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CHAPTER 2 

 

ATOMIC STRUCTURE AND INTERATOMIC BONDING 

 

PROBLEM SOLUTIONS 

 

 

 Fundamental Concepts 

 Electrons in Atoms 

 

 2.1  Cite the difference between atomic mass and atomic weight. 

 
  Solution 

 Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of the 

atomic masses of an atom's naturally occurring isotopes. 
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 2.2 Chromium has four naturally-occurring isotopes: 4.34% of 50Cr, with an atomic weight of 49.9460 

amu, 83.79% of 52Cr, with an atomic weight of 51.9405 amu, 9.50% of 53Cr, with an atomic weight of 52.9407 amu, 

and 2.37% of 54Cr, with an atomic weight of 53.9389 amu.  On the basis of these data, confirm that the average 

atomic weight of Cr is 51.9963 amu. 

 
  Solution 

 The average atomic weight of silicon     

 

(A Cr )  is computed by adding fraction-of-occurrence/atomic weight 

products for the three isotopes.  Thus 

 

    

 

A Cr =  f50Cr
A50Cr

 +  f52Cr
A52Cr

+  f53Cr
A53Cr

+  f54Cr
A54Cr

 

 

 

=  (0.0434)(49.9460 amu) +  (0.8379)(51.9405 amu) +  (0.0950)(52.9407  amu) +  (0.0237)(53.9389 amu) =  51.9963 amu
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 2.3  (a) How many grams are there in one amu of a material? 

 (b) Mole, in the context of this book, is taken in units of gram-mole. On this basis, how many atoms 

are there in a pound-mole of a substance? 

 

  Solution 

 (a)  In order to determine the number of grams in one amu of material, appropriate manipulation of the 

amu/atom, g/mol, and atom/mol relationships is all that is necessary, as 

 

 

# g/amu =  
1 mol

6.022  ×  1023  atoms

 
 
 

 
 
 

1 g /mol
1 amu /atom

 
 
 

 
 
  

 

= 1.66 × 10-24 g/amu 

 

 (b)  Since there are 453.6 g/lbm, 

 

 

1 lb - mol =  (453.6 g/lbm) (6.022 ×  10 23 atoms/g - mol)  

 

= 2.73 × 1026 atoms/lb-mol 
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 2.4 (a)  Cite two important quantum-mechanical concepts associated with the Bohr model of the atom. 

 (b)  Cite two important additional refinements that resulted from the wave-mechanical atomic model. 

 
  Solution 

 (a)  Two important quantum-mechanical concepts associated with the Bohr model of the atom are (1) that 

electrons are particles moving in discrete orbitals, and (2) electron energy is quantized into shells. 

 (b)  Two important refinements resulting from the wave-mechanical atomic model are (1) that electron 

position is described in terms of a probability distribution, and (2) electron energy is quantized into both shells and 

subshells--each electron is characterized by four quantum numbers. 
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 2.5 Relative to electrons and electron states, what does each of the four quantum numbers specify? 

 
  Solution 

 The n quantum number designates the electron shell. 

 The l quantum number designates the electron subshell. 
 The ml quantum number designates the number of electron states in each electron subshell. 

 The ms quantum number designates the spin moment on each electron. 
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 2.6 Allowed values for the quantum numbers of electrons are as follows: 

n = 1, 2, 3, . . . 

l = 0, 1, 2, 3, . . . , n –1 

m l = 0, ±1, ±2, ±3, . . . , ±l 

    

 

ms =  ±
1

2
 

The relationships between n and the shell designations are noted in Table 2.1. Relative to the subshells, 

 l = 0 corresponds to an s subshell 

 l = 1 corresponds to a p subshell 

 l = 2 corresponds to a d subshell 

 l = 3 corresponds to an f subshell 

For the K shell, the four quantum numbers for each of the two electrons in the 1s state, in the order of nlm lms, are 

100(

 

1

2
) and 100(

 

− 1

2
). Write the four quantum numbers for all of the electrons in the L and M shells, and note 

which correspond to the s, p, and d subshells. 

 

  Solution 

 For the L state, n = 2, and eight electron states are possible.  Possible l values are 0 and 1, while possible ml 

values are 0 and ±1;  and possible ms values are 

 

± 1
2
.  Therefore, for the s states, the quantum numbers are 

  

 

200(1
2
)  

and 
  

 

200(−
1
2
) .  For the p states, the quantum numbers are 

  

 

210(1
2
) , 

  

 

210(−
1
2
) , 

  

 

211(1
2
) , 

  

 

211(−
1
2
) , 

  

 

21(−1)(1
2
), and 

  

 

21(−1)(−
1
2
). 

 For the M state, n = 3, and 18 states are possible.  Possible l values are 0, 1, and 2;  possible ml values are 

0, ±1, and ±2;  and possible ms values are 
  
±

1

2
.   Therefore, for the s states, the quantum numbers are 

  

 

300(1
2
) , 

  

 

300(−
1
2
) , for the p states they are 

  

 

310(1
2
) , 

  

 

310(−
1
2
) , 

  

 

311(1
2
) , 

  

 

311(−
1
2
) , 

  

 

31(−1)(1
2
), and 

  

 

31(−1)(−
1
2
);  for the d 

states they are 
  

 

320(1
2
) , 

  

 

320(−
1
2
) , 

  

 

321(1
2
) , 

  

 

321(−
1
2
) , 

  

 

32 (−1)(1
2
) , 

  

 

32 (−1)(−
1
2
) , 

  

 

322(1
2
) , 

  

 

322(−
1
2
) , 

  

 

32 (−2)(1
2
), 

and 
  

 

32 (−2)(−
1
2
) . 
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 2.7  Give the electron configurations for the following ions:  Fe2+, Al3+, Cu+, Ba2+, Br-, and O2-. 
 

  Solution 

 The electron configurations for the ions are determined using Table 2.2 (and Figure 2.6). 

 

 Fe2+:  From Table 2.2, the electron configuration for an atom of iron is 1s22s22p63s23p63d64s2. In order to 

become an ion with a plus two charge, it must lose two electrons—in this case the two 4s.  Thus, the electron 

configuration for an Fe2+ ion is 1s22s22p63s23p63d6. 

 Al3+:  From Table 2.2, the electron configuration for an atom of aluminum is 1s22s22p63s23p1. In order to 

become an ion with a plus three charge, it must lose three electrons—in this case two 3s and the one 3p.  Thus, the 

electron configuration for an Al3+ ion is 1s22s22p6. 

 Cu+:  From Table 2.2, the electron configuration for an atom of copper is 1s22s22p63s23p63d104s1. In order 

to become an ion with a plus one charge, it must lose one electron—in this case the 4s.  Thus, the electron 

configuration for a Cu+ ion is 1s22s22p63s23p63d10. 

 Ba2+:  The atomic number for barium is 56 (Figure 2.6), and inasmuch as it is not a transition element the 

electron configuration for one of its atoms is 1s22s22p63s23p63d104s24p64d105s25p66s2. In order to become an ion 

with a plus two charge, it must lose two electrons—in this case two the 6s.  Thus, the electron configuration for a 

Ba2+ ion is 1s22s22p63s23p63d104s24p64d105s25p6. 

 Br-: From Table 2.2, the electron configuration for an atom of bromine is 1s22s22p63s23p63d104s24p5. In 

order to become an ion with a minus one charge, it must acquire one electron—in this case another 4p.  Thus, the 

electron configuration for a Br- ion is 1s22s22p63s23p63d104s24p6. 

 O2-: From Table 2.2, the electron configuration for an atom of oxygen is 1s22s22p4. In order to become an 

ion with a minus two charge, it must acquire two electrons—in this case another two 2p.  Thus, the electron 

configuration for an O2- ion is 1s22s22p6. 
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 2.8 Sodium chloride (NaCl) exhibits predominantly ionic bonding.  The Na+ and Cl- ions have electron 

structures that are identical to which two inert gases? 
 

  Solution 

 The Na
+

 ion is just a sodium atom that has lost one electron; therefore, it has an electron configuration the 

same as neon (Figure 2.6). 

 The Cl
-
 ion is a chlorine atom that has acquired one extra electron;  therefore, it has an electron 

configuration the same as argon. 
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 The Periodic Table 

 

 2.9  With regard to electron configuration, what do all the elements in Group VIIA of the periodic table 

have in common? 
 

  Solution 

 Each of the elements in Group VIIA has five p electrons. 
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 2.10  To what group in the periodic table would an element with atomic number 114 belong? 
 

  Solution 

 From the periodic table (Figure 2.6) the element having atomic number 114 would belong to group IVA.  

According to Figure 2.6, Ds, having an atomic number of 110 lies below Pt in the periodic table and in the right-

most column of group VIII.  Moving four columns to the right puts element 114 under Pb and in group IVA. 
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 2.11 Without consulting Figure 2.6 or Table 2.2, determine whether each of the electron configurations 

given below is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your 

choices. 

 (a) 1s22s22p63s23p63d74s2 

 (b) 1s22s22p63s23p6 

 (c) 1s22s22p5 

 (d) 1s22s22p63s2 

 (e) 1s22s22p63s23p63d24s2 

 (f) 1s22s22p63s23p64s1 
 

  Solution 

 (a)  The 1s22s22p63s23p63d74s2 electron configuration is that of a transition metal because of an incomplete 

d subshell. 

 (b)  The 1s22s22p63s23p6 electron configuration is that of an inert gas because of filled 3s and 3p subshells. 

 (c)  The 1s22s22p5 electron configuration is that of a halogen because it is one electron deficient from 

having a filled L shell. 

 (d)  The 1s22s22p63s2 electron configuration is that of an alkaline earth metal because of two s electrons. 

 (e)  The 1s22s22p63s23p63d24s2 electron configuration is that of a transition metal because of an incomplete 

d subshell. 

 (f)  The 1s22s22p63s23p64s1 electron configuration is that of an alkali metal because of a single s electron. 
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 2.12  (a) What electron subshell is being filled for the rare earth series of elements on the periodic table? 

 (b) What electron subshell is being filled for the actinide series? 
 

  Solution 

 (a)  The 4f subshell is being filled for the rare earth series of elements. 

 (b)  The 5f subshell is being filled for the actinide series of elements. 
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 Bonding Forces and Energies 

 

 2.13  Calculate the force of attraction between a K+ and an O2- ion the centers of which are separated by a 

distance of 1.5 nm. 
 

  Solution 

 The attractive force between two ions FA is just the derivative with respect to the interatomic separation of 

the attractive energy expression, Equation 2.8, which is just 

 

    

 

FA =  
dEA
dr

 =  
d −

A
r

 
 
 

 
 
 

dr
 =  

A

r2
 

 

The constant A in this expression is defined in footnote 3.  Since the valences of the K+ and O2- ions (Z1 and Z2) are 

+1 and -2, respectively, Z1 = 1 and Z2 = 2, then 

 

  

 

FA =  
(Z1e) (Z2e)

4πε0r2
 

 

 

=  
(1)(2)(1.602  ×  10−19  C)2

(4)(π) (8.85 ×  10−12  F/m) (1.5 ×  10−9  m)2
 

 

= 2.05 × 10-10 N 
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 2.14 The net potential energy between two adjacent ions, EN, may be represented by the sum of Equations 

2.8 and 2.9;  that is, 

  

 

EN  =  −
A
r

 +  
B

rn
 

Calculate the bonding energy E0 in terms of the parameters A, B, and n using the following procedure: 

 1. Differentiate EN with respect to r, and then set the resulting expression equal to zero, since the curve of 

EN versus r is a minimum at E0. 

 2. Solve for r in terms of A, B, and n, which yields r0, the equilibrium interionic spacing. 

 3. Determine the expression for E0 by substitution of r0 into Equation 2.11. 
 

  Solution 

 (a)  Differentiation of Equation 2.11 yields 

 

  

 

dEN

dr
 =  

d −
A
r

 
 
 

 
 
 

dr
 +  

d
B

rn

 
 
 

 
 
 

dr
 

 

  

 

=  
A

r(1 +  1)
 −  

nB

r(n +  1)
 =  0  

 

 (b)  Now, solving for r (= r0) 

 

  

 

A

r0
2

 =  
nB

r0
(n +  1)

 

 

or 

 

  

 

r0 =  
A

nB

 
 
 

 
 
 
1/(1 - n)

 

 

 (c)  Substitution for r0 into Equation 2.11 and solving for E (= E0) 

 

  

 

E0 =  −
A
r0

 +  
B

r0
n

 

 

  

 

=  −
A

A
nB

 
 
 

 
 
 
1/(1 - n)

 +  
B

A
nB

 
 
 

 
 
 

n/(1 - n)
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 2.15  For a K+–Cl– ion pair, attractive and repulsive energies EA and ER, respectively, depend on the 

distance between the ions r, according to 

 

EA = −
1.436

r
 

 

 

ER =
5.8  ×  10−6

r9
 

 

For these expressions, energies are expressed in electron volts per K+–Cl– pair, and r is the distance in nanometers. 

The net energy EN is just the sum of the two expressions above. 

 (a) Superimpose on a single plot EN, ER, and EA versus r up to 1.0 nm. 

 (b) On the basis of this plot, determine (i) the equilibrium spacing r0 between the K+ and Cl– ions, and (ii) 

the magnitude of the bonding energy E0 between the two ions. 

 (c) Mathematically determine the r0 and E0 values using the solutions to Problem 2.14 and compare these 

with the graphical results from part (b). 
 

  Solution 

 (a)  Curves of EA, ER, and EN are shown on the plot below. 

 

 

 (b)  From this plot 
r0 = 0.28 nm 

E0 = – 4.6 eV 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

 

 (c)  From Equation 2.11 for EN 

     A = 1.436 

     B = 5.86 × 10-6 

     n = 9 

Thus, 

  

  

 

r0 =  
A

nB

 
 
 

 
 
 
1/(1 - n)

 

 

 

=
1.436

(8)(5.86 ×  10-6)
 

 
 

 

 
 
1/(1 - 9)

= 0.279 nm
 

 

and 

 

  

 

E0 =  −
A

A
nB

 
 
 

 
 
 
1/(1 - n)

 +  
B

A
nB

 
 
 

 
 
 

n/(1 - n)
 

 

 

=  −  
1.436

1.436
(9)(5.86  ×  10−6)

 

 
 
 

 

 
 
 

1/(1 −  9)
 +  

5.86  ×  10−6

1.436
(9)(5.86 × 10−6)

 

 
 
 

 

 
 
 

9 /(1 −  9)
 

 

= – 4.57 eV 
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 2.16 Consider a hypothetical X+-Y- ion pair for which the equilibrium interionic spacing and bonding 

energy values are 0.35 nm and -6.13 eV, respectively.  If it is known that n in Equation 2.11 has a value of 10, using 

the results of Problem 2.14, determine explicit expressions for attractive and repulsive energies EA and ER of 

Equations 2.8 and 2.9. 
 

  Solution 

 This problem gives us, for a hypothetical X+-Y- ion pair, values for r0 (0.35 nm), E0 (– 6.13 eV), and n 

(10), and asks that we determine explicit expressions for attractive and repulsive energies of Equations 2.8 and 2.9.  

In essence, it is necessary to compute the values of A and B in these equations.  Expressions for r0 and E0 in terms 

of n, A, and B were determined in Problem 2.14, which are as follows: 

 

  

 

r0 =  
A

nB

 
 
 

 
 
 
1/(1 - n)

 

 

  

 

E0 =  −
A

A
nB

 
 
 

 
 
 
1/(1 - n)

 +  
B

A
nB

 
 
 

 
 
 

n/(1 - n)
 

 

Thus, we have two simultaneous equations with two unknowns (viz. A and B).  Upon substitution of values for r0 

and E0 in terms of n, these equations take the forms 

 

  

 

0.35 nm =  
A

10 B

 

 
 

 

 
 
1/(1 - 10)

 =  
A

10 B

 

 
 

 

 
 

-1/9

  

 

and 

 

  

 

− 6.13 eV =  −  
A

A
10 B

 

 
 

 

 
 
1/(1 −  10)

+  
B

A
10 B

 

 
 

 

 
 
10 /(1 −  10)

 

 

  

 

=  −  
A

A
10B

 
 
 

 
 
 
−1/ 9

+  
B

A
10B

 
 
 

 
 
 
−10 / 9

 

 

We now want to solve these two equations simultaneously for values of A and B.  From the first of these two 

equations, solving for A/8B leads to 
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A
10B

 =  (0.35 nm)-9 

 

Furthermore, from the above equation the A is equal to 

 

  

 

A =  10B(0.35 nm) -9  

 

When the above two expressions for A/10B and A are substituted into the above expression for E0 (- 6.13 eV), the 

following results 

 

  

 

−6.13 eV =  =  −  
A

A
10B

 
 
 

 
 
 
−1/ 9

+  
B

A
10B

 
 
 

 
 
 
−10 / 9

 

 

  

 

=  −  
10B(0.35 nm)-9

(0.35 nm)-9[ ]−1/ 9
+  

B

(0.35 nm) -9[ ]−10 / 9
 

 

  

 

=  −  
10B(0.35 nm) -9

0.35 nm
+  

B

(0.35 nm)10
 

 

Or 

 

  

 

−6.13 eV =  =  −  
10B

(0.35 nm)10
+  

B

(0.35 nm)10
 =  −  

9B

(0.35 nm)10
 

 

Solving for B from this equation yields 

 

  

 

B =  1.88 ×  10-5  eV- nm10  

 

Furthermore, the value of A is determined from one of the previous equations, as follows: 

 

  

 

A =  10B(0.35 nm) -9  =  (10)(1.88 ×  10-5  eV - nm10)(0.35 nm)-9  

 

 

=  2.39 eV- nm  
 

Thus, Equations 2.8 and 2.9 become 
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EA =  −
2.39

r
 

 

  

 

ER =  
1.88  ×  10−5

r10
 

 

Of course these expressions are valid for r and E in units of nanometers and electron volts, respectively. 
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 2.17 The net potential energy EN between two adjacent ions is sometimes represented by the expression 

 
    

 

EN = −
C
r

 +  DÊexp −
r
ρ

 

 
 

 

 
  (2.12) 

in which r is the interionic separation and C, D, and ρ are constants whose values depend on the specific material. 

 (a) Derive an expression for the bonding energy E0 in terms of the equilibrium interionic separation r0 and 

the constants D and ρ using the following procedure: 

 1. Differentiate EN with respect to r and set the resulting expression equal to zero. 

 2. Solve for C in terms of D, ρ, and r0. 

 3. Determine the expression for E0 by substitution for C in Equation 2.12. 

 (b) Derive another expression for E0 in terms of r0, C, and ρ using a procedure analogous to the one 

outlined in part (a). 

 

  Solution 

 (a)  Differentiating Equation 2.12 with respect to r yields 

 

  

 

dE
dr

=  
d −

C
r

 
 
 

 
 
 

dr
 −  

d D exp −
r
ρ

 

 
 

 

 
 

 

 
 

 

 
 

dr
 

 

  

 

=  
C

r2
 −  

De− r /ρ

ρ
 

 

At r = r0, dE/dr = 0, and 

 

 
  

 

C

r0
2

 =  
De−(r0/ρ)

ρ
 (2.12b) 

 

Solving for C and substitution into Equation 2.12 yields an expression for E0 as 

 

  

 

E0 =  De−(r0/ρ) 1 −  
r0
ρ

 

 
 

 

 
  

 

 (b)  Now solving for D from Equation 2.12b above yields 

 

  

 

D =  
Cρ e (r0/ρ)

r0
2
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Substitution of this expression for D into Equation 2.12 yields an expression for E0 as 

 

  

 

E0 =  
C
r0

ρ
r0

 −  1
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 Primary Interatomic Bonds 

 
 2.18  (a) Briefly cite the main differences between ionic, covalent, and metallic bonding. 

 (b) State the Pauli exclusion principle. 

 

  Solution 

 (a)  The main differences between the various forms of primary bonding are: 

  Ionic--there is electrostatic attraction between oppositely charged ions. 

  Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a 

stable electron configuration. 

  Metallic--the positively charged ion cores are shielded from one another, and also "glued" 

together by the sea of valence electrons. 

 (b)  The Pauli exclusion principle states that each electron state can hold no more than two electrons, which 

must have opposite spins. 
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 2.19  Compute the percents ionic character of the interatomic bonds for the following compounds: TiO2, 

ZnTe, CsCl, InSb, and MgCl2. 
 

  Solution 

 The percent ionic character is a function of the electron negativities of the ions XA and XB according to 

Equation 2.10.  The electronegativities of the elements are found in Figure 2.7. 

 
 For TiO2, XTi = 1.5 and XO = 3.5, and therefore, 

 

  

 

%IC =  1 −  e(− 0.25)(3.5−1.5)2 
  

 
   ×  100 =  63.2%  

 
 For ZnTe, XZn = 1.6 and XTe = 2.1, and therefore, 

 

    

 

%IC =  1 −  e(−0.25) (2.1−1.6)2 
  

 
   ×  100 =  6.1%  

 
 For CsCl, XCs = 0.7 and XCl = 3.0, and therefore, 

 

  

 

%IC =  1 −  e(− 0.25)(3.0− 0.7)2 
  

 
   ×  100 =  73.4% 

 
 For InSb, XIn = 1.7 and XSb = 1.9, and therefore, 

 

  

 

%IC =  1 −  e(− 0.25)(1.9−1.7)2 
  

 
   ×  100 =  1.0% 

 
 For MgCl2, XMg = 1.2 and XCl = 3.0, and therefore, 

 

  

 

%IC =  1 −  e(− 0.25)(3.0−1.2)2 
  

 
   ×  100 =  55.5%  
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 2.20  Make a plot of bonding energy versus melting temperature for the metals listed in Table 2.3.  Using 

this plot, approximate the bonding energy for copper, which has a melting temperature of 1084°C. 
 

  Solution 

 Below is plotted the bonding energy versus melting temperature for these four metals.  From this plot, the 

bonding energy for copper (melting temperature of 1084°C) should be approximately 3.6 eV.  The experimental 

value is 3.5 eV. 
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 2.21  Using Table 2.2, determine the number of covalent bonds that are possible for atoms of the following 

elements:  germanium, phosphorus, selenium, and chlorine. 
 

  Solution 

 For germanium, having the valence electron structure 4s24p2, N' = 4; thus, there are 8 – N' = 4 covalent 

bonds per atom. 

 For phosphorus, having the valence electron structure 3s23p3, N' = 5;  thus, there is 8 – N' = 3 covalent 

bonds per atom. 

 For selenium, having the valence electron structure 4s24p4, N' = 6;  thus, there are 8 – N' = 2 covalent 

bonds per atom. 

 For chlorine, having the valence electron structure 3s23p5, N' = 7; thus, there are 8 – N' = 1 covalent bond 

per atom. 
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 2.22  What type(s) of bonding would be expected for each of the following materials:  brass (a copper-zinc 

alloy), rubber, barium sulfide (BaS), solid xenon, bronze, nylon, and aluminum phosphide (AlP)? 
 

  Solution 

 For brass, the bonding is metallic since it is a metal alloy. 

 For rubber, the bonding is covalent with some van der Waals. (Rubber is composed primarily of carbon 

and hydrogen atoms.) 

 For BaS, the bonding is predominantly ionic (but with some covalent character) on the basis of the relative 

positions of Ba and S in the periodic table. 

 For solid xenon, the bonding is van der Waals since xenon is an inert gas. 

 For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin). 

 For nylon, the bonding is covalent with perhaps some van der Waals.  (Nylon is composed primarily of 

carbon and hydrogen.) 

 For AlP the bonding is predominantly covalent (but with some ionic character) on the basis of the relative 

positions of Al and P in the periodic table. 
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 Secondary Bonding or van der Waals Bonding 

 

 2.23  Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride (HCl) 

(19.4 vs. –85°C), even though HF has a lower molecular weight. 
 

  Solution 

 The intermolecular bonding for HF is hydrogen, whereas for HCl, the intermolecular bonding is van der 

Waals.  Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting temperature. 
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CHAPTER 3 

 

THE STRUCTURE OF CRYSTALLINE SOLIDS 

 

PROBLEM SOLUTIONS 

 

 

 Fundamental Concepts 

 

 3.1  What is the difference between atomic structure and crystal structure? 
 

  Solution 

 Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as the 

number and probability distributions of the constituent electrons.  On the other hand, crystal structure pertains to the 

arrangement of atoms in the crystalline solid material. 
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 Unit Cells 

 Metallic Crystal Structures 

 

 3.2  If the atomic radius of aluminum is 0.143 nm, calculate the volume of its unit cell in cubic meters. 
 

  Solution 

 For this problem, we are asked to calculate the volume of a unit cell of aluminum.  Aluminum has an FCC 

crystal structure (Table 3.1).  The FCC unit cell volume may be computed from Equation 3.4 as 

 

  

 

VC  =  16R3 2 =  (16)(0.143 ×  10-9  m)3( 2) =  6.62 ×  10-29  m3 
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 3.3  Show for the body-centered cubic crystal structure that the unit cell edge length a and the atomic 

radius R are related through a =4R/ 3 . 
 

  Solution 

 Consider the BCC unit cell shown below 

 

 

 

Using the triangle NOP 

 

    

 

(NP)2 =  a2 +  a2 = 2a2 

 

And then for triangle NPQ, 

 

    

 

(NQ)2 = (QP)2 + (NP)2  

 

But   

 

NQ  = 4R, R being the atomic radius.  Also,   

 

QP  = a.  Therefore, 

 

    

 

(4R)2  =  a2 +  2a2 

 

or 

    

 

a =  
4R

3
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 3.4  For the HCP crystal structure, show that the ideal c/a ratio is 1.633. 
 

  Solution 

 A sketch of one-third of an HCP unit cell is shown below. 

 

 

 

Consider the tetrahedron labeled as JKLM, which is reconstructed as 

 

 

 

The atom at point M is midway between the top and bottom faces of the unit cell--that is   

 

MH  = c/2.  And, since 

atoms at points J, K, and M, all touch one another, 

 

    

 

JM = JK = 2R = a  

 

where R is the atomic radius.  Furthermore, from triangle JHM, 

 

    

 

(JM )2 = (JH )2 + (MH )2 

or 
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a2 =  (JH )2  +  
c
2

 
 
 

 
 
 
2

 

 

Now, we can determine the   

 

JH
 
length by consideration of triangle JKL, which is an equilateral triangle, 

 

 

 

    

 

cos 30° =  
a /2
JH

=  
3

2
 

and 

    

 

JH =  
a
3

 

 

Substituting this value for   

 

JH  in the above expression yields 

 

    

 

a2 =  
a
3

 
 
 

 
 
 
2

+
c
2

 
 
 

 
 
 
2

=  
a2

3
+  

c2

4
 

 

and, solving for c/a 

 

    

 

c
a

=  
8
3

=  1.633 
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 3.5  Show that the atomic packing factor for BCC is 0.68. 
 

  Solution 

 The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or 

 

    

 

APF =  
VS
VC

 

 

Since there are two spheres associated with each unit cell for BCC 

 

    

 

VS  =  2(sphere volume) =  2
4πR3

3

 

 
  

 

 
  =  

8πR3

3
 

 

Also, the unit cell has cubic symmetry, that is VC = a3.  But a depends on R according to Equation 3.3, and 

 

    

 

VC =
4R

3

 
 
 

 
 
 
3

=
64 R3

3 3
 

Thus, 

 

    

 

APF =  
VS
VC

=  
8π R3 /3

64 R3 /3 3
=  0.68  
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 3.6  Show that the atomic packing factor for HCP is 0.74. 
 

  Solution 

 The APF is just the total sphere volume-unit cell volume ratio.  For HCP, there are the equivalent of six 

spheres per unit cell, and thus 

 

    

 

VS  =  6
4π R3

3

 

 
  

 

 
  =  8π R3 

 

Now, the unit cell volume is just the product of the base area times the cell height, c.  This base area is just three 

times the area of the parallelepiped ACDE shown below. 

 

 

The area of ACDE is just the length of   

 

CD  times the height   

 

BC .  But   

 

CD  is just a or 2R, and  

 

    

 

BC  =  2R cos (30°) =  
2 R 3

2
 

 

Thus, the base area is just 

 

    

 

AREA =  (3)(CD)(BC) =  (3)(2 R)
2 R 3

2

 

 
 

 

 
 =  6R2 3  

 

and since c = 1.633a = 2R(1.633) 

 

   

 

VC  =  (AREA)(c) =  6 R2c 3  (3.S1) 
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=  (6 R2 3) (2)(1.633)R =  12 3 (1.633) R3  

 

Thus, 

    

 

APF =  
VS
VC

=  
8π R3

12 3 (1.633) R3
=  0.74  
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 Density Computations 

 

 3.7  Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol.  

Compute and compare its theoretical density with the experimental value found inside the front cover. 
 

  Solution 

 This problem calls for a computation of the density of iron.  According to Equation 3.5 

 

 

ρ =
nAFe

VC NA
 

 

For BCC, n = 2 atoms/unit cell, and 

 

    

 

VC  =  
4 R

3

 
 
 

 
 
 
3
 

 

Thus, 

 

  

 

ρ =
nAFe

4 R
3

 
 
 

 
 
 
3

NA

 

 

 

=  
(2 atoms/unit cell)(55.85 g/mol)

(4)(0.124 ×  10-7  cm) / 3[ ]3
/(unit cell)(6.022 ×  1023 atoms/mol)

 

 

= 7.90 g/cm3 

 

The value given inside the front cover is 7.87 g/cm3. 
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 3.8  Calculate the radius of an iridium atom, given that Ir has an FCC crystal structure, a density of 22.4 

g/cm3, and an atomic weight of 192.2 g/mol. 
 

  Solution 

 We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal structure.  For 

FCC, n = 4 atoms/unit cell, and VC =     

 

16R3 2  (Equation 3.4).  Now, 

 

  

 

ρ =  
nAIr

VC N A
 

 

  

 

=  
nAIr

(16R3 2)N A
 

 

And solving for R from the above expression yields 

 

  

 

R =  
nAIr

16ρN A 2

 

 
 

 

 
 
1/3

 

 

 

=  
(4 atoms/unit cell) 192.2 g/mol( )

(16)(22.4 g/cm3)(6.022 ×  1023  atoms/mol)( 2)
 

 
 

 

 
 
1/3

 

 

= 1.36 × 10-8 cm = 0.136 nm 
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 3.9  Calculate the radius of a vanadium atom, given that V has a BCC crystal structure, a density of 5.96 

g/cm3, and an atomic weight of 50.9 g/mol. 
 

  Solution 

 This problem asks for us to calculate the radius of a vanadium atom.  For BCC, n = 2 atoms/unit cell, and 

 

    

 

VC  =  
4 R

3

 
 
 

 
 
 
3

 =  
64 R3

3 3
 

 

Since, from Equation 3.5 

 

  

 

ρ =  
nAV

VC N A
 

 

  

 

=  
nAV

64 R3

3 3

 

 
 

 

 
 N A

 

 

and solving for R the previous equation 

 

  

 

R =  
3 3nAV

64 ρ N A

 

 
 

 

 
 
1/3

 

 

and incorporating values of parameters given in the problem statement 

 

 

R =  
(3 3) (2 atoms/unit cell) (50.9 g/mol)

(64)(5.96 g/cm3)(6.022 ×  1023 atoms/mol)
 

 
 

 

 
 
1/3

 

 

= 1.32 × 10-8 cm = 0.132 nm 
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 3.10  Some hypothetical metal has the simple cubic crystal structure shown in Figure 3.24. If its atomic 

weight is 70.4 g/mol and the atomic radius is 0.126 nm, compute its density. 
 

  Solution 

 For the simple cubic crystal structure, the value of n in Equation 3.5 is unity since there is only a single 

atom associated with each unit cell.  Furthermore, for the unit cell edge length, a = 2R (Figure 3.24).  Therefore, 

employment of Equation 3.5 yields 

 

  

 

ρ =  
nA

VC N A
=  

nA

(2 R)3 N A
 

 

and incorporating values of the other parameters provided in the problem statement leads to 

 

 

ρ =  
(1 atom/unit cell)(70.4 g/mol)

(2)(1.26 ×  10
-8

 cm) 
  

 
  

3
/(unit cell)

 
 
 

 
 
 
(6.022 ×  1023  atoms/mol)

 

 

7.31 g/cm3 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.11  Zirconium has an HCP crystal structure and a density of 6.51 g/cm3. 

 (a) What is the volume of its unit cell in cubic meters? 

 (b) If the c/a ratio is 1.593, compute the values of c and a. 

 

  Solution 

 (a)  The volume of the Zr unit cell may be computed using Equation 3.5 as 

 

  

 

VC =
nAZr

ρN A
 

 

Now, for HCP, n = 6 atoms/unit cell, and for Zr, AZr = 91.22 g/mol.  Thus, 

 

  

 

VC =  
(6 atoms/unit cell)(91.22 g/mol)

(6.51 g/cm3)(6.022 ×  1023 atoms/mol)
 

 

= 1.396 × 10-22 cm3/unit cell = 1.396 × 10-28 m3/unit cell 

 

 (b)  From Equation 3.S1 of the solution to Problem 3.6, for HCP 

 

    

 

VC  =   6 R2c 3  

 

But, since a = 2R, (i.e., R = a/2) then 

 

 

    

 

VC  =  6
a
2

 
 
 

 
 
 
2

c 3  =  
3 3 a2c

2
 

 

but, since c = 1.593a 

 

  

 

VC  =  
3 3 (1.593) a3

2
=  1.396 ×  10-22  cm3/unit cell  

 

Now, solving for a 

 

  

 

a =  
(2)(1.396 ×  10-22  cm3)

(3)( 3) (1.593)

 

 
 

 

 
 
1/3
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= 3.23 × 10-8 cm = 0.323 nm 

 

And finally 

c = 1.593a = (1.593)(0.323 nm) = 0.515 nm 
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 3.12  Using atomic weight, crystal structure, and atomic radius data tabulated inside the front cover, 

compute the theoretical densities of lead, chromium, copper, and cobalt, and then compare these values with the 

measured densities listed in this same table.  The c/a ratio for cobalt is 1.623. 
 

  Solution 

 Since Pb has an FCC crystal structure, n = 4, and VC =     

 

16R3 2  (Equation 3.4).  Also, R = 0.175 nm (1.75 

× 10-8 cm) and APb = 207.2 g/mol.  Employment of Equation 3.5 yields 

 

  

 

ρ =  
nAPb

VC N A
 

 

 

=  
(4 atoms/unit cell)(207.2 g/mol)

(16)(1.75 ×  10-8  cm)3( 2)[ ]/(unit cell){ }(6.022 ×  1023  atoms/mol)
 

 

= 11.35 g/cm3 

 

The value given in the table inside the front cover is 11.35 g/cm3. 

 

 Chromium has a BCC crystal structure for which n = 2 and VC = a3 = 
  

 

4 R
3

 

 
  

 

 
  

3

 (Equation 3.3);  also ACr = 

52.00g/mol and R  = 0.125 nm.  Therefore, employment of Equation 3.5 leads to 

 

 

ρ  =  
(2 atoms/unit cell)(52.00 g/mol)

(4)(1.25 ×  10-8  cm)
3

 

 
 

 

 
 
3

/(unit cell)
 
 
 

  

 
 
 

  
(6.022 ×  1023 atoms/mol)

 

 

= 7.18 g/cm3 

 

The value given in the table is 7.19 g/cm3. 

 Copper also has an FCC crystal structure and therefore 

 

 

ρ  =  
(4 atoms/unit cell)(63.55 g/mol)

(2)(1.28 ×  10-8  cm)( 2)[ ]3
/(unit cell)

 
 
 

 
 
 
(6.022 ×  1023 atoms/mol)

 

 

= 8.90 g/cm3 
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The value given in the table is 8.90 g/cm3. 

 

 Cobalt has an HCP crystal structure, and from the solution to Problem 3.6 (Equation 3.S1), 

 

  

 

VC  =  6R2c 3  

 

and, since c = 1.623a and a = 2R, c = (1.623)(2R);  hence 

 

 

VC = 6R2 (1.623)(2R) 3 = (19.48)( 3)R3 

 

 

= (19.48)( 3)(1.25 ×  10−8  cm)3 

 

 

=  6.59 ×  10−23 cm3/unit cell 

 

Also, there are 6 atoms/unit cell for HCP.  Therefore the theoretical density is 

 

  

 

ρ =  
nACo

VC N A
 

 

 

=  
(6 atoms/unit cell)(58.93 g/mol)

(6.59 ×  10-23  cm3/unit cell)(6.022 ×  1023  atoms/mol)
 

 

= 8.91 g/cm3 

 

The value given in the table is 8.9 g/cm3. 
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 3.13  Rhodium has an atomic radius of 0.1345 nm  and a density of 12.41 g/cm3.  Determine whether it has 

an FCC or BCC crystal structure. 
 

  Solution 

 In order to determine whether Rh has an FCC or a BCC crystal structure, we need to compute its density 

for each of the crystal structures.  For FCC, n = 4, and a =     

 

2 R 2  (Equation 3.1). Also, from Figure 2.6, its atomic 

weight is 102.91 g/mol.  Thus, for FCC (employing Equation 3.5) 

 

  

 

ρ  =  
nARh

a3N A
 =  

nARh

(2R 2)3N A
 

 

 

   =  
(4 atoms/unit cell)(102.91 g/mol)

(2)(1.345 ×  10-8 cm)( 2)[ ]3
/(unit cell)

 
 
 

 
 
 
(6.022 × 1023 atoms /mol)

 

 

= 12.41 g/cm3 

 

which is the value provided in the problem statement.  Therefore, Rh has the FCC crystal structure. 
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 3.14  Below are listed the atomic weight, density, and atomic radius for three hypothetical alloys.  For 

each determine whether its crystal structure is FCC, BCC, or simple cubic and then justify your determination. A 

simple cubic unit cell is shown in Figure 3.24. 
 

 Alloy Atomic Weight Density Atomic Radius 
  (g/mol) (g/cm3) (nm) 
 

 A 77.4 8.22 0.125 

 B 107.6 13.42 0.133 

 C 127.3 9.23 0.142 

 

  Solution 

 For each of these three alloys we need, by trial and error, to calculate the density using Equation 3.5, and 

compare it to the value cited in the problem.  For SC, BCC, and FCC crystal structures, the respective values of n 

are 1, 2, and 4, whereas the expressions for a (since VC = a3) are 2R,   

 

2 R 2 , and 
    

 

4R
3

. 

 For alloy A, let us calculate ρ assuming a simple cubic crystal structure. 

 

    

 

ρ =  
nAA

VC N A
 

 

  

 

=  
nAA

2R( )3 N A

 

 

 

=  
(1 atom/unit cell)(77.4 g/mol)

(2)(1.25 ×  10−8)[ ]3
/(unit cell)

 
 
 

 
 
 
(6.022 ×  1023 atoms/mol)

 

 

= 8.22 g/cm3 

 

Therefore, its crystal structure is simple cubic. 

 

 For alloy B, let us calculate ρ assuming an FCC crystal structure. 

 

  

 

ρ =  
nAB

(2 R 2)3 N A
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=  
(4 atoms/unit cell)(107.6 g/mol)

2 2( )(1.33 ×  10-8  cm)[ ]3
/(unit cell)

 
 
 

 
 
 
(6.022 ×  1023 atoms/mol)

 

 

= 13.42 g/cm3 

 

Therefore, its crystal structure is FCC. 

 

 For alloy C, let us calculate ρ assuming a simple cubic crystal structure. 

 

  

 

=  
nAC

2R( )3 N A

 

 

 

=  
(1 atom/unit cell)(127.3 g/mol)

(2)(1.42 × 10-8 cm)[ ]3
/(unit cell)

 
 
 

 
 
 
(6.022 ×  1023 atoms/mol)

 

 

= 9.23 g/cm3 

Therefore, its crystal structure is simple cubic. 
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 3.15  The unit cell for tin has tetragonal symmetry, with a and b lattice parameters of 0.583 and 0.318 nm, 

respectively.  If its density, atomic weight, and atomic radius are 7.30 g/cm3, 118.69 g/mol, and 0.151 nm, 

respectively, compute the atomic packing factor. 
 

  Solution 

 In order to determine the APF for Sn, we need to compute both the unit cell volume (VC) which is just the  

a2c  product, as well as the total sphere volume (VS) which is just the product of the volume of a single sphere and 

the number of spheres in the unit cell (n).  The value of n may be calculated from Equation 3.5 as 

 

  

 

n =  
ρVC N A

ASn
 

 

 

=  
(7.30 g/cm3)(5.83)2 (3.18)(× 10-24  cm3)(6.022 ×  1023  atoms /mol)

118.69 g/mol
 

 

= 4.00 atoms/unit cell 

Therefore 

 

  

 

APF =  
VS

VC
 =  

(4)
4
3

π R3 
 
 

 
 
 

(a)2 (c)
 

 

 

=  
(4)

4
3

(π)(1.51  × 10-8  cm)3 
  

 
  

(5.83  × 10-8  cm)2 (3.18  × 10-8  cm)
 

 

= 0.534 
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 3.16  Iodine has an orthorhombic unit cell for which the a, b, and c lattice parameters are 0.479, 0.725, 

and 0.978 nm, respectively. 

 (a) If the atomic packing factor and atomic radius are 0.547 and 0.177 nm, respectively, determine the 

number of atoms in each unit cell. 

 (b) The atomic weight of iodine is 126.91 g/mol; compute its theoretical density. 
 

  Solution 

 (a)  For indium, and from the definition of the APF 

 

  

 

APF =  
VS

VC
=  

n
4
3

π R3 
 
 

 
 
 

abc
 

 

we may solve for the number of atoms per unit cell, n, as 

 

  

 

n =  
(APF) abc

4
3

π R3
 

 

Incorporating values of the above parameters provided in the problem state leads to 

 

 

=  
(0.547)(4.79 ×  10-8  cm)(7.25 ×  10-8  cm)(9.78 ×  10-8  cm)

4
3

π (1.77 ×  10-8  cm)3
 

 

= 8.0 atoms/unit cell 

 

 (b)  In order to compute the density, we just employ Equation 3.5 as 

 

  

 

ρ =  
nAI

abc N A
 

 

 

=  
(8 atoms/unit cell)(126.91 g/mol)

(4.79 ×  10-8  cm)(7.25 ×  10-8  cm) (9.78 ×  10-8  cm)[ ]/ unit cell{ }(6.022 ×  1023  atoms/mol)
 

 

= 4.96 g/cm3 
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 3. 17  Titanium has an HCP unit cell for which the ratio of the lattice parameters c/a is 1.58.  If the radius 

of the Ti atom is 0.1445 nm, (a) determine the unit cell volume, and (b) calculate the density of Ti and compare it 

with the literature value. 
 

  Solution 

 (a)  We are asked to calculate the unit cell volume for Ti.  For HCP, from Equation 3.S1 (found in the 

solution to Problem 3.6) 

 

    

 

VC  =  6 R2c 3  

 

But for Ti, c = 1.58a, and a = 2R, or c = 3.16R, and 

 

  

 

VC  =  (6)(3.16) R3 3  

 

 

=  (6) (3.16)( 3) 1.445 ×  10-8  cm[ ]3
 =  9.91 ×  10−23 cm3/unit cell 

 

 (b)  The theoretical density of Ti is determined, using Equation 3.5, as follows: 

 

  

 

ρ =  
nATi

VC N A
 

 
For HCP, n = 6 atoms/unit cell, and for Ti, ATi = 47.87 g/mol (as noted inside the front cover).  Thus, 

 

 

ρ =  
(6 atoms/unit cell)(47.87 g/mol)

(9.91 ×  10-23  cm3/unit cell)(6.022 ×  1023  atoms/mol)
 

 

= 4.81 g/cm3 

 

The value given in the literature is 4.51 g/cm3. 
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 3.18  Zinc has an HCP crystal structure, a c/a ratio of 1.856, and a density of 7.13 g/cm3. Compute the 

atomic radius for Zn. 
 

  Solution 

 In order to calculate the atomic radius for Zn, we must use Equation 3.5, as well as the expression which 

relates the atomic radius to the unit cell volume for HCP;  Equation 3.S1 (from Problem 3.6) is as follows: 

 

    

 

VC  =  6 R2c 3  

 

In this case c = 1.856a, but, for HCP, a = 2R, which means that 

 

  

 

VC  =  6 R2 (1.856)(2R) 3  =  (1.856)(12 3)R3 

 

And from Equation 3.5, the density is equal to 

 

  

 

ρ =  
nAZn

VC N A
 =  

nAZn

(1.856)(12 3)R3N A
 

 

And, solving for R from the above equation leads to the following: 

 

  

 

R =  
nAZn

(1.856)(12 3) ρ N A

 

 
 

 

 
 
1/3

 

 

And incorporating appropriate values for the parameters in this equation leads to 

 

 

R =  
(6 atoms/unit cell) (65.41 g/mol)

(1.856)(12 3)(7.13 g/cm3)(6.022 ×  1023  atoms/mol)
 

 
 
 

 

 
 
 

1/3

 

 

= 1.33 × 10-8 cm = 0.133 nm 
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 3.19  Rhenium has an HCP crystal structure, an atomic radius of 0.137 nm, and a c/a ratio of 1.615.  

Compute the volume of the unit cell for Re. 
 

