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Abstract

COMPLEX DEFORMATIONS OF BIOLOGICAL SOFT TISSUE: TENDONS

AND LIGAMENTS

James Gregory
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Tendons and ligaments are fibrous soft tissues which are vital for the structural and
mechanical integrity of the human body. They possess a unique hierarchical microstruc-
ture, starting at the smallest scale with collagen molecules which aggregate to form
collagen fibrils – the most important mechanical component of tendons and ligaments,
whose crimped geometry gives rise to complex non-linear stress-strain behaviour at the
macroscale. Achieving a complete understanding of the relationship between the micro-
and macroscale mechanics of these tissues is of interest to research groups spanning the
fields of mathematics, material science, biology, and engineering. Accurate and reliable
mathematical models of tendons and ligaments can be applied to predict internal stress
distributions in vivo, a feat not possible through direct experimentation alone, providing
valuable information to clinicians in instances of tissue damage and rupture.

When researchers mathematically model tendons and ligaments, simplifying as-
sumptions – such as incompressibility and transverse isotropy – have to be made. In
the first part of this thesis, we analyse common assumptions by conducting finite ele-
ment modelling of tendons and ligaments in idealised geometries. We show that if the
direction of the collagen fibres is not carefully considered, unrealistic stress concentra-
tions can form around the edge of the narrowest part of the tendon. We also evaluate
the use of the isotropic von Mises yield criterion as an indicator of failure in soft tissue
by comparing it with the anisotropic Hill yield criterion. We show that these two crite-
ria produce different failure behaviour, adding to the emerging narrative that isotropic
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failure criteria are not suitable for biological soft tissues.
In the second part of this thesis, we look more closely at failure in tendons and

ligaments. We present a new microstructural model, based on the distribution of colla-
gen fibril failure properties, which can produce the full range of stress-strain behaviour
observed experimentally. Our model can account for certain features that existing mod-
els cannot capture, such as stress plateaus and step-like failure, whilst only including
parameters that could, in principle, be measured experimentally. We fit our model to
stress-strain data obtained from failure tests of mouse tail tendon fascicles and find
good agreement. Most importantly, the parameter values found through fitting align
with experimentally-obtained values within the literature.
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Chapter 1

Introduction

Soft tissues are biological structures which serve an important purpose within the body
– connecting and protecting the vital organs and skeleton/muscular systems that keep us
alive and moving. From skin and muscle to blood vessels and body fat, each soft tissue
possesses a unique arrangement of cells and microstructural components which allows
it to fulfil a specific purpose within the body.

The focus of this thesis is on tendons and ligaments – fibrous soft tissues that join
bone to muscle and bone to bone, respectively. These strong bands of connective tis-
sue are key to the structural integrity of the body, with ligaments providing stability
and support to joints, and tendons facilitating movement through the transmission of
force from muscle to bone. Central to the strength of tendons and ligaments is their
hierarchy of collagen-based microstructural components [1]. At the smallest scale, we
see long collagen molecules arranged parallel to one another, grouping to form fibrils.
Groups of fibrils are embedded within an extra-collagenous matrix of cells, proteins,
and other molecules [2], and surrounded by a thin layer of connective tissue called the
endotendineum – resulting in a fascicle. Finally, tendons and ligaments are comprised
of several fascicles bound together, as shown in Figure 1.1.

This highly organised structure causes the tissue to have a high strength in the di-
rection of the fascicles, allowing it to withstand the large forces experienced within the
body during high impact activities such as running and jumping. Furthermore, it has
been shown that collagen fibrils have differing degrees of waviness, commonly referred
to as fibril crimp [3]. This non-uniform waviness means that as the tissue is subjected to
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tendon/ligamentfascicle

fibril

Figure 1.1: Crimped fibrils group together to form fascicles, which are bound together
to form a tendon/ligament.

strain

s
tr
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Figure 1.2: Typical stress-strain curve of a tendon/ligament stretched to failure. As the
tissue is stretched, fibrils begin to become taut and the stiffness of the tendon increases.
Eventually all fibrils become taut and the tissue exhibits a linear response until it yields.

higher strains, its stiffness increases due to the gradual tautening and recruitment of fib-
rils – allowing for the free movement of joints at low strains, whilst providing a higher
degree of resistance at larger strains where permanent damage is more likely to occur.
This mechanism leads to the distinctive non-linear stress-strain curve observed when
tendons and ligaments are stretched, as shown in Figure 1.2.

Determining any sort of relationship between the microstructure and the macroscale
mechanical behaviour of tendons and ligaments can be challenging due to their complex
geometry and loading conditions, and the fact that they cannot be extracted and stud-
ied without compromising their structural integrity. It is therefore necessary to deploy
mathematical modelling techniques to fully understand how the mechanical behaviour
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of tendons and ligaments is influenced by their microstructure, and to make any pre-
dictions about how the tissue may respond under some specified load. Mathematical
modelling of tendons and ligaments has useful applications in medicine, particularly in
reconstructive surgery where large-scale experiments are time-consuming, expensive,
and fraught with ethical concerns. Consider the anterior cruciate ligament (ACL) of
the knee. At an estimated incidence of 30 to 78 per 100,000 people [4], ACL rupture
is a common and devastating injury acquired during high impact activities. The ACL
cannot heal naturally in vivo and therefore, in the most serious of cases where there
is a large tear or complete rupture, surgical intervention is required to maintain joint
stability. To repair a ruptured ACL, surgeons will typically use an autograft from the
patient’s patellar tendon or hamstring tendon [5]. A sample of tissue is extracted and
fixed between the tibia and femur, acting as a replacement to the ACL and providing
stability to the knee. There are many variables at play in this surgery, for example: the
length of the graft, the source of the graft, the attachment site, and the graft fixations
[6]. Determining the optimal combination of these parameters through experimentation
alone is unfeasible, as different patients will have different joint geometries, degrees of
activeness, and levels of willingness to adhere to post-surgery rehabilitation guidelines.
The development of realistic mathematical models, capable of predicting the internal
stresses in complex ligament geometries, has allowed research groups to investigate the
effects of some of these parameters without the need for large patient trials. The effects
of graft material [7], graft diameter [8], and attachment site [9] have all been investi-
gated, providing clinicians with useful information about the internal mechanics of the
replacement tissue that cannot be found through experimentation alone.

To determine the internal stresses in a tendon or ligament, it is important to have an
accurate mathematical description of the underlying tissue. The study of the mechanical
properties of biological soft tissue dates back to the early 19th century at least. In 1809,
Thomas Young presented a lecture to the Royal Society entitled ‘On the functions of the
heart and arteries’ [10], where the general elastic properties of arterial wall tissue were
discussed in relation to blood flow. Young postulated that the tissue is perfectly elastic at
low strains, meaning that the stress in the tissue is directly proportional to the strain, but
suggested that at higher strains the material may “exhibit a force in tension proportional
to the excess of the square, or the cube of their length”. This statement is true for tendons
when we consider small strains, but as we continue to stretch the tissue beyond the end
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of its non-linear region, we see a macroscale linear region emerge as shown in Figure
1.2. This is followed by strain-softening as the tissue begins to yield. Young places em-
phasis on the need to combine both experimental and theoretical approaches to ensure
that predictions are sensible and consistent with observation. Development of more so-
phisticated elastic and inelastic models of soft tissue began to accelerate with the advent
of modern continuum mechanics in the 1950s [11]. Due to the small size of collagen
fibrils (50–500nm [12]) relative to the tendon itself, using the continuum approximation
is appropriate when modelling the tissue as a whole. Authors typically assume that soft
tissue is hyperelastic, meaning that elastic deformations are adiabatic and that a single
expression – the strain energy function – can be used to describe the constitutive be-
haviour of the tissue. In 1967, the first strain energy function derived specifically for
soft tissue was introduced by Fung [13]. This constitutive model assumed that the stress
in the tissue is exponential at large strains, providing a way to capture the non-linear
behaviour predicted years earlier by Young. Many other constitutive models have been
introduced in the intervening years (see Chapter 2 for more details), and a significant
proportion of these are derived based solely on the shape of the stress-strain curved ob-
tained through tensile testing, with material parameters that must be found by fitting the
model to experimental data. These types of models are referred to as phenomenolog-
ical, and since their parameter values cannot be independently measured, they cannot
easily be used to relate the macro- and micro-scale mechanical behaviour. In contrast,
mathematical models based explicitly on the tissue microstructure can be used to make
useful predictions about the mechanical behaviour at the macroscale, provided we pos-
sess some microstructural information. Unfortunately, microstructural models are often
more complicated, and as a result, research groups tend to favour phenomenological
models when considering more complex problems.

In the 1990s, soft tissue mechanicians began to utilise the power of computers to
solve more complicated modelling problems with realistic geometries and loading con-
ditions [14]. The finite element method, a numerical method for solving systems of dif-
ferential equations in complex geometries, became the default option for solving these
types of problems. Finite element modelling boasted high accuracy, as demonstrated
through its regular usage in other fields of engineering and mathematics. It was shown
that the finite element method could be used to provide new insight into the internal
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stress distributions present within tendons and ligaments – a feat not previously pos-
sible through experimentation. Over the years since then, research groups have used
finite element modelling to investigate the mechanics of different tendons, ligaments,
and even whole joints (see Chapter 3 for more details).

The first aim of this thesis is to evaluate common assumptions made during finite
element modelling to see if they are valid, and to suggest alternatives if they are not.
We seek to use mathematical models which capture as much of the microstructure as
possible, with the aim to relate observed macroscale behaviour to microscale mechanics
– increasing the likelihood that the results are useful to researchers working outside of
numerical disciplines.

In Chapter 2, we provide a more detailed biological background and introduce the
mathematics required to model the mechanical behaviour of tendons and ligaments. We
discuss the internal structure of these tissues, focussing on the all-important collagen
fibril. We show how the macroscale behaviour is influenced by the microstructure, and
present ideas that are important when it comes to constitutive modelling, such as fibril
continuity and cross-linking. A mathematical background follows, beginning with an
outline of non-linear solid mechanics – the framework used for soft tissue modelling.
Some of the constitutive models found in the literature are then presented and their
assumptions discussed, before a model is selected for use in the following chapters.

Chapter 3 concerns finite element modelling of tendons and ligaments. We begin
with a literature review, highlighting the areas where common modelling choices and
assumptions may impact the results. The first of these areas is in the choice of con-
stitutive model used. In the examples we reviewed, we found that the majority of au-
thors used phenomenological constitutive models rather than microstructural models,
precluding the model from being able to predict the effects of potential microstructural
changes. We also found that the direction of the collagen fibres is either not discussed,
or unrealistic given the geometry used to represent the tissue, and that an isotropic stress
measure, the von Mises stress, is used extensively to report the internal stress distribu-
tion. We then formally introduce the finite element method as applied to non-linear
solid mechanics problems. In order to determine the extent to which the identified ar-
eas for improvement affect the output of a finite element model, we define an idealised
geometry which can be modified using three parameters. We then conduct a conver-
gence study, before investigating the effects of fibre direction within our geometry. We
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find that using an unrealistic fibre direction can have a significant effect on the stress
distribution, leading to regions of high stress at the surface of the narrowest part of the
tissue. When using geometric parameters chosen to approximate the geometry of the
Achilles tendon, the maximum value of stress in the direction of the fibres was found to
be 31% higher when an unrealistic fibre direction is used. Qualitatively similar stress
concentrations have been reported in the literature [15], and we find that correcting the
fibre direction to be more realistic removes these stress concentrations completely. Fi-
nally, we show that a slight change to the degree of anisotropy in the measure used to
represent the stress in the tissue can completely change the predicted location of failure.

In Chapter 4, we present an article entitled “A microstructural model of tendon fail-
ure”, which has been previously published in the Journal of the Mechanical Behaviour
of Biomedical Materials. In this article, we focus on microstructural modelling of fail-
ure, beginning with a discussion of the literature and showing how certain experimen-
tal behaviour cannot be explained using existing microstructural models. We further
demonstrate this by attempting to fit these models to data taken from mechanical tests
on murine tail tendon, showing that plateaus and step-like failure behaviour cannot be
accounted for. We then present a new model which can account for these features, by in-
corporating distributions of collagen fibril failure properties. After fitting our new model
to the same set of data, we found that we can reduce the average root mean squared er-
ror from 4.53MPa to 2.29MPa – a reduction of 49%. Furthermore, we establish that
post-yield plateaus in the stress-strain curve can be explained by non-overlapping fib-
ril yield and rupture stretch distributions, whilst over-lapping distributions produce a
well-defined peak. Step-like failure behaviour can be introduced by using a multimodal
distribution of fibril rupture stretch.

Finally, in Chapter 5, we summarise our findings, present a conclusion, and discuss
the natural extensions to our work.



Chapter 2

General background and literature
review

2.1 Biological background

2.1.1 Tendons and ligaments

Tendons and ligaments are bands of connective soft tissue which are capable of with-
standing high tensile forces. Tendons connect bone to muscle and passively transfer
the force generated through muscular contraction to the skeletal system, whilst liga-
ments connect bone to bone, providing structure and stability to complex joints such
as the knee. The strength of these tissues can be attributed to the complex hierarchical
structure of their collagen-based components, and understanding the properties of these
components is crucial in order to produce mathematical models which are capable of
predicting complex behaviour across multiple length scales. The smallest substructure
we typically consider when deriving continuum models of tendons and ligaments are
collagen fibrils. Bundles of wavy fibrils group to form fascicles, which in turn group to
form tendons and ligaments. The wavy pattern observed in collagen fibrils is referred
to as crimping, and the amount of crimp present in each fibril can vary throughout the
tissue. The fibrils are embedded within an extra-collagenous matrix containing elastin,
glycoproteins, proteoglycans, and other macromolecules. Figure 1.1 shows a simple
diagram outlining the hierarchical structure of a tendon/ligament.

20
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Crimping in the fibrils plays an important role in the macroscale behaviour of ten-
dons. When a tendon or ligament is stretched, only the fibrils that are taut will be
load-bearing. Initially, most of the fibrils are crimped and the tissue stiffness is low. As
further stretch is applied, crimp is gradually removed from the fibrils and the stiffness
of the tendon increases until all of the fibrils are taut. At this point, the tissue behaves
linearly until it yields, when there is a decrease in gradient followed by a peak in stress
before the tendon fails. The exact mechanism that leads to macroscale yielding is widely
debated but it is thought to be due to yielding in the fibrils or slippage between the fibrils
and the matrix. Figure 1.2 shows the typical stress-strain behaviour of a tendon. In the
following section, we will focus on the important structural properties of collagen fib-
rils and how these may influence a mathematical model of tendons and ligaments. For a
more detailed discussion of collagen fibril mechanics and tendon failure, see Chapter 4.

2.1.2 Collagen fibrils

2.1.2.1 Structure and continuity

The collagen fibrils found in tendons and ligaments are composed of mostly type-I col-
lagen molecules packed into a periodic array with a molecular stagger equal to some
integer multiple of D = 67nm. This staggered pattern leads to a characteristic banding
in electron microscopy images [16], as illustrated in Figure 2.1, and prevents the fibril
from containing regions void of collagen, which would lead to weak spots in the tissue.
Fibril diameters can vary from tissue to tissue, but are typically on the order of 10s–
100s of nanometres [17]. It is common to see unimodal, bimodal, and even trimodal
[18, 19] distributions of fibril diameters within a tendon/ligament. These distributions
have been shown to change across both large timescales, e.g. during maturation and
ageing [20, 18], and short timescales, e.g. over a circadian cycle [19]. Due to the large
number of factors at play, the impact that any changes in diameter distribution have on
the macroscale mechanical properties are uncertain. Despite this, Goh et al. [21] were
able to relate age-related changes in diameter distribution to the tendons resilience and
resistance to rupture.

It is understood that collagen fibrils can range in length from 0.3mm to over 10mm
[22]; however, it remains unknown if fibrils are continuous or discontinuous through
the length of tendon [23]. This frequently debated question has important consequences
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D = 67nm collagen molecule

Figure 2.1: An illustration of the staggered pattern of collagen molecules observed
within a fibril. Molecules are staggered by multiples of D = 67nm.

for multiscale modelling (particularly when conducting inelastic modelling) as it means
there is some degree of uncertainty around how forces are transmitted within the tissue.
Furthermore, if fibrils are discontinuous then it is argued that the mechanism that leads
to yielding is the breakdown of interfibrillar components and the subsequent slippage of
fibrils past one another. Whereas if fibrils are continuous, yielding in the tendon would
occur due to yielding of the fibrils themselves.

Scanning electron microscopy has been used to image cross-sections of tendon tis-
sue, with authors using various techniques to search for fibril ends, seeking to prove
whether fibrils are continuous or not. Provenzano et al. [24] saw no fibril ends whilst
looking at images taken from the tendons and ligaments of mature animals from sev-
eral different species and argue that force transmission in tendons and ligaments oc-
curs through the collagen fibrils themselves rather than through interfibrillar coupling.
Svensson et al. [23] provided serial block-face electron microscopy evidence backing
up this claim. Images were taken along 67.5mm of combined fibril length from a sec-
tion of human tendon tissue, where only one fibril end was found. A statistical analysis
was carried out which determined it likely that fibrils were structurally continuous. The
fibrils were also found to be mechanically continuous, meaning that their length exceeds
the critical length required for the fibril itself to yield before it slips within the matrix
[25]. The authors conducted a follow-up experiment where collagen fibrils were traced
down the entire length of a mouse stapedius tendon, finding them to be structurally
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continuous [23]. Hijazi et al. [26] conducted scanning electron microscopy of tendons
before and after subjecting them to high loads, during which yielding occurred. Images
taken post-loading proved that yielding had occurred in the fibrils themselves and that
slippage was not the cause of the macroscale yielding observed.

In contrast, the theory that fibrils are discontinuous is backed up in several papers by
Szczensy et al. [27, 28], where a shear-lag model was used along with images of fibrils
sliding relative to one another to determine if load is transferred through the fibres or
the interfibrillar matrix. It was concluded that yielding occurred due to shearing of the
matrix and the sliding of collagen fibrils relative to one another, after the shear lag model
provided good estimates of the experimental data. In further experiments carried out by
Szczensy et al. [29], tryspin digestion was used to remove extrafibrillar proteins thought
to be responsible for transmitting loads between discontinuous collagen fibrils. Whilst
it was found that removing these interfibrillar proteins affected the transverse properties
of the material, the longitudinal stress response was not reduced. It was claimed that
large diameter fibrils are load-bearing whilst smaller diameter fibrils are responsible for
transferring load between the larger fibrils. The authors ruled out a number of possible
components that could be responsible for transferring load, but there still remained other
possible candidates that were not affected by the tryspin digestion, such as elastin and
smaller diameter collagen fibrils.

2.1.2.2 Cross-linking

Cross-linking is the term used to describe the intermolecular bonds that form within
the network of collagen molecules that make up a fibril. There are two types of bond
present, enzymatic and non-enzymatic. During maturation, the presence of the enzyme
lysyl oxidase (LOX) leads to the formation of enzymatic cross-links [30]. The con-
centration of non-enzymatic cross-links increases gradually over time and is therefore
related to the age of the tissue. The importance of cross-linking to the mechanical prop-
erties of tendons is noted throughout the literature [16, 31]. Researchers have used
tendons from rats fed with BAPN, a LOX inhibiting drug, to show that without the pres-
ence of enzymatic cross-links, the mechanical properties of the tendon are significantly
different [32]. It was found that in the cross-link deficient rats, the tendon stiffness was
lower, and the stress-strain curve obtained from stretching a tendon to failure contained
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a plateau region.

2.1.3 The extra-collagenous matrix

Within a tendon/ligament, collagen fibrils are embedded within an extra-collagenous
matrix consisting of proteoglycans, glycoproteins and elastin molecules. Proteogly-
cans are composed of a glycosaminoglycan chain bonded to a protein core. They help
to support the structure of the tissue and with cell adhesion [33]. Glycoproteins are
proteins which have a carbohydrate covalently bonded to them and can serve many bi-
ological purposes, including transport and protection [34]. Elastin molecules act as a
recoil mechanism for the long collagen chains in soft tissue, pulling them back to their
original length when a load has been removed [35].

2.2 Mathematical modelling of soft tissue

Tendons and other soft tissues containing a single family of collagen fibres can be mod-
elled as transversely isotropic, hyperelastic materials [36]. The typical mechanical re-
sponse of tendons and ligaments was described in Section 2.1.1, where it was shown
that nonlinear stress-strain behaviour is observed when the tissue is subjected to strains
which fall within the physiological range. In this section, the mathematics needed to de-
scribe such a material will be briefly presented, following the notational style of Spencer
[37]. At certain points in the following chapters it will be more appropriate to use the
notational style of Green and Zerna [38], and it will be made clear to the reader when
the notation changes. The equations presented in this section are standard results in the
field of nonlinear solid mechanics – for a more detailed derivation, see [37].

2.2.1 Definitions

Suppose we have a body Ω which is subject to some deformation such that at time t the
deformed body is denoted by Ωt . Position vectors to points in Ω and Ωt are denoted by
X and x, respectively.

The deformation map χ : Ω→Ωt describes how the position vectors change under a
given deformation, as represented in Figure 2.2. We can define the deformation gradient
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χ

X

X+dX

dX

x(X)

x(X+dX)

dx

Ω Ωt

O

Figure 2.2: Line elements in the undeformed (left) and deformed (right) configurations.

tensor as F =∇Xχ, (i, j)-th component of which is given by

Fi j =
∂xi

∂X j
(2.1)

in Cartesian coordinates. The deformation gradient tensor describes how line elements
change in length during a deformation. For a body to deform it is not enough that
the position vectors change, as this could just correspond to rigid body motion. Line
elements are related through the relation

dx = FdX. (2.2)

A relationship between the square of deformed and undeformed line elements is given
by

dx ·dx = (FdX) · (FdX) = (FTF)(dX ·dX), (2.3)

leading to the definition of the right Cauchy-Green deformation tensor C = FTF, and
the left Cauchy-Green deformation tensor B = FFT. There are three strain invariants
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associated with C (and also with B). These are

I1 = Tr(C), (2.4)

I2 =
1
2
(Tr(C)2−Tr(C2)), (2.5)

I3 = det(C), (2.6)

yielding quantities associated with the deformation which remain the same regardless of
the coordinate system used. The third invariant is equal to the square of the ratio between
the undeformed and deformed volumes of the body. If the material is incompressible
then we have that I3 = 1. By considering a small force δf applied to the surface of an
arbitrarily small subset of the deformed body δSt ⊂ ∂Ωt and allowing the area of δSt to
tend to zero, the surface traction at a point can be defined as

t = lim
δSt→0

δf
δSt

. (2.7)

The traction t at a point with outer unit normal n is related to n by

t = σn, (2.8)

where σ is the symmetric Cauchy stress tensor, which describes the internal forces act-
ing within the body in its deformed state. We can define the second Piola-Kirchhoff
stress by τ by

σ =
1

det(F)
FτFT, (2.9)

which relates the force in the deformed configuration to areas in the undeformed con-
figuration.

2.2.2 Governing Equations

By considering the conservation of mass through a small region of the body as it under-
goes deformation, we arrive at the first governing equation

ρ0

ρ
= detF, (2.10)
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where ρ and ρ0 are the densities in the deformed and undeformed configurations, re-
spectively. By considering the balance of forces acting on the body due to body forces
and surface tractions, the equation of motion for the body can be written as

∂σi j

∂x j
+ρFb

i = ρai, (2.11)

where Fb
i and ai are the i-th components of the body force and acceleration, respectively,

and the Einstein summation convention has been applied. By considering the balance
of angular momentum on the body it can be shown that the Cauchy stress tensor is
symmetric,

σi j = σ ji. (2.12)

The final governing equation is derived by considering energy changes in the system.
By balancing the rate at which work is done on the body with changes in heat flux,
internal energy and work done by body forces, we arrive at

ρ
De
Dt

= σi jDi j−
∂qi

∂xi
, (2.13)

where e is the internal energy density of the body, D
Dt (·) is the material derivative, Di j is

the rate of strain tensor, and qi is the i-th component of heat flux leaving the body. The
material derivative and rate of strain tensor are defined by

D
Dt

(·) = ∂

∂t
(·)+v ·∇(·) (2.14)

and
Di j =

1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
, (2.15)

respectively, where v is the velocity field and the gradient operator is with respect to the
deformed coordinates. These governing equations, derived from conservation laws, are
given here in Cartesian coordinates but can be rewritten for a general curvilinear coordi-
nate system where appropriate. The above four expressions define a system containing
more unknowns than equations. In order to solve the system, we need more informa-
tion. By introducing material-specific constitutive equations, we can close the system
and solve for all unknowns.
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2.2.3 Constitutive Equations

Tendons and other soft tissues are often modelled as hyperelastic materials when only
the loading path is being considered, or when assuming that the strain rate is very small
(quasi-static deformation). The behaviour of a hyperelastic material can be captured
with an appropriate strain energy function W = ρ0e, where ρ0 is the density in the
reference configuration. In nonlinear elasticity, the strain energy function is a function
of the deformation gradient, W =W (F). Using this and equation (2.13), for an adiabatic
deformation (∂qi

∂xi
= 0), we have

ρ

ρ0

DW
Dt

= σi jDi j

=⇒ J−1 ∂W
∂Fi j

DFi j

Dt
= σi jDi j, (2.16)

where J = ρ0/ρ. Replacing Di j with ∂vi
∂x j

and using the definition of the deformation
gradient (2.1) gives

J−1 ∂W
∂Fi j

D
Dt

(
∂xi

∂X j

)
= σi j

∂vi

∂x j
. (2.17)

Changing the order of differentiation and using the definition of the material derivative
yields

J−1 ∂W
∂Fi j

∂

∂X j

( ∂xi

∂t︸︷︷︸
=0

+vk
∂xi

∂xk︸︷︷︸
=δik

)
= σi j

∂vi

∂x j
(2.18)

=⇒ J−1 ∂W
∂Fi j

∂vi

∂X j
= σi j

∂vi

∂x j

=⇒ J−1 ∂W
∂Fi j

∂vi

∂xk

∂xk

∂X j
= σi j

∂vi

∂x j
.

