cargo took off at 10:00  am . On board the XS-1 was Captain Charles E. 

(Chuck) Yeager. That morning Yeager was in excruciating pain from two broken 

ribs fractured during a horseback riding accident earlier that week; however, he 

told virtually no one. At 10:26  am , at an altitude of 20,000 ft, the Bell XS-1, with 

Yeager as its pilot, was dropped from the B-29. What happened next is one of 

the major milestones in aviation history. Let us see how Yeager himself recalled 

events, as stated in his written fl ight report:

 Date:  14 October 1947 

 Pilot:  Capt. Charles E. Yeager 

 Time:  14 Minutes 

   9th Powered Flight 

  1.  After normal pilot entry and the subsequent climb, the XS-1 was dropped from 

the B-29 at 20,000 ft and at 250 MPH IAS. This was slower than desired. 

  2.  Immediately after drop, all four cylinders were turned on in rapid sequence, their 

operation stabilizing at the chamber and line pressures reported in the last fl ight. The 

Figure 5.91 The Bell XS-1, the fi rst supersonic airplane, 1947.
(Source: NASA.)
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ensuing climb was made at .85–.88 Mach, and as usual it was necessary to change the 

stabilizer setting to 2 degrees nose down from its pre-drop  setting of 1 degree nose 

down. Two cylinders were turned off between 35,000 ft and 40,000 ft, but speed had 

increased to .92 Mach as the airplane was leveled off at 42,000 ft. Incidentally, dur-

ing the slight push-over at this altitude, the lox line pressure dropped perhaps 40 psi 

and the resultant rich mixture caused the chamber pressures to  decrease slightly. 

The  effect was only momentary, occurring at .6 G’s, and all pressures  returned to 

normal at 1 G. 

3.  In anticipation of the decrease in elevator effectiveness at all speeds above 

.93 Mach, longitudinal control by means of the stabilizer was tried during the climb 

at .83, .88, and .92 Mach. The stabilizer was moved in increments of  1
4

1
3−     degree 

and proved to be very effective; also, no change in effectiveness was noticed at the 

different speeds. 

4.  At 42,000 ft in approximately level fl ight, a third cylinder was turned on. 

 Acceleration was rapid and speed increased to .98 Mach. The needle of the mach-

meter fl uctuated at this reading momentarily, then passed off the scale. Assuming 

that the off-scale reading remained linear, it is estimated that 1.05 Mach was attained 

at this time. Approximately 30 percent of fuel and lox remained when this speed was 

reached and the motor was turned off. 

5.  While the usual lift buffet and instability characteristics were encountered in 

the .88–.90 Mach range and elevator effectiveness was very greatly decreased at 

.94 Mach, stability about all three axes was good as speed increased and elevator 

effectiveness was regained above .97 Mach. As speed decreased after turning off 

the motor, the various phenomena occurred in reverse sequence at the usual speeds, 

and in addition, a slight longitudinal porpoising was noticed from .98 to .96 Mach 

which was controllable by elevators alone. Incidentally, the stabilizer setting was not 

changed from its 2 degrees nose down position after trial at .92 Mach. 

6.  After jettisoning the remaining fuel and lox at 1 G stall was performed at 

45,000 ft. The fl ight was concluded by the subsequent glide and a normal landing 

on the lakebed. 

 CHARLES E. YEAGER 

Capt. Air Corps   

 In reality the Bell SX-1 had reached  M  ∞  = 1.06, as determined from offi cial 
NACA tracking data. The duration of its supersonic fl ight was 20.5 s, almost 
twice as long as the Wright brothers’ entire fi rst fl ight just 44 years earlier. On 
that day Chuck Yeager became the fi rst person to fl y faster than the speed of 
sound. It is a fi tting testimonial to the aeronautical engineers at that time that the 
fl ight was smooth and without unexpected consequences. An aircraft had fi nally 
been properly designed to probe the “sound barrier,” which it penetrated with 
relative ease. Less than a month later, Yeager reached Mach 1.35 in the same 
airplane. The sound barrier had not only been penetrated—it had been virtually 
destroyed as the myth it really was. 

 As a fi nal note, the whole story of the human and engineering challenges 

that revolved about the quest for and eventual achievement of supersonic fl ight is 

fascinating, and it is a living testimonial to the glory of aeronautical engineering. 

The story is brilliantly spelled out by    Dr. Richard Hallion , earlier a curator at the 

Air and Space Museum of the Smithsonian Institution and now chief historian of 
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the U.S. Air Force (now retired), in his book  Supersonic Flight  (see the bibliog-

raphy at the end of this chapter). The reader should study Hallion’s story of the 

events leading to and following Yeager’s fl ight in 1947.   

   5.23   HISTORICAL NOTE: THE X-15—FIRST 
MANNED HYPERSONIC AIRPLANE AND 
STEPPING-STONE TO THE SPACE SHUTTLE 

   Faster and higher —for all practical purposes, this has been the driving potential 
behind the development of aviation since the Wrights’ fi rst successful fl ight in 
1903. (See Sec. 1.11 and Figs. 1.30 and 1.31.) This credo was never more true 
than during the 15 years following Chuck Yeager’s fi rst supersonic fl ight in the 
Bell XS-1, described in    Sec. 5.22 . Once the sound barrier was broken, it was left 
far behind in the dust. The next goal became manned  hypersonic  fl ight—Mach 5 
and beyond. 

 To accomplish this goal, NACA initiated a series of preliminary studies in 

the early 1950s for an aircraft to fl y beyond Mach 5, the defi nition of the hyper-

sonic fl ight regime. This defi nition is essentially a rule of thumb; unlike the se-

vere and radical fl ow fi eld changes that take place when an aircraft fl ies through 

Mach 1, nothing dramatic happens when Mach 5 is exceeded. Rather, the hyper-

sonic regime is simply a very high–Mach-number regime, where shock waves are 

particularly strong and the gas temperatures behind these shock waves are high. 

For example, consider Eq. (4.73), which gives the total temperature  T  0 —that 

is, the temperature of a gas that was initially at a Mach number  M  1  and that has 

been adiabatically slowed to zero velocity. This is essentially the temperature 

at the stagnation point on a body. If  M  1  = 7, Eq. (4.73) shows that (for γ  = 1.4) 

 T  0  / T  1  = 10.8. If the fl ight altitude is, say, 100,000 ft where  T  1  = 419°R, then  T  0  = 

4525°R = 4065°F—far above the melting point of stainless steel. Therefore, as 

fl ight velocities increase far above the speed of sound, they gradually approach 

a  thermal barrier : velocities beyond which skin temperatures become too high 

and structural failure can occur. As in the case of the sound barrier, the thermal 

barrier is only a fi gure of speech—it is not an inherent limitation on fl ight speed. 

With proper design to overcome the high rates of aerodynamic heating, vehicles 

today have fl own at Mach numbers as high as 36 (for example, the Apollo lunar 

return capsule). (For more details about high-speed reentry aerodynamic heating, 

see Sec. 8.12.) 

 Nevertheless, in the early 1950s manned hypersonic fl ight was a goal to be 

achieved—an untried and questionable regime characterized by high tempera-

tures and strong shock waves. The basic NACA studies fed into an industrywide 

design competition for a hypersonic airplane. In 1955 North American Aircraft 

Corporation was awarded a joint NACA–Air Force–Navy contract to design and 

construct three prototypes of a manned hypersonic research airplane capable of 

Mach 7 and a maximum altitude of 264,000 ft. This airplane was designated the 

X-15 and is shown in    Fig. 5.92 . The fi rst two aircraft were powered by Reaction 
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Motors LR11 rocket engines with 8000 lb of thrust (essentially the same as the 

engine used for the Bell XS-1). Along with the third prototype, the two air-

craft were later reengined with a more powerful rocket motor, the Reaction 

Motors XLR99, capable of 57,000 lb of thrust. The basic internal structure of 

the airplane was made from titanium and stainless steel, but the airplane skin 

was Inconel X—a nickel-alloy steel capable of withstanding temperatures up to 

1200°F. (Although the theoretical stagnation temperature at Mach 7 is 4065°F, 

as discussed previously, the actual skin temperature is cooler because of heat 

sink and heat dissipation effects.) The wings had a low aspect ratio of 2.5 and a 

thickness-to-chord ratio of 0.05—both intended to reduce supersonic wave drag. 

     The fi rst X-15 was rolled out of the North American factory at Los Angeles 

on October 15, 1958. Vice President Richard M. Nixon was the guest of honor 

at the rollout ceremonies. The X-15 had become a political as well as a technical 

accomplishment because the United States was attempting to heal its wounded 

pride after the Russians, launch of the fi rst successful unmanned satellite, 

 Sputnik I,  just a year earlier (see Sec. 8.21). The next day the X-15 was trans-

ported by truck to the nearby Edwards Air Force Base (the site at Muroc that saw 

the fi rst supersonic fl ights of the Bell XS-1). 

 Like the XS-1, the X-15 was designed to be carried aloft by a parent air-

plane, this time a Boeing B-52 jet bomber. The fi rst free fl ight, without power, 

was made by Scott Crossfi eld on June 8, 1959. This was soon followed by the 

fi rst powered fl ight on September 17, 1959, when the X-15 reached Mach 2.1 in 

a shallow climb to 52,341 ft. Powered with the smaller LR11 rocket engines, the 

X-15 set a speed record of Mach 3.31 on August 4, 1960, and an altitude record 

of 136,500 ft just eight days later. However, these records were  transitory. After 

November 1960 the X-15 received the more powerful XLR99 engine. The fi rst 

fl ight with this rocket was made on November 15, 1960; on this fl ight, with 

Figure 5.92 The North American X-15, the fi rst manned hypersonic airplane.
(Source: U.S. Air Force.)
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power adjusted to its  lowest  level and with the air brakes fully extended, the 

X-15 still hit 2000 mi/h. Finally, on June 23, 1961, hypersonic fl ight was fully 

achieved when U.S. Air Force test pilot Major Robert White fl ew the X-15 at 

Mach 5.3 and in so doing accomplished the fi rst “mile-per-second” fl ight in an 

airplane, reaching a maximum velocity of 3603 mi/h. This began an illustri-

ous series of hypersonic fl ight tests, which peaked in a fl ight at Mach 6.72 on 

October 3, 1967, with Air Force Major Pete Knight at the controls. 

 Experimental aircraft are just that—vehicles designed for specifi c experi-

mental purposes, which, after they are achieved, lead to the end of the program. 

This happened to the X-15 when, on October 24, 1968, the last fl ight was carried 

out—the 199th of the entire program. A 200th fl ight was planned, partly for rea-

sons of nostalgia; however, technical problems delayed this planned fl ight until 

December 20, when the X-15 was ready to go, attached to its B-52 parent plane as 

usual. However, of all things, a highly unusual snow squall suddenly hit Edwards, 

and the fl ight was canceled. The X-15 never fl ew again. In 1969 the fi rst X-15 was 

given to the National Air and Space Museum of the Smithsonian, where it now 

hangs with distinction in the Milestones of Flight Gallery, along with the Bell XS-1. 

 The X-15 opened the world of manned hypersonic fl ight. The next hyper-

sonic airplane was the Space Shuttle. The vast bulk of aerodynamic and fl ight 

dynamic data generated during the X-15 program carried over to the Space 

Shuttle design. The pilots’ experience with low-speed fl ights in a high-speed 

aircraft with low lift-to-drag ratio set the stage for fl ight preparations with the 

Space Shuttle. In these respects the X-15 was clearly the major stepping-stone 

to the Space Shuttle of the 1980s. For more details on the X-15, see X-15: The 
World’s Fastest Rocket Plane and the Pilots Who Ushered in the Space Age, by 

John Anderson and Richard Passman, Zenith Press, Minneapolis, MN, 2014.   

   5.24  SUMMARY AND REVIEW 
  Aerospace engineering deals with fl ight vehicles and related applications, in general, and 

with airplanes and space vehicles in particular. The concepts and applications found in 

this chapter are oriented toward fl ight vehicles traveling within the atmosphere—mainly 

airplanes. All space vehicles launched from the surface of the earth, however, also spend 

some time within the atmosphere, where they experience aerodynamic lift and drag. Also, 

some space vehicles are designed to land on other planets, where they encounter foreign 

planetary atmospheres and experience lift and drag to some extent. 

 Lift and drag are the main substance of this chapter. We intellectually split our study 

into sections (literally, in this text). We start with just an airfoil section, and examine the 

lift, drag, and moments of the section (per unit span). Rather than the forces and moments 

themselves, however, we deal with lift, drag, and moment  coeffi cients , defi ned in such a 

fashion as to be much more useful for engineering and calculations. These aerodynamic 

coeffi cients depend only on the shape and orientation (angle of attack) of the airfoil, 

Mach number, and Reynolds number. To help us make calculations for some specifi c 

airfoils, data for section lift, drag, and moment coeffi cients for various NACA airfoils is 

given in App. D. 

 We then extended our attention to a complete fi nite wing, and found that the lift and 

drag coeffi cients for a wing are different from the lift and drag coeffi cients for the airfoil 
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section used on the wing. This difference is due to the vortices that trail downstream from 

the tips of the wing. These wing-tip vortices modify the fl ow over the wing in such a 

fashion to increase the drag and decrease the lift. The drag increase is due to the presence 

of induced drag (sometimes called  vortex drag ). Induced drag is the result of the pressure 

distribution over the surface of the wing being modifi ed in the presence of the wing-tip 

vortices so as to slightly tilt the resultant aerodynamic force vector backward, creating 

an additional component of force in the drag direction. This additional component is the 

induced drag. The lift is decreased because the wing-tip vortices induce a downward 

component of the fl ow over the wing called  downwash,  which causes the relative wind 

in the proximity of the airfoil section to be inclined slightly downward through a small 

angle called the  induced angle of attack . This in turn reduces the angle of attack felt by 

the local airfoil section to a value smaller than the geometric angle of attack (the angle of 

attack that we see with our naked eyes—the angle between the chord line and the undis-

turbed free-stream direction far ahead of the airfoil). This smaller angle of attack is called 

the  effective angle of attack  because this angle dictates the local lift, drag, and moment 

coeffi cients of each airfoil section of the wing. Indeed, for a given airfoil section of a 

fi nite wing, the lift, drag, and moment coeffi cients are given by the airfoil data in App. D, 

where the section angle of attack given on the abscissa is literally the effective angle of 

attack (not the geometric angle of attack). 

 Finally, we recall that the aerodynamic coeffi cients for a fi nite wing are a function 

of a special geometric feature of the wing: the  aspect ratio , defi ned as the square of 

the wingspan divided by the planform area. The higher the aspect ratio, the farther the 

wing-tip vortices are removed from the rest of the wing, and the smaller are the induced 

aerodynamic effects such as induced drag and the induced angle of attack. For subsonic 

airplanes, high aspect ratios are aerodynamically a good design feature. (Structurally, 

however, higher–aspect-ratio wings require beefy, heavier internal structure to provide 

more strength along the wing. Therefore, the design aspect ratio is always a compromise 

between aerodynamics and structures.) 

 The aerodynamic coeffi cients are strongly affected by Mach number. Drag coeffi -

cient increases dramatically as the Mach number is increased to 1 and higher. The Mach 

number at which the drag coeffi cient starts to go out of sight is called the  drag- divergence
Mach number. We defi ne the  critical  Mach number as that free-stream Mach number at 

which sonic fl ow is fi rst obtained somewhere on the body. The drag-divergence Mach 

number usually occurs just slightly above the critical Mach number. At supersonic 

speeds, shock waves occur on the body, causing a large increase in drag that is termed 

wave drag . As a result, the shapes of airfoils, wings, and bodies designed for supersonic 

fl ight are much different from those intended for subsonic fl ight. 

 Some of the equations and ideas of this chapter are highlighted in the following list:  

1.   For an airfoil, the lift, drag, and moment coeffi cients are defi ned as

c
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S
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 where  L ,  D , and  M  are the lift, drag, and moments per unit span, respectively, and 

 S  =  c (1). 

  For a fi nite wing, the lift, drag, and moment coeffi cients are defi ned as
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  where  L ,  D , and  M  are the lift, drag, and moments, respectively, for the complete 

wing and  S  is the wing planform area. 

   For a given shape, these coeffi cients are a function of angle of attack, Mach 

number, and Reynolds number.  

  2.   The pressure coeffi cient is defi ned as

  

C
p p

V
p = ∞pp

∞ ∞VV1
2

2ρ
  

(5.27)

3.   The Prandtl–Glauert rule is a compressibility correction for subsonic fl ow:

C
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M
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,0

21
  

(5.28)

 where  C   p ,0  and  C   p   are the incompressible and compressible pressure coeffi cients, 

respectively. The same rule holds for the lift and moment coeffi cients—that is,

c
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M
l

l=
− ∞MM

,0

21
  

(5.40)

4.   The critical Mach number is the free-stream Mach number at which sonic fl ow is 

fi rst achieved at some point on a body. The drag-divergence Mach number is the 

free-stream Mach number at which the drag coeffi cient begins to rapidly increase 

due to the occurrence of transonic shock waves. For a given body, the drag-

divergence Mach number is slightly higher than the critical Mach number.  

5.   The Mach angle is defi ned as

μ = arcsin
1

M   
(5.49)

6.   The total drag coeffi cient for a fi nite wing is equal to

C c
C

e
D dc L+cdc

2

π AR   
(5.58)

 where  c   d   is the profi le drag coeffi cient and  C eL
2 /( )π AR     is the induced drag 

coeffi cient.  

  7.   The lift slope for a fi nite wing  a  is given by

  

a
a= 0

0 11 5+ 7 3. /a03 ( )e1e
(5.65)

 where  a  0  is the lift slope for the corresponding infi nite wing.      
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  Problems  

   5.1   By the method of dimensional analysis, derive the expression  M  =  q  ∞   Scc   m   for 

the aerodynamic moment on an airfoil, where  c  is the chord and  c   m   is the moment 

coeffi cient.  

   5.2   Consider an infi nite wing with a NACA 1412 airfoil section and a chord length 

of 3 ft. The wing is at an angle of attack of 5° in an airfl ow velocity of 100 ft/s 

at standard sea-level conditions. Calculate the lift, drag, and moment about the 

quarter-chord per unit span.  

   5.3   Consider a rectangular wing mounted in a low-speed subsonic wing tunnel. The 

wing model completely spans the test-section so that the fl ow “sees” essentially 

an infi nite wing. If the wing has a NACA 23012 airfoil section and a chord of 

0.3 m, calculate the lift, drag, and moment about the quarter-chord per unit span 

when the airfl ow pressure, temperature, and velocity are 1 atm, 303 K, and 42 m/s, 

respectively. The angle of attack is 8°.  

   5.4   The wing model in    Prob. 5.3  is pitched to a new angle of attack, where the lift 

on the entire wing is measured as 200 N by the wind tunnel force balance. If the 

wingspan is 2 m, what is the angle of attack?  

   5.5   Consider a rectangular wing with a NACA 0009 airfoil section spanning the test 

section of a wind tunnel. The test-section airfl ow conditions are standard sea level 

with a velocity of 120 mi/h. The wing is at an angle of attack of 4°, and the wind 

tunnel force balance measures a lift of 29.5 lb. What is the area of the wing?  

   5.6   The ratio of lift to drag  L / D  for a wing or airfoil is an important aerodynamic 

parameter; indeed, it is a direct measure of the aerodynamic effi ciency of the 

wing. If a wing is pitched through a range of angle of attack,  L / D  fi rst increases, 

then goes through a maximum, and then decreases. Consider an infi nite wing with 

an NACA 2412 airfoil. Estimate the maximum value of  L / D . Assume that the 

Reynolds number is 9 × 10 6 .  

   5.7   Consider an airfoil in a free stream with a velocity of 50 m/s at standard sea-level 

conditions. At a point on the airfoil, the pressure is 9.5 × 10 4  N/m 2 . What is the 

pressure coeffi cient at this point?  
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   5.8   Consider a low-speed airplane fl ying at a velocity of 55 m/s. If the velocity at a 

point on the fuselage is 62 m/s, what is the pressure coeffi cient at this point?  

   5.9   Consider a wing mounted in the test-section of a subsonic wind tunnel. The 

velocity of the airfl ow is 160 ft/s. If the velocity at a point on the wing is 195 ft/s, 

what is the pressure coeffi cient at this point?  

  5.10   Consider the same wing in the same wind tunnel as in    Prob. 5.9 . If the test-section 

air temperature is 510°R and the fl ow velocity is increased to 700 ft/s, what is the 

pressure coeffi cient at the same point?  

  5.11   Consider a wing in a high-speed wind tunnel. At a point on the wing, the velocity 

is 850 ft/s. If the test-section fl ow is at a velocity of 780 ft/s, with a pressure and 

temperature of 1 atm and 505°R, respectively, calculate the pressure coeffi cient at 

the point.  

  5.12   If the test-section fl ow velocity in    Prob. 5.11  is reduced to 100 ft/s, what will the 

pressure coeffi cient become at the same point on the wing?  

  5.13   Consider an NACA 1412 airfoil at an angle of attack of 4°. If the free-stream 

Mach number is 0.8, calculate the lift coeffi cient.  

  5.14   An NACA 4415 airfoil is mounted in a high-speed subsonic wind tunnel. The lift 

coeffi cient is measured as 0.85. If the test-section Mach number is 0.7, at what 

angle of attack is the airfoil?  

  5.15   Consider an airfoil at a given angle of attack, say α 1 . At low speeds, the minimum 

pressure coeffi cient on the top surface of the airfoil is −0.90. What is the critical 

Mach number of the airfoil?  

  5.16   Consider the airfoil in    Prob. 5.15  at a smaller angle of attack, say α 2 . At low 

speeds, the minimum pressure coeffi cient is −0.65 at this lower angle of attack. 

What is the critical Mach number of the airfoil?  

  5.17   Consider a uniform fl ow with a Mach number of 2. What angle does a Mach wave 

make with respect to the fl ow direction?  

  5.18   Consider a supersonic missile fl ying at Mach 2.5 at an altitude of 10 km 

(see Fig. P5.18). Assume that the angle of the shock wave from the nose is 

approximated by the Mach angle (this is a very weak shock). How far behind the 

nose of the vehicle will the shock wave impinge upon the ground? (Ignore the fact 

that the speed of sound, and hence the Mach angle, changes with altitude.)

 

M�=2.5

d

h = 10 km
�

  

       5.19   The wing area of the Lockheed F-104 straight-wing supersonic fi ghter is 

approximately 210 ft 2 . If the airplane weighs 16,000 lb and is fl ying in level 
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fl ight at Mach 2.2 at a standard altitude of 36,000 ft, estimate the wave drag on 

the wings.  

  5.20   Consider a fl at plate at an angle of attack of 2° in a Mach 2.2 airfl ow. (Mach 2.2 is 

the cruising Mach number of the Concorde supersonic transport.) The length 

of the plate in the fl ow direction is 202 ft, which is the length of the Concorde. 

Assume that the free-stream conditions correspond to a standard altitude of 

50,000 ft. The total drag on this plate is the sum of wave drag and skin friction 

drag. Assume that a turbulent boundary layer exists over the entire plate. The 

results given in Ch. 4 for skin friction coeffi cients hold for incompressible fl ow 

only; there is a compressibility effect on  C    f   such that its value decreases with 

increasing Mach number. Specifi cally, at Mach 2.2 assume that the  C   f   given in 

Ch. 4 is reduced by 20 percent.  

   a.    Given all the preceding information, calculate the total drag coeffi cient for 

the plate.  

   b.    If the angle of attack is increased to 5°, assuming that  C    f   stays the same, 

calculate the total drag coeffi cient.  

   c.    For these cases, what can you conclude about the relative infl uence of wave 

drag and skin friction drag?    

  5.21   The Cessna Cardinal, a single-engine light plane, has a wing with an area of 

16.2 m 2  and an aspect ratio of 7.31. Assume that the span effi ciency factor is 

0.62. If the airplane is fl ying at standard sea-level conditions with a velocity of 

251 km/h, what is the induced drag when the total weight is 9800 N?  

  5.22   For the Cessna Cardinal in    Prob. 5.21 , calculate the induced drag when the 

velocity is 85.5 km/h (stalling speed at sea level with fl aps down).  

  5.23   Consider a fi nite wing with an area and aspect ratio of 21.5 m 2  and 5, respectively 

(this is comparable to the wing on a Gates Learjet, a twin-jet executive transport). 

Assume that the wing has a NACA 65-210 airfoil, a span effi ciency factor of 0.9, 

and a profi le drag coeffi cient of 0.004. If the wing is at a 6° angle of attack, 

calculate  C   L   and  C   D  .  

  5.24   During the 1920s and early 1930s, the NACA obtained wind tunnel data on 

different airfoils by testing fi nite wings with an aspect ratio of 6. These data were 

then “corrected” to obtain infi nite-wing airfoil characteristics. Consider such a 

fi nite wing with an area and aspect ratio of 1.5 ft 2  and 6, respectively, mounted in 

a wind tunnel where the test-section fl ow velocity is 100 ft/s at standard sea-level 

conditions. When the wing is pitched to α  = −2°, no lift is measured. When the 

wing is pitched to α  = 10°, a lift of 17.9 lb is measured. Calculate the lift slope for 

the airfoil (the infi nite wing) if the span effectiveness factor is 0.95.  

  5.25   A fi nite wing of area 1.5 ft 2  and aspect ratio of 6 is tested in a subsonic wind 

tunnel at a velocity of 130 ft/s at standard sea-level conditions. At an angle 

of attack of −1°, the measured lift and drag are 0 and 0.181 lb, respectively. 

At an angle of attack of 2°, the lift and drag are measured as 5.0 and 0.23 lb, 

respectively. Calculate the span effi ciency factor and the infi nite-wing lift slope.  

  5.26   Consider a light, single-engine airplane such as the Piper Super Cub. If the maximum 

gross weight of the airplane is 7780 N, the wing area is 16.6 m 2 , and the maximum 

lift coeffi cient is 2.1 with fl aps down, calculate the stalling speed at sea level.  

  5.27   The airfoil on the Lockheed F-104 straight-wing supersonic fi ghter is a thin, 

symmetric airfoil with a thickness ratio of 3.5 percent. Consider this airfoil in a 
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fl ow at an angle of attack of 5°. The incompressible lift coeffi cient for the airfoil 

is given approximately by  c l   = 2πα, where α is the angle of attack in radians. 

Estimate the airfoil lift coeffi cient for ( a )  M  = 0.2, ( b )  M  = 0.7, and ( c )  M  = 2.0.  

  5.28   The whirling-arm test device used in 1804 by Sir George Cayley is shown in 

Figure 1.7. Cayley was the fi rst person to make measurements of the lift on 

inclined surfaces. In his 1804 notebook, he wrote that on a fl at surface moving 

through the air at 21.8 ft/s at 3° angle of attack, a lift force of 1 ounce was 

measured. The fl at surface was a 1 ft by 1 ft square. Calculate the lift coeffi cient 

for this condition. Compare this measured value with that predicted by the 

expression for lift coeffi cient for a fl at-plate airfoil in incompressible fl ow given 

by  c l   = 2πα, where α is in radians. What are the reasons for the differences in the 

two results? (See    Anderson ,  A History of Aerodynamics and Its Impact on Flying 
Machines , Cambridge University Press, 1997, pp. 68–71, for a detailed discussion 

of this matter.)  

  5.29   Consider a fi nite wing at an angle of attack of 6°. The normal and axial force 

coeffi cients are 0.8 and 0.06, respectively. Calculate the corresponding lift and 

drag coeffi cients. What comparison can you make between the lift and normal 

force coeffi cients?  

  5.30   Consider a fi nite wing with an aspect of ratio of 7; the airfoil section of the wing is 

a symmetric airfoil with an infi nite-wing lift slope of 0.11 per degree. The lift-to-

drag ratio for this wing is 29 when the lift coeffi cient is equal to 0.35. If the angle 

of attack remains the same and the aspect ratio is simply increased to 10 by adding 

extensions to the span of the wing, what is the new value of the lift-to-drag ratio? 

Assume that the span effi ciency factors  e  =  e  1  = 0.9 for both cases.  

  5.31   Consider a fl at plate oriented at a 90° angle of attack in a low-speed 

incompressible fl ow. Assume that the pressure exerted over the front of the plate 

(facing into the fl ow) is a constant value over the front surface, equal to the 

stagnation pressure. Assume that the pressure exerted over the back of the plate 

is also a constant value, but equal to the free-stream static pressure. (In reality, 

these assumptions are only approximations to the real fl ow over the plate. The 

pressure over the front face is neither exactly constant nor exactly equal to the 

stagnation pressure, and the pressure over the back of the plate is neither constant 

nor exactly equal to the free-stream pressure. The preceding approximate model of 

the fl ow, however, is useful for our purpose here.) Note that the drag is essentially 

all pressure drag; due to the 90° orientation of the plate, skin friction drag is not 

a factor. For this model of the fl ow, prove that the drag coeffi cient for the fl at 

plate is  C   D   = 1.  

  5.32   In some aerodynamic literature, the drag of an airplane is couched in terms of the 

“drag area” instead of the drag coeffi cient. By defi nition, the drag area,  f , is the 

area of a fl at plate at 90° to the fl ow that has a drag force equal to the drag of the 

airplane. As part of this defi nition, the drag coeffi cient of the plate is assumed to 

be equal to 1, as shown in    Prob. 5.31 . If  C   D   is the drag coeffi cient of the airplane 

based on wing planform area  S , prove that    f   =  C   D   S .  

  5.33   One of the most beautifully streamlined airplanes ever designed is the North 

American P-51 Mustang shown in Fig. 4.46. The Mustang has one of the lowest 

minimum drag coeffi cients of any airplane in history:  C   D   = 0.0163. The wing 

planform area of the Mustang is 233 ft 2 . Using the result from    Prob. 5.32 , show 

that the drag area for the Mustang is 3.8 ft 2 ; that is, drag on the whole P-51 
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airplane is the same as the drag on a fl at plate perpendicular to the fl ow of an area 

of only 3.8 ft 2 .  

  5.34   Consider an NACA 2412 airfoil in a low-speed fl ow at zero degrees angle of 

attack and a Reynolds number of 8.9 × 10 6 . Calculate the percentage of drag 

from pressure drag due to fl ow separation (form drag). Assume a fully turbulent 

boundary layer over the airfoil. Assume that the airfoil is thin enough that the 

skin-friction drag can be estimated by the fl at-plate results discussed in Ch. 4.  

  5.35   Repeat    Problem 5.34 , assuming that the airfoil is at an angle of attack of 6 

degrees. What does this tell you about the rapid increase in  c   d   as the angle of 

attack of the airfoil is increased?  

  5.36   Returning to the conditions of    Problem 5.34 , where the boundary layer was 

assumed to be fully turbulent, let us now consider the real situation where the 

boundary layer starts out as laminar, and then makes a transition to turbulent 

somewhere downstream of the leading edge. Assume a transition Reynolds 

number of 500,000. For this case, calculate the percentage of drag that is due to 

fl ow separation (form drag).  

  5.37   Here we continue in the vein of    Probs. 5.34  to    5.36 , except we examine a thicker 

airfoil and look at the relative percentages of skin friction and pressure drag for 

a thicker airfoil. Estimate the skin friction drag coeffi cient for the NACA 2415 

airfoil in low-speed incompressible fl ow at Re = 9 × 10 6  and zero angle of attack 

for  (a)  a laminar boundary layer, and  (b)  a turbulent boundary layer. Compare the 

results with the experimentally measured section drag coeffi cient given in App. D 

for the NACA 2415 airfoil. What does this tell you about the relative percentages 

of pressure drag and skin friction drag on the airfoil for each case?  

  5.38   In reality, the boundary layer on the airfoil discussed in    Prob. 5.37  is neither 

fully laminar nor fully turbulent. The boundary layer starts out as laminar, and 

then transitions to turbulent at some point downstream of the leading edge 

(see the discussion in Sec. 4.19). Assume that the critical Reynolds number 

for transition is 650,000. Calculate the skin friction drag coeffi cient on the 

NACA 2415 airfoil, and compare your result with the experimental section 

drag coeffi cient in App. D.  Note:  You will fi nd from the answer to this problem 

that 86 percent of the airfoil section drag coeffi cient is due to skin friction and 

14 percent due to pressure drag from fl ow separation. Comparing this answer 

with the result of    Prob. 5.36 , which pertains to a thinner airfoil, we fi nd that the 

pressure drag is a higher percentage for the thicker airfoil. However, for airfoils 

in general, the pressure drag is still a small percentage of the total drag. This drag 

breakdown is somewhat typical for airfoils at small angles of attack. By intent, 

the streamlined shape of airfoils results in small pressure drag, typically on the 

order of 15 percent of the total drag.  

  5.39   This problem examines the cause and effect of a lower Re on airfoil drag. Repeat 

   Prob. 5.38 , except for Re = 3 × 10 6 . Comment on how and why Re affects the 

drag.  Note:  From the answer to this question, you will see that the lower Re 

results in a higher percentage of skin friction drag than found at the higher Re in 

   Prob. 5.38 , and hence a lower percentage of pressure drag on the airfoil section.          

5.40 The lift and drag measured on an aerodynamic body mounted at a fi ve -degree 

angle of attack in a wind tunnel are 100 and 145 lb, respectively. Calculate the 

corresponding normal and axial forces.
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5.41 Otto Lilienthal (see Section 1.5) carried out a series of aerodynamic measurements 

on small model wings using fi rst a whirling arm and later stationary models. He 

tested both fl at plate wings and wings with a thin curved (cambered) airfoil. For 

the fl at plate, the resultant aerodynamic force was always inclined behind the 

per pendicular to the plate, with an axial force always oriented in the backward 

direction. However, his data for the cambered airfoil showed that at some angles 

of attack the resultant aerodynamic force was inclined ahead of the perpendicular 

to the chord line; for these cases the axial force was oriented in the forward 

direction. Lilienthal called this forward component a “pushing component” 

and cited its existence as evidence of the superiority of cambered airfoils. (For 

more historical detail on this matter, see Anderson, A History of Aerodynamics, 

Cambridge University Press, 1998.) With the above information as background, 

show that the aerodynamic condition that results in a forward-facing axial force is

 L/D > cot α
 where α is the angle of attack.

5.42 The airfoil data in Appendix D were obtained in the NACA two-dimensional Low 

Turbulence Pressure Tunnel at the NACA Langley Memorial Laboratory. This 

facility went into operation in Spring 1941. The tunnel was especially designed 

for airfoil testing, with a test section 3 ft wide and 7.5 ft high. The wing models 

spanned the entire test section of width 3 ft, so that the fl ow over the model was 

essentially two-dimensional. The chord length of the models was 2 ft. When the 

tunnel became operational, the four- and fi ve-digit airfoil series, originally tested 

in older tunnels, were retested in the new tunnel. The Low Turbulence Pressure 

Tunnel is most noted, however, as the testing facility for the NACA Laminar Flow 

Airfoils. Consider a series of tests where the tunnel is pressurized to 3 atm, the 

temperature of the airstream in the test section is 60° F, and the fl ow velocity is 

160 mi/h. A wing with an NACA 2412 airfoil is mounted in the tunnel at an angle 

of attack such that the section lift coeffi cient is 0.2.

a. What is the angle of attack of the model?

b. What is the total drag force on the model?

5.43 The wing model in Problem 5.42 is replaced with a model with an NACA 64-210 

Laminar Flow Airfoil at the same conditions as in Problem 5.42. 

a. What is the angle of attack of the model?

b. What is the total drag force on the model?

5.44 For the NACA 2412 airfoil in problem 5.42, what percentage of the total drag is 

due to skin friction drag? Assume the skin friction drag on the airfoil is essentially 

that for a fl at plate. Also, assume that the boundary layer over the model is 

turbulent and incompressible.

5.45 For the Laminar Flow NACA 64-210 airfoil in Problem 5.43, what percentage 

of the total drag is due to skin friction? Assume that the skin friction drag on the 

airfoil is essentially that for a fl at plate, and that the boundary layer is laminar and 

incompressible.  
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     6  C H A P T E R 

 Elements of Airplane 
Performance 

   First Europe, and then the globe, will be linked by fl ight, and nations so knit together 

that they will grow to be next-door neighbors. This conquest of the air will prove, 

ultimately, to be man’s greatest and most glorious triumph. What railways have done 

for nations, airways will do for the world. 

 Claude Grahame-White 
British aviator, 1914   

    6.1  INTRODUCTION: THE DRAG POLAR 
  Henson’s aerial steam carriage of the mid-19th century (see Fig. 1.11) was pic-

tured by contemporary artists as fl ying to all corners of the world. Of course 

questions about  how  it would fl y to such distant locations were not considered 

by the designers. As with most early aeronautical engineers of that time, their 

main concern was simply to lift or otherwise propel the airplane from the ground; 

what happened once the vehicle was airborne was viewed as being of secondary 

importance. However, with the success of the Wright brothers in 1903, and with 

the subsequent rapid development of aviation during the pre–World War I era, 

the airborne performance of the airplane suddenly became of primary impor-

tance. Some obvious questions were (and still are) asked about a given design. 

What is the maximum speed of the airplane? How fast can it climb to a given 

altitude? How far can it fl y on a given tank of fuel? How long can it stay in the 

air? Answers to these and similar questions constitute the study of  airplane per-
formance,  which is the subject of this chapter. 
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You are a passenger, or perhaps the pilot, in an air-

plane standing at the beginning of the runway, ready to 

take off. The engine throttle is pushed wide open, and 

you accelerate down the runway. How do you know if 

you will be able to lift off the ground and get into the 

air before you use up all the runway length? In this 

chapter you will learn how to answer this question.

Now you are in the air, but there are thunder-

storms off in the distance, and you will need to climb 

over them as quickly as possible. How do you know 

if your airplane can do this? How long will it take for 

you to climb to a safe altitude? In this chapter you 

will learn how to answer these questions.

Once you are comfortably at altitude and you 

are winging your way to your destination, how do 

you know if you can get there without running out 

of fuel? Alternatively, how can you estimate how far 

you can fl y on a tank of fuel? Or perhaps you are sim-

ply up for a joy ride, and you want to stay up for as 

long as possible. How can you estimate how long you 

can stay in the air on a tank of fuel? In this chapter 

you will learn how to answer these questions.

Maybe you are a speed freak. You push the 

throttle wide open, getting maximum power from 

your engine (or engines). You accelerate like mad, at 

least for a while, until the airplane reaches the fastest 

velocity at which it can fl y. How do you estimate this 

“fastest” velocity? In this chapter you will learn how 

to answer this question.

Suddenly you are the “Red Baron” in your “hot” 

fi ghter airplane, locked in mortal air combat with an 

adversary. To defeat your adversary in a dogfi ght, 

you want to be able to make turns with a small radius 

(turn “inside” your adversary) and be able to make a 

turn faster. How do you know your airplane can do 

this? In this chapter you will learn how to answer this 

question.

Unfortunately your engine goes out; you are 

at some altitude, and you lose all your power. You 

have to glide back to your base. Can your airplane 

make it, or will you have to land short of your desti-

nation? In this chapter you will learn how to answer 

this  question.

Fortunately power returns to your engine, and 

you are now ready to complete your fl ight and land. 

You approach the runway. Is the runway long enough 

for you to land safely and come to a stop? Or are 

you going to zip past the end of the runway into the 

woods beyond, holding on for dear life? In this chap-

ter you will learn how to answer this question.

This chapter is full of such important questions 

and equally important answers. They all have to do 

with the performance of the airplane. In this chapter, 

at last, we deal with the whole airplane, not just an 

airfoil or a wing. Finally, in the middle of this book 

on the introduction to fl ight, we are actually going 

to take fl ight. Buckle up, and read on. Let’s go for 

a ride.

PREVIEW BOX

 In previous chapters the physical phenomena producing lift, drag, and mo-

ments of an airplane were introduced. We emphasized that the aerodynamic 

forces and moments exerted on a body moving through a fl uid stem from two 

sources, both acting over the body surface: 

  1.   The pressure distribution.  

  2.   The shear stress distribution.   

The physical laws governing such phenomena were examined, with various 

applications to aerodynamic fl ows. 

 In this chapter we begin a new phase of study. The airplane is considered a 

rigid body on which four natural forces are exerted: lift, drag, propulsive thrust, 
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and weight. Concern is focused on the movement of the airplane as it responds 

to these forces. Such considerations form the core of  fl ight dynamics,  an impor-

tant discipline of aerospace engineering. Studies of airplane performance (this 

chapter) and stability and control (Ch. 7) both fall under the heading of fl ight 

dynamics. 

 In these studies we will no longer be concerned with aerodynamic details; 

rather, we will generally assume that the aerodynamicists have done their work 

and given us the pertinent aerodynamic data for a given airplane. These data are 

usually packaged in the form of a  drag polar  for the complete airplane, given as

   
C C

C

e
D DC e

L+CDC e,

2

π AR  
(6.1a)

   Equation (6.1  a ) is an extension of Eq. (5.58) to include the whole airplane. Here 

 C   D   is the drag coeffi cient for the complete airplane;  C   L   is the total lift coeffi cient, 

including the small contributions from the horizontal tail and fuselage; and  C D,e

is defi ned as the  parasite drag coeffi cient , which contains not only the profi le 

drag of the wing [ c   d   in Eq. (5.58)] but also the friction and pressure drag of the 

tail surfaces, fuselage, engine nacelles, landing gear, and any other component 

of the airplane that is exposed to the airfl ow. At transonic and supersonic speeds, 

C D,e   also contains wave drag. Because of changes in the fl ow fi eld around the 

airplane—especially changes in the amount of separated fl ow over parts of the 

airplane—as the angle of attack is varied,  C D,e   will change with angle of attack; 

that is,  C D,e   is itself a function of lift coeffi cient. A reasonable approximation for 

this function is
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where  r  is an empirically determined constant. Hence,    Eq. (6.1  a ) can be written as
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21

π AR   
(6.1b)

In    Eqs. (6.1  a ) and    (6.1  b ),  e  is the familiar span effi ciency factor, which takes 

into account the nonelliptical lift distribution on wings of general shape (see 

Sec. 5.14). Let us now  redefi ne e  so that it also includes the effect of the variation 

of parasite drag with lift; that is, let us write    Eq. (6.1  b ) in the form

C C
C

e
D DC L+CDC ,0

2

π AR  
 (6.1c)

where  C   D ,0  is the parasite drag coeffi cient at  zero lift  and the term  C eL
2 /( )π AR

includes both induced drag and the contribution to parasite drag due to lift. In 

   Eq. (6.1  c ), our redefi ned  e , which now includes the effect of  r  from    Eq. (6.1  b ), 

is called the  Oswald effi ciency factor  (named after W. Bailey Oswald, who fi rst 

established this terminology in NACA Report No. 408 in 1932). In this chapter 

the basic aerodynamic properties of the airplane are described by    Eq. (6.1  c ), and 
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we consider both  C   D ,0  and  e  as known aerodynamic quantities, obtained from the 

aerodynamicist. We will continue to designate  L
2 /( )π AR     by  C D,i  , where  C D,i

now has the expanded interpretation as the coeffi cient of  drag due to lift,  includ-

ing both the contributions due to induced drag and the increment in parasite drag 

due to angle of attack different from α  L   = 0. We designate  C   D ,0  simply as the  zero-
lift  drag coeffi cient, which is obvious from    Eq. (6.1  c ) when  C   L   = 0; however, we 

recognize  C   D ,0  more precisely as the  parasite  drag coeffi cient at  zero lift —that is, 

the value of the drag coeffi cient when α = α  L =0 . 

 The graph of    Eq. (6.1  c ), shown in    Fig. 6.1 , is also called the  drag polar . 

With the approximations made in    Eq. (6.1  c ), the drag polar is a parabola with its 

axis on the zero-lift axis, and its vertex is  C   D ,0 . In    Fig. 6.1  a C   D   is plotted versus 

 C   L  ; in    Fig. 6.1  b C   L   is plotted versus  C   D  . The two representations are identical; 

   Fig. 6.1  b  is simply a mirror image of    Fig. 6.1  a  rotated on its side. Both repre-

sentations are found in the literature. In    Fig. 6.1  negative values of  C   L   pertain 

to negative lift, which occurs when the angle of attack of the airplane is less 

than α L=0 . This situation is not encountered frequently in the analysis of airplane 

performance; hence, only that portion of the drag polar associated with positive 

 C   L   is usually shown. 
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Drag polar

CD = CD,0 + 
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(−)

Drag polar
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Figure 6.1 Schematic of the drag polar.
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     An illustration of the drag polar for a specifi c airplane is shown in    Fig. 6.2 , 

which gives the actual data for the Lockheed C-141A, shown in three-view at 

the top of the fi gure. Upon close examination, the drag polar for an actual air-

plane exhibits a subtle difference from our approximation given in    Eq. (6.1  c ) 

as graphed in    Fig. 6.1 . Note that the zero-lift drag coeffi cient in    Fig. 6.2  is not 

the minimum drag coeffi cient; that is, the axis of the parabolic drag polar is 

not the zero-lift axis, but rather is displaced slightly above the zero-lift axis. 

In    Fig. 6.2  the minimum drag coeffi cient is  C   D , min  = 0.015, and it occurs for 

a value of the lift coeffi cient  CLmin drag
= 0 16    . The zero-lift drag coeffi cient is 

C   D ,0  = 0.017 at  C   L   = 0. And  C   D ,0  is not the minimum drag coeffi cient because 

α  L=0   for most airplane designs is a small but fi nite negative value; that is, the 

airplane is pitched slightly downward at this orientation, and the pressure drag 

due to fl ow separation (  form drag ) is slightly higher than if the airplane is at an 

angle of attack slightly larger, nearer a zero angle of attack. The minimum drag 

0
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Figure 6.2 Low-speed drag polar and variation of lift-

to-drag ratio for the Lockheed C-141A. The airplane 

is shown in a three-view above the drag polar.
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coeffi cient occurs when the airplane is more aligned with the relative wind—

that is, when α is slightly larger than α  L =0 . For this situation the drag polar can 

be expressed as

  
C C

e
D DC

L L+CDC ,min

( )C CL LC
min drag

AR

2

π
(6.2)

The corresponding graph of the drag polar is shown in    Fig. 6.3 . 

 Now that we have made the distinction between the two generic drag polars 

sketched in    Figs. 6.1  and    6.3 , for our considerations of airplane performance in 

this chapter we will adopt    Eq. (6.1  c ) and    Fig. 6.1  as the representation of the 

drag polar. It simplifi es our analysis and presentation without loss of generality. 

Quantitatively there is only a small difference between the two representations. 

However, for an industry-standard detailed performance analysis of a particular 

airplane, you want to have as accurate a drag polar as you can obtain for the air-

plane, and you would be dealing with the more accurate representation shown in 

   Fig. 6.3  and given by    Eq. (6.2) . 

 Return for a moment to our overall road map in Fig. 2.1. With this chapter 

we move to a new main discipline—fl ight mechanics—as itemized in Fig. 2.1. 

In particular, in this chapter we deal with airplane performance, a subheading 

under fl ight mechanics, as shown at the center of Fig. 2.1. The road map for this 

chapter is shown in    Fig. 6.4 . A study of airplane performance is frequently based 

on Newton’s second law, which dictates the motion of the airplane through the 

atmosphere. We will fi rst obtain these  equations of motion . The remainder of the 

chapter is based on two forms of these equations: (1) the form associated with 

the assumption of  unaccelerated  fl ight, leading to a study of  static performance

0 CD,0

CD,min

CD

CL

(CL)min drag

Figure 6.3 Drag polar where the zero-lift 

drag coeffi cient is not the same as the 

minimum drag coeffi cient.
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itemized on the left side of    Fig. 6.4 ; and (2) the form associated with  acceleration 

of the airplane, leading to a study of  dynamic performance  itemized on the right 

side of    Fig. 6.4 . (The difference between static performance and dynamic per-

formance is analogous to taking a course in statics and another course in dynam-

ics.) Under static performance we will examine such important aspects as how 

to calculate the maximum velocity of the airplane, how fast it can climb (rate of 

climb), how high it can fl y (maximum altitude), how far it can fl y (range), and 

how long it can stay in the air (endurance). Under dynamic performance we will 

examine takeoff and landing characteristics, turning fl ight, and accelerated rate 

of climb. When we arrive at the bottom of this road map, we will have toured 

through some of the basic aspects that dictate the design of an airplane and will 

have covered some of the most important territory in aerospace engineering. So 

let’s get going! 

Airplane performance

Equations of motion

Gliding flight

Service ceiling

Absolute ceiling

Thrust required
Thrust available

Maximum velocity

Power required
Power available

Maximum velocity

Rate of climb

Time to climb

Maximum altitude

Range and endurance

Static performance
(zero acceleration)

Dynamic performance
(finite acceleration)

Takeoff

Landing

Turning flight

V–n diagram

Accelerated
rate of climb
(energy method)

Figure 6.4 Road map for Ch. 6.
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         6.2  EQUATIONS OF MOTION 
  To study the performance of an airplane, we must fi rst establish the fundamental 

equations that govern its translational motion through air. Consider an airplane 

in fl ight, as sketched in    Fig. 6.5 . The fl ight path (direction of motion of the air-

plane) is inclined at an angle  θ  with respect to the horizontal. In terms of the 

defi nitions in Ch. 5, the fl ight path direction and the relative wind are along the 

same line. The mean chord line is at a geometric angle of attack α with respect to 

the fl ight path direction. Four physical forces are acting on the airplane: 

  1.   Lift  L , which is perpendicular to the fl ight path direction.  

  2.   Drag  D , which is parallel to the fl ight path direction.  

  3.   Weight  W , which acts vertically toward the center of the earth (and hence 

is inclined at angle  θ  with respect to the lift direction).  

  4.   Thrust  T,  which in general is inclined at the angle α  T   with respect to the 

fl ight path direction.   

The force diagram shown in    Fig. 6.5  is important. Study it carefully until you feel 

comfortable with it. 

  The fl ight path shown in    Fig. 6.5  is drawn as a straight line. This is the pic-

ture we see by focusing locally on the airplane itself. However, if we stand back 

and take a wider view of the space in which the airplane is traveling, the fl ight 

path is generally curved. This is obviously true if the airplane is maneuvering; 

but even if the airplane is fl ying “straight and level” with respect to the ground, 

it is still executing a curved fl ight path with a radius of curvature equal to the 

absolute altitude  h   a   (as defi ned in Sec. 3.1). 

 When an object moves along a curved path, the motion is called  curvilinear,  
as opposed to motion along a straight line, which is  rectilinear . Newton’s  second 

  
  Figure 6.5  Force diagram for an airplane in fl ight. 
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law, which is a physical statement that force = mass × acceleration, holds in 

either case. Consider a curvilinear path. At a given point on the path, set up two 

mutually perpendicular axes, one along the direction of the fl ight path and the 

other normal to the fl ight path. Applying Newton’s law along the fl ight path gives

F ma m
dV

dt‘FF∑ ma  (6.3)

where ∑ F  ||  is the summation of all forces parallel to the fl ight path,  a  =  dV / dt
is the acceleration along the fl ight path, and  V  is the instantaneous value of the 

airplane’s fl ight velocity. (Velocity  V  is always along the fl ight path direction, 

by defi nition.) Applying Newton’s law perpendicular to the fl ight path, we have

  F m
V

rcrr
⊥F∑

2

  (6.4)

where ∑ F  ⊥  is the summation of all forces perpendicular to the fl ight path and 

V  2 / r   c   is the acceleration normal to a curved path with radius of curvature  r   c  . This 

normal acceleration  V  2 / r c   should be familiar from basic physics. The right side of 

   Eq. (6.4)  is nothing other than the  centrifugal force . 

 Examining    Fig. 6.5 , we see that the forces parallel to the fl ight path (positive 

to the right, negative to the left) are

  T‘FF∑ T cosα θD WT sD WT −T in  (6.5)

and the forces perpendicular to the fl ight path (positive upward and negative 

downward) are

F L T T⊥F∑ = +L i α θWT cW os   (6.6)

Combining    Eq. (6.3)  with (   6.5 ) and    Eq. (6.4)  with (   6.6 ) yields

T m
dV

dt
Tcosα θD WT D WT iD   (6.7)

L T m
V

r
T

crr
+ T sinα θWT WT −T

2

 (6.8)

   Equations (6.7)  and    (6.8)  are the  equations of motion  for an airplane in trans-

lational fl ight. (Note that an airplane can also rotate about its axes; this will be 

discussed in Ch. 7. Also note that we are not considering the possible sidewise 

motion of the airplane perpendicular to the page of    Fig. 6.5 .) 

    Equations (6.7)  and    (6.8)  describe the general two-dimensional translational 

motion of an airplane in accelerated fl ight. However, in the fi rst part of this  chapter 

we are interested in a specialized application of these equations: the case where 

the acceleration is zero. The performance of an airplane for such  unaccelerated 
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fl ight conditions is called  static performance . This may at fi rst thought seem 

unduly restrictive; however, static performance analyses lead to reasonable cal-

culations of maximum velocity, maximum rate of climb, maximum range, and 

the like—parameters of vital interest in airplane design and operation. 

 With this in mind, consider level, unaccelerated fl ight. Referring to    Fig. 6.5 , 

level fl ight means that the fl ight path is along the horizontal; that is,  θ  = 0. 

Unaccelerated fl ight means that the right sides of    Eqs. (6.7)  and    (6.8)  are zero. 

Therefore, these equations reduce to

  T DTcosα   (6.9)        

  L T WT+ =T Tsi α   (6.10)        

For most conventional airplanes, α  T   is small enough that cos α  T   ≈ 1 and sin α  T   ≈ 0. 

Thus, from    Eqs. (6.9)  and    (6.10) ,

  T D   (6.11)        

  L W   (6.12)        

   Equations (6.11)  and    (6.12)  are the equations of motion for level, unacceler-

ated fl ight. They can also be obtained directly from    Fig. 6.5  by inspection. In 

level, unaccelerated fl ight, the aerodynamic drag is balanced by the thrust of 

the engine, and the aerodynamic lift is balanced by the weight of the airplane—

almost trivial, but very useful, results. 

 Let us now apply these results to the static performance analysis of an air-

plane. The following sections constitute the building blocks for such an analysis, 

which ultimately yields answers to such questions as how fast, how far, how long, 

and how high a given airplane can fl y. Also, the discussion in these sections relies 

heavily on a graphical approach to the calculation of airplane performance. In 

modern aerospace engineering such calculations are made directly on high-speed 

digital computers. However, the graphical illustrations in the following sections 

are essential to the programming and understanding of such computer solutions; 

moreover, they help to clarify and explain the concepts being presented.   

   6.3   THRUST REQUIRED FOR LEVEL, 
UNACCELERATED FLIGHT 

  Consider an airplane in steady, level fl ight at a given altitude and a given veloc-

ity. For fl ight at this velocity, the airplane’s power plant (such as a turbojet 

engine or reciprocating engine–propeller combination) must produce a net thrust 

equal to the drag. The thrust required to obtain a certain steady velocity is easily 

calculated as follows. From    Eqs. (6.11)  and (5.20),

  T D q SCD=D qq   (6.13)        
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and from    Eqs. (6.12)  and (5.17),

L W q SCL=W qq  (6.14)

Dividing    Eq. (6.13)  by    (6.14)  yields

T

W

C

C
D

L

=
  

(6.15)

Thus from    Eq. (6.15) , the thrust required for an airplane to fl y at a given velocity 

in level, unaccelerated fl ight is

T
W

C

W

D
RTT

L DC
= =

/ /C LDC
  

(6.16)

(Note that a subscript  R  has been added to thrust to emphasize that it is thrust 

required.) 

 Thrust-required  T   R   for a given airplane at a given altitude varies with velocity 

 V  ∞ . The  thrust-required curve  is a plot of this variation and has the general shape 

illustrated in    Fig. 6.6 . To calculate a point on this curve, proceed as follows: 

  1.   Choose a value of  V  ∞ .  

2.   For this  V  ∞ , calculate the lift coeffi cient from    Eq. (6.14) :

C
W

V S
L =

∞ ∞VV1
2

2ρ (6.17)

Figure 6.6 Thrust-required curve. The results on this and subsequent 

fi gures correspond to answers for some of the sample problems in this 

chapter.
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 Note that ρ ∞  is known from the given altitude and  S  is known from the 

given airplane. The  C   L   calculated from    Eq. (6.17)  is the value necessary for 

the lift to balance the known weight  W  of the airplane.  

  3.   Calculate  C   D   from the known drag polar for the airplane
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e
D DC L+CDC ,0

2

π AR        

 where  C   L   is the value obtained from    Eq. (6.17) .  

4.   Form the ratio  C   L  / C   D  .  

5.   Calculate thrust required from    Eq. (6.16) .    

 The value of  T   R   obtained from Step Five is the thrust required to fl y at the 

specifi c velocity chosen in Step One. In turn, the curve in    Fig. 6.6  is the locus of 

all such points taken for all velocities in the fl ight range of the airplane. Study 

   Example 6.1  at the end of this section to become familiar with the preceding 

steps. 

 Note from    Eq. (6.16)  that  T   R   varies inversely as  L / D . Hence, minimum thrust 

required will be obtained when the airplane is fl ying at a velocity where  L / D  is 

maximum. This condition is shown in    Fig. 6.6 . 

 The lift-to-drag ratio  L / D  is a measure of the aerodynamic effi ciency of an air-

plane; it makes sense that maximum aerodynamic effi ciency should lead to  minimum 

thrust required. Consequently, the lift-to-drag ratio is an important aerodynamic con-

sideration in airplane design. Also note that  L / D  is a function of angle of attack, 

as sketched in    Fig. 6.7 . For most conventional subsonic airplanes,  L / D  reaches a 

maximum at some specifi c value of α, usually on the order of 2° to 5°. Thus, when 

an airplane is fl ying at the velocity for minimum  T   R  , as shown in    Fig. 6.6 , it is simul-

taneously fl ying at the angle of attack for maximum  L / D , as shown in    Fig. 6.7 . 

     As a corollary to this discussion, note that different points on the thrust-

required curve correspond to different angles of attack. This is emphasized in 

Figure 6.7 Lift-to-drag ratio versus angle of attack.
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   Fig. 6.8 , which shows that as we move from right to left on the thrust-required 

curve, the airplane angle of attack increases. This also helps to explain physically 

why  T   R   goes through a minimum. Recall that  L  =  W  =  q  ∞   SC L  . At high velocities 

(point  a  in    Fig. 6.8 ), most of the required lift is obtained from high dynamic pres-

sure  q  ∞ ; hence  C   L   and therefore α are small. Also, under the same conditions, drag 

( D  =  q  ∞   SC D  ) is relatively large because  q  ∞  is large. As we move to the left on the 

thrust-required curve,  q  ∞  decreases; hence  C   L   and therefore we α must increase 

to support the given airplane weight. Because  q  ∞  decreases,  D  and hence  T   R   ini-

tially decrease. However, recall that drag due to lift is a component of total drag 

and that  C D,i   varies as  CL
2    . At low velocities, such as at point  b  in    Fig. 6.8 ,  q  ∞  is 

low and therefore  C   L   is large. At these conditions  C D,i   increases rapidly—more 

rapidly than  q  ∞  decreases—and  D  and hence  T   R   increase. This is why, starting 

at point  a, T R   fi rst decreases as  V  ∞  decreases and then goes through a minimum 

and starts to increase, as shown at point  b . 

     Recall from    Eq. (6.1  c ) that the total drag of the airplane is the sum of the zero-

lift drag and the drag due to lift. The corresponding drag coeffi cients are  C   D ,0  and 

 C C eD i L, / ( )2 π AR    , respectively. At the condition for minimum  T   R  , there exists an 

interesting relation between  C   D ,0  and  C D,i  , as follows. From    Eq. (6.11) ,
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Figure 6.8 Thrust-required curve with associated angle-of-attack variation.
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 Note that as identifi ed in    Eq. (6.18) , the thrust required can be considered the 

sum of  zero-lift thrust required  (thrust required to balance zero-lift drag) and  lift-
induced thrust required  (thrust required to balance drag due to lift). Examining 

   Fig. 6.9 , we fi nd that lift-induced  T   R   decreases but zero-lift  T   R   increases as the 

velocity is increased. (Why?) 

 Recall that  C L   =  W /( q  ∞   S ). From    Eq. (6.18) ,

T q SC
W

q S e
DT qT SC +q SCDq SCqqqq

qq
,0

2

π AR
  

(6.19)

Also,
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dq
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dq
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∞VV

∞qq
= (6.20)

From calculus we fi nd that the point of minimum  T   R   in    Fig. 6.6  corresponds 

to  dT R  / dV  ∞  = 0. Hence, from    Eq. (6.20) , minimum  T   R   also corresponds to  dT R  / 
dq  ∞  = 0. Differentiating    Eq. (6.19)  with respect to  q  ∞  and setting the derivative 

equal to zero, we have
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However,
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Figure 6.9 Comparison of lift-induced and zero-lift thrust required.
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Hence    Eq. (6.21)  becomes

C
C

e
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L
D i, ,D0

2

= =L

π AR
Zero-lift dff rag d= rag due to lifttffff

  

(6.22)

   Equation (6.22)  yields the interesting aerodynamic result that at minimum thrust 

required, zero-lift drag equals drag due to lift. Hence, the curves for zero-lift and 

lift-induced  T   R   intersect at the velocity for minimum  T   R   (that is, for maximum 

 L / D ), as shown in    Fig. 6.9 . We will return to this result in    Sec. 6.13 . 

EXAMPLE 6.1

  For all the examples given in this chapter, two types of airplanes will be considered: 

a . A light, single-engine, propeller-driven, private airplane, approximately modeled after 

the Cessna T-41A shown in    Fig. 6.10 . For convenience, we will designate our hypotheti-

cal airplane as the CP-1, having the following characteristics: 

    Wingspan = 35.8 ft  

    Wing area = 174 ft 2   

    Normal gross weight = 2950 lb  

    Fuel capacity: 65 gal of aviation gasoline  

    Power plant: one-piston engine of 230 hp at sea level  

Figure 6.10 The hypothetical CP-1 studied in Ch. 6 sample problems is modeled after the 

Cessna T-41A shown here.
(Source: U.S. Air Force.)
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    Specifi c fuel consumption = 0.45 lb/(hp)(h)  

    Parasite drag coeffi cient  C   D ,0  = 0.025  

    Oswald effi ciency factor  e  = 0.8  

    Propeller effi ciency = 0.8    

      b . A jet-powered executive aircraft, approximately modeled after the Cessna Citation X, 

shown in    Fig. 6.11 . For convenience, we will designate our hypothetical jet as the CJ-1, 

having the following characteristics: 

    Wingspan = 53.3 ft  

    Wing area = 318 ft 2   

    Normal gross weight = 19,815 lb  

    Fuel capacity: 1119 gal of kerosene  

    Power plant: two turbofan engines of 3650 lb thrust each at sea level  

    Specifi c fuel consumption = 0.6 lb of fuel/(lb thrust)(h)  

    Parasite drag coeffi cient  C   D ,0  = 0.02  

    Oswald effi ciency factor  e  = 0.81    

     By the end of this chapter, all the examples taken together will represent a basic 

performance analysis of these two aircraft. 

 In this example, only the thrust required is considered. Calculate the  T   R   curves at sea 

level for both the CP-1 and the CJ-1. 

Figure 6.11 The hypothetical CJ-1 studied in Ch. 6 sample problems is modeled after the 

Cessna Citation X shown here.
(Source: © RGB Ventures LLC dba SuperStock/Alamy.)
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■   Solution 
a . For the CP-1, assume that  V  ∞  = 200 ft/s = 136.4 mi/h. From    Eq. (6.17) ,
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Thus, from    Eq. (6.1  c ),
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Finally, from    Eq. (6.16) ,
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To obtain the thrust-required curve, the preceding calculation is repeated for many differ-

ent values of  V  ∞ . Some sample results are tabulated as follows:  

  V∞   , ft/s   C   L     C   D     L / D    T   R  , lb 

 100  1.43  0.135  10.6  279 
 150  0.634  0.047  13.6  217 
 250  0.228  0.028  8.21  359 
 300  0.159  0.026  6.01  491 
 350  0.116  0.026  4.53  652 

  The preceding tabulation is given so that the reader can try such calculations and com-

pare the results. Such tabulations are given throughout this chapter. They are taken from 

a computer calculation in which 100 different velocities were used to generate the data. 

The  T   R   curve obtained from these calculations is given in    Fig. 6.6 . 

  b . For the CJ-1, assume that  V  ∞  = 500 ft/s = 341 mi/h. From    Eq. (6.17) ,
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Thus, from    Eq. (6.1  c ),
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Finally, from    Eq. (6.16) ,  
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A tabulation for a few different velocities follows:  

  V∞   , ft/s   C   L     C   D     L / D    T   R  , lb 

  300  0.583  0.035  16.7  1188 
  600  0.146  0.021  6.96  2848 
  700  0.107  0.021  5.23  3797 
  850  0.073  0.020  3.59  5525 
 1000  0.052  0.020  2.61  7605 

  The thrust-required curve is shown in    Fig. 6.12 . 

           6.4   THRUST AVAILABLE AND MAXIMUM 
VELOCITY 

  Thrust-required  T   R  , described in    Sec. 6.3 , is dictated by the aerodynamics 

and weight of the airplane itself; it is an  airframe-associated  phenomenon. In 

 contrast, the  thrust-available T   A   is strictly associated with the engine of the 

Figure 6.12 Thrust-required curve for the CJ-1.
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 airplane; it is the propulsive thrust provided by an engine–propeller combina-

tion, a turbojet, a rocket, or the like. Propulsion is the subject of Ch. 9. Suffi ce it 

to say here that reciprocating piston engines with propellers exhibit a variation 

of thrust with velocity, as sketched in    Fig. 6.13  a . Thrust at zero velocity (static 

thrust) is a maximum and decreases with forward velocity. At near-sonic fl ight 

speeds, the tips of the propeller blades encounter the same compressibility prob-

lems discussed in Ch. 5, and the thrust available rapidly deteriorates. In contrast, 

the thrust of a turbojet engine is relatively constant with velocity, as sketched in 

   Fig. 6.13  b . These two power plants are quite common in aviation today; recipro-

cating engine–propeller combinations power the average light, general aviation 

aircraft, whereas jet engines are used by almost all large commercial transports 

and military combat aircraft. For these reasons, the performance analyses of this 

chapter consider only these two propulsive mechanisms. 

     Consider a jet airplane fl ying in level, unaccelerated fl ight at a given altitude 

and with velocity  V  1 , as shown in    Fig. 6.12 . Point 1 on the thrust-required curve 

gives the value of  T   R   for the airplane to fl y at velocity  V  1 . The pilot has adjusted 

the throttle so that the jet engine provides thrust available just equal to the thrust 

required at this point:  T   A   =  T   R  . This partial-throttle  T   A   is illustrated by the dashed 

Figure 6.13 Thrust-available curves for (a) piston engine–propeller combination 

and (b) a turbojet engine.
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curve in    Fig. 6.12 . If the pilot now pushes the throttle forward and increases the 

engine thrust to a higher value of  T   A  , the airplane will accelerate to a higher ve-

locity. If the throttle is increased to full position, maximum  T   A   will be produced 

by the jet engine. In this case the speed of the airplane will further increase until 

the thrust required equals the maximum  T   A   (point 2 in    Fig. 6.12 ). It is now im-

possible for the airplane to fl y any faster than the velocity at point 2; otherwise 

the thrust required would exceed the maximum thrust available from the power 

plant. Hence  the intersection of the T   R    curve  ( dependent on the airframe )  and 
the maximum T   A    curve  ( dependent on the engine )  defi nes the maximum velocity 
V  max   of the airplane at the given altitude,  as shown in    Fig. 6.12 . Calculating the 

maximum velocity is an important part of the airplane design process. 

 Conventional jet engines are rated in terms of thrust (usually in pounds). 

Hence, the thrust curves in    Fig. 6.12  are useful for the performance analysis of a 

jet-powered aircraft. However, piston engines are rated in terms of power (usu-

ally horsepower); so the concepts of  T   A   and  T   R   are inconvenient for propeller-

driven aircraft. In this case power required and power available are the more 

relevant quantities. Moreover, considerations of power lead to results such as 

rate of climb and maximum altitude for both jet and propeller-driven airplanes. 

Therefore, for the remainder of this chapter, emphasis is placed on power rather 

than thrust, as introduced in    Sec. 6.5 . 

EXAMPLE 6.2

  Calculate the maximum velocity of the CJ-1 at sea level (see    Example 6.1 ). 

■  Solution 
  The information given in    Example 6.1  states that the power plant for the CJ-1 consists of 

two turbofan engines of 3650 lb thrust each at sea level. Hence

TAT = =2 3650 7300( )3650 lb

Examining the results of    Example 6.1 , we see that  T   R   =  T   A   = 7300 lb occurs when  V  ∞  =
975 ft/s (see    Fig. 6.12 ). Hence

 
VmaVV x = =975 ft/sff 665 mi/h

       

It is interesting to note that because the sea-level speed of sound is 1117 ft/s, the maxi-

mum sea-level Mach number is

M
V

a
max

maVV x= = =975

1117
0 8. 7

In the present examples,  C   D ,0  is assumed constant; hence the drag polar does not include 

drag-divergence effects, as discussed in Ch. 5. Because the drag-divergence Mach num-

ber for this type of airplane is normally on the order of 0.82 to 0.85, the preceding calcu-

lation indicates that  M  max  is greater than drag divergence, and our assumption of constant 

 C   D ,0  becomes inaccurate at this high a Mach number.     
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   6.5   POWER REQUIRED FOR LEVEL, 
UNACCELERATED FLIGHT 

Power  is a precisely defi ned mechanical term; it is energy per unit time. The 

power associated with a moving object can be illustrated by a block moving 

at constant velocity  V  under the infl uence of the constant force  F , as shown in 

   Fig. 6.14 . The block moves from left to right through distance  d  in a time inter-

val  t  2  −  t  1 . (We assume that an opposing equal force not shown in    Fig. 6.14 , say 

due to friction, keeps the block from accelerating.)  Work  is another precisely 

defi ned mechanical term; it is force multiplied by the distance through which 

the force moves. Moreover, work is energy, having the same units as energy. 

Hence
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Applied to the moving block in    Fig. 6.14 , this becomes
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where  d /( t  2  −  t  1 ) is the velocity  V  of the object.    Equation (6.23)  thus demonstrates 

that the power associated with a force exerted on a moving object is force ×
velocity, an important result. 

 Consider an airplane in level, unaccelerated fl ight at a given altitude and 

with velocity  V  ∞ . The thrust required is  T   R  . From    Eq. (6.23) , the  power required 
P   R   is therefore

  
P T VR RP TP T ∞VV

  
(6.24)

         

 The effect of the airplane aerodynamics ( C   L   and  C   D  ) on  P   R   is readily ob-

tained by combining    Eqs. (6.16)  and    (6.24) :

P T V
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/   

(6.25)

From    Eq. (6.12) ,
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Figure 6.14 Force, velocity, and power of a moving body.
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Hence
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Substituting    Eq. (6.26)  into (   6.25 ), we obtain
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In contrast to thrust required, which varies inversely as  C   L  / C   D   [see    Eq. (6.16) ], 

power required varies inversely as  C CL DC3 2/    . 

 The power-required curve is defi ned as a plot of  P   R   versus  V  ∞ , as sketched 

in    Fig. 6.15 ; note that it qualitatively resembles the thrust-required curve 

of    Fig.  6.6 . As the airplane velocity increases,  P   R   fi rst decreases, then goes 

through a minimum, and fi nally increases. At the velocity for minimum power 

Figure 6.15 Power-required curve for the CP-1 at sea level.
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required, the airplane is fl ying at the angle of attack that corresponds to a maxi-

mum  C CL DC3 2/    . 

     In    Sec. 6.3  we demonstrated that minimum  T   R   aerodynamically corresponds 

to equal zero-lift and lift-induced drag. An analogous but different relation holds 

at minimum  P   R  . From    Eqs. (6.11)  and    (6.24) ,
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Therefore, as in the earlier case of  T   R  , the power required can be split into the 

respective contributions needed to overcome zero-lift drag and drag due to lift. 

These contributions are sketched in    Fig. 6.16 . Also as before, we can obtain the 

aerodynamic conditions associated with minimum  P   R   from    Eq. (6.28)  by setting 

 dP R  / dV  ∞  = 0. To do this, fi rst obtain    Eq. (6.28)  explicitly in terms of  V  ∞ , recalling 

that  q V∞q Vq V1
2
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Figure 6.16 Comparison of lift-induced, zero-lift, and net 

power required.
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For minimum power required,  dP R  / dV  ∞  = 0. Differentiating    Eq. (6.29)  yields
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Hence, the aerodynamic condition that holds at minimum power required is

  C CD DC i, ,D
1
3   (6.30)        

The fact that zero-lift drag is one-third the drag due to lift at minimum  P   R   is 

reinforced by examination of    Fig. 6.16 . Also note that point 1 in    Fig. 6.16  cor-

responds to  C   D ,0  =  C D,i   (that is, minimum  T   R  ); hence  V  ∞  for minimum  P   R   is less 

than that for minimum  T   R  . 

 The point on the power-required curve that corresponds to minimum  T   R   is 

easily obtained by drawing a line through the origin and tangent to the  P   R   curve, 

as shown in    Fig. 6.17 . The point of tangency corresponds to minimum  T   R   (and 

hence maximum  L / D ). To prove this, consider any line through the origin and 

intersecting the  P   R   curve, such as the dashed line in    Fig. 6.17 . The slope of this 

line is  P   R  / V  ∞ . As we move to the right along the  P   R   curve, the slope of an inter-

secting line will fi rst decrease, then reach a minimum (at the tangent point), 

Figure 6.17 The tangent to the power-required curve locates 

the point of minimum thrust required (and hence the point of 

maximum L/D).
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and again increase. This is clearly seen simply by inspection of the geometry of 

   Fig. 6.17 . Thus, the point of tangency corresponds to a minimum slope and hence 

a minimum value of  P   R  / V  ∞ . In turn, from calculus this corresponds to

d P V

dV

d T V

dV

dT

dV
R RV TT RTT( /PRPP ) dd / )VVV

∞VV
∞VV /VV

∞ ∞VV dVV
= = = 0

This result yields  dT R  / dV  ∞  = 0 at the tangent point, which is precisely the math-

ematical criterion for minimum  T   R  . Correspondingly,  L / D  is maximum at the 

tangent point. 

EXAMPLE 6.3

 Calculate the power-required curves for ( a ) the CP-1 at sea level and ( b ) the CJ-1 at an 

altitude of 22,000 ft. 

■  Solution 
a . For the CP-1, the values of  T   R   at sea level have already been tabulated and graphed in 
   Example 6.1 . Hence, from    Eq. (6.24) ,

P T VR RP TP T ∞VV

we obtain the following tabulation:  

  V , ft /s   T   R  , lb   P   R  , ft · lb/s 

 100  279   27,860 
 150  217   32,580 
 250  359   89,860 
 300  491  147,200 
 350  652  228,100 

  The power-required curve is given in    Fig. 6.15 . 

b . For the CJ-1 at 22,000 ft, ρ∞ = 0.001184 slug/ft 3 . The calculation of  TR   is done with the 

same method as given in    Example 6.1 , and  PR   is obtained from    Eq. (6.24) . Some results 

are tabulated here:  

V∞   , ft /s CL CD L / D TR  , lb PR  , ft · lb/s 

  300  1.17  0.081  14.6  1358  0.041 × 10 7  
  500  0.421  0.028  15.2  1308  0.065 × 10 7  
  600  0.292  0.024  12.3  1610  0.097 × 10 7  
  800  0.165  0.021  7.76  2553  0.204 × 10 7  
 1000  0.105  0.020  5.14  3857  0.386 × 10 7  

  The reader should attempt to reproduce these results. 

 The power-required curve is given in    Fig. 6.18 . 
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           6.6   POWER AVAILABLE AND MAXIMUM VELOCITY 
  Note again that  PR   is a characteristic of the aerodynamic design and weight of the 

aircraft itself. In contrast, the  power available PA   is a characteristic of the power 

plant. A detailed discussion of propulsion is deferred until Ch. 9; however, the 

following comments are made to expedite our performance analyses. 

   6.6.1  Reciprocating Engine–Propeller Combination 

 A piston engine generates power by burning fuel in confi ned cylinders and using 

this energy to move pistons, which, in turn, deliver power to the rotating crank-

shaft, as schematically shown in    Fig. 6.19 . The power delivered to the propeller by 

the crankshaft is defi ned as the  shaft brake power P  (the word  brake  stems from 

a method of laboratory testing that measures the power of an engine by loading it 

with a calibrated brake mechanism). However, not all  P  is available to drive the 

airplane; some of it is dissipated by ineffi ciencies of the propeller itself (to be dis-

cussed in Ch. 9). Hence, the power available to propel the airplane  PA   is given by

P PAP ηP  (6.31)

where η is the propeller effi ciency, η < 1. Propeller effi ciency is an important 

quantity and is a direct product of the aerodynamics of the propeller. It is always 

less than unity. For our discussions here, both η and  P  are assumed to be known 

quantities for a given airplane. 

Figure 6.18 Power-required curve for the CJ-1 at 22,000 ft.
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 A remark about units is necessary. In the engineering system, power is in 

foot-pounds per second (ft · lb/s); in SI, power is in watts [which are equivalent 

to newton-meters per second (N · m/s)]. However, the historical evolution of en-

gineering has left us with a horrendously inconsistent (but very convenient) unit 

of power that is widely used: horsepower. All reciprocating engines are rated in 

terms of horsepower (hp), and it is important to note that

1 550 746hp ft lb/s W= ⋅550 ft =

Therefore, it is common to use  shaft brake horsepower  bhp in place of  P , and 

horsepower available hp  A   in place of  PA  .    Equation (6.31)  still holds in the form

hp ( )(bhp)A = η  (6.32)

However, be cautious. As always in dealing with fundamental physical relations, 

units must be consistent; therefore, a good habit is to immediately convert horse-

power to foot-pounds per second or to watts before starting an analysis. This 

approach is used here. 

 The power-available curve for a typical piston engine–propeller combination 

is sketched in    Fig. 6.20  a . 

Figure 6.19 Relation between shaft brake power and power 

available.

Figure 6.20 Power available for (a) a piston engine–propeller combination and (b) a jet engine.
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        6.6.2  Jet Engine 

 The jet engine (see Ch. 9) derives its thrust by combustion-heating an incoming 

stream of air and then exhausting this hot air at high velocities through a nozzle. 

The power available from a jet engine is obtained from    Eq. (6.23)  as

  P T VA AP T ∞VV   (6.33)

Recall from    Fig. 6.13  b  that  T   A   for a jet engine is reasonably constant with 

velocity. Thus, the power-available curve varies essentially linearly with  V  ∞ , as 

sketched in    Fig. 6.20  b . 

 For both the propeller- and jet-powered aircraft, the maximum fl ight veloc-

ity is determined by the high-speed intersection of the maximum  P   A   and the  P   R
curves. This is illustrated in    Fig. 6.21 . Because of their utility in determining 

other performance characteristics of an airplane, these power curves are essential 

to any performance analysis. 

EXAMPLE 6.4

 Calculate the maximum velocity for ( a ) the CP-1 at sea level and ( b ) the CJ-1 at 22,000 ft. 

■  Solution 
   a . For the CP-1, the information in    Example 6.1  gave the horsepower rating of the power 

plant at sea level as 230 hp. Hence

 hp ( )(bhp) 0.80(230) 184 hpA =)(bhp)= ( =η        

The results of    Example 6.3  for power required are replotted in    Fig. 6.21  a  in terms of 

horsepower. The horsepower available is also shown, and  V  max  is determined by the 

 intersection of the curves as

 
VmaVV x 265 ft/sff 181 mi/h= =265 ft/sf

        

  b . For the CJ-1, again from the information given in    Example 6.1 , the sea-level static 

thrust for each engine is 3650 lb. There are two engines; hence  T   A   = 2(3650) = 7300 lb. 

From    Eq. (6.33) ,  P   A   =  T   A   V  ∞ ; and in terms of horsepower, where  T   A   is in pounds and  V  ∞  

is in feet per second,

 
hpA

AT VA= ∞VV

550        

Let hp  A ,0  be the horsepower at sea level. As we will see in Ch. 9, the thrust of a jet engine 

is, to a fi rst approximation, proportional to air density. If we make this approximation 

here, the thrust at altitude becomes

 

T TA AT T,alt ,
ρ
ρ0

0

       

Hence

  

hp hp,alt ,0AhpA,alt = ρ
ρ0        
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Figure 6.21  Power-

available and  power-

required curves and 

the determination of 

maximum velocity. 

(a) Propeller-driven 

airplane. (b) Jet-

propelled airplane.
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For the CJ-1 at 22,000 ft, where ρ = 0.001184 slug/ft 3 ,

 
hp ,altA

A= =( / ) (AT VA ∞VV . / . )( )ρ ρ/ 0

550

0 0 VV
V∞VV

∞VV=
550

6 61
       

The results of    Example 6.3  for power required are replotted in    Fig. 6.21  b  in terms of 

horsepower. The horsepower available, obtained from the preceding equation, is also 

shown, and  V  max  is determined by the intersection of the curves as

 
VmaVV x 965 ft/sff 658 mi/h= =965 ft/sf

             

   6.7   ALTITUDE EFFECTS ON POWER REQUIRED 
AND AVAILABLE 

  With regard to  P   R  , curves at altitude could be generated by repeating the cal-

culations of the previous sections, with ρ ∞  appropriate to the given altitude. 

However, once the sea-level  P   R   curve is calculated by means of this process, 

the curves at altitude can be more quickly obtained by simple ratios, as fol-

lows. Let the subscript 0 designate sea-level conditions. From    Eqs. (6.26)  

and    (6.27) ,
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where  V  0 ,  P   R ,0 , and ρ 0  are velocity, power, and density, respectively, at sea level. 

At altitude, where the density is ρ, these relations are
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SCL
alVV t = 2

ρ (6.36)
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3ρ
(6.37)

Now, strictly for the purposes of calculation, let  C   L   remain fi xed between sea 

level and altitude. Hence, because  C C C eD DC L+CDC , / (0
2 π AR)   , also  C   D   remains 

fi xed. Dividing    Eq. (6.36)  by (   6.34 ), and    Eq. (6.37)  by (6.35), we obtain
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and
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Geometrically, these equations allow us to plot a point on the  P   R   curve at altitude 

from a given point on the sea-level curve. For example, consider point 1 on the 

sea-level  P   R   curve sketched in    Fig. 6.22 . By multiplying both the velocity and the 

power at point 1 by (ρ 0  /ρ) 1/2 , we obtain a new point—point 2 in    Fig. 6.22 . Point 2 

is guaranteed to fall on the curve at altitude because of our previous analysis. 

In this fashion, the complete  P   R   curve at altitude can be readily obtained from 

the sea-level curve. The results are qualitatively given in    Fig. 6.23 , where the 

Figure 6.22 Correspondence of points on sea-level and altitude power-required curves.

Figure 6.23 Effect of altitude on power required.
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 altitude curves tend to experience an upward and rightward translation as well as 

a slight clockwise rotation. 

         With regard to  P   A  , the lower air density at altitude invariably causes a reduc-

tion in power for both reciprocating and jet engines. In this book we assume  P   A   

and  T   A   to be proportional to ambient density, as in    Example 6.4 . Reasons for this 

will be made clear in Ch. 9. For the reciprocating engine, the loss in power can 

be delayed by using a supercharger. Nevertheless, the impact on airplane perfor-

mance due to altitude effects is illustrated in    Figs. 6.24  a  and  b  for the propeller- 

and jet-powered airplanes, respectively. Both  P   R   and maximum  P   A   are shown; the 

solid curves correspond to sea level and the dashed curves to altitude. From these 

curves, note that  V  max  varies with altitude. Also note that at high enough altitude, 

the low-speed limit, which is usually dictated by  V  stall , may instead be determined 

by maximum  P   A  . This effect is emphasized in    Fig. 6.25 , where maximum  P   A   has 

been reduced to the extent that, at velocities just above stalling,  P   R   exceeds  P   A  . 

For this case we make the interesting conclusion that stalling speed cannot be 

reached in level, steady fl ight. 

     To this point in our discussion, only the horizontal velocity perfor-

mance—both maximum and minimum speeds in steady, level fl ight—has been 

Figure 6.24 Effect of altitude on maximum velocity. (a) Propeller-driven 
airplane. (continued )
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Figure 6.25 Situation when minimum velocity at altitude is 

greater than stalling velocity.

Figure 6.24 (concluded ) (b) Jet-propelled airplane.
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emphasized. We have seen that the maximum velocity of an airplane is deter-

mined by the high-speed intersection of the  P   A   and  P   R   curves and that the mini-

mum velocity is determined either by stalling or by the low-speed intersection of 

the power curves. These velocity considerations are an important part of airplane 

performance; indeed, for some airplanes, such as many military fi ghter planes, 

squeezing the maximum velocity out of the aircraft is the pivotal design feature. 

However, this is just the beginning of the performance story; we examine other 

important characteristics in the remaining sections of this chapter. 

EXAMPLE 6.5

  Using the method of this section, from the CJ-1 power-required curve at 22,000 ft in 

   Example 6.4 , obtain the CJ-1 power-required curve at sea level. Compare the maximum 

velocities at both altitudes. 

■  Solution 
 From    Eqs. (6.38)  and    (6.39) , corresponding points on the power-required curves for sea 
level and altitude are, respectively,
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We are given  V  alt  and hp  R ,alt  for 22,000 ft from the CJ-1 curve in    Example 6.4 . Using the 

formulas here, we can generate  V  0  and hp  R ,0  as in the following table, noting that
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 Generated Points 

  V  alt , ft/s  hp  R ,alt    V  0 , ft/s  hp  R ,0  

  200   889  0.706  141   628 
  300   741 

  

 212   523 
  500  1190  353   840 
  800  3713  565  2621 
 1000  7012  706  4950 

  These results, along with the hp  A   curves for sea level and 22,000 ft, are plotted in    Fig. 6.26 . 

Looking closely at    Fig. 6.26 , note that point 1 on the hp  R   curve at 22,000 ft is used to 

generate point 2 on the hp  R   curve at sea level. This illustrates the idea of this section. 

Also note that  V  max  at sea level is 975 ft/s = 665 mi/h. This is slightly larger than  V  max  at 

22,000 ft, which is 965 ft/s = 658 mi/h.    
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Figure 6.26 Altitude effects on Vmax for the CJ-1.

      EXAMPLE 6.6  

 For a given airplane in steady, level fl ight, prove that    Eq. (6.39)  relates the minimum 

power required at altitude, ( P R   ,alt ) min , to the minimum power required at sea level, ( P R   ,0 ) min . 

In other words, prove that

( )

( )
, min

, min

/

R

R

alt

0

0

1 2/

=
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
ρ
ρ

  (E 6.6.1)

■  Solution 
     Equation (6.39)  relates a point on the power-required curve at altitude (point 2 in    Fig 6.22 ) 

to the corresponding point on the power-required curve at sea level (point 1 in    Fig. 6.22 ) 
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where  C L   is the same value at both points. For the special case where point 1 in    Fig. 6.22  

pertains to the  minimum P R   at sea level, we wish to prove that point 2 in    Fig. 6.22  then 

pertains to the  minimum P R   at altitude. This is not immediately obvious from the deriva-

tion given for    Eq. (6.39) , which depends just on the assumption of the same  C L   at points 

1 and 2. 

 From    Eq. (6.27) , the general formula for  P R   is
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  (E 6.6.2)

As clearly seen in    Eq. (E 6.6.2) ,  P R   is inversely proportional to the aerodynamic ratio 

C CL DC3 2/    , and ( P R  ) min  occurs when the airplane is fl ying at the condition where  C CL DC3 2/     is 

a maximum. Recall that  C L   and  C D   are  aerodynamic  characteristics of the airplane; for a 

given airplane they are functions of angle of attack, Mach number, and Reynolds number, 

as discussed in Sec. 5.3. If we neglect Mach-number and Reynolds-number effects, then 

 C L   and  C D   are functions of just angle of attack. Hence, the ratio  C CL DC3 2/     is a function of 

just the angle of attack, and the maximum value of  C CL DC3 2/     is a specifi c value that  occurs 

at a specifi c angle of attack. So, a given airplane has a specifi c value of  ( / )maxC/L DC/3 2/

dictated by the aerodynamics of the airplane, and this value is the same regardless of the 

altitude at which the airplane is fl ying. 

 Returning to    Eq. (E 6.6.2) , we have
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Writing    Eq. (E 6.6.3)  for  maximum  power required at both altitude and sea level, 

we have
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But from the above discussion,
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Hence,    Eq. (E 6.6.4)  becomes
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This proves    Eq. (E 6.6.1) .   
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 Compare the numerical results obtained in    Example 6.5  for minimum power required for 

the CJ-1 for sea level and 22,000 ft with the analytical result obtained in    Example 6.6 . 

■ Solution 
 From the numerical tabulation in    Example 6.5 ,

( )hpR,0 min = 523        

( )hpR,alt min = 741

Thus
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From    Eq. (E 6.6.1)  in    Example 6.6 ,
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At an altitude of 22,000 ft, ρ = 1.1836 × 10 −3  slug/ft 3 . Thus,
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The results, as expected, are the same. In fact, this confi rms the validity of the numerical 

results computed in    Example 6.5 .   

   EXAMPLE 6.7  

   EXAMPLE 6.8  

 Analytically calculate V max  at an altitude of 22,000 ft for the CJ-1 using    Eq. (6.44) , and 

compare with the graphical result obtained in    Example 6.5 . 

  ■ Solution 
 For the CJ-1 from our previous examples,  W  = 19,815 lb,  T  A  = 7300 lb at sea level, 

 C D   ,0  = 0.02,  e  = 0.81, and AR = 8.93. From App. B, at 22,000 ft, ρ ∞  = 0.001183 slug/ft 3 . 

Thus, the thrust available at 22,000 ft is
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From    Eq. 6.44 , repeated here,
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From    Example 6.2 , the graphical solution gave  V  max  = 965 ft/s. The analytical 

 result and the graphical solution agree within 0.4%, as they should. Both the graphi-

cal and analytical results stem from the same basic equations. However, note that 

the graphical result is “within graphical accuracy,” whereas the analytical results 

are mathematically precise. Also, the analytical formula of    Eq. (6.44)  gives a much 

simpler and faster calculation of  V  max  compared to the multiple numerical calcula-

tions required to calculate and plot the thrust-required and thrust-available curves in 

   Examples 6.1  and    6.2 .   

   EXAMPLE 6.9  

 In    Example 6.8 , the term 4  C D,0    /π  e AR is found to be numerically smaller than ( T A  / W ) 2  max . 

Neglect this term in    Eq. (6.44)  and again calculate  V  max . Comment on the implications. 

  ■ Solution 
 Neglecting the term 4  C D,0   /π  e AR in    Eq. (6.44) , we have
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The result obtained here differs from the result in    Example 6.8  by only 1.34%. Thus we 

see that the neglected term in    Eq. (6.44)  has little impact. 
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 What is this neglected term physically? Examining the derivation of    Eq. (6.44)  in the 

design box, it comes from the drag due to lift. We have mentioned frequently in Chs. 5 

and 6 that for an airplane fl ying at high velocities, the drag due to lift is much smaller than 

the zero-lift drag. In fact, if we simply set  T  =  D  for steady, level fl ight, and assume that 

the drag is only due to the zero-lift drag, we have
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The maximum velocity will occur when the engine is putting out maximum thrust, so 

we have
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This is precisely the resulting formula obtained from    Eq. (6.44)  when the term 4 

C D   ,0   / π e AR is neglected. 

Conclusion  For the quickest possible estimation of the maximum velocity of an air-

plane, set

max ,V) S CA D)max V)max S C1
2

2
0

and solve for  V  max .     

   6.8  RATE OF CLIMB 
  Visualize a Boeing 777 transport (see    Fig. 6.27 ) powering itself to takeoff 

speed on an airport runway. It gently lifts off at about 180 mi/h, the nose rotates 

upward, and the airplane rapidly climbs out of sight. In a matter of minutes, it is 

cruising at 30,000 ft. This picture prompts the following questions: How fast can 

the airplane climb? How long does it take to reach a certain altitude? The next 

two sections provide some answers. 

   Consider an airplane in steady, unaccelerated, climbing fl ight, as shown in 

   Fig. 6.28 . The velocity along the fl ight path is  V  ∞ , and the fl ight path itself is 

inclined to the horizontal at angle  θ . As always, lift and drag are perpendicular 

and parallel to  V  ∞ , and the weight is perpendicular to the horizontal. Thrust  T
is assumed to be aligned with the fl ight path. Here the physical difference from 

our previous discussion of level fl ight is that not only is  T  working to overcome 
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 DESIGN BOX 

 Maximum velocity at a given altitude is frequently 

a part of the set of specifi cations for a new airplane 

design. To design an airplane for a given  V  max , what 

characteristics of the airplane would you, the air-

plane designer, be concerned with? That is, what 

design  aspects of the airplane dictate the maximum 

velocity? The answer to this question reveals several 

critical design parameters that are important not only 

for  V  max  but also for other performance aspects of the 

airplane. Let us answer this question by obtaining an 

equation for  V  max  and examining the parameters in the 

equation. Combining    Eqs. (6.1  c ) and    (6.13) , we have

  T q SC q S C
C

e
DCD q S L=q SCD +

⎛

⎝
⎜
⎛⎛ ⎞

⎠
⎟
⎞⎞

⎠⎠
∞qq SCD qq ,0

2

π AR
  (6.40)        

From    Eq. (6.14) , we obtain for steady, level fl ight

C
W

q S
L =

qq
  (6.41)        

Inserting    Eq. (6.41)  into (   6.40 ) yields

T q S C
W

q S e

q SC
W

q S e

D

D

+CDq S
⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

= +q SCD

∞qqqq
qq

qqqq
qq

,

,

0

2

2 2S

0

2

π

π

AR

AR
  (6.42)        

Multiply    Eq. (6.42)  by  q  ∞  by and rearrange:

q SC q T
W

S e
∞qqq Sq C +q T∞qq =2

2

0, π AR
  (6.43)        

   Eq. (6.43)  is a quadratic equation in terms of  q  ∞ . Solv-

ing    Eq. (6.43)  for  q  ∞  by use of the quadratic formula, 

recalling that  qq ∞VV1
2

2ρ    , and setting T in    Eq. (6.43)  

equal to the maximum thrust available (full-throttle 

thrust) ( T A  ) max , we obtain for the maximum velocity 

(the details are left to you as a homework problem)
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(6.44)         

 Examine    Eq. (6.44)  carefully. Note that ( T   A  ) max

does not appear alone; it appears only in the  ratio
( T   A  / W ) max . Also note that the wing planform area 

S  does not appear alone but only in the  ratio W/S . 

Hence  V  max  depends not on thrust alone, or weight 

alone, or wing area alone, but rather only on certain 

 ratios  of these quantities:

 

T

W
W

S

AT⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ max

: maximum thrust-to-weight ratio

wing loading:
       

We have just identifi ed two of the most important 

airplane design parameters: thrust-to-weight ratio 

and wing loading. In addition, from    Eq. (6.44) , we 

see that  V  max  depends on ρ ∞  (altitude), the zero-lift 

drag coeffi cient  C   D ,0 , and the product  e AR. Later, in 

   Sec. 6.15 , we show that the product  πe AR is equal 

to  4 2C 0 DD, m00 D ax( /LL )DD    , where ( L /D ) max  is the maximum 

value of the lift-to-drag ratio for the airplane. Hence 

( L/D ) max  is also an important design parameter. 

 From    Eq. (6.44) , we conclude that  V  max  can be 

increased by 

  1.   Increasing the maximum thrust-to-weight ratio 

( T   A  / W  ) max .  

  2.   Increasing the wing loading  W / S .  

  3.   Decreasing the zero-lift drag coeffi cient  C   D ,0 .   

These trends are almost intuitively obvious, even 

without looking at    Eq. (6.44) , except possibly for 

the benefi t of increasing the wing loading. To help 

 understand the advantage of a high wing loading in 

this case, imagine that  W / S  is increased by decreas-

ing  S . If the planform area is made smaller, the total 

skin friction drag on the wing is reduced (less sur-

face for the shear stress to act on), and hence  V  max  is 

 increased. 

 The results discussed here are important to other 

aspects of airplane performance. The design param-

eters  T / W  and  W / S  have a strong effect on other per-

formance quantities in addition to  V  max , as we will see 

in subsequent sections. 
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the drag, but for climbing fl ight it is also supporting a component of weight. 

Summing forces parallel to the fl ight path, we get

T D W= +D sinθ  (6.45)

and perpendicular to the fl ight path, we have

L W cos θ   (6.46)

Figure 6.27  Three-view of the Boeing 777-200 twin-turbofan high-capacity commercial airliner. 

Figure 6.28  Airplane in climbing fl ight. 
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Note from    Eq. (6.46)  that the lift is now smaller than the weight.    Equations (6.45)  

and    (6.46)  represent the equations of motion for steady, climbing fl ight and are 

analogous to    Eqs. (6.11)  and    (6.12)  obtained earlier for steady, horizontal fl ight. 

  Multiply    Eq. (6.45)  by  V  ∞ :

  
TV DV WV

TV DV

W
V

∞ ∞VV DVV ∞VV

∞ ∞VV DVV
∞VV

= +DV∞DVV

− =

sin

sin

θ

θ
  (6.47)

Examine    Eq. (6.47)  closely. The right side,  V  ∞  sin θ , is the airplane’s  vertical 
velocity,  as illustrated in    Fig. 6.28 . This vertical velocity is called the  rate of 
climb  R/C:

R/C ≡ ∞V∞ sinθ   (6.48)

On the left side of    Eq. (6.47) ,  TV  ∞  is the power available, from    Eq. (6.33) , and 

is represented by the  P   A   curves in    Fig. 6.20 . The second term on the left side of 

   Eq. (6.47)  is  DV  ∞ , which for level fl ight is the power required, as represented 

by the  P   R   curve in    Fig. 6.15 . For climbing fl ight, however,  DV  ∞  is no longer 

 precisely the power required, because power must be applied to overcome a 

component of weight as well as drag. Nevertheless, for small angles of climb, 

say  θ  < 20°, it is reasonable to neglect this fact and to assume that the  DV  ∞  term 

in    Eq. (6.47)  is given by the level-fl ight  P   R   curve in    Fig. 6.15 . With this,

  TV DV∞ ∞VV DVV =− excess power  (6.49)

where the excess power is the difference between power available and power 

required, as shown in    Figs. 6.29  a  and    6.29  b , for propeller-driven and jet- powered 

aircraft, respectively. Combining    Eqs. (6.47)  to    (6.49) , we obtain

  R/C
excess power=

W
 (6.50)

where the excess power is clearly illustrated in    Fig. 6.29 . 

Figure 6.29  Illustration of excess power. ( a ) Propeller-driven airplane. ( b ) Jet-propelled 

airplane. 
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  Again we emphasize that the  P   R   curves in    Figs. 6.29  a  and    6.29  b  are taken, 

for convenience, as those already calculated for level fl ight. Hence  in conjunc-
tion with these curves,     Eq. (6.50)  is an  approximation  to the rate of climb, good 

only for small  θ . To be more specifi c, a plot of  DV  ∞  versus  V  ∞  for climbing fl ight 

[which is exactly called for in    Eq. (6.47) ] is different from a plot of  DV  ∞  versus 

 V  ∞  for level fl ight [which is the curve assumed in    Fig. 6.29  and used in    Eq. (6.50) ] 

simply because  D is smaller for climbing than for level fl ight at the same V  ∞ . To 

see this more clearly, consider an airplane with  W  = 5000 lb,  S  = 100 ft 2 ,  C   D ,0  = 

0.015,  e  = 0.6, and AR = 6. If the velocity is  V  ∞  = 500 ft/s at sea level and if the 

airplane is in  level  fl ight, then  q SL L q S =S/ ( ) /W= W ( )V S∞ ∞VV .1
2

2 0 168ρ    . In turn,

  C C
C

e
D DC L+CDC = + =, . .+ .0

2

0 015 0 0025 0 0175
π AR

       

Now consider the same airplane in a 30° climb at sea level, with the same veloc-

ity  V  ∞  = 500 ft/s. Here the lift is smaller than the weight,  L  =  W  cos θ , and there-

fore  C WL = °W =cos /° ( )V S∞ ∞VV .0 1451
2

2ρ    . In turn,  + =. . .015 0 0019 0 0169   . 

This should be compared with the higher value of 0.0175 obtained earlier for 

level fl ight. As seen in this example, for steady climbing fl ight,  L  (and hence  C   L  ) 

is smaller, and thus induced drag is smaller. Consequently, total drag for climb-

ing fl ight is smaller than that for level fl ight at the same velocity. 

 Return again to    Fig. 6.29 , which corresponds to a given altitude. Note that 

the excess power is different at different values of  V  ∞ . Indeed, for both the 

 propeller- and jet-powered aircraft there is some  V  ∞  at which the excess power is 

maximum. At this point, from    Eq. (6.50) , R/C will be maximum:

  max R/C
maximum excess power=

W
  (6.51)        

This situation is sketched in    Fig. 6.30  a , where the power available is that at 

full throttle—that is, maximum  P   A  . The maximum excess power, shown in 

   Fig. 6.30  a , via    Eq. (6.51)  yields the maximum rate of climb that can be gener-

ated by the airplane at the given altitude. A convenient graphical method of 

determining maximum R/C is to plot R/C versus  V  ∞ , as shown in    Fig. 6.30  b . 

A horizontal tangent defi nes the point of maximum R/C. Another useful 

construction is the  hodograph  diagram, which is a plot of the airplane’s verti-

cal velocity  V   v   versus its horizontal velocity  V   h  . Such a hodograph is sketched 

in    Fig. 6.31 . Remember that R/C is defi ned as the vertical velocity, R/C ≡  V v  ; 
hence a horizontal tangent to the hodograph defi nes the point of maximum R/C 

(point 1 in    Fig. 6.31 ). Also, any line through the origin and intersecting the 

hodograph (say at point 2) has the slope  V   v   / V   h  ; hence, from the geometry of 

the velocity components, such a line makes the climb angle  θ  with respect to 

the horizontal axis, as shown in    Fig. 6.31 . Moreover, the length of the line is 

equal to  V  ∞ . As this line is rotated counterclockwise, R/C fi rst increases, then 

goes through its maximum, and fi nally decreases. Finally, the line becomes 

tangent to the hodograph at point  3. This tangent line gives the maximum 

climb angle for which the airplane can maintain steady fl ight, shown as  θ  max  in 
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   Fig. 6.31 . It is interesting that maximum R/C does  not  occur at the maximum 

climb angle. 

   The large excess power and high thrust available in modern aircraft allow 

climbing fl ight at virtually any angle. For large climb angles, the previous  analysis is 

  

  Figure 6.30  Determination of maximum rate of climb 

for a given altitude. 

  
  Figure 6.31  Hodograph for climb performance at a given altitude. 
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not valid. Instead, to deal with large  θ , the original equations of motion [   Eqs. (6.45)  

and    (6.46) ] must be solved algebraically, leading to an exact solution valid for any 

value of  θ . The details of this approach can be found in the books by Dommasch 

et al. and by Perkins and Hage (see the bibliography at the end of this chapter). 

 Returning briefl y to    Figs. 6.29  a  and      b  for the propeller-driven and  jet-powered 

aircraft, respectively, we can see an important difference in the low-speed rate-

of-climb performance between the two types. Due to the power-available char-

acteristics of a piston engine–propeller combination, large excess  powers are 

available at low values of  V  ∞ , just above the stall. For an airplane on its landing 

approach, this gives a comfortable margin of safety in case of a sudden wave-off 

(particularly important for landings on aircraft carriers). In contrast, the excess 

power available to jet aircraft at low  V  ∞  is small, with a correspondingly reduced 

rate-of-climb capability. 

    Figures 6.30  b  and    6.31  give R/C at a given altitude. In    Sec. 6.10  we will 

ask how R/C varies with altitude. In pursuit of an answer, we will also fi nd the 

answer to another question: how high the airplane can fl y. 

   EXAMPLE 6.10  

 Calculate the rate of climb versus velocity at sea level for ( a ) the CP-1 and ( b ) the CJ-1. 

  ■ Solution 
  a . For the CP-1, from    Eq. (6.50) ,

  R/C
expcess power= =

W

P P−
W

A RP PP
       

With power in foot-pounds per second and  W  in pounds, for the CP-1, this equation 

becomes

  R/C = P P−A RP PP

2950
       

From    Example 6.3 , at  V  ∞  = 150 ft/s,  P R   = 0.326 × 10 5  ft · lb/s. From    Example 6.4 ,  P A   = 

550(hp  A  ) = 550(184) = 1.012 × 10 5  ft · lb/s. Hence

  R/C 23.3 ft/sff= × =( . . )012 0 326 10

2950

5−
       

In terms of feet per minute,

  R/C ft/minff at ft/sff=∞6 9 150( ) V∞        

This calculation can be repeated at different velocities:

  V   , ft/s  R/C, ft/min 

 100  1492 
 130  1472 
 180  1189 
 220  729 
 260  32.6 
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  These results are plotted in    Fig. 6.32 . 

  b . For the CJ-1, from    Eq. (6.50) ,

  R/C
hp hp= =P P−

W
A RP PP A Rp550

19 815

( )hp hp−A Rhp

,

From the results and curves of    Example 6.5 , at  V  ∞  = 500 ft/s, hp  R   = 1884 and hp  A   = 6636. 

 Hence  R/C ft/sff
−⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

55
6636 1884

19 815,
       

or  R/C ft/minff at ft/sff=∞6 9 500( ) V∞        

Again, here is a short tabulation for other velocities for the reader to check:  

  V   , ft/s  R/C, ft/min 

 200  3546 
 400  7031 
 600  8088 
 800  5792 
 950  1230 

  These results are plotted in    Fig. 6.33 . 

  Figure 6.32  Sea-level rate of climb for the CP-1. 
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  Figure 6.33  Sea-level rate of climb for the CJ-1. 

The X-15 (Fig. 5.92) was an experimental rocket-powered research airplane designed to 

explore the realm of hypersonic fl ight. On August 22, 1963, with test pilot Joe Walker 

at the controls, it set an altitude record of 354,200 ft. Slightly more than four years 

later, in a second X-15 labeled the X-15A-2, test pilot Pete Knight set a speed record 

of 4520 m (Mach 6.70) at 102,700 ft. As of June 2014, these records still hold, and 

the X-15 remains the fastest, highest-fl ying airplane in history. (For more details, see 

John Anderson and Richard Passman, X-15: The World’s Fastest Rocket Plane and the 
Pilot Who Ushered in the Space Age, Zenith Press (for the Smithsonian Institution), 

Minneapolis, MN 2014.)

(a)  During much of the powered phase of the maximum altitude fl ight, Joe Walker 

maintained the X-15 at a climb angle of 32 degrees. When the rocket pro-

pellants ran out, the X-15 was climbing through 176,000 feet at a fl ight 

velocity of 5600 ft/s. Calculate the rate-of-climb at the time of engine 

burnout.