  Solution 

In order to compute the volume of the unit cell for Re, it is necessary to use Equation 3.S1 (found in Problem 3.6), 

that is 

 

    

 

VC  =  6 R2c 3  

 

The problem states that c = 1.615a, and a = 2R.  Therefore 

 

  

 

VC  =  (1.615)(12 3) R3 

 

 

=  (1.615)(12 3)(1.37 ×  10-8  cm)3 =  8.63 ×  10-23  cm3 =  8.63 ×  10-2  nm3 
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 Crystal Systems 
 
 3.20  Below is a unit cell for a hypothetical metal. 

 (a) To which crystal system does this unit cell belong? 

 (b) What would this crystal structure be called? 

 (c) Calculate the density of the material, given that its atomic weight is 141 g/mol. 

 
 

  Solution 

 (a)  The unit cell shown in the problem statement belongs to the tetragonal crystal system since a = b = 

0.30 nm, c = 0.40 nm, and α = β = γ = 90°. 

 (b)  The crystal structure would be called body-centered tetragonal. 

 (c)  As with BCC, n = 2 atoms/unit cell.  Also, for this unit cell 

 

  

 

VC  =  (3.0 ×  10−8  cm)2(4.0 ×  10−8  cm)  

 

 

=  3.60 ×  10−23 cm3/unit cell 
 

Thus, using Equation 3.5, the density is equal to 
 

    

 

ρ =  
nA

VC N A
 

 

 

=  
(2 atoms/unit cell) (141 g/mol)

(3.60 ×  10-23  cm3/unit cell)(6.022 ×  1023 atoms/mol)
 

 

= 13.0 g/cm3 
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 3.21  Sketch a unit cell for the body-centered orthorhombic crystal structure. 
 

  Solution 

A unit cell for the body-centered orthorhombic crystal structure is presented below. 
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 Point Coordinates 

 

 3.22 List the point coordinates for all atoms that are associated with the FCC unit cell (Figure 3.1). 
 

  Solution 

 From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates 000.  Coordinates for 

other atoms in the bottom face are 100, 110, 010, and 
  

 

1

2

1

2
0.  (The z coordinate for all these points is zero.) 

 For the top unit cell face, the coordinates are 001, 101, 111, 011, and 
  

 

1

2

1

2
1. 

 Coordinates for those atoms that are positioned at the centers of both side faces, and centers of both front 

and back faces need to be specified.   For the front and back-center face atoms, the coordinates are 
  

 

1
1

2

1

2
 and 

  

 

0
1

2

1

2
, 

respectively.  While for the left and right side center-face atoms, the respective coordinates are 
  

 

1

2
0

1

2
 and 

  

 

1

2
1

1

2
. 
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 3.23  List the point coordinates of the titanium, barium, and oxygen ions for a unit cell of the perovskite 

crystal structure (Figure 12.6). 
 

  Solution 

 In Figure 12.6, the barium ions are situated at all corner positions.  The point coordinates for these ions are 

as follows: 000, 100, 110, 010, 001, 101, 111, and 011. 

 The oxygen ions are located at all face-centered positions;  therefore, their coordinates are 
  

 

1

2

1

2
0, 

  

 

1

2

1

2
1, 

  

 

1
1

2

1

2
, 

  

 

0
1

2

1

2
, 

  

 

1

2
0

1

2
, and 

  

 

1

2
1

1

2
. 

 And, finally, the titanium ion resides at the center of the cubic unit cell, with coordinates 

 

1

2

1

2

1

2
. 
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 3.24  List the point coordinates of all atoms that are associated with the diamond cubic unit cell (Figure 

12.15). 
 

  Solution 

 First of all, one set of carbon atoms occupy all corner positions of the cubic unit cell;  the coordinates of 

these atoms are as follows: 000, 100, 110, 010, 001, 101, 111, and 011. 

 Another set of atoms reside on all of the face-centered positions, with the following coordinates: 
  

 

1

2

1

2
0, 

  

 

1

2

1

2
1, 

  

 

1
1

2

1

2
, 

  

 

0
1

2

1

2
, 

  

 

1

2
0

1

2
, and 

  

 

1

2
1

1

2
. 

 The third set of carbon atoms are positioned within the interior of the unit cell.  Using an x-y-z coordinate 

system oriented as in Figure 3.4, the coordinates of the atom that lies toward the lower-left-front of the unit cell has 

the coordinates 
  

 

3

4

1

4

1

4
, whereas the atom situated toward the lower-right-back of the unit cell has coordinates of 

  

 

1

4

3

4

1

4
.  Also, the carbon atom that resides toward the upper-left-back of the unit cell has the 

  

 

1

4

1

4

3

4
 coordinates.  

And, the coordinates of the final atom, located toward the upper-right-front of the unit cell, are 
  

 

3

4

3

4

3

4
. 
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 3.25 Sketch a tetragonal unit cell , and within that cell indicate locations of the 

 

1

2
 1 

1

2
 and 

 

1

4
 

1

2
 

3

4
 point 

coordinates. 

 

  Solution 

A tetragonal unit in which are shown the 

 

1

2
 1

1

2
 and 

 

1

4

1

2

3

4
 point coordinates is presented below. 
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 3.26  Using the Molecule Definition Utility found in both “Metallic Crystal Structures and 

Crystallography” and “Ceramic Crystal Structures” modules of VMSE, located on the book’s web site 

[www.wiley.com/college/Callister (Student Companion Site)], generate a three-dimensional unit cell for the 

intermetallic compound AuCu3 given the following:  (1) the unit cell is cubic with an edge length of 0.374 nm, (2) 

gold atoms are situated at all cube corners, and  (3) copper atoms are positioned at the centers of all unit cell faces. 
 

  Solution 

 First of all, open the “Molecular Definition Utility”;  it may be found in either of “Metallic Crystal 

Structures and Crystallography” or “Ceramic Crystal Structures” modules. 

 In the “Step 1” window, it is necessary to define the atom types, colors for the spheres (atoms), and specify 

atom sizes.  Let us enter “Au” as the name for the gold atoms (since “Au” the symbol for gold), and “Cu” as the 

name for the copper atoms.  Next it is necessary to choose a color for each atom type from the selections that appear 

in the pull-down menu—for example, “Yellow” for Au and “Red” for Cu.  In the “Atom Size” window, it is 

necessary to enter an atom/ion size.  In the instructions for this step, it is suggested that the atom/ion diameter in 

nanometers be used.  From the table found inside the front cover of the textbook, the atomic radii for gold and 

copper are 0.144 nm and 0.128 nm, respectively, and, therefore, their ionic diameters are twice these values (i.e., 

0.288 nm and 0.256 nm);  therefore, we enter the values “0.288” and “0.256” for the two atom types.  Now click on 

the “Register” button, followed by clicking on the “Go to Step 2” button. 

 In the “Step 2” window we specify positions for all of the atoms within the unit cell;  their point 

coordinates are specified in the problem statement.  Let’s begin with gold.  Click on the yellow sphere that is 

located to the right of the “Molecule Definition Utility” box.  Again, Au atoms are situated at all eight corners of the 

cubic unit cell.  One Au will be positioned at the origin of the coordinate system—i.e., its point coordinates are 000, 

and, therefore, we enter a “0” (zero) in each of the “x”, “y”, and “z” atom position boxes.  Next we click on the 

“Register Atom Position” button.  Now we enter the coordinates of another gold atom;  let us arbitrarily select the 

one that resides at the corner of the unit cell that is one unit-cell length along the x-axis (i.e., at the 100 point 

coordinate).  Inasmuch as it is located a distance of a units along the x-axis the value of “0.374” is entered in the “x” 

atom position box (since this is the value of a given in the problem statement);  zeros are entered in each of the “y” 

and “z” position boxes.  We repeat this procedure for the remaining six Au atoms. 

 After this step has been completed, it is necessary to specify positions for the copper atoms, which are 

located at all six face-centered sites.  To begin, we click on the red sphere that is located next to the “Molecule 

Definition Utility” box. The point coordinates for some of the Cu atoms are fractional ones;  in these instances, the a 

unit cell length (i.e., 0.374) is multiplied by the fraction.  For example, one Cu atom is located 

 

1 1
2

1
2

 coordinate.  

Therefore, the x, y, and z atoms positions are (1)(0.374) = 0.374, 

 

1
2

(0.374) = 0.187, and 

 

1
2

(0.374) = 0.187, 

respectively. 

 For the gold atoms, the x, y, and z atom position entries for all 8 sets of point coordinates are as follows: 
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 0, 0, and 0 

 0.374, 0, and 0 

 0, 0.374, and 0 

 0, 0, and 0.374 

 0, 0.374, 0.374 

 0.374, 0, 0.374 

 0.374, 0.374, 0 

 0.374, 0.374, 0.374 

 

 Now, for the copper atoms, the x, y, and z atom position entries for all 6 sets of point coordinates are as 

follows: 

 0.187, 0.187, 0 

 0.187, 0, 0.187 

 0, 0.187, 0.187 

 0.374, 0.187, 0.187 

 0.187, 0.374, 0.187 

 0.187, 0.187, 0.374 

 

 In Step 3, we may specify which atoms are to be represented as being bonded to one another, and which 

type of bond(s) to use (single solid, single dashed, double, and triple are possibilities), or we may elect to not 

represent any bonds at all (in which case we are finished).  If it is decided to show bonds, probably the best thing to 

do is to represent unit cell edges as bonds.  This image may be rotated by using mouse click-and-drag 

 Your image should appear as the following screen shot.  Here the gold atoms appear lighter than the copper 

atoms. 
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[Note:  Unfortunately, with this version of the Molecular Definition Utility, it is not possible to save either the data 

or the image that you have generated.  You may use screen capture (or screen shot) software to record and store 

your image.] 
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 Crystallographic Directions 

 

 3.27 Draw an orthorhombic unit cell, and within that cell a 

 

[121 ]  direction. 
 

  Solution 

 This problem calls for us to draw a 

 

[121 ] direction within an orthorhombic unit cell (a ≠ b ≠ c, α = β = γ = 

90°).  Such a unit cell with its origin positioned at point O is shown below.  We first move along the +x-axis a units 

(from point O to point A), then parallel to the +y-axis 2b units (from point A to point B).  Finally, we proceed 

parallel to the z-axis -c units (from point B to point C).  The 

 

[121 ] direction is the vector from the origin (point O) 

to point C as shown. 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.28  Sketch a monoclinic unit cell, and within that cell a 

 

[01 1 ]  direction. 
 

  Solution 

 This problem asks that a 

 

[01 1] direction be drawn within a monoclinic unit cell (a ≠ b ≠ c, and α = β = 

90º ≠ γ).  One such unit cell with its origin at point O is sketched below.  For this direction, there is no projection 

along the x-axis since the first index is zero;  thus, the direction lies in the y-z plane.  We next move from the origin 

along the minus y-axis b units (from point O to point R).  Since the final index is a one, move from point R parallel 

to the z-axis, c units (to point P). Thus, the 

 

[01 1] direction corresponds to the vector passing from the origin (point 

O) to point P, as indicated in the figure. 
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 3.29  What are the indices for the directions indicated by the two vectors in the sketch below? 

 
 

  Solution 

 For direction 1, the projection on the x-axis is zero (since it lies in the y-z plane), while projections on the 

y- and z-axes, b/2 and c, respectively.  This is a 

 

[012 ]  direction as indicated in the summary below. 

 

 
  x y z 

 Projections 0a b/2 c 

 Projections in terms of a, b, and c 0 1/2 1 

 Reduction to integers 0 1 2 

 Enclosure  

 

[012 ]  

 

 Direction 2 is 

 

[112 ] as summarized below. 

 
  x y z 

 Projections a/2 b/2 -c 

 Projections in terms of a, b, and c 1/2 1/2 -1 

 Reduction to integers 1 1 -2 

 Enclosure  

 

[112 ] 
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 3.30  Within a cubic unit cell, sketch the following directions: 

(a) 

 

[1 10] , (e) 

 

[1 1 1] , 

(b) 

 

[1 2 1], (f) 

 

[1 22], 

(c) 

 

[01 2], (g) 

 

[12 3 ], 

(d) 

 

[13 3], (h) 

 

[1 03]. 

  Solution 

 The directions asked for are indicated in the cubic unit cells shown below. 
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 3.31  Determine the indices for the directions shown in the following cubic unit cell: 

 

  Solution 

 Direction A is a 

 

[01 1 ]direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 

 
  x y z 

 Projections 0a –b –c 

 Projections in terms of a, b, and c 0 –1 –1 

 Reduction to integers  not necessary  

 Enclosure  

 

[01 1 ] 
 

 Direction B is a 

 

[2 10] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections –a 
  

 

b

2
 0c 

 Projections in terms of a, b, and c –1 
  

 

1

2
 0 

 Reduction to integers –2 1 0 

 Enclosure  

 

[2 10] 

 

 Direction C is a [112] direction, which determination is summarized as follows.  We first of all position the 

origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
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  x y z 

 Projections 
  

 

a

2
 

  

 

b

2
 c 

 Projections in terms of a, b, and c 
  

 

1

2
 

  

 

1

2
 1 

 Reduction to integers 1 1 2 

 Enclosure  [112] 
 

 Direction D is a 

 

[112 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
  

 

a

2
 

  

 

b

2
 –c 

 Projections in terms of a, b, and c 
  

 

1

2
 

  

 

1

2
 –1 

 Reduction to integers 1 1 –2 

 Enclosure  

 

[112 ] 
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 3.32  Determine the indices for the directions shown in the following cubic unit cell: 

 

 
  Solution 

 Direction A is a 

 

[4 30]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 

 
  x y z 

 Projections –
  

 

2a

3
 

  

 

b

2
 0c 

 Projections in terms of a, b, and c –

 

2

3
 

 

1

2
 0 

 Reduction to integers –4 3 0 

 Enclosure  

 

[4 30]  
 

 Direction B is a 

 

[23 2]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
    

 

2a

3
 –b 

  

 

2c

3
 

 Projections in terms of a, b, and c 
  

 

2

3
 –1 

  

 

2

3
 

 Reduction to integers 2 –3 2 

 Enclosure  

 

[23 2]  
 

 Direction C is a 

 

[13 3 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
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  x y z 

 Projections 
  

 

a

3
 –b –c 

 Projections in terms of a, b, and c 

 

1

3
 –1 –1 

 Reduction to integers 1 –3 –3 

 Enclosure  

 

[13 3 ] 

 

 Direction D is a 

 

[136 ] direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
  

 

a

6
 

    

 

b

2
 –c 

 Projections in terms of a, b, and c 

 

1

6
 

  

 

1

2
 –1 

 Reduction to integers 1 3 –6 

 Enclosure  

 

[136 ] 
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 3.33 For tetragonal crystals, cite the indices of directions that are equivalent to each of the following 

directions: 

 (a) [001] 

 (b) [110] 

 (c) [010] 
 

  Solution 

 For tetragonal crystals a = b ≠ c and α = β = γ = 90°;  therefore, projections along the x and y axes are 

equivalent, which are not equivalent to projections along the z axis.  

 (a)  Therefore, for the [001] direction, there is only one equivalent direction: 

 

[001 ]. 

 (b)  For the [110] direction, equivalent directions are as follows:  

 

[1 1 0] , 

 

[1 10] , and 

 

[11 0]  

 (b)  Also, for the [010] direction, equivalent directions are the following:  

 

[01 0] , 

 

[100] , and 

 

[1 00] . 
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 3.34  Convert the [100] and [111] directions into the four-index Miller–Bravais scheme for hexagonal unit 

cells. 
 

  Solution 

 For [100] 

 

 u' = 1, 

 v' = 0, 

 w' = 0 

 

From Equations 3.6 

 

  

 

u =  
1
3

(2u' − v' ) =  
1
3

[(2)(1) −  0] =  
2
3

  

 

  

 

v =  
1
3

(2vÕ− uÕ) =  
1
3

[(2)(0) −  1] =  −
1
3

  

 

  

 

t =  − (u +  v) =  −
2
3

−
1
3

 
 
 

 
 
  =  −

1
3

 

 

w = w' = 0 

 

It is necessary to multiply these numbers by 3 in order to reduce them to the lowest set of integers.  Thus, the 

direction is represented as [uvtw] = 

 

[21 1 0] . 

 For [111], u' = 1, v' = 1, and w' = 1;  therefore, 

 

 

u =  
1
3

[(2)(1) −  1] =  
1
3

 

 

 

v =  
1
3

[(2)(1) −  1] =  
1
3

 

 

t =  

 

−
1
3

+
1
3

 
 
 

 
 
 = −

2
3

 

 

w = 1 
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If we again multiply these numbers by 3, then u = 1, v = 1, t = -2, and w = 3.  Thus, the direction is represented as 

Thus, the direction is represented as [uvtw] = 

 

[112 3] . 
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 3.35 Determine indices for the directions shown in the following hexagonal unit cells: 
 

  Solution 

 
 (a)  For this direction, projections on the a1, a2, and z axes are a, a/2, and c/2, or, in terms of a and c the 

projections are 1, 1/2, and 1/2, which when multiplied by the factor 2 become the smallest set of integers:  2, 1, and 

1.  This means that 

 u’ = 2 

 v’ = 1 

 w’ = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

 

u =
1
3

(2u' − v' ) =
1
3

(2)(2) − (1)[ ] =
3
3

 =  1  

 

  

 

v =
1
3

(2vÕ− uÕ) =
1
3

(2)(1) − (2)[ ]  =  0  

 

  

 

t = − (u + v) = − 1 + 0( ) = −1 

w = w’ = 1 

 

No reduction is necessary inasmuch as all of these indices are integers;  therefore, this direction in the four-index 

scheme is 

 

[101 1] 
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 (b)  For this direction, projections on the a1, a2, and z axes are a/2, a, and 0c, or, in terms of a and c the 

projections are 1/2, 1, and 0, which when multiplied by the factor 2 become the smallest set of integers:  1, 2, and 0  

This means that 

  u’ = 1 

  v’ = 2 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    

 

u =
1
3

(2u' − v) =
1
3

(2)(1) − 2[ ] = 0 

 

    

 

v =
1
3

(2v' − u' ) =
1
3

(2)(2) − 1[ ] = 1 

 

  

 

t = − (u+ v) = − 0 + 1( ) = −1 

 

    

 

w = w' = 0  

 

No reduction is necessary inasmuch as all of these indices are integers;  therefore, this direction in the four-index 

scheme is 

 

[011 0] . 
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 (c) For this direction projections on the a1, a2, and z axes are −a, −a, and c/2, or, in terms of a and c the 

projections are −1, −1, and 1/2, which when multiplied by the factor 2 become the smallest set of integers: −2, −2, 

and 1.  This means that 

  u’ = −2 

  v’ = −2 

  w’ = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

 

u =
1
3

(2u' − v) =
1
3

(2)(−2) − (−2)[ ] =−
2
3

 

 

  

 

v =
1
3

(2v' − u' ) =
1
3

(2)(−2) − (−2)[ ] = −
2
3

 

 

  

 

t = − (u+ v) = − −
2
3

−
2
3

 
 
 

 
 
 =

4
3

 

 

  

 

w = w' = 1  

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that this direction is a 

 

[2 2 43] direction. 
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 (d)  For this direction, projections on the a1, a2, and z axes are 0a, −a, and 0c, or, in terms of a and c the 

projections are 0, -1, and 0.  This means that 

  u’ = 0 

  v’ = −1 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

 

u =
1
3

(2u' − v' ) =
1
3

(2)(0) − (−1)[ ] =
1
3

 

 

  

 

v =
1
3

(2v'− u' ) =
1
3

(2)(−1) − 0[ ] =−
2
3

 

 

  

 

t = − (u+ v) = −
1
3

−
2
3

 
 
 

 
 
 =

1
3

 

 

  

 

w = wÕ= 0  

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that this is a 

 

[12 10] direction. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.36  Sketch the 

 

[1 1 23]  and 

 

[101 0]  directions in a hexagonal unit cell. 
 

  Solution 

 The first portion of this problem asks that we plot the 

 

[1 1 23] within a hexagonal unit cell.  Below is 

shown this direction plotted within a hexagonal unit cell having a reduced-scale coordinate scheme. 

 

For this direction, projections on the a1, a2, a3, and c axes are respectively, −1, −1, 2, and 3, respectively.  In 

plotting this direction, we begin at the origin of the coordinate system, point o.  From here we proceed 1 unit 

distance along the −a1 axis (to point p), from here 1 unit distance parallel to −a2 axis (to point q), then 2 unit 

distances parallel (or along) the a3 axis (to point r), and finally, 3 unit distances parallel to the z axis (to point s).  

Thus, the 

 

[1 1 23] direction is that vector that extends from point o to point s as shown. 

 

 Now we are asked to plot the 

 

[101 0]  within a hexagonal unit cell.  In the figure below is plotted this 

direction within a hexagonal unit cell having a reduced-scale coordinate scheme. 
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For this direction, projections on the a1, a2, a3, and c axes are respectively, 1, 0, −1, and 0, respectively.  In plotting 

this direction, we begin at the origin of the coordinate system, point o.  From here we proceed 1 unit distance along 

the a1 axis (to point p).  Since there is no projection on the a2 axis it is not necessary to move parallel to this axis.  

Therefore, from point p we proceed 1 unit distance parallel to −a3 axis (to point q).  And, finally, inasmuch as there 

is no projection along the z axis, it is not necessary to move parallel to this axis.  Thus, the 

 

[101 0]  direction is that 

vector that extends from point o to point q as shown. 
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 3.37  Using Equations 3.6a, 3.6b, 3.6c, and 3.6d, derive expressions for each of the three primed indices 

set (u′, v′, and w′) in terms of the four unprimed indices (u, v, t, and w). 
 

  Solution 

 It is first necessary to do an expansion of Equation 3.6a as 

 

    

 

u =
1
3

(2u' − v) =
2u'
3

−
v'
3

 

 

And solving this expression for v’ yields 

 

    

 

v' = 2u' − 3u 

 

Now, substitution of this expression into Equation 3.6b gives 

 

    

 

v =
1
3

(2vÕ− uÕ) =
1
3

(2)(2uÕ− 3u) − uÕ[ ] = uÕ− 2u  

Or 

 

    

 

u' = v + 2u  

 

And, solving for v from Equation 3.6c leads to 

 

  

 

v = − (u + t)  

 

which, when substituted into the above expression for u’ yields 

 

    

 

u' = v + 2u = − u − t + 2u = u − t  

 

 In solving for an expression for v’, we begin with the one of the above expressions for this parameter—i.e., 

 

    

 

v' = 2u' − 3u 

 

Now, substitution of the above expression for u’ into this equation leads to 

 

    

 

vÕ= 2uÕ− 3u = (2)(u − t) − 3u = − u −2t  
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And solving for u from Equation 3.6c gives 

 

  

 

u = − v − t  

 

which, when substituted in the previous equation results in the following expression for v’ 

 

    

 

vÕ= − u −2t = − (− v − t) − 2t = v − t  

 

And, of course from Equation 3.6d 

 

w’ = w 
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 Crystallographic Planes 

 
 3.38  (a) Draw an orthorhombic unit cell, and within that cell a (210) plane. 

 (b) Draw a monoclinic unit cell, and within that cell a (002) plane. 
 

  Solution 

 (a)  We are asked to draw a (210) plane within an orthorhombic unit cell.  First remove the three indices 

from the parentheses, and take their reciprocals--i.e., 1/2, 1, and ∞.  This means that the plane intercepts the x-axis 

at a/2, the y-axis at b, and parallels the z-axis.  The plane that satisfies these requirements has been drawn within the 

orthorhombic unit cell below.  (For orthorhombic, a ≠ b ≠ c, and α = β = γ = 90°.) 

 

 
 

 (b)  A (002) plane is drawn within the monoclinic cell shown below.  We first remove the parentheses and 

take the reciprocals of the indices;  this gives ∞, ∞, and 1/2.  Thus, the (002) plane parallels both x- and y-axes, and 

intercepts the z-axis at a/2, as indicated in the drawing.  (For monoclinic, a ≠ b ≠ c, and α =  γ = 90° ≠ β.) 
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 3.39  What are the indices for the two planes drawn in the sketch below? 

 

 
 

  Solution 

 Plane 1 is a (020) plane.  The determination of its indices is summarized below. 

 
  x y z 

 Intercepts ∞a b/2 ∞c 

 Intercepts in terms of a, b, and c ∞ 1/2 ∞ 

 Reciprocals of intercepts 0 2 0 

 Enclosure  (020) 

 

 Plane 2 is a 

 

(22 1)  plane, as summarized below. 

 

  x y z 

 

 Intercepts a/2 -b/2 c 

 Intercepts in terms of a, b, and c 1/2 -1/2 1 

 Reciprocals of intercepts 2 -2 1 

 Enclosure  

 

(22 1)  
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 3.40  Sketch within a cubic unit cell the following planes: 

 (a)  

 

(01 1 ) , (e)  

 

(1 11 ) , 

 (b)  

 

(112 ) , (f)  

 

(12 2 ) , 

 (c)  

 

(102 ) , (g)  

 

(1 23 ) , 

 (d)  

 

(13 1) , (h)  

 

(01 3 )  
 

  Solution 

 

 The planes called for are plotted in the cubic unit cells shown below. 
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 3.41  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A we will leave the origin at the unit cell as shown; this is a (403) plane, as summarized below. 

 
  x y z 

 Intercepts 

 

a

2
 ∞b 

 

2c

3
 

 Intercepts in terms of a, b, and c 

 

1

2
 ∞ 

 

2

3
 

 Reciprocals of intercepts 2 0 

 

3

2
 

 Reduction 4 0 3 

 Enclosure  (403) 

 

 For plane B we will move the origin of the unit cell one unit cell distance to the right along the y axis, and 

one unit cell distance parallel to the x axis;  thus, this is a 

 

(1 1 2)  plane, as summarized below. 

 
  x y z 

 Intercepts – a – b 
  

 

c

2
 

 Intercepts in terms of a, b, and c – 1 – 1 
  

 

1

2
 

 Reciprocals of intercepts – 1 – 1 2 

 Reduction  (not necessary)  

 Enclosure  

 

(1 1 2)  
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 3.42  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A we will move the origin of the coordinate system one unit cell distance to the upward along the 

z axis;  thus, this is a 

 

(322 )  plane, as summarized below. 

 
  x y z 

 Intercepts 
  

 

a

3
 

  

 

b

2
 – 

  

 

c

2
 

 Intercepts in terms of a, b, and c 

 

1

3
 

  

 

1

2
 – 

  

 

1

2
 

 Reciprocals of intercepts 3  2 – 2 

 Reduction  (not necessary)  

 Enclosure  

 

(322 )  

 

 For plane B we will move the original of the coordinate system on unit cell distance along the x axis;  thus, 

this is a 

 

(1 01)  plane, as summarized below. 

 
  x y z 

 Intercepts – 

 

a

2
 ∞b 

  

 

c

2
 

 Intercepts in terms of a, b, and c – 

 

1

2
 ∞ 

 

1

2
 

 Reciprocals of intercepts – 2 0 2 

 Reduction – 1 0 1 

 Enclosure  

 

(1 01)  
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 3.43  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A since the plane passes through the origin of the coordinate system as shown, we will move the 

origin of the coordinate system one unit cell distance to the right along the y axis;  thus, this is a 

 

(32 4)  plane, as 

summarized below. 

 
  x y z 

 Intercepts 
  

 

2a

3
 – b 

  

 

c

2
 

 Intercepts in terms of a, b, and c 

 

2

3
 – 1 

 

1

2
 

 Reciprocals of intercepts 

 

3

2
 – 1 2 

 Reduction 3 – 2 4 

 Enclosure  

 

(32 4)  
 

 For plane B we will leave the origin at the unit cell as shown;  this is a (221) plane, as summarized below. 

 
  x y z 

 Intercepts 
  

 

a

2
 

  

 

b

2
 c 

 Intercepts in terms of a, b, and c 

 

1

2
 

  

 

1

2
 1 

 Reciprocals of intercepts 2 2 1 

 Reduction  not necessary 

 Enclosure  (221) 
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 3.44  Cite the indices of the direction that results from the intersection of each of the following pair of planes 

within a cubic crystal: (a) (100) and (010) planes, (b) (111) and 

 

(111 )  planes, and (c) 

 

(101 )  and (001) 

planes. 

 

  Solution 

 (a)  In the figure below is shown (100) and (010) planes, and, as indicated, their intersection results in a [001], 

or equivalently, a 

 

[001 ] direction. 

 

 

 (b)  In the figure below is shown (111) and 

 

(111 )  planes, and, as indicated, their intersection results in a 

 

[1 10] , or equivalently, a 

 

[11 0]  direction. 
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 (c) In the figure below is shown 

 

(101 )  and (001) planes, and, as indicated, their intersection results in a 

[010], or equivalently, a 

 

[01 0]  direction. 
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 3.45  Sketch the atomic packing of (a) the (100) plane for the BCC crystal structure, and (b) the (201) 

plane for the FCC crystal structure (similar to Figures 3.10b and 3.11b). 
 

  Solution 

 (a) A BCC unit cell, its (100) plane, and the atomic packing of this plane are indicated below.  

Corresponding atom positions in the two drawings are indicated by letters W, X, Y, and Z. 

 

 

 

 (b)  An FCC unit cell, its (201) plane, and the atomic packing of this plane are indicated below.  

Corresponding atom positions in the two drawing are indicated by the letters A, B, and C. 
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 3.46  Consider the reduced-sphere unit cell shown in Problem 3.20, having an origin of the coordinate 

system positioned at the atom labeled with an O. For the following sets of planes, determine which are equivalent: 

 (a) 

 

(001 ) , (010), and, 

 

(1 00)  

 (b) 

 

(11 0) , 

 

(101 ) , 

 

(01 1) , and 

 

(1 1 0)  

 (c) 

 

(1 1 1 ) , 

 

(1 11 ) , 

 

(1 1 1) , and 

 

(11 1)  

 
 

  Solution 

 (a)  The unit cell in Problem 3.20 is body-centered tetragonal.  Of the three planes given in the problem 

statement the 

 

(1 00)  and (010) are equivalent—that is, have the same atomic packing.  The atomic packing for these 

two planes as well as the 

 

(001 )  are shown in the figure below. 

 

 

 

 (b)  Of the four planes cited in the problem statement, 

 

(11 0)  and 

 

(1 1 0)  are equivalent to one another—

have the same atomic packing.  The atomic arrangement of these planes is shown in the left drawing below.  
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Furthermore, the 

 

(101 )  and 

 

(01 1)  are equivalent to each other (but not to the other pair of planes);  their atomic 

arrangement is represented in the other drawing.  Note:  the 0.424 nm dimension in the left-most drawing comes 

from the relationship 

 

(0.30 nm)2  +  (0.30 nm)2[ ]1/ 2
.  Likewise, the 0.500 nm dimension found in the right-most 

drawing comes from 

 

(0.30 nm)2  +  (0.40 nm)2[ ]1/ 2
. 

 

 

 (c)  All of the 

 

(1 1 1 ) , 

 

(1 11 ) , 

 

(1 1 1) , and 

 

(11 1)  planes are equivalent, that is, have the same atomic 

packing as illustrated in the following figure: 
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 3.47  Here are shown the atomic packing schemes for several different crystallographic directions for 

some hypothetical metal. For each direction the circles represent only those atoms contained within a unit cell, 

which circles are reduced from their actual size. 

 

 (a) To what crystal system does the unit cell belong? 

 (b) What would this crystal structure be called? 
 
  Solution 

 Below is constructed a unit cell using the six crystallographic directions that were provided in the problem. 
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 (a)  This unit cell belongs to the tetragonal system since a = b = 0.40 nm, c = 0.50 nm, and α = β = γ = 90°. 

 (b) This crystal structure would be called face-centered tetragonal since the unit cell has tetragonal 

symmetry, and an atom is located at each of the corners, as well as at the centers of all six unit cell faces.  In the 

figure above, atoms are only shown at the centers of three faces;  however, atoms would also be situated at opposite 

faces. 
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 3.48  Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 

The circles represent atoms: 

 

 (a) To what crystal system does the unit cell belong? 

 (b) What would this crystal structure be called? 

 (c) If the density of this metal is 8.95 g/cm3, determine its atomic weight. 
 

  Solution 

 The unit cells constructed below show the three crystallographic planes that were provided in the problem 

statement. 

 

 

 (a)  This unit cell belongs to the orthorhombic crystal system since a = 0.30 nm, b = 0.40 nm, c = 0.35 nm, 

and α = β = γ = 90°. 

 (b) This crystal structure would be called body-centered orthorhombic since the unit cell has orthorhombic 

symmetry, and an atom is located at each of the corners, as well as at the cell center. 

 (c)  In order to compute its atomic weight, we employ Equation 3.5, with n = 2;  thus 

 

    

 

A =  
ρVC N A

n
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=
(8.95 g/cm3) (3.0)(4.0)(3.5) (× 10-24  cm3/unit cell)(6.022 ×  10 23 atoms/mol)

2 atoms/unit cell
 

 

= 113.2 g/mol 
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 3.49  Convert the (010) and (101) planes into the four-index Miller–Bravais scheme for hexagonal unit 

cells. 
 

  Solution 

 For (010), h = 0, k = 1, and l = 0, and, from Equation 3.7, the value of i is equal to 

 

  

 

i = − (h + k) = − (0 + 1) = −1 

 

Therefore, the (010) plane becomes 

 

(011 0) . 

 Now for the (101) plane, h = 1, k = 0, and l = 1, and computation of i using Equation 3.7 leads to 

 

  

 

i = − (h + k) = −[1  + 0] = −1 

 

such that (101) becomes 

 

(101 1) . 
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 3.50  Determine the indices for the planes shown in the hexagonal unit cells below: 
 

  Solution 

 

 
 (a)  For this plane, intersections with the a1, a2, and z axes are ∞a, ∞a, and c/2 (the plane parallels both a1 

and a2 axes).  In terms of a and c these intersections are ∞, ∞, and ½, the respective reciprocals of which are 0, 0, 

and 2.  This means that 

  h = 0 

  k = 0 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  

 

i = − (h + k) = −[0 + 0] = 0  

 

Hence, this is a 

 

(0002)  plane. 
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 (b)  This plane passes through the origin of the coordinate axis system;  therefore, we translate this plane 

one unit distance along the x axis, per the sketch shown below: 

 

 
At this point the plane intersects the a1, a2, and z axes at a, ∞a, and ∞c, respectively (the plane parallels both a2 and 

z axes).  In terms of a and c these intersections are 1, ∞, and ∞, the respective reciprocals of which are 1, 0, and 0.  

This means that 

  h = 1 

  k = 0 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

  

 

i = − (h + k) = − (1 +  0) = −1 

 

Hence, this is a 

 

(101 0)  plane. 
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 (c)  For this plane, intersections with the a1, a2, and z axes are –a, a, and c.  In terms of a and c these 

intersections are –1, 1, and 1, the respective reciprocals of which are 0, 1, and 1.  This means that 

  h = –1 

  k = 1 

  l = 1 

Now, from Equation 3.7, the value of i is 

 

  

 

i = − (h + k) = − (−1 + 1) = 0  

 

Hence, this is a 

 

(1 101)  plane. 
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 (d)  For this plane, intersections with the a1, a2, and z axes are –a/2, a, and c/2, respectively.  In terms of a 

and c these intersections are –1/2, 1, and 1/2, the respective reciprocals of which are –2, 1, and 2.  This means that 

  h = –2 

  k = 1 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  

 

i = − (h + k) = − (−2 + 1) = 1 

 

Therefore, this is a 

 

(2 112)  plane. 
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 3.51  Sketch the 

 

(11 01)  and 

 

(112 0)  planes in a hexagonal unit cell. 
 

  Solution 

 For 

 

(11 01)  the reciprocals of h, k, i, and l are, respectively, 1, –1, ∞, and 1;  thus, this plane is parallel to 

the a3 axis, and intersects the a1 axis at a, the a2 axis at –a, and the z-axis at c.  The plane having these intersections 

is shown in the figure below 

 

 

 For 

 

(112 0)  the reciprocals of h, k, i, and l are, respectively, 1, 1, –1/2, and ∞;  thus, this plane is parallel to 

the z axis, and intersects the a1 axis at a, the a2 axis at a, and the a3 axis at –a/2.  The plane having these 

intersections is shown in the figure below. 
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 Linear and Planar Densities 

 

 3.52  (a) Derive linear density expressions for FCC [100] and [111] directions in terms of the atomic 

radius R. 

 (b) Compute and compare linear density values for these same two directions for silver. 
 

  Solution 

 (a)  In the figure below is shown a [100] direction within an FCC unit cell. 

 

 

 

For this [100] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalent of 1 

atom that is centered on the direction vector.  The length of this direction vector is just the unit cell edge length, 

    

 

2R 2  (Equation 3.1).  Therefore, the expression for the linear density of this plane is 

 

  

 

LD100 =  
number of atoms centered on [100] direction vector

length of [100] direction vector
 

 

    

 

=
1 atom
2 R 2

=
1

2 R 2
 

 

 An FCC unit cell within which is drawn a [111] direction is shown below. 
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For this [111] direction, the vector shown passes through only the centers of the single atom at each of its ends, and, 

thus, there is the equivalence of 1 atom that is centered on the direction vector.  The length of this direction vector is 

denoted by z in this figure, which is equal to 

 

    

 

z = x2 + y2  

 

where x is the length of the bottom face diagonal, which is equal to 4R.  Furthermore, y is the unit cell edge length, 

which is equal to     

 

2R 2  (Equation 3.1).  Thus, using the above equation, the length z may be calculated as follows: 

 

    

 

z = (4R)2 + (2 R 2)2 = 24 R2 = 2 R 6  

 

Therefore, the expression for the linear density of this direction is 

 

  

 

LD111 =  
number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

    

 

=
1 atom
2 R 6

=
1

2 R 6
 

 

 (b)  From the table inside the front cover, the atomic radius for silver is 0.144 nm.  Therefore, the linear 

density for the [100] direction is 

 

  

 

LD100 (Ag) =
1

2 R 2
=

1
(2)(0.144 nm) 2

= 2.46 nm−1 = 2.46 × 109 m−1 

 

While for the [111] direction 

 

  

 

LD111(Ag) =
1

2 R 6
=

1
(2)(0.144 nm) 6

= 1.42 nm−1 = 1.42 × 109 m−1 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.53  (a) Derive linear density expressions for BCC [110] and [111] directions in terms of the atomic 

radius R. 

 (b) Compute and compare linear density values for these same two directions for tungsten. 
 

  Solution 

 (a)  In the figure below is shown a [110] direction within a BCC unit cell. 

 

 

 

For this [110] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalence of 1 

atom that is centered on the direction vector. The length of this direction vector is denoted by x in this figure, which 

is equal to 

 

    

 

x = z2 − y2  

 

where y is the unit cell edge length, which, from Equation 3.3 is equal to 
    

 

4 R
3

.  Furthermore, z is the length of the 

unit cell diagonal, which is equal to 4R  Thus, using the above equation, the length x may be calculated as follows: 

 

    

 

x = (4R)2 −
4 R

3

 

 
  

 

 
  

2

=
32 R2

3
= 4 R

2
3

 

 

Therefore, the expression for the linear density of this direction is 

 

  

 

LD110 =  
number of atoms centered on [110] direction vector

length of [110] direction vector
 

 

    

 

=
1 atom

4 R
2
3

=
3

4 R 2
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 A BCC unit cell within which is drawn a [111] direction is shown below. 
 

 
 

For although the [111] direction vector shown passes through the centers of three atoms, there is an equivalence of 

only two atoms associated with this unit cell—one-half of each of the two atoms at the end of the vector, in addition 

to the center atom belongs entirely to the unit cell.  Furthermore, the length of the vector shown is equal to 4R, since 

all of the atoms whose centers the vector passes through touch one another.  Therefore, the linear density is equal to 

 

  

 

LD111 =  
number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

    

 

=
2 atoms

4R
=

1
2R

 

 

 (b)  From the table inside the front cover, the atomic radius for tungsten is 0.137 nm.  Therefore, the linear 

density for the [110] direction is 

 

  

 

LD110 (W) =
3

4 R 2
=

3

(4)(0.137 nm) 2
= 2.23 nm−1 = 2.23 × 109 m−1 

 

While for the [111] direction 
 

  

 

LD111(W) =
1
2 R

=
1

(2)(0.137 nm)
= 3.65 nm−1 = 3.65 × 109 m−1  
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 3.54  (a) Derive planar density expressions for FCC (100) and (111) planes in terms of the atomic radius 

R. 

 (b) Compute and compare planar density values for these same two planes for nickel. 
 

  Solution 

 (a)  In the figure below is shown a (100) plane for an FCC unit cell. 
 

 

 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the equivalence of 2 atoms 

associated with this FCC (100) plane.  The planar section represented in the above figure is a square, wherein the 

side lengths are equal to the unit cell edge length,     

 

2R 2  (Equation 3.1);  and, thus, the area of this square is just 

    

 

(2R 2)2  = 8R2.  Hence, the planar density for this (100) plane is just 

 

  

 

PD100 =  
number of atoms centered on (100) plane

area of (100) plane
 

 

    

 

=
2 atoms

8R2
=

1

4R2
 

 

 That portion of an FCC (111) plane contained within a unit cell is shown below. 
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There are six atoms whose centers lie on this plane, which are labeled A through F.  One-sixth of each of atoms A, 

D, and F are associated with this plane (yielding an equivalence of one-half atom), with one-half of each of atoms 

B, C, and E (or an equivalence of one and one-half atoms) for a total equivalence of two atoms.  Now, the area of 

the triangle shown in the above figure is equal to one-half of the product of the base length and the height, h.  If we 

consider half of the triangle, then 

 

    

 

(2 R)2 + h2 = (4 R)2  

 

which leads to h =     

 

2 R 3 .  Thus, the area is equal to 

 

    

 

Area =
4 R(h)

2
=

(4 R)(2 R 3)
2

= 4 R2 3  

 

And, thus, the planar density is 

 

  

 

PD111 =  
number of atoms centered on (111) plane

area of (111) plane
 

 

    

 

=
2 atoms

4 R2 3
=

1

2 R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for nickel is 0.125 nm.  Therefore, the planar 

density for the (100) plane is 

 

  

 

PD100 (Ni) =
1

4 R2
=

1

4 (0.125 nm)2
= 16.00 nm−2 = 1.600 × 1019 m−2  

 

While for the (111) plane 

 

  

 

PD111(Ni) =
1

2 R2 3
=

1

2 3 (0.125 nm)2
= 18.48 nm−2 = 1.848 × 1019 m−2  
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 3.55  (a) Derive planar density expressions for BCC (100) and (110) planes in terms of the atomic radius 

R. 

 (b) Compute and compare planar density values for these same two planes for vanadium. 
 

  Solution 

 (a)  A BCC unit cell within which is drawn a (100) plane is shown below. 
 

 
 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells.  Thus, there is the equivalence of 1 atom associated with this BCC (100) plane.  The planar section 

represented in the above figure is a square, wherein the side lengths are equal to the unit cell edge length, 
    

 

4 R
3

 

(Equation 3.3);  and, thus, the area of this square is just 
    

 

4R
3

 

 
  

 

 
  

2

 = 
    

 

16 R2

3
.  Hence, the planar density for this (100) 

plane is just 
 

  

 

PD100 =  
number of atoms centered on (100) plane

area of (100) plane
 

 

    

 

=
1 atom

16 R2

3

=
3

16 R2
 

 

 A BCC unit cell within which is drawn a (110) plane is shown below. 
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For this (110) plane there is one atom at each of the four cube corners through which it passes, each of which is 

shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the 

equivalence of 2 atoms associated with this BCC (110) plane.  The planar section represented in the above figure is 

a rectangle, as noted in the figure below. 

 

 

 

From this figure, the area of the rectangle is the product of x and y.  The length x is just the unit cell edge length, 

which for BCC (Equation 3.3) is 
    

 

4 R
3

.  Now, the diagonal length z is equal to 4R.  For the triangle bounded by the 

lengths x, y, and z 

 

    

 

y = z2 − x2  

Or 

 

    

 

y = (4 R)2 −
4R

3

 

 
  

 

 
  

2

=
4 R 2

3
 

 

Thus, in terms of R, the area of this (110) plane is just 
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Area(110) = xy =
4 R

3

 

 
  

 

 
  

4 R 2

3

 

 
  

 

 
  =

16 R2 2

3
 

 

And, finally, the planar density for this (110) plane is just 

 

  

 

PD110 =  
number of atoms centered on (110) plane

area of (110) plane
 

 

    

 

=
2 atoms

16 R2 2

3

=
3

8 R2 2
 

 

 (b)  From the table inside the front cover, the atomic radius for vanadium is 0.132 nm.  Therefore, the 

planar density for the (100) plane is 

 

  

 

PD100 (V) =
3

16 R2
=

3

16 (0.132 nm)2
= 10.76 nm−2 = 1.076 × 1019 m−2  

 

While for the (110) plane 

 

  

 

PD110 (V) =
3

8 R2 2
=

3

8 (0.132 nm)2 2
= 15.22 nm−2 = 1.522 × 1019 m−2  
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 3.56  (a) Derive the planar density expression for the HCP (0001) plane in terms of the atomic radius R. 

 (b) Compute the planar density value for this same plane for magnesium. 
 

  Solution 

 (a)  A (0001) plane for an HCP unit cell is show below. 