This holds true for all ∂vi
∂x j

, allowing us to write

σi j = J−1F jk
∂W
∂Fki

. (2.19)
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At this stage it is useful to write equation (2.13) in terms of components of the right
Cauchy-Green tensor, Ci j. Writing the left hand side of (2.13) in terms of Ci j = FkiFk j

gives

J−1 ∂W
∂Ci j

DCi j

Dt
= J−1 ∂W

∂Ci j

D
Dt

(FkiFk j)

= J−1 ∂W
∂Ci j

D
Dt

(
∂xk

∂Xi

∂xk

∂X j

)
= J−1 ∂W

∂Ci j

(
D
Dt

(
∂xk

∂Xi

)
∂xk

∂X j
+

∂xk

∂Xi

D
Dt

(
∂xk

∂X j

))
= J−1 ∂W

∂Ci j

D
Dt

(
∂vk

∂Xi

∂xk

∂X j
+

∂xk

∂Xi

∂vk

∂X j

)
, (2.20)

which leads to

J−1 ∂W
∂Ci j

DCi j

Dt
= 2J−1 ∂W

∂Ci j

∂vk

∂Xi

∂xk

∂X j
. (2.21)

Exploiting the symmetry of Ci j yields

J−1 ∂W
∂Ci j

DCi j

Dt
= J−1

(
∂W
∂Ci j

+
∂W
∂C ji

)
∂vk

∂Xi

∂xk

∂X j
. (2.22)

Using the chain rule, we find that

J−1 ∂W
∂Ci j

DCi j

Dt
= J−1

(
∂W
∂Ci j

+
∂W
∂C ji

)
∂vk

∂xl

∂xl

∂Xi

∂xk

∂X j
= σkl

∂vk

∂xl

=⇒ σkl = J−1
(

∂W
∂Ci j

+
∂W
∂C ji

)
∂xl

∂Xi

∂xk

∂X j
, (2.23)

giving us a non-linear stress-strain relationship in terms of W and Ci j. This expression
can also be written in tensor notation as

σ = 2J−1F · ∂W
∂C
·FT. (2.24)
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For a material with n strain invariants, the derivative of the strain energy can be written
as

∂W
∂Ci j

=
n

∑
α

∂W
∂Iα

∂Iα

∂Ci j
, (2.25)

in Cartesian coordinates using the chain rule. For materials with the same properties in
each direction (referred to as isotropic), we have the three strain invariants defined in
equations (2.4) – (2.6), whose derivatives are given by

∂I1

∂Ci j
= δi j, (2.26)

∂I2

∂Ci j
= I1δi j−Ci j, (2.27)

∂I3

∂Ci j
= I2δi j + I1Ci j +C jkCki. (2.28)

Inserting these derivatives into (2.23) gives

σkl = 2J−1
(

W1
∂I1

∂Ci j
+W2

∂I2

∂Ci j
+W3

∂I3

∂Ci j

)
∂xk

∂Xi

∂xl

∂X j

= 2J−1 (W1δi j +W2(I1δi j−Ci j)+W3(I2δi j + I1Ci j +C jmCmi)
)

FkiFl j

= 2J−1Fki
(
(W1 + I1W2 + I2W3)δi j− (W2 + I1W3)Ci j +W3C jmCmi

)
Fl j, (2.29)

where Wi =
∂W
∂Ii

. Using J = detF =
√

detC =
√

I3, and writing the above in tensor
notation leads to

σ =
2√
I3

F
(
(W1 + I1W2 + I2W3)I− (W2 + I1W3)FTF+W3(FTF)(FTF)

)
FT. (2.30)

Using B = FFT, we find that

σ =
2√
I3

(
(W1 + I1W2 + I2W3)B− (W2 + I1W3)B2 +W3B3) . (2.31)

Since soft tissue is made up mostly of water and collagen, we can approximate it as
incompressible, allowing us to simplify equation (2.31) further. We set I3 = 1, but must
now introduce a Lagrange multiplier L(p) =−1

2 p, to account for the degree of freedom
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removed by assuming incompressibility. We write

W (I1, I2, I3) = W̃ (I1, I2)−
1
2

p(I3−1). (2.32)

Using equations (2.31) and (2.32) along with I3 = 1 and the Cayley-Hamilton theorem
(given in Appendix A.1), we arrive at the constitutive relation for an incompressible,
isotropic, hyperelastic solid [39],

σ =−pI+2W1B−2W2B−1. (2.33)

Our choice of Lagrange multiplier means that p in equation (2.33) corresponds to the
hydrostatic pressure in the tissue.

Tendons and ligaments can be modelled as transversely isotropic materials with a
single preferred direction corresponding to the orientation of the collagen fibres. As-
suming that the collagen fibres are initially oriented in the direction of the unit vector
M, two new strain invariants are introduced,

I4 = M ·CM, (2.34)

I5 = M · (C2M). (2.35)

These strain invariants are related to the square of the stretch in the direction of the
fibres. The derivatives of these two strain invariants with respect to Ci j are given by

∂I4

∂Ci j
= MiM j,

∂I5

∂Ci j
= MiC jmMm +MkCkiM j.

Using these two derivatives and equation (2.23), it can be shown that the constitutive
relation for an incompressible, hyperalstic, transversely isotropic solid is given by

σ =−pI+2W1B−2W2B−1 +2W4m⊗m+2W5(m⊗Bm+Bm⊗m), (2.36)

where m = FM is the push forward of the direction vector M.
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2.2.4 Viscoelasticity

Soft tissues are examples of viscoelastic solids, exhibiting viscous, as well as elastic,
phenomena. This means that the history of strain in a tissue sample affects the current
stress. Viscoelastic materials can be modelled as systems containing different combi-
nations of springs and dashpots in series or parallel. A dashpot produces a velocity
which is proportional to the force applied to it, thus introducing time dependence into
the system. When a viscoelastic solid is suddenly subjected to strain which is then
kept constant, the stress in the material decreases over time. This is known as stress
relaxation. The phenomenon of creep is observed when a viscoelastic solid is subject
to stresses which are kept constant over time, causing the material to continue to de-
form without an increase in load. Because of these two effects, when tissue samples
are subject to periodic loading, the force-displacement graph produced is not the same
for loading and unloading. This effect is known as hysteresis and is observed in all soft
tissue [13].

A range of viscoelastic models seeking to capture the rate effects observed during
tensile testing of soft tissue have been developed alongside the purely elastic models
discussed in the following sections. In 1980, Decreamer et al. [40] derived a non-linear
viscoelastic constitutive equation for soft biological tissues by assuming that there are
internal friction forces acting between the collagen fibres, all of which have identical
linear viscoelastic properties. In 2004, Limbert et al. [41] developed a phenomeno-
logical constitutive law for the posterior cruciate ligament, assuming the tissue to be
anisotropic and viscohyperelastic. A Helmholtz free energy function containing both
elastic and viscous parts was used, and the resulting model showed good agreement
with experimental results. This model showed a significant improvement over that of
Decreamer et al. in that anisotropy was assumed, therefore providing a better repre-
sentation of the underlying tissue. More recently, Shearer et al. [42] developed a fully
microstructural viscoelastic model of tendons. In this work, macroscopic viscoelastic
effects such as creep and stress relaxation can be recovered by incorporating viscosity
on the microscale in combination with a distribution of fibril critical stretch (the stretch
required to tauten the fibril). By using a microstructural approach, the authors were able
to predict changes in fibril length distribution over the course of a deformation, a feat
not possible using a phenomenological approach.
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We choose to ignore viscoelasticity in our modelling – a valid assumption provided
deformations are quasi-static [43], and only the loading curve is considered. To fully
capture the behaviour of soft tissue during both loading and unloading at different strain
rates, it would be necessary to include viscoelastic effects. For further discussions of
non-linear viscoelasticity, see [44].

2.2.5 Existing elastic models

The equations outlined in Sections 2.2.1 and 2.2.2 allow us to determine the stress dis-
tribution within a tendon or ligament under some prescribed boundary conditions, once
a strain energy function has been chosen. Selecting an appropriate constitutive model
is one of the most challenging parts of soft tissue modelling, however, as models which
seek to accurately represent all aspects of the tissue microstructure can quickly become
complex. We therefore find that concessions are often made for the sake of simplicity. In
this section we will discuss the constitutive models most commonly used in the field of
soft tissue mechanics and evaluate their suitability for modelling tendons and ligaments.
We split the models into two categories – phenomenological and microstructural. Phe-
nomenological models contain parameters that must be found through curve fitting and
therefore have no physical interpretation. Conversely, microstructural models contain
only parameters that could be directly measured from the tissue. In this section we will
only consider elastic models which are capable of capturing the behaviour of the tissue
up until it yields. For a discussion of inelastic models, which can describe the behaviour
of tendons and ligaments beyond their elastic limit, see Chapter 4.

2.2.5.1 Phenomenological

It is common amongst phenomenological models to see the non-linear part of the stress-
strain curve being represented by an exponential function. In 1967, Fung [13] published
a continuum model of soft tissue, deriving the strain energy function

W (I1) =
µ

2b

[
eb(I1−3)−1

]
, (2.37)

where µ is the ground state shear modulus, b is a constant [45] and it is assumed that the
tissue is incompressible. The author points out that this is the simplest model capable of
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describing the highly non-linear behaviour exhibited at finite strain. They acknowledge
that the concept of Young’s modulus is not appropriate for soft tissues as they exhibit
non-linear behaviour. However, since this strain energy function only depends on the
strain invariant I1, it is only capable of describing isotropic materials, reducing the extent
to which it can be applied to soft tissue. Several years later, Veronda et al. introduced
a strain energy function similar to Fung’s, but with an additional term involving the
invariant I2,

W (I1, I2) = αeβ(I1−3)− αβ

2
(I2−3), (2.38)

where α and β are constants. This model provides a good fit to experimental data,
but suffers from the same problems as the strain energy function derived by Fung – it
assumes isotropy and is therefore not suitable for modelling anisotropic soft tissues.

In 1996, Weiss et al. developed a transversely isotropic strain energy function that
is still used extensively in soft tissue modelling to this day. Their strain energy function
takes the form

W (I1, I2, I4) =C1(I1−3)+C2(I2−3)+C3(e(I4)−1− I4), (2.39)

where Ci are constants. This is an extension of the Mooney-Rivlin strain energy func-
tion [46], often used for modelling rubber-like materials, but with an additional term
involving I4 to account for the presence of fibres. This is a significant improvement on
the models of Fung and Veronda, because the fibrous structure of the tissue is better-
represented.

Another important model is the HGO model, introduced by Holzapfel et al. [47] in
2000 to describe arterial wall mechanics, but which can be easily applied to other soft
tissues. For a tissue with one family of fibres, the HGO strain energy function is given
by

W (I1, I4) =
c
2
(I1−3)+

k1

2k2

(
ek2(I4−1)2

−1
)
, (2.40)

where c, k1, and k2 are constants. The authors find good qualitative agreement between
their model and experimental data obtained from tensile tests on arterial wall tissue. We
choose to classify this model as phenomenological, despite the fact that it is derived
from microstructural considerations. This is because the material parameters cannot
be determined by direct measurement and must be found through curve fitting, making
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it difficult to estimate the mechanical properties of a tissue sample without explicitly
carrying out tensile tests.

2.2.5.2 Microstructural

Early models based on tissue microstructure typically considered the tissue to be a fibre
composite material, with fibril constitutive behaviour derived by considering the undu-
lating shape of the fibrils. In 1975, Beskos and Jenkins [48] modelled collagen fibrils
as inextensible helices, resulting in a model that could explain the initial non-linear toe
region as stiffening due to the helices being stretched out. This model proved to be
unrealistic for large strains, however, as the inextensibility of the fibrils meant that the
gradient of the stress-strain curve approached infinity for some finite value of strain. By
modelling collagen fibrils as sinusoidal beams, Comninou and Yannas [49] were able
to reproduce more of the typical tendon behaviour displayed in Figure 1.2. The non-
linear region arose due to the beam increasing in stiffness as the crimp is removed, and
the behaviour approached linearity once all beams had been straightened out. Whilst
these models are capable of reproducing some of the macroscale properties of tendons,
they do not allow for the natural variations in microstructural properties that exist within
tendons, such as a varying amount of crimp between fibrils.

A popular framework used to account for the non-linearity of the toe region in soft
tissues and allowing for variations in crimp between fibrils, is sequential straightening
and loading (SSL). This was first used by Kastelic et al. [3], where tendon tissue was
modelled as parallel fibres with a crimp angle θ that varied through the radius of the
tendon. The stress in the tendon is computed by considering only the fibrils that have
been straightened out for a given tendon stretch. The effect of the matrix is ignored here
but can easily be included through the inclusion of an isotropic term. Lanir [50] devel-
oped a microstructural viscoelastic model by assuming that soft tissue is a continuum
composed of fibres embedded in a fluid matrix. The nonuniform crimping in the fibres
is introduced via an undulation density distribution function, accounting for the fact that
not all fibres will be load-bearing for part of the deformation. Continuum models which
consider the tissue microstructure in their derivation often follow a similar framework
– modelling the tissue as an incompressible composite of one-dimensional fibres em-
bedded in an isotropic matrix. In these instances it is common to see the strain energy
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function W written as
W (I1, I4) =Wm(I1)+Wf (I4), (2.41)

where Wm and Wf are the strain energy functions of the matrix and fibres, respectively.
This can be seen in the Weiss and HGO strain energy functions defined in Section
2.2.5.1. A specific form of Wf was derived by Shearer [43, 51], based on the work
of Kastelic [3], assuming that the crimp angle is dependent on the radial position of the
fibril within the fascicle θ = θ(r),

Wf (I4) =


0 I4 < 1,

φE
6sin2

θ0
(4
√

I4−3log I4− 1
I4
−3), 1≤ I4 ≤ 1

cos2 θ0
,

φE(β
√

I4− 1
2 log I4 +η), I4 >

1
cos2 θ0

,

(2.42)

where φ is the collagen volume fraction, E is the Young’s modulus of a collagen fibril, θ0

is the initial crimp angle at the outside of the fascicle, and η and β are constant functions
of θ0. All of these parameters can, in principle, be measured experimentally, but whilst
the model can produce stress-strain plots that capture the full range of macroscale be-
haviour observed in tendons, the function chosen for θ(r) is not based on experimental
observations.

2.2.6 Yield criteria

We describe materials as elastic if they return to their initial shape after a load has been
removed. If we subject an elastic material to high enough stresses, however, we can
cause permanent deformation – referred to as plasticity. For simple materials under uni-
axial tension or compression (therefore possessing one non-zero component of stress),
the onset of failure can be categorised by a single point in stress-strain space, referred
to as the elastic limit or yield point. For more complex deformations, the idea of a
yield point can be extended to a yield surface, defined by a yield criterion. The Cauchy
stress tensor contains six independent components of stress which must all be taken
into consideration when evaluating whether a material will yield under complex loading
conditions. We can therefore define a surface in 6-dimensional stress-space which will
form the boundary between elastic and plastic behaviour. If a stress state falls within the
boundary, the deformation is described as elastic, whereas if it falls outside, we refer to
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it as plastic. One of the most widely used yield criteria is the von Mises yield criterion
[52], defined by

Φvm(σ) = σ
2
vm(σ)−σ

2
Y = 0, (2.43)

where σY is the yield strength of the material under simple extension/compression, and
σvm is the von Mises stress defined by

σ
2
vm =

1
2
[
(σ11−σ22)

2 +(σ22−σ33)
2 +(σ33−σ11)

2 +6(σ2
23 +σ

2
31 +σ

2
12)
]
. (2.44)

This scalar stress measure was derived for use with isotropic materials, however it is
regularly used in soft tissue mechanics1. The von Mises yield criterion can be extended
to include material anisotropy, as was demonstrated by Hill [53]. We refer to their
criterion as the Hill yield criterion and it is expressed as

ΦH(σ) = σ
2
H(σ)−1, (2.45)

where σH is the Hill stress, defined by

σ
2
H = F(σ22−σ33)

2 +G(σ33−σ11)
2 +H(σ11−σ22)

2 +2Lσ
2
23 +2Mσ

2
31 +2Nσ

2
12,

(2.46)
where σi j are the components of the Cauchy stress and F,G,H,L,M,N are constants
which must be found experimentally, being related to the strengths of the materials in
each direction. If the yield strengths in each direction are given by X , Y and Z, then the
constants can be calculated using

F =
1
2

(
1

Y 2 +
1

Z2 −
1

X2

)
, (2.47)

G =
1
2

(
1

Z2 +
1

X2 −
1

Y 2

)
, (2.48)

H =
1
2

(
1

X2 +
1

Y 2 −
1

Z2

)
. (2.49)

1See Chapter 4 for more discussion surrounding the application of yield criteria and other failure
models to soft tissue.
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The remaining three constants are related to the maximum shear strengths of the mate-
rial,

L =
1

2τ2
Y Z

, (2.50)

M =
1

2τ2
ZX

, (2.51)

N =
1

2τ2
XY

, (2.52)

where τY Z , τZX , and τXY are the yield stresses under shear. This criterion differs from the
isotropic yield criterion given in equation (2.43), as the strength of the material can vary
in three perpendicular directions, allowing us to model yielding in orthotropic materials.
If we assume the material is transversely isotropic, rather than orthotropic, with the z-
axis as the direction of anisotropy, the number of constants is reduced, since F = G and
L = M. Assuming isotropy reduces the Hill criterion to the von Mises criterion.

2.3 Summary

2.3.1 Modelling considerations and assumptions

One of the aims of this thesis is to determine which factors must be taken into con-
sideration when conducting mathematical modelling of tendons and ligaments. In the
following chapters, we will explore the extent to which macroscale geometric and mi-
crostructural parameters influence the mechanical properties of these tissues. There is a
vast amount of literature in the field of soft tissue modelling, and the examples outlined
in Section 2.2.5 are some of the most widely adopted models, many of which follow
a similar framework, in which the tissue is treated as a fibre composite. We choose
to follow the same framework, treating tendons and ligaments as incompressible, trans-
versely isotropic, hyperelastic materials consisting of a family of one-dimensional fibres
embedded within an isotropic matrix. We choose to ignore viscous effects, an assump-
tion which is valid if the deformation is carried out at very low strain rates [43], a regime
in which hysteresis is minimized.
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2.3.2 Choosing a model

In the following chapters, we wish to deploy a simple microstructurally-based constitu-
tive model that will produce comparable results to existing phenomenological models,
whilst hopefully providing more insight into the microscale mechanics. We require all
material parameters in our model to be measurable in an attempt to move away from
phenomenological material parameters. To do this, we will use an SSL approach, sim-
ilar to Lanir [50] and Shearer [43, 51, 42]. We will assume that collagen fibrils are
linearly elastic and have some critical stretch λC at which they become taut. The stress
in a 1D fibril is therefore given by

σ f (λ,λC) =


0, λ < λC,

E
(

λ

λC
−1
)
, λ≥ λC,

(2.53)

where E is the Young’s modulus of a fibril and λ is the macroscale stretch applied to the
tissue. We will assume that the critical stretch of the fibrils follows some distribution
ΛC(λC), meaning that the overall stress in the fibres is given by

σ(λ) = φ

∫
λ

1
σ f (λ,λC)ΛC(λC)dλC, (2.54)

where φ is the collagen volume fraction. There is not enough data available to make
an informed decision on the form that ΛC should take. We therefore choose a simple
triangular distribution defined by

ΛC(λC) =



0, λC < a,

2(λC−a)
(b−a)(c−a)

, a≤ λC < c,

2(b−λC)

(b−a)(b− c)
, c≤ λC < b,

0, λC ≥ b,

(2.55)

where a is the lower bound, b is the upper bound, and c is the mode. Using a triangular
distribution is common in the literature [54] and has the additional benefit of producing
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an analytic strain energy function [55]

W (I1, I4) = (1−φ)
µ
2
(I1−3)+φE

(
A
2

log I4 +(B−D)
√

I4 +
C
2
√

I4 log I4 +F
)
,

(2.56)
where A, B, C, D, and F are piecewise-defined functions of I4. These functions, along
with a derivation of equation (2.56), can be found in Appendix A.2. In the derivation of
equation (2.56), we have assumed that the matrix can be represented by a Neo-Hookean
solid – an assumption introduced by Holzapfel et al. [47] and justified in the work of
Gundiah et al. [56].

In this chapter we have outlined the mathematics and biology prerequisite for mod-
elling tendons and ligaments. We have chosen a constitutive model based on the tissue
microstructure and presented the governing equations of non-linear elasticity, which can
now be used to examine more complex deformations. In the next Chapter, we will in-
troduce the finite element method, a mathematical method which can be used to solve
systems of PDEs in complex 3D domains. We will use our chosen model to explore
the effects of various geometric properties, such as shape and fibre direction, on the
macroscale mechanical properties of tendons and ligaments.



Chapter 3

Finite element modelling of tendons
and ligaments

3.1 Overview

It is not possible to produce analytic solutions to the governing equations of elasticity
(outlined in Section 2.2) within the complex geometries associated with soft tissues such
as tendons and ligaments. To produce reliable mathematical models of these tissues, we
choose to deploy the finite element method – a numerical method used widely across
many fields of science and engineering for its ability to efficiently and accurately solve
systems of PDEs in complex, unstructured domains. The finite element method is often
used to more efficiently design mechanical components because it can quickly predict
the internal stresses without the need of a prototype [57]. When it comes to modelling
tendons and ligaments, the finite element method is particularly useful because it allows
us to vary the geometric and microstructural properties of the tissue and observe the
effects of these changes on the stress distribution within the tissue – a feat not possi-
ble through experimentation alone. In Section 3.2, we will introduce the finite element
method and discuss its applications in the literature (a summary of these findings can be
found in Table 3.1). We will give examples of the types of problems that can be studied
using this powerful technique, and critically analyse the underlying constitutive models
where appropriate. In Section 3.3, we introduce the mathematics required to understand
the finite element method in relation to non-linear solid mechanics problems, before

41
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discussing our specific implementation in Section 3.4. Section 3.5 begins with a simple
problem which will form the basis of all of our further modelling – the uniaxial exten-
sion of a transversely isotropic, hyperelastic, right circular cylinder. We then discuss
how we will vary the geometric and microstructural properties to make the model more
realistic. Once we have established the problem we are trying to solve, we will introduce
oomph-lib, an open-source finite element library written in C++, and discuss how we
will use it to solve our problem. In Section 3.6, we investigate the effects of geometry
and fibre direction on the elastic behaviour of tendons by perturbing the initial geome-
try away from a cylinder, before using geometries based on real tendons and ligaments
in Section 3.7. Finally, we will consider a more complex deformation, incorporating a
twist applied to the end of the tendon, in order to evaluate the effectiveness of isotropic
yield criteria when applied to tendons and ligaments.

3.2 Literature review

There are multiple review articles discussing finite element modelling of tendons and
ligaments in different contexts. Benos et al. [58] provide an extensive and up-to-date
analysis of simulations of anterior cruciate ligament (ACL) reconstructions, outlining
the geometry, constitutive models, and number of elements used in each case. Gal-
busera et al. [59] present a comprehensive history of general finite element modelling
of the knee ligaments, showing citation charts which clearly map out the most important
research in the field. In this literature review, we focus on the shortfalls present in a se-
lection of works spanning the history of finite element modelling, as applied to tendons
and ligaments. For a complete summary of the models discussed in this section, see
Table 3.1.