EXAMPLE 6.11
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(b)  The thrust of the XLR99 rocket engine was essentially constant at 57,000 lb dur-

ing the powered phase of the X-15 fl ight. For the maximum altitude fl ight on 

August 22, 1963, the aerodynamic drag at the burnout altitude of 176,000 ft. 

was only 252 lb, due to the very low air density at that altitude. The empty 

weight of the X-15 was 14,590 lb. Using Eq. (6.50), which contains the as-

sumption of steady, unaccelerated fl ight, calculate the rate-of-climb of the 

X-15. Compare with the result obtained in part (a).

Solution:
(a) From the diagram in Fig. 6.28,

R/C ft/s= ∞ = =V sin sinθ 5600 32 2968o

(b) From Eq. (6.50),

R/C
excess power= = ∞ − ∞ = − ∞

= −

( ) ( )

( , )( )
W

TV DV

W

T D V

W
57 000 252 5600

14,,
,

590
21 781= ft/s

Comment: Clearly, the use of Eq. (6.50) in part (b) gives a rate-of-climb that is much 

higher than the actual rate-of-climb obtained in part (a). What is the problem? Answer: 
Eq. (6.50) assumes steady, unaccelerated fl ight. In contrast, the X-15 in this example is 

a case of highly accelerated rate-of-climb, which is treated in Section 6.18. Eq. (6.50) is 

not valid for this case. As discussed in Section 6.18, for accelerated rate of climb, excess 

power is used to increase both the kinetic and potential energies of the airplane simulta-

neously. The fl ight characteristics given in part (a) are the result of excess power used to 

obtain increases in both kinetic and potential energies. On the other hand, the result in 

part (b) assumes that all the excess power is used to obtain an increase in potential energy 

only, thus leading to an inordinately high value of the calculated rate-of-climb. This un-

derscores the importance of the accelerated rate-of-climb discussion in Section 6.18. In 

reality, much of the excess power of the X-15 was utilized to accelerate the airplane to a 

fi nal velocity of 5600 ft/s.

 Also, note that the aerodynamic drag of the X-15 at this point in its fl ight trajec-

tory was only 252 lb, less than 0.5 percent of the thrust of the LR99 rocket engine. This 

comparison underscores the instruction buy Hartley Soule, director of the early NACA 

research airplane program, to Harrison Storms, Chief Engineer for North American 

Aviation during the design of the X-15. Soule told Storms: “You have a little airplane 

and a big engine with a large thrust margin. We want to study aerodynamic heating. 

We do not want to worry about aerodynamic stability and control, or the airplane 

breaking up. So if you make any errors, make them on the strong side. You should 

have enough thrust to do the job.” Storms added “And so we did.” (See Jenkins, X-15: 
Extending the Frontiers of Flight, NASA SP-2007-562, Government Printing Offi ce, 

2007, p. 108.)
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   6.9  GLIDING FLIGHT 
  Consider an airplane in a power-off glide, as sketched in    Fig. 6.34 . The forces 

acting on this aircraft are lift, drag, and weight; the thrust is zero because the 

power is off. The glide fl ight path makes an angle  θ  below the horizontal. For an 

equilibrium unaccelerated glide, the sum of the forces must be zero. Summing 

forces along the fl ight path, we have

  D W sinθ   (6.54)

and perpendicular to the fl ight path

L W cosθ   (6.55)

 DESIGN BOX 

 What airplane design parameters dictate maximum 

rate of climb? The answer is not explicitly clear 

from our graphical analysis carried out in this sec-

tion. However, the answer can be obtained explic-

itly by deriving an equation for maximum rate of 

climb and identifying the design  parameters that ap-

pear in the equation. The derivation is lengthy, and 

we are interested only in the fi nal result here. For a 

detailed derivation, see    Anderson ,   Aircraft Perfor-
mance and Design,  McGraw-Hill, New York, 1999. 

Denoting maximum rate of climb by (R/C) max , and 

for compactness identifying the  symbol  Z  as

  Z
D T

= +1 1+ 3
2 2T( /L ) (2 )WWmax mT( / )W ax

       

where ( L / D ) max  is the maximum value of the lift-to-

drag ratio for the given airplane, we can show that for 

a  jet-propelled  airplane

  

( )
( / )

max
, max

=
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

× −

∞

S/ Z

C

T

W

Z

D3

1

0

1
2 3

2

ρ

66

3

2 2 2
−

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦( / ) (2 )max m( / ) axW/ L // Z  
 (6.52)        

and for a  propeller-driven  airplane

  

( ) .
/

( / )
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max , m( / ) ax

= ⎛
⎝
⎜
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⎝⎝

⎞
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⎟
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 (6.53)        

where η is the propeller effi ciency defi ned by 

   Eq.  (6.31)  and  P  is the shaft brake power from the 

engine (or engines, for a multiengine airplane). 

 Examining    Eq. (6.52) , we see once again that  W , 

 S , and  T  appear not alone but rather in ratios. From 

   Eq. (6.52) , the design parameters that dictate (R/C) max  

for a jet-propelled airplane are 

  ■   Wing loading  W / S .  

  ■   Maximum thrust-to-weight ratio ( T / W ) max .  

  ■   Zero-lift drag coeffi cient  C   D ,0 .  

  ■   Maximum lift-to-drag ratio  L / D ) max .   

These are the same design parameters that dictate 

 V  max  from    Eq. (6.44) . We also note, looking ahead to 

   Sec. 6.14 , that ( L / D ) max  is determined by  C   D ,0 ,  e , and 

AR—namely,  ( / ) / ( ),D/ / ( Dmax
2

0    , as we 

will see. So identifying ( L / D ) max  as a design param-

eter is the same as identifying a certain combination 

of  e , AR, and  C   D ,0  as a design parameter. We will 

have more to say about the importance of ( L / D ) max  in 

airplane design in subsequent sections. 

 Recall that for a propeller-driven airplane, the 

rating of the engine–propeller combination in terms 

of  power  is more germane than that in terms of thrust. 

Hence,    Eq. (6.53)  gives maximum rate of climb for 

a propeller-driven airplane in terms of the  power-
to-weight ratio  η P / W . [Recall from    Eq. (6.31)  that 

η P  is the power available  P   A   for a propeller-driven 

airplane.] Therefore, for a propeller-driven airplane, 

an important design parameter that dictates (R/C) max  

is the power-to-weight ratio. 
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  Figure 6.34  Airplane in power-off gliding fl ight. 

We can calculate the equilibrium glide angle by dividing    Eq. (6.54)  by (   6.55 ), 

yielding

sin

cos

θ
θ

= D

L

or  tan
/

θ = 1

L D/
 (6.56)

Clearly the glide angle is strictly a function of the lift-to-drag ratio; the higher 

the  L / D , the shallower the glide angle. From this, the smallest equilibrium glide 

angle occurs at ( L / D ) max , which corresponds to the maximum range for the glide. 

    EXAMPLE 6.12  

 The maximum lift-to-drag ratio for the CP-1 is 13.6. Calculate the minimum glide angle 

and the maximum range measured along the ground covered by the CP-1 in a power-off 

glide that starts at an altitude of 10,000 ft. 

■ Solution 
 The minimum glide angle is obtained from    Eq. (6.56)  as

tan
( / ) .

.

min
max

min

θ

θ

= =

= °

1 1

6

4 2.

D/
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The distance covered along the ground is  R , as shown in    Fig. 6.35 . If  h  is the altitude at 

the start of the glide, then

R
h

h
L

D
= =

tanθ

Hence  R h
L

D

R

max
max

max

, ( . )

,

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=

= =

10 13 6

136 000 ft 25.655 mi

        

      EXAMPLE 6.13  

 Repeat    Example 6.12  for the CJ-1, for which the value of ( L / D ) max  is 16.9. 

  ■ Solution 

   
tan

( / ) .
min

max

min

θ

θ

= =

= °

1 1

16 9

3 3. 9

D/        

  

R h
L

D

R

max
max

max

, ( . )

,

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=

= =

10 16

169 000 32ft mimm

       

Note the obvious fact that the CJ-1, with its higher value of ( L / D ) max , is capable of a larger 

glide range than the CP-1.   

  

  Figure 6.35  Range covered in an equilibrium glide. 



492 CHAPTER  6  Elements of Airplane Performance

   EXAMPLE 6.14  

 For the CP-1, calculate the equilibrium glide velocities at altitudes of 10,000 and 2000 ft, 

each corresponding to the minimum glide angle. 

■ Solution 

L V SCL∞ ∞VV1
2

2ρ

Combining this with    Eq. (6.55)  gives

W V SCLθ ρ∞ ∞VV1
2

2        

or  V
C

W

SL
∞VV

∞
= 2cosθ

ρ

where  W / S  is the by now familiar  wing loading.  From this equation we see that the higher 

the wing loading, the higher the glide velocity. This makes sense: A heavier airplane 

with a smaller wing area is going to glide to the earth’s surface at a greater velocity. 

Note, however, that the glide angle, and hence range, depend not on the weight of the 

airplane and not on its wing loading but exclusively on the value of ( L / D ) max , which is 

an aerodynamic property of the airframe design. A higher wing loading simply means 

that the airplane will have a  faster  glide and will reach the earth’s surface sooner. From 

   Example 6.1 , we have for the CP-1

  
W

S
= =2950

174
16 95 2. l95 b/ft

Also from the tabulation in    Example 6.1 , we see that ( L / D ) max  = 13.6 corresponds to 

a lift coeffi cient  C   L   = 0.634. (Note that both  L / D  and  C   L   are functions of the angle of 

 attack of the airplane; these are aerodynamic data associated with the airframe and are not 

 infl uenced by the fl ight conditions. Hence  C   L   = 0.634 at maximum  L / D  no matter whether 

the airplane is in level fl ight, is climbing, or is in a glide.) Therefore, at 10,000 ft, where 

ρ ∞  = 0.0017556 slug/ft 3 , we have

  
V

V

∞VV

∞VV

= °

=

( cos . )( . )

. ( . )

.

4cos )° ( 6 9. 5

0 001 556 0 634

174 3 ft/ff s ass t 00 ftff,h

       

At 2000 ft, ρ ∞  = 0.0022409 slug/ft 3 . Hence

  
V

V

∞VV

∞VV

= °

=

( cos . )( . )

. ( . )

.

4cos )° ( 6 9. 5

0 0 634

154 3 ft/ff s ass t 00 ftffh

       

Note that the equilibrium glide velocity decreases as altitude decreases.     
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   6.10  ABSOLUTE AND SERVICE CEILINGS 
  The effects of altitude on  P   A   and  P   R   were discussed in    Sec. 6.7  and illustrated 

in    Figs. 6.24  a  and  b . For the sake of discussion, consider a propeller-driven air-

plane; the results of this section will be qualitatively the same for a jet. As alti-

tude increases, the maximum excess power decreases, as shown in    Fig. 6.36 . In 

turn, maximum R/C decreases. This is illustrated by    Fig. 6.37 , which is a plot of 

maximum R/C versus altitude with R/C as the abscissa. 

   At some altitude high enough, the  P   A   curve becomes tangent to the  P   R   curve 

(point 1 in    Fig. 6.38 ). The velocity at this point is the only value at which steady, 

  
  Figure 6.36  Variation of excess power with altitude. 

  
  Figure 6.37  Determination of absolute and service ceilings for the CP-1. 
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  Figure 6.38  Power-required and power-available curves 

at the absolute ceiling. 

level fl ight is possible; moreover, there is zero excess power, and hence zero 

maximum rate of climb, at this point. The altitude at which maximum R/C = 0 

is defi ned as the  absolute ceiling  of the airplane. A more useful quantity is the 

 service ceiling,  defi ned as the altitude where maximum R/C = 100 ft/min. The 

service ceiling represents the practical upper limit of steady, level fl ight. 

  The absolute and service ceilings can be determined as follows: 

  1.   Using the technique of    Sec. 6.8 , calculate values of maximum R/C for a 

number of different altitudes.  

  2.   Plot maximum rate of climb versus altitude, as shown in    Fig. 6.37 .  

  3.   Extrapolate the curve to 100 ft/min and 0 ft/min to fi nd the service and 

absolute ceilings, respectively, as also shown in    Fig. 6.37 .    

 Calculate the absolute and service ceilings for ( a ) the CP-1 and ( b ) the CJ-1. 

  ■ Solution 
  a . For the CP-1, as stated in    Example 6.1 , all the results presented in all the examples of this 

chapter are taken from a computer program that deals with 100 different velocities, each at 

different altitudes, beginning at sea level and increasing in 2000-ft increments. In modern 

engineering, using the computer to take the drudgery out of extensive and repeated calcu-

lations is an everyday practice. For example, note from    Example 6.10  that the maximum 

rate of climb at sea level for the CP-1 is 1500 ft/min. In essence, this result is the product 

of all the work performed in    Examples 6.1  to    6.5  and    6.10 . Now, to obtain the absolute and 

service ceilings, these calculations must be repeated at several different altitudes in order to 

fi nd where R/C = 0 and 100 ft/min, respectively. Some results are tabulated and plotted in 

the table that follows; the reader should take the time to check a few of the numbers:  

 Altitude, ft  Maximum R/C, ft/min 

 0  1500 
 4,000  1234 
 8,000  987 

 12,000  755 
 16,000  537 
 20,000  331 
 24,000  135 
 26,000  40 

   EXAMPLE 6.15  
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  These results are plotted in    Fig. 6.37 . From these numbers, we fi nd

Absolute ceiling (R/C 0) is 27,000 ft        

Service ceiling (R/C 100 ft/minff ) is 25,000 ft=         

b . For the CJ-1, utilizing the results from    Examples 6.1  to    6.5 and 6.10  and making simi-

lar calculations at various altitudes, we tabulate the following results:  

 Altitude, ft  Maximum R/C, ft/min 

 0  8118 
 6,000  6699 

 12,000  5448 
 18,000  4344 
 24,000  3369 
 30,000  2502 
 36,000  1718 

  These results are plotted in    Fig. 6.39 . 

  
  Figure 6.39  Determination of absolute and service ceilings for the CJ-1. 
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  From these results, we fi nd

  Absolute ceiling (R/C 0) is 49,000 ft        

Service ceiling (R/C 100 ft/minff ) is 48,000 ft=           

 Derive a closed-form equation for the absolute ceiling of a given airplane as a function of 

the wing loading,  W/S , and the power loading,  W/(P A   ,0 ) max , where ( P A   ,0 ) max  is the maximum 

power available at sea level. 

  ■ Solution 
 Examining    Fig. 6.38 , we see that when an airplane is fl ying at its absolute ceiling, the 

minimum power required, ( P R   ,alt ) min , is equal to the maximum power available, ( P A   ,alt ) max ; 

this condition is shown as point 1 in    Figure 6.38 , and is given by

  ( ) ( ), , m) ax) (i) iR, (alt ,A) (min) (min   (E 6.15.1)        

The altitude effect on power available is discussed in    Sec. 6.7 , where we assume that  P A   
is proportional to the ambient density. This is a reasonable approximation for a turbojet 

engine, and for an unsupercharged reciprocating engine. Thus

  ( ) ( ), max , m) ax) ( A(m) axA, ) (m) ax
ρ
ρ0

  (E 6.15.2)        

From    Example 6.6 , we have the relation for the minimum power required at altitude, 

( P R   ,alt ) min , in terms of the minimum power required at sea level, ( P R   ,0 ) min , namely    Eq. (E 6.6.1) .

  ( ) ( ),

/

, min) (i R) (min) (minR,alt

⎛

⎝

⎛⎛ ⎞

⎠

⎞⎞ρ
ρ

0

1 2/

0   (E 6.6.1)        

Substituting    Eqs. (E 6.15.2)  and    (E 6.6.1)  into    (E 6.15.1) , we have

  
ρ
ρ

ρ
ρ0

1 2

0
0

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

/

, , m0 ax( ) ( )0,0
ρ=i)0 (R A0, min)0, (=min)0 (        

or

  ( ) ( ), , m) ax) (i A) (min) (minR,0
0

1 5.⎛

⎝

⎛⎛ ⎞

⎠

⎞⎞ρ
ρ

  (E6.15.3)        

where the density ρ is the density at the absolute ceiling. 

 An approximation for ρ /ρ 0  as a function of  h  is given in Example 3.2 as

  
ρ
ρ0

29 800=
−

e
h

,   (3.16)        

   EXAMPLE 6.16  
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where  h  is in feet. Substituting    Eq. (3.16)  into (E 6.15.3), where now  h  pertains to the 

absolute ceiling, denoted by  H , we have

( ) ( )

( )

, min
,

, m) ax

, min
,

e)min

e)min

R

H

A

R

H

0

1 5.

29 800

0
19

−

−
86788

19 867 0

( )0

( )0

( )0

, m0 )0 ax

, , min

, m0 )0 ax

e

A

H
R

A

−

=

       

− =
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
H

n

H n= −

R

A19 867

19 867

0

,

( )PRPP 0

( )PAP 0

,
(

, min

, m0 )0 ax

/n

/ PPRPP

A

, min

, max

)

( )PAP ,

0
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
  (E 6.15.4)        

Returning to    Eq. (6.27)  for  P R  , at sea level,

P
W

S C C
RPP

L DC
,

/
0

3

0
3 2/

2 1W 3

=
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠ρ
  (E 6.15.5)        

Minimum power required occurs when the airplane is fl ying at  C

C
L

D

3 2

max

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
   . Hence, from 

   Eq. (E 6.15.5) ,

  
W

S CL DCmin
max( /CL )

3

0
3 2//

2 1W 3

( )PRPP ,0 =
ρ

  (E 6.15.6)        

Reaching ahead for a result from    Sec. 6.14  where we prove that the value of  
C

C
L

D

3 2

max

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
    

for a given airplane is simply an aerodynamic property of the airplane, namely from 

   Eq. (6.87) ,

  
C
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L

D

D

D

3 2
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3 4
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Substituting this result into    Eq. (E 6.15.6) , we get
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2 4
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  (E 6.15.7)        
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Substituting    Eq. (E 6.15.7)  into    (E 6.15.4) , we have

  H n W W

SA

⎧
⎨
⎧⎧

⎩
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⎬
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  (E 6.15.8)        

   Eq. (E 6.15.8)  is a closed-form analytical equation for the absolute ceiling  H , where 

H  is in feet.   

   EXAMPLE 6.17  

 Using the analytical result from    Example 6.16 , calculate the absolute ceiling for the CP-1, 

and compare your results with the exact numerical value obtained in    Example 6.15 . 

■ Solution 
 Repeating    Eq. (6.15.8)  from    Example 6.16 ,

H n
W W

SA

⎧
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⎧⎧

⎩
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From the data for the CP-1 given in    Example 6.1 ,
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From    Eq. (6.15.8) ,

H n

=
1987

867

/ [(0.02915)(119.44)(0.07817)]

( ,−19 ) //n (0.27216) ( 19,867)( 1.301) 25,850 ft= −( − =1 301)        

The exact numerical value of the absolute ceiling for the CP-1, from    Example 6.15 , 

is 27,000 ft. The approximate analytical result obtained from    Eq. (6.15.8)  is within 
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[(27,000 − 25,800)/27,000] (100) = 4.26% of the exact value. Hence, the analytical for-

mula  derived in    Example 6.15  gives a quick and reasonable estimate for the absolute 

ceiling without having to go through the detailed numerical calculations embodied in 

   Example 6.15 .     

   6.11  TIME TO CLIMB 
  To carry out its defensive role adequately, a fi ghter airplane must be able to 

climb from sea level to the altitude of advancing enemy aircraft in as short a time 

as possible. In another case, a commercial aircraft must be able to rapidly climb 

to high altitudes to minimize the discomfort and risks of inclement weather and 

to minimize air traffi c problems. As a result, the time for an airplane to climb to 

a given altitude can become an important design consideration. The calculation 

of the time to climb follows directly from our previous discussions, as described 

in the following. 

 The rate of climb was defi ned in    Sec. 6.8  as the vertical velocity of the air-

plane. Velocity is simply the time rate of change of distance, the distance here 

being the altitude  h . Hence R/C =  dh / dt . Therefore,

dt
dh=

R/C
  (6.57)

In    Eq. (6.57) ,  dt  is the small increment in time required to climb a small incre-

ment  dh  in altitude. Therefore, from calculus, the time to climb from one altitude 

 h  1  to another  h  2  is obtained by integrating    Eq. (6.57) :

  t
dh

h

h
= ∫

R/C1

2

Normally time to climb is considered from sea level, where  h  1  = 0. Hence, the 

time to climb to any given altitude  h  2  is

t
dhh

= ∫
R/C0

2
 (6.58)

 To calculate  t  graphically, fi rst plot (R/C) −1  versus  h , as shown in    Fig. 6.40 . 

The area under the curve from  h  = 0 to  h  =  h  2  is the time to climb to altitude  h  2 . 

    EXAMPLE 6.18  

 Calculate and compare the time required for ( a ) the CP-1 and ( b ) the CJ-1 to climb to 

20,000 ft. 

  ■ Solution 
  a . For the CP-1, from    Eq. (6.58) , the time to climb is equal to the shaded area under the 

curve shown in    Fig. 6.40 . The resulting area gives time to climb as  27 0. min.     
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Figure 6.40  Determination of time to climb for the CP-1. 

  
  Figure 6.41  Determination of time to climb for the CJ-1. 

  b . For the CJ-1,    Eq. (6.58)  is plotted in    Fig. 6.41 . The resulting area gives time to climb 

as  3 5 min.     

  Note that the CJ-1 climbs to 20,000 ft in one-eighth of the time required by the CP-1; 

this is to be expected for a high-performance executive jet transport in comparison to its 

propeller-driven piston-engine counterpart.     

   6.12   RANGE AND ENDURANCE: 
PROPELLER-DRIVEN AIRPLANE 

  When Charles Lindbergh made his spectacular solo fl ight across the Atlantic 

Ocean on May 20–21, 1927, he could not have cared less about maximum 

velocity, rate of climb, or time to climb. Uppermost in his mind was the maxi-

mum  distance he could fl y on the fuel supply carried by the  Spirit of St. Louis.
Therefore,  range  was the all-pervasive consideration during the design and 

 construction of Lindbergh’s airplane. Indeed, throughout all 20th-century avia-

tion, range has been an important design feature, especially for transcontinental 

and transoceanic transports and for strategic bombers for the military. 

Range  is technically defi ned as the total distance (measured with respect 

to the ground) traversed by an airplane on a tank of fuel. A related quantity is 

endurance,  which is defi ned as the total time that an airplane stays in the air on 
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a tank of fuel. In different applications, it may be desirable to maximize one or 

the other of these characteristics. The parameters that maximize range are dif-

ferent from those that maximize endurance; they also differ for propeller- and 

jet-powered aircraft. The purpose of this section is to discuss these variations for 

the case of a propeller-driven airplane; jet airplanes are considered in    Sec. 6.13 . 

   6.12.1  Physical Considerations 

 One critical factor infl uencing range and endurance is the  specifi c fuel consump-
tion,  a characteristic of the engine. For a reciprocating engine, specifi c fuel con-

sumption (commonly abbreviated SFC) is defi ned as the  weight of fuel consumed 
per unit power per unit time.  As mentioned earlier, reciprocating engines are 

rated in terms of horsepower, and the common units (although nonconsistent) of 

specifi c fuel consumption are

  SFC
lb of fuel

(bhp)(h)
=        

where bhp signifi es shaft brake horsepower, discussed in    Sec. 6.6 . 

 First consider endurance. On a qualitative basis, to stay in the air for the lon-

gest time, common sense says that we must use the  minimum  number of pounds 

of fuel per hour. On a dimensional basis, this quantity is proportional to the 

horsepower required by the airplane and to the SFC:

  
lb of fuel

h
hp∝ ( )SFC ( )hpR        

Therefore, minimum pounds of fuel per hour are obtained with minimum hp  R  . 

 Because minimum pounds of fuel per hour give maximum endurance, we quickly 

conclude that

  Maximum endurance for a propeller-driven airplane occurs when the airplane is fl y-

ing at minimum power required.  

This condition is sketched in    Fig. 6.42 . Furthermore, in    Sec. 6.5  we have already 

proved that minimum power required corresponds to a maximum value of 

 C CL DC3 2/     [see    Eq. (6.27) ]. Thus  

Maximum endurance for a propeller-driven airplane occurs when the airplane is 

 fl ying at a velocity such that  C CL DC3 2/     is at its maximum.   

  Now consider range. To cover the longest distance (say in miles), common 

sense says that we must use the minimum number of pounds of fuel per mile. On 

a dimensional basis, we can state the proportionality

  
lb of fuel

mi

hp∝
∞

( )SFC ( )hpR

V∞
       

(Check the units yourself, assuming that  V  ∞  is in miles per hour.) As a result, 

minimum pounds of fuel per mile are obtained with a minimum hp  R   / V  ∞ . This 
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minimum value of hp  R   / V  ∞  precisely corresponds to the tangent point in    Fig. 6.17 , 

which also corresponds to maximum  L  / D , as proved in    Sec. 6.5 . Thus

  Maximum range for a propeller-driven airplane occurs when the airplane is fl ying at 

a velocity such that  C   L    / C   D   is at its maximum.  

This condition is also sketched in    Fig. 6.42 .  

   6.12.2  Quantitative Formulation 

 The important conclusions drawn in    Sec. 6.12.1  were obtained from purely 

physical reasoning. We will develop quantitative formulas that substantiate 

these conclusions and that allow the direct calculation of range and endurance 

for given conditions. 

 In this development, the specifi c fuel consumption is couched in units that 

are consistent:

  
lb of fuel

(ft lb/s)(s)
or

N of fueff l

⋅ ( )J/s ( )s
       

For convenience and clarifi cation,  c  will designate the specifi c fuel consumption 

with consistent units. 

 Consider the product  cP dt , where  P  is engine power and  dt  is a small incre-

ment of time. The units of this product are (in the English engineering system)

  dt = lb of fuel

(ft lb/s)(s)

ft lb

s
(s) l= b of fuf el

⋅
⋅

       

  
  Figure 6.42  Points of maximum range and endurance on the 

power-required curve for a propeller-driven airplane. 
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Therefore,  cP dt  represents the differential change in weight of the fuel due to 

consumption over the short time period  dt . The total weight of the airplane  W
is the sum of the fi xed structural and payload weights, along with the changing 

fuel weight. Hence, any change in  W  is assumed to be due to the change in fuel 

weight. Recall that  W  denotes the weight of the airplane at any instant. Also 

let  W  0  = gross weight of the airplane (weight with full fuel and payload),  W   f   =
weight of the fuel load, and  W  1  = weight of the airplane  without  fuel. With these 

considerations, we have

  W W WfWW1 0W WW W −W0WW        

and  dW dW cP dtfWW = =dW −        

or  dt
dW

cP
= −   (6.59)        

The minus sign in    Eq. (6.59)  is necessary because  dt  is physically positive (time 

cannot move backward except in science fi ction novels) while  W  is decreasing 

(hence  dW  is negative). Integrating    Eq. (6.59)  between time  t  = 0, where  W  =  W  0
(fuel tanks full), and time  t  =  E , where  W  =  W  1  (fuel tanks empty), we fi nd

  

dW

cP

E
dW

cP

W

W

W

W

0 0WW

1WW

1WW

0WW

∫ ∫dt
E

0

∫=  (6.60)

In    Eq. (6.60) ,  E  is the endurance in seconds. 

 To obtain an analogous expression for range, multiply    Eq. (6.59)  by  V  ∞ :

V dt
V dW

cP
∞VV ∞VV= −   (6.61)

In    Eq. (6.61) ,  V  ∞   dt  is the incremental distance  ds  covered in time  dt .

  ds
V dW

cP
= − ∞VV

  (6.62)        

The total distance covered throughout the fl ight is equal to the integral of    Eq. (6.62)  from 

 s  = 0, where  W  =  W  0  (full fuel tank), to  s  =  R , where  W  =  W  1  (empty fuel tank):

  
V dW

cPW

W

0 0WW

1WW∫ ∫ds
R

0

∞VV

or  R
V dW

cPW

W
= ∞VV∫

1WW

0WW
 (6.63)

In    Eq.(6.63) ,  R  is the range in consistent units, such as feet or meters. 
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    Equations (6.60)  and    (6.63)  can be evaluated graphically, as shown in 

   Figs. 6.43  a  and  b  for range and endurance, respectively. We can calculate range 

accurately by plotting  V  ∞  /( cP ) versus  W  and taking the area under the curve from 

 W  1  to  W  0 , as shown in    Fig. 6.43  a . Analogously, we can calculate endurance ac-

curately by plotting ( cP ) −1  versus  W  and taking the area under the curve from  W  1
to  W  0 , as shown in    Fig. 6.43  b . 

     Equations (6.60)  and    (6.63)  are accurate formulations for endurance and 

range. In principle they can include the entire fl ight—takeoff, climb, cruise, and 

landing—if the instantaneous values of  W ,  V  ∞ ,  c , and  P  are known at each point 

along the fl ight path. However,    Eqs. (6.60)  and    (6.63) , though accurate, are also 

long and tedious to evaluate by the method just discussed. Therefore, simpler 

but approximate analytic expressions for  R  and  E  are useful. Such formulas are 

developed in    Sec. 6.12.3 .  

   6.12.3  Breguet Formulas (Propeller-Driven Airplane) 

 For level, unaccelerated fl ight, we demonstrated in    Sec. 6.5  that  P   R   =  DV  ∞ . To 

maintain steady conditions, the pilot has adjusted the throttle so that power avail-

able from the engine–propeller combination is just equal to the power required: 

P   A   =  P   R   =  DV  ∞ . In    Eq. (6.59) ,  P  is the brake power output of the engine itself. 

Recall from    Eq. (6.31)  that  P   A   = η  P , where η is the propeller effi ciency. Thus

  P
P DVAP= = ∞VV

η η
 (6.64)

Substitute    Eq. (6.64)  into (   6.63 ):

R
V dW

cP

V dW

cDV

dW

cDW W

W

W
= =∞VVW

∞VV
∫ ∫V dW

PW

W
=∞V dV W ∫

1WWWW

WW

1WW

0WWWW

1WW

η ηdW W∞ ∫ 0WW
  (6.65)

  
  Figure 6.43  Determination of range and endurance. 
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Multiplying    Eq. (6.65)  by  W / W  and noting that for steady, level fl ight  W  =  L , we 

obtain

R
cD

W

W c

L

D

dW

WW W
= ∫ ∫

D

W

W
dW

W

W
=dW

ηW∫W
dW

1WWWW

WW

1WW

WW
  (6.66)

Unlike    Eq. (6.63) , which is exact,    Eq. (6.66)  now contains the direct assumption 

of level, unaccelerated fl ight. However, for practical use it will be further simpli-

fi ed by assuming that η,  L  / D  =  C   L   / C   D  , and  c  are constant throughout the fl ight. 

This is a reasonable approximation for cruising fl ight conditions. Thus    Eq. (6.66)  

becomes

  R
c

C

C

dW

W
L

D
W

W
= ∫η

1WW

0WW

R
c

C

C

W

W
L

D

= η
ln 0WW

1WW
 (6.67)

   Equation (6.67)  is a classic formula in aeronautical engineering; it is called the 

Breguet range formula,  and it gives a quick, practical estimate for range that is 

generally accurate to within 10 to 20 percent. Keep in mind that like all proper 

physical derivations,    Eq. (6.67)  deals with consistent units. Hence  R  is in feet or 

meters when  c  is in consumption of fuel in lb /(ft · lb /s)(s) or N /(J /s)(s), respec-

tively, as discussed in    Sec. 6.12.2 . If  c  is given in terms of brake horsepower and 

if  R  is desired in miles, the proper conversions to consistent units should be made 

before using    Eq. (6.67) . 

 Look at    Eq. (6.67) . It says all the things that common sense would expect: 

To maximize range for a reciprocating-engine, propeller-driven airplane, we 

want the following: 

1.   The largest possible propeller effi ciency η.  

2.   The lowest possible specifi c fuel consumption  c .  

3.   The highest ratio of  W  0  / W  1 , which is obtained with the largest fuel weight  W   F  .  

  4.   Most importantly, fl ight at maximum  L  / D . This confi rms our argument 

in    Sec. 6.12.1  that for  maximum range,  we must fl y at maximum  L  / D . 

Indeed, the Breguet range formula shows that range is directly proportional 

to  L  / D . This clearly explains why high values of  L  / D  (high aerodynamic 

effi ciency) have always been important in the design of airplanes. This 

importance was underscored in the 1970s by the increasing awareness of 

the need to conserve fuel.    

 A similar formula can be obtained for endurance. If we recall that  P  =  DV  ∞  /η 

and that  W  =  L ,    Eq. (6.60)  becomes

  E
dW

cP c

dW

DV c

L

DV

dW

WW W

W

W
= =∫ ∫dW

PW

W
= ∫

∞VV ∞VV1WWWW

WW

1WW

0WW

1WW

η ηdW W∫ 0WW
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Because  L W V SC L=W 1
2

2ρ ρV SCL∞ ∞VV /WV 2VV WW=VV W2 ( )SCLSC    . Thus

E
c

C

C

SC dW

WD

L

W

W
= ∞∫ η ρCL

2 3 2
1WW

0WW
       

Assuming that  C   L  ,  C   D  , η,  c , and ρ ∞  (constant altitude) are all constant, this equa-

tion becomes

E
c

C

C

S

D
W
W= − ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

∞2
2

3 2 1 2
1 2

1WW
0WWη ρCL ⎛⎛⎛3 2 /

[ ]W −1 2/
       

or  E
c

C

C
L

D

= η ρ
3 2

1 2
1

1 2
0

1 22 1)S( )S( S∞ρ2 ( )W W−W −W1WWWW 2
0WW 1 2/W −1 /

  (6.68)

   Equation (6.68)  is the  Breguet endurance formula,  where  E  is in seconds (con-

sistent units). 

 Look at    Eq. (6.68) . It says that to maximize endurance for a reciprocating-

engine, propeller-driven airplane, we want 

  1.   The highest propeller effi ciency η.  

  2.   The lowest specifi c fuel consumption  c .  

  3.   The highest fuel weight  W   f  , where  W  0  =  W  1  +  W   f  .  

  4.   Flight at maximum  C CL DC3 2/    . This confi rms our argument in    Sec. 6.12.1  

that for  maximum endurance,  we must fl y at maximum  C CL DC3 2/    .  

  5.   Flight at sea level, because  E ∝ ∞ρ1 2/
   , and ρ ∞  is largest at sea level.   

It is interesting to note that subject to our approximations, endurance depends on 

altitude, whereas range [see    Eq. (6.67) ] is independent of altitude. 

 Remember that the discussion in this section pertains only to a combination 

of piston engine and propeller. For a jet-powered airplane, the picture changes, 

as discussed in    Sec. 6.13 . 

   EXAMPLE 6.19  

 Estimate the maximum range and maximum endurance for the CP-1. 

■ Solution 
 The Breguet range formula is given by    Eq. (6.67)  for a propeller-driven airplane. This 

equation is

R
c

C

C

W

W
L

D

= η
ln 0WW

1WW
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  Figure 6.44  Aerodynamic ratios for the CP-1 at sea level. 

with the specifi c fuel consumption  c  in consistent units, say (lb fuel) /(ft · lb /s)(s) or sim-

ply per foot. However, in    Example 6.1  the SFC is given as 0.45 lb of fuel /(hp)(h). This 

can be changed to consistent units:

c =
⋅

= −0 45
1 1

2 27 1× 0 7.45 2
lb

(hp)(h)

hp

550 ft lb/s

h

3600 s
ft−−1

In    Example 6.1  the variation of  C   L   / C   D   =  L  / D  was calculated versus velocity. The varia-

tion of  C CL DC3 2/     can be obtained in the same fashion. The results are plotted in    Fig. 6.44 . 

  From these curves,

max . max
C

C

C

C
L

D

L

D

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
=13 62 12

3 2/

.81..        

These are results pertaining to the aerodynamics of the airplane; even though the preced-

ing plots were calculated at sea level (from    Example 6.1 ), the  maximum  values of  C   L   / C   D
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and  C CL DC3 2 /     are independent of altitude, velocity, and the like. They depend only on the 

aerodynamic design of the aircraft. 

 The gross weight of the CP-1 is  W  0  = 2950 lb. The fuel capacity given in    Exam-

ple 6.1  is 65 gal of aviation gasoline, which weighs 5.64 lb /gal. Hence, the weight of the 

fuel  W   p   = 65(5.64) = 367 lb. Thus, the empty weight  W  1  = 2950 − 367 = 2583 lb. 

 Returning to    Eq. (6.67) , we have

R
c

C

C

W

W
L

D

== ⎛
⎝
⎛⎛

−
η

ln
.

( . ) l
⎛
⎝
⎜
⎛⎛
⎝⎝

n0WW

1WW 7

0 8.

2 2. 7 1× 0
62

2950

2583

⎞⎞
⎠
⎟
⎞⎞⎞⎞
⎠⎠

=R 6 38 06 f38 1× 06 tff

Because 1 mi = 5280 ft,

R = =6 38 1× 0

5280
1207

6

mi

 The endurance is given by    Eq. (6.68) :

E
c

C

C
L

D

= η ρ
3 2

1 2
1

1 2
0

1 22 1( )SS∞ρ2 ( )W W−W −W1WWWW 2
0WW 1 2/W −1 /

Because of the explicit appearance of ρ ∞  in the endurance equation, maximum endurance 

will occur at sea level, ρ ∞  = 0.002377 slug /ft 3 . Hence

  
E = −

0 8

2 27 1× 0
81 2 0 002377 174

1

25837
1 2

.
( .12 )[ ( .0 )( )] /

1 211 1 2

4

1

2950

5 19 10

/ /2 12950
−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

= 5 19E s

Because 3600 s = 1 h,

E = =5 19 1× 0

3600
14

4

. h4

   6.13  RANGE AND ENDURANCE: JET AIRPLANE 
  For a jet airplane, the specifi c fuel consumption is defi ned as the  weight of fuel 
consumed per unit thrust per unit time.  Note that  thrust  is used here, in contradis-

tinction to  power,  as in the previous case for a reciprocating engine–propeller com-

bination. The fuel consumption of a jet engine physically depends on the thrust 

produced by the engine, whereas the fuel consumption of a reciprocating engine 

physically depends on the brake power produced. It is this simple difference that 

leads to different range and endurance formulas for a jet airplane. In the literature, 

 thrust-specifi c fuel consumption (TSFC)  for jet engines is commonly given as

TSFC
lb of fuel

(lb of thrust)(h)
=        

Note the nonconsistent unit of time. 
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   6.13.1  Physical Considerations 

 The maximum endurance of a jet airplane occurs for minimum pounds of fuel 

per hour, the same as for propeller-driven aircraft. However, for a jet,

lb of fuel

h
= ( )TSFC ( )A        

where  T   A   is the thrust available produced by the jet engine. Recall that in steady, 

level, unaccelerated fl ight, the pilot has adjusted the throttle so that thrust 

 available  T   A   just equals the thrust required  T   R  :  T   A   =  T   R  . Therefore, minimum 

pounds of fuel per hour correspond to minimum thrust required. Hence we con-

clude that

  Maximum endurance for a jet airplane occurs when the airplane is fl ying at the mini-

mum thrust required.  

This condition is sketched in    Fig. 6.45 . Furthermore, in    Sec. 6.3  minimum thrust 

required was shown to correspond to maximum  L  / D . Thus

  Maximum endurance for a jet airplane occurs when the airplane is fl ying at a veloc-

ity such that  C   L   / C   D   is at its maximum.   

  Now consider range. As before, maximum range occurs for a minimum 

number of pounds of fuel per mile. For a jet, on a dimensional basis,

  
lb of fuel

mi
=

∞

( )TSFC ( )

V∞

A
       

  
  Figure 6.45  Points of maximum range and endurance on the thrust-

required curve. 
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Recalling that for steady, level fl ight  T   A   =  T   R  , we note that minimum pounds 

of fuel per mile correspond to a minimum  T   R   / V  ∞ . In turn,  T   R   / V  ∞  is the slope 

of a line through the origin and intersecting the thrust-required curve; its mini-

mum value occurs when the line becomes tangent to the thrust-required curve, as 

sketched in    Fig. 6.45 . The aerodynamic condition holding at this tangent point is 

obtained as follows. Recall that for steady, level fl ight  T   R   =  D . Then

  
T

V

D

V

V SC

V
V SCRTT D

D
∞ ∞VV VV

∞ ∞VV

∞VV
∞ ∞VV= = =

1
2

2 1

2

ρ ρ        

Because  V L∞V WV 2 /WW ( )SCL∞ρ    , we have

  
T

V
S

W

SC
C

C C
RTT

L
D

L DC∞VV
∞

∞
∝S C= D

1

2

2 1W
C

1 2
ρ

ρ /
       

Hence, minimum  T   R   / V  ∞  corresponds to maximum  C CL DC1 2 /    . In turn, we con-

clude that

  Maximum range for a jet airplane occurs when the airplane is fl ying at a velocity 

such that  C CL DC1 2/     is at its maximum.    

   6.13.2  Quantitative Formulation 

 Let  c   t   be the thrust-specifi c fuel consumption in consistent units:

  
lb of fuel

(lb of thrust)(s)
or

N of fueff l

N of thr( usuu t)(s)
       

Let  dW  be the elemental change in weight of the airplane due to fuel consump-

tion over a time increment  dt . Then

  dW c T dtt ATT= −        

or  dt
dW

c Tt AT
= −

  (6.69)        

Integrating    Eq. (6.69)  between  t  = 0, where  W  =  W  0 , and  t  =  E , where  W  =  W  1 , 

we obtain

  E
dW

c Tt ATW

W
= − ∫

0WW

1WW
  (6.70)        

Recalling that  T   A   =  T   R   =  D  and  W  =  L , we have

  E
c

L

D

dW

Wt
W

W
= ∫ 1

1WW

0WW
  (6.71)        
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With the assumption of constant  c   t   and  C   L   / C   D   =  L  / D ,    Eq. (6.71)  becomes

  E
c

C

C

W

Wt

L

D

= 1 0WW

1WW
ln   (6.72)        

Note from    Eq. (6.72)  that for maximum endurance for a jet airplane, we want 

  1.   Minimum thrust-specifi c fuel consumption  c   t  .  

  2.   Maximum fuel weight  W   f  .  

  3.   Flight at maximum  L  / D . This confi rms our argument in    Sec. 6.13.1  that for 

maximum endurance for a jet, we must fl y so that  L  / D  is at its maximum.   

Note that subject to our assumptions,  E  for a jet does not depend on ρ ∞ ; that is, 

 E  is independent of altitude. 

 Now consider range. Returning to    Eq. (6.69)  and multiplying by  V  ∞ , we get

  ds V dt
V dW

c Tt AT
= =V dt −∞VV ∞VV

  (6.73)        

where  ds  is the increment in distance traversed by the jet over the time increment 

 dt . Integrating    Eq. (6.73)  from  s  = 0, where  W  =  W  0 , to  s  =  R , where  W  =  W  1 , 

we have

  R
V dW

c Tt ATW

W∫ ∫ds
R

=ds − ∞VV
0 0WW

1WW
  (6.74)        

However, again noting that for steady, level fl ight, the engine throttle has been 

adjusted such that  T   A   =  T   R   and recalling from    Eq. (6.16)  that  T   R   =  W  /( C   L   / C   D  ), we 

rewrite    Eq. (6.74)  as

  R
V

c

C

C

dW

Wt

L

D
W

W
= ∞VV∫

1WW

0WW
  (6.75)        

Because  V L∞V WV 2 /WW ( )SCL∞ρ    ,    Eq. (6.75)  becomes

  R
S

C C

c

dW

W
L DC

t
W

W
=

∞
∫ 2 1 2

1 2
1WW

0WW

ρ /

/
  (6.76)        

Again assuming constant  c   t  ,  C   L  ,  C   D  , and ρ ∞  (constant altitude), we rewrite 

   Eq. (6.76)  as

  

R
S

C

C c

dW

W

R
S c

C

C
W

L

D tc W

W

t

L

D

=

=

∞

∞

∫2 1CL

2
2 1

1 2

1 2

1 2

0WW

1WW

0WW

ρ

ρ

/

/

( 1 211
1
1 2/ /2 1 )− W1

  (6.77)
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Note from    Eq. (6.77)  that to obtain maximum range for a jet airplane, we want 

the following: 

  1.   Minimum thrust-specifi c fuel consumption  c   t  .  

  2.   Maximum fuel weight  W   f  .  

  3.   Flight at maximum  C CL DC1 2/    . This confi rms our argument in    Sec. 6.13.1  

that for maximum range, a jet must fl y at a velocity such that  C CL DC1 2/     is at 

its maximum.  

  4.   Flight at high altitudes—that is, low ρ ∞ . Of course    Eq. (6.77)  says that 

 R  becomes infi nite as ρ ∞  decreases to zero (that is, as we approach outer 

space). This is physically ridiculous, however, because an airplane 

requires the atmosphere to generate lift and thrust. Long before outer 

space is reached, the assumptions behind    Eq. (6.77)  break down. 

Moreover, at extremely high altitudes ordinary turbojet performance 

deteriorates and  c   t   begins to increase. All we can conclude from    Eq. (6.77)  

is that range for a jet is poorest at sea level and increases with altitude 

up to a point. Typical cruising altitudes for subsonic commercial jet 

transports are from 30,000 to 40,000 ft; for supersonic transports they are 

from 50,000 to 60,000 ft.    

   EXAMPLE 6.20  

 Estimate the maximum range and endurance for the CJ-1. 

■ Solution 
 From the calculations of    Example 6.1 , the variation of  C   L   / C   D   and  C CL DC1 2/     can be plotted 

versus velocity, as given in    Fig. 6.46 . From these curves, for the CJ-1,

max .

max .

/C

C

C

C

L

D

L

D

1 2/
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⎟
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 In    Example 6.1  the specifi c fuel consumption is given as TSFC = 0.6 (lb fuel) /(lb 

thrust)(h). In consistent units,

ct = = −0 6
lb

(lb)(h)

l h

3600 s
1.667 10 s4 1−s×

Also, the gross weight is 19,815 lb. The fuel capacity is 1119 gal of kerosene, where 1 gal 

of kerosene weighs 6.67 lb. Thus  W   f   = 1119(6.67) = 7463 lb. Hence the empty weight is 

 W  1  =  W  0  −  W  f  = 19,815 − 7463 = 12,352 lb. 

 The range of a jet depends on altitude, as shown by    Eq. (6.77) . Assume that the cruis-

ing altitude is 22,000 ft, where ρ ∞  = 0.001184 slug /ft 3 . From    Eq. (6.77) , using informa-

tion from    Example 6.1 , we obtain
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  Figure 6.46  Aerodynamic ratios for the CJ-1 at sea level. 
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The endurance can be found from    Eq. (6.72) :
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   6.14  RELATIONS BETWEEN  C   D ,0  AND  C   D,i   
  In the previous sections we have observed that various aspects of the per-

formance of different types of airplanes depend on the aerodynamic ratios 

 C CL DC1 2 /    ,  C   L   / C   D  , or  C CL DC3 2/    . Moreover, in    Sec. 6.3  we proved that at minimum 

 T   R  , drag due to lift equals zero-lift drag; that is,  C   D ,0  =  C   D ,i . Analogously, for 

minimum  P   R   we proved in    Sec. 6.5  that  C CD DC i, ,D
1
3    . In this section such results 

are obtained strictly from aerodynamic considerations. The relations between 

 C   D ,0  and  C   D ,i  depend purely on the conditions for maximum  C CL DC1 2/    ,  C   L   / C   D  , or 

 C CL DC3 2/    ; their derivations do not have to be associated with minimum  T   R   or  P   R   

as they were in    Secs. 6.3  and    6.5 . 

 For example, consider maximum  L   / D . Recalling that  D DC +CDC ,0  

C eL / ( )2 π AR    , we can write

  
C

C

C

C C e
L

D

L

D LC
=

, / ( )0
2 π AR

  (6.78)        

For maximum  C   L   / C   D  , differentiate    Eq. (6.78)  with respect to  C   L   and set the result 

equal to 0:

  
d C C
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C C C e

C
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L

D LC L L
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[
,

,
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2 2
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Thus  C
C C

e
D

L LC
,0

2 2C2
0+ − =−L L

π πeAR AR
       

or  C
C

e
D

L
,0

2

=
π AR

       

  C C
C

C
D DC i

L

D
, ,D

max

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
for   (6.79)        

Hence    Eq. (6.79) , which is identical to    Eq. (6.22) , simply stems from the fact 

that  L   / D  is maximum. The fact that it also corresponds to minimum  T   R   is only 

because  T   R   happens to be minimum when  L  / D  is maximum. 

 Now consider maximum  C CL DC3 2/    . By setting  d C dCL ldC( )CL /3 2/ 0=    , a derivation 

similar to the previous one yields

  C C
C

C
D DC i

L

D
, ,D

max

1

3

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
for

3/2

  (6.80)        

Again    Eq. (6.80) , which is identical to    Eq. (6.30) , simply stems from the fact that 

 C CL DC3 2/     is maximum. The fact that it also corresponds to minimum  P   R   is only 

because  P   R   happens to be minimum when  C CL DC3 2/     is maximum. 



 Similarly, when  C CL DC1 2/     is maximum, setting  d C dCL LdC( )CL /21/ 0=     yields

C C
C

C
D DC i

L

D
, ,D

max

1 2

3
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
for  (6.81)

You should not take    Eqs. (6.80)  and    (6.81)  for granted; derive them yourself. 

 We stated in    Example 6.18  that the  maximum values  of  C CL DC1 2/    ,  C   L   / C   D  , and 

 C CL DC3 2/     are independent of altitude, velocity, and so on; rather, they depend only 

on the aerodynamic design of the aircraft. The results of this section allow us to 

prove this statement, as follows. 

 First consider again the case of maximum  C   L   / C   D  . From    Eq. (6.79) ,

  C C
C

e
D DC i

L
, ,D

2

=CDC i π AR
  (6.82)        

Thus  C e CL De CAR ,0   (6.83)        

Substituting    Eqs. (6.82)  and    (6.83)  into    Eq. (6.78) , we obtain

  
C

C

C

C e

e

e
L

D

L

L

= = =
2 2

0/ ( ) ,π
π πe

πAR

AR

2

AR

2 Aeπ RC CL D

  (6.84)        

Hence the value of the maximum  C   L   / C   D   is obtained from    Eq. (6.84)  as

  
C

C C
L

D

D

D
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⎞

⎠
⎟
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,
/

,

( )C eD,0
1 2/

02
  (6.85)        

Note from    Eq. (6.85)  that ( C   L   / C   D  ) max  depends only on  e , AR, and  C   D ,0 , which are 

aerodynamic design parameters of the airplane. In particular, ( C   L   / C   D  ) max  does not 

depend on altitude. However, note from    Figs. 6.44  and    6.46  that maximum  C   L   / C   D   

occurs at a certain velocity, and the velocity at which ( C   L   / C   D  ) max  is obtained  does  

change with altitude. 

 In the same vein, it is easily shown that

  
C

C C
L

D D

1 2 1 4

4
3 0
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  (6.86)        

and  
C
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D

D

D

3 2
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3 4
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,
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( )C eD 03 ,   (6.87)        

Prove this yourself. 
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 From the equations given in this section, directly calculate ( C   L   / C   D  ) max  and  ( )maxL D
3 2/     

for the CP-1. 

  ■ Solution 
 From    Eq. (6.85) ,
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D
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From    Eq. (6.87) ,
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Return to    Example 6.19 , where the values of ( C   L   / C   D  ) max  and  ( / )maxC/L DC/3 2/     were obtained 

graphically—that is, by plotting  C   L   / C   D   and  C CL DC3 2/     and fi nding their peak values. Note 

that the results obtained from    Eqs. (6.85)  and    (6.87)  agree with the graphical values 

obtained in    Example 6.19  (as they should); however, the use of    Eqs. (6.85)  and    (6.87)  

is much easier and quicker than plotting a series of numbers and fi nding the maximum.   

   EXAMPLE 6.21  

   EXAMPLE 6.22  

 From the equations given in this section, directly calculate  ( / )maxC/L DC/1 2/     and ( C   L   / C   D  ) max

for the CJ-1. 

■ Solution 
 From    Eq. (6.77) ,
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From    Eq. (6.76) ,
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These values agree with the graphically obtained maximums in    Example 6.20 .   

   EXAMPLE 6.23  

 Using the result from this section and    Eqs. (6.44) ,    (6.52) , and    (6.53) , analytically calculate 

a .  V  max  for the CP-1 at sea level. 

b . (R /C) max  for the CP-1 at sea level. 

c .  V  max  for the CJ-1 at sea level. 

d . (R /C) max  for the CJ-1 at sea level. 

 Compare with the graphical solutions obtained in    Examples 6.2 ,    6.4 , and    6.10 . 



■   Solution 
a . The maximum velocity is given by    Eq. (6.44) , repeated here:
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For the CP-1, from the data given in    Example 6.1 ,
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= ×

2950
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0 8 230 550 012 1

2.

. (8 )( ) .= 1
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From    Eq. (6.85)  and the result from    Example 6.21 ,

4 1 1
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e D
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max( /L ) .132 13max

.
π AR

= = = ×5 4066. −

Also,  ρ∞ = = × −CD, . ( . ) .0
50 0 5 5 9425 10 slug/ft3

Power available and thrust available are related by

T V P PA AT V PVV = PP ηP        

For maximum  T   A   and  P   A  ,  V  ∞  =  V  max . Hence
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Inserting the preceding data into    Eq. (6.44) , we have
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   Equations (E6.22.1)  and    (E6.22.2)  must be solved for  V  max  by trial and error. Assume 

 V  max , calculate ( T A   / W ) max  from    Eq. (E6.22.1) , insert this into    Eq. (E6.22.2) , calculate  V  max  

from    Eq. (E6.22.2) , and see if this matches the originally assumed  V  max . If not, assume 

another value of  V  max , and try again. A few iterations are tabulated in the following: 

  V  max  (ft /s) (assumed) 
   

T
W

AT⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠ max     

[from    Eq. (E6.22.1) ]  
  V  max  (ft /s) 

[from    Eq. (E6.22.2) ] 

 265  0.1295  271.6 
 270  0.12706  268.5 
 269  0.1275  269.1 

  From this we have calculated for the CP-1 at sea level,

  VmaVV x = 269 ft/sff        

This is to be compared with  V  max  = 265 ft /s as obtained from the graphical solution in 

   Example 6.4 , which is limited by “graphical accuracy.” The analytical solution of  V  max  = 

269 ft /s obtained here is inherently more accurate. 

  b . The maximum rate of climb for a propeller-driven airplane is given by    Eq. (6.53) , 

repeated here:
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We have already obtained the following data:
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Hence    Eq. (6.53)  becomes

  ( ) . .
.

. ( . )
max /

= −34 305305 0 8776
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135 3( )13 6 22        

or  (R/C) 34.305 9.345 24.96 ft/sffmax = −34 305 =        



Thus  ( ) ( )maxC f) . ( ) .max t/minff)(6 6 6

This is to be compared with (R /C) max  = 1500 ft /min as read from the peak of the graph in 

   Fig. 6.22  from    Example 6.10 . 

c . From the data given about the CJ-1 in    Example 6.1 , we have
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Also, from    Example 6.22 , we have
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Substituting these data in    Eq. (6.44) , we obtain
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or  VmaVV x .= 979 5 ft/sff        

This is to be compared with  V  max  = 975 ft /s obtained by graphical means in    Example 6.2 . 

  d . The maximum rate of climb for a jet airplane is given by    Eq. (6.52) , repeated here:
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Putting in the data for the CJ-1, we have
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 DESIGN BOX 

 The ratio of lift to drag is a direct measure of the aero-

dynamic effi ciency of a given airplane. For example, 

if for a given airplane ( L  / D ) max  = 15, this means that 

the airplane can lift 15 lb of weight at a cost of only 

1  lb of drag—quite a leverage. Indeed, for atmo-

spheric fl ight, the wing of an airplane (usually its 

strongest lifting component by far) can be loosely lik-

ened to a lever that allows us to lift far more weight 

than we have to expend in thrust from the engine (to 

counterbalance the drag). The evolution of the air-

plane in the 20th century has been  characterized by 

a steady increase in ( L  / D ) max ; this evolution is dis-

cussed at length in    Sec. 6.26 . Some values of ( L / D ) max  

for typical airplanes are tabulated here:

 Airplane  ( L  / D ) max  
  Wright Flyer  (1903)  5.7 
 French SPAD XIII (World War I)  7.4 
 Douglas DC-3 (1930s)  14.7 
 Boeing 747 (contemporary)  20 

 The importance of ( L  / D ) max  as a parameter in 

 airplane design cannot be overstated—it is one of the 

driving aspects that dictate the confi guration of the 

airplane. Airplane designers usually try to squeeze as 

much ( L  / D ) max  into a new airplane as they can, sub-

ject to compromises with other aspects of the design. 

We have already seen that ( L  / D ) max  plays a role in 

dictating  V  max , (R/C) max , and especially range and en-

durance. Historically, the quest for greater range has 

been the primary factor that has driven up the design 

value of ( L  / D ) max . (See    Anderson ,  A History of Aero-
dynamics and Its Impact on Flying Machines,  Cam-

bridge University Press, New York, 1997.) 

 Strictly speaking, we have seen in    Secs. 6.12  and 

   6.13  that the value of ( L  / D ) max  = ( C L   / C D  ) max  dictates 

maximum range for a propeller-driven airplane and 

maximum endurance for a jet airplane, whereas 

 ( / )maxC/L DC/3 2/     dictates maximum endurance for a 

propeller-driven airplane and  ( / )maxC/L DC/1 2/     dictates 

maximum range for a jet airplane. However, the 

 geometric and aerodynamic features of an airplane 

that maximize  C L   / C D   will also maximize  C CL DC1 2 /     

and  C CL DC3 2 /    , as seen in    Eqs. (6.85)  through    (6.87) . 

To obtain maximum values of these aerodynamic 

ratios,    Eqs. (6.85)  through    (6.87)  clearly indicate that 

the airplane designer should, as much as possible, 

1.   Reduce the zero-lift drag coeffi cient  C   D ,0 .  

2.   Increase the Oswald effi ciency factor  e .  

  3.   Increase the aspect ratio AR.    

 Of course, this last point—increasing the aspect 

ratio—makes sense only for subsonic fl ight. We have 

discussed previously that for transonic and super-

sonic airplanes, wave drag is dominant, and wave 

drag can be somewhat reduced by using low–aspect-

ratio wings. For high-speed airplanes designed for 

cruising at supersonic speeds, the design wing aspect 

ratio is driven by considerations other than those for 

maximum range in subsonic fl ight. The low–aspect-

ratio, Mach 2, Lockheed F-104 shown in Fig. 4.52 is 

a case in point. 

 The value of ( L  / D ) max  is fi xed by the aerodynam-

ics and geometry of the given airplane confi guration 

via  C   D ,0 ,  e  and AR. Hence, ( L  / D ) max  does not change 

with altitude. However, the  velocity  at which the 

airplane must fl y to achieve ( L  / D ) max  does vary with 

altitude. To explain why this is so, fi rst recall that 

 L  / D  is a function of the airplane’s angle of attack. 

For example, the variation of  L  / D  versus α for the 

special-purpose F-111 TACT aircraft (illustrated in 

Fig. 5.33) is shown in    Fig. 6.47 . Note that ( L  / D ) max  

occurs at an angle of attack of 6°; at this angle of at-

tack,  C L   = 0.44. If the airplane is fl ying at sea level, 

in order to fl y at ( L  / D ) max , it must be fl ying at α = 6° 

with  C L   = 0.44. For the given weight, this condition 

fi xes the velocity at which the airplane must fl y via 

the relation  W  =  q  ∞   SC L  , or

  V
W

SCL
∞VV

∞
= 2

ρ
  (6.88)        

To fl y at at ( L / D ) max  higher altitude, the airplane must 

still fl y at α = 6° with  C L   = 0.44. However, because 

ρ ∞  has decreased,  V  ∞  must be larger, as given by 

   Eq. (6.88) . That is,  V  ∞  must be increased to just the 

right value so that the lift remains equal to the weight 

for the fi xed  C L   at α = 6°. As a result, the velocity 

required to fl y at ( L  / D ) max  increases with altitude. 
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or  ( ) ( )maxC f) . ( )max t/minff)(5 6        

This is to be compared with (R /C) max  = 8100 ft /min read from the peak of the graph in 

   Fig. 6.33  from    Example 6.10 .   

  Although the value of ( L  / D ) max  is very impor-

tant in airplane design,  fl ight  at ( L  / D ) max  is not al-

ways the holy grail of aeronautical engineering that 

it may seem. As usual, the airplane designer is faced 

with a compromise, this time involved with  V  max

relative to the velocity for ( L  / D ) max . The velocity for 

( L  / D ) max  can be substantially  smaller  than the maxi-

mum velocity. For example, from    Fig. 6.46 , the ve-

locity at sea level for ( L  / D ) max  for the CJ-1 is about 

300 ft/s, whereas from    Fig. 6.26 ,  V  max  = 975 ft/s—a 

considerable difference. For the CP-1 at sea level, 

from    Fig. 6.44  the velocity for ( L  / D ) max  is about 150 

ft/s, whereas from    Fig. 6.21  a ,  V  max  = 265 ft/s at sea 

level. If the pilot of the CP-1 chooses to fl y very ef-

fi ciently by fl ying at  V  ∞  = 150 ft/s so that  L/D  is at 

its maximum value, then the fl ight will take almost 

75 percent longer to go from point  A  to  B  compared 

to fl ying at  V  max . Because time is valuable (indeed, 

most passengers fl y to save time), the design cruise 

speed for a given airplane may not correspond to 

( L  / D ) max . The airplane designer must be ready to ac-

cept a higher-speed cruise with an ( L  / D ) max  that is less 

than the value of ( L  / D ) max . However, this does not di-

minish the importance of ( L  / D ) max  as a design param-

eter. For example, an airplane with a high value of 

( L  / D ) max  will still have comparatively high values of 

( L  / D ) max  while fl ying at velocities other than that for 

( L  / D ) max . Also, the late Bernard Carson, a professor 

of aerospace engineering at the U.S. Naval Academy, 

suggested a rational compromise that combines the 

concept of long range obtained by fl ying at the slower 

velocity for ( L  / D ) max  and the shorter fl ight times ob-

tained by fl ying at higher speeds. His analysis leads 

to an optimum compromise for fl ight velocity called 

the  Carson speed,  which can be shown to be a factor 

of 1.32 higher than the velocity for ( L  / D ) max . The de-

tails can be found in    Anderson ,  Aircraft Performance 
and Design,  McGraw-Hill, New York, 1999. 
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Figure 6.47  Flight data for lift-to-drag ratio versus 

angle of attack for the F-111 TACT airplane shown in 

Fig. 5.33.  M  ∞  = 0.7. Wing sweep angle = 26°. 
(Source:  Data from Baldwin et al.,  Symposium on Transonic 

Aircraft Technology (TACT),  Air Force Flight Dynamics 
Laboratory Technical Report AFFDL-TR-78-100, Wright-
Patterson Air Force Base, Ohio, 1978 .) 
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    EXAMPLE 6.24  

 Consider an airplane with  C   D ,0  = 0.025, AR = 7.37, and  e  = 0.80. The airplane is fl ying at 

conditions such that its lift coeffi cient is  C   L   = 0.228. Calculate the ratio of lift to drag at 

this condition. 

  ■ Solution 

   C C
C

e
D DC L+CDC ,0

2

π AR
       

Thus

C

C

C

C

L

D

L

D
c

e
L

=
+

=
+,

( . )
( . )(

.

.0
228

8. 0

2 2( )228

0 228

0 025
π πAR 7 377

8 2

. )37

C

C
L

D

=

We make two points about this example: 

1.   The design characteristics of  C   D ,0 , AR, and  e  are identical to those of the CP-1 

given in    Example 6.1 . So we can check our answer, obtained here analytically, with 

the numerical calculations of    Example 6.1 . Specifi cally, in the tabulation given in 

   Example 6.1 , listed explicitly for a fl ight velocity of 250 ft /s is the value of 

 C   L   = 0.228 (the same as stipulated here) and the resulting calculated value 

of  L  / D  = 8.21 (the same as obtained here, within roundoff accuracy).  

  2.   For a given airplane,  L  / D  is a function of  C   L   only. Of course, because  C   L   is a 

function of angle of attack only, this is the same as stating that  L  / D  is a function of 

 a  only, as illustrated in    Fig. 6.7 . The point made by the present example is that for a 

given airplane, if you have a given  C   L  , you can calculate directly the corresponding 

value of  L  / D , as shown here.        

   6.15  TAKEOFF PERFORMANCE 
  Up to this point in our discussion of airplane performance, we have assumed 

that all accelerations are zero; that is, we have dealt with aspects of  static
performance as defi ned in    Sec. 6.2 . For the remainder of this chapter, we 

relax this restriction and consider several aspects of airplane performance that 

involve fi nite acceleration, such as takeoff and landing runs, turning fl ight, 

and accelerated rate of climb. With this we move to the right column on our 

chapter road map, shown in    Fig. 6.4 . We now take up the study of dynamic 

performance. 

 To begin we ask: What is the running length along the ground required by 

an airplane, starting from zero velocity, to gain fl ight speed and lift from the 

ground? This length is defi ned as the  ground roll,  or  liftoff distance, s  LO . 
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 To address this question, let us fi rst consider the accelerated rectilinear 

motion of a body of mass  m  experiencing a constant force  F , as sketched in 

   Fig. 6.48 . From Newton’s second law,

F ma m
dV

dt
ma        

or  dV
F

m
dt=  (6.89)

Assume that the body starts from rest ( V  = 0) at location  s  = 0 at time  t  = 0 and is 

accelerated to velocity  V  over distance  s  at time  t . Integrating    Eq. (6.89)  between 

these two points and remembering that both  F  and  m  are constant, we have

  
F

m
dt

t∫ ∫dV
FV F=

0 0m
∫        

or  V
F

m
t=   (6.90)        

Solving for  t , we get

  t
Vm

F
=   (6.91)        

Considering an instant when the velocity is  V , the incremental distance  ds  cov-

ered during an incremental time  dt  is  ds = V dt . From    Eq. (6.90)  we have

  ds V dt
F

m
t dt= =V dt   (6.92)        

Integrating    Eq. (6.92)  gives

  ds
F

m
t dt

ts
= ∫∫ 00

       

or  s
F

m

t=
2

2
  (6.93)        

  

  Figure 6.48  Sketch of a body moving under the infl uence of a constant force  F , 

starting from rest ( V  = 0) at  s  = 0 and accelerating to velocity  V  at distance  s . 
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Substituting    Eq. (6.91)  into    (6.93) , we obtain

  s
V m

F
=

2

2
  (6.94)

   Equation (6.94)  gives the distance required for a body of mass  m  to accelerate to 

velocity  V  under the action of a constant force  F . 

  Now consider the force diagram for an airplane during its ground roll, as 

illustrated in    Fig. 6.49 . In addition to the familiar forces of lift, drag, thrust, and 

weight, the airplane experiences a resistance force  R  due to rolling friction be-

tween the tires and the ground. This resistance force is given by

  R rμ ( )W L−W   (6.95)

where  W  −  L  is the net normal force exerted between the tires and the ground and 

μ  r   is the coeffi cient of rolling friction. Summing forces parallel to the ground and 

employing Newton’s second law, we have

  F T D R T D m
dV

dt
r−T =R −D =μ ( )W LL  (6.96)

  Let us examine    Eq. (6.96)  more closely. It gives the local instantaneous ac-

celeration of the airplane  dV  / dt  as a function of  T ,  D ,  W , and  L . For takeoff, over 

most of the ground roll,  T  is reasonably constant (this is particularly true for a 

jet-powered airplane). Also,  W  is constant. However, both  L  and  D  vary with 

velocity because

  L V SCL∞ ∞VV1
2

2ρ   (6.97)        

and  D
C

e
L

⎛

⎝

⎛⎛ ⎞

⎠
⎟
⎞⎞

⎠⎠
1

2
2

2

φCD +CD

⎛
ρ V SV S

⎝

⎛⎛

⎝⎝
∞ ∞VVVV 2

0 π,
AR

  (6.98)        

Figure 6.49  Forces acting on an airplane during takeoff and landing. 
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The quantity φ in    Eq. (6.98)  requires some explanation. When an airplane is fl y-

ing close to the ground, the strength of the wing-tip vortices is somewhat dimin-

ished because of interaction with the ground. Because these tip vortices induce 

downwash at the wing (see Sec. 5.13), which, in turn, generates induced drag 

(see Sec. 5.14), the downwash and hence induced drag are reduced when the air-

plane is fl ying close to the ground. This phenomenon is called  ground effect  and 

is the cause of the tendency for an airplane to fl are, or “fl oat,” above the ground 

near the instant of landing. The reduced drag in the presence of ground effect is 

accounted for by φ in    Eq. (6.98) , where φ ≤ 1. An approximate expression for φ, 

based on aerodynamic theory, is given by McCormick (see the bibliography at 

the end of this chapter) as

φ = ( / )

( / )

16

1+ ( 6

2

2

h b/

h b/
 (6.99)

where  h  is the height of the wing above the ground and  b  is the wingspan. 

 In light of the preceding, to accurately calculate the variation of velocity 

with time during the ground roll, and ultimately the distance required for liftoff, 

we must integrate    Eq. (6.96)  numerically, taking into account the proper veloc-

ity variations of  L  and  D  from    Eqs. (6.97)  and    (6.98) , respectively, as well as 

any velocity effect on  T . A typical variation of these forces with distance along 

the ground during takeoff is sketched in    Fig. 6.50 . Note from    Eq. (6.94)  that  s  is 

proportional to  V  2  , so the horizontal axis in    Fig. 6.50  could just as well be  V  2  . 
Because both  D  and  L  are proportional to the dynamic pressure  q Vqq ∞VV1

2
2ρ    , 

they appear as linear variations in    Fig. 6.50 . Also,    Fig. 6.50  is drawn for a 

 jet-propelled airplane; hence  T  is relatively constant. 

  A simple but approximate expression for the liftoff distance  s  LO  can be ob-

tained as follows. Assume that  T  is constant. Also assume an  average value  for 

the sum of drag and resistance forces, [ D  + μ  r  ( W  −  L )] av , such that this average 

value, taken as a constant force, produces the proper liftoff distance  s  LO . Then 

we consider an effective constant force acting on the airplane during its takeoff 

ground roll as

  F T W LefFF f aT W Lrff v const−TT −WW =r[ (DD )]μ   (6.100)        

These assumptions are fairly reasonable, as seen from    Fig. 6.50 . Note that the 

sum of  D + μ r (W − L)  versus distance (or  V 2  ) is reasonably constant, as shown by 

the dashed line in    Fig. 6.50 . Hence the accelerating force  T − [D + μ r (W − L)] , 
which is illustrated by the difference between the thrust curve and the dashed line 

in    Fig. 6.50 , is also reasonably constant. Now return to    Eq. (6.94) . Considering  F  

given by    Eq. (6.100) ,  V = V  LO  (the liftoff velocity), and  m  =  W / g , where  g  is the 

acceleration of gravity,    Eq. (6.94)  yields

  s
g

D r
LO

LO

av

=
+D

( )VLOVV ( )W g/

{ [T ( )W L ] }av

2

2 μ
  (6.101)        
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To ensure a margin of safety during takeoff, the liftoff velocity is typically 

20 percent higher than the stalling velocity. Hence, from Eq. (5.71) we have

V V
W

SCL
LOVV stalVV l =V t lV l

∞
1 2 1 2

2
.VstalVV l 1

,maxρ
 (6.102)

Substituting    Eq. (6.102)  into    (6.101) , we obtain

s
W

g SC D r
LO

av

=
D

1 44 2.

{ [T ( )W L− ] }av,ρ μSCL DDDTT −,max

 (6.103)

To make a calculation using    Eq. (6.103) , Shevell (see the bibliography at the end 

of this chapter) suggests that the average force in    Eq. (6.103)  be set equal to its 

instantaneous value at a velocity equal to  0.7VLO ; that is,

[ ( )] [ ( )]W( L)] [ W Lr VW( [μ μL)] [r ( )]W( L)]−W(W( [[[
LOVV0 7.

Also, experience has shown that the coeffi cient of rolling friction  μ r   in    Eq. (6.103)  

varies from 0.02 for a relatively smooth, paved surface to 0.10 for a grass fi eld. 

 We can simplify further by assuming that thrust is much larger than either 

D  or  R  during takeoff. Refer to the case shown in    Fig. 6.50 ; this simplifi cation is 

Figure 6.50  Schematic of a typical variation of forces acting on an 

airplane during takeoff. 
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not unreasonable. Hence, ignoring  D  and  R  compared to  T ,    Eq. (6.103)  becomes 

simply

  

s
W

g SC TL
LO = 1 44 2.

,maxρ
  

(6.104)

   Equation (6.104)  illustrates some important physical trends: 

1.   Liftoff distance is very sensitive to the weight of the airplane, varying 

directly as  W  2 . If the weight is doubled, the ground roll of the airplane is 

quadrupled.  

2.   Liftoff distance is dependent on the ambient density ρ ∞ . If we assume that 

thrust is directly proportional to ρ ∞ , as stated in    Sec. 6.7  (that is,  T  ∝ ρ ∞ ), 

then    Eq. (6.104)  demonstrates that

 

sLO 2

1∝
∞ρ        

 This is why on hot summer days, when the air density is less than that on 

cooler days, a given airplane requires a longer ground roll to get off the 

ground. Also, longer liftoff distances are required at airports that are located 

at higher altitudes (such as at Denver, Colorado, a mile above sea level).  

3.   The liftoff distance can be decreased by increasing the wing area, 

increasing  C   L ,max , and increasing the thrust, all of which simply make 

common sense.    

 The total takeoff distance, as defi ned in the Federal Aviation Requirements 

(FAR), is the sum of the ground roll distance  s  LO  and the distance (measured 

along the ground) to clear a 35-ft height (for jet-powered civilian transports) or a 

50-ft height (for all other airplanes). A discussion of these requirements, as well 

as more details regarding the total takeoff distance, can be found in    Anderson , 

 Aircraft Performance and Design,  McGraw-Hill, New York, 1999. Also see the 

books by Shevell and McCormick listed in the bibliography at the end of this 

chapter for more information about this topic. 

EXAMPLE 6.25

  Estimate the liftoff distance for the CJ-1 at sea level. Assume a paved runway: μ  r   = 0.02. 

During the ground roll, the angle of attack of the airplane is restricted by the requirement 

that the tail not drag the ground; so assume that  C   L ,max  during ground roll is limited to 1.0. 

Also, when the airplane is on the ground, the wings are 6 ft above the ground. 

 ■ Solution 
  Use    Eq. (6.103) . To evaluate the average force in    Eq. (6.103) , fi rst obtain the ground 

effect factor from    Eq. (6.99) , where  h  / b  = 6 /53.3 = 0.113:

 

φ = =( / )

( / )
.

16

1 + ( 6
0 764

2

2

h b/

h b/
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From    Eq. (6.102) ,

 

V V
W

SCL
LOVV stalVV l =V t lV l =

∞
1 2 1 2

2
1 2

2 1 815

0 0023
.VstalVV l 1 .

( ,19 )

.,maxρ 7777 1 0
230

( )318 ( .1 )
= ft/sff

       

Hence 0.7 V  LO  = 160.3 ft /s. The average force in    Eq. (6.103)  should be evaluated at a 

velocity of 160.3 ft /s. To do this, from    Eq. (6.97)  we get

L V SCL =V SCL∞ ∞VV1
2

2 1
2

2002377 160 1 0ρ ( .0 )( . )3 ( )318 ( .1 ) 2= 9712 l22 b

   Equation (6.98)  yields
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Finally, from    Eq. (6.103) ,

 

s
W

g SC D r
LO

av

=
D

=

1 44

1 44 19 8

2.

{ [T ( )W L− ] }av

. (44 ,

,ρ μSCL DDDTT −,max

1511
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Note that [ D  + μ  r  ( W  −  L )] av  = 722.8 lb, which is about 10 percent of the thrust. Hence, the 

assumption leading to    Eq. (6.104)  is fairly reasonable; that is,  D  and  R  can sometimes be 

ignored compared with  T .     

   6.16  LANDING PERFORMANCE 
  Consider an airplane during landing. After the airplane has touched the ground, 

the force diagram during the ground roll is exactly the same as that given in 

   Fig. 6.49 , and the instantaneous acceleration (negative in this case) is given by 

   Eq. (6.96) . However, we assume that to minimize the distance required to come 

to a complete stop, the pilot has decreased the thrust to zero at touchdown, and 

therefore the equation of motion for the landing ground roll is obtained from 

   Eq. (6.96)  with  T  = 0:

−D − m= dV

dt
rμ ( )−W L (6.105)

A typical variation of the forces on the airplane during landing is sketched in 

   Fig.  6.51 . Designate the ground roll distance between touchdown at velocity 

V   T   and a complete stop by  s   L  . An accurate calculation of  s   L   can be obtained by 

numerically integrating    Eq. (6.105)  along with    Eqs. (6.97)  and    (6.98) . 
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Figure 6.51 Schematic of a typical variation of forces acting on an airplane during landing.

 However, let us develop an approximate expression for  s   L   that parallels 

the philosophy used in    Sec. 6.15 . Assume an average constant value for  D  +
μ  r  ( W  −   L ) that effectively yields the correct ground roll distance at landing  s   L  . 

Once again we can assume that [ D  + μ  r  ( W  −  L )] av  is equal to its instantaneous 

value evaluated at 0.7 V   T  :

  F W L W Lr VTVVW −W[ (D + )] [ (D r )]μ μLr W LWW = −rr )] [DD 0 7.   (6.106)        

[Note from    Fig. 6.51  that the net decelerating force  D  + μ  r  ( W  −  L ) can vary con-

siderably with distance, as shown by the dashed line. Hence, our assumption here 

for landing is more tenuous than for takeoff.] Returning to    Eq. (6.92) , we inte-

grate between the touchdown point, where  s = s L   and  t  = 0, and the point where 

the airplane’s motion stops, where  s  = 0 and time equals  t :

 

F

m
t dt

s

t

L 0∫ ∫ds
F

sL

0

       

or  s
F

m

t
L = −

2

2
  (6.107)        

Note that from    Eq. (6.106) ,  F  is a negative value; hence  s   L   in    Eq. (6.107)  is 

 positive. 
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 Combining    Eqs. (6.91)  and    (6.107) , we obtain

  
s

V m

F
L = −

2

2
(6.108)

   Equation (6.108)  gives the distance required to decelerate from an initial velocity 

V  to zero velocity under the action of a constant force  F . In    Eq. (6.108)   F  is given 

by    Eq. (6.106) , and  V  is  V   T  . Thus    Eq. (6.108)  becomes

  

s
V g

W L
L

TVV

r VW L
TVV

=
−WW

2

0 72

( )W g

[ (D r )]μ
  

(6.109)

        

To maintain a factor of safety,

  

V V
W

SC
TVV

L

=V
∞

1 3 1 3
2

V 1
,max

stalVVVVV l ρ
  

(6.110)

        

Substituting    Eq. (6.110)  into    (6.109) , we obtain

  

s
W

g SC W L
L

r VTVV

=
W

1 69 2

0 7(r[ (D + r )],ρ μSCL DD +,max
  

(6.111)

        

During the landing ground roll, the pilot is applying brakes; hence in    Eq. (6.111)  

the coeffi cient of rolling friction is that during braking, which is approximately 

μ  r   = 0.4 for a paved surface. 

 Modern jet transports utilize thrust reversal during the landing ground roll. 

Thrust reversal is created by ducting air from the jet engines and blowing it in the 

upstream direction, opposite to the usual downstream direction when normal thrust 

is produced. As a result, with thrust reversal, the thrust vector in    Fig. 6.49  is reversed 

and points in the drag direction, thus aiding the deceleration and shortening the 

ground roll. Designating the reversed thrust as  T   R  , we see that    Eq. (6.105)  becomes

− − =T D− m
dV

dt
R rT DT μ ( )W L− (6.112)

Assuming that  T   R   is constant,    Eq. (6.111)  becomes

s
W

g SC D
L

r VTV

=
D

1 69 2

{ [T + ( )W LW L− ] }VTVV0 7,ρ μSC DL R D[TRTT +,max
(6.113)

 Another ploy to shorten the ground roll is to decrease the lift to near zero, 

hence imposing the full weight of the airplane between the tires and the ground 

and increasing the resistance force due to friction. The lift on an airplane wing 

can be destroyed by spoilers, which are simply long, narrow surfaces along the 

span of the wing, defl ected directly into the fl ow, thus causing massive fl ow 

separation and a striking decrease in lift. 
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 The total landing distance, as defi ned in FAR, is the sum of the ground roll 

distance and the distance (measured along the ground) to achieve touchdown in 

a glide from a 50-ft height. Such details are beyond the scope of this book; see 

the books by Shevell and McCormick (listed in the bibliography at the end of 

this chapter) and by    Anderson ,  Aircraft Performance and Design,  McGraw-Hill, 

New York, 1999, for more information. 

   6.17  TURNING FLIGHT AND THE  V − n  DIAGRAM 
  Up to this point in our discussion of airplane performance, we have considered 

rectilinear motion. Our static performance analyses dealt with zero accelera-

tion leading to constant velocity along straight-line paths. Our discussion of 

takeoff and landing performance involved rectilinear acceleration, also leading 

to motion along a straight-line path. Let us now consider some cases involving 

radial  acceleration, which leads to  curved  fl ight paths; that is, let us  consider 

the turning fl ight of an airplane. In particular, we examine three specialized 

cases: a level turn, a pull-up, and a pull-down. A study of the generalized 

motion of an airplane along a three-dimensional fl ight path is beyond the scope 

of this book. 

EXAMPLE 6.26

  Estimate the landing ground roll distance at sea level for the CJ-1. No thrust reversal 

is used; however, spoilers are employed so that  L  = 0. The spoilers increase the zero-

lift drag coeffi cient by 10 percent. The fuel tanks are essentially empty, so neglect the 

weight of any fuel carried by the airplane. The maximum lift coeffi cient, with fl aps fully 

deployed at touchdown, is 2.5. 

 ■ Solution
  The empty weight of the CJ-1 is 12,352 lb. Hence

V V
W

SC
TVV

L

=V =
∞

1 3 1 3
2

1 3
2 1 352

0 00237
1V

( ,12 )

.,max
stalVV t lVVVV l ρ 77 2 5

148 6
( )318 ( .2 )

.= ft/sff

Thus 0.7 V   T   = 104 ft /s. Also,  C   D ,0  = 0.02 + 0.1(0.02) = 0.022. From    Eq. (6.98) , with  C   L   = 0 

(remember, spoilers are deployed, destroying the lift),

D V SCD =V SCD =∞ ∞VV1
2

2
0

1
2

2002377 104 318 0 8ρ , ( .0 )( ) (2 )( . )022 9 999. l9 b

From    Eq. (6.111) , with  L  = 0,

s
W

g SC
L

r VTVV
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 A level turn is illustrated in    Fig. 6.52 . Here the wings of the airplane are 

banked through angle φ hence the lift vector is inclined at angle φ to the vertical. 

The bank angle φ and the lift  L  are such that the component of the lift in the verti-

cal direction exactly equals the weight:

 
L Wφ

Figure 6.52 An airplane in a level turn.



Therefore, the airplane maintains a constant altitude, moving in the same hori-

zontal plane. However, the resultant of  L  and  W  leads to a resultant force  F   r  ,
which acts in the horizontal plane. This resultant force is perpendicular to the 

fl ight path, causing the airplane to turn in a circular path with a radius of curva-

ture equal to  R . We wish to study this turn radius  R  as well as the turn rate  d  θ   / dt . 
     From the force diagram in    Fig. 6.52 , the magnitude of the resultant force is

  
F L WrFF −L2 2LL W (6.114)

We introduce a new term, the  load factor n , defi ned as

n
L

W
≡ (6.115)        

The load factor is usually quoted in terms of “ g ’s”; for example, an airplane with 

lift equal to 5 times the weight is said to be experiencing a load factor of 5  g ’s. 

Hence,    Eq. (6.114)  can be written as

  F W nrFF −W n2 1 (6.116)        

The airplane is moving in a circular path at velocity  V  ∞ ; therefore the radial 

acceleration is given by  V R∞VV 2 /    . From Newton’s second law,

F m
V

R

W

g

V

R
rFF =m ∞ ∞VV W VV2 2W V

(6.117)

Combining    Eqs. (6.116)  and    (6.117)  and solving for  R , we have

R
V

g n
=

−
∞VV 2

2 1 (6.118)

The angular velocity, denoted by ω ≡  d  θ   / dt , is called the  turn rate  and is given 

by  V  ∞  / R . Thus, from    Eq. (6.118)  we have

ω = −
∞

g n

V∞

2 1
(6.119)

For the maneuvering performance of an airplane, military or civil, it is fre-

quently advantageous to have the smallest possible  R  and the largest possible ω. 

   Equations (6.118)  and    (6.119)  show that to obtain both a small turn radius and a 

large turn rate, we want 

  1.   The highest possible load factor (that is, the highest possible  L   / W ).  

  2.   The lowest possible velocity.    

 Consider another case of turning fl ight, in which an airplane initially in

straight, level fl ight (where  L  =  W ) suddenly experiences an increase in lift. 
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Because  L > W , the airplane will begin to turn upward, as sketched in    Fig. 6.53 . 

For this pull-up maneuver, the fl ight path becomes curved in the vertical plane, 

with a turn rate  ω = dθ  /dt . From the force diagram in    Fig. 6.53 , the resultant 

force  F   r   is vertical and is given by

  F L W WrFF −L W ( )n −n  (6.120)

From Newton’s second law,

F m
V

R

W

g

V

R
rFF =m ∞ ∞VV W VV2 2W V

(6.121)

Combining    Eqs. (6.120)  and    (6.121)  and solving for  R  give

  

R
V

g n
= ∞VV 2

( )n − 1
  

(6.122)

and because ω =  V  ∞  / R ,

  

ω =
∞

g n

V∞

( )−n

  

(6.123)

Figure 6.53 The pull-up maneuver.



 A related case is the pull-down maneuver, illustrated in    Fig. 6.54 . Here an 

airplane in initially level fl ight suddenly rolls to an inverted position, so that both 

L  and  W  are pointing downward. The airplane will begin to turn downward in a 

circular fl ight path with a turn radius  R  and turn rate ω =  d  θ  / dt . By an analysis 

similar to those preceding, the following results are easily obtained:

  

R
V

g n
= ∞VV 2

( )n + 1   

(6.124)        

  

ω =
∞

g n

V∞

( )+n

  

(6.125)        

Prove this to yourself. 

     Considerations of turn radius and turn rate are particularly important to 

military fi ghter aircraft; everything else being equal, airplanes with the smallest 

 R  and largest ω will have defi nite advantages in air combat. High-performance 

fi ghter aircraft are designed to operate at high load factors—typically from 

3 to 10. When  n  is large, then  n  + 1 ≈  n  and  n  − 1 ≈  n ; for such cases    Eqs. (6.118) , 

   (6.119) , and    (6.122)  to    (6.125)  reduce to

  

R
V

gn
= ∞VV 2

  
(6.126)

        

and

  

ω =
∞

gn

V∞   

(6.127)

        

Figure 6.54 The pull-down maneuver.
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Let us work with these equations further. Because

L V SCL∞ ∞VV1
2

2ρ

then

  

V
L

SCL
∞VV

∞
=2 2

ρ
(6.128)

Substituting    Eqs. (6.128)  and    (6.115)  into    Eqs. (6.126)  and    (6.127) , we obtain

R
SC W C g

W

SLC
= =2 2L

ρ ρSC g L WLgLg W∞SCLg W( /LLLL )   

(6.129)

and

  

ω
ρ

ρ
ρ

=

= =

∞

∞

∞

gn

L Sρ∞ C

gn

Cρ∞ W S
g

C n
L

L

L

2

2

/ ( )

[ /n2 ( )]( ) ( )W S/ (6.130)

Note that in    Eqs. (6.129)  and    (6.130) , the factor  W / S  appears. As we have dis-

cussed in previous sections, this factor occurs frequently in airplane performance 

analyses and is labeled

 

W

S
≡ wing loading

       

   Equations (6.129)  and    (6.130)  clearly show that airplanes with lower wing load-

ings will have smaller turn radii and larger turn rates, everything else being 

equal. However, the design wing loading of an airplane is usually determined by 

factors other than maneuvering, such as payload, range, and maximum velocity. 

As a result, wing loadings for light, general aviation aircraft are relatively low, 

but those for high-performance military aircraft are relatively large. Wing load-

ings for some typical airplanes are listed here:  

 Airplane   W / S , lb/ft 2  

  Wright Flyer  (1903)   1.2 
 Beechcraft Bonanza  18.8 
 McDonnell Douglas F-15  66 
 General Dynamics F-16  74 

  From this table we conclude that a small, light aircraft such as the Beechcraft 

Bonanza can outmaneuver a larger, heavier aircraft such as the F-16 because 

of smaller turn radius and larger turn rate. However, this is really comparing 

apples and oranges. Instead, let us examine    Eqs. (6.129)  and    (6.130)  for a  given
airplane with a given wing loading and ask: For this specifi c airplane, under 

what conditions will  R  be minimum and ω maximum? From these equations, 



clearly  R  will be minimum and ω will be maximum when both  C   L   and  n  are 

maximum. That is,

R
gC

W

SL
miRR n

,max

=
∞

2

ρ
(6.131)

ω ρ
max

,max max

( / )
= ∞g

C nmax

S/
L

2
(6.132)

Also note from    Eqs. (6.131)  and    (6.132)  that best performance will occur at sea 

level, where ρ ∞  is maximum. 

 There are some practical constraints on the preceding considerations. First, 

at low speeds,  n  max  is a function of  C   L ,max  itself because

 

n
L

W

V SC

W
L= = ∞ ∞VV1

2
2ρ

       

hence
 

n V
C

W S
L

max
,max

∞ ∞VV
1

2
2ρ

/
(6.133)

At higher speeds,  n  max  is limited by the structural design of the airplane. These 

considerations are best understood by examining    Fig. 6.55 , which is a diagram 

showing load factor versus velocity for a given airplane: the  V–n diagram . Here 

curve  AB  is given by    Eq. (6.133) . Consider an airplane fl ying at velocity  V  1 , where 

V  1  is shown in    Fig. 6.55 . Assume that the airplane is at an angle of attack such that 

C   L   <  C   L ,max . This fl ight condition is represented by point 1 in    Fig. 6.55 . Now assume 

that the angle of attack is increased to that for obtaining  C   L ,max , keeping the velocity 

constant at  V  1 . The lift increases to its maximum value for the given  V  1 , and hence 

the load factor  n  =  L / W  reaches its maximum value  n  max  for the given  V  1 . This value 

of  n  max  is given by    Eq. (6.133) , and the corresponding fl ight condition is given by 

point 2 in    Fig. 6.55 . If the angle of attack is increased further, the wing stalls and 

the load factor drops. Therefore point 3 in    Fig. 6.55  is unobtainable in fl ight. Point 

3 is in the  stall region  of the  V – n  diagram. Consequently, point 2 represents the 

highest possible load factor that can be obtained at the given velocity  V  1 . Now as 

 V  1  is increased, say, to a value of  V  4 , then the maximum possible load factor  n  max  

also increases, as given by point 4 in    Fig. 6.55  and as calculated from    Eq. (6.133) . 

However,  n  max  cannot be allowed to increase indefi nitely. Beyond a certain value 

of load factor, defi ned as the  positive limit load factor  and shown as the horizon-

tal line  BC  in    Fig. 6.55 , structural damage may occur to the aircraft. The velocity 

corresponding to point  B  is designated as  V  * . At velocities higher than  V  * , say  V  5 , 

the airplane must fl y at values of  C   L   less than  C   L ,max  so that the positive limit load 

factor is not exceeded. If fl ight at  C   L ,max  is obtained at velocity  V  5 , corresponding 

to point 5 in    Fig. 6.55 , then structural damage will occur. The right side of the  V – n  

diagram, line  CD , is a high-speed limit. At velocities greater than this, the dynamic 

pressure becomes so large that again structural damage may occur to the airplane. 
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Figure 6.55 The V–n diagram for a typical jet trainer aircraft.
(Source: U.S. Air Force Academy.)

(This maximum velocity limit is, by design, much larger than the level-fl ight  V  max

calculated in    Secs. 6.4  to    6.6 . In fact, the structural design of most airplanes is 

such that the maximum velocity allowed by the  V–n  diagram is suffi ciently greater 

than the maximum diving velocity for the airplane.) Finally, the bottom part of the 

 V – n  diagram, given by curves  AE  and  ED  in    Fig. 6.55 , corresponds to negative 

absolute angles of attack—that is, negative load factors. Curve  AE  defi nes the stall 

limit. (At absolute angles of attack less than zero, the lift is negative and acts in the 

downward direction. If the wing is pitched downward to a large enough negative 

angle of attack, the fl ow will separate from the bottom surface of the wing and the 

downward-acting lift will decrease in magnitude; that is, the wing  stalls .) Line  ED
gives the  negative limit load factor , beyond which structural damage will occur. 

     As a fi nal note concerning the  V – n  diagram, consider point  B  in    Fig. 6.55 . 

This point is called the  maneuver point . At this point both  C   L   and  n  are simulta-

neously at their highest possible values that can be obtained anywhere through-

out the allowable fl ight envelope of the aircraft. Consequently, from    Eqs. (6.131)  

and    (6.132) , this point corresponds simultaneously to the smallest possible turn 

radius and the largest possible turn rate for the airplane. The velocity correspond-

ing to point  B  is called the  corner velocity  and is designated by  V  *  in    Fig. 6.55 . 

We can obtain the corner velocity by solving    Eq. (6.133)  for velocity, yielding

  

V
n

C

W

SL

* max

,max

=
∞

2

ρ
  

(6.134)

        



In    Eq. (6.134) , the value of  n  max  corresponds to that at point  B  in    Fig. 6.55 . The 

corner velocity is an interesting dividing line. At fl ight velocities less than  V  * , 

it is not possible to structurally damage the airplane owing to the generation of 

too much lift. In contrast, at velocities greater than  V  * , lift can be obtained that 

can structurally damage the aircraft (such as at point 5 in    Fig. 6.55 ), and the pilot 

must make certain to avoid such a case. 

EXAMPLE 6.27

  Consider the CJ-1 (   Example 6.1 ) in a level turn at sea level. Calculate the minimum turn 

radius and the maximum turn rate. The maximum load factor and lift coeffi cient (with no 

fl ap defl ection) are 5 and 1.4, respectively. 

■ Solution 
  The minimum turn radius and maximum turn rate are obtained when the fl ight velocity is 

the corner velocity,  V *, given by    Eq. (6.134) :

V
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ρ
(6.134)

The wing loading for the CJ-1 with a full fuel load is

 

W
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= =19 815
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62 3 2,

. l3 b/ft
       

Thus, from    Eq. (6.134) ,
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From    Eq. (6.118) , with  V  ∞  =  V * and  n  =  n  max , we have
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and from    Eq. (6.119)  we have
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In terms of degrees, recalling that 1 rad = 57.3 ° , we have

 
ωmaωω x .= 20 9 deg/s
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   6.18   ACCELERATED RATE OF CLIMB 
(ENERGY METHOD)     1    

  Modern high-performance airplanes, such as the supersonic Lockheed Martin 

F-22 Raptor and F-15 Eagle shown in    Fig. 6.56 , are capable of highly accelerated 

rates of climb. Therefore, the performance analysis of such airplanes requires 

methods that go beyond the static rate-of-climb considerations given in    Secs. 6.8  

to    6.11 . The purpose of this section is to introduce one such method of dealing 

with the  energy  of an airplane. This is in contrast to our previous discussions that 

have dealt explicitly with forces on the airplane. 

 Consider an airplane of mass  m  in fl ight at some altitude  h  and with some 

velocity  V . Due to its altitude, the airplane has  potential energy  PE equal to  mgh . 

Due to its velocity, the airplane has  kinetic energy  KE equal to  1
2

2mV    . The total 

energy of the airplane is the sum of these energies:

  Total aircraft eff nergy PE KE+PE = mgh m+ V1
2

2
  (6.135)        

The energy per unit weight of the airplane is obtained by dividing    Eq. (6.135)  by 

 W  =  mg . This yields the  specifi c energy,  denoted by  H   e  :

H
W

mgh mV

mg
e ≡ + =PE KE 1

2
2

       

or

  

H h
g

e +h
V 2

2   
(6.136)

The specifi c energy  H   e   has units of height and is therefore also called the  energy 
height  of the aircraft. Thus, let us become accustomed to quoting the energy 

of an airplane in terms of the energy height  H   e  , which is simply the sum of the 

potential and kinetic energies of the airplane per unit weight. Contours of con-

stant  H   e   are illustrated in    Fig. 6.57 , which is an altitude–Mach number map. Here 

the ordinate and abscissa are altitude  h  and Mach number  M , respectively, and 

the dashed curves are lines of constant energy height. 

     To obtain a feeling for the signifi cance of    Fig. 6.57 , consider two air-

planes, one fl ying at an altitude of 30,000 ft at Mach 0.81 (point  A  in    Fig. 6.57 ) 

and the other fl ying at an altitude of 10,000 ft at Mach 1.3 (point  B ). Both air-

planes have the same energy height, 40,000 ft (check this yourself by calcula-

tion). However, airplane  A  has more potential energy and less kinetic energy 

(per unit weight) than airplane  B . If both airplanes maintain their same states of 

total energy, then both are capable of “zooming” to an altitude of 40,000 ft at 

zero velocity (point  C ) simply by trading all their kinetic energy for potential 

energy. Consider another airplane, fl ying at an altitude of 50,000 ft at Mach 1.85, 

1This section is based in part on material presented by the faculty of the department of aeronautics at the 

U.S. Air Force Academy at its annual aerodynamics workshop, held each July at Colorado Springs. This 

author has had the distinct privilege to participate in this workshop since its inception in 1979. Special 

thanks for this material go to Col. James D. Lang, Major Thomas Parrot, and Col. Daniel Daley.



Figure 6.56 Lockheed Martin F-22 Raptor and F-15 Eagle in 90° vertical accelerated climb.
(Source: U.S. Air Force.)

denoted by point  D  in    Fig. 6.57 . This airplane will have an energy height of 100,000 

ft and is indeed capable of zooming to an actual altitude of 100,000 ft by trading all 

its kinetic energy for potential energy. Airplane  D  is in a much higher energy state 

( H   e   = 100,000 ft) than airplanes  A  and  B  (which have  H   e   = 40,000 ft). Therefore, 

airplane  D  has a much greater capability for speed and altitude performance than 

airplanes  A  and  B . In air combat, everything else being equal, it is advantageous to 

be in a higher energy state (have a larger  H   e  ) than your adversary. 
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 How does an airplane change its energy state? For example, in    Fig. 6.57 , 

how could airplanes  A  and  B  increase their energy heights to equal that of  D ? 

To answer this question, return to the force diagram in    Fig. 6.5  and the resulting 

equation of motion along the fl ight path, given by    Eq. (6.7) . Assuming that  α T   is 

small,    Eq. (6.7)  becomes

T D W m
dV

dt
−D i θ

  
(6.137)

Recalling that  m  =  W / g , we can rearrange    Eq. (6.137)  as

 

T D W
g

dV
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=D +
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Multiplying by  V / W , we obtain

TV DV

W
V

V

g

dV

dt

− = +V si θ (6.138)

Examining    Eq. (6.138)  and recalling some of the defi nitions from    Sec. 6.8 , we 

observe that  V  sin  θ   =  R / C  =  dh  / dt  and that

 

TV DV

W W
PsPP

− = ≡excess power

       

Figure 6.57 Altitude–Mach number map showing curves of constant energy 

height. These are universal curves that represent the variation of kinetic and 

potential energies per unit weight. They do not depend on the specifi c design 

factors of a given airplane.



where the excess power per unit weight is defi ned as the  specifi c excess power
and is denoted by  P   s  . Hence    Eq. (6.138)  can be written as

P
dh

dt

V

g

dV

dt
sPP = +

 

 (6.139)

   Equation (6.139)  states that an airplane with excess power can use this excess 

for rate of climb  (dh/dt)  or to accelerate along its fl ight path  (dV/dt)  or for acom-

bination of both. For example, consider an airplane in level fl ight at a velocity 

of 800 ft/s. Assume that when the pilot pushes the throttle all the way forward, 

excess power is generated in the amount  P s   = 300 ft/s.    Equation (6.139)  shows 

that the pilot can choose to use all this excess power to obtain a maximum unac-

celerated rate of climb of 300 ft/s ( dV / dt  = 0, hence  P   s   =  dh  / dt  = R /C). In this 

case the velocity along the fl ight path stays constant at 800 ft /s. Alternatively, 

the pilot may choose to maintain level fl ight ( dh  / dt  = 0) and to use all this excess 

power to accelerate at the rate of  dV  / dt  =  gP   s   / V  = 32.2(300)/800 = 12.1 ft /s 2 . 

On the other hand, some combination could be achieved, such as a rate of climb 

 dh / dt  = 100 ft/s along with an acceleration along the fl ight path of  dV / dt  = 

32.2(200)/800 = 8.1 ft/s 2 . [Note that    Eqs. (6.138)  and    (6.139)  are generalizations 

of    Eq. (6.50) . In    Sec. 6.8  we assumed that  dV/dt = 0 , which resulted in    Eq. (6.50)  

for a steady climb. In the present section we are treating the more general case of 

climb with a fi nite acceleration.] Now return to    Eq. (6.136)  for the energy height. 

Differentiating with respect to time, we have

  

dH

dt

dh

dt

V

g

dV

dt
e = +

  
(6.140)        

The right sides of    Eqs. (6.139)  and    (6.140)  are identical; hence we see that

  

P
dH

dt
sPP e=

  

(6.141)

        

That is, the  time rate of change of energy height is equal to the specifi c excess 
power . This is the answer to the question at the beginning of this paragraph. An 

airplane can increase its energy state simply by the application of excess power. 

In    Fig. 6.57  airplanes  A  and  B  can reach the energy state of airplane  D if  they 

have enough excess power to do so. 

 This immediately leads to the next question: How can we ascertain whether 

a given airplane has enough  P   s   to reach a certain energy height? To address this 

question, recall the defi nition of excess power as illustrated in    Fig. 6.29 —that is, 

the difference between power available and power required. For a given altitude, 

say  h , the excess power (hence  P   s  ) can be plotted versus velocity (or Mach number). 

For a subsonic airplane below the drag-divergence Mach number, the resulting 

curve will resemble the sketch shown in    Fig. 6.58  a . At a given altitude  h  1 ,  P   s   will 

be an inverted, U-shaped curve. (This is essentially the same type of plot shown 

in    Figs. 6.32  and    6.33 .) For progressively higher altitudes, such as  h  2  and  h  3 ,  P   s   
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becomes smaller, as also shown in    Fig. 6.58  a . Hence,    Fig. 6.58  a  is simply a plot 

of  P   s   versus Mach number with altitude as a parameter. These results can be cross-

plotted on an altitude–Mach number map using  P   s   as a parameter, as  illustrated 

in    Fig. 6.58  b . For example, consider all the points on    Fig. 6.58  a  where  P s  = 0 ; 

these correspond to points along a horizontal axis through  P s  = 0 , such as points 

 a ,   b ,  c ,  d ,  e , and  f  in    Fig. 6.58  a . Now replot these points on  the altitude–Mach 

number map in    Fig. 6.58  b . Here points  a ,  b ,  c ,  d ,  e , and  f  form a bell-shaped curve 

along which  P s  = 0 . This curve is called the  P   s    contour  for  P s  = 0 . Similarly, all 

points with  P s   = 200 ft/s are on the horizontal line  AB  in    Fig. 6.58  a , and these 

Figure 6.58 Construction of the specifi c excess-power contours 

in the altitude–Mach number map for a subsonic airplane 

below the drag-divergence Mach number. These contours are 

constructed for a fi xed load factor; if the load factor is changed, 

the Ps contours will shift.



points can be cross-plotted to generate the  P s   = 200 ft/s contour in    Fig. 6.58  b . In 

this fashion an entire series of  P   s   contours can be generated in the altitude–Mach 

number map. 

     For a supersonic airplane, the  P   s   versus Mach number curves at different al-

titudes will appear as sketched in    Fig. 6.59  a . The “dent” in the U-shaped curves 

around Mach 1 is due to the large drag increase in the transonic fl ight regime 

(see Sec. 5.10). In turn, these curves can be cross-plotted on the  altitude–Mach 

number map, producing the  P   s   contours illustrated in    Fig. 6.59  b . Due to the dou-

ble-humped shape of the  P   s   curves in    Fig. 6.59  a , the  P   s   contours in    Fig. 6.59  b  

have different shapes in the subsonic and supersonic regions. The shape of the 

 P   s   contours shown in    Fig. 6.59  b  is characteristic of most supersonic aircraft. 

Figure 6.59 Specifi c excess-power contours for a supersonic 

airplane.
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 Now we are close to the answer to our question at the beginning of this sec-

tion. Let us overlay the  P   s   contours, say, from    Fig. 6.59  b , and the energy states 

illustrated in    Fig. 6.57 —all on an altitude–Mach number map. We obtain a dia-

gram like    Fig. 6.60 . In this fi gure, note that the  P   s   contours always correspond 

to a given airplane at a given load factor, whereas the  H   e   lines are universal 

fundamental physical curves that have nothing to do with any given airplane. 

The usefulness of    Fig. 6.60  is that it clearly establishes what energy states are 

obtainable by a given airplane. The regime of sustained fl ight for the airplane 

lies  inside  the envelope formed by the  P s  = 0  contour. Hence, all values of  H   e   

inside this envelope are obtainable by the airplane. A comparison of fi gures like 

   Fig. 6.60  for different airplanes will clearly show in what regions of altitude and 

Mach number an airplane has maneuverability advantages over another. 

        Figure 6.60  is also useful for representing the proper fl ight path to achieve 

minimum time to climb. For example, consider two energy heights  H   e ,1  and  H   e ,2 , 

where  H   e ,2  >  H   e ,1 . The time to move between these energy states can be obtained 

from    Eq. (6.141) , written as

 

dt
d H

P
e

sPP
=

       

Figure 6.60 Overlay of Ps contours and specifi c energy states on an altitude–Mach number 

map. The Ps values shown here approximately correspond to a Lockheed F-104G supersonic 

fi ghter. Load factor n = 1. W = 18,000 lb. The airplane is at maximum thrust. The path given 

by points A through I is the fl ight path for minimum time to climb.
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Integrating between  H   e ,1  and  H   e ,2 , we have

t t
d H

P
e

sPPH

H

eH

eH

2 1t
1

2=t1t ∫
,

,

  
(6.142)

From    Eq. (6.142) , the time to climb will be a minimum when  P   s   is a maximum. 