 

 

 

Each of the 6 perimeter atoms in this plane is shared with three other unit cells, whereas the center atom is shared 

with no other unit cells;  this gives rise to three equivalent atoms belonging to this plane. 

 In terms of the atomic radius R, the area of each of the 6 equilateral triangles that have been drawn is 

    

 

R2 3 , or the total area of the plane shown is     

 

6 R2 3 .  And the planar density for this (0001) plane is equal to 

 

  

 

PD0001 =
number of atoms centered on (0001) plane

area of (0001) plane
 

 

    

 

=
3 atoms

6R2 3
=

1

2R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for magnesium is 0.160 nm.  Therefore, the 

planar density for the (0001) plane is 

 

  

 

PD0001(Mg) =
1

2 R2 3
=

1

2 (0.160 nm)2 3
= 11.28 nm−2 = 1.128 × 1019 m−2  
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 Polycrystalline Materials 

 

 3.57  Explain why the properties of polycrystalline materials are most often isotropic. 
 

  Solution 

 Although each individual grain in a polycrystalline material may be anisotropic, if the grains have random 

orientations, then the solid aggregate of the many anisotropic grains will behave isotropically. 
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 X-ray Diffraction:  Determination of Crystal Structures 

 

 3.58  Using the data for molybdenum in Table 3.1, compute the interplanar spacing for the (111) set of 

planes. 
 

  Solution 

 From the Table 3.1, molybdenum has a BCC crystal structure and an atomic radius of 0.1363 nm.  Using 

Equation (3.3), the lattice parameter a may be computed as 

 

  

 

a=
4 R

3
=

(4)(0.1363 nm)
3

= 0.3148  nm  

 

Now, the interplanar spacing d111 maybe determined using Equation 3.14 as 

 

  

 

d111 =
a

(1)2  +  (1)2  +  (1)2
=

0.3148  nm
3

=  0.1817 nm  
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 3.59  Determine the expected diffraction angle for the first-order reflection from the (113) set of planes for 

FCC platinum when monochromatic radiation of wavelength 0.1542 nm is used. 
 

  Solution 

 We first calculate the lattice parameter using Equation 3.1 and the value of R (0.1387 nm) cited in Table 

3.1, as follows: 

 

  

 

a = 2 R 2 = (2)(0.1387 nm)( 2) = 0.3923  nm 

 

Next, the interplanar spacing for the (113) set of planes may be determined using Equation 3.14 according to 

 

  

 

d113 =  
a

(1)2  +  (1)2  +  (3)2
=

0.3923 nm
11

=  0.1183  nm 

 

And finally, employment of Equation 3.13 yields the diffraction angle as 

 

  

 

sin θ =
nλ

2d113
=

(1)(0.1542  nm)
(2)(0.1183 nm)

=  0.652 

 

Which leads to 

 

 

θ = sin-1(0.652) =  40.69°  

 

And, finally 

 

 

2θ = (2)(40.69°) =  81.38°  
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 3.60  Using the data for aluminum in Table 3.1, compute the interplanar spacings for the (110) and (221) 

sets of planes. 
 

  Solution 

 From the table, aluminum has an FCC crystal structure and an atomic radius of 0.1431 nm.  Using 

Equation 3.1 the lattice parameter, a, may be computed as 

 

  

 

a = 2R 2 = (2) (0.1431 nm)( 2) = 0.4047 nm 

 

Now, the d110 interplanar spacing may be determined using Equation 3.14 as 

 

  

 

d110 =  
a

(1)2  +  (1)2  +  (0)2
=

0.4047  nm
2

=  0.2862  nm 

 

And, similarly for d221 

 

  

 

d221 =
a

(2)2  +  (2)2  +  (1)2
=

0.4047  nm
9

=  0.1349  nm  
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 3.61  The metal iridium has an FCC crystal structure. If the angle of diffraction for the (220) set of planes 

occurs at 69.22° (first-order reflection) when monochromatic x-radiation having a wavelength of 0.1542 nm is 

used, compute (a) the interplanar spacing for this set of planes, and (b) the atomic radius for an iridium atom. 
 

  Solution 

 (a)  From the data given in the problem, and realizing that 69.22° = 2θ, the interplanar spacing for the 

(220) set of planes for iridium may be computed using Equation 3.13 as 

 

  

 

d220 =
nλ

2 sin θ
=

(1)(0.1542  nm)

(2) sin 
69.22°

2

 
 
 

 
 
 

=  0.1357  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.1 since Ir has an FCC crystal structure.  Therefore, 

 

  

 

a = d220 (2)2  +  (2)2  +  (0)2 =  (0.1357  nm)( 8) =  0.3838  nm  

 

And, from Equation 3.1 

 

  

 

R =
a

2 2
=

0.3838  nm
2 2

=  0.1357  nm 
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 3.62  The metal rubidium has a BCC crystal structure. If the angle of diffraction for the (321) set of planes 

occurs at 27.00° (first-order reflection) when monochromatic x-radiation having a wavelength of 0.0711 nm is 

used, compute (a) the interplanar spacing for this set of planes, and (b) the atomic radius for the rubidium atom. 
 

  Solution 

 (a)  From the data given in the problem, and realizing that 27.00° = 2θ, the interplanar spacing for the 

(321) set of planes for Rb may be computed using Equation 3.13 as follows: 

 

  

 

d321 =
nλ

2 sin θ
=

(1)(0.0711  nm)

(2) sin
27.00°

2

 
 
 

 
 
 

=  0.1523  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.3 since Rb has a BCC crystal structure.  Therefore, 

 

  

 

a = d321 (3)2  +  (2)2  +  (1)2 = (0.1523 nm) ( 14) = 0.5700  nm 

 

And, from Equation 3.3 

 

  

 

R =
a 3

4
=

(0.5700 nm) 3

4
= 0.2468  nm 
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 3.63  For which set of crystallographic planes will a first-order diffraction peak occur at a diffraction 

angle of 46.21° for BCC iron when monochromatic radiation having a wavelength of 0.0711 nm is used? 
 

  Solution 

 The first step to solve this problem is to compute the interplanar spacing using Equation 3.13.  Thus, 

 

  

 

dhkl =
nλ

2 sin θ
=

(1)(0.0711  nm)

(2) sin
46.21°

2

 
 
 

 
 
 

= 0.0906  nm  

 

Now, employment of both Equations 3.14 and 3.3 (since Fe’s crystal structure is BCC), and the value of R for iron 

from Table 3.1 (0.1241 nm) leads to 

 

  

 

 h2 +  k 2 +  l2 =
a

dhkl
=

4R
dhkl 3

 

 

 

=  
(4)(0.1241 nm)
(0.0906 nm)( 3)

 =  3.163 

 

This means that 

 

  

 

h2 +  k 2 +  l2 = (3.163)2 = 10.0  

 

By trial and error, the only three integers having a sum that is even, and the sum of the squares of which equals 10.0 

are 3, 1, and 0.  Therefore, the set of planes responsible for this diffraction peak are the (310) ones. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.64  Figure 3.22 shows an x-ray diffraction pattern for α-iron taken using a diffractometer and 

monochromatic x-radiation having a wavelength of 0.1542 nm; each diffraction peak on the pattern has been 

indexed. Compute the interplanar spacing for each set of planes indexed; also determine the lattice parameter of Fe 

for each of the peaks. 

 
 

  Solution 

 For each peak, in order to compute the interplanar spacing and the lattice parameter we must employ 

Equations 3.14 and 3.13, respectively.  The first peak of Figure 3.22, which results from diffraction by the (110) set 

of planes, occurs at 2θ = 45.0°;  the corresponding interplanar spacing for this set of planes, using Equation 3.13, is 

equal to 

 

  

 

d110 =
nλ

2 sin θ
=

(1)(0.1542 nm)

(2) sin 
45.0°

2

 
 
 

 
 
 

 =  0.2015 nm 

 

And, from Equation 3.14, the lattice parameter a is determined as 

 

  

 

a =  dhkl (h)2  +  (k)2  +  (l)2  =  d110 (1)2  +  (1)2  +  (0)2  

 

 

=  (0.2015  nm) 2 =  0.2850  nm 

 

Similar computations are made for the other peaks which results are tabulated below: 
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 Peak Index 2θ dhkl(nm) a (nm) 

 

 200 65.1 0.1433 0.2866 

 211 82.8 0.1166 0.2856 
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 3.65  The diffraction peaks shown in Figure 3.22 are indexed according to the reflection rules for BCC 

(i.e., the sum h + k + l must be even). Cite the h, k, and l indices for the first four diffraction peaks for FCC crystals 

consistent with h, k, and l all being either odd or even. 
 

  Solution 

 The first four diffraction peaks that will occur for FCC consistent with h, k, and l all being odd or even are 

(111), (200), (220), and (311). 
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 3.66  Figure 3.25 shows the first four peaks of the x-ray diffraction pattern for copper, which has an FCC 

crystal structure; monochromatic x-radiation having a wavelength of 0.1542 nm was used. 

 (a) Index (i.e., give h, k, and l indices) for each of these peaks. 

 (b) Determine the interplanar spacing for each of the peaks. 

 (c) For each peak, determine the atomic radius for Cu and compare these with the value presented in 

Table 3.1. 

 

 
 

  Solution 

 (a)  Since Cu has an FCC crystal structure, only those peaks for which h, k, and l are all either odd or even 

will appear.  Therefore, the first peak results by diffraction from (111) planes. 

 (b)  For each peak, in order to calculate the interplanar spacing we must employ Equation 3.13.  For the 

first peak which occurs at 43.8° 
 

  

 

d111 =
nλ

2 sin θ
=

(1)(0.1542 nm)

(2) sin
43.8°

2

 
 
 

 
 
 

 =  0.2067 nm  

 

 (c)  Employment of Equations 3.14 and 3.1 is necessary for the computation of R for Cu as 

 

  

 

R =
a

2 2
=

(dhkl) (h)2  +  (k)2  +  (l)2

2 2
 

 

 

=
(0.2067 nm) (1)2  +  (1)2  +  (1)2

2 2
 

 

= 0.1266 nm 

 

Similar computations are made for the other peaks which results are tabulated below: 
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 Peak Index 2θ dhkl(nm) R (nm) 

 200 50.8 0.1797 0.1271 

 220 74.4 0.1275 0.1275 

 311 90.4 0.1087 0.1274 
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 Noncrystalline Solids 
 

 3.67  Would you expect a material in which the atomic bonding is predominantly ionic in nature to be 

more or less likely to form a noncrystalline solid upon solidification than a covalent material? Why? (See Section 

2.6.) 
 

  Solution 

 A material in which atomic bonding is predominantly ionic in nature is less likely to form a noncrystalline 

solid upon solidification than a covalent material because covalent bonds are directional whereas ionic bonds are 

nondirectional;  it is more difficult for the atoms in a covalent material to assume positions giving rise to an ordered 

structure. 
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CHAPTER 4 

 

IMPERFECTIONS IN SOLIDS 

 

PROBLEM SOLUTIONS 

 

 

 Vacancies and Self-Interstitials 

 

 4.1  Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327°C (600 

K).  Assume an energy for vacancy formation of 0.55 eV/atom. 
 

  Solution 

 In order to compute the fraction of atom sites that are vacant in lead at 600 K, we must employ Equation 
4.1.  As stated in the problem, Qv = 0.55 eV/atom.  Thus, 

 

  

 

N v

N
=  exp −

Qv

kT

 
 
 

 
 
 =  exp −

0.55 eV /atom

(8.62  ×  10−5  eV /atom- K) (600 K)

 

 
 

 

 
  

 

= 2.41 × 10-5 
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 4.2  Calculate the number of vacancies per cubic meter in iron at 850°C.  The energy for vacancy 

formation is 1.08 eV/atom.  Furthermore, the density and atomic weight for Fe are 7.65 g/cm3 and 55.85 g/mol, 

respectively. 
 

  Solution 

 Determination of the number of vacancies per cubic meter in iron at 850°C (1123 K) requires the 

utilization of Equations 4.1 and 4.2 as follows: 

 

  

 

N v  =  N exp −
Qv

kT

 
 
 

 
 
 =  

N A ρFe

AFe
exp −

Qv

kT

 
 
 

 
 
  

 

And incorporation of values of the parameters provided in the problem statement into the above equation leads to 

 

 

N v =  
(6.022  ×  1023atoms /mol)(7.65 g / cm3)

55.85 g /mol
exp −  

1.08  eV/atom

(8.62  ×  10−5  eV /atom− K) (850°C +  273 K)

 

 
 

 

 
  

 

= 1.18 × 1018 cm-3 = 1.18 × 1024 m-3 
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 4.3  Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number 

of vacancies at 500°C (773 K) is 7.57 × 1023 m-3.  The atomic weight and density (at 500°C) for aluminum are, 

respectively, 26.98 g/mol and 2.62 g/cm3. 
 

  Solution 

 Upon examination of Equation 4.1, all parameters besides Qv are given except N, the total number of 

atomic sites.  However, N is related to the density, (ρAl), Avogadro's number (NA), and the atomic weight (AAl) 

according to Equation 4.2 as 

 

  

 

N =  
N A ρAl

AAl
 

 

 

=  
(6.022  ×  1023  atoms /mol)(2.62  g / cm3)

26.98  g /mol
 

 

= 5.85 × 1022 atoms/cm3 = 5.85 × 1028 atoms/m3 

 

Now, taking natural logarithms of both sides of Equation 4.1,  

 

    

 

ln N v =  ln N −
Qv
kT

 

 

and, after some algebraic manipulation 

 

    

 

Qv =  −  kT ln 
N v
N

 

 
 

 

 
  

 

 

=  −  (8.62 ×  10-5  eV/atom- K) (500°C +  273 K)  ln 
7.57  ×  1023  m−3

5.85 ×  1028  m−3

 

 
 

 

 
  

 

= 0.75 eV/atom 
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 Impurities in Solids 

 

 4.4  Below, atomic radius, crystal structure, electronegativity, and the most common valence are tabulated, 

for several elements; for those that are nonmetals, only atomic radii are indicated. 

 

Element 
Atomic Radius 

(nm) Crystal Structure Electronegativity Valence 

Cu 0.1278 FCC 1.9 +2 

C 0.071    

H 0.046    

O 0.060    

Ag 0.1445 FCC 1.9 +1 

Al 0.1431 FCC 1.5 +3 

Co 0.1253 HCP 1.8 +2 

Cr 0.1249 BCC 1.6 +3 

Fe 0.1241 BCC 1.8 +2 

Ni 0.1246 FCC 1.8 +2 

Pd 0.1376 FCC 2.2 +2 

Pt 0.1387 FCC 2.2 +2 

Zn 0.1332 HCP 1.6 +2 

 

 Which of these elements would you expect to form the following with copper: 

 (a) A substitutional solid solution having complete solubility 

 (b) A substitutional solid solution of incomplete solubility 

 (c) An interstitial solid solution 
 

  Solution 

 In this problem we are asked to cite which of the elements listed form with Cu the three possible solid 

solution types.  For complete substitutional solubility the following criteria must be met:  1) the difference in atomic 

radii between Cu and the other element (∆R%) must be less than ±15%, 2) the crystal structures must be the same, 

3) the electronegativities must be similar, and 4) the valences should be the same, or nearly the same.  Below are 

tabulated, for the various elements, these criteria. 
 
   Crystal ∆Electro-  
 Element ∆R% Structure negativity Valence 

 Cu  FCC  2+ 
 C –44 
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 H –64 
 O –53 
 Ag +13 FCC 0 1+ 
 Al +12 FCC -0.4 3+ 
 Co -2 HCP -0.1 2+ 
 Cr -2 BCC -0.3 3+ 
 Fe -3 BCC -0.1 2+ 
 Ni -3 FCC -0.1 2+ 
 Pd +8 FCC +0.3 2+ 
 Pt +9 FCC +0.3 2+ 
 Zn +4 HCP -0.3 2+ 
 

 (a) Ni, Pd, and Pt meet all of the criteria and thus form substitutional solid solutions having complete 

solubility.  At elevated temperatures Co and Fe experience allotropic transformations to the FCC crystal structure, 

and thus display complete solid solubility at these temperatures. 

 (b) Ag, Al, Co, Cr, Fe, and Zn form substitutional solid solutions of incomplete solubility.  All these metals 

have either BCC or HCP crystal structures, and/or the difference between their atomic radii and that for Cu are 

greater than ±15%, and/or have a valence different than 2+. 

 (c) C, H, and O form interstitial solid solutions.  These elements have atomic radii that are significantly 

smaller than the atomic radius of Cu. 
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 4.5  For both FCC and BCC crystal structures, there are two different types of interstitial sites. In each 

case, one site is larger than the other, and is normally occupied by impurity atoms. For FCC, this larger one is 

located at the center of each edge of the unit cell; it is termed an octahedral interstitial site. On the other hand, with 

BCC the larger site type is found at 0 

 

1

2

 

1

4
  positions—that is, lying on {100} faces, and situated midway between 

two unit cell edges on this face and one-quarter of the distance between the other two unit cell edges; it is termed a 

tetrahedral interstitial site. For both FCC and BCC crystal structures, compute the radius r of an impurity atom 

that will just fit into one of these sites in terms of the atomic radius R of the host atom. 
 

  Solution 

 In the drawing below is shown the atoms on the (100) face of an FCC unit cell;  the interstitial site is at the 

center of the edge. 
 

 

 

The diameter of an atom that will just fit into this site (2r) is just the difference between that unit cell edge length 

(a) and the radii of the two host atoms that are located on either side of the site (R);  that is 

 

2r = a – 2R 

 

However, for FCC a is related to R according to Equation 3.1 as     

 

a = 2R 2 ;  therefore, solving for r from the above 

equation gives 
 

    

 

r =  
a − 2 R

2
=  

2 R 2 − 2 R
2

=  0.41R  

 

 A (100) face of a BCC unit cell is shown below. 
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The interstitial atom that just fits into this interstitial site is shown by the small circle.  It is situated in the plane of 

this (100) face, midway between the two vertical unit cell edges, and one quarter of the distance between the bottom 

and top cell edges.  From the right triangle that is defined by the three arrows we may write 

 

    

 

a
2

 
 
 

 
 
 
2

 +  
a
4

 
 
 

 
 
 
2

 =  (R  + r) 2  

 

However, from Equation 3.3, 
    

 

a =  
4R

3
, and, therefore, making this substitution, the above equation takes the form 

 

    

 

4R
2 3

 
 
 

 
 
 
2

 +  
4R

4 3

 
 
 

 
 
 
2

 =  R2 + 2Rr + r2  

 

After rearrangement the following quadratic equation results: 

 

    

 

r2 +  2Rr −  0.667R 2 =  0  

 

And upon solving for r: 
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r  =  
−(2R)  ±  (2R)2  −  (4)(1)(−0.667R2)

2
 

 

    

 

=  
−2R ±  2.582R

2
 

 

And, finally 

 

    

 

r(+)  =  
−2R  + 2.582R

2
 =  0.291R  

    

 

r(−)  =  
−2R  − 2.582R

2
 =  − 2.291R  

Of course, only the r(+) root is possible, and, therefore, r = 0.291R. 

 Thus, for a host atom of radius R, the size of an interstitial site for FCC is approximately 1.4 times that for 

BCC. 
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 Specification of Composition 

 

 4.6  Derive the following equations: 

 (a) Equation 4.7a 

 (b) Equation 4.9a 

 (c) Equation 4.10a 

 (d) Equation 4.11b 
 

  Solution 

 (a)  This problem asks that we derive Equation 4.7a.  To begin, C1 is defined according to Equation 4.3 as 

 

    

 

C1  =  
m1

m1  +  m2
 ×   100  

 

or, equivalently 

 

    

 

C1  =  
m1

'

m1
'  +  m2

'

 ×   100  

 

where the primed m's indicate masses in grams.  From Equation 4.4 we may write 

 

    

 

m1
'

 
=  nm1 A1 

 

    

 

m 2
'

 
=  nm2 A2  

 
And, substitution into the C1 expression above 

 

    

 

C1 =  
nm1 A1

nm1 A1  +  nm2 A2
 ×   100  

 

From Equation 4.5 it is the case that 

 

    

 

nm1 =  
C1

' (nm1  +  nm2)
100
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nm2 =  
C2

' (nm1  +  nm2)
100

 

 

And substitution of these expressions into the above equation leads to 

 

    

 

C1 =  
C1

' A1

C1
' A1  +  C2

' A2

 ×   100  

 

which is just Equation 4.7a. 

 

 (b)  This problem asks that we derive Equation 4.9a.  To begin,     

 

C1
" is defined as the mass of component 1 

per unit volume of alloy, or 

 

    

 

C1
"

 
=  

m1
V

 

 

If we assume that the total alloy volume V is equal to the sum of the volumes of the two constituents--i.e., V = V1 + 

V2--then 

 

    

 

C1
" =  

m1
V1  +  V2

 

 

Furthermore, the volume of each constituent is related to its density and mass as 

 

    

 

V1 =  
m1
ρ1

 

 

    

 

V2 =  
m2
ρ2

 

 

This leads to  

 

    

 

C1
" =  

m1
m1
ρ1

 +  
m2
ρ2

 

 

From Equation 4.3, m1 and m2 may be expressed as follows: 
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m1 =  
C1(m1  +  m2)

100
 

 

    

 

m2 =  
C2 (m1  +  m2)

100
 

 

Substitution of these equations into the preceding expression yields 

 

    

 

C1
" =  

C1 (m1  +  m2)
100

C1 (m1  +  m2)
100
ρ1

 +  

C2 (m1  +  m2)
100
ρ2

 

 

    

 

=
C1

C1
ρ1

+
C2
ρ2

 

 

If the densities ρ1 and ρ2 are given in units of g/cm3, then conversion to units of kg/m3 requires that we multiply 

this equation by 103, inasmuch as 

 

1 g/cm3 = 103 kg/m3 

 

Therefore, the previous equation takes the form 

 

  

 

C1
" =  

C1
C1

ρ1
+

C2

ρ2

 ×   103 

 

which is the desired expression. 

 

 

 (c)  Now we are asked to derive Equation 4.10a.  The density of an alloy ρave is just the total alloy mass M 

divided by its volume V 

 

    

 

ρave =  
M
V

 

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

Or, in terms of the component elements 1 and 2 

 

    

 

ρave =  
m1  +  m2
V1  +  V2

 

 

[Note:  here it is assumed that the total alloy volume is equal to the separate volumes of the individual components, 

which is only an approximation;  normally V will not be exactly equal to (V1 + V2)]. 

Each of V1 and V2 may be expressed in terms of its mass and density as, 

 

    

 

V1 =
m1
ρ1

 

 

    

 

V2 =
m2
ρ2

 

 

When these expressions are substituted into the above equation, we get 

 

    

 

ρave =  
m1  +  m2
m1
ρ1

 +  
m2
ρ2

 

 

Furthermore, from Equation 4.3 

 

    

 

m1 =  
C1 (m1  +  m2)

100
 

 

    

 

m2 =  
C2 (m1  +  m2)

100
 

 
Which, when substituted into the  above ρave expression yields 

 

    

 

ρave =  
m1  +  m2

C1 (m1  +  m2)
100
ρ1

 +  

C2 (m1  +  m2)
100
ρ2

 

 

And, finally, this equation reduces to 
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=  
100

C1
ρ1

 +  
C2
ρ2

 

 

 (d)  And, finally, the derivation of Equation 4.11b for Aave is requested.  The alloy average molecular 

weight is just the ratio of total alloy mass in grams M’ and the total number of moles in the alloy Nm.  That is 

 

    

 

Aave =  
MÕ
N m

=  
m1

'

 
+  m2

'

nm1  +  nm2
 

 

But using Equation 4.4 we may write 

 

    

 

m1
'  =  nm1 A1 

 

    

 

m2
'  =  nm2 A2 

 

Which, when substituted into the above Aave expression yields 

 

    

 

Aave =  
M'
N m

 =  
nm1 A1  +  nm2 A2

nm1  +  nm2
 

 

Furthermore, from Equation 4.5 
 

    

 

nm1 =  
C1

' (nm1  +  nm2)
100

 

 

    

 

nm2 =  
C2

' (nm1  +  nm2)
100

 

 
Thus, substitution of these expressions into the above equation for Aave yields 

 

    

 

Aave =  

C1
' A1 (nm1  +  nm2)

100
 +  

C2
' A2 (nm1  +  nm2)

100
nm1  +  nm2
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=  
C1

' A1  +  C2
' A2

100
 

 

which is the desired result. 
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 4.7  What is the composition, in atom percent, of an alloy that consists of 30 wt% Zn and 70 wt% Cu? 
 

  Solution 

 In order to compute composition, in atom percent, of a 30 wt% Zn-70 wt% Cu alloy, we employ Equation 

4.6 as 

 

  

 

CZn
'  =  

CZn ACu

CZn ACu + CCu AZn
 ×   100  

 

 

=  
(30)(63.55 g /mol)

(30)(63.55 g /mol)  +  (70)(65.41 g /mol)
 ×   100  

 

= 29.4 at% 

 

 

  

 

CCu
'  =  

CCu AZn

CZn ACu + CCu AZn
 ×   100  

 

 

=  
(70)(65.41 g /mol)

(30)(63.55 g /mol)  +  (70)(65.41 g /mol)
 ×   100  

 

= 70.6 at% 
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 4.8  What is the composition, in weight percent, of an alloy that consists of 6 at% Pb and 94 at% Sn? 
 

  Solution 

 In order to compute composition, in weight percent, of a 6 at% Pb-94 at% Sn alloy, we employ Equation 

4.7 as 

 

  

 

CPb =  
CPb

' APb

CPb
' APb + CSn

' ASn

 ×   100  

 

 

=  
(6)(207.2 g /mol)

(6)(207.2 g /mol)  +  (94)(118.71 g /mol)
 ×   100  

 

= 10.0 wt% 

 

 

  

 

CSn =  
CSn

' ASn

CPb
' APb + CSn

' ASn

 ×   100  

 

 

=  
(94)(118.71 g /mol)

(6)(207.2 g /mol) + (94)(118.71 g /mol)
 ×   100  

 

= 90.0 wt% 
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 4.9  Calculate the composition, in weight percent, of an alloy that contains 218.0 kg titanium, 14.6 kg of 

aluminum, and 9.7 kg of vanadium. 
 

  Solution 

 The concentration, in weight percent, of an element in an alloy may be computed using a modified form of 

Equation 4.3.  For this alloy, the concentration of titanium (CTi) is just 

 

  

 

CTi =  
mTi

mTi + mAl + mV
 ×   100 

 

 

=  
218 kg

218 kg  + 14.6 kg  + 9.7 kg
 ×   100 =  89.97 wt%  

 

Similarly, for aluminum 

 

 

CAl =  
14.6 kg

218 kg  + 14.6 kg  + 9.7 kg
 ×   100 =  6.03 wt%  

 

And for vanadium 

 

 

CV =  
9.7 kg

218 kg  + 14.6 kg  + 9.7 kg
 ×   100 =  4.00 wt%  
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 4.10  What is the composition, in atom percent, of an alloy that contains 98 g tin and 65 g of lead? 
 

  Solution 

 The concentration of an element in an alloy, in atom percent, may be computed using Equation 4.5.  

However, it first becomes necessary to compute the number of moles of both Sn and Pb, using Equation 4.4.  Thus, 

the number of moles of Sn is just 

 

  

 

nmSn
 =  

mSn
'

ASn
 =  

98 g
118.71 g /mol

 =  0.826 mol  

 

Likewise, for Pb 

 

  

 

nmPb
 =  

65 g
207.2 g /mol

 =  0.314 mol  

 

Now, use of Equation 4.5 yields 

 

  

 

CSn
' =  

nmSn

nmSn
+ nmPb

 ×  100  

 

 

=  
0.826 mol

0.826 mol  +  0.314 mol
 ×  100 =  72.5 at%  

 

Also, 

 

  

 

CPb
' =  =  

0.314 mol
0.826 mol  +  0.314 mol

 ×  100 =  27.5 at% 
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 4.11  What is the composition, in atom percent, of an alloy that contains 99.7 lbm copper, 102 lbm zinc, 

and 2.1 lbm lead? 
 

  Solution 

 In this problem we are asked to determine the concentrations, in atom percent, of the Cu-Zn-Pb alloy.  It is 

first necessary to convert the amounts of Cu, Zn, and Pb into grams. 

 

  

 

mCu
' =  (99.7 lbm)(453.6  g/lbm) =  45,224  g  

 

  

 

mZn
' =  (102 lbm)(453.6 g/lbm) =  46,267 g  

 

  

 

mPb
' =  (2.1 lbm)(453.6 g/lbm) =  953 g  

 

These masses must next be converted into moles (Equation 4.4), as 

 

  

 

nmCu
 =  

mCu
'

ACu
 =  

45,224 g
63.55 g /mol

 =  711.6 mol  

 

  

 

nmZn
 =  

46,267 g
65.41 g /mol

 =  707.3 mol  

 

  

 

nmPb
 =  

953 g
207.2 g /mol

 =  4.6 mol  

 

Now, employment of a modified form of Equation 4.5, gives 

 

  

 

CCu
'  =  

nmCu

nmCu
 + nmZn

 +  nmPb

 ×  100 

 

 

=  
711.6 mol

711.6 mol +  707.3 mol  +  4.6 mol
 ×  100 =  50.0 at%  

 

 

  

 

CZn
'

 =  
707.3 mol

711.6 mol +  707.3 mol  +  4.6 mol
 ×  100 =  49.7 at% 
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CPb
'

 =  
4.6 mol

711.6 mol +  707.3 mol  +  4.6 mol
 ×  100 =  0.3 at%  
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 4.12  What is the composition, in atom percent, of an alloy that consists of 97 wt% Fe and 3 wt% Si? 
 

  Solution 

 We are asked to compute the composition of an Fe-Si alloy in atom percent.  Employment of Equation 4.6 

leads to 

 

  

 

CFe
' =  

CFe ASi

CFe ASi  +  CSi AFe
 ×  100 

 

 

=  
97 (28.09 g /mol)

97 (28.09 g /mol)  +  3(55.85 g /mol)
 ×  100  

 

= 94.2 at% 

 

 

  

 

CSi
' =  

CSi AFe

CSi AFe  +  CFe ASi
 ×  100  

 

 

=  
3(55.85 g /mol)

3(55.85 g /mol)  +  97 (28.09 g /mol)
 ×  100  

 

= 5.8 at% 
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 4.13  Convert the atom percent composition in Problem 4.11 to weight percent. 
 

  Solution 

 The composition in atom percent for Problem 4.11 is 50.0 at% Cu, 49.7 at% Zn, and 0.3 at% Pb.  

Modification of Equation 4.7 to take into account a three-component alloy leads to the following 

 

  

 

CCu =  
CCu

' ACu

CCu
' ACu +  CZn

' AZn  +  CPb
' APb

 ×  100 

 

 

=  
(50.0) (63.55 g /mol)

(50.0) (63.55 g /mol)  +  (49.7) (65.41 g /mol)  +  (0.3) (207.2 g /mol)
 ×  100  

 

= 49.0 wt% 

 

 

  

 

CZn =  
CZn

' AZn

CCu
' ACu +  CZn

' AZn  +  CPb
' APb

 ×  100 

 

 

=  
(49.7) (65.41 g /mol)

(50.0) (63.55 g /mol)  +  (49.7) (65.41 g /mol)  +  (0.3) (207.2 g /mol)
 ×  100  

 

= 50.1 wt% 

 

 

  

 

CPb =  
CPb

' APb

CCu
' ACu +  CZn

' AZn  +  CPb
' APb

 ×  100 

 

 

=  
(0.3) (207.2 g /mol)

(50.0) (63.55 g /mol)  +  (49.7) (65.41 g /mol)  +  (0.3) (207.2 g /mol)
 ×  100  

 

= 1.0 wt% 
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 4.14  Calculate the number of atoms per cubic meter in aluminum. 
 

  Solution 

 In order to solve this problem, one must employ Equation 4.2,  

 

  

 

N =  
N A ρAl

AAl
 

 

The density of Al (from the table inside of the front cover) is 2.71 g/cm3, while its atomic weight is 26.98 g/mol.  

Thus, 

 

  

 

N =  
(6.022 ×  1023  atoms /mol)(2.71 g / cm3)

26.98 g /mol
 

 

= 6.05 × 1022 atoms/cm3 = 6.05 × 1028 atoms/m3 
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 4.15  The concentration of carbon in an iron-carbon alloy is 0.15 wt%.  What is the concentration in 

kilograms of carbon per cubic meter of alloy? 
 

  Solution 

 In order to compute the concentration in kg/m3 of C in a 0.15 wt% C-99.85 wt% Fe alloy we must employ 

Equation 4.9 as 

 

  

 

CC
" =  

CC
CC

ρC
 +  

CFe

ρFe

 ×   103  

 

From inside the front cover, densities for carbon and iron are 2.25 and 7.87 g/cm3, respectively;  and, therefore 

 

  

 

CC
" =  

0.15
0.15

2.25 g/cm3
 +  

99.85

7.87 g/cm3

 ×  103  

 

= 11.8 kg/m3 
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 4.16  Determine the approximate density of a high-leaded brass that has a composition of 64.5 wt% Cu, 

33.5 wt% Zn, and 2.0 wt% Pb. 
 

  Solution 

 In order to solve this problem, Equation 4.10a is modified to take the following form: 

 

  

 

ρave =  
100

CCu

ρCu
 +  

CZn

ρZn
 +  

CPb

ρPb

 

 

And, using the density values for Cu, Zn, and Pb—i.e., 8.94 g/cm3, 7.13 g/cm3,  and 11.35 g/cm3—(as taken from 

inside the front cover of the text), the density is computed as follows: 

 

 

ρave =  
100

64.5 wt%

8.94 g / cm3
 +  

33.5 wt%

7.13 g / cm3
 +  

2.0 wt%

11.35 g / cm3

 

 

= 8.27 g/cm3 
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 4.17  Calculate the unit cell edge length for an 85 wt% Fe-15 wt% V alloy.  All of the vanadium is in solid 

solution, and, at room temperature the crystal structure for this alloy is BCC. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 3.5;  in this expression density and atomic 

weight will be averages for the alloy—that is 

 

    

 

ρave =  
nAave

VC N A
 

 

Inasmuch as the unit cell is cubic, then VC = a3, then 

 

    

 

ρave =  
nAave

a3N A

 

 

  

And solving this equation for the unit cell edge length, leads to 

 

    

 

a =  
nAave

ρaveN A

 

 
  

 

 
  

1/3

 

 
 Expressions for Aave and ρave are found in Equations 4.11a and 4.10a, respectively, which, when 

incorporated into the above expression yields 

 

  

 

a =  

n 
100

CFe

AFe
 +  

CV

AV

 

 

 
 
 
 

 

 

 
 
 
 

100
CFe

ρFe
 +  

CV

ρV

 

 

 
 
 
 

 

 

 
 
 
 
N A

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

1/ 3

 

 

 Since the crystal structure is BCC, the value of n in the above expression is 2 atoms per unit cell.  The 

atomic weights for Fe and V are 55.85 and 50.94 g/mol, respectively (Figure 2.6), whereas the densities for the Fe 

and V are 7.87 g/cm3  and 6.10 g/cm3 (from inside the front cover).  Substitution of these, as well as the 

concentration values stipulated in the problem statement, into the above equation gives 
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a =  

(2 atoms/unit cell) 
100

85 wt%
55.85 g/mol

 +  
15 wt%

50.94 g/mol

 

 

 
 
  

 

 

 
 
  

100
85 wt%

7.87 g/cm3
 +  

15 wt%

6.10 g/cm3

 

 

 
 
 
 

 

 

 
 
 
 

6.022 ×  1023  atoms/mol( )

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

1/ 3

 

 

 

=  2.89 ×  10-8  cm =  0.289 nm  
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 4.18  Some hypothetical alloy is composed of 12.5 wt% of metal A and 87.5 wt% of metal B. If the densities 

of metals A and B are 4.27 and 6.35 g/cm3, respectively, whereas their respective atomic weights are 61.4 and 

125.7 g/mol, determine whether the crystal structure for this alloy is simple cubic, face-centered cubic, or body-

centered cubic. Assume a unit cell edge length of 0.395 nm. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 3.5;  in this expression density and atomic 

weight will be averages for the alloy—that is 

 

    

 

ρave =  
nAave

VC N A
 

 

Inasmuch as for each of the possible crystal structures, the unit cell is cubic, then VC = a3, or 

 

    

 

ρave =  
nAave

a3N A

 

 

 And, in order to determine the crystal structure it is necessary to solve for n, the number of atoms per unit 

cell.  For  n =1, the crystal structure is simple cubic, whereas for n values of 2 and 4, the crystal structure will be 

either BCC or FCC, respectively.  When we solve the above expression for n the result is as follows: 

 

    

 

n =  
ρavea3N A

Aave
 

 
Expressions for Aave and ρave are found in Equations 4.11a and 4.10a, respectively, which, when incorporated into 

the above expression yields 

 

    

 

n =  

100
CA
ρA

 +  
CB
ρB

 

 

 
 
 
 

 

 

 
 
 
 

a3N A

100
CA
AA

 +  
CB
AB
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 Substitution of the concentration values (i.e., CA = 12.5 wt% and CB = 87.5 wt%) as well as values for the 

other parameters given in the problem statement, into the above equation gives 

 

    

 

n =  

100
12.5 wt%

4.27 g/cm3
 +  

87.5 wt%

6.35 g/cm3

 

 

 
 
 
 

 

 

 
 
 
 
(3.95 ×  10-8  nm)3(6.022 ×  1023  atoms/mol)

100
12.5 wt%
61.4 g/mol

 +  
87.5 wt%

125.7 g/mol

 

 

 
 
  

 

 

 
 
  

 

 

= 2.00 atoms/unit cell 

 

 Therefore, on the basis of this value, the crystal structure is body-centered cubic. 
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 4.19  For a solid solution consisting of two elements (designated as 1 and 2), sometimes it is desirable to 

determine the number of atoms per cubic centimeter of one element in a solid solution, N1, given the concentration 

of that element specified in weight percent, C1. This computation is possible using the following expression: 

 

 

 

N1 =
NAC1

C1A1

ρ1
 +  

A1

ρ2
100 − C1( )

 (4.18) 

where 

 NA = Avogadro’s number 

 ρ1 and ρ2 = densities of the two elements 

 A1 = the atomic weight of element 1 

Derive Equation 4.18 using Equation 4.2 and expressions contained in Section 4.4. 
 

  Solution 

 This problem asks that we derive Equation 4.18, using other equations given in the chapter.  The 

concentration of component 1 in atom percent     

 

(C1
' )  is just 100    

 

c1
'  where     

 

c1
'  is the atom fraction of component 1.  

Furthermore,     

 

c1
'  is defined as     

 

c1
'  = N1/N where N1 and N are, respectively, the number of atoms of component 1 

and total number of atoms per cubic centimeter.  Thus, from the above discussion the following holds: 

 

    

 

N1 =  
C1

' N

100
 

 

Substitution into this expression of the appropriate form of N from Equation 4.2 yields 

 

    

 

N1 =  
C1

' N A ρave
100 Aave

 

 

And, finally, substitution into this equation expressions for     

 

C1
'  (Equation 4.6a), ρave (Equation 4.10a), Aave 

(Equation 4.11a), and realizing that C2 = (C1 – 100), and after some algebraic manipulation we obtain the desired 

expression: 

 

    

 

N1 =  
N AC1

C1 A1

ρ1
 +  

A1
ρ2

(100 −  C1)
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 4.20  Gold forms a substitutional solid solution with silver.  Compute the number of gold atoms per cubic 

centimeter for a silver-gold alloy that contains 10 wt% Au and 90 wt% Ag.  The densities of pure gold and silver are 

19.32 and 10.49 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.18 is necessary, using the following values: 

 
 C1 = CAu = 10 wt% 

 ρ1 = ρAu = 19.32 g/cm3 

 ρ2 = ρAg = 10.49 g/cm3 

 A1 = AAu = 196.97 g/mol 

Thus 

 

  

 

N Au =  
N ACAu

CAu AAu

ρAu
 +  

AAu

ρAg
(100  −  CAu)

 

 

 

=  
(6.022 ×  1023  atoms /mol) (10 wt%)

(10 wt%)(196.97 g /mol)

19.32 g / cm3
 +  

196.97 g /mol

10.49 g / cm3
(100  −  10 wt%)

 

 

= 3.36 × 1021 atoms/cm3 
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 4.21 Germanium forms a substitutional solid solution with silicon.  Compute the number of germanium 

atoms per cubic centimeter for a germanium-silicon alloy that contains 15 wt% Ge and 85 wt% Si.  The densities of 

pure germanium and silicon are 5.32 and 2.33 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.18 is necessary, using the following values: 

 
 C1 = CGe = 15 wt% 

 ρ1 = ρGe = 5.32 g/cm3 

 ρ2 = ρSi = 2.33 g/cm3 

 A1 = AGe = 72.64 g/mol 

Thus 

 

  

 

NGe =  
N ACGe

CGe AGe

ρGe
 +  

AGe

ρSi
(100 −  CGe)

 

 

 

=  
(6.022  ×  1023  atoms /mol) (15 wt%)

(15 wt%)(72.64 g /mol)

5.32 g / cm3
 +  

72.64 g /mol

2.33 g / cm3
(100 −  15 wt%)

 

 

= 3.16 × 1021 atoms/cm3 
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 4.22  Sometimes it is desirable to be able to determine the weight percent of one element, C1, that will 

produce a specified concentration in terms of the number of atoms per cubic centimeter, N1, for an alloy composed 

of two types of atoms. This computation is possible using the following expression: 

 

 

 

C1 =
100

1 +  
NAρ2

N1A1
 −  

ρ2

ρ1

 (4.19) 

where 

 NA = Avogadro’s number 

 ρ1 and ρ2 = densities of the two elements 

 A1 and A2 = the atomic weights of the two elements 

Derive Equation 4.19 using Equation 4.2 and expressions contained in Section 4.4. 
 

  Solution 

 The number of atoms of component 1 per cubic centimeter is just equal to the atom fraction of component 

1     

 

(c1
' )  times the total number of atoms per cubic centimeter in the alloy (N).  Thus, using the equivalent of 

Equation 4.2, we may write 

 

    

 

N1 =  c1
' N =  

c1
' N A ρave

Aave
 

 

Realizing that 

 

    

 

c1
' =  

C1
'

100
 

 

and 

 

    

 

C2
'  =  100 −  C1

'  

 
and substitution of the expressions for ρave and Aave, Equations 4.10b and 4.11b, respectively, leads to 

 

    

 

N1 =  
c1

' N Aρave
Aave
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=  
N AC1

' ρ1ρ2

C1
' ρ2 A1  +  (100  −  C1

' )ρ1A2

 

 

And, solving for     

 

C1
'  

 

    

 

C1
' =  

100 N1ρ1 A2
N Aρ1ρ2  −  N1ρ2 A1  +  N1ρ1 A2

 

 

Substitution of this expression for     

 

C1
'  into Equation 4.7a, which may be written in the following form 

 

  

 

C1 =  
C1

' A1

C1
' A1  +  C2

' A2

 ×  100  

 

  

 

=  
C1

' A1

C1
' A1  +  (100 − C1

' )A2

 ×  100  

 

yields 
 

    

 

C1 =  
100

1 +  
N A ρ2
N1 A1

 −  
ρ2
ρ1

 

 

the desired expression. 
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 4.23  Molybdenum forms a substitutional solid solution with tungsten.  Compute the weight percent of 

molybdenum that must be added to tungsten to yield an alloy that contains 1.0 × 1022 Mo atoms per cubic 

centimeter.  The densities of pure Mo and W are 10.22 and 19.30 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.19 is necessary, using the following values: 

 

 N1 = NMo = 1022 atoms/cm3 

 ρ1 = ρMo = 10.22 g/cm3 

 ρ2 = ρW = 19.30 g/cm3 

 A1 = AMo = 95.94 g/mol 

 A2 = AW = 183.84 g/mol 

 

 Thus 

 

  

 

CMo =  
100

1 +  
N AρW

NMo AMo
 −  

ρW

ρMo

 

 

 

 

=  
100

1 +  
(6.022  ×  1023 atoms /mol)(19.30 g / cm3)

(1022  atoms /cm3)(95.94 g /mol)
 −  

19.30 g / cm3

10.22 g / cm3

 

 
 

 

 
 

 

 

= 8.91 wt% 
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 4.24  Niobium forms a substitutional solid solution with vanadium.  Compute the weight percent of 

niobium that must be added to vanadium to yield an alloy that contains 1.55 × 1022 Nb atoms per cubic centimeter.  

The densities of pure Nb and V are 8.57 and 6.10 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.19 is necessary, using the following values: 

 

 N1 = NNb = 1.55 × 1022 atoms/cm3 

 ρ1 = ρNb = 8.57 g/cm3 

 ρ2 = ρV = 6.10 g/cm3 

 A1 = ANb = 92.91 g/mol 

 A2 = AV = 50.94 g/mol 

 

Thus 

 

  

 

CNb =  
100

1 +  
N AρV

NNb ANb
 −  

ρV

ρNb

 

 

 

 

=  
100

1 +  
(6.022 ×  1023  atoms /mol)(6.10 g / cm3)
 (1.55 ×  1022  atoms /cm3) (92.91 g /mol)

 −  
6.10 g / cm3

8.57 g / cm3

 

 
 

 

 
 

 

 

= 35.2 wt% 
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 4.25  Silver and palladium both have the FCC crystal structure, and Pd forms a substitutional solid 

solution for all concentrations at room temperature. Compute the unit cell edge length for a 75 wt% Ag–25 wt% Pd 

alloy.  The room-temperature density of Pd is 12.02 g/cm3, and its atomic weight and atomic radius are 106.4 g/mol 

and 0.138 nm, respectively. 
 