One of the earliest examples of the finite element method being applied to study ten-
dons and ligaments (treating them as 3D continua rather than simple springs), was by
Pioletti et al. [14] in 1998. In this work, the authors modelled the ACL as a transversely
isotropic, hyperelastic material attached to two isotropic bone segments. The strain en-
ergy function used was from Veronda et al. [60] and can be seen in equation (2.38).
The bone-ligament-bone system was subjected to boundary conditions mimicking knee
flexion. The distribution of the von Mises stress (defined in equation (2.44)) and hy-
drostatic stress were presented and good correlation was found between the numerical
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output and existing experimental data.
A significant number of subsequent attempts to model complex systems involving

tendons and ligaments have limitations in their representations of the tissue microstruc-
ture. Some authors used an isotropic constitutive law for the tissue [61, 62, 63, 64, 65,
66, 67, 68], despite the fact that tendons are known to be much stiffer in the longitudi-
nal direction than the transverse direction [69]. This simplification could significantly
change the stress distribution when complex loading conditions are applied to the tissue,
particularly when using a scalar stress measure which combines the components of the
stress in each direction.

The implicit assumption that the material strength of soft tissue is independent of
direction can be found throughout the literature, due to the widespread adoption of the
von Mises stress as an indicator of failure. The von Mises stress has been used by
those who use both isotropic [66, 64, 65, 67] and anisotropic models of tendons and
ligaments [14, 70, 15, 71, 72, 73, 74]. The consequences of applying isotropic yield
criteria to soft tissue has been studied by Korenczuk et al. [75], who determined that
they are not appropriate for use with anisotropic tissues. This conclusion was reached
after comparing the output of a finite element model, which used the von Mises yield
criterion to indicate failure, against experimental data. It was found that the von Mises
criterion failed to capture the type of failure, the location of failure, and the direction of
crack propagation. This important result could impact the conclusions of many of the
groups who use the von Mises stress to indicate where a tendon might fail. For example,
Sano et al. [66] used an isotropic constitutive law to investigate the effects of tear size
on stress distribution in a model of the rotator cuff tendon. The authors concluded that
stress concentration increases with increasing tear size, and suggested that crescent- and
L-shaped tears may propagate in different directions. The first of these points is unlikely
to change if a more realistic constitutive model is used. However, if the authors instead
assumed that the material strength was anisotropic, they may have reached different
conclusions about the direction of tear propagation.

Within the literature, authors often seek to model complex joint structures consisting
of multiple bones, tendons, ligaments, and cartilage [76, 61, 74, 77, 78]. As a result
of this, it is common to see realistic geometry within these models. Research groups
often harness the power of commercial software packages like ABAQUS and ANSYS
to produce unstructured meshes based on 3D scans of real tissues. Whilst this approach
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clearly increases the realism of the model, it has the potential to introduce errors when
the direction of the fibres in the tendons and ligaments is not carefully considered. Many
authors choose to simply set the direction of the fibres to be parallel to the longitudinal
axis of the tissue [79, 41, 76, 71]. Whilst this is suitable for cylindrical tendons and
ligaments, it is unrealistic in more complex geometries, because it implies that fibres
stop and start at the surface of the tissue as the cross-sectional area changes. Some
authors use the local element geometry to define the fibre direction [74, 78, 77, 8], a
concept introduced by Weiss et al. [80]. In these examples, the longitudinal axis of
the tendon/ligament is no longer a straight line. Because of this, planes transverse to
the centre line of the tendon are not parallel to one-another, and the fibre direction is
therefore set to be normal to these transverse planes. Whilst this significantly increases
the realism of the model, it does not prevent the issue of fibres intersecting the outer
boundary of the tissue when the cross-sectional area changes. In order to overcome
these shortcomings, we propose a variation to this fibre configuration, where fibres in
the centre are aligned with the longitudinal axis, fibres towards the edge of the tendon
are aligned with the outer surface, and the direction of fibres in the bulk of the tendon
interpolate between these two extremes. In this configuration, fibres are continuous
throughout the length of the tendon, an assumption that was discussed in Section 2. A
comparison of these fibre orientations along with our proposed variation can be seen in
Figure 3.1, and more detail can be found in Section 3.5.3.

Many of the authors who choose a transversely isotropic constitutive law opt to use a
phenomenological, or semi-phenomenological (some of the parameters are microstruc-
tural and others are not) strain energy function, rather than one derived exclusively
from the microstructure. This choice is commonplace both in the finite element mod-
elling literature and in the wider soft tissue mechanics community. Within finite element
modelling, commonly used strain energy functions are those introduced by Weiss et al.
[80], Veronda et al. [60], and when the authors assume isotropy, the Mooney-Rivlin
strain energy function [46]. Whilst the use of a phenomenological constitutive model
may not have much impact on the stress distribution in the tissue, it can limit the ap-
plicability of the model because the material parameters are not based on measurable
quantities. Using a fully microstructural model can allow the effects of processes such
as ageing, injury, and disease to be investigated, provided we know their effects on the
microstructure. This approach could be particularly useful in models which seek to find
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(a) (b) (c)

Figure 3.1: Comparison of three fibre orientations within the cross-section of a tendon,
with the longitudinal axis shown in red. In (a), fibres are aligned with the z-axis. In
(b), the fibres are aligned with the longitudinal axis of the tendon and are parallel within
transverse planes. In (c), the fibres follow the contours of the geometry, meaning the
direction changes with perpendicular distance from the longitudinal axis. The config-
uration in (c) is more realistic, because fibres are continuous through the length of the
tendon.
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the optimal graft tissue for a patient undergoing ligament reconstruction surgery, for
example. Suggs et al. [7] used finite element modelling to compare the post-operative
joint stability for three different types of ACL graft: bone-patellar tendon-bone (BPTB)
sections of two different lengths, and non-specified ligament tissue with a similar stiff-
ness to the intact ACL. The difference between the graft materials in this model was just
in the length and stiffness. If a more realistic model based on the microstructure was
used, it might have been possible to learn more about the internal stress distributions,
any potential failure locations, and how these might change over time.

In summary, the literature surrounding finite element modelling of tendons and lig-
aments is rife with assumptions that require further consideration. As computers have
become more powerful, research groups have consistently increased the realism in their
models, incorporating complex geometries derived from 3D scans and realistic bound-
ary conditions determined through processes such as gait analysis. Despite these ad-
vancements, there are a number of underlying issues which must be addressed. One
common simplification is in the choice of constitutive model used to represent the tis-
sue itself. Phenomenological models are often used, reducing the applicability of the
model, and in some cases little attention is given to the direction of anisotropy. We
therefore set out to quantify the impact that some of these simplifications have when
carrying out finite element modelling of tendons and ligaments. We will focus on the
effects of geometry and fibre direction on the mechanical properties of tendons, whilst
using the microstructural constitutive model first introduced in Section 2.3.2.
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3.3 Mathematical background

In this section we will introduce the mathematical background to the finite element
method as applied to non-linear solid mechanics problems. Specifically, we will con-
sider the problem of a hyperelastic material subjected to a prescribed displacement on
part of its boundary. Throughout Section 3.3, we use a different notation to Section
2.2, instead following the notation of Green and Zerna [38], because the finite element
library we will use, oomph-lib, uses this notation throughout its documentation. Unless
otherwise stated, throughout this chapter we use lowercase letters to represent unde-
formed quantities, and uppercase letters to denote their deformed counterparts.

3.3.1 The principle of virtual displacements

Suppose we have an undeformed body Ω that deforms due to a prescribed displacement
applied on part of its boundary ∂Ωprescribed. We consider a set of general curvilinear
Lagrangian coordinates ξi (in the reference configuration) and denote the position vector
to a point in the undeformed body as r = r(ξi) and the deformed body as R = R(ξi).
We can define a set of undeformed covariant basis vectors by differentiating the position
vector r with respect to the general coordinates ξi,

gi =
∂r
∂ξi . (3.1)

The resulting vectors will be tangent to the coordinate lines in the undeformed configu-
ration. Similarly for the deformed covariant basis vectors we have

Gi =
∂R
∂ξi . (3.2)

The strain in the deformed body can be measured using the Green-Lagrange strain ten-
sor, defined by

γi j =
1
2
(Gi j−gi j), (3.3)
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where gi j = gi · g j and Gi j = Gi ·G j are the metric tensors in the undeformed and de-
formed configurations, respectively. The boundary on which a displacement is pre-
scribed can be parametrised in terms of two coordinates ζ1 and ζ2, leading to

ξ
i|∂Ωprescribed = ξ

i
∂Ωprescribed

(ζ1,ζ2). (3.4)

We can use equation (3.4) to write the displaced boundary constraint as a function of ζ1

and ζ2,
R(ξi

∂Ωprescribed
(ζ1,ζ2)) = Rprescribed(ζ1,ζ2). (3.5)

The principle of virtual displacements states that for a system to be in equilibrium, the
work done by any imposed forces is equal to zero for an infinitesimal change in the
configuration of the system, provided all kinematic constraints are satisfied [82]. This
can be used to relate the stresses and strains in the body, which, in the absence of any
body forces, leads to ∫

Ω

τ
i j

δγi jdv+δΠconstraint = 0, (3.6)

where τi j is the second Piola-Kirchhoff stress, δγi j is the variation of γi j [83], and the
summation convention is used for repeated indices. The volume integral in equation
(3.6) is carried out with respect to the undeformed volume, and δΠconstraint is a La-
grange multiplier term included due to the prescribed displacement on the boundary
∂Ωprescribed. This Lagrange multiplier term is given by

Πconstraint =
∫

∂Ω

(
R(ξi(ζ))−Rprescribed(ζ)

)
·ΛdS, (3.7)

where Λ is a Lagrange multiplier vector for the traction which must be applied to main-
tain the prescribed displacement, and dS is the deformed area element. We can find the
variation δγi j using the definition of the Green-Lagrange strain tensor (3.3), along with
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the fact that δr = 0, since r is fixed, and τi j is symmetric. We find that

δγi j =
1
2

δ

(
∂R
∂ξi ·

∂R
∂ξ j −

∂r
∂ξi ·

∂r
∂ξ j

)
=

1
2

(
δ

∂R
∂ξi ·

∂R
∂ξ j +

∂R
∂ξi ·δ

∂R
∂ξ j

)
=

∂R
∂ξi ·δ

∂R
∂ξ j . (3.8)

Equation 3.6 can therefore be rewritten in terms of the unknown deformed position
vector as ∫

Ω

τ
i j ∂R

∂ξi ·δ
∂R
∂ξ j dv+

∫
∂Ω

Λ ·
(
δR(ξi(ζ))−δRprescribed(ζ)

)
dS = 0. (3.9)

The system of equations in (3.9) is now in the correct form to apply the finite element
method to find the unknown position vector R.

3.3.2 The finite element method

The finite element method can be used to find an approximate solution for R in the
system of equations in (3.9). At this stage, we can simplify the problem by expressing
all position vectors in terms of their Cartesian basis vectors ei,

R(ξ j) = Ri(ξ
j)ei. (3.10)

We can then discretise our continuous body Ω by splitting the undeformed body into a
finite set of elements using N nodes. The resulting network of nodes and elements is
referred to as a mesh, and is a discrete representation of our continuous body. We write
the unknown position vector R as a finite sum of unknown coefficients Xi j multiplied
by some basis functions ψ j. This approximation is written as

R(ξk) =
N

∑
j=1

Xi jψ j(ξ
k)ei. (3.11)
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Similarly, the unknown Lagrange multiplier traction field can be approximated using
coefficients Li j as

Λ(ξk) =
N

∑
j=1

Li jψ j(ξ
k)ei. (3.12)

In the finite element method we choose our basis functions ψ j so that they have finite
support, being non-zero only around node j. For quadratic elements with three nodes,
there are three associated shape functions per element,

ψ
(1)
j (s) =

1
2

s(s−1), ψ
(2)
j (s) = 1− s2, ψ

(3)
j (s) =

1
2

s(s+1), (3.13)

where s ∈ [−1,1] is a local coordinate defined on each element. At s = −1, x = x j−1,
at s = 0, x = x j, and at s = 1, x = x j+1. One of the benefits of using the finite element
method is that it is simple to interpret the meanings of the unknown coefficients Xi j.
Since the shape functions equal one at their corresponding nodes and zero elsewhere,
the coefficients Xi j are simply the value of our unknown function at node x j (in this
case Xi j correspond to the components of the deformed position vector R). Inserting
equations (3.11) and (3.12) into equation (3.9), and using the fact that the variation
of the position vector on the boundary on which a displacement is prescribed is zero,
δRprescribed(ζ) = 0, we arrive at

N

∑
m=1

{∫
Ω

τ
i j

(
N

∑
l=1

Xkl
∂ψl

∂ξi

)
∂ψm

∂ξ j dv+
∫

∂Ω

(
N

∑
l=1

Lklψl

)
ψmdS

}
δXkm = 0, (3.14)

where, again, the summation convention is used for repeated indices. Since equation
(3.14) must be equal to zero for arbitrary variations of Xkm, the term in the braces must
be equal to zero. This results in a set of discrete equations for the unknown values of
Xkm and Lkm,

fkm =
∫

Ω

τ
i j

(
N

∑
l=1

Xkl
∂ψl

∂ξi

)
∂ψm

∂ξ j dv+
∫

∂Ω

(
N

∑
l=1

Lklψl

)
ψmdS = 0. (3.15)

To solve this set of equations we must also provide a constitutive relation for the mate-
rial in question, which will allow us to write τi j in terms of Xi j. We then have a system
of equations which can be solved using Newton’s method. In doing so, we immediately
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see another benefit of using the piecewise linear functions defined in equation (3.13) –
the Jacobian matrix with respect to Xkm is sparse, reducing computation time. Once the
unknown coefficients Xi j have been found, the deformed position vector R can be con-
structed using equation (3.11). When using Newton’s method to solve these equations,
we will converge quadratically to a solution if a good enough initial guess is provided
– meaning that the error in the solution at step i+1 is proportional to the square of the
error at step i. We typically increment the displacement of the prescribed boundary by
some small amount and use the solution at the current step as an initial guess for the
next step. The accuracy can be improved by increasing the number of elements in the
mesh (referred to as h-refinement), or by increasing the degree of the polynomial basis
functions ψi (referred to as p-refinement).

3.4 Finite element implementation

3.4.1 Oomph-lib

To solve our system of equations using the finite element method, we will use oomph-
lib – an open-source finite element library written in C++ [84]. This library makes use
of the object-oriented features of C++ to define high-level objects, such as elements and
constitutive laws, which can be overwritten to cater towards a specific problem. Oomph-
lib has been used to solve various non-linear solid mechanics problems, and as a result
it contains the functionality for modelling isotropic hyperelastic materials. To solve our
specific problem, we must therefore extend this functionality to cater for transversely
isotropic materials.

Oomph-lib includes an IsotropicStrainEnergyFunctionConstitutiveLaw class
which contains member functions for computing the stress given a specific isotropic
strain energy function. When we write driver code using this constitutive law class,
the Piola-Kirchhoff stress is calculated using a function get_stress(), which is then
fed through a series of internal functions to eventually update the position of the nodes
in the mesh. We must therefore overwrite this constitutive law class and redefine the
get_stress() function to account for the presence of the fibres. We use 3D
QPVDElementsWithContinuousPressure for the bulk of the tissue. These are quadratic
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}

×3 layers

Figure 3.2: Illustration of the nodes in a quadratic 3D element. There are three layers
of nine nodes, for a total of 27 nodes.

elements with three nodal points per spatial dimension, for a total of 27 nodes per ele-
ment, as shown in Figure 3.2. The underlying shape functions used with these elements
can be found in the oomph-lib source code [84]. The hydrostatic pressure in the body
is enforced through an incompressibility constraint, and its value is stored as data at
each of the nodes. For our chosen element type, the pressure is interpolated between the
nodes. On the upper surface of the tendon, we use 2D LagrangeMultiplier elements.
The full 3D mesh comprises these two sets of elements.

3.4.2 The new stress function

In the existing IsotropicStrainEnergyFunctionConstitutiveLaw class, the stress
measure being computed is the deviatoric part of the second Piola-Kirchhoff stress. In
the notation of Green and Zerna [38], this is given by

τ
i j =−PGi j +2W1gi j +2W2(I1gi j−Grsgrigs j), (3.16)

where τi j is the second Piola-Kirchhoff stress, P is the hydrostatic pressure, and all other
terms are as previously defined in Sections 2.2 and 3.3.1. To find the corresponding
expression for the transversely isotropic constitutive equation first given in equation
(2.36), we start by writing down the definition of the second Piola-Kirchhoff stress for
an incompressible material,

τ = F−1σF−T. (3.17)
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Combining this with (2.36) leads to the expression

τ =−pF−1F−T +2W1I+2W2(I1I−C)+2W4M⊗M+2W5(M⊗CM+CM⊗M).

(3.18)
We must now write the above expression in terms of the deformed and undeformed
metric tensors and take the deviatoric part to put it in line with equation (3.16). The
definitions of the deformed and undeformed basis vectors, given in equations (3.2) and
(3.1) respectively, can be rewritten in terms of Cartesian basis vectors ei as

gr =
∂xs

∂ξr es, gr =
∂ξr

∂xs es, Gr =
∂ys

∂ξr es, Gr =
∂ξr

∂ys es. (3.19)

The upper index signifies a contravariant vector, ξi are general curvilinear coordinates,
and xi and yi are the undeformed and deformed Cartesian coordinates, respectively.
Inverting these expressions gives the following equivalent expressions for the Cartesian
basis vectors:

er = er =
∂xr

∂ξs gs =
∂ξs

∂xr gs =
∂yr

∂ξs Gs =
∂ξs

∂yr Gs. (3.20)

The deformation gradient tensor is given by

F =
∂yi

∂x j ei⊗ e j =
∂yi

∂ξr
∂ξr

∂x j ei⊗ e j =

(
∂yi

∂ξr ei

)
⊗
(

∂ξr

∂x j e j
)
= Gr⊗gr. (3.21)

Similar expressions for the inverse and transpose of the deformation gradient can be
found:

F−1 =
∂xi

∂y j ei⊗ e j = gr⊗Gr, (3.22)

FT =
∂y j

∂xi ei⊗ e j = gr⊗Gr, (3.23)

F−T =
∂x j

∂yi ei⊗ e j = Gr⊗gr. (3.24)

The right Cauchy-Green tensor can be found by taking the combination C=FTF, giving

C = FTF =

(
∂yr

∂xi ei⊗ er
)
·
(

∂y j

∂xs e j⊗ es
)
=

∂yr

∂xi
∂y j

∂xs δ
r
jei⊗ es, (3.25)
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where we define tensor contraction such that

(a⊗b) · (c⊗d) = (b · c)(a⊗d), (3.26)

and use er · e j = δr
j. Expanding out the partial derivatives using the chain rule gives

C =
∂yr

∂ξs
∂ξs

∂xi
∂yr

∂ξt
∂ξt

∂x j ei⊗ e j = Gst

(
∂ξs

∂xi ei

)
⊗
(

∂ξt

∂x j e j
)

= Gstgs⊗gt

= Grsgrigs jgi⊗g j, (3.27)

where we have used
Grs = Gr ·Gs =

∂ξr

∂y j
∂ξs

∂y j , (3.28)

and the index lowering and switching property of the metric tensor gi j. The square of
the right Cauchy-Green tensor is given by

C2 =
(
Grsgrigs jgi⊗g j

)
·
(

Gklgkmglngm⊗gn

)
= Grsgrigs jGklgkmgln(g j ·gm)(gi⊗gn)

= Grsgrigs jGklgkmglng jmgi⊗gn

= GrsgriGklgkmgln
δ

s
mgi⊗gn

= GrsgriGklgksglngi⊗gn. (3.29)

To find expressions for the terms associated with the anisotropy, we write the alignment
vector M as M = Migi. This leads to

M⊗CM = MiGrsgr jMsgi⊗g j, (3.30)

CM⊗M = Grsgr jMsMigi⊗g j. (3.31)
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In order to write out equation (3.18) in terms of the metric tensors, we also need expres-
sions for the strain invariants. These are given by

I1 = Tr(C) = gi jGi j, (3.32)

I2 =
1
2
[(TrC2)−Tr(C2)] = gi jGi j, (3.33)

I3 = 1, (3.34)

I4 = M · (CM) = MrMsGrs, (3.35)

I5 = M · (C2M) = MiM jgrsGirGs j. (3.36)

Since we are assuming incompressibility, we have I3 = 1. The two new strain invariants,
I4 and I5, are due to the presence of the fibres. Substituting these expressions into
equation (3.18) gives

τ
i j =− pGi j +2W1gi j +2W2

(
I1gi j−Grsgrigs j)

+2W4MiM j +2W5
(
MiGrsgr jMs +GrsgriMsM j) , (3.37)

where τ = τi jgi⊗g j. We define

Bi j = I1gi j−Grsgrigs j, (3.38)

Mi j = MiM j, (3.39)

Ci j = MiGrsgr jMs +GrsgriMsM j, (3.40)

and
Φ = 2W1, Ψ = 2W2, χ = 2W4, Ω = 2W5, (3.41)

leading to the final expression for the second Piola-Kirchhoff stress,

τ
i j =−pGi j +Φgi j +ΨBi j +χMi j +ΩCi j. (3.42)

It should be noted that Bi j and Ci j are not the same as the left and right Cauchy-Green
deformation tensors introduced in Section 2.2.1. Finally, we must find the deviatoric
part of (3.42). To do this we remove the part of the Cauchy stress associated with the
mechanical pressure (in terms of τ ) and then convert back to find the corresponding
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expression for the deviatoric part of the second Piola-Kirchhoff stress. The mechanical
pressure is given by

P =
1
3

Tr{σ}= 1
3

Tr{FτFT}

=
1
3

Tr
{(

∂yr

∂xs er⊗ es
)
· (τi jgi⊗g j) ·

(
∂yk

∂xl el⊗ ek
)}

=
1
3

Tr
{(

∂yr

∂xs ir⊗ es
)
·
(

τ
i j ∂xm

∂ξi em⊗
∂xn

∂ξ j en

)
·
(

∂yk

∂xl el⊗ ek
)}

=
1
3

Tr
{

∂yr

∂xs τ
i j ∂xm

∂ξi
∂xn

∂ξ j
∂yk

∂xl δ
s
mδnler⊗ ek

}
=

1
3

Tr
{

∂yr

∂xm τ
i j ∂xm

∂ξi
∂xl

∂ξ j
∂yk

∂xl er⊗ ek
}

=
1
3

Tr
{

∂yr

∂ξi
∂yk

∂ξ j τ
i jer⊗ ek

}
=

1
3

∂yr

∂ξi
∂yk

∂ξ j τ
i j

δ
k
r =

1
3

τ
i jGi j. (3.43)

Substituting in the expression for τi j given in (3.42), we find

P =
1
3
(
−3p+ I1Φ+2I2Ψ+ I4χ+2I5Ω

)
. (3.44)

The deviatoric part of the 2nd Piola-Kirchhoff stress is therefore given by

τ = F−1(σ−PI)F−T = τ −PF−1F−T, (3.45)

leading to
τ

i j = τ
i j−PGi j = Φgi j +ΨBi j +χMi j +ΩCi j−KGi j, (3.46)

where
K =

1
3
(
I1Φ+2I2Ψ+ I4χ+2I5Ω

)
. (3.47)

We can now implement equation (3.46) in the new get_stress() function, allowing
us to model transversely isotropic hyperelastic materials.
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∂Ω

L

l = λL

applied stretch

ez

aA

Figure 3.3: Outline of the cylinder extension problem used as a base case for investigat-
ing the effects of tendon geometry on mechanical behaviour.

3.5 Problem outline

To assess the effect that geometry has on the mechanical properties of tendons, we
will first consider the base case of a right circular cylinder. We will then make small
changes to this geometry and see how the mechanical properties differ from the base
case. Throughout Section 3.5, we use the same notation as in Section 2.2, but continue
using capital letters for quantities in the initial configuration, and lowercase letters for
quantities in the deformed configuration.

3.5.1 Base case

Consider a circular cylinder composed of an incompressible, transversely isotropic, hy-
perelastic material with fibres aligned parallel to the z-axis and strain energy function
given by W =W (I1, I4). The cylinder has initial length L and radius A. A displacement
field u(X) is applied to the upper surface of the cylinder such that uz(R,Θ,Z = L) =

l = λL and ur(R = A,Θ,Z = L) = a. The bottom surface of the cylinder is fixed in the
z-direction and the curved surface is assumed to be traction-free. A diagram outlining
this problem can be seen in Figure 3.3.