Looking at    Fig. 6.60 , for each  H   e   curve, we see there is a point where  P   s   is a 

 maximum. Indeed, at this point, the  P   s   curve is tangent to the  H   e   curve. Such points 

are illustrated by points  A  to  I  in    Fig. 6.60 . The arrowed line through these points 

illustrates the variation of altitude and Mach number along the fl ight path for mini-

mum time to climb. The segment of the fl ight path between  D  and  D ′   represents a 

constant-energy dive to accelerate through the drag-divergence region near Mach 1. 

 As a fi nal note, analyses of modern high-performance airplanes make exten-

sive use of energy concepts such as those previously described. Military pilots 

actually fl y with  P   s   diagrams in the cockpit. Our purpose here has been to simply 

introduce some of the defi nitions and basic ideas involved in these concepts. 

A more extensive treatment is beyond the scope of this book.   

   6.19   SPECIAL CONSIDERATIONS 
FOR SUPERSONIC AIRPLANES 

  The physical characteristics of subsonic fl ow and supersonic fl ow are totally 

different—a contrast as striking as that between day and night. We have 

already addressed some of these differences in Chs. 4 and 5. However, these 

differences do not affect the airplane performance techniques discussed in this 

chapter. These techniques are general, and they apply to both subsonic and 

supersonic airplanes. The only way our performance analysis knows that the 

airplane is subsonic or supersonic is through the drag polar and the engine 

characteristics. Recall from our discussion in Sec. 5.3 that  C   L   and  C   D   are func-

tions of free-stream Mach number; hence the drag polar is a function of  M  ∞ . 

A given drag polar pertains to a specifi ed Mach number; for example, the drag 

polar for the Lockheed C-141A shown in    Fig. 6.2  pertains to low-speed fl ow 

 M ∞  ≤ 0.3 . A generic comparison between the drag polars for a given subsonic 

Mach number and a given supersonic Mach number for the same airplane is 

sketched in    Fig. 6.61 . For a given  C   L  ,  C   D   is much larger at supersonic speeds 

than at  subsonic speeds because of the presence of supersonic wave drag. 

Therefore, the supersonic drag polar is displaced to the right of the subsonic 

drag polar and is a more tightly shaped parabola, as sketched in    Fig. 6.61 . 

     Consider an arbitrary point on the drag polar, such as point 1 shown in    Fig. 6.61 . 

A straight line  O –1 drawn from the origin to point 1 will have a slope equal to 

 C   L ,1  / C   D ,1 ; that is, the slope is equal to the lift-to-drag ratio associated with fl ight at 

point 1. As we move point 1 up the drag polar, the slope of line  O –1 will increase, 

associated with increased values of  L / D . Let point  A  be the point where the straight 

line becomes tangent. Hence, the slope of the straight line  OA  is the maximum 

possible slope. This slope is equal to ( L / D ) max , and point  A  corresponds to fl ight 

at maximum lift-to-drag ratio. This demonstrates the graphical construction from 
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which ( L / D ) max  can be obtained from the drag polar. Simply draw a straight line 

from the origin tangent to the drag polar; the slope of this line is equal to ( L / D ) max . 

 With this in mind, let us compare the two drag polars in    Fig. 6.61 . Line  OA  is 

drawn tangent to the subsonic drag polar, and its slope gives ( L / D ) max  at the given 

subsonic Mach number. Line  OB  is drawn tangent to the supersonic drag polar, and 

its slope gives ( L / D ) max  at the given supersonic Mach number. Clearly, the slope of 

 OB  is smaller than the slope of  OA .  The values of  ( L / D ) max   at supersonic speeds are 
smaller than at subsonic speeds.  This is dramatically shown in    Fig. 6.62 . As an air-

plane accelerates through Mach 1, there is a considerable drop in its ( L / D ) max . 
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Figure 6.61 Generic comparison of a 

subsonic drag polar with a supersonic drag 

polar for the same airplane.
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Figure 6.62 Variation of (L/D)max with Mach number for several generic airplane 

confi gurations.
(Source: From M. R. Nichols, A. L. Keith, and W. E. Foss, “The Second-Generation Supersonic 
Transport,” in Vehicle Technology for Civil Aviation: The Seventies and Beyond. NASA 
SP-292, pp. 409–428.)
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 Perhaps the most severe effect on airplane performance associated with 

the decrease in ( L / D ) max  at supersonic speeds is that on range. From    Eq. (6.77)  

we saw that range for a jet airplane is proportional to  C CL DC1 2/    . If ( L / D ) max

is smaller for a given supersonic Mach number, then so will be the value of 

( / )maxC/L DC/1 2/
   . This is the primary reason why the range of a given airplane 

cruising at supersonic speed is smaller than that at subsonic speed, everything 

else being equal. 

DESIGN BOX

Based on the preceding discussion, the designer of 

a supersonic cruise airplane, such as a civil super-

sonic transport, must live with the realities embod-

ied in Eq. (6.143). For example, during the 1990s an 

extended study of a second-generation supersonic 

transport, labeled the high-speed civil transport 
(HSCT), was carried out by industry in the United 

States, supported by the high-speed research (HSR) 

program carried out by NASA. (By comparison, 

the Anglo–French Concorde designed in the 1960s, 

shown in Fig. 5.66, is a fi rst-generation supersonic 

transport.) The baseline design specifi cations for the 

HSCT called for cruise at Mach 2.4 with a range of 

5000 mi, carrying 300 passengers. This is an extreme 

design challenge, on the cutting edge of modern aero-

nautical technology. From Eq. (6.143), a few percent 

shortfall in L/D could prevent the achievement of the 

specifi ed range. This underscores the importance of 

supersonic aerodynamic research aimed at improving 

supersonic L/D. The engine must produce the lowest 

possible thrust-specifi c fuel consumption while at the 

same time producing an environmentally acceptable 

low value of atmospheric pollutants in the jet exhaust 

to protect the atmospheric ozone layer. Moreover, the 

engine noise must be an acceptably low value during 

takeoff and landing; that is a major challenge for jet 

engines designed for supersonic fl ight, for which the 

exhaust jet velocities are large and hence very noisy. 

Therefore, the design of engines for the HSCT is a 

massive challenge in itself. There are major structural 

and materials challenges as well. The design goal of 

the HSCT is a structural weight fraction (weight of 

the structure divided by the gross takeoff weight) of 

0.2, which is considerably smaller than the more typi-

cal value of 0.25 and higher for conventional  subsonic 

transports. With the smaller structural weight frac-

tion, the HSCT can carry more fuel and/or more pas-

sengers to meet its other design specifi cations. And if 

this were not enough, the size of the baseline HSCT is 

so large, with a length longer than a football fi eld, that 

there is a problem with elastic bending of the fuselage 

(in the longitudinal direction); as a result, stability 

and control are severely compromised. This problem 

is compounded by the interaction of the aerodynamic 

force, the propulsive thrust, and the real-time control 

inputs. Called the APSE (aeropropulsiveservoelas-

tic) effect, this is a problem that affects the HSCT 

in fl ight and on the ground. (For more details on the 

HSCT design challenges, see U.S. Supersonic Com-
mercial Aircraft: Assessing NASA’s High-Speed Re-
search Program, National Research Council Report, 

National Academy Press, Washington, DC, 1997.) 

Note that the sonic boom is not considered to be a 

problem for the HSCT because of the up-front de-

cision that it would fl y subsonically over land—the 

same restriction imposed on the Concorde SST. At 

the time of writing, work on the HSCT has been dis-

continued, mainly for economic reasons. However, 

NASA still maintains a low-level research program 

on the technical problems associated with supersonic 

commercial airplanes in general, looking to the time 

when a second-generation supersonic transport be-

comes a reality.

In short, the design of an environmentally ac-

ceptable, economically viable supersonic transport is 

a major aeronautical technological problem that has 

yet to be solved. It will be one of the most challeng-

ing aeronautical endeavors in the early 21st century, 

and perhaps many readers of this book will have a 

hand in meeting this challenge.
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 Let us return to    Eq. (6.75) , repeated here:

R
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 (6.75)

This is the equation from which    Eq. (6.77)  was derived. Assuming fl ight at con-

stant  V  ∞ ,  c   t  , and  C   L   / C   D  ,    Eq. (6.75)  becomes
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You will frequently see    Eq. (6.143)  in the literature as the equation for range for 

a jet airplane. Note that    Eq. (6.143)  shows that maximum range is obtained  not
with maximum  L / D  but rather with the maximum value of the  product V ∞ (L/D) . 

This product is maximum when  C CL DC1 2/     is maximum, as shown through the 

derivation of    Eq. (6.77) . Nevertheless,    Eq. (6.143)  is a useful expression for the 

range for a jet airplane. 

    Equations (6.77)  and    (6.143)  both indicate the obvious ways to compensate 

for the loss of ( L  / D ) max , and hence  C CL DC1 2/    , in the range for a supersonic  airplane: 

  1.   Decrease the thrust-specifi c fuel consumption  c   t  .  

2.   Increase the fuel weight  W   f  , thereby increasing the ratio  W  0  / W  1  in 

   Eq. (6.143)  and increasing the difference  W W0WW 1 2
1WW 1 2/W2 1     in    Eq. (6.77) .   

Increasing the fuel weight is usually not a desirable design solution because the 

additional fuel usually means a smaller useful payload for the airplane. Also, 

for turbojet and low–bypass-ratio turbofans (see Ch. 9), the thrust-specifi c fuel 

consumption increases with an increase in Mach number for supersonic speeds, 

further compounding the degradation of range.   

   6.20  UNINHABITED AERIAL VEHICLES (UAVs) 
  After the Wright brothers worked so hard to put humans in the air in fl ying 

machines, a hundred years later some aerospace engineers are working hard 

to take humans out of fl ying machines.  Uninhabited aerial vehicles (UAVs)
are airplanes that have no humans on board, but rather are fl own remotely by 

pilots on the ground or in other airplanes. Such vehicles came on the scene in 

the 1950s with the introduction of the remotely controlled Ryan Firebee for 

r econnaissance, which was used extensively in Vietnam. In the early days of 

their use, these types of aircraft were labeled  remotely piloted vehicles (RPVs).
Israel is the fi rst nation to have used RPVs in a combat situation, arguing that 

for reconnaissance missions a loss of a relatively inexpensive RPV was better 

than the loss of a pilot and a multimillion-dollar airplane. In the later part of the 

20th century, RPVs matured and were redesignated UAVs, which at the time 

stood for “unmanned” aerial vehicles. The term  unmanned  is, however, a mis-

nomer because such aircraft are manned remotely by a human pilot even though 
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that pilot is not physically in the aircraft. This led to the recent use of the term 

 uninhabited aerial vehicle,  a more proper description of the case. 

 At the time of writing, UAVs and their spinoff,  uninhabited combat aerial 
vehicles (UCAVs),  are becoming a more important part of aerospace engineering. 

In the United States alone, at least fi ve dozen UAV design programs are underway, 

with many more throughout Europe, the Middle East, and Asia. It is already a 

 multibillion-dollar business and growing rapidly. In terms of airplane design, UAVs 

offer a widely expanded design space, in part because the pilot, passengers, and re-

lated life support and safety and comfort equipment are no longer needed, thereby 

saving weight and complexity. Moreover, the physical constraints imposed by the 

limits of the human body, such as losing consciousness when exposed to accelera-

tions around and above 9 g’s even for a few seconds, are removed. Uninhabited 

aerial vehicles present new and exciting design challenges to aerospace engineers; 

such vehicles offer the chance for greatly improved performance and many new 

and unique applications. Because of their growing importance, we devote this sec-

tion to UAVs as part of our overall introduction to fl ight. 

 Let us take a look at a few examples of existing UAVs. To date the primary 

mission for UAVs has been reconnaissance. One of the best-known UAVs is the 

General Atomics Predator, shown in the three-view in    Fig. 6.63 . This aircraft 

Figure 6.63 Three-view of the General Atomics Predator endurance UAV.
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has been used in campaigns in Bosnia, Afghanistan, and Iraq. The Predator has a 

wingspan of 14.85 m (48.7 ft), a high aspect ratio of 19.3, and a maximum takeoff 

weight of 1020 kg  f   (2250 lb). It is powered by a 105-hp Rotax four- cylinder re-

ciprocating engine driving a two-blade, variable-pitch pusher propeller. Because 

it is a reconnaissance vehicle, the Predator is designed to stay in the air for a long 

time; its maximum endurance is greater than 40 hours. (If a human pilot were 

on board, such a long endurance would not be practical.) The high aspect ratio 

is one of the design features allowing such a long endurance. Endurance at low 

altitude is the primary performance characteristic of this airplane; its maximum 

speed is a slow 204 km/h (127 mi/h), its loiter speed is between 111 and 130 

km/h (69 and 81 mi/h), and its service ceiling is a low 7.925 km (26,000 ft). The 

Predator has recently been used successfully as a UCAV in Afghanistan, launch-

ing missiles at targets on the ground. 

     In contrast to the low-altitude Predator, the Northrop Grumman Global Hawk, 

shown in    Fig. 6.64 , is a high-altitude surveillance UAV. As seen in    Fig. 6.64 , the 

Global Hawk has an exceptionally high aspect ratio of 25, providing the same 

benefi cial aerodynamic characteristics as that for the high–  aspect-ratio wing 

used for the Lockheed high-altitude U-2 described in detail in the design box in 

Sec. 5.15. The Global Hawk is much larger than the Predator, with a 35.42-m 

(116.2 ft) wingspan and weighing 11,612 kg (25,600 lb) at takeoff. Its service 

Figure 6.64 Three-view of the Global Hawk high-altitude endurance UAV.
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ceiling is 19.8 km (65,000 ft), and it is designed for a loiter speed of 635 km/h 

(395 mi/h) at a loiter altitude of 15.2 to 19.8 km (50,000 ft to 65,000  ft). Its 

maximum endurance is 42 hours. In contrast to the piston-engine Predator, the 

Global Hawk is powered by a Rolls-Royce Allison AE 300 7H turbofan engine, 

producing 7600 lb of thrust at standard sea level. 

     Among its many applications, the Global Hawk has become an instrument 

for atmospheric science research. On April 7, 2010, engineers at the NASA 

Dryden Research Center fl ew a Global Hawk for 14.1 hours, covering 4500 

miles over the Pacifi c Ocean, taking it as far north as Alaska’s Kodiak Island at 

altitudes up to 69,900 ft, much higher than could be attained by conventional 

piloted aircraft (only the U-2 shown in Fig. 5.52 could fl y as high, and the 

U-2 can hardly be classifi ed as “conventional”). Stuffed with 11 instruments 

to measure the chemical composition of the earth’s atmosphere, the dynam-

ics of the atmosphere, and the distribution of clouds and aerosol particles, the 

Global Hawk is earmarked by NASA engineers and scientists (in collaboration 

with others from the National Oceanic and Atmospheric Administration) to fl y 

from the equator to the Arctic Circle, and west of Hawaii. Moreover, on May 

27, 2010, NASA planned to fl y two Global Hawks over the Atlantic Ocean 

from its Wallops Flight Facility in Virginia during the 2012–2014 Atlantic hur-

ricane seasons to study the nature of hurricanes, their energy processes, and 

their changes in velocity. 

 There are stealth UAVs. An example is the Lockheed Martin DarkStar, shown 

in    Fig. 6.65 . This was an experimental vehicle, and the program was  terminated 

in 1999 after two prototypes were produced. The DarkStar nevertheless repre-

sents the design of a low-observable, high-altitude endurance UAV. Its size is 

midway between the Predator and the Global Hawk. The wingspan is 21.03 m 

Figure 6.65 Three-view of the DarkStar stealth UAV.
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(69 ft) with an aspect ratio of 14.8. Its takeoff weight is 3901 kg (8600 lb). It 

was designed for a loiter altitude of 13.7 to 19.8 km (45,000 ft to 65,000 ft), 

with a cruising speed of 463 km/h (288 mi/h) at 13.7 km (45,000 ft). Maximum 

endurance was approximately 12 hours, lower than that for the Predator and the 

Global Hawk—possibly refl ecting poorer aerodynamic characteristics that usu-

ally plague any airplane designed primarily for stealth. 

     Additional UAV aircraft are shown in Fig. 6.66. These refl ect a few of the 

hundreds of UAV designs at present. 

         Uninhabited Combat Aerial Vehicles   The UAVs discussed in the preceding 

section were not designed to carry; they are noncombat vehicles for reconnais-

sance, command and control, and the like. In contrast, specialized uninhabited 

aerial vehicles are being designed for direct air-to-air and air-to-ground com-

bat. These vehicles are called  uninhabited combat aerial vehicles (UCAVs),  
and they form a distinct and different class of vehicles. By taking the pilot 

out of a fi ghter or bomber, UVACs can be optimized for combat performance 

with greatly increased accelerations and maneuverability at g-forces (load fac-

tors) much higher than a human can tolerate. The design space for UCAVs 

is greatly expanded compared to airplanes occupied by humans, and combat 

tactics can be much more aggressive than those intended to protect the lives of 

the  occupants. 

 An example of a UCAV is the Boeing X-45, shown in    Fig. 6.67 . This is an 

experimental vehicle intended to pave the way to future operational UCAVs. As 

shown in    Fig. 6.67 , the X-45 is a stealth confi guration; a low-radar cross sec-

tion will be absolutely necessary for operational UCAVs. The wingspan of the 

X-45 is 33.75 ft, and its gross weight is 15,000 lb. Powered by one Honeywell 

Figure 6.66 Some UAV designs.
(Source: U.S. Navy photo by Photographers Mate 2nd Class Daniel J. McLain.)
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F-124 turbofan engine, the X-45 can achieve Mach 0.95. The X-45, and the 

design space it represents, is a paradigm shift for military aircraft. It represents 

the future. 

       Comment   Examine again    Figs. 6.63  through    6.67 . What you see are confi gura-

tions that are  unconventional  compared to ordinary airplanes but that are con-

ventional for the current generation of UAVs and UCAVs. These are just the 

beginning. Twenty years from now you will look back at the confi gurations in 

   Figs. 6.63  through    6.67  and view them as the “Wright Flyers” of uninhabited 

aerial vehicles.  

  Design Process for UAVs   The philosophy of conceptual airplane design is 

 discussed in    Sec. 6.22 . A UAV is an airplane, and hence its conceptual design fol-

lows the seven-step process outlined in    Sec. 6.22 . The requirements (Step One) 

for a new UAV design are frequently driven by payload (based on the instru-

ments and/or weapons required for its mission), range, endurance, and  altitude. 

Because UAVs are relatively new, there is not the same depth of historical data 

on vehicle weights (Step Two) as in the case of conventional airplanes. How-

ever, a fi rst weight estimate might be obtained from data similar to that shown in 

   Fig. 6.68  for previous UAVs. From the requirements, the weight of the payload 

(electronic instruments, etc.) and the range might be known. The abscissa in 

   Fig.  6.68  is (range) × (payload weight). The fi rst estimate for takeoff weight 

can then be obtained from the ordinate of    Fig. 6.68 . This allows the conceptual 

design process to follow the remaining steps outlined in    Sec. 6.22 . 

Figure 6.67 The X-45 stealth UCAV.
(Source: NASA.)
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Figure 6.68 Graph for initial weight estimate in the design process 

for a UAV. Data points: (1) General Atomics RQ-1A Predator, 

(2) Lockheed Martin/Boeing RQ-3A DarkStar, (3) Northrop Grumman 

RQ-4A Global Hawk, (4) BAE Systems Phoenix, (5) Meggitt ASR-4 

Spectre, (6) IAI Searcher, (7) Silver Arrow Hermes 450, (8) AAI/IAI 

RQ-2 Pioneer.

 Consider the CP-1 airplane of our previous examples. Let us examine the change in per-

formance of this airplane if the pilot, passengers, seats, and instrument panel are  removed 

and if we convert the CP-1 to a UAV. This is purely an academic exercise. In reality a 

UAV is point-designed from the beginning to optimize its performance; it is not sim-

ply the stripped-down CP-1 that we are considering in this example. Nevertheless, there 

is some value to examining the change in performance of the CP-1 when humans and 

 related equipment are taken out of the airplane but the rest of the airplane is kept the 

same. In this case, calculate ( a )  V  max  at sea level, ( b ) the maximum rate of climb at sea 

level, ( c ) the maximum range, and ( d ) the maximum endurance at sea level. The weights 

of the removed people and equipment include the following: four people (including the 

pilot) at 180 lb each, 720 lb total; four seats at 30 lb each, 120 lb total; and the instrument 

panel at 40 lb. The total weight decrease is 880 lb. 

 ■ Solution 
  From our previous examples dealing with the CP-1, we note that the fuel empty weight 

is 2583 lb, and the weight of the fuel is 367 lb. For the “UAV version” of the CP-1, the 

fuel empty weight is

 
W1WW 2583 880 1703= −2583 = lb

EXAMPLE 6.28
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The gross weight is

W W WfWW0 1W WW W 1703 367 2070+W1WW = +1703 = lb

Also,
  

AR and ftff= = and7 37 0 025 0 80
2. ,37 , . ,8,C e0= 0250 . ,025 SD         

a . We could fi nd  V  max  by constructing the power-required curve and fi nding the inter-

section of this curve with the power-available curve, as discussed in    Secs. 6.5  and    6.6 . 

Instead, let us take the following analytical approach. Repeating    Eq. (6.42) ,
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Multiplying by  V  ∞ , and noting that  TV  ∞  =  P   A  , we have
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From    Example 6.4  for the CP-1,

 PAP = = =η( ) ( . )( )bhp hp8. 0 230 184        

or  PAP = = × ⋅( )( ) .55 1 012 105 ft lb/s        

Also,
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Hence    Eq. (E6.27.1)  becomes
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(E6.27.2)

Solving    Eq. (E6.27.2)  for  V  ∞ ,

V∞VV = 266 ft/sff

Because  P   A   in    Eq. (E6.27.1)  is the maximum power available, then  V  ∞  =  V  max . 

 Thus  VmaVV x = 266 ft/sff        

Compare this result with that for the CP-1 obtained in    Example 6.4 , where  V  max  = 265 ft/s. 

There is virtually no change! Simply reducing the weight and keeping everything else the 

same did not materially infl uence  V  max . In particular, the wing area was kept the same, 
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resulting in a lower wing loading than for the CP-1. The new wing loading is

 
UAV lb/ftff: .

W

S

2070

174
11 9 2

compared to

CP-1 lb/ftff:
W

S
= =2950

174
17 2

Maximum velocity depends on  W / S;  in the design box in    Sec. 6.8 , we see that  V  max

increases as  W / S  increases. Even though the power-to-weight ratio was increased for 

our UAV, which would increase  V  max , the reduced wing loading negated the increased 

power-to-weight ratio. If we reduced the wing area of our sample UAV to keep  W / S  the 

same as for the CP-1,  V  max  would increase noticeably. This illustrates the importance of 

point-designing a UAV from the beginning to take advantage of the new design space. 

  b . From    Eq. (6.53) , repeated here,
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From    Eq. (6.85) ,
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Hence,    Eq. (6.53)  yields
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Compare this result with that for the CP-1 from    Example 6.10 . The value of ( R  / C)  max  for 

the CP-1 at sea level is 1494 ft/min. By taking the humans and associated equipment out 

of the CP-1, we increase the maximum rate of climb by 65 percent—a dramatic increase. 
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c . The maximum range is obtained from    Eq. (6.67) , repeated here:

R
c

C

C

W

W
L

D

= η
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where η = 0.8,  c  = 2.27 × 10 −7  ft −1  (from    Example 6.19 ), ( C   L   / C   D  ) max  = 13.6, and  W  0  / W  1  = 

2070/1703 = 1.216.    Eq. (6.67)  yields
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Compare this with the maximum range of the CP-1 obtained in    Example 6.19 , where 

 R   = 1207 miles. By taking the humans and associated equipment out of the airplane, we 

increase the maximum range by 47 percent. 

  d . The maximum endurance at sea level is obtained from    Eq. (6.68) , repeated here:
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From    Eq. (6.87) ,
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Compare this with the maximum endurance of the CP-1 obtained in    Example 6.19 , where 

 E  = 14.4 hours. By taking the humans and associated equipment out of the airplane, we 

increase the maximum endurance by 78 percent! 

  Note:  This example demonstrates the substantial increases in maximum rate of 

climb, range, and endurance that can be obtained simply by taking the humans and asso-

ciated equipment out of an existing airplane. Imagine the even larger increases in perfor-

mance that can be obtained by point-designing the UAV from the beginning rather than 

just modifying an existing airplane.   

EXAMPLE 6.29

  Consider two military airplanes: one a conventional piloted airplane limited to a maxi-

mum load factor of 9, and the other a UCAV designed for a maximum load factor of 25. 

At the same fl ight velocity, compare the turn radius and the turn rate for these two aircraft. 
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 ■ Solution 
  Repeating    Eq. (6.118) , the turn radius  R  is
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 Letting  R  1  denote the turn radius for the UCAV and  R  2  denote the turn radius for the 

conventional airplane, we have from    Eq. (6.118)  for the same  V  ∞ ,
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 Repeating    Eq. (6.119)  for turn rate ω,
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 Letting ω  1  and ω  2  denote the turn rates for the UCAV and conventional airplane, 

respectively, we have from    Eq. (6.119)  for the same  V  ∞ ,
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  Note:  The UCAV can turn in a circle almost one-third the radius of the conven-

tional airplane and do it at almost three times the turn rate—a spectacular increase in 

maneuverability.       

   6.21  MICRO AIR VEHICLES 
  A special type of very small UAVs, with wingspans on the order of 15 cm or 

less and weights less than 0.09 kg, came onto the aeronautical scene beginning 

in the 1990s. Called  micro air vehicles , their missions are often for the sens-

ing of biological agents, chemical compounds, and nuclear materials within a 

localized area. They can be used for anti-crime and anti-terrorist surveillance. 

They can be made as small as large insects, and can fl y through corridors and 

around corners in buildings. They are growing in importance, and therefore 

justify some mention here. For a review of micro air vehicle design, see Tom 

Mueller et al.,  Introduction to the Design of Fixed-Wing Micro Air Vehicles , 
American Institute of Aeronautics and Astronautics, Reston, VA, 2007. 

 A baseline confi guration for one type of micro air vehicle is shown in 

   Fig. 6.69 , and a photograph of a similar vehicle appears in    Fig. 6.70 . The small 

size and low speed of these micro air vehicles place them squarely into a low 

Reynolds number aerodynamic regime, with Re < 100,000. All of the conven-

tional aircraft treated in this book, and indeed in everyday use, fl y at Reynolds 

numbers in the millions. The low Reynolds number associated with micro air 

vehicles is arguably the biggest challenge in their design. The aerodynamics of 
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airfoils and wings at low Reynolds numbers is quite different than that at high 

Reynolds numbers. 

         For example,    Fig. 6.71  shows the streamlines over an airfoil at Re = 100,000, 

as obtained from a computational fl uid dynamics (CFD) computer program. At 

this low Reynolds number, the fl ow over the airfoil is laminar (   Fig. 6.71  a ). A re-

gion of fl ow separation occurs over this airfoil even at a zero angle of attack, as 

seen in    Fig. 6.71  a . This is caused by a laminar separation bubble that occurs just 

downstream of the leading edge of the airfoil. Such laminar separation bubbles, 

with the ensuing separated fl ow, are characteristic of low- Reynolds-number fl ow 

over an airfoil with normal thickness. The consequence of this separated fl ow 

(which is analogous to the stall phenomena for airfoils at high angles of attack) 

is that the lift dramatically decreases, the drag  skyrockets, and the all-important 

 L/D  for the airfoil is materially reduced. In contrast, if the fl ow is artifi cially 

made turbulent in the same CFD computer calculation, attached fl ow is obtained, 

as seen in    Fig. 6.71  b . The lift coeffi cient for the turbulent attached fl ow is 0.45 

compared to 0.05 for the laminar  separated fl ow. (See A. P. Kothari & J. D. 

Anderson, Jr., “Flows over Low Reynolds Number Airfoils—Compressible 

Navier-Stokes Numerical Solutions,” AIAA Paper 85-0107, presented at the 

AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14–17, 1985.) 

     Also, note that the aspect ratios of the micro air vehicles shown in    Figs. 6.69  

and    6.70  are low, on the order of 1 to 2. Thus, the aerodynamic characteristics 

of micro air vehicles are those of low-Reynolds-number fl ow over low-aspect 

wings—both conspiring to decrease lift and increase drag. Maximum lift-to-drag 

ratios on the order of 4 to 6 are typical. 

Combination vertical and
Horizontal stabilizers

LRN airfoil-shaped lithium sulfur dioxide
Battery/wing

Avionics

Mission sensor bay

Elevon
Control
Surfaces

Micro servo actuators

Brushless, rare-earth magnet,
DC electric motor and gearbox Folding, counter-rotating,

LRN propellers

Figure 6.69 Conceptual micro air vehicle as designed by R. J. Foch, Naval Research 

Laboratory.
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Figure 6.70 A micro air vehicle, the UGMAV 15, designed at the University of Ghent, 

Belgium.
(Source: © Prof. Jan Vierendeels.)

(a) Laminar flow

(b) Turbulent flow

Figure 6.71 Computational fl uid dynamic calculations of the fl ow over a Wortmann 

FX63-137 airfoil. Re = 100,000, M = 0.5. (a) Laminar fl ow. (b) Turbulent fl ow.
(Calculations by the author and Dr. A. J. Kothari.)
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 Once the aerodynamic properties of a given micro air vehicle are known, 

as well as the thrust or power from the miniature engines, its performance can 

be calculated using the techniques and equations developed in this chapter. The 

performance calculation “sees” the aerodynamics, and the aerodynamics “sees” 

the low-Reynolds-number, low–aspect-ratio confi guration.   

6.22 QUEST FOR AERODYNAMIC EFFICIENCY
Faster and higher – that has been the clarion call of airplane design throughout 

the 20th century, as described in detail in Section 1.11. In that section, how-

ever, we noted that today the philosophy of higher and faster in airplane design 

is now mitigated by other considerations such as safer, cheaper, more reliable, 

quieter, and more environmentally acceptable. One approach toward obtaining 

these goals is to improve the airplane effi ciency, both the aerodynamic effi ciency 

and the engine effi ciency. In this section we will discuss the quest for improving 

aerodynamic effi ciency, and in Chapter 9 we will consider the matter of improv-

ing engine effi ciency. 

6.22.1 Measure of Aerodynamic Effi ciency

The principle measure of aerodynamic effi ciency for an airplane is its lift-to-

drag ratio, L /D. The higher the value of L /D, the higher is the rate-of-climb 

(see Section 6.8). For gliding fl ight, L /D is everything—completely dictating 

the glide angle, and hence the gliding distance covered over the ground (see 

Section 6.9). The higher the L /D, the smaller is the glide angle and hence the 

larger is the distance covered over the ground. But the most powerful impact 

of the lift-to-drag ratio on airplane effi ciency is through range and endurance as 

discussed in detail in Sections 6.12 and 6.13. The higher the L /D, the higher are 

both range and endurance for both propeller-driven and jet-propelled airplanes. 

Specifi cally, for a propeller-driven airplane, range is directly proportional to 

CL/CD, and endurance is directly proportional to CL
3/2/CD. For a jet-propelled air-

plane, range is directly proportional to CL
1/2/CD and endurance is directly propor-

tional to CL/CD. These are no small consequences; L /D has a fi rst-order effect on 

both range and endurance, which in turn are an important bell-wether of airplane 

effi ciency. 

Special Note: The equation for the range of a jet-propelled airplane is de-

rived in Sections 6.13.2, where the result is given as Eq. (6.77), indicating that 

range varies explicitly with CL
1/2/CD. However, this does not diminish the impor-

tance of L/D for a jet airplane. Intermediate in the derivation of Eq. (6.77) is Eq. 

(6.75), which shows that

R V
C

C
V

L

D
L

D

∝ =∞ ∞

Recalling that V∞ = a∞ M∞ where a∞ is the speed of sound and M∞ is the fl ight 

Mach number, and noting that the derivation assumes fl ight at constant standard 
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altitude, where a∞ is constant, the above relation for range shows

R M
L

D
∝ ∞

Thus, for a jet airplane, maximum range is obtained by fl ying at

M
L

D∞
⎛
⎝⎜

⎞
⎠⎟max

This result explicitly demonstrates the importance of L /D for the effi ciency of a 

jet-propelled airplane.

The basic signifi cance of the lift-to-drag ratio can easily be seen by the fol-

lowing thought experiment. Imagine that you are fl ying cross-country, or across 

an ocean, in a large wide-body commercial transport such as a Boeing 747 or an 

Airbus 380. For these large airplanes, the Reynolds number based on length is 

very large, and from our discussion on skin friction in Chapter 4, both the over-

all laminar and turbulent skin friction coeffi cients are correspondingly smaller 

than they would be for a smaller airplane. As a result, the lift-to-drag ratio for 

such large airplanes can be a relatively high value, say on the order of L /D = 20. 

What does this value really mean? It simply says that for every 20 pounds of lift 

produced by the airplane, it costs only one pound of drag. Taking a cue from 

basic physics, this is a tremendous “lever.” How are we paying the cost of this 

one pound of drag? In steady level fl ight, thrust equals drag, so we are paying the 

cost of producing 20 pounds of lift through the cost of the fuel consumed by the 

engine to produce one pound of the thrust to counter the one pound of drag. If 

indeed the lift-to-drag ratio were further increased, the required 20 pounds of lift 

(this requirement stays the same because in steady level fl ight, the lift must remain 

fi xed, equal to the weight of the airplane) would be produced at a cost of less than 

one pound of drag, allowing the airplane to fl y further and/or faster. This is why 

the lift-to-drag ratio is the measure of aerodynamic effi ciency for the airplane.

6.22.2 What Dictates the Value of L/D?

Intuitively, you might think that the value of L/D can be increased simply by 

increasing the numerator – by increasing the lift. However, again we are reminded 

that for an airplane in steady, level fl ight, the lift must be equal to the weight, 
which is a design parameter for the airplane. For a given airplane in steady, level 

fl ight, the necessary value of lift is fi xed by the weight. Hence, the value of L/D 

can be increased only by decreasing the denominator – by decreasing drag. The 

quest to increase aerodynamic effi ciency, i.e., to increase the ratio of lift-to drag, 

is the quest to decrease drag.

6.22.3  Sources of Aerodynamic Drag; Drag Reduction

Let us review our previous discussions in Chs. 4 and 5 about the sources and 

causes of aerodynamic drag, and examine how such drag can be reduced. 
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Paramount in these discussions is the single, unifying thought that any aerody-

namic force exerted on any object moving through air or any other gas or liquid 

medium is due to the two hands of nature that reach out and grab hold of the 

object. These two hands are (1) the pressure distribution, and (2) the skin fric-

tion (shear stress) distribution, both exerted simultaneously over every square 

meter of the body surface exposed to the fl ow. The sum (in mathematical terms, 

the surface integral) of the pressure and shear stress distributions is the net aero-

dynamic force exerted by nature on the body. The component of this aerody-

namic force acting along the direction of the relative wind is, of course, the drag. 

Therefore, drag is caused both by the pressure distribution (pressure drag) and 

the shear stress distribution (skin-friction drag), and nothing else. Throughout 

the evolution of the airplane since the beginning of the twentieth century, vari-

ous types of drag have been identifi ed by the aeronautics community, sometimes 

causing some confusion and unnecessary complication among students and the 

general aviation public, but in reality each type fundamentally is due to the sur-

face pressure distribution, or the surface shear stress distribution, or both acting 

simultaneously.

Beginning with the Wright fl yer in 1903, and continuing with the rather 

box-like biplane confi gurations with all its interwing struts and wires through 

the 1920s, the major source of drag was pressure drag due to fl ow separation, 

sometimes called “form drag.” The way to reduce such form drag is simply to 

streamline the entire airplane confi guration in order to reduce, or in some cases, 

almost eliminate fl ow separation on the surface. This feature, however, was not 

appreciated by most airplane designers until the famous British aeronautical en-

gineer Sir B. Melvill Jones gave a lecture at the Royal Aeronautical Society in 

London in 1929 entitled “The Streamline Airplane.” Jones was a professor of 

aeronautical engineering at Cambridge University and his analysis of the advan-

tages of streamlining was so compelling that airplane designers were shocked 

into greater awareness of the value of streamlining. Jones led off his discussion 

with the following thought:

Ever since I fi rst began to study aerodynamics, I have been annoyed by the vast 

gap which existed between the power actually expended on mechanical fl ight and 

the power ultimately necessary for fl ight in a correct shaped aeroplane. Every year, 

during my summer holiday, this annoyance is aggravated by contemplating the ef-

fortless fl ight of the sea birds and the correlated phenomena of the beauty and grace 

of their forms.

Jones went on to defi ne the ideal airplane simply as one with no form drag, and 

to describe what would be necessary to achieve that lofty goal:

Unless bodies are ”carefully shaped,” they do not necessarily generate streamline 

fl ow, but shed streams of eddies from various parts of their surface. The power ab-

sorbed by these eddies may be, and often is, many times greater than the sum of 

the powers absorbed by skin friction and induced drag. The drag of a real aeroplane 

therefore exceeds the sum of the induced power and skin friction drag by an amount 

which is a measure of defective streamlining.
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Jones’ ideal airplane was one with no pressure drag due to fl ow separation, 

achieved by perfect streamlining. He illustrated his point with a graph of power 

required versus velocity for the ideal airplane with zero form drag, and then for 

comparison put on this graph a number of data points for the maximum velocity 

of actual airplanes existing at that time. A sample of his presentation is sketched 

in Fig. 6.72, which is a plot of power required versus velocity at sea level for the 

Armstrong-Whitworth Argosy, a large tri-motored biplane for commercial trans-

port in the 1920s. The single data point represents the Argosy at its maximum 

velocity of 110 mi/h. The lower curve is the power-required curve for the Argosy 

assuming only skin friction drag and induced drag; this would be the power-

required curve for a totally streamlined Argosy, i.e., no pressure drag due to fl ow 

separation—no form drag. The vertical distance between the lower curve and the 

real Argosy data point is the contribution due to form drag when the Argosy is 

at its maximum velocity; form drag contributes more than two-thirds of the total 

drag at maximum velocity. The most important message in this fi gure, however, 

is the horizontal distance between the Argosy data point and the power-required 

curve for the ideal airplane. If the actual Argosy were transformed into Jones’ 

ideal airplane with complete streamlining, its maximum velocity would increase 

dramatically from 110 mi/h to almost 180 mi/h. This was Melvill Jones’ message 

to the airplane designers of that day, and it virtually knocked their socks off. The 

airplane designer’s embracing of streamlining initiated the “design revolution” 

that took place in the 1930s. This evolution is illustrated in Fig. 6.73, from a 

presentation by the British engineer William S. Farren in 1944, which shows the 

box-like shape of the World War I British S.E.5 pursuit airplane morphing into 

the beautifully streamlined British Spitfi re fi ghter of World War II.
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Figure 6.72 Illustration of the velocity increase for a totally 

streamlined airplane.
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Figure 6.73
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Airplanes have protuberances that stick out into the airfl ow, such as Pitot 

tubes, antennas, turrets, extended landing gear, etc. The fl ow over these protu-

berances is usually separated, and hence they are a source of pressure drag due 

to fl ow separation; this drag by itself is frequently identifi ed as protuberance 
drag, although it is nothing more than part of the overall pressure drag. It can be 

minimized by careful streamlining of the protuberance itself, and/or minimizing 

the amount of frontal area projecting into the fl ow. In the 1930s, the design of 

retractable landing gear that disappeared inside the wing, nacelle, or fuselage 

after takeoff and before landing went a long way to reduce protuberance drag. 

A little appreciated but important source of protuberance drag was round-head 

rivets used in the early days of all-metal airplane construction. The heads pro-

truded into the airfl ow over the metal surface, causing an increase in drag. This 

extra drag was virtually eliminated when fl ush-riveting came into use in the 

1930s.

Cooling drag is a term sometimes used when part of the airfl ow over a piston-

engine powered airplane is used to cool the engine. For air-cooled radial engines, 

the airfl ow is passed directly over the cylinders with attendant high form drag. A 

properly designed cowling wrapped around the cylinders, however, can channel 

this airfl ow in an effi cient manner to both enhance the cooling of the cylinders 

and greatly reduce the form drag, as discussed in Section 6.24. The development 

of the NACA cowling in the 1920s and early 1930s led to a dramatic reduction in 

drag for airplanes powered by air-cooled radial piston engines, and in some sense 

might be regarded as part of the streamlining of the airplane. For a liquid-cooled 

piston engine, the coolant that circulates through the engine is itself cooled by 

circulating through a radiatior which in turn is cooled by airfl ow passing through 

the radiator, with an attendant increase in pressure drag – also labeled as cooling 

drag. Finally, for some airplanes, external vents are used for conducting part of 

the outside air for cooling the cockpit and cabin. The attendant pressure drag is 

also labeled cooling drag. 

Induced drag is due to a redistribution of the surface pressure over a fi nite 

wing caused by the creation of wing tip vortices. Therefore, induced drag is a 

type of pressure drag. As noted in Chapter 5, induced drag can be dramatically 

reduced by increasing the aspect ratio of the wing. There is, however, a struc-

tural consideration that limits the aspect ratio. In airplane design, everything else 

being equal, increasing the wing aspect ratio necessitates a stronger and conse-

quently a heavier wing structure. Winglets at the tips of the wing also serve to 

reduce induced drag.

Wave drag came into the aeronautical lexicon with the advent of supersonic 

fl ight. The source of wave drag on supersonic bodies is discussed in Section 5.11. 

In summary, shock waves press against the forward projecting areas of the vehicle, 

causing a substantial increase in pressure drag. This increase is labeled wave drag 

because it is totally associated with the presence of shock waves. Hence, wave 

drag is a type of pressure drag. Standard techniques for reducing supersonic wave 

drag are the use of wing sweep (Section 5.16), thin wings with sharp leading edges 

(Section 5.11), and judicial tailoring of the fuselage.
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Returning to the message contained in Fig. 6.72, the only way to further 

increase the lift-to-drag ratio of the perfectly streamlined airplane is to reduce 
skin-fi ction drag. A comparison of Sections 4.16 and 4.17 clearly demon-

strates that turbulent skin friction is considerably higher than laminar skin 

friction drag. Unfortunately, nature tends to favor a state of maximum dis-

order, and hence the boundary layers in most aeronautical applications are 

turbulent. In Fig. 6.72 the skin friction drag for the Argosy was turbulent 

skin friction. The obvious approach to reducing skin-friction drag is to en-

courage the growth of laminar boundary layers over the surface. This has 

been a never-ending quest by aerodynamicists over the past century—fi ghting 

mother nature all the way.

Some progress has been made. The shape of an airfoil and other parts of 

an airplane can be optimized to create a favorable pressure gradient over larger 

distances along the surface. A favorable pressure gradient encourages laminar 

fl ow. The NACA laminar fl ow airfoils were an early case in point; however, as 

noted in Section 4.15, the realities of manufacturing and fi eld use resulted in a 

surface rougher than the fi nely polished surfaces of the wind tunnel models used 

for the NACA experiments, and the hoped-for results from the NACA laminar 

fl ow airfoils were not realized in actual service. More recent NASA research on 

laminar fl ow airfoil shapes designed by the use of modern computational fl uid 

dynamics in conjunction with the use of smooth composite surfaces has shown 

some promise, with running lengths of laminar fl ow over 50 percent of the sur-

face, or more. The quest goes on, driven by the holy grail of higher and higher 

values of L /D.

Efforts to obtain higher values of L /D by means of shape change and the use 

of very smooth surfaces are identifi ed as passive techniques; the work is done 

by humans “upfront,” and then nature takes over and does the rest. In contrast, 

a great deal of research has been done on the use of “fl ow control,” sucking the 

boundary layer off the surface through many thousands of pinholes in the sur-

face in order to greatly reduce skin friction. Such techniques are called active 

techniques, because nature is being actively modifi ed by continuous mechanical 

action. To date, such boundary-layer suction techniques have not been utilized 

on any production aircraft; the reductions in skin friction can be considerable, 

but the aerodynamic advantage so far has been negated by the extra power re-

quirements and the weight of the machinery needed to create the vacuum for the 

sucking action. Again, however, the quest goes on.

6.22.4  Some Innovative Aircraft Confi gurations for High L/D

The conventional aircraft shape for the past one-hundred years has been essen-

tially a tube (fuselage) with wings. The tube carries the payload (people, freight, 

etc.) New, innovative ideas for different confi gurations that might have substan-

tially higher lift-to-drag ratios are being encouraged by NASA, and are taking 

form on the “drawing boards” (so to speak) in government laboratories, industry, 

and universities. A few examples are discussed here.
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A confi guration which still incorporates the tube-and-wing concept, but is 

innovative in regard to the wing aerodynamics and structural support, is shown 

in Fig. 6.74. Called a truss-braced wing confi guration, it allows the use of a very 

high aspect ratio wing, and circumvents the heavy internal structure that would 

ordinarily be necessary with the high aspect ratio wing by supporting the wing 

with an external truss anchored at the bottom of the fuselage and attaching to the 

bottom of the high-mounted wing, as shown in the three-view in Fig. 6.74. The 

aero dynamically designed truss contributes marginally to the lift and adds little 

to the drag, while at the same time making possible the very high aspect ratio 

wing. The net result is an airplane with a lift-to-drag ratio of about 26, more than 

twenty-fi ve percent higher than that for existing conventional aircraft.

The blended wing body shown in Fig. 6.75 is yet a more innovative confi gu-

ration. It is essentially a fl ying wing merged with a center body that is a thick 

airfoil shape with a bullet nose. By replacing the conventional tube fuselage with 

a center body that itself is an effi cient lifting surface, the spanwise lift distribu-

tion from one wing tip to the other is closer to the ideal elliptical distribution (see 

Section 5.14). The lift-to-drag ratio of a blended wing body can be on the order 

of 30, about 50% higher than a conventional confi guration. 

Innovative confi gurations designed to achieve high lift-to-drag ratios such as 

those described above point the way to the future. For young airplane designers, 

perhaps this is the ultimate quest.
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Figure 6.74 A truss-braced wing confi guration based on NASA studies.
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222'

39'–8"

152'

Figure 6.75 A generic blended wing body confi guration.

   6.23  A COMMENT 
  We end the technical portion of this chapter by noting that detailed computer pro-

grams now exist within NASA and the aerospace industry for the accurate esti-

mation of airplane performance. These programs are usually geared to specifi c 
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types of airplanes—for example, general aviation aircraft (light single- or twin-

engine private airplanes), military fi ghter aircraft, and commercial transports. 

Such considerations are beyond the scope of this book. However, the principles 

developed in this chapter are stepping-stones to more advanced studies of air-

plane performance; the bibliography at the end of this chapter provides some 

suggestions for such studies.   

   6.24   HISTORICAL NOTE: DRAG REDUCTION—
THE NACA COWLING AND THE FILLET 

  The radial piston engine came into wide use in aviation during and after World 

War I. As described in Ch. 9, a radial engine has its pistons arranged in a cir-

cular fashion about the crankshaft, and the cylinders themselves are cooled by 

airfl ow over the outer fi nned surfaces. Until 1927 these cylinders were generally 

directly exposed to the main airstream of the airplane, as sketched in    Fig. 6.76 . 

As a result, the drag on the engine–fuselage combination was inordinately high. 

The problem was severe enough that a group of aircraft manufacturers met at 

Langley Field on May 24, 1927, to urge NACA to investigate means of reduc-

ing this drag. Subsequently, under the direction of Fred E. Weick, an extensive 

series of tests was conducted in the Langley 20-ft propeller research tunnel using 

a Wright Whirlwind J-5 radial engine mounted to a conventional fuselage. In 

these tests, various types of aerodynamic surfaces, called  cowlings,  were used 

to cover, partly or completely, the engine cylinders, directly guiding part of 

the airfl ow over these cylinders for cooling but at the same time not interfering 

with the smooth primary aerodynamic fl ow over the fuselage. The best cowl-

ing, illustrated in    Fig. 6.77 , completely covered the engine. The results were 

dramatic: Compared with the uncowled fuselage, a full cowling reduced the drag 

by a stunning 60 percent! This is illustrated in    Fig. 6.78 , taken directly from 

Weick’s report, titled “Drag and Cooling with Various Forms of Cowling for a 

Whirlwind Radial Air-Cooled Engine,” NACA Technical Report No. 313, pub-

lished in 1928. Virtually all radial engine–equipped airplanes since 1928 have 

Figure 6.76 Engine mounted with no cowling. Figure 6.77 Engine mounted with full cowling.
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Figure 6.78 Reduction in drag due to a full cowling.

been designed with a full NACA cowling. The development of this cowling was 

one of the most important aerodynamic advancements of the 1920s; it led the 

way to a major increase in aircraft speed and effi ciency. 

       A few years later a second major advancement was made by a completely 

different group and on a completely different part of the airplane. In the early 

1930s the California Institute of Technology at Pasadena, California, estab-

lished a program in aeronautics under the direction of Theodore von Karman. 

Von Karman, a student of Ludwig Prandtl, became probably the leading aero-

dynamicist of the 1920–1960 period. At Caltech, von Karman established an 

 aeronautical  laboratory of high quality, which included a large subsonic wind 

tunnel funded by a grant from the Guggenheim Foundation. The fi rst major ex-

perimental program in this tunnel was a commercial project for Douglas Aircraft 

Company. Douglas was designing the DC-1, the forerunner of a series of highly 

successful transports (including the famous DC-3, which revolutionized com-

mercial aviation in the 1930s). The DC-1 was plagued by unusual buffeting in 

the region where the wing joined the fuselage. The sharp corner at the juncture 

caused severe fl ow fi eld separation, which resulted in high drag as well as shed 

vortices that buffeted the tail. The Caltech solution, which was new and pioneer-

ing, was to fair the trailing edge of the wing smoothly into the fuselage. These 

fairings, called  fi llets,  were empirically designed and were modeled in clay on 

the DC-1 wind tunnel models. The best shape was found by trial and error. The 

addition of a fi llet (see    Fig. 6.79 ) solved the buffeting problem by smoothing out 

the separated fl ow and hence also reduced the interference drag. Since that time, 

fi llets have become a standard airplane design feature. Moreover, the fi llet is an 
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Figure 6.79 Illustration of the wing fi llet.
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DESIGN BOX

In Chs. 5 and 6 we have underscored the importance 

of the wing aspect ratio in airplane design. In particu-

lar, for subsonic fl ight we have noted that by increas-

ing the aspect ratio, we can obtain a lower induced 

drag coeffi cient and hence a higher maximum L/D 

ratio. Now that we are at the end of our discussions 

of airplane aerodynamics and performance, it is 

worthwhile to expand this consideration by asking: 

For an airplane in steady, level fl ight, what design 

parameter dictates the induced drag itself (as con-

trasted with the induced drag coeffi cient)? Is it the 

aspect ratio, as intuition might indicate, or is it an-

other design parameter? The answer is developed in 

the following discussion, which will help to expand 

our understanding of induced drag and will provide 

an enhanced physical understanding of the defi nition 

of aspect ratio.

From Eq. (6.1c), the coeffi cient of drag due to 

lift (which for subsonic fl ight at normal angles of at-

tack is mainly due to the induced drag coeffi cient) is 

given by
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In turn, the drag due to lift is
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For steady, level fl ight, L = W. Hence
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Substituting Eq. (6.146) into (6.145), we have
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Because AR = b2/S, Eq. (6.147) can be written as
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Note that the wing area cancels out of Eq. (6.148), 

and we are left with
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This is a revealing result! The drag due to lift in 

steady, level fl ight—the force itself— depends ex-

plicitly not on the aspect ratio, but rather on another 

design parameter, W/b, called the span loading:

Span loading ≡ W

b
(6.150)

The drag due to lift varies with the square of the span 

loading.

From Eq. (6.149), we see that the drag due to lift, 

for a given weight airplane, can be reduced simply 

by increasing the wingspan. In so doing, the wing-

tip vortices (the physical source of induced drag) are 

simply moved farther away, hence lessening their ef-

fect on the rest of the wing and, in turn, reducing the 

induced drag. This makes good intuitive sense.

In light of this, the span loading W/b takes its 

place as yet another design parameter that airplane 

designers can adjust during the conceptual design 

process for a new airplane. Of course the span load-

ing and the aspect ratio are related via
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where W/S is the familiar wing loading.

Let us return to the concept of aspect ratio, which 

now takes on enhanced signifi cance. First note that 

the zero-lift drag, which we denoted by DO, is given 

by q∞SCD,0 and hence is proportional to the wing area, 

whereas the drag due to lift for steady, level fl ight 

is proportional to the square of the span loading via 

Eq. (6.149). The ratio of these two drags is
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(Continued on next page)
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excellent example of how university laboratory research in the 1930s contributed 

directly to the advancement of practical airplane design. 

         6.25   HISTORICAL NOTE: EARLY PREDICTIONS 
OF AIRPLANE PERFORMANCE 

  The airplane of today is a modern work of art and engineering. In turn, the pre-

diction of airplane performance as described in this chapter is sometimes viewed 

as a relatively modern discipline. However, contrary to intuition, some of the 

basic concepts have roots deep in history; indeed, some of the very techniques 

detailed in previous sections were being used in practice only a few years after 

the Wright brothers’ successful fi rst fl ight in 1903. This section traces a few his-

toric paths for some of the basic ideas of airplane performance: 

  1.   Some understanding of the  power required P   R   for an airplane was held by 

George Cayley. He understood that the rate of energy lost by an airplane 

in a steady glide under gravitational attraction must be essentially the 

power supplied by an engine to maintain steady, level fl ight. In 1853 

Cayley wrote,

  The whole apparatus when loaded by a weight equal to that of the man intended 

ultimately to try the experiment, and with the horizontal rudder [the elevator] 

 described on the essay before sent, adjusted so as to regulate the oblique  descent 

from some elevated point, to its proper pitch, it may be expected to skim down, 

with no force but its own gravitation, in an angle of about 11 degrees with the 

horizon; or possibly, if well executed, as to direct resistance something less, at a 

speed of about 36 feet per second, if loaded 1 pound to each square foot of surface. 

This having by repeated experiments, in perfectly calm weather, been ascertained, 

for both the safety of the man, and the datum required, let the wings be plied with 

the man’s utmost strength; and let the angle measured by the greater extent of 

horizontal range of fl ight be noted; when this point, by  repeated  experiments, 

has been accurately found, we shall have ascertained a sound  practical basis for 

calculating what engine power is necessary under the same circumstances as to 

weight and surface to produce horizontal fl ight. . . .    

(Continued on next page 575)

In Eq. (6.152), the ratio (W/b)2/S can be cast as
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Substituting Eq. (6.153) into (6.152), we have
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From Eq. (6.154), we can make the following state-

ment: For specifi ed values of the design parameters 

W/S and CD,0, increasing the design aspect ratio will 

decrease the drag due to lift relative to the zero-lift 

drag. So the aspect ratio predominantly controls the 

ratio of lift-induced drag to the zero-lift drag, whereas 

the span loading controls the actual value of the lift-

induced drag.
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  2.   The  drag polar,  a concept introduced in Secs. 5.14 and    6.1 , sketched in 

Figs. 5.49 and    6.1  and embodied in    Eq. (6.1  a ), represents simply a plot of 

 C   D   versus  C   L  , illustrating that  C   D   varies as the square of  C   L  . A knowledge 

of the drag polar is essential to the calculation of airplane performance. It 

is interesting that the fi rst drag polars were drawn and published by Otto 

Lilienthal (see Sec. 1.5) in 1889, although he did not call them such. The 

term  polar  for these diagrams was introduced by Gustave Eiffel in 1909. 

Eiffel, the designer of the Eiffel Tower in Paris, built two wind tunnels 

and carried out extensive aerodynamic testing from 1909 to the time of his 

death in 1923.  

  3.   Some understanding of the requirements for  rate of climb  existed as far 

back as 1913, when in an address by Granville E. Bradshaw before the 

Scottish Aeronautical Society in Glasgow in December, the following 

comment was made: “Among the essential features of all successful 

aeroplanes [is that] it shall climb very quickly. This depends almost 

entirely on the weight effi ciency of the engine. The rate of climb varies 

directly as the power developed and indirectly as the weight to be lifted.” 

This is essentially a partial statement of    Eq. (6.50) .  

  4.   No general understanding of the prediction of  airplane performance  

existed before the 20th century. The excellent summary of aeronautics 

written by Octave Chanute in 1894,  Progress in Flying Machines,  does 

not contain any calculational technique even remotely resembling the 

procedures set forth in this chapter. At best it was understood by that 

time that lift and drag varied as the fi rst power of the area and as the 

second power of velocity, but this does not constitute a performance 

calculation. However, this picture radically changed in 1911. In that 

year the Frenchman Duchène received the Monthyon Prize from the 

Paris Academy of Sciences for his book titled  The Mechanics of the 
Airplane: A Study of the Principles of Flight . Captain Duchène was 

a French engineering offi cer, born in Paris on December 27, 1869, 

educated at the famous École Polytechnique, and later assigned to the 

fortress at Toul, one of the centers of “aerostation” in France. It was in 

this capacity that Captain Duchène wrote his book during 1910–1911. 

In this book the basic elements of airplane performance, as discussed 

in this chapter, are put forth for the fi rst time. Duchène gives curves of 

power required and power available, as we illustrated in    Fig. 6.21  a ; he 

discusses airplane maximum velocity; he also gives the same relation as 

   Eq. (6.50)  for rate of climb. Thus, some of our current concepts for the 

calculation of airplane performance date back as far as 1910–1911—four 

years before the beginning of World War I and only seven years after 

the Wright brothers’ fi rst fl ight in 1903. Later, in 1917, Duchène’s book 

was translated into English by John Ledeboer and T. O’B. Hubbard (see 

the bibliography at the end of this chapter). Finally, during 1918–1920, 

three additional books about airplane performance were written (again 

see the bibliography), the most famous being the authoritative  Applied 
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Aerodynamics  by Leonard Bairstow. By this time the foundations 

discussed in this chapter had been well set.      

   6.26   HISTORICAL NOTE: BREGUET 
AND THE RANGE FORMULA 

  Louis-Charles Breguet was a famous French aviator, airplane designer, and 

industrialist. Born in Paris on January 2, 1880, he was educated in electrical 

engineering at the Lycée Condorcet, the Lycée Carnot, and the École Superieure 

d’Electricité. After graduation he joined the electrical engineering fi rm of his 

father, Maison Breguet. However, in 1909 Breguet built his fi rst airplane and 

then plunged his life completely into aviation. During World War I his airplanes 

were mass-produced for the French air force. In 1919 he founded a commercial 

airline company that later grew into Air France. His airplanes set several long-

range records during the 1920s and 1930s. Breguet was active in his own aircraft 

company until his death on May 4, 1955, in Paris. His name is associated with a 

substantial part of French aviation history. 

 The formula for range of a propeller-driven airplane given by    Eq. (6.67)  has 

also become associated with Breguet’s name; it is commonly called the  Breguet 
range equation . However, the reason for this association is historically obscure. 

In fact, the historical research of the present author can fi nd no substance to 

Breguet’s association with    Eq. (6.67)  until a presentation by Breguet to the 

Royal Aeronautical Society in London in 1922. On one hand, we fi nd absolutely 

no reference to airplane range or endurance in any of the airplane performance 

literature before 1919, least of all a reference to Breguet. The authoritative books 

by Cowley and Levy (1918), Judge (1919), and Bairstow (1920) (see the biblio-

graphy at the end of this chapter) amazingly enough do not discuss this subject. 

On the other hand, in 1919 NACA Report No. 69, titled “A Study of Airplane 

Ranges and Useful Loads,” by J. G. Coffi n, gives a complete derivation of the 

formulas for range,    Eq. (6.67) , and endurance,    Eq. (6.68) . But Coffi n, who was 

director of research for Curtiss Engineering Corporation at that time, gives abso-

lutely no references to  anybody . Coffi n’s work appears to be original and clearly 

seems to be the fi rst presentation of the range and endurance formulas in the 

literature. However, to confuse matters, we fi nd a few years later, in NACA 

Report No. 173, titled “Reliable Formulae for Estimating Airplane Performance 

and the Effects of Changes in Weight, Wing Area or Power,” by Walter S. Diehl 

(we have met Diehl before in Sec. 3.6), the following statement: “The common 

formula for range, usually credited to Breguet, is easily derived.” Diehl’s report 

then goes on to use    Eq. (6.67) , with no further reference to Breguet. This report 

was published in 1923, four years after Coffi n’s work. 

 Consequently, to say the least, the proprietorship of    Eq. (6.67)  is not clear. 

It appears to this author that, in the United States at least, there is plenty of 

documentation to justify calling    Eq. (6.67)  the Coffi n–Breguet range equation. 

However, it has come down to us through the ages simply as Breguet’s equation, 

apparently without documented substance.   
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   6.27   HISTORICAL NOTE: AIRCRAFT DESIGN—
EVOLUTION AND REVOLUTION 

  Sit back for a moment and think about the evolution of the airplane, beginning 

with Sir George Cayley’s 1804 hand-launched glider. Indeed, Fig. 1.8 (Cayley’s 

own sketch of this aircraft) shows the fi rst airplane with a modern confi gura-

tion. Now jump ahead a century in the design of the airplane to Fig. 1.2, the 

Wright brothers’ historic photograph of their fi rst successful fl ight in 1903; this 

is the true beginning of the practical airplane. Finally, jump another 80 years 

to    Fig. 6.11 , which shows a modern jet aircraft. Put these three aircraft side by 

side in your mind: Cayley’s glider, the  Wright Flyer,  and the Cessna Citation 3. 

What a testimonial to the evolution of airplane design! Each machine is totally 

different, each being the product of three different worlds of scientifi c and engi-

neering understanding and practice. One must marvel at the rapid technical 

progress, especially in the 20th century, that brings us to the present status of 

airplane design represented by the modern, fast, high-fl ying jet aircraft shown 

in    Fig. 6.11 . What were the major technical milestones in this progress? What 

were the evolutionary (and sometimes revolutionary) developments that swept 

us from Cayley’s seminal concepts to the modern airplane? The eye-opening and 

exciting answers to these questions would require a separate book to relate, but 

in this section we highlight a few aspects of the technical progression of airplane 

design, using some of the technology we have covered in this chapter about air-

plane performance. 

 To provide a technical focus for our discussion, we chose two aerodynamic 

parameters as fi gures of merit to compare and evaluate different airplane designs. 

The fi rst is the zero-lift drag coeffi cient  C   D ,0 , an important characteristic of any 

airplane because it has a strong effect on the maximum fl ight speed. Recall that 

at  V  max  for an airplane, because the angle of attack (and hence the induced drag) 

is small, the total drag given by the drag polar in    Eq. (6.1  c ) is dominated by  C   D ,0  

at high speeds. Everything else being equal, the lower the  C   D ,0 , the faster the air-

plane. The other aerodynamic fi gure of merit highlighted here is the lift-to-drag 

ratio and especially its maximum value ( L / D ) max . As we have already seen,  L / D  is 

a measure of the aerodynamic effi ciency of an airplane, and it affects such fl ight 

characteristics as endurance and range. We will use both  C   D ,0  and ( L / D ) max  to il-

lustrate the historical progress in airplane design. 

 We start with the airplanes of Cayley early in the 19th century because they 

were the fi rst designs to exemplify the fi xed-wing heavier-than-air aircraft we 

know today. Return again to Fig. 1.8, showing the fi rst airplane with a modern 

confi guration, with a fi xed wing for lift, a tail for stability, and a fuselage con-

necting the two. The mechanism of propulsion (in this case a hand launch) is 

separate from the mechanism of lift. The amount of technical knowledge Cayley 

was able to incorporate in his design is best refl ected in his famous “triple paper” 

of 1809–1810 (see Sec. 1.3). The technical concepts of  C   D ,0  and  L / D  did not exist 

in Cayley’s day, but he refl ects a basic intuition about these quantities in his 

triple paper. For example, Cayley used a method called  Newtonian theory  (which 
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will be derived in Ch. 10) to estimate the aerodynamic force on an inclined plane 

(the wing). This theory takes into account only the pressure acting on the sur-

face; surface shear stress and hence friction drag were not fully appreciated in 

Cayley’s time, and there were no methods for such prediction. Newtonian theory 

predicts a net force perpendicular to the inclined plane and therefore contains a 

component of drag. Cayley makes reference to this “retarding force” due to the 

component of the aerodynamic pressure force acting along the fl ow direction. In 

modern terms, we call this component of drag the  drag due to lift . Cayley goes on 

to say (in discussing the fl ight of birds), “In addition to the retarding force thus 

received is the direct resistance, which the bulk of the bird opposes to the cur-

rent. This is a matter to be entered into separately from the principle now under 

consideration.” Here Cayley is discussing what we would today call the  zero-lift 
drag  (the sum of pressure drag due to separation and skin friction drag) due 

primarily to the body of the bird. Although Cayley was on the right track con-

ceptually, he had no method of calculating the zero-lift drag, and measurements 

(made with a whirling arm such as sketched in Fig. 1.7) were wholly unreliable. 

Therefore, we have no value of  C   D ,0  for Cayley’s 1804 glider in Fig. 1.8. 

 Although Cayley did not identify and use the concept of  L / D  directly, in 

his triple paper he refers to his glider sailing “majestically” from the top of a 

hill, descending at an angle of about 18° with the horizon. Using the results of 

   Sec. 6.9  dealing with a power-off glide, we can today quickly calculate that the 

 L / D  ratio for the glider was 3.08—not a very impressive value. Typical values 

of  L / D  for modern airplanes are 15 to 20, and for modern gliders, greater than 

40. Cayley did not have an effi cient airplane, nor did he know about aspect ratio 

effects. Today we know that low–aspect-ratio wings such as used by Cayley 

(aspect ratio about 1) are very ineffi cient because they produce large amounts of 

induced drag. 

 The technical evolution of airplane design after Cayley was gradual and 

evolutionary during the remainder of the 19th century. The change that occurred 

with the  Wright Flyer  (Figs. 1.1 and 1.2) was revolutionary (1) because the 

Wrights ultimately relied on virtually no previous data, doing everything them-

selves (see Sec. 1.8); and (2) because it was the fi rst successful fl ying machine. 

The aerodynamic quality of the  Wright Flyer  is discussed by Culick and Jex, 

who report modern calculations and measurements of the drag polar for the 

 Wright Flyer  (   Fig. 6.80 ). The experimental data were obtained from a model 

of the  Wright Flyer  mounted in a wind tunnel at the California Institute of 

Technology. The theoretical data are supplied by a modern vortex–lattice com-

puter program for calculating low-speed incompressible inviscid fl ow. (Because 

these methods do not include the effects of friction, they cannot be used to 

predict fl ow separation.) The data in    Fig. 6.80  show that  C   D ,0  is about 0.10 and 

the maximum lift coeffi cient nearly 1.1. Moreover, drawing a straight line from 

the origin tangent to the drag polar curve, we see that the value of ( L / D ) max  

is about 5.7. By present standards the  Wright Flyer  was not an aerodynamic 

masterpiece; but in 1903 it was the only successful fl ying machine in existence. 

Moreover, compared with Cayley’s airplanes, the  Wright Flyer  was a  revolu-
tionary  advancement in design. 
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 After the  Wright Flyer,  advances in airplane design grew almost exponen-

tially in the last half of the 20th century. Using our two fi gures of merit,  C   D ,0  

and ( L / D ) max , we can identify three general periods of progress in airplane de-

sign during the 20th century, as shown in    Figs. 6.81  and    6.82 . Values of  C   D ,0  

(   Fig. 6.81 ) and ( L / D ) max  (   Fig. 6.82 ) for representative airplanes are shown versus 

time in years. These data are obtained from Loftin, an authoritative publication 

that the  interested reader is encouraged to examine; it contains detailed case 

studies of the technical designs of many famous aircraft. The data for  C   D ,0  in 

   Fig. 6.81  suggest that airplane design has gone through three major evolutionary 

periods, distinguished from one another by a dramatic change. For example, the 

period of strut-and-wire biplanes (such as the SPAD XIII, shown in    Fig. 6.83 ) 

extends from the  Wright Flyer  to the middle or end of the 1920s. Here values 

of  C   D ,0  are typically on the order of 0.04: a high value due to the large form 

drag (pressure drag due to fl ow separation) associated with the bracing struts 

and wires between the two wings of a biplane. In the late 1920s a revolution in 

design came with the adoption of the monoplane confi guration coupled with the 

NACA cowl (see    Sec. 6.24 ). The resulting second period of design evolution 

(exemplifi ed by the DC-3 shown in    Fig. 6.84 ) is characterized by  C   D ,0  values on 

the order of 0.027. In the mid-1940s the major design revolution was the advent 

of the jet-propelled airplane. This period, which we are still in today (refl ected 

in the famous F-86 of the Korean war era, shown in    Fig. 6.85 ), is represented by 

 C   D ,0  values on the order of 0.015. 

Figure 6.80 Drag polar and lift curve for the 1903 Wright Flyer. Experimental data are from 

modern experiments using models of the Wright Flyer in modern wind tunnels. The vortex–

lattice theory is a modern computer calculation. The values of ĈL, ĈD, and α̂  correspond to 

equilibrium trimmed-fl ight conditions (see Ch. 7), highlighted by the horizontal bar across 

the fi gure.
F.E.C. Culick and H. R. Jex. “Aerodynamics, Stability, and Control of the 1903 Wright Flyer,” The 

Wright Flyer: An Engineering Perspective, pp. 19–43. 1987. Copyright © 1987 by the Smithsonian 

Institution. All rights reserved. Used with permission.
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  Figure 6.81  Use of zero-lift drag coeffi cient to illustrate three general periods 

of 20th-century airplane design. The numbered data points correspond to 

the following aircraft: (1) SPAD XIII, (2) Fokker D-VII, (3) Curtiss JN-4H 

Jenny, (4) Ryan NYP ( Spirit of St. Louis ), (5) Lockheed Vega, (6) Douglas 

DC-3, (7) Boeing B-17, (8) Boeing B-29, (9) North American P-51, 

(10) Lockheed P-80, (11) North American F-86, (12) Lockheed F-104, 

(13) McDonnell F-4E, (14) Boeing B-52, (15) General Dynamics F-111D. 

  

  Figure 6.82  Use of lift-to-drag ratio to illustrate three general periods of 20th-century 

airplane design. 
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Figure 6.83 The French SPAD XIII, an example of the strut-and-wire biplane period. 

Captain Eddie Rickenbacker is shown at the front of the airplane.
(Source: U.S. Air Force.)

Figure 6.84 The Douglas DC-3, an example of the period of mature propeller-driven 

monoplanes with the NACA cowling and wing fi llets.
(Source: U.S. Air Force.)
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   The use of ( L / D ) max  as an aerodynamic fi gure of merit has been discussed 

in previous sections. As shown in    Fig. 6.82 , where ( L / D ) max  is plotted versus 

years, the data points for the same airplanes as in    Fig. 6.81  group themselves 

in the same three design periods deduced from    Fig. 6.81 . Note that compared 

with the value of 5.7 for the  Wright Flyer,  the average value of ( L / D ) max  for 

World War  I airplanes was about 8—not a great improvement. After the in-

troduction of the monoplane with the NACA cowling, typical ( L / D ) max  values 

averaged substantially higher, on the order of 12 or sometimes considerably 

greater. [The Boeing B-29 bomber of World War II fame had an ( L / D ) max  value 

of nearly 17, the highest for this period. This was in part due to the exception-

ally large wing aspect ratio of 11.5 in a period when wing aspect ratios were 

averaging on the order of 6 to 8.] Today ( L / D ) max  values for modern aircraft 

range over the whole scale, from 12 or 13 for high-performance military jet 

fi ghters to nearly 20 and above for large jet bombers and civilian transports 

such as the Boeing 747. 

 This section has given you the chance to think about the progress in aircraft 

design in terms of some of the aerodynamic performance parameters discussed 

in this chapter.   

   6.28  SUMMARY AND REVIEW 
  The fi rst part of this chapter deals with the  static  performance of an airplane, that is, 

its performance when the acceleration is zero. With this assumption, the forces acting 

on the airplane are in balance. In other words, in steady, level fl ight, lift equals weight, 

and thrust equals drag. Using this simple approach, it is amazing how much information 

we can obtain about the performance of an airplane. We have seen how to calculate the 

Figure 6.85 The North American F-86, one of the most successful modern jet airplanes 

from the early 1950s.
(Source: U.S. Air Force.)
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maximum and minimum velocities for a given airplane fl ying at a given altitude. For an 

airplane in climbing fl ight, lift is smaller than the weight, namely  L  =  W  cos  θ   where  θ  is 

the climb angle; also, thrust is larger than the drag, namely  T  =  D  +  W  sin  θ . However, for 

the assumption of no acceleration, the forces acting on the airplane in climbing fl ight are 

again in balance, and this allows us to calculate the rate of climb for a given airplane at a 

given altitude. Gliding fl ight, where the thrust is zero, is handled in the same fashion. Is 

it not interesting that the glide angle is simply dependent on the lift-to-drag ratio? This is 

not necessarily intuitive, but yet our static performance analysis for the glide angle yields 

the formula tan  θ  = ( L/D ) –1 . The assumption of static performance also yields important 

results and relations for maximum range and endurance. 

 Takeoff distance, landing distance, and turning fl ight must be analyzed from a 

dynamic point of view, because the acceleration of the airplane is  not  zero. The latter part 

of this chapter deals with the performance of the airplane with fi nite acceleration. This is 

the essence of  dynamic  performance. Here, we use Newton’s second law,  F  =  ma , to  obtain 

results for takeoff and landing performance, and the equivalent equation dealing with 

 radial acceleration for the analysis of turning fl ight. Lastly, we see that  dynamic perfor-

mance calculations can be made on the basis of energy considerations rather than forces. 

This is the essence of the energy method used for dynamic rate-of-climb  calculations. 

 Finally, keep in mind that we have taken two approaches to the calculation of 

airplane performance in this chapter: a graphical approach and an analytical approach. 

In the graphical approach, we deal with numbers for such quantities as lift, drag, 

thrust, and weight. The manipulation of these numbers over ranges of fl ight veloci-

ties yields graphs that give us results for maximum velocity, rate of climb, absolute 

ceiling, and so forth. In contrast, the analytical approach yields closed-form equations 

for the performance characteristics of the airplane. Moreover, these formulas reveal 

that airplane performance does not depend on just lift, drag, thrust, and weight inde-

pendently, but rather on some important  ratios  that combine these forces. For exam-

ple, maximum velocity depends primarily on the thrust-to-weight ratio ( T/W ), wing 

 loading ( W/S ), and zero-lift drag coeffi cient,  C D   ,0  [see    Eq. (6.44) ]. Maximum rate 

of climb  depends primarily on thrust-to-weight ratio (or power loading,  P/W ), wing 

loading, maximum lift-to-drag ratio, and zero-lift drag coeffi cient [see    Eqs. (6.52)  

and    (6.53) ]. The quantities

  
T

W

W

S

P

W

L

D
D, , , , ,and C 0        

basically dictate the performance of an airplane. They are some of the most impor-

tant  design parameters for an airplane. They are easily identifi ed through an analytical 

 approach yielding closed-form equations for the performance of an airplane, but are not 

so easily seen from a purely graphical analysis. 

 A few of the important aspects of this chapter are listed here: 

  1.   For a complete airplane, the drag polar is given as

  C C
C

e
D DC L+CDC ,0

2

π AR
  (6.1c)        

 where  C   D ,0  is the zero-lift drag coeffi cient and the term  C eL
2 / ( )π AR     includes both 

induced drag and the contribution of parasite drag due to lift.  
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  2.   Thrust required for level, unaccelerated fl ight is

  T
W

L D
RTT =

/
  (6.16)        

 Thrust required is a minimum when  L / D  is a maximum.  

  3.   Power required for level, unaccelerated fl ight is

  P
W C

SC
RPP D

L

=
∞

2 3 2C
3ρ

  (6.27)        

 Power required is a minimum when  C CL DC3 2 /     is a maximum.  

  4.   The rate of climb  R/C = dh/dt  is given by

  
dh

dt

TV DV

W

V

g

dV

dt
= − −   (6.139)        

 where  (TV − DV) /W = P s  , the specifi c excess power. For an unaccelerated climb, 

 dV/dt  = 0; hence

  R/C = = −dh

dt

TV DV

W
  (6.50)          

  5.   In a power-off glide, the glide angle is given by

  tan
/

θ = 1

L D/
  (6.56)          

  6.   The absolute ceiling is defi ned as the altitude where maximum R/C = 0. The 

service ceiling is the altitude where maximum R/C = 100 ft/min.  

  7.   For a propeller-driven airplane, range  R  and endurance  E  are given by

  R
c

C

C

W

W
L

D

= η
ln 0WW

1WW
(6.67)        

and  E
c

C

C
L

D

= η ρ
3 2

1 2
1

1 2
0

1 22 1( )SS∞ρ2 ( )W W−W −W1WWWW 2
0WW 1 2/W −1 /   (6.68)        

 Maximum range occurs at maximum  C   L   / C   D  . Maximum endurance occurs at sea 

level with maximum  C CL DC3 2/    .  

  8.   For a jet-propelled airplane, range and endurance are given by

  R
S c
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  (6.77)        

and  E
c

C

C

W
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D

= 1
ln 0WW

1WW
(6.72)          
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9.   At  maximum   C CL DC3 2/    ,  C CD DC i, ,D
1
3    . For this case,
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 At  maximum C   L   / C   D  ,  C   D ,0  =  C D,i  . For this case,
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  (6.85)        

 At  maximum   C CL DC1 2/    ,  C    D ,0  =  3C D,i  . For this case,
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10.   Takeoff ground roll is given by

s
W

g S D r
LO

, av
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D

1 44 2.

{ [T ( )W L− ] }avρ μScL D,max DDTT −
  (6.103)          

11.   The landing ground roll is

s
W

g SC W L
L

r VTVV

=
W

1 69 2

0 7[ (D r+ r )],ρ μSCL DD +,max

  (6.111)          

12.   The load factor is defi ned as

n
L

W
≡   (6.115)          

13.   In  level turning fl ight,  the turn radius is

R
V

g n
=

−
∞VV 2

2 1
  (6.118)        

and the turn rate is  ω = −
∞

g n

V∞

2 1
(6.119)          

14.   The  V–n  diagram is illustrated in    Fig. 6.55 . It is a diagram showing load factor 

versus velocity for a given airplane, along with the constraints on both  n  and  V  due 

to structural limitations. The  V–n  diagram illustrates some particularly important 

aspects of overall airplane performance.  
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  15.   The energy height (specifi c energy) of an airplane is given by

  H h
V

g
e +h

2

2
(6.136)        

This, in combination with the specifi c excess power

P
TV DV

W
sPP = −

 leads to the analysis of accelerated-climb performance using energy 

considerations only.       
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  Problems  
6.1    Consider an airplane patterned after the twin-engine Beechcraft Queen Air 

executive transport. The airplane weight is 38,220 N, wing area is 27.3 m 2 , aspect 

ratio is 7.5, Oswald effi ciency factor is 0.9, and zero-lift drag coeffi cient is  C   D ,0  = 

0.03. Calculate the thrust required to fl y at a velocity of 350 km/h at ( a ) standard 

sea level and ( b ) an altitude of 4.5 km.  



   6.2   An airplane weighing 5000 lb is fl ying at standard sea level with a velocity of 

200 mi/h. At this velocity the  L / D  ratio is a maximum. The wing area and aspect 

ratio are 200 ft 2  and 8.5, respectively. The Oswald effi ciency factor is 0.93. 

Calculate the total drag on the airplane.  

   6.3   Consider an airplane patterned after the Fairchild Republic A-10, a twin-jet attack 

aircraft. The airplane has the following characteristics: wing area = 47m 2 , aspect 

ratio = 6.5, Oswald effi ciency factor = 0.87, weight = 103,047N, and zero-lift drag 

coeffi cient = 0.032. The airplane is equipped with two jet engines with 40,298 N 

of static thrust  each  at sea level. 

  a.   Calculate and plot the power-required curve at sea level.  

  b.   Calculate the maximum velocity at sea level.  

  c.   Calculate and plot the power-required curve at 5-km altitude.  

  d.   Calculate the maximum velocity at 5-km altitude. (Assume the engine thrust 

varies directly with free-stream density.)     

   6.4   Consider an airplane patterned after the Beechcraft Bonanza V-tailed, single-

engine light private airplane. The characteristics of the airplane are as follows: 

aspect ratio = 6.2, wing area = 181 ft 2 , Oswald effi ciency factor = 0.91, weight = 

3000 lb, and zero-lift drag coeffi cient = 0.027. The airplane is powered by a 

single piston engine of 345 hp maximum at sea level. Assume that the power of 

the engine is proportional to free-stream density. The two-blade propeller has an 

effi ciency of 0.83. 

  a.   Calculate the power required at sea level.  

  b.   Calculate the maximum velocity at sea level.  

  c.   Calculate the power required at 12,000-ft altitude.  

  d.   Calculate the maximum velocity at 12,000-ft altitude.     

   6.5   From the information generated in    Prob. 6.3 , calculate the maximum rate of climb 

for the twin-jet aircraft at sea level and at an altitude of 5 km.  

   6.6   From the information generated in    Prob. 6.4 , calculate the maximum rate of climb 

for the single-engine light plane at sea level and at 12,000-ft altitude.  

   6.7   From the rate-of-climb information for the twin-jet aircraft in    Prob. 6.5 , estimate 

the absolute ceiling of the airplane. ( Note:  Assume maximum R/C varies linearly 

with altitude—not a precise assumption, but not bad either.)  

   6.8   From the rate-of-climb information for the single-engine light plane in    Prob. 6.6 , 

estimate the absolute ceiling of the airplane. (Again make the linear assumption 

described in    Prob. 6.7 .)  

   6.9   The maximum lift-to-drag ratio of the World War I  Sopwith Camel  was 7.7. If the 

aircraft is in fl ight at 5000 ft when the engine fails, how far can it glide in terms of 

distance measured along the ground?  

  6.10   For the  Sopwith Camel  in    Prob. 6.9 , calculate the equilibrium glide velocity 

at 3000 ft, corresponding to the minimum glide angle. The aspect ratio of the 

airplane is 4.11, the Oswald effi ciency factor is 0.7, the weight is 1400 lb, and the 

wing area is 231 ft 2 .  

  6.11   Consider an airplane with a zero-lift drag coeffi cient of 0.025, an aspect ratio of 

6.72, and an Oswald effi ciency factor of 0.9. Calculate the value of ( L / D ) max .  

  6.12   Consider the single-engine light plane described in    Prob. 6.4 . If the specifi c fuel 

consumption is 0.42 lb of fuel per horsepower per hour, the fuel capacity is 44 gal, 

 Problems 589
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and the maximum gross weight is 3400 lb, calculate the range and endurance at 

standard sea level.  

  6.13   Consider the twin-jet airplane described in    Prob. 6.3 . The thrust-specifi c fuel 

consumption is 1.0 N of fuel per newton of thrust per hour, the fuel capacity is 

1900 gal, and the maximum gross weight is 136,960 N. Calculate the range and 

endurance at a standard altitude of 8 km.  

  6.14   Derive    Eqs. (6.80)  and    (6.81) .  

  6.15   Derive    Eqs. (6.86)  and    (6.87) .  

  6.16   Estimate the sea-level liftoff distance for the airplane in    Prob. 6.3 . Assume a 

paved runway. Also, during the ground roll, the angle of attack is restricted by the 

requirement that the tail not drag the ground. Hence, assume that  C   L ,max  during the 

ground roll is limited to 0.8. When the airplane is on the ground, the wings are 5 ft 

above the ground.  

  6.17   Estimate the sea-level liftoff distance for the airplane in    Prob. 6.4 . Assume a 

paved runway, and  C   L ,max  = 1.1 during the ground roll. When the airplane is on the 

ground, the wings are 4 ft above the ground.  

  6.18   Estimate the sea-level landing ground roll distance for the airplane in    Prob. 6.3 . 

Assume that the airplane is landing at full gross weight. The maximum lift coeffi cient 

with fl aps fully employed at touchdown is 2.8. After touchdown, assume zero lift.  

  6.19   Estimate the sea-level landing ground roll distance for the airplane in    Prob. 6.4 . 

Assume that the airplane is landing with a weight of 2900 lb. The maximum lift 

coeffi cient with fl aps at touchdown is 1.8. After touchdown, assume zero lift.  

  6.20   For the airplane in    Prob. 6.3 , the sea-level corner velocity is 250 mi/h, and the 

maximum lift coeffi cient with no fl ap defl ection is 1.2. Calculate the minimum 

turn radius and maximum turn rate at sea level.  

  6.21   The airplane in    Prob. 6.3  is fl ying at 15,000 ft with a velocity of 375 mi/h. 

Calculate its specifi c energy at this condition.  

  6.22   Derive    Eq. (6.44) .  

  6.23   From the data shown in    Fig. 6.2 , estimate the value of the Oswald effi ciency factor 

for the Lockheed C-141A. The wing aspect ratio of the C-141A is 7.9.  

  6.24   Since the end of World War II, various claims have appeared in the popular 

aviation literature of instances where powerful propeller-driven fi ghter airplanes 

from that period have broken the speed of sound in a vertical, power-on dive. The 

purpose of this problem is to show that such an event is technically not possible. 

Consider, for example, the Grumman F6F-3 Hellcat, a typical fi ghter from World 

War II. For this airplane the zero-lift drag coeffi cient (at low speeds) is 0.0211, the 

wing planform area is 334 ft 2 , and the gross weight is 12,441 lb. It is powered by 

a Pratt and Whitney R-2800 reciprocating engine that, with supercharging to an 

altitude of 17,500 ft, produces 1500 horsepower. Consider this airplane in a full-

power vertical dive at ( a ) 30,000 ft and then ( b ) 20,000 ft. Prove that at these 

two altitudes the airplane cannot reach Mach 1. 

    Note:  The aerodynamic characteristics of this airplane at Mach 1 have not been 

measured. So you will have to make some reasonable assumptions. For example, 

what is the zero-lift drag coeffi cient at Mach 1? As an estimate, we can obtain 

from NACA TR 916 a zero-lift drag coeffi cient for the North American P-51 

Mustang, which, when extrapolated to Mach 1, shows an increase of 7.5 over 



its low-speed value. For the more blunt confi guration of the F6F, let us assume 

that  C   D ,0  (at  M  = 1) is 10 times larger than  C   D ,0  (low speed). Also, at Mach 1 the 

propeller effi ciency would be almost zero (indeed, the propeller might even be 

producing a net drag rather than any thrust). To be conservative, let us assume the 

propeller effi ciency at Mach 1 to be 0.3.  

  6.25   The Predator UAV (see    Fig. 6.63 ) has the following characteristics: wingspan = 

14.85 m, wing area = 11.45 m 2 , maximum weight = 1020 kg  f  , and fuel weight = 

295 kg  f  . The power plant is a Rotax four-cylinder, four-stroke engine of 

85 horsepower driving a two-blade, variable-pitch pusher propeller. Assume 

that the Oswald effi ciency factor is 0.7, the zero-lift drag coeffi cient is 0.03, the 

propeller effi ciency is 0.9, and the specifi c fuel consumption is 0.2 kg  f   of fuel per 

horsepower per hour. Calculate the maximum velocity of the Predator at sea level.  

  6.26   For the Predator UAV given in    Prob. 6.25 , calculate the maximum range.  

  6.27   For the Predator UAV given in    Prob. 6.25 , calculate the maximum endurance at 

sea level.  

  6.28   For the special case of an airplane in subsonic steady, level fl ight, the drag  force  

due to lift,  D   i  , depends directly on the square of the design parameter,  W / b , called 

the  span loading , through the relation

  D
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 Derive this relation.  

  6.29   Consider the North American P-51D Mustang shown in Fig. 4.46. Its wingspan is 

37 ft, wing area is 233.6 ft 2 , and gross weight is 10,100 lb. Assume that the Oswald 

effi ciency factor is 0.8. The airplane is fl ying in steady, level fl ight at a velocity of 

300 mi/h at a standard altitude of 5000 ft. Calculate the drag due to lift using 

 (a)  the result of    Problem 6.28 , and  (b)  the  coeffi cient  of drag due to lift,  C D,i  . The 

two results should be the same.  

  6.30   In the design of a civil jet transport, such as the Boeing 777 shown in    Fig. 6.27 , 

the choice of engine size is usually based on having a 300 feet per minute rate-of-

climb capability at the top of climb to cruising altitude. This is a safety margin. 

Assume the following cruise conditions at top of climb for the Boeing 777: 

 L/D  = 18, altitude = 31,000 ft,  M  ∞  = 0.085,  W  = 550,000 lb.  (a)  Obtain an equation 

for the required engine thrust, assuming that the climb angle is so small that 

 L  =  W .  (b)  Calculate the required engine size (in terms of sea-level static thrust), 

and compare your result with the designers’ engine choice for the Boeing 777, 

which is two engines of the Rolls-Royce Tront type with a sea-level static thrust 

of 34,000 lb each. 

   Note:  Intuition might tell you that, for a new airplane design, the engine should 

be sized to provide enough take off thrust to get the airplane off the ground in a 

specifi ed take off distance. However, using the top-of-climb criteria discussed 

here, the resulting engine thrust is usually quite ample for take off.  

  6.31   The Lockheed-Martin F-16 is shown in    Fig. 6.56  in a vertical accelerated climb. 

Some characteristics of this airplane from Jane’s  All the World Aircraft  are: Wing 

area = 27.87 m 2 , typical combat weight = 8,273 kg  f  , sea-level static thrust from 

the single GE F110 jet engine = 131.6 kN. (Note that Jane’s quotes the weight in 
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units of kilogram force; see Sec. 2.4 for a discussion of this unit.) Assume that 

the subsonic value of the zero-drag coeffi cient is 0.016 (consistent with the data 

shown in    Fig. 6.81 ). Also assume that the transonic value of the zero-lift drag 

coeffi cient at Mach one is 2.3 times its subsonic value, a typical increase that 

occurs in the drag-divergence transonic fl ight region. For these conditions, is it 

possible for the F-16 to break the speed of sound going straight up?  

6.32   Consider the Lockheed-Martin F-16 described in    Problem 6.31 . Assume that the 

photograph in    Fig. 6.56  was taken when the airplane is climbing vertically at the 

instant it is passing through an altitude of 2000 m with a velocity of 100 m/s. 

Calculate the maximum acceleration of the airplane at that instant.  

6.33   The thrust-specifi c fuel consumption, TSFC, for a jet engine is defi ned in 

   Sec. 6.13 . Engine manufacturers are constantly trying to reduce TSFC in order to 

reduce the weight of fuel consumed for a given fl ight of given time duration. By 

reducing the fuel weight, the payload weight can be correspondingly increased. 

However, design changes that result in reductions in TSFC also frequently 

result in slight increases in the engine weight itself, which will then reduce the 

payload weight. The break even point is where the decrease in fuel weight is 

exactly cancelled out by the increase in engine weight, giving no increase in the 

payload weight. Designating the new reduced thrust-specifi c fuel consumption by 

(TSFC) new  = (TSFC) (1 − ε  f  ) and the new weight of the airplane increased by the 

increase in engine weight by  W  new  =  W (1 + ε  W  ), where ε  f   and ε  W   are small fractional 

values, prove that the break even point for changes in engine weight and TSFC are 

given by
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 where  W  and  W   f   are the average weight of the airplane during, cruise and 

the weight of fuel used during cruise, respectively, both  before  any design 

perturbation in engine weight or TSFC, and  t  is the total cruising time of fl ight.  

  6.34   Consider a large four-engine jet transport with a takeoff weight of 1,350,000 lbs. 

By the end of the fl ight, 500,000 lb of fuel have been burned. Assume that the 

engines are now improved to obtain a 1% reduction in TSFC. Using the results of 

   Problem 6.33 , calculate the maximum allowable increase in weight of each engine 

for no change in take off weight.  

  6.35   Examine    Eq. (6.44)  in the text. This equation is an explicit relation for  V  max  in 

terms of the thrust-to-weight ratio for the airplane, and hence allows a quick 

analytical calculation of  V  max  for jet-propelled airplanes. Derive an analogous 

relation for  V  max  for a propeller-driven airplane in terms of the power-to-weight 

ratio (power loading).  Note:  You will fi nd a relation that relates power loading 

and  V  max , but you will also discover that it is not possible to solve this relation 

explicitly  for  V  max . Even so, this relation still allows a quicker solution for  V  max  for 

propeller-driven airplanes in comparison to the numerical solution discussed in 

   Sec. 6.6 .  

6.36   Using your result from Prob. 6.35, calculate the maximum velocity of the CP-1 at 

sea level, and compare your result with the numerical solution in    Sec. 6.6 .  

6.37   Calculate analytically the maximum velocity of the CJ-1 at sea level, and compare 

your result with the numerical solution in    Sec. 6.4 .  



  6.38   Calculate analytically the maximum rate of climb for the CP-1 at 12,000 ft and 

compare your result with the numerical solution in    Sec. 6.10 .  

  6.39   Calculate analytically the maximum rate of climb for the CJ-1 at 24,000 ft and 

compare your result with the numerical solution in    Sec. 6.10 .  

  6.40   The Douglas DC-3 (   Fig. 6.84 ) has a maximum velocity of 229 mi/h at an altitude 

of 7500 ft. Each of its two engines provides a maximum of 1200 hp. Its weight is 

25,000 lb, aspect ratio is 9.14, and wing area is 987 ft 2 . Assume that the propeller 

effi ciency is 0.8, and the Oswald effi ciency factor is 0.7. Calculate the zero-lift 

drag coeffi cient for the DC-3.         
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 Principles of Stability 
and Control 

   An important problem to aviation is . . . improvement in the form of the aeroplane 

leading toward natural inherent stability to such a degree as to relieve largely the 

attention of the pilot while still retaining suffi cient fl exibility and control to maintain 

any desired path, without seriously impairing the effi ciency of the design. 

 From the First Annual Report 

of the NACA, 1915   

    7.1  INTRODUCTION 
   The scene:  A French army drill fi eld at Issy-les-Moulineaux just outside Paris. 

 The time:  The morning of January 13, 1908.  The character:  Henri Farman, a 

bearded, English-born but French-speaking aviator who had fl own for his fi rst 

time just four months earlier.  The action:  A delicately constructed Voisin-Farman 

I-bis biplane (see    Fig. 7.1 ) is poised, ready for takeoff in the brisk Parisian 

wind, with Farman seated squarely in front of the 50-hp Antoinette engine. The 

winds ripple the fabric on the Voisin’s box-kite-shaped tail as Farman powers 

to a bumpy liftoff. Fighting against a head wind, he manipulates his aircraft to 

a marker 1000 m from his takeoff point. In a struggling circular turn, Farman 

defl ects the rudder and mushes the biplane around the marker, the wings remain-

ing essentially level to the ground. Continuing in its rather wide and tenuous 

circular arc, the airplane heads back. Finally Farman lands at his original takeoff 

     7 C H A P T E R  
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 Imagine that you have designed your own airplane 

and you are ready to fl y it for the fi rst time. You 

have followed the principles laid out in the previous 

chapters of this book, and you are confi dent that your 

airplane will fl y as fast, as high, as far, and as long 

as you have planned. With confi dence, you take off 

and begin the fi rst fl ight of your new design. Within 

moments after takeoff, you hit a gust of wind that 

momentarily pitches the airplane up, literally rotat-

ing the airplane to a higher-than-intended angle of 

attack. Now what? Are you going to have to fi ght to 

bring your airplane under control, or will it automati-

cally return to its previous orientation after a few mo-

ments? Have you properly designed your airplane so 

that it will return to its original orientation? How do 

you do that? That is, how do you ensure that your 

airplane, when disturbed by a gust of wind, will not 

continue to pitch up and completely go out of con-

trol? These are truly important questions, and you 

will fi nd answers in this chapter. The questions and 

answers have to do with airplane  stability,  a major 

subject of this chapter. 

 Assume that your airplane is stable; that is, it 

will automatically return to its original  orientation 

after experiencing some type of disturbance. As 

you are fl ying, you wish to speed up but also main-

tain level fl ight. You know from our conversations 

in Ch. 6 that you must correspondingly reduce 

the angle of attack. This can be accomplished by 

changing the elevator defl ection on the tail. But 

how much do you need to defl ect the elevator? 

And how much force must you exert on the eleva-

tor to get it to defl ect the proper amount? These 

questions may seem somewhat mundane; but if 

you do not know the proper answers and you did 

not properly account for them in your design, most 

likely you will not be able to control your airplane. 

The second major subject of this chapter is air-

plane  control,  where you will fi nd answers to these 

 questions. 

If airplanes are unstable or uncontrollable, they 

will most likely crash. This is serious business. This 

is a serious chapter. Please read it with some care. 

At the same time, however, I predict that you will 

enjoy reading this chapter because it takes you into 

new territory associated with the fl ight of airplanes, 

with some different physics and different mathemat-

ics than we have previously considered.

   PREVIEW BOX 

  Figure 7.1  The Voisin-Farman I-bis plane. 
 (Source:   © Science and Society/SuperStock. )     
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point, amid cheers from the crowd that had gathered for the occasion. Farman 

has been in the air for 1 min 28 s—the longest fl ight in Europe to that date—and 

has just performed the fi rst circular fl ight of 1-km extent. For this he is awarded 

the Grand Prix d’Aviation. (Coincidentally in the crowd is a young Hungarian 

engineer, Theodore von Karman, who is present only due to the insistence of 

his female companion—waking at 5:00  am  to see history made. However, von 

Karman is mesmerized by the fl ight, and his interest in aeronautical science is 

catalyzed. Von Karman will go on to become a leading aerodynamic genius of 

the fi rst half-century of powered fl ight.) 

     The scene shifts to a small racetrack near Le Mans, France.  The time:  
Just seven months later, August 8, 1908.  The character:  Wilbur Wright, in-

tense, reserved, and fully confi dent.  The action:  A new Wright type A biplane 

(see Fig. 1.25), shipped to France in crates and assembled in a friend’s factory 

near Le Mans, is ready for fl ight. A crowd is present, enticed to the fi eld by much 

advance publicity and an intense curiosity to see if the rumors about the Wright 

brothers’ reported success were really true. Wilbur takes off. Using the Wrights’ 

patented concept of twisting the wing tips ( wing warping ), Wilbur is able to bank 

and turn at will. He makes two graceful circles and then effortlessly lands after 

1 min 45 s of fl ight. The crowds cheer. The French press is almost speechless 

but then heralds the fl ight as epoch-making. European aviators who witness this 

demonstration gaze in amazement and then quickly admit that the Wrights’ air-

plane is far advanced over the best European machines of that day. Wilbur goes 

on to make 104 fl ights in France before the end of the year and in the process 

transforms the direction of aviation in Europe. 

 The distinction between these two scenes, and the reason for Wilbur’s mas-

tery of the air in comparison to Farman’s struggling circular fl ight, involve sta-

bility and control. The Voisin aircraft of Farman, which represented the state 

of the art in Europe at the time, had only rudder control and could make only 

a laborious fl at turn by simply swinging the tail around. In contrast, the Wright 

airplane’s wing-twisting mechanism provided control of roll, which when com-

bined with rudder control allowed effortless turning and banking fl ight, fi gure-

eights, and so on. The Wright brothers were  airmen  (see Ch. 1) who concentrated 

on designing total control into their aircraft before adding an engine for powered 

fl ight. Since those early days, airplane stability and control have been dominant 

aspects of airplane design. They are the subject of this chapter. 

 Airplane performance, as discussed in Ch. 6, is governed by forces (along 

and perpendicular to the fl ight path), with the translational motion of the airplane 

as a response to these forces. In contrast, airplane stability and control, discussed 

in this chapter, are governed by moments about the center of gravity, with the 

rotational motion of the airplane as a response to these moments. Therefore, mo-

ments and rotational motion are the main focus of this chapter. 

 Consider an airplane in fl ight, as sketched in    Fig. 7.2 . The center of gravity 

(the point through which the weight of the complete airplane effectively acts) is 

denoted as cg. The  xyz  orthogonal axis system is fi xed relative to the airplane; 

the  x  axis is along the fuselage, the  y  axis is along the wingspan perpendicular to 
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the  x  axis, and the  z  axis is directed downward, perpendicular to the  xy  plane. The 

origin is at the center of gravity. The translational motion of the airplane is given 

by the velocity components  U ,  V , and  W  along the  x ,  y , and  z  directions, respec-

tively. (Note that the resultant free-stream velocity  V  ∞  is the vector sum of  U ,  V , 

and  W .) The rotational motion is given by the angular velocity components  P ,  Q , 

and  R  about the  x ,  y ,  z  axes, respectively. These rotational velocities are due to 

the moments  L ′,  M , and  N  about the  x ,  y , and  z  axes, respectively. (The prime is 

put by the symbol  L  so that the reader will not confuse it with lift.) Rotational 

motion about the  x  axis is called  roll;   L ′ and  P  are the  rolling  moment and ve-

locity, respectively. Rotational motion about the  y  axis is called  pitch;   M  and  Q  

are the  pitching  moment and velocity, respectively. Rotational motion about the 

 z  axis is called  yaw;   N  and  R  are the  yawing  moment and velocity, respectively. 

     The three basic controls on an airplane—the ailerons, elevator, and rudder—

are designed to change and control the moments about the  x ,  y , and  z  axes. These 

control surfaces are shown in Fig. 2.14 and repeated in    Fig. 7.3 ; they are fl ap-

like surfaces that can be defl ected back and forth at the command of the pilot. 

cg

  Figure 7.2  Defi nition of the airplane’s axes along with the translational and 

rotational motion along and about these axes. 
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The ailerons are mounted at the trailing edge of the wing, near the wing tips. The 

elevators are located on the horizontal stabilizer. In some modern aircraft, the 

complete horizontal stabilizer is rotated instead of just the elevator (so-called fl y-

ing tails). The rudder is located on the vertical stabilizer at the trailing edge. Just 

as in the case of wing fl aps discussed in Sec. 5.17, a downward defl ection of the 

control surface will increase the lift of the wing or tail. In turn, the moments will 

be changed, as sketched in    Fig. 7.4 . Consider    Fig. 7.4  a . One aileron is defl ected 

up and the other down, creating a differential lifting force on the wings, thus con-

tributing to the rolling moment  L ′. In    Fig. 7.4  b  the elevator is defl ected upward, 

creating a negative lift at the tail and thus contributing to the pitching moment  M . 

In    Fig. 7.4  c  the rudder is defl ected to the right, creating a leftward aerodynamic 

force on the tail and thus contributing to the yawing moment  N . 

         Rolling (about the  x  axis) is also called  lateral motion . Referring to    Fig. 7.4  a , 

we see that ailerons control roll; hence they are known as  lateral controls . Pitch-

ing (about the  y  axis) is also called  longitudinal motion . In    Fig. 7.4  b  we see that 

  Figure 7.3  Some airplane nomenclature. 
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elevators control pitch; hence they are known as  longitudinal controls . Yawing 

(about the  z  axis) is also called  directional motion .    Figure 7.4  c  shows that the 

rudder controls yaw; hence it is known as the  directional control . 
 All these defi nitions and concepts are part of the basic language of airplane 

stability and control; they should be studied carefully. In the process, the follow-

ing question emerges: What is meant by the words  stability  and  control  them-

selves? This question is answered in    Sec. 7.2 . 

  Figure 7.4  Effect of control defl ections on roll, pitch, and yaw. 

( a ) Effect of aileron defl ection; lateral control. ( b ) Effect of elevator 

defl ection; longitudinal control. ( c ) Effect of rudder defl ection; 

directional control. 
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 Return to the general road map for this book, shown in Fig. 2.1. With this 

chapter we are still dealing with the overall subject of fl ight mechanics; but now 

we are concentrating on the second box under fl ight mechanics—namely sta-

bility and control. The road map for the present chapter is shown in    Fig. 7.5 . 

Two general routes are shown, that for stability in the left column and that for 

control in the right column. The subjects of both stability and control can be 

subdivided into categories labeled  static  and  dynamic,  as shown in    Fig. 7.5 . We 

defi ne the difference between these categories in the next section. In this chapter 

we concentrate primarily (though not exclusively) on longitudinal stability and 

control. We deal with such considerations of static longitudinal stability as the 

calculation of longitudinal moments about the center of gravity, equations that 

can be used to help us determine whether an airplane is stable; and we defi ne two 

concepts used to describe the stability characteristics: the neutral point and the 

static margin. For the latter part of this chapter, we run down the right side of the 

road map in    Fig. 7.5 , dealing primarily with static longitudinal control. Here we 

examine the concept of  trim  in greater detail, and we look at elevator defl ections 

necessary to trim and the associated hinge moments for the elevator. We also 

look at the differences between  stick-fi xed  and  stick-free  stability. Many of the 

terms used may seem unfamiliar and somewhat strange. However, we spend the 

rest of this chapter helping you to learn these concepts and making you more fa-

miliar with the language of airplane stability and control. It will be useful for you 

to frequently return to    Fig. 7.5  as we proceed through this chapter to help orient 

yourself about the details and where they fi t into the bigger picture. 

         7.2  DEFINITION OF STABILITY AND CONTROL 
  There are two types of stability: static and dynamic. They can be visualized as 

follows. 

Criteria
Moments about cg
Equations for stability

Neutral point

Static margin

Stability and control

Stability

Static Dynamic

Longitudinal Directional Lateral

Static Dynamic

Longitudinal Directional Lateral

Control

Concept of trim
Elevator deflection to trim
Elevator hinge moment

Stick-fixed and stick-free stability

  Figure 7.5  Road map for Chapter 7. 
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   7.2.1  Static Stability 

 Consider a marble on a curved surface, such as a bowl. Imagine that the bowl 

is upright and the marble is resting inside, as shown in    Fig. 7.6  a . The marble is 

stationary; it is in a state of  equilibrium,  which means that the moments acting on 

the marble are zero. If the marble is disturbed (moved to one side, as shown by 

the dotted circle in    Fig. 7.6  a ) and then released, it will roll back toward the bot-

tom of the bowl to its original equilibrium position. Such a system is  statically  

 stable . In general, we can state that  

If the forces and moments on the body caused by a disturbance tend initially to return 

the body toward its equilibrium position, the body is statically stable. The body has 

 positive  static stability.  

      Now imagine that the bowl is upside down, with the marble at the crest, as shown 

in    Fig. 7.6  b . If the marble is placed precisely at the crest, the moments will be zero, 

and the marble will be in equilibrium. However, if the marble is disturbed (as shown 

by the dotted circle in    Fig. 7.6  b ), it will tend to roll down the side, away from its 

equilibrium position. Such a system is  statically unstable . In general, we can state that 

  If the forces and moments are such that the body continues to move  away  from its 

equilibrium position after being disturbed, the body is  statically unstable.  The body 

has  negative  static stability.  

  Figure 7.6  Illustration of static stability. 

( a ) Statically stable system. ( b ) Statically 

unstable system. ( c ) Statically neutral system. 
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 Finally, imagine the marble on a fl at horizontal surface as shown in    Fig. 7.6  c . 

Its moments are zero; it is in equilibrium. If the marble is disturbed to another 

location, the moments will still be zero, and it will still be in equilibrium. Such 

a system is  neutrally stable . This situation is rare in fl ight vehicles, and we will 

not be concerned with it here. 