  Solution 

 First of all, the atomic radii for Ag (using the table inside the front cover) and Pd  are 0.144 and 0.138 nm, 

respectively.  Also, using Equation 3.5 it is possible to compute the unit cell volume, and inasmuch as the unit cell 

is cubic, the unit cell edge length is just the cube root of the volume.  However, it is first necessary to calculate the 

density and average atomic weight of this alloy using Equations 4.10a and 4.11a.  Inasmuch as the densities of 

silver and palladium are 10.49 g/cm3 (as taken from inside the front cover) and 12.02 g/cm3, respectively, the 

average density is just 

 

    

 

ρave =  
100

CAg

ρAg
 +  

CPd

ρPd

 

 

  

 

=  
100

75 wt%

10.49  g /cm3
 +  

25 wt%

12.02  g /cm3

 

 

= 10.83 g/cm3 

 

And for the average atomic weight 

 

    

 

Aave =  
100

CAg

AAg
 +  

CPd

APd

 

 

 

=  
100

75 wt%
107.9  g /mol

 +  
25 wt%

106.4  g /mol

 

 

= 107.5 g/mol 

 
Now, VC is determined from Equation 3.5 as 
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VC  =  
nAave

ρaveN A
 

 

  

 

=  
(4  atoms /unit cell)(107.5 g /mol)

(10.83 g /cm3)(6.022  ×  1023  atoms /mol)
 

 

= 6.59 × 10-23 cm3/unit cell 

 

And, finally 

 

    

 

a =  (VC )1/3 

 

 

=  (6.59 ×  10 −23cm3/unit cell)1/3 

 

= 4.04 × 10-8 cm = 0.404 nm 
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 Dislocations—Linear Defects 

 

 4.26  Cite the relative Burgers vector–dislocation line orientations for edge, screw, and mixed dislocations. 
 

  Solution 

 The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for screw 

dislocations, and neither perpendicular nor parallel for mixed dislocations. 
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 Interfacial Defects 

 

 4.27  For an FCC single crystal, would you expect the surface energy for a (100) plane to be greater or 

less than that for a (111) plane? Why? (Note: You may want to consult the solution to Problem 3.54 at the end of 

Chapter 3.) 
 

  Solution 

 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density 

(Section 3.11)]—that is, the higher the packing density, the greater the number of nearest-neighbor atoms, and the 

more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy.  From the 

solution to Problem 3.54, planar densities for FCC (100) and (111) planes are 
    

 

1

4R2
 and 

    

 

1

2R2 3
, respectively—that 

is 
    

 

0.25

R2
 and 

    

 

0.29

R2
 (where R is the atomic radius).  Thus, since the planar density for (111) is greater, it will have the 

lower surface energy. 
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 4.28  For a BCC single crystal, would you expect the surface energy for a (100) plane to be greater or less 

than that for a (110) plane? Why? (Note: You may want to consult the solution to Problem 3.55 at the end of 

Chapter 3.) 
 

  Solution 

 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density 

(Section 3.11)]—that is, the higher the packing density, the greater the number of nearest-neighbor atoms, and the 

more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy.  From the 

solution to Problem 3.55, the planar densities for BCC (100) and (110) are 
    

 

3

16R2
 and 

    

 

3

8R2 2
, respectively—that 

is 
    

 

0.19

R2
 and 

    

 

0.27

R2
. Thus, since the planar density for (110) is greater, it will have the lower surface energy. 
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 4.29  (a) For a given material, would you expect the surface energy to be greater than, the same as, or less 

than the grain boundary energy? Why? 

 (b) The grain boundary energy of a small-angle grain boundary is less than for a high-angle one. Why is 

this so? 
 

  Solution 

  (a)  The surface energy will be greater than the grain boundary energy.  For grain boundaries, some atoms 

on one side of a boundary will bond to atoms on the other side;  such is not the case for surface atoms.  Therefore, 

there will be fewer unsatisfied bonds along a grain boundary. 

 (b)  The small-angle grain boundary energy is lower than for a high-angle one because more atoms bond 

across the boundary for the small-angle, and, thus, there are fewer unsatisfied bonds. 
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 4.30  (a) Briefly describe a twin and a twin boundary. 

 (b) Cite the difference between mechanical and annealing twins. 
 

  Solution 

 (a)  A twin boundary is an interface such that atoms on one side are located at mirror image positions of 

those atoms situated on the other boundary side.  The region on one side of this boundary is called a twin. 

 (b)  Mechanical twins are produced as a result of mechanical deformation and generally occur in BCC and 

HCP metals.  Annealing twins form during annealing heat treatments, most often in FCC metals. 
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 4.31  For each of the following stacking sequences found in FCC metals, cite the type of planar defect that 

exists: 

 (a) . . . A B C A B C B A C B A . . . 

 (b) . . . A B C A B C B C A B C . . . 

Now, copy the stacking sequences and indicate the position(s) of planar defect(s) with a vertical dashed line. 
 

  Solution 

 (a)  The interfacial defect that exists for this stacking sequence is a twin boundary, which occurs at the 

indicated position. 

 

 

 

The stacking sequence on one side of this position is mirrored on the other side. 

 

 (b)  The interfacial defect that exists within this FCC stacking sequence is a stacking fault, which occurs 

between the two lines. 

 

 

 

Within this region, the stacking sequence is HCP. 
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 Grain Size Determination 

 

 4.32  (a) Using the intercept method, determine the average grain size, in millimeters, of the specimen 

whose microstructure is shown in Figure 4.14(b); use at least seven straight-line segments. 

 (b) Estimate the ASTM grain size number for this material. 
 

  Solution 

 (a) Below is shown the photomicrograph of Figure 4.14(b), on which seven straight line segments, each of 

which is 60 mm long has been constructed;  these lines are labeled “1” through “7”. 

 

 

 

 In order to determine the average grain diameter, it is necessary to count the number of grains intersected 

by each of these line segments.  These data are tabulated below. 

 
 Line Number No. Grains Intersected 

 1 11 

 2 10 

 3 9 

 4 8.5 

 5 7 

 6 10 

 7 8 
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The average number of grain boundary intersections for these lines was 9.1.  Therefore, the average line length 

intersected is just 

 

 

60 mm
9.1

=  6.59  mm  

 

Hence, the average grain diameter, d, is 

 

  

 

d =  
ave.  line  length  intersected

magnification
 =  

6.59 mm
100

=  6.59 ×  10−2   mm  

 

 (b)  This portion of the problem calls for us to estimate the ASTM grain size number for this same material.  

The average grain size number, n, is related to the number of grains per square inch, N, at a magnification of 100× 

according to Equation 4.16.  Inasmuch as the magnification is 100×, the value of N is measured directly from the 

micrograph.  The photomicrograph on which has been constructed a square 1 in. on a side is shown below. 

 

 

 

The total number of complete grains within this square is approximately 10 (taking into account grain fractions).  

Now, in order to solve for n in Equation 4.16, it is first necessary to take logarithms as 

 

    

 

log  N  =  (n  −  1) log  2 

 

From which n equals 

 

    

 

n =
log N
log 2

+ 1 
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=
log 10
log 2

+ 1 = 4.3 
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 4.33  (a) Employing the intercept technique, determine the average grain size for the steel specimen whose 

microstructure is shown in Figure 9.25(a); use at least seven straight-line segments. 

 (b) Estimate the ASTM grain size number for this material. 
 

  Solution 

 (a)  Below is shown the photomicrograph of Figure 9.25(a), on which seven straight line segments, each of 

which is 60 mm long has been constructed;  these lines are labeled “1” through “7”. 

 

 

 

 In order to determine the average grain diameter, it is necessary to count the number of grains intersected 

by each of these line segments.  These data are tabulated below. 

 
 Line Number No. Grains Intersected 

 1 7 

 2 7 

 3 7 

 4 8 

 5 10 

 6 7 

 7 8 

 

The average number of grain boundary intersections for these lines was 8.7.  Therefore, the average line length 

intersected is just 
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60 mm
8.7

 =  6.9 mm  

 

Hence, the average grain diameter, d, is 

 

  

 

d =  
ave. line length intersected

magnification
 =  

6.9 mm
90

=  0.077 mm 

 

 (b)  This portion of the problem calls for us to estimate the ASTM grain size number for this same material.  

The average grain size number, n, is related to the number of grains per square inch, N, at a magnification of 100× 

according to Equation 4.16.  However, the magnification of this micrograph is not 100×, but rather 90×.  

Consequently, it is necessary to use Equation 4.17 
 

  

 

N M
M

100

 
 
 

 
 
 
2

= 2n−1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Taking logarithms of both sides of this equation leads to the following: 

 

    

 

log N M  +  2 log 
M

100

 
 
 

 
 
 = (n −  1) log 2  

 

Solving this expression for n gives 
 

    

 

n =
log N M + 2 log

M
100

 
 
 

 
 
 

log 2
+ 1  

 

The photomicrograph on which has been constructed a square 1 in. on a side is shown below. 
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From Figure 9.25(a), NM is measured to be approximately 7, which leads to 

 

  

 

n =
log 7 + 2 log

90
100

 
 
 

 
 
 

log 2
+ 1 

 

= 3.5 
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 4.34  For an ASTM grain size of 8, approximately how many grains would there be per square inch at 

 (a) a magnification of 100, and 

 (b) without any magnification? 
 

  Solution 

 (a)  This part of problem asks that we compute the number of grains per square inch for an ASTM grain 

size of 8 at a magnification of 100×.  All we need do is solve for the parameter N in Equation 4.16, inasmuch as n = 

8.  Thus 

 

  

 

N = 2n−1 

 

=   

 

28−1 = 128 grains/in.2 

 

 (b)  Now it is necessary to compute the value of N for no magnification.  In order to solve this problem it is 

necessary to use Equation 4.17: 

 

    

 

N M
M

100

 
 
 

 
 
 
2

= 2n−1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number. 

Without any magnification, M in the above equation is 1, and therefore, 

 

    

 

N1
1

100

 
 
 

 
 
 
2

= 28−1 = 128  

 
And, solving for N1, N1 = 1,280,000 grains/in.2. 
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 4.35  Determine the ASTM grain size number if 25 grains per square inch are measured at a magnification 

of 600. 
 

  Solution 

 This problem asks that we determine the ASTM grain size number if 8 grains per square inch are measured 

at a magnification of 600.  In order to solve this problem we make use of Equation 4.17: 

 

    
N M

M
100

 

 
 

 

 
 

2

= 2n −1  

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Solving the above equation for n, and realizing that NM = 8, while M = 600, we have 

 

    

 

n =
log N M + 2 log

M
100

 
 
 

 
 
 

log 2
+ 1 

 

  

 

=
log 8 + 2 log

600
100

 
 
 

 
 
 

log 2
+ 1 = 9.2  
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 4.36  Determine the ASTM grain size number if 20 grains per square inch are measured at a magnification 

of 50. 
 

  Solution 

 This problem asks that we determine the ASTM grain size number if 20 grains per square inch are 

measured at a magnification of 50.  In order to solve this problem we make use of Equation 4.17—viz. 

 

    

 

N M
M

100

 
 
 

 
 
 
2

= 2n−1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Solving the above equation for n, and realizing that NM = 20, while M = 50, we have 

 

    

 

n =
log N M + 2 log

M
100

 
 
 

 
 
 

log 2
+ 1  

 

  

 

=
log 20 + 2 log

50
100

 
 
 

 
 
 

log 2
+ 1 = 3.3 
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DESIGN PROBLEMS 

 

 Specification of Composition 

 

 4.D1  Aluminum–lithium alloys have been developed by the aircraft industry to reduce the weight and 

improve the performance of its aircraft.  A commercial aircraft skin material having a density of 2.55 g/cm3 is 

desired. Compute the concentration of Li (in wt%) that is required. 
 

  Solution 

 Solution of this problem requires the use of Equation 4.10a, which takes the form 

 

    

 

ρave =  
100

CLi
ρLi

 +  
100  −  CLi

ρAl

 

 
inasmuch as CLi + CAl = 100.  According to the table inside the front cover, the respective densities of Li and Al 

are 0.534 and 2.71 g/cm3.  Upon solving for CLi from the above equation, we get 

 

    

 

CLi =  
100 ρLi (ρAl −  ρave)

ρave(ρAl  −  ρLi)
 

 

And incorporating specified values into the above equation leads to 

 

 

CLi =  
(100)(0.534 g / cm3)(2.71 g / cm3 −  2.55 g / cm3)

(2.55 g / cm3)(2.71 g / cm3 −  0.534 g / cm3)
 

 

= 1.540 wt% 
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 4.D2  Iron and vanadium both have the BCC crystal structure and V forms a substitutional solid solution 

in Fe for concentrations up to approximately 20 wt% V at room temperature.  Determine the concentration in 

weight percent of V that must be added to iron to yield a unit cell edge length of 0.289 nm. 
 

  Solution 

 To begin, it is necessary to employ Equation 3.5, and solve for the unit cell volume, VC, as 

 

    

 

VC  =  
nAave

ρaveN A
 

 
where Aave and ρave are the atomic weight and density, respectively, of the Fe-V alloy.  Inasmuch as both of these 

materials have the BCC crystal structure, which has cubic symmetry, VC is just the cube of the unit cell length, a.  

That is 

 

  

 

VC  =  a3 =  (0.289 nm)3 

 

 

= (2.89 ×  10−8  cm)3 = 2.414 ×  10−23 cm3 

 
It is now necessary to construct expressions for Aave and ρave in terms of the concentration of vanadium, CV, using 

Equations 4.11a and 4.10a.  For Aave we have 

 

  

 

Aave =  
100

CV

AV
 +  

(100  −  CV)
AFe

 

 

  

 

=  
100

CV

50.94g /mol
 +  

(100  −  CV)
55.85 g /mol

 

 
whereas for ρave 

 

  

 

ρave =  
100

CV

ρV
 +  

(100  −  CV)
ρFe

 

 

  

 

=  
100

CV

6.10 g / cm3
 +  

(100  −  CV)
7.87 g / cm3
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Within the BCC unit cell there are 2 equivalent atoms, and thus, the value of n in Equation 3.5 is 2;  hence, this 

expression may be written in terms of the concentration of V in weight percent as follows: 

 

VC = 2.414 × 10-23 cm3 

 

    
=  

nAave
ρaveN A

 

 

  

 

=  

(2 atoms /unit cell)
100

CV

50.94 g /mol
 +  

(100  −  CV)
55.85 g /mol

 

 

 
 
 
 

 

 

 
 
 
 

100
CV

6.10 g / cm3
 +  

(100  −  CV)
7.87 g / cm3

 

 

 
 
 
 

 

 

 
 
 
 

(6.022  ×  1023  atoms /mol)

 

 

 
And solving this expression for CV leads to CV = 12.9 wt%. 
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CHAPTER 5 

 

DIFFUSION 

 

PROBLEM SOLUTIONS 
 
 

 Introduction 

 

 5.1  Briefly explain the difference between self-diffusion and interdiffusion. 
 

  Solution 

 Self-diffusion is atomic migration in pure metals--i.e., when all atoms exchanging positions are of the same 

type.  Interdiffusion is diffusion of atoms of one metal into another metal. 
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 5.2  Self-diffusion involves the motion of atoms that are all of the same type; therefore it is not subject to 

observation by compositional changes, as with interdiffusion.  Suggest one way in which self-diffusion may be 

monitored. 
 

  Solution 

 Self-diffusion may be monitored by using radioactive isotopes of the metal being studied.  The motion of 

these isotopic atoms may be monitored by measurement of radioactivity level. 
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 Diffusion Mechanisms 

 

 5.3  (a)  Compare interstitial and vacancy atomic mechanisms for diffusion. 

 (b)  Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. 
 

  Solution 

 (a)  With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy.  Self-diffusion 

and the diffusion of substitutional impurities proceed via this mechanism.  On the other hand, atomic motion is from 

interstitial site to adjacent interstitial site for the interstitial diffusion mechanism. 

 (b)  Interstitial diffusion is normally more rapid than vacancy diffusion because:  (1) interstitial atoms, 

being smaller, are more mobile;  and (2) the probability of an empty adjacent interstitial site is greater than for a 

vacancy adjacent to a host (or substitutional impurity) atom. 
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 Steady-State Diffusion 

 

 5.4  Briefly explain the concept of steady state as it applies to diffusion. 
 

  Solution 

 Steady-state diffusion is the situation wherein the rate of diffusion into a given system is just equal to the 

rate of diffusion out, such that there is no net accumulation or depletion of diffusing species--i.e., the diffusion flux 

is independent of time. 
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 5.5  (a) Briefly explain the concept of a driving force. 

 (b) What is the driving force for steady-state diffusion? 
 

  Solution 

 (a)  The driving force is that which compels a reaction to occur. 

 (b)  The driving force for steady-state diffusion is the concentration gradient. 
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 5.6  The purification of hydrogen gas by diffusion through a palladium sheet was discussed in Section 5.3.  

Compute the number of kilograms of hydrogen that pass per hour through a 5-mm-thick sheet of palladium having 

an area of 0.20 m2 at 500°C.  Assume a diffusion coefficient of 1.0 × 10-8 m2/s, that the concentrations at the high- 

and low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steady-

state conditions have been attained. 
 

  Solution 

 This problem calls for the mass of hydrogen, per hour, that diffuses through a Pd sheet.  It first becomes 

necessary to employ both Equations 5.1a and 5.3.  Combining these expressions and solving for the mass yields 

 

    

 

M =  JAt =  − DAt
∆C
∆x

 

 

 

=  −  (1.0 ×  10-8  m2/s)(0.20 m2) (3600 s/h)
0.6  −  2.4 kg /m3

5 ×  10−3 m

 

 
 

 

 
  

 

= 2.6 × 10-3 kg/h 
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 5.7  A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to 

achieve a steady-state diffusion condition.  The diffusion coefficient for nitrogen in steel at this temperature is 6 × 

10-11 m2/s, and the diffusion flux is found to be 1.2 × 10-7 kg/m2-s.  Also, it is known that the concentration of 

nitrogen in the steel at the high-pressure surface is 4 kg/m3.  How far into the sheet from this high-pressure side will 

the concentration be 2.0 kg/m3?  Assume a linear concentration profile. 
 

  Solution 

 This problem is solved by using Equation 5.3 in the form 

 

    

 

J =  −  D
CA  −  CB
xA  −  xB

 

 

If we take CA to be the point at which the concentration of nitrogen is 4 kg/m3, then it becomes necessary to solve 

for xB, as 

 

    

 

xB =  xA +  D 
CA  −  CB

J

 

 
 

 

 
  

 

Assume xA is zero at the surface, in which case 

 

  

 

xB =  0 +  (6 ×  10-11  m2/s) 
4 kg /m3  −  2 kg /m3

1.2  ×  10−7  kg /m2 - s

 

 
 

 

 
  

 

= 1 × 10-3 m = 1 mm 
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 5.8  A sheet of BCC iron 1 mm thick was exposed to a carburizing gas atmosphere on one side and a 

decarburizing atmosphere on the other side at 725°C.  After having reached steady state, the iron was quickly 

cooled to room temperature.  The carbon concentrations at the two surfaces of the sheet were determined to be 

0.012 and 0.0075 wt%.  Compute the diffusion coefficient if the diffusion flux is 1.4 × 10-8 kg/m2-s.  Hint: Use 

Equation 4.9 to convert the concentrations from weight percent to kilograms of carbon per cubic meter of iron. 
 

  Solution 

 Let us first convert the carbon concentrations from weight percent to kilograms carbon per meter cubed 

using Equation 4.9a.  For 0.012 wt% C 

 

    

 

CC
" =  

CC
CC
ρC

 +  
CFe
ρFe

 ×  103 

 

 

=  
0.012

0.012

2.25 g/cm3
 +  

99.988

7.87 g/cm3

 ×   103  

 

0.944 kg C/m3 

 

Similarly, for 0.0075 wt% C 

 

  

 

CC
" =  

0.0075
0.0075

2.25 g/cm3
 +  

99.9925

7.87 g/cm3

 ×  103 

 

= 0.590 kg C/m3 

 

Now, using a rearranged form of Equation 5.3 

 

    

 

D =  −  J 
xA  −  xB

CA  −  CB

 

 
 
 

 

 
 
 
 

 

 

=  −  (1.40 ×  10-8  kg/m2 - s) − 10−3 m

0.944 kg/m3  −  0.590 kg/m3
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= 3.95 × 10-11 m2/s 
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 5.9  When α-iron is subjected to an atmosphere of hydrogen gas, the concentration of hydrogen in the iron, 

CH (in weight percent), is a function of hydrogen pressure, 

 

pH 2
 (in MPa), and absolute temperature (T) according 

to 

 

  

 

CH  =  1.34  ×  10−2 pH2
exp −

27.2  kJ /mol
RT

 
 
 

 
 
  (5.14) 

Furthermore, the values of D0 and Qd for this diffusion system are 1.4 × 10-7 m2/s and 13,400 J/mol, respectively.  

Consider a thin iron membrane 1 mm thick that is at 250°C.  Compute the diffusion flux through this membrane if 

the hydrogen pressure on one side of the membrane is 0.15 MPa (1.48 atm), and on the other side 7.5 MPa (74 

atm). 
 

  Solution 

 Ultimately we will employ Equation 5.3 to solve this problem.  However, it first becomes necessary to 

determine the concentration of hydrogen at each face using Equation 5.14.  At the low pressure (or B) side 

 

  

 

CH(B) =  (1.34 ×  10-2) 0.15 MPa exp −
27,200 J/mol

(8.31 J/mol - K)(250 +  273 K)

 

  
 

   

 

9.93 × 10-6 wt% 

 

Whereas, for the high pressure (or A) side 

 

  

 

CH(A) =  (1.34 ×  10-2) 7.5 MPa exp −
27,200 J/mol

(8.31 J/mol - K)(250 +  273 K)

 

  
 

   

 

7.02 × 10-5 wt% 

 

We now convert concentrations in weight percent to mass of nitrogen per unit volume of solid.  At face B there are 

9.93 × 10-6 g (or 9.93 × 10-9 kg) of hydrogen in 100 g of Fe, which is virtually pure iron.  From the density of iron 

(7.87 g/cm3), the volume iron in 100 g (VB) is just 

 

    

 

VB =
100  g

7.87  g /cm3
=  12.7 cm3 = 1.27 ×  10-5  m3 

 

Therefore, the concentration of hydrogen at the B  face in kilograms of H per cubic meter of alloy [
    

 

CH(B)
’’ ] is just 
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CH(B)
'' =

CH(B)

VB
 

 

 

=  
9.93 × 10−9 kg

1.27 × 10−5 m3
=  7.82 ×  10-4  kg/m3 

 

At the A face the volume of iron in 100 g (VA) will also be 1.27 × 10-5 m3, and 

 

  

 

CH(A)
'' =

CH(A)

VA
 

 

 

=  
7.02 × 10−8 kg

1.27 × 10−5 m3
=  5.53 ×  10-3  kg/m3 

 

Thus, the concentration gradient is just the difference between these concentrations of nitrogen divided by the 

thickness of the iron membrane;  that is 

 

  

 

∆C
∆x

=  
CH(B)

'' − CH(A)
''

xB − xA
 

 

 

=  
7.82 × 10−4 kg /m3 − 5.53 × 10−3 kg /m3

10−3 m
= −  4.75  kg/m4  

 

At this time it becomes necessary to calculate the value of the diffusion coefficient at 250°C using Equation 5.8.  

Thus, 

 

    

 

D =  D0 exp −
Qd
RT

 

 
 

 

 
  

 

 

=  (1.4 × 10−7 m2/s) exp −
13,400 J/mol

(8.31 J/mol − K)(250 + 273 K)

 

 
 

 

 
  

 

= 6.41 × 10-9 m2/s 

 

And, finally, the diffusion flux is computed using Equation 5.3 by taking the negative product of this diffusion 

coefficient and the concentration gradient, as 
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J = − D
∆C
∆x

 

 

 

=  − (6.41 ×  10-9  m2/s)(− 4.75  kg/m4) =  3.05 ×  10-8 kg/m2 - s  
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 Nonsteady-State Diffusion 

 

 5.10  Show that 

  

 

Cx  =
B
Dt

exp −
x2

4 Dt

 

 
 

 

 
  

is also a solution to Equation 5.4b. The parameter B is a constant, being independent of both x and t. 
 

  Solution 

 

 It can be shown that 

 

  

 

Cx  =
B
Dt

exp −
x2

4 Dt

 

 
 

 

 
  

 

is a solution to 

 

    

 

∂C
∂t

=  D
∂2C

∂x2
 

 
simply by taking appropriate derivatives of the Cx expression.  When this is carried out, 

 

    

 

∂C
∂t

=  D
∂2C

∂x2
=  

B

2D1/2t 3/2
x2

2Dt
− 1

 

 
  

 

 
  exp −

x2

4Dt
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 5.11  Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a 

position 2 mm into an iron–carbon alloy that initially contains 0.20 wt% C.  The surface concentration is to be 

maintained at 1.30 wt% C, and the treatment is to be conducted at 1000°C.  Use the diffusion data for γ-Fe in Table 

5.2. 
 

  Solution 

In order to solve this problem it is first necessary to use Equation 5.5: 

 

    

 

Cx − C0
Cs − C0

=  1 −  erf 
x

2 Dt

 
 
 

 
 
  

 
wherein, Cx = 0.45, C0 = 0.20, Cs = 1.30, and x = 2 mm = 2 × 10-3 m. Thus, 

 

  

 

Cx − C0

Cs − C0
=  

0.45 − 0.20
1.30 − 0.20

=  0.2273 =  1 −  erf 
x

2 Dt

 
 
 

 
 
  

 

or 

 

  

 

erf 
x

2 Dt

 
 
 

 
 
 =  1 −  0.2273 =  0.7727  

 

By linear interpolation using data from Table 5.1 

 

 z erf(z) 

 0.85 0.7707 

 z 0.7727 

 0.90 0.7970 

 

 

  

 

z − 0.850
0.900 − 0.850

=
0.7727 − 0.7707
0.7970 − 0.7707

 

 

From which 

  

 

z = 0.854 =
x

2 Dt
 

 

Now, from Table 5.2, at 1000°C (1273 K) 
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D =  (2.3 ×  10-5  m2/s) exp −
148,000 J/mol

(8.31 J/mol- K)(1273 K)

 

 
 

 

 
  

 

= 1.93 × 10-11 m2/s 

Thus, 

 

  

 

0.854 =
2 × 10−3 m

(2) (1.93 × 10−11 m2/s) (t)
 

 

Solving for t yields 

 

t = 7.1 × 104 s = 19.7 h 
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 5.12  An FCC iron-carbon alloy initially containing 0.35 wt% C is exposed to an oxygen-rich and virtually 

carbon-free atmosphere at 1400 K (1127°C).  Under these circumstances the carbon diffuses from the alloy and 

reacts at the surface with the oxygen in the atmosphere;  that is, the carbon concentration at the surface position is 

maintained essentially at 0 wt% C. (This process of carbon depletion is termed decarburization.) At what position 

will the carbon concentration be 0.15 wt% after a 10-h treatment?  The value of D at 1400 K is 6.9 × 10-11 m2/s. 
 

  Solution 

 This problem asks that we determine the position at which the carbon concentration is 0.15 wt% after a 10-

h heat treatment at 1325 K when C0 = 0.35 wt% C.  From Equation 5.5 

 

  

 

Cx − C0

Cs − C0
=

0.15 − 0.35
0 − 0.35

=  0.5714 = 1 −  erf 
x

2 Dt

 
 
 

 
 
  

 

Thus, 

 

  

 

erf 
x

2 Dt

 
 
 

 
 
 =  0.4286  

 

Using data in Table 5.1 and linear interpolation 

 

 z erf (z) 

 0.40 0.4284 

 z 0.4286 

 0.45 0.4755 

 

 

  

 

z − 0.40
0.45 − 0.40

=
0.4286 − 0.4284
0.4755 − 0.4284

 

 

And, 

z = 0.4002 

 

Which means that 

  

 

x
2 Dt

=  0.4002  

And, finally 
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x =  2(0.4002) Dt = (0.8004) (6.9 × 10−11 m2/s)(3.6 × 104 s)  

 

= 1.26 × 10-3 m = 1.26 mm 
 

Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “Diffusion Design” submodule, and then do the following: 

 1.  Enter the given data in left-hand window that appears.  In the window below the label “D Value” enter 

the value of the diffusion coefficient—viz. “6.9e-11”. 

 2.  In the window just below the label “Initial, C0” enter the initial concentration—viz. “0.35”. 

 3.  In the window the lies below “Surface, Cs” enter the surface concentration—viz. “0”. 

 4.  Then in the “Diffusion Time t” window enter the time in seconds;  in 10 h there are (60 s/min)(60 

min/h)(10 h) = 36,000 s—so enter the value “3.6e4”. 

 5.  Next, at the bottom of this window click on the button labeled “Add curve”. 

 6.  On the right portion of the screen will appear a concentration profile for this particular diffusion 

situation.  A diamond-shaped cursor will appear at the upper left-hand corner of the resulting curve.  Click and drag 

this cursor down the curve to the point at which the number below “Concentration:” reads “0.15 wt%”.  Then read 

the value under the “Distance:”.  For this problem, this value (the solution to the problem) is ranges between 1.24 

and 1.30 mm. 
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 5.13  Nitrogen from a gaseous phase is to be diffused into pure iron at 700°C.  If the surface concentration 

is maintained at 0.1 wt% N, what will be the concentration 1 mm from the surface after 10 h?  The diffusion 

coefficient for nitrogen in iron at 700°C is 2.5 × 10-11 m2/s. 

 

  Solution 

 This problem asks us to compute the nitrogen concentration (Cx) at the 1 mm position after a 10 h diffusion 

time, when diffusion is nonsteady-state.  From Equation 5.5 

 

    

 

Cx − C0

Cs − C0
=  

Cx − 0
0.1 − 0

=  1 −  erf 
x

2 Dt

 
 
 

 
 
  

 

 

=  1 −  erf 
10−3 m

(2) (2.5 × 10−11 m2/s) (10 h)(3600 s /h)

 

 
 
 

 

 
 
 
 

 

= 1 – erf (0.527) 

 

Using data in Table 5.1 and linear interpolation 

 

 z erf (z) 

 0.500 0.5205 

 0.527 y 

 0.550 0.5633 

 

 

  

 

0.527 − 0.500
0.550 − 0.500

=  
y − 0.5205

0.5633 − 0.5205
 

 

from which 

y = erf (0.527) = 0.5436 

 

Thus, 

  

 

Cx − 0
0.1 − 0

=  1.0 −  0.5436 
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This expression gives 

 
Cx = 0.046 wt% N 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “Diffusion Design” submodule, and then do the following: 

 1.  Enter the given data in left-hand window that appears.  In the window below the label “D Value” enter 

the value of the diffusion coefficient—viz. “2.5e-11”. 

 2.  In the window just below the label “Initial, C0” enter the initial concentration—viz. “0”. 

 3.  In the window the lies below “Surface, Cs” enter the surface concentration—viz. “0.1”. 

 4.  Then in the “Diffusion Time t” window enter the time in seconds;  in 10 h there are (60 s/min)(60 

min/h)(10 h) = 36,000 s—so enter the value “3.6e4”. 

 5.  Next, at the bottom of this window click on the button labeled “Add curve”. 

 6.  On the right portion of the screen will appear a concentration profile for this particular diffusion 

situation.  A diamond-shaped cursor will appear at the upper left-hand corner of the resulting curve.  Click and drag 

this cursor down the curve to the point at which the number below “Distance:” reads “1.00 mm”.  Then read the 

value under the “Concentration:”.  For this problem, this value (the solution to the problem) is 0.05 wt%. 
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 5.14  Consider a diffusion couple composed of two semi-infinite solids of the same metal, and that each 

side of the diffusion couple has a different concentration of the same elemental impurity; furthermore, assume each 

impurity level is constant throughout its side of the diffusion couple. For this situation, the solution to Fick’s second 

law (assuming that the diffusion coefficient for the impurity is independent of concentration), is as follows: 

 

 

 

Cx  =  
C1 +  C2

2

 
 
 

 
 
 −

C1 −  C2

2

 
 
 

 
 
 erf

x
2 Dt

 
 
 

 
 
  (5.15) 

 

In this expression, when the x = 0 position is taken as the initial diffusion couple interface, then C1 is the impurity 

concentration for x < 0; likewise, C2 is the impurity content for x > 0. 

 A diffusion couple composed of two silver-gold alloys is formed;  these alloys have compositions of 98 wt% 

Ag–2 wt% Au and 95 wt% Ag–5 wt% Au. Determine the time this diffusion couple must be heated at 750ºC (1023 K) 

in order for the composition to be 2.5 wt% Au at the 50 mm position into the 2 wt% Au side of the diffusion couple.  

Preexponential and activation energy values for Au diffusion in Ag are 8.5 × 10–5 m2/s and 202,100 J/mol, 

respectively. 
 

  Solution 

 For this platinum-gold diffusion couple for which C1 = 5 wt% Au and C2 = 2 wt% Au, we are asked to 

determine the diffusion time at 750°C that will give a composition of 2.5 wt% Au at the 50 µm position.  Thus, for 

this problem, Equation 5.15 takes the form 

 

  

 

2.5 =  
5 + 2

2

 
 
 

 
 
 −  

5 − 2
2

 
 
 

 
 
 erf

50 × 10−6 m
2 Dt

 

 
 

 

 
  

 

It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0 = 8.5 × 10-5 m2/s 

and Qd = 202,100 J/mol.  From Equation 5.8 we have 

 

    

 

D =  D0 exp −
Qd
RT

 

 
 

 

 
  

 

 

=  (8.5 ×  10-5  m2/s) exp −
202,100 J/mol

(8.31 J/mol − K)(1023 K)

 

 
 

 

 
  

 

= 4.03 × 10-15 m2/s 

 

Substitution of this value into the above equation leads to 
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2.5 =  
5 + 2

2

 
 
 

 
 
 −  

5 − 2
2

 
 
 

 
 
  erf 

50 × 10−6 m

2 (4.03 × 10−15 m2 /s) (t)

 

 
 
 

 

 
 
 
 

 

This expression reduces to the following form: 

 

  

 

0.6667 =  erf
393.8 s

t

 

 
  

 

 
   

 

Using data in Table 5.1, it is necessary to determine the value of z for which the error function is 0.6667  We use 

linear interpolation as follows: 

 

 z erf (z) 

 0.650 0.6420 

 y 0.6667 

 0.700 0.6778 

 

 

  

 

y − 0.650
0.700 − 0.650

=  
0.6667 − 0.6420
0.6778 − 0.6420

 

from which 

 

  

 

y =  0.6844 =  
393.8 s

t
 

 

And, solving for t gives 

 

t = 3.31 × 105 s = 92 h 
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 5.15  For a steel alloy it has been determined that a carburizing heat treatment of 10-h duration will raise 

the carbon concentration to 0.45 wt% at a point 2.5 mm from the surface.  Estimate the time necessary to achieve 

the same concentration at a 5.0-mm position for an identical steel and at the same carburizing temperature. 
 

  Solution 

 This problem calls for an estimate of the time necessary to achieve a carbon concentration of 0.45 wt% at a 

point 5.0 mm from the surface.  From Equation 5.6b, 

 

    

 

x2

Dt
=  constant  

 

But since the temperature is constant, so also is D constant, and 

 

    

 

x2

t
=  constant  

or 

 

    

 

x1
2

t1
=  

x2
2

t2
 

 

Thus, 

  

 

(2.5 mm)2

10 h
=  

(5.0 mm)2

t2
 

 

from which 
t2 = 40 h 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 Factors That Influence Diffusion 

 

 5.16  Cite the values of the diffusion coefficients for the interdiffusion of carbon in both α-iron (BCC) and 

γ-iron (FCC) at 900°C. Which is larger? Explain why this is the case. 
 

  Solution 

 We are asked to compute the diffusion coefficients of C in both α and γ iron at 900°C.  Using the data in 

Table 5.2, 

 

  

 

Dα  =  (6.2 ×  10-7  m2/s) exp −
80,000 J/mol

(8.31 J/mol - K)(1173 K)

 

  
 

   

 

= 1.69 × 10-10 m2/s 

 

 

  

 

Dγ =  (2.3 ×  10-5  m2/s) exp −
148,000 J/mol

(8.31 J/mol - K)(1173 K)

 

  
 

   

 

= 5.86 × 10-12 m2/s 

 

 The D for diffusion of C in BCC α iron is larger, the reason being that the atomic packing factor is smaller 

than for FCC γ iron (0.68 versus 0.74—Section 3.4);  this means that there is slightly more interstitial void space in 

the BCC Fe, and, therefore, the motion of the interstitial carbon atoms occurs more easily. 
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 5.17  Using the data in Table 5.2, compute the value of D for the diffusion of zinc in copper at 650ºC. 
 

  Solution 

 Incorporating the appropriate data from Table 5.2 into Equation 5.8 leads to 

 

  

 

D =  (2.4 ×  10-5 m2/s) exp −
189,000 J/mol

(8.31 J/mol - K)(650 +  273 K)

 

  
 

   

 

= 4.8 × 10-16 m2/s 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, click on the “Zn-Cu” pair under the “Diffusing Species”-“Host 

Metal” headings. 

 2.  Next, at the bottom of this window, click the “Add Curve” button. 

 3.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Zn in Cu.  Now under “Temp Range” in the boxes appearing below “T Max” change the temperature 

to either “650” C or “923” K.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down 

the line to the point at which the entry under the “Temperature (T):” label reads 923 K (inasmuch as this is the 

Kelvin equivalent of 650ºC).  Finally, the diffusion coefficient value at this temperature is given under the label 

“Diff Coeff (D):”.  For this problem, the value is 4.7 × 10-16 m2/s. 
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 5.18  At what temperature will the diffusion coefficient for the diffusion of copper in nickel have a value of 

6.5 × 10-17 m2/s.  Use the diffusion data in Table 5.2. 
 

  Solution 

 Solving for T from Equation 5.9a 

 

    

 

T =  −  
Qd

R(ln D − ln D0)
 

 

and using the data from Table 5.2 for the diffusion of Cu in Ni (i.e., D0 = 2.7 × 10-5 m2/s and Qd = 256,000 J/mol) , 

we get 

 

  

 

T =  −  
256,000 J/mol

(8.31 J/mol - K) ln (6.5 ×  10-17  m2/s) −  ln (2.7 ×  10 -5  m2/s) [ ]
 

 

= 1152 K = 879°C 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, there is a preset set of data for several diffusion systems.  Click on 

the box for which Cu is the diffusing species and Ni is the host metal.  Next, at the bottom of this window, click the 

“Add Curve” button. 

 2.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Cu in Ni.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down the 

line to the point at which the entry under the “Diff Coeff (D):” label reads 6.5 × 10-17 m2/s.  The temperature at 

which the diffusion coefficient has this value is given under the label “Temperature (T):”.  For this problem, the 

value is 1153 K. 
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 5.19  The preexponential and activation energy for the diffusion of iron in cobalt are 1.1 × 10-5 m2/s and 

253,300 J/mol, respectively.  At what temperature will the diffusion coefficient have a value of 2.1 × 10-14 m2/s? 
 

  Solution 

 For this problem we are given D0 (1.1 × 10-5)  and Qd (253,300 J/mol) for the diffusion of Fe in Co, and 

asked to compute the temperature at which D = 2.1 × 10-14 m2/s.  Solving for T from Equation 5.9a yields 

 

    

 

T =  
Qd

R(ln D0 − ln D)
 

 

 

=  
253,300 J/mol

(8.31 J/mol - K) ln (1.1 ×  10-5  m2/s) -  ln (2.1 ×  10-14  m2/s)[ ]
 

 

= 1518 K = 1245°C 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, click on the “Custom1” box. 

 2.  In the column on the right-hand side of this window enter the data for this problem.  In the window 

under “D0” enter preexponential value—viz. “1.1e-5”.  Next just below the “Qd” window enter the activation 

energy value—viz. “253.3”.  It is next necessary to specify a temperature range over which the data is to be plotted.  

The temperature at which D has the stipulated value is probably between 1000ºC and 1500ºC, so enter “1000” in the 

“T Min” box that is beside “C”;  and similarly for the maximum temperature—enter “1500” in the box below “T 

Max”. 

 3.  Next, at the bottom of this window, click the “Add Curve” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Fe in Co.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down the 

line to the point at which the entry under the “Diff Coeff (D):” label reads 2.1 × 10-14 m2/s.  The temperature at 

which the diffusion coefficient has this value is given under the label “Temperature (T):”.  For this problem, the 

value is 1519 K. 
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 5.20  The activation energy for the diffusion of carbon in chromium is 111,000 J/mol.  Calculate the 

diffusion coefficient at 1100 K (827°C), given that D at 1400 K (1127°C) is 6.25 × 10-11 m2/s. 
 

  Solution 

 To solve this problem it first becomes necessary to solve for D0 from Equation 5.8 as 

 

    

 

D0 =  D exp
Qd
RT

 

 
 

 

 
  

 

 

=  (6.25 ×  10 -11 m2/s)exp
111,000  J /mol

(8.31 J/mol - K)(1400  K)

 

  
 

   

 

= 8.7 × 10-7 m2/s 

 

Now, solving for D at 1100 K (again using Equation 5.8) gives 

 

  

 

D =  (8.7 ×  10-7  m2/s)exp −
111,000 J/mol

(8.31 J/mol - K)(1100 K)

 

  
 

   

 

= 4.6 × 10-12 m2/s 
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 5.21 The diffusion coefficients for iron in nickel are given at two temperatures: 

 

T (K) D (m2/s) 

1273 9.4 × 10–16 

1473 2.4 × 10–14 
 

 (a)  Determine the values of D0 and the activation energy Qd. 

 (b)  What is the magnitude of D at 1100ºC (1373 K)? 
 

  Solution 

 (a)  Using Equation 5.9a, we set up two simultaneous equations with Qd and D0 as unknowns as follows: 

 

    

 

ln D1 = lnD0 −
Qd
R

1
T1

 

 
  

 

 
   

 

    

 

ln D2 = lnD0 −
Qd
R

1
T2

 

 
  

 

 
   

 
Now, solving for Qd in terms of temperatures T1 and T2 (1273

 
K and 1473

 
K) and D1 and D2 (9.4 × 10-16 and 2.4 × 

10-14 m2/s), we get 

 

    

 

Qd  = − R 
ln D1 − ln D2

1
T1

−
1

T2

 

 

 

=  −  (8.31 J/mol - K)
ln (9.4 ×  10 -16) −  ln (2.4 ×  10 -14)[ ]

1
1273 K

−
1

1473 K

 

 

= 252,400 J/mol 

 

Now, solving for D0 from Equation 5.8 (and using the 1273 K value of D) 

 

    

D0 =  D1 exp
Qd
RT1
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=  (9.4 ×  10-16  m2/s)exp
252,400 J/mol

(8.31 J/mol - K)(1273 K)

 

  
 

   

 

= 2.2 × 10-5 m2/s 

 
 (b)  Using these values of D0 and Qd, D at 1373

 
K is just 

 

 

  

 

D =  (2.2 ×  10-5  m2/s)exp −
252,400 J/mol

(8.31 J/mol - K)(1373 K)

 

  
 

   

 

= 5.4 × 10-15 m2/s 

 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D0 and Qd from Experimental Data” submodule, and then do the following: 

 1.  In the left-hand window that appears, enter the two temperatures from the table in the book (viz. “1273” 

and “1473”, in the first two boxes under the column labeled “T (K)”.  Next, enter the corresponding diffusion 

coefficient values (viz. “9.4e-16” and “2.4e-14”). 

 3.  Next, at the bottom of this window, click the “Plot data” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion 

system.  At the top of this window are give values for D0 and Qd;  for this specific problem these values are 2.17 × 

10-5 m2/s and 252 kJ/mol, respectively 

 5.  To solve the (b) part of the problem we utilize the diamond-shaped cursor that is located at the top of 

the line on this plot. Click-and-drag this cursor down the line to the point at which the entry under the “Temperature 

(T):” label reads “1373”.  The value of the diffusion coefficient at this temperature is given under the label “Diff 

Coeff (D):”.  For our problem, this value is 5.4 × 10-15 m2/s. 
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 5.22  The diffusion coefficients for silver in copper are given at two temperatures: 

 

T (°C) D (m2/s) 

650 5.5 × 10–16 

900 1.3 × 10–13 

 (a)  Determine the values of D0 and Qd. 

 (b)  What is the magnitude of D at 875°C? 
 