Due to incompressibility, stretching the cylinder by a factor of λ will cause the radius
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to contract uniformly by a factor of 1/
√

λ. In cylindrical polar coordinates, this leads to
the deformation field

r(R,Θ,Z) =
R√
λ
, θ(R,Θ,Z) = Θ, z(R,Θ,Z) = λZ. (3.48)

From this we can compute a number of useful quantities defined in Section 2.2.1.
The deformation gradient tensor is given by

F =


∂r
∂R

1
R

∂r
∂Θ

∂r
∂Z

r ∂θ

∂R
r
R

∂θ

∂Θ
r ∂θ

∂Z
∂z
∂R

1
R

∂z
∂Θ

∂z
∂Z

=


1√
λ

0 0

0 1√
λ

0

0 0 λ

 . (3.49)

The fibres are aligned with the z-axis so that M = (0,0,1)T, leading to the following
strain invariants:

I1 =
2
λ
+λ

2, I2 =
1
λ2 +2λ, I3 = 1, I4 = λ

2, I5 = λ
4. (3.50)

In this section we will focus on two constitutive models: the semi-phenomenological
HGO model [47], and a microstructural model which incorporates distributions of fibril
length, as defined in Section 2.3.2. Both strain energy functions derived from these
models only depend on I1 and I4, allowing us to write down a simplified expression for
the Cauchy stress based on equation (2.36),

σ =−pI+2W1B+2W4m⊗m, (3.51)

where m = FM and B = FFT. Since we assume that there are no body forces and that
gravity is negligible, the momentum equation given in equation (2.11) reduces to the
equilibrium equation,

∇ ·σ = 0. (3.52)

The traction-free boundary conditions on the curved surface of the cylinder can be writ-
ten as

σ ·n = 0, (3.53)

at r = a, where a is the radius of the cylinder in the deformed configuration, and n is the
outer unit normal to the curved surface. By solving this system of equations for σ, we
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find that the there is only one non-zero component of the Cauchy stress: σzz. Written in
terms of the derivatives of the strain energy function W , we have

σzz =−p+2W1λ
2 +2W4λ

2, (3.54)

where p = 2W1/λ is the hydrostatic pressure required to maintain incompressibility,
found using the traction-free boundary condition. Using the HGO model, we find that

σ
HGO
zz (λ) = µ

(
λ

2− 1
λ

)
+2k1(λ

2−1)λ2ek2(λ
2−1)2

, (3.55)

where µ, k1, and k2 are constants. The corresponding expression for the crimped fibril
model is

σ
crimp
zz (λ) = µ(1−φ)

(
λ

2− 1
λ

)
+E(A+Bλ+Cλ

2 +Dλ logλ), (3.56)

where φ is the collagen volume fraction, E is the fibril Young’s modulus, and A, B, C,
and D are piecewise constant functions of λ defined in Section 2.3.2.

3.5.2 Macroscale geometry

Tendons and ligaments are typically described as long, flat bands of connective soft
tissue, but their shape can vary significantly. Some, such as the flexor digitorum profun-
dus, are close to cylindrical [85], but others, such as the Achilles tendon, have a flattened
cross-section that can vary in size down its length. Instead of using specific, individual
geometries taken from 3D scans of tendons, we use an idealised geometry in order to
explore how certain generic geometric features may affect the mechanical response of
the tissue. To produce an idealised geometry, we start with an elliptic cylinder with
semi-major axis A and semi-minor axis sA, where s ∈ (0,1], and apply a transformation
to every point in the cylinder. We start with the Cartesian position of a point in the
cylinder (X ,Y ,Z) and convert to cylindrical polar coordinates (R,Θ,Z). We then apply
our transformation and convert back to Cartesian coordinates, leading to

X = RcosΘ · f (Z), Y = RsinΘ · f (Z), Z = Z, (3.57)
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where (X ,Y,Z) is the transformed position and f (Z) is a function that specifies how
the radius of the tendon or ligament changes along its length. The transformation in
equation (3.57) changes both the width and the thickness of the tendon. To maintain a
constant thickness, we can simply set Y = Y . We choose f to be the product of a linear
function and a sine function with period equal to twice the length of the tendon,

f (Z) =
[
(1− t1)

Z
L
+ t1

]
·
[

1− (1− t2)sin
(

πZ
L

)]
, (3.58)

where t1 ∈ (0,1] is the ratio between the upper and lower diameters of the tendon, and
t2 ∈ (0,1] is the ratio between the upper and middle diameters of the tendon in the
absence of linear taper, and L is the length of the tendon, as defined in Section 3.5.1.
This form of f allows for a linearly tapered tendon, an hourglass shaped tendon, and
combinations thereof. After the mesh transformation has been applied, the ratio between
the central and upper radii of the tendon is t2(1+ t1)/2.

To test the effects that a certain combination of parameters (s, t1, t2) has on the me-
chanical properties of the tendon/ligament, we must first match its volume to that of a
reference circular cylinder of radius A0 and length L. This ensures that when we use a
new set of parameters, we are not adding or removing material – we only want to study
the effects of redistributing the existing material into a new shape. Since we have used
an analytic expression to transform the shape of the cylinder, we can compute the exact
volume of our geometry using the expression

V =
∫ L

0

∫ 2π

0

∫ A

0

∣∣∣∣ ∂(X ,Y,Z)
∂(R,Θ,Z)

∣∣∣∣dRdΘdZ. (3.59)

For the transformation in equation (3.57), this volume is given by

V =
sA2L
12π2

(
−96(t1−1)2(t2−1)+24π

2(1+ t2
1)(t2−1)

−3π(t1−1)2(t2−1)2 +2π
3(1+ t1 + t2

1)(3−2t2 + t2
2)

)
, (3.60)
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Figure 3.4: Outline of the transformed cylinder problem.

and for a transformed cylinder of constant width we have

V =
sA2L

2
(1+ t1)(π+2t2−2). (3.61)

Once a transformation has been chosen, we can select A to ensure that V = πA2
0L. When

applying this process to our finite element model, we start with a cylindrical mesh of
nodes, apply the transformation outlined above, then set those nodal positions to be the
initial configuration of the tendon. We can then apply the same boundary conditions as
in the cylindrical base case, which are described in Section 3.5.4. This new problem is
outlined in Figure 3.4.

3.5.3 Fibre direction

Many groups who have attempted to model tendons using finite element modelling fail
to specify the direction of the fibres. This is not an issue when the tendon is cylindrical
because it can be assumed that the fibres are aligned with the longitudinal axis of the
tendon. However, when a realistic geometry is used, it is often not clear if the fibres
in these models follow the contours of the geometry or are simply aligned with the
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ZP

AP
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A

L

Figure 3.5: The outline of a tapered, elliptic cylinder containing the point P. To find the
collagen fibre direction vector at this point we imagine the point is on the surface of a
smaller tapered cylinder, shown here in red.

longitudinal axis of the tendon. This could have an impact on the mechanical response
of a tendon if fibres are stopping and starting as the surface undulates. There is strong
evidence that fibres are continuous throughout the length of the tendon (as discussed
in Section 2.1.2), suggesting that the fibre direction field should follow the contours of
the geometry. A further aim of our modelling work is to explore the effects that the
fibre orientation has on the mechanical properties of the tendon, in order to determine if
this should be given more attention when applied to more complex geometries. We can
explore this question using the idealised geometry previously described.

For a tendon of upper semi-major axis A, with shape defined by equations (3.57)
and (3.58), we can derive the fibre direction at a point P : (XP,YP,ZP) by considering a
similar tendon with a smaller semi-major axis AP, centred at Z = 0, on the surface of
which P lies (as shown in Figure 3.5). Since the cross section of our tendon is elliptical,
we can use the polar equation of an ellipse to write down an expression for AP,

AP =
RP

f (ZP)
√

cos2 ΘP + s2 sin2
ΘP

, (3.62)
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where (RP,ΘP,ZP) are the coordinates of our point in cylindrical polar coordinates. We
can now use 0 ≤ u ≤ 2π and 0 ≤ v ≤ L to parametrise a point P on the surface of our
smaller tendon,

P(u,v) = X(u,v)ex +Y (u,v)ey +Z(u,v)ez, (3.63)

where

X(u,v) = AP cosu · f (v), (3.64)

Y (u,v) = sAP sinu · f (v), (3.65)

Z(u,v) = v. (3.66)

We assume that the fibres do not twist about the longitudinal axis of the tendon, although
it has been shown that they can form helical wave patterns within the ACL and the
patellar tendon [86]. For the fibres to not twist around the tendon, we want the fibre
direction field to be parallel to ∂P

∂v . We therefore have that the fibre direction at a point
(XP,YP,ZP) is equal to Mxex +Myey +Mzez, where

Mx = AP cosu f ′(v) (3.67)

My = sAP sinu f ′(v) (3.68)

Mz = 1, (3.69)

where u is the angle between the vector (XP,YP) and the half-plane YP = 0 for XP > 0,
and v = ZP. If we choose to give the tendon a constant semi-minor axis (in the y-
direction), we set My = 0. Figure 3.6 shows an example of this direction field. We
refer to fibres that follow the contours of the tendon geometry as contour-aligned or
c-aligned. The method outlined above is appropriate for finding the direction field of c-
aligned fibres in an idealised geometry defined by known mathematical expressions. For
more realistic geometries based on 3D scans of real tendons and ligaments, a different
method would need to be used. For example, the fibre direction at a node could be found
by considering the slope of the face of the element on which it lies.

Despite the fibres in this example no longer being parallel to one another, we can still
describe the material as transversely isotropic because at each point there is one plane
of symmetry defined by the vector M. We can therefore use the simplified transversely
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(a) (b)

Figure 3.6: The fibre direction field defined in equation (3.67) shown from two angles.
Subfigure (a) shows the plane y = 0, whilst (b) shows the plane x = 0. In this example
we have s = t1 = t2 = 0.5 and A = L = 1.

isotropic version of the Hill yield criterion (equation (2.45)) if we wish to study failure in
our tendon/ligament, provided we apply a suitable transformation to the Cauchy stress.
We choose the transformation which aligns the zz-component of the Cauchy stress with
the deformed fibre direction m = FM, as shown in Figure 3.7. To find the rotation
matrix R required to rotate ez to be in line with m, we can use Rodrigues’ rotation
formula [87],

R = I+ sinθK+(1− cos2
θ)K2, (3.70)

where I is the 3× 3 identity matrix, θ is the angle between ez and m, and K is the
skew-symmetric matrix satisfying

Kez = ez×m. (3.71)

The transformed Cauchy stress tensor σ′ can then be found using

σ
′ = RσRT. (3.72)
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Figure 3.7: Three components of the Cauchy stress σ, and the transformed stress tensor
σ′ which has been rotated to align with the fibre direction.

3.5.4 Application of boundary conditions

To apply the deformation described in Section 3.5.1, we firstly pin all the nodes on the
bottom face of the tendon in the z-direction. Additionally, we pin any nodes on this
surface that lie on the x-axis in the y-direction and vice versa. This pinning process
ensures that the tendon does not undergo any rigid-body rotations or translations, whilst
allowing the tissue to contract in the transverse plane. On the upper face of the tendon,
we use Lagrange multiplier elements to prescribe a certain displacement, which gets
incremented gradually. We must also prescribe the in-plane deformation, for which
we use the expression for a right circular cylinder given in equation (3.48). In reality,
tendons would also experience torsion, bending, and shearing forces which could all
contribute significantly to the internal stress field, and our choice to ignore these forces
means that our model does not accurately represent a tendon/ligament in vivo. Whilst
our boundary conditions do not exactly recreate the conditions that a real tendon or
ligament would be subjected to inside the body, they are still similar to the conditions
experienced by a tendon when it is subjected to tensile testing ex vivo. Our choice to
impose a radial contraction on the upper surface of the tendon is unrealistic for these
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types of tensile tests, as the tissue would need to be placed in some sort of grip in order
to be stretched. Our model can therefore only provide a good approximation to tensile
tests carried out on tendons ex vivo, in the bulk of the tendon, away from the attachment
sites.

3.5.5 Post-processing

Alongside the distributions of stress within the tissue, we should consider the macroscale
stress-strain curve generated over the course of the deformation, to ensure that our re-
sults can be compared with experimental data. To do this, we must consider the traction
applied to the upper surface of the tendon through the Lagrange multiplier elements.
We can find the force applied by integrating the traction over this surface, and convert
to engineering stress by dividing the force by the initial area of this surface. The i-th
component of the resultant force acting on the upper surface of the tendon is given by

Fi =
∫

∂Ω

ΛidS, (3.73)

where Λi is the traction acting at the surface, first introduced in equation (3.7). To find
the engineering stress, we average the z−component of this force over the initial area of
the surface over which it is applied,

σe =
Fz

πsA2 . (3.74)

3.6 Results for idealised geometries

In this section, we first perform a convergence study to determine the resolution required
for our finite element model. We then move on to extract data using idealised geometries
and generic parameter values. We look at the distribution of stress within the tendon and
the maximum value of stress in the direction of the fibres for different values of t1, t2,
and s, along with the different fibre directions discussed in Section 3.5.3. This allows
us to predict the effects of different geometric features on the macroscale mechanical
properties of the tissue.
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Figure 3.8: Illustration of the uniform refinement procedure applied to a single element.
The solid line shows the unrefined element, which gets split up into 8 new elements
during refinement.

3.6.1 Convergence testing

When using the finite element method to solve a problem, the accuracy of the solution
will depend on the resolution of the mesh. Using too few elements will result in the
expression in equation (3.11) being truncated too early, potentially missing important
terms and reducing the overall accuracy of the solution. As we increase the resolution of
the mesh, the solution will eventually become independent of the number of elements,
suggesting that we are converging to a solution. We must therefore perform a resolution
study to find the optimal number of elements required to provide an accurate solution
without wasting computation time.

The simplest way to refine a mesh within oomph-lib is to use the function
refine_uniformly(). This function adds an extra node to the edge between existing
nodes, splitting a single 3D element into eight new elements, as shown in Figure 3.8.
We can also change the number of vertical layers in the underlying mesh by setting a
parameter nlayer. This provides us with two methods of controlling the number of
elements, and we will consider the combinations presented in Table 3.2 for both the
base case and for a non-cylindrical tendon. For the base case we can compare our finite
element solution to the analytic solution, whereas for the non-cylindrical tendon we
must check that the solution converges to some value.

For our resolution study we use the HGO model with material parameters C = 1MPa,
k1 = 10MPa, and k2 = 10. These parameter values were chosen so that the final en-
gineering stress values would be roughly in-line with those observed experimentally.
During our initial implementation, we found that having a realistic ratio (∼ 1,000,000
[42]) between the stiffness of the matrix and the fibres would lead to the Newton solver
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# uniform
refinements # layers # elements

0 5 25
0 10 50
0 20 100
1 5 200
1 10 400
1 20 800
2 5 1600
2 10 3200

Table 3.2: The number of elements used during the resolution study and the parameter
values used to obtain the stated resolution.

diverging, prompting us to use a lower ratio in all subsequent tests. We also found that
stress concentrations would arise more frequently when the HGO model was used (this
is discussed more in Section 3.6.3). As a result of this, we only used the HGO model
in our convergence study, assuming that we would converge to a solution in the same
geometry when using the crimped fibril model. Plots of the engineering stress against
stretch can be seen in Figure 3.9 for the cylindrical base case, and Figure 3.10 for the
transformed geometry. For the cylindrical geometry, we increased the stretch in incre-
ments of 0.01 until reaching λ = 1.2. For non-cylindrical geometries, we only stretched
up to a final value of λ = 1.1 because a smaller step size was necessary.
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Figure 3.9: Comparison of the analytic and finite element solution for a transversely
isotropic cylinder. We use the HGO model in both cases with C = 1MPa, k1 = 10MPa,
and k2 = 10. The finite element solution uses 25 elements, the lowest number in our
resolution study.
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Figure 3.10: Comparison of the least and most refined solutions for a tendon with ide-
alised geometry stretched by a factor of λ = 1.1. The geometric parameters used were
s = 0.5, t1 = t2 = 0.8. Both curves lie on top of one another.

From Figures 3.9 and 3.10, it appears as though the engineering stress is unaffected
by the number of elements in both geometries. For the cylindrical mesh we can obtain
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a very accurate solution using a low number of elements because the deformation is ho-
mogeneous. For the non-cylindrical mesh we find that the engineering stress alone is not
enough to determine convergence, since it averages out any discrepancies between the
solutions. If we observe the solution at individual points within the mesh, we find that
there is indeed a difference between the different levels of refinement. Shown in Figure
3.11 is the final position of two points in the initial configuration: p1(0.085,0.0,0.8) and
p2(0.050,0.026,0.4) (shown in Figure 3.12), as a function of the number of elements
in the mesh. These points were chosen by selecting one random point in the bulk of the
tendon, and one random point on the surface of the tendon and finding the nodes closest
to those points. Figures 3.11 (a) and (c)–(f) all show a jump in the solution when the
number of elements increases from 100 to 200. To produce a mesh with 200 elements,
we refine the mesh uniformly rather than by increasing the number of vertical layers.
As a result of the new in-plane refinement, the shape of the cross-section changes and
the final solution differs. We find that any mesh with over 200 elements, corresponding
to one uniform refinement, is a high enough resolution to produce a mesh-converged
solution. Since we can refine a second time whilst maintaining a moderate computation
time, we choose to use a mesh containing 1600 elements in future tests, allowing for
some degree of computational overhead.
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Figure 3.11: The x-, y-, and z-components of two points p1 and p2 in the final deformed
configuration as a function of the number of elements in the mesh.

3.6.2 Ellipticity

To study the effects of ellipticity on the macroscale mechanical behaviour of tendons
and ligaments, we vary the ellipticity parameter s between s = 1.0 and s = 0.5, holding
all other geometric and material properties constant. We set the volume of each test
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O

p1

p2

Figure 3.12: The position of p1 and p2 within the tendon. The origin is denoted by O.

to be equal to that of a reference circular cylinder of radius A = 0.1 and length L = 1.
When using the HGO model, we use µ = 1MPa, k1 = 10MPa, and k2 = 10, and for the
crimped fibril model we use µ = 1MPa, E = 10MPa, φ = 0.8, a = 1.0, b = 1.05, and
c = 1.025. The parameter values used for the crimped fibril model are in-line with those
observed experimentally, whilst maintaining a similar fibre to matrix stiffness ratio as in
the tests that used the HGO model. For both models, we find that decreasing s does not
affect the stress-strain curves or the internal stress distributions, because the prescribed
displacement on the upper surface of the tendon yields a homogeneous stress field with
one non-zero value of stress σzz. The stress-strain curves obtained in these tests are
identical to the analytic expression for the base case of a right-circular cylinder, because
the internal deformation field is identical. Figure 3.13 shows the engineering stress-
strain curves obtained through finite element modelling for the two different constitutive
models being considered in this section.
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Figure 3.13: Engineering stress against stretch for elliptic tendons of equal volume. The
HGO model is used in (a), whilst the crimped fibril model is used for (b). All curves lie
on top of one another.

3.6.3 Linear taper

Yoo et al. found that the width of the patellar tendon decreases from 30.3mm at the
proximal part, to 24.0mm at the distal part [88], tapering linearly from one end to the
other. We now investigate the effects of such a linear taper on the mechanical properties
of the tendon/ligament, by varying the geometric parameter t1. We choose to vary t1 be-
tween t1 = 1.0 and t1 = 0.5, with all other parameters (including t2 and s) held constant.
Whilst this lower limit is below the value observed by Yoo et al. (t1 = 0.79), it will allow
us to explore an extreme limit. We start by aligning the fibres with the z-axis, before
changing the fibre direction to follow the contours of the geometry. The engineering
stress-strain curve obtained using these parameters with the HGO model and z-aligned
fibres can be seen in Figure 3.14. As t1 decreases, the bottom area of the tendon also
decreases, meaning that to keep a constant volume, the top area must increase. Because
the resultant force acting on the top surface is being spread over a larger area, the engi-
neering stress decreases. For t1 = 0.6 and t1 = 0.5, we found that the Newton solver did
not converge to a solution for the chosen parameter values. By looking at the maximum
value of σzz in the tendon, as shown in Figure 3.14, we can see that the stress begins
to increase sharply at a certain value of stretch. The heat plot in Figure 3.16 shows the
distribution of σzz within a cross-section of the tendon with t1 = 0.5 at a stretch value
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Figure 3.14: Engineering stress (a) and maximum σzz (b) against stretch for linearly
tapered tendons with z-aligned fibres using the HGO model. The maximum value of
σzz is located at the edge of the smallest cross-section, as shown in Figure 3.16.

of λ = 1.065. In this figure we can clearly see a large stress concentration building up
around the bottom edge of the tendon, where there is no solution for large λ.

When we align the fibres to follow the contours of the geometry, we see a similar
general trend, as shown in Figure 3.15. As t1 decreases, the engineering stress at a given
strain will decrease, and the maximum value of σzz will increase because the smallest
cross-section is decreasing in size. However, with this fibre orientation we do not see
the same stress concentrations forming around the lower edge of the tendon, as can be
seen in Figure 3.16. We instead see that the magnitude of σzz increases smoothly as the
radius of the tendon decreases, reaching a maximum on the bottom surface. For t1 = 0.5
and λ = 1.065, we found that changing from z- to c-aligned fibres reduces the maximum
value of σzz by 94%.

When using the crimped fibril model, we see the same general trends emerge. The
engineering stress and maximum value of σzz for linearly tapered tendons using this
model can be seen in Figures 3.17 and 3.18. To generate these figures we used µ =

1.0MPa, E = 10MPa, φ = 0.8, a = 1.0, b = 1.05, and c = 1.025. In Figure 3.17 the
fibres are aligned with the z-axis, whilst in Figure 3.18 they follow the contours of the
geometry. In the most extreme case (t1 = 0.5), we find that changing the fibre orientation
from z-aligned to c-aligned reduces the final value of peak stress by 38.6%, whilst the
final value of engineering stress increases by 5%. This decrease in peak stress is still
significant, but it is much smaller than in the case of the HGO model (reduction of 94%
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Figure 3.15: Engineering stress (a) and maximum σzz (b) against stretch for linearly
tapered tendons with c-aligned fibres using the HGO model. The maximum value of σzz
is located in the centre of the smallest cross-section.

Figure 3.16: Distributions of σzz within the cross-section of a linearly tapered tendon
with t1 = 0.5 at a stretch value of λ = 1.065. On the left, the fibre direction is aligned
with the longitudinal axis of the tendon. On the right, the fibre direction follows the
contours of the geometry.
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Figure 3.17: Engineering stress (a) and maximum value of σzz for a linearly tapered
tendon with z-aligned fibres using the crimped fibril model. The maximum value of σzz
is located at the outer edge of the smallest cross-section.

at λ = 1.065), showing that using the crimped fibril model reduces the magnitude of the
stress concentrations.

3.6.4 Hourglass taper

Whilst the patellar tendon exhibits a linear taper, other tendons/ligaments, such as the
ACL, have a smaller cross-sectional area in the middle than at each end. To incorpo-
rate this into our model we can vary t2, causing the base cylinder to transform into an
hourglass shape. We apply the same process as in Section 3.6.3, but we hold s and
t1 constant, whilst varying t2. Figure 3.19 shows the engineering stress and maximum
value of σzz for a tendon with different values of t2 using the HGO model with the same
material parameters as in Section 3.6.3. We again find that as t2 decreases, the upper
surface of the tendon must increase in size to maintain a constant volume, leading to a
decrease in engineering strain. As the centre portion of the tendon decreases in size, the
peak value of σzz increases, as in the linearly tapered case. Figure 3.20 shows the same
tests but with c-aligned fibres. Changing from z-aligned fibres to c-aligned fibres with
t2 = 0.5 causes the peak stress to decrease by 48% and the maximum engineering stress
to increase by 24%.
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Figure 3.18: Engineering stress (a) and maximum value of σzz for a linearly tapered
tendon with c-aligned fibres using the crimped fibril model. The maximum value of σzz
is located in the centre of the smallest cross-section.
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Figure 3.19: Engineering stress (a) and maximum value of σzz for an hourglass-shaped
tendon with z-aligned fibres using the HGO model. The maximum value of σzz is located
at the outer edge of the smallest cross-section.
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Figure 3.20: Engineering stress (a) and maximum value of σzz for an hourglass-shaped
tendon with c-aligned fibres using the HGO model. The maximum value of σzz is lo-
cated in the centre of the smallest cross-section.

For the crimped fibril model, the figures corresponding to Figure 3.19 and 3.20 can
be seen in Figures 3.21 and 3.22, respectively. We find that for t2 = 0.5, when switching
from z-aligned to c-aligned fibres, the peak value of σzz decreases by 14%, whilst the
maximum engineering stress increases by 12%.
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Figure 3.21: Engineering stress (a) and maximum value of σzz for an hourglass-shaped
tendon with z-aligned fibres using the crimped fibril model.The maximum value of σzz
is located at the outer edge of the smallest cross-section.

From these results we gain some important knowledge about finite element mod-
elling of tendons and ligaments. We find that changing the cross-section of the tendon
from circular to elliptic had no effect on the deformation field in the tendon.
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Figure 3.22: Engineering stress (a) and maximum value of σzz for an hourglass-shaped
tendon with c-aligned fibres using the crimped fibril model. The maximum value of σzz
is located in the centre of the smallest cross-section.