 We emphasize that static stability (or the lack of it) deals with the  initial  ten-

dency of a vehicle to return to equilibrium (or to diverge from equilibrium) after 

being disturbed. It says nothing about whether it ever reaches its equilibrium 

position or how it gets there. Such matters are the realm of dynamic stability.  

   7.2.2  Dynamic Stability 

 Dynamic stability deals with the  time history  of the vehicle’s motion after it ini-

tially responds to its static stability. For example, consider an airplane fl ying at an 

angle of attack α  e   such that its moments about the center of gravity are zero. The 

airplane is therefore in equilibrium at α  e  ; in this situation it is  trimmed,  and α  e   is 

called the  trim angle of attack.  Now assume that the airplane is disturbed (say by 

encountering a wind gust) to a new angle of attack α, as shown in    Fig. 7.7 . The 

airplane has been pitched through a  displacement  α  − α  e  . Let us observe the sub-

sequent pitching motion after the airplane has been disturbed by the gust. We can 

describe this motion by plotting the instantaneous displacement versus time, as 

shown in    Fig. 7.8 . Here α  − α  e   is given as a function of time  t . At  t  = 0 the dis-

placement is equal to that produced by the gust. If the airplane is statically stable, 

it will  initially  tend to move back toward its equilibrium position; that is, α  − α  e   

will initially decrease. Over time the vehicle may monotonically “home in” to 

its equilibrium position, as shown in    Fig. 7.8  a . Such motion is called  aperi-
odic.  Alternatively, it may fi rst overshoot the equilibrium position and approach 

α  e   after a series of oscillations with decreasing amplitude, as shown in    Fig. 7.8  b . 
Such motion is described as  damped oscillations.  In both situations,    Figs. 7.8  a  

and    7.8  b , the airplane eventually returns to its equilibrium position after some 

  Figure 7.7  Disturbance from the equilibrium angle of attack. 
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interval of time. These two situations are examples of  dynamic stability  in an 

airplane. Thus we can state that  

A body is dynamically stable if, of its own accord, it eventually returns to and 

 remains at its equilibrium position over time.   

         In contrast, after initially responding to its static stability, the airplane may 

oscillate with increasing amplitude, as shown in    Fig. 7.9 . Here the equilibrium 

position is never maintained for any period, and the airplane eventually diverges 

completely; the airplane in this case is  dynamically unstable  (even though it is 

statically stable). Also, it is theoretically possible for the airplane to pitch back 

and forth with constant-amplitude oscillations. This is an example of a  dynami-
cally neutral  body; such a case is of little practical interest here. 

     It is important to observe from the preceding examples that a dynamically 

stable airplane must always be statically stable. However, static stability is  not  
suffi cient to ensure dynamic stability. Nevertheless, static stability is usually the 

fi rst stability characteristic to be designed into an airplane. (There are some ex-

ceptions, to be discussed later.) Such considerations are of paramount impor-

tance in conventional airplanes, and therefore most of this chapter will address 

  Figure 7.8  Examples of dynamic stability. ( a ) Aperiodic. ( b ) Damped oscillations. 

  Figure 7.9  An example of dynamic instability. 
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 static  stability and control. A study of dynamic stability, although of great im-

portance, requires advanced analytical techniques beyond the scope of this book.  

   7.2.3  Control 

 The conventional control surfaces (elevators, ailerons, and rudder) on an 

airplane were discussed in    Sec. 7.1  and sketched in    Figs. 7.3  and    7.4 . Their 

function is usually (1) to change the airplane from one equilibrium position 

to another and (2) to produce nonequilibrium accelerated motions such as 

maneuvers. The study of the  defl ections  of the ailerons, elevators, and rudder 

necessary to make the airplane do what we want and of the amount of  force  

that must be exerted by the pilot (or the hydraulic boost system) to defl ect these 

controls is part of a discipline called  airplane control,  to be discussed later in 

this chapter.  

   7.2.4  Partial Derivative 

 Some physical defi nitions associated with stability and control have been given 

in    Secs. 7.2.1  through    7.2.3 . In addition, a mathematical defi nition—that of the 

partial derivative—will be useful in the equations developed later, not only in 

this chapter but in our discussion of astronautics (Ch. 8) as well. For readers 

having only a nodding acquaintance with calculus, this section should be self-

explanatory; for those with a deeper calculus background, it should serve as a 

brief review. 

 Consider a function, say  f  ( x ), of a single variable  x . The derivative of  f  ( x ) is 

defi ned from elementary calculus as
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Physically this limit represents the instantaneous rate of change of  f  ( x ) with re-

spect to  x . 

 Now consider a function that depends on more than one variable, such as the 

function  g ( x, y, z ), which depends on the three independent variables  x ,  y , and  z . 
Let  x  vary while  y  and  z  are held constant. Then the instantaneous rate of change 
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Here ∂ g /∂ x  is the  partial derivative  of  g  with respect to  x . Now let  y  vary while 

 x  and  z  remain constant. The instantaneous rate of change of  g  with respect to 

 y  is given by
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Here ∂ g /∂ y  is the  partial derivative  of  g  with respect to  y . An analogous defi ni-

tion holds for the partial derivative with respect to  z , denoted by ∂ g /∂ z . 

 In this book we use the concept of the partial derivative as a defi nition only. 

The calculus of partial derivatives is essential to the advanced study of virtually 

any fi eld of engineering, but such considerations are beyond the scope of this book. 

   7.3  MOMENTS ON THE AIRPLANE 
  A study of stability and control is focused on moments: moments on the air-

plane and moments on the control surfaces. At this stage it would be helpful 

for the reader to review the discussion of aerodynamically produced moments 

in Sec. 5.2. Recall that the pressure and shear stress distributions over a wing 

produce a pitching moment. This moment can be taken about any arbitrary point 

(the leading edge, the trailing edge, the quarter chord, or elsewhere). However, 

there exists a particular point about which the moments are independent of the 

angle of attack. This point is defi ned as the  aerodynamic center  for the wing. The 

moment and its coeffi cient about the aerodynamic center are denoted by  M  ac  and 

C   M ,ac , respectively, where  C   M ,ac  ≡  M  ac /( q  ∞  Sc ). 

 Refl ecting again on Sec. 5.2, consider the force diagram of Fig. 5.5. Assume 

that the wing is fl ying at zero lift; hence  F  1  and  F  2  are equal and opposite forces. 

Thus, the moment established by these forces is a pure couple, which we know 

from elementary physics can be translated anywhere on the body at constant 

value. Therefore, at  zero lift   M  ac  =  M   c /4  =  M  any point . In turn,

 
CM c L, ,M MM M / ,MMC c,MM( )C M( )CCM any point=)CMC / =LCMLL 0        

This says that the value of  C   M ,ac  (which is constant for angles of attack) can be ob-

tained from the value of the moment coeffi cient about any point when the wing 

is at the zero-lift angle of attack α  L  = 0 . For this reason  M  ac  is sometimes called the 

 zero-lift moment . 
 The aerodynamic center is a useful concept for the study of stability and 

control. In fact, the force and moment system on a wing can be completely speci-

fi ed by the lift and drag acting through the aerodynamic center, plus the moment 

about the aerodynamic center, as sketched in    Fig. 7.10 . We adopt this convention 

for the remainder of this chapter. 

  EXAMPLE 7.1  

  If  g  =  x  2  +  y  2  +  z  2 , calculate ∂ g /∂ z . 

■  Solution 
 From the defi nition given in the preceding discussion, the partial derivative is taken 
with respect to  z , holding  x  and  y  constant:

∂
∂

= ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

= +g

z

y

z

x

z

y

z

z

z
z z

( )+ +x y+ z2 2+ 2 2∂) 2 2∂
0 0+ 2 2=z =
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     Now consider the complete airplane, as sketched in    Fig. 7.10 . Here we are 

most concerned with the pitching moment about the center of gravity of the 

airplane  M  cg . We see clearly, by examination of    Fig. 7.10 , that  M  cg  is created by 

(1)  L ,  D , and  M  ac  of the wing; (2) lift of the tail; (3) thrust; and (4) aerodynamic 

forces and moments on other parts of the airplane, such as the fuselage and en-

gine nacelles. (Note that weight does not contribute, because it acts through the 

center of gravity.) These contributions to  M  cg  will be treated in detail later. The 

purpose of    Fig. 7.10  is simply to illustrate the important conclusion that a mo-

ment does exist about the center of gravity of an airplane, and this moment is 

fundamental to the stability and control of the airplane. 

 The moment coeffi cient about the center of gravity is defi ned as

  

C
M

q Sc
M,cg

cg=
  

(7.1)
        

Combining the preceding concept with the discussion of    Sec. 7.2 , we fi nd that an 

airplane is in equilibrium (in pitch) when the moment about the center of gravity 

is zero; that is, when  M  cg  =  C   M ,cg  = 0, the airplane is said to be  trimmed .   

   7.4  ABSOLUTE ANGLE OF ATTACK 
  Continuing with our collection of tools with which to analyze stability and con-

trol, we consider a wing at an angle of attack such that lift is zero; that is, the 

wing is at the zero-lift angle of attack α  L  = 0 , as shown in    Fig. 7.11  a . With the wing 

in this orientation, draw a line through the trailing edge parallel to the relative 

wind  V  ∞ . This line is defi ned as the  zero-lift line  for the airfoil. It is a fi xed line; 

visualize it frozen into the geometry of the airfoil, as sketched in    Fig. 7.11  a . As 

discussed in Ch. 5, conventional cambered airfoils have slightly negative zero-

lift angles; therefore the zero-lift line lies slightly above the chord line, as shown 

(with overemphasis) in    Fig. 7.11  a . 

     Now consider the wing pitched to the geometric angle of attack α so that lift 

is generated, as shown in    Fig. 7.11  b . (Recall from Ch. 5 that the geometric angle 

Figure 7.10  Contributions to the moment about the center of gravity of the airplane. 
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of attack is the angle between the free-stream relative wind and the chord line.) 

In the same confi guration,    Fig. 7.11  b  demonstrates that the angle between the 

zero-lift line and the relative wind is equal to the sum of α and the absolute value 

of α  L  = 0 . This angle is defi ned as the  absolute angle of attack  α  a  . From    Fig. 7.11  b , 

α  a   = α   +  α  L  = 0  (using α  L    =  0  in an absolute sense). Study the geometry of    Fig. 7.11  a  

and    7.11  b  carefully. 

 The defi nition of the absolute angle of attack has a major advantage. When 

α  a   = 0, then  L  = 0, no matter what the camber of the airfoil. To further illustrate, 

consider the lift curves sketched in    Fig. 7.12 . The conventional plot (discussed 

in detail in Ch. 5),  C   L   versus α, is shown in    Fig. 7.12  a . Here the lift curve does 

not go through the origin, and of course α  L  =  0  is different for different airfoils. In 

contrast, when  C   L   is plotted versus α  a  , as sketched in    Fig. 7.12  b , the curve always 

  Figure 7.11  Illustration of the zero-lift line and absolute angle of attack. ( a ) No lift; ( b ) with lift. 

  Figure 7.12  Lift coeffi cient versus ( a ) geometric angle of attack and ( b ) absolute angle of 

attack. 
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goes through the origin (by defi nition of α  a  ). The curve in    Fig. 7.12  b  is identical 

to that in    Fig. 7.12  a , but the abscissa has been translated by the value α  L  = 0 . 

     The use of α  a   in lieu of α is common in studies of stability and control. We 

adopt this convention for the remainder of this chapter.   

   7.5   CRITERIA FOR LONGITUDINAL 
STATIC STABILITY 

  Static stability and control about all three axes shown in    Fig. 7.2  are usually a 

necessity in the design of conventional airplanes. However, a complete descrip-

tion of all three types—lateral, longitudinal, and directional static stability and 

control (see    Fig. 7.4 )—is beyond the scope of this book. The intent here is to 

provide only the fl avor of stability and control concepts, and to this end, only the 

airplane’s longitudinal motion (pitching motion about the  y  axis) is considered in 

detail. This pitching motion is illustrated in    Fig. 7.4  b . It takes place in the plane 

of symmetry of the airplane. Longitudinal stability is also the most important 

static stability mode; in airplane design, wind tunnel testing, and fl ight research, 

it usually receives more attention than lateral or directional stability. 

 Consider a rigid airplane with fi xed controls, such as the elevator in some 

fi xed position. Assume that the airplane has been tested in a wind tunnel or free 

fl ight and that its variation of  M  cg  with angle of attack has been measured. This 

variation is illustrated in    Fig. 7.13 , where  C   M ,cg  is sketched versus α  a  . For many 

conventional airplanes, this curve is nearly linear, as shown in    Fig. 7.13 . The 

value of  C   M ,cg  at zero lift (where α  a   = 0) is denoted by  C   M ,0 . The value of α  a   where 

 M  cg  = 0 is denoted by α  e  ; as stated in    Sec. 7.3 , this is the equilibrium, or trim, 

angle of attack. 

     Consider the airplane in steady, equilibrium fl ight at its trim angle of attack 

α  e  , as shown in    Fig. 7.14  a . Suddenly the airplane is disturbed by hitting a wind 

gust, and the angle of attack is momentarily changed. There are two possibili-

ties: an increase or a decrease in α  a  . If the airplane is pitched upward, as shown 

in    Fig. 7.14  b , then α  a   > α  e  . From    Fig. 7.13 , if α  a   > α  e  , the moment about the 

  Figure 7.13  Moment coeffi cient curve with a negative slope. 



 7.5  Criteria for Longitudinal Static Stability 609

center of gravity is negative. As discussed in Sec. 5.4, a negative moment (by 

convention) is counterclockwise, tending to pitch the nose downward. Hence, in 

   Fig. 7.14  b  the airplane will initially tend to move back toward its equilibrium po-

sition after being disturbed. In contrast, if the plane is pitched downward by the 

gust, as shown in    Fig. 7.14  c , then α  a   < α  e  . From    Fig. 7.13 , the resulting moment 

about the center of gravity will be positive (clockwise) and will tend to pitch 

the nose upward. Thus we again have the situation in which the airplane will 

initially tend to move back toward its equilibrium position after being disturbed. 

From    Sec. 7.2 , this is precisely the defi nition of static stability. Therefore, we 

conclude that an airplane that has a  C   M ,cg -versus-α  a   variation like that shown in 

   Fig. 7.13  is  statically stable . Note from    Fig. 7.13  that  C   M ,0  is positive and that the 

slope of the curve ∂ C   M ,cg /∂α  a   is negative. Here the partial derivative, defi ned in 

   Sec. 7.2.4 , is used for the slope of the moment coeffi cient curve. This is because 

(as we will see)  C   M ,cg  depends on a number of other variables in addition to α  a  , 

and therefore it is mathematically proper to use ∂ C   M ,cg /∂α  a   rather than  dC   M ,cg / d α  a   

to represent the slope of the line in    Fig. 7.13 . As defi ned in    Sec. 7.2.4 , ∂ C   M ,cg /∂α  a   

symbolizes the instantaneous rate of change of  C   M ,cg  with respect to α  a  , with all 

other variables held constant. 

     Consider now a different airplane with a measured  C   M ,cg  variation as shown 

in    Fig. 7.15 . Imagine that the airplane is fl ying at its trim angle of attack α  e  , 

  Figure 7.14  Illustration of static stability. ( a ) Equilibrium position (trimmed). ( b ) Pitched upward by disturbance. 

( c ) Pitched downward by disturbance. In both ( b ) and ( c ) the airplane has the initial tendency to return to its 

equilibrium position. 
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as shown in    Fig. 7.16  a . If it is disturbed by a gust, pitching the nose upward 

as shown in    Fig. 7.16  b , then α  a   > α  e  . From    Fig. 7.15 , this results in a positive 

(clockwise) moment, which tends to pitch the nose even further from its equi-

librium position. Similarly, if the gust pitches the nose downward (   Fig. 7.16  c ), a 

negative (counterclockwise) moment results, which also tends to pitch the nose 

further from its equilibrium position. Therefore, because the airplane always 

tends to diverge from equilibrium when disturbed, it is  statically unstable . Note 

from    Fig. 7.15  that  C   M ,0  is negative and ∂ C   M ,cg /∂α  a   is positive for this airplane. 

  Figure 7.15  Moment coeffi cient curve with a positive slope. 

  Figure 7.16  Illustration of static instability. ( a ) Equilibrium position (trimmed). ( b ) Pitched 

upward by disturbance. ( c ) Pitched downward by disturbance. In both ( b ) and ( c ) the airplane 

has the initial tendency to diverge further from its equilibrium position. 
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 For both airplanes,    Figs. 7.13  and    7.15  show a positive value of α  e  . Recall 

from Fig. 6.8 that an airplane moves through a range of angle of attack as it fl ies 

through its velocity range from  V  stall  (where α  a   is the largest) to  V  max  (where α  a   

is the smallest). The value of α  e   must fall within this fl ight range of angle of at-

tack, or else the airplane cannot be trimmed for steady fl ight. (Remember that we 

are assuming a fi xed elevator position: We are discussing stick-fi xed stability.) 

When α  e   does fall within this range, the airplane is  longitudinally balanced . 

 From the preceding considerations, we conclude the following. The neces-

sary criteria for longitudinal balance and static stability are  

  1.    C   M ,0  must be positive.  

  2.   ∂ C   M ,cg /∂α  a   must be negative.   

 That is, the  C   M ,cg  curve must look like    Fig. 7.13 . Of course, implicit in these 

criteria is that α  e   must also fall within the fl ight range of angle of attack for the 

airplane. 

 We can now explain why a conventional airplane has a horizontal tail (the 

horizontal stabilizer shown in    Fig. 7.3 ). First consider an ordinary wing (by it-

self) with a conventional airfoil, say an NACA 2412 section. Note from the air-

foil data in App. D that the moment coeffi cient about the aerodynamic center is 

negative. This is characteristic of all airfoils with positive camber. Now assume 

that the wing is at zero lift. In this case the only moment on the wing is a pure 

couple, as explained in    Sec. 7.3 ; hence, at zero lift, the moment about one point 

is equal to the moment about any other point. In particular,

  C CM MC, ,M ( )cg for zero lift (ff ing ly   (7.2)        

However, examination of    Fig. 7.13  shows that  C   M ,0  is, by defi nition, the moment 

coeffi cient about the center of gravity at zero lift (when α  a   = 0). Hence, from 

   Eq. (7.2) ,

  C CM MC, ,M ac wing only
 
 (7.3)        

   Equation (7.3)  demonstrates that for a wing with positive camber ( C   M ,ac  nega-

tive),  C   M ,0  is also negative. Such a wing by itself is  unbalanced . To rectify this 

situation, a horizontal tail must be added to the airplane, as shown in    Fig. 7.17  a  

and    7.17  b . If the tail is mounted behind the wing, as shown in    Fig. 7.17  a , and if 

it is inclined downward to produce a negative tail lift as shown, then a clockwise 

moment about the center of gravity will be created. If this clockwise moment 

is strong enough, it will overcome the negative  C   M ,ac , and  C   M ,0  for the wing–tail 

combination will become positive. The airplane will then be balanced. 

     The arrangement shown in    Fig. 7.17  a  is characteristic of most conventional 

airplanes. However, the tail can also be placed ahead of the wing, as shown in

   Fig. 7.17  b ; this is called a  canard confi guration . For a canard, the tail is inclined up-

ward to produce a positive lift, hence creating a clockwise moment about the center 

of gravity. If this moment is strong enough, then  C   M ,0  for the wing–tail combination 

will become positive, and again the airplane will be balanced. Unfortunately, the 

forward-located tail of a canard interferes with the smooth aerodynamic fl ow over 

the wing. For this and other reasons, canard  confi gurations have not been popular. 
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A notable exception were the  Wright Flyers,  which were canards. In fact, it was 

not until 1910 that the Wright brothers went to a conventional arrangement. Using 

the word  rudder  to mean elevator, Orville wrote to Wilbur in 1909 that “the dif-

fi culty in handling our machine is due to the rudder being in front, which makes 

it hard to keep on a level course. . . . I do not think it is necessary to lengthen the 

machine, but to simply put the rudder behind instead of before.” Originally the 

Wrights thought the forward-located elevator would help protect them from 

the  type of fatal crash encountered by Lilienthal. This rationale persisted until 

the design of their model B in 1910. Finally, a modern example of a canard is the 

North American XB-70, an experimental supersonic bomber developed for the 

Air Force in the 1960s. The canard surfaces ahead of the wing are clearly evident 

in the photograph shown in    Fig. 7.18 . In recent years canards have come back on 

the aeronautical scene for some high-performance military airplanes and special 

general aviation designs. The X-29 shown in Fig. 5.64 is a canard. 

     In retrospect, using essentially qualitative arguments based on physical 

reasoning and without resort to complicated mathematical formulas, we have 

developed some fundamental results for longitudinal static stability. Indeed, it 

is somewhat amazing how far our discussion has progressed on such a qualita-

tive basis. However, we now turn to some quantitative questions. For a given 

airplane, how far should the wing and tail be separated to obtain stability? How 

large should the tail be made? How do we design for a desired trim angle α  e  ? 

These and other such questions are addressed in the remainder of this chapter.   

  Figure 7.17  ( a ) Conventional wing–tail combination. The tail is set at such an angle as to 

produce negative lift, thus providing a positive  C   M ,0 . ( b ) Canard wing–tail combination. The 

tail is set at such an angle as to produce positive lift, thus providing a positive  C   M ,0  .
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   7.6   QUANTITATIVE DISCUSSION: CONTRIBUTION 
OF THE WING TO  M  cg  

  The calculation of moments about the center of gravity of the airplane  M  cg  is crit-

ical to a study of longitudinal static stability. The previous sections have already 

underscored this fact. Therefore, we now consider individually the contributions 

of the wing, fuselage, and tail to moments about the center of gravity of the air-

plane, in the end combining them to obtain the total  M  cg . 

 Consider the forces and moments on the wing only, as shown in    Fig. 7.19 . 

Here the zero-lift line is drawn horizontally for convenience; hence the rela-

tive wind is inclined at the angle α   w   with respect to the zero-lift line, where 

α   w   is the absolute angle of attack of the wing. Let  c  denote the mean zero-lift 

chord of the wing (the chord measured along the zero-lift line). The difference 

between the zero-lift chord and the geometric chord (as defi ned in Ch. 5) is usu-

ally insignifi cant and will be ignored here. The center of gravity for the airplane 

is located a distance  hc  behind the leading edge and  zc  above the zero-lift line, 

as shown. Hence  h  and  z  are coordinates of the center of gravity in fractions of 

chord length. The aerodynamic center is a distance  h c
wac

    from the leading edge. 

The moment of the wing about the aerodynamic center of the wing is denoted by 

Figure 7.18  The North American XB-70. Note the canard surfaces immediately 

behind the cockpit. 
 (Source:  NASA Dryden Flight Research Centre .) 
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 M
wac    , and the wing lift and drag are  L   w   and  D   w  , respectively, as shown. As usual, 

 L   w   and  D   w   are perpendicular and parallel, respectively, to the relative wind. 

     We wish to take moments about the center of gravity with pitch-up moments 

positive as usual. Clearly, from    Fig. 7.19 ,  L   w  ,  D   w  , and  M
wac     all contribute to mo-

ments about the center of gravity. For convenience, split  L   w   and  D   w   into compo-

nents perpendicular and parallel to the chord. Then, referring to    Fig. 7.19 , we fi nd 

that the moments about the center of gravity of the airplane due to the wing are

  

M M L h h h h
w w w ww w wcgMM ac ac= +Mac h(w ) w) D i ( )hc h c

wac−αhc h cach cac(w ) sDw in
i+ L zsin D z cw wsin w wαcosz c Dw cos

  (7.4)        

[Study    Eq. (7.4)  and    Fig. 7.19  carefully, and make certain that you understand 

each term before progressing further.] For the normal fl ight range of a conven-

tional airplane, α   w   is small; hence the approximation is made that cos α   w   ≈ 1 and 

sin α  w   ≈ α  w   (where α  w   is in radians). Then    Eq. (7.4)  becomes

  M M h h z c
w w ww w w ww w wcgMM ac= +Mac ( )L Dw w wDwD

w
( )h hh ( )L Dw w wD−L wccww )hh hachh wLLwL   (7.5)        

Dividing    Eq. (7.5)  by  q  ∞  Sc  and recalling that  C   M   =  M /( q  ∞  Sc ), we obtain the 

moment coeffi cient about the center of gravity as

  C C h h C CM MC L w w L w w Dw wM w, w M , ,w D , ,w w D( )C CL w D w ww D ( )h h (g ac +CMC ac )CD w (h C+ ( LC ww )hh h)w (hh CC+ ( ww z)   (7.6)        

For most airplanes the center of gravity is located close to the zero-lift line; 

hence  z  is usually small ( z  ≈ 0) and will be neglected. Furthermore, α   w   (in radi-

ans) is usually much less than unity, and  C   D,w   is usually less than  C   L,w  ; hence the 

product  C   D,w  α  w   is small in comparison to  C   L,w  . With these assumptions,    Eq. (7.6)  

simplifi es to

C C C h hM MC L ww wM w, w MM , ( )h h
wg ac ac+CMC ac  (7.7)
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Figure 7.19  Airfoil nomenclature and geometry. 
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Referring to    Fig. 7.12  b , we fi nd  C   L,w   = ( dC   L,w   / d α)α   w   = a  w  α   w  , where  a   w   is the  lift 
slope of the wing . Thus,    Eq. (7.7)  can be written as

  C C a h hM MC w ww wM ww MM,MM ( )h h
wg ac ac+CMC ac   (7.8)        

   Equations (7.7)  and    (7.8)  give the contribution of the wing to moments about the 

center of gravity of the airplane, subject of course to the previously discussed 

assumptions. Closely examine    Eqs. (7.7)  and    (7.8)  along with    Fig. 7.19 . On a 

physical basis, they state that the wing’s contribution to  M  cg  is essentially due to 

two factors: the moment about the aerodynamic center  M
wac     and the lift acting 

through the moment arm  ( ) .h h c
wac     

 These results are slightly modifi ed if a fuselage is added to the wing. Con-

sider a cigar-shaped body at an angle of attack to an airstream. This fuselage-

type body experiences a moment about its aerodynamic center plus some lift and 

drag due to the airfl ow around it. Now consider the fuselage and wing joined 

together: a  wing–body combination . The airfl ow about this wing–body combi-

nation is different from that over the wing and body separately; aerodynamic 

interference occurs where the fl ow over the wing affects the fuselage fl ow, and 

vice versa. Due to this interference, the moment due to the wing–body combina-

tion is  not  simply the sum of the separate wing and fuselage moments. Similarly, 

the lift and drag of the wing–body combination are affected by aerodynamic 

interference. Such interference effects are extremely diffi cult to predict theoreti-

cally. Consequently the lift, drag, and moments of a wing–body combination are 

usually obtained from wind tunnel measurements. Let  CLwb
    and  CM ,acwb

    be the lift 

coeffi cient and moment coeffi cient about the aerodynamic center, respectively, 

for the wing–body combination. Analogous to    Eqs. (7.7)  and    (7.8)  for the wing 

only, the contribution of the wing–body combination to Mcg is

 

C C C h h
C C a

M MC L

M MC
,MM,MM

, ,M MM M

( )h hg ac ac

g ac w

wb wb wb wb

wb wb

+CMC ac b

+CMC ac b b wbb b acwb
α ( )acwb

h h
  

(7.10)

where a wb  and α wb  are the slope of the lift curve and absolute angle of attack, 

respectively, for the wing–body combination. In general, adding a fuselage to a 

wing shifts the aerodynamic center forward, increases the lift curve slope, and 

contributes a negative increment to the moment about the aerodynamic center. 

We emphasize again that the aerodynamic coeffi cients in    Eqs. (7.9)  and    (7.10)  

are almost always obtained from wind tunnel data. 

(7.9)

  EXAMPLE 7.2  

  For a given wing–body combination, the aerodynamic center lies 0.05 chord length ahead 

of the center of gravity. The moment coeffi cient about the aerodynamic center is −0.016. 

If the lift coeffi cient is 0.45, calculate the moment coeffi cient about the center of gravity. 

■  Solution 
 From    Eq. (7.9) ,

 
C C C h hM MC L, ,M MM M ( )h hg ac acwb wb wb wb

+CMC ac b        
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where

  

h h
C

C
L

M

=h
=
= −

ac

ac

wb

wb

wb

0 05
0 45

0 016.,

Thus CM,MM . ( . ) .cgwb
= − ).+0 016 0 4.0 4. 5(5 0(( 05 0065

EXAMPLE 7.3

  A wing–body model is tested in a subsonic wind tunnel. The lift is found to be zero at a 

geometric angle of attack α   =   −1.5°. At α   =   5° the lift coeffi cient is measured as 0.52. 

Also, at α   =   1.0° and 7.88°, the moment coeffi cients about the center of gravity are mea-

sured as −0.01 and 0.05, respectively. The center of gravity is located at 0.35 c . Calculate 

the location of the aerodynamic center and the value of  CM, aMM cwb   . 

■  Solution 
 First calculate the lift slope:

 

a
dC

d
L

wb p d g≡ =L = =
α

0 52 0−
5 1− 5

0 52

6 5
0 08

( .1− )
eper degre08 eee

       

Write    Eq. (7.10) ,
C C a h hM MC, ,M MM M ( )h hg ac wb wb acwb wb wb

+CMC ac b
α

evaluated at α   =  1.0° [remember that α is the geometric angle of attack, whereas in 

   Eq. (7.10) , α wb  is the absolute angle of attack]:

− −0 01 = 501 ( ) ( ),C h0+ 08 5.0+ ( .1 1+ ) ( hM, ac acwb wb        

Then evaluate it at α   =  7.88°:

 
0 05 0 505 ( ) ( ),C h0 08 7 88 1 5.0 ( .7 . )5)5 (1. )5 ( hM ac acwb wb        

The preceding two equations have two unknowns,  CM, aMM cwb
    and  h hacwb

   . They can be 

solved simultaneously. 

 Subtracting the second equation from the fi rst, we get

 

− −

= −
−

=

0 06 0= 0 55
0 06

0 55
0 11

06 0 0 ( )h h−

h h−

ac

ac

wb

wb

       

The value of  h  is given:  h  = 0.35. Thus

 
hacwb

= =0 35 0− 11 0 24.35 0
       

In turn,

  

−

= −

0 01 0= + 08 5 0

0 032

.0 0+1 ( .1 1+ )( . )11
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   7.7  CONTRIBUTION OF THE TAIL TO  M  cg  
  An analysis of moments due to an isolated tail taken independently of the airplane 

would be the same as that just given for the isolated wing. However, in real life the 

tail is obviously connected to the airplane itself; it is not isolated. Moreover, the 

tail is generally mounted behind the wing; hence it feels the wake of the airfl ow 

over the wing. As a result, two interference effects infl uence the tail aerodynamics:  

  1.   The airfl ow at the tail is defl ected downward by the  downwash  due to the 

fi nite wing (see Secs. 5.13 and 5.14); that is, the relative wind seen by the 

tail is not in the same direction as the relative wind  V  ∞  seen by the wing.  

  2.   Because of the retarding force of skin friction and pressure drag over the 

wing, the airfl ow reaching the tail has been slowed. Therefore the velocity 

of the relative wind seen by the tail is less than  V  ∞ . In turn, the dynamic 

pressure seen by the tail is less than  q  ∞ .   

 These effects are illustrated in    Fig. 7.20 . Here  V  ∞  is the relative wind as 

seen by the wing, and  V ′ is the relative wind at the tail, inclined below  V  ∞  by the 

downwash angle ε. The tail lift  L   t   and drag  D   t   are (by defi nition) perpendicular 

and parallel, respectively, to  V ′. In contrast, the lift and drag of the complete air-

plane are always (by defi nition) perpendicular and parallel, respectively, to  V  ∞ . 

Therefore, considering components of  L   t   and  D   t   perpendicular to  V  ∞ , we demon-

strate in    Fig. 7.20  that the tail contribution to the total airplane lift is  L   t   cos ε −  D   t   

sin ε. In many cases ε is very small, and thus  L   t   cos ε −  D   t   sin ε ≈  L   t  . Hence, for 

all practical purposes it is suffi cient to add the tail lift directly to the wing–body 

lift to obtain the lift of the complete airplane. 

     Consider the tail in relation to the wing–body zero-lift line, as illustrated in 

   Fig. 7.21 . It is useful to pause and study this fi gure. The wing–body combination 

is at an absolute angle of attack α  wb . The tail is twisted downward to provide a 

positive  C   M ,0 , as discussed at the end of    Sec. 7.5 . Thus, the zero-lift line of the tail 

is intentionally inclined to the zero-lift line of the wing–body combination at the 

V�

V'

�

�

�

�t

Dt

Lt

  Figure 7.20  Flow and force diagram in the vicinity of the tail. 
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 tail-setting angle   i   t  . (The airfoil section of the tail is generally symmetric, for which 

the tail zero-lift line and the tail chord line are the same.) The absolute angle of at-

tack of the tail α   t   is measured between the local relative wind  V ′ and the tail zero-

lift line. The tail has an aerodynamic center, about which there is a moment  M
tac     

and through which  L   t   and  D   t   act perpendicular and parallel, respectively, to  V ′. As 

before,  V ′ is inclined below  V  ∞  by the downwash angle ε ; hence  L   t   makes an angle 

α wb  − ε  with the vertical. The tail aerodynamic center is located a distance  l   t   behind 

and  z   t   below the center of gravity of the airplane. Make certain to carefully study 

the geometry shown in    Fig. 7.21 ; it is fundamental to the derivation that follows. 

     Split  L   t   and  D   t   into their vertical components  L   t   cos(α  wb  − ε) and  D   t   sin (α  wb  − 

ε) and their horizontal components  L   t   sin (α wb  − ε) and  D   t   cos (α wb  − ε). By in-

spection of    Fig. 7.21 , the sum of moments about the center of gravity due to  L   t  , 

 D   t  , and  M
tac     of the tail is

  

M l D
z L

t t t t

t tL
cg wb wb

+
[ cLtL os( )wb sin( )]

sin(
wb α εwb − )

αα εααwbαα wb acε +) cε − os( )α εwbαα − ε Mt t t   (7.11)        

Here  M
tcg     denotes the contribution to moments about the airplane’s center of 

gravity due to the horizontal tail. 

 In    Eq. (7.11)  the fi rst term on the right side,  l   t    L   t   cos(α wb  − ε), is by far the 

largest in magnitude. In fact, for conventional airplanes, the following simplifi -

cations are reasonable:  

  1.    z   t   <<  l   t  .  
  2.    D   t   <<  L   t  .  

  3.   The angle α wb  − ε is small; hence sin(α wb  − ε) ≈ 0 and cos(α wb  − ε) ≈ 1.  

  4.    M
tac     is small in magnitude.   

 With the preceding approximations, which are based on experience,    Eq. (7.11)  is 

dramatically simplifi ed to

  M l L
t t tLcg   (7.12)        

Defi ne the  tail lift coeffi cient,  based on free-stream dynamic pressure  q V∞VV1
2

2ρ     

and the tail planform area  S   t  , as

  

C
L

q S
L t

t

t
, =

  

(7.13)
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Figure 7.21  Geometry of wing–tail combination. 
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Combining    Eqs. (7.12)  and    (7.13) , we obtain

M l q S C
t t tq S L tcg ,   (7.14)

Dividing    Eq. (7.14)  by  q  ∞  Sc , where  c  is the wing chord and  S  is the wing plan-

form area, gives

M

q Sc
C

l S

cS
Ct

tM
t tS

L t
cg

cg≡ =CM − ,
St L,MM cg (7.15)

Examining the right side of    Eq. (7.15) , we note that  l   t   S   t   is a  volume  characteristic of 

the size and location of the tail and that  cS  is a  volume  characteristic of the size of 

the wing. The ratio of these two volumes is called the  tail volume ratio   V   H  , where

  
V

l S

cS
HVV t tS≡

  
(7.16)        

Thus    Eq. (7.15)  becomes

  C V CM HVV L tt ,H L,MM tg   (7.17)        

The simple relation in    Eq. (7.17)  gives the total contribution of the tail to moments 

about the airplane’s center of gravity. With the preceding simplifi cations and by 

referring to    Fig. 7.21 ,    Eqs. (7.12)  and    (7.17)  say that the moment is equal to tail 

lift operating through the moment arm  l   t  . 
 It will be useful to couch    Eq. (7.17)  in terms of angle of attack, as was done 

in    Eq. (7.10)  for the wing–body combination. Keep in mind that the stability cri-

terion in    Fig. 7.13  involves ∂ C   M ,cg /∂α  a  ; hence equations in terms of α  a   are directly 

useful. Specifi cally, referring to the geometry of    Fig. 7.21 , we see that the angle 

of attack of the tail is

  α α εt tα αα i−α −wb   (7.18)        

Let  a   t   denote the lift slope of the tail. Thus, from    Eq. (7.18) ,

  C aL t t t t t, ( )itia iα at t= )w   (7.19)        

The downwash angle ε is diffi cult to predict theoretically and is usually obtained 

from experiment. It can be written as

  ε ε ε
α

α= +ε ∂
∂0 wα+
∂ b   (7.20)        

where ε 0  is the downwash angle when the wing–body combination is at zero lift. 

Both ε 0  and ∂ε /∂α are usually obtained from wind tunnel data. Thus, combining 

   Eqs. (7.19)  and    (7.20)  yields

  

C a aL t t ta t, −a
∂
∂

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− aaα ε
αwb 1 0( )it +it ε0

  
(7.21)        

Substituting    Eq. (7.21)  into    (7.17) , we obtain

  

C a V a VM ta H tV aV H tVV
t,MM ( )itig w

∂
∂

⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞

a Vta VV
ε
α

1 0

  

(7.22)
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   Equation (7.22) , though lengthier than    Eq. (7.17) , contains the explicit depen-

dence on angle of attack and will be useful for our subsequent discussions.   

   7.8   TOTAL PITCHING MOMENT 
ABOUT THE CENTER OF GRAVITY 

  Consider the airplane as a whole. The total  M  cg  is due to the contribution of the 

wing–body combination plus that of the tail:

CM M t, cMM g cMC g cCMg g+CMC cMC gcMM MMg  (7.23)

Here  C   M ,cg  is the total moment coeffi cient about the center of gravity for the com-

plete airplane. Substituting    Eqs. (7.9)  and    (7.17)  into    (7.23) , we have

C C C h h V CM MC L HVV L t, ,M MM M ,h hh hg ac acwb wb wb
+CMC ac b

h (7.24)

In terms of angle of attack, an alternative expression can be obtained by substi-

tuting    Eqs. (7.10)  and    (7.22)  into    Eq. (7.23) :

C C a h h V
a

a
M MC HVV t

,MM,MM g ac wb wb ac
wb

wb wb
+CMC ac b

− h − ∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

α ε
α

1
⎡⎡

⎣
⎢
⎡⎡⎡⎡

⎣⎣

⎤⎞⎞⎞
⎦⎠⎠⎠⎠
⎥
⎤⎤

⎦⎦
+ V aH tV aV t( )+it 0

  

(7.25)

 The angle of attack requires further clarifi cation. Referring again to    Fig. 7.13 , 

we fi nd that the moment coeffi cient curve is usually obtained from wind tunnel 

data, preferably for a model of the complete airplane. Hence, α  a   in    Fig. 7.13  

should be interpreted as the absolute angle of attack referenced to the zero-lift 

line of the  complete airplane,  which is not necessarily the same as the zero-lift 

line for the wing–body combination. This comparison is sketched in    Fig. 7.22 . 

However, for many conventional aircraft, the difference is small. Therefore, in 

the remainder of this chapter we assume the two zero-lift lines in    Fig. 7.22  to be 

Figure 7.22  Zero-lift line of the wing–body combination compared with that of the complete airplane. 



7.8  Total Pitching Moment About the Center of Gravity 621

the same. Thus, α  wb  becomes the angle of attack of the complete airplane α   a  . 

Consistent with this assumption, the total lift of the airplane is due to the wing–

body combination with the tail lift neglected. Hence,  C CL LC
wb

    and the lift slope 

 a  wb  =  a , where  C   L   and  a  are for the complete airplane. With these interpretations, 

   Eq. (7.25)  can be rewritten as

  
C C a h h V

a
aM MC a Hh h VV t

,MM,MM g acwb wb
+CMC ac b

− h − ∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡
⎣⎣⎣

⎤⎞⎞⎞
⎦⎠⎠⎠⎠

α ε
α

1 ⎥⎥
⎤⎤⎤⎤
⎦⎦⎦⎦

+ V aH tV aV t( )+it 0

  

(7.26)        

   Equation (7.26)  is the same as    Eq. (7.25)  except that the subscript  wb  on some 

terms has been dropped in deference to properties for the whole  airplane. 

 Consider the wing–body model in    Example 7.3 . The area and chord of the wing are 

0.1 m 2  and 0.1 m, respectively. Now assume that a horizontal tail is added to this model. 

The distance from the airplane’s center of gravity to the tail’s aerodynamic center is 

0.17 m; the tail area is 0.02 m 2 ; the tail-setting angle is 2.7°; the tail lift slope is 0.1 per 

degree; and from experimental measurement, ε 0  =  0 and ∂ε/∂α   =  0.35. If α   =  7.88°, cal-

culate  C   M ,cg  for the airplane model. 

■  Solution 
  From    Eq. (7.26) ,

 

C C a h h V
a

a
M MC a Hh h VV t

,M,MM g acwb wb
+CMC ac b

− h − ∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡
⎣⎣⎣

⎤⎞⎞⎞
⎦⎠⎠⎠⎠

α ε
α

1 ⎥⎥
⎤⎤⎤⎤
⎦⎦⎦⎦

+ V aH tV aV t( )+it 0

       

where
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Thus

 

CM, cg = − + ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
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⎞⎞
⎠⎠
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  EXAMPLE 7.4  
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                7.9   EQUATIONS FOR LONGITUDINAL 
STATIC STABILITY 

  The criteria necessary for longitudinal balance and static stability were devel-

oped in    Sec. 7.5 : (1)  C   M ,0  must be positive and (2) ∂ C   M ,cg /∂α  a   must be negative, 

both conditions with the implicit assumption that α  e   falls within the practical 

fl ight range of angle of attack; that is, the moment coeffi cient curve must be 

similar to that sketched in    Fig. 7.13 . In turn, the ensuing sections developed a 

quantitative formalism for static stability culminating in    Eq. (7.26)  for  C   M ,cg . The 

purpose of this section is to combine the preceding results to obtain formulas 

for the direct calculation of  C   M ,0  and ∂  C   M ,cg /∂α  a  . We will then be able to make a 

quantitative assessment of the longitudinal static stability of a given airplane, as 

well as point out some basic philosophy of airplane design. 

 Recall that, by defi nition,  C   M ,0  is the value of  C   M ,cg  when α  a   = 0—that is, 

when the lift is zero. Substituting α  a   = 0 into    Eq. (7.26) , we directly obtain

  C C V aM MC H tVV a t, ,MM ,MM( )C ( )it0L,MM )MC ,MM 0=)C 0L)CMC V aHVV a itg acwb   (7.27)         

 Examine    Eq. (7.27) . We know that  C   M ,0  must be positive to balance the air-

plane. However, the previous sections have pointed out that  CM, aMM cwb
    is negative 

for conventional airplanes. Therefore,  V   H   a   t  ( i   t   + ε 0 ) must be positive and large 

enough to more than counterbalance the negative  C   M ,ac . Both  V   H   and  a   t   are posi-

tive quantities, and ε 0  is usually so small that it exerts only a minor effect. Thus, 

 i   t    must be a positive quantity . This verifi es our previous physical arguments that 

the tail must be set at an angle relative to the wing in the manner shown in 

   Figs.  7.17  a  and    7.21 . This allows the tail to generate enough negative lift to 

produce a positive  C   M ,0 . 

 Consider now the slope of the moment coeffi cient curve. Differentiating 

   Eq. (7.26)  with respect to α  a  , we obtain

  

∂
∂

= − − ∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡
⎣⎣⎣

⎤⎞⎞⎞
⎦⎠⎠⎠⎠⎥
⎤⎤
⎦⎦

C
ha

⎡
⎣⎢
⎡⎡
⎣⎣

h V− a

a
M

a
HVV t, cMM g

acwbα
1

ε
α

  

(7.28)

        

This equation clearly shows the powerful infl uence of the location  h  of the cen-

ter of gravity and the tail volume ratio  V   H   in determining longitudinal static 

stability. 

    Equations (7.27)  and    (7.28)  allow us to check the static stability of a given 

airplane, assuming we have some wind tunnel data for  a ,  a   t  ,  CM ,acwb
   , ε 0 , and 

∂ε/∂α. They also establish a certain philosophy in the design of an airplane. 

For example, consider an airplane where the location  h  of the center of gravity 

is essentially dictated by payload or other mission requirements. In that case 

the desired amount of static stability can be obtained simply by designing  V   H   

large enough via    Eq. (7.28) . Once  V   H   is fi xed in this manner, the desired  C   M ,0  

(or the desired α  e  ) can be obtained by designing  i   t   appropriately via    Eq. (7.27) . 

Thus, the values of  C   M ,0  and ∂ C   M ,cg /∂α  a   basically dictate the design values of 

 i   t   and  V   H  , respectively (for a fi xed center-of-gravity location). 
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  Consider the wing–body–tail wind tunnel model of    Example 7.4 . Does this model have 

longitudinal static stability and balance? 

■  Solution 
 From    Eq. (7.28) ,

∂
∂

= − − ∂
∂

⎛
⎝
⎜
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⎝⎝

⎞
⎠
⎟
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⎦⎦

C
ha

⎡
⎣⎢
⎡⎡
⎣⎣
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a
HVV t, cg

acwbα
ε
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where, from    Examples 7.3  and    7.4 ,

a
h h
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per degree
ε
α

0 300 5

Thus

  

∂
∂

= −⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= −
CM

a

,MM . ( . )cg

α
0 0. 8 0

⎡
⎣⎢
⎡⎡
⎣⎣⎣⎣⎣

11 0 3. 4
0 1.

0 0. 8
− 35 0.0133..

The slope of the moment coeffi cient curve is negative; hence the airplane model is stati-

cally stable. 

 However, is the model longitudinally balanced? To answer this, we must fi nd  C   M ,0 , 

which in combination with the preceding result for ∂ C   M ,cg /∂α will yield the equilibrium 

angle of attack α  e  . From    Eq. (7.27) ,

C C V aM, , 0V aH tV aV tMC ,M +CCMC
wb

( )i 0it +

where from    Examples 7.3  and    7.4 ,

C
i

M

t

, .
.

acwb
=
= °

− 0 032
2 7.

Thus  CM, . ( . )( . ) .0 0 032 0 3. 4( 1 2)( 0) 06= − + . .0 3. 4( 1 2)( )

From    Fig. 7.13 , the equilibrium angle of attack is obtained from

 0 0 06 0 0133−0 06. .06 0 αe        

Thus  αe = °4 5

Clearly this angle of attack falls within the reasonable fl ight range. So the airplane is 

longitudinally balanced as well as statically stable.     

  EXAMPLE 7.5  
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   7.10  NEUTRAL POINT 
  Consider the situation where the location  h  of the center of gravity is allowed 

to move with everything else remaining fi xed. In fact,    Eq. (7.28)  indicates that 

static stability is a strong function of  h . Indeed, the value of ∂ C   M ,cg /∂α  a   can always 

be made negative by properly locating the center of gravity. In the same vein, 

there is one specifi c location of the center of gravity such that ∂ C   M ,cg /∂α  a   = 0. 

The value of  h  when this condition holds is defi ned as the  neutral point,  denoted 

by  h   n  . When  h  =  h   n  , the slope of the moment coeffi cient curve is zero, as illus-

trated in    Fig. 7.23 . 

     The location of the neutral point is readily obtained from    Eq. (7.28)  by set-

ting  h  =  h   n   and ∂ C   M ,cg /∂α  a   = 0, as follows:

  

0 1−1
∂
∂

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

⎡
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⎦⎠⎠⎠⎠⎥
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⎦⎦

h
⎡

h
a

a
Hn VV t

acwb

ε
α   

(7.29)        

Solving    Eq. (7.29)  for  h   n  , we have

  

h h V
a

a
n Hh VV t+hh − ∂

∂
⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠acwb

1
ε
α

  

(7.30)

         

 Examine    Eq. (7.30) . The quantities on the right side are, for all practical pur-

poses, established by the design confi guration of the airplane. Thus, for a  given  

airplane design, the neutral point is a  fi xed quantity— that is, a point that is frozen 

somewhere on the airplane. It is quite independent of the actual location  h  of the 

center of gravity. 

  Figure 7.23  Effect of the location of the center of gravity, 

relative to the neutral point, on static stability. 
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 The concept of the neutral point is introduced as an alternative stability cri-

terion. For example, inspection of    Eqs. (7.28)  and    (7.30)  shows that ∂ C   M ,cg /∂α  a
is negative, zero, or positive depending on whether  h  is less than, equal to, or 

greater than  h   n  . These situations are sketched in    Fig. 7.23 . Remember that  h  is 

measured from the leading edge of the wing, as shown in    Fig. 7.19 . Hence,  h  <  h   n
means that the center of gravity is located  forward  of the neutral point. Thus, an 

alternative stability criterion is as follows: 

  For longitudinal static stability, the position of the center of gravity must always be 

forward of the neutral point.  

 Recall that the defi nition of the aerodynamic center for a wing is that point 

about which moments are independent of the angle of attack. This concept can 

now be extrapolated to the whole airplane by considering again    Fig. 7.23 . Clearly, 

when  h  =  h   n  ,  C   M ,cg  is independent of the angle of attack. Therefore, the neutral 

point might be considered the aerodynamic center of the complete airplane. 

 Again examining    Eq. (7.30) , we see that the tail strongly infl uences the loca-

tion of the neutral point.  By proper selection of the tail parameters, principally
V   H   ,   h   n    can be located at will by the designer.  

   7.11  STATIC MARGIN 
  A corollary to the preceding discussion can be obtained as follows. Solve 

   Eq. (7.30)  for  hacwb
   :

  

h h V
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a
n HVV t

acwb
−h − ∂

∂
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1
ε
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(7.31)

  EXAMPLE 7.6  

  For the wind tunnel model of    Examples 7.3  to    7.5 , calculate the neutral point location. 

■  Solution 
  From    Eq. (7.30) ,

 

h h V
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where  hacwb
= 0 24     (from    Example 7.3 ). Thus

 
hn = ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

0 24 0+ 34
0 1

0 08
35.24 0+ ( .1 0− )

       

hn = 0 516.

Note from    Example 7.3  that  h  = 0.35. Compare this center of gravity location with the 

neutral point location of 0.516. The center of gravity is comfortably  forward  of the neutral 

point; this again confi rms the results of    Example 7.5  that the airplane is statically stable.     
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Note that in    Eqs. (7.29)  to    (7.31) , the value of  V   H   is not precisely the same num-

ber as in    Eq. (7.28) . Indeed, in    Eq. (7.28)   V   H   is based on the moment arm  l   t   
measured from the center of gravity location, as shown in    Fig. 7.21 . In contrast, 

in    Eq. (7.29) , the center of gravity location has been moved to the neutral point, 

and  V   H   is therefore based on the moment arm measured from the neutral point 

location. However, the difference is usually small, and this effect will be ignored 

here. Therefore, substituting    Eq. (7.31)  into    Eq. (7.28)  and canceling the terms 

involving  V   H  , we obtain

  

∂
∂

=
C

a h hM

a
n

, cg

α
( )−h hn

  

(7.32)        

The distance  h   n   − h is defi ned as the  static margin  and is illustrated in    Fig. 7.24 . 

Thus, from    Eq. (7.32) ,

  

∂
∂

= − ×
C

a h h a= −M

a
n

, ( )−h hn
cg static margin

α   
(7.33)         

        Equation (7.33)  shows that the static margin is a direct measure of longi-

tudinal static stability. For static stability, the static margin must be positive. 

Moreover, the larger the static margin, the more stable the airplane. 

  Figure 7.24  Illustration of the static margin. 

EXAMPLE 7.7

 For the wind tunnel model of the previous examples, calculate the static margin. 

■  Solution 
 From    Example 7.6 ,  h   n   = 0.516 and h = 0.35. Thus, by defi nition,

 
Static margin ≡ = −h h−n 0 516 0 35 0= 166.516 0 .

       

For a check on the consistency of our calculations, consider    Eq. (7.33) .

∂
∂

= − × = − = −
C

aM, . ( . ) .cg static margin
α0

0. 0( 166 0 0133333 per degree

This is the same value calculated in    Example 7.5 ; our calculations are indeed consistent.   
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   DESIGN BOX 

 Let us boil down all the previous discussion to some 

plain speaking about the location of the lift force act-

ing on the airplane relative to the center of gravity 

when the airplane is statically stable and when it is 

trimmed. Such plain speaking gives the airplane de-

signer a clearer concept of how to design for a speci-

fi ed amount of stability (or instability). 

 A diagram that is frequently shown for a  stati-
cally stable  airplane is sketched in    Fig. 7.25  a . Here 

we see the lift acting through a point situated  behind  

the center of gravity, and we say this is necessary for 

static stability. But what does this really mean? What 

is the real signifi cance of    Fig. 7.25  a ? Let us look at 

it more closely. 

  First recall that the lift of the airplane is due to the 

component of the net integrated pressure distribution 

exerted over the external surface of the  airplane—the 

wings, fuselage, tail, and so on—acting perpendicular 

to the relative wind. This pressure distribution exerts 

a  distributed  load over the whole airplane. However, 

as is frequently done, we can conceptualize the me-

chanical effect of this distributed load by replacing it 

with a single concentrated force acting through an ar-

bitrary point plus the moments acting about the same 

point. This is what is shown in    Fig. 7.25  a ; we show 

the lift as a single concentrated force acting through 

a point, and we also indicate the moments about this 

point. The point that is chosen in    Fig. 7.25  a  is the 

aerodynamic center of the airplane (the neutral point). 

In    Fig. 7.25  a  the lift shown is the  total  lift of the air-

plane, including the contribution from the tail. 

 In    Sec. 7.10  we demonstrated that the aerody-

namic center (neutral point) must be located behind 

the center of gravity if the airplane is to have static 

stability. We now have a simple picture in    Fig. 7.25  b  

that easily proves this. In    Fig. 7.25  a  the airplane is 

trimmed; that is,  M  cg  = 0 Imagine that the airplane 

encounters a gust such that its angle of attack is mo-

mentarily increased. In turn, the lift will momentarily 

increase, as shown in    Fig. 7.25b . Here  L  1  is the lift be-

fore the gust, and  L  2  is the increased lift in response to 

the gust. Because the lift is acting through a point  be-
hind  the center of gravity, the increased lift results in 

a negative (pitch-down) moment about the center of 

gravity, as shown in    Fig. 7.25  b . Hence the initial ten-

dency after encountering the gust will be to pitch the 

nose down, reducing the angle of attack and restoring 

the airplane to its trimmed condition—the precise no-

tion of static stability. It is clear from    Fig. 7.25  that 

if the lift acting through the aerodynamic center is 

 behind  the center of gravity, the airplane will be stati-

cally stable. 

 We note in passing that for the airplane in 

   Fig. 7.25  a  to be trimmed,  M  cg  = 0. The lift is shown 

acting through the moment arm ( h   n   −  h ) c , creating 

a pitch-down moment about the center of  gravity 

equal to − [(h   n   −  h ) cL ]. In turn, the moment about 

Lairplane

L2

Mac

cg

ac

(hn − h)c

Trimmed
Mcg = 0

L1

(a)

(b)   

  Figure 7.25  A diagram of static stability with the 

lift acting behind the center of gravity. 

(continued on next page)
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(continued from page 627)

the  aerodynamic center of the airplane  M   ac   must be 

equal and opposite to have zero total moments about 

the center of gravity. That is,  M   ac   must be a positive 

(pitch-up) moment, as shown in    Fig. 7.25a . Usually 

much of this pitch-up moment is due to a download 

on the tail, similar to that illustrated in    Fig. 7.17  a . 

If the airplane confi guration were a canard, the posi-

tive  M   ac   would be due to an upload on the canard, 

similar to that illustrated in    Fig. 7.17  b . Indeed, this 

situation is one advantage in favor of the canard. In 

   Fig. 7.25  the lift shown is the  total  lift of the airplane, 

equal to the weight in steady, level fl ight. For a con-

ventional rear-tail confi guration, the download on the 

tail requires the wing to produce more lift in order 

for the total lift to equal the weight. In contrast, with 

the canard confi guration, the upload on the canard 

contributes to the overall lift, hence requiring less lift 

from the wing. In turn, this reduces the induced drag 

generated from the wing. 

    Figure 7.25  refl ects a commonly shown diagram 

illustrating longitudinal static stability, with the lift 

shown acting behind the center of gravity. An alter-

native picture illustrating static stability is shown 

in    Fig. 7.26 . This picture is not so commonly seen, 

but it is perhaps a “purer” explanation of the nature 

of longitudinal static stability. Recall that the lift of 

the airplane is due to the net integrated effect of the 

pressure distribution acting over the entire surface of 

the airplane. This pressure distribution has a  centroid  

(analogous to the centroid of an area or a solid, which 

you calculate from differential calculus). The cen-

troid of the pressure distribution is called the  center 
of pressure . The center of pressure, being a centroid, 

is the point about which the net moment due to the 

distributed pressure is zero. Hence, when we simu-

late the mechanical effect of the pressure distribution 

by a single concentrated force, it is most natural to 

locate this concentrated force at the center of pres-

sure. Indeed, the center of pressure can be thought of 

as “the point on the airplane through which the lift ef-

fectively acts.” To be more specifi c, we can simulate 

the mechanical effect of the distributed pressure loads 

on the airplane by fi rst locating the center of pressure 

and then drawing the lift through this point, with zero 

moments about this point. This is the diagram shown 

in    Fig. 7.26 . Moreover,  when the airplane is trimmed, 
the center of pressure is precisely located at the cen-
ter of gravity . This is the case shown in    Fig. 7.26  a : 

With the lift acting through the center of pressure and 

with the center of pressure at the center of gravity, 

there is no moment about the center of gravity, and 

by defi nition, the airplane is trimmed. This is what 

nature does. When the airplane is trimmed, the pres-

sure distribution over the airplane has been adjusted 

Lairplane

Lairplane

Trimmed
Mcg = 0

Lairplane

Center of pressure
at the cg

cp

cp

(a)

(b)

(c)   

  Figure 7.26  A diagram of static stability with the 

lift acting at the center of pressure. 
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so that the center of pressure is precisely at the center 

of gravity. 

  When the angle of attack of the airplane changes, 

the pressure distribution over the surface changes, and 

hence the center of pressure  shifts —its location is a 

function of the angle of attack. For longitudinal static 

stability, the shift in the center of pressure must be in 

the direction shown in    Fig. 7.26  b . For static stability, 

the shift in the center of pressure must be  rearward
to create a restoring moment about the center of grav-

ity, as shown in    Fig. 7.26  b . Similarly, consider the 

originally trimmed airplane encountering a gust that 

decreases  the angle of attack, as shown in    Fig. 7.26  c . 

For static stability, the shift in the center of pressure 

must be  forward  to create a restoring moment about 

the center of gravity, as shown in    Fig. 7.26  c . Hence, a 

statically stable airplane must be designed to have the 

shifts of the center of pressure in the directions shown 

in    Fig. 7.26  b  and  c . 

 In summary,    Figs. 7.25  and    7.26  are alternative but 

equally effective diagrams to illustrate the necessary 

condition for longitudinal static stability. These fi gures 

supplement, and are totally consistent with, the more 

detailed mathematical descriptions in    Secs. 7.6  to    7.11.  

   7.12   CONCEPT OF STATIC LONGITUDINAL 
CONTROL 

  A study of stability and control is double-barreled. The fi rst aspect—that of sta-

bility itself—has been the subject of the preceding sections. However, for the 

remainder of this chapter, the focus will turn to the second aspect: control. In 

regard to our road map in    Fig. 7.5 , we are moving to the right column. 

 Consider a statically stable airplane in trimmed (equilibrium) fl ight. Recall-

ing    Fig. 7.13 , we see that the airplane must therefore be fl ying at the trim angle 

of attack α  e  . In turn, this value of α  e   corresponds to a defi nite value of lift coef-

fi cient: the trim lift coeffi cient  CL trim
   . For steady, level fl ight, this corresponds to 

a defi nite velocity, which from Eq. (6.26) is

V
W

SCL
trVV im

trim

=
∞

2

ρ
  (7.34)

Now assume that the pilot wishes to fl y at a lower velocity  V  ∞  <  V  trim . At a 

lower velocity, the lift coeffi cient, and hence the angle of attack, must be 

increased to offset the decrease in dynamic pressure (remember from Ch. 6 

that the lift must always balance the weight for steady, level fl ight). However, 

from    Fig. 7.13 , if α is increased,  C   M ,cg  becomes negative (the moment about 

the center of gravity is no longer zero), and the airplane is no longer trimmed. 

Consequently, if nothing else is changed about the airplane, it cannot achieve 

steady, level, equilibrium fl ight at any other velocity than  V  trim  or at any other 

angle of attack than α  e  . 

 Obviously this is an intolerable situation—an airplane must be able to 

change its velocity at the will of the pilot and still remain balanced. The only 

way to accomplish this is to effectively change the moment coeffi cient curve for 

the airplane. Perhaps the pilot wishes to fl y at a  faster  velocity but still remain 
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in steady, level, balanced fl ight. The lift coeffi cient must decrease, so a new 

angle of attack α  n   must be obtained where α  n   < α  e  . At the same time, the mo-

ment coeffi cient curve must be changed so that  C   M ,cg  = 0 at α  n  .    Figures 7.27  and 

   7.28  demonstrate two methods of achieving this change. In    Fig. 7.27  the slope 

is made more negative so that  C   M ,cg  goes through zero at α  n  . From    Eq. (7.28)  or 

   (7.32) , the slope can be changed by shifting the center of gravity. In our example 

the center of gravity must be shifted forward. Otto Lilienthal (see Sec. 1.5) used 

this method in his gliding fl ights. Figure 1.15 shows Lilienthal hanging loosely 

below his glider; by simply swinging his hips he was able to shift the center of 

gravity and change the stability of the aircraft. This principle is carried over 

today to modern hang gliders for sport use. 

   However, for a conventional airplane, shifting the center of gravity is highly 

impractical. Therefore, another method for changing the moment curve is em-

ployed, as shown in    Fig. 7.28 . Here the slope remains the same, but  C   M ,0  is 

changed so that  C   M ,cg  = 0 at α  n  . This is accomplished by defl ecting the elevator 

on the horizontal tail. Hence, we have arrived at a major concept of static, longi-

tudinal control: The elevator defl ection can be used to control the trim angle of 

attack and thus to control the equilibrium velocity of the airplane. 

 Consider    Fig. 7.28 . We stated earlier, without proof, that a translation of the 

moment curve without a change in slope can be obtained simply by defl ecting the 

elevator. But  how  and  to what extent  does the elevator defl ection change  C   M ,cg ? 

To provide some answers, fi rst consider the horizontal tail with the elevator fi xed 

in the neutral position (that is, no elevator defl ection), as shown in    Fig. 7.29 . 

The absolute angle of attack of the tail is α  t  , as defi ned earlier. The variation 

of tail lift coeffi cient with α  t   is also sketched in    Fig. 7.29 ; note that it has the 

same general shape as the airfoil and wing lift curves discussed in Ch. 5. Now 

assume that the elevator is defl ected downward through angle δ  e  , as shown in 

   Fig. 7.30 . This is the same picture as a wing with a defl ected fl ap, as discussed 

in Sec. 5.17. Consequently, just as in the case of a defl ected fl ap, the defl ected 

  

  Figure 7.27  Change in trim angle of 

attack due to change in slope of moment 

coeffi cient curve. 

  

  Figure 7.28  Change in trim angle of attack 

due to change in  C   M ,0 . 



 7.12  Concept of Static Longitudinal Control 631

elevator causes the tail lift coeffi cient curve to shift to the left, as shown in    

Fig. 7.30 . By convention (and for convenience later), a downward elevator de-

fl ection is positive. Therefore, if the elevator is defl ected by an angle of, say, 5° 

and then held fi xed as the complete tail is pitched through a range of α  t  , the tail lift 

curve is translated to the left. If the elevator is then defl ected further, say to 10°, the 

lift curve is shifted even further to the left. This behavior is clearly illustrated in    

Fig. 7.30 . Note that for all the lift curves, the slope ∂C  L,t  /∂α  t   is the same. 

  

  Figure 7.29  Tail lift coeffi cient curve with no elevator 

defl ection. 

  

  Figure 7.30  Tail lift coeffi cient with elevator defl ection. 
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   With the preceding discussion in mind, now consider the tail at a fi xed angle 

of attack—say (α  t  ) 1 . If the elevator is defl ected from, say, 0 to 15°, then  C   L,t   will 

increase along the vertical dashed line in    Fig. 7.30 . This variation can be cross-

plotted as  C   L,t   versus δ  e  , as shown in    Fig. 7.31 . For most conventional airplanes 

the curve in    Fig. 7.31  is essentially linear, and its slope ∂ C   L,t   /∂δ  e   is called the 

 elevator control effectiveness . This quantity is a direct measure of the “strength” 

of the elevator as a control; because δ  e   has been defi ned as positive for downward 

defl ections, ∂ C   L,t   /∂δ  e   is  always positive .  

 Consequently, the tail lift coeffi cient is a function of  both  α  t   and δ  e   (hence 

the partial derivative notation is used, as discussed earlier). Keep in mind that 

physically, ∂ C   L,t   /∂α  t   is the rate of change of  C   L,t   with respect to α  t  , keeping δ  e
constant; similarly, ∂ C   L,t  /∂δ  e   is the rate of change of  C   L,t   with respect to δ  e  , keep-

ing α  t   constant. Hence, on a physical basis,

  C
C C

L t
L t

t
t

L t

e
e,

, ,t L= ∂
∂

+ ∂
∂α

α
δ

δ   (7.35)        

Recalling that the tail lift slope is  a   t   = ∂ C   L,t   / ∂α  t  , we see that    Eq. (7.35)  can be 

written as

  C a
C

L t t t
L t

e
e,

,+at t

∂
∂δ

δ   (7.36)        

Substituting    Eq. (7.36)  into    (7.24) , we have for the pitching moment about the 

center of gravity

  C C C h h V a
C

eM MC L HVV t t
L t

e
, ,M ,

,h hh hg ac wb acwb
+CMC ac b

h + ∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝
α

δ
δee

⎞⎞

⎠
⎟
⎞⎞⎞⎞

⎠⎠
  (7.37)        

   Equation (7.37)  explicitly gives the effect of elevator defl ection on moments 

about the center of gravity of the airplane.

Figure 7.31  Tail lift coeffi cient versus elevator defl ection at constant 

angle of attack; a cross-plot of    Fig. 7.30 . 
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  The rate of change of  C   M ,cg  due  only  to elevator defl ection is, by defi nition, 

∂ C   M ,cg /∂δ  e  . This partial derivative can be found by differentiating    Eq. (7.37)  with 

respect to δ  e  , keeping everything else constant:

∂
∂

= − ∂
∂

C
V

CM

e
HVV L t

e

, ,cg

δ δ∂e
H   (7.38)

Note that from    Fig. 7.31 , ∂ C   L,t   /∂δ  e   is constant; moreover,  V   H   is a specifi c value for 

the given airplane. Thus, the right side of    Eq. (7.38)  is a constant. Therefore, on a 

physical basis, the increment in  C   M ,cg  due  only  to a given elevator defl ection δ  e   is

ΔC V
C

M HVV L t

e
e,

,
cg

∂
∂δ

δ   (7.39)

  Equation (7.39)  answers the questions asked earlier concerning how and to 

what extent the elevator defl ection changes  C   M ,cg . Consider the moment curve 

labeled δ  e   = 0 in    Fig. 7.32 . This is the curve with the elevator fi xed in the neutral 

position; it is the curve we originally introduced in    Fig. 7.13 . If the elevator is 

defl ected through a positive angle (downward),    Eq. (7.39)  states that all points on 

this curve will be shifted down by the constant amount Δ C   M ,cg . Hence the slope 

of the moment curve is preserved; only the value of  C   M ,0  is changed by elevator 

defl ection. This proves our earlier statement made in conjunction with    Fig. 7.28 . 

  For emphasis, we repeat the main thrust of this section. The elevator can 

be used to change and control the trim of the airplane. In essence, this controls 

the equilibrium velocity of the airplane. For example, by a downward defl ection 

of the elevator, a new trim angle α  n   smaller than the original trim angle α  e   can 

be obtained. (This is illustrated in    Fig. 7.32 .) This corresponds to an increase in 

velocity of the airplane.

  As another example, consider the two velocity extremes—stalling velocity 

and maximum velocity.    Figure 7.33  illustrates the elevator defl ection  necessary 

  

  Figure 7.32  Effect of elevator defl ection on moment coeffi cient. 
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to trim the airplane at these two extremes. First consider    Fig. 7.33  a , which cor-

responds to an airplane fl ying at  V  ∞  ≈  V  stall . This would be the situation on a 

landing approach, for example. The airplane is fl ying at  CLmax
   ; hence the angle 

of attack is large. Therefore, from our previous discussion, the airplane must be 

trimmed by an  up-elevator  position—that is, by a negative δ  e  . In contrast, con-

sider    Fig. 7.33  b , which corresponds to an airplane fl ying at  V  ∞  ≈  V  max  (near full 

throttle). Because  q  ∞  is large, the airplane requires only a small  C   L   to generate 

the required lift force; hence the angle of attack is small. Thus, the airplane must 

be trimmed by a  down-elevator  position—that is, by a positive δ  e  .    

   7.13   CALCULATION OF ELEVATOR 
ANGLE TO TRIM 

  The concepts and relations developed in    Sec. 7.12  allow us to calculate the pre-

cise elevator defl ection necessary to trim the airplane at a given angle of attack. 

Consider an airplane with its moment coeffi cient curve given as in    Fig. 7.34 . The 

equilibrium angle of attack with no elevator defl ection is α  e  . We wish to trim the 

airplane at a new angle of attack α  n  . What value of δ  e   is required for this purpose? 

  To answer this question, fi rst write the equation for the moment curve with 

δ  e   = 0 (the solid line in    Fig. 7.34 ). This is a straight line with a constant slope 

equal to ∂ C   M ,cg /∂α  a   and intercepting the ordinate at  C   M ,0 . Hence, from analytic 

geometry the equation of this line is

  C C
C

M MC M

a
a,M,

,
g

cg+CMC
∂

∂0 α
α   (7.40)

Now assume that the elevator is defl ected through an angle δ  e  . The value of 

C   M ,cg  will change by the increment Δ C   M ,cg , and the moment equation given by 

   Eq. (7.40)  is now modifi ed as

C C
C

CM MC M

a
a MC,M,

,
,g

cg
cg+CMC

∂
∂

+0 α
α Δ   (7.41)

  

  Figure 7.33  Elevator defl ection required for trim at ( a ) low fl ight velocity and ( b ) high fl ight velocity. 
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The value of Δ C   M ,cg  was obtained earlier as    Eq. (7.39) . Substituting    Eq. (7.39)  

into    (7.41) , we obtain

  C C
C

V
C

M MC M

a
a HVV L t

e
e, ,M

, ,
g

cg+CMC
∂

∂
− ∂

∂0 α
α

δ
δ  (7.42)

    Equation (7.42)  lets us calculate  C   M ,cg  for any arbitrary angle of attack α  a   and 

any arbitrary elevator defl ection δ  e  . However, we are interested in the specifi c sit-

uation where  C   M ,cg  = 0 at α  a   = α  n   and where the value of δ  e   necessary to obtain this 

condition is δ  e   = δ  trim . That is, we want to fi nd the value of δ  e   that gives the dashed 

line in    Fig. 7.34 . Substituting the preceding values into    Eq. (7.42) , we have

  0 0= +0
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∂

− ∂
∂
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C
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e
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, ,cg
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δ

δ        

and solving for δ trim , we obtain

  δ
α α

δtrim
cg=

∂ ∂
∂ ∂

C +
V

M + a nα α
H LVV t eδ∂

, ,M

,

/cg∂C∂ M∂C∂ ,M )

(∂∂ L∂∂ t, )
  (7.43)        

   Equation (7.43)  is the desired result. It gives the elevator defl ection necessary to 

trim the airplane at a given angle of attack α  n  . In    Eq. (7.43)   V   H   is a known value 

from the airplane design, and  C   M ,0 , ∂ C   M ,cg  / ∂α  a  , and ∂ C   L,t   / ∂δ  e   are known values 

usually obtained from wind tunnel or free-fl ight data. 

  

  Figure 7.34  Given the equilibrium angle of attack at zero 

elevator defl ection, what elevator defl ection is necessary to 

establish a given new equilibrium angle of attack? 

   EXAMPLE 7.8  

 Consider a full-size airplane with the same aerodynamic and design characteristics as 

the wind tunnel model of    Examples 7.3  to    7.7 . The airplane has a wing area of 19 m 2 , 

a weight of 2.27 × 10 4  N, and an elevator control effectiveness of 0.04. Calculate the 

 elevator defl ection angle necessary to trim the airplane at a velocity of 61 m/s at sea level. 
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  ■ Solution 
 First we must calculate the angle of attack for the airplane at  V  ∞  = 61 m/s. Recall that

  C
W

V S
L = = =

∞ ∞VV

2 2W 2 27 1× 0

1 225 61 19
0 52

2

4

2ρ
( .2 )

. (225 ) (2 )
       

From    Example 7.3 , the lift slope is  a  = 0.08 per degree. Hence, the absolute angle of 

 attack of the airplane is

  αa
LC

a
= = = °0 52

0 08
6 5        

From    Eq. (7.43) , the elevator defl ection angle required to trim the airplane at this angle 

of attack is
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α α
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Thus, from    Eq. (7.43) ,

  δtrim = = − °0 06 0− 6 5

0 34 0
1 94

. (06 + . )0133 ( .6 )

. (34 . )04
       

Recall that positive δ is downward. So, to trim the airplane at an angle of attack of 6.5°, 

the elevator must be defl ected  upward  by 1.94°.     

   7.14   STICK-FIXED VERSUS STICK-FREE 
STATIC STABILITY 

  The second paragraph of    Sec. 7.5  initiated our study of a rigid airplane with  fi xed 
controls— for example, the elevator  fi xed  at a given defl ection angle. The ensuing 

sections developed the static stability for such a case, always assuming that the 

elevator can be defl ected to a desired angle δ  e   but held fi xed at that angle. This 

is the situation when the pilot (human or automatic) moves the control stick to a 

given position and then rigidly holds it there. Consequently, the static stability 

that we have discussed to this point is called  stick-fi xed static stability . Modern 

high-performance airplanes designed to fl y near or beyond the speed of sound 

have hydraulically assisted power controls, so a stick-fi xed static stability analy-

sis is appropriate for such airplanes. 
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 But consider a control stick connected to the elevator via wire cables without 

a power boost of any sort. This was characteristic of most early airplanes until 

the 1940s and is representative of many light, general aviation, private aircraft 

of today. In this case, to hold the stick fi xed in a given position, the pilot must 

continually exert a manual force. This is uncomfortable and impractical. Thus, 

in steady, level fl ight the control stick is left essentially free; in turn, the eleva-

tor is left free to fl oat under the infl uence of the natural aerodynamic forces and 

moments at the tail. The static stability of such an airplane is therefore called 

stick-free static stability . This is the subject of    Secs. 7.15  and    7.16 .   

   7.15  ELEVATOR HINGE MOMENT 
  Consider a horizontal tail with an elevator that rotates about a hinge axis, as 

shown in    Fig. 7.35 . Assume that the airfoil section of the tail is symmetric, which 

is almost always the case for both the horizontal and vertical tail. First consider 

the tail at zero angle of attack, as shown in    Fig. 7.35  a . The aerodynamic pressure 

distribution on the top and bottom surfaces of the elevator will be the same—that 

is, symmetric about the chord. Hence, no moment will be exerted on the elevator 

about the hinge line. Now assume that the tail is pitched to the angle of attack α  t  , 

but the elevator is not defl ected; that is, δ  e   = 0. This is illustrated in    Fig. 7.35  b . 

As discussed in Ch. 5, there will be a low pressure on the top surface of the 

airfoil and a high pressure on the bottom surface. The aerodynamic force on the 

elevator will not be balanced, and there will be a moment about the hinge axis 

tending to defl ect the elevator upward. Finally, consider the horizontal tail at 

zero angle of attack but with the elevator defl ected downward and held fi xed at 

the angle δ  e  , as shown in    Fig. 7.35  c . Recall from Sec. 5.17 that a fl ap defl ection 

effectively changes the camber of the airfoil and alters the pressure distribution. 

Therefore, in    Fig. 7.35  c  there will be low and high pressures on the top and bot-

tom elevator surfaces, respectively. As a result, a moment will again be exerted 

about the hinge line, tending to rotate the elevator upward. Thus we see that both 

the tail angle of attack α  t   and the elevator defl ection δ  e   result in a moment about 

the elevator hinge line; such a moment is defi ned as the  elevator hinge moment . 
It is the governing factor in stick-free static stability, as discussed in    Sec. 7.16 . 

  Let  H   e   denote the elevator hinge moment. Also, referring to    Fig. 7.36 , we see 

that the chord of the tail is  c   t  ; the distance from the leading edge of the elevator to 

the hinge line is  c   b  ; the distance from the hinge line to the trailing edge is  c   e  ; and 

the portion of the elevator planform area that lies  behind  (aft of) the hinge line is 

 S   e  . The  elevator hinge moment  coeffi cient  Cheh     is then defi ned as

  C
H

V S c
h

eHH

e ece
=

∞ ∞VV1
2

2ρ
  (7.44)

where  V  ∞  is the free-stream velocity of the airplane. 

  Recall that the elevator hinge moment is due to the tail angle of attack and 

the elevator defl ection. Hence,  Cheh     is a function of both α  t   and δ  e  . Moreover, 
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  Figure 7.36  Nomenclature and geometry for hinge moment coeffi cient. 

  

  Figure 7.35  Illustration of the aerodynamic generation of elevator hinge moment. ( a ) No 

hinge moment; ( b ) hinge moment due to angle of attack; ( c ) hinge moment due to elevator 

defl ection. 
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 experience has shown that at both subsonic and supersonic speeds,  Che
    is ap-

proximately a linear function of α  t   and δ  e  . Thus, recalling the defi nition of the 

partial derivative in    Sec. 7.2.4 , we can write the hinge moment coeffi cient as

C
C C

h
h

t
t

h

e
ee

e eh=
∂
∂

+
∂
∂α

α
δ

δ  (7.45)

where  ∂ ∂h t∂
e

α     and  ∂ ∂h e∂
e

δ     are approximately constant. However, the actual 

magnitudes of these constant values depend in a complicated way on  c   e   / c   t  ,  c   b  / c   e  ,

the elevator nose shape, the gap, the trailing-edge angle, and the planform. 

Moreover,  H   e   is very sensitive to local boundary layer separation. As a result, 

the values of the partial derivatives in    Eq. (7.45)  must almost always be obtained 

empirically (such as from wind tunnel tests) for a given design. 

 Consistent with the convention that downward elevator defl ections are posi-

tive, hinge moments that tend to defl ect the elevator downward are also defi ned 

as positive. Note from    Fig. 7.35  b  that a positive α  t   physically tends to produce a 

negative hinge moment (tending to defl ect the elevator upward). Hence  h t∂
eh ∂∂∂δtt

is usually negative. (However, if the hinge axis is placed very far back, near the 

trailing edge, the sense of  H   e   may become positive. This is usually not done for 

conventional airplanes.) Also, note from    Fig. 7.35  c  that a positive δ  e   usually 

produces a negative  H   e  ; hence  ∂ ∂h e∂
e

∂∂∂δ     is also negative.   

   7.16   STICK-FREE LONGITUDINAL 
STATIC STABILITY 

  Let us return to the concept of stick-free static stability introduced in    Sec. 7.14 . 

If the elevator is left free to fl oat, it will always seek some equilibrium defl ection 

angle such that the hinge moment is zero; that is,  H   e   = 0. This is obvious because 

as long as there is a moment on the free elevator, it will always rotate. It will 

come to rest (equilibrium) only in the position where the moment is zero. 

 Recall our qualitative discussion of longitudinal static stability in    Sec. 7.5 . 

Imagine that an airplane is fl ying in steady, level fl ight at the equilibrium angle 

of attack. Now assume that the airplane is disturbed by a wind gust and is mo-

mentarily pitched to another angle of attack, as sketched in    Fig. 7.14 . If the 

airplane is statically stable, it will initially tend to return toward its equilibrium 

position. In subsequent sections we saw that the design of the horizontal tail 

was a powerful mechanism governing this static stability. However, until now, 

the elevator was always considered fi xed. But if the elevator is allowed to fl oat 

freely when the airplane is pitched by some disturbance, the elevator will seek 

some momentary equilibrium position different from its position before the dis-

turbance. This defl ection of the free elevator will change the static stability 

characteristics of the airplane. In fact, such stick-free stability is usually less 

than stick-fi xed stability. For this reason it is usually desirable to design an 

airplane so that the difference between stick-free and stick-fi xed longitudinal 

stability is small. 
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 With this in mind, consider the equilibrium defl ection angle of a free eleva-

tor. Denote this angle by δ  free , as sketched in    Fig. 7.37 . At this angle,  H   e   = 0. 

Thus, from    Eq. (7.45) ,

C
C C

h
h

t
t

h

e
e

e eh= =
∂
∂

+
∂
∂

0
α

α
δ

δfree  (7.46)

Solving    Eq. (7.46)  for δ  free  gives

δ
α
δ

αfree = −
∂ ∂
∂ ∂

h tα∂

h eδ∂ t
e

e

 (7.47)

   Equation (7.47)  gives the equilibrium, free-fl oating angle of the elevator as 

a function of tail angle of attack. As stated earlier, both partial derivatives in 

   Eq.  (7.47)  are usually negative; hence a positive α  t   yields a negative δ  free  (an 

upward defl ection). This is intuitively correct, as verifi ed by    Fig. 7.37 , which 

shows a negative δ  free . 

  Obviously δ  free  affects the tail lift coeffi cient, which in turn affects the static 

stability of the airplane. The tail lift coeffi cient for angle of attack α  t   and fi xed 

elevator defl ection δ  e   was given in    Eq. (7.36) , repeated here:

C a
C

L t t t
L t

e
e, +at t

∂
∂δ

δ,
       

However, for a free elevator, δ  e   = δ  free . Denoting the tail lift coeffi cient for a free 

elevator as C′  L,t  , we see that a substitution of    Eq. (7.47)  into    (7.36)  gives
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or   ′C a′ = FL t t t, α   (7.48)

where  F  is the  free elevator factor,  defi ned as

  F
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  Figure 7.37  Illustration of free elevator defl ection. 
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The free elevator factor is a number usually less than unity and usually on the 

order of 0.7 to 0.8. It represents a reduction in the tail’s contribution to static 

stability when the elevator is free. The magnitude of this reduction is developed 

in the following. 

 Consider now the moment about the center of gravity of the airplane. For a 

fi xed elevator, the moment coeffi cient is given by    Eq. (7.24) :

C C C h h V CM MC L HVV L t,M, ,h hh hg ac acwb wb wb
+CMC ac b

hh

For a free elevator, the tail lift coeffi cient is now changed to  ′CL t,    . Hence, the 

moment coeffi cient for a free elevator  ′CM, cMM g    is

  ′ + ′C C′ = C h h V− CM MC= L HVV L t,M, ,−h hh hg ac acwb wb wb
  (7.49)

Substituting    Eq. (7.48)  into    (7.49) , we get

′ +C C′ = C h h V− a FM MC= L HVV t t, ,M −h hh hg ac acwb wb wb
  (7.50)

   Equation (7.50)  gives the fi nal form of the moment coeffi cient about the center 

of gravity of the airplane with a free elevator. 

 By using    Eq. (7.50) , we can use the same analyses as given in    Sec. 7.9  to obtain 

equations for stick-free longitudinal static stability. The results are as follows:

(7.51) 
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n

, ( )′ −h hn
cg

(7.53)

            Equations (7.51) ,    (7.52) , and    (7.53)  apply for stick-free conditions, denoted 

by the prime notation. They should be compared with    Eqs. (7.27) ,    (7.30) , and 

   (7.33) , respectively, for stick-fi xed stability. Note that  ′h h′ −n     is the stick-free 

static margin; because  F  < 1.0, this is smaller than the stick-fi xed static margin. 

 It is clear from    Eqs. (7.51)  to    (7.53)  that a free elevator usually decreases the 

static stability of the airplane. 

   EXAMPLE 7.9  

 Consider the airplane of    Example 7.8 . Its elevator hinge moment derivatives are 

∂ ∂h t∂
e

.∂ = −t∂ 008    and  ∂ ∂h e∂
e

.= −e∂∂δ 013   . Assess the  stick-free  static stability of this 

airplane. 

■ Solution 
 First obtain the free elevator factor  F , defi ned from    Eq. (7.48) :

F
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The stick-free static stability characteristics are given by    Eqs. (7.51)  to    (7.53) . First, from 

   Eq. (7.51) ,
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This is to be compared with  C   M ,0  = 0.06 obtained for stick-fi xed conditions in    Example 7.5 . 

 From    Eq. (7.52) ,
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This is to be compared with  h   n   = 0.516 obtained for stick-fi xed conditions in    Example 7.6 . 

Note that the neutral point has moved forward for stick-free conditions, decreasing the 

stability. In fact, the stick-free static margin is

  ′ = −h h′ −n 0 448 0 35 0= 098.448 0 .        

This is a 41 percent decrease in comparison with the stick-fi xed static margin from 

    Example 7.7 . Finally, from    Eq. (7.53) ,
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Thus, as expected, the slope of the stick-free moment coeffi cient curve, although still 

negative, is small in absolute value. 

 In conclusion, this example indicates that stick-free conditions cut the static stabil-

ity of our hypothetical airplane by nearly half. This helps to dramatize the differences 

between stick-fi xed and stick-free considerations.     

   7.17  DIRECTIONAL STATIC STABILITY 
  Returning to    Fig. 7.2 , we note that the preceding sections have dealt with longi-

tudinal stability and control, which concerns angular motion about the  y  axis—

pitching motion. In this section we briefl y examine the stability associated with 

angular motion about the  z  axis—yawing motion. Stability in yaw is called  direc-
tional stability . In regard to our road map in    Fig. 7.5 , we are moving to the 

 second box at the bottom of the left column. 

 Examining    Fig. 7.3 , we see that the vertical stabilizer (vertical fi n or verti-

cal tail) is the conventional mechanism for directional stability. Its function is 

easily seen in    Fig. 7.38 . Consider an airplane in equilibrium fl ight with no yaw, 

as sketched in    Fig. 7.38  a . The vertical tail, which is designed with a symmetric 

airfoil section, is at a zero angle of attack to the free stream, and it experiences no 

net aerodynamic force perpendicular to  V  ∞ . Assume that the airplane is suddenly 

yawed to the right by a disturbance, as shown in    Fig. 7.38  b . The vertical tail is 

now at an angle of attack θ and experiences an aerodynamic force  F   vt   perpen-

dicular to  V  ∞ . This force creates a restoring yawing moment about the center of 

gravity that tends to rotate the airplane back toward its equilibrium position. The 

same situation prevails when the airplane is yawed to the left by a disturbance, 

as sketched in    Fig. 7.38  c . 

V∞ V∞

V∞

V∞

(a) No yaw (b) Yaw to the right (c) Yaw to the left

� V∞�

Fv t Fv t

  

  Figure 7.38  Effect of the vertical stabilizer on directional stability. 
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   The magnitude of the restoring moment in yaw is equal to  F   vt   l  vt , where  l   vt   is 

the moment arm from the aerodynamic center of the vertical tail to the airplane’s 

center of gravity, as shown in    Fig. 7.39 . Because the aerodynamic force on the 

vertical tail  F   vt   is proportional to the area of the vertical tail  S   vt  , shown as the 

shaded area in    Fig. 7.39 , the design parameter governing directional stability can 

be shown to be the vertical tail volume ratio, defi ned as

Vertical tail volume ratio ≡ ≡V
l S

bS
vtVV vt vt  (7.54)

where  b  is the wingspan and  S  is the wing planform area. The defi nition of  V   vt

in    Eq. (7.54)  is similar to the defi nition of the horizontal tail volume ratio  V   H
defi ned by    Eq. (7.16) , except that  V   vt   uses  b  rather than the chord  c  as the nondi-

mensionalizing length in the denominator.    

   7.18  LATERAL STATIC STABILITY 
  Return to    Fig. 7.2 . In this section we briefl y examine the stability associated with 

angular motion about the  x  axis—rolling motion. Stability in roll is called  lateral 
stability . In regard to our road map in    Fig. 7.5 , we are moving to the third box at 

the bottom of the left column. 

 Consider an airplane in steady, level fl ight. Let us take a view of this airplane 

from behind, looking in the direction of fl ight, as sketched in    Fig. 7.40  a . The lift 

   DESIGN BOX 

 For conventional airplanes, typical values of  V   vt   are 

given by    Raymer  (see the bibliography) as follows: 

  V   vt   
   General aviation, single-engine  0.04 
 Twin turboprop  0.08 
 Jet fi ghter  0.07 
 Jet transport  0.09 

  These numbers are considerably smaller than typical 

values of  V   H  , which range from 0.4 to 1.0 (in    Exam-

ple 7.4 , we used  V   H   = 0.34), because of the use of b 

rather than c in the defi nition of  V   vt  . 

lvt

Svt

ac

  

  Figure 7.39  Moment arm of the vertical tail. 
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equals the weight. They act equal and opposite to each other; there is no net side 

force. The airplane is suddenly perturbed by a gust that causes the right wing to 

dip; that is, a roll to the right ensues. This is sketched in    Fig. 7.40  b . The lift vec-

tor is now rotated from the vertical through angle φ, called the  bank angle . The 

vector resolution of  L  and  W  results in a side force  F , which causes the airplane 

to accelerate in the direction of  F . This sidewise motion of the airplane is called 

a  slideslip . Relative to the airplane, there appears a slideslip velocity  V   S  , shown 

in    Fig. 7.40  b . 

  Consider the effect of this slideslip velocity on the lift generated by the right 

and left wings. This is illustrated in    Fig. 7.41 . In    Fig. 7.41  a  the airplane is shown 

with the right and left wings in the same plane, perpendicular to the plane of 

symmetry of the fuselage. Let  L  1  and  L  2  be the lift generated by the right and 

left wings, respectively. The slideslip velocity  V   S   will affect the lift generated by 

each wing; but because the two wings are in the same plane,  V   S   makes the same 

angle θ  with respect to both wings; therefore  L  1  =  L  2 , as shown in    Fig. 7.41  a . As 

a result, there is no restoring moment to return the airplane to its original equi-

librium position, shown in    Fig. 7.40  a . However, consider the case where both 

wings are bent upward through angle Γ, as shown in    Fig. 7.41  b ; that is, the wings 

are designed with a V shape. This is called  dihedral,  and Γ is the dihedral angle. 
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(b)
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  Figure 7.40  Generation of slideslip. 
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  Figure 7.41  Effect of dihedral. 
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Here the slideslip velocity makes an angle θ 1  with respect to the right wing and a 

larger angle θ 2  with respect to the left wing. As a result, the lift on the left wing 

 L  2  is smaller than the lift on the right wing, and this creates a restoring rolling 

moment that tends to return the airplane to its equilibrium position, as shown in 

   Fig. 7.41  b . Hence,  dihedral is the design feature of the airplane that provides 
lateral stability . 

   There are more sophisticated explanations of the dihedral effect. Also, there 

is always a coupling between yawing and rolling motion, so one does not occur 

without the other. It is beyond the scope of this book to go into these matters 

further. You will examine these effects when you embark on a more advanced 

study of stability and control. The function of this section and    Sec. 7.17  has been 

only to introduce some of the most basic thoughts about directional and lateral 

stability.   

   7.19  A COMMENT 
  This brings to a close our technical discussion of stability and control. The 

preceding sections constitute an introduction to the subject; however, we have 

just scratched the surface. There are many other considerations: control forces, 

dynamic stability, and so on. Such matters are the subject of more advanced 

studies of stability and control and are beyond the scope of this book. However, 

this subject is a fundamental pillar of aeronautical engineering, and the interested 

reader can fi nd extensive presentations in books such as those of    Perkins and 

Hage  and    Etkin  (see the bibliography at the end of this chapter).   

   DESIGN BOX 

 For a given airplane design, the amount of dihedral 

depends on the location of the wing relative to the 

fuselage—that is, low-wing, midwing, or high-wing 

location. The schematics in    Figs. 7.40  and    7.41  show 

a low-wing design. More dihedral is needed for a 

low-wing position than for a midwing or high-wing 

position. Also, a swept-back wing requires less dihe-

dral than a straight wing. Some degree of lateral sta-

bility is usually necessary in conventional airplanes, 

but too much makes the airplane very sluggish to 

aileron control inputs. Indeed, the combination of 

mid- or high-wing location along with sweepback 

may have too much inherent lateral stability, and  an-
hedral  (negative dihedral) must be used to counteract 

some of this.    Raymer  (see the bibliography) gives the 

following typical values of dihedral (and anhedral) 

angle (in degrees) for various classes of airplanes: 

   Wing Position 

   Low  Middle  High 

 Unswept (civil)  5 to 7  2 to 4  0 to 2 
 Subsonic swept wing  3 to 7  −2 to 2  −5 to −2 
 Supersonic swept wing  0 to 5  −5 to 0  −5 to 0 

 The amount of dihedral shown in    Fig. 7.41b  is greatly 

exaggerated for illustration. The amount of dihedral 

(or anhedral) for some actual airplanes can be seen 

from the three-views shown earlier in this book: the 

F-86 (Fig. 2.15), the F4U Corsair (Fig. 2.16), the X-29 

(Fig. 2.19), the F3F (Fig. 2.20), the F-104 (Fig. 4.52), 

the X-1 (Fig. 5.30), the U-2 (Fig. 5.52), the Eng-

lish Electric Lightning (Fig. 5.61), the Mirage C 

(Fig. 5.65), the Concorde (Fig. 5.66), and the P-38 

(   Fig. 7.42 ). 
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   7.20   HISTORICAL NOTE: THE WRIGHT BROTHERS 
VERSUS THE EUROPEAN PHILOSOPHY 
OF STABILITY AND CONTROL 

  The two contrasting scenes depicted in    Sec. 7.1 —the lumbering, belabored fl ight 

of Farman versus the relatively effortless maneuvering of Wilbur Wright—

underscore two different schools of aeronautical thought during the fi rst decade 

of powered fl ight. One school, consisting of virtually all early European and 

U.S. aeronautical engineers, espoused the concept of inherent stability (stati-

cally stable aircraft); the other, consisting solely of Wilbur and Orville Wright, 

practiced the design of statically unstable aircraft that had to be controlled every 

instant by the pilot. Both philosophies have advantages and disadvantages; and 

because they have an impact on modern airplane design, we examine their back-

ground more closely. 

 The basic principles of airplane stability and control began to evolve at the 

time of George Cayley. His glider of 1804, sketched in Fig. 1.8, incorporated a 

vertical and horizontal tail that could be adjusted up and down. In this fashion the 

complete tail unit acted as an elevator. 

 The next major advance in airplane stability was made by Alphonse Penaud, 

a brilliant French aeronautical engineer who committed suicide in 1880 at the 

age of 30. Penaud built small model airplanes powered by twisted rubber bands, 

a precursor of the fl ying balsa-and-tissue paper models of today. Penaud’s design 

had a fi xed wing and tail like Cayley’s, even though at the time Penaud was not 

aware of Cayley’s work. Of particular note was Penaud’s horizontal tail design, 

which was set at a negative 8° with respect to the wing chord line. Here we fi nd 

the fi rst true understanding of the role of the tail-setting angle  i   t   (see    Secs. 7.5  and 

   7.7 ) in the static stability of an airplane. Penaud fl ew his model in the Tuileries 

Gardens in Paris on August 18, 1871, before members of the Société de Naviga-

tion Aérienne. The aircraft fl ew for 11 s, covering 131 ft. This event, along with 

Penaud’s theory for stability, remained branded on future aeronautical designs 

right down to the present. 

 After Penaud’s work, the attainment of “inherent” (static) stability became a 

dominant feature in aeronautical design. Lilienthal, Pilcher, Chanute, and Lang-

ley all strived for it. However, static stability has one disadvantage: The more 

stable the airplane, the harder it is to maneuver. An airplane that is highly stable 

is also sluggish in the air; its natural tendency to return to equilibrium somewhat 

defeats the purpose of the pilot to change its direction by means of control de-

fl ections. The Wright brothers recognized this problem in 1900. Because Wilbur 

and Orville were  airmen  in the strictest meaning of the word, they aspired for 

quick and easy maneuverability. Therefore, they discarded the idea of inherent 

stability that was entrenched by Cayley and Penaud. Wilbur wrote that “we . . . 

resolved to try a fundamentally different principle. We would arrange the ma-

chine so that it would not tend to right itself.” The Wright brothers designed their 

aircraft to be statically unstable! This feature, along with their development of 

lateral control through wing warping, is primarily responsible for the fantastic 
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aerial performance of all their airplanes from 1903 to 1912 (when Wilbur died). 

Of course this design feature heavily taxed the pilot, who had to keep the airplane 

under control at every instant, continuously operating the controls to compensate 

for the unstable characteristics of the airplane. Thus, the Wright airplanes were 

diffi cult to fl y, and long periods were required to train pilots for these aircraft. In 

the same vein, such unstable aircraft were more dangerous. 

 These undesirable characteristics were soon to become compelling. After 

Wilbur’s dramatic public demonstrations in France in 1908 (see Sec. 1.8), the 

European designers quickly adopted the Wrights’ patented concept of combined 

lateral and directional control by coordinated wing warping (or by ailerons) and 

rudder defl ection. But they rejected the Wrights’ philosophy of static instability. 

By 1910 the Europeans were designing and fl ying aircraft that properly mated 

the Wrights’ control ideas with the long-established static stability principles. 

However, the Wrights stubbornly clung to their basic unstable design. As a re-

sult, by 1910 the European designs began to surpass the Wrights’ machines, 

and the lead in aeronautical engineering established in the United States in 1903 

swung to France, England, and Germany, where it remained for almost 20 years. 

In the process, static stability became an unquestioned design feature in all suc-

cessful aircraft up to the 1970s. 

 It is interesting that very modern airplane design has returned full circle to 

the Wright brothers’ original philosophy, at least in some cases. Recent light-

weight military fi ghter designs, such as the F-16 and F-18, are statically unstable 

in order to obtain dramatic increases in maneuverability. At the same time, the 

airplane is instantaneously kept under control by computer-calculated and elec-

trically adjusted positions of the control surfaces—the  fl y-by-wire  concept. In 

this fashion, the maneuverability advantages of static instability can be realized 

without heavily taxing the pilot: The work is done by electronics! Even when 

maneuverability is not a prime feature, such as in civil transport airplanes, static 

instability has some advantages. For example, the tail surfaces for an unstable 

airplane can be smaller, with subsequent savings in structural weight and reduc-

tions in aerodynamic drag. Hence, with the advent of the fl y-by-wire system, the 

cardinal airplane design principle of static stability may be somewhat relaxed in 

the future. The Wright brothers may indeed ride again!   

   7.21   HISTORICAL NOTE: THE DEVELOPMENT 
OF FLIGHT CONTROLS 

     Figure 7.3  illustrates the basic aerodynamic control surfaces on an airplane—

the ailerons, elevator, and rudder. They have been an integral part of airplane 

designs for most of the 20th century, and we take them almost for granted. But 

where are their origins? When did such controls fi rst come into practical use? 

Who had the fi rst inspirations for such controls? 

 In    Sec. 7.20  we already mentioned that by 1804 George Cayley employed 

a movable tail in his designs—the fi rst effort at some type of longitudinal con-

trol. Cayley’s idea of moving the complete horizontal tail to obtain such  control 
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 persisted through the fi rst decade of the 20th century. Henson, Stringfellow, Pen-

aud, Lilienthal, and the Wright brothers all envisioned or utilized movement of 

the complete horizontal tail surface for longitudinal control. It was not until 1908 

to 1909 that the fi rst “modern” tail control confi guration was put into practice. 

This was achieved by the French designer Levavasseur on his famous Antoinette 

airplanes, which had fi xed vertical and horizontal tail surfaces with movable, 

fl aplike rudder and elevator surfaces at the trailing edges. So the confi guration 

for elevators and rudders shown in    Fig. 7.3  dates back to 1908, fi ve years after 

the dawn of powered fl ight. 

 The origin of ailerons (a French word for the extremity of a bird’s wing) 

is steeped in more history and controversy. It is known that the Englishman 

M.  P.  W. Boulton patented a concept for lateral control by ailerons in 1868. 

Of course at that time no practical aircraft existed, so the concept could not be 

demonstrated and verifi ed, and Boulton’s invention quickly retreated to the 

background and was forgotten. Ideas of warping the wings or inserting vertical 

surfaces (spoilers) at the wing tips cropped up several times in Europe during 

the late 19th century and into the fi rst decade of the 20th century, but always in 

the context of a braking surface that would slow one wing down and pivot the 

airplane about a vertical axis. The true function of ailerons or wing warping—

for lateral control for banking and consequently turning an airplane—was not 

fully appreciated until Orville and Wilbur incorporated wing warping on their 

 Flyers  (see Ch. 1). The Wright brothers’ claim that they were the fi rst to invent 

wing warping may not be historically precise, but clearly they were the fi rst to 

demonstrate its function and to obtain a legally enforced patent on its use (com-

bined with simultaneous rudder action for total control in banking). The early 

European airplane designers did not appreciate the need for lateral control until 

Wilbur’s dramatic public fl ights in France in 1908. This is in spite of the fact that 

Wilbur had fully described the wing-warping concept in a paper at Chicago on 

September 1, 1901, and again on June 24, 1903; indeed, Octave Chanute clearly 

described the Wrights’ concept in a lecture to the Aero Club de France in Paris in 

April 1903. Other aeronautical engineers at that time, if they listened, did not pay 

much heed. As a result, European aircraft before 1908, even though they were 

making some sustained fl ights, were awkward to control. 

 However, the picture changed after 1908, when in the face of the indisput-

able superiority of the Wrights’ control system, virtually everybody turned to 

some type of lateral control. Wing warping was quickly copied and was em-

ployed on numerous different designs. Moreover, the idea was refi ned to in-

clude movable surfaces near the wing tips. These were fi rst separate “winglets” 

mounted either above, below, or between the wings. But in 1909 Henri Farman 

(see    Sec. 7.1 ) designed a biplane named the  Henri Farman III  that included a 

fl aplike aileron at the trailing edge of all four wing tips; this was the true ances-

tor of the conventional modern aileron, as sketched in    Fig. 7.3 . Farman’s design 

was soon adopted by most designers, and wing warping quickly became passé. 

Only the Wright brothers clung to their old concept; a Wright airplane did not 

incorporate ailerons until 1915, six years after Farman’s development.   



650 CHAPTER  7  Principles of Stability and Control

   7.22   HISTORICAL NOTE: THE “TUCK-UNDER” 
PROBLEM 

  A quick examination of    Fig. 7.21 , and the resulting stability equations such as 

   Eqs. (7.26) ,    (7.27) , and    (7.28) , clearly underscores the importance of the down-

wash angle ε in determining longitudinal static stability. Downwash is a rather 

skittish aerodynamic phenomenon, very diffi cult to calculate accurately for real 

airplanes and therefore usually measured in wind tunnel tests or in free fl ight. 

A classic example of the stability problems that can be caused by downwash, and 

how wind tunnel testing can help, occurred during World War II, as described 

in the following. 

 In numerous fl ights during 1941 and 1942, the Lockheed P-38, a twin-engine, 

twin-boomed, high-performance fi ghter plane (see    Fig. 7.42 ), went into sudden 

dives from which recovery was exceptionally diffi cult. Several pilots were killed 

  

  Figure 7.42  The Lockheed P-38 of World War II fame. 
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in this fashion. The problem occurred at high subsonic speeds, usually in a dive, 

when the airplane had a tendency to nose over, putting the plane in yet a steeper 

dive. Occasionally the airplane would become locked in this position, and even 

with maximum elevator defl ection, a pullout could not be achieved. This “tuck-

under” tendency could not be tolerated in a fi ghter aircraft that was earmarked 

for a major combat role. 

  Therefore, with great urgency NACA was asked to investigate the prob-

lem. Because the effect occurred only at high speeds, usually above Mach 0.6, 

compressibility appeared to be the culprit. Tests in the Langley 30-ft by 60-ft 

low-speed tunnel and in the 8-ft high-speed tunnel (see Sec. 4.24) correlated 

the tuck-under tendency with the simultaneous formation of shock waves on the 

wing surface. Such compressibility effects were discussed in Secs. 5.9 and 5.10, 

where it was pointed out that beyond the critical Mach number for the wing, 

shock waves will form on the upper surface, encouraging fl ow separation far up-

stream of the trailing edge. The P-38 was apparently the fi rst operational airplane 

to encounter this problem. The test engineers at Langley made several sugges-

tions to rectify the situation, but all involved major modifi cations of the airplane. 

For a model already in production, a quicker fi x was needed. 

 Next, the 16-ft high-speed wind tunnel at the NACA Ames Aeronautical 

Laboratory in California (see again Sec. 4.24) was pressed into service for the 

P-38 problem. Here further tests indicated that the shock-induced separated fl ow 

over the wing was drastically reducing the lift. In turn, because downwash is 

directly related to lift, as discussed in Secs. 5.13 and 5.14, the downwash angle 

ε was greatly reduced. Consequently (see    Fig. 7.21 ), the tail angle of attack 

α  t   was markedly increased. This caused a sharp increase in the positive lift on the 

tail, creating a strong pitching moment, nosing the airplane into a steeper dive. 

After the series of Ames tests in April 1943, Al Erickson of NACA suggested 

the addition of fl aps on the lower surface of the wing at the 0.33 c  point in order 

to increase the lift and hence increase the downwash. This was the quick fi x that 

Lockheed was looking for, and it worked.   

   7.23  SUMMARY AND REVIEW 
  Being a free body, an airplane experiencing lift, drag, thrust, and moments in fl ight will 

want to rotate about its center of gravity. Only when the location and magnitude of these 

forces and moments are such as to add up to a net zero moment about the center of gravity 

will the airplane not rotate. For most applications in fl ight, we want the airplane to trans-

late in fl ight, but not rotate all the time. When the forces and moments on the airplane are 

all adjusted so that the moment about the center of gravity is zero, the airplane is said to 

be  trimmed . 

 If the airplane is designed to be statically and dynamically stable, and if it is fl ying 

trimmed at a given velocity, nature will make certain to more or less keep the airplane 

trimmed. If a statically stable airplane encounters a disturbing infl uence such as a gust 

that momentarily rotates the airplane away from its equilibrium position, then it will have 

an initial tendency to rotate back toward its equilibrium (trimmed) position. If it is also 

dynamically stable, it will actually sooner or later arrive back at its equilibrium position. 