  Solution 

  (a) Using Equation 5.9a, we set up two simultaneous equations with Qd and D0 as unknowns as follows: 

 

    

 

ln D1 = lnD0 −
Qd
R

1
T1

 

 
  

 

 
   

 

    

 

ln D2 = lnD0 −
Qd
R

1
T2

 

 
  

 

 
   

 
Solving for Qd in terms of temperatures T1 and T2 (923

 
K [650°C] and 1173

 
K [900°C]) and D1 and D2 (5.5 × 10-

16 and 1.3 × 10-13 m2/s), we get 

 

    

 

Qd  = − R 
ln D1 − ln D2

1
T1

−
1

T2

 

 

 

=  −  
(8.31 J/mol - K) ln (5.5 ×  10 -16) −  ln (1.3 ×  10 -13)[ ]

1
923 K

−
1

1173 K

 

 

= 196,700 J/mol 

 

Now, solving for D0 from Equation 5.8 (and using the 650°C value of D) 

 

    

 

D0 =  D1 exp
Qd
RT1
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=  (5.5 ×  10-16  m2/s)exp
196,700 J/mol

(8.31 J/mol - K)(923 K)

 

  
 

   

 

= 7.5 × 10-5 m2/s 

 
 (b)  Using these values of D0 and Qd, D at 1148

 
K (875°C) is just 

 

  

 

D =  (7.5 ×  10-5  m2/s)exp −
196,700 J/mol

(8.31 J/mol - K)(1148 K)

 

  
 

   

 

= 8.3 × 10-14 m2/s 

 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D0 and Qd from Experimental Data” submodule, and then do the following: 

 1.  In the left-hand window that appears, enter the two temperatures from the table in the book (converted 

from degrees Celsius to Kelvins) (viz. “923” (650ºC) and “1173” (900ºC), in the first two boxes under the column 

labeled “T (K)”.  Next, enter the corresponding diffusion coefficient values (viz. “5.5e-16” and “1.3e-13”). 

 3.  Next, at the bottom of this window, click the “Plot data” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion 

system.  At the top of this window are give values for D0 and Qd;  for this specific problem these values are 7.55 × 

10-5 m2/s and 196 kJ/mol, respectively 

 5.  To solve the (b) part of the problem we utilize the diamond-shaped cursor that is located at the top of 

the line on this plot. Click-and-drag this cursor down the line to the point at which the entry under the “Temperature 

(T):” label reads “1148” (i.e., 875ºC).  The value of the diffusion coefficient at this temperature is given under the 

label “Diff Coeff (D):”.  For our problem, this value is 8.9 × 10-14 m2/s. 
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 5.23  Below is shown a plot of the logarithm (to the base 10) of the diffusion coefficient versus reciprocal 

of the absolute temperature, for the diffusion of iron in chromium.  Determine values for the activation energy and 

preexponential. 

 
 
  Solution 

 This problem asks us to determine the values of Qd and D0 for the diffusion of Fe in Cr from the plot of 

log D versus 1/T.  According to Equation 5.9b the slope of this plot is equal to 
    

 

−
Qd

2.3R
 (rather than 

  

 

−
Qd
R

 since we 

are using log D rather than ln D) and the intercept at 1/T = 0 gives the value of log D0.  The slope is equal to 

 

    

 

slope =  
∆ (log D)

∆
1
T

 
 
 

 
 
 

=  
log D1 − log D2

1
T1

−
1

T2

 

 
Taking 1/T1 and 1/T2 as 0.65 × 10-3 and 0.60 × 10-3 K-1, respectively, then the corresponding values of D1 and D2 

are 2.81 × 10-16 and 1.82 × 10-15, as noted in the figure below. 
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 The values of log D1 and log D2 are –15.60 and –14.74, and therefore, 

 

    

 

Qd  = − 2.3 R (slope)  

 

    

 

Qd  = − 2.3 R 
log D1 − log D2

1
T1

−
1

T2

 

 

 

=  − (2.3)(8.31 J/mol - K)
−15.60 − (−14.74)

(0.65 × 10−3 − 0.60 × 10−3) K−1

 

 
 

 

 
  

 

= 329,000 J/mol 

 

 Rather than trying to make a graphical extrapolation to determine D0, a more accurate value is obtained 

analytically using Equation 5.9b taking a specific value of both D and T (from 1/T) from the plot given in the 

problem;  for example, D = 1.0 × 10-15 m2/s at T = 1626 K (1/T = 0.615 × 10-3 K-1).  Therefore 

 

    

 

D0 =  D exp
Qd
RT

 

 
 

 

 
  

 

 

=  (1.0 ×  10-15  m2/s)exp
329,000 J/mol

(8.31 J/mol - K)(1626 K)

 

  
 

   

 

= 3.75 × 10-5 m2/s 
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 5.24  Carbon is allowed to diffuse through a steel plate 15 mm thick. The concentrations of carbon at the 

two faces are 0.65 and 0.30 kg C/m3 Fe, which are maintained constant.  If the preexponential and activation 

energy are 6.2 × 10-7 m2/s and 80,000 J/mol, respectively, compute the temperature at which the diffusion flux is 

1.43 × 10-9 kg/m2-s. 
 

  Solution 

  Combining Equations 5.3 and 5.8 yields 

 

    

 

J = − D
∆C
∆x

 

 

    

 

= − D0
∆C
∆x

exp −
Qd
RT

 

 
 

 

 
  

 

Solving for T from this expression leads to 

 

    

 

T =  
Qd
R

 

 
 

 

 
 

1

ln −
D0∆C

J ∆x

 

 
 

 

 
 

 

 

And incorporation of values provided in the problem statement yields 

 

 

=  
80,000 J/mol
8.31 J/mol - K

 
 
 

 
 
 

1

ln
(6.2 × 10−7  m2 /s)(0.65 kg/m3 −  0.30 kg/m3)

(1.43 × 10−9  kg/m2 - s)(15 ×  10−3 m)
 

 
 

 

 
 

 

 

= 1044 K = 771°C 
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 5.25  The steady-state diffusion flux through a metal plate is 5.4 × 10-10 kg/m2-s at a temperature of 727°C 

(1000 K) and when the concentration gradient is -350 kg/m4.  Calculate the diffusion flux at 1027°C (1300 K) for 

the same concentration gradient and assuming an activation energy for diffusion of 125,000 J/mol. 
 

  Solution 

 In order to solve this problem, we must first compute the value of D0 from the data given at 727°C (1000 

K);  this requires the combining of both Equations 5.3 and 5.8 as 

 

    

 

J = − D
∆C
∆x

 

 

    

 

= − D0
∆C
∆x

exp −
Qd
RT

 

 
 

 

 
  

 

Solving for D0 from the above expression gives 

 

    

 

D0 = −
J

∆C
∆x

exp
Qd
RT

 

 
 

 

 
  

 

 

=  −
5.4  ×  10−10  kg/m2 - s

− 350  kg /m4

 

 
 

 

 
 exp

125,000 J/mol
(8.31 J/mol - K)(1000 K)

 

  
 

   

 

= 5.26 × 10-6 m2/s 

 

The value of the diffusion flux at 1300 K may be computed using these same two equations as follows: 

 

    

 

J = − D0
∆ C
∆ x

 

 
 

 

 
 exp −

Qd
RT

 

 
 

 

 
  

 

 

= − (5.26 ×  10-6  m2/s)(−350 kg/m4)exp −
125,000 J/mol

(8.31 J/mol - K)(1300 K)

 

  
 

   

 

= 1.74 × 10-8 kg/m2-s 
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 5.26  At approximately what temperature would a specimen of γ-iron have to be carburized for 2 h to 

produce the same diffusion result as at 900°C for 15 h? 
 

  Solution 

 To solve this problem it is necessary to employ Equation 5.7 

 

    

 

Dt =  constant  

 

Which, for this problem, takes the form 

 

  

 

D900t900 =  DTtT  

 

At 900°C, and using the data from Table 5.2, for the diffusion of carbon in γ-iron—i.e.,  

 D0 = 2.3 × 10-5 m2/s 

 Qd = 148,000 J/mol 

the diffusion coefficient is equal to 

 

  

 

D900 =  (2.3 ×  10-5  m2/s)exp −
148,000 J/mol

(8.31 J/mol - K)(900 + 273 K)

 

 
 

 

 
  

 

= 5.9 × 10-12 m2/s 

 

Thus, from the above equation 

 

  

 

(5.9 ×  10-12  m2/s) (15 h) = DT (2 h) 

 
And, solving for DT 

 

  

 

DT =  
(5.9 × 10-12  m2/s)(15 h)

2 h
= 4.43 ×  10 -11 m2/s  

 

Now, solving for T from Equation 5.9a gives 

 

    

 

T = −
Qd

R(ln DT − ln D0)  

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

=  −
148,000 J/mol

(8.31 J/mol - K) ln (4.43 ×  10-11  m2/s) −  ln (2.3 ×  10-5  m2/s)[ ]
 

 

= 1353
 
K = 1080°C 
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 5.27  (a) Calculate the diffusion coefficient for copper in aluminum at 500ºC. 

 (b) What time will be required at 600ºC to produce the same diffusion result (in terms of concentration at a 

specific point) as for 10 h at 500ºC? 
 

  Solution 

 (a)  We are asked to calculate the diffusion coefficient for Cu in Al at 500°C.  Using the data in Table 5.2 

and Equation 5.8 

 

    

 

D =  D0 exp −
Qd
RT

 

 
 

 

 
  

 

 

=  (6.5 ×  10-5  m2/s)exp −
136,000  J /mol

(8.31 J/mol - K)(500 + 273 K)

 

 
 

 

 
  

 

= 4.15 × 10-14 m2/s 

 

 (b)  This portion of the problem calls for the time required at 600°C to produce the same diffusion result as 

for 10 h at 500°C.  Equation 5.7 is employed as 

 

  

 

D500t500 =  D600t600  
 

Now, from Equation 5.8 the value of the diffusion coefficient at 600°C is calculated as 

 

  

 

D600 =  (6.5 ×  10-5  m2/s)exp −
136,000 J/mol

(8.31 J/mol - K)(600 + 273 K)

 

 
 

 

 
  

 

= 4.69 × 10-13 m2/s 

 

Thus, 

  

 

t600 =
D500t500

D600
 

 

 

=  
(4.15 × 10−14 m2 /s) (10 h)

(4.69 × 10−13 m2 /s)
=  0.88 h 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 5.28  A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned.  After a 700-h 

heat treatment at 1100°C (1373 K) the concentration of Cu is 2.5 wt% at the 3.0-mm position within the nickel.  At 

what temperature must the diffusion couple need to be heated to produce this same concentration (i.e., 2.5 wt% Cu) 

at a 2.0-mm position after 700 h?  The preexponential and activation energy for the diffusion of Cu in Ni are given 

in Table 5.2. 
 

  Solution 

 In order to determine the temperature to which the diffusion couple must be heated so as to produce a 

concentration of 2.5 wt% Ni at the 2.0-mm position, we must first utilize Equation 5.6b with time t being a constant.  

That is 

 

    

 

x2

D
=  constant  

Or 

 

  

 

x1100
2

D1100
=  

xT
2

DT
 

 
Now, solving for DT from this equation, yields 

 

  

 

DT =
xT

2 D1100

x1100
2

 

 
and incorporating the temperature dependence of D1100 utilizing Equation (5.8), realizing that for the diffusion of 

Cu in Ni (Table 5.2) 

 D0 = 2.7 × 10-5 m2/s 

 Qd = 256,000 J/mol  

then 
 

  

 

DT =  

xT
2( ) D0 exp −

Qd

RT

 
 
 

 
 
 

 

 
 

 

 
 

x1100
2

 

 

 

=  

(2 mm)2 (2.7 × 10−5 m2/s)exp −
256,000  J/mol

(8.31 J/mol - K)(1373 K)

 

 
  

 

 
  

 

 
 
 

 

 
 
 

(3 mm)2
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= 2.16 × 10-15 m2/s 
 

We now need to find the T at which D has this value.  This is accomplished by rearranging Equation 5.9a and 

solving for T as 
 

    

 

T =
Qd

R (lnD0 − lnD)  

 

 

=  
256,000 J/mol

(8.31 J/mol - K) ln (2.7 ×  10-5  m2/s) −  ln (2.16 ×  10-15  m2/s)[ ]
 

 

= 1325 K = 1052°C 
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 5.29  A diffusion couple similar to that shown in Figure 5.1a is prepared using two hypothetical metals A 

and B. After a 30-h heat treatment at 1000 K (and subsequently cooling to room temperature) the concentration of 

A in B is 3.2 wt% at the 15.5-mm position within metal B.  If another heat treatment is conducted on an identical 

diffusion couple, only at 800 K for 30 h, at what position will the composition be 3.2 wt% A? Assume that the 

preexponential and activation energy for the diffusion coefficient are 1.8 × 10-5 m2/s and 152,000 J/mol, 

respectively. 
 

  Solution 

 In order to determine the position within the diffusion couple at which the concentration of A in B is 3.2 

wt%, we must employ Equation 5.6b with t constant.  That is 

 

    

 

x2

D
=  constant  

Or 

 

    

 

x800
2

D800
=  

x1000
2

D1000
 

 
It is first necessary to compute values for both D800 and D1000;  this is accomplished using Equation 5.8 as follows: 

 

  

 

D800 =  (1.8 ×  10-5  m2/s)exp −
152,000 J/mol

(8.31 J/mol - K)(800 K)

 

 
 

 

 
  

 

= 2.12 × 10-15 m2/s 

 

 

  

 

D1000 =  (1.8 ×  10-5  m2/s)exp −
152,000 J/mol

(8.31 J/mol - K)(1000 K)

 

  
 

   

 

= 2.05 × 10-13 m2/s 

 
Now, solving the above expression for x800 yields 

 

  

 

x800 =  x1000
D800

D1000
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=  (15.5 mm)
2.12  ×  10−15  m2 /s

2.05 ×  10−13 m2 /s
 

 

= 1.6 mm 
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 5.30  The outer surface of a steel gear is to be hardened by increasing its carbon content.  The carbon is to 

be supplied from an external carbon-rich atmosphere, which is maintained at an elevated temperature. A diffusion 

heat treatment at 850°C (1123 K) for 10 min increases the carbon concentration to 0.90 wt% at a position 1.0 mm 

below the surface.  Estimate the diffusion time required at 650°C (923 K) to achieve this same concentration also at 

a 1.0-mm position. Assume that the surface carbon content is the same for both heat treatments, which is 

maintained constant. Use the diffusion data in Table 5.2 for C diffusion in α-Fe. 
 

  Solution 

 In order to compute the diffusion time at 650°C to produce a carbon concentration of 0.90 wt% at a 

position 1.0 mm below the surface we must employ Equation 5.6b with position (x) constant;  that is 

 

Dt = constant 

 

Or 

  

 

D850t850 =  D650t650  

 
In addition, it is necessary to compute values for both D850 and D650 using Equation 5.8.  From Table 5.2, for the 

diffusion of C in α-Fe, Qd = 80,000 J/mol and D0 = 6.2 × 10-7 m2/s.  Therefore, 

 

  

 

D850 =  (6.2 ×  10-7  m2/s)exp −
80,000 J/mol

(8.31 J/mol - K)(850 + 273 K)

 

 
 

 

 
  

 

= 1.17 × 10-10 m2/s 

 

 

  

 

D650 =  (6.2 ×  10-7  m2/s)exp −
80,000 J/mol

(8.31 J/mol - K)(650 + 273 K)

 

 
 

 

 
  

 

= 1.83 × 10-11 m2/s 

 
Now, solving the original equation for t650 gives 

 

  

 

t650 =
D850t850

D650
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=  
(1.17  ×  10−10  m2/s) (10 min)

1.83 ×  10−11 m2 /s
 

 

= 63.9 min 
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 5.31  An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature 

and in an atmosphere wherein the surface carbon concentration is maintained at 1.0 wt%.  If after 49.5 h the 

concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the 

treatment was carried out. 
 

  Solution 

 This problem asks us to compute the temperature at which a nonsteady-state 49.5 h diffusion anneal was 

carried out in order to give a carbon concentration of 0.35 wt% C in FCC Fe at a position 4.0 mm below the surface.  

From Equation 5.5 

 

  

 

Cx − C0

Cs − C0
=  

0.35 − 0.20
1.0 − 0.20

=  0.1875 =  1 − erf 
x

2 Dt

 

 
  

 

 
   

 

Or 

  

 

erf
x

2 Dt

 

 
  

 

 
  =  0.8125 

 

Now it becomes necessary, using the data in Table 5.1 and linear interpolation, to determine the value of 
    

 

x
2 Dt

.  

Thus 

 

 z erf (z) 

 0.90 0.7970 

 y 0.8125 

 0.95 0.8209 

 

 

  

 

y − 0.90
0.95 − 0.90

=  
0.8125 − 0.7970
0.8209 − 0.7970

 

 

From which 

y = 0.9324 

 

Thus, 

  

 

x
2 Dt

=  0.9324  
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And since t = 49.5 h (178,200 s) and x = 4.0 mm (4.0 × 10-3 m), solving for D from the above equation yields 

 

  

 

D =  
x2

(4t)(0.9324 )2
 

 

 

=  
(4.0 × 10−3 m)2

(4)(178,200 s)(0.869)
=  2.58 ×  10-11  m2/s  

 

Now, in order to determine the temperature at which D has the above value, we must employ Equation 5.9a;  

solving this equation for T yields 

 

    

 

T =
Qd

R (lnD0 − lnD)
 

 

From Table 5.2, D0 and Qd for the diffusion of C in FCC Fe are 2.3 × 10-5 m2/s and 148,000 J/mol, respectively.  

Therefore 

 

  

 

T =  
148,000 J/mol

(8.31 J/mol - K) ln (2.3 ×  10-5  m2/s) -  ln (2.58 ×  10-11  m2/s)[ ]
 

 

= 1300 K = 1027°C 
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 Diffusion in Semiconducting Materials 

 

 5.32  Phosphorus atoms are to be diffused into a silicon wafer using both predeposition and drive-in heat 

treatments;  the background concentration of P in this silicon material is known to be 5 × 1019 atoms/m3.  The 

predeposition treatment is to be conducted at 950°C for 45 minutes;  the surface concentration of P is to be 

maintained at a constant level of 1.5 × 1026 atoms/m3.  Drive-in diffusion will be carried out at 1200°C for a period 

of 2.5 h.  For the diffusion of P in Si, values of Qd and D0 are 3.40 eV and 1.1 × 10-4 m2/s, respectively. 

 (a) Calculate the value of Q0. 

 (b) Determine the value of x j for the drive-in diffusion treatment. 

 (c) Also for the drive-in treatment, compute the position x at which the concentration of P atoms is 1024 m-

3. 
 

  Solution 

 (a)  For this portion of the problem we are asked to determine the value of Q0.  This is possible using 

Equation 5.12.  However, it is first necessary to determine the value of D for the predeposition treatment [Dp  at Tp = 

950°C (1223 K)] using Equation 5.8.  Thus 

 

 

Dp  =  D0 exp −
Qd

kT p

 

 
 
 

 

 
 
  

 

 

=  (1.1  ×  10−4  m2 /s) exp −
3.40  eV

(8.62  ×  10−5  eV/atom − K)(1223 K)

 

 
 

 

 
  

 

 

= 1.08  ×  10−18  m2 /s  

 

The value of Q0 may be determined as follows: 

 

 

Q0  =  2Cs

Dpt p

π
 

 

=  (2)(1.5 ×  1026  atoms /m3)
(1.08  ×  10−18  m2 /s)(45 min)(60  s /min)

π
 

= 

 

9.14  ×  1018  atoms /m2  

 

 (b)  Computation of the junction depth requires that we use Equation 5.13.  However, before this is 

possible it is necessary to calculate D at the temperature of the drive-in treatment [Dd at 1200°C (1473 K)].  Thus, 
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Dd =  (1.1  ×  10−4  m2 /s) exp −
3.40  eV

(8.62  ×  10−5  eV/atom − K)(1473 K)

 

 
 

 

 
  

 

 

= 2.58  ×  10−16  m2 /s  

 

Now from Equation 5.13 

 

 

x j  =  (4Dd td ) ln
Q0

CB πDd td

 

 
  

 

 
  

 

 
 
 

 

 
 
 

1/ 2

 

 

 

=  (4)(2.58  ×  10−16  m2 /s)(9000  s)  ln
9.14  ×  1018  atoms /m2

(5  ×  1019  atoms /m3) (π)(2.58  ×  10−16  m2 /s)(9000  s)

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

1/ 2

 

 

 

=  1.21 ×  10−5  m  =  12.1 µm  

 

 (c)  For a concentration of 1024 P atoms/m3 for the drive-in treatment, we compute the value of x using 

Equation 5.11.  However, it is first necessary to manipulate Equation 5.11 so that x is the dependent variable.  

Taking natural logarithms of both sides leads to 

 

 

lnC (x, t)  =  ln
Q0

πDd td

 

 
  

 

 
   −

x2

4Dd td

 

 

Now, rearranging and solving for x leads to 

 

 

x  =  (4Dd td ) ln
Q0

C (x, t) πDd td

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

1/ 2

 

 

Now, incorporating values for Q0 and Dd determined above and taking C(x,t) = 1024 P atoms/m3 yields 

 

 

x  =  (4)(2.58  ×  10−16)(9000) ln
9.14  ×  1018

(1024 ) (π)(2.58  ×  10−16)(9000)

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

1/ 2
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=  3.36  ×  10−6  m  =  3.36  µm  
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 5.33  Aluminum atoms are to be diffused into a silicon wafer using both predeposition and drive-in heat 

treatments;  the background concentration of Al in this silicon material is known to be 3 × 1019 atoms/m3.  The 

drive-in diffusion treatment is to be carried out at 1050°C for a period of 4.0 h, which gives a junction depth x j of 

3.0 µm.  Compute the predeposition diffusion time at 950°C if the surface concentration is maintained at a constant 

level of 2 × 1025 atoms/m3. For the diffusion of Al in Si, values of Qd and D0 are 3.41 eV and 1.38 × 10-4 m2/s, 

respectively.` 
 

  Solution 

 This problem asks that we compute the time for the predeposition heat treatment for the diffusion of Al in 

Si.  In order to do this it is necessary to determine the value of Q0 from Equation 5.13.  However, before doing this 

we must first calculate Dd, using Equation 5.8.  Therefore 

 

 

Dd  =  D0 exp −
Qd

kTd

 

 
  

 

 
   

 

 

=  (1.38  ×  10−4  m2 /s) exp −
3.41 eV

(8.62  ×  10−5  eV/atom − K)(1050°C  +  273 K)

 

 
 

 

 
  

 

 

=  1.43 ×  10−17  m2 /s  

 

Now, solving for Q0 in Equation 5.13 leads to 

 

 

Q0  =  CB πDd td( )exp
x j

2

4Dd td

 

 
 
 

 

 
 
  

 

In the problem statement we are given the following values: 

 CB = 3 × 1019 atoms/m3 

 td = 4 h (14,400 s) 

 xj = 3.0 µm = 3.0 × 10-6 m 

Therefore, incorporating these values into the above equation yields 

 

 

Q0  =  (3  ×  1019  atoms /m3) (π)(1.43 ×  10−17  m2 /s)(14,400  s)[ ]exp
(3.0  ×  10−6  m)2

(4)(1.43 ×  10−17  m2 /s)(14,400  s)
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=  1.34  ×  1018  atoms /m2  

 

We may now compute the value of tp using Equation 5.12.  However, before this is possible it is necessary to 

determine Dp (at 950°C) using Equation 5.8.  Thus 

 

 

Dp =  (1.38  ×  10−4  m2 /s) exp −
3.41 eV

(8.62  ×  10−5  eV/atom − K)(950°C  +  273 K)

 

 
 

 

 
  

 

 

=  1.24  ×  10−18  m2 /s  

 

Now, solving for tp in Equation 5.12 we get 

 

 

t p  =  
πQ0

2

4Cs
2Dp

 

 

And incorporating the value of Cs provided in the problem statement (2 × 1025 atoms/m3) as well as values for Q0 

and Dp determined above, leads to 

 

 

t p  =  
π 1.34  ×  1018  atoms /m2( )2

(4) 2  ×  1025  atoms /m3( )2
(1.24  ×  10−18  m2 /s)

 

 

 

=  2.84  ×  103  s  =  47.4  min  
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DESIGN PROBLEMS 

 

 Steady-State Diffusion 

 

 5.D1  It is desired to enrich the partial pressure of hydrogen in a hydrogen-nitrogen gas mixture for which 

the partial pressures of both gases are 0.1013 MPa (1 atm).  It has been proposed to accomplish this by passing 

both gases through a thin sheet of some metal at an elevated temperature;  inasmuch as hydrogen diffuses through 

the plate at a higher rate than does nitrogen, the partial pressure of hydrogen will be higher on the exit side of the 

sheet.  The design calls for partial pressures of 0.0709 MPa (0.7 atm) and 0.02026 MPa (0.2 atm), respectively, for 

hydrogen and nitrogen. The concentrations of hydrogen and nitrogen (CH and CN, in mol/m3) in this metal are 

functions of gas partial pressures (pH2
 and pN2

, in MPa) and absolute temperature and are given by the following 

expressions: 

 

 
  

 

CH  =  2.5  ×  103 pH2
exp −

27.8 kJ/mol
RT

 
 
 

 
 
  (5.16a) 

 

 
  

 

CN  =  2.75 ×  10−3 pN2
exp −

37.6 kJ/mol
RT

 
 
 

 
 
  (5.16b) 

Furthermore, the diffusion coefficients for the diffusion of these gases in this metal are functions of the absolute 

temperature as follows: 

 

 

DH (m2/s) = 1.4  ×  10−7 exp −
13.4 kJ/mol

RT

 
 
 

 
 
  (5.17a) 

 

 

 

DN (m2/s) = 3.0  ×  10−7 exp −
76.15 kJ/mol

RT

 
 
 

 
 
  (5.17b) 

Is it possible to purify hydrogen gas in this manner?  If so, specify a temperature at which the process may be 

carried out, and also the thickness of metal sheet that would be required. If this procedure is not possible, then state 

the reason(s) why. 
 

  Solution 

 This problem calls for us to ascertain whether or not a hydrogen-nitrogen gas mixture may be enriched 

with respect to hydrogen partial pressure by allowing the gases to diffuse through a metal sheet at an elevated 

temperature.  If this is possible, the temperature and sheet thickness are to be specified;  if such is not possible, then 

we are to state the reasons why.  Since this situation involves steady-state diffusion, we employ Fick's first law, 

Equation 5.3.  Inasmuch as the partial pressures on the high-pressure side of the sheet are the same, and the pressure 

of hydrogen on the low pressure side is 3.5 times that of nitrogen, and concentrations are proportional to the square 
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root of the partial pressure, the diffusion flux of hydrogen JH is the square root of 3.5 times the diffusion flux of 

nitrogen JN--i.e. 

 

    

 

JH = 3.5 JN  

 

Thus, equating the Fick's law expressions incorporating the given equations for the diffusion coefficients and 

concentrations in terms of partial pressures leads to the following 

 
JH 

 

    

 

=
1
∆x

×  

  

 

(2.5 × 103) 0.1013 MPa − 0.0709 MPa( )exp −
27.8 kJ

RT

 

 
 

 

 
 (1.4 × 10−7 m2 /s)exp −

13.4 kJ
RT

 

 
 

 

 
  

 

    

 

= 3.5 JN  

 

    

 

=
3.5

∆x
×  

    

 

(2.75 × 103) 0.1013 MPa − 0.02026 MPa( ) exp −
37.6 kJ

RT

 

 
 

 

 
 (3.0 × 10−7 m2 /s)exp −

76.15 kJ
RT

 

 
 

 

 
  

 

The ∆x's cancel out, which means that the process is independent of sheet thickness.  Now solving the above 

expression for the absolute temperature T gives 

 

T = 3237 K 

 

which value is extremely high (surely above the melting point of the metal).  Thus, such a diffusion process is not 

possible. 
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 5.D2  A gas mixture is found to contain two diatomic A and B species for which the partial pressures of 

both are 0.05065 MPa (0.5 atm).  This mixture is to be enriched in the partial pressure of the A species by passing 

both gases through a thin sheet of some metal at an elevated temperature.  The resulting enriched mixture is to have 

a partial pressure of 0.02026 MPa (0.2 atm) for gas A, and 0.01013 MPa (0.1 atm) for gas B. The concentrations of 
A and B (CA and CB, in mol/m3) are functions of gas partial pressures (pA2

 and pB2
, in MPa) and absolute 

temperature according to the following expressions: 

 

 
  

 

CA  =  200 pA2
exp −

25.0 kJ/mol
RT

 
 
 

 
 
  (5.18a) 

 

 
  

 

CB  =  1.0  ×  10−3 pB2
exp −

30.0 kJ/mol
RT

 
 
 

 
 
  (5.18b) 

Furthermore, the diffusion coefficients for the diffusion of these gases in the metal are functions of the absolute 

temperature as follows: 

 
  

 

DA (m2 /s)  =  4.0  ×  10−7 exp −
15.0 kJ/mol

RT

 
 
 

 
 
  (5.19a) 

 

 
  

 

DB (m2 /s)  =  2.5  ×  10−6 exp −
24.0 kJ/mol

RT

 
 
 

 
 
  (5.19b) 

Is it possible to purify the A gas in this manner? If so, specify a temperature at which the process may be carried 

out, and also the thickness of metal sheet that would be required. If this procedure is not possible, then state the 

reason(s) why. 
 

  Solution 

 This problem calls for us to ascertain whether or not an A2-B2 gas mixture may be enriched with respect to 

the A partial pressure by allowing the gases to diffuse through a metal sheet at an elevated temperature.  If this is 

possible, the temperature and sheet thickness are to be specified;  if such is not possible, then we are to state the 

reasons why.  Since this situation involves steady-state diffusion, we employ Fick's first law, Equation 5.3.  

Inasmuch as the partial pressures on the high-pressure side of the sheet are the same, and the pressure of A2 on the 

low pressure side is 2.0 times that of B2, and concentrations are proportional to the square root of the partial 

pressure, the diffusion flux of A, JA, is the square root of 2.0 times the diffusion flux of nitrogen JB--i.e. 

 

    

 

JA =  2.0 JB 

 

Thus, equating the Fick's law expressions incorporating the given equations for the diffusion coefficients and 

concentrations in terms of partial pressures leads to the following 
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JA 

 

    

 

=  
1
∆x

×  

    

 

(200) 0.05065 MPa − 0.02026 MPa( ) exp −
25.0 kJ

RT

 

 
 

 

 
 (4.0 × 10−7 m2 /s)exp −

15.0 kJ
RT

 

 
 

 

 
  

 

    

 

= 2.0 JB 

 

    

 

=  
2.0

∆x
×  

    

 

(1.0 ×  103) 0.05065 MPa − 0.01013 MPa( )exp −
30.0  kJ

RT

 
 
 

 
 
 (2.5 × 10−6 m2 /s)exp −

24.0  kJ
RT

 
 
 

 
 
  

 

The ∆x's cancel out, which means that the process is independent of sheet thickness.  Now solving the above 

expression for the absolute temperature T gives 

 

T = 401 K (128°C) 

 

Thus, it is possible to carry out this procedure at 401 K or 128°C. 
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 Nonsteady-State Diffusion 

 

 5.D3  The wear resistance of a steel shaft is to be improved by hardening its surface.  This is to be 

accomplished by increasing the nitrogen content within an outer surface layer as a result of nitrogen diffusion into 

the steel.  The nitrogen is to be supplied from an external nitrogen-rich gas at an elevated and constant 

temperature. The initial nitrogen content of the steel is 0.002 wt%, whereas the surface concentration is to be 

maintained at 0.50 wt%. For this treatment to be effective, a nitrogen content of 0.10 wt% must be established at a 

position 0.40 mm below the surface.  Specify appropriate heat treatments in terms of temperature and time for 

temperatures between 475°C and 625°C.  The preexponential and activation energy for the diffusion of nitrogen in 

iron are 3 × 10-7 m2/s and 76,150 J/mol, respectively, over this temperature range. 
 

  Solution 

 This is a nonsteady-state diffusion situation; thus, it is necessary to employ Equation 5.5, utilizing the 

following values for the concentration parameters: 

 

C0 = 0.002 wt% N 

Cs = 0.50 wt% N 

Cx = 0.10 wt% N 

 

Therefore 

 

  

 

Cx − C0

Cs − C0
=  

0.10 − 0.002
0.50 − 0.002

 

 

  

 

=  0.1968 =  1 − erf
x

2 Dt

 
 
 

 
 
  

 

And thus 

 

  

 

1 − 0.1968 = 0.8032 =  erf
x

2 Dt

 
 
 

 
 
  

 

Using linear interpolation and the data presented in Table 5.1 
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 z erf (z) 

 0.9000 0.7970 

 y 0.8032 

 0.9500 0.8209 

 

 

  

 

0.8032 − 0.7970
0.8209 − 0.7970

=  
y − 0.9000

0.9500 − 0.9000
 

 

From which 

 

  

 

y =
x

2 Dt
=  0.9130  

 

The problem stipulates that x = 0.40 mm = 4.0 × 10-4 m.  Therefore 

 

  

 

4.0 × 10−4 m
2 Dt

=  0.9130 

 

Which leads to 

 

Dt = 4.80 × 10-8 m2 

 

Furthermore, the diffusion coefficient depends on temperature according to Equation 5.8;  and, as stipulated in the 

problem statement, D0 = 3 × 10-7 m2/s and Qd = 76,150 J/mol.  Hence 

 

  

 

Dt =  D0exp −
Qd

RT

 
 
 

 
 
 (t) =  4.80 ×  10-8  m2  

 

  

 

(3.0 ×  10-7  m2/s)exp −
76,150 J/mol

(8.31 J/mol - K)(T)

 

  
 

  (t)  =  4.80 × 10−8 m2  

 

And solving for the time t 

 

  

 

t (in s) =
0.160

exp −
9163.7

T

 
 
 

 
 
 

 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

Thus, the required diffusion time may be computed for some specified temperature (in K).  Below are tabulated t 

values for three different temperatures that lie within the range stipulated in the problem. 

 

   

 Temperature Time 
 (°C) s h 
   

 500 22,500 6.3 

 550 11,000 3.1 

 600 5800 1.6 
   



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 Diffusion in Semiconducting Materials 

 

 5.D4  One integrated circuit design calls for the diffusion of arsenic into silicon wafers;  the background 

concentration of As in Si is 2.5 × 1020 atoms/m3.  The predeposition heat treatment is to be conducted at 1000°C for 

45 minutes, with a constant surface concentration of 8 × 1026 As atoms/m3.  At a drive-in treatment temperature of 

1100°C, determine the diffusion time required for a junction depth of 1.2 µm.  For this system, values of Qd and D0 

are 4.10 eV and 2.29 × 10-3 m2/s, respectively. 
 

  Solution 

 This problem asks that we compute the drive-in diffusion time for arsenic diffusion in silicon.  It is first 

necessary to determine the value of Q0 using Equation 5.12.  But before this is possible, the value of Dp at 1000°C 

must be computed with the aid of Equation 5.8.  Thus, 

 

 

Dp  =  D0 exp −
Qd

kT p

 

 
 
 

 

 
 
  

 

 

=  (2.29  ×  10−3 m2/s) exp −
4.10 eV

(8.62  ×  10−5  eV/atom− K)(1000°C +  273 K)

 

 
 

 

 
  

 

 

=  1.36 ×  10−19  m2/s 

 

Now for the computation of Q0 using Equation 5.12: 

 

 

Q0  =  2Cs

Dpt p

π
 

 

 

=  (2)(8 ×  1026  atoms/m3)
(1.36 ×  10−19  m2/s)(45 min)(60 s/min)

π
 

 

 

=  1.73 ×  1019  atoms/m2 

 

We now desire to calculate td in Equation 5.13.  Algebraic manipulation and rearrangement of this expression leads 

to 
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exp
x j

2

4Dd td

 

 
 
 

 

 
 
  =  

Q0

CB πDd td

 

 

At this point it is necessary to determine the value of Dd (at 1100°C).  Thus 

 

 

Dd =  (2.29 ×  10−3 m2/s) exp −
4.10 eV

(8.62 ×  10−5  eV/atom− K)(1100°C +  273 K)

 

 
 

 

 
  

 

 

=  2.06 ×  10−18  m2/s 

 

And incorporation of values of all parameters except td in the above expression yields 

 

 

exp
(1.2 ×  10−6  m)2

(4)(2.06 ×  10−18  m2/s)td

 

 
 

 

 
  =  

1.73 ×  1019  atoms/m2

(2.5 ×  1020  atoms/m3) (π)(2.06 ×  10−18  m2/s)td

 

 

which expression reduces to 

 

 

exp
1.75 ×  105  s

td

 

 
  

 

 
   =  

2.72  ×  107  s1/ 2

td

 

 

Solving for td is not a simple matter.  One possibility is to use a graphing technique.  Let us take the logarithm of 

both sides of the above equation, which gives 

 

 

1.75 ×  105  s
td

 =  ln 
2.72  ×  107  s1/ 2

td

 

 
  

 

 
   

 

Now if we plot the terms on both left and right hand sides of this equation versus td, the value of td at the point of 

intersection of the two resulting curves is correct answer.  Below is such a plot: 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

As noted, the two curves intersect at about 13,900 s, which corresponds to td = 3.86 h. 
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CHAPTER 6 

 

MECHANICAL PROPERTIES OF METALS 

 

PROBLEM SOLUTIONS 

 

 Concepts of Stress and Strain 

 

 6.1  Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-

body diagram), derive Equations 6.4a and 6.4b. 
 

  Solution 

 This problem asks that we derive Equations 6.4a and 6.4b, using mechanics of materials principles.  In 

Figure (a) below is shown a block element of material of cross-sectional area A that is subjected to a tensile force P.  

Also represented is a plane that is oriented at an angle θ referenced to the plane perpendicular to the tensile axis;  

the area of this plane is A' = A/cos θ.  In addition, and the forces normal and parallel to this plane are labeled as P' 

and V', respectively.  Furthermore, on the left-hand side of this block element are shown force components that are 

tangential and perpendicular to the inclined plane.  In Figure (b) are shown the orientations of the applied stress σ, 

the normal stress to this plane σ', as well as the shear stress τ' taken parallel to this inclined plane.  In addition, two 

coordinate axis systems in represented in Figure (c):  the primed x and y axes are referenced to the inclined plane, 

whereas the unprimed x axis is taken parallel to the applied stress. 

 

 

 

 Normal and shear stresses are defined by Equations 6.1 and 6.3, respectively.  However, we now chose to 

express these stresses in terms (i.e., general terms) of normal and shear forces (P and V) as 

 

    

 

σ =
P
A

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

    

 

τ =
V
A

 

 

For static equilibrium in the x' direction the following condition must be met: 

 

    

 

F∑ x'
= 0  

 

which means that 

 

    

 

PÕ− P cos θ = 0  

 

Or that 

 

    

 

P' = P cos θ  

 

Now it is possible to write an expression for the stress 

 

σ'  in terms of P' and A' using the above expression and the 

relationship between A and A' [Figure (a)]: 

 

    

 

σ' =
PÕ
AÕ

 

 

    

 

=  
P cosθ

A
cosθ

=
P
A

cos2θ  

 

However, it is the case that P/A = σ;  and, after making this substitution into the above expression, we have 

Equation 6.4a--that is 

 

  σ ' = σ cos2θ  

 

 Now, for static equilibrium in the y' direction, it is necessary that 

 

    

 

FyÕ∑ = 0  

 

    

 

= −VÕ+  P sinθ  
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Or 

 

    

 

V' = P sinθ  

 

We now write an expression for τ' as 

 

    

 

τÕ=
VÕ
AÕ

 

 

And, substitution of the above equation for V' and also the expression for A' gives 

 

    

 

τ' =
VÕ
AÕ

 

 

    

 

=
P sinθ

A
cosθ

 

 

    

 

=
P
A

sinθ cosθ  

 

  

 

=  σ sinθ cosθ  

 

which is just Equation 6.4b. 
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 6.2  (a) Equations 6.4a and 6.4b are expressions for normal (σ′) and shear (τ′) stresses, respectively, as a 

function of the applied tensile stress (σ) and the inclination angle of the plane on which these stresses are taken (θ 

of Figure 6.4). Make a plot on which is presented the orientation parameters of these expressions (i.e., cos2 θ and 

sin θ cos θ) versus θ. 

 (b) From this plot, at what angle of inclination is the normal stress a maximum? 

 (c) Also, at what inclination angle is the shear stress a maximum? 
 

  Solution 

 (a)  Below are plotted curves of cos2θ (for 

 

σ' ) and sin θ cos θ (for τ') versus θ. 

 

 

 

 (b)  The maximum normal stress occurs at an inclination angle of 0°. 

 (c)  The maximum shear stress occurs at an inclination angle of 45°. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 Stress-Strain Behavior 

 

 6.3  A specimen of aluminum having a rectangular cross section 10 mm × 12.7 mm (0.4 in. × 0.5 in.) is 

pulled in tension with 35,500 N (8000 lb f) force, producing only elastic deformation.  Calculate the resulting strain. 
 

  Solution 

 This problem calls for us to calculate the elastic strain that results for an aluminum specimen stressed in 

tension.  The cross-sectional area is just (10 mm) × (12.7 mm) = 127 mm2 (= 1.27 × 10-4 m2 = 0.20 in.2);  also, the 

elastic modulus for Al is given in Table 6.1 as 69 GPa (or 69 × 109 N/m2).  Combining Equations 6.1 and 6.5 and 

solving for the strain yields 

 

  

 

ε =
σ
E

=
F

A0E
=  

35,500 N

(1.27 × 10−4 m2)(69 × 109  N/m2)
=  4.1 ×  10-3 
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 6.4  A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 × 106 psi) and 

an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile load of 2000 N 

(450 lb f) is applied.  Compute the maximum length of the specimen before deformation if the maximum allowable 

elongation is 0.42 mm (0.0165 in.). 

 

  Solution 

 We are asked to compute the maximum length of a cylindrical titanium alloy specimen (before 

deformation) that is deformed elastically in tension.  For a cylindrical specimen 

 

    

 

A0 =  π
d0
2

 

 
 

 

 
 
2

 

 

where d0 is the original diameter.  Combining Equations 6.1, 6.2, and 6.5 and solving for l0 leads to 

 

    

 

l0 =  
∆l
ε

 =  
∆l
σ
E

Ê=  
∆l E
F
A0

Ê =  

∆l Eπ 
d0
2

 

 
 

 

 
 
2

F
=  

∆l Eπ d0
2

4F
 

 

 

=  
(0.42 × 10−3 m)(107 × 109 N /m2) (π)(3.8 × 10−3 m)2

(4)(2000 N)
 

 

= 0.255 m = 255 mm (10.0 in.) 
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 6.5  A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is 

pulled in tension with a load of 89,000 N (20,000 lb f), and experiences an elongation of 0.10 mm (4.0 × 10-3 in.).  

Assuming that the deformation is entirely elastic, calculate the elastic modulus of the steel. 

 

  Solution 

 This problem asks us to compute the elastic modulus of steel.  For a square cross-section, A0 =     

 

b0
2 , where 

b0 is the edge length.  Combining Equations 6.1, 6.2, and 6.5 and solving for E, leads to 

 

  

 

E  =  
σ
ε

 =  

F
A0
∆l
l0

=  
Fl0

b 0
2 ∆ l

 

 

 

=  
(89,000 N)(100 × 10−3 m)

(20 × 10−3 m)2(0.10 × 10−3 m)
 

 

= 223 × 109 N/m2 = 223 GPa  (31.3 × 106 psi) 
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 6.6  Consider a cylindrical titanium wire 3.0 mm (0.12 in.) in diameter and 2.5 × 104 mm (1000 in.) long.  

Calculate its elongation when a load of 500 N (112 lb f) is applied.  Assume that the deformation is totally elastic. 

 

  Solution 

 In order to compute the elongation of the Ti wire when the 500 N load is applied we must employ 

Equations 6.1, 6.2, and 6.5.  Solving for ∆l and realizing that for Ti, E = 107 GPa (15.5 × 106 psi) (Table 6.1), 

 

    

 

∆l  =  l0ε =  l0
σ
E

=  
l0F

EA0
=

l0F

Eπ
d0
2

 

 
 

 

 
 
2

=
4l0F

Eπd0
2

 

 

 

=  
(4)(25 m)(500 N)

(107 × 109 N/m2)(π )(3 × 10−3 m)2
= 0.0165 m = 16.5 mm  (0.65  in.)  
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 6.7  For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the 

modulus of elasticity is 115 GPa (16.7 × 106 psi). 

 (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 325 mm2 

(0.5 in.2) without plastic deformation? 

 (b) If the original specimen length is 115 mm (4.5 in.), what is the maximum length to which it may be 

stretched without causing plastic deformation? 
 

  Solution 

 (a)  This portion of the problem calls for a determination of the maximum load that can be applied without 

plastic deformation (Fy).  Taking the yield strength to be 275 MPa, and employment of Equation 6.1 leads to 

 

  

 

Fy  =  σ y A0 =  (275 ×  106  N/m2)(325 ×  10-6  m2) 

 
= 89,375 N   (20,000 lbf) 

 

 (b)  The maximum length to which the sample may be deformed without plastic deformation is determined 

from Equations 6.2 and 6.5 as 

 

  

 

li =  l0 1 +
σ
E

 
 
 

 
 
  

 

 

=  (115 mm) 1 +
275 MPa

115 × 103 MPa

 

 
 

 

 
 =  115.28 mm  (4.51 in.)  