When we allow the cross-sectional area to vary along the length of the tendon, we
find that the peak stress increases around the smallest cross-section. We determined that
high stress concentrations can arise in certain geometries when the fibres are aligned
with the z-axis, rather than following the contours of the geometry. When using the
semi-phenomenological HGO model in a tendon with a linear taper, we found that, in
the most extreme case, changing the fibres from z- to c-aligned reduced the peak stress
by up to 94%. For the crimped fibril model, the corresponding peak stress reduced by
39% – still a significant reduction, but much less than the HGO model. This difference
between the two models is because the crimped fibril model is linear above a certain
value of stretch, but the HGO model is not.

3.7 Results for specific tendons/ligaments

The results in Section 3.6 allow us to identify some general trends which we can ex-
plore further using more realistic geometries and material parameters. We determined
that having a cross-section which varies along the length of the tendon introduces a re-
gion with a higher peak stress. We found that there is a significant difference between
this peak stress, in all geometries, when we change the direction of the fibres from z-
aligned to c-aligned. We will therefore focus on the fibre direction in two very different
tendon geometries – the Achilles tendon and the ACL. This will allow us to determine
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if the differences found in Section 3.6 are equally as significant when more realistic ge-
ometries are used. We will also consider different yield criteria in these more realistic
geometries in order to test the validity of the von Mises yield criterion. Since there was
little qualitative difference between the results produced by the HGO and crimped fibril
models, we choose to use the microstructurally-based crimped fibril constitutive model
to ensure that all parameters could be measured experimentally.

In addition to the z- and c-aligned fibre configurations, we will consider a third
configuration based on the findings of Mommersteeg et al. [89], who determined that
collagen density increases in the mid-section of the knee ligaments, where the cross-
sectional area is smallest. Until now we have assumed that the collagen area fraction,
often computed from cross-sectional images of tendons, is equal to the collagen volume
fraction. If the fibres follow the geometry of the tendon and are continuous down its
length, it may be the case that the density of the collagen fibres increases in regions
where the cross-sectional area is smaller, leading to the non-uniform collagen density
found by Mommersteeg et al. To test the effects this would have on our model, we will
assume that the area of collagen at height z is constant, rather than the area fraction.
This leads to a spatially-dependent area fraction of the form

φ(z) = φmin
CSA(zmin)

CSA(z)
, (3.75)

where CSA(z) is the cross-sectional area at height z, zmin is the height with the smallest
cross-section, and φmin is the area fraction at zmin. We choose

φmin =
φconstV

CSA(zmin)L
, (3.76)

where V is the volume of the tendon, to match the volume of collagen with a tendon
possessing a uniform distribution of collagen with constant area fraction φconst, thereby
ensuring that φ(z)< 1 for 0≤ z≤ L.

3.7.1 Achilles tendon

The first tendon we will model is the Achilles tendon, which stretches from the heel
to the soleus muscles of the calf. The Achilles tendon is the thickest in the body and
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5mm

5mm

Figure 3.23: When modelling the Achilles tendon, we assume a constant semi-minor
axis of 2.5mm. The upper semi-major axis is 1.64cm, the central semi-major axis is
0.81cm, and the lower semi-major axis is 1.61cm.

has a broad, flat shape which narrows towards the centre [90]. We use measurements
presented by Reeves et al. [91] to approximate the Achilles tendon geometry. We
assume an upper semi-major axis of 1.64cm, a lower semi-major axis of 1.61cm and a
central semi-major axis of 0.81cm. We assume a constant semi-minor axis of 2.5mm
down the entire length of the tendon, as shown in Figure 3.23. These measurements
lead to geometric parameter values of s = 0.15, t1 = 0.98 and t2 = 0.501, and ensure
that the cross-sectional area at the top, centre, and bottom of the tendon match the
values calculated by Reeves et al. We use L = 17cm and choose φconst = 0.65, leading
to a value of φmin = 0.86 for the spatially-varying collagen fraction. The value of φconst

is chosen arbitrarily to ensure φmin < 1, but both values fall within the experimentally
observed range [20].

A plot of φ(z) for this geometry can be seen in Figure 3.24. We use a ground state
shear modulus of µ = 50MPa and a collagen Young’s modulus of 2.5GPa. This value
of E is consistent with values obtained experimentally, and µ was chosen to ensure the

1The actual value used in the finite element model was t2 = 0.53.
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Figure 3.24: Collagen area fraction as a function of height for the Achilles tendon. The
solid line shows the spatially varying area fraction defined in equation (3.75), whilst the
dashed line shows the equivalent constant area fraction. In both cases the total volume
of collagen is equal.

ratio between the two values was not too large. The distribution parameters remain
unchanged at a = 1.0, b = 1.05, and c = 1.025. In this geometry we will compare three
different fibre configurations: z-aligned fibres, c-aligned fibres with constant φ, and c-
aligned fibres with spatially varying φ = φ(z). The engineering stress for the three fibre
configurations can be seen in Figure 3.25.

Instead of considering the maximum value of σzz, we will now consider the trans-
formed Cauchy stress σ′zz, defined in equation (3.72), because we will be using an
anisotropic yield criterion to predict locations of failure in the tissue. Such a crite-
rion requires the stress in the direction of the fibres, as described in Section 3.5.3. A
plot of the maximum value of σ′zz can be found in Figure 3.26, and distributions of σ′zz

can be seen in Figure 3.27.
Figures 3.25 and 3.26 show the same trend as in Section 3.6. Switching from z- to c-

aligned fibres with constant φ increases the final engineering stress by 5% and decreases
the maximum value of σ′zz by 31%. In the c-aligned case, changing from a constant φ to
a spatially-varying φ increases the engineering stress by 4%, and the maximum value of
σ′zz by 4%. The stress distributions in Figure 3.27 show that when the fibres are aligned
with the z-axis, there is a large stress concentration at the edges of the most narrow part
of the tendon. To determine the cause of the stress concentrations in this configuration,
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Figure 3.25: Engineering stress against stretch for the Achilles tendon with three differ-
ent fibre configurations.
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Figure 3.26: The maximum value of the Cauchy stress in the direction of the fibres σ′zz
as a function of stretch for three different fibre orientations within the Achilles tendon.
For z-aligned fibres, the maximum value of σ′zz is found at the outer edge of the smallest
cross-section. For c-aligned fibres it is found in the centre of the smallest cross-section.
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we consider the internal deformation in the z-direction and how this differs from the
homogeneous deformation field observed in a right-circular cylinder. We define the the
z-inhomogeneity at a height z in the deformed configuration to be

uz = z−λZ, (3.77)

where Z is the height of the point in the undeformed body. Figure 3.28 shows the z-
inhomogeneity for the three fibre configurations.

We can see from Figure 3.28 that z-aligned fibres cause a significant amount of
additional deformation in the z-direction compared with the homogeneous deformation
of a right-circular cylinder. The outer edge of the tendon deforms in a way that puts
additional strain on the mid-section, leading to the high stress concentrations observed
in Figure 3.27. For c-aligned fibres with constant φ, we see a more even distribution
of uz across the radius of the tendon. In this case there is still additional strain placed
on the mid-section, again leading to an increase in stress in that region. For c-aligned
fibres with spatially-varying φ, it appears from Figure 3.28 as though the deformation
is homogeneous. However, adjusting the scale allows us to see that there is some slight
inhomogeneity. This is shown in Figure 3.29.

The deformation deviation fields presented in Figure 3.29 are roughly ten times
smaller in magnitude than for the z-aligned fibre configuration. We see similar defor-
mation around the upper and lower edges of the tendon, but now with a thin vertical
band in the very centre, which is present for both constant and spatially-varying φ. This
is responsible for the corresponding vertical band of stress observed in Figure 3.27. By
increasing the value of φ where the cross-sectional area is smallest, we have eliminated
some of the additional deformation, leaving only the edges and the band in the centre.
The central band may be explained physically if we consider fibrils passing through
this part of the tendon. When we have c-aligned fibres, they are all different lengths
within the tendon (ignoring any crimp). The fibrils closest to the centre of the tendon
will be shortest and will therefore be stretched more in the z-direction in order to main-
tain the globally prescribed strain. With z-aligned fibres, all of the fibrils in this region
are the same length and point in the same direction, so we do not see this effect. The
additional deformation present at the edges of the tendon is related to the stiffness of
the outer boundary itself. As the tendon is stretched, the convex outer boundary will
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Figure 3.27: Distributions of stress in the Achilles tendon with three different fibre
orientations. On the left, fibres are aligned with the longitudinal axis of the tendon
(z-aligned) and collagen volume fraction is constant. In the middle, fibres follow the
contours of the geometry (c-aligned) and the collagen volume fraction is constant. On
the right, fibres are c-aligned and the collagen volume fraction varies with height, as
shown in Figure 3.24. The stress measure used is the zz-component of the Cauchy stress
rotated to be aligned with the direction of the fibres, σ′zz.
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Figure 3.28: Distributions of uz, the z-inhomogeneity defined in equation (3.77), in a
cross-section of the Achilles tendon. On the left, the fibres are are z-aligned and the
collagen volume fraction is constant. In the middle, the fibres are c-aligned and the
collagen volume fraction is constant. On the right, the fibres are c-aligned and the
collagen volume fraction is spatially-dependent.



88CHAPTER 3. FINITE ELEMENT MODELLING OF TENDONS AND LIGAMENTS

Figure 3.29: A cross-section of the Achilles tendon showing the distribution of uz, the
z-inhomogeneity defined in equation (3.77). In both plots the fibres are c-aligned. On
the left, φ is constant, whilst on the right, φ = φ(z). This figure shows the same quantity
as Figure 3.28, but scaled to the visible range.
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Figure 3.30: An anterior view of the junction between the femur and the tibia when the
right knee is in flexion, illustrating the positioning of the cruciate ligaments. Included
are the anterior cruciate ligament (ACL), comprised of two bundles of fibres wrapped
around one another, and the posterior cruciate ligament (PCL). Diagram based on pho-
tographs by Petersen et al. [93]

flex, resulting in additional vertical displacement. For c-aligned fibres this effect is not
strong enough to produce stress concentrations, but for z-aligned fibres the effect is sig-
nificantly stronger. This may be because the largest component of force is being carried
in the direction of the fibres, which for z-aligned fibres is vertically.

3.7.2 Anterior cruciate ligament

The Anterior Cruciate Ligament (ACL) connects the lateral femoral condyle to the an-
terior intercondylar area of the tibia, as can be seen in Figure 3.30. It is vital for joint
stability and is commonly injured during high-impact sports and exercise [92], making
it a good candidate for finite element modelling. The ACL has an interesting geome-
try, being composed of two distinct bundles of fascicles which wrap around each other
between their insertion sites.

We use measurements from Fujimaki et al. [94] to estimate the geometric param-
eters required to approximate the ACL geometry within our idealised framework. We
assume an upper semi-major axis of 7.3mm, a lower semi-major axis of 6.4mm, a mid-
dle semi-major axis of 4.3mm, and a length of L= 24mm. We use s= 0.7, t1 = 0.88, and
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Figure 3.31: Collagen area fraction against height in the idealised model of the ACL.
The solid black line shows the spatially-varying area fraction, whilst the dashed line
represents the constant area fraction. In both cases the total volume of collagen is the
same.

t2 = 0.63. Unlike for the Achilles tendon, we do not assume that the ACL has a constant
semi-minor axis, instead allowing the radius to change in both the x- and y-directions
down the length of the tendon, using equation (3.58). These geometric parameter values
ensure that the cross-sectional area of the ACL matches the values calculated by Fuji-
maki et al. We use the same material parameters as in the previous section, but choose
φconst = 0.6, leading to φmin = 0.84. These values still fall within the range observed
experimentally [20]. Figures 3.32 and 3.33 show the engineering stress and maximum
value of σ′zz, respectively. Switching from z-aligned fibres to c-aligned fibres shows a
similar trend to the Achilles tendon with the maximum engineering stress increasing
by 10% for constant φ and 12% for spatially-varying φ. We see the maximum value of
σ′zz decrease by 33% for constant φ and 32% for spatially-varying φ. This once again
demonstrates that choosing a more realistic fibre direction has a large impact on both
the average and maximum stress. We also see similar stress distributions to the Achilles
tendon, as shown in Figure 3.34.

From Figure 3.34, we see stress concentrations appearing around the centre of the
ACL when z-aligned fibres are used. In contrast to the Achilles tendon, this stress
concentration is present around the entire circumference of the ACL, since we have
not assumed a constant semi-minor axis. For the c-aligned fibres, we see the same
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Figure 3.32: Engineering stress against stretch for the ACL with three different fibre
configurations.
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Figure 3.33: The maximum value of the Cauchy stress in the direction of the fibres
σ′zz as a function of stretch for three different fibre configurations within the ACL. For
z-aligned fibres, the maximum value of σ′zz is found at the outer edge of the smallest
cross-section. For c-aligned fibres it is found in the centre of the smallest cross-section.
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1mm

Figure 3.34: Distributions of σ′zz, defined in equation (3.72), within the ACL. On the left,
fibres are aligned with the z-axis. In the middle, fibres are c-aligned and φ is constant.
On the right, fibres are c-aligned and φ varies in space.
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Figure 3.35: Distributions of σ′zz within a central cross-section of the ACL with normal
in the z-direction. On the left, fibres are aligned with the z-axis. In the middle, fibres are
c-aligned and φ is constant. On the right, fibres are c-aligned and φ is spatially-varying.

vertical banding appearing on the wider faces of tendon. Figure 3.35 shows the stress
distribution within a cross-section with normal in the z-direction positioned directly in
the centre of the tendon. For z-aligned fibres we see that the stress concentrations do
not penetrate far into the tissue, whilst for c-aligned fibres we find that the stress is more
homogeneous throughout the cross-section. Figure 3.36 shows the z-inhomogeneity in a
cross-section of the ACL for the three fibre configurations under consideration. Similar
to the Achilles tendon, we see more deformation around the outer edges, causing the
curved boundary to be pulled towards the flat ends of the tissue. For c-aligned fibres
with constant φ, we see the deformation has been spread out across the whole radius of
the ligament, as we saw in Figure 3.28 for the Achilles tendon. Interestingly, when we
consider spatially-varying φ, we see that the direction in which the bulk of the tissue is
being displaced, relative to the deformation of a right-circular cylinder, has been flipped.
In all other cases, we saw material at either side of the mid-point being stretched towards
the ends of the tissue relative to the homogeneous deformation, whereas in this case we
see it being pulled towards the centre. This is because, in this configuration, the stiffness
at the centre of the ACL is significantly higher than at the ends, causing material to be
pulled towards the centre, relative to the homogeneous deformation.

Rescaling the axis of Figure 3.36 to the visible range for the c-aligned fibre con-
figurations yields Figure 3.37. Here we see interesting structure emerging at a lower
magnitude of z-inhomogeneity than the banding present in the z-aligned fibre case. For
spatially-varying φ, we see that at the outer edge of the ACL, the boundaries displace
towards the upper and lower edges, whilst the tissue in the centre moves toward the
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Figure 3.36: Distributions of uz, the z-inhomogeneity defined in equation (3.77), in
a cross-section of the ACL. On the left, the fibres are are z-aligned and the collagen
volume fraction is constant. In the middle, the fibres are c-aligned and the collagen
volume fraction is constant. On the right, the fibres are c-aligned and the collagen
volume fraction is spatially-dependent.
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Figure 3.37: A cross-section of the ACL showing the distribution of uz, the z-
inhomogeneity defined in equation (3.77). In both plots the fibres are c-aligned. On
the left, φ is constant, whilst on the right, φ = φ(z). This figure shows the same quantity
as Figure 3.36, but scaled to the visible range.

mid-point of the ligament, relative to the homogeneous case, as previously described.
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3.8 Evaluation of yield criteria

3.8.1 Achilles tendon

In order to evaluate the performance of the von Mises and Hill yield criteria, we consider
the finite element model of the Achilles tendon presented in Section 3.7.1. We choose
to focus on this tendon over the ACL, because our idealised geometry more accurately
represents the shape and structure of the Achilles tendon. To determine the importance
of material strength anisotropy, we define the material strength factor γ ∈ (0,1]. We
assume that the yield stress of the fibres is σY

z = 230MPa and set the value of all other
yield stresses to be σY

i = γσY
z . This value of yield stress was chosen because it produced

yielding when substituted into the von Mises yield criterion along with the finite element
results in Section 3.7.1. We set the yield stresses in shear to be τY

i j = σY
z /
√

3, leading to
the following values of the Hill parameters F , G, H, L, M and N (introduced in Section
2.2.6),

F =
1
2

(
1

(γσY
z )

2 +
1

(σY
z )

2 −
1

(γσY
z )

2

)
, (3.78)

G =
1
2

(
1

(σY
z )

2 +
1

(γσY
z )

2 −
1

(γσY
z )

2

)
, (3.79)

H =
1
2

(
1

(γσY
z )

2 +
1

(γσY
z )

2 −
1

(σY
z )

2

)
, (3.80)

L =
3

2(σY
z )

2 , (3.81)

M =
3

2(σY
z )

2 , (3.82)

N =
3

2(σY
z )

2 . (3.83)

By setting γ = 1, the Hill criterion (given in equation (2.45)) reduces to the von Mises
criterion (given in equation (2.43)). There is limited data available for the strength of
soft tissue in directions transverse to the fibres and we will therefore investigate the
effects of γ on failure in our finite element model. Shown in Figure 3.38 is the results
of this analysis for λ = 1.1. We clearly see that for z-aligned fibres, values of γ = 1,
γ = 0.25, and γ = 0.1 all produce potential regions of failure (where the yield stress
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exceeds 1) around the edges of the tendon mid-substance, where the cross-sectional
area is smallest. For c-aligned fibres we see that values of γ = 1 and γ = 0.25 are not
low enough to produce regions of failure at this level of stretch. However when γ = 0.1,
we see the edges of the tendon closer to the ends become potential regions of failure, as
shown by the dark red areas in Figures 3.38(f) and 3.38(i). In this instance the matrix
is weak enough so that the distortion in the transverse plane builds up enough stress to
exceed the limit imposed by the criterion.

3.8.2 Analytic tension-torsion of a cylinder

To further test the validity of isotropic and anisotropic yield criteria, we now consider
a slightly more complex deformation for which we can produce an analytic solution
for the stress. Returning to the base problem defined in Section 3.5.1, we now impose
a twist Ψ to the upper surface of the cylinder, on top of the uniaxial extension. This
superposition of deformations leads to a plane at height z being subjected to a twist of
zΨ. Figure 3.39 shows an updated outline of the base problem. We will begin by finding
an analytic expression for the stress in a transversely isotropic cylinder subject to these
boundary conditions. We will then compare the isotropic von Mises yield criterion to
the anisotropic Hill yield criterion using the calculated stress field.

The deformation gradient tensor and left Cauchy-Green deformation tensor are given
by

F =


1√
λ

0 0

0 1√
λ

rψλ

0 0 λ

 and B =


1
λ

0 0
0 1

λ
+ r2ψ2λ2 rψλ2

0 rψλ2 λ2

 , (3.84)

respectively. The fibre direction in the initial configuration is M = (0,0,1)T, whilst in
the deformed configuration it is given by

m = FM =

 0
rψλ

λ

 . (3.85)
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z-aligned fibres
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c-aligned fibres & constant φ

(d) (e) (f)

c-aligned fibres
&

spatially-varying φ
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Figure 3.38: The distribution of scalar stress measures defined by different yield criteria
in the Achilles tendon after having been stretched by a factor of λ = 1.1. The stress
measures are scaled to the material strength – a value of 1 corresponds to a potential
failure location. In (a): z-aligned fibres and von Mises stress, (b): z-aligned fibres and
Hill stress with γ = 0.25, (c): z-aligned fibres and Hill stress with γ = 0.1, (d): c-aligned
fibres with constant φ and von Mises stress, (e): c-aligned fibres with constant φ and Hill
stress with γ = 0.25, (f): c-aligned fibres with constant φ and Hill stress with γ = 0.1,
(g): c-aligned fibres with spatially-varying φ and von Mises stress, (h): c-aligned fibres
with spatially-varying φ and Hill stress with γ= 0.25, (i): c-aligned fibres with spatially-
varying φ and Hill stress with γ = 0.1.
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applied stretch and torsion

l = λL

a

ψλL

Figure 3.39: An updated version of the base problem in Figure 3.3. We now apply a
twist Ψ to the top surface of the cylinder after stretching by a factor of λ.
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After calculating the strain invariants we have

I1 = Tr(C) =
2
λ
+λ

2 + r2
λ

2
ψ

2, (3.86)

I2 =
1
2
(Tr(C)2−Tr(C2)) =

1
λ2 +2λ+ r2

ψ
2
λ, (3.87)

I3 = det(C) = 1, (3.88)

I4 = M · (CM) = λ
2 + r2

λ
2
ψ

2. (3.89)

Following the same process as in Section 3.5.1, we find that the components of the
Cauchy stress are given by

σ11 =−p+
2W1

λ
, (3.90)

σ12 = σ21 = σ13 = σ31 = 0, (3.91)

σ22 =−p+
2W1

λ
+2(W1 +W4)r2

ψ
2
λ

2, (3.92)

σ23 = σ32 = 2(W1 +W4)rψλ
2, (3.93)

σ33 =−p+2(W1 +W4)λ
2. (3.94)

Inserting these into the equilibrium equations, ∇ ·σ = 0, leads to

∂p
∂θ

= 0 and
∂p
∂z

= 0, (3.95)

for the θ- and z-components. The r-component gives

(∇ ·σ)r =
∂σ11

∂r
+

1
r
(σ11−σ22) = 0

=⇒ ∂

∂r

[
− p+

2W1
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]
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[
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2
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2
]
= 0

=⇒ ∂p
∂r

= 2(W1 +W4)rψ
2
λ

2

=⇒ p = (W1 +W4)r2
ψ

2
λ

2 + p0, (3.96)

where p0 is a constant and we have assumed that ∂W
∂r = 0, as is the case for both the HGO

and crimped fibril models. We can now apply the traction-free boundary condition to
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the outer surface of the cylinder,

σ ·n = 0 at r = a, (3.97)

where n = (1,0,0)T is the outer unit normal to the curved surface of the cylinder. Ap-
plication of the boundary condition yields

p0 =
2W1

λ
− (W1 +W4)a2

ψ
2
λ

2. (3.98)

Substituting (3.96) and (3.98) into (3.90)–(3.94) produces the following expressions for
the components of Cauchy stress,

σ11 = (W1 +W4)(a2− r2)ψ2
λ

2, (3.99)

σ12 = σ21 = σ13 = σ31 = 0, (3.100)

σ22 = (W1 +W4)(a2 + r2)ψ2
λ

2, (3.101)

σ23 = σ32 = 2(W1 +W4)rψλ
2, (3.102)

σ33 = (W1 +W4)(a2− r2)ψ2
λ

2 +2(W1 +W4)λ
2− 2W1

λ
. (3.103)

We can now use the yield criteria defined in Section 2.2.6 to determine whether
an applied deformation will lead to failure or not. We consider a twist Ψ applied to
a cylinder that has already been stretched by a factor of λ = 1.1, and calculate the
critical value of twist Ψc required for the cylinder to yield, using the same constitutive
parameters as in Section 3.7.2. By using the Hill criterion, defined in equation (2.45),
we can vary the degree of anisotropy in the material strength to see if there is an impact
on the failure behaviour under these loading conditions. We use the same material
parameters as before, assuming again that σY

z = 230MPa. Figure 3.40 shows σH as a
function of Ψ for γ = 1, γ = 0.25, and γ = 0.1. According to the Hill yield criterion, the
material will yield when σ2

H−1 = 0.
As can be seen from Figure 3.40, the Hill stress σH is initially the same value for

all three tests because, until a twist is applied, the Cauchy stress has only one non-zero
component, σzz. When γ= 1, we have an isotropic yield criterion with the same material
strength in each direction, meaning that we must apply a large twist of 8.7 radians (over
two full revolutions) to the top surface of the cylinder in order to build up enough stress
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Figure 3.40: The square of the Hill stress as a function of twist in a cylindrical tendon.
The red line corresponds to a material strength factor of γ = 1, meaning that the material
strength is the same in all directions and the Hill stress reduces to the von Mises stress.
Reducing the transverse strength of the tissue leads to the blue and green curves, which
have material strength ratios of γ = 0.25, and γ = 0.1, respectively.

to achieve σ2
H = 1. For γ = 0.1, we find that the twist required to induce failure is 0.85

radians – a 90% decrease. We know that the stiffness of the matrix is ∼ 1,000,000
times smaller than the stiffness of the collagen fibres [69], yet if the strength of the
matrix is only 10 times smaller than that of the fibres (corresponding to γ = 0.1), the
failure behaviour of the tissue changes significantly. To produce these results we used
fibre and matrix stiffness values of 2.5GPa and 50MPa, respectively – a difference of
only 50×. A more realistic stiffness ratio would counteract a large material strength
ratio, because the lower relative stiffness in the matrix would prevent it from reaching
its yield stress under normal conditions. To provide a more thorough evaluation of
different yield criteria, we would need accurate measurements of material parameters,
rather than order of magnitude estimations.