652 CHAPTER  7  Principles of Stability and Control

Clearly, static stability is a necessary but not suffi cient condition for dynamic stability. 

If, either intentionally or by mistake, the airplane is designed to be statically and/or 

 dynamically unstable, then either a human or (more likely) a computer-run automatic 

pilot takes over by properly defl ecting the control surfaces (ailerons, rudder, elevator) so 

as to restore a zero moment about the center of gravity. 

 This chapter examined the nature of static stability and control; dynamic stabil-

ity analyses are beyond our scope. Moreover, we concentrated on longitudinal stability 

(pitching motion). We have seen that for static longitudinal stability, the aerodynamic 

center (the neutral point) must be located behind the center of gravity. These same equa-

tions give us pertinent information on how to design an airplane to be statically stable. 

 We have also looked into the longitudinal control of an airplane via defl ection of 

the elevator. We calculated the amount of elevator defl ection necessary to trim the air-

plane when the fl ight velocity changes, and we examined the forces necessary to rotate 

the  elevator to its new setting. All in all, in this chapter we have opened the door into the 

basic aspects of static stability and control. 

 Some of the important points of this chapter are given as follows: 

  1.   If the forces and moments on a body caused by a disturbance tend  initially  to 

return the body  toward  its equilibrium position, the body is statically stable. In 

contrast, if these forces and moments tend  initially  to move the body  away from  its 

equilibrium position, the body is  statically unstable .  

  2.   The necessary criteria for longitudinal balance and static stability are ( a )  C   M ,0  must 

be positive, ( b ) ∂ C   M ,cg /∂α  a   must be negative, and ( c ) the trim angle of attack α  e   

must fall within the fl ight range of angle of attack for the airplane. These criteria 

may be evaluated quantitatively for a given airplane from
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 where the tail volume ratio is given by
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  4.   The static margin is defi ned as  h   n   −  h . For static stability, the location of the center 

of gravity must be ahead of the neutral point; that is, the static margin must be 

positive.  

  5.   The effect of elevator defl ection δ  e   on the pitching moment about the center of 

gravity is given by
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6.   The elevator defl ection necessary to trim an airplane at a given angle of attack α  n   is

δ
α α
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  Problems  
  7.1   For a given wing–body combination, the aerodynamic center lies 0.03 chord length 

ahead of the center of gravity. The moment coeffi cient about the center of gravity is 

0.0050, and the lift coeffi cient is 0.50. Calculate the moment coeffi cient about the 

aerodynamic center.  

  7.2   Consider a model of a wing–body shape mounted in a wind tunnel. The fl ow 

conditions in the test section are standard sea-level properties with a velocity of 

100 m/s. The wing area and chord are 1.5 m 2  and 0.45 m, respectively. Using the 

wind tunnel force and moment-measuring balance, the moment about the center 

of gravity when the lift is zero is found to be −12.4 N · m. When the model is 

pitched to another angle of attack, the lift and moment about the center of gravity 

are measured to be 3675 N and 20.67 N · m, respectively. Calculate the value 

of the moment coeffi cient about the aerodynamic center and the location of the 

aerodynamic center.  

  7.3   Consider the model in    Prob. 7.2 . If a mass of lead is added to the rear of the model 

so that the center of gravity is shifted rearward by a length equal to 20 percent of the 

chord, calculate the moment about the center of gravity when the lift is 4000 N.  

  7.4   Consider the wing–body model in    Prob. 7.2 . Assume that a horizontal tail with no 

elevator is added to this model. The distance from the airplane’s center of gravity 

to the tail’s aerodynamic center is 1.0 m. The area of the tail is 0.4 m 2 , and the tail-

setting angle is 2.0°. The lift slope of the tail is 0.12 per degree. From experimental 

measurement, ε 0  = 0 and ∂ε /∂α = 0.42. If the absolute angle of attack of the model 

is 5° and the lift at this angle of attack is 4134 N, calculate the moment about the 

center of gravity.  

  7.5   Consider the wing–body–tail model of    Prob. 7.4 . Does this model have longitudinal 

static stability and balance?  

  7.6   For the confi guration of    Prob. 7.4 , calculate the neutral point and static margin if 

 h  = 0.26.  

  7.7   Assume that an elevator is added to the horizontal tail of the confi guration given in 

   Prob. 7.4 . The elevator control effectiveness is 0.04. Calculate the elevator 

defl ection angle necessary to trim the confi guration at an angle of attack of 8°.  
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  7.8   Consider the confi guration of    Prob. 7.7 . The elevator hinge moment derivatives are 

 ∂ ∂h t∂
e

.∂ = −t∂ 007    and  ∂ ∂h e∂
e

.= −e∂∂δ 012   . Assess the stick-free static stability of 

this confi guration.  

  7.9   Consider the canard confi guration as illustrated in    Fig. 7.17  b  and represented by 

the XB-70 shown in    Fig. 7.18 . You will sometimes encounter a statement, either 

written or verbal, that the canard confi guration is inherently statically unstable. This 

is absolutely not true. Prove that the canard confi guration can be made statically 

stable. What design condition must hold to ensure its stability?                                                                 
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       C H A P T E R   8

 Space Flight (Astronautics)   

  It is diffi cult to say what is impossible, for the dream of yesterday is the hope of today 

and the reality of tomorrow. 

   Robert H. Goddard at his 

high-school graduation, 1904      

  Houston, Tranquillity Base here. The Eagle has landed. 

   Neil Armstrong in a radio transmission 

to Mission Control at the instant 

of the fi rst manned landing 

on the moon, July 20, 1969      

    8.1  INTRODUCTION 
  Space—that last frontier, that limitless expanse that far outdistances the reach of 

our strongest telescopes, that region that may harbor other intelligent civiliza-

tions on countless planets; space—whose unknown secrets have attracted the 

imagination of humanity for centuries and whose technical conquest has labeled 

the latter half of the 20th century as the  space age;  space—that is the subject of 

this chapter. 

 To this point in our introduction of fl ight, we have emphasized aeronau-

tics, the science and engineering of vehicles that are designed to move within 

the atmosphere and that depend on the atmosphere for their lift and propulsion. 

However, as presented in Sec. 1.11, the driving force behind the advancement 

of aviation has always been the desire to fl y higher and faster. The ultimate, of 
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Imagine you are in a flight vehicle that flies so 

fast and so high that you suddenly find yourself 

outside the earth’s atmosphere—you are in space. 

There is no air in space, so your vehicle has no 

aerodynamic lift or drag. What keeps you up 

there? Also, obviously you have no air-breathing 

propulsion—no reciprocating engine with a pro-

peller and no jet engine to keep you going. Rocket 

engines may have boosted you into space, but 

those engines have now burned out. What keeps 

you going? Moreover, you are not standing still in 

space; you are moving—at this point in time, your 

vehicle has a certain speed and direction. Where 

is your vehicle taking you? That is, what is your 

flight path in space? These are absolutely funda-

mental questions about space flight, and you will 

find the answers in this chapter. 

 The answers involve a completely different 

set of physics and mathematics than we have dealt 

with so far in this book. This chapter is a fresh 

start, taking us into the different world of space 

fl ight. 

 At some stage of your fl ight through space, you 

are going to want to come home, to return to the 

surface of the earth. This is not going to be easy. 

As you leave space and enter the outer edge of the 

atmosphere, you will be traveling at a speed of 

at least 26,000 ft/s (about 8 km/s) and quite pos-

sibly much faster. (How do you know you will be 

traveling at this speed? Keep on reading.) As you 

penetrate the atmosphere at such speeds, the aero-

dynamic drag on your vehicle, and especially the 

aerodynamic heating of the vehicle, will build enor-

mously. Indeed, such aerodynamic heating is so 

high that it becomes the primary consideration that 

drives the design of any space vehicle that will enter 

any atmosphere—the earth’s or any other planet’s. 

The loss of the space shuttle  Columbia  on February 

1, 2003, is an unfortunate testimonial to the intense 

heating associated with high-speed entry in the 

earth’s atmosphere. So here you are, plummeting 

through the atmosphere, approaching the earth’s 

surface from space. The high drag will produce 

large g-forces that will strain your body. How can 

you predict the magnitude of these g-forces? You 

must be protected from the intense aerodynamic 

heating. How much energy is being pumped into the 

surface of your vehicle by aerodynamic heating? 

How do you protect yourself from this heating? This 

chapter will provide some answers. 

 After dealing with airplanes and atmospheric 

flight in Chs. 1 through 7, here is your chance 

to get into space. Read on, and may the force be 

with you. 

 PREVIEW BOX 

course, is to fl y so high and so fast that you fi nd yourself in outer space, beyond 

the limits of the sensible atmosphere. Here motion of the vehicle takes place only 

under the infl uence of gravity and possibly some type of propulsive force; how-

ever, the mode of propulsion must be entirely independent of the air for its thrust. 

Therefore, the physical fundamentals and engineering principles associated with 

space vehicles are somewhat different from those associated with airplanes. The 

purpose of this chapter is to introduce some basic concepts of space fl ight—that 

is, to introduce the discipline of  astronautics . In particular, in the early sections 

of this chapter we emphasize the calculation and analysis of orbits and trajecto-

ries of space vehicles operating under the infl uence of gravitational forces only 

(such as in the vacuum of free space). In the later sections we consider several 

aspects of the entry of a space vehicle into the earth’s atmosphere, especially the 

entry trajectory and aerodynamic heating of the vehicle.  
 The space age formally began on October 4, 1957, when the Soviet Union 

launched  Sputnik I,  the fi rst artifi cial satellite to go into orbit around the earth. 
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Unlike the fi rst fl ight of the Wright brothers in 1903, which took years to have 

any impact on society, the effect of  Sputnik I  on the world was immediate. Within 

12 years people had walked on the moon; and after another 7 years unmanned 

probes were resting on the surfaces of Venus and Mars. A variety of different 

space vehicles designed for different missions have been launched since 1957. 

Most of these vehicles fall into three main categories:  

  1.   Earth satellites, launched with enough velocity to go into orbit about the 
earth, as sketched in    Fig. 8.1 . As we will show later, velocities on the order 
of 26,000 ft/s (7.9 km/s) are necessary to place a vehicle in orbit about the 
earth, and these orbits are generally elliptical.    Figure 8.2  shows a photograph 
of an artifi cial earth satellite.  

  2.   Lunar and interplanetary vehicles, launched with enough velocity to over-
come the gravitational attraction of the earth and to travel into deep space. 
Velocities of 36,000 ft/s (approximately 11 km/s) or larger are necessary 
for this purpose. Such trajectories are parabolic or hyperbolic. A typical 
path from the earth to the moon is sketched in    Fig. 8.3 ; here the space 
vehicle is fi rst placed in earth orbit, from which it is subsequently boosted 
by onboard rockets to an orbit about the moon, from which it fi nally 
makes a landing on the moon’s surface. This is the mode employed by all 
the  Apollo  manned lunar missions, beginning with the historic fi rst moon 
landing on July 20, 1969. A photograph of the  Apollo  spacecraft is shown 
in    Fig. 8.4 .  

  3.   Space shuttles, designed to take off from the earth’s surface, perform 
a mission in space, and then return and land on the earth’s surface, all 
self- contained in the same vehicle. These are lifting reentry vehicles, 
designed with a reasonable  L / D  ratio to allow the pilot to land the craft just 
like an airplane. Earth orbit with a lifting reentry path is sketched in    Fig. 8.5 . 

  

  Figure 8.1  Earth orbit. 
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  Figure 8.2  The  Skylab —an earth satellite. 
 (Source:  NASA. ) 

The fi rst successful fl ight of a space shuttle into space, with a subsequent lifting 
reentry and landing, was carried out by NASA’s  Columbia  during the period 
April 12–14, 1981. A photograph of the space shuttle is given in    Fig. 8.6 .         

 Finally, a discussion of astronautics, even the present introductory one, 

requires slightly greater mathematical depth than just basic differential and inte-

gral calculus. Therefore, this chapter will incorporate more mathematical rigor 

than other parts of this book. In particular, some concepts from differential equa-

tions must be employed. However, it will be assumed that the reader has  not  had 

exposure to such mathematics, so the necessary ideas will be introduced in a 

self-contained fashion. 

 The road map for this chapter is given in    Fig. 8.7 . Our study of astronautics 

is organized into three parts, following the three primary sequential phases of a 

space mission, as sketched in    Fig. 8.8 : 

  1.    Ascent through the atmosphere . Most space vehicles initiate their missions 
by blasting off from the earth’s surface, climbing out of the sensible 
atmosphere, and accelerating to orbital or escape velocity (we will defi ne 
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  Figure 8.3  Earth–moon mission (not to scale). 

these velocities in    Sec. 8.5 ). Called the  ascent phase,  this is mainly 
 governed by the rocket engines, which boost the vehicle into space. Rocket 
engines are discussed in Ch. 9 on propulsion. Hence, although for the sake 
of completeness the ascent phase is shown in our road map at the top left of 
   Fig. 8.7 , we defer the study of this phase until Ch. 9.  
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  Figure 8.4  The  Apollo  spacecraft. 
 (Source:  National Air and Space Museum. ) 

  

  Figure 8.5  Earth orbit with lifting reentry. 
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  Figure 8.6  The space shuttle. 
 (Source:  NASA. ) 

Anatomy of a space mission

Ascent through the atmosphere
(rocket engines—Chapter 9)

Mission in
space—orbit
or trajectory

Planetary
entry

Gravitational force
The orbit (trajectory) equation
Types of trajectories in space
Kepler's laws
Orbital maneuvers
Interplanetary trajectories
Gravity-assist trajectories
Lunar transfer
Attitude control

Exponential atmosphere

Equations of motion
for atmospheric entry 

Ballistic entry

Aerodynamic heating
during entry

Lifting entry

  

  Figure 8.7  Road map for Ch. 8. 

  2.    Mission in space.  It is with this phase that we begin Ch. 8: We study the 
motion of the space vehicle after it has been inserted into orbit or placed 
on a trajectory to carry it away from the earth after the rocket engines have 
burned out. This is represented by the center box in    Fig. 8.7 .  

  3.    Planetary entry.  Some space vehicles continue on their paths indefi nitely, 
moving into deep space without ever again encountering an atmosphere. 
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Many others, especially those with human astronauts aboard, will eventually 
return to the earth’s surface and will have to come back through the earth’s 
atmosphere at very high velocities. This is called  earth entry  (or sometimes 
by the misnomer  reentry ). Or the space vehicle may enter the atmosphere 
of another planet in the solar system. This is called  planetary entry  (a more 
general term that includes earth entry). This phase is represented by the right 
box in    Fig. 8.7 ; it is the subject of the second half of Ch. 8.        

   8.2  DIFFERENTIAL EQUATIONS 
  Consider a dependent variable  r  that depends on an independent variable  t . Thus 

 r  =  f (t) . The concept of the derivative of  r  with respect to  t , denoted by  dr / dt , has 

been used frequently in this book. The physical interpretation of  dr / dt  is simply 

the rate of change of  r  with respect to  t . If  r  is a distance and  t  is time, then  dr / dt  is 

the rate of change of distance with respect to time—that is, velocity. The second 

derivative of  r  with respect to  t  is simply

  

d d d

dt

d r

dt

( )dr dt ≡
2

2
       

This is the rate of change of the derivative itself with respect to  t . If  r  and  t  are 

distance and time, respectively, then  d  2  r/dt  2  is the rate of change of velocity with 

respect to time—that is, acceleration. 

 A differential equation is simply an equation that has derivatives in some of 

its terms. For example,

  
d r

dt

dr

dt
t

2

2
32 2t3+ −r           (8.1)

Planetary surface

Outer edge of planetary atmosphere 

Mission in space 

Ascent through
atmosphere

Planetary
entry

A B
  

  Figure 8.8  Anatomy of a space mission. 
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is a differential equation; it contains derivatives along with the variables  r  and  t
themselves. By comparison, the equation

r
t
r

+ =
2

0
       

is an algebraic equation; it contains only  r  and  t  without any derivatives. 

 To fi nd a  solution  of the differential equation in    Eq. (8.1)  means to fi nd a 

functional relation  r  =  f (t)  that satisfi es the equation. For example, assume that  

r  =  t   2 . Then  dr / dt  = 2 t  and  d   2  r/dt   2  = 2. Substitute into    Eq. (8.1) :

2 2 2
2 2 2

2 2

2 32 2
3 32

−
+ 2
t t

t t23 2−3

( )2t222

       

Hence  r  =  t   2  does indeed satisfy the differential equation in    Eq. (8.1) . Thus  

r  =  t   2  is called a solution of that equation. 

 Calculations of space vehicle trajectories involve distance  r  and time  t . 
Some of the fundamental equations involve fi rst and second derivatives of  r  with 

respect to  t . To simplify the notation in these equations, we now introduce the  dot 
notation  for the time derivatives:

&

&&

r
dr

dt

r
d r

dt

≡

≡
2

2

A single dot over the variable means the fi rst time derivative of that variable; a 

double dot means the second derivative. For example, the differential equation 

in    Eq. (8.1)  can be written as

&& &r r t+ rr 2 2t =3

          (8.2)

   Equations (8.1)  and    (8.2)  are identical; only the notation is different. The dot 

notation for time derivatives is common in physical science; you will encounter 

it frequently in advanced studies of science and engineering.   

   8.3  LAGRANGE’S EQUATION 
  In physical science, a study of the forces and motion of bodies is called  mechan-
ics . If the body is motionless, this study is further identifi ed as  statics ; if the body 

is moving, the study is one of  dynamics . In this chapter we are concerned with 

the  dynamics  of space vehicles. 

 Problems in dynamics usually involve the use of Newton’s second law, 

F  =  ma , where  F  is force,  m  is mass, and  a  is acceleration. Perhaps the reader 

is familiar with various applications of  F  =  ma  from basic physics; indeed, we 
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applied this law in Ch. 4 to obtain the momentum equation in aerodynamics and 

again in Ch. 6 to obtain the equations of motion for an airplane. However, in this 

section we introduce  Lagrange’s equation , which is essentially a corollary to 

Newton’s second law. The use of Lagrange’s equation represents an alternative 

approach to the solution of dynamics problems in lieu of  F  =  ma ; in the study 

of space vehicle orbits and trajectories, Lagrange’s equation greatly simplifi es 

the analysis. We do not derive Lagrange’s equation; we simply introduce it by 

way of an example and then, in    Sec. 8.4 , apply it to obtain the orbit equation. A 

rigorous derivation of Lagrange’s equation is left to more advanced studies of 

mechanics. 

 Consider the following example. A body of mass  m  is falling freely in the 

earth’s gravitational fi eld, as sketched in    Fig. 8.9 . Let  x  be the vertical distance 

of the body from the ground. If we ignore drag, the only force on the body is its 

weight  w  directed downward. By defi nition, the weight of a body is equal to its 

mass  m  times the acceleration of gravity  g , or  w  =  mg . From Newton’s second law,

  F ma           (8.3)

The force is weight, directed downward. Because the direction of positive  x  is 

upward, a downward-acting force is negative. Hence

F w mg= − (8.4)

From the discussion in    Sec. 8.2 , the acceleration can be written as

 
a

d x

dt
x≡ ≡

2

2
&&

          

(8.5)

Substituting    Eqs. (8.4)  and    (8.5)  into    Eq. (8.3)  yields

− =mg mx

x g= −

&&

&& (8.6)

   Equation (8.6)  is the equation of motion for the body in our example. It is a dif-

ferential equation whose solution will yield  x  =  f (t) . Moreover,    Eq. (8.6)  was 

obtained by the application of Newton’s second law.  

 Now consider an alternative formulation of this example using Lagrange’s 

equation. This will serve as an introduction to Lagrange’s equation. Let  T  denote 

the  kinetic energy  of the body, where by defi nition

  
T mV mmV1

2
2 1

2
2( )x&

          
(8.7)

Let Φ denote the potential energy of the body. By defi nition, the potential energy 

of a body referenced to the earth’s surface is the weight of the body times the 

distance above the surface:

  Φ = =wx mgx           (8.8)

  

Figure 8.9  Falling 

body. 
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Now defi ne the  lagrangian function B  as the difference between kinetic and 

potential energy:

  
B T −T Φ

          
(8.9)

For our example, combining    Eqs. (8.7)  to    (8.9) , we get

B m mgxm1
2

2( )xx& (8.10)

We now write  Lagrange’s equation , which will have to be accepted without 

proof; it is simply a corollary to Newton’s second law:

d

dt

B

x

B

x

∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ∂
∂

=
&

0 (8.11)

In Lagrange’s equation, recall the defi nition of the partial derivative given in 

Sec. 7.2.4. For example,  ∂ ∂x∂ &     means the derivative of  B  with respect to  &x   , 

holding everything else constant. Hence from    Eq. (8.10) ,

∂
∂

=B

x
mx

&
& (8.12)

and

  

∂
∂

= −B

x
mg (8.13)

Substituting    Eqs. (8.12)  and    (8.13)  into    Eq. (8.11) , we have

d

dt
g( )mx ( )mg& − ( = 0

or because  m  is a constant,

m
d

dt
g

mx mg

x g

( )x ( )mg&

&&

&&

=

+ =mg

0

0

 (8.14)

 Compare    Eqs. (8.14)  and    (8.6) ; they are identical equations of motion. 

Therefore, we see that Lagrange’s equation and Newton’s second law are 

equivalent mechanical relations and lead to the same equations of motion for a 

mechanical system. In the preceding example, the use of Lagrange’s equation 

resulted in a slightly more complicated formulation than the direct use of  F  =  ma .
However, in the analysis of space vehicle orbits and trajectories, Lagrange’s 

equation is the most expedient formulation, as will be detailed in    Sec. 8.4 . 

 With the preceding example in mind, we can give a more general formula-

tion of Lagrange’s equation. Again, no direct proof is given; the reader must be 

content with the “cookbook” recipe given in the following, using the preceding 

example as a basis for induction. Consider a body moving in three-dimensional 
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space, described by some generalized spatial coordinates  q  1 ,  q  2 , and  q  3 . (These 

may be  r , θ, and Φ for a spherical coordinate system;  x ,  y , and  z  for a rectangular 

coordinate system; or the like.) Set up the expression for the  kinetic energy  of the 

body, which may depend on the coordinates  q  1 ,  q  2 , and  q  3  themselves as well as 

the velocities  &q1   ,  &q2   , and  &q3   :

  T T q q q q q q( ,q , q , q )2q 1q 3q& & &           (8.15)

Then set up the expression for the  potential energy  of the body, which depends 

only on spatial location:

  
Φ Φ ( , , )q q, q2q, 3

         
 (8.16)

Now form the  lagrangian function 

  
B T −T Φ

         
 (8.17)

Finally, obtain three equations of motion (one along each coordinate direction) 

by writing Lagrange’s equation for each coordinate:

  

q
d

dt

B

q

B

q

q

1
1 1q

2

0coordinate

coordinat

:
∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
− ∂

∂
=

&

ee

coordinate

:

:

d

dt

B

q

B

q

q
d

dt

B

q

∂
∂

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
− ∂

∂
=

∂
∂

&

&

2q2 ⎠ ∂

3

0

3 333

0
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
− ∂

∂
=B

q
          

 (8.18)

 Let us now apply this formalism to obtain the orbit or trajectory equations 

for a space vehicle.   

   8.4  ORBIT EQUATION 
  Space vehicles are launched from a planet’s surface by rocket boosters. The 

rocket engines driving these boosters are discussed in Ch. 9. Here we are con-

cerned with the motion of the vehicle after all stages of the booster have burned 

out and the satellite, interplanetary probe, or other object is smoothly moving 

through space under the infl uence of gravitational forces. At the instant the last 

booster stage burns out, the space vehicle is at a given distance from the center of 

the planet, moving in a specifi c direction at a specifi c velocity. Obviously nature 

prescribes a specifi c path (a specifi c orbit about the planet or possibly a specifi c 

trajectory away from the planet) for these given conditions at burnout. The pur-

pose of this section is to derive the equation that describes this path. Referring to 

our road map in    Fig. 8.7 , we begin with the center column. 

   8.4.1  Force and Energy 

 Consider a vehicle of mass  m  moving with velocity  V  in the vicinity of a planet of 

large mass  M , as sketched in    Fig. 8.10 . The distance between the centers of the two 
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masses is  r . In a stroke of genius during the last quarter of the 17th century, Isaac 

Newton uncovered the law of universal gravitation, which states that the gravi-

tational force between two masses varies inversely as the square of the distance 

between their centers. In particular, this force is given by

 
F

GmM

r
=

2
         

 (8.19)

where  G  is the universal gravitational constant,  G  = 6.67 × 10 −11  m 3 /(kg)(s) 2 . 

 Lagrange’s equation deals with energy, both potential and kinetic. First con-

sider the potential energy of the system shown in    Fig. 8.10 . Potential energy is 

always based on some reference point; and for gravitational problems in astro-

nautics, it is conventional to establish the potential energy as zero at  r  equal to 

infi nity. Hence, the potential energy at a distance  r  is defi ned as the work done in 

moving the mass  m  from infi nity to the location  r . Let Φ be the potential energy. 

If the distance between  M  and  m  is changed by a small increment  dr , then the 

work done in producing this change is  F dr . This is also the change in potential 

energy  d Φ. Using    Eq. (8.19)  we obtain

  
d F dr

GmM

r
dr=

2
       

Integrating from  r  equals infi nity, where Φ by defi nition is 0, to  r  =  r , where the 

potential energy is Φ = Φ, we get

  
d

GmM

r
dr

r
Φ

Φ
=

∞∫∞∫ 20∫∫
       

or  Φ = −GmM
r

          (8.20)

   Equation (8.20)  gives the potential energy of small mass  m  in the gravitational 

fi eld of large mass  M  at distance  r . The potential energy at  r  is a negative value 

owing to our choice of Φ = 0 at  r  going to infi nity. However, if the idea of a nega-

tive energy is foreign to you, do not be concerned. In mechanical systems we are 

usually concerned with  changes  in energy, and such changes are independent of 

our choice of reference for potential energy.  

  

  Figure 8.10  Movement of a small 

mass in the gravitational fi eld of a 

large mass. 
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 Now consider the kinetic energy. Here we need to more precisely establish 

our coordinate system. In more advanced studies of mechanics, it can be proved 

that the motion of a body in a central force fi eld (such as we are dealing with 

here) takes place in a plane. Hence, we need only two coordinates to designate 

the location of mass  m . Polar coordinates are particularly useful in this case, as 

shown in    Fig. 8.11 . Here the origin is at the center of mass  M ,  r  is the distance be-

tween  m  and  M , and θ is the angular orientation of  r . The velocity of the vehicle 

of mass  m  is  V . The velocity component parallel to  r  is 
 
V dr dt rrVV dtdr / &   . The 

velocity component perpendicular to  r  is equal to the radius vector  r  times the 

time rate of change of θ—that is, times the angular velocity; 
 
V r dθVV θ θdt rdtr( /dθθ d(d ddd d ) &   . 

Therefore, the kinetic energy of the vehicle is

  
T mV r mmV

1

2

1

2
2 21 2[ (r +2 ) ]2&θr )

            
 (8.21)

   8.4.2  Equation of Motion 

 From    Eqs. (8.17) ,    (8.20) , and    (8.21) , the lagrangian function is

  
B T m r

GmM

r
−T = m +Φ 1

2
2 2[ (r +r 2 + ) ]2& &θr

         

 (8.22)

In orbital analysis it is common to denote the product  GM  by  k  2 . If we are dealing 

with the earth, where  M  = 5.98 × 10 24  kg, then

  
k GMGG2 1GMG 4 3 23 986 0=GMG m14.986 10× /s

       

   Equation (8.22)  then becomes

  
B m r

mk

r
m +1

2
2 2

2

[ ([ +r 2 + ) ]2& &θr
         

 (8.23)

Now invoke Lagrange’s equation,    Eq. (8.18) , where  q  1  = θ and  q  2  =  r . First, the 

θ equation is

  

d

dt

B B∂
∂

⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

− ∂
∂

=
&θ θ

0
         

 (8.24)

  

  Figure 8.11  Polar coordinate system. 
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From    Eq. (8.23) ,
∂
∂

=B
mr

&
&

θ
θ2

         

 (8.25)

and ∂
∂

=B

θ
0

         

 (8.26)

Substituting    Eqs. (8.25)  and    (8.26)  into    Eq. (8.24) , we obtain

d

dt
( )mr 2 0&θ) =  (8.27)

   Equation (8.27)  is the equation of motion of the space vehicle in the θ direction. 

It can be immediately integrated as

mr c2 &θ = =const 1
 (8.28)

From elementary physics, linear momentum is defi ned as mass times velocity. 

Analogously, for angular motion,  angular momentum  is defi ned as  I &θI    , where 

I  is the moment of inertia and  &θ     is the angular velocity. For a point mass  m , 

I  =  mr  2 . Hence, the product  mr 2 &θ     is the  angular momentum of the space vehi-
cle , and from    Eq. (8.28) ,

mr 2 &θ = =angular momentum const
       

For a central force fi eld,    Eq. (8.28)  demonstrates that the angular momentum is 

constant. 

 Now consider the  r  equation. From    Eq. (8.18) , where  q  2  =  r ,

d

dt

B

r

B

r

∂
∂

− ∂
∂

=
&

0
         

 (8.29)

From    Eq. (8.23) ,

∂
∂

=B

r
mr

&
&
         

 (8.30)

∂
∂

= − +B

r

mk

r
mr

2

2
2&θ  (8.31)

Substituting    Eqs. (8.30)  and    (8.31)  into    Eq. (8.29) , we get

d

dt
mr

mk

r
mr& &+ − =

2

2
2 0θr  (8.32)

or mr mr
mk

r
&& &− +mr =θ 2θ

2

2
0

         

 (8.33)
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   Equation (8.28)  demonstrated that because  m  is constant,  r 2 &θ     is constant. Denote 

this quantity by  h :

  
r h2 &θ =h angular momentum per unit mass

Multiplying and dividing the second term of    Eq. (8.33)  by  r  3  and canceling  m  yield

 

mr m
r

r

mk

r
&&

&
− +m =

4 2&
3

2

2
0

θ
       

or &&r
h

r

k

r
− + =

2

3

2

2
0  (8.34)

   Equation (8.34)  is the equation of motion for the space vehicle in the  r  direction. 

Note that both  h  2  and  k  2  are constants. Recalling our discussion in    Sec. 8.2 , we 

see that    Eq. (8.34)  is a differential equation. Its solution will provide a relation 

for  r  as the function of time; that is,  r  =  f (t) . 
 However, examine    Fig. 8.11 . The equation of the  path  of the vehicle in space 

should be geometrically given by  r  =  f  (θ ), not  r  =  f(t) . We are interested in this 

path; that is, we want the equation of the space vehicle motion in terms of its 

geometric coordinates  r  and θ . Therefore,    Eq. (8.34)  must be reworked as follows. 

 Let us transform    Eq. (8.34)  to a new dependent variable  u , where

  
r

u
= 1

         
 (8.35)

Then
  

h r
u

=r 2
2

&
&

θ θ
         
 (8.36)

Hence

  

&

&

r
dr

dt

d u

dt u

du

dt

u

du

d

d

dt u

du

d

≡ = = −

= − = −

( / ) 1u)

1

2

2 2d dtθ
θ θ

θ θθθ
= − h

du

         
 (8.37)

Differentiating    Eq. (8.37)  with respect to  t , we get

  

&&r h&&
d

dt

du

d
h

d du

d

d

dt

h
d u

d

= − ⎛
⎝
⎜
⎛⎛
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⎠
⎟
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2
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= −d
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h

d u

d

θ
θ

θ
2

2
&

         
 (8.38)

But from    Eq. (8.36) ,  &θ = u h2
   . Substituting into    Eq. (8.38) , we obtain

  
&&r h&& u

d u

d
2 2

2

2θ          

 (8.39)
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Substituting    Eqs. (8.39)  and    (8.35)  into    Eq. (8.34)  yields

− − + =h u
d u

d
h u k u2 2

2

2
2 3u 2 2 0

θ

or by dividing by  h  2  u  2 , 

d u

d
u

k

h

2

2

2

2
0

θd
+ −u =

         

 (8.40)

   Equation (8.40)  is just as valid an equation of motion as the original    Eq. (8.34) . 

   Equation (8.40)  is a differential equation, and its solution gives  u  =  f  (θ). Specifi cally, 

a solution of    Eq. (8.40)  is

  

k

h
A C= +

2

2
cos( )θ

 

 (8.41)
        

where  A  and  C  are constants (essentially constants of integration). You should 

satisfy yourself that    Eq. (8.41)  is indeed a solution of    Eq. (8.40)  by substitution 

of    (8.41)  into    (8.40) . 

 Return to the original transformation,    Eq. (8.35) . Substituting  u  = 1/ r  into 

   Eq. (8.41)  yields

  

r
k A

= 1
2 2h/ ch A+ A2h ( )Cθ          

 (8.42)

Multiply and divide    Eq. (8.42)  by  h  2 / k  2 :

  

r
h k

A h C
=

+ A

2 2k
2 2k1

/

( )h kh k2 kk/ ( )θ
          

 (8.43)

    Equation (8.43)  is the desired equation of the path (the orbit or trajectory) of 

the space vehicle. It is an algebraic equation for  r  =  f (θ ); it gives the geometric 

coordinates  r  and θ  for a given path. The  specifi c  path is dictated by the values 

of the constants  h  2 ,  A , and  C  in    Eq. (8.43) . In turn, refer to    Fig. 8.12 : These con-

stants are fi xed by conditions at the instant of burnout of the rocket booster. At 

burnout the vehicle is a distance  r   b   from the center of the earth, and its velocity 

has a magnitude  V   b   in a direction β   b   with respect to a perpendicular to  r . These 

burnout conditions completely specify the vehicle’s path; that is, they determine 

the values of  h  2 ,  A , and  C  for    Eq. (8.43) .  
    Equation (8.43)  is sometimes generically called the  orbit equation.  However, 

it applies to the trajectory of a space vehicle escaping from the gravitational fi eld 

of the earth as well as to an artifi cial satellite in orbit about the earth. In fact, what 

kind of orbit or trajectory is described by    Eq. (8.43) ? What type of mathematical 

curve is it? What physical conditions are necessary for a body to go into orbit or 

to escape from the earth? The answers can be found by further examination of 

   Eq. (8.43) , as discussed in    Sec. 8.5 .    
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   8.5   SPACE VEHICLE TRAJECTORIES—SOME 
BASIC ASPECTS 

  Examine    Eq. (8.43)  closely. It has the general form

r
p

e
=

1 ce+ e ( )Cθ
 (8.44)

where  p  =  h  2 / k  2 ,  e  =  A(h  2 / k  2 ), and  C  is simply a phase angle. From analytic geom-

etry,    Eq. (8.44)  is recognized as the standard form of a  conic section  in polar 

coordinates; that is,    Eq. (8.44)  is the equation of a circle, ellipse, parabola, or 

hyperbola, depending on the value of  e , where  e  is the  eccentricity  of the conic 

section. Specifi cally, 

    If  e  = 0, the path is a  circle.   
    If  e  < 1, the path is an  ellipse.   
    If  e  = 1, the path is a  parabola.   
    If  e  > 1, the path is a  hyperbola.    

These possibilities are sketched in    Fig. 8.13 . Note that point  b  on these sketches 

denotes the point of burnout and that θ  is referenced to the dashed line through  b ; 

that is, θ  is arbitrarily chosen as zero at burnout. Then  C  is simply a phase angle 

that orients the  x  and  y  axes with respect to the burnout point, where the  x  axis is 

a line of symmetry for the conic section. From inspection of    Fig. 8.13 , circular 

and elliptical paths result in an orbit about the large mass  M  (the earth), whereas 

parabolic and hyperbolic paths result in escape from the earth.  

 On a physical basis, the eccentricity, and hence the type of path for the space 

vehicle, is governed by the difference between the kinetic and potential energies of the 

vehicle. To prove this, consider fi rst the kinetic energy  T mV1
2

2
   . From    Eq. (8.21) ,

T m rm1
2

2 2[ (+r 2 + ) ]2& &θr

Differentiate    Eq. (8.44)  with respect to  t :

dr

dt
r

e C
= =r

+ e
&

&[ sre in( )C ]

cos( )

θ θ( )C− ]

θ1
(8.45)

  

  Figure 8.12  Conditions at the instance of burnout. 
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Substitute    Eq. (8.45)  into    (8.21) :

T m
e

r+
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫1

2 1⎩

2 2 2 2

2
2 2[ sr e2 2 in ( )C ]

[ ce+ e1 ( )C ]

θ( )C− C ]

θ
θ

&
& ⎬⎬

⎫⎫⎫⎫

⎭
⎬⎬⎬⎬ (8.46)

Recall that      r h2 &θ    ; hence  &θ 2 2 4= h r2/    . Thus    Eq. (8.46)  becomes

 

T m
h e C

r

h

r

− +
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬1

r2 ⎩

2 2 2

2 21

2

2

sin (2 )

[ ce+ e1 +1 os( )C− C ]

θ(
(

         

 (8.47)

Putting the right side of    Eq. (8.47)  over the same common denominator and 

remembering from    Eq. (8.44)  that

r
h

k
2 2

2

2

2

[ ce1 os( )CC ]ce os( =
⎛

⎝
⎜
⎛⎛

⎝⎝

⎞2

⎠
⎟
⎞⎞

⎠⎠
(

Figure 8.13  The four types of orbits and trajectories, illustrating the relation of the burnout 

point and phase angle with the axes of symmetry. 
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we transform    Eq. (8.47)  to

T m
k

h
e em +1

2
1 2

4

2
2[ ce1 2+ ( )CC ]θ  (8.48)

The reader should fi ll in the few missing algebraic steps to obtain    Eq. (8.48) . 

 Consider now the absolute value of the potential energy, denoted as |Φ|. 
From    Eq. (8.20) ,

| | =| =GMmMM

r

k m

r

2

 (8.49)

Substitute    Eq. (8.44)  into    Eq. (8.49) :

| | [ c ( )]=|
k m

h
cos((cos(

4

2
1 θ(  (8.50)

 The difference between the kinetic and potential energies is obtained by 

subtracting    Eq. (8.50)  from    Eq. (8.48) :

T m
k

h
e

k m

h
−| | [ cee ( )C ] [

h
(

1

2
1 2+

4

2
2

4

2
θ θe

k m
e+ e + e)C ] [

k m− cos(12 CC)]  (8.51)

Let  H  denote  T  − |Φ|. Then    Eq. (8.51)  becomes

H T m
k

h
−T = −| | ( )e−1

2

4

2
2

         
 (8.52)

Solving    Eq. (8.52)  for  e , we get

e
h H

mk
= +1

2 2

4

         

 (8.53)

   Equation (8.53)  is the desired result, giving the eccentricity  e  in terms of the dif-

ference between kinetic and potential energies  H . 

 Examine    Eq. (8.53) . If the kinetic energy is smaller than the potential energy,  

H  will be negative and hence  e  < 1. If the kinetic and potential energies are equal,  H  = 0 

and  e  = 1. Similarly, if the kinetic energy is larger than the potential energy,  H  is posi-

tive and  e   > 1. Referring again to    Fig. 8.13 , we can make the following tabulation:

  Type of Trajectory     e     Energy Relation  

  Ellipse    < 1  
   

1

2
2mV

GMmMM

r
<

     

  Parabola    = 1   

1

2
2mV

GMmMM

r
=

       

  Hyperbola    > 1  
   

1

2
2mV

GMmMM

r
>
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 From this we draw the important conclusion that a vehicle intended to 

escape the earth and travel into deep space (a parabolic or hyperbolic trajectory) 

must be launched so that its kinetic energy at burnout is equal to or greater than 

its potential energy—a conclusion that makes intuitive sense even without the 

preceding derivation. 

    Equation (8.53)  tells us more. For example, what velocity is required for a 

circular orbit? To answer this question, recall that a circle has zero eccentricity. 

Putting  e  = 0 into    Eq. (8.53) , we get

0 1
2 2

4
+1

h H2

mk

or H
mk

h
= −

4

22
 (8.54)

Recall that H T mV GMm rMM−T = −mV| | 1
2

2 /     . Hence    Eq. (8.54)  becomes

1

2 2
2

4

2
mV

mk

h

GMmMM
r

= − +  (8.55)

From    Eq. (8.44) , with  e  = 0,

r
h

k
=

2

2
         
 (8.56)

Substitute    Eq. (8.56)  into    (8.55)  and solve for  V :

  

1
2 2 2

2
2 2 2

mV
m k

r
k m2

r
k m2

r
= − + =

       

Thus
  

V
k
r

=
2

circular velocity
         

 (8.57)

   Equation (8.57)  gives the velocity required to obtain a circular orbit. Recall from 

   Sec. 8.4.2  that  k  2  =  GM  = 3.986 × 10 14  m 3 /s 2 . Assume that  r  = 6.4 × 10 6  m, 

essentially the radius of the earth. Then

  

V = ×
×

= ×3 986 10

6 4 10
7 9 10

14

6
3.

m/s
       

This is a convenient number to remember;  circular, or orbital, velocity is 7.9km/s, 
or approximately 26,000 ft/s.  

 The velocity required to escape the earth can be obtained in much the 

same fashion. We have previously demonstrated that a vehicle will escape if it 
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has a parabolic ( e   = 1) or a hyperbolic ( e   > 1) trajectory. Consider a parabolic 

trajectory. For this we know that the kinetic and potential energies are equal: 

 T  = |Φ|. Hence

1
2

2
2

mV
GMmMM

r
k m2

r
= =

Solving for  V , we get

 

V
k
r

= 2 2

parabolic velocity
         

 (8.58)

   Equation (8.58)  gives the velocity required to obtain a parabolic trajectory. This is 

called the  escape velocity;  note by comparing    Eqs. (8.57)  and    (8.58)  that the escape 

velocity is larger than the orbital velocity by a factor of  2   . Again assuming that  r
is the radius of the earth,  r  = 6.4 × 10 6  m, then  escape velocity is 11.2 km/s, or ap-
proximately 36,000 ft/s.  Return to    Fig. 8.12 ; if at burnout  V   b   ≥ 11.2 km/s, then the 

vehicle will escape the earth, independent of the direction of motion β   b  . 

   EXAMPLE 8.1  

 At the end of a rocket launch of a space vehicle, the burnout velocity is 9 km/s in a direc-

tion due north and 3° above the local horizontal. The altitude above sea level is 500 mi. 

The burnout point is located at the 27th parallel (27°) above the equator. Calculate and 

plot the trajectory of the space vehicle. 

  ■ Solution 
 The burnout conditions are sketched in    Fig. 8.14 . The altitude above sea level is

  hG = = ×500 mi 0.805 10 m6

       

  

  Figure 8.14  Burnout conditions for    Example 8.1 . 
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The distance from the center of the earth to the burnout point is (where the earth’s radius 

is  r   e   = 6.4 × 10 6  m)

hb err G= +rerr = × + × = ×6 4 10 0 805 10 7 2 106 6+ ×0 805 10 6.× +4 10 0 . m×2 106

       

As given in    Sec. 8.4.2 ,

k GMGG2 1GMG 43 986=GMG /1. 4986 10× s/3 2/s/        

Also, as defi ned earlier,

h r rVr =2 & &θ θr= θVV( )θθr

where  V   θ  is the velocity component perpendicular to the radius vector  r . Thus

h rV r Vb brr VrV ° =θVVVV ββco (b =s β . )× ( ) ° =7. × 3) cos 6 4. 7 1× 06 3)( ×× 10 m22

2 4 2

/s

m /4 sh ×= 4 188 10.

Hence  p
h

k
≡ = ×

×
= ×

2

2

21

14
74 188 10

3 986 10
1 0506 10

.

.
m7×.0506 10

The trajectory equation is given by    Eq. (8.44) , where the above value of  p  is the numera-

tor of the right side. To proceed further, we need the eccentricity  e . This can be obtained 

from    Eq. (8.53) 

  

e
h H

mk
= +1

2 2

4
       

where  H/m  = ( T  − |Φ|)/ m :

T

m

V

m

GM

r

k

rb brr rr

= = =

= = =

2 3 2
7

2

2 2
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7 2 10
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6
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×
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H
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h
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H
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⎥
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Immediately we recognize that the trajectory is an elliptical orbit because  e  < 1 and 

T  < |Φ|. From    Eq. (8.44) ,

 

r
p

e C
=

+ e
= ×

1

1 0506 107

cos( )

.

( )C−θ θC 1 0+ 4654) c.4654 os (
       

To fi nd the phase angle  C , simply substitute the burnout location ( r   b   = 7.2 × 10 6  m and 

θ  = 0°) into the preceding equation. (Note that θ  = 0° at burnout, and hence θ  is measured 

relative to the radius vector at burnout, with increasing θ  taken in the direction of motion; 

this is sketched in    Fig. 8.13 .)

  

r
p

e C
brr =

+ e

× = ×
1

7 2 10
1 0506 10

1 0+ 4654
6

7

cos( )

.
.

c.4654 os( )C−
       

Solve for cos(− C ):

  cos( ) .− )C 9878        

Thus  C = − °8 96        

  

  Figure 8.15  Orbit for the spacecraft in    Example 8.1 . 
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Finally, the complete equation of the orbit is

r = ×
°

1 0506 10

1 0+ 4654 8 96

7.

c.4654 os( .+ 8 )θ

where θ  is in degrees and  r  is in meters.  
 The orbit is drawn to scale in    Fig. 8.15 . Note that  b  designates the burnout point, 

which is 27° above the equator. The  x  and  y  axes are the axes of symmetry for the 

elliptical orbit, and the phase angle orients the  x  axis at 8.96°  below  (because  C  is 

negative in this problem) the radius vector through point  b . The angle θ  is measured 

from the radius through  b , with positive θ  in the counterclockwise direction. The 

spacecraft is traveling counterclockwise in an elliptical orbit. The perigee and apogee 

are 7.169 × 10 6  and 1.965 × 10 7  m, respectively. (See the next section for defi nitions 

of  perigee  and  apogee .)      

   8.6  KEPLER’S LAWS 
  To this point, our discussion has been couched in terms of an artifi cial space 

vehicle launched from the earth. However, most of the preceding analysis and 

results hold in general for orbits and trajectories of any mass in a central gravita-

tional force fi eld. The most familiar natural example of such motion is our solar 

system—that is, the orbits of the planets about the sun. Such motion has held 

people’s attention since the early days of civilization. Early observations and map-

ping of planetary motion evolved over millennia, passing from the Babylonians 

to the Egyptians to the Greeks to the Romans, carried throughout the dark ages 

by the Arabians, and reaching the age of Copernicus in the 15th century (about 

the time Christopher Columbus was discovering America). However, at this time 

astronomical observations were still inaccurate and uncertain. Then from 1576 

to 1597, Tycho Brahe, a Danish noble, made a large number of precise astro-

nomical observations that improved the accuracy of existing tables by a factor 

of 50. Near the end of his life, Brahe was joined by Johannes Kepler, a young 

German astronomer and mathematician, who further improved these observa-

tions. Moreover, Kepler made some pioneering conclusions about the geometry 

of planetary motion. From 1609 to 1618, Kepler induced and published three 

laws of planetary motion, obtained strictly from an exhaustive examination of the 

astronomical data. Kepler did not have the advantage of Newton’s law of uni-

versal gravitational or Newtonian mechanics, which came three-quarters of a 

century later. Nevertheless, Kepler’s inductions were essentially correct, and his 

classical three laws are as important today for understanding artifi cial satellite 

motion as they were in the 17th century for understanding planetary motion. 

Therefore, we discuss his conclusions in this section. We will take advantage 

of our previous derivations of orbital motion to derive Kepler’s laws, a luxury 

Kepler himself did not have. 

 Kepler’s fi rst major conclusion was this: 

   Kepler’s fi rst law:  A satellite describes an  elliptical  path around its center of attraction.  
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 We have already proved this fact in    Secs. 8.4  and    8.5 ; so nothing more need 

be said. 

 To prove Kepler’s second law, recall from    Eq. (8.28)  that angular momentum 

is constant; that is,  mr 2 &θ = constant   . Consider    Fig. 8.16 , which shows the radius 

vector  r  sweeping through an infi nitesimally small angle  d θ . The area of the 

small triangle swept out is  dA r dh= 1
2    . However,  dh  =  r d θ . Thus  dA r d= 1

2
2 θd    . 

The time rate of change of the area swept out by the radius is then

  

dA

dt

r d

dt
r= =

1
2

2
21

2

θd θ&
         
 (8.59)

However, from    Eq. (8.28) ,  r 2 &θ     is a constant. Hence    Eq. (8.59)  shows that

  

dA

dt
= const

         
 (8.60)

which proves Kepler’s second law:

   Kepler’s second law:  In equal times, the areas swept out by the radius vector of a 

satellite are the same.  

An obvious qualitative conclusion follows from this law, as illustrated in    Fig. 8.17 . 

Here the elliptical orbit of a small mass  m  is shown about a large mass  M . In order 

for equal areas to be swept out in equal times, the satellite must have a larger veloc-

ity when it is near  M  and a smaller velocity when it is far away. This is character-

istic of all satellite motion.   

 To derive Kepler’s third law, consider the elliptical orbit shown in    Fig. 8.18 . 

The point of closest approach, where  r  is minimum, is defi ned as the  perigee ; the 

point farthest away, where  r  is maximum, is defi ned as the  apogee . The mass  M  

(perhaps that of the earth or the sun) is at the focus of the ellipse. The major axis 

of the ellipse is the distance from the perigee to the apogee, and one-half this 

  

  Figure 8.16  Area swept out by the 

radius vector in moving through 

angle  d θ . 

  

  Figure 8.17  Illustration of the variation in velocity at 

different points along the orbit. 
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distance is defi ned as the  semimajor axis a . The  semiminor axis b  is also shown 

in    Fig. 8.18 . Let us assume for simplicity that the phase angle  C  of the orbit is 

zero. Thus, from    Eq. (8.44) , the maximum and minimum radii are, respectively,

 

r
h k

e
marr x

/=
−

2 2k

1          

 (8.61)

r
h k

e
mirr n

/=
+

2 2k

1
 (8.62)

From the defi nition of  a , and using    Eqs. (8.61)  and    (8.62) , we obtain

a
h

k e e

h k

e
=

−
+

+
=

−
1

2

1

2

1

1

1

1 1

2

2

2 2k
2

( )r r+r
/

marrrr x mrr+ in
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠          

 (8.63)

The eccentricity  e  of the ellipse is geometrically related to the semimajor and 

semiminor axes; taking a result from analytic geometry, we get

e
a

= ( )a b /2 2bb 1 2/

       

Solving for  b  gives

b aa( )e− /2 1) 2
 (8.64)

If we lift another result from analytic geometry, we fi nd the area of an ellipse is

A abπ  (8.65)

Substituting    Eq. (8.64)  into (   8.65 ) yields

A a aπeπaaa[ (aaa ) ] ( )e/ /( )aaπ=1 e (π (2 1) π] ) 2
 (8.66)

Now return to    Eq. (8.59) :

dA r dt h dt= r dt1
2

2 1
2

&θ (8.67)

  

  Figure 8.18  Illustration of apogee, perigee, and semimajor and 

semiminor axes. 
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Thus we can obtain the area of the ellipse by integrating    Eq. (8.67)  around the 

complete orbit. That is, imagine the satellite starting at the perigee at time = 0. Now 

allow the satellite to move around one complete orbit, returning to the perigee. 

The area swept out by the radius vector is the whole area of the ellipse  A . The 

time taken by the satellite in executing the complete orbit is defi ned as the  period
and is denoted by τ. Thus, integrating    Eq. (8.67)  around the complete orbit, 

we get

 

h dt
A

0 0

1

2
∫ ∫dA

A

0 00 0

τ

or  A h1
2 τ  (8.68)

We now have two independent results for  A :    Eq. (8.66)  from analytic geom-

etry and    Eq. (8.68)  from orbital mechanics. Equating these two relations, 

we have

  
1
2

2 2 1 2h aτ πa ( )21 e−1 /  (8.69)

Solve    Eq. (8.63)  for  h :

h a ka k1 2 2/ /k2 2 1( )e2  (8.70)

Substitute    Eq. (8.70)  into    Eq. (8.69) :

1
2

1 2 2 2 2 1 212 2τ π211 aπ/2 2 12 11k22 /( )11 21 2 ( )21 e
       

or, squaring both sides,

1
4

2 2 2 4τ π2 2 a

or  τ π2
2

2
34=

k
a           (8.71)

Examine    Eq. (8.71) . The factor 4π 2  /  k  2  is a constant. Hence

τ 2 3= ( ) ( )3

 (8.72)

That is, the square of the period is proportional to the cube of the semimajor 

axis. If we have two satellites in orbit about the same planet, with values 

of τ 1 ,  a  1  and τ 2 ,  a  2 , respectively, then Kepler’s third law can be written as 

follows:

Kepler’s third law:  The periods of any two satellites about the same planet are 

related to their semimajor axes as

 

τ
τ

1
2

2
2

1
3

2
3

= a

a            
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 The period of revolution of the earth about the sun is 365.256 days. The semimajor axis 

of the earth’s orbit is 1.49527 × 10 11  m. The semimajor axis of the orbit of Mars is 

2.2783 × 10 11  m. Calculate the period of Mars.

■ Solution
 From Kepler’s third law, we have

τ τ2 1τ 2

1

3 2⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
a

a

where a1
11

1

1 49527 10

365 256

= ×1 49527

=
.

.

m earth

daysτ

and a2
112 2783 10= ×2 2783. m112783 10×2783 Mars

Hence  τ

τ

2

3 2

2

365 256
2 2783

1 49527

686 96

= ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

=

.
.

.

. days forooffff Mars

   EXAMPLE 8.2 

8.7  AN APPLICATION: THE VOYAGER 
SPACECRAFT—THEIR DESIGN, FLIGHT 
TRAJECTORIES, AND HISTORICAL 
SIGNIFICANCE

Note: Sections that appeared in the 7th edition at this location in Chapter 8, namely 

discussions of the Vis-Viva (Energy) Equation, some orbital maneuvers including 

plane changes and orbital maneuvers including plane changes and orbital trans-

fers, interplanetary trajectories including hyperbolic trajectories sphere of infl u-

ence, heliocentric trajectories, method of patched conics gravity-assist trajectories, 

and spacecraft attitude control, have been moved to the web site for the 8th edition.

The Voyager 2 spacecraft is shown in Fig. 2.29 as an example of a clas-

sic spacecraft arrangement. The two almost identical spacecrafts, Voyager 1 

and Voyager 2, were designed, built, and operated by NASA’s Jet Propulsion 

Laboratory (JPL) in Pasadena, California. The Jet Propulsion Laboratory is 

owned and managed by the California Institute of Technology on behalf of NASA. 

The Voyager missions are part of NASA’s Heliophysics System Observatory, 

sponsored by the Heliophysics Division of the Science Mission Directorate at 

NASA Headquarters in Washington, D.C. Although similar spacecraft, the two 

Voyagers were sent on slightly different fl ight paths through the solar system 

and into deep space. This section details those different trajectories and discusses 

some of the design aspects and historical signifi cance of the Voyagers.
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The design of the Voyagers was driven by one primary requirement—the 

acquisition of new scientifi c data.  In essence, the spacecraft were a type of space 

truck whose single purpose was to carry a load of specialized instruments, shown 

and identifi ed in Fig. 2.29, along with the small vernier rockets needed for mid-

course corrections in the fl ight trajectory. Because the fl ight trajectories would 

take the Voyagers to various planets and their moons, it was necessary to mount 

the instruments on an articulated instrument platform shown on the right side 

of the spacecraft in Fig. 2.29. On this articulated platform, the instruments had 

an unobstructed view of each planet with the planet at any position with respect 

to the spacecraft. The high gain antenna through which information and data is 

sent to and from the spacecraft, as seen at the top of the spacecraft in Fig. 2.29, 

is constantly pointing to the earth.

The original mission of both Voyagers was to conduct close-up studies of 

Jupiter and Saturn, Saturn’s rings, and the larger moons of the two planets. For 

this two-planet mission the Voyagers were built to last fi ve years. However, the 

mission to Jupiter and Saturn was so successful that the Voyager 2 spacecraft 

was re-programmed remotely to last 12 years in order to fl y past Uranus and 

Neptune. This extension was made possible by using gravity-assist maneuvers 

which allowed each spacecraft to swing from one planet to the other, picking up 

energy and velocity from each planet, and allowing the spacecraft to move to 

the next planet without using the onboard propulsion system. (The mathematical 

details of a gravity-assist trajectory are given in the supplementary materials for 

Ch. 8, which can now be found on the web site for the 8th edition.)

Both spacecraft are on hyperbolic trajectories away from the sun, which car-

ried them into the beginning of interstellar space. For this reason NASA renamed 

the project as the Voyager Interstellar Mission. Various instruments that earlier 

had been turned off were turned back on, and by judicious use of power, the life-

time of the two spacecraft has been extended. The radioisotope thermoelectric 

generators powering the instruments on both Voyager 1 and 2 have been running 

down since their launch in 1977. By 2020, the instruments on Voyager 1 must 

share power by rotating on and off. By 2025, its last instrument will be shut down 

for good. Voyager 2 has a plasma instrument that is still intact.

To track the fl ight paths of both Voyager 1 and 2 we start with their launch 

from the NASA Kennedy Space Center at Cape Canaveral, Florida—Voyager 2 

on August 20, 1977, and Voyager 1 slightly later, on September 5, 1977. Both 

were launched by Titan-Centaur booster rockets. The fl ight trajectories of both 

Voyagers is sketched (not to scale) in Fig. 8.19. Examining the trajectory of 

Voyager 1, we have:

Earth to Jupiter: elliptical trajectory relative to the sun, eccentricity 

= 0.7978.

Jupiter-centered: hyperbolic trajectory relative to Jupiter, eccentricity 

= 1.3190. Picks up energy due to gravity assist.

Jupiter to Saturn: hyperbolic trajectory relative to the sun, eccentricity 

= 2.3027.
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Saturn-centered: hyperbolic trajectory relative to Saturn, eccentricity 

= 2.1076. Picks up energy due to gravity assist.

Post-Saturn: hyperbolic trajectory relative to the sun, eccentricity 

= 3.7247. Stays on this trajectory while traveling 

into interstellar space.

Examining the trajectory of Voyager 2, we have

Earth to Jupiter: elliptical trajectory relative to the sun, eccentricity 

= 0.7244.

Jupiter-centered: hyperbolic trajectory relative to Jupiter, eccentricity 

= 1.3303. Picks up energy due to gravity assist.

Jupiter to Saturn: hyperbolic trajectory relative to the sun, eccentricity 

= 1.3383.

Saturn centered: hyperbolic trajectory relative to the Saturn, 

eccentricity = 1.4826. Picks up energy due to 

gravity assist.

Saturn to Uranus: hyperbolic trajectory relative to the sun, eccentricity 

= 3.4802.

Voyager 2

Voyager 1

Launch

5 Sept 77

Voyager 2

Launch

20 Aug 77

Voyager 1

Neptune

25 Aug 89

Uranus

24 Jan 86

Saturn

25 Aug 81

Saturn

12 Nov 80

Jupiter

9 July 79

Jupiter

5 Mar 79

Figure 8.19 Flight trajectories for Voyagers 1 and 2 (not to scale).
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Uranus-centered: hyperbolic trajectory relative to Uranus, eccentricity 

= 5.0142. Picks up energy due to gravity assist.

Uranus to Neptune: hyperbolic trajectory relative to the sun, eccentricity 

= 5.8068.

Neptune centered: hyperbolic trajectory relative to Neptune, eccentricity 

= 2.1945. Picks up energy due to gravity assist.

Post Neptune: hyperbolic trajectory relative to the sun, eccentricity 

= 6.2846. Stays on this trajectory while traveling 

into interstellar space.

Note: Discussions on hyperbolic trajectories and gravity assist, originally in 

section 8.9 in the 7th edition have been moved to the web site for the 8th edition.

A tabulation of the launch and destination dates for both Voyagers is given 

below:

Voyager 2 Voyager 1

August 20, 1977
July 9, 1979
August 25, 1981
January 24, 1986
August 25, 1989
August 2007
(84 AU)

September 5, 1977
March 5, 1979
November 12, 1980

—
—

December 2004
(94 AU)

Launch
Jupiter
Saturn
Uranus
Neptune
Termination shock

The last entry in the tabulation above is the month when the two Voyagers 

crossed the termination shock, a term that requires some explanation. The sun 

is surrounded by a large region called the heliosphere, which contains the solar 

wind, made up of plasma blown out from the sun. The heliosphere is a kind 

of “bubble” that contains the solar wind against the somewhat constant outside 

pressure of the interstellar medium, the hydrogen and helium gas and other mat-

ter that makes up our galaxy. Close to the sun, the solar wind is supersonic, at 

velocities from 300 to 800 km/s relative to the sun. (The speed of sound in the 

interstellar medium is approximately 100 km/s.) As the solar wind propagates 

away from the sun, its velocity steadily decreases, and its pressure decreases 

with the square of the distance from the sun. Far enough away from the sun, the 

pressure from the interstellar medium is suffi cient to slow the solar wind to the 

speed of sound, where a shock wave occurs. This shock is called the termination 

shock, across which there is compression, heating, and a change in the magnetic 

fi eld. Voyager 1 encountered the termination shock in December 2004 at a dis-

tance of 94 astronomical units (AU) from the sun. (An astronomical unit is the 

average distance from the earth to the sun, equal to 149,597,871 km.)  Almost 

three years later, in August 2007, Voyager 2 passed through the termination 

shock. The other side of the termination shock, where the solar wind is subsonic 

and strongly interacts with the interstellar medium, is called the heliosheath.  

In turn, the outer surface of the heliosheath is the heliopause, beyond which 

there is just the interstellar medium. On August 25, 2012, an instrument on 
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Voyager 1 recorded a sharp drop in cosmic rays that are produced inside the 

heliosphere. After much scientifi c debate, that date is now accepted as the exit of 

Voyager 1 from the heliosphere and its entry into interstellar space. (See Kerr, 

“It’s Offi cial—Voyager Has Left The Solar System,” Sept. 13, 2013, pp. 1158-

1159.) At that time, running out of power with its instruments failing, Voyager 1 

became the fi rst human-made object to enter outer space.  Voyager 2 is not far 

behind; it too is headed for interstellar space, but at the time of writing (August 

2014) it is not quite there.

This section describing the fl ight of the Voyagers is intended to show the 

application of our discussions in earlier sections of Chapter 8 on the motion of 

spacecraft in space, where such motion is driven by the force of gravity only, 

whether it be the gravitational fi eld from the sun, from the earth, or from other 

planets in our solar system.  The physics and mathematics of fl ight through space 

is one of the most important aspects of the study of aerospace engineering, and 

the fl ight of the Voyager spacecraft is one of the most important technical and 

historical examples in the annals of aerospace engineering.

   8.8   INTRODUCTION TO EARTH 
AND PLANETARY ENTRY     1   

   In all cases of contemporary manned space vehicles, and with many unmanned 

vehicles, it is necessary to terminate the orbit or trajectory at some time and 

return to the earth. Obviously this necessitates negotiating the atmosphere at high 

velocities. Recall from    Sec. 8.5  that an orbital vehicle will enter the outer regions 

of the atmosphere at a velocity close to 26,000 ft/s; a vehicle returning from a 

moon mission (such as an  Apollo  vehicle) will enter at an even higher velocity— 

nearly 36,000 ft/s. These velocities correspond to fl ight Mach numbers of 30 or 

more! Such hypersonic fl ight conditions are associated with several uniquely 

diffi cult aerodynamic problems—so unique and diffi cult that they dominated 

the research efforts of aerodynamicists during the late 1950s and throughout 

the 1960s. The successful manned entries of the  Mercury, Gemini,  and  Apollo  

 vehicles were striking testimonials to the success of this hypersonic research. 

Some aspects of hypersonic vehicles are discussed in Ch. 10. 

 Consider a space vehicle in orbit about the earth, as shown in    Fig. 8.20 . 

We wish to terminate this orbit and land the vehicle somewhere on the earth’s 

surface. First the path of the vehicle is changed by fi ring a retrorocket, decreas-

ing the vehicle’s velocity. In terms of the orbit equation,    Eq. (8.43)  or (8.44), 

the retrorocket’s fi ring effectively changes the values of  h ,  e , and  C  so that the 

vehicle curves toward the earth. When the vehicle encounters the outer region of 

1In much of the literature you will fi nd references to earth reentry rather than earth entry. The word 
reentry implies that the space vehicle had entered the atmosphere before and now is doing so again. This 
is usually not true except for the Space Shuttle. So we will use the word entry here; it seems grammatically 
more correct, and it is in keeping with modern use.
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the atmosphere (portrayed by the dashed circle in    Fig. 8.20 ), three types of entry 

paths are possible: 

  1.    Ballistic entry.  Here the vehicle has little or no aerodynamic lift. It falls 
through the atmosphere under the infl uence of drag and gravity, striking 
the surface at point  a  in    Fig. 8.20 . The impact point is predetermined by 
the conditions at fi rst entry to the atmosphere. The pilot has no control over 
his or her landing position during this ballistic trajectory. It literally is the 
same as  falling  to the surface. Before the Space Shuttle, virtually all entries 
of existing space vehicles were ballistic. (A slight exception might be the 
 Apollo  capsule shown in    Fig. 8.4 , which at an angle of attack can generate 
a small lift-to-drag ratio,  L /D  < 1. However, for all practical purposes, this 
is still a ballistic entry vehicle.)  

  2.    Skip entry.  Here the vehicle generates a value of  L / D  between 1 and 4 and 
uses this lifting ability to fi rst graze the atmosphere, then slow down a bit, 
then pitch up so that the lift carries it back out of the atmosphere. This is 
repeated several times, much like a fl at stone skipping over the surface of a 
pond, until fi nally the vehicle is slowed down appropriately and penetrates the 
atmosphere, landing at point  c  in    Fig. 8.20 . Unfortunately the  aerodynamic 
heating of a skip entry vehicle is inordinately large, and  therefore such an 
entry mode has never been used and is not contemplated in the future.  

  3.    Glide entry.  Here the vehicle is essentially an airplane, generating a lift- 
to-drag ratio of 4 or larger. The vehicle enters the atmosphere at a high 
angle of attack (30° or more) and fl ies to the surface, landing at point  b  
in    Fig. 8.20 . An example of such a lifting entry vehicle is given in    Fig. 8.6 . 

  

  Figure 8.20  Three types of entry paths: ( a ) ballistic; ( b ) glide; ( c ) skip. 



The compelling advantages of the Space Shuttle are that the pilot can, in 
principle, choose the landing site and that the vehicle can be landed intact, 
to be used again.     

 All these entry modes present two overriding technical concerns: maxi-

mum deceleration and aerodynamic heating. For the safety of the occupants of a 

manned entry vehicle, the maximum deceleration should not exceed 10 times the 

acceleration of gravity—that is, 10  g ’s. Furthermore, the aerodynamic heating 

of the vehicle should be low enough to maintain tolerable temperatures inside 

the capsule; if the vehicle is unmanned, it still must be kept from burning up in 

the atmosphere. For these reasons entry trajectories, maximum deceleration, and 

aerodynamic heating are the subject of the remainder of this chapter. With this 

we move to the right column in our road map,    Fig. 8.7 . 

 Finally, there is an extra consideration in regard to the entry of manned space 

vehicles returning from lunar or planetary missions. Such vehicles will approach 

the earth with parabolic or hyperbolic trajectories, as shown in    Fig. 8.21 . If the 

vehicle is traveling along path  A  in    Fig. 8.21 , penetration of the atmosphere will 

be too rapid, and the maximum deceleration will be too large. In contrast, if the 

vehicle is traveling along path  B , it will not penetrate the atmosphere enough; the 

drag will be too low, the velocity will not decrease enough for the vehicle to be 

captured by the earth, and it will go shooting past, back into outer space, never 

to return again. Consequently, there is a narrow  entry corridor  into which the 

vehicle must be guided for a successful return to the earth’s surface. This entry 

  

  Figure 8.21  Illustration of the entry corridor. 
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corridor is shown in    Fig. 8.21 , bounded above by the  overshoot boundary  and 

below by the  undershoot boundary.     

   8.9  EXPONENTIAL ATMOSPHERE 
  Because entry involves motion through the atmosphere, it is reasonable to expect 

entry performance to depend on the physical properties of the atmosphere. Such 

properties have been discussed in Ch. 3, where the atmospheric temperature dis-

tribution is given in Fig. 3.4. Detailed entry trajectory calculations made on com-

puters take into account the precise variation of the standard atmosphere as given 

in Ch. 3. However, for a fi rst approximation, a completely isothermal atmosphere 

with a constant temperature equal to some mean of the variation shown in Fig. 3.4 

can be assumed. In this case the density variation with altitude is a simple expo-

nential, as given by Eq. (3.10). [At this point the reader should review the deriva-

tion of Eq. (3.10).] Writing Eq. (3.10) with point 1 at sea level, we obtain

  
ρ
ρ0

0= −e g h RT/( )
           (8.73)

    Equation (8.73)  establishes the  exponential model atmosphere.  It agrees rea-

sonably well with the actual density variation of the earth’s standard atmosphere up 

to about 450,000 ft (about 140 km); above this height, the air is so thin that it has 

no meaningful infl uence on the entry trajectory. The exponential model atmosphere 

was used by NASA and other laboratories in the early studies of earth entry during 

the 1950s and early 1960s. We will adopt it here for the remainder of this chapter.   

   8.10   GENERAL EQUATIONS OF MOTION 
FOR ATMOSPHERIC ENTRY 

  Consider a space vehicle entering the atmosphere, as sketched in    Fig. 8.22 . At 

a given altitude  h , the velocity of the vehicle is  V , inclined at the angle θ  below 

the local horizontal. The weight  W  is directed toward the center of the earth, and 

drag  D  and lift  L  are parallel and perpendicular, respectively, to the fl ight path, 

as usual. Summing forces parallel and perpendicular to the fl ight path and using 

Newton’s second law, we obtain, respectively,

  − =D W+ m
dV

dt
sinθ           (8.74)

and  L W m
V

rcrr
=W cosθ

2

          (8.75)

where  r   c   is the radius of curvature of the fl ight path.    Equations (8.74)  and    (8.75)  

are identical to the equations of motion obtained in Ch. 6, specifi cally Eqs. (6.7) 

and (6.8), with  T  = 0 and θ  measured below rather than above the horizontal.  
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 We wish to establish an analysis that will yield velocity  V  as a function of 

altitude  h . Dealing fi rst with the drag equation,    Eq. (8.74) , we have

− == =

− =

D W+ m
dV

dt
m

dV

ds

ds

dt
mV

dV

ds

D W+ m
dV

d

sin

sin

θ

θ 1

2

2

ss
 (8.76)

where  s  denotes distance along the fl ight path. From the defi nition of drag 

 coeffi cient,

D V SCD
1
2

2ρ  (8.77)

Also, from the geometry shown in    Fig. 8.23 ,

ds
dh= −

sinθ
 (8.78)

  

  Figure 8.22  Geometry of entry vehicle forces and motion. 

  

  Figure 8.23  Flight path geometry. 
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Substitute    Eqs. (8.77)  and    (8.78)  into    Eq. (8.76) :

− 1

2

1

2
2

2

ρ θ2 θ2 + dV

dh
s= −θ m in  (8.79)

We are interested in obtaining  V  as a function of  h . However, recall from    

Eq. (8.73)  that ρ =  f(h) :

ρ
ρ0

= − −e e=0g h0000 RT Zh/( )
 (8.80)

Here  Z  ≡  g  0 /RT for simplicity of notation. Therefore, if we instead had a relation 

between velocity and density  V  = f (ρ), we could still fi nd the variation of  V  with 

 h  by using    Eq. (8.80)  as an intermediary. Let us take this approach and seek an 

equation relating  V  to ρ, as follows.  
 Differentiating    Eq. (8.80) , we obtain

  

d
e dh dhZhρ

ρ
ρ
ρ0 0ρ

= e = ρ
( )Z dh ( )Z dh−

       

or  dh
d

Z
= − ρ

ρ
          (8.81)

Substitute    Eq. (8.81)  into    Eq. (8.79) :

  

− 1

2

1

2
2

2

ρ θ2 θ ρ2 θ+ 1θ dV

dp
θm

1θ m= −θ i )ρρ−
         

 (8.82)

Divide    Eq. (8.82)  by  − 1
2 ρ θZm sin    :

  

V SC

Zm

mg

m

dV

d
D

2 2SC dV2

sinθ ρZ m ρ
− = −

or  dV

d

V g

Z

2 21 2V 2V

ρ θm C SD ρ
+ =

Z
          (8.83)

   Equation (8.83)  is an exact equation of motion for a vehicle entering the at-

mosphere—the only approximation it contains is the exponential model atmo-

sphere. Also note that the parameter  m /( C   D   S ), which appears in the second term in 

   Eq. (8.83) , is essentially a constant for a given space vehicle; it is identifi ed as

m

C SD

≡ ballistic parameter

The value of  m /( C   D   S ) strongly governs the entry trajectory, as will be demon-

strated later. 
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    Equation (8.83)  is also a differential equation, and in principle it can be 

solved to obtain  V  = f(ρ) and hence  V  =  f(h)  through    Eq. (8.80) . However, in 

general, the angle θ  in    Eq. (8.83)  also varies with altitude  h , and this variation 

must be obtained before    Eq. (8.83)  can be solved. This is the role of our sec-

ond equation of motion,    Eq. (8.75) —the lift equation.    Equation (8.75)  can be 

reworked to obtain a differential equation in terms of  d θ /dρ, which can then be 

solved simultaneously with    Eq. (8.83)  to obtain an explicit relation for  V  as a 

function of ρ for a vehicle with a given  m /( C   D   S ) and  L / D . The details will not be 

given here; our intent has been simply to map out an approach to calculating a 

lifting entry path, as given in the preceding. The reader can obtain more details 

from the NACA and NASA reports given in the bibliography at the end of this 

chapter. 

 After the preceding analysis is completed, what does the actual entry path 

look like? An answer is given in    Fig. 8.24 , which illustrates the variation of ve-

locity (the abscissa) with density (the ordinate). Because ρ is a function of alti-

tude through    Eq. (8.80) ,  h  is also given on the ordinate. Thus    Fig. 8.24  shows the 

entry path in terms of velocity versus altitude—a so-called  velocity–altitude map  

for entry. Such velocity–altitude maps are frequently used in entry vehicle de-

sign and analysis. Examine    Fig. 8.24  more closely. Imagine an entry vehicle just 

beginning to penetrate the atmosphere. It is at a very high altitude and velocity, 

such as point  a  in    Fig. 8.24 . During the early portion of entry, the atmospheric 

density is so low that the drag is virtually insignifi cant; the vehicle penetrates 

the upper region of the atmosphere with only a small decrease in velocity, as 

shown from point  a  to point  b  in    Fig. 8.24 . However, below the altitude denoted 

by point  b , the air density rapidly increases, with an attendant marked increase in 

drag, causing the velocity to decrease rapidly. This is the situation at point  c  in 

   Fig. 8.24 . Finally the vehicle reaches the surface at point  d . In    Fig. 8.24  the path 

 a – b – c – d  is for a given ballistic parameter. If  m /( C   D   S ) is made larger, the vehicle 
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  Figure 8.24  Entry trajectory on a velocity– 

altitude map. 
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penetrates more deeply into the atmosphere before slowing down, as illustrated 

by path  a – b – e – f . Thus, as suspected from an examination of    Eq. (8.83) , the bal-

listic parameter is an important design aspect of entry vehicles.    

   8.11  APPLICATION TO BALLISTIC ENTRY 
  A solution of the exact equations of motion, such as    Eq. (8.83) , must be per-

formed numerically on a high-speed computer. That is, the curves in    Fig. 8.24

are obtained from numbers generated by a computer; they are not given by sim-

ple, closed-form analytic equations. However, such an analytic solution can be 

obtained for a purely ballistic entry (no lift) with a few assumptions. This is the 

purpose of the present section. 

 Return to the picture of a vehicle entering the atmosphere, as shown in 

   Fig. 8.22 . If the path is purely ballistic, then  L  = 0 by defi nition. Also recall that 

the initial entry velocities are high—26,000 ft/s for circular orbits, 36,000 ft/s for 

parabolic space trajectories, and so forth. Thus, the dynamic pressures associated 

with entry velocities throughout most of the velocity–altitude map are large. As a 

result, drag is large—much larger, in fact, than the vehicle’s weight;  D  >>  W . With 

this in mind,  W  can be ignored, and the original drag equation,    Eq. (8.74) , becomes

−D m= dV

dt
 (8.84)

Following    Eq. (8.84)  with the same derivation that led to    Eq. (8.83) , we obtain

 

dV

d

V2 2V1
0

ρ θm C SD

+ =
         

 (8.85)

(The reader should carry through this derivation to satisfy her or his own curi-

osity.)    Equation (8.85)  is the same as    Eq. (8.83) , with the right side now zero 

because  W  has been neglected. 

 Furthermore, assume that θ  is constant in    Eq. (8.85) . Referring to    Fig. 8.22 , 

we see that this implies a straight-line entry path through the atmosphere. This 

is a reasonable approximation for many actual ballistic entry vehicles. If θ  is 

constant,    Eq. (8.85)  can be integrated in closed form, as follows. First rearrange 

   Eq. (8.85) :

dV

V

d

C SD

2

2
= − ρ

θ[ (m )] sinZC SD( )]
 (8.86)

Integrate    Eq. (8.86)  from the point of initial contact with the atmosphere, where 

ρ = 0 and  V  =  V   E   (the initial entry velocity), to some point in the atmosphere 

where the density is ρ and the vehicle velocity is  V :

  

dV

V C S Z
d

D
VEVV

2

0

1∫ ∫dV

V C S ZV

V
2

2 0

1= −
[ (m )] sinθ

ρdd
ρ
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or  ln
2

2

V

V

V

V C S ZE EVV VV D

== −2 ln
[ (/m )] sin

ρ
θ

       

Thus  

V

V
e

EVV
= −ρ θm C S ZD

          

 (8.87)

    Equation (8.87)  is a closed-form expression for the variation of  V  with ρ and 

hence of  V  with  h  via    Eq. (8.80) . It is an explicit equation for the entry trajectory 

on a velocity–altitude map, as sketched in    Fig. 8.24 , except that    Eq. (8.87)  now 

tells us precisely how the velocity changes; earlier we had to take the shapes of 

the curves in    Fig. 8.24  on faith. For example, examine    Eq. (8.87) . As ρ increases 

(that is, as the altitude decreases),  V  decreases. This confi rms the shape of the 

curves shown in    Fig. 8.24 . Also, if  m /( C   D   S ) is made larger, the exponential term in    

Eq. (8.87)  does not have as strong an effect until ρ becomes larger (that is, until the 

altitude is smaller). Hence, a vehicle with a large  m /( C   D   S ) penetrates more deeply 

into the atmosphere with a high velocity, as shown in    Fig. 8.24 . Therefore, the varia-

tions shown in    Fig. 8.24  are directly verifi ed by the form of    Eq. (8.87) . 

 In    Sec. 8.8  maximum deceleration was identifi ed as an important entry con-

sideration. We now have enough background to examine deceleration in greater 

detail. First consider the equation of motion,    Eq. (8.84) , which neglects the ve-

hicle’s weight. By defi nition,  dV / dt  in    Eq. (8.84)  is the acceleration, and from 

   Eq. (8.84) , it is negative for entry:

  

dV

dt

D

m
= −

       

Also by defi nition, a negative value of acceleration is  deceleration,  denoted by 

| dV/dt |. From the previous equation,

  

Deceleration = =dV

dt

D

m          

 (8.88)

From the defi nition of drag coeffi cient  D V SCD
1
2

2ρ    ,    Eq. (8.88)  becomes

  

dV

dt

V SC

m
D= ρ 2

2          
 (8.89)

[In    Eq. (8.89)  the subscript ∞ has been dropped from ρ and  V  for convenience.] 

Note from    Eq. (8.89)  that | dV/dt | increases as ρ increases, and decreases as  V  

decreases. This allows us to qualitatively sketch the deceleration versus alti-

tude curve shown in    Fig. 8.25 . At high altitudes the velocity is large but rela-

tively constant (see    Fig. 8.24 , from points  a  to  b ), whereas ρ is beginning to 

increase. Therefore, from    Eq. (8.89) , deceleration will fi rst increase as the ve-

hicle enters the atmosphere, as shown in    Fig. 8.25  at high altitude. However, 

at lower altitudes    Fig. 8.24  shows that the velocity rapidly decreases. From    

Eq. (8.89) , the velocity decrease now overshadows the increase in density, so 

the deceleration will decrease in magnitude. This is shown in    Fig. 8.25  at low 
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altitude. Consequently, the deceleration experienced by a vehicle throughout 

entry fi rst increases, then goes through a maximum, and fi nally decreases; this 

variation is clearly illustrated in    Fig. 8.25 .  
 The quantitative value of the  maximum  deceleration is of interest. It was 

stated in    Sec. 8.8  that a manned entry vehicle should not exceed a maximum 

deceleration of 10 g’s; furthermore, even unmanned vehicles have limitations 

dictated by structural failure of the vehicle itself or its components. Therefore, let 

us derive an equation for maximum deceleration. To begin,    Eq. (8.89)  gives an 

expression for deceleration that holds at any point along our straight-line ballistic 

trajectory. We wish to fi nd the maximum deceleration. So, from calculus, we 

wish to differentiate    Eq. (8.89)  and set the result equal to zero to fi nd the condi-

tions for maximum deceleration. Differentiating    Eq. (8.89)  with respect to time, 

and noting that both ρ and  V  vary along the trajectory, we have

  

d V

dt

SC

m
V

dV

dt
V

d

dt
D

2

2
2

2
2 +V2= D ⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

ρ ρ

         

 (8.90)

From    Eq. (8.84) ,

dV

dt

D

m m
V SCD= − = − ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1 1⎛⎛⎛
2

2ρ
         

 (8.91)

Substitute    Eq. (8.91)  into    Eq. (8.90) :

d V

dt
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  Figure 8.25  The variation of deceleration 

with altitude for ballistic entry. 
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Setting    Eq. (8.92)  equal to zero for conditions at maximum | dV/dt |, we fi nd that

  

d

dt

VSC

m
Dρ ρ=

2

        
  (8.93)

From the exponential model atmosphere, differentiating    Eq. (8.80)  with respect 

to time gives

  

d

dt
Z

dh

dt
Z

dh

dt
Zhρ ρ ρZe

d
ZZh= − −

         
 (8.94)

However, from the geometric construction of    Fig. 8.23  and from    Eq. (8.78) ,

  

dh

dt

ds

dt
V= − sinθ θV sV= − in

         
 (8.95)

Substitute    Eq. (8.95)  into    (8.94) :

  

d

dt

ρ ρ θZV=
         
 (8.96)

Substitute    Eq. (8.96)  into    (8.93) :

  
ρ θ ρ VSC

m
D=

2

         
 (8.97)

Solve    Eq. (8.97)  for ρ:

  

ρ θm

C SD          

 (8.98)

   Equation (8.98)  gives the value of density at the point of maximum deceleration. 

Substituting this into    Eq. (8.89)  to obtain maximum deceleration, we get

  

dV

dt m

m

C S
Z V SC

dV

dt
V Z

D
D

max

max

(si )

sin

=

=

1

2

1

2

2

2

θ)

θ
         

 (8.99)

The velocity at the point of maximum deceleration is obtained by combining 

   Eqs. (8.98)  and    (8.87) , yielding

  
V V eEVV −1 2/

          (8.100)

Substituting    Eq. (8.100)  into    (8.99) , we fi nd

  

dV

dt

V Z

e
EVV

max

sin=
2

2

θ

    

 (8.101)
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    Equation (8.101)  is the desired result. It gives us a closed-form expression 

from which we can quickly calculate the maximum deceleration for a straight-

line ballistic entry trajectory. Note from    Eq. (8.101)  that

dV

dt
V

dV

dt
EVV

max mdt ax

and s
dV

in∝ VEVV and2 θ

Hence, entry from a parabolic or hyperbolic trajectory ( V   E   ≥ 11.2 km/s) is much 

more severe than from a nearly circular orbit ( V   E   = 7.9 km/s). However, for entry 

there is little we can do to adjust the value of  V   E   —it is primarily determined by 

the orbit or trajectory  before  entry, which in turn is dictated by the desired mission 

in space. So,    Eq. (8.101)  tells us that maximum deceleration must be primarily 

adjusted by the entry angle θ.  In fact, we conclude from     Eq. (8.101)   that to have 
reasonably low values of deceleration during entry, the vehicle must enter the 
atmosphere at a shallow angle—that is, at a small  θ. 

 Finally,    Eq. (8.101)  yields a startling result. Maximum deceleration depends 

only on  V   E   and θ. Note that the design of the vehicle—that is, the ballistic param-

eter  m /( C   D    S )—does not infl uence the value of maximum deceleration. However, 

you might correctly suspect that  m /( C   D   S ) determines the altitude at which maxi-

mum deceleration occurs. 

 This concludes our discussion of deceleration and of entry trajectories in 

general. In    Sec. 8.12  we examine the second major problem of entry as discussed 

in    Sec. 8.8 : aerodynamic heating. 

   EXAMPLE 8.3  

 Consider a solid iron sphere entering the earth’s atmosphere at 13 km/s (slightly above 

escape velocity) and at an angle of 15° below the local horizontal. The sphere diameter 

is 1 m. The drag coeffi cient for a sphere at hypersonic speeds is approximately 1. The 

density of iron is 6963 kg/m 3 . Calculate ( a ) the altitude at which maximum deceleration 

occurs, ( b ) the value of the maximum deceleration, and ( c ) the velocity at which the 

sphere would impact the earth’s surface. 

  ■ Solution 
 First calculate the ballistic parameter  m /( C   D   S ):

 
r( )ρ ρv =v πS)r = 2S r) πS

       

where  r  = radius of sphere. Hence

m

C S

r

CD DS C
= = ( )⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=4

3

4

3

0 5

1 0
4642 2ρ

kg/m

Also, by defi nition,  Z  =  g  0  /(RT ). For our exponential atmosphere, assume a constant 

temperature of 288 K (recall from    Sec. 8.9  that the exponential atmosphere is just an ap-

proximation of the detailed standard atmosphere discussed in Ch. 3). Hence

  

Z
g

RT
= = = −0 19 8

287
0 000118

( )288
. m000118
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a.   To obtain the altitude for maximum deceleration, calculate the corresponding density 

from    Eq. (8.98) :

ρ θ ° =m

C SD

(θ =θ . ) (sin ) .=4642 0 15 1418 3kg/m
       

This can be translated to an altitude value via    Eq. (8.73) :

ρ
ρ0

= −e Zh

or  h
Z

= − = =1 1

0 000118

0 1418

1 225
18 275

0

ln
.

ln
.

.
,

ρ
ρ

m        

Thus the altitude for maximum deceleration is

h = 18 275. k275 m
        

b.  The value of maximum deceleration is obtained from    Eq. (8.101) :

dV

dt

V Z

e
EVV

max

sin ( , ) ( . )(sin )= = °2 2Z sin ( )

2

13 000118 15

2ee
= 949 38 2. m/s

       

Because 9.8 m/s 2  is the sea-level acceleration of gravity, the maximum deceleration in 

terms of g’s is

 

dV

dt max

.
.= =949 38

9 8.
96 87 g's

       

This deceleration is very large; it is way beyond what can be tolerated by humans. 

c.  The velocity at impact on the earth’s surface is obtained from    Eq. (8.87) :

V

V
e

EVV
= −ρ θm C S ZD

       

where the value used for ρ  is the standard sea-level value ρ  0  = 1.225 kg/m 3 . Hence

  

V

V
e

EVV
= =e− °1 5 2 000118 15 0 01329. /225 ( )4642 ( .0 ) sin .

       

Thus  V V

V

EVV =VEVV

=

0 901329 0 01329 000

172 8

.VEVV 0 ( ,13 )

. m/s

       

It is interesting to note that the sphere has slowed down to subsonic velocity before im-

pact. At sea level,  a   s   = 340.9 m/s; hence the Mach number at impact is

  

M
V

as

= = =172 8

340 9
0 507

.

.
.

        



700 CHAPTER 8  Space Flight (Astronautics)

 In reality, the iron sphere will encounter tremendous aerodynamic heating during entry, 

especially at the large velocity of 13 km/s. Thus, it is likely that the sphere would va-

porize in the atmosphere and never impact the surface; this is the fate of most mete-

ors that enter the atmosphere from outer space. Aerodynamic heating is the subject of   

Sec. 8.12 .     

   8.12  ENTRY HEATING 
  Imagine an entry body (say the  Apollo  capsule) as it penetrates the atmosphere. 

For reasons to be developed later, this body has a very blunt nose, as shown in 

   Fig. 8.26 . The reentry velocities are extremely high, and the corresponding Mach 

numbers are hypersonic. From the aerodynamic discussions in Ch. 4, we know 

there will be a shock wave in front of the vehicle—the bow shock wave shown 

in    Fig. 8.26 . Because the entry velocities are so large, this shock wave will be 

very strong. Consequently, the temperature of the air behind the shock will be 

extraordinarily high. For example, during the 11.2 km/s entry of the  Apollo,  the 

air temperature behind the shock wave reached 11,000 K—higher than the sur-

face of the sun! At these temperatures the air itself breaks down; the O 2  and N 2  

molecules dissociate into O and N atoms and ionize into O +  and N +  ions and 

electrons. The air becomes a chemically reacting gas. Of greater importance, 

however, is that such high temperatures result in large heat inputs to the entry 

vehicle itself. As shown in    Fig. 8.26 , the vehicle is sheathed in a layer of hot air: 

fi rst from the hot shock layer at the nose, and then from the hot boundary layer on 

the forward and rearward surfaces. These hot gases fl ow downstream in the wake 

of the vehicle. A major objective of entry vehicle design is to shield the vehicle 

from this severe aerodynamic heating.  
 An alternative way of looking at this problem is to consider the combined 

kinetic and potential energies of the entry vehicle. At the beginning of entry, 

where  V   E   and  h  are large, this combined energy is large. At the end of entry (that 

is, at impact),  V  and  h  are essentially zero, and the vehicle has no kinetic or po-

tential energy. However, energy is conserved, so where did it go? The answer is 

that the kinetic and potential energies of the vehicle are ultimately dissipated as 

 heat . Returning to    Fig. 8.26 , we see that some of this heat goes into the vehicle 

itself, and the remainder goes into the air. The object of successful entry vehicle 

design is to minimize the heat that goes into the vehicle and maximize the heat 

that goes into the air. 

 The main physical mechanism of aerodynamic heating is related to the ac-

tion of friction in the boundary layer, as discussed in reference to shear stress and 

drag in Ch. 4. If you take the palm of your hand and rub it vigorously over the 

surface of a table, your skin will soon get hot. The same applies to the high-speed 

fl ow of a gas over an aerodynamic surface. The same frictional forces that create 

skin friction drag also heat the air. The net result is heat transfer to the surface: 

 aerodynamic heating.  
 Incidentally, aerodynamic heating becomes a problem at velocities far below 

entry velocity. For example, even at Mach 2 at sea level, the temperature behind 
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a normal shock, and also deep within a boundary layer, can be as high as 520 K. 

Thus, aerodynamic heating of the surfaces of supersonic airplanes such as the 

F-15 is important and infl uences the type of materials used in their construction. 

For example, this is why titanium, rather than the more conventional aluminum, 

is extensively used on high-speed aircraft: titanium has greater strength at high 

temperatures. However, with the advent of hypervelocity entry vehicles in the 

space age, aerodynamic heating imperiled the survival of the vehicle. It even 

dictates the shape of the vehicle, as we will soon see. 
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  Figure 8.26  High-temperature fl ow fi eld around a blunt entry vehicle. 
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 For a quantitative analysis of aerodynamic heating, it is convenient to in-

troduce a dimensionless heat transfer coeffi cient called the  Stanton number C   H  , 

defi ned as

C
dQ dt

V h h S
H

w

=
∞ ∞VV

/

( )h hw−ρ 0

 (8.102)

where ρ ∞  and  V  ∞  are the free-stream density and velocity, respectively;  h  0  is the 

total enthalpy (defi ned as the enthalpy of a fl uid element that is slowed adiabati-

cally to zero velocity, in the same spirit as the defi nition of  T  0  in Ch. 4);  h   w   is 

the enthalpy at the aerodynamic surface (remember that the velocity is zero at 

the surface due to friction);  S  is a reference area (planform area of a wing, cross-

sectional area of a spherical entry vehicle, or the like); and  dQ / dt  is the heating 

rate (energy per second) going into the surface. Let us use    Eq. (8.102)  to obtain 

a quantitative expression for entry vehicle heating. 

 Rewriting    Eq. (8.102)  gives

  

dQ

dt
V h h SCw HSCV= ∞ ∞VVρ h hw(h −h0

         
 (8.103)

Considering the energy equation, Eq. (4.41), and the defi nition of  h  0 , we obtain

  
h h

V
0

2

2
+h∞hhhh ∞VV

         
 (8.104)

For high-speed entry conditions,  V  ∞  is very large. Also, the ambient air far ahead 

of the vehicle is relatively cool; hence  h  ∞  =  c   pT   is relatively small. Thus, from 

   Eq. (8.104) ,

  
h

V
0

2

2
≈ ∞VV

         
 (8.105)

The surface temperature, though hot by normal standards, still must remain 

less than a few thousand kelvins—below the melting or decomposition temper-

ature of the surface. In contrast, the temperatures associated with  h  0  are large 

(11,000 K for the  Apollo  entry, as stated earlier). Thus we can easily make the 

assumption that

  h0  >>  hw ≈ 0  (8.106)

Substituting    Eqs. (8.106)  and    (8.105)  into    Eq. (8.103) , we get

  

dQ

dt
V SCH= ∞ ∞VV

1

2
3ρ

         

 (8.107)

Note that    Eq. (8.107)  states that the  aerodynamic heating rate varies as the cube 
of the velocity . This is in contrast to aerodynamic drag, which varies only as 

the square of the velocity (as we have seen in Chs. 4 and 5). For this reason, at 

very high velocities, aerodynamic heating becomes a dominant aspect and drag 

retreats into the background. Also recall the reasoning that led from    Eq. (8.89)  
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to the curve for deceleration versus altitude in    Fig. 8.25 . This same reasoning 

leads from    Eq. (8.107)  to the curve for heating rate versus altitude, sketched in 

   Fig. 8.27 . During the early part of entry,  dQ / dt  increases because of the increas-

ing atmospheric density. In contrast, later during entry  dQ / dt  decreases because 

of the rapidly decreasing velocity. Hence,  dQ / dt  goes through a maximum, as 

shown in    Fig. 8.27 .  
 In addition to the local heating rate  dQ / dt , we are concerned with the  total 

heating Q  — that is, the total amount of energy transferred to the vehicle from 

beginning to end of entry. The result for  Q  will give us some vital informa-

tion about the desired  shape  for entry vehicles. First we draw on a relation be-

tween aerodynamic heating and skin friction called  Reynold’s analogy . Indeed, 

it makes sense that aerodynamic heating and skin friction should somehow be 

connected, because both are infl uenced by friction in the boundary layer. Based 

on experiment and theory, we approximate Reynold’s analogy (without proof) as

  
C CH fC

1

2          
 (8.108)

where  C   f   is the mean skin friction coeffi cient averaged over the complete surface. 

Substituting    Eq. (8.108)  into    (8.107) , we obtain

  

dQ

dt
V SCfC= ∞ ∞VV

1

4
3ρ

         
 (8.109)

Returning to the equation of motion,    Eq. (8.84) , we have

  

dV

dt

D

m m
V SCD

∞VV
∞ ∞VV= − = − 1

2
2ρ

         
 (8.110)

Mathematically, we can write  dQ / dt  as (dQ/ dV  ∞ )( dV  ∞ /dt), where  dV  ∞  / dt  is 

given by    Eq. (8.110) :

  

dQ

dt

dQ

dV

dV

dt

dQ

dV m
V SCD= = −⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠∞VV

∞VV

∞VV
∞ ∞VV

1

2
2ρ

         

 (8.111)

  

  Figure 8.27  The variation of heat transfer 

rate during ballistic entry. 
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Equating    Eqs. (8.111)  and    (8.109) ,

  

dQ

dV m
V V SCD fV SC

∞VV
VV−⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎞⎞1

2

1

4
2 3SC V

⎞⎞⎞ 1ρ V SCD∞ ∞VV SC
       

or  
dQ

dV
mV

C

C
f

D∞VV
∞VV= − 1

2
       

or dQ m
C

C

dVf

D

= − ∞VV1

2 2CD

2

 (8.112)

Integrate    Eq. (8.112)  from the beginning of entry, where  Q  = 0 and  V  ∞  =  V   E  , 

and the end of entry, where  Q  =  Q  total  and  V  ∞  = 0:

C

C
d m

V

Q

Q

DC

⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
∫ ∫dQ

CQ
fC

= − ∞VV1

2 2CDC VEVV ⎝⎝⎝
∫

C V0
∫∫

0 2

total == ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1

2

1

2
2C

C
mVfC

DC
EVV  (8.113)

    Equation (8.113)  is the desired result for total heat input to the entry vehicle. 

It is an important relation—examine it closely. It refl ects two vital conclusions:  

  1.   The quantity  12
2mVEVV     is the initial kinetic energy of the vehicle as it fi rst enters 

the atmosphere.    Equation (8.113)  says that total heat input is directly propor-
tional to this initial kinetic energy.  

2.   Total heat input is directly proportional to the ratio of skin friction drag to 
total drag  C   f   / C   D  .   

 The second conclusion is of particular importance. Recall from Ch. 5 that the 

total drag of a nonlifting body is pressure drag plus skin friction drag:

C C CD DC fCC
p

+CDC

   Equation (8.113)  says that to minimize entry heating, we need to minimize 

the ratio

C

C C
fCC

D fCC
p

Now consider two extremes of aerodynamic confi gurations: a sharp-nosed, 

slender body  such as the cone shown in    Fig. 8.28  a , and the  blunt body  shown in 

   Fig. 8.28  b . For a slender body, the skin friction drag is large in comparison to 

the pressure drag; hence  C   D   ≈  C   f   and

  

C

C
fCC

DCC
≈ 1 slender body
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In contrast, for a blunt body the pressure drag is large in comparison to the skin 

friction drag; hence    C CD DC
p
    and

  

C

C
f

D         

<<
 
1  blunt body

In light of    Eq. (8.113) , this leads to the following vital conclusion:

  To minimize entry heating, the vehicle must have a blunt nose.  

For this reason, all successful entry vehicles in practice, from intercontinental 

ballistic missiles (ICBMs) to the  Apollo,  have utilized rounded noses.  
 Returning to our qualitative discussion surrounding    Fig. 8.26 , we see that 

the advantage of a blunt body can also be reasoned on a purely physical basis. 

If the body is blunt, as shown in    Fig. 8.26 , the bow shock wave will be strong; 

that is, a substantial portion of the wave in the vicinity of the nose will be nearly 

normal. In this case the temperature of extensive regions of the air will be high, 

and much of this high-temperature air will simply fl ow past the body without 

encountering the surface. Therefore, a blunt body will deposit much of its initial 

kinetic and potential energies into heating the air and little into heating the body. 

In this fashion, a blunt body tends to minimize the total heat input to the vehicle, 

as proved quantitatively from    Eq. (8.113) . 

 The mechanism of aerodynamic heating discussed in the preceding is called 

convective heating . To conclude this section about entry heat transfer, another 

mechanism is mentioned— radiative heating  from the shock layer. Consider 

   Fig. 8.29 , which shows a blunt entry body at high velocity. It was mentioned 

earlier that at speeds associated with lunar missions (11.2 km/s or 36,000 ft/s), 

the air temperature behind the shock wave is as high as 11,000 K. At this high 

  

  Figure 8.28  Comparison of blunt and slender bodies. 
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temperature, the shock layer literally  radiates  energy in all directions, as illustrated 

in    Fig. 8.29 —much as you feel the warmth radiated from a fi replace on a cold win-

ter day. Some of this radiation is incident upon and absorbed by the vehicle itself, 

giving rise to an additional heat transfer component  Q   R  . This radiative heat trans-

fer rate is proportional to a power of velocity ranging from  V V∞ ∞V VV V5 1V 2
   , depending 

  

  Figure 8.29  Mechanism of radiative heating from the 

high-temperature shock layer. 

  

  Figure 8.30  Comparison of convective and radiative heat transfer 

rates, illustrating dominance of radiative heating at high velocities. 
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on the nose radius, density, and velocity. For ICBM and orbital vehicles, radia-

tive heating is not signifi cant. But as sketched in    Fig. 8.30 , because of its strong 

velocity dependence, radiative heating becomes dominant at very high velocities. 

For the  Apollo  mission from the moon ( V   E   = 36,000 ft/s), radiative heating was 

slightly less than convective heating. However, for future manned missions from 

the planets ( V   E   ≈ 50,000 ft/s), radiative heating will swamp convecting heating. 

This is illustrated schematically in    Fig. 8.30 . Moreover, entry into the atmospheres 

of other large planets, especially Jupiter, is overwhelmed by radiative heating. 

For these reasons, the designers of vehicles for advanced space missions must 

be vitally concerned about radiative heating from the shock layer during atmo-

spheric entry. The interested reader can fi nd more details on radiative heating in 

the AIAA paper by    Anderson  listed in the bibliography at the end of this chapter.   

   EXAMPLE 8.4  

 Consider two bodies in circular orbit around the earth at an altitude of 800 km above the sur-

face of the earth. Each body has a mass of 1800 kg. One body is a slender cone with a total 

vertex angle of 10 ° . The other body is a sphere. For the cone, the pressure drag coeffi cient 

at hypersonic Mach numbers is 0.017 and the skin friction drag coeffi cient is 0.01. For the 

sphere, the pressure drag coeffi cient is 1.0 and the friction drag coeffi cient is 0.001. Calculate 

and compare the total aerodynamic heating input to each body during atmospheric entry. 

   ■  Solution 
 The entry velocity of both bodies from orbit is obtained from    Eq. (8.57) , where  r  =  r  e  + h G
and  r  e  is the radius of the earth,  r  e  = 6.4 × 10 6  m, and h G  is the geometric altitude above 

sea level, h G  = 800 km = 0.8 × 10 6  m.

  

V
k
rEVV = = ×

( )+ ×
= ×

2 1× 4

6
43 986 10

10
0 789 10

.

+
. m/s

       

The total heat input is given by    Eq. (8.113) , repeated here:

Q
C

C
m Vf

D
EVVtotal = ⎛

⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

1

2

1

2
2

         

 (8.113)

where

1

2

1

2
789 10 5 60 102 4 2 10m VEVV ×789= 60( )1800( )18001800 ( .0(00 ) .52 = 5 joule

a.  For the cone:

C C CD DC fp
+CDC = +0 017 0 01 0= 027+.017 0 .

       

C

C
f

D

= =0 01

0 027
0 37

.

From    Eq. (8.113) ,

Qtotal j l cone= 1

2
0 37 5 6 1 1= 03610 10( .0 ) ( . )6 1× 0 . (joule×036 1010 ))e
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b.  For the sphere:

C C CD DC fC
p

+CDC = + =1 0 0 001 1 001.+0 0 .
       

 

C

C
f

D

= = × −0 001

1 001
0 999 10 4.

.
.

       

From    Eq. (8.113) ,

Qtotal j l s= × =−1

2
999 10 5 24 15 6 0 62 8( .0 ) ( . )×6 101×6 10 0 . (joule×8 106×8 10 phepp re)

As expected, the sphere, being a much blunter body, experiences a much smaller total 

heat input compared to the slender cone.     

   8.13   LIFTING ENTRY, WITH APPLICATION 
TO THE SPACE SHUTTLE 

  On April 14, 1981, the Space Shuttle  Columbia  entered the atmosphere and suc-

cessfully returned to the surface of the earth, ending the historic fi rst fl ight of 

this unique space transportation system into space around the earth. A diagram 

of the Space Shuttle orbiter mounted on its rocket booster is shown in    Fig. 8.31 . 

The entry trajectory of the Space Shuttle differs considerably from the ballistic 

trajectories discussed in    Sec. 8.11  because the shuttle is an aerodynamic vehicle 

that produces lift. Indeed, during the initial part of its entry, the Space Shuttle is 

fl ying at a very high angle of attack (on the order of 40°). For this angle of attack 

at the hypersonic speeds of reentry from low-earth orbit (initially at Mach 25), 

the lift-to-drag ratio  L / D  for the blunt-nosed, highly swept, delta-wing confi gu-

ration of the Space Shuttle (see    Figs. 8.6  and    8.31 ) is on the order of 2—not a 

high value by conventional subsonic airplane standards as seen in Ch. 6, but 

certainly high enough to produce substantial lift at such hypersonic velocities. 

Because the fl ight of the Space Shuttle during its return to earth is essentially an 

unpowered glide through the atmosphere with almost global range, the trajec-

tory of the Space Shuttle on a velocity–altitude map should differ considerably 

from the ballistic trajectories sketched in    Fig. 8.24 . This section examines such 

matters further and obtains the fl ight trajectories for lifting entry vehicles on a 

velocity–altitude map.  
 Return to the general equations of motion for atmospheric entry,    (8.74)  and 

   (8.75) . In our previous study of ballistic entry in    Sec. 8.11 , we used    Eq. (8.74)  

as the equation of motion parallel to the vehicle’s fl ight path. It was dominated 

by aerodynamic drag, as expected for a ballistic vehicle. For our present discus-

sion of lifting entry, we use    Eq. (8.75)  as the equation of motion perpendicular to 

the fl ight path; as expected, it is dominated by aerodynamic lift.    Equation (8.75)  

requires more interpretation than it received in    Sec. 8.10 . Specifi cally, the form 

of    Eq. (8.75)  with the right side a positive term pertains to an upward-curved 

fl ight path, as shown by the dashed curve in    Fig. 8.32 ; here the lift is greater 

than the weight component, and the vehicle rises. In contrast, when  L  <   W
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  Figure 8.31  The Space Shuttle. 
  (Source: Courtesy of NASA)  
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cos θ, the vehicle is descending, as shown by the solid curve in    Fig. 8.32 . For 

this case, the right side of    Eq. (8.75)  must be negative (because the left side is 

negative), and    Eq. (8.75)  must be written as

  

L W m
V
rcrr

=W −cosθ
2

           
 (8.114)

    Equation (8.114)  is the pertinent form for the lifting glide of the Space 

Shuttle, as sketched in    Fig. 8.33 . The vehicle is gliding at velocity  V , and the 

fl ight path angle θ  is measured below the local horizontal. Assume that the fl ight 

path is very shallow (θ  is small and hence cos θ  ≈ 1). Furthermore, assume that 

the local radius of curvature  r   c   is approximately the radius of the earth  r   e  . Then 

   Eq. (8.114)  becomes

  

L W
mV

rerr
=W −

2

         

 (8.115)

Because  L V SCL
1
2

2ρ     and  W  =  mg ,    Eq. (8.115)  is written
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  Figure 8.32  Two fl ight paths with opposite radii of curvature. 
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Dividing    Eq. (8.116)  by  m  and factoring the  V   2  give
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          (8.117)

Both ρ and  g  are known functions of altitude, so    Eq. (8.117)  gives the trajec-

tory of a lifting entry vehicle on a velocity–altitude map. Moreover,    Eq. (8.117)  

introduces a  lift parameter m /(C  LS  ) analogous to the ballistic parameter  m /( C   D   S ) 

defi ned in    Sec. 8.10 . Clearly, as we can see from    Eq. (8.117) , the value of  m /(C  LS  ) 

strongly governs the entry glide trajectory.  
 The infl uence of  m / C   LS   is shown in    Fig. 8.34 ; this velocity–altitude map 

illustrates lifting entry trajectories ( A  and  B ) for two different values of  m / C   LS  . 