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 6.8  A cylindrical rod of copper (E = 110 GPa, 16 × 106 psi) having a yield strength of 240 MPa (35,000 

psi) is to be subjected to a load of 6660 N (1500 lb f).  If the length of the rod is 380 mm (15.0 in.), what must be the 

diameter to allow an elongation of 0.50 mm (0.020 in.)? 

 

  Solution 

 This problem asks us to compute the diameter of a cylindrical specimen of copper in order to allow an 

elongation of 0.50 mm.  Employing Equations 6.1, 6.2, and 6.5, assuming that deformation is entirely elastic 

 

    

 

σ =
F
A0

=
F

π
d 0

2

4

 

 
 
 

 

 
 
 

=  E 
∆ l
l0

 

 

Or, solving for d0 

 

  

 

d0 =  
4 l0F
π E ∆l

 

 

 

=  
(4)(380 × 10−3 m) (6660 N)

(π)(110 × 109 N /m2)(0.50 × 10−3 m)
 

 

= 7.65 × 10-3 m = 7.65 mm  (0.30 in.) 
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 6.9  Compute the elastic moduli for the following metal alloys, whose stress-strain behaviors may be 

observed in the “Tensile Tests” module of Virtual Materials Science and Engineering (VMSE):  (a)  titanium, (b) 

tempered steel, (c) aluminum, and (d) carbon steel.  How do these values compare with those presented in Table 6.1 

for the same metals? 

 

  Solution 

 The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 

 

    

 

E =
∆ σ
∆ ε

=  
σ2  −  σ1

ε2  −  ε1
 

 

Since stress-strain curves for all of the metals/alloys pass through the origin, we make take σ1 = 0 and ε1 = 0.  

Determinations of σ2 and ε2 are possible by moving the cursor to some arbitrary point in the linear region of the 

curve and then reading corresponding values in the “Stress” and “Strain” windows that are located below the plot. 

 (a)  For the titanium alloy, we selected σ2 = 404.2 MPa with its corresponding ε2 = 0.0038.  Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

404.2  MPa −  0  MPa
0.0038  −  0

 =  106,400  MPa  =  106.4  GPa  

 

 The elastic modulus for titanium given in Table 6.1 is 107 GPa, which is in very good agreement with this 

value. 

 

 (b)  For the tempered steel, we selected σ2 = 962.2 MPa with its corresponding ε2 = 0.0047.  Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

962.2  MPa −  0  MPa
0.0047  −  0

 =  204,700  MPa  =  204.7  GPa  

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 The elastic modulus for steel given in Table 6.1 is 207 GPa, which is in reasonably good agreement with 

this value. 

 

 (c)  For the aluminum, we selected σ2 = 145.1 MPa with its corresponding ε2 = 0.0021.  Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

145.1 MPa −  0  MPa
0.0021 −  0

 =  69,100  MPa  =  69.1 GPa  

 

 The elastic modulus for aluminum given in Table 6.1 is 69 GPa, which is in excellent agreement with this 

value. 

 

 (d)  For the carbon steel, we selected σ2 = 129 MPa with its corresponding ε2 = 0.0006.  Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

129  MPa −  0  MPa
0.0006  −  0

 =  215,000  MPa  =  215 GPa  

 

 The elastic modulus for steel given in Table 6.1 is 207 GPa, which is in reasonable agreement with this 

value. 
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 6.10  Consider a cylindrical specimen of a steel alloy (Figure 6.21) 10.0 mm (0.39 in.) in diameter and 75 

mm (3.0 in.) long that is pulled in tension.  Determine its elongation when a load of 20,000 N (4,500 lb f) is applied. 

 

  Solution 

 This problem asks that we calculate the elongation ∆l of a specimen of steel the stress-strain behavior of 

which is shown in Figure 6.21.  First it becomes necessary to compute the stress when a load of 20,000 N is applied 

using Equation 6.1 as 

 

  

 

σ =
F
A0

=
F

π
d0

2

 

 
 

 

 
 

2
=

20,000 N

π
10.0 × 10−3 m

2

 

 
 

 

 
 
2

=  255 MPa (37,700 psi) 

 

Referring to Figure 6.21, at this stress level we are in the elastic region on the stress-strain curve, which corresponds 

to a strain of 0.0012.  Now, utilization of Equation 6.2 to compute the value of ∆l 

 

  

 

∆ l = ε l0 = (0.0012)(75 mm) = 0.090 mm  (0.0036 in.)  
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 6.11  Figure 6.22 shows, for a gray cast iron, the tensile engineering stress–strain curve in the elastic 

region. Determine (a) the tangent modulus at 10.3 MPa (1500 psi), and (b) the secant modulus taken to 6.9 MPa 

(1000 psi). 

 

  Solution 

 (a)  This portion of the problem asks that the tangent modulus be determined for the gray cast iron, the 

stress-strain behavior of which is shown in Figure 6.22.  In the figure below is shown a tangent draw on the curve at 

a stress of 10.3 MPa (1500 psi). 

 

 

The slope of this line (i.e., ∆σ/∆ε), the tangent modulus, is computed as follows: 

 

 

∆σ
∆ε

 =  
15 MPa −  5 MPa
0.0074 −  0.0003

 =  1410 MPa =  1.41 GPa  (2.04 ×  105  psi)  

 

 (b)  The secant modulus taken from the origin is calculated by taking the slope of a secant drawn from the 

origin through the stress-strain curve at 6.9 MPa (1,000 psi).  This secant is drawn on the curve shown below: 
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The slope of this line (i.e., ∆σ/∆ε), the secant modulus, is computed as follows: 

 

 

∆σ
∆ε

 =  
15 MPa −  0 MPa

0.0047 −  0
 =  3190 MPa =  3.19 GPa   (4.63 ×  105  psi)  
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 6.12 As noted in Section 3.15, for single crystals of some substances, the physical properties are 

anisotropic; that is, they are dependent on crystallographic direction. One such property is the modulus of 

elasticity. For cubic single crystals, the modulus of elasticity in a general [uvw] direction, Euvw, is described by the 

relationship 

 

 

1
Euvw

=
1

E 100
− 3

1
E 100

−
1

E 111

 

 
 
 

 

 
 
 α

2β2 + β2γ2 + γ2α2( ) 

 
where 

 

E 100  and 

 

E 111  are the moduli of elasticity in [100] and [111] directions, respectively; α, β, and γ are the 

cosines of the angles between [uvw] and the respective [100], [010], and [001] directions. Verify that the 
  

 

E〈110〉  

values for aluminum, copper, and iron in Table 3.3 are correct. 
 

  Solution 

 We are asked, using the equation given in the problem statement, to verify that the modulus of elasticity 

values along [110] directions given in Table 3.3 for aluminum, copper, and iron are correct.  The α, β, and γ 

parameters in the equation correspond, respectively, to the cosines of the angles between the [110] direction and 

[100], [010] and [001] directions.  Since these angles are 45°, 45°, and 90°, the values of α, β, and γ are 0.707, 

0.707, and 0, respectively.  Thus, the given equation takes the form 

 

    

 

1
E<110>

 

 

    

 

=  
1

E<100>
−  3

1
E<100>

−
1

E<111>

 

 
  

 

 
  (0.707)2 (0.707)2 + (0.707)2 (0)2 + (0)2 (0.707)2[ ] 

 

    

 

=  
1

E<100>
−  (0.75)

1
E<100>

−
1

E<111>

 

 
  

 

 
   

 
Utilizing the values of E<100> and E<111> from Table 3.3 for Al 

 

    

 

1
E<110>

=
1

63.7 GPa
− (0.75)

1
63.7 GPa

−
1

76.1 GPa

 

 
 

 

 
  

 
Which leads to, E<110> = 72.6 GPa, the value cited in the table. 
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 For Cu, 

 

    

 

1
E<110>

=
1

66.7 GPa
− (0.75)

1
66.7 GPa

−
1

191.1 GPa

 

 
 

 

 
  

 
Thus, E<110> = 130.3 GPa, which is also the value cited in the table. 

 

 Similarly, for Fe 

 

    

 

1
E<110>

=
1

125.0 GPa
−  (0.75)

1
125.0 GPa

−
1

272.7 GPa

 

 
 

 

 
  

 
And E<110> = 210.5 GPa, which is also the value given in the table. 
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 6.13  In Section 2.6 it was noted that the net bonding energy EN between two isolated positive and negative 

ions is a function of interionic distance r as follows: 
 

 

 

EN = −
A
r

+
B

rn
 (6.25) 

 

where A, B, and n are constants for the particular ion pair. Equation 6.25 is also valid for the bonding energy 

between adjacent ions in solid materials. The modulus of elasticity E is proportional to the slope of the interionic 

force–separation curve at the equilibrium interionic separation; that is, 
 

 

E ∝
dF
dr

 
 
 

 
 
 
ro

 

 

Derive an expression for the dependence of the modulus of elasticity on these A, B, and n parameters (for the two-

ion system) using the following procedure: 

 1. Establish a relationship for the force F as a function of r, realizing that 
 

 

F =
dEN

dr
 

 2. Now take the derivative dF/dr. 

 3. Develop an expression for r0, the equilibrium separation. Since r0 corresponds to the value of r at the 

minimum of the EN-versus-r curve (Figure 2.8b), take the derivative dEN/dr, set it equal to zero, and solve for r, 

which corresponds to r0. 

 4. Finally, substitute this expression for r0 into the relationship obtained by taking dF/dr. 
 

  Solution 

 This problem asks that we derive an expression for the dependence of the modulus of elasticity, E, on the 

parameters A, B, and n in Equation 6.25.  It is first necessary to take dEN/dr in order to obtain an expression for the 

force F;  this is accomplished as follows: 

 

    

 

F =
dEN
d r

=
d −

A
r

 
 
 

 
 
 

d r
+

d
B

rn

 

 
 

 

 
 

d r
 

 

    

 

=  
A

r2
−

nB

r (n+1)
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The second step is to set this dEN/dr expression equal to zero and then solve for r (= r0).  The algebra for this 

procedure is carried out in Problem 2.14, with the result that 

 

    

 

r0 =  
A

nB

 
 
 

 
 
 
1/(1 −  n)

 

 

Next it becomes necessary to take the derivative of the force (dF/dr), which is accomplished as follows: 

 

    

 

dF
dr

=

d
A

r2

 

 
 

 

 
 

dr
+

d −
nB

r (n+1)

 

 
 

 

 
 

dr
 

 

    

 

= −
2 A

r3
+

(n)(n + 1)B

r (n+2)
 

 

Now, substitution of the above expression for r0 into this equation yields 

 

    

 

dF
dr

 
 
 

 
 
 
r0

= −
2A

A
nB

 
 
 

 
 
 
3/(1−n)

+  
(n)(n + 1) B

A
nB

 
 
 

 
 
 
(n+2) /(1−n)

 

 

which is the expression to which the modulus of elasticity is proportional. 
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 6.14  Using the solution to Problem 6.13, rank the magnitudes of the moduli of elasticity for the following 

hypothetical X, Y, and Z materials from the greatest to the least. The appropriate A, B, and n parameters (Equation 

6.25) for these three materials are tabulated below; they yield EN in units of electron volts and r in nanometers: 

 
Material A B n 

X 2.5 2.0 × 10–5 8 

Y 2.3 8.0 × 10–6 10.5 

Z 3.0 1.5 × 10–5 9 

 
  Solution 

 This problem asks that we rank the magnitudes of the moduli of elasticity of the three hypothetical metals 

X, Y, and Z.  From Problem 6.13, it was shown for materials in which the bonding energy is dependent on the 

interatomic distance r according to Equation 6.25, that the modulus of elasticity E is proportional to 

 

    

 

E ∝ −
2A

A
nB

 
 
 

 
 
 
3/(1−n)

+  
(n)(n + 1) B

A
nB

 
 
 

 
 
 
(n+2) /(1−n)

 

 

 For metal X, A = 2.5, B = 2.0 × 10-5, and n = 8.  Therefore, 

 

  

 

E ∝ −
(2)(2.5)

2.5

(8)(2 × 10−5)

 

 

 
 

 

 

 
 

3/(1 − 8)
+  

(8)(8 +1)(2 × 10−5)
2.5

(8)(2 × 10−5)
 

 
 

 

 
 
(8 + 2) /(1 − 8)

 

 

= 1097 

 

 For metal Y, A = 2.3, B = 8 × 10-6, and n = 10.5.  Hence 

 

  

 

E ∝ −
(2)(2.3)

2.3

(10.5)(8 × 10−6)

 

 

 
 

 

 

 
 

3/(1 − 10.5)
+  

(10.5)(10.5 + 1)(8 × 10−6)
2.3

(10.5)(8 × 10−6)
 

 
 

 

 
 
(10.5 + 2) /(1 − 10.5)

 

 

= 551 

 

 And, for metal Z, A = 3.0, B = 1.5 × 10-5, and n = 9.  Thus 
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E ∝ −
(2)(3.0)

3.0

(9)(1.5 × 10−5)

 

 

 
 

 

 

 
 

3/(1 − 9)
+  

(9)(9 + 1)(1.5 × 10−5)
3.0

(9)(1.5 × 10−5)
 

 
 

 

 
 
(9 + 2) /(1 − 9)

 

 

= 1024 

 

 Therefore, metal X has the highest modulus of elasticity. 
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 Elastic Properties of Materials 

 

 6.15  A cylindrical specimen of aluminum having a diameter of 19 mm (0.75 in.) and length of 200 mm (8.0 

in.) is deformed elastically in tension with a force of 48,800 N (11,000 lb f).  Using the data contained in Table 6.1, 

determine the following: 

 (a) The amount by which this specimen will elongate in the direction of the applied stress. 

 (b) The change in diameter of the specimen. Will the diameter increase or decrease? 
 
  Solution 

  (a)  We are asked, in this portion of the problem, to determine the elongation of a cylindrical specimen of 

aluminum.  Combining Equations 6.1, 6.2, and 6.5, leads to 

 

    

 

σ =  Eε 

 

    

 

F

π
d0

2

4

 

 
 
 

 

 
 
 

= E
∆ l
l0

 

 

Or, solving for ∆l (and realizing that E = 69 GPa, Table 6.1), yields 

 

    

 

∆ l =  
4F l0
π d0

2E
 

 

 

=  
(4)(48,800 N)(200 × 10−3 m)

(π)(19 × 10−3 m)2(69 × 109 N /m2)
= 5 ×  10-4  m =  0.50 mm (0.02 in.)  

 

 (b)  We are now called upon to determine the change in diameter, ∆d.  Using Equation 6.8 

 

    

 

ν = −
εx
εz

=  −
∆d /d0
∆ l / l0

 

 

From Table 6.1, for aluminum, ν = 0.33.  Now, solving the above expression for ∆d yields 

 

  

 

∆d = −
ν ∆l d0

l0
= −

(0.33)(0.50 mm)(19 mm)
200 mm

 

 

= –1.6 × 10-2 mm  (–6.2 × 10-4 in.) 
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The diameter will decrease. 
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 6.16  A cylindrical bar of steel 10 mm (0.4 in.) in diameter is to be deformed elastically by application of a 

force along the bar axis.  Using the data in Table 6.1, determine the force that will produce an elastic reduction of 3 

× 10-3 mm (1.2 × 10-4 in.) in the diameter. 

 
  Solution 

 This problem asks that we calculate the force necessary to produce a reduction in diameter of 3 × 10-3 mm 

for a cylindrical bar of steel.  For a cylindrical specimen, the cross-sectional area is equal to 

 

    

 

A0 =
π d0

2

4
 

 

Now, combining Equations 6.1 and 6.5 leads to  
 

    

 

σ =  
F
A0

=
F

πd0
2

4

= Eεz  

And, since from Equation 6.8 

 

    

 

εz = −
εx
ν

= −

∆d
d0
ν

= −
∆d
νd0

 

 

Substitution of this equation into the above expression gives 

 

    

 

F

πd0
2

4

= E −
∆d
νd0

 

 
  

 

 
   

 

And, solving for F leads to 

 

    

 

F =  −
d0∆d π E

4ν
 

 

From Table 6.1, for steel, ν = 0.30 and E = 207 GPa.  Thus, 
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F = −
(10 × 10−3 m)(− 3.0 × 10−6 m) (π)(207 × 109 N /m2)

(4)(0.30)
 

 
= 16,250 N  (3770 lbf) 
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 6.17  A cylindrical specimen of some alloy 8 mm (0.31 in.) in diameter is stressed elastically in tension.  A 

force of 15,700 N (3530 lb f) produces a reduction in specimen diameter of 5 × 10-3 mm (2 × 10-4 in.).  Compute 

Poisson's ratio for this material if its modulus of elasticity is 140 GPa (20.3 × 106 psi). 

 
  Solution 

 This problem asks that we compute Poisson's ratio for the metal alloy.  From Equations 6.5 and 6.1 

 

    

 

εz  =  
σ
E

=
F

A0E
=

F

π
d0
2

 

 
 

 

 
 
2

E

=
4F

π d0
2 E

 

 

Since the transverse strain εx is just 

 

    

 

εx =
∆d
d0

 

 

and Poisson's ratio is defined by Equation 6.8, then 

 

    

 

ν =  −
εx
εz

= −
∆d /d0

4F

π d0
2E

 

 
 
 

 

 
 
 

= −
d0∆d π E

4F
 

 

 

=  −
(8 × 10−3 m)(−5 × 10−6 m) (π)(140 × 109 N /m2)

(4)(15,700  N)
=  0.280 
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 6.18  A cylindrical specimen of a hypothetical metal alloy is stressed in compression.  If its original and 

final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original 

length if the deformation is totally elastic.  The elastic and shear moduli for this alloy are 105 GPa and 39.7 GPa, 

respectively. 
 
  Solution 

 This problem asks that we compute the original length of a cylindrical specimen that is stressed in 

compression.  It is first convenient to compute the lateral strain εx as 

 

  

 

εx  =
∆d
d0

=
20.025 mm − 20.000 mm

20.000 mm
=  1.25 ×  10-3 

 
In order to determine the longitudinal strain εz we need Poisson's ratio, which may be computed using Equation 6.9;  

solving for ν yields 

 

  

 

ν =
E

2G
− 1 =  

105 × 103 MPa

(2)(39.7 × 103 MPa)
− 1 =  0.322  

 
Now εz may be computed from Equation 6.8 as 

 

  

 

εz  = −
εx

ν
= −

1.25 ×  10−3

0.322
=  − 3.88 ×  10-3  

 

Now solving for l0 using Equation 6.2 

 

    

 

l0 =  
li

1 + εz
 

 

 

=  
74.96 mm

1 − 3.88 × 10−3
=  75.25  mm 
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 6.19  Consider a cylindrical specimen of some hypothetical metal alloy that has a diameter of 8.0 mm (0.31 

in.).  A tensile force of 1000 N (225 lb f) produces an elastic reduction in diameter of 2.8 × 10-4 mm (1.10 × 10-5 in.).  

Compute the modulus of elasticity for this alloy, given that Poisson's ratio is 0.30. 
 
  Solution 

 This problem asks that we calculate the modulus of elasticity of a metal that is stressed in tension.  

Combining Equations 6.5 and 6.1 leads to 

 

  

 

E =
σ
εz

=
F

A0εz
=

F

εzπ
d0

2

 
 
 

 
 
 

2
=

4 F

εzπ d0
2

 

 

From the definition of Poisson's ratio, (Equation 6.8) and realizing that for the transverse strain, εx= 
    

 

∆d
d0

 

 

    

 

εz  = −
εx
ν

= −
∆d
d0ν

 

 
Therefore, substitution of this expression for εz into the above equation yields 

 

    

 

E =
4F

εzπ d0
2

=  
4F ν

π d0∆d
 

 

 

=  
(4)(1000 N)(0.30)

π (8 × 10−3 m)(2.8 × 10−7 m)
= 1.705  × 1011  Pa = 170.5 GPa  (24.7 ×  106  psi)  
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 6.20  A brass alloy is known to have a yield strength of 275 MPa (40,000 psi), a tensile strength of 380 

MPa (55,000 psi), and an elastic modulus of 103 GPa (15.0 × 106 psi).  A cylindrical specimen of this alloy 12.7 

mm (0.50 in.) in diameter and 250 mm (10.0 in.) long is stressed in tension and found to elongate 7.6 mm (0.30 in.).  

On the basis of the information given, is it possible to compute the magnitude of the load that is necessary to 

produce this change in length?  If so, calculate the load.  If not, explain why. 
 
  Solution 

 We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of the load 

necessary to produce an elongation of 7.6 mm (0.30 in.).  It is first necessary to compute the strain at yielding from 

the yield strength and the elastic modulus, and then the strain experienced by the test specimen.  Then, if 

ε(test) < ε(yield) 

deformation is elastic, and the load may be computed using Equations 6.1 and 6.5.  However, if 

ε(test) > ε(yield) 

computation of the load is not possible inasmuch as deformation is plastic and we have neither a stress-strain plot 

nor a mathematical expression relating plastic stress and strain.  We compute these two strain values as 

 

  

 

ε(test) =  
∆l
l0

=  
7.6 mm
250 mm

=  0.03 

 

and 

  

 

ε(yield) =
σ y

E
=

275 MPa

103 × 103 MPa
=  0.0027 

 

Therefore, computation of the load is not possible since ε(test) > ε(yield). 
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 6.21 A cylindrical metal specimen 12.7 mm (0.5 in.) in diameter and 250 mm (10 in.) long is to be 

subjected to a tensile stress of 28 MPa (4000 psi);  at this stress level the resulting deformation will be totally 

elastic. 

 (a) If the elongation must be less than 0.080 mm (3.2 × 10-3 in.), which of the metals in Table 6.1 are 

suitable candidates?  Why? 

 (b) If, in addition, the maximum permissible diameter decrease is 1.2 ×  10-3 mm (4.7 × 10-5 in.) when the 

tensile stress of 28 MPa is applied, which of the metals that satisfy the criterion in part (a) are suitable candidates? 

Why? 
 
  Solution 

 (a)  This part of the problem asks that we ascertain which of the metals in Table 6.1 experience an 

elongation of less than 0.080 mm when subjected to a tensile stress of 28 MPa.  The maximum strain that may be 

sustained, (using Equation 6.2) is just 

 

  

 

ε =  
∆l
l0

=
0.080 mm
250 mm

=  3.2 ×  10-4  

 

Since the stress level is given (50 MPa), using Equation 6.5 it is possible to compute the minimum modulus of 

elasticity which is required to yield this minimum strain.  Hence 

 

  

 

E =
σ
ε

=
28 MPa

3.2 × 10−4
= 87.5 GPa  

 

Which means that those metals with moduli of elasticity greater than this value are acceptable candidates—namely, 

brass, Cu, Ni, steel, Ti and W. 

 (b)  This portion of the problem further stipulates that the maximum permissible diameter decrease is 1.2 × 

10-3 mm when the tensile stress of 28 MPa is applied.  This translates into a maximum lateral strain εx(max) as 

 

  

 

εx (max) =
∆d
d0

=  
−1.2 × 10−3 mm

12.7 mm
= − 9.45 ×  10-5 

 

But, since the specimen contracts in this lateral direction, and we are concerned that this strain be less than 9.45 × 

10-5, then the criterion for this part of the problem may be stipulated as 
  

 

−
∆d
d0

< 9.45 ×  10-5.  

Now, Poisson’s ratio is defined by Equation 6.8 as 
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ν = −
εx
εz

 

 

For each of the metal alloys let us consider a possible lateral strain, 
    

 

εx =
∆d
d0

. Furthermore, since the deformation is 

elastic, then, from Equation 6.5, the longitudinal strain, εz is equal to 

 

  

 

εz =
σ
E

 

 
Substituting these expressions for εx and εz into the definition of Poisson’s ratio we have 

 

    

 

ν = −
εx
εz

=−

∆d
d0
σ
E

 

 

which leads to the following: 

 

    

 

−
∆d
d0

=
ν σ
E

 

 

Using values for ν and E found in Table 6.1 for the six metal alloys that satisfy the criterion for part (a), and for σ = 

28 MPa, we are able to compute a 
    

 

−
∆d
d0

 for each alloy as follows: 

 

  

 

−
∆d
d0

(brass) =
(0.34)(28 × 106 N /m2)

97 × 109 N /m2
= 9.81 × 10−5  

 

  

 

−
∆d
d0

(copper) =
(0.34)(28 × 106 N /m2)

110 × 109 N /m2
= 8.65 × 10−5 

 

  

 

−
∆d
d0

(titanium) =
(0.34)(28 × 106 N /m2)

107 × 109 N /m2
= 8.90 × 10−5  

 

  

 

−
∆d
d0

(nickel) =
(0.31)(28 × 106 N /m2)

207 × 109 N /m2
= 4.19 × 10−5  

 

  

 

−
∆d
d0

(steel) =
(0.30)(28 × 106 N /m2)

207 × 109 N /m2
= 4.06 × 10−5 
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−
∆d
d0

(tungsten) =
(0.28)(28 × 106 N /m2)

407 × 109 N /m2
= 1.93 × 10−5  

 

Thus, of the above six alloys, only brass will have a negative transverse strain that is greater than 9.45 × 10-5.  This 

means that the following alloys satisfy the criteria for both parts (a) and (b) of the problem:  copper, titanium, 

nickel, steel, and tungsten. 
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 6.22  Consider the brass alloy for which the stress-strain behavior is shown in Figure 6.12.  A cylindrical 

specimen of this material 6 mm (0.24 in.) in diameter and 50 mm (2 in.) long is pulled in tension with a force of 

5000 N (1125 lb f).  If it is known that this alloy has a Poisson's ratio of 0.30, compute:  (a) the specimen elongation, 

and (b) the reduction in specimen diameter. 
 

  Solution 

 (a)  This portion of the problem asks that we compute the elongation of the brass specimen.  The first 

calculation necessary is that of the applied stress using Equation 6.1, as 

 

  

 

σ =
F
A0

=
F

π
d0

2

 
 
 

 
 
 

2
=

5000  N

π
6 × 10−3 m

2

 

 
 

 

 
 

2
= 177 × 106  N/m2 = 177 MPa  (25,000 psi)  

 

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 2.0 × 10-3.  From the definition 

of strain, Equation 6.2 

 

  

 

∆l = ε l0 = (2.0 ×  10-3) (50 mm) =  0.10 mm  (4 ×  10-3  in.)  

 

 (b)  In order to determine the reduction in diameter ∆d, it is necessary to use Equation 6.8 and the 
definition of lateral strain (i.e., εx = ∆d/d0) as follows 

 

  

 

∆d =  d0εx  = − d0ν εz = − (6 mm)(0.30) (2.0 ×  10-3)  

 

= –3.6 × 10-3 mm  (–1.4 × 10-4 in.) 
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 6.23 A cylindrical rod 100 mm long and having a diameter of 10.0 mm is to be deformed using a tensile 

load of 27,500 N.  It must not experience either plastic deformation or a diameter reduction of more than 7.5 × 10-3 

mm. Of the materials listed as follows, which are possible candidates?  Justify your choice(s). 

 

Material 
Modulus of Elasticity 

(GPa) 
Yield Strength 

(MPa) Poisson’s Ratio 

Aluminum alloy 70 200 0.33 

Brass alloy 101 300 0.34 

Steel alloy 207 400 0.30 

Titanium alloy 107 650 0.34 
 

  Solution 

 

 This problem asks that we assess the four alloys relative to the two criteria presented.  The first criterion is 

that the material not experience plastic deformation when the tensile load of 27,500 N is applied;  this means that 

the stress corresponding to this load not exceed the yield strength of the material.  Upon computing the stress 

 

  

 

σ =  
F
A0

=
F

π
d0

2

 
 
 

 
 
 

2
=

27,500  N

π
10 × 10−3 m

2

 

 
 

 

 
 
2

=  350 ×  106  N/m2 =  350 MPa  

 

Of the alloys listed, the Ti and steel alloys have yield strengths greater than 350 MPa. 

 Relative to the second criterion (i.e., that ∆d be less than 7.5 × 10-3 mm), it is necessary to calculate the 

change in diameter ∆d for these three alloys.  From Equation 6.8 

 

    

 

ν = −
εx
εz

= −

∆d
d0
σ
E

= −
E ∆d
σ d0

 

 

Now, solving for ∆d from this expression, 

 

    

 

∆d = −
ν σ d0

E
 

 

 For the steel alloy 
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∆d = −
(0.30)(350 MPa)(10 mm)

207 × 103 MPa
= − 5.1 ×  10-3  mm  

 

Therefore, the steel is a candidate. 

 For the Ti alloy 

 

  

 

∆d = −
(0.34)(350 MPa)(10 mm)

107 × 103 MPa
= −11.1 ×  10-3  mm 

 

Hence, the titanium alloy is not a candidate. 
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 6.24  A cylindrical rod 380 mm (15.0 in.) long, having a diameter of 10.0 mm (0.40 in.), is to be subjected 

to a tensile load. If the rod is to experience neither plastic deformation nor an elongation of more than 0.9 mm 

(0.035 in.) when the applied load is 24,500 N (5500 lb f), which of the four metals or alloys listed below are possible 

candidates? Justify your choice(s). 

 

Material 
Modulus of Elasticity 

(GPa) 
Yield Strength 

(MPa) 
Tensile Strength 

(MPa) 

Aluminum alloy 70 255 420 

Brass alloy 100 345 420 

Copper 110 250 290 

Steel alloy 207 450 550 
 

  Solution 

 
 This problem asks that we ascertain which of four metal alloys will not (1) experience plastic deformation, 

and (2) elongate more than 0.9 mm when a tensile load of 24,500 N is applied.  It is first necessary to compute the 

stress using Equation 6.1;  a material to be used for this application must necessarily have a yield strength greater 

than this value.  Thus, 

 

  

 

σ =
F
A0

=
24,500 N

π
10.0  ×  10−3 m

2

 

 
 

 

 
 
2

= 312 MPa  

 

Of the metal alloys listed, only brass and steel have yield strengths greater than this stress. 

 Next, we must compute the elongation produced in both brass and steel using Equations 6.2 and 6.5 in 

order to determine whether or not this elongation is less than 0.9 mm.  For brass 
 

  

 

∆l =  
σ l0
E

=  
(312 MPa)(380 mm)

100 ×  103 MPa
= 1.19  mm 

 

Thus, brass is not a candidate.  However, for steel 

 

  

 

∆l =
σ l0
E

=
(312 MPa)(380 mm)

207 ×  103 MPa
= 0.57  mm 

 

Therefore, of these four alloys, only steel satisfies the stipulated criteria. 
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 Tensile Properties 

 

 6.25  Figure 6.21 shows the tensile engineering stress–strain behavior for a steel alloy. 

 (a) What is the modulus of elasticity? 

 (b) What is the proportional limit? 

 (c) What is the yield strength at a strain offset of 0.002? 

 (d) What is the tensile strength? 
 

  Solution 

 Using the stress-strain plot for a steel alloy (Figure 6.21), we are asked to determine several of its 

mechanical characteristics. 

 (a)  The elastic modulus is just the slope of the initial linear portion of the curve;  or, from the inset and 

using Equation 6.10 

 

  

 

E =
σ2 − σ1

ε2 − ε1
=

(200 − 0)  MPa
(0.0010 − 0)

= 200 ×  103 MPa =  200 GPa  (29 ×  106  psi)  

 

The value given in Table 6.1 is 207 GPa. 

 (b)  The proportional limit is the stress level at which linearity of the stress-strain curve ends, which is 

approximately 300 MPa (43,500 psi). 

 (c)  The 0.002 strain offset line intersects the stress-strain curve at approximately 400 MPa (58,000 psi). 

 (d)  The tensile strength (the maximum on the curve) is approximately 515 MPa (74,700 psi). 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 6.26  A cylindrical specimen of a brass alloy having a length of 60 mm (2.36 in.) must elongate only 10.8 

mm (0.425 in.) when a tensile load of 50,000 N (11,240 lb f) is applied.  Under these circumstances, what must be 

the radius of the specimen?  Consider this brass alloy to have the stress-strain behavior shown in Figure 6.12. 
 

  Solution 

 We are asked to calculate the radius of a cylindrical brass specimen in order to produce an elongation of 

10.8 mm when a load of 50,000 N is applied.  It first becomes necessary to compute the strain corresponding to this 

elongation using Equation 6.2 as 

 

  

 

ε =
∆l
l0

=
10.8 mm
60 mm

=  0.18  

 

From Figure 6.12, a stress of 420 MPa (61,000 psi) corresponds to this strain.  Since for a cylindrical specimen, 

stress, force, and initial radius r0 are related as 

 

    

 

σ =
F

π r0
2

 

 

then 

 

  

 

r0 =  
F

π σ
=

50,000 N

π (420 × 106 N /m2)
= 0.0062 m = 6.2 mm   (0.24  in.)  
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 6.27 A load of 85,000 N (19,100 lb f) is applied to a cylindrical specimen of a steel alloy (displaying the 

stress–strain behavior shown in Figure 6.21) that has a cross-sectional diameter of 15 mm (0.59 in.). 

 (a) Will the specimen experience elastic and/or plastic deformation? Why? 

 (b) If the original specimen length is 250 mm (10 in.), how much will it increase in length when this load is 

applied? 
 

  Solution 

 This problem asks us to determine the deformation characteristics of a steel specimen, the stress-strain 

behavior for which is shown in Figure 6.21. 

 (a)  In order to ascertain whether the deformation is elastic or plastic, we must first compute the stress, then 

locate it on the stress-strain curve, and, finally, note whether this point is on the elastic or plastic region.  Thus, from 

Equation 6.1 

 

  

 

σ =
F
A0

=
85,000  N

π
15 × 10−3 m

2

 

 
 

 

 
 
2

= 481 ×  106  N/m2  = 481 MPa  (69,900  psi)  

 

The 481 MPa point is beyond the linear portion of the curve, and, therefore, the deformation will be both elastic and 

plastic. 

 (b)  This portion of the problem asks us to compute the increase in specimen length.  From the stress-strain 

curve, the strain at 481 MPa is approximately 0.0135.  Thus, from Equation 6.2 

 

  

 

∆l = ε l0 = (0.0135)(250 mm) = 3.4 mm   (0.135 in.)  
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 6.28  A bar of a steel alloy that exhibits the stress-strain behavior shown in Figure 6.21 is subjected to a 

tensile load; the specimen is 300 mm (12 in.) long, and of square cross section 4.5 mm (0.175 in.) on a side. 

 (a)  Compute the magnitude of the load necessary to produce an elongation of 0.45 mm (0.018 in.). 

 (b)  What will be the deformation after the load has been released? 
 

  Solution 

 (a)  We are asked to compute the magnitude of the load necessary to produce an elongation of 0.45 mm for 

the steel displaying the stress-strain behavior shown in Figure 6.21.  First, calculate the strain, and then the 

corresponding stress from the plot. 

 

  

 

ε =
∆l
l0

=
0.45 mm
300 mm

=1.5 ×  10−3  

 

This is near the end of the elastic region;  from the inset of Figure 6.21, this corresponds to a stress of about 300 

MPa (43,500 psi).  Now, from Equation 6.1 

 

    

 

F = σA0 = σb2  

 

in which b is the cross-section side length.  Thus, 

 

  

 

F = (300 × 106  N/m2)(4.5 × 10-3  m)2 = 6075 N  (1366 lbf )  

 

 (b)  After the load is released there will be no deformation since the material was strained only elastically. 
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 6.29  A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 

2.000 in. (50.800 mm) is pulled in tension.  Use the load–elongation characteristics tabulated below to complete 

parts (a) through (f). 

 

Load Length 

N lbf mm in. 

0 0 50.800 2.000 

7,330 1,650 50.851 2.002 

15,100 3,400 50.902 2.004 

23,100 5,200 50.952 2.006 

30,400 6,850 51.003 2.008 

34,400 7,750 51.054 2.010 

38,400 8,650 51.308 2.020 

41,300 9,300 51.816 2.040 

44,800 10,100 52.832 2.080 

46,200 10,400 53.848 2.120 

47,300 10,650 54.864 2.160 

47,500 10,700 55.880 2.200 

46,100 10,400 56.896 2.240 

44,800 10,100 57.658 2.270 

42,600 9,600 58.420 2.300 

36,400 8,200 59.182 2.330 

Fracture 
 

 (a) Plot the data as engineering stress versus engineering strain. 

 (b) Compute the modulus of elasticity. 

 (c) Determine the yield strength at a strain offset of 0.002. 

 (d) Determine the tensile strength of this alloy. 

 (e) What is the approximate ductility, in percent elongation? 

 (f) Compute the modulus of resilience. 
 

  Solution 

 This problem calls for us to make a stress-strain plot for aluminum, given its tensile load-length data, and 

then to determine some of its mechanical characteristics. 
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 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends to just beyond the elastic region of deformation. 

 

 

 

 

 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 

 

  

 

E =
∆ σ
∆ ε

=
200 MPa − 0 MPa

0.0032 − 0
= 62.5 ×  103 MPa = 62.5 GPa  (9.1 ×  106  psi)  

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 285 MPa (41,000 psi ). 

 (d)  The tensile strength is approximately 370 MPa (54,000 psi), corresponding to the maximum stress on 

the complete stress-strain plot. 

 (e)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  

The total fracture strain at fracture is 0.165;  subtracting out the elastic strain (which is about 0.005) leaves a plastic 

strain of 0.160.  Thus, the ductility is about 16%EL. 

 (f)  From Equation 6.14, the modulus of resilience is just 

 

    

 

Ur =
σ y

2

2E
 

 

which, using data computed above gives a value of 

 

  

 

U r  =
(285 MPa)2

(2)(62.5 × 103 MPa)
= 0.65 MN/m2 = 0.65 ×  106  N/m2  =  6.5 ×  105  J/m3   (93.8 in. - lbf /in.3) 
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 6.30  A specimen of ductile cast iron having a rectangular cross section of dimensions 4.8 mm × 15.9 mm 

(3/16 in. × 5/8 in.) is deformed in tension.  Using the load-elongation data tabulated below, complete problems (a) 

through (f). 

 

Load Length 

N lbf mm in. 

0 0 75.000 2.953 

4,740 1,065 75.025 2.954 

9,140 2,055 75.050 2.955 

12,920 2,900 75.075 2.956 

16,540 3,720 75.113 2.957 

18,300 4,110 75.150 2.959 

20,170 4,530 75.225 2.962 

22,900 5,145 75.375 2.968 

25,070 5,635 75.525 2.973 

26,800 6,025 75.750 2.982 

28,640 6,440 76.500 3.012 

30,240 6,800 78.000 3.071 

31,100 7,000 79.500 3.130 

31,280 7,030 81.000 3.189 

30,820 6,930 82.500 3.248 

29,180 6,560 84.000 3.307 

27,190 6,110 85.500 3.366 

24,140 5,430 87.000 3.425 

18,970 4,265 88.725 3.493 

Fracture 

 

 (a) Plot the data as engineering stress versus engineering strain. 

 (b) Compute the modulus of elasticity. 

 (c) Determine the yield strength at a strain offset of 0.002. 

 (d) Determine the tensile strength of this alloy. 

 (e) Compute the modulus of resilience. 

 (f) What is the ductility, in percent elongation? 
 

  Solution 
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 This problem calls for us to make a stress-strain plot for a ductile cast iron, given its tensile load-length 

data, and then to determine some of its mechanical characteristics. 

 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends just beyond the elastic region of deformation. 

 

 

 

 

 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
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E =
∆ σ
∆ ε

=
100 MPa − 0 MPa

0.0005 − 0
=  200 ×  103 MPa = 200 GPa   (29 ×  106  psi)  

 

 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 280 MPa (40,500 psi). 

 (d)  The tensile strength is approximately 410 MPa (59,500 psi), corresponding to the maximum stress on 

the complete stress-strain plot. 

 (e)  From Equation 6.14, the modulus of resilience is just 

 

    

 

Ur  =
σ y

2

2 E
 

 

which, using data computed above, yields a value of 

 

  

 

U r  =  
(280 × 106 N /m2)2

(2)(200 × 109 N /m2)
= 1.96 ×  105 J/m3 (28.3 in. - lbf /in.3)  

 

 (f)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  The 

total fracture strain at fracture is 0.185;  subtracting out the elastic strain (which is about 0.001) leaves a plastic 

strain of 0.184.  Thus, the ductility is about 18.4%EL. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 6.31  For the titanium alloy, whose stress strain behavior may be observed in the “Tensile Tests” module 

of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the two Ti-6Al-4V alloys presented in Table B.4 of Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the Ti alloy.  

The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 0.002 with 

this curve is at approximately 720 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 1000 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 12%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.5%);  this gives a value of about 11.5%EL. 

 

 From Table B.4 in Appendix B, yield strength, tensile strength, and percent elongation values for the 

anneal Ti-6Al-4V are 830 MPa, 900 MPa, and 14%EL, while for the solution heat treated and aged alloy, the 

corresponding values are 1103 MPa, 1172 MPa, and 10%EL.  Thus, tensile strength and percent elongation values 

for the VMSE alloy are slightly lower than for the annealed material in Table B.4 (720 vs 830 MPa, and 11.5 vs. 14 

%EL), whereas the tensile strength is slightly higher (1000 vs. 900 MPa). 
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 6.32  For the tempered steel alloy, whose stress strain behavior may be observed in the “Tensile Tests” 

module of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the oil-quenched and tempered 4140 and 4340 steel alloys presented in 

Table B.4 of Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the tempered 

steel alloy.  The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 

0.002 with this curve is at approximately 1430 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 1656 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 14.8%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.8%);  this gives a value of about 14.0%EL. 

 

 For the oil-quenched and tempered 4140 and 4340 steel alloys, yield strength values presented in Table B.4 

of Appendix B are 1570 MPa and 1620 MPa, respectively;  these values are somewhat larger than the 1430 MPa for 

the tempered steel alloy of VMSE.  Tensile strength values for these 4140 and 4340 alloys are, respectively 1720 

MPa and 1760 MPa (compared to 1656 MPa for the VMSE steel).  And, finally, the respective ductilities for the 

4140 and 4340 alloys are 11.5%EL and 12%EL, which are slightly lower than the 14%EL value for the VMSE steel. 
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 6.33  For the aluminum alloy, whose stress strain behavior may be observed in the “Tensile Tests” module 

of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the 2024 aluminum alloy (T351 temper) presented in Table B.4 of 

Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the aluminum 

alloy.  The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 0.002 

with this curve is at approximately 300 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 484 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 22.4%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.5%);  this gives a value of about 21.9%EL. 

 

 For the 2024 aluminum alloy (T351 temper), the yield strength value presented in Table B.4 of Appendix 

B is 325, which is slightly larger than the 300 MPa for the aluminum alloy of VMSE.  The tensile strength value for 

the 2024-T351 is 470 MPa (compared to 484 MPa for the VMSE alloy).  And, finally, the ductility for 2024-T351 is  

20%EL, which is about the same as for the VMSE aluminum (21.9%EL). 
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 6.34  For the (plain) carbon steel alloy, whose stress strain behavior may be observed in the “Tensile 

Tests” module of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength, 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the plain carbon 

steel alloy.  Inasmuch as the stress-strain curve displays the yield point phenomenon, we take the yield strength as 

the lower yield point, which, for this steel, is about 225 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 274 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 43.0%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.6%);  this gives a value of about 42.4%EL. 
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 6.35  A cylindrical metal specimen having an original diameter of 12.8 mm (0.505 in.) and gauge length of 

50.80 mm (2.000 in.) is pulled in tension until fracture occurs.  The diameter at the point of fracture is 6.60 mm 

(0.260 in.), and the fractured gauge length is 72.14 mm (2.840 in.).  Calculate the ductility in terms of percent 

reduction in area and percent elongation. 

 

  Solution 

 This problem calls for the computation of ductility in both percent reduction in area and percent 

elongation.  Percent reduction in area is computed using Equation 6.12 as 

 

  

 

%RA =

π
d0

2

 
 
 

 
 
 
2

− π
d f

2

 

 
 

 

 
 

2

π
d0

2

 
 
 

 
 
 
2

×  100  

 

in which d0 and df  are, respectively, the original and fracture cross-sectional areas.  Thus, 

 

 

%RA =
π

12.8 mm
2

 
 
 

 
 
 
2

− π
6.60 mm

2

 
 
 

 
 
 

2

π
12.8 mm

2

 
 
 

 
 
 
2

×  100 = 73.4% 

 

While, for percent elongation, we use Equation 6.11 as 

 

  

 

%EL =
l f − l0

l0

 

 
 

 

 
 ×  100  

 

 

=
72.14 mm − 50.80 mm

50.80 mm
×  100 =  42% 
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 6.36  Calculate the moduli of resilience for the materials having the stress–strain behaviors shown in 

Figures 6.12 and 6.21. 

 

  Solution 

 This problem asks us to calculate the moduli of resilience for the materials having the stress-strain 

behaviors shown in Figures 6.12 and 6.21.  According to Equation 6.14, the modulus of resilience Ur is a function 

of the yield strength and the modulus of elasticity as 

 

    

 

Ur  =
σ y

2

2 E
 

 
The values for σy and E for the brass in Figure 6.12 are determined in Example Problem 6.3 as 250 MPa (36,000 

psi) and 93.8 GPa (13.6 × 106 psi), respectively.  Thus 

 

  

 

U r  =
(250 MPa)2

(2)(93.8 × 103 MPa)
=  3.32 ×  105  J/m3  (48.2 in. - lbf /in.3) 

 

 Values of the corresponding parameters for the steel alloy (Figure 6.21) are determined in Problem 6.25 as 

400 MPa (58,000 psi) and 200 GPa (29 × 106 psi), respectively, and therefore 

 

  

 

U r  =
(400 MPa)2

(2)(200 × 103 MPa)
= 4.0 ×  105  J/m3    (58  in. - lbf /in.3)  



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 6.37  Determine the modulus of resilience for each of the following alloys: 

 

 Yield Strength 

Material MPa psi 

Steel alloy 550 80,000 

Brass alloy 350 50,750 

Aluminum alloy 250 36,250 

Titanium alloy 800 116,000 

 

Use modulus of elasticity values in Table 6.1. 
 