3.9 Discussion

In this chapter, we have performed finite element analysis on idealised models of ten-
dons and ligaments in order to determine if commonly-followed modelling practices
are reasonable, or if they should be reconsidered. The areas of interest highlighted by
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a comprehensive literature review were: the constitutive model used to represent the
tissue, the shape of the tendon/ligament, the fibre direction, and the choice of yield cri-
terion. We assumed some generic parameter values, chosen to cover as many different
tendon geometries as possible, and considered a simple deformation (uniaxial tension).
We varied different geometric parameters in order to produce plots of average stress,
maximum stress, and distributions of stress that can be compared quantitatively with
one another and qualitatively with the literature, allowing for the critical evaluation of
modelling practices.

3.9.1 Constitutive model and material parameters

Almost all of the constitutive models in the literature on finite element modelling of ten-
dons and ligaments are phenomenological, meaning that they contain parameters that
cannot all be measured experimentally (see Table 3.1). There are clearly some benefits
to using a phenomenological model – namely that they are much simpler than their
microstructurally-based counterparts and they are often already implemented within
commercial finite element packages. This means that results can be produced quicker,
and more complex geometries and deformations can be considered since the models are
well-tested.

In this chapter we presented a model based solely on the tissue microstructure which
is simple (it can be written down analytically), and contains only parameters that could,
in principle, be measured experimentally2. To produce an initial set of results, we com-
pared this crimped fibril model with the widely-used HGO model [47]. For the HGO
model, we set the ground state shear modulus to µ = 1MPa, and the remaining material
parameters to k1 = 10MPa and k2 = 10. In reality, we would expect a much larger ratio
between the stiffness of the matrix and the fibres [69], but for some geometries we en-
countered convergence issues if the stiffness ratio was too large. For the crimped fibril
model we also used µ = 1MPa. We set the collagen Young’s modulus to E = 10MPa,
and the fibril length distribution parameters were a = 1.0, b = 1.05, and c = 1.025. This
value of E is much lower than is typically recorded in the literature (∼ 0.8GPa [95]),
but was chosen to match the value of k1 in the HGO model. The distribution parameters
were set based on the assumption that the linear region ends at around 5% strain. Both

2Chapter 4 contains more details on the feasibility of measuring these parameters.
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models produced qualitatively similar results for all geometries, with the exception of
the linearly tapered tendon with z-aligned fibres, which produced large stress concentra-
tions around the smallest cross-section of the tendon or ligament when the HGO model
was used.

The model used in this chapter was simple but contains more information about
the microstructure than phenomenological models, meaning it could be used to predict
how the tissue behaviour would change given sufficient microstructural information.
Additionally, we can estimate the distribution parameters for different tissues based
on available data without needing to perform tensile tests and fit to stress-strain data.
A significant proportion of models we came across in our literature search assumed
isotropy, despite the fibrous nature of soft tissue. Whilst this might provide a reasonable
approximation for some tissues at small strains [96], we recommend against this choice
for tendons and ligaments, given that their microstructure cannot be well-represented
by an isotropic model, and because of the well-documented difference between their
longitudinal and transverse mechanical properties [97, 98].

3.9.2 The effects of geometry

We first considered the base problem of a transversely isotropic, hyperelastic, right-
circular cylinder subject to uniaxial extension. In this example, there is only one non-
zero component of stress σzz, which is homogeneous throughout the cylinder. We opted
to vary this geometry away from cylindrical so that it more closely resembled a tendon,
and explore the effects this has on the mechanical response. We imposed a linear taper
and an hour glass taper, and adjusted the cross-section to be elliptical. Throughout
Section 3.6, we fixed the volume of the tissue so that we only studied the effects of
redistributing the material into a different geometry. We determined that, with both
the crimped fibril and HGO models, increasing the linear/hourglass taper resulted in
higher peak stress and lower engineering stress. These variations in stress are due to
the cross-sectional area changing through the length of the tendon. Where the cross-
sectional area is smallest, the applied force is spread across a smaller area, leading to
higher stresses. To maintain a constant volume, the cross-sectional area at the top and
bottom must increase – leading to a decrease in stress. This increase in area towards
the ends of the tendon/ligament may serve to reduce the stress experienced at the bone
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insertion sites. We found that changing the cross-section to be elliptic had no effect on
the stress distribution unless combined with an axially-varying geometry that produced
a spatially-varying cross section.

3.9.3 Fibre direction

Perhaps the most significant findings from this chapter come from the fibre direction
study. When assuming cylindrical geometry, we set the direction of the fibres to be
equal to the longitudinal axis of the tendon/ligament. In this instance, they are also
parallel to the outer curved boundary, but when we apply a transformation to the mesh,
this is no longer the case. In Section 3.5.3, we proposed a fibre direction field which
sought to rectify this issue, ensuring that at the edge of the tendon the fibres are parallel
to the boundary, whilst in the centre they are aligned with the longitudinal axis. This
is a subtle point (see Figure 3.1) which does not seem to be addressed in the literature.
Several authors [74, 78, 77, 8], opt to use the local element geometry to ensure that the
fibre direction follows the shape of the tendon when a realistic geometry is used, but we
could not find an example where the fibre direction at the outer surface of the tendon is
discussed.

For the initial tests we chose to compare two different fibre directions: z-aligned
fibres (longitudinally aligned and parallel everywhere) and c-aligned fibres (contour-
aligned, spatially dependent). Whilst the differences in the observed stresses for differ-
ent geometries are easily predicted by carefully considering the geometry in question,
the differences observed by changing the direction of the fibres are less obvious. We
found that when the fibres are z-aligned, there is a stress concentration around the part
of the tendon with the smallest cross-section. This region of high stress does not pen-
etrate far into the tissue, instead forming a band of stress on the surface of the tendon.
The relative magnitude of this stress concentration changes based on the geometry in
question. For axisymmetric tendons, the stress is the same all the way round. For a
tendon of constant width, such as the Achilles tendon, the bands appear only on the
sides which vary in width, as can be seen in Figure 3.27. When we switch to c-aligned
fibres, the stress concentrations are no longer present – we instead see a more even dis-
tribution of stress across the radius of the tendon, increasing in magnitude in the region
with the smallest cross-section. When using realistic geometry meant to approximate
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the Achilles tendon, we found that changing from z-aligned fibres to c-aligned fibres
reduced the maximum value of stress in the direction of the fibres by 31%, whilst in-
creasing the final engineering stress by 5%. For a geometry based on the ACL, the
maximum stress in the direction of the fibres decreased by 33% when switching from z-
to c-aligned fibres, whilst the final engineering stress increased by 10%. The effects are
slightly smaller for the Achilles tendon because we assume it has a constant width, so
the cross-sectional area varies less than in the ACL.

It is possible that these regions of high stress appear in the z-aligned fibre configu-
ration because points at the edge of the tendon, above and below the mid-section, are
attached to the ends of the tendon on one side and the curved outer boundary on the
other. When a stretch is applied, the curved boundary is therefore subjected to forces
in the vertical direction, culminating in a region of high tensile forces where the radius
is at a minimum. In the c-aligned case, we do not see this stress concentration because
most of the force is carried in the direction of the fibres, which follow the contours of the
geometry and therefore do not expose any particular region to high tensile forces. This
theory is supported by the distributions of uz, the z-inhomogeneity presented in Figure
3.28 for the Achilles tendon and Figure 3.36 for the ACL. In these plots we see regions
of the tissue at the edge of the boundary, above and below the midsection, being pulled
in opposite directions – thereby contributing to the high tensile forces experienced at
the centre of the tissue.

One motivation for considering c-aligned fibres is the existence of strong evidence
[24, 23] suggesting that collagen fibrils are continuous throughout the length of the
tendon (as discussed in Section 2.1.2). We also chose to explore the effects of a non-
constant collagen volume fraction, deriving an expression (equation (3.75)) which en-
sures that in each tendon cross-section, there is a constant area of collagen, rather than
a constant area fraction. We implemented this fibre configuration in the Achilles tendon
and ACL geometries and found that the results were extremely similar to the c-aligned
fibre with constant area fraction case. For the Achilles tendon, both the maximum stress
in the direction of the fibres and the final engineering stress increased by 4%. For the
ACL we observed a ∼ 1.8% increase in the maximum stress in the direction of the fi-
bres and a ∼ 1.5% increase in the final engineering stress. The function we used for
the spatially varying collagen area fraction ensures that collagen is conserved in each
cross-section, but in doing so, led to a difference of ∼ 39% in collagen density between
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the centre and the insertion. This is significantly larger than the value reported by [89]
et al., who found a difference of only 9%. This may suggest that the small differences
we observed in the stress distributions for the constant and non-constant area fraction
configurations would be even smaller in reality.

3.9.4 Yield criteria

The von Mises stress is used extensively throughout the literature to indicate if a tendon
or ligament will fail given some applied load. [75] determined that this measure is not
appropriate for studying failure in soft tissues by comparing experimental data taken
from porcine aorta with a finite element model which outputted the von Mises stress.
This study was only conducted within a 2D model, however, so it was a further aim of
this chapter to compare the suitability of the isotropic von Mises yield criterion within a
3D model of tendons/ligaments. For this study, we focussed on the Achilles tendon due
to its simple structure compared with the intertwined bundles of the ACL. When using
z-aligned fibres, we found that the likely regions of failure occurred at the outer edges
of the midsection, in the same location as the stress concentrations were observed. In
this instance, similar behaviour was observed for both isotropic and anisotropic yield
criteria. For c-aligned fibres, both with constant and spatially-varying collagen area
fractions, we found that under the same deformation and for the same material param-
eters, using an isotropic yield criterion did not predict yielding occurring in the tendon.
When changing the material strength parameter to γ = 0.1, we found that in both of
these fibre configurations, the Hill criterion indicated that yielding would occur. In this
instance, we found concentrations of the Hill stress around the edges of the tendon on
either side of the mid-section. This must be due to the in-plane deformation building up
higher transverse and shear stresses which, with the weaker matrix, lead to yielding at a
lower value of stretch.

Shim et al. [15] used finite element modelling to predict the failure location in a
patient-specific model of the Achilles tendon. They used the von Mises stress for this
and found that the tendon would fail around the edges of the smallest cross-section. In
their work the authors do not mention the fibre direction. Assuming they set the fibre
direction to coincide with to the longitudinal axis of the tendon, we can compare the
results of our analysis with theirs. When we used z-aligned fibres, we determined that
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both the von Mises and Hill yield criteria would predict failure in the same location as
Shim et al. However, when we changed to the more realistic c-aligned fibres, we found
that there was no longer a stress concentration in their proposed failure area. Instead, we
found an even distribution of stress across the radius of the tendon, suggesting that the
von Mises criterion would not favour the edge of the tendon over the centre. When ap-
plying a more realistic anisotropic yield criterion, we found that for a sufficiently weak
matrix, failure would not initiate at the edge of the central section of the tendon, but at
the edges closer to the ends. This is due to the radial contraction experienced by this
part of the tendon, and the subsequent build up of transverse and shear stresses. Krueger
et al. [99] performed a study of 303 patients with Achilles tendon rupture, determining
that the location of failure was around 3–5cm from the distal (lower) insertion. Since
the length of the Achilles tendon in our model is 17cm [91], this is consistent with
our predictions in the c-aligned fibre case when the Hill criterion was used, as yielding
was indicated around the upper/lower edges. It is important to note, however, that our
idealised geometry will of course differ slightly from those studied by Krueger et al.

In this Chapter we used a single macroscopic yield criterion to predict failure in the
tissue. Another approach would be to consider the matrix and fibre phases separately,
and apply appropriate yield criteria to each of these. An isotropic yield criterion such
as the von Mises criterion could be applied to the matrix phase, whilst a simple 1D cri-
terion could be used to determine if the fibres would fail. This approach would simplify
calculations and give us more information about the failure modes of the tissue, but
would still suffer from the problems we found with the composite yield criteria, in that
there is limited data available for the failure properties of the extra-collagenous matrix.

The prediction of failure in tendons and ligaments is one particularly useful appli-
cation of mathematical modelling applied to soft tissue. As discussed in Chapter 1,
tendon/ligament injuries can be debilitating, sometimes demanding surgical interven-
tion and requiring months of rest. A thorough understanding of the conditions which
lead to failure has the potential to help surgeons and clinicians design better procedures
and treatment plans. However, it is clear from our finite element study that more experi-
mental data is required before any reliable results can be produced. The lack of detailed
information about the transverse stiffness and the material strength in each direction
leads to wildly different results when yield criteria are used to predict failure location.
For this reason, in the next Chapter, we seek to use a microstructural approach to study
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failure in tendons and ligaments.



Chapter 4

A microstructural model of tendon
failure

About

This chapter is a reproduction of an article published in the Journal of the Mechani-
cal Behaviour of Biomedical Materials [100]. It was written by myself, Tom Shearer
and Andrew L. Hazel. I conceived the initial idea behind the model, conducted the
curve-fitting, and wrote the article. My co-authors and supervisors helped to direct the
research, suggested modifications, confirmed and corrected derivations, and assisted in
editing the paper for publication.

Abstract

Collagen fibrils are the most important structural component of tendons. Their crimped
structure and parallel arrangement within the tendon lead to a distinctive non-linear
stress-strain curve when a tendon is stretched. Microstructural models can be used to
relate microscale collagen fibril mechanics to macroscale tendon mechanics, allowing
us to identify the mechanisms behind each feature present in the stress-strain curve.
Most models in the literature focus on the elastic behaviour of the tendon, and there
are few which model beyond the elastic limit without introducing phenomenological
parameters. We develop a model, built upon a collagen recruitment approach, that only
contains microstructural parameters. We split the stress in the fibrils into elastic and

110
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plastic parts, and assume that the fibril yield stretch and rupture stretch are each de-
scribed by a distribution function, rather than being single-valued. By changing the
shapes of the distributions and their regions of overlap, we can produce macroscale ten-
don stress-strain curves that generate the full range of features observed experimentally,
including those that could not be explained using existing models. These features in-
clude second linear regions occurring after the tendon has yielded, and step-like failure
behaviour present after the stress has peaked. When we compare with an existing model,
we find that our model reduces the average root mean squared error from 4.53MPa to
2.29MPa, and the resulting parameter values are closer to those found experimentally.
Since our model contains only parameters that have a direct physical interpretation, it
can be used to predict how processes such as ageing, disease, and injury affect the me-
chanical behaviour of tendons, provided we can quantify the effects of these processes
on the microstructure.

4.1 Introduction

Tendons are composed of a complex hierarchy of collagen-based components embed-
ded within an extra-collagenous matrix. When modelling the mechanical response of
tendons as they are stretched to failure, it is important to consider this complex mi-
crostructure and how it gives rise to the observed stress-strain behaviour illustrated in
Figure 4.1. The macroscale tendon stress-strain curve can be split into four sections:
I) the non-linear toe region, II) the linear region, III) the post-yield region, and IV) the
macroscopic failure region. Existing microstructural models [101, 102] are able to cap-
ture this behaviour when it resembles the idealised case presented in Figure 4.1, but
we will show that a significant proportion of observed stress-strain curves [20] contain
features that cannot be explained using these models. These features include second
linear regions (in region III) and step-like failure behaviour (in region IV), as shown in
Figure 4.2. We therefore propose a new microstructural model, based on the response
of individual collagen fibrils, which is capable of capturing this behaviour.

Collagen fibrils often form the basis of microstructural models because they are the
smallest component of tendons for which we have reliable stress-strain data. Fibrils
are crimped within the fascicle, and only become load-bearing once the tendon has
been stretched enough to remove their crimp. Due to varying crimp between fibrils, the
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Figure 4.1: Idealised stress-strain behaviour of a tendon stretched to failure. Region I is
the non-linear toe region, where collagen fibrils gradually become taut, increasing the
overall tendon stiffness. Region II is the linear region, where all the fibrils are exhibiting
a linearly elastic response. The end of region II is the macroscopic yield point, where
yielding in the fibrils causes a reduction in gradient. Region III is the post-yield region,
where fibrils begin to yield and fail. Region IV is the macroscopic failure region, where
fibrils continue to fail and the whole tendon eventually ruptures.
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Figure 4.2: An idealised stress-strain curve demonstrating observed features (high-
lighted in red) which cannot be captured using existing models [101, 102]. Regions
I and II are the same as in Figure 4.1, but the post-yield region (region III) shows a
plateau instead of a well-defined peak. The macroscopic failure region (region IV) con-
tains step-like failure behaviour, where the second derivative of the stress changes sign
multiple times.
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Figure 4.3: Idealised stress-strain behaviour of an individual collagen fibril stretched to
failure. The fibril exhibits a linear response initially, before experiencing a decrease in
gradient. Stretching beyond the linear region causes the fibril to become damaged [95],
leading us to refer to the transition between linear and non-linear behaviour as the fibril
yield stretch/strain, represented above by the red marker.

tendon initially exhibits a non-linear stress-strain response, as fibrils gradually become
taut (region I). The tendon stiffness continues to increase until all of the fibrils are taut
and we see a macroscale linear region (region II). Hijazi et al. [26] used scanning
electron microscopy to show that stretching a tendon past the end of its linear region
results in permanent damage on the fibril scale, suggesting that as we pass into the post-
yield region (region III), fibrils themselves begin to yield. This is further supported
by Zitnay et al. [103], who were able to detect damage at the molecular level in rat tail
tendon fibrils, once the tendon had been stretched past its linear region. When the tendon
reaches the macroscopic failure region (region IV), many of the fibrils have yielded, and
some may have ruptured completely. Eventually all of the fibrils will rupture and the
tendon will fail.

To build a microstructural model capable of describing the full range of tendon
stress-strain behaviour observed in regions I–IV, we must look in more detail at the me-
chanical response of individual collagen fibrils. Many research groups have performed
failure tests on isolated fibrils [95, 104, 105, 106, 107, 31], and whilst the reported ma-
terial parameters show a large amount of variability, several trends still emerge. The
fibril stress-strain response is most often described as linear initially, before becoming
non-linear with a decreasing slope [95, 104, 105, 106, 107]. Van der Rijt et al. [108]



114 CHAPTER 4. A MICROSTRUCTURAL MODEL OF TENDON FAILURE

reported non-linear toe-regions for small strains (<4%), but claim that the stress-strain
curve appears to be almost perfectly linear when the fibril is stretched further. For this
reason, we make the assumption that the non-linear toe-region is negligible and that
the initial phase of the fibril stress is linear. Figure 4.3 shows an idealised stress-strain
curve for an isolated collagen fibril stretched to failure. We refer to the transition be-
tween the linear and non-linear behaviour as the fibril yield stretch/strain because there
is evidence that stretching beyond this point leads to the accumulation of damage in
the fibril [95]. The fibril yield strain can vary considerably between fibrils extracted
from different sources. It has been reported to be approximately 6% strain in groups of
rabbit patellar tendon fibrils [109], and 12% in single rat patellar tendon fibrils [105].
In fibrils extracted from sea cucumber dermis, the yield strain shows a large amount of
variation, falling anywhere between 6–55% strain [104]. After yielding and experienc-
ing a decrease in modulus, the fibrils rupture at anywhere from 7% strain [107] to over
100% strain [104]. We can conclude that there is not a single value of fibril yield/rupture
strain, but rather there is a distribution of these strains present in any given tendon. We
also know that the structure of fibrils in tendons is not uniform. For example, the fibril
diameter follows a trimodal distribution [19]. It is possible that these mechanical and
structural properties are related.

Ideally, a microstructural model will only contain parameters that can be measured
experimentally. This allows the model to predict how certain processes, such as ageing,
disease, or injury, may affect macroscale tendon behaviour, provided we know how the
microstructural components are affected. For example, in the tendons of patients with
classic Ehlers-Danlos syndrome (cEDS), the distribution of collagen fibril diameters is
disrupted by a reduced quantity of collagen V [110], resulting in a diameter distribu-
tion with increased broadness and a larger mean diameter. A microstructural model
that incorporates fibril diameter dependence could therefore be used to predict how the
macroscale tendon properties would differ in comparison to a patient without cEDS.
This approach would be particularly useful in instances where the effects of a disease
on the mechanical properties of the tendon are not clear, as it would allow some proper-
ties, such as fibril diameter distribution, to be held constant whilst others, such as fibril
density, are varied.

Continuum damage models are frequently used to predict the post-yield behaviour
of tendons as they are stretched to failure, although they often contain parameters that
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are not based on the microstructure. Natali et al. [111, 112] published a model where
the strain energy function of the tendon is split into two parts associated with the matrix
and fibrils, with each part being premultiplied by a damage function. The fibril damage
function was derived by considering the number of fibrils which had yielded, assuming
that the critical stretch required to remove crimp from the fibrils is normally distributed.
The strain energy function used for the elastic regime, however, was phenomenologi-
cal and not related to the mechanical behaviour of individual collagen fibrils. Similar
models were published by by Rodrı́guez et al. [113] and Alastrué et al. [114], where
the behaviour of collagen fibrils is described by models based on polymer mechan-
ics. Whilst these models are capable of predicting the general behaviour of tendons
stretched to failure, they are all phenomenological to some degree and, consequently,
they contain parameters that cannot be directly measured. Other models have used a mi-
crostructural approach, but were limited to modelling regions I and II of the stress-strain
curve [43, 51, 42].

Extending the widely used collagen recruitment model of Lanir [50], Hurschler et

al. [101] developed an approach to model past the end of the linear region by including a
yield criterion for the fibrils. By excluding both crimped and ruptured fibrils from stress
calculations, Hurschler et al. [101] were able to get reasonable fits to data by assuming
the fibril critical stretch follows a Weibull distribution. Hamedzadeh et al. [102] inde-
pendently arrived at the same model, but extended its applicability by allowing the tissue
to be compressible. They also showed how to model the effects of repeated overload-
ing, demonstrating that it is possible to predict hysteresis whilst ignoring viscoelastic
effects. The models of Hurschler et al. and Hamedzadeh et al., which we shall refer
to after their authors as the HLV and HGF models, respectively, show that it is possible
to model whole tendon behaviour as it is stretched to failure by only focussing on the
failure behaviour of the fibrils.

In this paper we use stress-strain data from Goh et al. [20] to demonstrate the need
for a new microstructural model of tendon failure. This stress-strain data was collected
from failure tests carried out on mouse tail tendon fascicles, extracted from mice of
different ages. The authors also provide structural data in the form of fibril diameter
distributions, making it possible to explore the relationship between some of the struc-
tural and mechanical properties of tendons. In Section 4.2, we attempt to fit a simplified
version of the HLV and HGF models to this stress-strain data, showing that a significant
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proportion (47%) of the data contains features that cannot be accounted for using these
models.

In Section 4.3, we introduce a new model which is capable of capturing the range of
stress-strain behaviour observed by Goh et al. [20]. By using distributions to represent
the fibril yield and rupture stretches, we demonstrate the range of stress-strain behaviour
that can be generated by varying the shape of the distributions, and their position rela-
tive to one another. The resulting model includes only parameters that can, in principle,
be measured directly, and can fit a wider range of stress-strain data than previous mod-
els once appropriate distributions have been selected. In section 4.4, we present some
example fits to datasets with the features illustrated in Figure 4.2. We show that the
parameter values found through fitting are consistent with those found experimentally.

4.2 Fitting existing models to data

4.2.1 The elastic-rupture model

We first define the elastic-rupture (ER) model, which is equivalent to the HLV model
[101]. We assume that the tendon is incompressible and composed of parallel, crimped
fibres embedded within an isotropic matrix. We consider a simple uniaxial stretch λ

applied to the tendon, in the direction of the fibres, leading to a homogeneous stress
field throughout the tissue. Each fibril has a critical stretch λC, which is the tendon
stretch required to remove the crimp from the fibril. Once a fibril is taut, it exhibits a
linear elastic response until it ruptures after being stretched by a factor of λR. By using
a probability distribution ΛC(λC) to represent the variation of crimp found throughout
the tissue, we can compute the stress in the tendon.