Curve  B  pertains approximately to the Space Shuttle. Because higher values of 

  

  Figure 8.33  Glide angle and velocity. 
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 m / C   LS   correspond to lower lift, the vehicle penetrates deeper into the atmosphere 

at higher velocity. For comparison,    Fig. 8.34  also shows the ballistic trajectories  C , 

 D , and  E . Curve  E , initiated at escape velocity, pertains approximately to the  Apollo  

entry capsule. Although the  Apollo  generated a small amount of lift at the angle of 

attack during entry in order to modulate its fl ight path, it was essentially a ballistic 

reentry vehicle. Trajectories  C  and  D  represent earth entry from orbital velocity.    

   8.14  HISTORICAL NOTE: KEPLER 
  The 16th century was a period of quandary for astronomy. The conservative line of 

scientifi c thought held the earth as the center of the universe, with the sun, planets, 

and stars revolving about it on various celestial spheres. This  geocentric  system 

was popular among the Greeks. Put into a somewhat rational form by Claudius 

Ptolemy in the second century  ad , this earth-centered system was adopted as the 

truth by the Church in western Europe and was carried through to the 16th century. 

However, about the time that Columbus was discovering America, a Polish scien-

tist by the name of Nicolaus Copernicus was beginning to develop different ideas. 

Copernicus reasoned that the earth as well as all the other planets revolved around 

the sun in a  heliocentric  system. He established his line of thought in a main work 

titled  Six Books Concerning the Revolutions of the Heavenly Spheres,  published in 

the year of his death, 1543. Here Copernicus was diplomatic with regard to Church 

dogma. He stated that his heliocentric theory was not new, having been held by a 

few early Greek astronomers, and also that he was just “postulating and theorizing,” 

not necessarily speaking the absolute truth. However, it was clear that Copernicus 

personally believed in what he wrote. Another astronomer, Giordano Bruno, who 

evangelized Copernicus’s theory, was not so diplomatic and was burned at the 

stake in 1600. Galileo Galilei took up the heliocentric banner in 1632 and was  
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  Figure 8.34  Comparison between lifting and ballistic entry paths on a 
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ultimately exiled under guard for his heresy. Finally the Danish astronomer Tycho 

Brahe, while shunning a direct association with the controversial heliocentric the-

ory, spent virtually his complete life from 1546 to 1602 making astronomical obser-

vations of planet and star movements, resulting in spectacular improvements in the 

precision of existing knowledge. 

 Into this tenuous time Johannes Kepler was born in Württemberg, Germany, 

on December 27, 1571. By winning scholarships, he was able to fi nish elementary 

school and go on to the University of Tübingen. There he was converted to the 

heliocentric theory by Michael Mastlin, a professor of astronomy. Later Kepler 

became a teacher of mathematics and an ardent astronomer. Through his writ-

ings about celestial motion, Kepler came to the attention of Tycho Brahe, who 

was now living in Prague. In 1599 Kepler went to Prague to work under Brahe, 

who died just two years later. Kepler stayed in Prague, extending and improving 

the existing tables of celestial movement. In 1627 he published his  Rudolphine 
Tables,  which were much more accurate than any existing tables at that time. 

 However, Kepler was also thinking and theorizing about his observations, 

attempting to bring reason and order to the movement of the heavenly bodies. 

For example, the heliocentric system of Copernicus assumed circular orbits of 

the planets about the sun, but Kepler’s accurate observations did not precisely 

fi t circular motion. In 1609 he found that elliptical orbits fi t his measurements 

exactly, giving rise to  Kepler’s fi rst law  (see    Sec. 8.6 ). In the same year he in-

duced that a line drawn from the sun to a planet sweeps out equal areas in equal 

times— Kepler’s second law.  His fi rst and second laws were published in his 

book  New Astronomy  in 1609. Nine years later he discovered that the square 

of the period of planetary orbits was proportional to the cube of the semimajor 

axis of the elliptical orbit— Kepler’s third law.  This was published in 1618 in his 

book  Epitome of the Copernican Astronomy.  
 Kepler’s impact on astronomy was massive; in fact, his work was the found-

ing of modern astronomy. His contributions are all the more stunning because 

his laws were induced from empirical observation. Kepler did not have the tools 

developed later by Newton. Therefore, he could not derive his laws with the 

same fi nesse as we did in    Sec. 8.6 . 

 It is interesting to note that Kepler also wrote science fi ction. In his book 

 Somnium  (Dream), Kepler describes a trip from the earth to the moon. Recognizing 

that the void of space would not support fl ight by wings, he had to resort to de-

mons as a supernatural mode of propulsion. These demons would carry along hu-

mans, suitably anesthetized to survive the rigors of space travel. He described the 

moon in as much astronomical detail as was possible in that age, but he imagined 

moon creatures that lived in caves. Modern historians of science fi ction literature 

believe that Kepler’s  Somnium  was really a vehicle to present his serious scientifi c 

ideas about the moon while attempting to avoid religious persecution.  Somnium  

was published in 1634, four years after Kepler’s death. 

 Kepler spent his later life as a professor of mathematics in Linz. He died 

in Regensburg on November 15, 1630, leaving a legacy that reaches across the 

centuries to the astronautics of the present day.   
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   8.15   HISTORICAL NOTE: NEWTON AND THE LAW 
OF GRAVITATION 

  Newton’s law of universal gravitation,    Eq. (8.19) , appears in every modern high 

school and college physics textbook; its existence is virtually taken for granted. 

Moreover, this equation is the very foundation for all modern astronautical calcu-

lations of motion through space, as discussed throughout this chapter. However, 

the disarming simplicity of    Eq. (8.19)  and its commonplace acceptance in clas-

sical physics belie the turmoil that swarmed about the concept of gravity before 

and during the 17th century, when Newton lived. 

 The earliest ideas about “gravity” were advanced by Aristotle during the pe-

riod around 350  bc . Believing that the four fundamental elements of the universe 

were earth, water, air, and fi re, the Aristotelian school held that everything in the 

universe had its appointed station and tended to return to this station if originally 

displaced. Objects made from “earth” held the lowest station, and thus heavy 

material objects would fall to the ground, seeking their proper status. In contrast, 

fi re and air held a high station and would seek this status by rising toward the 

heavens. These ideas persisted until the age of Copernicus, when people began 

to look for more substantial explanations of gravity. 

 In 1600 the English scientist William Gilbert suggested that magnetism was 

the source of gravity and that the earth was nothing more than a gigantic lode-

stone. Kepler adopted these views, stating that gravity was “a mutual affection 

between cognate bodies tending toward union or conjunction, similar in kind to 

magnetism.” Kepler used this idea in an attempt to prove his laws of planetary 

motion (see    Sec. 8.14 ) but was not successful in obtaining a quantitative law for 

the force of gravity. About the same time, the French scientist and mathema-

tician René Descartes (who introduced the Cartesian coordinate system to the 

world of mathematics) proposed that gravity was the result of an astronomical 

fl uid that was swirling in a vortex motion, pushing heavy objects toward the 

core of the vortex. Christian Huygens, a Dutch gentleman and amateur scientist, 

seemed to confi rm Descartes’s theory in the laboratory; he set up a whirlpool of 

water in a bowl and observed that pebbles “gravitated” to the center of the bowl. 

 Into this confused state of affairs was born Isaac Newton at Woolsthorpe 

near Grantham, Lincolnshire, England, on December 25, 1642. Newton’s father 

died a few months before he was born, and Newton was raised by his grand-

mother. His education ultimately led to studies at Trinity College, Cambridge 

University, in 1661, where he quickly showed his genius for mathematics. In 

1666 he left Cambridge for his home in Woolsthorpe Manor to avoid the Great 

Plague of 1665–1666. It was here, at the fresh age of 24, that Newton made 

some of his discoveries and conclusions that were to revolutionize science and 

mathematics, not the least of which was the development of differential calculus. 

Also, Newton later maintained that during this stay in the country he deduced the 

law of centripetal force: that a body in circular motion experiences a radial force 

that varies inversely with the distance from the center. (In today’s language, 

the centripetal acceleration due to circular motion is equal to  V  2 / r , as shown in 
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all elementary physics books.) From this result applied to Kepler’s third law, 

Newton further deduced that the force of gravity between two objects varies in-

versely as the square of the distance separating them, which led to the universal 

law of gravitation, as given by    Eq. (8.19) . However, Newton did not bother to 

publish immediately or otherwise announce his fi ndings. The public was kept in 

the dark for another 30 years! 

 Throughout the history of science and engineering, there are numerous exam-

ples of ideas whose “time had come” and that were conceived by several different 

people almost simultaneously. The same Christian Huygens made experiments 

with pendulums and circular moving bodies that led to his discovery of the law 

of centripetal force in 1673. With this, Robert Hooke (of Hooke’s law fame), 

Christopher Wren (later to become an internationally famous architect), and 

Edmund Halley (of Halley’s comet fame) all deduced the inverse square law 

of gravity in 1679. Hooke wrote to Newton in the same year, telling him of 

the inverse square discovery and asking Newton to use it to prove that a planet 

revolves in an elliptical orbit. Newton did not reply. In 1685 the problem was 

again posed to Newton, this time by Halley. Newton sent back such a proof. 

Halley was much impressed and strongly encouraged Newton to publish all his 

discoveries and thinking as soon as possible. This lead to Newton’s  Philosophiae 
Naturales Principia Mathematica —the famous  Principia —which has become 

the foundation of classical physics. It is interesting to note that the  Principia  

was originally to be published by the Royal Society. But Hooke, who laid claim 

to the prior discovery of the inverse square law and who was the curator of the 

Royal Society, apparently discouraged such publication. Instead the  Principia,  
the most important scientifi c document to that time in history, was published at 

the personal expense of Halley. 

 Hooke again put forward his claim to the inverse square law during a meeting 

of the Royal Society in 1693. Shortly thereafter, Newton had a nervous break-

down, which lasted about a year. After his recovery, Newton fi nally announced 

that he had made the basic discoveries of both the centripetal force law and the 

inverse square law of gravitation back in 1666. Because of his high standing 

and reputation of that time, as well as subsequently, Newton’s claim has been 

generally accepted through the present time. However, the record shows that we 

have only his word. Therefore, the claim by Robert Hooke is certainly legitimate, 

at least in spirit.    Equation (8.19) , which comes down to us as Newton’s law of 

universal gravitation, could legitimately be labeled the “Newton–Hooke law.” 

 Of course this is not to detract from Newton himself, who was  the  giant 

of science in the 17th century. During his later years Newton entered public 

life, becoming warden of the British Mint in 1696, advancing to the chief post 

of master in 1699. In this capacity he made many important contributions dur-

ing Britain’s massive recoinage program of that time. In 1703 he was elected 

president of the Royal Society, a post he held for the next 25 years. During this 

period Newton was embroiled in another controversy, this time with the German 

mathematician Gottfried von Liebniz over the claim of the discovery of calculus. 

Also, during these later years, Newton’s imposing prestige and authority via the 
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Royal Society apparently tended to squelch certain ideas put forward by younger 

scientists. Because of this, some historians of science hint that Newton may have 

hindered the progress of science during the fi rst 30 years of the 18th century. 

 Newton died in Kensington on March 20, 1727. He is buried at a prominent 

location at Westminster Abbey. Without Newton, and without Kepler before 

him, this chapter about astronautics might never have been written.   

   8.16  HISTORICAL NOTE: LAGRANGE 
  In    Sec. 8.3  a corollary to Newton’s second law was introduced: Lagrange’s equa-

tion. Lagrange came after Newton. He was one of the small group of European 

scientists and mathematicians who worked to develop and augment Newtonian 

(classical) physics during the 18th century; he was a contemporary of Laplace 

and a friend of Leonhard Euler. 

 Joseph L. Lagrange was born of French parents at Turin, Italy, on January 25, 

1736. His father was an offi cer in the French army; hence it is no surprise that at the 

age of 19 Lagrange was appointed as professor of mathematics at the Turin Artillery 

School. Active in scientifi c thought, he helped to found the Turin Academy of 

Sciences. In 1756 he wrote to Euler (see Sec. 4.22) with some original contributions 

to the calculus of variations. This helped to establish Lagrange’s reputation. In fact, 

in 1766 he replaced Euler as director of the Berlin Academy at the invitation of 

Frederick II (Frederick the Great) of Prussia. For the next 20 years, Lagrange was 

extremely productive in the fi eld of mechanics. His work was analytical, and he en-

deavored to reduce the many aspects of mechanics to a few general formulas. This 

is clearly refl ected in the formalism discussed in    Sec. 8.3 . Lagrange’s equations 

used in    Sec. 8.3  were published in an important book by Lagrange titled  Mécanique 
Analytique  in 1787. For these contributions, he is considered by some historians to 

be the greatest mathematician of the 18th century. 

 Lagrange moved to Paris in 1786. During the French Revolution, he was 

president of the committee for reforming weights and measures standards. At the 

time of his death in Paris on April 10, 1813, he was working on a revised version 

of his  Mécanique Analytique .   

   8.17   HISTORICAL NOTE: UNMANNED 
SPACE FLIGHT 

  On the evening of October 4, 1957, the present author was a student of aeronauti-

cal engineering. The radio was on. Concentration on studies was suddenly inter-

rupted by a news bulletin: The Soviet Union had just successfully launched the 

fi rst artifi cial earth satellite in history. Labeled  Sputnik I  and shown in    Fig. 8.35 , 

this 184-lb sphere circled the earth in an elliptical orbit, with an apogee and 

perigee of 560 and 140 mi, respectively, and with a period of 1.5 h. The personal 

feeling of exhilaration that humanity had fi nally made the fi rst great step toward 

space exploration was tempered by questions about the technical position of the 

United States in space fl ight. These feelings were to be refl ected and amplifi ed 

throughout the United States for weeks, months, and years to come.  Sputnik I  
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  Figure 8.35  The fi rst artifi cial earth satellite— Sputnik I —launched on October 4, 1957. 
  (Source: Courtesy of John Anderson.)  

started a technological revolution that has infl uenced virtually all aspects of soci-

ety, from education to business, from biology to philosophy. October 4, 1957, 

is a red-letter date in the history of humanity—the beginning of the space age.  
 Although the launching of  Sputnik I  came as a surprise to most of the general 

public, the technical community of the Western world had been given some clear 

hints by Russian scientists. For example, on November 27, 1953, at the World 

Peace Council in Vienna, the Soviet academician A. N. Nesmeyanov stated that 

“science had reached such a stage that . . . the creation of an artifi cial satellite of the 

earth is a real possibility.” Then, in April 1955, the U.S.S.R. Academy of Sciences 

announced the creation of the Permanent Interdepartmental Commission for 

Interplanetary Communications, with responsibility for developing artifi cial earth 

satellites for meteorological applications. In August of that year, the highly re-

spected Russian scientist Leonid I. Sedov, at the Sixth International Astronautical 
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Congress in Copenhagen, said, “In my opinion, it will be possible to launch an 

artifi cial satellite of the Earth within the next two years, and there is the techno-

logical possibility of creating artifi cial satellites of various sizes and weights.” 

Obviously the Russian program kept to its schedule. Indeed, in June 1957, 

just four months before  Sputnik I,  the same A. N. Nesmeyanov blatantly stated 

that both the rocket launch vehicle and the satellite were ready and would be 

launched in a few months. Clear signs and clear words—yet the launching of 

 Sputnik I  still fell like a ton of bricks on the Western world. 

 In 1957 the United States was not new to the idea of artifi cial satellites. Indeed, 

some farsighted thinking and technical analyses of the prospects for launching 

such satellites were performed by the U.S. Navy and the U.S. Army Air Force 

beginning in 1945. Then, in May 1946 (just one year after Germany had been de-

feated in World War II), a Project RAND report titled “Preliminary Design of an 

Experimental World-Circling Spaceship” was submitted to Wright Field, Dayton, 

Ohio. This report showed the feasibility of putting a 500-lb satellite in orbit at 

around 300 mi high. Moreover, it outlined how this could be accomplished in a 

fi ve-year time scale! The authors of this report made some prophetic statements:

  Although the crystal ball is cloudy, two things seem clear—1. A satellite vehicle 

with appropriate instrumentation can be expected to be one of the most potent scien-

tifi c tools of the Twentieth Century. 

 2. The achievement of a satellite craft by the United States would infl ame the 

imagination of mankind, and would probably produce repercussions in the world 

comparable to the explosion of the atomic bomb. . . .   

 Then the authors went on to state,

  Since mastery of the elements is a reliable index of material progress, the nation 

which fi rst makes signifi cant achievements in space travel will be acknowledged as 

the world leader in both military and scientifi c techniques. To visualize the impact 

on the world, one can imagine the consternation and admiration that would be felt 

here if the United States were to discover suddenly that some other nation had al-

ready put up a successful satellite.  

These were indeed prophetic words, written fully 11 years before  Sputnik I . 
 The 1946 RAND report, along with several contemporary technical reports 

from the Jet Propulsion Laboratory at the California Institute of Technology, es-

tablished some fundamental engineering principles and designs for rocket launch 

vehicles and satellites. However, these ideas were not seized upon by the U.S. 

government. The period after World War II was one of shrinking defense budgets, 

and money was simply not available for such a space venture. Of probably greater 

importance was the lack of a mission. What if a satellite were launched? What 

benefi ts would it bring, especially military benefi ts? Keep in mind that this was in a 

period before miniaturized electronics and sophisticated sensing and telemetering 

equipment. Therefore, the fi rst serious U.S. effort to establish a satellite program 

withered on the vine, and the idea lay essentially dormant for the next nine years. 

 Although upstaged by  Sputnik I,  the United States in 1957 fi nally did have an 

ongoing project to orbit an artifi cial satellite. On July 29, 1955, President Dwight D. 
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Eisenhower announced that the United States would orbit a small earth satellite in 

conjunction with the International Geophysical Year. Making use of 10 years of 

high-altitude sounding rocket technology, which started with a number of captured 

German V-2 rockets, the United States established the Vangard program, managed 

by the Offi ce of Naval Research, to accomplish this goal. Martin Company in 

Baltimore, Maryland, was chosen as the prime contractor. During the next two 

years, a rocket booster was designed and built to launch a small, 3-lb experimental 

satellite. By government edict, the Vangard project was required not to draw upon 

or interface with the rapidly growing and high-priority ICBM program, which was 

developing large rocket engines for the military. Therefore, Dr. John P. Hagen, di-

rector of Project Vangard, and his small team of scientists and engineers had to 

struggle almost as second-class citizens to design the Vangard rocket in an atmo-

sphere of relatively low priority. (This is in sharp contrast to the Russian space pro-

gram, which from the very beginning utilized and benefi ted from the Soviet military 

ICBM developments. Because Russian atomic warheads of that day were heavier 

than comparable U.S. devices, the Soviet Union had to develop more powerful 

rocket boosters. Their space program correspondingly benefi ted, allowing  Sputnik I  
and  II  to be the surprisingly large weights of 184 and 1120 lb, respectively.) 

 By October 1957 two Vangard rockets had been successfully tested at Cape 

Canaveral, and the test program, which was aimed at putting a satellite into orbit 

before the end of 1958, was reasonably close to schedule. Then came  Sputnik I  
on October 4. Not to be completely upstaged, the White House announced on 

October 11 that Project Vangard would launch a U.S. satellite “in the near fu-

ture.” Suddenly in the limelight of public attention, and now under intense politi-

cal pressure, a third test rocket was successfully tested on October 23, carrying 

a 4000-lb dummy payload to an altitude of 109 and 335 mi downrange. Then, 

on December 6, 1957, in full view of the world’s press, the fi rst Vangard was 

prepared to put a small satellite into orbit. Unfortunately, the Vangard fi rst-stage 

engine had its fi rst (and last) failure of the program. With failing thrust, the rocket 

lifted a few feet off the launch pad and then fell back in a spectacular explosion. 

In Dr. Hagen’s words, “Although we had three successful test launches in a row, 

the failure of TV-3 [the designation of that particular vehicle] was heard around 

the world.” 

 Despite the original disadvantages of low priority, the emotional pressure 

after  Sputnik I,  and the inglorious failure of December 6, the Vangard project went 

on to be very successful.  Vangards I, II,  and  III  were put into orbit on March 17, 

1958, February 17, 1959, and September 18, 1959, respectively, attributing to 

the fi ne efforts of Dr. Hagen and his group. 

 But  Vangard I  was not the fi rst U.S. satellite. President Eisenhower’s July 

1955 announcement about U.S. plans to orbit a satellite was followed by much 

debate about whether military rocketry should be used. One proposal at the time 

was to use the rocket vehicles being developed at the Army’s Redstone Arsenal 

at Huntsville, Alabama, under the technical direction of Dr. Wernher Von Braun. 

After the decision was made to go with the Vangard, the engineers at the Army 

Ballistic Missile Agency at Huntsville continued to propose a satellite program 
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using the proven intermediate-range Jupiter C rocket. All such proposals were 

turned down. However, the picture changed after  Sputnik . In later October 1957, 

Von Braun’s group was given the green light to orbit a satellite: the target date 

was January 30, 1958. A fourth stage was added to the Jupiter C rocket; this new 

confi guration was labeled the Juno I. The target date was missed by only one day. 

  

  Figure 8.36   Explorer I,  the fi rst U.S. artifi cial earth satellite, launched on January 31, 1958. 
  (Source: Courtesy of John Anderson.)  
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On January 31, 1958,  Explorer I , the fi rst U.S. artifi cial satellite, was placed into 

orbit by Von Braun’s team of scientists and engineers from Huntsville.  Explorer I,  
shown in    Fig. 8.36 , weighed 18 lb, and its orbit had apogee and perigee of 957 

and 212 mi, respectively; its period was 115 min. With the launchings of both 

 Sputnik I  and  Explorer I,  the two technological giants in the world—the United 

States and the Soviet Union—were now in competition in the arena of space.  
 It is not the purpose here to give an exhaustive survey of space explora-

tion. For an authoritative presentation, see the excellent book by    Von Braun and 

Ordway , as well as others listed in the bibliography at the end of this chapter.   

   8.18  HISTORICAL NOTE: MANNED SPACE FLIGHT 
     Section 8.17  about unmanned space fl ight, the present section about manned 

space fl ight, and Sec. 9.16 about the early history of rocket engines are inexorably 

entwined—their division into three distinct sections in this book is purely artifi -

cial. Indeed, humanity’s fi rst imaginative thoughts about space fl ight involved 

the travel of human beings (not inanimate objects) to the moon. Later, during the 

technological revolution of the 19th and 20th centuries, it was correctly reasoned 

that manned space travel would have to be preceded by unmanned attempts just 

to learn about the problems that might be encountered. Also during this period, 

the rocket engine was recognized as the only feasible mechanism for propulsion 

through the void of space. In fact, the three early pioneers of rocket engines—

Tsiolkovsky, Goddard, and Oberth (see Sec. 9.16)—were inspired in their work 

by the incentive of space travel rather than the military applications that ultimately 

produced the fi rst successful large rockets. Clearly, the histories of unmanned and 

manned space fl ight and rocketry overlap and in many cases are indistinguishable. 

 Manned space fl ight really has its roots in science fi ction and reaches as 

far back as the second century  ad , when the Greek writer Lucian of Samosata 

conceived a trip to the moon. In this book  Vera Historia,  Lucian’s ship is caught 

in a storm, lifted into the sky by the high winds, and after seven days and seven 

nights is accidentally blown to the moon. There he fi nds a land that is “cultivated 

and full of inhabitants.” Lucian’s work was followed by other science fi ction 

fantasies over the ensuing centuries, including Kepler’s  Somnium,  mentioned 

in    Sec. 8.14 . These science fi ction stories served a useful purpose in fueling the 

imaginative minds of some people and spurring them to deeper technological 

thought. Of particular note are books by Jules Verne and H. G. Wells in the 

19th century, which were avidly read by many early rocket engineers. In par-

ticular, both Tsiolkovsky and Goddard avidly read Wells’s  War of the Worlds  

and Verne’s  From the Earth to the Moon,  and both have gone on record as being 

inspired by these works. 

 Considering that Wells and Verne wrote less than 100 years ago and that just 

40 years ago rockets were only the playthings of a few visionaries, it is astounding 

that manned space fl ight has now become a reality—and in the minds of the general 

public, a somewhat common reality. The ice was broken on April 12, 1961, when 

the Soviet Union orbited the 10,400-lb  Vostok I  spacecraft carrying Major Yuri A. 
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Gagarin—the fi rst human being to ride in space. Gagarin was a Russian air force 

major; his orbital fl ight lasted 1 h 48 min, with an apogee of 203 mi. Upon entry 

 Vostok  was slowed fi rst by retrorockets, and then by parachute, and came to rest on 

the solid ground somewhere deep within the interior of Russia. However, it is thought 

that just before touchdown, Gagarin left the spacecraft and fl oated to earth with his 

own parachute. This entry mode was followed by several other Russian astronauts 

during subsequent years. Unfortunately, Gagarin was later killed in an airplane crash 

on March 27, 1968. 

 Humanity was now on its way in space! Less than a year later, the fi rst 

American in space for a sustained period, Marine Colonel John H. Glenn, Jr., 

was orbited on February 20, 1962. Executing three orbits in a  Mercury  cap-

sule with an apogee and perigee of 162.7 and 100.3 mi, respectively, Glenn’s 

fl ight lasted 4 h 56 min from blastoff to touchdown. As with all subsequent U.S. 

manned spacecraft, Glenn rode the  Mercury  capsule all the way to the earth’s 

surface, impacting at sea and being recovered by ship.    Figure 8.37  shows a dia-

gram of the single-seat  Mercury  space capsule and gives a clear picture of its 

size and shape relative to the astronaut himself. Glenn’s successful fl ight in 1962 

was a high point in Project Mercury, which was the United States’ fi rst manned 

space program. This project had its roots in an Air Force study titled “Manned 

Ballistic Rocket Research System” initiated in March 1956—a full year and a 

half  before Sputnik I.  Within two years under this project, the Air Force, NACA, 

and 11 private companies did much fundamental work on spacecraft design and 

life support systems. After  Sputnik I,  and after the formation of NASA in 1959, 

  

  Figure 8.37  The  Mercury  spacecraft. 
 (Source:  NASA. ) 
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this work was centralized within NASA and designated Project Mercury. Thus, 

when Gagarin went into orbit in 1961, the United States was not far behind.  
 Indeed, the U.S. manned space fl ight program was galvanized when President 

John F. Kennedy, in a speech before Congress on May 25, 1961, declared, “I be-

lieve that this nation should commit itself to achieving the goal, before this decade 

is out, of landing [a person] on the Moon and returning him safely to Earth. . . .” In 

virtually a fl ash, the Apollo program was born. Over the next eight years, work on 

the  Apollo  manned lunar vehicle marshalled a substantial portion of the U.S. human 

and material aerospace resources. Then—almost like a page out of science fi ction 

itself—at 4:18  pm  (EDT) on July 20, 1969, a lunar descent vehicle named  Eagle,  
carrying Neil A. Armstrong and Edwin E. Aldrin, Jr., came to rest on the moon’s 

surface, with Michael Collins keeping watch in the  Apollo  Command Module or-

biting above. President Kennedy’s goal had been met; the dreams and aspirations 

of people over the centuries had been fullfi lled; and the work of such minds as 

Copernicus, Kepler, Newton, and Lagrange had come to dramatic fruition. 

 The technical story of manned space fl ight is one of superhuman effort, fan-

tastic advances in science and engineering, and unswerving dedication. It is still 

going on, albeit at a somewhat reduced frenzy after  Apollo,  and it will continue 

to progress as long as modern society exists. It is impossible to give justice to 

such a story in this short section; whole volumes have been written on this sub-

ject alone. Again, for a particularly authoritative and modern review, the reader 

is referred to the book by    Von Braun and Ordway  listed in the bibliography.   

   8.19  SUMMARY AND REVIEW 
  There are at least two, and sometimes three, phases in the life of a typical space vehicle 

that originates on earth: (1) launch from the surface of the earth; (2) travel in space; and 

(3) return to earth, or alternatively landing on some other planet. The launch phase is 

usually carried out using rocket-powered boosters. Chapter 9 deals in part with rocket 

engines and rocket boosters. 

 The second phase, travel through space, has been discussed in the present chapter. At 

the instant of burnout of the rocket booster, the space vehicle has a certain velocity magni-

tude and direction, and is a certain distance from the center of the earth. Starting with these 

burnout conditions, nature takes over and sends the space vehicle on a path through space 

thereafter dictated solely by gravitational force. Much of this chapter deals with the study 

of this path (trajectory) and the dynamics of the motion of the space vehicle along this path. 

We have seen how to obtain the mathematical equation for this path, and how to calculate 

the changing velocity of the space vehicle as it moves from point to point along this path. 

 Finally, if the mission of the space vehicle is to travel through space indefi nitely, 

such as the deep-space mission of the  Voyager 2  (Fig. 2.29), then the vehicle experiences 

only the fi rst two phases in its lifetime. However, if the space vehicle is earmarked to re-

turn to earth or to land on the surface of another planet, it will experience the third phase, 

during which it has to safely enter and travel through an atmosphere. The critical aspects 

of this atmospheric entry are the massive deceleration and aerodynamic heating endured 

by the vehicle associated with its very high entry velocity from space. These aspects of 

atmospheric entry are discussed in this chapter, and equations are obtained for the maxi-

mum deceleration and total entry heating of the vehicle. 
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 Some of the highlights of this chapter are summarized as follows:  

1.   The equation of the orbit or trajectory of a spacecraft under the infl uence of a cen-
tral, inverse-square gravitational force fi eld is

r
p

e
=

1 ce+ e ( )Cθ
 (8.44)

where  e  is the eccentricity and  C  is the phase angle. If  e  = 0, the orbit is a circle; if 
 e  < 1, the orbit is an ellipse; if  e  = 1, the trajectory is a parabola; if  e  > 1, the 
trajectory is a hyperbola.  

   2.   The eccentricity depends on the difference between kinetic and potential energies 
of the spacecraft  H :
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   3.   Circular velocity is given by
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For earth satellites, circular or orbital velocity is 7.9 km/s or approximately 
26,000 ft/s (based on  r  = earth’s radius).  

   4.   Escape velocity is given by
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For escape from the earth, based on the earth’s radius, this velocity is 11.2 km/s or 
approximately 36,000 ft/s.  

   5.   Kepler’s laws are (1) a satellite describes an elliptical path around its center of 
 attraction; (2) in equal times, the areas swept out by the radius vector of a satellite 
are the same; and (3) the periods of any two satellites about the same planet are 
 related to their semimajor axes as

 

τ
τ

1

2

2

1

2

3⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
=

⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
a

a          

   6.   The velocity variation of a ballistic entry vehicle through the atmosphere is given 
by
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 (8.87)        

where ρ is a function of altitude,  m /( C   D   S ) is the ballistic parameter, θ  is the entry 
angle,  V   E   is the initial entry velocity, and  Z  =  g  0 / (RT) . The maximum deceleration 
during entry is given by
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7.   Entry aerodynamic heating varies as the cube of the velocity:

dQ

dt
V SCH= ∞ ∞VV

1

2
3ρ  (8.107)

To minimize aerodynamic heating, the vehicle should have a blunt nose.  
8.   The lifting entry path depends on the lift parameter  m /(C  LS  ).      
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   Problems  

8.1   At the end of a rocket launch of a space vehicle from earth, the burnout velocity 

is 13 km/s in a direction due south and 10° above the local horizontal. The 

burnout point is directly over the equator at an altitude of 400 mi above sea level. 

Calculate the trajectory of the space vehicle.  

8.2   Calculate and compare the escape velocities from Venus, Earth, Mars, and Jupiter, 

given the following information:

    Venus     Earth     Mars    Jupiter 

k  2 , m 3 /s 2   3.24 × 10 14   3.96 × 10 14   4.27 × 10 13   1.27 × 10 17  
r , m  6.16 × 10 6   6.39 × 10 6   3.39 × 10 6   7.14 × 10 7  

8.3   The mass and radius of the earth’s moon are 7.35 × 10 22  kg and 1.74 × 10 6  m, 

respectively. Calculate the orbital and escape velocities from the moon.  
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  8.4   It is known that the period of revolution of the earth about the sun is 365.3 days 

and that the semimajor axis of the earth’s orbit is 1.495 × 10 11  m. An astronomer 

notes that the period of a distant planet is 29.7 earth years. What is the semimajor 

axis of the distant planet’s orbit? Check in a reference source (encyclopedia, 

online, or the like) what planet of the solar system this might be.  

  8.5   Assume that you wish to place in orbit a satellite that always remains directly 

above the same point on the earth’s equator. What velocity and altitude must the 

satellite have at the instant of burnout of the rocket booster?  

  8.6   Consider a solid iron sphere entering the earth’s atmosphere at 8 km/s and at an 

angle of 30° below the local horizontal. The sphere diameter is 1.6 m. Calculate 

( a ) the altitude at which maximum deceleration occurs, ( b ) the value of the 

maximum deceleration, and ( c ) the velocity at which the sphere would impact the 

earth’s surface.  

  8.7   The aerodynamic heating rate of a given entry vehicle at 200,000 ft traveling at a 

velocity of 27,000 ft/s is 100 Btu/(ft 2 )(s). What is the heating rate if the velocity is 

36,000 ft/s at the same altitude?  

  8.8   There is a fi nite probability of an asteroid colliding with the earth in a cataclysmic 

event. Such collisions are known to have occurred over the history of the earth, and 

some responsible scientifi c and technical organizations, including the American 

Institute of Aeronautics and Astronautics (AIAA), have studied what measures 

could be taken if such an event were to threaten the earth in the foreseeable future. 

Consider the head-on collision of an asteroid with the earth. Assume that the 

asteroid’s velocity (in a reference frame fi xed on the sun) is equal to nine-tenths 

of the escape velocity from the sun. In the same reference frame, the velocity 

of the earth around the sun is 29.77 km/s. Calculate the velocity, relative to the 

earth, at which the asteroid would enter the earth’s atmosphere. Assume that the 

earth is moving in a circular orbit about the sun, with a radius of 147 × 10 9  m. 

 Note:  This problem represents a worst-case scenario where there is a head-on 

collision between the earth traveling in one direction and the asteroid traveling 

in the opposite direction.  

  8.9   The  LANDSAT C  earth resources satellite has a nearly circular orbit with an 

eccentricity of 0.00132. At perigee the satellite is at an altitude (measured from 

the earth’s surface) of 417 km. Calculate its altitude at apogee.  

  8.10   For the orbital conditions of the  LANDSAT C  satellite described in    Prob. 8.9 , 

calculate its period.  

  8.11   Calculate the velocity of the  LANDSAT C  satellite at perigee, given the orbital 

conditions in    Prob. 8.9 .  

  8.12   The next fi ve problems are based on the  Messenger  spacecraft launched from 

Earth on August 3, 2002. After gravity-assist maneuvers around the earth, Venus, 

and Mercury,  Messenger  went into orbit around Mercury on March 18, 2011. The 

radius and mass of Mercury are 2,440 km and 3.3 × 10 23  kg, respectively. The orbit 

is designed to be highly elliptical, with the altitude of closest approach (periapsis) 

of 200 km, and the altitude of farthest distance (apoapsis) of 15,193 km. 

( Note:  These are altitudes above the surface of Mercury, not the distances from 

the center of the planet.) Calculate the period of the  Messenger  orbit. Ignore the 

infl uence of the gravitational attraction of the sun on the spacecraft orbit.  
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  8.13   For the  Messenger  spacecraft in orbit about Mercury (see    Prob. 8.12 ), calculate 

the spacecraft’s velocity at periapsis and at apoapsis.  

  8.14   For the  Messenger  spacecraft in orbit about Mercury (see    Probs. 8.12  and    8.13 ), 

calculate its angular momentum per unit mass.  

  8.15   What is the eccentricity of the  Messenger ’s orbit about Mercury?  

  8.16   From the characteristics and properties of the orbit, some of which are given in    

Prob. 8.12 , it is not possible to extract the mass of the  Messenger  spacecraft. Why?              



728

Propulsion

We have sought power in the same fi re which serves to keep the vessel aloft. The 

fi rst which presented itself to our imagination is the power of reaction, which can 

be applied without any mechanism, and without expense: it consists solely in one or 

more openings in the vessel on the side opposite to that in which one wishes to be 

conveyed.

 Joseph Montgolfi er, 1783—the 

fi rst recorded technical statement 

in history on jet propulsion for 

a fl ight vehicle

I began to realize that there might be something after all to Newton’s Laws.

Robert H. Goddard, 1902

9.1 INTRODUCTION
The old saying that “you cannot get something for nothing” is particularly true 
in engineering. For example, the previous chapters have discussed the aerody-
namic generation of lift and drag; the performance, stability, and control of air-
planes; and the motion of spacecraft. All of this takes the expenditure of power, 
or energy, which is supplied by an engine or propulsive mechanism of some 
type. The study of propulsion is the subject of this chapter. Here we examine 
what makes an airplane or space vehicle go.

 9 C H A P T E R
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In Chs. 1–8 of this book, we have dealt with aerody-

namics and fl ight dynamics associated with airplanes 

in fl ight and some aspects of astronautics associ-

ated with a vehicle moving through outer space. We 

have taken for granted that the airplanes had engines 

to power themselves through the air—to keep them 

going—and that the space vehicles had engines to 

boost themselves from the earth’s surface into space. 

Now is the time to look at the engines themselves—to 

venture into the discipline of fl ight propulsion.
We begin this chapter with the reciprocating 

engine–propeller combination, a historically classic 

propulsion device, the same type of power plant used 

by the Wright brothers for their 1903 Flyer (see Fig. 

1.2), and virtually the only type of aircraft propulsion 

during the fi rst half of the 20th century. Reciprocat-

ing engines and propellers are still used today for the 

vast majority of small general aviation airplanes. Re-

ciprocating engines—these are the same type of en-

gines used in automobiles today. How do they work? 

How do they produce power? For automobiles this 

power is used to turn wheels. For airplanes the power 

is used to turn a propeller, which in turn generates 

thrust, which in turn propels the airplane forward. 

How does all this happen? You will fi nd the answers 

to this and the previous questions in this chapter.

By the mid-1940s, a propulsion revolution 

occurred—the development of the fi rst practical jet 

engines. The jet engine revolutionized the world of 

atmospheric fl ight. Its invention is arguably the sec-

ond most important milestone in the history of fl ight, 

the fi rst being the Wright brothers’ invention of the 

fi rst practical airplane at the turn of the century. The 

jet engine made possible high-speed fl ight, near and 

beyond the speed of sound. It opened the world to 

safe, reliable, convenient, and rapid travel across 

oceans and between distant countries. Any study of 

fl ight propulsion today is dominated by the study of 

jet engines. This chapter is no exception.

What is so magical about jet engines? How can 

they produce so much thrust that they propel aircraft 

to Mach 1 and higher? There must be some interest-

ing physics going on here. What is it? How can you 

calculate the thrust of a jet engine? You will fi nd the 

answers in this chapter.

Jet engines and rocket engines are both mem-

bers of the general family of jet propulsion devices. 
Rocket engines, however, by their very nature and in 

their specifi c design features, are different enough 

from jet engines to deserve a separate study all 

their own. Indeed, in some college curricula, air- 

breathing propulsion and rocket propulsion are two 

separate (but related) courses. What are the differ-

ences? The fi nal third of this chapter is devoted to 

rocket engines, and it provides some explanation of 

the  differences.

Rocket engines, with their tremendous thrust, 

and because they carry their own fuel and oxidizer 

and hence do not need air for their operation, are at 

present the only type of engines that can boost ve-

hicles into space from the earth’s surface. How do 

rocket engines produce so much thrust? How can you 

calculate the thrust of a rocket engine? Most space 

vehicles are boosted into space by not one, but rather 

two or more rocket engine stages that are mounted 

on top of each other, with each spent stage dropping 

away from the vehicle as the next stage is ignited. 

What is going on here? Why are most space vehicles 

boosted into space by multistage rocket boosters? 

Imagine that you are an astronaut in the space vehicle 

and your fi nal rocket stage burns out. How can you 

calculate the velocity of your space vehicle? Will it 

be enough to get you into space and on your way to 

accomplish your mission in space? You can certainly 

appreciate the importance of the answers to these 

questions. This chapter gives you some answers.

Remember that a fl ight vehicle is a system in-

volving aerodynamics, fl ight dynamics, structures, 

and propulsion. All four of these disciplines must 

work successfully and synergistically for the fl ight 

vehicle to be a success. Propulsion is a particularly 

important element of the system, and therefore this 

chapter is a particularly important part of this book. 

In addition, propulsion is a particularly interesting 

subject involving the harnessing and conversion of 

sometimes huge amounts of energy to produce some-

times large amounts of thrust, involving intricate 

machines. A study of propulsion is fun. I hope you 

will fi nd it that way as you read through this chapter. 

Strap yourself in, open the throttle, and enjoy.

PREVIEW BOX
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Throughout Ch. 1, the dominant role played by propulsion in the advance-

ment of manned fl ight is clearly evident. George Cayley was concerned in 1799, 

and he equipped his airplane designs with paddles. Henson and Stringfellow did 

better by considering “airscrews” powered by steam engines, although their ef-

forts were unsuccessful. In 1874, Felix Du Temple momentarily hopped off the 

ground in a machine powered by an obscure type of hot-air engine; he was fol-

lowed by Mozhaiski in 1884, who used a steam engine (see Figs. 1.13 and 1.14). 

By the late 19th century, the early aeronautical engineers clearly recognized 

that successful manned fl ight depended on the development of a lightweight but 

powerful engine. Fortunately, the advent of the fi rst practical internal combus-

tion engine in 1860 paved the way for such success. However, in spite of the 

rapid development of these gasoline-powered engines and their role in the early 

automobile industry, such people as Langley (Sec. 1.7) and the Wright broth-

ers (Sec. 1.8) still were forced to design their own engines to obtain the high 

 horsepower-to-weight ratio necessary for fl ight. Such internal combustion re-

ciprocating engines driving a propeller ultimately proved to be a winning com-

bination and were the only practical means of airplane propulsion up to World 

War II. In the process, such engines grew in horsepower from the 12-hp Wright-

designed engine of 1903 to the 2200-hp radial engines of 1945, correspondingly 

pushing fl ight velocities from 28 to more than 500 mi/h.

Then a revolution in propulsion occurred. Frank Whittle took out a pat-

ent in Britain in 1930 for a jet-propelled engine and worked ceaselessly on its 

development for a decade. In 1939, the German Heinkel He 178 airplane fl ew 

with a turbojet engine developed by Dr. Hans von Ohain. It was the fi rst suc-

cessful jet-propelled test vehicle. This led to the German Me 262 jet fi ghter late 

in World War II. Suddenly jet engines became the dominant power plants for 

high-performance airplanes, pushing fl ight velocities up to the speed of sound in 

the 1950s and beyond in the 1960s and 1970s. Today the airplane industry rides 

on jet propulsion, and jet-propelled supersonic fl ight for both commercial and 

military airplanes is a regular occurrence.

Meanwhile, another revolution of even greater impact occurred: the advent of 

the successful rocket engine. Pioneered by Konstantin Tsiolkovsky (1857–1935) in 

Russia, Robert H. Goddard (1882–1945) in the United States, and Hermann Oberth 

(b. 1894–1989) in Germany, the rocket engine fi rst became operational in 1944 

with the German V-2 missile. Being the only practical means of launching a vehicle 

into space, the rocket engine soon proved itself during the space age, allowing peo-

ple to go to the moon and to probe the deep unknown regions of our solar system.

It is clear from these brief historical sketches that propulsion has led the way 

for all major advancements in fl ight velocities. Propulsion is one of the major 

disciplines of aerospace engineering; therefore, in the following sections, some 

of the basic principles of propellers, reciprocating engines, turbojets, ramjets, 

and rockets will be examined. Such propulsion devices are highly aerodynamic. 

Thus, a fi rm understanding of the aerodynamic and thermodynamic fundamen-

tals presented in Chs. 4 and 5 will help you grasp the propulsion concepts dis-

cussed in this chapter.



 9.2  Propeller 731

The road map for this chapter is shown in Fig. 9.1. Flight propulsion devices 

for aerospace vehicles can be categorized into the three main columns in Fig. 9.1: 

air-breathing engines, rocket engines, and advanced space propulsion devices. 

Air-breathing engines constitute the left column in Fig. 9.1; from their name, it is 

clear that they are designed to use the oxygen in the atmosphere for an oxidizer. 

We begin this chapter by discussing the propeller and the reciprocating engine, 

the combination of which was the main power plant for the fi rst 50 years of suc-

cessful powered fl ight. We then examine the principle of jet propulsion, and we 

derive the thrust equation for jet propulsion devices (which include both jet and 

rocket engines).With this, we tour down the remainder of the left column and 

examine the three main types of air-breathing jet engines: the turbojet, turbofan, 

and ramjet. The middle column in Fig. 9.1 deals with rocket engines— propulsion 

devices that carry their own fuel and oxidizer and therefore are independent of 

the atmosphere. We examine how the performance of a rocket engine (thrust and 

effi ciency) can be calculated and how we can predict what weight of payload 

can be accelerated to what velocity by a rocket (the rocket equation). The per-

formance of a multistage rocket vehicle (as opposed to a single large rocket) is 

calculated and discussed. Also, the important aspects of chemical rocket engine 

propellants are mentioned. Finally, we examine some of the basic concepts for 

advanced space propulsion (the right column in Fig. 9.1).

9.2 PROPELLER
Airplane wings and propellers have something in common: They are both made 
up of airfoil sections designed to generate an aerodynamic force. The wing force 
provides lift to sustain the airplane in the air; the propeller force provides thrust 
to push the airplane through the air. A sketch of a simple three-blade propeller 
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Figure 9.1 Road map for Ch. 9.
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is given in Fig. 9.2, illustrating that a cross section is indeed an airfoil shape. 
However, unlike a wing, where the chord lines of the airfoil sections are essen-
tially all in the same direction, a propeller is twisted so that the chord line changes 
from being almost parallel to V∞ at the root to almost perpendicular at the tip. 
This is illustrated in Fig. 9.3, which shows a side view of the propeller, as well 
as two sectional views, one at the tip and the other at the root. Study this fi gure 
carefully. The angle between the chord line and the propeller’s plane of rotation 
is defi ned as the pitch angle β. The distance from the root to a given section is r.
Note that β  =  β (r).

The airfl ow seen by a given propeller section is a combination of the air-

plane’s forward motion and the rotation of the propeller itself. This is sketched 

in Fig. 9.4a, where the airplane’s relative wind is V∞ and the speed of the blade 

section due to rotation of the propeller is rω. Here ω denotes the angular veloc-

ity of the propeller in radians per second. Hence, the relative wind seen by the 
propeller section is the vector sum of V∞ and rω, as shown in Fig. 9.4b.

Clearly, if the chord line of the airfoil section is at an angle of attack α with 

respect to the local relative wind V, then lift and drag (perpendicular and parallel 

to V, respectively) are generated. In turn, as shown in Fig. 9.5, the components 

of L and D in the direction of V∞ produce a net thrust T:

 cos iφ φD sD in  (9.1)

where φ = β − α. This thrust, when summed over the entire length of the propel-
ler blades, yields the net thrust available (TA as defi ned in Ch. 6), which drives 
the airplane forward.

Figure 9.2 The airplane propeller, emphasizing that a propeller cross section is an airfoil 

shape. 
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Figure 9.3 Illustration of propeller, showing variation of pitch along the blade.

Figure 9.4 Velocity diagram for the fl ow velocity relative to 

the propeller.

This simple picture is the essence of how a propeller works. However, the 

actual prediction of propeller performance is more complex. The propeller is 

analogous to a fi nite wing that has been twisted. Therefore, the aerodynamics 

of the propeller are infl uenced by the same induced fl ow due to tip vortices as 

was described for the fi nite wing in Secs. 5.13 and 5.14. Moreover, due to the 
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propeller twist and rotational motion, the aerodynamic theory is even more com-

plicated. However, propeller theory has been extensively developed, and more 

details can be found in the books by Dommasch et al. and Glauret (see the biblio-

graphy at the end of this chapter). Such theory is beyond the scope of this book.

Instead, let us concentrate on understanding the propeller effi ciency η intro-

duced in Sec. 6.6. From Eq. (6.30), the propeller effi ciency is defi ned as

 
η = P

P
AP

 

(9.2)

where P is the shaft brake power (the power delivered to the propeller by the 
shaft of the engine) and PA is the power available from the propeller. As given in 
Eq. (6.31), PA = TAV∞. Hence Eq. (9.2) becomes

η = ∞T V∞
P

AT
(9.3)

As previously explained, TA in Eq. (9.3) is basically an aerodynamic phe-

nomenon that is dependent on the angle of attack α in Fig. 9.5. In turn, α is 

dictated by the pitch angle β and φ, where φ itself depends on the magnitudes of 

V∞ and rω. The angular velocity ω = 2π n, where n is the number of propeller 

revolutions per second. Consequently, TA must be a function of at least β, V∞, 

and n. Finally, the thrust must also depend on the size of the propeller, character-

ized by the propeller diameter D. In turn, the propeller effi ciency, from Eq. (9.3), 

must depend on β, V∞, η, and D. Indeed, theory and experiment both show that 

for a fi xed pitch angle β, η is a function of the dimensionless quantity

J
V

nD
= ∞VV

advance ratio

A typical variation of η with J for a fi xed β is sketched in Fig. 9.6; three curves 
are shown corresponding to three different values of pitch. Figure 9.6 is impor-
tant; from such curves η is obtained for an airplane performance analysis, as 
described in Ch. 6.

Examine Fig. 9.6 more closely. Note that η < 1; this is because some of the 

power delivered by the shaft to the propeller is always lost, and hence PA < P. 

Figure 9.5 Generation of propeller thrust.
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These losses occur because of several different effects. First imagine that you 

are standing in an open fi eld. The air is still; it has no velocity. Then a propeller-

driven vehicle goes zooming by you. After the propeller has passed, you will feel 

a stiff breeze moving in the direction opposite that of the vehicle. This breeze is 

part of the slipstream from the propeller; that is, the air is set into both transla-

tional and rotational motion by the passage of the propeller. Consequently, you 

observe some translational and rotational kinetic energy of the air where before 

there was none. This kinetic energy has come from part of the power delivered 

by the shaft to the propeller; it does no useful work and hence robs the propeller 

of some available power. In this fashion, the energy of the slipstream relative 

to the still air ahead of the vehicle is a source of power loss. Another source 

is frictional loss due to the skin friction and pressure drag (profi le drag) on the 

propeller. Friction of any sort always reduces power. A third source is compress-
ibility loss. The fastest-moving part of the propeller is the tip. For many high-

performance engines, the propeller tip speeds result in a near-sonic relative wind. 

When this occurs, the same type of shock wave and boundary layer separation 

losses that cause the drag-divergence increase for wings (see Sec. 5.10) now rob 

the propeller of available power. If the propeller tip speed is supersonic, η drops 

dramatically. This is the primary reason why propellers have not been used for 

transonic and supersonic airplanes. (After World War II, the NACA and other 

laboratories experimented with swept-back propellers, motivated by the success 

obtained with swept wings for high-speed fl ight; but nothing came of these ef-

forts.) As a result of all the losses described here, the propeller effi ciency is 

always less than unity.

Return again to Fig. 9.6. Note that for a fi xed β, the effi ciency is zero at J = 0, 

increases as J increases, goes through a maximum, and then rapidly decreases 

at higher J, fi nally again going to zero at some large fi nite value of J. Why does 

η go to zero for the two different values of J? At the origin, the answer is simple. 

Consider a propeller with given values of n and D; hence J depends only on 

V∞. When V∞ = 0, then J = 0. However, when V∞ = 0, then PA = TAV∞ = 0; 

Figure 9.6 Propeller effi ciency versus advance ratio. Note that D denotes 

propeller diameter.
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 consequently η = PA/P = 0. Thus, propeller effi ciency is zero at J = 0 because 

there is no motion of the airplane and hence no power available. At the other 

extreme, when V∞, and hence J, is made large, the propeller loses lift owing to 

small angles of attack. This is shown in Fig. 9.7. Consider a given propeller air-

foil section at a distance r from the center. Assume ω ; hence rω remains constant. 

If V∞ is small, the relative wind will be as shown in Fig. 9.7a, where the airfoil 

section is at a reasonable angle of attack and therefore produces a reasonable lift. 

Now if V∞ is increased, the relative wind approaches the chord line; hence α, and 

therefore the lift coeffi cient, decreases. If the value of V∞ is such that the relative 

wind corresponds to the zero-lift line, then the lift (and hence the thrust) is zero, 

and again η = TAV∞ /P = 0. In fact, if V∞ is made even larger, the section will 

produce negative lift, and hence reverse thrust, as shown in Fig. 9.7b.
A consideration of the relative wind also explains why a propeller blade is 

twisted, with a large β at the root and a small β at the tip, as was fi rst sketched 

in Fig. 9.3. Near the root r, and hence rω, is small. Thus, as shown in Fig. 9.8a, 
β must be large to have a reasonable α. In contrast, near the tip, r, and hence 

rω, is large. Thus, as shown in Fig. 9.8b, β must be smaller in order to have a 

reasonable α.

Return again to Fig. 9.6. All early airplanes before 1930 had fi xed-pitch pro-
pellers; that is, the values of β for all sections were geometrically fi xed by the 

design and manufacture of the blades. Once the propeller was rigidly mounted 

on the engine shaft, the pilot could not change the blade angle. Thus, from the 

curves in Fig. 9.6, maximum propeller effi ciency could be obtained only at a 

 specifi c value of the advance ratio J. At other fl ight velocities, the propeller 

Figure 9.7 Explanation of the variation of propeller effi ciency with advance ratio. 

(a) Velocity diagram for low V∞. (b) Velocity diagram for high V∞.
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always operated at effi ciencies less than maximum. This characteristic severely 

limited airplane performance. Some improvement, albeit small, was attempted 

in 1916 at the Royal Aircraft Factory at Farnborough, England, by a design of 

a two-pitch propeller. But the ultimate solution was the variable-pitch propel-
ler, patented in 1924 by Dr. H. S. Hele-Shaw and T. E. Beacham in England 

and fi rst  introduced into practical production in 1932 in the United States. The 

 variable-pitch propeller is fi xed to a mechanical mechanism in the hub; the 

mechanism rotates the entire blade about an axis along the length of the blade. 

Figure 9.8 Difference in the relative wind along the propeller 

blade. (a) Near the root; (b) near the tip.
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In this fashion, the propeller pitch can be continuously varied to maintain maxi-

mum effi ciency at all fl ight velocities. This can be visualized as riding along the 

peaks of the propeller effi ciency curves in Fig. 9.6, as shown by the dotted ηmax 

line. A further development of this concept was the introduction in 1935 of the 

constant-speed propeller, which allowed the pitch angle to be varied continu-

ously and automatically to maintain the proper torque on the engine so that the 

engine revolutions per minute were constant over the range of fl ight velocities. 

This is advantageous because the brake power output of aircraft piston engines 

is usually optimized at a given number of revolutions per minute. Nevertheless, 

the introduction of the variable-pitch and constant-speed propellers in the 1930s 

was one of the most important developments in the history of aeronautical engi-

neering. As a result, values of η range from about 0.83 to 0.90 for most modern 

propellers.

A comment is in order concerning airfoil sections used for propellers. Early 

propellers from the World War I era typically utilized the RAF-6 airfoil; later 

the venerable Clark Y shape was employed. During the late 1930s, some of the 

standard NACA sections were used. However, as aircraft speeds rapidly in-

creased during World War II, special high-speed profi les were incorporated into 

propellers. The NACA developed a complete series, the 16 series, which found 

exclusive use in propellers. This series is different from the wing airfoil sec-

tions given in App. D; some typical shapes are sketched in Fig. 9.9. These are 

thin profi les, designed to minimize the transonic fl ow effects near the propeller 

tips. They should be compared with the more conventional shapes in App. D.

9.3 RECIPROCATING ENGINE
For the fi rst 50 years of successful manned fl ight, the internal combustion, recip-
rocating, gasoline-burning engine was the mainstay of aircraft propulsion. It is 
still used today in airplanes designed to fl y at speeds less than 300 mi/h, the 

Figure 9.9 Typical high-speed airfoil 

sections for propellers.
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range for the vast majority of light, private, general aviation aircraft (such as the 
hypothetical CP-1 in the examples of Ch. 6). A photograph of a typical internal 
combustion reciprocating engine is shown in Fig. 9.10.

The basic operation of these engines is a piston moving back and forth (recip-

rocating) inside a cylinder, with valves that open and close appropriately to let 

fresh fuel–air mixture in and burned exhaust gases out. The piston is connected 

to a shaft via a connecting rod that converts the reciprocating motion of the 

piston to rotational motion of the shaft. A typical four-stroke cycle is illustrated in 

Fig. 9.11. During the intake stroke (Fig. 9.11a), the piston moves downward, the 

Figure 9.10 A large radial air-cooled internal combustion aircraft engine.
(Source: U.S. Air Force.)
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Figure 9.11 Elements of the four-stroke, internal combustion, reciprocating engine cycle. 

(a) Intake stroke; (b) compression stroke; (c) constant-volume combustion. (continued) 
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intake valve is open, and a fresh charge of gasoline–air mixture is drawn into the 

cylinder. This process is sketched on the p–V diagram (a plot of pressure versus 

volume) in Fig. 9.11a. Here point 1 corresponds to the beginning of the stroke 

(where the piston is at the top, called top dead center), and point 2 corresponds to 

the end of the stroke (where the piston is at the bottom, called bottom dead cen-
ter). The volume V is the total mixture volume between the top of the cylinder and 

the face of the piston. The intake stroke takes place at essentially constant pressure, 

and the total mass of fuel–air mixture inside the cylinder increases throughout the 

stroke. At the bottom of the intake stroke, the intake valve closes, and the com-
pression stroke begins (Fig. 9.11b). Here the piston compresses the now-constant 

mass of gas from a low pressure p2 to a higher pressure p3, as shown in the ac-

companying p–V diagram. If frictional effects are ignored, the compression takes 

place isentropically (see Sec. 4.6) because no heat is added or taken away. At the 

top of the compression stroke, the mixture is ignited, usually by an electric spark. 

Combustion takes place rapidly before the piston has moved any meaningful dis-

tance. Hence, for all practical purposes, the combustion process is one of con-
stant volume (Fig. 9.11c). Because energy is released, the temperature increases 

Figure 9.11 (continued ) (d) Power stroke; (e) exhaust stroke. Note that V denotes the gas 

volume in the cylinder.
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markedly; in turn, because the volume is constant, the equation of state, Eq. (2.9), 

dictates that pressure increases from p3 to p4. This high pressure exerted over the 

face of the piston generates a strong force that drives the piston downward on the 

power stroke (Fig. 9.11d). Again, assuming that frictional and heat transfer effects 

are negligible, the gas inside the cylinder expands isentropically to the pressure p5. 

At the bottom of the power stroke, the exhaust valve opens. The pressure inside 

the cylinder instantly adjusts to the exhaust manifold pressure p6, which is usually 

about the same value as p2. Then, during the exhaust stroke, Fig. 9.11e, the pis-

ton pushes the burned gases out of the cylinder, returning to conditions at point 1. 

Thus, the basic process of a conventional aircraft piston engine consists of a four-

stroke cycle: intake, compression, power, and exhaust.

Because of the heat released during the constant-volume combustion, the 

cycle delivers a net amount of positive work to the shaft. This work can be calcu-

lated by using the complete p–V diagram for the cycle, as sketched in Fig. 9.12. 

Recall from Eq. (4.15) that the amount of work done on the gas due to a change 

in volume dV is δ w = −p dV. In turn, the work done by the gas is simply

 δwδδ = p dV

For any part of the process, say during the power stroke, this is equivalent to the 
small sliver of area of height p and base dV, as shown in Fig. 9.12. In turn, the 
work done by the gas on the piston during the whole power stroke is

 
WpowWW er stroke = ∫ p dV

V

V

4VV

5VV

 
(9.4)

This is given by the area under the curve from point 4 to point 5 in Fig. 9.12. 
Analogously, the work done by the piston on the gas during the compression stroke is

 
W pdV

V

V

co pWW ess o st o e ∫
3VV

2VV

 
(9.5)

Figure 9.12 The complete four-stroke cycle for 

a spark ignition internal combustion engine (the 

Otto cycle).
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This is given by the area under the curve from point 2 to point 3. Consequently, 
the net work done during the complete cycle W is

 W W W−WpowWW er stroke compWW ression stroke  (9.6)

This is equal to the shaded area of the p–V diagram shown in Fig. 9.12. Thus 
we see the usefulness of p–V diagrams in analyzing thermodynamic processes 
in closed systems: The area bounded by the complete cycle on a p–V diagram is 
equal to the work done during the cycle.

The power output of this arrangement is the work done per unit time. 
Consider the engine shaft rotating at n revolutions per second (r/s). The piston 

goes up and down once for each revolution of the shaft. Hence, the number of 

times the complete engine cycle is repeated in 1 s is n/2. The work output on each 

cycle is W, from Eq. (9.6). If the complete engine has N cylinders, then the power 

output of the engine is

IP = n
NW

2  
(9.7)

The symbol IP is used to signify indicated power. This is the power that is 
generated by the thermodynamic and combustion processes inside the engine. 
However, transmission of this power to the shaft takes place through mechanical 
linkages, which always generate frictional losses due to moving parts in contact. 
As a result, the power delivered to the shaft is less than IP. If the shaft brake 
power is P (see Sec. 6.6), then

= ηmech ( )IP  (9.8)

where ηmech is the mechanical effi ciency that accounts for friction loss due to the 
moving engine parts. Then, from Eq. (6.30), the power available to propel the 
engine–propeller combination is

PAP = ηηmech ( )IP  (9.9)

or from Eq. (9.7).

P
n

NWAP = ηηmech
2  

(9.10)

If rpm denotes the revolutions per minute of the engine, then n = rpm/60, and Eq. 
(9.10) becomes

P
NW

AP = ηηmech p( )rpm

120 (9.11)

Equation (9.11) proves the intuitively obvious fact that the power available for a 
propeller-driven airplane is directly proportional to the engine rpm.

The work per cycle W in Eq. (9.10) can be expressed in more detailed terms. 

Consider the piston shown in Fig. 9.13. The length of the piston movement is 

called the stroke s; the diameter of the piston is called the bore b. The volume 

swept out by the piston is called the displacement, equal to (π b2/4)s. Assume that 
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a constant pressure pe acts on the face of the piston during the power stroke; pe 

is called the mean effective pressure. It is not the actual pressure acting on the 

piston, which in reality varies from p4 to p5 during the power stroke; rather, pe is 

an artifi cially defi ned quantity that is related to the engine power output and that 

is an average representation of the actual pressure. Furthermore, assume that all 

the useful work is done on the power stroke. Thus W is equal to the force on the 

piston (π b2/4)pe times the distance through which the force moves s; that is,

W
b

spe= π 2

4  
(9.12)

Combining Eqs. (9.11) and (9.12), we obtain

P N
b sp

APP eηη π
mech p

4
( )p

2

120  
(9.13)

The total displacement of the engine d is equal to the displacement of each cyl-
inder times the number of cylinders:

d
b

sN= π 2

4  
(9.14)

Combining Eqs. (9.13) and (9.14) yields

P
dp

AP e= ηηmech p( )rpm

120
(9.15)

Equation (9.15) indicates that power available is directly proportional to engine 
rpm, displacement, and mean effective pressure.

Figure 9.13 Illustration of bore, stroke, and mean effective pressure.
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In Ch. 6, the altitude effect on PA for a reciprocating engine–propeller 

combination was assumed to be governed by ambient density; that is, PA was 

assumed to be directly proportional to ρ∞. More credence can now be added 

to this earlier assumption in light of the preceding discussion. For example, 

Eq. (9.15) shows that PA is proportional to pe. However, pe is representative of 

the mass of air originally obtained at ambient conditions, then mixed with a 

small amount of fuel in the intake manifold, and then sucked into the cylinder 

during the intake stroke. If this mass of air is reduced by fl ying at higher alti-

tudes where ρ∞ is lower, then pe will be correspondingly lower. In turn, from 

Eq. (9.15), PA will be correspondingly reduced. Therefore, the assumption that 

PA ∝ ρ∞ is reasonable.

The reduction of PA with altitude can be delayed if a supercharger is used on 

the engine. This is basically a pump, driven from the engine crankshaft (a geared 

supercharger) or driven by a small turbine mounted in the engine exhaust jet 

(a turbosupercharger). The supercharger compresses the incoming air before it 

reaches the intake manifold, increasing its density and thereby avoiding a loss 

in PA at altitude. Early work on superchargers was performed in the 1920s by 

the NACA at Langley. This was important research because an unsupercharged 

airplane of that day was limited to altitudes on the order of 20,000 ft or less. 

However, on May 18, 1929, Navy Lt. Apollo Soueck, fl ying an Apache airplane 

powered by a supercharged Pratt & Whitney Wasp engine, reached 39,140 ft, 

an altitude record for that time. Subsequently a substantial portion of the NACA 

propulsion research was channeled into superchargers, which led to the high- 

performance engines used in military aircraft during World War II. For modern 

general aviation aircraft of today, supercharged engines are available as options 

on many designs and are fi xed equipment on others.

A more extensive discussion of reciprocating internal combustion engines is 

beyond the scope of this book. However, such engines are important to the gen-

eral aviation industry. In addition, their importance to the automobile industry 

goes without saying, especially in light of the modern demands of effi ciency and 

low pollutant emissions. Therefore, the interested reader is strongly encouraged 

to study the subject more deeply; for example, more details can be found in the 

book by Obert (see the bibliography at the end of this chapter).

EXAMPLE 9.1

Consider a six-cylinder internal combustion engine with a stroke of 9.5 cm and a bore of 

9 cm. The compression ratio is 10. [Note that the compression ratio in internal combus-

tion (IC) engine terminology is defi ned as the volume of the gas in the cylinder when 

the piston is at bottom dead center divided by the volume of the gas when the piston is 

at top dead center.] The pressure and temperature in the intake manifold are 0.8 atm and 

250 K, respectively. The fuel-to-air ratio of the mixture is 0.06 (by mass). The mechani-

cal effi ciency of the engine is 0.75. If the crankshaft is connected to a propeller with an 

effi ciency of 0.83, calculate the power available from the engine–propeller combination 

for 3000 rpm.



746 CHAPTER  9  Propulsion

■ Solution
Consider the ideal cycle as sketched in Fig. 9.12. We want to calculate the work done 

per cycle to ultimately obtain the total power output. To do this, we fi rst need to fi nd p3, 

p4, p5, V2 = V5, and V3 = V4. Because the compression stroke is isentropic, from Sec. 4.6,
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Referring to Fig. 9.12, we see that the combustion process from point 3 to point 4 

is at constant volume. The chemical energy release in 1 kg of gasoline is approximately 

4.29 × 107 J. Hence the heat released per kilogram of fuel–air mixture is (recalling that 

the fuel-to-air ratio is 0.06)

q = =( . )( . )
.

2. 9 1× 0 0)( 06

1 0. 6
2 4. 3 1× 0

7
6 J/kg

From the fi rst law of thermodynamics, Eq. (4.16), and from Eq. (4.23) for a constant- 

volume process,

δq dδ e p dv de c dTv+de = +de =0

Hence  q cvc ( )T TT4 3T TT TT

or 

 

T
q

c
T

v
4 3TT TT= +q

We can obtain the value of cv from Eq. (4.68), recalling from Example 4.5 that cp =
1008 J/(kg)(K) for air. Assume that the specifi c heats and gas constant for the fuel–air mix-

ture are approximated by the air values alone; this is reasonable because only a small amount 

of fuel is present in the mixture. Hence cv = cp − R = 1008 − 288 = 720 J/(kg)(K). Thus

T
q

c
T

v
4 3TT TT

62 43 10

720
625 4000= +q = + =625

.
K

From the equation of state, noting that V4 = V3 and R is constant, we fi nd p4 /p3 = 
T4 /T3. Thus
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For the power stroke, the process is isentropic. Hence
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We now have enough thermodynamic information to calculate the work done per cycle. 

From Eq. (9.5),
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We need volumes V2 and V3 to proceed further. Consider Fig. 9.13. The stroke of the 

piston is 9.5 cm, and the compression ratio is 10. If x denotes the distance from the top of 

the cylinder to the piston top dead center position, then from the defi nition of compres-

sion ratio,
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Similarly, the work done by the power stroke from point 4 to point 5 (isentropic) is

W p dV
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Finally, from Eq. (9.6), the net work per cycle is

W W W−W = − =powWW er compWW ression J1312 205 1107

The total power available from the engine–propeller combination is, from Eq. (9.11),

P N WAP =N W
1

120

0 83 0 5 6

1
ηηmech p( )p

. (83 . )75 ( )3000 ( )6 ( )1107

2022

1 034 105PAP = 1. J034 105×034 /s

From Sec. 6.6.1, we know that

1hp 746 J/s=

Hence

hp hpApp = × =1 034 10

746
138 6

5.
.

Note: This example is rather long, with numerous calculations. However, it illus-

trates many aspects of our discussion on IC engines, and the reader should examine 

it closely.

EXAMPLE 9.2

For the engine in Example 9.1, calculate the mean effective pressure.

■ Solution
From Eq. (9.15),

P dpepp4PP
1

120
ηηmech p( )p

where d is the displacement and pe is the mean effective pressure. From Eq. (9.14),
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Hence from Eq. (9.15) and the results of Example 9.1,
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9.4 JET PROPULSION—THE THRUST EQUATION
Sections 9.2 and 9.3 have discussed the production of thrust and power by a 
piston engine–propeller combination. Recall from Sec. 2.2 that the fundamental 
mechanisms by which nature communicates a force to a solid surface are by 
means of the surface pressure and shear stress distributions. The propeller is a 
case in point, where the net result of the pressure and shear stress distributions 
over the surface of the propeller blades yields an aerodynamic force, the thrust, 
that propels the vehicle forward. Another effect of this thrust on the propeller 
is an equal and opposite reaction that yields a force on the air itself, pushing it 
backward in the opposite direction of the propeller thrust; that is, a change in 
momentum is imparted to the air by the propeller, and an alternative physical 
explanation of the production of thrust is that T is equal to the time rate of change 
of momentum of the airfl ow. For a propeller, this change in momentum is in 
the form of a large mass of air being given a small increase in velocity (about 
10 m/s). However, keep in mind that the basic mechanism producing thrust is 
still the distribution of pressure and shear stress over the surface. Also, as in the 
case of lift produced by a wing, the thrust is primarily due to just the pressure 
distribution [see Eq. (9.1) and Fig. 9.5]; the shear stress is predominantly a drag-
producing mechanism that affects the torque of the propeller.

These same principles carry over to jet propulsion. As sketched in Fig. 9.14a, 
the jet engine is a device that takes in air at essentially the free-stream velocity 

V∞, heats it by combustion of fuel inside the duct, and then blasts the hot mixture 

of air and combustion products out the back end at a much higher velocity Ve. 

(Strictly speaking, the air velocity at the inlet to the engine is slightly larger than 

V∞, but this is not important to the present discussion.) In contrast to a propeller, 

the jet engine creates a change in momentum of the gas by taking a small mass of 

air and giving it a large increase in velocity (hundreds of meters per second). By 

Newton’s third law, the equal and opposite reaction produces a thrust. However, 

this reaction principle, which is commonly given as the basic mechanism for jet 

propulsion, is just an alternative explanation in the same vein as the discussion 

previously given. The true fundamental source of the thrust of a jet engine is the 

net force produced by the pressure and shear stress distributions exerted over the 

surface of the engine. This is sketched in Fig. 9.14b, which illustrates the distri-

bution of pressure ps over the internal surface of the engine duct, and the ambient 

pressure, essentially p∞, over the external engine surface. Shear stress, which is 

generally secondary in comparison to the magnitude of the pressures, is ignored 

here. Examining Fig. 9.14b, we let x denote the fl ight direction. The thrust of 
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Figure 9.14 Illustration of the principle of jet propulsion. (a) Jet propulsion engine. (b) Surface 

pressure on inside and outside surfaces of duct. (c) Front view, illustrating inlet and exit areas. 

(d ) Control volume for fl ow through duct. (e) Change in momentum of the fl ow through the engine.
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the engine in this direction is equal to the x component of ps integrated over the 

complete internal surface, plus that of p∞ integrated over the complete external 

surface. In mathematical symbols,

 T p d x∫ ∫p ds x +xp dSs dSp dSs dS ( )p dS  (9.16)

Because p∞ is constant, the last term becomes

( ) ( ) ( )p dS p) d p A(x( )x p i e∞p) p =( )p ∫∫∫  (9.17)

where Ai and Ae are the inlet and exit areas, respectively, of the duct, as defi ned 
in Fig. 9.14b. In Eq. (9.17), the x component of the duct area, ∫(dS)x, is physically 
what you see by looking at the duct from the front, as shown in Fig. 9.14c. The 
x component of surface area is geometrically the projected frontal area shown by 
the crosshatched region in Fig. 9.14c. Thus, substituting Eq. (9.17) into (9.16), 
we obtain for the thrust T of the jet engine

T p d p As x i e+x∫ ( )p dSs dSp dSs dS ( )A Ai eA−  (9.18)

The integral in Eq. (9.18) is not particularly easy to handle in its present 

form. Let us couch this integral in terms of the velocity and mass fl ow of gas 

through the duct. Consider the volume of gas bounded by the dashed lines in 

Fig. 9.14b. This is called a control volume in aerodynamics. This control vol-

ume is sketched again in Fig. 9.14b. The frontal area of the volume is Ai, on 

which p∞ is exerted. The side of the control volume is the same as the internal 

area of the engine duct. Because the gas is exerting a pressure ps on the duct, 

as shown in Fig. 9.14b, by Newton’s third law, the duct exerts an equal and 

opposite pressure ps on the gas in the control volume, as shown in Fig. 9.14d.
Finally, the rear area of the control volume is Ae, on which pe is exerted. The 

pressure pe is the gas static pressure at the exit of the duct. With the preceding 

in mind, and with Fig. 9.14d in view, the x component of the force on the gas 

inside the control volume is

 F p A d p Ai sp x ep ep A −∞ ∫ ( )p dSsp  (9.19)

Now recall Newton’s second law: F = ma. This can also be written as F = d(mV)/
dt; that is, the force equals the time rate of change of momentum (indeed, this 
is how Newton originally expressed his second law). What is the time rate of 
change of momentum of the air fl owing through the control volume? The answer 
can be obtained from Fig. 9.14e. The mass fl ow of air (kg/s or slug/s) enter-
ing the duct is &mair; its momentum is &m V& air ∞VV . The mass fl ow of gas leaving the 
duct (remember that fuel has been added and burned inside) is & &m mair fm ueff l+ ; its 
momentum is ( )& & VeVVair fuef l . Thus, the time rate of change of momentum of the 
airfl ow through the control volume is the difference between what comes out and 
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what goes in: ( )& & &V m& Veair fuef l a)V meVV ir)V)VVV ∞VV . From Newton’s second law, this is equal 
to the force on the control volume:

 F V m Ve − ∞VV( )m m+m& & &air fm+ uef l aV meVV) ir  (9.20)

Combining Eqs. (9.19) and (9.20) yields

( ) ( )& & &V m& V p A p( d p Ae iV p A s x) e eAair fuef l a)V meV mV i)V)VVV p Ap A −V pV p ∫  (9.21)

Solving Eq. (9.21) for the integral term, we obtain

( ) ( )p d ) ( V) V p A p As x)) e eV p e ip A∫ ( − +m VV −p AVV p e p+VVVV& & &air fuef l )V) eVV mmm  (9.22)

We now have the integral in the original thrust equation Eq. (9.18), in terms 

of velocity and mass fl ow, as originally desired. The fi nal result for the engine 

thrust is obtained by substituting Eq. (9.22) into Eq. (9.18):

T V V p A A p Ae eV p e ip A i e− +m VV − +p Aip Ap AVV p e p+VVVV p( )m m+m ( )A Ai eA−& & &air fm+ uef l VeVV mmm)  (9.23)

The terms involving Ai cancel, and we have

T V V p Ae eV p e− +m VVVV +VVVV( )m m+m ( )p pp ∞p pp& & &air fm+ uef l VeVV mmm)  (9.24)

Equation (9.24) is the fundamental thrust equation for jet propulsion. It is an 
important result and will be examined in greater detail in subsequent sections. 
Keep in mind the reasoning that led to this result. First the engine thrust was 
written down in purely mechanical terms; that is, the thrust is due to the pres-
sure distribution acting over the internal and external surfaces of the duct; this 
is the essence of Eq. (9.18). Then the internal pressure distribution acting over 
the internal surface was couched in terms of the change of momentum of the gas 
fl owing through the duct; this is the essence of Eq. (9.22). Finally, the two lines 
of thought were combined to yield Eq. (9.24). You should reread the concepts 
presented in this section several times until you feel comfortable with the ideas 
and results. The preceding derivation of the thrust equation using the control vol-
ume concept is an example of a general method commonly used for the solution 
of many aerodynamic problems. You will see it again in more advanced studies 
in aerodynamics and propulsion.

9.5 TURBOJET ENGINE
In 1944, the fi rst operational jet fi ghter in the world was introduced by the 
German air force: the ME 262. By 1950 jet engines were the mainstay of all 
high- performance military aircraft, and by 1958 the commercial airlines were 
introducing the jet-powered Boeing 707 and McDonnell-Douglas DC-8. Today 
the jet engine is the only practical propulsive mechanism for high-speed subsonic 
and supersonic fl ight. (Recall that our hypothetical CJ-1 in Ch. 6 was powered 
by two small jet engines.) A photograph of a typical turbojet engine is shown in 
Fig. 9.15.
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The thrust of a turbojet engine is given directly by Eq. (9.24). The jet engine 

takes in a mass fl ow of cool air &mair  at a velocity essentially equal to V∞ and ex-

hausts a mass fl ow of hot air and combustion products & &m mair fm ueff l+  at velocity Ve. 

This is illustrated in Fig. 9.16. The mass of fuel added is usually small compared to 

the mass of air: & &m mfuel air/ ≈ 0 05. Thus, Eq. (9.24) can be simplifi ed by neglect-

ing  &mfuel:

 T m p Ae ep em ++& air ( )V VeV VVV ∞VVVV ( )pp −p ∞pppp  (9.25)

Equation (9.25) explicitly shows that T can be increased by increasing Ve − V∞. 
Thus, the function of a jet engine is to exhaust the gas out the back end faster than 
it comes in through the front end. The conventional turbojet engine performs this 
function by inducting a mass of air through the inlet (location 1 in Fig. 9.16). The 
fl ow is reduced to a low subsonic Mach number, M ≈ 0.2, in a diffuser (point 1 
to point 2 in Fig. 9.16). This diffuser is directly analogous to the wind tunnel 
diffusers discussed in Ch. 4. If V∞ is subsonic, then the diffuser must increase 
the fl ow area to decelerate the fl ow; that is, the diffuser is a divergent duct [see 
Eq. (4.83)]. If V∞ is supersonic, the diffuser must be a convergent–divergent duct, 
and the decrease in fl ow velocity is accomplished partly through shock waves, 
as shown in Fig. 9.16. For such supersonic inlets, a centerbody is sometimes 
employed to tailor the strength and location of the shock waves and to help form 
the  convergent–divergent stream tube seen by the decelerating fl ow. In the diffu-
sion process, the static pressure is increased from p1 to p2. After the diffuser, the 
fl ow is further compressed by a compressor (point 2 to point 3 in Fig. 9.16) from 
p2 to p3. The compressor is usually a series of alternating rotating and stationary 
blades. The rotating sections are called rotors, and the stationary sections are 
stators. The rotor and stator blades are nothing more than airfoil sections that 
alternately speed up and slow down the fl ow; the work supplied by the compres-
sor serves to increase the total pressure of the fl ow. The compressor sketched in 
Fig. 9.16 allows the fl ow to pass essentially straight through the blades without any 
major deviation in direction; thus such devices are called axial fl ow  compressors. 

Figure 9.15 The turbojet engine.
(Source: U.S. Air Force.)
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Figure 9.16 Turbojet engine and diffuser confi gurations.
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This is in contrast to the centrifugal fl ow compressors used in some early jet 
engines, where the air was sometimes turned more than 90°. After leaving the 
compressor, fuel is injected into the airstream and burned at essentially constant 
pressure in the combustor (point 3 to point 4 in Fig. 9.16), where the temperature 
is increased to about 2500°R. After combustion, the hot gas fl ows through the 
turbine (point 4 to point 5 in Fig. 9.16). The turbine is a series of rotating blades 
(again, basically airfoil sections) that extract work from the fl owing gas. This 
work is then transmitted from the turbine through a shaft to the compressor; that 
is, the turbine drives the compressor. The fl ow through a turbine is an expansion 
process, and the pressure drops from p4 to p5. However, p5 is still larger than the 
ambient pressure outside the engine. Thus, after leaving the turbine, the fl ow is 
expanded through a nozzle (point 5 to point 6 in Fig. 9.16) and is exhausted to the 
atmosphere at a high velocity Ve and at pressure p6 = pe. If the engine is designed 
for subsonic fl ight applications, the nozzle is usually convergent and Ve is sub-
sonic, or at most sonic. However, if the engine is intended for supersonic aircraft, 
the exhaust nozzle is usually convergent–divergent and Ve is supersonic.

The thermodynamic process in an ideal turbojet engine is shown in the p–v 

diagram of Fig. 9.17. The ideal process ignores the effects of friction and heat 

losses. Here the air is isentropically compressed from p1 to p2 in the inlet diffuser, 

and the pressure is further isentropically increased to p3 by the compressor. The 

process moves along the isentrope pvγ = c1, where c1 is a constant (see Sec. 4.6). 

In the burner, the combustion process takes place at constant pressure (in con-

trast to the combustion process in an internal combustion reciprocating engine, 

which takes place at constant volume, as explained in Sec. 9.3). Because the 

temperature is increased by combustion and the pressure is constant, the equa-

tion of state pv = RT dictates that v must increase from v3 to v4 in the burner. 

Expansion through the turbine isentropically drops the pressure to p5, and further 

 isentropic expansion through the nozzle decreases the pressure to p6. The turbine 

Figure 9.17 Pressure-specifi c volume diagram for an ideal turbojet.
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and nozzle expansions follow the isentrope pvγ = c2, where c2 is a constant differ-

ent from c1. The ideal engine process further assumes that the nozzle expands the 

gas to ambient pressure, such that pe = p6 = p1 = p∞. In the real engine process, of 

course, there will be frictional and heat losses. The diffuser, compressor, turbine, 

and nozzle processes will not be exactly isentropic; the combustion process is not 

precisely at constant pressure; and the nozzle exit pressure pe will be something 

different from p∞. However, the ideal turbojet shown in Fig. 9.17 is a reasonable 

fi rst approximation to the real case. The accounting of nonisentropic process in 

the engine is the subject for more advanced studies of propulsion.

Return again to the turbojet engine thrust equation, Eq. (9.25). We are now 

in a position to understand some of the assumptions made in Ch. 6 concerning 

thrust available TA for a turbojet. In our performance analysis of the CJ-1, we as-

sumed that (1) thrust did not vary with V∞ and (2) the altitude effect on thrust was 

simply proportional to ρ∞. From the continuity equation, Eq. (4.2), applied at the 

inlet, we fi nd that &m A& Viair ∞ ∞A VViρ . Hence, as V∞ increases, &mair  increases. From 

Eq. (9.25), this tends to increase T. However, as V∞ increases, the factor Ve − V∞ 

decreases. This tends to decrease T. The two effects tend to cancel each other, 

and the net result is a relatively constant thrust at subsonic speeds. With regard to 

altitude effects, &m A& Viair ∞ ∞A VViρ  decreases proportionately with a decrease in ρ∞; 

the factor Ve − V∞ is relatively unaffected. The term (pe − p∞)Ae in Eq. (9.25) is 

usually much smaller than &m& eair ( )V VeVV VV ; hence, even though pe and p∞ change 

with altitude, this pressure term will not have a major effect on T. Consequently, 

the primary consequence of altitude is to decrease ρ∞, which proportionately 

decreases mair, which proportionately decreases T. So our assumption in Ch. 6 

that T ∝ ρ∞ is reasonable.

EXAMPLE 9.3

Consider a turbojet-powered airplane fl ying at a standard altitude of 30,000 ft at a veloc-

ity of 500 mi/h. The turbojet engine itself has inlet and exit areas of 7 and 4.5 ft2, respec-

tively. The velocity and pressure of the exhaust gas at the exit are 1600 ft/s and 640 lb/ft2, 

respectively. Calculate the thrust of the turbojet.

■ Solution
At a standard altitude of 30,000 ft, from App. B, p∞ = 629.66 lb/ft2, and ρ∞ = 8.9068 × 
10−4 slug/ft3. The free-stream velocity is V∞ = 500 mi/h = 500(88/60) = 733 ft/s. Thus, 
the mass fl ow through the engine is

&m V& Aiair slugs/s=V Ai ×∞ ∞VVVV −ρ ( . )( )( ) .9068 10 733 7) = 574

From Eq. (9.25), the thrust is

T m p p Ae p em +
= − −

+& air ( )V VeV VVV ∞VVVV ( )pp −p ∞pppp

. ( ) (+4 5. 1600 733 640 629 699 6 4 5

3962 46 5 4008 5 1

. )66 ( .4 )

..5 4008= +3962 = b
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9.5.1 Thrust Buildup for a Turbojet Engine

The thrust of a jet propulsion device is fundamentally the result of the pressure 
distribution integrated over every square meter of surface area in contact with the 
gas fl ow through and over the device. We used this fundamental idea to derive 
the thrust equation in Sec. 9.4. To emphasize the nature of the pressure distribu-
tion through a turbojet engine, and to better understand how the pressure distri-
bution exerts the thrust on the engine, consider Fig. 9.18. Figure 9.18a shows 
a schematic of a turbojet identifying the diffuser, compressor, burner, turbine, 
and nozzle sections. The variation of static pressure with axial distance through 
each section is shown schematically in Fig. 9.18b. (In reality, there is a complex 
three-dimensional variation of pressure through each section; the pressure shown 
in Fig. 9.18b is the variation of the mean pressure, averaged over each local cross 
section.) Fig. 9.18c illustrates how each component of the turbojet contributes to 
the thrust; this fi gure is essentially a picture of the thrust buildup for the engine. 
The internal duct of the diffuser and compressor has a component of surface 
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Figure 9.18 Sketches of the mean pressure distribution and the accumulated thrust through a generic turbojet engine.
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area that faces in the thrust direction (toward the left in Fig. 9.18). The increas-
ing high pressure in the diffuser and especially in the compressor, acting on this 
forward-facing area, creates a large force in the thrust direction. Note in Fig. 
9.18c that the accumulated thrust F grows with distance along the diffuser (1–2) 
and the compressor (2–3). This high pressure also acts on the component of the 
forward-facing area in the burner, so that the accumulated value of thrust, F, con-
tinues to increase with distance through the burner (3–4), as shown in Fig. 9.18c. 
However, in the turbine and the convergent nozzle, the net surface area has a 
component that faces rearward, and the pressure acting on this rearward-facing 
area creates a force in the negative thrust direction (to the right in Fig. 9.18). 
Thus, the accumulated thrust F decreases through the turbine (4–5) and the noz-
zle (5–6), as shown in Fig. 9.18c. However, by the time the nozzle exit is reached 
(location 6), the net accumulated thrust Fnet is still a positive value, as shown in 
Fig. 9.18c. This is the net thrust produced by the engine—that is, T = Fnet. This is 
the thrust calculated in Eq. (9.25).

An illustration of the thrust buildup exerted on a generic turbojet is shown 

in Fig. 9.19. The forward-facing components of thrust are depicted by the  white 

arrows and the rearward-facing components by the black arrows. Note the large 

Total thrust 11,158 lb

Forward gas load 57,836 lb Rearward gas load 46,678lb

19,049 lb

2186 lb
34,182 lb

2419 lb

Compressor Diffuser
Combustion

chamber
Turbine

Propelling
nozzle

Exhaust unit
and jet pipe

41,091 lb 5587 lb

Figure 9.19 Thrust distribution of a typical single-spool axial fl ow jet engine.
Copyright © by Rolls-Royce PLC. All rights reserved. Used with permission.
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contributions provided by the compressor and combustion chamber in the for-

ward thrust direction, and the counterforces in the negative thrust direction 

created in the turbine and exhaust nozzle. For the case shown here, the pressure 

distribution acting over the internal surfaces of the various components of the en-

gine generates a force of 57,836 lb toward the left and 46,678 lb toward the right, 

resulting in a net forward thrust of 11,158 lb.

The detailed calculation of the pressure distribution over the complete 

internal surface of an engine is a herculean task, even in the present day of 

sophisticated computational fl uid dynamics (CFD). However, the major jet 

engine manufacturers, such as Rolls-Royce, Pratt and Whitney, and General 

Electric, are developing the CFD expertise that will eventually allow such a 

calculation. Fortunately, the calculation of jet engine thrust is carried out infi -

nitely more simply by drawing a control volume around the engine, looking at 

the time rate of change of momentum of the gas fl ow through the engine, and 

using Newton’s second and third laws to obtain the thrust. We did precisely 

that in Sec. 9.4, obtaining a straightforward algebraic equation for the thrust—

namely Eq. (9.24).

In the popular literature, the thrust from a jet propulsion device is frequently 

attributed to the exhaust nozzle and the high velocity of the exhaust gas exiting 

the nozzle. However, Figs. 9.18c and 9.19 clearly show that the nozzle itself 

makes a negative contribution to the net thrust; the nozzle itself does not produce 

the thrust. Neither does the high velocity of the exhaust gas coming out of the 

nozzle. The high exit velocity is the effect of the production of thrust, not the fun-

damental cause of thrust. The gas inside the engine exerts the pressure distribu-

tion on the solid surface of the engine, creating a net force acting in the forward 

direction. From Newton’s third law, the solid surface of the engine exerts an 

equal and opposite reaction on the gas, creating a force on the gas acting in the 

rearward direction that accelerates the gas in the rearward direction. The larger 

the thrust generated by the engine, the larger the equal and opposite force on the 

gas accelerating it to even higher exit velocities. This is the connection between 

the high exhaust velocity and the generation of thrust. Note the analogy between 

this discussion and that in Sec. 5.19 on the production of lift. The time rate of 

change of momentum of the airfl ow over a wing and the downward component 

of the airfl ow over the wing shown in Fig. 5.77 are the effects of the production 

of lift, not the fundamental cause of lift. The pressure distribution acting over the 

surface of the wing is the fundamental cause of lift.

EXAMPLE 9.4

The thrust distribution diagram in Fig. 9.19 emphasizes the contribution of each major 

component of the engine to the production of the total engine thrust. Knowledge of the 

thrust load on each component is essential for the design and placement of structural at-

tachment points within and outside the engine, and for the ultimate transmission of the 

engine thrust to the airframe of the airplane. The text discussion surrounding Fig. 9.19 

emphasizes the role of the internal pressure distribution exerted by the gas on each square 
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inch of metal surface in contact with the fl ow. This is how nature transmits the thrust 

force from the gas to the solid surface. In principle, we could obtain the thrust contribu-

tion of each component by integrating the detailed pressure distribution exerted on each 

component. To obtain this detailed internal pressure distribution by experimental mea-

surements or from computational fl uid dynamics is a herculean task, and at present is not 

practical. However, if we know the average fl ow properties at the exit of each component 

in Fig. 9.19, we can use the type of control volume analysis used in Section 9.4 that al-

lowed us to obtain the thrust equation, Eq. (9.24), but where a control volume is drawn 

fi rst around just the compressor in Fig. 9.19, then a second control volume drawn around 

the compressor-diffuser section in Fig. 9.19, and then a third control volume drawn 

around the compressor-diffuser-combustion chamber, etc. Using this approach, calculate 

the thrust contribution of each component of the jet engine in Fig. 9.19. The following 

detailed data for the fl ow conditions at the exit of each engine component are given by 

Rolls-Royce in the booklet The Jet Engine, Rolls Royce plc, 4th Ed., 1986, pp. 209–213. 
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The mass fl ow of air through the engine is 4.78 slug/ft3. From these data, calculate the 

thrust contributed by each one of the six components of the engine as shown in Fig. 9.19.
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■ Solution
The thrust of a jet engine is given by Eq. (9.24), repeated here.

 
T m m V m V p p Ae e e= + − + −∞ ∞( ) ( )& & &air fuel air

This equation is written between the inlet and exit of the complete engine, thus it gives 

the total thrust of the engine. Recall that it was derived in Section 9.4 using a control 

volume that enclosed the complete engine. Simplifying Eq. (9.24) by ignoring m& fuel in 

comparison to m& air, and recalling that the engine is stationary on the ground, hence V∞ = 

0, we have

 
T m V p p Ae e e= + − ∞& air ( )

 
(E.9.4.1)

We now go step-by-step through the engine in Fig. 9.19, fi rst applying Eq. (E.9.4.1) to a 

control volume wrapped just around the compressor, then next a control volume wrapped 

around the compressor-diffuser combination, then next a control volume wrapped around 

the compressor-diffuser-combustion chamber combination, etc. At each step we will ex-

tract the thrust generated individually in each component. Also, let mair = m.

STEP 1: Compressor
Applying the given data at the exit of the compressor to Eq. (E.9.4.1), where the control 

volume is wrapped around just the compressor, we have from Eq. (E.9.4.1)

 

T m V p p Ae e ecompressor = + −

= +
=

∞& ( )

. ( ) ( , )( . )4 78 406 15 536 1 2369
1940.. , . ,68 17 108 2 19 049+ = lb

STEP 2: Diffuser
By drawing a control volume around the compressor-diffuser combination, and using the 

fl ow properties at the exit of the diffuser, Eq. (E.9.4.1) gives the thrust obtained from the 

compressor-diffuser combination.

 
T T m V p p Ae e ecompressor diffuser+ = + − ∞& ( )

or,

 
T m V p p A Te e ediffuser compressor= + − −∞& ( )

 

where the exit properties are those at the exit of the diffuser, and Tcompressor has already 

been obtained in Step 1. Hence

T

T
diffuser

diffuser

= + −
=

( . )( ) ( )( . ) ,4 78 368 13680 1 4236 19 049
1759 ++ − =19475 19 049 21184, , lb

This corresponds, within round-off error, to the thrust value shown for the diffuser in 

Fig. 9.19. 

STEP 3: Combustion Chamber
By drawing a control volume around the compressor-diffuser-combustion chamber com-

bination, and using the fl ow properties at the exit of the combustion chamber, Eq. (E.9.4.1) 

gives the thrust obtained from the compressor-diffuser-combustion chamber combination.

T T T m V p p Ae ecompressor diffuser combustion chamber air+ + = + − ∞& ( ) ee
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or,
 

T mV p p A T Te e ecombustion chamber compressor diffuser= + − − −∞& ( )

Tcombustion chamber = + − −( . )( ) ( , )( . ) , ,4 78 309 13 392 4 0278 19 049 2 1185
1477 53 940 19 049 2185 34 183= + − − =, , , lb

This corresponds within round-off error to the thrust value shown for the combustor in 

Fig. 9.19.

STEP 4: Turbine
Drawing a control volume around the compressor-diffuser-combustion chamber-turbine 

combination, and applying Eq. (E.9.4.1), we have

T m V p p A T T Te e eturbine compressor diffuser combustion = + − − + −∞& ( ) cchamber

turbineT = + − − −( . )( ) ( )( . ) ,4 78 888 3024 3 333 19049 2185 34 1883 4245
10079 19049 2185 34 183 41 093

=
+ − − − = −, , lb  

This corresponds within round-off error to the rearward facing (negative) thrust shown 

for the turbine in Fig. 9.19.

STEP 5: Exhaust Unit and Jet Pipe
Drawing a control volume around the compressor-diffuser-combustion chamber–turbine–

exhaust unit and jet pipe combination, and applying Eq (E.9.4.1), we have

T m V p p A T Te e eexhaust unit and jet pipe compressor dif= + − − −∞& ( ) ffuser combustion chamber turbine− −

= +

T T

( . )( ) ( )( .4 78 643 3024 4 52208 19049 2185 34 183 41 093
3074 13671 19049 2185 34

) , ( , )− − − − −
= + − − − ,, ,183 41 093 2421+ = lb

This corresponds within round-off error to the thrust value shown for the exhaust unit and 

jet pipe in Fig. 9.19.

STEP 6: Propelling Nozzle
Finally, drawing a control volume around the compressor-diffuser-combustion chamber–

turbine–exhaust unit and jet pipe–propelling nozzle combination, and applying Eq. (E.9.4.1), 

we have

T m V p p A T T Te e epropelling nozzle compressor diffuser c= + − − − −∞& ( ) oombustion chamber turbine exhaust unit
and jet pipe 

− −

=

T T

( .4 778 1917 864 2 3056 19049 2185 34 183 41 093 2421)( ) ( )( . ) , ( , )+ − − − − − −
= 99163 1992 19049 2185 34 183 41 093 2421 5590+ − − − − − − = −, ( , ) lb

This corresponds within round-off error to the rearward facing (negative) thrust value 

shown for the propelling nozzle in Fig. 9.19.

Comment: The pressure distribution exerted over the inside surface of the nozzle creates 

a force in the direction opposite to the net thrust, as calculated here. So the “propelling” 

nozzle, as it is frequently called in the popular literature, does not “propel” at all. To label 

the nozzle as a “propelling” nozzle is a misnomer. However, the nozzle is essential to the 

overall smooth fl ow process through the engine. The fl ow at the exit of the nozzle is the 

downstream boundary condition for the fl ow through the complete engine. This exit fl ow 

interfaces with the external atmosphere. The fl ow through the nozzle takes the higher 

pressure air from the turbine and expands it to match the proper boundary condition at 
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the exit, thus insuring smooth fl ow through the entire engine. In this sense the nozzle is 

essential to the overall production of thrust by the engine, although the nozzle itself feels 

an internal pressure distribution that creates a force opposite to the direction of thrust.

9.6 TURBOFAN ENGINE
Section 9.4 established the relation between thrust and rate of change of momen-
tum of a mass of air. In the turbojet engine (see Sec. 9.5), all this mass fl ows 
through the engine itself, and all of it is accelerated to high velocity through the 
exhaust nozzle. Although this creates a large thrust, the effi ciency of the process 
is adversely affected by the high exhaust velocities. Recall in Sec. 9.2 that one 
of the losses that reduces propeller effi ciency is the kinetic energy remaining in 
the wake relative to the ambient air. In the case of the turbojet, the kinetic energy 
left in the jet exhaust is also a loss, and the high exhaust velocities produced by 
a jet engine just exacerbate the situation. This is why a piston engine–propeller 
combination is basically a more effi cient device than a turbojet. (Remember, do 
not get effi ciency and thrust confused—they are different things. A jet produces 
high thrust but at a relatively low effi ciency.) Therefore, the concepts of the 
pure turbojet and the propeller are combined in the turbofan engine. As sketched 
in Fig. 9.20, a turbofan engine is a turbojet engine that has a large ducted fan 
mounted on the shaft ahead of the compressor. The turbine drives both the fan 
and the compressor. The ducted fan accelerates a large mass of air that fl ows 
between the inner and outer shrouds; this unburned air then mixes with the jet 
exhaust downstream of the nozzle. The thrust of the turbofan is a combina-
tion of the thrust produced by the fan blades and jet from the exhaust nozzle. 
Consequently, the effi ciency of a turbofan engine is better than that of a turbojet. 
This effi ciency is denoted by the thrust-specifi c fuel consumption TSFC (see 
Sec. 6.12). For a typical turbojet, TSFC = 1.0 lb of fuel per pound of thrust per 
hour; for a typical turbofan, TSFC = 0.6 lb of fuel per pound of thrust per hour, 

Figure 9.20 A turbofan engine.
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(a)

Figure 9.21 (a) A turbofan engine. (Source: U.S. Air Force.) (b) A cutaway view.
(Source: Pratt and Whitney.)
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a much better fi gure. This is why all modern commercial jet transports, such as 
the Boeing 747 and the McDonnell-Douglas MD-11, are equipped with turbofan 
engines. A photograph of a turbofan is given in Fig. 9.21a. A cutaway view of 
the Pratt and Whitney JT9D turbofan engine is shown in Fig. 9.21b.

Of course, a further extension of this concept replaces the ducted fan and 

outer shroud with an out-and-out propeller, with the turbine driving both the 
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compressor and the propeller. Such a combination is called a turboprop, where 

approximately 85 percent of the thrust comes from the propeller and the remain-

ing 15 percent comes from the jet exhaust. Turboprops are effi cient power plants 

that have found application in the range of 300 to 500 mi/h; one prime example 

is the Lockheed Electra transport of the 1950s.

9.7 RAMJET ENGINE
Let us now move in the opposite direction from Sec. 9.6. Instead of adding 
fans and propellers to a turbojet, let us get rid of all rotating machinery; that is, 
consider the straight-through duct sketched in Fig. 9.22, where air is inducted 
through the inlet at velocity V∞, decelerated in the diffuser (point 1 to point 2), 
burned in a region where fuel is injected (point 2 to point 3), and then blasted 
out the exhaust nozzle at very high velocity Ve (point 3 to point 4). Such a simple 
device is called a ramjet engine. A cutaway drawing of a ramjet engine is shown 
in Fig. 9.23. Because of their simplicity and high thrust, ramjets have always 
tickled the imaginations of aerospace engineers. However, because of some 
 serious drawbacks, they have not yet been used as a prime propulsive mechanism 
on a manned aircraft. But they are used on numerous guided missiles, and they 
appear to be the best choice for future hypersonic airplanes. For these reasons, 
let us examine ramjets more closely.

The ideal ramjet process is shown in the p–v diagram of Fig. 9.24. All the 

compression from p1 to p2 takes place in the diffuser; that is, a ramjet com-

presses the air by simply “ramming” through the atmosphere. Obviously the 

compression ratio p2/p1 is a function of fl ight Mach number. In fact, to enhance 

 combustion, the airfl ow entering the combustion zone is at a low subsonic 

Mach number; hence, assuming that M2 ≈ 0, then p2 ≈ p0 (total pressure), and 

from Eq. (4.74),
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(9.26)

The air decelerates isentropically in the diffuser; hence the compression from p1 
to p2 follows the isentrope shown in Fig. 9.24. Fuel is injected into the air at the 

Figure 9.22 Ramjet engine.
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end of the diffuser, and combustion takes place, stabilized by mechanical fl ame 
holders. This combustion is at constant pressure, so the specifi c volume increases 
from v2 to v3. Then the hot, high-pressure gas is expanded isentropically through 
the exhaust nozzle, with the pressure dropping from p3 to p4.

One disadvantage of a ramjet is immediately obvious from the preceding 

discussion, and especially from Eq. (9.26): To start and operate, the ramjet must 

already be in motion. Otherwise there would be no compression in the diffuser; 

that is, from Eq. (9.26), p2/p1 = 1 when M∞ = 0. Therefore, all ramjet-powered 
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Fuel control

Fuel inlet
line

Subsonic
diffuser

Combustion
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Inner body
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Fuel
injection
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Flameholder

Exit nozzle
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Figure 9.23 A typical ramjet engine.
(Source: Marquardt Aircraft Co.)

Figure 9.24 Pressure-specifi c volume diagram for an ideal ramjet.
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vehicles must be launched by some independent mechanism (a catapult or 

 rockets) or must have a second engine of another type to develop enough fl ight 

speed to start the ramjet. At subsonic fl ight speeds, ramjets have another 

 disadvantage. Although they produce high thrust, their subsonic effi ciency is 

very low— typically TSFC ≈ 3 to 4 lb of fuel per pound of thrust per hour for 

ramjets at subsonic speeds. However, as shown in Fig. 9.25, TSFC decreases to 2 

or less at supersonic speeds.

Indeed, Fig. 9.25 implicitly shows an advantage of ramjets for supersonic 

fl ight. At supersonic Mach numbers, TSFCs for turbojets and ramjets are some-

what comparable. Moreover, the curve for turbojets in Fig. 9.25 is terminated 

at Mach 3 for a specifi c reason. To operate at higher Mach numbers, the tur-

bojet must increase its combustion temperature. However, there is a material 

limitation. If the gas temperature leaving the turbojet combustor and entering 

the turbine is too hot, the turbine blades will melt. This is a real problem: The 

high-temperature material properties of the turbine blades limit the conven-

tional turbojet to comparatively low to moderate supersonic Mach numbers. 

But a ramjet has no turbine; therefore, its combustion temperatures can be 

much higher, and a ramjet can zip right into the high-Mach number regime. 

Therefore, for sustained and effi cient atmospheric fl ight at Mach numbers 

above 3 or 4, a ramjet is virtually the only choice, given our present technology.

Starting with Fig. 9.22, we have described a conventional ramjet as a device 

that takes in the air at the inlet and diffuses it to a low subsonic Mach number 

before it enters the combustion zone. Consider this ramjet fl ying at M∞ = 6. As 

Figure 9.25 Comparison of thrust-specifi c fuel consumption for 

ideal ramjet and turbojet engines.
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a companion to Eq. (9.26), the temperature ratio T2/T1 can be estimated from 

Eq. (4.73) as

 

T
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M2TT

1TT
21
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2
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(9.27)

(Note that the symbol T is used for both thrust and temperature; however, from 
the context, there should be no confusion.) If M∞ = 6, Eq. (9.27) gives T2/T1 ≈ 7.9. 
If the ambient temperature T∞ = T1 = 300 K, then T2 = 2370 K = 4266°R. At such 
high temperatures, the walls of the ramjet will tend to fail structurally. Thus, like 
turbojets, conventional ramjets are also limited by material problems, albeit at 
higher fl ight Mach numbers. Moreover, if the temperature of the air entering the 
combustor is too high, when the fuel is injected, it will be decomposed by the 
high temperatures rather than being burned; that is, the fuel will absorb rather 
than release energy, and the engine will become a drag machine rather than a 
thrust-producing device. Clearly, for hypersonic fl ight at very high Mach num-
bers, something else must be done.

This problem has led to the concept of a supersonic combustion ramjet, the 

SCRAMjet. Here the fl ow entering the diffuser is at high Mach number, say M1 = 

M∞ = 6. However, the diffuser decelerates the airfl ow only enough to obtain a rea-

sonable pressure ratio p2/p1; the fl ow is still supersonic upon entering the combustor. 