  Solution 

 The moduli of resilience of the alloys listed in the table may be determined using Equation 6.14.  Yield 

strength values are provided in this table, whereas the elastic moduli are tabulated in Table 6.1. 

 For steel 

 

    

 

Ur  =
σ y

2

2 E
 

 

 

=
(550 × 106 N /m2)2

(2)(207 × 109 N /m2)
= 7.31 ×  105  J/m3 (107  in. - lbf /in.3)  

 

 For the brass 

 

  

 

U r  =
(350 × 106 N /m2)2

(2)(97 × 109 N /m2)
= 6.31 ×  105  J/m3  (92.0 in. - lbf /in.3)  

 

 For the aluminum alloy 

 

  

 

U r  =
(250 × 106 N /m2)2

(2)(69 × 109 N /m2)
= 4.53 ×  105  J/m3  (65.7 in. - lbf /in.3)  

 

 And, for the titanium alloy 

 

  

 

U r  =
(800 × 106 N /m2)2

(2)(107 × 109 N /m2)
= 30.0 ×  105  J/m3 (434  in. - lbf /in.3)  
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 6.38 A brass alloy to be used for a spring application must have a modulus of resilience of at least 0.75 

MPa (110 psi). What must be its minimum yield strength? 

 

  Solution 

 The modulus of resilience, yield strength, and elastic modulus of elasticity are related to one another 

through Equation 6.14;  the value of E for brass given in Table 6.1 is 97 GPa.  Solving for σy from this expression 

yields 

 

  

 

σ y  = 2U rE = (2) (0.75 MPa)(97 × 103 MPa)  

 

= 381 MPa  (55,500 psi) 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 True Stress and Strain 

 

 6.39  Show that Equations 6.18a and 6.18b are valid when there is no volume change during deformation. 
 

  Solution 

 To show that Equation 6.18a is valid, we must first rearrange Equation 6.17 as 

 

    

 

Ai  =
A0 l0

li
 

 

Substituting this expression into Equation 6.15 yields 

 

  

 

σT  =
F
Ai

=
F
A0

li
l0

 

 
 

 

 
 = σ

li
l0

 

 
 

 

 
  

 

But, from Equation 6.2 

 

    

 

ε =
li
l0

−  1 

 

Or 

 

    

 

li
l0

= ε +  1 

Thus, 

 

    

 

σT  = σ
li
l0

 

 
  

 

 
  = σ (ε +  1)  

 

 For Equation 6.18b 

 

    

 

εT  = ln (1 +  ε)  

 

is valid since, from Equation 6.16 
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εT =  ln
li
l0

 

 
 

 

 
  

 

and 

 

    

 

li
l0

= ε +  1 

from above. 
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 6.40 Demonstrate that Equation 6.16, the expression defining true strain, may also be represented by 

 

∈ T = ln 

 

A0

Ai

 

 
 

 

 
  

when specimen volume remains constant during deformation. Which of these two expressions is more valid during 

necking? Why? 
 

  Solution 

 This problem asks us to demonstrate that true strain may also be represented by 

 

∈ T = ln 

 

A0

Ai

 

 
 

 

 
  

 

 

Rearrangement of Equation 6.17 leads to 

 

    

 

li
l0

=
A0
Ai

 

 

Thus, Equation 6.16 takes the form 

 

∈ T 
  

 

= ln
li
l0

 

 
 

 

 
 = ln

A0

Ai

 

 
 

 

 
  

 

 The expression ∈ T = ln 

 

A0

Ai

 

 
 

 

 
  is more valid during necking because Ai is taken as the area of the neck.  
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 6.41  Using the data in Problem 6.28 and Equations 6.15, 6.16, and 6.18a, generate a true stress–true 

strain plot for aluminum. Equation 6.18a becomes invalid past the point at which necking begins; therefore, 

measured diameters are given below for the last four data points, which should be used in true stress computations. 

 

Load Length Diameter 

N lbf mm in. mm in. 

46,100 10,400 56.896 2.240 11.71 0.461 

42,400 10,100 57.658 2.270 10.95 0.431 

42,600 9,600 58.420 2.300 10.62 0.418 

36,400 8,200 59.182 2.330 9.40 0.370 

 
  Solution 

 These true stress-strain data are plotted below. 
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 6.42  A tensile test is performed on a metal specimen, and it is found that a true plastic strain of 0.20 is 

produced when a true stress of 575 MPa (83,500 psi) is applied; for the same metal, the value of K in Equation 6.19 

is 860 MPa (125,000 psi).  Calculate the true strain that results from the application of a true stress of 600 MPa 

(87,000 psi). 

 
  Solution 

 It first becomes necessary to solve for n in Equation 6.19.  Taking logarithms of this expression and after 

rearrangement we have 

 

    

 

n =
log σT − log K

log εT
 

 

And, incorporating values of the parameters provided in the problem statement leads to 

 

 

n =  
log (575 MPa) − log (860 MPa)

log (0.20)
= 0.250 

 
Expressing εT as the dependent variable (Equation 6.19), and then solving for its value from the data stipulated in 

the problem statement, leads to 

 

  

 

εT  =
σT

K

 
 
 

 
 
 
1/n

=
600 MPa
860 MPa

 
 
 

 
 
 
1/0.250

=  0.237 
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 6.43  For some metal alloy, a true stress of 415 MPa (60,175 psi) produces a plastic true strain of 0.475.  

How much will a specimen of this material elongate when a true stress of 325 MPa (46,125 psi) is applied if the 

original length is 300 mm (11.8 in.)?  Assume a value of 0.25 for the strain-hardening exponent n. 

 
  Solution 

 Solution of this problem requires that we utilize Equation 6.19.  It is first necessary to solve for K from the 

given true stress and strain.  Rearrangement of this equation yields 

 

  

 

K =
σT

(εT )n
=

415 MPa

(0.475)0.25
= 500  MPa  (72,500 psi)  

 

Next we must solve for the true strain produced when a true stress of 325 MPa is applied, also using Equation 6.19.  

Thus 

 

  

 

εT =
σT

K

 
 
 

 
 
 
1/n

=
325 MPa
500 MPa

 
 
 

 
 
 
1/0.25

= 0.179 = ln
li
l0

 

 
 

 

 
  

 
Now, solving for li gives 

 

  

 

li = l0e0.179 = (300  mm) e0.179 = 358.8  mm  (14.11 in.)  

 

And finally, the elongation ∆l is just 

 

  

 

∆l = li −  l0 = 358.8  mm − 300  mm = 58.8  mm  (2.31  in.)  
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 6.44  The following true stresses produce the corresponding true plastic strains for a brass alloy: 

 

True Stress (psi) True Strain 

50,000 0.10 

60,000 0.20 

 

What true stress is necessary to produce a true plastic strain of 0.25? 

 
  Solution 

 For this problem, we are given two values of εT and σT,
 
from which we are asked to calculate the true 

stress which produces a true plastic strain of 0.25.  Employing Equation 6.19, we may set up two simultaneous 

equations with two unknowns (the unknowns being K and n), as 

 

  

 

log (50,000 psi) =  log K +  n log (0.10)  

 

  

 

log (60,000 psi) =  log K +  n log (0.20)  

 

Solving for n from these two expressions yields 

 

  

 

n =
log (50,000) − log (60,000)

log (0.10) − log (0.20)
= 0.263 

 

and for K 

log K = 4.96 or K = 104.96 =  91,623 psi 

 
Thus, for εT = 0.25 

 

  

 

σT  =  K (εT )n = (91,623 psi)(0.25)0.263 = 63,700  psi   (440 MPa)  



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 6.45  For a brass alloy, the following engineering stresses produce the corresponding plastic engineering 

strains, prior to necking: 

 

Engineering Stress (MPa) Engineering Strain 

235 0.194 

250 0.296 

 

On the basis of this information, compute the engineering stress necessary to produce an engineering strain of 0.25. 

 
  Solution 

 For this problem we first need to convert engineering stresses and strains to true stresses and strains so that 
the constants K and n in Equation 6.19 may be determined.  Since σT = σ(1 + ε) then 

 

  

 

σT 1 = (235 MPa)(1 + 0.194) = 280  MPa  

 

  

 

σT 2 = (250  MPa)(1 + 0.296) = 324  MPa  

 
Similarly for strains, since εT = ln(1 + ε) then 

 

  

 

εT 1 = ln (1 + 0.194) = 0.177  

 

  

 

εT 2 = ln (1 + 0.296) = 0.259  

 

Taking logarithms of Equation 6.19, we get 

 

    

 

log σT = log K +  n log εT  

 

which allows us to set up two simultaneous equations for the above pairs of true stresses and true strains, with K and 

n as unknowns.  Thus 

 

  

 

log (280) = log K +  n log (0.177)  

 

  

 

log (324) = log K +  n log (0.259)  

 

Solving for these two expressions yields K = 543 MPa and n = 0.383. 
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 Now, converting ε = 0.25 to true strain 
 

  

 

εT  =  ln (1 +  0.25) =  0.223 

 
The corresponding σT to give this value of εT (using Equation 6.19) is just 

 

  

 

σT  = KεT
n = (543 MPa)(0.223)0.383 = 306  MPa 

 
Now converting this value of σT to an engineering stress using Equation 6.18a gives 

 

  

 

σ =
σT

1 + ε
=

306 MPa
1 + 0.25

= 245 MPa  
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 6.46 Find the toughness (or energy to cause fracture) for a metal that experiences both elastic and plastic 

deformation.  Assume Equation 6.5 for elastic deformation, that the modulus of elasticity is 172 GPa (25 × 106 psi), 

and that elastic deformation terminates at a strain of 0.01.  For plastic deformation, assume that the relationship 

between stress and strain is described by Equation 6.19, in which the values for K and n are 6900 MPa (1 × 106 psi) 

and 0.30, respectively. Furthermore, plastic deformation occurs between strain values of 0.01 and 0.75, at which 

point fracture occurs. 

 
  Solution 

 This problem calls for us to compute the toughness (or energy to cause fracture).  The easiest way to do 

this is to integrate both elastic and plastic regions, and then add them together. 

 

    
Toughness = σ dε∫  

 

  

 

=  Eεd ε
0

0.01

∫ +  Kεn d ε
0.01

0.75

∫  

 

  

 

=  
Eε2

2 0

0.01

+
K

(n + 1)
ε(n+1)

0.01

0.75

 

 

 

=  
172 × 109  N/m2

2
(0.01)2 +

6900 × 106 N/m2

(1.0 + 0.3)
(0.75)1.3 −  (0.01)1.3[ ] 

 
=  3.65 × 109 J/m3  (5.29 × 105 in.-lbf/in.3) 
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 6.47  For a tensile test, it can be demonstrated that necking begins when 
 

 
  

 

dσT

dεT
= σT  (6.26) 

Using Equation 6.19, determine the value of the true strain at this onset of necking. 

 
  Solution 

 Let us take the derivative of Equation 6.19, set it equal to σT, and then solve for εT from the resulting 

expression.  Thus 

 

    

 

d K (εT )n[ ]
d εT

= Kn (εT )(n−1) =  σT  

 

However, from Equation 6.19, σT = K(εT)n, which, when substituted into the above expression, yields 

 

    

 

Kn (εT )(n - 1) =  K (εT )n  

 
Now solving for εT from this equation leads to 

 
εT = n 

 

as the value of the true strain at the onset of necking. 
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 6.48 Taking the logarithm of both sides of Equation 6.19 yields 

 

 log σT = log K + n log ∈ T (6.27) 

 

Thus, a plot of log σT versus log ∈ T in the plastic region to the point of necking should yield a straight line having 

a slope of n and an intercept (at log σT = 0) of log K. 

 Using the appropriate data tabulated in Problem 6.29, make a plot of log σT versus log ∈ T and determine 

the values of n and K. It will be necessary to convert engineering stresses and strains to true stresses and strains 

using Equations 6.18a and 6.18b. 

 
  Solution 

 This problem calls for us to utilize the appropriate data from Problem 6.29 in order to determine the values 
of n and K for this material.  From Equation 6.27 the slope and intercept of a log σT versus log εT plot will yield n 

and log K, respectively.  However, Equation 6.19 is only valid in the region of plastic deformation to the point of 

necking;  thus, only the 7th, 8th, 9th, and 10th data points may be utilized.  The log-log plot with these data points is 

given below. 

 

 

 

The slope yields a value of 0.136 for n, whereas the intercept gives a value of 2.7497 for log K, and thus K = 

102.7497 = 562 MPa. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 Elastic Recovery After Plastic Deformation 

 

 6.49  A cylindrical specimen of a brass alloy 7.5 mm (0.30 in.) in diameter and 90.0 mm (3.54 in.) long is 

pulled in tension with a force of 6000 N (1350 lb f);  the force is subsequently released. 

 (a) Compute the final length of the specimen at this time. The tensile stress–strain behavior for this alloy is 

shown in Figure 6.12. 

 (b) Compute the final specimen length when the load is increased to 16,500 N (3700 lb f) and then released. 

 
  Solution 

 (a)  In order to determine the final length of the brass specimen when the load is released, it first becomes 

necessary to compute the applied stress using Equation 6.1;  thus 

 

  

 

σ =
F
A0

=
F

π
d0

2

 
 
 

 
 
 
2

=
6000 N

π
7.5 × 10−3 m

2

 

 
 

 

 
 

2
= 136  MPa (19,000  psi)  

 

Upon locating this point on the stress-strain curve (Figure 6.12), we note that it is in the linear, elastic region;  

therefore, when the load is released the specimen will return to its original length of 90 mm (3.54 in.). 

 (b)  In this portion of the problem we are asked to calculate the final length, after load release, when the 
load is increased to 16,500 N (3700 lbf).  Again, computing the stress 

 

 

σ =
16,500 N

π
7.5 × 10−3 m

2

 

 
 

 

 
 
2

= 373 MPa  (52,300 psi)  

 

The point on the stress-strain curve corresponding to this stress is in the plastic region.  We are able to estimate the 

amount of permanent strain by drawing a straight line parallel to the linear elastic region;  this line intersects the 
strain axis at a strain of about 0.08 which is the amount of plastic strain.  The final specimen length li may be 

determined from a rearranged form of Equation 6.2 as 

 
li = l0(1 + ε) = (90 mm)(1 + 0.08) = 97.20 mm (3.82 in.) 
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 6.50  A steel alloy specimen having a rectangular cross section of dimensions 12.7 mm × 6.4 mm (0.5 in. × 

0.25 in.) has the stress–strain behavior shown in Figure 6.21. If this specimen is subjected to a tensile force of 

38,000 N (8540 lb f) then 

 (a) Determine the elastic and plastic strain values. 

 (b) If its original length is 460 mm (18.0 in.), what will be its final length after the load in part (a) is 

applied and then released? 

 
  Solution 

 (a)  We are asked to determine both the elastic and plastic strain values when a tensile force of 38,000 N 

(8540 lbf) is applied to the steel specimen and then released.  First it becomes necessary to determine the applied 

stress using Equation 6.1;  thus 

 

    

 

σ =
F
A0

=
F

b0d0
 

 
where b0 and d0 are cross-sectional width and depth (12.7 mm and 6.4 mm, respectively).  Thus 

 

 

σ =
38,000  N

(12.7 × 10−3 m)(6.4 × 10−3 m)
= 468 × 106 N /m2 = 468  MPa  (68,300 psi)  

 

From Figure 6.21, this point is in the plastic region so the specimen will be both elastic and plastic strains.  The total 
strain at this point, εt, is about 0.010.  We are able to estimate the amount of permanent strain recovery εe from 

Hooke's law, Equation 6.5 as 

 

    

 

εe =
σ
E

 

 

And, since E = 207 GPa for steel (Table 6.1) 

 

  

 

εe =
468  MPa

207 × 103 MPa
= 0.00226 

 
The value of the plastic strain, εp is just the difference between the total and elastic strains;  that is 

 
εp = εt – εe = 0.010 – 0.00226 = 0.00774 
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 (b)  If the initial length is 460 mm (18.0 in.) then the final specimen length li may be determined from a 

rearranged form of Equation 6.2 using the plastic strain value as 

 
li = l0(1 + εp) = (460 mm)(1 + 0.00774) = 463.6 mm (18.14 in.) 
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 Hardness 

 

 6.51  (a) A 10-mm-diameter Brinell hardness indenter produced an indentation 1.62 mm in diameter in a 

steel alloy when a load of 500 kg was used. Compute the HB of this material. 

 (b) What will be the diameter of an indentation to yield a hardness of 450 HB when a 500 kg load is used? 

 
  Solution 

 (a)  We are asked to compute the Brinell hardness for the given indentation.  It is necessary to use the 

equation in Table 6.5 for HB, where P = 500 kg, d = 1.62 mm, and D = 10 mm.  Thus, the Brinell hardness is 

computed as 

 

  

 

HB =
2P

π D D − D2 − d2[ ]
 

 

 

=  
(2)(500 kg)

(π)(10 mm) 10 mm − (10 mm)2 − (1.62 mm)2[ ]
= 241  

 

 (b)  This part of the problem calls for us to determine the indentation diameter d which will yield a 450 HB 

when P = 500 kg.  Solving for d from the equation in Table 6.5 gives 

 

    

 

d = D2 − D −
2P

(HB)π D

 

 
 

 

 
 
2

 

 

 

= (10mm)2 − 10 mm −
(2)(500 kg)

(450)(π)(10 mm)

 

  
 

  
2

= 1.19 mm  
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 6.52  Estimate the Brinell and Rockwell hardnesses for the following: 

 (a) The naval brass for which the stress–strain behavior is shown in Figure 6.12. 

 (b) The steel alloy for which the stress–strain behavior is shown in Figure 6.21. 

 
  Solution 

 This problem calls for estimations of Brinell and Rockwell hardnesses. 

 (a)  For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the tensile 

strength is 450 MPa (65,000 psi).  From Figure 6.19, the hardness for brass corresponding to this tensile strength is 

about 125 HB or 70 HRB. 

 (b)  The steel alloy (Figure 6.21) has a tensile strength of about 515 MPa (74,700 psi) [Problem 6.25(d)].  

This corresponds to a hardness of about 160 HB or ~90 HRB from the line for steels in Figure 6.19.  Alternately, 

using Equation 6.20a 

 

 

HB =
TS(MPa)

3.45
=

515 MPa
3.45

= 149  
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 6.53  Using the data represented in Figure 6.19, specify equations relating tensile strength and Brinell 

hardness for brass and nodular cast iron, similar to Equations 6.20a and 6.20b for steels. 

 
  Solution 

 These equations, for a straight line, are of the form 

 

TS = C + (E)(HB) 

 

where TS is the tensile strength, HB is the Brinell hardness, and C and E are constants, which need to be 

determined. 

 One way to solve for C and E is analytically--establishing two equations using TS and HB data points on 

the plot, as 

 
(TS)1 = C + (E)(BH)1 

(TS)2 = C + (E)(BH)2 

 

Solving for E from these two expressions yields 

 

    

 

E =
(TS)1 − (TS)2

(HB)2 − (HB)1
 

 
For nodular cast iron, if we make the arbitrary choice of (HB)1 and (HB)2 as 200 and 300, respectively, then, from 

Figure 6.19, (TS)1 and (TS)2 take on values of 600 MPa (87,000 psi) and 1100 MPa (160,000 psi), respectively.  

Substituting these values into the above expression and solving for E gives 

 

    

 

E =
600  MPa − 1100 MPa

200  HB − 300  HB
= 5.0  MPa/HB  (730 psi/HB)  

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 600 MPa - (5.0 MPa/HB)(200 HB) = – 400 MPa (– 59,000 psi) 

 

Thus, for nodular cast iron, these two equations take the form 
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TS(MPa) = – 400 + 5.0 x HB 

TS(psi) = – 59,000 + 730 x HB 

 
 Now for brass, we take (HB)1 and (HB)2 as 100 and 200, respectively, then, from Figure 7.31, (TS)1 and 

(TS)2 take on values of 370 MPa (54,000 psi) and 660 MPa (95,000 psi), respectively.  Substituting these values 

into the above expression and solving for E gives 

 

    

 

E =
370 MPa − 660 MPa
100  HB − 200  HB

= 2.9 MPa/HB (410  psi/HB) 

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 370 MPa – (2.9 MPa/HB)(100 HB) = 80 MPa  (13,000 psi) 

 

Thus, for brass these two equations take the form 

 

TS(MPa) = 80 + 2.9 x HB 

TS(psi) = 13,000 + 410 x HB 
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 Variability of Material Properties 

 

 6.54  Cite five factors that lead to scatter in measured material properties. 

 
  Solution 

 The five factors that lead to scatter in measured material properties are the following:  (1) test method;  (2) 

variation in specimen fabrication procedure;  (3) operator bias;  (4) apparatus calibration;  and (5) material 

inhomogeneities and/or compositional differences. 
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 6.55  Below are tabulated a number of Rockwell B hardness values that were measured on a single steel 

specimen. Compute average and standard deviation hardness values. 

 

83.3 80.7 86.4 

88.3 84.7 85.2 

82.8 87.8 86.9 

86.2 83.5 84.4 

87.2 85.5 86.3 

 
  Solution 

 The average of the given hardness values is calculated using Equation 6.21 as 

 

  

 

HRB =  

HRBi
i=1

15

∑
15

 

 

 

=
83.3 + 88.3 + 82.8 . . . . + 86.3

15
= 85.3 

 

 And we compute the standard deviation using Equation 6.22 as follows: 

 

  

 

s =  

HRBi − HRB( )2

i=1

15

∑
15 − 1

 

 

 

=
(83.3 − 85.3)2 + (88.3 − 85.3)2 + . . . . + (86.3 − 85.3)2

14

 

 
 

 

 
 
1/2

  

 

 

=
60.31

14
= 2.08  
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 Design/Safety Factors 

 

 6.56  Upon what three criteria are factors of safety based? 

 
  Solution 

 The criteria upon which factors of safety are based are (1) consequences of failure, (2) previous 

experience, (3) accuracy of measurement of mechanical forces and/or material properties, and (4) economics. 
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 6.57  Determine working stresses for the two alloys that have the stress–strain behaviors shown in Figures 

6.12 and 6.21. 

 
  Solution 

 The working stresses for the two alloys the stress-strain behaviors of which are shown in Figures 6.12 and 

6.21 are calculated by dividing the yield strength by a factor of safety, which we will take to be 2.  For the brass 

alloy (Figure 6.12), since σy = 250 MPa (36,000 psi), the working stress is 125 MPa (18,000 psi), whereas for the 

steel alloy (Figure 6.21), σy = 400 MPa (58,000 psi), and, therefore, σw = 200 MPa (29,000 psi). 
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DESIGN PROBLEMS 

 

 6.D1  A large tower is to be supported by a series of steel wires.  It is estimated that the load on each wire 

will be 11,100 N (2500 lb f).  Determine the minimum required wire diameter assuming a factor of safety of 2 and a 

yield strength of 1030 MPa (150,000 psi). 

 
  Solution 

 For this problem the working stress is computed using Equation 6.24 with N = 2, as 

 

  

 

σw =
σ y

2
=

1030 MPa
2

= 515 MPa  (75,000 psi )  

 
Since the force is given, the area may be determined from Equation 6.1, and subsequently the original diameter d0 

may be calculated as 

 

    

 

A0 =
F

σw
= π

d0
2

 

 
 

 

 
 
2

 

 

And 

 

  

 

d0 =
4F

π σw
=

(4)(11,100 N)

π (515 × 106 N /m2)
 

 

= 5.23 × 10-3 m = 5.23 mm (0.206 in.) 
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 6.D2  (a) Gaseous hydrogen at a constant pressure of 1.013 MPa (10 atm) is to flow within the inside of a 

thin-walled cylindrical tube of nickel that has a radius of 0.1 m.  The temperature of the tube is to be 300°C and the 

pressure of hydrogen outside of the tube will be maintained at 0.01013 MPa (0.1 atm). Calculate the minimum wall 

thickness if the diffusion flux is to be no greater than 1 × 10-7 mol/m2-s.  The concentration of hydrogen in the 

nickel, CH (in moles hydrogen per m3 of Ni) is a function of hydrogen pressure, PH2
 (in MPa) and absolute 

temperature (T) according to 

 

 

 

CH = 30.8 pH2
exp −

12.3 kJ/mol
RT

 
 
 

 
 
  (6.28) 

Furthermore, the diffusion coefficient for the diffusion of H in Ni depends on temperature as 

 

 

 

DH = 4.76 ×  10−7 exp −
39.56  kJ/mol

RT

 
 
 

 
 
  (6.29) 

 (b) For thin-walled cylindrical tubes that are pressurized, the circumferential stress is a function of the 

pressure difference across the wall (Δp), cylinder radius (r), and tube thickness (Δx) as 

 

 
    

 

σ =
r ∆p
4 ∆x

 (6.30) 

Compute the circumferential stress to which the walls of this pressurized cylinder are exposed. 

 (c) The room-temperature yield strength of Ni is 100 MPa (15,000 psi) and, furthermore, σy diminishes 

about 5 MPa for every 50°C rise in temperature. Would you expect the wall thickness computed in part (b) to be 

suitable for this Ni cylinder at 300°C?  Why or why not? 

 (d) If this thickness is found to be suitable, compute the minimum thickness that could be used without any 

deformation of the tube walls. How much would the diffusion flux increase with this reduction in thickness? On the 

other hand, if the thickness determined in part (c) is found to be unsuitable, then specify a minimum thickness that 

you would use. In this case, how much of a diminishment in diffusion flux would result? 

 
  Solution 

 (a)  This portion of the problem asks for us to compute the wall thickness of a thin-walled cylindrical Ni 

tube at 300°C through which hydrogen gas diffuses.  The inside and outside pressures are, respectively, 1.1013 and 

0.01013 MPa, and the diffusion flux is to be no greater than 1 × 10-7 mol/m2-s.  This is a steady-state diffusion 

problem, which necessitates that we employ Equation 5.3.  The concentrations at the inside and outside wall faces 

may be determined using Equation 6.28, and, furthermore, the diffusion coefficient is computed using Equation 

6.29.  Solving for ∆x (using Equation 5.3) 

 

    

 

∆x = −
D ∆C

J
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=  −  
1

1 × 10−7 mol/m2 − s
×  

 

 

(4.76 ×  10-7) exp −
39,560  J /mol

(8.31 J/mol - K)(300 + 273 K)

 

 
 

 

 
 ×  

 

 

(30.8) exp −
12,300 J/mol

(8.31 J/mol - K)(300 + 273 K)

 

 
 

 

 
  0.01013 MPa  −  1.1013 MPa( ) 

 

= 0.0025 m = 2.5 mm 

 

 (b)  Now we are asked to determine the circumferential stress: 

 

    

 

σ =
r ∆p
4 ∆x

 

 

 

=
(0.10 m)(1.013 MPa − 0.01013 MPa)

(4)(0.0025 m)
 

 

= 10.0 MPa 

 

 (c)  Now we are to compare this value of stress to the yield strength of Ni at 300°C, from which it is 

possible to determine whether or not the 2.5 mm wall thickness is suitable.  From the information given in the 
problem, we may write an equation for the dependence of yield strength (σy) on temperature (T) as follows: 

 

    

 

σ y =  100 MPa −  
5 MPa
50°C

T −  Tr( ) 

 
where Tr is room temperature and for temperature in degrees Celsius.  Thus, at 300°C 

 

  

 

σ y  = 100  MPa −  (0.1 MPa/°C) (300°C −  20°C) = 72  MPa 

 

Inasmuch as the circumferential stress (10 MPa) is much less than the yield strength (72 MPa), this thickness is 

entirely suitable. 
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 (d)  And, finally, this part of the problem asks that we specify how much this thickness may be reduced and 

still retain a safe design.  Let us use a working stress by dividing the yield stress by a factor of safety, according to 

Equation 6.24.  On the basis of our experience, let us use a value of 2.0 for N.  Thus 

 

  

 

σw =
σ y

N
=

72 MPa
2

= 36  MPa  

 
Using this value for σw and Equation 6.30, we now compute the tube thickness as 

 

    

 

∆x =
r ∆p
4σw

 

 

 

=
(0.10 m)(1.013 MPa − 0.01013 MPa)

4(36 MPa)
 

 

= 0.00070 m = 0.70 mm 

 

Substitution of this value into Fick's first law we calculate the diffusion flux as follows: 

 

    

 

J = − D
∆C
∆x

 

 

 

= −  (4.76 ×  10-7) exp −
39,560 J/mol

(8.31 J/mol - K)(300 + 273 K)

 

 
 

 

 
 ×  

 

(30.8) exp −
12,300  J /mol

(8.31 J/mol - K)(300 + 273 K)

 

 
 

 

 
 0.01013 MPa  −  1.013 MPa( )

0.0007  m
 

 

= 3.53 × 10-7 mol/m2-s 

 

Thus, the flux increases by approximately a factor of 3.5, from 1 × 10-7 to 3.53 × 10-7 mol/m2-s with this reduction 

in thickness. 
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 6.D3  Consider the steady-state diffusion of hydrogen through the walls of a cylindrical nickel tube as 

described in Problem 6.D2.  One design calls for a diffusion flux of 5 × 10-8 mol/m2-s, a tube radius of 0.125 m, and 

inside and outside pressures of 2.026 MPa (20 atm) and 0.0203 MPa (0.2 atm), respectively;  the maximum 

allowable temperature is 450°C.  Specify a suitable temperature and wall thickness to give this diffusion flux and 

yet ensure that the tube walls will not experience any permanent deformation. 

 
  Solution 

 This problem calls for the specification of a temperature and cylindrical tube wall thickness that will give a 

diffusion flux of 5 × 10-8 mol/m2-s for the diffusion of hydrogen in nickel;  the tube radius is 0.125 m and the 

inside and outside pressures are 2.026 and 0.0203 MPa, respectively.  There are probably several different 

approaches that may be used;  and, of course, there is not one unique solution.  Let us employ the following 

procedure to solve this problem:  (1)  assume some wall thickness, and, then, using Fick's first law for diffusion 

(which also employs Equations 5.3 and 6.29), compute the temperature at which the diffusion flux is that required;  

(2)  compute the yield strength of the nickel at this temperature using the dependence of yield strength on 

temperature as stated in Problem 6.D2;  (3)  calculate the circumferential stress on the tube walls using Equation 

6.30;  and (4)  compare the yield strength and circumferential stress values--the yield strength should probably be at 

least twice the stress in order to make certain that no permanent deformation occurs.  If this condition is not met 

then another iteration of the procedure should be conducted with a more educated choice of wall thickness. 

 As a starting point, let us arbitrarily choose a wall thickness of 2 mm (2 × 10-3 m).  The steady-state 

diffusion equation, Equation 5.3, takes the form 

 

    

 

J = − D
∆C
∆x

 

 

= 5 × 10-8 mol/m2-s 

 

  

 

=  − (4.76  ×  10-7)exp −
39,560 J/mol

(8.31 J/mol - K)(T)

 

 
 

 

 
   ×  

  

 

(30.8) exp −
12,300 J/mol

(8.31 J/mol - K)(T)

 

 
 

 

 
 0.0203 MPa  −  2.026  MPa( )

0.002  m
 

 

Solving this expression for the temperature T gives T = 514 K = 241°C;  this value is satisfactory inasmuch as it is 

less than the maximum allowable value (450°C). 

 The next step is to compute the stress on the wall using Equation 6.30;  thus 
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σ =
r ∆p
4 ∆x

 

 

 

=
(0.125 m)(2.026  MPa − 0.0203 MPa)

(4)(2 × 10−3 m)
 

 

= 31.3 MPa 

 
Now, the yield strength (σy) of Ni at this temperature may be computed using the expression 

 

    

 

σ y =  100 MPa −  
5 MPa
50°C

T −  Tr( ) 

 
where Tr is room temperature.  Thus, 

 
σy = 100 MPa – (0.1 MPa/°C)(241°C – 20°C) = 77.9 MPa 

 

Inasmuch as this yield strength is greater than twice the circumferential stress, wall thickness and temperature 

values of 2 mm and 241°C are satisfactory design parameters. 
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CHAPTER 7 

 

DISLOCATIONS AND STRENGTHENING MECHANISMS 

 

PROBLEM SOLUTIONS 
 

 

 Basic Concepts of Dislocations 

 Characteristics of Dislocations 
 

 7.1 To provide some perspective on the dimensions of atomic defects, consider a metal specimen that has a 

dislocation density of 104 mm-2.  Suppose that all the dislocations in 1000 mm3 (1 cm3) were somehow removed and 

linked end to end.  How far (in miles) would this chain extend?  Now suppose that the density is increased to 1010 

mm-2 by cold working.  What would be the chain length of dislocations in 1000 mm3 of material? 
 

  Solution 

 The dislocation density is just the total dislocation length per unit volume of material (in this case per cubic 

millimeters).  Thus, the total length in 1000 mm3 of material having a density of 104 mm-2 is just 
 

 

(104 mm-2)(1000  mm3) = 107 mm = 104  m = 6.2 mi  
 

Similarly, for a dislocation density of 1010 mm-2, the total length is 
 

 

(1010 mm-2)(1000  mm3) = 1013 mm = 1010 m = 6.2  ×  106  mi  
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 7.2  Consider two edge dislocations of opposite sign and having slip planes that are separated by several 

atomic distances as indicated in the diagram. Briefly describe the defect that results when these two dislocations 

become aligned with each other. 

 
 

  Solution 

 When the two edge dislocations become aligned, a planar region of vacancies will exist between the 

dislocations as: 
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 7.3  Is it possible for two screw dislocations of opposite sign to annihilate each other? Explain your 

answer. 

 

  Solution 

 It is possible for two screw dislocations of opposite sign to annihilate one another if their dislocation lines 

are parallel.  This is demonstrated in the figure below. 
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 7.4  For each of edge, screw, and mixed dislocations, cite the relationship between the direction of the 

applied shear stress and the direction of dislocation line motion. 
 

  Solution 

 For the various dislocation types, the relationships between the direction of the applied shear stress and the 

direction of dislocation line motion are as follows: 

 edge dislocation--parallel 

 screw dislocation--perpendicular 

 mixed dislocation--neither parallel nor perpendicular 
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 Slip Systems 

 

 7.5  (a) Define a slip system. 

 (b) Do all metals have the same slip system? Why or why not? 
 

  Solution 

 (a)  A slip system is a crystallographic plane, and, within that plane, a direction along which dislocation 

motion (or slip) occurs. 

 (b)  All metals do not have the same slip system.  The reason for this is that for most metals, the slip system 

will consist of the most densely packed crystallographic plane, and within that plane the most closely packed 

direction.  This plane and direction will vary from crystal structure to crystal structure. 
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 7.6  (a) Compare planar densities (Section 3.11 and Problem 3.54) for the (100), (110), and (111) planes 

for FCC. 

 (b) Compare planar densities (Problem 3.55) for the (100), (110), and (111) planes for BCC. 
 

  Solution 

 (a)  For the FCC crystal structure, the planar density for the (110) plane is given in Equation 3.11 as 

 

    

 

PD110 (FCC) =
1

4 R2 2
=

0.177

R2
 

 

 Furthermore, the planar densities of the (100) and (111) planes are calculated in Homework Problem 3.54, 

which are as follows: 

 

    

 

PD100(FCC) =  
1

4 R2
=

0.25

R2
 

 

    

 

PD111(FCC) =
1

2 R2 3
=

0.29

R2
 

 

 (b)  For the BCC crystal structure, the planar densities of the (100) and (110) planes were determined in 

Homework Problem 3.55, which are as follows: 

 

    

 

PD100(BCC) =
3

16R2
=

0.19

R2
 

 

    

 

PD110 (BCC) =
3

8 R2 2
=

0.27

R2
 

 

 Below is a BCC unit cell, within which is shown a (111) plane. 
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(a) 

 

The centers of the three corner atoms, denoted by A, B, and C lie on this plane.  Furthermore, the (111) plane does 

not pass through the center of atom D, which is located at the unit cell center.  The atomic packing of this plane is 

presented in the following figure;  the corresponding atom positions from the Figure (a) are also noted. 

 

 

(b) 

 

Inasmuch as this plane does not pass through the center of atom D, it is not included in the atom count.  One sixth of 

each of the three atoms labeled A, B, and C is associated with this plane, which gives an equivalence of one-half 

atom. 

 In Figure (b) the triangle with A, B, and C at its corners is an equilateral triangle.  And, from Figure (b), 

the area of this triangle is 
    

 

xy
2

.  The triangle edge length, x, is equal to the length of a face diagonal, as indicated in 

Figure (a).  And its length is related to the unit cell edge length, a, as 
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x2 = a2 + a2 = 2a2  

 

or 

    

 

x = a 2  

 

For BCC,  
    

 

a =
4 R

3
 (Equation 3.3), and, therefore, 

 

    

 

x =
4R 2

3
 

 

Also, from Figure (b), with respect to the length y we may write 

 

    

 

y2 +
x
2

 
 
 

 
 
 
2

= x2  

 

which leads to 
    

 

y =
x 3

2
.  And, substitution for the above expression for x yields 

 

    

 

y =
x 3

2
=

4 R 2
3

 

 
  

 

 
  

3

2

 

 
  

 

 
  =

4 R 2

2
 

 

Thus, the area of this triangle is equal to 

 

    

 

AREA =
1
2

x y =
1
2

 
 
 

 
 
 

4 R 2

3

 

 
  

 

 
  

4 R 2

2

 

 
  

 

 
  =

8 R2

3
 

 

And, finally, the planar density for this (111) plane is 

 

    

 

PD111(BCC) =
0.5 atom

8 R2

3

=
3

16 R2
=

0.11

R2
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 7.7  One slip system for the BCC crystal structure is 

 

110{ } 111 .  In a manner similar to Figure 7.6b, 

sketch a 

 

110{ }-type plane for the BCC structure, representing atom positions with circles. Now, using arrows, 

indicate two different 

 

111  slip directions within this plane. 
 

  Solution 

 Below is shown the atomic packing for a BCC 

 

110{ }-type plane.  The arrows indicate two different 

 

111 -

type directions. 
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 7.8  One slip system for the HCP crystal structure is 

 

0001{ } 112 0 . In a manner similar to Figure 7.6b, 

sketch a 

 

0001{ }-type plane for the HCP structure and, using arrows, indicate three different 

 

112 0  slip directions 

within this plane. You might find Figure 3.8 helpful. 
 

  Solution 

 Below is shown the atomic packing for an HCP 

 

0001{ }-type plane.  The arrows indicate three different 

 

112 0 -type directions.
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 7.9  Equations 7.1a and 7.1b, expressions for Burgers vectors for FCC and BCC crystal structures, are of 

the form 

 

b =
a
2

uvw  

where a is the unit cell edge length. Also, since the magnitudes of these Burgers vectors may be determined from the 

following equation: 

 

 

b =
a
2

u2 + v2 + w2( )1/2
 (7.10) 

determine values of |b| for aluminum and chromium.  You may want to consult Table 3.1. 
 

  Solution 

 For Al, which has an FCC crystal structure, R = 0.1431 nm (Table 3.1) and a =     

 

2 R 2  = 0.4047 nm 

(Equation 3.1);  also, from Equation 7.1a, the Burgers vector for FCC metals is 

 

      

 

b  =  
a
2

〈110〉  

 

Therefore, the values for u, v, and w in Equation 7.10 are 1, 1, and 0, respectively.  Hence, the magnitude of the 

Burgers vector for Al is 

 

      

 

b  =  
a
2

u2  +  v2  +  w2  

 

 

=  
0.4047 nm

2
(1 )2  +  (1 )2  +  (0)2 =  0.2862  nm  

 

 For Cr which has a BCC crystal structure, R = 0.1249 nm (Table 3.1) and 
    

 

a =
4 R

3
 = 0.2884 nm (Equation 

3.3);  also, from Equation 7.1b, the Burgers vector for BCC metals is 

 

      

 

b  =  
a
2

〈111〉  

 

Therefore, the values for u, v, and w in Equation 7.10 are 1, 1, and 1, respectively.  Hence, the magnitude of the 

Burgers vector for Cr is 

 

 

  

 

b  =  
0.2884 nm

2
(1)2 + (1)2 + (1)2 =  0.2498 nm 
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 7.10  (a) In the manner of Equations 7.1a, 7.1b, and 7.1c, specify the Burgers vector for the simple cubic 

crystal structure. Its unit cell is shown in Figure 3.24. Also, simple cubic is the crystal structure for the edge 

dislocation of Figure 4.3, and for its motion as presented in Figure 7.1. You may also want to consult the answer to 

Concept Check 7.1. 

 (b) On the basis of Equation 7.10, formulate an expression for the magnitude of the Burgers vector, |b|, for 

simple cubic. 
 

  Solution 

 (a)  This part of the problem asks that we specify the Burgers vector for the simple cubic crystal structure 

(and suggests that we consult the answer to Concept Check 7.1).  This Concept Check asks that we select the slip 

system for simple cubic from four possibilities.  The correct answer is   

 

100{ } 010 .  Thus, the Burgers vector will lie 

in a   

 

010 -type direction.  Also, the unit slip distance is a (i.e., the unit cell edge length, Figures 4.3 and 7.1).  

Therefore, the Burgers vector for simple cubic is 

 

      

 

b =  a 010  

 

Or, equivalently 

 

      

 

b =  a 100  

 

 (b)  The magnitude of the Burgers vector, |b|, for simple cubic is 

 

    

 

b  =  a(12  +  02  +  02)1 / 2  =  a  
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 Slip in Single Crystals 

 

 7.11  Sometimes cos φ cos λ in Equation 7.2 is termed the Schmid factor. Determine the magnitude of the 

Schmid factor for an FCC single crystal oriented with its [100] direction parallel to the loading axis. 
 

  Solution 

 We are asked to compute the Schmid factor for an FCC crystal oriented with its [100] direction parallel to 

the loading axis.  With this scheme, slip may occur on the (111) plane and in the 

 

[11 0]  direction as noted in the 

figure below. 

 

 

 

The angle between the [100] and 

 

[11 0]  directions, λ, may be determined using Equation 7.6 

 

  

 

λ = cos−1 u1u2 + v1v2 + w1w2

u1
2 + v1

2 + w1
2( )u2

2 + v2
2 + w2

2( )

 

 

 
 
 

 

 

 
 
 
 

 
where (for [100]) u1 = 1, v1 = 0, w1 = 0, and (for 

 

[11 0] ) u2 = 1, v2 = -1, w2 = 0.  Therefore, λ is equal to 

 

 

λ = cos−1 (1)(1) + (0)(−1) + (0)(0)

(1)2 + (0)2 + (0)2[ ] (1)2 + (−1)2 + (0)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 1
2

 

 
  

 

 
  = 45°  
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Now,  the angle φ is equal to the angle between the normal to the (111) plane (which is the [111] direction), and the 
[100] direction.  Again from Equation 7.6, and for u1 = 1, v1 = 1, w1 = 1, and u2 = 1, v2 = 0, and w2 = 0, we have 

 

 

φ = cos−1 (1)(1) + (1)(0) + (1)(0)

(1)2 + (1)2 + (1)2[ ] (1)2 + (0)2 + (0)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 1
3

 

 
  

 

 
  = 54.7°  

 

Therefore, the Schmid factor is equal to 

 

 

cos λ cos φ =  cos (45°) cos (54.7°) =  
1
2

 

 
  

 

 
  

1
3

 
 
 

 
 
 = 0.408  
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 7.12  Consider a metal single crystal oriented such that the normal to the slip plane and the slip direction 

are at angles of 43.1° and 47.9°, respectively, with the tensile axis.  If the critical resolved shear stress is 20.7 MPa 

(3000 psi), will an applied stress of 45 MPa (6500 psi) cause the single crystal to yield?  If not, what stress will be 

necessary? 
 

  Solution 

 This problem calls for us to determine whether or not a metal single crystal having a specific orientation 

and of given critical resolved shear stress will yield.  We are given that φ = 43.1°, λ = 47.9°, and that the values of 

the critical resolved shear stress and applied tensile stress are 20.7 MPa (3000 psi) and 45 MPa (6500 psi), 

respectively.  From Equation 7.2 

 

  

 

τR =  σ cos φ cos λ =  (45 MPa)(cos 43.1°)(cos 47.9°) =  22.0 MPa  (3181 psi) 

 

Since the resolved shear stress (22 MPa) is greater than the critical resolved shear stress (20.7 MPa), the single 

crystal will yield. 
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 7.13  A single crystal of aluminum is oriented for a tensile test such that its slip plane normal makes an 

angle of 28.1° with the tensile axis.  Three possible slip directions make angles of 62.4°, 72.0°, and 81.1° with the 

same tensile axis. 

 (a) Which of these three slip directions is most favored? 

 (b) If plastic deformation begins at a tensile stress of 1.95 MPa (280 psi), determine the critical resolved 

shear stress for aluminum. 
 