The shear modulus of the matrix has been estimated to be on the order of 1kPa [69],
which is ∼1,000,000 times smaller than the fibril Young’s modulus [107]. Assuming
the matrix Young’s modulus is of a similar magnitude, it is negligible compared to that
of the fibrils, and we therefore choose to ignore any contributions to the stress from the
matrix. We further assume that the deformation occurs at a strain rate that minimizes
hysteresis, allowing us to ignore viscoelastic effects. Under these assumptions, the stress



4.2. FITTING EXISTING MODELS TO DATA 117

in the tendon is given by

σ
ER
T (λ) = φ

∫
∞

1
σ

ER
f (λ,λC,λR)ΛC(λC)dλC. (4.1)

where φ is the collagen volume fraction, and σER
f is the fibril stress. In the ER model,

we define the fibril stress as

σ
ER
f (λ,λC,λR) =


0, λ < λC,

E
(

λ

λC
−1
)
, λC ≤ λ < λCλR,

0, λ≥ λCλR,

(4.2)

where E is the fibril Young’s modulus. For the models used in this paper, we adopt a
naming approach based on the physical behaviour of the fibrils. In the ER model, the
fibrils are linearly elastic until they have been stretched by a factor of λR, after which
they rupture. Throughout this paper, we will assume that the fibril critical stretch follows
a triangular distribution, as in Hamedzadeh et al. [102], defined by

ΛC(λC) =



0, λC < a,

2(λC−a)
(b−a)(c−a)

, a≤ λC < c,

2(b−λC)

(b−a)(b− c)
, c≤ λC < b,

0, λC ≥ b,

(4.3)

where a is the lower limit, b is the upper limit, and c is the mode of the distribution.
We choose this form for the critical stretch distribution in order to simplify calculations,
and because it allows us to write down an analytic expression for the tendon stress σER

T .
This expression can be found in B.1. Through careful choice of the parameters a, b, and
c, a triangular distribution can be used to approximate other distributions which may be
more realistic for collagen fibril properties, such as a Gaussian distribution.
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4.2.2 Fitting approaches

We now fit the ER model to stress-strain data from Goh et al. [20]. This data was
gathered from mouse tail tendon fascicles, extracted from mice of different ages, which
were stretched to failure. Along with stress-strain data, Goh et al. provide the tendon
yield strain for each test specimen, and the mean collagen volume fraction for each
age group. The authors defined the tendon yield strain to be the point with maximum
gradient between the origin and the peak stress, after fitting a fifth order polynomial to
the data. We explored two different fitting approaches, one which uses the yield stretch
provided by Goh et al., and one which does not. In both cases we use the collagen
volume fraction found by Goh et al. These two approaches are outlined below:

Generic fitting approach: Fitting for all of the model parameters: a, b, c, E, and
λR, using the whole range of stress-strain data (regions I–IV).

Physically motivated fitting approach: We assume a = 1, meaning that some of
the fibrils immediately become taut upon stretching the tendon. We set the fibril
rupture stretch λR to be equal to the macroscopic yield point, provided by Goh et

al. We then fit for the parameters b, c, and E using the data in regions I and II.

In both fitting approaches, we use the analytic form of the tendon stress (see B.1)
along with a non-linear least squares method to find the fitting parameters. When us-
ing the generic fitting approach, it was often the case that the parameter values found
were unphysical. For example, in Figure 4.4, b > λR, suggesting that some fibrils begin
to rupture before all of the fibrils have become taut. Whilst this seems reasonable if
there is a large range of fibril critical stretch values, it contradicts evidence from Hi-
jazi et al. [26], that damage only occurs in the fibrils once the entire tendon has been
stretched beyond the end of the macroscopic linear region (i.e. λR ≥ b). Furthermore,
the generic fitting approach often leads to unrealistically high values of collagen fibril
Young’s modulus E. In Figure 4.4 we have E = 6658MPa, which is significantly larger
than the highest value we could find in any paper where isolated collagen fibrils have
been stretched to failure (1900± 500MPa for bovine achilles tendon fibrils under am-
bient conditions [115]). Using the generic fitting approach requires the entire range of
stress-strain data (regions I–IV), in order to determine the parameters a, b, c, E, and λR.
If we were only interested in modelling the elastic tendon behaviour (regions I–II), the
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Figure 4.4: The ER model fitted to data from Goh et al. [20], using two different fitting
approaches. The green dashed line was found using the generic fitting approach, whilst
the solid blue line is the result of using the physically motivated fitting approach. The
parameters from the generic fitting approach are: E = 6658MPa, a = 1.008, b = 1.107,
c= 1.095, and λR = 1.020. The parameters for the physically motivated fitting approach
are: E = 386.7MPa, a = 1.0, b = 1.044, c = 1.035, and λR = 1.068. The collagen
volume fraction for both fittings is φ = 0.56, which was taken from Goh et al. [20]. The
root mean squared error for the generic approach is 0.264MPa, whilst for the physically
motivated approach it is 3.43MPa. The generic fitting approach provides a superior fit,
but at the cost of unphysical parameter values.

ER model could be modified by changing the fibril stress, defined in equation (4.2), so
that the fibrils never rupture (λR = ∞). Since this elastic version of the model is defined
by the same set of parameters, excluding λR, we should be able to determine the elastic
parameters (a, b, c, and E) with the data from regions I and II alone. In other words, we
should not need to stretch a tendon to failure in order to determine the parameters that
define the pre-yield portion of the stress-strain curve. The physically motivated fitting
approach ensures that λR ≥ b, and that the elastic parameters are determined using the
elastic part of the stress-strain data alone. Figure 4.4 shows an example of these two
fitting approaches on the same set of data.

The restrictions placed on the model’s parameters when using the physically moti-
vated fitting approach mean that in the vast majority of cases, it is not possible to get
a good fit to the data in regions III and IV. The magnitude of the post-yield stress is
consistently underestimated, as can be seen in Figure 4.4, suggesting that there is some-
thing missing from the model. Although the ER model can provide a reasonable fit in
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certain cases when the generic fitting approach is used, we instead choose to modify the
model so that we can still use the physically motivated fitting approach. This ensures
that all fitting parameters are realistic, and that the elastic parameters are consistent with
the values we would find if the tendon was not stretched to failure.

4.2.3 Features that cannot be accounted for

The ER model is only capable of describing the mechanical response of tendons in the
cases where the stress-strain curve looks similar to the idealised response illustrated in
Figure 4.1. In the stress-strain data from Goh et al. [20], a significant proportion of
the data contains features that cannot be captured using the ER model, even when the
constitutive behaviour of the fibrils is adjusted to more closely resemble experimental
data. In this section we describe these features, discuss their prevalence, and demon-
strate why a new model is required to capture them. A summary of the information
presented in this section, split according to the age of the mouse from which the fascicle
was extracted, can be seen in Table B.1 of B.2.

4.2.3.1 Additional linear regions

The idealised stress-strain curve in Figure 4.1 contains one linear region, in the elastic
part of the response. Some sets of stress-strain data from Goh et al. [20] also contain a
second linear region, present after the tendon has yielded. The gradient of this second
linear section can vary, but is always less than the gradient of the first linear section. In
some cases we see a small decrease in gradient as the tendon yields and enters a second
linear region, followed by a well-defined peak in the stress. In other cases, the gradient
of the second linear region is close to zero, and the stress reaches a plateau rather than a
well-defined peak.

To determine whether a stress-strain curve contains a second linear region, we first
isolate the data points before the peak. We then interpolate the data using splines over
50 equally spaced points, and look for groups of at least 10 interpolated data points
where the gradient does not vary by over 10% of the maximum global gradient. Using
this approach we find that 86 of 260 sets of data (∼33%) contain a second linear region.

Our analysis showed that the peak can vary dramatically in broadness. Data with
well-defined peaks can often be fitted using the ER model, but when the peak is wider,
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the ER model fails to capture the post-yield behaviour. This may be due to the fact
that the ER model does not incorporate fibril plasticity, leading to an underestimation
in the magnitude of the post-yield stresses at the tendon scale. The failings of the ER
model are most apparent in the 33% of cases where there is a clear second linear region.
Without adding fibril plasticity to the ER model, we cannot possibly achieve a plateau
in the macroscale stress-strain curve.

4.2.3.2 Step-like failure behaviour

The second feature that cannot be accounted for using the ER model is step-like failure
behaviour in the macroscopic failure region. In the idealised stress-strain curve pre-
sented in Figure 4.1, the gradient of the stress in region IV begins at zero, decreasing
smoothly until it reaches a minimum value, before increasing back to zero. This be-
haviour can be described using the ER model. In the experimental data from Goh et

al. [20], some of the stress-strain curves seem to show steps in this region, where the
second derivative of the stress changes sign multiple times.

We classify a set of data as exhibiting step-like failure behaviour if there is at least
one data point in region IV with a larger gradient than both of its neighbouring points.
Using this criterion, we find that 54 of 260 sets of data (∼21%) contain step-like failure
behaviour. This is a significant proportion of the data, further supporting the need for
an improved model.

4.3 The elastic-plastic-distribution model

4.3.1 General framework

By making biologically-motivated adjustments to the ER model, we can begin to ac-
count for the stress-strain features described in Section 4.2.3. The first of these is to
modify the constitutive behaviour of the fibrils so that once they have been stretched
by a factor of λY , they yield and begin to undergo plastic deformation. The second is
to introduce distributions for the fibril yield stretch λY , and rupture stretch λR. We call
the resulting model the elastic-plastic-distribution (EPD) model. In the EPD model, we
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define the fibril stress to be

σ
EPD
f (λ,λC,λY ,λR) =



0, λ < λC,

E
(

λ

λC
−1
)
, λC ≤ λ < λCλY ,

p(λ,λC,λY ,λR), λCλY ≤ λ < λcλR,

0, λ≥ λCλR,

(4.4)

where p(λ,λC,λY ,λR) is the plastic stress in a yielded fibril. Experimental evidence
suggests that, when selecting a functional form for p, we should choose a “flat” function
which has a lower gradient than the initial linear portion of the fibril stress. We believe
that in instances where the macroscale tendon stress is displaying a broad/flattened peak,
the majority of fibrils are also exhibiting flattened stress-strain behaviour.

We assume that the fibril critical stretch λC, yield stretch λY , and rupture stretch λR,
follow a multivariate distribution Λ(λC,λY ,λR). We then find the stress in the tendon by
integrating the fibril stress over this distribution,

σ
EPD
T (λ) = φ

∫
∞

1

∫
∞

1

∫
∞

1
σ

EPD
f (λ,λC,λY ,λR)Λ(λC,λY ,λR)dλCdλY dλR. (4.5)

4.3.2 Simplifying assumptions

In order to demonstrate how the EPD model can be used to produce the range of
macroscale stress-strain curves observed experimentally, we make two simplifying as-
sumptions. Firstly, we assume that the fibrils are bilinear elasto-plastic, choosing the
following form for p,

p(λ,λC,λY ,λR) = E(1− k)(λY −1)+Ek
(

λ

λC
−1
)
, (4.6)

where k ∈ [0,1] is a factor describing the decrease in gradient after the fibril has yielded.
Secondly, we assume that the critical, yield, and rupture stretches are independent of
each other, so that the distribution Λ(λC,λY ,λR) can be written as

Λ(λC,λY ,λR) = ΛC(λC)ΛY (λY )ΛR(λR). (4.7)
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We further assume that ΛC(λC), ΛY (λY ), and ΛR(λR) are all triangular distributions. By
changing the values of the parameters defining the yield and rupture stretch distribu-
tions, we can control the width of the macroscale stress-strain curve in regions III and
IV. This amount of control is not possible using the ER model, and is required in order
to fit the range of data observed experimentally.

4.3.3 Marginal distributions

In the HGF model [102], the authors define a damage distribution by stretching the
critical stretch distribution by a factor of λR, their single value of rupture stretch. This
damage distribution describes the proportion of fibrils in the tendon that have failed for
a given value of tendon stretch. We can also compute equivalent distributions for the
yield and rupture stretch when we have distributions, rather than single values.

A fibril with critical stretch λC, and yield stretch λY , will yield when the tendon
stretch is equal to λ = λCλY . We consider the joint distribution of critical stretch and
yield stretch, and use this relation to define the following function

g(λC,λ) = ΛC(λC)ΛY

(
λ

λC

)
. (4.8)

We then define ΛY (λ) as the marginal distribution found by integrating g(λC,λ) with
respect to λC,

ΛY (λ) =
∫

∞

1
g(λC,λ)dλC =

∫
∞

1
λC(λC)ΛY

(
λ

λC

)
dλC. (4.9)

We can follow a similar process in order to determine the marginal rupture distribution
ΛR(λ). The resulting distributions, once normalised, can be used to describe the propor-
tion of fibrils that have yielded or ruptured for a given tendon stretch λ. Hamedzadeh
et al. [102] show the tendon stress-strain curve obtained using their model when the
damage distribution (marginal rupture distribution in our model) and critical stretch dis-
tribution overlap. If these distributions overlap, then the first fibril may fail before the
last fibril becomes taut, a scenario we argued against when justifying the physically mo-
tivated fitting approach. It is possible, however, that the marginal yield distribution and
the marginal rupture distribution can overlap in our model. As discussed in Section 4.1,
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there is a large range of yield and rupture strain values reported in the literature, even
for fibrils extracted from the same source. It is therefore possible that as a tendon is
stretched to failure, some fibrils rupture before others have yielded.

4.3.4 Varying the stretch distributions

By varying the shape, position, and spread of the yield stretch and rupture stretch distri-
butions, it is possible to produce macroscale stress-strain curves with the full range of
features observed experimentally. Figure 4.5 shows the effects of varying the separation
between the distributions, with all other parameters fixed. To produce this figure we
used generic parameter values, varying only the mean rupture stretch, to demonstrate
the effects this has on the macroscale tendon stress. Based on the limited data in the
literature, any of these arrangements could be possible, and we provide a more detailed
discussion about the possible values of the distribution parameters in Section 4.5.

When the distributions overlap, there is a well-defined peak with no second linear
region. Increasing the separation between the yield and rupture distributions causes
a plateau to appear in the macroscale stress-strain curve, for values of tendon stretch
between the marginal distributions. In this region, when there is no overlap, all of the
fibrils are deforming plastically. By choosing the constitutive behaviour of the fibrils to
be bilinear elasto-plastic, this leads to a second linear region. The spread of the yield
and rupture distributions also affects the macroscale stress-strain curve, as can be seen
in Figures 4.6 and 4.7.

In Figure 4.6 we see that changing the spread of the rupture distribution, whilst
holding the yield distribution constant, changes the shape of the peak and increases
the width of region IV. As the spread increases, there is more overlap, and the peak
becomes sharper. This is due to the fibrils rupturing sooner, and therefore no longer
contributing to the macroscale stress. Figure 4.5 shows how translating the rupture
stretch distribution to the right can result in a significant increase to the magnitude of
the post-yield stress. Varying the spread of the rupture distribution, however, changes
the shape of the peak without causing a significant increase in the magnitude of the
stress in region III.

The results displayed in Figure 4.7 demonstrate how the macroscale stress-strain
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Figure 4.5: The effects of varying the separation between the yield stretch and rupture
stretch distributions, on the macroscale stress-strain curve. The yield distribution was
fixed and the position of the rupture distribution was varied. Symmetric triangular dis-
tributions were used for all of the stretch distributions. The black curves show the stress
in the tendon, whilst the red curves show the marginal yield and rupture distributions
used to generate them. The mean value of the (original, not marginal) yield and rupture
distributions are µY and µR, respectively. µY remains fixed at µY = 1.1125. We choose
a value of k = 0 to illustrate how varying the separation between the two distributions
can lead to a plateau in the tendon stress.
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Figure 4.6: When the mean values of the yield and rupture distributions are held constant
and the variance of the rupture distribution is increased, the macroscale stress strain-
curve changes as shown in (a). The corresponding marginal distributions are shown in
(b). The arrows point in the direction of increasing variance, σ2
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Figure 4.7: Shown in (a) is the macroscale stress-strain curve obtained when the rupture
stretch distribution is held constant and the variance of the yield stretch distribution is
changed. The marginal distributions that generate these curves can be seen in (b). The
variance is changed by increasing the upper limit of the distribution, whilst holding the
lower limit constant. This is done so that the macroscale yield point remains constant
in all of the stress-strain curves in (a). The arrows point in the direction of increasing
variance, σ2

Y .
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Figure 4.8: Changing the fibril rupture distribution from unimodal to bimodal causes
the stress in the macroscopic failure region to exhibit step-like behaviour. Shown in (a)
is the macroscopic stress-strain curve generated from the rupture distributions whose
marginal counterparts are shown in (b). Dashed and solid lines correspond to the uni-
modal distribution and bimodal distribution, respectively. In the bimodal case, fewer
fibrils are rupturing when the tissue stretch λ falls between the modes, leading to a
region in the macroscale stress-strain curve where the gradient becomes less steep.

curve is affected when the rupture distribution is fixed and the spread of the yield distri-
bution is varied. In doing this we choose to fix the lower bound of the yield distribution
so that the macroscale yield point remains the same. By increasing the spread in the
yield distribution, we are delaying the yielding of fibrils, causing an increase in the
magnitude of the post-yield stress. We also increase the amount of overlap between the
marginal distributions, leading to a sharper peak. The stress in the macroscopic failure
region (region IV) is not affected by these changes.

The distributions used to generate the stress-strain curves in Figures 4.5, 4.6, and
4.7 have all been unimodal triangular distributions. Allowing the rupture distribution
to be multimodal causes the stress in the macroscopic failure region to exhibit step-like
behaviour, as shown in Figure 4.8. Whilst there is no direct evidence that collagen fibril
failure strain follows a multimodal distribution, we consider this case because it is a
simple way to introduce step-like failure behaviour on the macroscale. See Section 4.5
for a full discussion on alternative ways to account for step-like failure behaviour.

When the rupture distribution used to generate the macroscale stress-strain curve is
multimodal and has a sufficiently wide gap between the peaks, we see a corresponding
region of the stress-strain curve where the gradient of the stress becomes less steep. As
the tendon stretch approaches the next peak, the gradient of the stress becomes more
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negative again as fibrils continue to fail and no longer contribute to the total stress. This
leads to step-like behaviour, as shown in Figure 4.8.

4.4 Fitting the improved model to data

In this section we use the physically motivated fitting approach to show that the EPD
model can be used to generate realistic stress-strain curves, with microstructural param-
eters that fall within the range of values observed experimentally.

We continue to use the stress-strain data from Goh et al. [20], using the following
process to find appropriate parameter values:

1. We assume the fibril critical stretch λC follows a triangular distribution, defined
by the parameters a, b, and c, as described in equation (4.3).

2. We use the method outlined in Section 4.2 to determine the elastic parameters and
use the macroscopic yield point provided by Goh et al [20] to separate the data
into elastic and inelastic parts. To reduce the number of fitting parameters we
assume that the critical stretch distribution is symmetric so that c = (a+b)/2.

3. We assume that both the fibril yield stretch λY , and fibril rupture stretch λR, follow
symmetric triangular distributions, given by ΛY and ΛR, respectively. There is not
enough data available to make an informed decision about the forms of either of
these distributions. Triangular distributions are used to simplify calculations and
to ensure that ΛY and ΛR have finite support. Additionally, a symmetric triangular
distribution can be defined using just the range of observed values, making the
resulting fitting parameters easy to compare with the limited data available in the
literature.

4. We label the yield stretch distribution parameters as aY and bY , and the rupture
stretch distribution parameters as aR and bR.

5. We then use a nonlinear least squares method (scipy.optimize.curve_fit in
Python 3) to determine the five remaining parameters: aY , bY , aR, bR, and k.
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6. If the algorithm described in section 4.2.3.2 detects step-like failure behaviour,
we replace the rupture stretch distribution with a bimodal triangular distribution,
defined by

Λ
bimodal
R (λR) =

1
1+W

(Λ
(1)
R (λR)+WΛ

(2)
R (λR)), (4.10)

where Λ
(1)
R and Λ

(2)
R are unimodal triangular distributions, as defined in equation

(4.3), with distribution parameters (a(1)R , b(1)R , c(1)R ) and (a(2)R , b(2)R , c(2)R ), respec-
tively. The relative weighting between the two modes is given by W . In these
instances we assume Λ

(1)
R and Λ

(2)
R are both symmetric and fit for a(1)R , b(1)R , a(2)R ,

b(2)R , and W .

We also fitted the ER model to the same data, assuming that the fibril critical stretch
followed a symmetric triangular distribution to ensure a fair comparison. We adopted
the generic fitting approach for the ER model to get the best fit possible, but in many
cases this still provided a poor fit because the ER model cannot generate plateaus or
step-like failure behaviour. Of the 262 sets of stress-strain data from Goh et al., we ex-
cluded 39 (15%) because they contained fewer data points than fitting parameters. The
remaining fits had an average root mean squared error (RMSE) of 2.29MPa compared
to 4.53MPa for the ER model. Using the EPD model reduced the RMSE in 183 of the
non-excluded cases (82%). In instances where step-like failure behaviour was detected,
changing from a unimodal to a bimodal rupture stretch distribution reduced the average
RMSE of those tests from 2.19MPa to 1.50MPa. Histograms of the fitting parameters
can be seen in B.3. When defining the physically motivated fitting approach in section
4.2.2, we state that the macroscopic yield point should correspond to the point at which
the first fibril yields. In the EPD model this is equivalent to setting aY equal to the
macroscopic yield point. Whilst this can provide a good fit in some cases, we opted
to remove this restriction when fitting both models to the whole set of data, because in
some cases it is too restrictive. This could be an indication that some fibrils begin to
yield before others have become taut, or that the yield point determined by Goh et al. is
inaccurate.

Figure 4.9 shows an example of the EPD model fitted to data from Goh et al. [20],
containing a plateau region rather than a well-defined peak. We can achieve a good
fit to this data by assuming the yield stretch and rupture stretch follow symmetric tri-
angular distributions. The RMSE for the fit is 1.13MPa, compared with 7.39MPa for
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Figure 4.9: The black dashed line shows the EPD model, with bilinear elastoplastic
fibrils, fitted to data from Goh et al [20]. The critical stretch distribution, shown in
red, was found by fitting the purely elastic model to the data in regions I and II. The
blue and green curves show the marginal yield and rupture distributions, defined in
equation (4.9). The right hand axis refers to these distributions. The critical, yield,
and rupture stretch were assumed to follow symmetric triangular distributions. The
macroscale stress-strain curve contains a plateau region which could not be accounted
for using previous models. The crimp distribution parameters are a= 1.0 and b= 1.036.
The fibril Young’s modulus is E = 895.7MPa, and k = 0. The yield stretch distribution
parameters are aY = 1.059 and bY = 1.117. The rupture stretch distribution parameters
are aR = 1.196 and bR = 1.213. The RMSE for the fit is 1.13MPa. The grey dashed line
shows the ER model fitted to the same data, where the RMSE is 7.39MPa.
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Figure 4.10: The EPD model fitted to data from Goh et al. [20] containing a well-
defined peak and step-like failure behaviour. The black dashed line shows the stress,
whilst the red, blue, and green curves show the critical stretch, the marginal yield
stretch, and the marginal rupture stretch distributions, respectively. A bimodal rup-
ture distribution is able to capture the step-like failure behaviour observed at the tendon
level. The crimp distribution parameters are a = 1.0 and b = 1.081. The fibril Young’s
modulus is E = 1160MPa, and k = 0.349. The yield stretch distribution parameters are
aY = 1.088 and bY = 1.112. The rupture stretch distribution parameters are a(1)R = 1.095,
b(1)R = 1.131, a(2)R = 1.159, and b(2)R = 1.263. The second peak of the rupture stretch dis-
tribution has a weighting of W = 0.72 relative to the first peak. The RMSE for the fit
is 2.21MPa.The grey dashed line shows the ER model fitted to the same data, with a
RMSE of 7.57MPa.

the ER model using the generic fitting approach. The error is considerably larger for
the ER model because it cannot generate a second linear region. The initial non-linear
toe region covers the support of the critical stretch distribution and the region between
the supports of the critical stretch and marginal yield distributions corresponds to the
macroscale linear region. Fibrils begin to yield when the tendon stretch falls within the
support of the marginal yield distribution, leading to a decrease in the gradient of the
stress. There is then a region before fibrils start failing, where all fibrils are deforming
plastically. The stress then decreases to zero as fibrils begin to rupture.

Figure 4.10 shows a second set of data from Goh et al. [20], containing a well-
defined peak along with step-like failure behaviour in region IV. The same fitting pro-
cedure was followed, but using a bimodal triangular distribution for the rupture stretch,
in order to capture the step-like failure behaviour in region IV. The root mean squared
error for the fit in Figure 4.10 is 2.21MPa, compared with 7.57MPa for the ER model
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Figure 4.11: The black dashed line shows the EPD model, with a bimodal rupture stretch
distribution, fitted to data from Goh et al [20] (RMSE = 2.02MPa). The data contains
more than one step in the macroscopic failure region and so it would require more than
two modes in the rupture stretch distribution to capture this behaviour. The grey dashed
line shows the ER model fitted to the same data (RMSE = 8.51MPa).

using the generic fitting approach. The resulting yield and rupture stretch distributions
overlap, leading to a well-defined peak in the stress. This also means that there is a range
of tendon stretch values λ, where there simultaneously exists undamaged, yielded, and
ruptured fibrils. The stress in the tendon begins to decrease as fibrils rupture, and once
the tendon stretch passes into the region between the rupture distribution peaks, the
gradient of the stress becomes less negative, because fewer fibrils are rupturing. As λ

passes into the second rupture distribution peak, the gradient becomes more negative,
and the tendon eventually fails.