Fuel is added to the supersonic stream, where supersonic combustion takes place. In 

this way, the fl ow fi eld throughout the SCRAMjet is completely supersonic; in turn, 

the static temperature remains relatively low, and the material and decomposition 

problems associated with the conventional ramjet are circumvented. Therefore, the 

power plant for a hypersonic transport in the future will most likely be a SCRAMjet. 

Research on such devices is now in process. Indeed, SCRAMjet research constitutes 

the very frontier of propulsion research today. One such example is the SCRAMjet 

design concept pioneered by the NASA Langley Research Center since the mid-

1960s. Intended for application on a hypersonic transport, the Langley SCRAMjet 

consists of a series of side-by-side modules blended with the underside of the air-

plane, as sketched in the upper right corner of Fig. 9.26. The forward portion of the 

underside of the airplane acts as a compression surface; that is, the air fl owing over 

the bottom surface is compressed (pressure is increased) when it passes through 

the shock wave from the nose of the vehicle. The confi guration of an individual 

module is shown in the middle of Fig. 9.26. The compressed air from the bottom 

surface enters an inlet, where it is further compressed by additional shock waves 

from the leading edge of the inlet. This compressed air, still at supersonic velocity, 

subsequently fl ows over three struts, where H2 is injected into the supersonic stream. 

A cross section of the struts is shown at the bottom left of Fig. 9.26. Combustion 

takes place downstream of the struts. The burned gas mixture is then expanded 

through a nozzle at the rear of each module. The fl ow is further expanded over 

the smooth underbody at the rear of the airplane, which is intentionally contoured 

to act as an extension of the engine nozzles. For all practical purposes, the entire 

 undersurface of the complete airplane represents the whole SCRAMjet engine—

hence the concept is called an airframe-integrated SCRAMjet.
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9.8 ROCKET ENGINE
With the launching of Sputnik I on October 4, 1957, and with the subsequent 
massive space programs of the United States and the Soviet Union, the rocket 
engine came of age. The rocket is the ultimate high-thrust propulsive mecha-
nism. With it people have gone to the moon, and space vehicles weighing many 
tons have been orbited about the earth or sent to other planets in the solar system. 
Moreover, rockets have been used on experimental aircraft; the rocket-powered 
Bell X-1 was the fi rst manned airplane to break the sound barrier (see Sec. 5.22), 
and the rocket-powered North American X-15 was the fi rst manned hypersonic 
aircraft (see Sec. 5.23). Finally, almost all types of guided missiles, starting with 
the German V-2 in World War II, have been rocket-powered. With this in mind, 
let us examine the characteristics of a rocket engine.

All the propulsion engines discussed in previous sections have been air-

breathing; the piston engine, turbojet, ramjet—all depend on the combustion of 

fuel with air, where the air is obtained directly from the atmosphere. In contrast, 

as sketched in Fig. 9.27, the rocket engine carries both its fuel and oxidizer and 

is completely independent of the atmosphere for its combustion. Thus the rocket 

can operate in the vacuum of space, where obviously the air-breathing engines 

cannot. In Fig. 9.27, fuel and oxidizer are sprayed into the combustion chamber, 

where they burn, creating a high-pressure, high-temperature mixture of com-

bustion products. The mixture velocity is low, essentially zero. Therefore, the 

Figure 9.26 A concept for an airframe-integrated SCRAMjet engine, developed at 

NASA Langley Research Center.
(Source: NASA.)
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combustion chamber in a rocket engine is directly analogous to the reservoir of 

a supersonic wind tunnel (see Sec. 4.13). Hence, the temperature and pressure in 

the combustion chamber are the total values T0 and p0, respectively. Also directly 

analogous to a supersonic wind tunnel, the products of combustion expand to 

supersonic speeds through the convergent–divergent rocket nozzle, leaving with 

an exit velocity Ve. This exit velocity is considerably higher than that for jet en-

gines; hence, by comparison, rocket thrusts are higher, but effi ciencies are lower. 

Figure 9.28 shows a typical rocket engine.

The thrust of a rocket engine is obtained from Eq. (9.24), where &mair = 0 

and &m  is the total mass fl ow of the products of combustion, & & &m m m= +mfuel oxidizer. 

Hence, for a rocket engine,

T mV p Ae eV pV emVVV& ( )p pep −  (9.28)

The exit velocity Ve is readily obtained from the aerodynamic relations in 

Ch. 4. Write the energy equation, Eq. (4.41), between the combustion chamber 

and the nozzle exit:
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Figure 9.27 Schematic of a rocket engine.
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Solve Eq. (9.30) for VeVV 2:
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The expansion through the nozzle is isentropic. Hence, from Eq. (4.36), Te /T0 =
(pe /p0)(γ−1)/γ. Also, from Eq. (4.69), cp = γ R/(γ − 1). Thus Eq. (9.31) becomes
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(9.32)

A comparative measure of the effi ciency of different rocket engines can be 

obtained from the specifi c impulse Isp, defi ned as the thrust per unit weight fl ow 

at sea level:

 

I
T

w
sp ≡

&
 

(9.33)

where & &w g m0 . (Recall that the weight is equal to the acceleration of gravity 
at sea level times the mass.) With this defi nition, the unit of Isp in any consistent 

Figure 9.28 The main rocket engine for the Space Shuttle.
(Source: NASA.)
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system of units is simply seconds. Furthermore, assume that the nozzle exit  pressure 
is the same as the ambient pressure. Combining Eqs. (9.28) and (9.33), we get
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Substitute Eq. (9.32) into Eq. (9.34), and note from chemistry that the specifi c gas 
constant R is equal to the universal gas constant R  divided by the molecular 
weight M ; R R M/ .
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(9.35)

Equation (9.35) is important. It tells what is necessary to have a high-specifi c 
impulse: The combustion temperature T0 should be high, and the molecular 
weight M  should be low. The combustion temperature is primarily dictated by 
the chemistry of the oxidizer and fuel; a given combination, say oxygen and 
hydrogen, will burn at a specifi c T0 called the adiabatic fl ame temperature, and 
this value of T0 will be determined by the heat of reaction. The more highly 
reacting the propellants, the higher the T0. M  is also a function of the chemistry. 
If lightweight propellants are used, then M will be small. Therefore, outside of 
adjusting the oxidizer-to-fuel ratio (the O/F ratio), there is not much the engineer 
can do to radically change the Isp for a given propellant combination: It depends 
primarily on the propellants themselves. However, Eq. (9.35) certainly tells us 
to choose a very energetic combination of lightweight propellants, as dramatized 
by the following tabulation:

Fuel–Oxidizer 
Combination

Adiabatic Flame 
Temperature, K

Average Molecular 
Weight of Combus-

tion Products Isp, s

Kerosene–oxygen 3144 22 240
Hydrogen–oxygen 3517 16 360
Hydrogen–fl uorine 4756 10 390

The kerosene–oxygen combination was used in the fi rst stage of the Saturn 5 
launch vehicle, which sent the Apollo astronauts to the moon; hydrogen– oxygen 
was used for the Saturn 5 second and third stages. However, the best combina-
tion is hydrogen–fl uorine, which gives a specifi c impulse of 390 s, about the 
most we can expect from any propellant combination. Unfortunately, fl uo-
rine is extremely poisonous and corrosive and is therefore diffi cult to handle. 
Nevertheless, rocket engines using hydrogen–fl uorine have been built.

Consider again the rocket engine schematic in Fig. 9.27. We discussed 

earlier that T0 in the combustion chamber is essentially a function of the heat 

of reaction of the propellants, a chemical phenomenon. But what governs the 
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chamber pressure p0? The answer is basically the mass fl ow of propellants being 

pumped into the chamber from the fuel and oxidizer tanks, and the area of the 

nozzle throat A*. Moreover, we are in a position to prove this. From the continu-

ity equation evaluated at the throat,

&m A& Vρ * *A *  (9.36)

Here the superscript * denotes conditions at the throat. Recall from Ch. 4 that the 
velocity is sonic at the throat of a convergent–divergent supersonic nozzle; that 
is, M* = 1. Thus V* is the speed of sound, obtained from Eq. (4.54) as

V RT* *RTγ RR
 (9.37)

Also, from the equation of state,

ρ*
*

*
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RT (9.38)

Substitute Eqs. (9.37) and (9.38) into Eq. (9.36):

&m
p

RT
AA

p A

RT
= A

*

*
* *RT

* *A

*
γ γRT

p

RT
=RT*RRTRT

*
 

(9.39)

Write Eqs. (4.73) and (4.74) between the combustion chamber and the throat:
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Substitute Eqs. (9.40) and (9.41) into Eq. (9.39):
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Equation (9.42) is important. It states that the mass fl ow through a nozzle that is 

choked (that is, when sonic fl ow is present at the throat) is directly proportional to
p0 and A* and inversely proportional to the square root of T0. Moreover, Eq. (9.42) 

answers the previous question about how p0 is governed in a rocket engine combus-

tion chamber. For a given combination of propellants, T0 is fi xed by the chemistry. 
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For a fi xed nozzle design, A* is a given value. Hence, from Eq. (9.42),

 
p m0 ( )( )m&

If &m  is doubled, then p0 is doubled, and so on. In turn, because mass is con-
served, &m  through the nozzle is precisely equal to & &m mfuel oxidizer+  being fed into 
the chamber from the propellant tanks. So we repeat again the conclusion that p0

is governed by the mass fl ow of propellants being pumped into the chamber from 
the fuel and oxidizer tanks and the area of the nozzle throat.

Before we leave this discussion of rocket engines, we note the very re-

strictive assumption incorporated in such equations as Eqs. (9.32), (9.35), and 

(9.42)—namely that γ  is constant. The real fl ow through a rocket engine is 

chemically reacting and is changing its chemical composition throughout the 

nozzle expansion. Consequently, γ   is really a variable, and the preceding equa-

tions are not strictly valid. However, they are frequently used for preliminary 

design estimates of rocket performance, and γ  is chosen as some constant mean 

value, usually between 1.2 and 1.3, depending on the propellants used. A more 

accurate solution of rocket nozzle fl ows taking into account the variable specifi c 

heats and changing composition must be made numerically and is beyond the 

scope of this book.

Consider a rocket engine burning hydrogen and oxygen; the combustion chamber pressure 

and temperature are 25 atm and 3517 K, respectively. The area of the rocket  nozzle throat 

is 0.1 m2. The area of the exit is designed so that the exit pressure exactly equals ambient 

pressure at a standard altitude of 30 km. For the gas mixture, assume that γ   = 1.22 and 

the molecular weight M = 16 . At a standard altitude of 30 km, calculate the (a) specifi c 

impulse, (b) thrust, (c) area of the exit, and (d) fl ow Mach number at exit.

■ Solution
a. The universal gas constant, in SI units, is R = 8314 J/(kg mol)(K). Hence, the spe-

cifi c gas constant is
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Note that this value is slightly higher than the number tabulated in the previous discussion 

of specifi c impulse. The difference is that the tabulation gives Isp for expansion to sea-

level pressure, not the pressure at 30-km altitude as in this example.

b. From Eq. (9.28),

T mV p p AeV pV emVVV& ( )p pep −

In this equation, at 30 km, pe = p∞. Hence

T mVeVV at 30-km altitude

To obtain 3 &m, use Eq. (9.42):
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Also, from Eq. (4.69),
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c. To obtain the exit area, use the continuity equation:

&m p A Ve eA eVV

To obtain the exit density, use the equation of state:
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9.9  ROCKET PROPELLANTS—SOME 
CONSIDERATIONS

Recall from elementary chemistry that to produce a fl ame (such as on a gas 
stove) you need fuel (such as natural gas or propane) and an oxidizer (such as 
the oxygen in air). The burning process in the combustion chamber of a rocket 
engine is the same: it requires the burning of a fuel and oxidizer. The fuel and 
oxidizer together are called the rocket propellants. The choice of propellants 
is such a serious consideration in the design of rocket engines that we devote 
this section to some basic discussion of rocket propellants. For example, the 
value of specifi c impulse for a rocket engine is mainly a function of the pro-
pellants used. The specifi c impulse, from its defi nition in Eq. (9.33), can be 
thought of as the number of seconds after which 1 pound of propellants will 
produce 1 pound of thrust, and this number of seconds is critically dependent 
on the propellants themselves. The multiple choices of possible rocket propel-
lants, and their combustion chemistry, are a subject in itself for which whole 
books have been written. Here we just introduce some of the basic aspects of 
propellants.

In the most general sense, there are two different classifi cations of chemi-

cal propellants: liquid propellants and solid propellants. Let us examine each 

in turn.

9.9.1 Liquid Propellants

Here both the fuel and oxidizer are carried aboard the rocket in liquid form, 
and they are injected under pressure as a spray into the combustion chamber. 
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This was illustrated schematically in Fig. 9.27, where the oxidizer and fuel are 
shown as separate sources being injected and mixed in the combustion chamber. 
The propellants are injected at high pressure. For example, in the Space Shuttle 
main engine (Fig. 9.28), the propellants are injected at a pressure of 440 atm—
an extremely high pressure. Historically, the engineering design of the mecha-
nisms to pressurize the propellants has been a challenge. There are two basic 
approaches to this problem as described in the following.

Mechanically, the simplest is the pressure-fed system, shown schematically 

in Fig. 9.29a. Here both the liquid fuel and oxidizer are placed under high pres-

sure in their respective tanks by a high-pressure inert gas such as helium (He), 

which is carried in separate (usually spherical) tanks. When valves connecting 

the propellant tanks to the combustion chamber are opened, the propellants, 

which are already under high pressure in their tanks, are forced into the combus-

tion chamber. The advantage of this system is its relative simplicity. The disad-

vantage is that the propellant tanks must have thick walls to withstand the high 

pressure, so the tanks are heavy. For this reason, pressure-fed systems are usually 

used for small rocket engines (thrust levels of 1000 lb or less) that operate for 

only short durations. Such engines are used as attitude control jets on spacecraft; 

they are usually not used as the primary rocket thrust-producing power plant. 

(An exception to this was the XLR11 rocket engine that powered the Bell X-1 to 

its historic fi rst supersonic fl ight, as described in Sec. 5.22. Because no reliable 

fuel pump existed at the time of this fl ight, although one was feverishly being 
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Figure 9.29 (a) Pressure-fed rocket engine. (b) Pump-fed rocket engine.
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designed for the engine, the Bell and Reaction Motors engineers had to depend 

on a pressure-fed system for the rocket engine.)

The second type of mechanism is the pump-fed system, illustrated in 

Fig.  9.29b. Here the propellants are stored at relatively low pressure in thin-

walled (hence lighter) tanks, and their pressure is increased by pumps before in-

jection into the combustion chamber. In turn, the pumps can be driven by electric 

motors and batteries or, more usually, by turbines that are themselves powered 

by burning a small amount of propellant. For the Space Shuttle main engine 

(Fig. 9.28), two low-pressure turbopumps boost the inlet pressure for two high-

pressure turbopumps, which feed the propellants into the combustion chamber at 

a pressure of 440 atm or higher. Dual preburners generate the gases that power 

the high-pressure turbopumps. The combustion chamber pressure is about 210 

atm; the difference between the 440-atm propellant injection pressure and the 

210-atm combustion chamber pressure enhances the propellant spray and mix-

ing process.

Liquid propellants come in different categories, some of which are item-

ized next.

Cryogenic Propellants The Space Shuttle main engine utilizes hydrogen (H2) 

for the fuel and oxygen (O2) for the oxidizer. Because H2 must be at or below 

20 K (36°R or −253°C or −424°F) to be a liquid and O2 must be at or below 135 K 

(243°R or −138°C or −217°F), they are examples of cryogenic  propellants— 

chemicals that must be stored at extremely low temperatures to remain in liquid 

form. At the launch pads for the Space Shuttle, liquid oxygen (Lox) is stored in 

a giant insulated sphere holding 900,000 gal, and liquid hydrogen (LH2) is con-

tained in a separate insulated sphere with an 850,000-gal capacity. These cryo-

genic temperatures must be maintained during fueling and the launch periods 

of the shuttle. However, it is worth all the trouble to do this because the H2–O2 

propellant combination yields a high specifi c impulse. For the Space Shuttle, the 

vacuum Isp = 455 s. The combustion process in the rocket engine is started with 

an igniter, and the burning is self-sustaining after that.

Bipropellants and Monopropellants The H2–O2 combination just described 

is an example of a bipropellant combination—two chemicals used for the com-

bustion process. Other chemicals exist in which chemical energy can be released 

simply by decomposing the molecules; these are called monopropellants. Usu-

ally a solid catalyst is used to promote the decomposition. Monopropellants usu-

ally have a smaller Isp than bipropellant combinations do, but they are easier 

to deal with simply because only one chemical propellant is being used. This 

reduces weight, simplifi es the fuel system, and usually increases reliability. 

Monopropellants fi nd use in small rocket engines for spacecraft attitude control. 

Hydrazine (N2H4) is an extensively used monopropellant.

Hypergolic Propellants As mentioned previously, the H2–O2 system used for 

the Space Shuttle main engine requires the combustion process to be initiated 

by an igniter (a type of “spark plug”), after which combustion is self- sustaining. 



 9.9  Rocket Propellants—Some Considerations 779

However, some propellant combinations ignite simply on contact with one 

 another. These are called hypergolic propellants. Because of this  feature, 

there is an added danger in handling the propellants. However, they have the 

 advantage of eliminating the need for a separate ignition system. Fluorine (F2) 

is  hypergolic with most fuels, but F2 is among the most dangerous of all rocket 

propellants and therefore is not frequently used. Hypergolic propellants are used 

on two propulsion subsystems on the space shuttle—the orbital  maneuvering 

subsystem (OMS) used for orbital insertion and the reaction control subsystem 

(RCS) used for attitude control. The fuel is monomethylhydrazine (MMH), and 

the oxidizer is nitrogen tetroxide (N2O4). As one NASA Space Shuttle engineer 

has glibly stated, “Because of the eagerness of these two propellants to ignite 

spontaneously, their storage facilities are widely separated on Complex 39’s 

launch pads” (NASA Fact Sheet KSC 191-80, November 1980). This hyper-

golic MMH/N2O4 system is not as energetic as the H2–O2 system used for the 

main engines; its Isp ranges from 260 to 280 s in the RCS and 313 s in the OMS. 

The higher effi ciency of the OMS is due to a higher expansion ratio in that 

rocket engine nozzle.

9.9.2 Solid Propellants

So far in this section, we have discussed liquid rocket propellants. These propel-
lants usually require large tanks (especially H2, which is a light, high- volume 
chemical). Return to Fig. 8.48, which is a three-view drawing of the Space 
Shuttle, and note the large single tank on which the winged shuttle orbiter is 
mounted. This is the tank for the liquid propellants. But note the two smaller 
cylinders on each side of the big tank; these are the strap-on twin solid rocket 
boosters that help the main shuttle engines lift the entire shuttle system off the 
ground. These two rocket engines use solid propellants in contrast to the liquid 
propellants discussed earlier. Solid propellants are completely different from 
liquid propellants in both their nature and behavior. This is why the fi rst and 
primary distinction made between rocket propellants is that of liquid versus solid 
propellants, as we are making here.

Historically, the fi rst rockets used solid propellants (see Sec. 9.17 on the his-

tory of rockets); these were black-powder rockets used more than 1300 years ago 

in China. In contrast, the fi rst successful liquid propellant rocket was a product of 

the 20th century, developed by Robert H. Goddard in 1926.

Solid rocket fuels are just that—the fuel and oxidizer are premixed and cast 

in solid form. The two solid rocket boosters of the Space Shuttle use a solid pro-

pellant consisting of atomized aluminum powder (16 percent) as a fuel and am-

monium perchlorate (69.93 percent) as an oxidizer. The remainder is iron oxide 

powder (0.7 percent) as a catalyst and polybutadiene acrylic acid acrylonitrile 

(14 percent) as a rubber-based binder. The binder also burns as a fuel. The solid 

propellant is battleship gray and has the consistency of a hard rubber eraser.

Burning of a solid propellant is initiated by an igniter on the surface of the 

propellant grain. Then the surface burns and recedes away, much like a Fourth of 

July sparkler. Some propellant grains are designed to be end burners (one end is 
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ignited and burns away, as a cigarette does), as shown in Fig. 9.30a. Others have 

an inner cylindrical bore, where the inner surface is ignited, and the propellant 

grain burns outward toward the motor case, as shown in Fig. 9.30b. Such solid 

rockets are called internal burners. For the cylindrical bore shown in Fig. 9.30b, 
as the burning surface recedes, the burning surface area increases, increasing the 

mass fl ow of burned gases. In turn, because rocket thrust is proportional to mass 

fl ow [see Eq. (9.28)], the thrust will increase with time. Another internal burn-

ing confi guration is a solid propellant grain with a star-shaped internal hollow 

channel, as sketched in Fig. 9.30c. With this confi guration, ignition takes place 

on the star-shaped internal surface, and then the surface recedes, becoming more 

circular in time. Because the star-shaped internal surface presents the maximum 

burning surface, which decreases with time, the thrust of this shape of grain is 

maximum at the beginning of burning and decreases with time. In essence, the 

timewise variation of the thrust of a solid rocket engine can be tailored via the 

shape of the solid propellant grain. For the Space Shuttle’s solid rocket booster, 

the internal cavity is an 11-point star, which provides maximum thrust at liftoff. 

Note that the solid propellant grain confi gurations shown in Fig. 9.30a to c are 

literally housed in the combustion chamber and that the burned gases from these 

propellants are expanded through a convergent–divergent supersonic nozzle, the 

same as in a liquid propellant rocket, as sketched in Fig. 9.30d.

Solid propellant
is in the

combustion chamber
Nozzle

Burning
surface

End-burning surface configuration

Internal star-shaped burning surface

Internal-bore burning surface

Burning surface

Burning surface

(a)

(b)

(c)

(d )

Figure 9.30 Some solid propellant burning confi gurations.
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One of the important physical characteristics of a solid propellant is the lin-
ear burning rate r, which is the time rate at which the burning surface of the 

propellant recedes normal to itself. The burning rate is a function mainly of the 

combustion chamber pressure p0 and the initial temperature of the propellant. 

The pressure variation of r is given by

pa n
0  (9.43)

where r is the linear burning rate, p0 is the combustion chamber pressure, and 
a and n are constants that are determined by experiment for a given propellant. 
For most propellants, n has a value between 0.4 and 0.8, where r is in units of 
inches per second and p0 in pounds per square inch.

In comparison to liquid propellants, solid propellants have the following 

 advantages and disadvantages:

Advantages
1. Solid rockets are simpler, safer, and more reliable. There is no need for 

pumps and complex propellant feed systems.

2. Solid propellants are more storable and stable. Some solid rockets can be 

stored for decades before use.

3. Solid propellants are dense; hence the overall volume of solid rockets is 

smaller. Compare the smaller size of the twin solid boosters on the space 

shuttle to the larger size of the main liquid propellant tank in Fig. 8.48.

Disadvantages
1. The specifi c impulse of solid propellants is considerably less than that of 

liquid propellants. For the Space Shuttle’s solid rocket boosters, Isp = 242 s 

at sea level. In general, the specifi c impulse of solid rockets ranges from 

200 to 300 s.

2. Once a solid rocket is ignited, it usually cannot be turned off. Also, it 

is diffi cult to throttle a solid rocket to vary the thrust. In contrast, liquid 

rockets are easily throttled, and the thrust can be cut off whenever desired 

just by manipulating the fuel and oxidizer valves.

9.9.3 A Comment

The choice of liquid versus solid propellants in the design of a new rocket engine 
depends on the design specifi cations, including engine performance, cost, reli-
ability, maintainability, and so forth. However, the differences between liquid 
and solid propellants are so well defi ned that the engineering design choice is 
usually straightforward. We end this section by noting that the concept of hybrid 
rockets has been examined in recent years. Hybrid rockets are part solid and part 
liquid. The oxidizer may be solid and the fuel a liquid, or vice versa, in such 
hybrid rockets. Hybrid rockets are an attempt to combine the advantages of both 
solid and liquid propellants; but of course, as is true of any design compromise, 
hybrid rockets are just that—a compromise. At the time of writing, hybrid rock-
ets are still in the experimental stage.
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9.10 ROCKET EQUATION
In Sec. 9.8, we developed some of the performance parameters for the rocket 
engine itself. In this section we will relate the rocket engine performance, as 
described by the specifi c impulse Isp, to the velocity achieved by the complete 
rocket vehicle (such as the V-2 shown in Fig. 9.40).

The mass of a complete rocket vehicle consists of three parts: (1) the mass of 

the payload ML (satellite, manned space capsule, or the like); (2) the mass of the 

structure of the vehicle Ms, including the rocket engine machinery, the propel-

lant tanks, the structural beams, formers, and stringers; and (3) the mass of the 

propellants Mp. Hence, at any instant during the fl ight of the rocket vehicle, the 

total mass is

M M M ML sM p= +ML  (9.44)

Consider a rocket vehicle that blasts off from the surface of the earth and 

accelerates until all its propellants are exhausted. At the instant of liftoff, the 

vehicle velocity is zero; after the rocket engines have shut down because all the 

propellants have been consumed, the vehicle velocity is the burnout velocity Vb, 

which can be calculated from Newton’s second law:

F M
dV

dt
(9.45)

The force on the vehicle is the net difference between the thrust of the rocket 
engine, the aerodynamic drag, and the weight of the vehicle. If we assume that the 
last two are small compared with the engine thrust, Eq. (9.45) can be written as

T M
dV

dt  
(9.46)

The thrust is related to the specifi c impulse through Eq. (9.33), written as

T wI g mIwI& &I pII spII0  (9.47)

where &m  is the mass fl ow of the propellants. In Eq. (9.44), M is changing with 
time due to the decrease in Mp; indeed,

&m
dM

dt

dM

dt
p= − = −

 
(9.48)

Combining Eqs. (9.47) and (9.48), we have

T g I
dM

dt
0 sI p (9.49)

Substituting Eq. (9.49) into (9.46) gives

=−g I
dM

dt
M

dV

dt
0 sI p
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or
 

− =dM

M

dV

g I0 sI p
(9.50)

Integrating Eq. (9.50) between liftoff (where V = 0 and M is the initial mass Mi) 
and burnout (where V = Vb and M is the fi nal mass Mf), we have
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(9.51)

This so-called rocket equation relates the burnout velocity of a rocket vehicle 
to the specifi c impulse associated with the engine and the mass ratio Mi/Mf. The 
equation can be turned inside out to relate the mass ratio necessary to achieve a 
given burnout velocity:

M

M
ei

fM
V g IbVV= /( )0 sI p

 

(9.52)

9.11 ROCKET STAGING
To the present, most space vehicles have been launched into space by multistage 
rockets—rocket boosters that are in reality two or more distinct rockets placed 
on top of each other (or beside each other, as in the case of the Space Shuttle, as 
shown in Fig. 8.48). Why do it this way? Why not have one large rocket booster 
that will do the job—why not have a single-stage-to-orbit vehicle? The answer 
is basically one of economics: Which system will place a pound of payload in 
orbit for the least cost? Until recently, the design choice was to use multistage 
rockets. This is the least-cost solution when the rockets are expendable—when 
the rocket stages are sequentially separated from the space vehicle (the payload) 
and are destroyed in the atmosphere while falling back to earth. However, at 
the time of writing, there is much discussion and technological development of 
reusable rocket boosters—rockets that are recovered and used again multiple 
times. (This is already partially achieved with the Space Shuttle. The expended 
solid rocket booster casings are recovered from the Atlantic Ocean after each 
launch. NASA then cleans and refurbishes these casings. They are returned to 
the manufacturer, which refi lls the casings with propellant. In this way each cas-
ing is reused about 20 times. And of course the shuttle orbiter returns to earth 
with the main rocket engines intact, ready to be used again. Only the large liquid 
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propellant tank is lost on each launch.) If the rocket booster can be totally pre-
served after a launch, the hardware cost of replacing it is forgone. This sometimes 
swings the economic choice of least cost to a single-stage-to-orbit vehicle. To 
date, modern single-stage-to-orbit vehicles are only in the experimental phase.

In this section we consider multistage rockets, which are currently the design 

choice for expendable rockets. Our purpose is simply to explain why a multi-

stage booster is a cheaper solution to putting a given payload in space than one 

larger, single-stage rocket.

In Sec. 9.10, we designated the payload mass by ML, the mass of the 

structure by Ms, and mass of the propellants by Mp. In the rocket equation, 

Mi is the initial mass of the total vehicle before ignition, and Mf is the fi nal 

mass at burnout. Let us fi rst consider a single-stage rocket. The masses of the 

payload, structure, and propellant are represented schematically by the dif-

ferently shaded areas in Fig. 9.31a, which is essentially a bar diagram for the 

mass breakdown. The burnout velocity for this single-stage rocket is given by 

Eq. (9.51), repeated here:

 

V g I
M

M
VV i

fMM
0 sI p ln (9.51)

where 
 

M M M Mi p s LM+M pM

and  M M Mf sM LM+MsMM

In contrast, consider the two-stage rocket shown schematically in Fig. 9.31b.
For the fi rst stage, the propellant mass is Mp1, and the structural mass is Ms1. The 
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Figure 9.31 Schematic representation of the mass 

components of rockets. (a) Single-stage. (b) Double-stage.
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payload for the fi rst stage is the entire second stage. For the second stage, the 

propellant mass is Mp2, the structural mass is Ms2, and the payload mass is ML. 

Figure 9.31b is essentially a bar diagram showing the masses for both the fi rst 

and second stages. The burnout velocity of the fi rst stage (with the second stage 

attached) Vb1 is given by Eq. (9.51):

V g I
M

M
VV i

fM
1 0g sp ln (9.53)

Here the initial mass is the sum of all the masses shown in Fig. 9.31b:

M M M M M Mi p s p s LM+M pM +M pM1 Ms+ 2 Ms+  (9.54)

The fi nal mass is the structural mass of the fi rst stage plus the total mass of the 
second stage:

M M M M Mf sM p s L+MsM +MsM1 M p+ 2  (9.55)

Substituting Eqs. (9.54) and (9.55) into Eq. (9.53), we have
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(9.56)

The fi rst stage at the instant of burnout separates from the second stage and 

drops away. The rocket engine of the second stage ignites and boosts the second 

stage from its initial velocity Vb1 to its fi nal burnout velocity Vb2. The rocket 

equation, Eq. (9.51), when applied to the second stage, which is already moving 

with the initial velocity Vb1, yields the increase in velocity, Vb2 − Vb1 as
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(9.57)

where 
 

M M M Mi p s LM+M pM 2 Ms+
 

(9.58)

and M M Mf sM LM+MsM 2  (9.59)

Substituting Eqs. (9.58) and (9.59) into Eq. (9.57), we have

 

V V g I
M M M

M M
b bVV p s L

s LM
1bVV 0

2s=VbV 1bVV
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(9.60)

The advantage of a multistage rocket is illustrated by the following worked 

example.

EXAMPLE 9.6

Consider the single-stage rocket and the double-stage rocket sketched in Fig. 9.32a and 

b, respectively. Both rockets have the same total mass Mtotal = 5000 kg and the same 

specifi c impulse Isp = 350 s. Both rockets have the same payload mass ML = 50 kg. The 
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total structural mass of the double-stage rocket is Vs1 + Ms2 = 400 kg + 100 kg = 500 kg, 

which is the structural mass of the single-stage rocket. The total propellant mass of the 

double-stage rocket is Mp1 + Mp2 = 3450 + 1000 = 4450 kg, which is the propellant mass 

of the single-stage rocket. Both rockets are boosting the same payload mass of 50 kg 

into space. The breakdown between payload, structural, and propellant masses chosen in 

this example is purely arbitrary, but keeping the total masses in each category the same 

between the two rockets is intentional. In this way, the only difference between the rock-

ets in Fig. 9.32a and b is that one is a single-stage rocket and the other is a double-stage 

rocket, but with the same total masses distributed over two stages. Calculate and compare 

the burnout velocities for the rockets in Fig. 9.32a and b.

■ Solution
For the single-stage rocket in Fig. 9.32a, the initial and fi nal masses are

M M M M
M M M

i p s L

f sM L

+M pM =MLM + + =
+MsM = + =

4450 500 50 5000 kg
500 50 55055 kg

From Eq. (9.51),

V g I
M

M
VV i

fM
=g I = =0 9 8 350

5000

550
7570sp m/s 7.57 kmln . (8 ) ln /s//

Single-stage Double-stage

(a) (b)

Mtotal = 5000 kg Mtotal = 5000 kg

ML = 50 kg ML = 50 kg

Ms = 500 kg

Ms1 = 400 kg

Ms2 = 100 kg

Mp = 4450 kg

Mp1 = 3450 kg

Mp2 = 1000 kg

Figure 9.32 Sketch for Example 9.6.
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For the double-stage rocket in Fig. 9.32b, we have for the burnout velocity of the 

fi rst stage, from Eq. (9.56),

V g I
M M M M M

M M M M
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The increase in velocity provided by the second stage is given by Eq. (9.60):
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Hence, the velocity at burnout of the second stage is

V Vb bV VV 1bVV6987 6987 4017 11 004= +6987 = =11 004, m/s 11km/s

■ Comparison
From this example we see that the payload of 50 kg is launched into space at a veloc-

ity of 11 km/s by the double-stage rocket, whereas for the same total expenditure of 

propellants, the single-stage rocket provides a velocity of only 7.57 km/s. Indeed, for 

this example the single-stage rocket provides essentially orbital velocity for the payload, 

whereas the double-stage rocket gives the payload escape velocity, allowing the space 

vehicle to go into deep space.

9.12 QUEST FOR ENGINE EFFICIENCY
In modern airplane design marked improvement in effi ciency have become a 
high priority, in some cases above that for the classic faster, higher, and further 
mantra. In Sec. 6.22, we dealt with the case of improved aerodynamic effi ciency; 
the present section is a companion to Sec. 6.22 in that it deals with engine effi -
ciency. Both are required in order to obtain the large gains in effi ciency antici-
pated for the airplanes of the future. 

The concept of “engine effi ciency” is more complex to defi ne than that of 

aerodynamic effi ciency presented in Sec. 6.22. There, the focus of aerodynamic 

effi ciency was simply the lift-to-drag ratio, L/D; indeed, L/D was a direct mea-

sure of aerodynamic effi ciency. The way to improve aerodynamic effi ciency was 

simply to increase L/D. For jet engines, an analogous measure of effi ciency is 
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the thrust specifi c fuel consumption, TSFC, i.e., the weight of fuel consumed per 

unit thrust per unit time (see Sec. 6.13). In Sec. 6.13, TSFC is defi ned in terms 

of engineering units as

 
TSFC

lb of fuel consumed

lb of thrust generated h
=

( )( )
For a propeller-driven airplane with a reciprocating engine, the analogous mea-
sure of effi ciency is the specifi c fuel consumption, SFC, defi ned in Sec. 6.12 in 
terms of engineering units as

 

SFC
lb of fuel consumed

brake horsepower h
=

( )( )

At fi rst thought, just as L/D is the measure of aerodynamic effi ciency, one might 
think that TSFC or SFC is the only measure of engine effi ciency. For engines, 
however, that is not the whole story. There are extra considerations, as discussed 
below.

9.12.1 Propulsive Effi ciency

The word “effi ciency” is used in a general sense in Sec. 9.6 to contrast a turbofan 
engine with a turbojet engine; a turbofan is inherently more “effi cient” than a 
turbojet. But what does that mean? What is a quantitative measure of effi ciency 
for fl ight propulsion devices? These questions are answered in the present sec-
tion. It has everything to do with the high speed jet that exhausts downstream of 
the engine. The kinetic energy wrapped up in this exhaust jet is totally wasted; it 
contributes nothing to the engine thrust or performance.

Consider an airplane moving through the air with velocity V∞ being driven 

by a propulsive device with thrust available, TA. In Sec. 6.6, the power available 

provided by the propulsive device is defi ned as

 
P T VA A= ∞   (6.33)

However, the propulsive device is actually putting out more power than that given 
by Eq. (6.33) because the device is also producing the wasted kinetic energy in the 
air left behind. Let us obtain an expression for this wasted kinetic energy. First, 
consider the fl ow into and out of the stationary device sketched in Fig. 9.14a. The 
fl ow enters with velocity V∞ and exits with velocity Ve. Here, V∞ is the fl ow velocity 
relative to the inlet, and Ve is the fl ow velocity relative to the exit, i.e., V∞ and Ve are 
fl ow velocities relative to the stationary device. However, in reality the device is 
moving with velocity V∞ into still air; this is the usual case in practice. The device 
is mounted on an airplane fl ying at velocity V∞ into the still air ahead of it. Standing 
on the ground watching the airplane fl y by, we do not see fl ow velocities V∞ and 
Ve into and out of the engine; rather, we see stationary air in front of the device, 
and the device hurtling by us at a velocity of V∞. Moreover, after the airplane has 
passed by we see the air from the exhaust jet moving past us at a velocity of (Ve − 
V∞). The kinetic energy per unit mass of this exhaust gas is 1

2
2( )Ve − ∞V . This energy 

is totally wasted, and is a source of ineffi ciency. In turn, the power wasted in the air 
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jet behind the device is 1
2

2&m V Ve( )− ∞ , where  is the mass fl ow (mass per unit time) 
through the engine. Adding this power wasted to the power available from Eq. 
(6.33), we have total power generated by propulsive device = T V m V VA e∞ ∞+ −1

2
2& ( )  

(9.61).
The propulsive effi ciency, denoted by ηp, can be defi ned as

 
ηp = useful power available

total power generated   

(9.62)

Substituting Eqs. (6.32) and (9.61) into (9.62), we have

 

ηp
A

A e

T V

T V m V V
=

+ −
∞

∞ ∞
1
2

2& ( )
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Returning to the thrust equation in Eq. (9.24), assuming that

 + ≈. .
m mair≈ .

mair

.
mfuel

and neglecting the small pressure term (pe – p∞)Ae, we have

 
T m V VA e= − ∞& ( )

 (9.64)

Substituting Eq. (9.64) into (9.63), we have
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Dividing the numerator and denominator of Eq. (9.65) by m(Ve − V∞)V∞, we 
obtain

 

ηp
e eV V V V V
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or,
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2
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(9.66)

Eq. (9.66) is a quantitative measure of the effi ciency of a propulsive device.
The nature of the tradeoff between thrust and effi ciency is now clearly seen 

by examining Eq. (9.64) with one eye and Eq. (9.66) with the other eye. From 

Eq. (9.66) maximum (100%) propulsive effi ciency is obtained when Ve = V∞; for 

this case, ηp = 1. This makes sense. In this case, when the propulsive device hur-

tles through the stationary air at velocity V∞, and the air is exhausted out the back 

end of the device with relative velocity Ve which is equal to the velocity of the 

device itself (Ve = V∞), then relative to you standing in the still air, as the engine 

fl ies past you, the air simply appears to plop out of the back end of the device 

with no velocity. In other words, since the air behind the device is not moving, 

there is no wasted kinetic energy. On the other hand, if Ve = V∞, from Eq. (9.64) 

we see that TA = 0. Here is the compromise; we can achieve a maximum propul-

sive effi ciency of 100%, but with no thrust – a self-defeating situation.
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In this compromise, we can also fi nd the reasons for the existence of the vari-

ous propulsive devices discussed in this chapter. A propeller, with its relatively 

large diameter, processes a large mass of air, but gives that air only a relatively 

small increase in velocity. In light of Eq. (9.64), the thrust of a propeller is asso-

ciated with a large m with a small (Ve − V∞), and therefore in light of Eq. (9.66), 

ηp is high. The propeller is inherently the most effi cient of the common propul-

sive devices. However, the thrust of a given propeller is limited by its tip speed; 

if the tip speed is near or greater than the speed of sound, shock waves will form 

on the propeller, greatly reducing its thrust and destroying its effi ciency. This is 

why there are no propeller-driven transonic or supersonic airplanes.

In contrast to a propeller, the thrust of a gas turbine engine is associated with 

a much larger increase in exit velocity, hence from Eq. (9.64), a much larger 

thrust. Jet engines can produce enough thrust to propel airplanes to transonic and 

supersonic fl ight velocities. However, because Ve is much larger than V∞, from 

Eq. (9.66) the propulsive effi ciency of a jet engine will be less than that for a 

propeller. 

A rocket engine creates a very large Ve, hence very large thrust, but its pro-

pulsive effi ciency is very low. This is why rocket engines are used to launch 

vehicles into space, but are not routinely used to power airplanes. (An exception 

is the family of rocket-powered high-speed research airplanes beginning with 

the supersonic Bell X-1 and continuing through the hypersonic North American 

X-15, where rocket engines were the only feasible design choice.)

Finally, in the quest for increased engine effi ciency, we can understand 

why the turbofan engine has become the engine of choice for the majority of 

jet-propeller airplanes. As explained in Sec. 9.6, a turbofan engine has a large 

multiblade fan driven by a power core that has all the features of a turboje 

t-inlet, compressor, combustor, turbine, and nozzle. The majority of the airfl ow 

through a turbofan passes through the fan and fl ows downstream external to the 

core. The bypass ratio—an important design feature of a turbofan—is defi ned 

as the mass of air passing outside the core divided by the mass fl ow through 

the core. The larger the bypass ratio, the higher is the propulsive effi ciency, but 

so also the larger the physical size and weight of the engine.* Modern airliners 

are usually designed with high bypass ratio turbofans, whereas new military jet 

fi ghters utilize low bypass ratios. For example, some of the Boeing 777 airlines 

have GE90 turbofan engines with a bypass ratio of 9, whereas the Lockheed-

Martin F-35 fi ghter is powered by a Pratt and Whitney F135 turbofan with a 

bypass ratio of 0.2.

*Recognizing the larger weight of future high bypass ratio turbofans, Rolls-Royce has made a 

substantial investment in the development of new, strong, light-weight materials for engine applications. 

Carbon/Titanium (CTi) fan blades and composite casing will reduce engine weight by up to 750 lb per 

engine (see Bill Reed, “Powerplant Revolution”, Aero Space (Royal Aeronautical Society), May 2014, 

pp. 28–31). Turbine blades manufactured from advanced heat-resistant ceramic matrix composites 

will operate more effectively in the high-temperature environment. The Boeing 787 Dreamliner is an 

airplane made predominantly from composites. It appears now that that some future turbofan engines 

will also be “cut from the same cloth.”
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9.12.2 The Green Engine

Environmental concerns are becoming increasingly important to the design of 
future engines for aerospace vehicles. The two driving problems are engine noise 
and engine exhaust emissions, both of which pollute the atmosphere around us. 
Since the turbofan engine will most likely be the engine of choice for airplanes 
well into the future, the design of such engines to greatly reduce noise and pol-
lutants, i.e., the design of the “green” engine, becomes paramount.

In regard to engine noise, in the past the exhaust jet has been the principal 

noise source, and therefore has been the focus of much research. However, with 

the modern higher thrust turbofans with much larger bypass ratios, exhaust noise 

has been eclipsed by noise from the fan and from the airframe itself. Future ef-

forts to reduce noise will focus on these sources.

In regard to exhaust emissions, the standard hydrocarbon fuels produced 

from underground fossil deposits are the principal culprits. One method to re-

duce this source of pollutant gases, principally the greenhouse gas CO2, is to 

greatly reduce the amount of fuel consumed on a given fl ight. This means a com-

bination of higher airframe aerodynamic effi ciency (higher L/D as explained in 

Sec. 6.22) and lower engine TSFC. Another method is to replace the fossil fuel 

with fuel obtained from sustainable biological sources.

Reaching far into the future, perhaps as far as the mid-twenty-fi rst century, 

completely new systems might achieve the ultimate green engine. The develop-

ment of technologies for low energy nuclear reaction propulsion systems will 

essentially eliminate both the fuel burn and emissions, as well as combustion 

noise. The development of hybrid engine technologies which use high perfor-

mance, lightweight, electric power sources such as batteries charged from alter-

nate energy sources (solar, wind, or nuclear) could reduce fuel burn and emissions, 

as well as noise from the core of the engine. Another concept is the use of liquid 

natural gas (LNG) for the fuel. In this case, the ultimate weight of fuel burned is 

reduced because of the higher heating value of LNG. Also with LNG there is the 

potential to signifi cantly reduce emissions. These and other advanced concepts 

are under serious study by NASA, and a full report can be found in “Subsonic 

Ultra Green Aircraft Research Phase II: N + 4 Advanced Concept Development,” 

by M.K. Bradley and C.K. Droney, NASA/CR-2012-217556, 2012.

In the near team, however, perhaps the most realistic assessment of the future 

of aircraft propulsion systems has recently been published by Alan H. Epstein in 

a paper entitled “Aeropropulsion for Commercial Aviation in the Twenty-First 

Century and Research Direction Needed,” AIAA Journal, Vol. 52, No. 5, May 

2014, pp 901–911. Epstein is Vice President of Technology and Environmentat 

the Pratt & Whitney Division of United Technology Corporation, and is 

Professor Emeritus at MIT. As the leader of Pratt & Whitney’s efforts to identify 

and evaluate new methods to improve engine performance, fuel effi ciency, and 

environmental impact, he is emmently qualifi ed to state that the turbofan engine, 

because of its high effi ciency, low weight, low emissions, and extraordinary reli-

ability, is the current aeropropulsion system of choice. He states that the future 

of commercial aircraft will be driven by fuel consumption and environmental 
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concerns. “There is nothing on the technical horizon that threatens to displace the 

gas turbine as the engine of choice,” he writes. He continues by predicting that 

these engines will continue to be fueled with liquid hydrocarbons, but the source 

of the fuel will be from sustainable biological sources rather than fossil fuels. 

He sees bypass ratios increasing and the size of the cores decreasing. “Although 

this could be considered the continuation of a long-term trend, the reality is that 

engines are moving into a different, less familiar design space than the 5 to 8 

BPR (bypass ratio) that characterized the last 40 years of engine experience, with 

different needs and constraints,” he predicts. Finally, he sees changing research 

goals and requirements that speed a rich future for aircraft propulsion, with many 

challenges and technical opportunities. For the reader of this book who may be 

interested in working on propulsion for the green airplane, Epstein paints a wel-

come and realistic future, and his paper is recommended reading.

9.13 ELECTRIC PROPULSION
The chemical rockets discussed in Secs. 9.8 to 9.11 are the “brute-force” pro-
pulsion devices for space vehicles—high thrust but relatively low Isp. Their 
high thrust is absolutely necessary for ascent from the earth’s surface to space. 
However, once in space, a space vehicle could take advantage of a propulsive 
device that produces much less thrust but has a much greater Isp and that could 
provide a sustained thrust for very long times, perhaps indefi nitely. Unmanned 
missions to deep space would benefi t from such devices. This has spawned a class 
of propulsion devices under the generic label of advanced space propulsion. In 
this section we discuss only one type of advanced space propulsion—electric 
propulsion—and that only briefl y. Our purpose is to give you the fl avor of such 
a device so you know that other propulsive mechanisms for space vehicles are 
feasible besides chemical rockets.

Electric propulsion describes the generic class of propulsion devices that 

use electric power to generate thrust. The idea is coupled with the fact that 

low–molecular-weight propellants have high values of Isp [recall the discus-

sion surrounding Eq. (9.35) that Isp varies inversely with molecular weight]. 

Electric propulsion concepts use electricity in various forms to accelerate a 

low– molecular weight gas, hence creating thrust and at the same time achiev-

ing a high Isp. Some of the types of electric propulsion devices are discussed in 

Secs. 9.13.1 to 9.13.4.

9.13.1 Electron-Ion Thruster

The electron-ion thruster produces thrust by accelerating positively charged ions 
in an electrostatic fi eld. The basic concept is sketched in Fig. 9.33. A propellant 
(such as mercury, or an inert gas such as helium or argon) is fed into a chamber. 
Inside the chamber is an anode and a cathode. A beam of electrons is gener-
ated between the anode and cathode. The high-speed electrons collide with the 
atoms of the propellant, stripping off other electrons and leaving behind posi-
tively charged ions in the chamber. These ions then pass through a separately 
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applied electrostatic fi eld and are accelerated out of the device in the form of an 
ion beam. If nothing else were done, there would be a rapid buildup of negative 
charge in the chamber because of the fl ux of positively charged propellant leav-
ing the device. In turn, the positively charged ion beam would be retarded by the 
massive negative charge in the chamber. Therefore, it is necessary to make the 
beam of particles exiting the chamber electrically neutral. This can be achieved 
by feeding electrons into the exhaust beam. Being neutral, the beam will not be 
retarded by the negative charge in the chamber.

Electron-ion thrusters have specifi c impulses from 3000 to 5000 s.

9.13.2 Magnetoplasmadynamic Thruster

The magnetoplasmadynamic (MPD) thruster uses a self-induced magnetic fi eld 
to accelerate positive ions. The basic concept is sketched in Fig. 9.34. Here a 
powerful pulse of electric current surges from a central cathode to the anode on 
the walls of a chamber. The propellant is ionized by the electric current. The cur-
rent paths are illustrated by the dashed lines in Fig. 9.34. The electric current sets 
up an induced magnetic fi eld in the chamber (recall that an electric current in a 
wire sets up an induced magnetic fi eld about the wire), which then accelerates 
the plasma out the back end of the chamber.

Magnetoplasmadynamic thrusters can potentially create more thrust than an 

electron-ion thruster with approximately the same specifi c impulse.

9.13.3 Arc-Jet Thruster

An arc-jet thruster is fundamentally simple, and is more closely related to chemi-
cal rockets than the other electric propulsion devices previously discussed. In 
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Figure 9.33 Schematic of an electron-ion thruster.
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the arc-jet thruster, hydrogen is heated in a reservoir by an electric arc, and then 
the hot, low–molecular weight gas expands through a conventional  convergent–
divergent nozzle, as sketched in Fig. 9.35. There are no electromagnetic forces 
on the hot gas; the electric arc is simply a mechanism to create a hot gas in the 
reservoir, akin to the energy release during combustion of chemical rocket pro-
pellants in the combustion chamber.

The arc-jet thruster has a specifi c impulse on the order of 800 to 1200 s, due 

mainly to the low molecular weight of hydrogen.

9.13.4 A Comment

All electric propulsion devices require a separate power source to drive 
their electromagnetic functions. The power supplies for electric propulsion 
devices can be solar cells, nuclear reactors, or other advanced energy sources 
that can be converted to electricity. Such matters are beyond the scope of our 
discussion.
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Figure 9.35 Arc-jet thruster.
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For a more extensive but still fundamental discussion of advanced space 

propulsion, see the article by Frisbee listed in the bibliography; this article is a 

primary reference source for this section.

The fi rst ion engine to be employed on a deep-space probe was launched on 

October 24, 1998, from Cape Canaveral. Appropriately named Deep Space 1, 
the space vehicle has the mission to test new, advanced technologies. On 

November 10, NASA engineers powered up the engine. It ran for 4.5 min before 

shutting itself off. On November 24, in response to commands sent to the space-

craft, the ion engine came to life again and, at the time of writing, is continuing 

to run smoothly. At full throttle the ion engine, which is powered by solar cells, 

consumes about 2500 W of electric power and produces 0.02 lb of thrust—a 

force equal to the weight of a sheet of paper in the palm of your hand.

9.14  HISTORICAL NOTE: EARLY PROPELLER 
DEVELOPMENT

The ancestry of the airplane propeller reaches as far back as the 12th century, 
when windmills began to dot the landscape of western Europe. The blades of 
these windmills, which were essentially large wood-and-cloth paddles, extracted 
energy from the wind to power mechanical grinding mills. Only a small intellec-
tual adjustment was necessary to think of this process in reverse—to mechanically 
power the rotating paddles in order to add energy to the air and produce thrust. 
Indeed, Leonardo da Vinci developed a helical screw for a 16th-century helicop-
ter top. Later, a year after the fi rst successful balloon fl ight in 1783 (see Ch. 1), 
a hand-driven propeller was mounted to a balloon by J. P. Blanchard. This was 
the fi rst propeller to be truly airborne, but it did not succeed as a practical propul-
sive device. Nevertheless, numerous other efforts to power hot-air  balloons with 
hand-driven propellers followed, all unsuccessfully. It was not until 1852 that a 
propeller connected to a steam engine was successfully employed in an airship. 
This combination, designed by Henri Giffard, allowed him to guide his airship 
over Paris at a top speed of 5 mi/h.

As mentioned in Ch. 1, the parent of the modern airplane, George Cayley, 

eschewed the propeller and instead put his faith mistakenly in oarlike paddles 

for propulsion. However, Henson’s aerial steam carriage (see Fig. 1.11) envi-

sioned two pusher propellers for a driving force; after that, propellers became 

the accepted propulsion concept for heavier-than-air vehicles. Concurrently, in 

a related fashion, the marine propeller was developed for use on steamships be-

ginning in the early 19th century. Finally, toward the end of that century, the 

propeller was employed by Du Temple, Mozhaiski, Langley, and others in their 

faltering efforts to get off the ground (see Figs. 1.13, 1.14, and 1.18).

However, a close examination of these 19th-century aircraft reveals that the 

propellers were crude, wide, paddlelike blades that refl ected virtually no under-

standing of propeller aerodynamics. Their effi ciencies must have been exceed-

ingly low, which certainly contributed to the universal failure of these machines. 

Even marine propellers, which had been extensively developed by 1900 for 
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steamships, were strictly empirical in their design and at best had effi ciencies on 

the order of 50 percent. There existed no rational hydrodynamic or aerodynamic 

theory for propeller design at the turn of the century.

This was the situation when Wilbur and Orville Wright returned from Kill 

Devil Hills in the fall of 1902, fl ushed with success after more than 1000 fl ights 

of their number 3 glider (see Ch. 1) and ready to make the big step to a powered 

machine. Somewhat naively, Wilbur originally expected this step to be straight-

forward; the engine could be ordered from existing automobile companies, and 

the propeller could be easily designed from existing marine technology. Neither 

proved to be the case. After spending several days in Dayton libraries, Wilbur 

discovered that a theory for marine propellers did not exist and that even an ap-

preciation for their true aerodynamic function had not been developed. So once 

again the Wright brothers, out of necessity, had to plunge into virgin engineer-

ing territory. Throughout the winter of 1902–1903, they wrestled with propel-

ler concepts to provide accurate calculations for design. And once again they 

demonstrated that without the benefi t of formal engineering education, they were 

the premier aeronautical engineers of history. For example, by early spring of 

1903 they were the fi rst to recognize that a propeller is basically a rotating wing, 

made up of airfoil sections that generate an aerodynamic force normal to the 

propeller’s plane of rotation. Moreover, they made use of their wind tunnel data, 

obtained the previous year for several hundred different airfoil shapes, and chose 

a suitably cambered shape for the propeller section. They reasoned the necessity 

for twisting the blade to account for the varying relative airfl ow velocity from the 

hub to the tip. Indeed, in Orville’s words,

It is hard to fi nd even a point from which to start, for nothing about a propeller, or 

the medium in which it acts, stands still for a moment. The thrust depends upon the 

speed and the angle at which the blade strikes the air; the angle at which the blade 

strikes the air depends upon the speed at which the propeller is turning, the speed the 

machine is traveling forward, and the speed at which the air is slipping backward; 

the slip of the air backward depends upon the thrust exerted by the propeller and the 

amount of air acted upon. When any of these changes, it changes all the rest, as they 

are all interdependent upon one another. But these are only a few of the factors that 

must be considered. . . . 

By March of 1903 Wilbur had completed his theory to the extent that a propeller 
could be properly designed. Using a hatchet and drawknife, he carved two pro-
pellers out of laminated spruce and surfaced them with aluminum paint. Excited 
about their accomplishment, Orville wrote, “We had been unable to fi nd any-
thing of value in any of the works to which we had access, so we worked out a 
theory of our own on the subject, and soon discovered, as we usually do, that all 
the propellers built heretofore are all wrong, and then built a pair . . . based on 
our theory, which are all right!”

The propeller designed by the Wright brothers, principally by Wilbur, 

achieved the remarkably high effi ciency of 70 percent and was instrumental 

in their successful fl ight on December 17, 1903, and in all fl ights thereafter. 

Moreover, their propellers remained the best in aviation for almost a decade. 

Indeed, until 1908 all competitors clung to the older, paddlelike blades, both in 
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the United States and in Europe. Then, when Wilbur made his fi rst dramatic pub-

lic fl ight on August 8, 1908, at Hunaundières, France, the impact of his highly 

effi cient propeller on the European engineers was almost as great as that of the 

Wrights’ control system, which allowed smoothly maneuverable fl ight. As a re-

sult, subsequent airplanes in Europe and elsewhere adopted the type of aerody-

namically designed propeller introduced by the Wrights.

Consequently, credit for the fi rst properly designed propeller, along with the 

associated aerodynamic theory, must go to the Wright brothers. This fact is not 

often mentioned or widely recognized; however, this propeller research in 1903 

represented a quantum jump in a vital area of aeronautical engineering, without 

which practical powered fl ight would have been substantially delayed.

The fi nal early cornerstone in the engineering theory and design of airplane 

propellers was laid by William F. Durand about a decade after the Wright broth-

ers’ design was adopted. Durand was a charter member of NACA and became 

its chairman in 1916 (see Sec. 2.8). Durand was also the head of the mechanical 

engineering department at Stanford University at that time; and during 1916–

1917 he supervised the construction of a large wind tunnel on campus designed 

purely for the purpose of experimenting with propellers. Then, in 1917, he pub-

lished NACA Report No. 14, titled “Experimental Research on Air Propellers.” 

This report was the most extensive engineering publication on propellers to that 

date; it contained experimental data on numerous propellers of different blade 

shapes and airfoil sections. It is apparently the fi rst technical report to give ex-

tensive plots of propeller effi ciency versus advance ratio. Hence, the type of 

effi ciency curve sketched in Fig. 9.6 dates back as far as 1917! Moreover, the 

values of maximum effi ciency of most of Durand’s model propellers were 75 

to 80 percent, a creditable value for that point in history. It is interesting to note 

that almost 90 years later, modern propeller effi ciencies are not that much bet-

ter, running between 85 and 90 percent. To Durand must also go the credit for 

the fi rst dimensional analysis in propeller theory; in the same NACA reports he 

shows by dimensional analysis that propeller effi ciency must be a function of 

advance ratio, Reynolds number, and Mach number, and he uses these results to 

help  correlate his experimental data. This early NACA report was an important 

milestone in the development of the airplane propeller. Indeed, a copy of the 

report itself is enshrined behind glass and is prominently displayed in the lobby 

of the Durand Engineering Building on the Stanford campus.

9.15  HISTORICAL NOTE: EARLY DEVELOPMENT 
OF THE INTERNAL COMBUSTION ENGINE 
FOR AVIATION

The pivotal role of propulsion in the historical quest for powered fl ight was dis-
cussed in Ch. 1. The frustrating lack of a suitable prime mover was clearly stated 
as far back as 1852 by George Cayley, who wrote about his trials with a “govern-
able parachute” (glider): “It need scarcely be further remarked, that were we in 
possession of a suffi ciently light fi rst mover to propel such vehicles by waftage, 
either on the screw principle or otherwise, with such power as to supply that 
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force horizontally, which gravitation here supplies in the descent, mechanical 
aerial navigation would be at our command without further delay.”

Indeed, Cayley devoted a great deal of thought to the propulsion problem. 

Before 1807 he had conceived the idea for a hot-air engine, in which air is drawn 

from the atmosphere, heated by passing it over a fi re, and then expanded into a 

cylinder, doing work on a piston. This was to be an alternative to steam power. 

Considering his invention in a general sense, and not mentioning any possible ap-

plication to fl ight, Cayley wrote in the October 1807 issue of Nicholson’s Journal
that “the steam engine has hitherto proved too weighty and cumbrous for most 

purposes of locomotion; whereas the expansion of air seems calculated to sup-

ply a mover free from these defects.” In 1843 Cayley summarized his work on 

aeronautical propulsion in a type of letter to the editor in Mechanics’ Magazine:

The real question rests now, as it did before, on the possibility of providing a suf-

fi cient power with the requisite lightness. I have tried many different engines as fi rst 

movers, expressly for this purpose [fl ight]. Gun powder is too dangerous, but would, 

at considerable expense, effect the purpose: but who would take the double risk of 

breaking their neck or being blown to atoms? Sir Humphrey Davy’s plan of using 

solid carbonic acid, when again expanded by heat, proved a failure in the hands of 

our most ingenious engineer, Sir M. Isambard Brunel.

As all these processes require nearly the same quantity of caloric to generate 

the same degree of power, I have for some time turned my own attention to the 

use, as a power, of common atmospheric air expanded by heat, and with consider-

able success. A fi ve-horse engine of this sort was shown at work to Mr. Babbage, 

Mr.   Rennie, and many other persons capable of testing its effi ciency, about three 

years ago. The engine was only an experimental one, and had some defects, but each 

horse power was steadily obtained by the combustion of about 6 1
2

 pounds of coke 

per hour, and this was the whole consumption of the engine, no water being required. 

Another engine of this kind, calculated to avoid the defects of the former one, is now 

constructing, and may possibly come in aid of balloon navigation—for which it was 

chiefl y designed—or the present project, if no better means be at hand.

Thus, in keeping with his remarkable and pioneering thinking on all aspects 
of aviation, George Cayley stated the impracticality of steam power for fl ight 
and clearly experimented with some forerunners of the IC engine. However, his 
thoughts were lost to subsequent aeronautical engineers of the 19th century, who 
almost universally attempted steam-powered fl ight (see Ch. 1).

The development of IC engines gained momentum with Lenoir’s two-

cycle gas-burning engine in 1860. Then, in 1876, Nikolaus August Otto de-

signed and built the fi rst successful four-stroke IC engine, the same type of 

engine discussed in Sec. 9.3. Indeed, the thermodynamic cycle illustrated in 

Fig. 9.12, consisting of isentropic compression and power strokes with con-

stant-volume combustion, is called the Otto cycle. Although Otto worked in 

Germany, strangely enough, in 1877 he took out a U.S. patent on his engine. 

Otto’s work was soon applied to land vehicle propulsion, heralding the birth of 

the automobile industry before 1900.

But automobiles and airplanes are obviously two different machines, and 

IC engines used in automobiles in 1900 were too heavy per horsepower for 
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aeronautical use. One man who squarely faced this barrier was Samuel Pierpont 

Langley (see Sec. 1.7). He correctly recognized that the gasoline-burning IC 

engine was the appropriate power plant for an airplane. To power the newer 

versions of his Aerodromes, Langley contracted with Stephen M. Balzer of New 

York in 1898 for an engine of 12 hp weighing no more than 100 lb. Unfortunately 

Balzer’s delivered product, which was derived from the automobile engine, 

could produce only 8 hp. This was unacceptable, and Charles Manly, Langley’s 

assistant, took the responsibility for a complete redesign of Balzer’s engine in the 

laboratory of the Smithsonian Institution in Washington, District of Columbia. 

The net result was a power plant, fi nished in 1902, that could produce 52.4 hp 

while weighing only 208 lb. This was a remarkable achievement; it was not bet-

tered until the advent of “high-performance” aircraft toward the end of World 

War I, 16 years later. Moreover, Manly’s engine was a major departure from 

existing automobile engines of the time. It was a radial engine, with fi ve cylin-

ders equally spaced in a circular pattern around a central crankshaft. It appears 

to be the fi rst aircraft radial engine in history, and certainly the fi rst successful 

one. Unfortunately, the failure of Langley’s Aerodromes in 1903 obscured the 

quality of Manly’s engine, although the engine was in no way responsible for 

these failures.

Five hundred miles to the west, in Dayton, Ohio, the Wright brothers also 

originally planned to depend on a standard automobile engine for the power plant 

for their Flyer. In the fall of 1902, after their stunning success with their num-

ber 3 glider at Kill Devil Hills, the Wrights were rudely surprised to fi nd that 

no automobile engine existed that was light enough to meet their requirement. 

Because Wilbur had taken the prime responsibility of developing a propeller (see 

Sec. 9.14) during this time, he assigned Orville the task of designing and build-

ing a suitable engine. It is interesting to note that Wilbur correctly considered the 

propeller to be a more serious problem than the engine. With the help of Charles 

Taylor, a mechanic who worked in the Wrights’ bicycle shop, and using as a 

model the car engine of a Pope-Toledo (long since defunct), Orville  expeditiously 

completed his engine design and construction in less than six weeks. In its fi rst 

test in February 1903, the aluminum crankcase cracked. Two months later a local 

foundry fi nished casting a second case, and the engine was fi nally successfully 

tested in May.

The engine was a four-cylinder in-line design. It had only one speed, about 

100 rpm, and could be stopped only by cutting off the supply of gasoline, 

which was fed to the cylinders by gravity. The engine produced 12 hp and 

weighed (without oil and fuel) about 100 lb. Although the Wrights’ engine 

produced far less horsepower per pound of engine weight than Manly’s design, 

it was nevertheless adequate for its purpose. The Wright brothers had little 

experience with IC engines before 1903, and their successful design is another 

testimonial to their unique engineering talents. In Orville’s words, “Ignorant of 

what a motor this size ought to develop, we were greatly pleased with its per-

formance. More experience showed us that we did not get one-half the power 

we should have had.”
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The Wright brothers’ engine was obviously the fi rst successful aircraft power 

plant to fl y, by virtue of their history-making fl ight of December 17, 1903 (see 

Sec. 1.1). Subsequent development of the IC engine for airplanes came slowly. 

Indeed, nine years later Captain H. B. Wild, speaking in Paris, gave the follow-

ing pilot-oriented view of the aircraft engine:

The comparatively crude and unreliable motor that we have at our disposal at the 

present time [1912] is no doubt the cause of many of the fatalities and accidents 

befalling the aeroplane. If one will look over the accessories attached to the aero 

engine of today, it will be noted that it is stripped clean of everything possible which 

would eliminate what he deems unnecessary parts in order to reduce the weight of 

the engine, and in doing so he often takes away the parts which help to strengthen 

the durability and reliability of the motor.

The eventual successful development of effi cient, reliable, and long- endurance 
aircraft power plants is now a fact of history. However, it was accomplished only 
by an intensive and continuous engineering effort. Various reports about engine 
development—carburetors, valves, radiators, and so forth—perfuse the early 
NACA literature. The recognition of the importance of propulsion was made 
clear in 1940 with the establishment of a complete laboratory for its research and 
development: the NACA Lewis Flight Propulsion Laboratory in Cleveland, Ohio.

The internal combustion reciprocating engine has now been supplanted by 

the gas turbine jet engine as the main form of aeronautical propulsion. However, 

IC engines are still the most appropriate choice for general aviation aircraft de-

signed for speeds of 300 mi/h or less, so their continued development and im-

provement will remain an important part of aerospace engineering.

9.16  HISTORICAL NOTE: INVENTORS 
OF EARLY JET ENGINES

By the late 1920s, the reciprocating engine–propeller combination was so totally 
accepted as the means of airplane propulsion that other concepts were generally 
discounted. In particular, jet propulsion was viewed as technically infeasible. For 
example, NACA reported in 1923 that jet propulsion was “impractical,” but its 
studies were aimed at fl ight velocities of 250 mi/h or less, where jet propulsion 
is truly impractical. Eleven years later the British government still held a similar 
opinion.

Into this environment came Frank Whittle (now Sir Frank Whittle). Whittle 

was an Englishman, born on June 1, 1907, in Coventry. As a young boy he was 

interested in aviation, and in 1923 he enlisted in the Royal Air Force. Showing 

much intelligence and promise, he soon earned a coveted student’s slot at the 

RAF technical college at Cranwell. It was here that Whittle became interested in 

the possibilities of gas turbine engines for propelling airplanes. In 1928 he wrote 

a senior thesis at Cranwell titled “Future Developments in Aircraft Design,” 

in which he expounded the virtues of jet propulsion. It aroused little interest. 

Undaunted, Whittle went on to patent his design for a gas turbine engine in 
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January 1930. For the next fi ve years, in the face of polite but staunch disinter-

est, Whittle concentrated on his career in the RAF and did little with his ideas 

about jet propulsion. However, in 1935, with the help of a Cranwell classmate, 

a fi rm of bankers agreed to fi nance a private company named Power Jets Ltd., 

specifi cally to develop the Whittle jet engine. So, in June 1935 Frank Whittle 

and a small group of colleagues plunged into the detailed design of what they 

thought would be the fi rst jet engine in the world. The engine was fi nished in less 

than two years and was started up on a test stand on April 12, 1937—the fi rst jet 

engine in the world to successfully operate in a practical fashion.

However, it was not the fi rst to fl y. Quite independently, and completely 

without knowledge of Whittle’s work, Hans von Ohain in Germany developed 

a similar gas turbine engine. Working under the private support of the famous 

airplane designer Ernst Heinkel, von Ohain started his work in 1936. (As in the 

United States and England, the German government showed little initial interest 

in jet propulsion.) Three years after his work began, von Ohain’s engine was 

mated with a specially designed Heinkel airplane. Then, on August 28, 1939, 

the He 178 (see Fig. 9.36) became the fi rst gas-turbine–powered, jet-propelled 

airplane in history to fl y. It was strictly an experimental aircraft, but von Ohain’s 

engine with 838 lb of thrust pushed the He 178 to a maximum speed of 435 mi/h. 

Later, after the beginning of World War II, the German government reversed its 

lack of interest in jet propulsion, and soon Germany was to become the fi rst na-

tion in the world with operational military jet aircraft.

Meanwhile, in England, Whittle’s success in operating a jet engine on a 

test stand fi nally overcame the Air Ministry’s reluctance, and in 1938 a contract 

was let to Power Jets Ltd. to develop a revised power plant for installation in an 

Figure 9.36 The German He 178—the fi rst jet-propelled airplane in the world to fl y 

successfully.
(Source: Courtesy of John Anderson.)
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airplane. Simultaneously, Gloster Aircraft received a contract to build a specially 

designed jet-propelled aircraft. Success was obtained when the Gloster E.28/39 

airplane (see Fig. 9.37) took off from Cranwell on May 15, 1941, the fi rst air-

plane to fl y with a Whittle jet engine. The engine produced 860 lb of thrust and 

powered the Gloster airplane to a maximum speed of 338 mi/h. The Gloster 

E.28/39 now occupies a distinguished berth in the Science Museum in London, 

hanging prominently from the top-fl oor ceiling of the massive brick building in 

South Kensington, London. The technology gained with the Whittle engine was 

quickly exported to the United States and eventually fostered the birth of the 

highly successful Lockheed P-80 Shooting Star, the fi rst U.S. production-line 

jet airplane.

In 1948 Frank Whittle retired from the RAF as an air commodore and was 

knighted for his contributions to British aviation. In 1976 he moved to the United 

States, where he worked and taught at the U.S. Naval Academy in Annapolis, 

Maryland. On August 8, 1996, he died at his home in Columbia, Maryland.

Hans von Ohain was among the large group of German scientists and engi-

neers who were brought to the United States at the end of World War II. He pur-

sued a distinguished career at the Air Force’s Aeronautical Research Laboratory 

at Wright-Patterson Air Force Base, Ohio, where he led a propulsion group doing 

research on advanced concepts. Indeed, the present author had the privilege of 

working for three years in the same laboratory with von Ohain and shared nu-

merous invigorating conversations with this remarkable man. Later von Ohain 

became affi liated with the U.S. Air Force Aeropropulsion Laboratory at Wright 

Field, from which he retired in 1980. He remained active after retirement as 

a tireless spokesman for aeronautics. In 1984 he served a year at the National 

Figure 9.37 The Gloster E.28/39—the fi rst British airplane to fl y with jet propulsion.
(Source: Courtesy of John Anderson.)
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Air and Space Museum of the Smithsonian Institution in the prestigious Charles 

Lindbergh Chair (a chair that the present author was honored to occupy two years 

after von Ohain). Hans von Ohain died at his home in Melbourne, Florida, on 

March 13, 1998. He is buried in Dayton, Ohio. Within a span of two years, the 

world lost the two coinventors of the jet engine. History has already shown that 

these two men created a revolution in aeronautics—the jet revolution—perhaps 

on a par with the invention of the practical airplane by the Wright brothers.

9.17  HISTORICAL NOTE: EARLY HISTORY 
OF ROCKET ENGINES

“When it was lit, it made a noise that resembled thunder and extended 100 li 
[about 24 km]. The place where it fell was burned, and the fi re extended more 
than 2000 feet. . . . These iron nozzles, the fl ying powder halberds that were 
hurled, were what the Mongols feared most.” These words were written by Father 
Antonine Gaubil in 1739 in conjunction with his book about Genghis Khan; they 
describe how a Chinese town in 1232 successfully defended itself against 30,000 
invading Mongols by means of rocket-propelled fi re arrows. They are an example 
of the evidence used by most historians to show that rocketry was born and devel-
oped in Asia many centuries ago. It is reasonably clear that the Chinese manufac-
tured black powder at least as early as 600 AD and subsequently used this mixture 
of charcoal, sulfur, and saltpeter as a rocket propellant. Over the centuries, the 
rocket slowly spread to the West as a military weapon and was much improved 
as a barrage missile by Sir William Congreve in England in the early 1800s. (The 
“rockets’ red glare” observed by Francis Scott Key in 1812 at Fort McHenry was 
produced by a Congreve rocket.) However, not until the end of the 19th century 
and the beginning of the 20th century was the rocket understood from a technical 
viewpoint and was its true engineering development begun.

The Soviet Union was fi rst into space, both with an artifi cial satellite 

(Sputnik I on October 4, 1957) and with a human in orbit (Yuri Gagarin on April 

12, 1961). Thus, in historical perspective it is fi tting that the fi rst true rocket sci-

entist was a Russian: Konstantin Eduardovitch Tsiolkovsky, born in September 

1857 in the town of Izhevskoye. As a young student, he absorbed physics and 

mathematics and was tantalized by the idea of interplanetary space travel. In 

1876 he became a schoolteacher in Borovsk, and in 1882 he moved to the  village 

of Kaluga. There, in virtual obscurity, he worked on theories of space fl ight, 

hitting upon the idea of reactive propulsion in March 1883. Working without 

any institutional support, Tsiolkovsky gradually solved some of the theoretical 

problems of rocket engines. Fig. 9.38 shows his design of a rocket, fueled with 

liquid hydrogen (H2) and liquid oxygen (O2), which was published in the Russian 

magazine Science Survey in 1903 (the same year as the Wright brothers’ success-

ful fi rst powered airplane fl ight). The fact that Tsiolkovsky knew to use the high–

specifi c impulse combination of H2–O2 testifi es to the sophistication of his rocket 

theory. Tsiolkovsky was neither an experimentalist (it took money that he did not 
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have to develop a laboratory) nor an engineer. Therefore, he conducted no prac-

tical experiments and generated no design data. Nevertheless, Tsiolkovsky was 

the fi rst true rocket scientist, and he worked incessantly on his theories until his 

death on September 19, 1935, at the age of 78 years. In his later life, his contribu-

tions were fi nally recognized, and he became a member of the Socialist Academy 

(forerunner of the U.S.S.R. Academy of Science) in 1919, with a subsequent 

grant of a government pension.

At the turn of the century, progress in rocketry arrived in the United 

States in the form of Dr. Robert H. Goddard. Goddard was born at Worcester, 

Massachusetts, on October 5, 1882. His life had many parallels to Tsiolkovsky’s: 

He too was an avid physicist and mathematician; he too was convinced that rock-

ets were the key to space fl ight; and he too worked in virtual obscurity for most 

of his life. But there was one sharp difference. Whereas Tsiolkovsky’s contribu-

tions were purely theoretical, Goddard successfully molded theory into practice 

and developed the world’s fi rst liquid-fueled rocket that worked.

Goddard was educated completely at Worcester, graduating from South 

High School in 1904, obtaining a bachelor’s degree from Worcester Polytechnic 

Institute in 1908, and earning a doctorate in physics at Clark University in 1911. 

Subsequently he became a professor of physics at Clark, where he began to apply 

science and engineering to his childhood dreams of space fl ight. He too deter-

mined that liquid H2 and O2 would be very effi cient rocket propellants, and he 

pursued these ideas during a leave of absence at Princeton University during 

1912–1913. In July 1914 he was granted patents on rocket combustion cham-

bers, nozzles, propellant feed systems, and multistage rockets. In 1917 he ob-

tained a small grant ($5000) from the Smithsonian Institution in Washington, 

which permanently entrenched him in a career of rocketry. This grant led to 

one of the most historic documents of rocket engine history, a monograph titled 

A Method of Reaching Extreme Altitudes, published as part of the Smithsonian 

Miscellaneous Collections in 1919. This book was a scholarly and authoritative 

exposition of rocket principles; at that time, though, few people seized upon 

Goddard’s ideas.

Goddard increased his laboratory activities back at Worcester in the early 

1920s. Here, after many tests and much engineering development, Goddard 

Figure 9.38 Tsiolkovsky’s rocket design of 1903, burning liquid hydrogen (H) and liquid 

oxygen (O).
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Figure 9.39 Robert H. Goddard and his fi rst successful liquid-fuel rocket. This rocket made 

the world’s fi rst successful fl ight on March 16, 1926.
(Source: NASA.)

successfully launched the world’s fi rst liquid-fuel rocket on March 16, 1926. A 

picture of Goddard standing beside this rocket is shown in Fig. 9.39. The vehicle 

was 10 ft long; the motor itself was at the very top (far above Goddard’s head in 

Fig. 9.39) and was fed liquid oxygen and gasoline through two long tubes that 

led from the propellant tanks at the rear of the vehicle (below Goddard’s arm 

level in the fi gure). The conical nose on the fuel tanks was simply a defl ector to 
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protect the tanks from the rocket nozzle exhaust. This rocket reached a maximum 

speed of 60 mi/h and fl ew 184 ft. Although modest in performance, this fl ight on 

March 16, 1926, was to rocketry what the Wright brothers’ December 17, 1903, 

fl ight was to aviation.

This work ultimately brought Goddard to the attention of Charles A. 

Lindbergh, who now had considerable stature because of his 1927 trans-Atlantic 

fl ight. Lindbergh was subsequently able to convince the Daniel Guggenheim 

Fund for the Promotion of Aeronautics to give Goddard a $50,000 grant to fur-

ther pursue rocket engine development. Suddenly Goddard’s operation magni-

fi ed, and in 1930 he and his wife moved to a more suitable testing location near 

Roswell, New Mexico. Here, for the next 11 years, Goddard made bigger and 

better rockets, although still in an atmosphere of obscurity. The government was 

simply not interested in any form of jet propulsion research during the 1930s. 

Also, Goddard was cast somewhat from the same mold as the Wright brothers: 

he imposed a blanket of secrecy on his data for fear of others pirating his de-

signs. However, at the beginning of World War II, the government’s interest in 

Goddard’s work turned from cold to hot; his complete operation, personnel and 

facilities, was moved to the Naval Engineering Experiment Station at Annapolis, 

Maryland. There, until July 1945, this group developed jet-assisted takeoff units 

for seaplanes and worked on a variable-thrust rocket engine.

On August 10, 1945, Dr. Robert H. Goddard died in Baltimore. Recognition 

for his contributions and realization of their importance to the development 

of modern rocketry came late. Indeed, only in the political heat of the post-

Sputnik years did the United States really pay homage to Goddard. In 1959 he 

was honored by Congress; that same year, he received the fi rst Louis W. Hill 

Space Transportation Award of the Institute of Aeronautical Sciences (now the 

American Institute of Aeronautics and Astronautics). Also, on May 1, 1959, the 

new NASA Goddard Space Flight Center at Greenbelt, Maryland, was named 

in his honor. Finally, in 1960 the Guggenheim Foundation and Mrs. Goddard 

were given $1,000,000 by the government for use of hundreds of Goddard’s 

patents.

During the 1930s, and completely independent of Goddard’s operation, an-

other small group in the United States developed rockets. This was the American 

Rocket Society (ARS), originally founded in March 1930 as the American 

Interplanetary Society and changing its name in 1934. This small group of scien-

tists and engineers believed in the eventual importance of rocketry. The society 

not only published technical papers, but also built and tested actual vehicles. 

Its fi rst rocket, burning liquid oxygen and gasoline, was launched on May 14, 

1933, at Staten Island, New York, and reached 250 ft. Following this, and up to 

World War II, the ARS was a public focal point for small rocket research and 

development, all without government support. After the beginning of the war, 

much of the ARS experimental activity was splintered and absorbed by other 

activities around the country. However, as an information dissemination society, 

the ARS continued until 1963, publishing the highly respected ARS Journal. 
Then the American Rocket Society and the Institute of Aeronautical (by that 
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time, Aerospace) Sciences were merged to form the present American Institute 

of Aeronautics and Astronautics.

As a brief example of how the threads of the history of fl ight are woven to-

gether, in 1941 members of the ARS formed a company, Reaction Motors, Inc., 

which went on to design and build the XLR-11 rocket engine. This engine pow-

ered the Bell X-1 and pilot Chuck Yeager to the fi rst manned supersonic fl ight on 

October 14, 1947 (see Sec. 5.22 and Fig. 5.88).

The early history of rocket engines forms a geographic triangle, with one 

vertex in Russia (Tsiolkovsky), the second in the United States (Goddard), 

and the third in Germany. Representing this third vertex is Hermann Oberth, 

born in Transylvania on July 25, 1894, to later become a German citizen. Like 

Tsiolkovsky and Goddard before him, Oberth found inspiration in the novels 

of Jules Verne and began a mental search for a practical means of reaching 

the moon. During World War I Oberth became interested in rockets, suggest-

ing long-range liquid-fueled missiles to the German war department. In 1922 

he combined these thoughts and suggested rockets for space fl ight. Oberth was 

at that time ignorant of the work of both Tsiolkovsky and Goddard. However, 

shortly thereafter, Goddard’s work was mentioned in the German newspapers, 

and Oberth quickly wrote for a copy of the 1919 Smithsonian monograph. In 

1923 Oberth published his own work on the theory of rocket engines, titled The 
Rocket into Planetary Space. This was a rigorous technical text, and it laid the 

basis for the development of rockets in Germany.

To foster Oberth’s ideas, the German Society for Space Travel was formed 

in 1927 and began experimental work in 1929. (The American Rocket Society 

was subsequently patterned after the German society.) Oberth’s ideas had a cata-

lytic effect, especially on some of his students, such as Wernher Von Braun; and 

the 1930s found an almost explosive development of rocketry in Germany. This 

work, with Von Braun as the technical director, culminated in the development of 

the German V-2 rocket of World War II. Although an instrument of war, the V-2 

was the fi rst practical long-range rocket in history. A sketch of the V-2 is shown 

in Fig. 9.40. Powered by liquid oxygen and alcohol, this rocket was 46.1 ft long, 

65 in in diameter, and 27,000 lb in weight. It was the fi rst vehicle made by humans 

to fl y outside the sensible atmosphere (that is, in space), with altitudes above 50 

mi and a range of 200 mi. The missile reached supersonic speeds during its fl ight 

within the atmosphere. During the closing phases of World War II, hundreds of 

production V-2s were captured by both Russian and U.S. forces and shipped back 

to their respective countries. As a result, all modern rockets today can trace their 

ancestry directly back to the V-2 and hence through Von Braun back to Hermann 

Oberth.

The development of modern rockets, culminating in the huge Saturn booster 

for the Apollo program, is a story in itself and is beyond the scope of this book. 

The early history sketched in this section is intended to add appreciation for the 

technical aspects of rocket engines discussed in Sec. 9.8. For an authoritative 

presentation on the history of modern rocketry, see the books by Von Braun and 

Ordway and by Emme (see the bibliography at the end of this chapter).
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Figure 9.40 The German World War II V-2 rocket.
(Source: NASA.)
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9.18 SUMMARY AND REVIEW
There are two primary propulsion devices used to provide thrust for fl ight vehicles: (1) a 

reciprocating engine–propeller combination, and (2) jet propulsion engines. Jet propul-

sion further subdivides into air-breathing engines (turbojets, fanjets, ramjets, SCRAM-

jets) and rocket engines. In this chapter we have progressively worked our way through 

different engines.

We started with the propeller (just as the Wright brothers did, and everybody else 

designing and building airplanes until the beginning of World War II). We discussed the 

qualitative aspects of how a propeller, which is essentially like a twisted wing, generates 

thrust. We studied aspects of the internal combustion reciprocating engine to which many 

propellers are fi xed, and how the propeller transmits power from the engine to power 

available from the propeller, the ratio of which defi nes the propeller effi ciency. Further-

more, we looked at the thermodynamic cycle that takes place in the reciprocating engine 

and used this to estimate the power output of the engine.

In terms of jet propulsion engines, we fi rst derived the generalized thrust equa-

tion for such engines. Both the derivation of the equation and the equation itself are 

very  important. The derivation uses the control volume concept by which we related the 

pressure distribution exerted on every square centimeter of the engine (the fundamental 

source of the thrust) to the time rate of change of momentum of the fl ow through the 

engine from the inlet to the exit. The resulting thrust equation for jet propulsion is amaz-

ingly straightforward, and it provides a relatively simple means to calculate the thrust 

generated by air-breathing jet engines and rocket engines.

We then proceeded to look at the conventional turbojet engine with its major compo-

nents: inlet diffuser, compressor, burner, turbine, and exhaust nozzle. We examined the 

thermodynamic processes taking place in each of these components, and then noted how 

each component contributes to the thrust of the engine—the thrust buildup. We discussed 

how the addition of a large fan in front of the engine greatly increases the effi ciency of the 

jet engine; the turbofan engine that is now used on the vast majority of jet engines. Then 

we looked at the advantages and disadvantages of getting rid of all the rotating machinery 

of a turbojet, and creating a straight fl ow path through the engine; the ramjet engine and, 

for hypersonic fl ight, the SCRAMjet engine.

We investigated the engine capable of generating the highest thrust of any practical 

jet propulsion device, the rocket engine. Using the thrust equation for a rocket engine, we 

defi ned an important fi gure of merit that gives the effi ciency of the rocket: namely, the 

specifi c impulse, defi ned as the thrust per unit weight fl ow through the engine. We found 

that the specifi c impulse is mainly a function of what chemical propellants are used in the 

engine—a result that was not immediately intuitive. Then we went on to obtain the “rocket 

equation,” which relates the rocket burnout velocity to the initial and fi nal mass of the 

rocket (the difference being the mass of the burned propellants) and the specifi c impulse.

Finally, we took a brief look at some advanced devices proposed for propulsion in 

space, based on various forms of electric propulsion.

A few important aspects of the chapter are itemized as follows:

1. The cross section of a propeller is an airfoil shape designed to produce an 

aerodynamic force in the direction of motion of the airplane—that is, thrust. The 

effi ciency of a propeller depends on the pitch angle and the advance ratio:

J V nD∞VV /( )

2. The four strokes of an Otto cycle reciprocating internal combustion engine are 

intake, compression, power, and exhaust. Combustion takes place essentially at 
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constant volume. The power generated by such an engine along with a propeller is 

the power available, expressed as

 
P

n
NWAP = ηηmech

2
(9.10)

 where η = propeller effi ciency, ηmech = mechanical effi ciency, n = revolutions per 

second of the engine shaft, N = number of cylinders, and W = work produced during 

the complete four-stroke cycle. The power available can also be expressed as

 
P

dp
AP e= ηηmech (rpm)

120  
(9.15)

 where rpm is the revolutions per minute of the engine shaft, d is the displacement, 

and pe is the mean effective pressure.

3. The thrust equation for a jet propulsion device is

 T V V p p Ae V p e− +m VVVV +VVVV( )m m+m ( )p pp ∞p pp& & &air fm+ uef l VeVV mmm)  (9.24)

4. The turbojet engine process involves aerodynamic compression of the intake air in a 

diffuser, further compression in a rotating compressor, constant-pressure combustion 

in the burner, expansion through a turbine that drives the compressor, and further 

expansion through an exhaust nozzle. In a turbofan engine, a large ducted fan is 

mounted on the shaft ahead of the compressor, which accelerates a large mass of 

auxiliary air outside the core of the engine itself, thus producing more thrust with 

higher effi ciency. The ramjet engine has no rotating machinery and produces its 

thrust by means of aerodynamic compression in an inlet diffuser of the incoming air, 

burned at constant pressure in the combustor and exhausted through a nozzle.

5. The thrust for a rocket engine is

 V p p AeV pV emVVV& ( )p pep −  (9.28)

 A rocket carries its own fuel and oxidizer and is not dependent on atmospheric air 

for the generation of thrust.

6. The specifi c impulse is a direct measure of the effi ciency of a rocket engine–

propellant combination:
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(9.35)

 For a high specifi c impulse, the combustion temperature T0 should be high, and the 

molecular weight of the combustion gas should be low.

7. The rocket equation relates burnout velocity to the specifi c impulse and the initial-

to-fi nal mass ratio:
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(9.51)
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Problems
 9.1 A reciprocating engine for light aircraft, modeled after the Avco Lycoming O-235 

engine, has the following characteristics: bore = 11.1 cm, stroke = 9.84 cm, number 

of pistons = 4, compression ratio = 6.75, mechanical effi ciency = 0.83. It is connected 

to a propeller with an effi ciency of 0.85. If the fuel-to-air ratio is 0.06 and the pressure 

and temperature in the intake manifold are 1 atm and 285 K, respectively, calculate 

the power available from the engine–propeller combination at 2800 rpm.

 9.2 For the engine in Prob. 9.1, calculate the mean effective pressure.

 9.3 Consider a turbojet mounted on a stationary test stand at sea level. The inlet 

and exit areas are the same, both equal to 0.45 m2. The velocity, pressure, and 

temperature of the exhaust gas are 400 m/s, 1.0 atm, and 750 K, respectively. 

Calculate the static thrust of the engine. (Note: Static thrust of a jet engine is the 

thrust produced when the engine has no forward motion.)

 9.4 Consider a turbojet-powered airplane fl ying at a standard altitude of 40,000 ft at a 

velocity of 530 mi/h. The turbojet engine has inlet and exit areas of 13 and 10 ft2, 

respectively. The velocity and pressure of the exhaust gas at the exit are 1500 ft/s 

and 450 lb/ft2, respectively. Calculate the thrust of the turbojet.

 9.5 Consider a turbojet in an airplane fl ying at standard sea level with a velocity of 

800 ft/s. The pressure ratio across the compressor is 12.5:1. The fuel-to-air ratio 

(by mass) is 0.05. If the nozzle exhausts the fl ow to ambient pressure, calculate 

the gas temperature at the exit. (In solving this problem, assume that the air in 

the diffuser is slowed to a very low velocity before entering the compressor. Also 

assume that the heat released per pound of fuel is 1.4 × 107 ft · lb/lbm.)

 9.6 A small ramjet engine is to be designed for a maximum thrust of 1000 lb at sea 

level at a velocity of 950 ft/s. If the exit velocity and pressure are 2000 ft/s and 

1.0 atm, respectively, how large should the inlet be?

 9.7 The mass fl ow through a rocket engine is 25 kg/s. If the exit area, velocity, and 

pressure are 2 m2, 4000 m/s, and 2 × 104 N/m2, respectively, calculate the thrust at 

a standard altitude of 50 km.

 9.8 Consider a rocket engine in which the combustion chamber pressure and 

temperature are 30 atm and 3756 K, respectively. The area of the rocket nozzle 

exit is 15 m2 and is designed so that the exit pressure exactly equals ambient 

pressure at a standard altitude of 25 km. For the gas mixture, assume that γ  = 1.18 
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and the molecular weight is 20. At a standard altitude of 25 km, calculate the 

(a) specifi c impulse, (b) exit velocity, (c) mass fl ow, (d) thrust, and (e) throat area.

9.9 In a given rocket engine, a mass fl ow of propellants equal to 87.6 lbm /s is pumped 

into the combustion chamber, where the temperature after combustion is 6000°R. 

The combustion products have mixture values of R = 2400 ft · lb/(slug)(°R) and γ   =
1.21. If the throat area is 0.5 ft2, calculate the pressure in the combustion chamber.

9.10 Consider a rocket with kerosene–oxygen as the fuel–oxidizer combination. The 

ratio of initial weight before blastoff to the fi nal weight at burnout is 5.5. Calculate 

the burnout velocity.

9.11 A rocket using hydrogen–oxygen as the fuel–oxidizer combination has a specifi c 

impulse of 360 s. Calculate the ratio of propellant mass to initial mass required to 

achieve a burnout velocity equal to the escape velocity from the earth.

9.12 Consider a solid propellant rocket engine with an end-burning confi guration as 

shown in Fig. 9.30a. The solid propellant is ammonium nitrate. The burning 

characteristics of this propellant when the initial grain temperature is 60°F 

are given by the following measured data: linear burning rate is 0.04 in/s at a 

combustion pressure of 500 lb/in2, and 0.058 in/s at a combustion pressure of 

1000 lb/in2. The rocket engine is operating at a combustion pressure of 1500 lb/in2. 

Calculate the distance the burning surface will recede in 5 s.

9.13 Consider a two-stage rocket with the following design characteristics. First stage: 
propellant mass = 7200 kg; structural mass = 800 kg. Second stage: propellant 

mass = 5400 kg; structural mass = 600 kg. The payload mass is 60 kg. The specifi c 

impulse for both stages is 275 s. Calculate the fi nal burnout velocity.

9.14 Examine the control volume sketched in Fig. 9.14d. Although this control volume 

was used in Sec. 9.4 to obtain the thrust equation for a jet propulsion device, it 

can be used in general to examine any propulsive device that creates an increase 

in fl ow velocity through the control volume. For example, you could imagine a 

reciprocating engine–propeller combination inside the control volume, with air 

at velocity V∞ coming into the control volume ahead of the propeller, and with 

velocity Ve leaving the control volume behind the propeller. So the control volume 

in Fig. 9.14d is generic and can represent both propeller and jet engines.

 Imagine that you are standing outside in the still air and the propulsive 

device represented by Fig. 9.14d fl ies past you at velocity V∞. The inlet and exit 

velocities, V∞ and Ve, shown in Fig. 9.14d are relative to the device. The exhaust 

velocity exiting the device relative to you is not the same as Ve in Fig. 9.14d. 
Before the propulsive device entered your space, the air around you was still. 

After the device left your space, it left behind a jet of air moving in the opposite 

direction at a velocity different than Ve. This jet of air has energy, and that energy 

is wasted; it performs no useful work. Show that the energy wasted by this jet of 

air, per unit time, is

1
2

2&m& e( )V VeVV VV

 where &m  is the mass fl ow through the device.

9.15 Continuing the line of thought started in Prob. 9.14, the propulsive effi ciency, 
denoted by ηp, is defi ned as

ηp ≡ usefulff power available

total power generated
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 Using the result obtained in Prob. 9.14 and recalling the defi nition of power 

available from Ch. 6, show that

ηp
V

≡
∞VV

2

1 /VeVV

9.16 For the turbojet engine operating under the conditions given in Example 9.3, 

calculate the propulsive effi ciency, as defi ned in Prob. 9.15.

9.17 Using the propulsive effi ciency defi ned in Prob. 9.15, discuss why the propeller is 

the most effi cient propulsion device, the rocket engine is the least effi cient, and the 

gas turbine jet engine is in between.

9.18 The pressure ratio across the compressor of a given turbojet engine is 11.7. The 

temperature of the air entering the compressor is T2 = 585°R. The mass fl ow through 

the compressor is 200 lbm /s. Assume that the fl ow velocities entering and leaving the 

compressor are equal, that is, V2 = V3. Calculate the power (in horsepower) provided 

by the compressor. Hint: Because compressor work is done on the gas between the 

inlet (point 2) and exit (point 3) of the compressor, the energy equation given by 

Eq. (4.42) is modifi ed to include the compressor work as follows:

c T Vp pT w2TTT V 2
3 3V 2 2+ VVVV /Tpcw/ 3 3TT VV2 w T Vw 3VV 2c Tc 3TT

 where wc is the compressor work per unit mass of gas.

9.19 For the same engine in Prob. 9.18, fuel is injected and burned in the combustor. 

The gas temperature at the exit of the combustor is 2110°R. Assuming that 

the heat released per pound of fuel is 1.4 × 107 ft lb/lbm, calculate the fuel 

consumption in lbm /s.

9.20 In a simple turbojet engine, the turbine provides the power that drives the 

compressor. For the same engine treated in Probs. 9.18 and 9.19, the temperature 

of the gas entering the turbine is the same as the temperature of the gas leaving 

the combustor, namely T4 = 2110°R. Assuming no mechanical losses, the work 

provided by the turbine is equal to the work done by the compressor. Assume that 

the fl ow velocity entering the turbine is equal to the velocity leaving the turbine, 

that is, V4 = V5. Calculate the gas temperature at the exit of the turbine.

9.21 For the same engine in Probs. 9.18–9.20, the pressure at the exit of the nozzle is 

2116 lb/ft2. The pressure at the inlet to the compressor is also 2116 lb/ft2. The fl ow 

velocity entering the nozzle is 1500 ft/s. Calculate the fl ow velocity at the nozzle 

exit.

9.22 For the same engine in Prob. 9.21, calculate the Mach number at the nozzle exit. 

From this result, comment on the Mach number regime of the type of aircraft that 

might use this engine.

9.23 With Probs. 9.18–9.22, we have worked our way through the fl ow path through 

a given turbojet engine. Finally, consider this engine propelling a supersonic 

airplane at Mach 2 at a standard altitude of 36,000 ft. Calculate the thrust 

generated by the engine. The exit diameter of the nozzle is 28 inches. Note: The 

engine treated in Probs. 9.18–9.23 is hypothetical. However, it is somewhat based 

on the General Electric J79 turbojet used to power the F-4 Phantom II and the 

B-58 Hustler supersonic aircraft.

9.24 The specifi c thrust for a jet engine is defi ned as the thrust per unit weight fl ow of 

gas through the engine. (This is analogous to the defi nition of specifi c impulse for 
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a rocket engine.) Calculate the specifi c thrust for the engine in Prob. 9.23. Neglect 

the weight fl ow of fuel, which is very small compared to the weight fl ow of air.

9.25 The entrance air temperature to the combustion chamber of a SCRAMjet 

engine is limited to 2800 R; above this temperature, dissociation of the air and 

decomposition of the fuel in the combustion chamber cause a loss of available 

energy and reduction of thrust. Consider a SCRAMjet powered hypersonic vehicle 

fl ying at Mach 10 at an altitude of 130,000 ft. Calculate the lowest Mach number 

to which the fl ow in the inlet can be slowed before entering the combustor.

9.26 Repeat Prob. 9.25 considering the hypersonic vehicle fl ying at Mach 20. Comment 

on the severity of the fl ow conditions to be encountered in the combustor at this 

fl ight condition (which refl ects why, at the time of writing, the application of 

SCRAMjet engines at Mach 10 or higher faces severe technical problems).
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10 C H A P T E R

Hypersonic Vehicles

Within recent years the development of aircraft and guided missiles has brought a 

number of new aerodynamic problems into prominence. Most of these problems arise 

because of the extremely high fl ight velocities and are characteristically different in 

some way from the problems which arise in supersonic fl ight. The term “hypersonic” 

is used to distinguish fl ow fi elds, phenomena, and problems appearing at fl ight speeds 

far greater than the speed of sound from their counterparts appearing at fl ight speeds 

which are at most moderately supersonic. The appearance of new characteristic 

features in hypersonic fl ow fi elds justifi es the use of a new term different from the 

well established term “supersonic.”

Wallace D. Hayes and 

Ronald F. Probstein, 1959

10.1 INTRODUCTION
The scene: A conventional airport for large jet aircraft, anywhere in the United 
States. The time: The 21st century. The characters: A fl ight crew, poised and 
ready for business. The action: The aircraft is ready, brimming with liquid 
hydrogen as fuel, and parked at the edge of the runway. The fl ight crew is noti-
fi ed and is rapidly transported from the airport terminal to the sleek, dartlike 
vehicle waiting on the runway. Within 30 minutes, the aircraft takes off as a 
conventional airplane; but once in the air, the powerful air-breathing engines 
rapidly accelerate the vehicle through Mach 1. At Mach 5, supersonic combus-
tion ramjet engines (Sec. 9.7 and Fig. 9.26) take over, and the aircraft continues 
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What is the future of fl ight? As we look back on the 

past century of fl ight, it is natural to look forward into 

the next century of fl ight. This author feels the future 

of fl ight is very bright indeed. What has been accom-

plished in fl ight to date is simply a springboard for 

even greater advances in technology and the design 

of fl ight vehicles in the future. The readers of this 

book will have many exciting challenges in the fu-

ture, and many of you can look forward to contribut-

ing to futuristic airplanes and space vehicles the likes 

of which we cannot even imagine today.

One of these challenges is the development of 

practical hypersonic fl ight for sustained periods of 

cruise in the atmosphere. Hypersonic fl ight is loosely 

defi ned as fl ight at Mach 5 and higher. Hypersonics 

represent the fi nal frontier of the human quest to fl y 

faster, higher, and farther. They are a wave of the fu-

ture, and many readers of this book will have the op-

portunity to ride this wave in the 21st century.

Dramatic changes occur in the aerodynamic fl ow 

over a vehicle fl ying at very high Mach numbers. 

The pressures exerted on the vehicle surface can be 

enormous. How enormous? How can you  calculate 

the magnitudes of these pressures? Of equal or more 

importance are the very high temperatures that are 

encountered in many hypersonic fl ows. How hot is 

the fl ow? What do these high temperatures do to the 

fl ow fi eld and to the vehicle? Does the chemistry of 

the air fl ow change at such high temperatures? Read 

on to fi nd the answers.

The demands of aerodynamics, fl ight dynamics, 

propulsion, and structures associated with hypersonic 

vehicles are much more severe than for  conventional 

airplanes. There remains a host of technical chal-

lenges and problems to be met and solved before 

sustained, practical hypersonic fl ight becomes a 

reality. But just as I am convinced, as I have men-

tioned earlier in this book, that readers of this book 

will have opportunities to help design a successful 

second- generation supersonic transport in the early 

21st century, I am equally convinced that some of 

you will help to solve the daunting technical prob-

lems of hypersonic fl ight in the same century and 

will participate in the design of practical hypersonic 

aircraft. I cannot believe that it will not happen. Read 

this chapter, and turn your eyes toward the future.

PREVIEW BOX

to accelerate through the sensible atmosphere—Mach 10, Mach 15, Mach 20. 
When Mach 25 is reached, still within the sensible atmosphere at 200,000 ft, the 
vehicle has enough kinetic energy to coast into orbit around the earth. It has done 
so strictly under the power of air-breathing propulsion and in a single stage after 
taking off from the airport. No rockets are used, and no intermediate propulsive 
stages were detached from the vehicle and dropped back to earth during the 
ascent. This airplane is simply a single-stage-to-orbit vehicle. A fl ight of fancy? 
A fantasy from the annals of science fi ction? The author thinks not. The concept 
described is that of a transatmospheric vehicle. Such a concept at various recent 
times has been under active development in fi ve different countries around the 
world, including a major program in the United States, where the vehicle was 
designated the aerospace plane. A general artist’s concept of such an aerospace 
plane is shown in Fig. 10.1, and the fl ight trajectory of such a vehicle is depicted 
in Fig. 10.2 on a Mach number–altitude map (analogous to the velocity– altitude 
maps in Ch. 8). For comparison, the ascent and entry trajectories for the space 
shuttle are also shown in Fig. 10.2. Note that the ascent fl ight path for the aero-
space plane takes place well below the shuttle ascent or entry, illustrating the 
need for the aerospace plane to stay within the sensible atmosphere so that the 
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Figure 10.1 Artist’s concept of the National Aerospace Plane (NASP), a technology 

development program in the United States during 1985–1995.
(Source: NASA.)

Space Shuttle
ascent

Space
Shuttle
entry

Figure 10.2 Flight paths for the ascent and entry of the Space Shuttle 

compared with the ascent path of an aerospace plane.
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air-breathing engines can produce enough thrust to accelerate the vehicle to 
orbital  velocity. (Some recent design concepts use air-breathing propulsion to 
reach Mach numbers of 12 to 14 and then use rocket propulsion to go the rest of 
the way to orbit.) This vehicle is a futuristic example of a hypersonic airplane—
that is, an aircraft designed to fl y faster than fi ve times the speed of sound. Such 
hypersonic vehicles are the subject of this chapter.

When such a transatmospheric vehicle fl ies successfully, it will by no means 

be the fi rst hypersonic vehicle. The fi rst time a piece of machinery fl ew faster 

than Mach 5 was on February 24, 1949, when a WAC Corporal second-stage 

rocket mounted on top of an old German V-2 rocket and launched from the 

White Sands proving ground in New Mexico achieved a top speed of 5150 mi/h 

as it entered the atmosphere. (See the book by Anderson listed in the bibliogra-

phy for details.) By the 1950s, intercontinental ballistic missiles were fl ying at 

Mach 25 during entry tests of their nose cones. On April 12, 1961, the Russian 

astronaut Flight Major Yuri Gagarin became the fi rst person to orbit the earth 

and hence to experience hypersonic fl ight at Mach 25 during entry. In the same 

year, on June 23, the X-15 hypersonic test aircraft (see Fig. 5.89) fi rst exceeded 

Mach 5 in fl ight. In 1969 and the early 1970s, the Apollo lunar return vehicles 

reached Mach 36 during entry into the earth’s atmosphere. Thus we can clearly 

state that hypersonic fl ight is a reality and has been so since 1949.

Hypersonic aerodynamics and the impact it will have on the confi gura-

tion of hypersonic vehicles are distinctly different from the lower supersonic 

regime, as noted in the passage quoted at the beginning of this chapter. Our 

purpose in this chapter is to describe briefl y the physical aspects of hypersonic 

fl ow, to develop a simple but approximate aerodynamic theory for predicting 

pressure distributions on hypersonic vehicles, and to examine some of the per-

formance and design aspects of such vehicles. By including this chapter in an 

introduction to aerospace engineering, we are recognizing the importance of 

hypersonic fl ight in the past and assuming a continued growth of its importance 

in the future.

The road map for this chapter is shown in Fig. 10.3. It is a simple plan. First 

we examine some of the physical aspects of hypersonic fl ow, in keeping with the 

other chapters of this book where the fundamental physics of the given subjects 

are emphasized. Then we examine a particular result from Newtonian mechanics, 

based on Newton’s study of fl uid dynamics published in his Principia in 1687, 

called the Newtonian sine-squared law. This law is useful for estimating pressure 

distributions on the surfaces of hypersonic vehicles. The chapter concludes with 

Hypersonic vehicles

Physical aspects of hypersonic flow
Newtonian sine-squared law
Hypersonic airplanes
Wave rider concept

Figure 10.3 Road map for Ch. 10.
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a discussion of some of the aerodynamic characteristics of  hypersonic airplanes, 

including a presentation of a novel concept for the shape of such airplanes called 

the wave rider.

10.2 PHYSICAL ASPECTS OF HYPERSONIC FLOW
Although it is generally accepted that hypersonic aerodynamics is defi ned as that 
part of the high-speed fl ight spectrum above Mach 5, this is no more than a rule 
of thumb; when a fl ow accelerates from M = 4.99 to M = 5.01, there is no clash 
of thunder or instant change of fl ow from green to red. No special fl ow phenom-
enon begins exactly at M = 5.0, in contrast to the distinct changes that occur 
when sonic fl ow, M = 1.0, is achieved. Instead, hypersonic fl ow is best defi ned as 
the high-Mach-number regime where certain physical fl ow phenomena become 
progressively more important as the Mach number is increased. In some cases 
one or more of these phenomena become important above Mach 3, whereas in 
other cases they may not be compelling before Mach 7 or higher. Therefore, the 
designation of hypersonic fl ow as fl ow above Mach 5 is clearly just a convenient 
rule of thumb.

This section briefl y describes the important physical aspects of hypersonic 

fl ow; in some sense this entire section will constitute a defi nition of hypersonic 

fl ow. Five main aspects that distinguish hypersonic fl ow from the lower-speed 

supersonic regime are described in the following.

10.2.1 Thin Shock Layers

Consider fl ow over a sharp wedge at two different Mach numbers: (1) a super-
sonic fl ow at M∞ = 2 and (2) a hypersonic fl ow at M∞ = 20. The shock waves and 
fl ow streamlines for these two cases are sketched in Fig. 10.4a and b, respec-
tively. In both cases a straight oblique shock wave will emanate from the lead-
ing edge of the wedge, as explained in Sec. 5.11. And in both cases the straight 
horizontal streamlines in the free stream ahead of the shock wave are discontinu-
ously and uniformly bent in traversing the shock, the fl ow downstream consist-
ing of straight uniform streamlines tangent to the wedge surface. However, at 
Mach 2 the shock wave angle is large (53.5°), whereas at Mach 20 the shock 
wave angle is much smaller (25°). The fl ow fi eld between the shock wave and 
the body surface is called the shock layer, and we see from Fig. 10.4 that shock 
layers at hypersonic speeds are thin. A characteristic of hypersonic fl ow is that 
shock waves lie close to the surface, thus creating thin shock layers, which in 
turn can cause physical complications. For example, at low Reynolds number, 
the boundary layer on the body surface can grow quite thick, on the same order 
as the thickness of the thin shock layer itself. This leads to a merging of the shock 
wave with the boundary layer, constituting a fully viscous shock layer. However, 
the fact that the shock layer is thin allows the development of some simplifi ed 
aerodynamic theories for the prediction of surface pressure at hypersonic speeds, 
one of which is described in Sec. 10.3.
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10.2.2 Entropy Layer

Consider the hypersonic fl ow over a blunt-nosed body (Fig. 10.5). Consistent 
with the photographs in Fig. 4.28, the shock wave on a blunt-nosed body is 
slightly detached from the nose by the shock detachment distance d shown in 
Fig. 10.5. The shock wave curves downstream of the nose and at hypersonic 
speeds essentially wraps itself around the nose of the body. In the nose region, 
the shock layer is very thin, and the shock wave is highly curved. This strong 
shock curvature induces large velocity gradients in the fl ow behind the shock 
in the nose region. These large velocity gradients are accompanied by strong 
thermodynamic changes in the fl ow. This region of strong gradients, called an 
entropy layer,1 extends downstream close to the body surface. Downstream of 
the nose, the entropy layer interacts with the boundary layer growing along the 
surface; this interaction increases aerodynamic heating of the surface, above and 
beyond that which would be predicted without the entropy layer. At supersonic 
speeds the shock wave at the nose is also curved, but the magnitude of the cur-
vature is far less than at hypersonic speeds. Because the strength of the entropy 
layer is related to shock curvature, the entropy layer effect is primarily a hyper-
sonic phenomenon.

20° 20°

Figure 10.4 Shock waves and streamlines over a 20° half-angle wedge, illustrating that 

hypersonic fl ows are characterized by thin shock layers.

1Entropy is a thermodynamic state variable alluded to in Sec. 4.6 but not defi ned in this book. Such 

matters are treated in the study of thermodynamics. Suffi ce it to say that the entropy varies greatly 

throughout the layer shown in Fig. 10.5. 
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10.2.3 Viscous Interaction

In Sec. 4.16 we stated that the thickness of the laminar boundary layer is inversely 
proportional to the square root of the Reynolds number. In addition, results for 
compressible fl ow boundary layers show that the thickness is proportional to the 
Mach number squared. Hence

δ ∝ M 2

Re

As a result, at the high Mach numbers associated with hypersonic fl ows, δ can 
be very large. Indeed, for hypersonic vehicles fl ying at high altitudes and high 
Mach numbers (the upper right portion of the map in Fig. 10.2), the boundary 
layer thickness can become so large that the fl ow outside the boundary layer, 
called the inviscid fl ow, is greatly affected. This creates a viscous interaction:
The thick boundary layer fl ow affects the outer inviscid fl ow, and the changes in 
the inviscid fl ow feed back and infl uence the boundary layer growth. The practi-
cal consequence of viscous interaction on hypersonic vehicles is an increase in 
surface pressure and skin friction, leading to increased drag and increased aero-
dynamic heating. For example, consider the hypersonic fl ow over a sharp, fl at 
plate sketched in Fig. 10.6. If the fl ow were inviscid, the pressure distribution 
over the fl at plate would be constant and equal to the free-stream pressure p∞, as 
shown by the dashed line in Fig. 10.6. However, in the real viscous fl ow over the 
fl at plate, a boundary layer exists adjacent to the surface. At hypersonic speeds 
this boundary layer can be quite thick. In turn, the outer inviscid fl ow no longer 
sees a fl at plate; instead, it sees a body with some effective thickness induced by 
the thick boundary layer. (In boundary layer language, the effective thickness 
the boundary layer adds to a surface is called the displacement thickness.) In 

Figure 10.5 Entropy layer on a blunt-nosed hypersonic body.
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turn, the actual pressures exerted on the fl at plate are higher than p∞; the pressure 
on the surface induced by viscous interaction can be very high near the leading 
edge and then decreases downstream, as sketched by the solid curve in Fig. 10.6. 
The difference between the two curves in Fig. 10.6 is called the induced pres-
sure increment. Induced pressures near the leading edge of hypersonic vehicles 
generally tend to increase the drag.

10.2.4 High-Temperature Effects

High—Mach number fl ows are high-energy fl ows; the ratio of kinetic energy to 
the gas internal energy increases as the square of the Mach number. This is easily 
seen by forming the ratio of kinetic energy to internal energy per unit mass of gas:
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M
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2 2 2 2V
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2 2 2

/ /V2 V 2V= = = =γ γV 21− = γ γV 2V = γ(γγ 1− ( )1−γγ
(10.1)

Therefore, a hypersonic free stream at M∞ = 20 has a kinetic energy that is 
112 times larger than its internal energy. However, when this fl ow enters a bound-
ary layer (as in the fl at plate in Fig. 10.6), it is slowed by the effects of friction. 
In such a case the kinetic energy decreases rapidly and is converted in part to 
internal energy, which zooms in value. Because the gas temperature is propor-
tional to internal energy, it also increases rapidly. Hence, hypersonic boundary 
layers are high-temperature regions of the fl ow, due to viscous dissipation of 
the fl ow kinetic energy. Another region of high-temperature fl ow is the shock 

Figure 10.6 Viscous interaction on a fl at plate at hypersonic speeds.
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layer behind the strong bow shock wave shown in Fig. 10.5. In this case the fl ow 
velocity discontinuously decreases as it passes through the shock wave; once 
again the lost kinetic energy reappears as an increase in internal energy and hence 
an increase in temperature behind the shock wave. Therefore, the portion of the 
shock layer behind a strong bow shock wave on a blunt-nosed body is a region of 
high-temperature fl ow.

High temperatures cause chemical reactions to occur in the fl ow. For ex-

ample, in air when T > 2000 K, diatomic oxygen will dissociate:

O O2 →

For T > 4000 K, diatomic nitrogen will dissociate:

N N2 2→
In this temperature range, nitric oxide will form

N O NO2 2 2→O2O

and will ionize:

N O NO+ →O ++ −+ e

At higher temperatures the atoms will ionize; for example, for T > 9000 K,

O O N N→ +O → +N+ −+ + −+e eN → +N

Clearly, a hypersonic fl ow can sometimes be a chemically reacting fl ow. In turn, 
these chemical reactions change the fl ow fi eld properties and affect aerodynamic 
heating of the surface. Because these high-temperature aspects are perhaps one 
of the dominant characteristics of hypersonic fl ow, any detailed study and analy-
sis of a hypersonic fl ow should take them into account.

To emphasize these points, the velocity–altitude map in Fig. 10.7 shows the 

fl ight trajectories for lifting entry vehicles. Superimposed on the map are the regions 

where various chemical reactions occur around the nose of the vehicles. Clearly, 

much of the entry fl ight path is characterized by chemically reacting fl ow fi elds.

A typical variation of chemical species in the fl ow fi eld around a blunt-nosed 

body is shown in Fig. 10.8. The body shape, shock wave shape, and two stream-

lines labeled A and B are shown in Fig. 10.8a for V∞ = 23,000 ft/s at an altitude 

of 250,000 ft. The nose radius of the body is about 0.5 ft. In Fig. 10.8b the varia-

tion in concentration of atomic oxygen and atomic nitrogen along streamlines 

A and B is shown as a function of distance s along the streamlines. Note that dis-

sociation occurs rapidly behind the shock wave and that large amounts of oxygen 

and nitrogen atoms are formed in the shock layer.

10.2.5 Low-Density Flow

Throughout this book we have treated air as a continuous medium. If you wave 
your hand through the air around you, the air feels like a continuous substance; 
but if you could go to an altitude of 300,000 ft and wave your hand about, the 
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air would not feel so continuous. Your hand would begin to feel the infl uence of 
individual molecular impacts on its surface, and the air would seem to consist 
of distinct particles (molecules, atoms, ions, and so on) widely separated from 
one another. In this case the air is no longer a continuous medium, but is a gas 
at low density that exhibits certain special behavior. Let us examine this picture 
more closely.

The air around you is made up of individual molecules, principally oxygen 

and nitrogen, that are in random motion. Imagine that you can isolate one of 

these molecules and watch its motion. It will move a certain distance and then 

collide with one of its neighboring molecules. It will then move another distance 

and collide with another neighboring molecule, a process that will continue in-

defi nitely. Although the distance between collisions is different, over time there 

will be some average distance that the molecule moves between successive col-

lisions. This average distance is defi ned as the mean free path λ. At standard 

sea-level condition for air, λ = 2.176 × 10−7 ft, a very small distance. This implies 

that at sea level when you wave your hand through the air, the gas itself “feels” 

like a continuous medium—a so-called continuum. Imagine now that we raise 

ourselves to an altitude of 342,000 ft, where the air density is much lower and 

consequently the mean free path much larger than at sea level (at 342,000 ft, 

λ = 1 ft). Now when you wave your hand through the air, you are more able to 

perceive individual molecular impacts; instead of a continuous substance, the 

air feels like an open region punctuated by individual widely spaced particles of 

matter. Under these conditions the aerodynamic concepts, equations, and results 

Figure 10.7 Velocity–altitude map showing where various chemical reactions are important 

in the blunt-nosed region of a hypersonic vehicle.
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based on the assumption of a continuum begin to break down, and we must ap-

proach aerodynamics from a different point of view, using concepts from kinetic 

theory. This regime of aerodynamics is called low-density fl ow.
Whether or not low-density effects prevail for a given aerodynamic problem 

depends on the value of a nondimensional parameter called the Knudson number
Kn , defi ned as

K
l

n = λ

where l is a characteristic dimension of the fl ow—for example, the length of a 
hypersonic vehicle or the diameter of a sphere. Continuum fl ow conditions will 
exist when λ << l—that is, when Kn << l. Typically Kn < 0.03 for continuum 
conditions to hold. At the other extreme, when λ >> l, we have free-molecule 
fl ow—that is, when Kn > 10. In free-molecule fl ow, a body surface feels only a 
small number of distinct molecular impacts. Moreover, the structure of the fl ow 

Figure 10.8 (a) Hypersonic fl ow over a blunt-nosed body, showing the shock wave, the 

body, and the shape of two streamlines labeled A and B. (b) Variation of concentrations of 

atomic oxygen and atomic nitrogen along the two streamlines in (a). Concentrations are 

given on the ordinates as moles of nitrogen or oxygen per original mole of air upstream of 

the shock wave.
J. G. Hall et al., “Blunt Nose Inviscid Airfl ows with Coupled Nonequilibrium Process,” Journal of the 

Aeronautical Sciences, vol. 29, no. 9, September 1962, pp. 1038–1051. Copyright © 1962 by Rolls-

Royce PLC. All rights reserved. Used with permission.
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fi eld becomes very blurred; for example, shock waves become very thick and 
essentially lose their identity. The aerodynamic force coeffi cients and surface 
heat transfer coeffi cients become strong functions of Kn (in addition to Mach 
number and Reynolds number), and the aerodynamic picture changes consider-
ably. To illustrate such a change, recall from Example 8.3 that the drag coef-
fi cient for a sphere at hypersonic speeds is approximately 1. This is a continuum 
result, associated with Kn << 1. However, as Kn is increased, CD progressively 
increases, as shown in Fig. 10.9, approaching a value of 2 for free-molecule 
conditions, where Kn > 10.

Because low-density fl ows are not an inherent part of hypersonic fl ow, 

this discussion is not legitimately part of the defi nition of hypersonic fl ow. 

Nevertheless, hypersonic vehicles frequently fl y at very high altitudes and 

therefore encounter low-density conditions. Hence, the design and analysis of 

hypersonic vehicles sometimes require consideration of low-density fl ow. For 

example, the nose radius of the Space Shuttle is approximately 1 ft; therefore, at 

an altitude of 342,000 ft, the value of the Knudsen number based on nose radius, 

Kn = λ/R, will be near unity. As a consequence, the fl ow in the nose region of 

the Space Shuttle encounters low-density effects at an altitude of approximately 

300,000 ft, effects that are spread over the whole vehicle at higher altitudes. 

A glance at Fig. 10.2 shows that most of the important dynamics and aerody-

namics for the entry of the Space Shuttle occur at altitudes below 300,000 ft, 

Figure 10.9 Low-density effects on the drag coeffi cient 

of a sphere at hypersonic speeds; variation of CD versus 

Knudsen number.
(Source: The curve shown is from calculation made by 
Dr. James Moss at the NASA Langley Research Center.)
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so  low-density effects are not a driving force in the performance of the shuttle. 

However, new generations of hypersonic airplanes may spend a considerable 

portion of their mission at high altitudes, and for these vehicles, low-density 

effects will become more signifi cant.

10.2.6 Recapitulation

To repeat, hypersonic fl ow is best defi ned as the regime where all or some of the 
physical phenomena discussed in the preceding become important as the Mach 
number is increased to high values. For a vehicle of a given shape, some of these 
phenomena may begin to occur at Mach numbers below 5, whereas for other 
vehicles, the physical characteristics of hypersonic fl ow may not appear until 
Mach 7 or higher. We are therefore reminded once again that the defi nition of 
hypersonic fl ow as fl ight above Mach 5 is simply a convenient rule of thumb.

10.3 NEWTONIAN LAW FOR HYPERSONIC FLOW
In 1687 Newton published his famous Principia, which has formed the basis for 
all classical physics to the present. In the second book of the Principia, devoted 
to fl uid mechanics, Newton postulated the following model of fl uid fl ow. He 
considered a fl ow as a uniform rectilinear stream of particles, much like a cloud 
of pellets from a shotgun blast. As sketched in Fig. 10.10, Newton assumed that 
upon striking a surface inclined at a angle θ to the stream, the particles would 
transfer their normal momentum to the surface (thus exerting a force on it), but 
their tangential momentum would be preserved. Hence, the particles would 
move along the surface after colliding with it. For the inclined fl at plate shown 
in Fig. 10.10, the force due to the loss of normal momentum by the impacting 
particles N is calculated as follows. The component of the free-stream velocity 
normal to the surface is V∞ sin θ ; according to Newton’s model, this is the veloc-
ity lost by the particle upon impact with the surface. The area of the inclined sur-
face A projects a cross-sectional area perpendicular to the fl ow equal to A sin θ, 
as shown in Fig. 10.10. The mass fl ow across this area is the product of density, 
velocity, and projected area perpendicular to V∞, as described in Sec. 4.1 and 

Figure 10.10 Model for the derivation of the Newtonian sine-

squared law.
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given by the product ρ AV in Eq. (4.2). Therefore, we can write the following 
statement:

The time rate of change of momentum due to particles striking the surface 

is equal to

( ) (fl change in normal component of velo× ccity)

or
 

( )( in sinρ θsin ) ρ)θ) θ∞ ∞ρ) ∞V Vsin ρ)∞ ∞sin ρ) ∞ A2 2sinA

In turn, from Newton’s second law, the force on the surface is equal to the 

time rate of change of momentum:

N ρ θV A∞ ∞VV 2 2A  (10.2)

The force acts normal to the surface. From Eq. (10.2), the normal force per unit 
area is

N

A
= ρ θV∞ ∞VV 2 2

 (10.3)

Let us now interpret the physical meaning of N/A, the normal force per unit area in 
Eq. (10.3), in terms of our modern knowledge of aerodynamics. Newton’s model 
assumes a stream of individual particles all moving in straight parallel paths toward 
the surface; that is, the particles have a completely directed rectilinear motion. 
There is no random motion of the particles, which simply form a stream like pel-
lets from a shotgun. In terms of our modern concepts, we know that a moving gas 
has molecular motion (composed of random motion of the molecules) as well as a 
directed motion. Moreover, as stated in Sec. 4.11, the static pressure (in this case 
the static pressure of the free stream is p∞) is simply a ramifi cation of the purely 
random motion of the molecules. In Newton’s model there is no random motion, 
only directed motion. Therefore, when the purely directed motion of the particles 
in Newton’s model results in the normal force per unit area N/A in Eq. (10.3), this 
normal force per unit area must be construed as the pressure difference above p∞: 
namely p − p∞ on the surface. Hence, Eq. (10.3) becomes

 p p =p∞ ρ θV∞ ∞VV 2 2  (10.4)

This can be written in terms of the pressure coeffi cient Cρ, defi ned by Eq. (5.27), as

p p

V
=∞

∞ ∞VV1
2

2
22

ρ
θsin

or  Cp = 2 2sin θ  (10.5)

which is the famous sine-squared law of Newton. It allows us to calculate the 
pressure coeffi cient at a point on a surface where the angle between a tangent to 
the surface at that point and the free-stream direction is θ.

What does all this have to do with hypersonic fl ight or even with fl uid mechan-

ics in general? Equation (10.5) dates from the late 17th century, when hypersonic 

fl ight was not even a notion in anybody’s mind. Newton’s work on fl uid mechanics 
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was motivated by the need to calculate the resistance of bodies moving through 

fl uids, such as a ship through water; and for that application, the Newtonian sine-

squared law was woefully inaccurate. The problem starts with the fl ow model itself 

(Fig. 10.10). In reality, in the low-speed fl ow of air or the fl ow of a liquid, the 

streamlines are not straight and parallel until they impact the body, as sketched 

in Fig. 10.10; actually the streamlines begin to curve far ahead of the body and, 

in general, do not run into the surface of the body (usually only the single stream-

line through the stagnation point touches the body). Such real fl ow phenomena 

are clear in the smoke photograph shown in Fig. 2.6. Therefore, Eq. (10.5) is not 

expected to be an accurate result, and indeed our previous discussions of subsonic 

and supersonic aerodynamics have not used the Newtonian sine-squared law. 

Now, however, let us return to the hypersonic fl ow pictured in Fig. 10.4b. If we 

look at it from across the room, the shock layer is so thin that it appears as if the 

straight parallel streamlines ahead of the shock waves are literally hitting the sur-

face and then running tangentially along it. This is precisely the model used by 

Newton, as described earlier. Therefore, actual hypersonic fl ows come close to 

matching the Newtonian model, with the result that the sine-squared law might be 

appropriate for estimating the pressure distributions over the surface of hypersonic 

vehicles. This indeed turns out to be the case, as shown in Fig. 10.11, where the 

Figure 10.11 Surface pressure distribution on an axisymmetric body of parabolic shape, 

M∞ = 4. Comparison between modifi ed Newtonian results and exact fi nite difference 

calculations made on a high-speed digital computer.
(Source: From Anderson, Modern Compressible Flow: With Historical Perspective, 3rd ed.  
McGraw-Hill, New York, 2003.)
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surface  pressure distribution is given for a parabolically shaped axisymmetric body 

at Mach 4 in air. The solid line is from the exact numerical solution of the fl ow fi eld 

obtained by the author on a high-speed digital computer, and the small squares are 

from the sine-squared law, slightly modifi ed from Eq. (10.5) as follows. In esti-

mates of hypersonic pressure distributions, it is best to replace the pure number 2 in 

Eq. (10.5) with the value of the maximum pressure coeffi cient Cp,max, which occurs 

at the stagnation point. That is, a modifi ed Newtonian law is

C Cp pC ,max sin2 θ (10.6)

where

  

C
p p

V
p,max

,= ∞

∞ ∞VV
0,

1
2

2ρ

where p0,2 is the total pressure behind a normal shock wave, given by the 
Rayleigh Pitot tube formula, Eq. (4.79). The squares in Fig. 10.11 are obtained 
from Eq. (10.6). Because excellent agreement is obtained with the exact results, 
the Newtonian sine-squared law is useful for hypersonic applications.

Returning to Fig. 10.10, we calculate the lift and drag coeffi cients for the 

fl at plate at an angle of attack α, using Newtonian theory. For this case, because 

angle θ in Fig. 10.10 is the angle of attack, we will use α as usual to denote this 

angle, θ = α. From the geometry of Fig. 10.10,

L N cosα  (10.7)

and D N sinα  (10.8)

Substituting Eq. (10.2) in Eqs. (10.7) and (10.8), we fi nd that

L Vρ αV A∞ ∞VV α2 2AA cα os  (10.9)

and  D Vρ αV A∞ ∞VV 2 3AA  (10.10)

In terms of lift and drag coeffi cients, Eqs. (10.9) and (10.10) become

C
L

V A
L = =

∞ ∞VV1
2

2
22

ρ
α αsin2 α

 
(10.11)

and 

 

C
D

V A
D = =

∞ ∞VV1
2

2
32

ρ
αsin

 

(10.12)

The lift-to-drag ratio becomes

L

D
= cotα (10.13)
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The results of Eqs. (10.11) to (10.13) are plotted in Fig. 10.12 as functions of the 
angle of attack. From this fi gure, note the following important characteristics:

1. The lift coeffi cient increases gradually with angle of attack up to a high 

value of α. Indeed, maximum CL occurs at α = 54.7°, and CL decreases for 

larger angles of attack. It is interesting to note that α ≈ 55° for maximum lift 

is fairly realistic; the maximum lift coeffi cient for many practical hypersonic 

vehicles occurs at angles of attack in this neighborhood. The attainment 

of CL,max at such a high α at hypersonic speeds is certainly in contrast to our 

lower-speed experience discussed in Ch. 5, where it was seen that CL,max for 

subsonic airplanes occurs at values of α around 14° to 16°.

2. Another contrast between hypersonic conditions and our low-speed 

experience discussed earlier in this book is the variation of CL versus α at 

low angle of attack, say in the range of α from 0 to 15°. Note in Fig. 10.12 

that the hypersonic CL varies nonlinearly with α, in direct contrast to the 

linear variations seen at subsonic and supersonic speeds. From the point 

Figure 10.12 Newtonian results for lift and drag coeffi cients and lift-

to-drag ratio for a fl at plate as a function of angle of attack.
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of view of theoretical aerodynamics, hypersonic fl ow is a very nonlinear 

phenomenon.

3. The value of L/D increases monotonically as α is decreased. Indeed, 

L/D → ∞ as α → 0, but this is misleading. When skin friction is added to 

the picture, D becomes fi nite at α  = 0 and L/D reaches a maximum at some 

small angle of attack and then decreases to zero at α  = 0, as shown by the 

dashed line in Fig. 10.12, where laminar skin friction at a Reynolds number 

of 3 × 106 and a Mach number of 20 is assumed.

Consider the hypersonic fl ow over a sphere at Mach 25. Let s denote distance along 

the sphere surface, measured from the stagnation point, and let R denote the radius of 

the sphere. Point 1 is located a distance s/R = 0.6 from the stagnation point. Estimate the 

pressure coeffi cient at point 1.

■ Solution
The location of point 1 is shown in Fig. 10.13; recalling that 1 rad is 57.3° and that φ in 
radians is given by s/R, we have, in degrees,

φ = = °57 3 5= 7 3 0 6 38.3 57 (00 ) .= 34
s

R

In turn, the line tangent to the body at point 1 makes the angle θ with respect to the free 

stream, where

θ φ =φ °55 61.

From
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Figure 10.13 Geometry for Example 10.1.

EXAMPLE 10.1
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where p0,2 is the total pressure behind a normal shock wave (and hence the pressure at the 

stagnation point) and p1 is the static pressure in the free stream ahead of the shock (that 

is, p1 = p∞), we have for γ   = 1.4 and M∞ = 25
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To convert the preceding ratio to a pressure coeffi cient, fi rst note that the dynamic 
pressure can be written, using Eq. (4.53), as
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From the modifi ed Newtonian law, Eq. (10.6),

C Cp pC ,max sin2 θ

Evaluated at point 1,
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10.4  SOME COMMENTS ABOUT HYPERSONIC 
 AIRPLANES

The infi nitely thin, fl at plate discussed in Sec. 10.3 is the most effective lifting 
surface at hypersonic speeds; the ratio of L/D from such a fl at plate is the high-
est that can be expected at hypersonic fl ight conditions but the least effective in 
terms of volume capacity. It goes without saying that all practical fl ight vehicles 
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must have a fi nite volume to carry fuel, payload, people, and the like. Hence the 
fl at-plate results, although instructive, are primarily of academic interest. This 
section briefl y examines the characteristics of some more realistic hypersonic 
airplane confi gurations.

Figure 10.14 shows a three-view diagram of a conceptual hypersonic cruise 

aircraft, such as a hypersonic transport. This NASA concept, in existence since 

the early 1970s, is a typical example of a hypersonic airplane confi guration. The 

solid lines show the wing–body combination, which was tested in a hypersonic 

wind tunnel; the dashed lines show the propulsion module and vertical tail sur-

face, which are part of the airplane design but were not included in the wind 

tunnel model.

The variation of lift coeffi cient with angle of attack for this aircraft is shown 

in Fig. 10.15 for M∞ = 8.0. The solid lines are theoretical results calculated at 

two different Reynolds numbers, and the symbols are wind tunnel data. Note the 

following:

1. The lift coeffi cient varies nonlinearly with angle of attack, exhibiting concave 

curvature—a trend consistent with the fl at-plate results shown in Fig. 10.12.

Figure 10.14 A generic hypersonic transport confi guration. The dimensions pertain to a 

wind tunnel model, the data for which are given in Figs. 10.15 to 10.17. Solid lines = 

wing–body model used for the wind tunnel tests; dashed lines = tail and propulsion modules 

for the complete confi guration.
(Source: From J. A. Penlund et al., Wall Temperature Effects on the Aerodynamics of a Hydrogen-

Fueled Transport Concept in Mach 8 Blowdown and Shock Tunnels, NASA TP 2159, July 1983.)
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2. The lift coeffi cient is very insensitive to Reynolds number—a fact 

consistent with the low-speed experience discussed throughout this book.

The lift-to-drag ratio versus angle of attack is given in Fig. 10.16. The 

two solid curves are theoretical results obtained assuming (1) turbulent fl ow at 

a high Reynolds number of 24.32 × 106 and (2) laminar fl ow at a low Reynolds 

number of 1.68 × 106. The wind tunnel data are partially bracketed by the theo-

retical curves and indicate that the actual fl ow on the model was transitional; that 

is, the fl ow near the nose and leading edges was laminar, followed by transition 

to turbulent fl ow. At the lower Reynolds numbers, the fl ow was mainly laminar, 

whereas at the higher Reynolds numbers, the fl ow was mainly turbulent. At high 

Mach numbers, transition to turbulent fl ow is usually delayed; hence, hypersonic 

fl ight vehicles frequently experience much larger regions of laminar fl ow than 

Figure 10.15 Lift curve for the hypersonic transport 

confi guration shown in Fig. 10.14. M∞ = 8.
(Source: Wind tunnel data and theoretical curves from J. A. 
Penlund et al., Wall Temperature Effects on the Aerodynamics 

of a Hydrogen-Fueled Transport Concept in Mach 8 Blowdown 

and Shock Tunnels, NASA TP 2159, July 1983.)
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Figure 10.16 Lift-to-drag ratio for the hypersonic 

transport confi guration shown in Fig. 10.14. M∞ = 8.
(Source: Wind tunnel data and theoretical curves from J. A. 
Penlund et al., Wall Temperature Effects on the Aerodynamics 

of a Hydrogen-Fueled Transport Concept in Mach 8 Blowdown 

and Shock Tunnels, NASA TP 2159, July 1983.)

those expected at low speeds at the same Reynolds number. Note from Fig. 10.16 

that the value of (L/D)max is higher for turbulent fl ow than for laminar. At fi rst this 

seems wrong; in Ch. 4 we said that skin friction drag for a turbulent fl ow is much 

larger than for a laminar fl ow, so L/D for turbulent fl ow should be much less. 

This would be true at the same Reynolds number. However, the two solid curves 

in Fig. 10.16 pertain to different Reynolds numbers. In Secs. 4.16 and 4.17 we 

saw that the skin friction coeffi cient decreases as the Reynolds number increases 

for both laminar and turbulent fl ows. Therefore, in Fig. 10.16 the turbulent curve 

corresponds to a lower skin friction drag coeffi cient CF because the Reynolds 

number is so high (Re = 24.32 × 106)+, whereas the laminar curve is given for a 
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much lower Reynolds number (Re = 1.68 × 106). In turn, the (L/D)max value is 

higher for the turbulent than for the laminar case. Note from Fig. 10.16 that

1. The L/D value is greatly affected by the Reynolds number.

2. Maximum L/D occurs in the angle-of-attack range of 3° to 5°.

3. The values of (L/D)max range from 4.5 to about 6, depending on the 

Reynolds number.

A drag polar is given in Fig. 10.17, plotted in the less conventional form of 

CD versus CL
2 , in which the experimental data are almost linear, indicating that 

the drag polar equation given by Eq. (6.1c) in the form of

 C C r CD DC L+CDC ,0
2  (10.14)

is reasonably valid at hypersonic speeds as well.

Figure 10.17 Drag polar for the hypersonic transport 

confi guration shown in Fig. 10.14. M∞ = 8.
(Source: Wind tunnel data and theoretical curves from J. A. 
Penlund et al., Wall Temperature Effects on the Aerodynamics of 

a Hydrogen-Fueled Transport Concept in Mach 8 Blowdown and 

Shock Tunnels, NASA TP 2159, July 1983.)
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Let us return to a consideration of the lift-to-drag ratio L/D at hypersonic 

speeds. Note from Fig. 10.16 that the value of (L/D)max for the hypersonic air-

plane at Mach 8 is almost 6. Compare this with the typical subsonic airplane val-

ues of 14 to 17 (for example, see the L/D values shown in Figs. 6.44 and 6.46). 

This is further dramatized by Table 10.1. It is a general trend that as the Mach 

number increases through the supersonic and hypersonic fl ight regimes, (L/D)max 

decreases. In fact, for M∞ > 1, there is a general correlation for (L/D)max based on 

actual fl ight vehicle experience:

 

( )
( )
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M

=
∞
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(10.15)

This equation, which was fi rst advanced in England by the famous airplane 
designer and aerodynamicist D. Kuchemann in 1978, is shown as the solid 
curve in Fig. 10.18, a plot of (L/D)max versus free-stream Mach number across 
the supersonic and hypersonic regime. Figure 10.18 also shows a shotgunlike 
scatter of open-circle data points corresponding to a variety of hypersonic vehi-
cle designs; (L/D)max was obtained from wind tunnel tests, actual fl ight data, or 
theory. Details about these data points can be obtained from the references by 
Bowcutt and Anderson and by Corda and Anderson, listed in the bibliography at 
the end of this chapter.

The message from the solid curve and the open-circle data points in 

Fig. 10.18 is that high L/D is diffi cult to obtain at hypersonic speeds and that L/D 

decreases as Mach number increases. This natural phenomenon is due to the high 

drag associated with the strong shock waves and strong viscous effects encoun-

tered at hypersonic speeds. In some sense, the solid curve in Fig. 10.18 might 

be construed as a type of L/D barrier that is hard to break at hypersonic speeds. 

Also note that although L/D decreases with Mach number, at high Mach numbers 

the rate of decrease becomes small; that is, the curve plateaus, and the variation 

of L/D with M∞ becomes very small. Thus, at high Mach number, L/D becomes 

almost independent of M∞. This Mach number–independence principle, a basic 

principle of hypersonic aerodynamics, describes the fact that certain aerody-

namic coeffi cients, such as lift, drag, moment, and pressure  coeffi cients, become 

Table 10.1  Maximum lift-to-drag ratio for 
subsonic and supersonic aircraft

Airplane (L/D)max

North American P-51 14.6
Grumman F6F Hellcat 12.6
Boeing B-29 16.8
Beech Bonanza 13.8
Grumman A-6E 15.2
North American F-86 15.1
General Dynamics F-111 15.8
Hypersonic transport 6.0
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relatively independent of Mach number when M∞ is high enough (M∞ greater 

than approximately 10). Mach number independence can be theoretically de-

rived from the governing fl ow equations at hypersonic speeds; see the hyper-

sonic text by Anderson listed in the bibliography.

Returning to Fig. 10.18, we see that current research is aimed at breaking 

the L/D barrier discussed earlier. An example is a class of vehicles called wave 
riders, so named because they are designed to have an attached shock wave 

along their complete leading edge so that it appears as if the vehicle were riding 

on top of its shock wave. An example of a modern wave rider shape is shown in 

Fig. 10.19, generated from the works of Bowcutt, Corda, and Anderson listed in 

the bibliography. Although this rather complex and unusual shape is just an aca-

demic result today (no such wave riders have actually fl own), the high predicted 

values of (L/D)max for wave riders are given in Fig. 10.18 by the solid symbols. 

Clearly, these theoretical results break the L/D barrier shown in Fig. 10.18. They 

are discussed here only as an example of the novel vehicle confi gurations that 

must be considered for effi cient fl ight at hypersonic speeds.

As a fi nal note in this section, we mention an important characteristic of any 

hypersonic airplane design: the necessity to integrate the propulsion system fully 

with the airframe. For subsonic airplane design, some attention is always paid 

to the aerodynamic interaction between the engine nacelles and the rest of the 

airframe. However, this is not a driving aspect of airplane design, and in most 

subsonic airplanes the location of the engines is distinctly obvious; for  example, 

Figure 10.18 Comparison of the maximum lift-to-drag ratios for various 

hypersonic confi gurations. Solid symbols correspond to hypersonic wave 

riders generated by Corda, Bowcutt, and Anderson (see the papers listed in 

the bibliography).
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in Fig. 6.11, the jet aircraft’s engine nacelles are clearly evident and stand as a 

distinct component more or less by themselves. In contrast, at hypersonic speeds, 

extreme care must be taken to ensure that shock waves from one portion of the 

airplane, including the propulsion system, do not adversely impinge upon, and 

interact with, other portions of the airplane. Moreover, the fl ow that goes through 

the supersonic combustion ramjet engines has fi rst passed through one or more 

shock wave systems from the forward portion of the vehicle, and it is necessary to 

tailor the aerodynamic properties of this air so as to encourage the most effi cient 

engine performance. Therefore, for a hypersonic airplane, the propulsion system 

and the airframe must be highly integrated. An example appears in Fig. 9.24, 

which shows an airframe-integrated SCRAMjet engine. In the upper right corner 

is a hypersonic airplane; and as explained at the end of Sec. 9.7, the entire un-

dersurface of the complete airplane represents the whole SCRAMjet engine. In 

another example (Fig. 10.20), three typical generic confi gurations are compared: 

a Mach 3 supersonic transport, a Mach 6 hypersonic transport, and a Mach 12 

hypersonic cruise vehicle. Note that the supersonic airplane (Fig. 10.20a) still 

has fairly distinct propulsion nacelles and that none of the engine exhaust is 

designed to touch the airframe. In contrast, the Mach 6 hypersonic transport 

(Fig. 10.20b) has a more fully integrated propulsion system, where the rear part 

of the airframe acts as part of the engine nozzle  expansion. Also, the wing and 

Figure 10.19 A typical wave rider confi guration, designed for M∞ = 6.
Bowcutt and Anderson. Copyright © by AIAA. All rights reserved. Used with permission.
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fuselage are more fully integrated, the wings being less distinct than for the 

Mach 3 airplane; that is, the Mach 6 airplane is more of a blended wing–body 

confi guration than the supersonic airplane. At Mach 12 (Fig. 10.20c), these fea-

tures are even more pronounced; the undersurface area of the airframe exposed 

to the engine exhaust is much greater, and the engine is much more an integral 

part of the airframe. Because the wings have become much smaller, the Mach 

12 vehicle is more like a lifting body than a wing–body combination. Obviously, 

the design of hypersonic vehicles is a marked departure from conventional air-

plane design, and this will pose many interesting challenges for the aerospace 

engineers of the future.

Figure 10.20 Comparison of high-speed airplane design from Mach 3 to 12. (a) Supersonic 

transport (M = 3), ram drag = 54,500 lb, gross thrust = 123,000 lb. (b) Hypersonic transport 

(M = 6), ram drag = 220,000 lb, gross thrust = 330,000 lb. (c) Hypersonic cruise vehicle 

(M = 12), ram drag = 1,950,000 lb, gross thrust = 2,100,000 lb.
Johnston et al. Copyright © by Aerospace America. All rights reserved. Used with permission.
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On August 22, 1963, test pilot Joe Walker in the X-15 rocket-powered hypersonic re-

search airplane (Fig. 5.92) set an altitude record of 354,200 ft. At the time of engine 

burnout, the airplane was climbing through 176,000 ft at a fl ight velocity of 5600 ft/s, a 

climb angle of 32°, and an angle of attack of 12 degrees. The aerodynamic lift and drag 

on the X-15 at these fl ight conditions were 572 lb and 251.6, respectively. Calculate the 

lift and drag coeffi cients at these conditions. Compare these values with typical values for 

subsonic and supersonic airplanes. 

■ Solution
The altitude at burnout was 176,000 ft. The standard altitude table in Appendix B only goes 

to 161,000 ft. Use linear extrapolation to estimate ρ∞ at 176,000 ft. From Appendix B, at 

161,000 ft, ρ∞ = 2.3462 × 10–6 slug/ft3. At 151,000 ft, ρ∞ = 3.4241 × 10–6 slug/ft3. This gives 

for the rate of change of ρ∞ per foot,
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Comparison with subsonic airplanes
The X-15 airfoil is an NACA 66005. Although this airfoil is not included in Appendix D, 

data for the closely related NACA 65-006 airfoil is given in Appendix D. From these 

data, the subsonic lift slope of the airfoil is dc,/dα = 0,1 per degree. Correcting the lift 

slope for the 2.5 aspect ratio fi nite wing of the X-15, we have from Eq. (5.65), assuming 

e1 = 0.9
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(Note: Eq. (5.65) is less accurate as the aspect ratio becomes small. Nevertheless, it is 

a reasonable approximation for purposes of this example.) Both the NACA 66005 and 

65006 airfoils are symmetric, hence the lift coeffi cient at zero degrees angle of attack is 

zero. Thus for the fi nite wing at 12 degrees angle of attack, a reasonable approximation is

 CL = =( . ) .0 055 012 66

EXAMPLE 10.2
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Assume the wing lift coeffi cient is representative of the lift coeffi cient for the airplane. 

We note that this approximate value of CL = 0.66 is much larger than the hypersonic value 

of 0.25 obtained for the X-15. Clearly, the lift slope of hypersonic airplanes is greatly 

diminished compared to that for subsonic airplanes.

 In terms of drag coeffi cient, a typical subsonic value of the zero-lift drag coeffi cient of 

a streamlined airplane is 0.015 (see Fig. 6.77). The induced drag coeffi cient for a subsonic 

airplane with CL = 0.66 and aspect ratio of 2.5 is given by Eq. (5.57), assuming e = 0.9,
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Hence, the total drag coeffi cient at α = 12° is

 C C CD D D i= + = + =, , . . .0 0 0 0 0 0 015 62 77

This value is considerably lower than that obtained above for the X-15. This result is to 

be expected; the strong shock waves that occur on the X-15 in hypersonic fl ight create 

substantial wave drag that is not physically present on subsonic aircraft. 

Comparison with supersonic airplanes
For the lift coeffi cient let us compare with the supersonic fl at plate result given in Eq. (5.50). 

Assume M∞ = 2.0. At the same 12 degree angle of attack used for the X-15, where 

α = =12
57 3

0 21
.

.  rad, we have from Eq. (5.50),
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This supersonic value is larger than the hypersonic value of 0.25 for the X-15, but smaller 

than the subsonic value of 0.66 obtained earlier. This comparison is consistent with the 

general trend that the slope of the lift curve for aerodynamic vehicles decreases from the 

subsonic to the supersonic to the hypersonic fl ight regimes.

 For the drag coeffi cient, let us compare with actual wind tunnel data for the Lock-

heed F-104, the Mach 2 fi ghter shown in Fig. (5.40). At the supersonic lift coeffi cient of 

0.48 obtained above, the drag coeffi cient from wind tunnel data for the F-104 at Mach 2 is 

CD = 0.145.

 This supersonic value for CD is larger than the value of 0.077 for the subsonic case; 

this is totally consistent with the increase in drag coeffi cient caused by wave drag at su-

personic speeds, which is not present at subsonic speeds. The supersonic value for CD is 

also larger than the value of 0.11 obtained for the hypersonic X-15. This is also consistent 

with the general trend that as the supersonic and hypersonic Mach number go up, CD goes 

down. (This does not mean that the actual drag force goes down, just the drag coeffi cient.) 
The following tabulation of the results helps to see these trends more clearly.

    Subsonic Supersonic   Hypersonic  

  Lift coeffi cient  0.66   0.48          0.25

  Drag coeffi cient  0.077   0.145  0.11
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In the above table, the results tabulated under “hypersonic” are obtained from actual 

fl ight data for the X-15, and therefore constitute a solid baseline. The tabulations under 

“subsonic” and “supersonic,” however, are for the sake of general comparison only.  

These are given only for the purpose of providing a simple, but approximate comparison 

with the hypersonic case.

Using Newtonian theory, calculate the hypersonic lift and drag coeffi cients for a fl at plate 

at an angle of attack of 12 degrees. Compare with the lift and drag coeffi cients for the 

X-15 at the same angle of attack.

■ Solution
Eqs. (10.11) and (10.12) give the Newtonian results for lift and drag coeffi cients respec-

tively. From Eq. (10.11),
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From Eq. (10.12)
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 In comparison with CL and CD for the X-15, we have

    X-15 Newtonian fl at plate

  CL  0.25   0.085  

  C   D 0.11   0.018  

The Newtonian fl at plate results for both CL and CD are considerably lower than the cor-

responding value for the X-15. Examining Fig. 5.92, the geometry of the X-15 is a far 

cry from that of a fl at plate. The X-15 is a much more blunt shape than a fl at plate, with 

consequent stronger shock waves, and a much different pressure fi eld over the surface 

of the body.

10.5 SUMMARY AND REVIEW
It is fi tting to conclude this book on the introduction to fl ight with a short chapter on 

hypersonic aerodynamics and hypersonic vehicles because this author feels that hyper-

sonics is going to be an important aspect of fl ight in the 21st century. Many of the young 

readers of this book will have the opportunity to participate in the research, design, and 

testing associated with the new, advanced hypersonic vehicles of the future. Hypersonic 

aerodynamics is usually presented as a graduate course in most universities, and for good 

reason: an understanding of the extreme natural phenomena that accompany hypersonic 

fl ows requires a certain maturity in aerodynamics certainly not expected at the level of 

this book. Nevertheless, it is important to introduce some of the basic ideas of hyperson-

ics in order to contrast this fl ight regime with others presented in this book. This is the 

purpose of the present chapter. Let us summarize, as follows.

EXAMPLE 10.3
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Hypersonic fl ow is the region of the high-speed fl ight spectrum in which the follow-

ing physical phenomena become important as the Mach number increases to large values:

1. Thin shock layers.

2. Entropy layers.

3. Viscous interactions.

4. High-temperature fl ow.

5. Low-density fl ow.

Depending on the vehicle size, shape, and altitude, some of these hypersonic phenomena 

may occur at Mach numbers less than 5, whereas others may occur at Mach numbers 

greater than 5. As a rule of thumb only, hypersonic fl ow may be considered as fl ow 

where M > 5.

A convenient and sometimes reasonably accurate formula for predicting pressure 

distribution on the surface of hypersonic vehicles is the Newtonian sine-squared law:

Cp = 2 2sin θ original form  (10.5)

C Cp pC ,max sin2 θ modified form  (10.6)

Here Cp,max is the pressure coeffi cient at a stagnation point and θ  is the angle between a 

tangent at a given point on the surface and the free-stream direction.

Aerodynamic characteristics of hypersonic vehicles include the following:

1. Variation of CL with angle of attack is nonlinear.

2. Maximum CL usually occurs at a very high angle of attack, α ≈ 55° or so.

3. Values of (L/D)max decrease as M∞ increases. Hypersonic vehicles have lower 

values of (L/D)max than do subsonic and supersonic vehicles.
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Problems

10.1 Consider a laminar boundary layer on a fl at plate. At the trailing edge of the plate, 

with a free-stream Mach number of 2, the boundary layer thickness is 0.3 in. 

Assuming that the Reynolds number is held constant, calculate the boundary layer 

thickness for a Mach number of 20.
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10.2 Consider a hypersonic vehicle fl ying at Mach 20 at a standard altitude of 59 km. 

Calculate the air temperature at a stagnation point on this vehicle. Comment on the 

accuracy of your answer.

10.3 Assume that the nose of the Space Shuttle is spherical, with a nose radius of 1 ft. 

At Mach 18, calculate (a) the pressure coeffi cient at the stagnation point and 

(b) the pressure coeffi cient at a distance of 6 in away from the stagnation point 

measured along the surface.

10.4 Consider an infi nitely thin, fl at plate. Using Newtonian theory, show that 

CL,max = 0.77 and that it occurs at α  = 54.7°.

10.5 Consider hypersonic fl ow over an infi nitely thin, fl at plate. The zero-lift drag 

coeffi cient is denoted by CD,0. (Note that the zero-lift drag for a fl at plate is 

entirely due to skin friction.) Consider that the wave drag coeffi cient is given by 

the Newtonian result for drag coeffi cient—that is, by Eq. (10.12). Also assume 

that the lift coeffi cient is given by the Newtonian result in Eq. (10.11). We wish 

to examine some results associated with (L/D)max for this fl at plate. Because 

(L/D)max occurs at a small angle of attack, make the assumption of small α 

in Eqs. (10.11) and (10.12). Under these conditions, show that at maximum 

L/D, (a) ( )max ,CD/)max 0 6.. 0
1 3/  and occurs at α = CD,0

1 3/
; and (b) the wave drag 

coeffi cient = 2CD,0.
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     A P P E N D I X    A
   Standard Atmosphere, SI Units 

  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 −5,000  −5,004  320.69  1.7761 + 5  1.9296 + 0 
 −4,900  −4,904  320.03  1.7587  1.9145 

 −4,800  −4,804  319.38  1.7400  1.8980 

 −4,700  −4,703  318.73  1.7215  1.8816 

 −4,600  −4,603  318.08  1.7031  1.8653 

 −4,500  −4,503  317.43  1.6848  1.8491 

 −4,400  −4,403  316.78  1.6667  1.8330 

 −4,300  −4,303  316.13  1.6488  1.8171 

 −4,200  −4,203  315.48  1.6311  1.8012 

 −4,100  −4,103  314.83  1.6134  1.7854 
          

 −4,000  −4,003  314.18  1.5960 + 5  1.7698 + 0 
 −3,900  −3,902  313.53  1.5787  1.7542 

 −3,800  −3,802  312.87  1.5615  1.7388 

 −3,700  −3,702  212.22  1.5445  1.7234 

 −3,600  −3,602  311.57  1.5277  1.7082 

 −3,500  −3,502  310.92  1.5110  1.6931 

 −3,400  −3,402  310.27  1.4945  1.6780 

 −3,300  −3,302  309.62  1.4781  1.6631 

 −3,200  −3,202  308.97  1.4618  1.6483 

 −3,100  −3,102  308.32  1.4457  1.6336 
          

 −3,000  −3,001  307.67  1.4297 + 5  1.6189 + 0 
 −2,900  −2,901  307.02  1.4139  1.6044 

 −2,800  −2,801  306.37  1.3982  1.5900 

 −2,700  −2,701  305.72  1.3827  1.5757 

 −2,600  −2,601  305.07  1.3673  1.5615 

 −2,500  −2,501  304.42  1.3521  1.5473 

 −2,400  −2,401  303.77  1.3369  1.5333 

 −2,300  −2,301  303.12  1.3220  1.5194 

 −2,200  −2,201  302.46  1.3071  1.5056 

 −2,100  −2,101  301.81  1.2924  1.4918 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 −2,000  −2,001  301.16  1.2778 + 5  1.4782 + 0 
 −1,900  −1,901  300.51  1.2634  1.4646 

 −1,800  −1,801  299.86  1.2491  1.4512 

 −1,700  −1,701  299.21  1.2349  1.4379 

 −1,600  −1,600  298.56  1.2209  1.4246 

 −1,500  −1,500  297.91  1.2070  1.4114 

 −1,400  −1,400  297.26  1.1932  1.3984 

 −1,300  −1,300  296.61  1.1795  1.3854 

 −1,200  −1,200  295.96  1.1660  1.3725 

 −1,100  −1,100  295.31  1.1526  1.3597 
          

 −1,000  −1,000  294.66  1.1393 + 5  1.3470 + 0 
 −900  −900  294.01  1.1262  1.3344 

 −800  −800  293.36  1.1131  1.3219 

 −700  −700  292.71  1.1002  1.3095 

 −600  −600  292.06  1.0874  1.2972 

 −500  −500  291.41  1.0748  1.2849 

 −400  −400  290.76  1.0622  1.2728 

 −300  −300  290.11  1.0498  1.2607 

 −200  −200  289.46  1.0375  1.2487 

 −100  −100  288.81  1.0253  1.2368 
          
 0  0  288.16  1.01325 + 5  1.2250 + 0 

 100  100  287.51  1.0013  1.2133 
 200  200  286.86  9.8945 + 4  1.2071 
 300  300  286.21  9.7773  1.1901 
 400  400  285.56  9.6611  1.1787 
 500  500  284.91  9.5461  1.1673 
 600  600  284.26  9.4322  1.1560 
 700  700  283.61  9.3194  1.1448 
 800  800  282.96  9.2077  1.1337 
 900  900  282.31  9.0971  1.1226 

          
 1,000  1,000  281.66  8.9876 + 4  1.1117 + 0 
 1,100  1,100  281.01  8.8792  1.1008 
 1,200  1,200  280.36  8.7718  1.0900 
 1,300  1,300  279.71  8.6655  1.0793 
 1,400  1,400  279.06  8.5602  1.0687 
 1,500  1,500  278.41  8.4560  1.0581 
 1,600  1,600  277.76  8.3527  1.0476 
 1,700  1,700  277.11  8.2506  1.0373 
 1,800  1,799  276.46  8.1494  1.0269 
 1,900  1,899  275.81  8.0493  1.0167 

          
 2,000  1,999  275.16  7.9501 + 4  1.0066 + 0 
 2,100  2,099  274.51  7.8520  9.9649 − 1 
 2,200  2,199  273.86  7.7548  9.8649 
 2,300  2,299  273.22  7.6586  9.7657 
 2,400  2,399  272.57  7.5634  9.6673 
 2,500  2,499  271.92  7.4692  9.5696 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 2,600  2,599  271.27  7.3759  9.4727 
 2,700  2,699  270.62  7.2835  9.3765 
 2,800  2,799  269.97  7.1921  9.2811 
 2,900  2,899  269.32  7.1016  9.1865 

          
 3,000  2,999  268.67  7.0121 + 4  9.0926 − 1 
 3,100  3,098  268.02  6.9235  8.9994 
 3,200  3,198  267.37  6.8357  8.9070 
 3,300  3,298  266.72  6.7489  8.8153 
 3,400  3,398  266.07  6.6630  8.7243 
 3,500  3,498  265.42  6.5780  8.6341 
 3,600  3,598  264.77  6.4939  8.5445 
 3,700  3,698  264.12  6.4106  8.4557 
 3,800  3,798  263.47  6.3282  8.3676 
 3,900  3,898  262.83  6.2467  8.2802 

          
 4,000  3,997  262.18  6.1660 + 4  8.1935 − 1 
 4,100  4,097  261.53  6.0862  8.1075 
 4,200  4,197  260.88  6.0072  8.0222 
 4,300  4,297  260.23  5.9290  7.9376 
 4,400  4,397  259.58  5.8517  7.8536 
 4,500  4,497  258.93  5.7752  7.7704 
 4,600  4,597  258.28  5.6995  7.6878 
 4,700  4,697  257.63  5.6247  7.6059 
 4,800  4,796  256.98  5.5506  7.5247 
 4,900  4,896  256.33  5.4773  7.4442 

          
 5,000  4,996  255.69  5.4048 + 4  7.3643 − 1 
 5,100  5,096  255.04  5.3331  7.2851 
 5,200  5,196  254.39  5.2621  7.2065 
 5,400  5,395  253.09  5.1226  7.0513 
 5,500  5,495  252.44  5.0539  6.9747 
 5,600  5,595  251.79  4.9860  6.8987 
 5,700  5,695  251.14  4.9188  6.8234 
 5,800  5,795  250.49  4.8524  6.7486 
 5,900  5,895  249.85  4.7867  6.6746 

          
 6,000  5,994  249.20  4.7217 + 4  6.6011 − 1 
 6,100  6,094  248.55  4.6575  6.5283 
 6,200  6,194  247.90  4.5939  6.4561 
 6,300  6,294  247.25  4.5311  6.3845 
 6,400  6,394  246.60  4.4690  6.3135 
 6,500  6,493  245.95  4.4075  6.2431 
 6,600  6,593  245.30  4.3468  6.1733 
 6,700  6,693  244.66  4.2867  6.1041 
 6,800  6,793  244.01  4.2273  6.0356 
 6,900  6,893  243.36  4.1686  5.9676 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 7,000  6,992  242.71  4.1105 + 4  5.9002 − 1 
 7,100  7,092  242.06  4.0531  5.8334 
 7,200  7,192  241.41  3.9963  5.7671 
 7,300  7,292  240.76  3.9402  5.7015 
 7,400  7,391  240.12  3.8848  5.6364 
 7,500  7,491  239.47  3.8299  5.5719 
 7,600  7,591  238.82  3.7757  5.5080 
 7,700  7,691  238.17  3.7222  5.4446 
 7,800  7,790  237.52  3.6692  5.3818 
 7,900  7,890  236.87  3.6169  5.3195 

          
 8,000  7,990  236.23  3.5651 + 4  5.2578 − 1 
 8,100  8,090  235.58  3.5140  5.1967 
 8,200  8,189  234.93  3.4635  5.1361 
 8,300  8,289  234.28  3.4135  5.0760 
 8,400  8,389  233.63  3.3642  5.0165 
 8,500  8,489  232.98  3.3154  4.9575 
 8,600  8,588  232.34  3.2672  4.8991 
 8,700  8,688  231.69  3.2196  4.8412 
 8,800  8,788  231.04  3.1725  4.7838 
 8,900  8,888  230.39  3.1260  4.7269 

          
 9,000  8,987  229.74  3.0800 + 4  4.6706 − 1 
 9,100  9,087  229.09  3.0346  4.6148 
 9,200  9,187  228.45  2.9898  4.5595 
 9,300  9,286  227.80  2.9455  4.5047 
 9,400  9,386  227.15  2.9017  4.4504 
 9,500  9,486  226.50  2.8584  4.3966 
 9,600  9,586  225.85  2.8157  4.3433 
 9,700  9,685  225.21  2.7735  4.2905 
 9,800  9,785  224.56  2.7318  4.2382 
 9,900  9,885  223.91  2.6906  4.1864 

          
 10,000  9,984  223.26  2.6500 + 4  4.1351 − 1 
 10,100  10,084  222.61  2.6098  4.0842 
 10,200  10,184  221.97  2.5701  4.0339 
 10,300  10,283  221.32  2.5309  3.9840 
 10,400  10,383  220.67  2.4922  3.9346 
 10,500  10,483  220.02  2.4540  3.8857 
 10,600  10,582  219.37  2.4163  3.8372 
 10,700  10,682  218.73  2.3790  3.7892 
 10,800  10,782  218.08  2.3422  3.7417 
 10,900  10,881  217.43  2.3059  3.6946 

          
 11,000  10,981  216.78  2.2700 + 4  3.6480 − 1 
 11,100  11,081  216.66  2.2346  3.5932 
 11,200  11,180  216.66  2.1997  3.5371 
 11,300  11,280  216.66  2.1654  3.4820 
 11,400  11,380  216.66  2.1317  3.4277 



 APPENDIX  A  Standard Atmosphere, SI Units  851

  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 11,500  11,479  216.66  2.0985  3.3743 
 11,600  11,579  216.66  2.0657  3.3217 
 11,700  11,679  216.66  2.0335  3.2699 
 11,800  11,778  216.66  2.0018  3.2189 
 11,900  11,878  216.66  1.9706  3.1687 

          
 12,000  11,977  216.66  1.9399 + 4  3.1194 − 1 
 12,100  12,077  216.66  1.9097  3.0707 
 12,200  12,177  216.66  1.8799  3.0229 
 12,300  12,276  216.66  1.8506  2.9758 
 12,400  12,376  216.66  1.8218  2.9294 
 12,500  12,475  216.66  1.7934  2.8837 
 12,600  12,575  216.66  1.7654  2.8388 
 12,700  12,675  216.66  1.7379  2.7945 
 12,800  12,774  216.66  1.7108  2.7510 
 12,900  12,874  216.66  1.6842  2.7081 

          
 13,000  12,973  216.66  1.6579 + 4  2.6659 − 1 
 13,100  13,073  216.66  1.6321  2.6244 
 13,200  13,173  216.66  1.6067  2.5835 
 13,300  13,272  216.66  1.5816  2.5433 
 13,400  13,372  216.66  1.5570  2.5036 
 13,500  13,471  216.66  1.5327  2.4646 
 13,600  13,571  216.66  1.5089  2.4262 
 13,700  13,671  216.66  1.4854  2.3884 
 13,800  13,770  216.66  1.4622  2.3512 
 13,900  13,870  216.66  1.4394  2.3146 

          
 14,000  13,969  216.66  1.4170 + 4  2.2785 − 1 
 14,100  14,069  216.66  1.3950  2.2430 
 14,200  14,168  216.66  1.3732  2.2081 
 14,300  14,268  216.66  1.3518  2.1737 
 14,400  14,367  216.66  1.3308  2.1399 
 14,500  14,467  216.66  1.3101  2.1065 
 14,600  14,567  216.66  1.2896  2.0737 
 14,700  14,666  216.66  1.2696  2.0414 
 14,800  14,766  216.66  1.2498  2.0096 
 14,900  14,865  216.66  1.2303  1.9783 

          
 15,000  14,965  216.66  1.2112 + 4  1.9475 − 1 
 15,100  15,064  216.66  1.1923  1.9172 
 15,200  15,164  216.66  1.1737  1.8874 
 15,300  15,263  216.66  1.1555  1.8580 
 15,400  15,363  216.66  1.1375  1.8290 
 15,500  15,462  216.66  1.1198  1.8006 
 15,600  15,562  216.66  1.1023  1.7725 
 15,700  15,661  216.66  1.0852  1.7449 
 15,800  15,761  216.66  1.0683  1.7178 
 15,900  15,860  216.66  1.0516  1.6910 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 16,000  15,960  216.66  1.0353 + 4  1.6647 − 1 
 16,100  16,059  216.66  1.0192  1.6388 
 16,200  16,159  216.66  1.0033  1.6133 
 16,300  16,258  216.66  9.8767 + 3  1.5882 
 16,400  16,358  216.66  9.7230  1.5634 
 16,500  16,457  216.66  9.5717  1.5391 
 16,600  16,557  216.66  9.4227  1.5151 
 16,700  16,656  216.66  9.2760  1.4916 
 16,800  16,756  216.66  9.1317  1.4683 
 16,900  16,855  216.66  8.9895  1.4455 

          
 17,000  16,955  216.66  8.8496 + 3  1.4230 − 1 
 17,100  17,054  216.66  8.7119  1.4009 
 17,200  17,154  216.66  8.5763  1.3791 
 17,300  17,253  216.66  8.4429  1.3576 
 17,400  17,353  216.66  8.3115  1.3365 
 17,500  17,452  216.66  8.1822  1.3157 
 17,600  17,551  216.66  8.0549  1.2952 
 17,700  17,651  216.66  7.9295  1.2751 
 17,800  17,750  216.66  7.8062  1.2552 
 17,900  17,850  216.66  7.6847  1.2357 

          
 18,000  17,949  216.66  7.5652 + 3  1.2165 − 1 
 18,100  18,049  216.66  7.4475  1.1975 
 18,200  18,148  216.66  7.3316  1.1789 
 18,300  18,247  216.66  7.2175  1.1606 
 18,400  18,347  216.66  7.1053  1.1425 
 18,500  18,446  216.66  6.9947  1.1247 
 18,600  18,546  216.66  6.8859  1.1072 
 18,700  18,645  216.66  6.7788  1.0900 
 18,800  18,745  216.66  6.6734  1.0731 
 18,900  18,844  216.66  6.5696  1.0564 

          
 19,000  18,943  216.66  6.4674 + 3  1.0399 − 1 
 19,100  19,043  216.66  6.3668  1.0238 
 19,200  19,142  216.66  6.2678  1.0079 
 19,300  19,242  216.66  6.1703  9.9218 − 2 
 19,400  19,341  216.66  6.0744  9.7675 
 19,500  19,440  216.66  5.9799  9.6156 
 19,600  19,540  216.66  5.8869  9.4661 
 19,700  19,639  216.66  5.7954  9.3189 
 19,800  19,739  216.66  5.7053  9.1740 
 19,900  19,838  216.66  5.6166  9.0313 

          
 20,000  19,937  216.66  5.5293 + 3  8.8909 − 2 
 20,200  20,136  216.66  5.3587  8.6166 
 20,400  20,335  216.66  5.1933  8.3508 
 20,600  20,533  216.66  5.0331  8.0931 
 20,800  20,732  216.66  4.8779  7.8435 
 21,000  20,931  216.66  4.7274  7.6015 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 21,200  21,130  216.66  4.5816  7.3671 
 21,400  21,328  216.66  4.4403  7.1399 
 21,600  21,527  216.66  4.3034  6.9197 
 21,800  21,725  216.66  4.1706  6.7063 
 22,000  21,924  216.66  4.0420 + 3  6.4995 − 2 
 22,200  22,123  216.66  3.9174  6.2991 
 22,400  22,321  216.66  3.7966  6.1049 
 22,600  22,520  216.66  3.6796  5.9167 
 22,800  22,719  216.66  3.5661  5.7343 
 23,000  22,917  216.66  3.4562  5.5575 
 23,200  23,116  216.66  3.3497  5.3862 
 23,400  23,314  216.66  3.2464  5.2202 
 23,600  23,513  216.66  3.1464  5.0593 
 23,800  23,711  216.66  3.0494  4.9034 

          
 24,000  23,910  216.66  2.9554 + 3  4.7522 − 2 
 24,200  24,108  216.66  2.8644  4.6058 
 24,400  24,307  216.66  2.7761  4.4639 
 24,600  24,505  216.66  2.6906  4.3263 
 24,800  24,704  216.66  2.6077  4.1931 
 25,000  24,902  216.66  2.5273  4.0639 
 25,200  25,100  216.96  2.4495  3.9333 
 25,400  25,299  217.56  2.3742  3.8020 
 25,600  25,497  218.15  2.3015  3.6755 
 25,800  25,696  218.75  2.2312  3.5535 

          
 26,000  25,894  219.34  2.1632 + 3  3.4359 − 2 
 26,200  26,092  219.94  2.0975  3.3225 
 26,400  26,291  220.53  2.0339  3.2131 
 26,600  26,489  221.13  1.9725  3.1076 
 26,800  26,687  221.72  1.9130  3.0059 
 27,000  26,886  222.32  1.8555  2.9077 
 27,200  27,084  222.91  1.7999  2.8130 
 27,400  27,282  223.51  1.7461  2.7217 
 27,600  27,481  224.10  1.6940  2.6335 
 27,800  27,679  224.70  1.6437  2.5484 

          
 28,000  27,877  225.29  1.5949 + 3  2.4663 − 2 
 28,200  28,075  225.89  1.5477  2.3871 
 28,400  28,274  226.48  1.5021  2.3106 
 28,600  28,472  227.08  1.4579  2.2367 
 28,800  28,670  227.67  1.4151  2.1654 
 29,000  28,868  228.26  1.3737  2.0966 
 29,200  29,066  228.86  1.3336  2.0301 
 29,400  29,265  229.45  1.2948  1.9659 
 29,600  29,463  230.05  1.2572  1.9039 
 29,800  29,661  230.64  1.2208  1.8440 
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  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 30,000  29,859  231.24  1.1855 + 3  1.7861 − 2 
 30,200  30,057  231.83  1.1514  1.7302 
 30,400  30,255  232.43  1.1183  1.6762 
 30,600  30,453  233.02  1.0862  1.6240 
 30,800  30,651  233.61  1.0552  1.5735 
 31,000  30,850  234.21  1.0251  1.5278 
 31,200  31,048  234.80  9.9592 + 2  1.4777 
 31,400  31,246  235.40  9.6766  1.4321 
 31,600  31,444  235.99  9.4028  1.3881 
 31,800  31,642  236.59  9.1374  1.3455 

          
 32,000  31,840  237.18  8.8802 + 2  1.3044 − 2 
 32,200  32,038  237.77  8.6308  1.2646 
 32,400  32,236  238.78  8.3890  1.2261 
 32,600  32,434  238.96  8.1546  1.1889 
 32,800  32,632  239.55  7.9273  1.1529 
 33,000  32,830  240.15  7.7069  1.1180 
 33,200  33,028  240.74  7.4932  1.0844 
 33,400  33,225  214.34  7.2859  1.0518 
 33,600  33,423  241.93  7.0849  1.0202 
 33,800  33,621  242.52  6.8898  9.8972 − 3 

          
 34,000  33,819  243.12  6.7007 + 2  9.6020 − 3 
 34,200  34,017  243.71  6.5171  9.3162 
 34,400  34,215  244.30  6.3391  9.0396 
 34,600  34,413  244.90  6.1663  8.7720 
 34,800  34,611  245.49  5.9986  8.5128 
 35,000  34,808  246.09  5.8359  8.2620 
 35,200  35,006  246.68  5.6780  8.0191 
 35,400  35,204  247.27  5.5248  7.7839 
 35,600  35,402  247.87  5.3760  7.5562 
 35,800  35,600  248.46  5.2316  7.3357 

          
 36,000  35,797  249.05  5.0914 + 2  7.1221 − 3 
 36,200  35,995  249.65  4.9553  6.9152 
 36,400  36,193  250.24  4.8232  6.7149 
 36,600  36,390  250.83  4.6949  6.5208 
 36,800  36,588  251.42  4.5703  6.3328 
 37,000  36,786  252.02  4.4493  6.1506 
 37,200  36,984  252.61  4.3318  5.9741 
 37,400  37,181  253.20  4.2176  5.8030 
 37,600  37,379  253.80  4.1067  5.6373 
 37,800  37,577  254.39  3.9990  5.4767 

          
 38,000  37,774  254.98  3.8944 + 2  5.3210 − 3 
 38,200  37,972  255.58  3.7928  5.1701 
 38,400  38,169  256.17  3.6940  5.0238 
 38,600  38,367  256.76  3.5980  4.8820 



 APPENDIX  A  Standard Atmosphere, SI Units  855

  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 38,800  38,565  257.35  3.5048  4.7445 
 39,000  38,762  257.95  3.4141  4.6112 
 39,200  38,960  258.54  3.3261  4.4819 
 39,400  39,157  259.13  3.2405  4.3566 
 39,600  39,355  259.72  3.1572  4.2350 
 39,800  39,552  260.32  3.0764  4.1171 

          
 40,000  39,750  260.91  2.9977 + 2  4.0028 − 3 
 40,200  39,947  261.50  2.9213  3.8919 
 40,400  40,145  262.09  2.8470  3.7843 
 40,600  40,342  262.69  2.7747  3.6799 
 40,800  40,540  263.28  2.7044  3.5786 
 41,000  40,737  263.87  2.6361  3.4804 
 41,200  40,935  264.46  2.5696  3.3850 
 41,400  41,132  265.06  2.5050  3.2925 
 41,600  41,300  265.65  2.4421  3.2027 
 41,800  41,527  266.24  2.3810  3.1156 

          
 42,000  41,724  266.83  2.3215 + 2  3.0310 − 3 
 42,400  41,922  267.43  2.2636  2.9489 
 42,400  42,119  268.02  2.2073  2.8692 
 42,600  42,316  268.61  2.1525  2.7918 
 42,800  42,514  269.20  2.0992  2.7167 
 43,000  42,711  269.79  2.0474  2.6438 
 43,200  42,908  270.39  1.9969  2.5730 
 43,400  43,106  270.98  1.9478  2.5042 
 43,600  43,303  271.57  1.9000  2.4374 
 43,800  43,500  272.16  1.8535  2.3726 

          
 44,000  43,698  272.75  1.8082 + 2  2.3096 − 3 
 44,200  43,895  273.34  1.7641  2.2484 
 44,400  44,092  273.94  1.7212  2.1889 
 44,600  44,289  274.53  1.6794  2.1312 
 44,800  44,486  275.12  1.6387  2.0751 
 45,000  44,684  275.71  1.5991  2.0206 
 45,200  44,881  276.30  1.5606  1.9677 
 45,400  45,078  276.89  1.5230  1.9162 
 45,600  45,275  277.49  1.4865  1.8662 
 45,800  45,472  278.08  1.4508  1.8177 

          
 46,000  45,670  278.67  1.4162 + 2  1.7704 − 3 
 46,200  45,867  279.26  1.3824  1.7246 
 46,400  46,064  279.85  1.3495  1.6799 
 46,600  46,261  280.44  1.3174  1.6366 
 46,800  46,458  281.03  1.2862  1.5944 
 47,000  46,655  281.63  1.2558  1.5535 
 47,200  46,852  282.22  1.2261  1.5136 
 47,400  47,049  282.66  1.1973  1.4757 
 47,600  47,246  282.66  1.1691  1.4409 
 47,800  47,443  282.66  1.1416  1.4070 

          



856 APPENDIX  A  Standard Atmosphere, SI Units 

  Altitude 

  h   G  , m     h , m  Temperature  T , K  Pressure  p , N/m 2   Density θ , kg/m 3  

 48,000  47,640  282.66  1.1147 + 2  1.3739 − 3 
 48,200  47,837  282.66  1.0885  1.3416 
 48,400  48,034  282.66  1.0629  1.3100 
 48,600  48,231  282.66  1.0379  1.2792 
 48,800  48,428  282.66  1.0135  1.2491 
 49,000  48,625  282.66  9.8961 + 1  1.2197 
 49,200  48,822  282.66  9.6633  1.1910 
 49,400  49,019  282.66  9.4360  1.1630 
 49,600  49,216  282.66  9.2141  1.1357 
 49,800  49,413  282.66  8.9974  1.1089 
 50,000  49,610  282.66  8.7858 + 1  1.0829 − 3 
 50,500  50,102  282.66  8.2783  1.0203 
 51,000  50,594  282.66  7.8003  9.6140 − 4 
 51,500  51,086  282.66  7.3499  9.0589 
 52,000  51,578  282.66  6.9256  8.5360 
 52,500  52,070  282.66  6.5259  8.0433 
 53,000  52,562  282.66  6.1493  7.5791 
 53,500  53,053  282.42  5.7944  7.1478 
 54,000  53,545  280.21  5.4586  6.7867 
 54,500  54,037  277.99  5.1398  6.4412 

          
 55,000  54,528  275.78  4.8373 + 1  6.1108 − 4 
 55,500  55,020  273.57  4.5505  5.7949 
 56,000  55,511  271.36  4.2786  5.4931 
 56,500  56,002  269.15  4.0210  5.2047 
 57,000  56,493  266.94  3.7770  4.9293 
 57,500  56,985  264.73  3.5459  4.6664 
 58,000  57,476  262.52  3.3273  4.4156 
 58,500  57,967  260.31  3.1205  4.1763 
 59,000  58,457  258.10  2.9250  3.9482 
 59,500  58,948  255.89  2.7403  3.7307 



857

     A P P E N D I X    B
   Standard Atmosphere, English 
Engineering Units 

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 −16,500  −16,513  577.58  3.6588 + 3  3.6905 − 3 
 −16,000  −16,012  575.79  3.6641  3.7074 
 −15,500  −15,512  574.00  3.6048  3.6587 
 −15,000  −15,011  572.22  3.5462  3.6105 
 −14,500  −14,510  570.43  3.4884  3.5628 
 −14,000  −14,009  568.65  3.4314  3.5155 
 −13,500  −13,509  566.86  3.3752  3.4688 
 −13,000  −13,008  565.08  3.3197  3.4225 
 −12,500  −12,507  563.29  3.2649  3.3768 
 −12,000  −12,007  561.51  3.2109  3.3314 

          
 −11,500  −11,506  559.72  3.1576 + 3  3.2866 − 3 
 −11,000  −11,006  557.94  3.1050  3.2422 
 −10,500  −10,505  556.15  3.0532  3.1983 
 −10,000  −10,005  554.37  3.0020  3.1548 
 −9,500  −9,504  552.58  2.9516  3.1118 
 −9,000  −9,004  550.80  2.9018  3.0693 
 −8,500  −8,503  549.01  2.8527  3.0272 
 −8,000  −8,003  547.23  2.8043  2.9855 
 −7,500  −7,503  545.44  2.7566  2.9443 
 −7,000  −7,002  543.66  2.7095  2.9035 

          
 −6,500  −6,502  541.88  2.6631 + 3  2.8632 − 3 
 −6,000  −6,002  540.09  2.6174  2.8233 
 −5,500  −5,501  538.31  2.5722  2.7838 
 −5,000  −5,001  536.52  2.5277  2.7448 
 −4,500  −4,501  534.74  2.4839  2.7061 
 −4,000  −4,001  532.96  2.4406  2.6679 
 −3,500  −3,501  531.17  2.3980  2.6301 



858 APPENDIX  B  Standard Atmosphere, English Engineering Units

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 −3,000  −3,000  529.39  2.3560  2.5927 
 −2,500  −2,500  527.60  2.3146  2.5558 
 −2,000  −2,000  525.82  2.2737  2.5192 

          
 −1,500  −1,500  524.04  2.2335 + 3  2.4830 − 3 
 −1,000  −1,000  522.25  2.1938  2.4473 

 −500  −500  520.47  2.1547  2.4119 
          
 0  0  518.69  2.1162  2.3769 
          

 500  500  516.90  2.0783  2.3423 
 1,000  1,000  515.12  2.0409  2.3081 
 1,500  1,500  513.34  2.0040  2.2743 
 2,000  2,000  511.56  1.9677  2.2409 
 2,500  2,500  509.77  1.9319  2.2079 
 3,000  3,000  507.99  1.8967  2.1752 

          
 3,500  3,499  506.21  1.8619 + 3  2.1429 − 3 
 4,000  3,999  504.43  1.8277  2.1110 
 4,500  4,499  502.64  1.7941  2.0794 
 5,000  4,999  500.86  1.7609  2.0482 
 5,500  5,499  499.08  1.7282  2.0174 
 6,000  5,998  497.30  1.6960  1.9869 
 6,500  6,498  495.52  1.6643  1.9567 
 7,000  6,998  493.73  1.6331  1.9270 
 7,500  7,497  491.95  1.6023  1.8975 
 8,000  7,997  490.17  1.5721  1.8685 

          
 8,500  8,497  488.39  1.5423 + 3  1.8397 − 3 
 9,000  8,996  486.61  1.5129  1.8113 
 9,500  9,496  484.82  1.4840  1.7833 

 10,000  9,995  483.04  1.4556  1.7556 
 10,500  10,495  481.26  1.4276  1.7282 
 11,000  10,994  479.48  1.4000  1.7011 
 11,500  11,494  477.70  1.3729  1.6744 
 12,000  11,993  475.92  1.3462  1.6480 
 12,500  12,493  474.14  1.3200  1.6219 
 13,000  12,992  472.36  1.2941  1.5961 

          
 13,500  13,491  470.58  1.2687 + 3  1.5707 − 3 
 14,000  13,991  468.80  1.2436  1.5455 
 14,500  14,490  467.01  1.2190  1.5207 
 15,000  14,989  465.23  1.1948  1.4962 
 15,500  15,488  463.45  1.1709  1.4719 
 16,000  15,988  461.67  1.1475  1.4480 
 16,500  16,487  459.89  1.1244  1.4244 
 17,000  16,986  458.11  1.1017  1.4011 
 17,500  17,485  456.33  1.0794  1.3781 
 18,000  17,984  454.55  1.0575  1.3553 



 APPENDIX  B  Standard Atmosphere, English Engineering Units 859

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 18,500  18,484  452.77  1.0359 + 3  1.3329 − 3 
 19,000  18,983  450.99  1.0147  1.3107 
 19,500  19,482  449.21  9.9379 + 2  1.2889 
 20,000  19,981  447.43  9.7327  1.2673 
 20,500  20,480  445.65  9.5309  1.2459 
 21,000  20,979  443.87  9.3326  1.2249 
 21,500  21,478  442.09  9.1376  1.2041 
 22,000  21,977  440.32  8.9459  1.1836 
 22,500  22,476  438.54  8.7576  1.1634 
 23,000  22,975  436.76  8.5724  1.1435 

          
 23,500  23,474  434.98  8.3905 + 2  1.1238 − 3 
 24,000  23,972  433.20  8.2116  1.1043 
 24,500  24,471  431.42  8.0359  1.0852 
 25,000  24,970  429.64  7.8633  1.0663 
 25,500  25,469  427.86  7.6937  1.0476 
 26,000  25,968  426.08  7.5271  1.0292 
 26,500  26,466  424.30  7.3634  1.0110 
 27,000  26,965  422.53  7.2026  9.9311 − 4 
 27,500  27,464  420.75  7.0447  9.7544 
 28,000  27,962  418.97  6.8896  9.5801 

          
 28,500  28,461  417.19  6.7373 + 2  9.4082 − 4 
 29,000  28,960  415.41  6.5877  9.2387 
 29,500  29,458  413.63  6.4408  9.0716 
 30,000  29,957  411.86  6.2966  8.9068 
 30,500  30,455  410.08  6.1551  8.7443 
 31,000  30,954  408.30  6.0161  8.5841 
 31,500  31,452  406.52  5.8797  8.4261 
 32,000  31,951  404.75  5.7458  8.2704 
 32,500  32,449  402.97  5.6144  8.1169 
 33,000  32,948  401.19  5.4854  7.9656 

          
 33,500  33,446  399.41  5.3589 + 2  7.8165 − 4 
 34,000  33,945  397.64  5.2347  7.6696 
 34,500  34,443  395.86  5.1129  7.5247 
 35,000  34,941  394.08  4.9934  7.3820 
 35,500  35,440  392.30  4.8762  7.2413 
 36,000  35,938  390.53  4.7612  7.1028 
 36,500  36,436  389.99  4.6486  6.9443 
 37,000  36,934  389.99  4.5386  6.7800 
 37,500  37,433  389.99  4.4312  6.6196 
 38,000  37,931  389.99  4.3263  6.4629 

          
 38,500  38,429  389.99  4.2240 + 2  6.3100 − 4 
 39,000  38,927  389.99  4.1241  6.1608 
 39,500  39,425  389.99  4.0265  6.0150 
 40,000  39,923  389.99  3.9312  5.8727 
 40,500  40,422  389.99  3.8382  5.7338 



860 APPENDIX  B  Standard Atmosphere, English Engineering Units

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 41,000  40,920  389.99  3.7475  5.5982 
 41,500  41,418  389.99  3.6588  5.4658 
 42,000  41,916  389.99  3.5723  5.3365 
 42,500  42,414  389.99  3.4878  5.2103 
 43,000  42,912  389.99  3.4053  5.0871 

          
 43,500  43,409  389.99  3.3248 + 2  4.9668 − 4 
 44,000  43,907  389.99  3.2462  4.8493 
 44,500  44,405  389.99  3.1694  4.7346 
 45,000  44,903  389.99  3.0945  4.6227 
 45,500  45,401  389.99  3.0213  4.5134 
 46,000  45,899  389.99  2.9499  4.4067 
 46,500  46,397  389.99  2.8801  4.3025 
 47,000  46,894  389.99  2.8120  4.2008 
 47,500  47,392  389.99  2.7456  4.1015 
 48,000  47,890  389.99  2.6807  4.0045 

          
 48,500  48,387  389.99  2.2173 + 2  3.9099 − 4 
 49,000  48,885  389.99  2.5554  3.8175 
 49,500  49,383  389.99  2.4950  3.7272 
 50,000  49,880  389.99  2.4361  3.6391 
 50,500  50,378  389.99  2.3785  3.5531 
 51,000  50,876  389.99  2.3223  3.4692 
 51,500  51,373  389.99  2.2674  3.3872 
 52,000  51,871  389.99  2.2138  3.3072 
 52,500  52,368  389.99  2.1615  3.2290 
 53,000  52,866  389.99  2.1105  3.1527 

          
 53,500  53,363  389.99  2.0606 + 2  3.0782 − 4 
 54,000  53,861  389.99  2.0119  3.0055 
 54,500  54,358  389.99  1.9644  2.9345 
 55,000  54,855  389.99  1.9180  2.8652 
 55,500  55,353  389.99  1.8727  2.7975 
 56,000  55,850  389.99  1.8284  2.7314 
 56,500  56,347  389.99  1.7853  2.6669 
 57,000  56,845  389.99  1.7431  2.6039 
 57,500  57,342  389.99  1.7019  2.5424 
 58,000  57,839  389.99  1.6617  2.4824 

          
 58,500  58,336  389.99  1.6225 + 2  2.4238 − 4 
 59,000  58,834  389.99  1.5842  2.3665 
 59,500  59,331  389.99  1.5468  2.3107 
 60,000  59,828  389.99  1.5103  2.2561 
 60,500  60,325  389.99  1.4746  2.2028 
 61,000  60,822  389.99  1.4398  2.1508 
 61,500  61,319  389.99  1.4058  2.1001 
 62,000  61,816  389.99  1.3726  2.0505 
 62,500  62,313  389.99  1.3402  2.0021 
 63,000  62,810  389.99  1.3086  1.9548 

          



 APPENDIX  B  Standard Atmosphere, English Engineering Units 861

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 63,500  63,307  389.99  1.2777 + 2  1.9087 − 4 
 64,000  63,804  389.99  1.2475  1.8636 
 64,500  64,301  389.99  1.2181  1.8196 
 65,000  64,798  389.99  1.1893  1.7767 
 65,500  65,295  389.99  1.1613  1.7348 
 66,000  65,792  389.99  1.1339  1.6938 
 66,500  66,289  389.99  1.1071  1.6539 
 67,000  66,785  389.99  1.0810  1.6148 
 67,500  67,282  389.99  1.0555  1.5767 
 68,000  67,779  389.99  1.0306  1.5395 

          
 68,500  68,276  389.99  1.0063 + 2  1.5032 − 4 
 69,000  68,772  389.99  9.8253 + 1  1.4678 
 69,500  69,269  389.99  9.5935  1.4331 
 70,000  69,766  389.99  9.3672  1.3993 
 70,500  70,262  389.99  9.1462  1.3663 
 71,000  70,759  389.99  8.9305  1.3341 
 71,500  74,256  389.99  8.7199  1.3026 
 72,000  71,752  389.99  8.5142  1.2719 
 72,500  72,249  389.99  8.3134  1.2419 
 73,000  72,745  389.99  8.1174  1.2126 

          
 73,500  73,242  389.99  7.9259 + 1  1.1840 − 4 
 74,000  73,738  389.99  7.7390  1.1561 
 74,500  74,235  389.99  7.5566  1.1288 
 75,000  74,731  389.99  7.3784  1.1022 
 75,500  75,228  389.99  7.2044  1.0762 
 76,000  75,724  389.99  7.0346  1.0509 
 76,500  76,220  389.99  6.8687  1.0261 
 77,000  76,717  389.99  6.7068  1.0019 
 77,500  77,213  389.99  6.5487  9.7829 − 5 
 78,000  77,709  389.99  6.3944  9.5523 

          
 78,500  78,206  389.99  6.2437 + 1  9.3271 − 5 
 79,000  78,702  389.99  6.0965  9.1073 
 79,500  79,198  389.99  5.9528  8.8927 
 80,000  79,694  389.99  5.8125  8.6831 
 80,500  80,190  389.99  5.6755  8.4785 
 81,000  80,687  389.99  5.5418  8.2787 
 81,500  81,183  389.99  5.4112  8.0836 
 82,000  81,679  389.99  5.2837  7.8931 
 82,500  82,175  390.24  5.1592  7.7022 
 83,000  82,671  391.06  5.0979  7.5053 

          
 83,500  83,167  391.87  4.9196 + 1  7.3139 − 5 
 84,000  83,663  392.69  4.8044  7.1277 
 84,500  84,159  393.51  4.6921  6.9467 
 85,000  84,655  394.32  4.5827  6.7706 
 85,500  85,151  395.14  4.4760  6.5994 



862 APPENDIX  B  Standard Atmosphere, English Engineering Units

 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 86,000  85,647  395.96  4.3721  6.4328 
 86,500  86,143  396.77  4.2707  6.2708 
 87,000  86,639  397.59  4.1719  6.1132 
 87,500  87,134  398.40  4.0757  5.9598 
 88,000  87,630  399.22  3.9818  5.8106 

          
 88,500  88,126  400.04  3.8902 + 1  5.6655 − 5 
 89,000  88,622  400.85  3.8010  5.5243 
 89,500  89,118  401.67  3.7140  5.3868 
 90,000  89,613  402.48  3.6292  5.2531 
 90,500  90,109  403.30  3.5464  5.1230 
 91,000  90,605  404.12  3.4657  4.9963 
 91,500  91,100  404.93  3.3870  4.8730 
 92,000  91,596  405.75  3.3103  4.7530 
 92,500  92,092  406.56  3.2354  4.6362 
 93,000  92,587  407.38  3.1624  4.5525 

          
 93,500  93,083  408.19  3.0912 + 1  4.4118 − 5 
 94,000  93,578  409.01  3.0217  4.3041 
 94,500  94,074  409.83  2.9539  4.1992 
 95,000  94,569  410.64  2.8878  4.0970 
 95,500  95,065  411.46  2.8233  3.9976 
 96,000  95,560  412.27  2.7604  3.9007 
 96,500  96,056  413.09  2.6989  3.8064 
 97,000  96,551  413.90  2.6390  3.7145 
 97,500  97,046  414.72  2.5805  3.6251 
 98,000  97,542  415.53  2.5234  3.5379 

          
 98,500  98,037  416.35  2.4677 + 1  3.4530 − 5 
 99,000  98,532  417.16  2.4134  3.3704 
 99,500  99,028  417.98  2.3603  3.2898 

 100,000  99,523  418.79  2.3085  3.2114 
 100,500  100,018  419.61  2.2580  3.1350 
 101,000  100,513  420.42  2.2086  3.0605 
 101,500  101,008  421.24  2.1604  2.9879 
 102,000  101,504  422.05  2.1134  2.9172 
 102,500  101,999  422.87  2.0675  2.8484 
 103,000  102,494  423.68  2.0226  2.7812 

          
 103,500  102,989  424.50  1.9789 + 1  2.7158 − 5 
 104,000  103,484  425.31  1.9361  2.6520 
 104,500  103,979  426.13  1.8944  2.5899 
 105,000  104,474  426.94  1.8536  2.5293 
 106,000  105,464  428.57  1.7749  2.4128 
 107,000  106,454  430.20  1.6999  2.3050 
 108,000  107,444  431.83  1.6282  2.1967 
 109,000  108,433  433.46  1.5599  2.0966 
 110,000  109,423  435.09  1.4947  2.0014 
 111,000  110,412  436.72  1.4324  1.9109 
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 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 112,000  111,402  438.35  1.3730 + 1  1.8247 − 5 
 113,000  112,391  439.97  1.3162  1.7428 
 114,000  113,380  441.60  1.2620  1.6649 
 115,000  114,369  443.23  1.2102  1.5907 
 116,000  115,358  444.86  1.1607  1.5201 
 117,000  116,347  446.49  1.1134  1.4528 
 118,000  117,336  448.11  1.0682  1.3888 
 119,000  118,325  449.74  1.0250  1.3278 
 120,000  119,313  451.37  9.8372 + 0  1.2697 
 121,000  120,302  453.00  9.4422  1.2143 

          
 122,000  121,290  454.62  9.0645 + 0  1.1616 − 5 
 123,000  122,279  456.25  8.7032  1.1113 
 124,000  123,267  457.88  8.3575  1.0634 
 125,000  124,255  459.50  8.0267  1.0177 
 126,000  125,243  461.13  7.7102  9.7410 − 6 
 127,000  126,231  462.75  7.4072  9.3253 
 128,000  127,219  464.38  7.1172  8.9288 
 129,000  128,207  466.01  6.8395  8.5505 
 130,000  129,195  467.63  6.5735  8.1894 
 131,000  130,182  469.26  6.3188  7.8449 

          
 132,000  131,170  470.88  6.0748 + 0  7.5159 − 6 
 133,000  132,157  472.51  5.8411  7.2019 
 134,000  133,145  474.13  5.6171  6.9020 
 135,000  134,132  475.76  5.4025  6.6156 
 136,000  135,119  477.38  5.1967  6.3420 
 137,000  136,106  479.01  4.9995  6.0806 
 138,000  137,093  480.63  4.8104  5.8309 
 139,000  138,080  482.26  4.6291  5.5922 
 140,000  139,066  483.88  4.4552  5.3640 
 141,000  140,053  485.50  4.2884  5.1460 

          
 142,000  141,040  487.13  4.1284 + 0  4.9374 − 6 
 143,000  142,026  488.75  3.9749  4.7380 
 144,000  143,013  490.38  3.8276  4.5473 
 145,000  143,999  492.00  3.6862  4.3649 
 146,000  144,985  493.62  3.5505  4.1904 
 147,000  145,971  495.24  3.4202  4.0234 
 148,000  146,957  496.87  3.2951  3.8636 
 149,000  147,943  498.49  3.1750  3.7106 
 150,000  148,929  500.11  3.0597  3.5642 
 151,000  149,915  501.74  2.9489  3.4241 

          
 152,000  150,900  503.36  2.8424 + 0  3.2898 − 6 
 153,000  151,886  504.98  2.7402  3.1613 
 154,000  152,871  506.60  2.6419  3.0382 
 155,000  153,856  508.22  2.5475  2.9202 
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 Altitude       

  h   G  , ft   h , ft  Temperature  T , °R  Pressure  p , lb/ft 2   Density θ, slugs/ft 3  

 156,000  154,842  508.79  2.4566  2.8130 
 157,000  155,827  508.79  2.3691  2.7127 
 158,000  156,812  508.79  2.2846  2.6160 
 159,000  157,797  508.79  2.2032  2.5228 
 160,000  158,782  508.79  2.1247  2.4329 
 161,000  159,797  508.79  2.0490  2.3462 
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     A P P E N D I X    C
   Symbols and Conversion Factors 

   SYMBOLS 
     meter, m  
     kilogram, kg  
     second, s  
     kelvin, K  
     foot, ft  
     pound force, lb or lb  f    
     pound mass, lb  m    
     degree rankine, °R  
     newton, N  
     atmosphere, atm     

CONVERSION FACTORS 
     1 ft = 0.3048 m  
     1 slug = 14.594 kg  
     1 slug = 32.2 lb  m    
     1 lb  m   = 0.4536 kg  
     1 lb = 4.448 N  
     1 atm = 2116 lb/ft 2  = 1.01 × 10 5  N/m 2   
     1 K = 1.8°R           
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     D A P P E N D I X   

   Airfoil Data 
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A N S W E R  K E Y

Answer Key for the 
Even-Numbered  Problems

Chapter 2
 2.2 1.558 × 106 J

 2.4 15.6%

 2.6 0.0076 atm/sec

 2.8 1.38 m3/kg

2.10 0 mph, 127.5 mph

2.12 129 atm

2.14 (a) 15.49 kg/m3, (b) 9.29 kg/m3

2.16 1015 ft/sec, 309.3 m/sec

2.18 43.35 lb/ft2, 211.8 kgf /m
2

2.20 7.925 km/sec

2.22 (a) 107.96 km, (b) 2020.4 m/sec

2.24 1.68

2.26 (a) 6.762 × 106 N, (b) 1.5 × 106 lb

Chapter 3
 3.2 9.88 km

 3.4 378°R

 3.6 5.38 × 104 N/m2

 3.8 –17.17 lb/(ft2 sec)

3.10 33,156 ft

3.12 2.03 × 10–3 kg/m3

3.14 268.43 K, 6.9807 × 104 N/m2, 0.90599 kg/m3

3.16 0.34%

3.18 482.76 °R

3.20 724.5 m
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Chapter 4
 4.2 22.7 lb/ft2

 4.4 67 ft/sec

 4.6 216.8 ft/sec

 4.8 155 K, 2.26 kg/m3

4.10 4.19 × 104 N/m2

4.12 6.3 ft/sec

4.14 1.07

4.16 2283 mi/h

4.18 2.8 cm

4.20 2172 lb/ft2

4.22 56 m/sec

4.24 0.801

4.26 614.3°R = 154.3°F

4.28 q = (γ /2)pM 2

4.30 p0 = 1.656 × 104 lb/ft2, p02 = 1.193 × 104 lb/ft2;

 Bernoulli’s result = 0.804 × 104 lb/ft2

4.32 1.35

4.34 540 N

4.36 5452 N

4.38 4.555 × 104 N/m2

4.40 535.9, 20.3 atm, 5791 K

4.42 15,377, 3390 m/sec

4.44 [answer given in the problem statement]

4.46 (a) 340.2 m/sec, (b) 68 m and –68 m

4.48 1.0184 kg/m3 compared to 1.0066 kg/m3

4.50 0.99258 × 105 N/m2

4.52 53.64 m/sec, 7.66 m/sec

4.54 (a) 3.793 × 103 N/m3, (b) 11.05 N/m3

4.56 0.096 m

4.58 0.309, 1709 lb/ft2

4.60 2.00, 2817 lb/ft2

4.62 0.4

4.64 10.54 N/m

Chapter 5
 5.2 23.9 lb, 0.25 lb, –2.68 ft lb

 5.4 2°

 5.6 112

 5.8 –0.27

5.10 –0.625
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5.12 –0.129

5.14 2°

5.16 0.68

5.18 22.9 km

5.20 (a) 0.00462; (b) 0.0177

5.22 1202 N

5.24 0.11 per degree

5.26 19.1 m/sec

5.28 0.11, 0.329

5.30 33.7

5.32 [The answer is given in the problem statement: f = CD S]

5.34 negligible (essentially zero)

5.36 6.7%

5.38 0.0055

5.40 5.23 lb

5.42 (a) –0.5°, (b) 7.05 lb

5.44 100%

Chapter 6
 6.2 98.1 lb

 6.4 (a) sample point on curve; for V∞ = 100 ft/sec, PR = 53.4 hp; (b) Vmax = 201 mph; 

(c) sample point on curve; for V∞ = 300 ft/sec, PR = 360 hp; (d) 198 mph

 6.6 42.5 ft/sec, 24.6 ft/sec

 6.8 28,500 ft

6.10 97.2 ft/sec

6.12 719 mi, 7.4 hr

6.14 [derivation]

6.16 452 m

6.18 268 m

6.20 312 m, 0.358 rad/sec

6.22 [derivation]

6.24 In both cases the drag is higher than the sum of the weight and thrust.

6.26 3440 km

6.28 [derivation]

6:30 93,666 lb thrust from each engine at sea level

6.32 5.84 m/sec2

6.34 859 lb

6.36 261.6 ft/sec

6.38 754.4 ft/min

6.40 0.0243
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Chapter 7
 7.2 –0.003; 0.02 or 2% of the chord length ahead of the CG.

 7.4 –215 Nm

 7.6 hn = 0.70, static margin = 0.44

 7.8 static margin for stick-free is 79% of that for stick-fi xed.

Chapter 8
 8.2 Venus, 10.3 km/sec; Earth, 11.3 km/sec; Mars, 5.02 km/sec; Jupiter, 59.6 km/sec

 8.4 1.43 × 1012 m

 8.6 (a) 8710 m; (b) 70.88 g’s; (c) 1978 m/sec

 8.8 67.62 km/sec

8.10 1.56 hr

8.12 12.01 hr

8.14 1.00 × 1010 m2/sec

8.16 Discuss with professor, classmates, and/or colleagues.

Chapter 9
 9.2 17 atm

 9.4 4587 lb

 9.6 0.42 ft2

 9.8 (a) 375 sec; (b) 3678 m/sec; (c) 263.5 kg/sec; (d) 217,682 lb; (e) 0.169 m2

9.10 4009.6 m/sec

9.12 0.36 in

9.14 [derivation]

9.16 0.63

9.18 40,364 hp

9.20 1514°R

9.22 1.77

9.24 61.9 sec

9.26 7.9

Chapter 10
10.2 20,906 K

10.4 [derivation]



899

   INDEX 

absolute ceilings, 493–498
absolute viscosity coeffi cient, 230
acceleration. See also propulsion; 

velocity
of gravity, 69, 112–113, 121
Newton’s second law, 67–68, 137, 

143–144, 533, 663–664
takeoff, 523–527

Ackeret, Jacob, 424
adiabatic fl ame temperature, 772
adiabatic fl ow, 160–166, 199, 275
advance ratio, 734–735, 797
advanced space propulsion, 792–795
AEA (Aerial Experiment Association), 

39–44
AEDC (Arnold Engineering 

Development Center), 264–265
Aerial Experiment Association (AEA), 

39–44
Aerial Locomotion (Wenham), 17, 420
“aerial navigation,” 16–17
aerial steam carriage, 13–14, 795
Aero Club of America, 40, 42
Aerodromes, 22–26, 36, 38–39, 40, 43, 

44, 799
aerodynamic center, 293–294, 605
aerodynamic effi ciency, 563–571, 579

design confi gurations for high L/D, 
569–571

drag reduction, 564–569
engine, 787–792
lift-to-drag ratio in measuring, 

563–564
propeller, 734–736
sources of drag, 564–569

aerodynamic forces
measurement of, 8
research on, 18
sources of, 56–57, 62–64, 152, 442

aerodynamic heating
body shape and, 704–705
convective, 705, 706
planetary entry and, 662, 687–712
radiative, 705–707
Reynold’s analogy, 268–270, 703
Stanton number, 702
total heating and, 703

Aerodynamic Laboratory (France), 129
aerodynamicist, 57
aerodynamics, 55, 57, 134–279

aerodynamic center, 293–294, 605
airfoils, 290–294, 327–339. See also 

airfoils
airspeed measurement, 188–210
back face, 149, 151
Bernoulli and, 257–258
compressibility, 139–142, 226–227, 

244–247

continuity equation, 137, 138–139, 
174, 175, 215

control volume, 751
cylinders, 400–405
defi ned, 135
effi ciency, 563–571
energy equation, 163, 166–173
entry heating, 700–708
Euler and, 258
fl ight dynamics, 55
fl ow, 57–62, 227–236. See also fl ow
from force, 147–153
free stream, 147–153
hypersonic, 815–845
incompressible/compressible fl ow, 

139–142
isentropic fl ow, 160–166
laminar boundary layers, 236–241, 

245–246
momentum, 142–153
Newton’s second law, 143–144
Pitot tube, 258–261
pressure, 57–58
propellers, 731–738
purposes of, 134
Reynolds number, 267–271
similarity parameters, 213
speed of sound, 174–181, 343, 

426–430
spheres, 400–405
streamlines, 60–62
thermodynamics, 153–160
velocity, 60–64
wind tunnels, 182–187

Aerodynamics (Lanchester), 421
Aeronautical Research Laboratory, 802
Aeronautical Society of Great Britain, 

14, 16–17, 21, 134, 420
aeronautical triangle, 35–44
aeronautics

airspeed, 45–48
arrival in the U.S., 21–26
balloons, 4–6, 9–10, 38, 128, 795
bird fl ight, 4, 18, 21, 27–28, 288, 

294, 580
early developments, 1–26
fi rst powered fl ight, 1–3, 6, 15, 35
fi rst powered takeoff and, 15
fi rst public fl ight in the U.S., 39
fl ight altitude developments, 47, 48
fl ight structures and. See fl ight 

structures
fl ight velocity developments, 46–47, 

141
gliders. See gliders
goals of, 45–48, 430, 655
helicopters, 7, 112, 795
kites, 38–39

NASA, 101–104
ornithopters, 4, 6, 18, 288
propulsion. See propulsion
static stability, 35, 42

aerospace plane, 816–818
Aerospatiale, 392
aerostatic machines. See balloons
AIAA (American Institute of 

Aeronautics and Astronautics), 
17, 66–67, 806–807

ailerons, 27, 30, 34–35, 83, 597–599, 
604, 649

Air France, 392, 578
Air Research and Development 

Command (ARDC), 112, 130
Aircraft Performance and Design 

(Anderson), 85, 395, 489, 521, 
527, 531

aircraft structures. See fl ight structures
Airey, John, 259–260
airfoils. See also wing(s)

aerodynamic center, 293–294
ailerons, 27, 30, 34–35, 83, 597–599, 

604, 649
air resistance, 9–10
angle of attack, 251–254, 292, 293, 

300–315
aspect ratio, 13–14, 17, 376–379. See 

also aspect ratio
bird fl ight, 18, 21
camber, 290–291
chord line, 291–294
data on, 300–315, 866–893
defi ned, 290
dimensional analysis, 295–300
drag, 244–257, 327–339. See also 

drag
fi xed, 6–8, 13–14, 288
fl aps, 35, 394–400
fl ight structures. See fl ight structures
fl ow separation, 250–255
fl ow velocity, 60–62
historical perspective, 415–422
laminar fl ow, 312, 368–370, 569
leading edge, 83, 250–255, 291, 

313–314
lift, 17, 294–298, 322–327. See 

also lift
Mach number, 327–339
nomenclature for, 290–294
planform wing area, 73–75
pressure, 63–64, 316–321, 327–339
propellers, 731–738
relative wind, 292
shape of, 363
shear stress, 63–64
stall, 302–305
streamlines, 60–62

supercritical, 342–346
thin-airfoil theory, 301–302, 

306–307, 329–330, 342–346, 
381–393

trailing edge, 83, 250–255, 291, 598
upside-down orientation, 314–315, 

412–415
viscous fl ow, 136–137, 227–236, 

244–257
warping, 27–35
wind tunnels, 29–30, 60–62, 

182–187, 416–417
wing loading, 73–75. See also 

wing(s)
airframe-integrated SCRAMjet, 768, 769
“airmen,” 19, 596, 647–648
airplane(s). See also specifi c models

aerospace plane, 816–818
ailerons, 34–35, 83, 597–599, 604
airfoils and, 73–75. See also airfoils
anatomy of, 82–92
atmosphere and, 110–131
biplanes, 28–30, 34, 91–92, 580–581, 

594–596
boy carrier and, 10, 12
canard confi guration, 91, 611–612
Cayley and, 6–13
Chanute and, 21–22
control and, 629–636
conventional confi guration, 

85–89, 91
Curtiss and, 36–44
cutaway diagrams, 83–84, 89, 90
double-decker confi guration, 91–92
Du Temple and, 15
energy height and, 540–547
experimental, 432
fi ns, 82
fl ight structures and, 82–92
form follows function, 85
fuselage, 82–83, 613–616
Henson and, 13–14
hopping of, 15–16, 416, 730
hypersonic, 47, 765–769, 815–845
internal structure, 83–84
jets. See jet airplanes
Langley and, 22–26, 35–36
monoplanes, 10, 15, 18, 19, 85, 91
Mozhaiski and, 15–16
nacelles, 82–83, 839–840
pilots and, 10, 11, 15
propellers and, 13, 466–467, 469, 

472, 500–508, 731–738. See 
also propellers/propeller-
driven aircraft

as single-stage-to-orbit vehicles, 816
stabilizers, 82, 91
stall and, 302–305

Page numbers followed by n indicate material found in notes.
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airplane(s)—Cont.
static stability and, 35, 42
Stringfellow and, 14–15
supersonic. See supersonic fl ight
three-view diagrams, 83, 84, 85
triplanes, 10, 12, 14–15, 17, 21
turboprops, 764–765
Wright brothers and. See Wright 

brothers; Wright Flyer 
airplanes

Airplane: A History of Its Technology, 
The (Anderson), 35

airplane control. See control
airplane performance

absolute ceiling, 493–498
aerodynamic effi ciency, 563–571, 

579
airframe-associated phenomena, 

458–460
altitude effects and, 470–479
Breguet and, 578
cowlings and, 568, 572–573
drag polar and, 441–447, 514–520, 

547–550
early predictions of, 576–578
endurance and, 500–513
energy method and, 540–547
equations of motion and, 446, 

448–450
fi llets and, 573–576
gliding fl ight and, 489–492
historical perspective, 576–578
landing and, 13, 528–531
power and, 461–479
range and, 500–513, 578
rate of climb, 479–488, 489, 540–547
service ceilings and, 493–498
static, 446–447, 449–450
static versus dynamic, 446–447
supersonic fl ight and, 547–550
takeoff and, 522–528
thrust, 450–460

level unaccelerated fl ight, 
450–458, 461–466

maximum velocity, 458–460, 
466–470

time to climb and, 499–500
turning fl ight and, 531–539
UAVs and, 550–559

airplane stability. See stability
airspeed

aeronautical goals of, 45–48
Bernoulli’s equation and, 191–192, 

200, 202
compressible fl ow and, 197–204
equivalent, 195, 213–214, 275
incompressible fl ow and, 191–197
isentropic fl ow and, 198–199
Mach number and, 196–202
measurement of, 188–210
nonisentropic fl ow, 206
Pitot tube and, 188–198, 258–261
random molecular motion and, 189
schlieren system and, 206–207
shock waves and, 205–208, 209
stagnation point and, 170–172, 190
static pressure orifi ce, 190–191
supersonic, 205–210. See also 

supersonic fl ight
total values and, 188–189
true, 195, 200
wind tunnels and, 182–187. See also 

wind tunnels
Aldrin, Edwin, Jr., 723
Allegheny Observatory, 22
altitude

absolute, 112

defi ned, 112–113
density, 125–128
geometric, 112, 115–116, 120–122
geopotential, 115–116, 120–122
gradient layers and, 116, 118–120, 

122–123, 124–125
gravity and, 112–113
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power effects from, 470–479
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577
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