Although the EPD model presents a good fit in the majority of cases, it can some-
times fail to capture the observed behaviour. Figures 4.11 and 4.12 show two examples
where this is the case.

The EPD model fails to capture the multiple steps present in the stress-strain data
shown in Figure 4.11. These could be captured by using a rupture stretch distribution
with more than two modes, but due to the low number of data points we chose not to
attempt this. In Figure 4.12, the assumption that the critical stretch distribution is sym-
metric leads to a poor fit in regions I and II, causing the peak stress to be underestimated.
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Figure 4.12: The black dashed line shows the EPD model fitted to data from Goh et al
[20] (RMSE = 2.45MPa). Assuming that the critical stretch distribution is symmetric
leads to a poor overall fit. The grey dashed line shows the ER model fitted to the same
data (RMSE = 1.84MPa).

4.5 Discussion

We have shown that we can construct a mathematical model of tendon failure by split-
ting the fibril stress into elastic and plastic parts, and allowing the fibril yield stretch and
rupture stretches to follow distributions, rather than being single-valued. When a single
value of these parameters is used, as in the ER model, the plastic behaviour of the tendon
is determined entirely by the critical stretch distribution. In at least 47% of cases (see
B.2) it is not possible to get a good fit using the ER model because the stress-strain data
contains a second linear region, step-like failure behaviour, or both. The EPD model
provides a microstructural explanation for these features, and has the additional benefit
of only including parameters that can be measured directly.

The introduction of a plastic stress function to the fibril constitutive behaviour is not
new. Hamedzadeh et al. [102] define their model in terms of a general fibril constitutive
behaviour, thereby encompassing that part of the EPD model. The key difference in our
approach is with the use of distributions to describe the fibril yield stretch and rupture
stretch. Whilst modifying the fibril stress to become more flat can generate second
linear regions, it is not enough to produce the range of behaviour observed by Goh et

al [20]. We must have a combination of both flattening fibril stress and a distribution
of fibril yield stretch in order to capture all observed behaviour in region III. Without
a distribution of yield stretch, the transition between a first and second linear region
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will be fixed by the fibril crimp distribution, meaning that sets of data with a narrow
region I but a wide region III cannot be fitted using the model. Without a distribution of
fibril rupture stretch, we cannot produce step-like failure behaviour at the tendon scale
without also incorporating it at the fibril scale. Failure tests carried out on individual
collagen fibrils show that this would not be realistic.

By using distributions to represent the failure properties of collagen fibrils, we are
able to encapsulate the variation observed between the stress-strain curves of individual
fibrils. There is not enough data available to study specific forms of these distributions,
but we know that they will be heavily influenced by the structural properties of the
fibrils. For example, changes in cross-link density synonymous with tendon maturation
have been shown to alter the mechanical properties of fibrils, affecting the yield stretch
in particular [116]. To model such a change using the framework introduced in this
paper, we would simply feed this change into the yield stretch distribution, which would
alter the whole tendon stress-strain curve.

Our model does not contain any direct dependence on collagen fibril diameter, but
there is some evidence to suggest that step-like failure could be due to the tendon pos-
sessing a multimodal distribution of fibril diameters. Yamamoto et al. [107] were able
to determine a relationship between collagen fibril diameter and failure strain, for fib-
rils extracted from mouse tail tendons. Fibrils with a larger diameter seemed to fail at
larger strains. It could be the case that in stress-strain data where we see step-like failure
behaviour, there is a multimodal distribution of collagen fibril diameters, leading to a
multimodal distribution of fibril failure strain. Although it is common to see multimodal
fibril diameter distributions in tendons [19], the diameter distributions recorded by Goh
et al. [20] seem to be unimodal for mice in the age groups where step-like failure is
most commonly observed (see Table B.1 in B.2). Whilst this seems to contradict the
theory that the step-like behaviour is due to groups of fibrils with different diameters
failing in turn, it does not rule it out. The diameter distributions recorded by Goh et al.
[20] were found by taking the average across multiple fascicles, whilst the stress-strain
data itself is from single fascicles. We cannot find the diameter distribution of a tendon
and then stretch it to failure, as these are both destructive procedures. It remains plau-
sible that the fascicles whose stress-strain curves contained step-like failure behaviour
possess a multimodal diameter distribution, but that the average diameter distribution
for that age group appears to be unimodal. Another possibility is that the relationship
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between collagen fibril diameter and rupture stretch is more complex than the linear
relationship suggested by Yamamoto et al. [107], somehow causing the unimodal dia-
mater distribution to result in a multimodal rupture stretch distribution. It could also be
the case that it is the distribution of rupture stretch that gives rise to the distribution of
diameters as the tendon matures, i.e. the fibrils may grow differently depending on their
initial mechanical properties.

Using a multimodal distribution to represent the fibril failure strain is not the only
way to account for the step-like failure behaviour observed at the macroscale. We can
also produce this behaviour by having a multimodal distribution of critical stretch, repre-
senting a scenario where different fibre bundles have a different mean length. Step-like
failure behaviour would therefore occur when these bundles fail at different times during
a deformation. One attractive part of this approach is that it ties together the behaviour
in every region of the tendon stress-strain curve, reducing the freedom brought about
by the large number of parameters in the EPD model. However, if a tendon possesses
a multimodal distribution of critical stretch, we would expect to see multiple distinct
linear regions with increasing gradient before the tendon yields. We do not see this in
any of the stress-strain data from Goh et al. [20] where step-like failure is observed. It
would still be possible to produce step-like failure behaviour with a single linear elastic
region if there was a large amount of overlap between the yield stretch distribution and
the additional modes of the critical stretch distribution. This would mean that fibrils in
the first group begin to yield before fibrils in the other groups become taut, preventing
additional linear regions and leading to steps in the macroscopic failure region. Fitting
such a model to the data from Goh et al. would prove difficult in cases where all three
distributions overlap due to the low number of data points in some of the tests.

Step-like failure could also be due to technical issues with the experiment, rather
than due to the tissue microstructure itself. Clamping apparatus could cause fibre bun-
dles to become differentially loaded, leading to some failing before others. Whilst this
may have had an impact on the stress-strain data we were using, we chose to explore
how this behaviour could arise from physiological differences in the tendon microstruc-
ture. In the absence of strong evidence for either the rupture stretch distribution or the
critical stretch distribution being multimodal, we chose to do our fitting with the former
for the sake of simplicity.

In order to get a sense of how our model compares with the ER model, we fitted both
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models to data from Goh et al. [20]. We chose to follow the physically motivated fitting
approach for the EPD model, but opted to leave the lower bound of the yield stretch
distribution aY as a fitting parameter, rather than setting it equal to the macroscopic yield
point. Whilst this can lead to cases where some fibrils yield before others have become
taut, the macroscopic yield data provided by Goh et al. proved to be too restrictive when
used to fix the value of aY . To get a fair comparison between the EPD and ER models,
we used symmetric triangular critical stretch distributions throughout, assuming that
the lower bound of the critical stretch distribution aC is equal to 1. This helped us to
reduce the number of fitting parameters and lower the risk of overfitting. We found
that in 82% of cases the EPD model provided a better fit than the ER model. In many
of the remaining cases, the overall quality of the fit was hindered by a poor fit in the
elastic region. This was often due to the assumption of symmetry in the critical stretch
distribution, leading to an underestimation of the modulus, and a poor fit overall. The
average RMSE reduced from 4.50MPa using the ER model, to 2.29MPa with the EPD
model. The value of the plasticity parameter k found through fitting often did not change
from its initial value of k = 0, suggesting that either it is not always that important to
the model, or it cannot be determined from tendon stress-strain data alone.

It is difficult to judge whether the distributions used to generate the stress-strain
curves in Figures 4.9 and 4.10 are realistic because in all the references we could find,
only a small number of collagen fibrils are stretched to failure. Liu et al. [105] state
that for fibrils extracted from rat patellar tendons, the yield point falls between 10% and
20% strain. In Figure 4.9, the lower and upper bounds of the yield distribution are at
6% strain and 12% strain, respectively, whilst in Figure 4.10, the yield distribution is
bounded between 8% and 14% strain. The histograms of aY and bY presented in Figure
B.1 in B.3 paint a similar picture: the mean values of aY and bY are 1.06 (6% strain)
and 1.12 (12% strain), respectively. Despite the data from Goh et al. [20] and Liu et al.
[105] coming from different sources, we believe that the similarities between the range
of fibril yield strains observed experimentally, and the values we have found through
our fitting, suggest that the EPD model is suitable for modelling the post-yield tendon
behaviour (region III).

Fibrils tested by Liu et al. [105] failed between 35% and 107% strain. Yamamoto
et al. quote a failure strain of 34±11% for fibrils extracted from mouse tail tendons
[106], and in a follow up paper, a range of 7–81% [107]. All of these ranges exceed the
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upper bounds of the rupture distributions presented in Figures 4.9 and 4.10, which are
23% and 25%, respectively. In fact, over all the fittings, the mean value of bR was found
to be 1.22 (22% strain). Liu et al. [105] claim that because the tendon failure strain
is typically much lower than the fibril rupture strain, there must be another component
that is limiting the strength of the tendon, such as proteoglycans. We believe there are
several reasons why the fibril rupture strain appears to be much larger than the tendon
failure strain. Firstly, in tests carried out on individual collagen fibrils, the sections of
fibril stretched to failure are much shorter than the entire length of the fibril. The fibrils
tested by Yamamoto et al. [107] had a length of 19–64μm, and whilst reliable data on
the length of mouse tail tendon fibrils is not available, fibrils have been traced along the
entire length (125μm) of the mouse stapedius tendon [23]. If tail tendon fibrils are at
least as long as those found in the stapedius tendon, then we can assume the sections
tested by Yamamoto et al. were also significantly shorter than the total length of the
fibril. Baldwin et al. [117] provide evidence that collagen fibrils, extracted from bovine
tail, possess regions of mechanical susceptibility, due to a variation in structure along
the length of the fibril. If fibrils are continuous throughout the length of the tendon,
then the strength of the tendon will be limited by the strength of the weakest parts of
its fibrils. By only testing small sections of fibrils to failure, rather than entire fibrils,
these weakest sections are likely to be missed. This would lead to an overestimation
of the fibril strength, potentially having a large effect on the perceived failure strain of
collagen fibrils, depending on the frequency and strength of the regions of mechanical
susceptibility. This idea is supported by evidence from Svensson et al. [118], who found
that the failure strain of longer sections of fibril (>100μm) extracted from rat tail tendons
was around 9%, prompting them to come to similar conclusions. This is closer to the
values we found through fitting, but still exceeded the failure strain of the whole tendon,
which was found to be around 5%. Secondly, it is possible that fibrils are subjected
to inhomogeneous strains within the tendon. This could be due to the geometry of the
tendon, or because the mechanical properties of the fibrils vary through the length of the
tendon. An inhomogeneous strain applied to a fibril could cause it to rupture at a lower
value of end-to-end strain than it would otherwise rupture at, outside of the tendon.
Although some of the fibril failure strains reported in the literature [104, 107] exceed
the upper bounds of the rupture distributions used to generate the stress-strain curves in
this paper, the quality of fit achieved demonstrates that the EPD model is still useful for
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modelling failure in tendons.
Throughout this paper we make a number of simplifying assumptions that may have

a significant effect on its performance when it is used to model more complex defor-
mations. We assume that fibrils are continuous and that damage on the macroscale
occurs when the fibrils themselves become damaged. Whilst this approach is able to
capture many of the stress-strain features observed experimentally, it may be necessary
to extend the model to include interfibrillar sliding in order to fully capture all of the
observed post-yield behaviour. There is some evidence that fibrils are discontinuous
throughout the length of tendons [119, 120, 32], and if the length of a fibril is shorter
than some critical length [25], slippage between the fibril and the matrix will occur be-
fore the fibril itself can yield. Szczesny et al. [27, 28] have shown that models based on
this approach can be used to recreate the post-yield behaviour of tendons, getting good
fits to experimental data. On the other hand, Craig et al. [22] provide evidence that
collagen fibrils in rat tail tendons are at least as long as the critical length required for
fibrils to be structurally continuous.

The stress-strain curves of fibrils extracted from energy storing tendons have been
shown to include an additional region of strain-stiffening, not present in the response
of fibrils from positional tendons [31, 121]. The inclusion of interfibrillar sliding may
be necessary in order to relate this behaviour to the macroscale tendon response. As
imaging techniques improve and we get a better sense of the true length distribution
of collagen fibrils, we will understand more about the mechanisms that lead to tendon
failure. It may be possible in future to develop a failure model based on fibril length
distribution, where fibrils below the critical length will slip, and those above the critical
length will yield.

There are several other simplifications we make that can be easily included when the
model presented in this paper is used within a finite strain formulation. These include
contributions to the stress from the extra-collagenous matrix, and the effects of fibre
orientation. In the model presented by Hamedzadeh et al. [102], the authors compute
the stress in a way that allows them to incorporate a distribution of fibre orientation and
a matrix term. A similar approach could be used to make our model more realistic,
where the stress in the direction of the fibres is described using the the expression in
equation (4.5), with additional structural information imposed on top.
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4.6 Addendum

This section is an addendum to the published work presented within this chapter, and
seeks to provide an additional explanation for the stress-strain features observed in the
data collected by Goh et al. [20]. In developing the EPD model, we sought a simple
constitutive explanation to the wide range of failure behaviour observed experimentally,
and we found that we were able to capture this behaviour by adapting existing elastic
models to incorporate distributions of fibril failure properties. However, we fail to con-
sider a number of important effects observed in fracture mechanics which could also
explain these features, and which would need to be carefully considered when applying
the EPD model to more complex deformations. First is the concept of strain localisa-
tion. In our continuum model of soft tissue there is no inherent length scale, whereas in
real materials, failure will typically occur within a finite volume defined by some inter-
nal length scale [122]. As a tendon is stretched, the specific regions which fail first will
be determined by inhomogeneities in the microstructure or the stress field (as a result
of the geometry or the applied deformation). This is in contrast to our proposed model
where, in the 1D case, since both the material properties and stress concentration are
homogeneous, failure occurs simultaneously at all points in the tissue. After failure has
been initiated in a small region of the tissue, the force being carried by the now ruptured
fibrils must be transferred to the surrounding tissue, further increasing the risk of failure
in adjacent fibrils. This could lead to a cascading effect, where groups of fibrils rupture
as a crack propagates through the tissue. The step-like failure behaviour observed by
Goh et al. [20] could be attributed to such an event, rather than being the result of a
statistical distribution of fibril failure properties. Additionally, strain localisation could
result in a jump in global strain whilst the engineering stress remains roughly constant
because most of the material is undamaged. This could potentially lead to a plateau
region in the stress-strain curve without the need for the entire tissue to be undergoing
plastic deformation at the same point in time.

Another explanation for the plateaus observed in the stress-strain curve could come
from the cross-link density of the tendon. In Section 2.1.2.2, cross-linking was intro-
duced and a paper by Puxkandl et al. was discussed [32]. In this paper, it was found that
exposing rats to BAPN, a lysyl oxidase inhibiting drug, reduced the density of enzy-
matic cross-links in their tail tendons, and the resulting stress-strain curves appeared to
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have plateau regions. It is therefore possible that the plateau regions observed by Goh et
al. [20] were the result of a reduced density of cross-links between collagen molecules.



Chapter 5

Conclusion

The aim of this thesis was to establish if modelling assumptions commonly applied to
models of tendons and ligaments are appropriate, or if they need to be reconsidered.
When conducting finite element modelling of tendons/ligaments, there are many deci-
sions that one must make. The choice of constitutive model, geometry, fibre direction,
the degree of anisotropy, and the stress measure used to represent the solution all have
the potential to affect the predictions of the model. Our comparisons between a phe-
nomenological and microstructural constitutive model show that, provided the model
incorporates the appropriate degree of anisotropy, there is little qualitative difference
between the two approaches. However, microstructural models should be preferred be-
cause they contain more information about the microstructure, along with measurable
parameters that can be compared with existing experimental data. We found that the
fibre direction is extremely important, and failure to properly consider the direction of
fibres at the surface of the tendon can lead to stress concentrations which are not present
when a more realistic fibre orientation is used. Finally, we discussed the use of the
isotropic von Mises stress, showing that it produces different results to stress measures
derived from anisotropic yield criteria.

After considering the applicability of isotropic and anisotropic yield criteria to soft
tissue, we applied a simple 1D yield criterion to the individual collagen fibrils, and from
this, derived an expression for the stress in the tissue as a whole. The resulting model
incorporated distributions of fibril failure properties and was able to provide a good fit to
experimental data, with microstructural parameters that fell within the range of values
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found in the literature. This model, however, was only applied to a deformation in 1D.
There are many ways in which our work could be extended, but perhaps the most

obvious would be to apply the constitutive model derived in Chapter 4 to a finite element
model. This would allow us to judge the new model in a more complex 3D deforma-
tion, rather than just the 1D deformation considered within Chapter 4, and compare
with stress-based yield criteria. We made attempts at this but were unable to success-
fully implement our model within non-cylindrical geometries. This may be because we
assumed that a material described by this constitutive model would be hyperelastic, but
that the microstructural failure model resulted in a non-convex strain energy function.
It would also be beneficial to see a comparison between our idealised geometry and a
geometry based on 3D scans of real tendons/ligaments. This would allow us to ensure
that our results are not exclusive to the specific geometry we tested.

We believe that the work presented in this thesis has achieved many of the goals
that we initially set out to achieve. We have produced results that could have an impact
on future finite element models of tendons and ligaments, particularly when it comes to
fibre direction. Additionally, the microstructural model we present in Chapter 4 provides
a good foundation for future models which can be extended to 3D and used in more
complex deformations. We sought to emphasise how microstructural models provide
more useful information than phenomenological models, because their parameters are
based on the underlying biology. We believe that we have achieved this by always
relating the macroscale mechanical behaviour to the microstructure. However, because
of the ambitious nature of our initial goals, there are certain places where we fell short.
In particular, we only considered simple deformations. If we had applied more realistic
boundary conditions to the tendons/ligaments in our finite element models, we may have
learned more about the validity of the underlying assumptions.
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Appendix A

A.1 The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem states that a 3× 3 matrix A satisfies its own character-
istic equation [37], i.e.

A3−A2TrA+
1
2

A
[
(TrA)2−TrA2]− IdetA = 0. (A.1)

A.2 Derivation of crimped fibril strain energy function

After evaluating the integral in equation (2.54), we find that the stress in the fibres is
equal to

σ(λ) = E(A+Bλ+Cλ
2 +Dλ logλ), (A.2)
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where A, B, C, and D are constants defined by

A =



0, λ < a,

−a2

(a−b)(a− c)
, a≤ λ < c,

−bc
(a−b)(b− c)

− a
a−b

, c≤ λ < b,

−1, λ≥ b,

B =



0, λ < a,
2a loga

(a−b)(a− c)
, a≤ λ < c,

2a loga
(a−b)(a− c)

+
2c logc

(a− c)(b− c)
, c≤ λ < b,

2a loga
(a−b)(a− c)

− 2b logb
(a−b)(b− c)

+
2c logc

(a− c)(b− c)
, λ≥ b,

C =



0, λ < a,
1

(a−b)(a− c)
, a≤ λ < c,

1
(a−b)(b− c)

, c≤ λ < b,

0, λ≥ b,

D =



0, λ < a,
−2a

(a−b)(a− c)
, a≤ λ < c,

−2b
(a−b)(b− c)

, c≤ λ < b,

0, λ≥ b,

(A.3)

where a, b, and c are the lower bound, upper bound, and mode of the critical stretch
distribution ΛC(λC), respectively. To get the corresponding strain energy function, we
follow the procedure described in [43]. We equate the part of equation (2.36) associated
with the fibres with equation (A.2), giving

2I4
∂Wf

∂I4
= E(A+Bλ+Cλ

2 +Dλ logλ). (A.4)
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Using the fact that I4 = λ2 and solving for Wf , we arrive at

Wf (I4) = φE
(

A
2

log I4 +(B−D)
√

I4 +
C
2

I4 +
D
2
√

I4 log I4 +F
)
, (A.5)

where A, B, C, and D, are as defined in equation (A.3), but with λ =
√

I4. The constant
F can be found by enforcing Wf (1) = 0, leading to

F =

(
D−B−C

2

)∣∣∣∣
I4=1

. (A.6)

Assuming that the matrix is isotropic and can be represented as a Neo-Hookean material,
we can write down the full strain energy function as

W (I1, I4) = (1−φ)
µ
2
(I1−3)+φE

(
A
2

log I4 +(B−D)
√

I4 +
C
2

I4 +
D
2
√

I4 log I4 +F
)
.

(A.7)



Appendix B

B.1 Analytic expression for the stress in the elastic-rupture
model

When using the ER model, it is possible to determine an analytic expression for the
stress in the tendon when the fibril critical stretch follows a triangular distribution. In
this case, the tendon stress is given by

σ
ER
T (λ) = AER +BER

λ+CER
λ

2 +DER
λ logλ, (B.1)

where AER, BER, CER, and DER are piecewise constants defined by
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AER =



0, λ < a and λ/λR < a,
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CER =
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0, λ≥ b and λ/λR < a,

(λR−1)2

λ2
R(a−b)(a− c)

, a≤ λ < c and a≤ λ/λR < c,

1
λ2

R(a−b)(a− c)
+

1
(a−b)(b− c)

− 2
λR(a−b)(a− c)

, c≤ λ < b and a≤ λ/λR < c,

(1−2λR)

λ2
R(a−b)(a− c)
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(λR−1)2

λ2
R(a−b)(b− c)
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(1−2λR)

λ2
R(a−b)(b− c)

, λ≥ b and c≤ λ/λR < b,

0, λ≥ b and λ/λR ≥ b,

DER =



0, λ < a and λ/λR < a,
−2a

(a−b)(a− c)
, a≤ λ < c and λ/λR < a,

−2b
(a−b)(b− c)

, c≤ λ < b and λ/λR < a,

0, λ≥ b and λ/λR < a,

0, a≤ λ < c and a≤ λ/λR < c,
−2b

(a−b)(b− c)
+

2a
(a−b)(a− c)

, c≤ λ < b and a≤ λ/λR < c,

2a
(a−b)(a− c)

, λ≥ b and a≤ λ/λR < c,

0, c≤ λ < b and c≤ λ/λR < b,
2b

(a−b)(b− c)
, λ≥ b and c≤ λ/λR < b,

0, λ≥ b and λ/λR ≥ b,
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B.2 Age breakdown of features present in stress-strain
data

Age group Ntotal Nlinear Nsteps Neither Nboth

1.6 month 27 7 (26%) 16 (59%) 20 (74%) 3 (11%)
2.6 month 25 13 (52%) 14 (56%) 19 (76%) 8 (32%)
4.0 month 17 7 (41%) 7 (41%) 11 (65%) 3 (18%)
11.5 month 34 16 (47%) 3 (9%) 18 (53%) 1 (3%)
23.0 month 33 7 (21%) 3 (9%) 9 (27%) 1 (3%)
29.0 month 43 11 (26%) 4 (9%) 14 (33%) 1 (2%)
31.5 month 40 13 (33%) 3 (8%) 15 (38%) 1 (3%)
35.3 month 41 12 (29%) 4 (10%) 15 (37%) 1 (2%)

total: 260 86 (33%) 54 (21%) 121 (47%) 19 (7%)

Table B.1: The number of stress-strain curves from Goh et al. [20] containing second
linear regions Nlinear, and step-like failure behaviour Nsteps for each age group of mice,
as described in Section 4.2.3. Neither gives the number with either a second linear region,
step-like failure behaviour, or both. The final column gives the number with both Nboth.

B.3 Fitting parameters

This section contains histograms showing the spread of the fitting parameters obtained
when we fit the EPD model to 223 sets of stress-strain data from Goh et al. [20]. For a
tendon with a distribution of critical stretch ΛC(λC), we can find the mean crimp angle
θ by computing

θ =
∫

∞

1
arccos

(
1

λC

)
ΛC(λC)dλC. (B.2)
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(a) Collagen fibril Young’s modulus.
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(b) Upper limit of the fibril critical stretch dis-
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(c) Mean crimp angle found using equation
(B.2).
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(d) Lower limit of fibril yield stretch distribu-
tion.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0

10

20

30

40

bY

F
re
q
u
e
n
c
y

(e) Upper limit of the fibril yield stretch distri-
bution.
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(f) Lower limit of the fibril rupture stretch dis-
tribution.
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(g) Upper limit of the fibril rupture stretch dis-
tribution.
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(h) The plasticity parameter k often did not
change from its initial value of k = 0, which
corresponds to the case of perfect plasticity.

Figure B.1: Histograms of the EPD model parameters found by applying the fitting
routine described in Section 4.4 to stress-strain data from Goh et al. [20].