  Solution 

 We are asked to compute the critical resolved shear stress for Al.  As stipulated in the problem, φ = 28.1°, 

while possible values for λ are 62.4°, 72.0°, and 81.1°.
 

 (a)  Slip will occur along that direction for which (cos φ cos λ) is a maximum, or, in this case, for the 

largest cos λ.  Cosines for the possible λ values are given below.
 

 

cos(62.4°) = 0.46 

cos(72.0°) = 0.31 

cos(81.1°) = 0.15 

 

Thus, the slip direction is at an angle of 62.4° with the tensile axis. 

 (b)  From Equation 7.4, the critical resolved shear stress is just 

 

  

 

τ crss = σ y (cos φ cos λ)max  

 

 

=  (1.95 MPa) cos  (28.1°) cos  (62.4°)[ ] =  0.80 MPa  (114 psi)  
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 7.14  Consider a single crystal of silver oriented such that a tensile stress is applied along a [001] 

direction. If slip occurs on a (111) plane and in a 

 

[1 01] direction, and is initiated at an applied tensile stress of 1.1 

MPa (160 psi), compute the critical resolved shear stress. 
 

  Solution 

 This problem asks that we compute the critical resolved shear stress for silver.  In order to do this, we must 

employ Equation 7.4, but first it is necessary to solve for the angles λ and φ which are shown in the sketch below. 

 

 

 

The angle λ is the angle between the tensile axis—i.e., along the [001] direction—and the slip direction—i.e., 

  

 

[1 01].  The angle λ may be determined using Equation 7.6 as 

 

  

 

λ = cos−1 u1u2 + v1v2 + w1w2

u1
2 + v1

2 + w1
2( )u2

2 + v2
2 + w2

2( )

 

 

 
 
 

 

 

 
 
 
 

 
where (for [001]) u1 = 0, v1 = 0, w1 = 1, and (for   

 

[1 01]) u2 = –1, v2 = 0, w2 = 1.  Therefore, λ is equal to 

 

 

 

λ = cos−1 (0)(−1) + (0)(0) + (1)(1)

(0)2 + (0)2 + (1)2[ ] (−1)2 + (0)2 + (1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

  

 

= cos−1 1
2

 

 
  

 

 
  = 45°  
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Furthermore, φ is the angle between the tensile axis—the [001] direction—and the normal to the slip plane—i.e., the 

(111) plane;  for this case this normal is along a [111] direction.  Therefore, again using Equation 7.6 

 

  

 

φ = cos−1 (0)(1) + (0)(1) + (1)(1)

(0)2 + (0)2 + (1)2[ ] (1)2 + (1)2 + (1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 1
3

 

 
  

 

 
  = 54.7°  

 

And, finally, using Equation 7.4, the critical resolved shear stress is equal to 

 

    

 

τcrss = σ y (cos φ cos λ)  

 

 

=  (1.1 MPa) cos(54.7°) cos(45°)[ ] =  (1.1 MPa)
1
3

 

 
  

 

 
  

1
2

 

 
  

 

 
  = 0.45 MPa  (65.1 psi)  
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 7.15  A single crystal of a metal that has the FCC crystal structure is oriented such that a tensile stress is 

applied parallel to the [110] direction. If the critical resolved shear stress for this material is 1.75 MPa, calculate 

the magnitude(s) of applied stress(es) necessary to cause slip to occur on the (111) plane in each of the 

 

[11 0] , 

 

[101 ] and 

 

[011 ] directions. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 7.4, but first we need to solve for the  for 

λ and φ angles for the three slip systems. 

 For each of these three slip systems, the φ will be the same—i.e., the angle between the direction of the 

applied stress, [110] and the normal to the (111) plane, that is, the [111] direction.  The angle φ may be determined 

using Equation 7.6 as 

 

  

 

φ = cos−1 u1u2 + v1v2 + w1w2

u1
2 + v1

2 + w1
2( )u2

2 + v2
2 + w2

2( )

 

 

 
 
 

 

 

 
 
 
 

 
where (for [110]) u1 = 1, v1 = 1, w1 = 0, and (for [111]) u2 = 1, v2 = 1, w2 = 1.  Therefore, φ is equal to 

 

  

 

φ = cos−1 (1)(1) + (1)(1) + (0)(1)

(1)2 + (1)2 + (0)2[ ] (1)2 + (1)2 + (1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 2
6

 

 
  

 

 
  = 35.3°  

 
Let us now determine λ for the   

 

[11 0 ]  slip direction.  Again, using Equation 7.6 where u1 = 1, v1 = 1, w1 = 0 (for 

[110]), and u2 = 1, v2 = –1, w2 = 0 (for   

 

[11 0] .  Therefore, λ is determined as 

 

  

 

λ
[110 ]−[11 0]

= cos−1 (1)(1) + (1)(−1) + (0)(0)

(1)2 + (1)2 + (0)2[ ] (1)2 + (−1)2 + (0)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 0 = 90° 

 

Now, we solve for the yield strength for this (111)–  

 

[11 0]  slip system using Equation 7.4 as 
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σ y =
τcrss

(cosφ cos λ)
 

 

 

=
1.75 MPa

cos (35.3°) cos (90°)
=

1.75 MPa
(0.816) (0)

= ∞  

 

which means that slip will not occur on this (111)–  

 

[11 0]  slip system. 

 

 Now, we must determine the value of λ for the (111)–  

 

[101 ] slip system—that is, the angle between the 

[110] and   

 

[101 ] directions.  Again using Equation 7.6 

 

  

 

λ
[110 ]−[101 ]

= cos−1 (1)(1) + (1)(0) + (0)(−1)

(1)2 + (1)2 + (0)2[ ] (1)2 + (0)2 + (−1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 1
2

 
 
 

 
 
 = 60°  

 

Now, we solve for the yield strength for this (111)–  

 

[101 ] slip system using Equation 7.4 as 

 

    

 

σ y =
τcrss

(cosφ cos λ)
 

 

  

 

=
1.75 MPa

cos (35.3°) cos (60°)
=

1.75 MPa
(0.816) (0.500)

= 4.29 MPa  

 

 And, finally, for the (111)–  

 

[011 ]  slip system, λ is computed using Equation 7.6 as follows: 

 

  

 

λ
[110 ]−[011 ]

= cos−1 (1)(0) + (1)(1) + (0)(−1)

(1)2 + (1)2 + (0)2[ ] (0)2 + (1)2 + (−1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

  

 

= cos−1 1
2

 
 
 

 
 
 = 60°  

 
Thus, since the values of φ and λ for this (110)–  

 

[011 ]  slip system are the same as for (111)–  

 

[101 ], so also will σy 

be the same—viz 4.29 MPa. 
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 7.16  (a) A single crystal of a metal that has the BCC crystal structure is oriented such that a tensile stress 

is applied in the [010] direction. If the magnitude of this stress is 2.75 MPa, compute the resolved shear stress in the 

 

[1 11] direction on each of the (110) and (101) planes. 

 (b) On the basis of these resolved shear stress values, which slip system(s) is (are) most favorably 

oriented? 
 

  Solution 

 (a)  This part of the problem asks, for a BCC metal, that we compute the resolved shear stress in the   

 

[1 11] 

direction on each of the (110) and (101) planes.  In order to solve this problem it is necessary to employ Equation 

7.2, which means that we first need to solve for the  for angles λ and φ for the three slip systems. 

 For each of these three slip systems, the λ will be the same—i.e., the angle between the direction of the 

applied stress, [010] and the slip direction,   

 

[1 11].  This angle λ may be determined using Equation 7.6 

 

  

 

λ = cos−1 u1u2 + v1v2 + w1w2

u1
2 + v1

2 + w1
2( )u2

2 + v2
2 + w2

2( )

 

 

 
 
 

 

 

 
 
 
 

 
where (for [010]) u1 = 0, v1 = 1, w1 = 0, and (for   

 

[1 11]) u2 = –1, v2 = 1, w2 = 1.  Therefore, λ is determined as 

 

  

 

λ = cos−1 (0)(−1) + (1)(1) + (0)(1)

(0)2 + (1)2 + (0)2[ ] (−1)2 + (1)2 + (1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

  

 

= cos−1 1
3

 

 
  

 

 
  = 54.7°  

 

Let us now determine φ for the angle between the direction of the applied tensile stress—i.e., the [010] direction—
and the normal to the (110) slip plane—i.e., the [110] direction.  Again, using Equation 7.6 where u1 = 0, v1 = 1, w1 

= 0 (for [010]), and u2 = 1, v2 = 1, w2 = 0 (for [110]), φ is equal to 

 

  

 

φ[010 ]−[110] = cos−1 (0)(1) + (1)(1) + (0)(0)

(0)2 + (1)2 + (0)2[ ] (1)2 + (1)2 + (0)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

  

 

= cos−1 1
2

 

 
  

 

 
  = 45°  
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Now, using Equation 7.2 

 

  

 

τR = σ cosφ cos λ  

 

we solve for the resolved shear stress for this slip system as 

 

    

 

τR(110)−[1 11] = (2.75 MPa) cos (54.7°) cos (45°)[ ] = (2.75 MPa) (0.578)(0.707) = 1.12 MPa  

 

 Now, we must determine the value of φ for the (101)–  

 

[1 11] slip system—that is, the angle between the 

direction of the applied stress, [010], and the normal to the (101) plane—i.e., the [101] direction.  Again using 

Equation 7.6 

 

  

 

λ[010 ]−[101] = cos−1 (0)(1) + (1)(0) + (0)(1)

(0)2 + (1)2 + (0)2[ ] (1)2 + (0)2 + (1)2[ ]

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 (0) = 90°  

 

Thus, the resolved shear stress for this (101)–  

 

[1 11] slip system is 

 

    

 

τR(101)−[1 11] = = (2.75 MPa) cos (54.7°) cos (90°)[ ] = (2.75 MPa) (0.578)(0) = 0 MPa  

 

 

 (b)  The most favored slip system(s) is (are) the one(s) that has (have) the largest τR value.  Therefore, the 

(110)–  

 

[1 11] is the most favored since its τR (1.12 MPa) is greater than the τR value for   

 

(101) − [1 11] (viz., 0 

MPa). 
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 7.17  Consider a single crystal of some hypothetical metal that has the FCC crystal structure and is 

oriented such that a tensile stress is applied along a 

 

[1 02] direction. If slip occurs on a (111) plane and in a 

 

[1 01] 

direction, compute the stress at which the crystal yields if its critical resolved shear stress is 3.42 MPa. 
 

  Solution 

 This problem asks for us to determine the tensile stress at which a FCC metal yields when the stress is 

applied along a   

 

[1 02]  direction such that slip occurs on a (111) plane and in a   

 

[1 01] direction;  the critical resolved 

shear stress for this metal is 3.42 MPa.  To solve this problem we use Equation 7.4;  however it is first necessary to 

determine the values of φ and λ.  These determinations are possible using Equation 7.6.   Now, λ is the angle 
between   

 

[1 02]  and   

 

[1 01] directions.  Therefore, relative to Equation 7.6 let us take u1 = –1, v1 = 0, and w1 = 2, as 

well as u2 = –1, v2 = 0, and w2 = 1.  This leads to 

 

  

 

λ = cos−1 u1u2 + v1v2 + w1w2

u1
2 + v1

2 + w1
2( )u2

2 + v2
2 + w2

2( )

 

 

 
 
 

 

 

 
 
 
 

 

 

= cos−1 (−1)(−1) + (0)(0) + (2)(1)

(−1)2 + (0)2 + (2)2[ ] (−1)2 + (0)2 + (1)2[ ]

 

 
 

  

 

 
 

  
 

 

  

 

= cos−1 3
10

 

 
  

 

 
  = 18.4°  

 

Now for the determination of φ, the normal to the (111) slip plane is the [111] direction.  Again using Equation 7.6, 
where we now take u1 = –1, v1 = 0, w1 = 2 (for   

 

[1 02] ), and u2 = 1, v2 = 1, w2 = 1 (for [111]).  Thus, 

 

  

 

φ = cos−1 (−1)(1) + (0)(1) + (2)(1)

(−1)2 + (0)2 + (2)2[ ] (1)2 + (1)2 + (1)2[ ]

 

 
 

  

 

 
 

  
 

 

  

 

= cos−1 3
15

 

 
  

 

 
  = 39.2°  

 

It is now possible to compute the yield stress (using Equation 7.4) as 
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σ y =
τcrss

cosφ cos λ
=

3.42 MPa

3
10

 

 
  

 

 
  

3
15

 

 
  

 

 
  

= 4.65 MPa  
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 7.18  The critical resolved shear stress for iron is 27 MPa (4000 psi).  Determine the maximum possible 

yield strength for a single crystal of Fe pulled in tension. 
 

  Solution 

 In order to determine the maximum possible yield strength for a single crystal of Fe pulled in tension, we 

simply employ Equation 7.5 as 

 

  

 

σ y = 2τ crss = (2)(27 MPa) = 54  MPa   (8000 psi)  
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 Deformation by Twinning 

 

 7.19  List four major differences between deformation by twinning and deformation by slip relative to 

mechanism, conditions of occurrence, and final result. 
 

  Solution 

 Four major differences between deformation by twinning and deformation by slip are as follows:  (1) with 

slip deformation there is no crystallographic reorientation, whereas with twinning there is a reorientation;  (2) for 

slip, the atomic displacements occur in atomic spacing multiples, whereas for twinning, these displacements may be 

other than by atomic spacing multiples;  (3) slip occurs in metals having many slip systems, whereas twinning 

occurs in metals having relatively few slip systems;  and (4) normally slip results in relatively large deformations, 

whereas only small deformations result for twinning. 
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 Strengthening by Grain Size Reduction 

 

 7.20  Briefly explain why small-angle grain boundaries are not as effective in interfering with the slip 

process as are high-angle grain boundaries. 
 

  Solution 

 Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain 

boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, 

and therefore not as much change in slip direction. 
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 7.21  Briefly explain why HCP metals are typically more brittle than FCC and BCC metals. 
 

  Solution 

 Hexagonal close packed metals are typically more brittle than FCC and BCC metals because there are 

fewer slip systems in HCP. 
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 7.22  Describe in your own words the three strengthening mechanisms discussed in this chapter (i.e., grain 

size reduction, solid-solution strengthening, and strain hardening). Be sure to explain how dislocations are involved 

in each of the strengthening techniques. 

 

 These three strengthening mechanisms are described in Sections 7.8, 7.9, and 7.10. 
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 7.23  (a) From the plot of yield strength versus (grain diameter)–1/2 for a 70 Cu–30 Zn cartridge brass, 

Figure 7.15, determine values for the constants σ0 and ky in Equation 7.7. 

 (b) Now predict the yield strength of this alloy when the average grain diameter is 1.0 × 10-3 mm. 
 

  Solution 

 (a)  Perhaps the easiest way to solve for σ0 and ky in Equation 7.7 is to pick two values each of σy and d-1/2 

from Figure 7.15, and then solve two simultaneous equations, which may be created.  For example 

 
 d-1/2 (mm) -1/2 σy (MPa) 

 4 75 

 12 175 

 

The two equations are thus 

 

  

 

75 = σ0 + 4 k y  
 

  

 

175 = σ0 + 12 k y  

 

Solution of these equations yield the values of 

 

  

 

k y = 12.5 MPa (mm)1/2 1810  psi (mm)1/2[ ] 

 

σ0 = 25 MPa  (3630 psi) 

 

 (b)  When d = 1.0 × 10-3 mm, d-1/2 = 31.6 mm-1/2, and, using Equation 7.7, 

 

  

 

σ y = σ0 + k yd -1/2  

 

 

= (25  MPa) + 12.5  MPa (mm)
1/2 

  
 
  (31.6  mm-1/2) = 420 MPa  (61,000  psi) 
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 7.24  The lower yield point for an iron that has an average grain diameter of 5 × 10-2 mm is 135 MPa 

(19,500 psi).  At a grain diameter of 8 × 10-3 mm, the yield point increases to 260 MPa (37,500 psi).  At what grain 

diameter will the lower yield point be 205 MPa (30,000 psi)? 
 

  Solution 

 The best way to solve this problem is to first establish two simultaneous expressions of Equation 7.7, solve 
for σ0 and ky, and finally determine the value of d when σy = 205 MPa.  The data pertaining to this problem may be 

tabulated as follows: 

 
 σy d (mm) d-1/2 (mm)-1/2 

 135 MPa 5 × 10-2 4.47 

 260 MPa 8 × 10-3 11.18 

 

The two equations thus become 

 

  

 

135 MPa = σ0 + (4.47) k y  

  

 

260  MPa = σ0 + (11.18) k y  

 

Which yield the values, σ0 = 51.7 MPa and ky = 18.63 MPa(mm)1/2.  At a yield strength of 205 MPa 

 

  

 

205 MPa = 51.7  MPa +  18.63 MPa (mm)1/2[ ]d -1/2  

 

or d-1/2 = 8.23 (mm) -1/2, which gives d = 1.48 × 10-2 mm. 
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 7.25  If it is assumed that the plot in Figure 7.15 is for noncold-worked brass, determine the grain size of 

the alloy in Figure 7.19;  assume its composition is the same as the alloy in Figure 7.15. 
 

  Solution 

 This problem asks that we determine the grain size of the brass for which is the subject of Figure 7.19.  

From Figure 7.19a, the yield strength of brass at 0%CW is approximately 175 MPa (26,000 psi).  This yield 

strength from Figure 7.15 corresponds to a d-1/2 value of approximately 12.0 (mm) -1/2. Thus, d = 6.9 × 10-3 mm. 
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 Solid-Solution Strengthening 

 

 7.26  In the manner of Figures 7.17b and 7.18b, indicate the location in the vicinity of an edge dislocation 

at which an interstitial impurity atom would be expected to be situated. Now briefly explain in terms of lattice 

strains why it would be situated at this position. 
 

  Solution 

 Below is shown an edge dislocation and where an interstitial impurity atom would be located.  

Compressive lattice strains are introduced by the impurity atom.  There will be a net reduction in lattice strain 

energy when  these lattice strains partially cancel tensile strains associated with the edge dislocation;  such tensile 

strains exist just below the bottom of the extra half-plane of atoms (Figure 7.4). 
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 Strain Hardening 

 

 7.27  (a) Show, for a tensile test, that 

 

 

%CW =
ε

ε+1

 
 
 

 
 
 ×100  

if there is no change in specimen volume during the deformation process (i.e., A0l0 = Adld). 

 (b) Using the result of part (a), compute the percent cold work experienced by naval brass (the stress-

strain behavior of which is shown in Figure 6.12) when a stress of 400 MPa (58,000 psi) is applied. 
 

  Solution 

 (a)  From Equation 7.8 

 

  

 

%CW =
A0 − Ad

A0

 

 
 

 

 
 ×  100 = 1 −

Ad

A0

 

 
 

 

 
 ×  100  

 

Which is also equal to 

 

  

 

1 −
l0
ld

 

 
 

 

 
 ×  100 

 

since Ad/A0 = l0/ld, the conservation of volume stipulation given in the problem statement.  Now, from the definition 

of engineering strain (Equation 6.2) 

 

    

 

ε =
ld − l0

l0
=  

ld
l0

−1 

 

Or, 

    

 

l0
ld

=
1

ε + 1
 

 
Substitution for l0/ ld into the %CW expression above gives 

 

  

 

%CW = 1 −
l0
ld

 

 
 

 

 
 ×  100 = 1 −

1
ε + 1

 

 
 

 

 
 ×  100 =

ε
ε + 1

 

 
 

 

 
 ×  100  
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 (b)  From Figure 6.12, a stress of 400 MPa (58,000 psi) corresponds to a strain of 0.13.  Using the above 

expression 

 

 

%CW =
ε

ε + 1

 

 
 

 

 
 ×  100 =

0.13
0.13 + 1.00

 

 
 

 

 
 ×  100 = 11.5%CW  
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 7.28  Two previously undeformed cylindrical specimens of an alloy are to be strain hardened by reducing 

their cross-sectional areas (while maintaining their circular cross sections).  For one specimen, the initial and 

deformed radii are 16 mm and 11 mm, respectively.  The second specimen, with an initial radius of 12 mm, must 

have the same deformed hardness as the first specimen;  compute the second specimen's radius after deformation. 
 

  Solution 

 In order for these two cylindrical specimens to have the same deformed hardness, they must be deformed 

to the same percent cold work.  For the first specimen 

 

  

 

%CW =
A0 − Ad

A0
×  100 =

π r0
2 − π rd

2

π r0
2

×  100  

 

 

=
π (16 mm)2 − π (11 mm)2

π (16 mm)2
×  100 = 52.7%CW  

 

For the second specimen, the deformed radius is computed using the above equation and solving for rd as 

 

    

 

rd = r0 1 −
%CW
100

 

 

 

= (12 mm) 1 −
52.7%CW

100
= 8.25 mm  
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 7.29  Two previously undeformed specimens of the same metal are to be plastically deformed by reducing 

their cross-sectional areas.  One has a circular cross section, and the other is rectangular; during deformation the 

circular cross section is to remain circular, and the rectangular is to remain as such.  Their original and deformed 

dimensions are as follows: 

 

 Circular (diameter, mm) Rectangular (mm) 

Original dimensions 15.2 125 × 175 

Deformed dimensions 11.4 75 × 200 

 

 Which of these specimens will be the hardest after plastic deformation, and why? 
 

  Solution 

 The hardest specimen will be the one that has experienced the greatest degree of cold work.  Therefore, all 

we need do is to compute the %CW for each specimen using Equation 7.8.  For the circular one 

 

  

 

%CW =
A0 − Ad

A0

 

 
 

 

 
 ×  100  

 

  

 

=
π r 0

2 − π r d
2

π r 0
2

 

 
 
 

 

 
 
 

×  100  

 

 

=
π

15.2 mm
2

 
 
 

 
 
 

2

− π
11.4 mm

2

 
 
 

 
 
 
2

π
15.2 mm

2

 
 
 

 
 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

×  100 = 43.8%CW  

 

For the rectangular one 

 

 

%CW =
(125 mm)(175 mm) − (75 mm)(200 mm)

(125 mm)(175 mm)

 

  
 

  ×  100 = 31.4%CW 

 

Therefore, the deformed circular specimen will be harder. 
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 7.30  A cylindrical specimen of cold-worked copper has a ductility (%EL) of 25%.  If its cold-worked 

radius is 10 mm (0.40 in.), what was its radius before deformation? 
 

  Solution 

 This problem calls for us to calculate the precold-worked radius of a cylindrical specimen of copper that 

has a cold-worked ductility of 25%EL.  From Figure 7.19c, copper that has a ductility of 25%EL will have 

experienced a deformation of about 11%CW.  For a cylindrical specimen, Equation 7.8 becomes 

 

  

 

%CW =
π r 0

2 − π r d
2

π r 0
2

 

 
 
 

 

 
 
 

×  100  

 
Since rd = 10 mm (0.40 in.), solving for r0 yields 

 

  

 

r0 =
rd

1 −
%CW
100

=
10  mm

1 −
11.0
100

= 10.6  mm  (0.424  in.)  
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 7.31  (a) What is the approximate ductility (%EL) of a brass that has a yield strength of 275 MPa (40,000 

psi)? 

 (b) What is the approximate Brinell hardness of a 1040 steel having a yield strength of 690 MPa (100,000 

psi)? 
 

  Solution 

 (a) In order to solve this problem, it is necessary to consult Figures 7.19a and 7.19c.  From Figure 7.19a, a 

yield strength of 275 MPa for brass corresponds to 10%CW.  A brass that has been cold-worked 10% will have a 

ductility of about 43%EL [Figure 7.19c]. 

 (b)  This portion of the problem asks for the Brinell hardness of a 1040 steel having a yield strength of 690 

MPa (100,000 psi).  From Figure 7.19a, a yield strength of 690 MPa for a 1040 steel corresponds to about 10%CW.  

A 1040 steel that has been cold worked 10% will have a tensile strength of about 780 MPa [Figure 7.19b].  Finally, 

using Equation 6.20a 

 

  

 

HB =
TS (MPa)

3.45
=

780 MPa
3.45

= 226  
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 7.32  Experimentally, it has been observed for single crystals of a number of metals that the critical 

resolved shear stress τcrss is a function of the dislocation density ρD as 
 

 

τ crss = τ0 + A ρD  
 

where τ0 and A are constants. For copper, the critical resolved shear stress is 2.10 MPa (305 psi) at a dislocation 

density of 105 mm-2.  If it is known that the value of A for copper is 6.35 × 10-3 MPa-mm (0.92 psi-mm), compute the 

τcrss at a dislocation density of 107 mm-2. 
 

  Solution 

 We are asked in this problem to compute the critical resolved shear stress at a dislocation density of 107 

mm-2.  It is first necessary to compute the value of the constant τ0 (in the equation provided in the problem 

statement) from the one set of data as 

 

 

τ0 = τ crss − A ρD  

 

 

= 2.10 MPa  −  (6.35 ×  10−3 MPa - mm) 105  mm−2( )= 0.092 MPa   (13.3 psi)  

 

Now, the critical resolved shear stress may be determined at a dislocation density of 107 mm-2 as 

 

    

 

τcrss = τ0 +  A ρD  

 

 

= (0.092 MPa) +  (6.35 ×  10-3  MPa - mm) 107 mm−2 = 20.2  MPa  (2920 psi) 
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 Recovery 

 Recrystallization 

 Grain Growth 

 

 7.33  Briefly cite the differences between recovery and recrystallization processes. 
 

  Solution 

 For recovery, there is some relief of internal strain energy by dislocation motion;  however, there are 

virtually no changes in either the grain structure or mechanical characteristics.  During recrystallization, on the other 

hand, a new set of strain-free grains forms, and the material becomes softer and more ductile. 
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 7.34  Estimate the fraction of recrystallization from the photomicrograph in Figure 7.21c. 
 

  Solution 

 Below is shown a square grid onto which is superimposed the recrystallized regions from the micrograph. 

Approximately 400 squares lie within the recrystallized areas, and since there are 672 total squares, the specimen is 

about 60% recrystallized. 
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 7.35  Explain the differences in grain structure for a metal that has been cold worked and one that has 

been cold worked and then recrystallized. 
 

  Solution 

 During cold-working, the grain structure of the metal has been distorted to accommodate the deformation.  

Recrystallization produces grains that are equiaxed and smaller than the parent grains. 
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 7.36  (a) What is the driving force for recrystallization? 

 (b) For grain growth? 
 

  Solution 

 (a)  The driving force for recrystallization is the difference in internal energy between the strained and 

unstrained material. 

 (b)  The driving force for grain growth is the reduction in grain boundary energy as the total grain 

boundary area decreases. 
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 7.37  (a) From Figure 7.25, compute the length of time required for the average grain diameter to increase 

from 0.01 to 0.1 mm at 500°C for this brass material. 

 (b) Repeat the calculation at 600°C. 
 

  Solution 

 (a)  At 500°C, the time necessary for the average grain diameter to grow to increase from 0.01 to 0.1 mm is 

approximately 3500 min. 

 (b)  At 600°C the time required for this same grain size increase is approximately 150 min. 
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 7.38  The average grain diameter for a brass material was measured as a function of time at 650°C, which 

is tabulated below at two different times: 

 

Time (min) Grain Diameter (mm) 

30 3.9 × 10–2 

90 6.6 × 10–2 

 (a) What was the original grain diameter? 

 (b) What grain diameter would you predict after 150 min at 650°C? 
 

  Solution 

 (a)  Using the data given and Equation 7.9 (taking n = 2), we may set up two simultaneous equations with 

d0 and K as unknowns;  thus 

 

  

 

(3.9  ×  10-2  mm)2 −  d0
2 =  (30 min) K  

 

  

 

(6.6  ×  10-2  mm)2 −  d0
2 =  (90 min) K  

 
Solution of these expressions yields a value for d0, the original grain diameter, of 

 

d0 = 0.01 mm, 

and a value for K of 4.73 × 10-5 mm2/min 

 (b)  At 150 min, the diameter d is computed using a rearranged form of Equation 7.9 as 

 

 

    

 

d = d0
2 + Kt  

 

 

= (0.01 mm)2 + (4.73 × 10−5 mm2/min) (150 min) = 0.085 mm  
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 7.39  An undeformed specimen of some alloy has an average grain diameter of 0.040 mm.  You are asked 

to reduce its average grain diameter to 0.010 mm.  Is this possible?  If so, explain the procedures you would use 

and name the processes involved.  If it is not possible, explain why. 
 

  Solution 

 Yes, it is possible to reduce the average grain diameter of an undeformed alloy specimen from 0.040 mm to 

0.010 mm.  In order to do this, plastically deform the material at room temperature (i.e., cold work it), and then 

anneal at an elevated temperature in order to allow recrystallization and some grain growth to occur until the 

average grain diameter is 0.010 mm. 
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 7.40  Grain growth is strongly dependent on temperature (i.e., rate of grain growth increases with 

increasing temperature), yet temperature is not explicitly given as a part of Equation 7.9. 

 (a)  Into which of the parameters in this expression would you expect temperature to be included? 

 (b)  On the basis of your intuition, cite an explicit expression for this temperature dependence. 
 

  Solution 

 (a)  The temperature dependence of grain growth is incorporated into the constant K in Equation 7.9. 

 (b)  The explicit expression for this temperature dependence is of the form 

 

    

 

K = K0 exp −
Q
RT

 
 
 

 
 
  

 

in which K0 is a temperature-independent constant, the parameter Q is an activation energy, and R and T are the gas 

constant and absolute temperature, respectively. 
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 7.41 An uncold-worked brass specimen of average grain size 0.008 mm has a yield strength of 160 MPa 

(23,500 psi).  Estimate the yield strength of this alloy after it has been heated to 600°C for 1000 s, if it is known that 

the value of ky is 12.0 MPa-mm1/2 (1740 psi-mm1/2). 
 

  Solution 

 In order to solve this problem, it is first necessary to calculate the constant σ0 in Equation 7.7 as 

 

  

 

σ0 = σ y −  k yd -1/2  

 

 

= 160 MPa −(12.0 MPa − mm1/2)(0.008 mm)−1/ 2 = 25.8 MPa  (4046 psi) 

 

Next, we must determine the average grain size after the heat treatment.  From Figure 7.25 at 600°C after 1000 s 
(16.7 min) the average grain size of a brass material is about 0.20 mm.  Therefore, calculating σy at this new grain 

size using Equation 7.7 we get 

 

  

 

σ y = σ0 +  k yd -1/2  

 

 

= 25.8  MPa + (12.0  MPa - mm1/2) (0.20 mm) -1/2 = 52.6 MPa  (7940 psi) 
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DESIGN PROBLEMS 

 

 Strain Hardening 

 Recrystallization 

 

 7.D1  Determine whether or not it is possible to cold work steel so as to give a minimum Brinell hardness 

of 225, and at the same time have a ductility of at least 12%EL.  Justify your decision. 
 

  Solution 

 The tensile strength corresponding to a Brinell hardness of 225 may be determined using Equation 6.20a as 

 

 

TS(MPa) = 3.45 ×  HB = (3.45)(225) = 776 MPa 

 

Furthermore, from Figure 7.19b, in order to achieve a tensile strength of 776 MPa, deformation of at least 9%CW is 

necessary.  Finally, if we cold work the steel to 9%CW, then the ductility is 17%EL from Figure 7.19c.  Therefore, 

it is possible to meet both of these criteria by plastically deforming the steel. 
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 7.D2  Determine whether or not it is possible to cold work brass so as to give a minimum Brinell hardness 

of 120 and at the same time have a ductility of at least 20%EL.  Justify your decision. 
 

  Solution 

 According to Figure 6.19, a Brinell hardness of 120 corresponds to a tensile strength of 440 MPa (63,500 

psi.)  Furthermore, from Figure 7.19b, in order to achieve a tensile strength of 440 MPa, deformation of at least 

26%CW is necessary.  Finally, if we are to achieve a ductility of at least 20%EL, then a maximum deformation of 

23%CW is possible from Figure 7.19c.  Therefore, it is not possible to meet both of these criteria by plastically 

deforming brass. 
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 7.D3  A cylindrical specimen of cold-worked steel has a Brinell hardness of 250. 

 (a) Estimate its ductility in percent elongation. 

 (b) If the specimen remained cylindrical during deformation and its original radius was 5 mm (0.20 in.), 

determine its radius after deformation. 
 

  Solution 

 (a)  From Figure 6.19, a Brinell hardness of 250 corresponds to a tensile strength of 860 MPa (125,000 

psi), which, from Figure 7.19b, requires a deformation of 25%CW.  Furthermore, 25%CW yields a ductility of 

about 11%EL for steel, Figure 7.19c. 

 (b)  We are now asked to determine the radius after deformation if the uncold-worked radius is 5 mm (0.20 

in.).  From Equation 7.8 and for a cylindrical specimen 

 

  

 

%CW =
π r0

2 − π r d
2

π r0
2

 

 
 
 

 

 
 
 

×  100 

 
Now, solving for rd from this expression, we get 

 

    

 

rd = r0 1 −
%CW
100

 

 

 

= (5 mm) 1 −
25

100
= 4.33 mm  (0.173 in.)  
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 7.D4  It is necessary to select a metal alloy for an application that requires a yield strength of at least 345 

MPa (50,000 psi) while maintaining a minimum ductility (%EL) of 20%. If the metal may be cold worked, decide 

which of the following are candidates:  copper, brass, and a 1040 steel.  Why? 
 

  Solution 

 For each of these alloys, the minimum cold work necessary to achieve the yield strength may be 

determined from Figure 7.19a, while the maximum possible cold work for the ductility is found in Figure 7.19c.  

These data are tabulated below. 

 

  Yield Strength Ductility 
  (> 345 MPa) (> 20%EL) 

 Steel Any %CW < 5%CW 

 Brass > 20%CW < 23%CW 

 Copper > 54%CW < 15%CW 

 

Thus, both the 1040 steel and brass are possible candidates since for these alloys there is an overlap of percents 

coldwork to give the required minimum yield strength and ductility values. 
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 7.D5  A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by 

drawing;  the circular cross section will be maintained during deformation.  A cold-worked tensile strength in 

excess of 840 MPa (122,000 psi) and a ductility of at least 12%EL are desired.  Furthermore, the final diameter 

must be 10 mm (0.40 in.).  Explain how this may be accomplished. 
 

  Solution 

 First let us calculate the percent cold work and attendant tensile strength and ductility if the drawing is 

carried out without interruption.  From Equation 7.8 

 

  

 

%CW =
π

d0

2

 
 
 

 
 
 

2

− π
dd

2

 
 
 

 
 
 

2

π
d0

2

 
 
 

 
 
 

2
×  100 

 

 

=
π

15.2  mm
2

 
 
 

 
 
 
2

− π
10  mm

2

 
 
 

 
 
 
2

π
15.2  mm

2

 
 
 

 
 
 
2

×  100 = 56%CW 

 

At 56%CW, the steel will have a tensile strength on the order of 920 MPa (133,000 psi) [Figure 7.19b], which is 

adequate;  however, the ductility will be less than 10%EL [Figure 7.19c], which is insufficient. 

 Instead of performing the drawing in a single operation, let us initially draw some fraction of the total 

deformation, then anneal to recrystallize, and, finally, cold-work the material a second time in order to achieve the 

final diameter, tensile strength, and ductility. 

 Reference to Figure 7.19b indicates that 20%CW is necessary to yield a tensile strength of 840 MPa 

(122,000 psi).  Similarly, a maximum of 21%CW is possible for 12%EL [Figure 7.19c].  The average of these 

extremes is 20.5%CW.  Again using Equation 7.8, if the final diameter after the first drawing is     

 

d 0
' , then

 

 

  

 

20.5%CW =

π
d 0

'

2

 

 
 
 

 

 
 
 

2

− π
10 mm

2

 
 
 

 
 
 

2

π
d 0

'

2

 

 
 
 

 

 
 
 

2
×  100  

 

And, solving the above expression for     

 

d 0
' , yields  
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d 0
'  =  

10 mm

1 −  
20.5%CW

100

 =  11.2 mm  (0.45 in.)  
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 7.D6  A cylindrical rod of copper originally 16.0 mm (0.625 in.) in diameter is to be cold worked by 

drawing; the circular cross section will be maintained during deformation.  A cold-worked yield strength in excess 

of 250 MPa (36,250 psi) and a ductility of at least 12%EL are desired. Furthermore, the final diameter must be 

11.3 mm (0.445 in.).  Explain how this may be accomplished. 
 

  Solution 

 Let us first calculate the percent cold work and attendant yield strength and ductility if the drawing is 

carried out without interruption.  From Equation 7.8 

 

  

 

%CW =
π

d0

2

 
 
 

 
 
 

2

− π
dd

2

 
 
 

 
 
 

2

π
d0

2

 
 
 

 
 
 

2
×  100 

 

 

=
π

16.0 mm
2

 
 
 

 
 
 

2

− π
11.3 mm

2

 
 
 

 
 
 
2

π
16.0 mm

2

 
 
 

 
 
 
2

×  100 = 50%CW  

 

At 50%CW, the copper will have a yield strength on the order of 330 MPa (48,000 psi), Figure 7.19a, which is 

adequate;  however, the ductility will be about 4%EL, Figure 7.19c, which is insufficient. 

 Instead of performing the drawing in a single operation, let us initially draw some fraction of the total 

deformation, then anneal to recrystallize, and, finally, cold work the material a second time in order to achieve the 

final diameter, yield strength, and ductility. 

 Reference to Figure 7.19a indicates that 21%CW is necessary to give a yield strength of 250 MPa.  

Similarly, a maximum of 23%CW is possible for 12%EL [Figure 7.19c].  The average of these two values is 

22%CW, which we will use in the calculations. Thus, to achieve both the specified yield strength and ductility, the 

copper must be deformed to 22%CW.  If the final diameter after the first drawing is   

 

d 0
' , then, using Equation 7.8 

 

  

 

22%CW =

π
d 0

'

2

 

 
 
 

 

 
 
 

2

− π
11.3 mm

2

 
 
 

 
 
 
2

π
d 0

'

2

 

 
 
 

 

 
 
 

2
×  100  

 

And, solving for   

 

d 0
'  from the above expression yields 
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d 0
'  =  

11.3 mm

1 −  
22%CW

100

 =  12.8 mm  (0.50 in.)  
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 7.D7  A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility 

of at least 10%EL, and a final diameter of 6.0 mm (0.25 in.) is desired.  Some 7.94 mm (0.313 in.) diameter 1040 

steel stock, which has been cold worked 20% is available.  Describe the procedure you would follow to obtain this 

material.  Assume that 1040 steel experiences cracking at 40%CW. 
 

  Solution 

 This problem calls for us to cold work some 1040 steel stock that has been previously cold worked in order 

to achieve minimum tensile strength and ductility values of 865 MPa (125,000 psi) and 10%EL, respectively, while 

the final diameter must be 6.0 mm (0.25 in.).  Furthermore, the material may not be deformed beyond 40%CW.  Let 

us start by deciding what percent coldwork is necessary for the minimum tensile strength and ductility values, 

assuming that a recrystallization heat treatment is possible.  From Figure 7.19b, at least 25%CW is required for a 

tensile strength of 865 MPa.  Furthermore, according to Figure 7.19c, 10%EL corresponds a maximum of 30%CW.  

Let us take the average of these two values (i.e., 27.5%CW), and determine what previous specimen diameter is 

required to yield a final diameter of 6.0 mm.  For cylindrical specimens, Equation 7.8 takes the form 

 

  

 

%CW =
π

d0

2

 
 
 

 
 
 

2

− π
dd

2

 
 
 

 
 
 

2

π
d0

2

 
 
 

 
 
 

2
×  100 

 

Solving for the original diameter d0 yields 

 

  

 

d0 =
dd

1 −
%CW
100

=  
6.0  mm

1 −
27.5%CW

100

= 7.05 mm  (0.278  in.)  

 

 Now, let us determine its undeformed diameter realizing that a diameter of 7.94 mm corresponds to 

20%CW.  Again solving for d0 using the above equation and assuming dd = 7.94 mm yields 

 

  

 

d0 =
dd

1 −
%CW
100

=  
7.94  mm

1 −
20%CW

100

= 8.88 mm  (0.350  in.) 

 

At this point let us see if it is possible to deform the material from 8.88 mm to 7.05 mm without exceeding the 

40%CW limit.  Again employing Equation 7.8 
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%CW =
π

8.88  mm
2

 
 
 

 
 
 

2

− π
7.05 mm

2

 
 
 

 
 
 

2

π
8.88  mm

2

 
 
 

 
 
 

2
×  100 = 37%CW  

 

 In summary, the procedure which can be used to produce the desired material would be as follows:  cold 

work the as-received stock to 7.05 mm (0.278 in.), heat treat it to achieve complete recrystallization, and then cold 

work the material again to 6.0 mm (0.25 in.), which will give the desired tensile strength and ductility. 
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CHAPTER 8 

 

FAILURE 

 

PROBLEM SOLUTIONS 

 

 

 Principles of Fracture Mechanics 

 

 8.1  What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius 

of curvature of 2.5 × 10-4 mm (10-5 in.) and a crack length of 2.5 × 10-2 mm (10-3 in.) when a tensile stress of 170 

MPa (25,000 psi) is applied? 
 

  Solution 

 This problem asks that we compute the magnitude of the maximum stress that exists at the tip of an internal 

crack.  Equation 8.1 is employed to solve this problem, as 

 

  

 

σm = 2σ0
a
ρt

 

 
 

 

 
 
1/ 2

 

 

 

=  (2)(170  MPa)

2.5 × 10−2 mm
2

2.5 × 10−4 mm

 

 

 
 
 
 

 

 

 
 
 
 

1/2

=  2404 MPa  (354,000 psi)  
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 8.2  Estimate the theoretical fracture strength of a brittle material if it is known that fracture occurs by the 

propagation of an elliptically shaped surface crack of length 0.25 mm (0.01 in.) and having a tip radius of 

curvature of 1.2 × 10-3 mm (4.7 × 10-5 in.) when a stress of 1200 MPa (174,000 psi) is applied. 
 

  Solution 

 In order to estimate the theoretical fracture strength of this material it is necessary to calculate σm using 

Equation 8.1 given that σ0 = 1200 MPa, a = 0.25 mm, and ρt = 1.2 × 10-3 mm.  Thus, 

 

  

 

σm = 2σ0
a
ρt

 

 
 

 

 
 
1/ 2

 

 

 

=  (2)(1200  MPa)
0.25 mm

1.2 × 10−3 mm

 

 
 

 

 
 
1/2

= 3.5 ×  104  MPa = 35 GPa  (5.1 ×  106  psi) 
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 8.3  If the specific surface energy for soda-lime glass is 0.30 J/m2, using data contained in Table 12.5, 

compute the critical stress required for the propagation of a surface crack of length 0.05 mm. 
 

  Solution 

 We may determine the critical stress required for the propagation of an surface crack in soda-lime glass 

using Equation 8.3;  taking the value of 69 GPa (Table 12.5) as the modulus of elasticity, we get 

 

  

 

σc =
2E γs

π a

 

 
 

 

 
 
1/ 2

 

 

 

=
(2)(69 × 109 N /m2) (0.30 N/m)

(π) 0.05 ×  10−3 m( )
 

 

 
 

 

 

 
 

1/ 2

= 16.2  ×  106  N/m2 = 16.2 MPa  
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 8.4  A polystyrene component must not fail when a tensile stress of 1.25 MPa (180 psi) is applied.  

Determine the maximum allowable surface crack length if the surface energy of polystyrene is 0.50 J/m2 (2.86 × 10-3 

in.-lb f/in.2).  Assume a modulus of elasticity of 3.0 GPa (0.435 × 106 psi). 
 

  Solution 

 The maximum allowable surface crack length for polystyrene may be determined using Equation 8.3;  

taking 3.0 GPa as the modulus of elasticity, and solving for a, leads to 

 

  

 

a =
2 E γs

π σc
2

=
(2)(3 × 109 N/m2) (0.50  N/m)

(π)(1.25 × 106 N/m2) 2
 

 

= 6.1 × 10-4 m = 0.61 mm  (0.024 in.) 
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 8.5  A specimen of a 4340 steel alloy having a plane strain fracture toughness of 

 

45 MPa m  (

 

41 ksi in. ) 

is exposed to a stress of 1000 MPa (145,000 psi).  Will this specimen experience fracture if it is known that the 

largest surface crack is 0.75 mm (0.03 in.) long?  Why or why not?  Assume that the parameter Y has a value of 1.0. 
 

  Solution 

 This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed 
to a stress of 1000 MPa, given the values of KIc, Y, and the largest value of a in the material.  This requires that we 

solve for σc from Equation 8.6.  Thus 

 

  

 

σc =
K Ic

Y π a
=

45 MPa m

(1.0) (π)(0.75 × 10−3 m)
= 927  MPa  (133,500 psi) 

 

Therefore, fracture will most likely occur because this specimen will tolerate a stress of 927 MPa (133,500 psi) 

before fracture, which is less than the applied stress of 1000 MPa (145,000 psi). 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 8.6  Some aircraft component is fabricated from an aluminum alloy that has a plane strain fracture 

toughness of 

 

35 MPa m  

 

(31.9 ksi in. ).   It has been determined that fracture results at a stress of 250 MPa 

(36,250 psi) when the maximum (or critical) internal crack length is 2.0 mm (0.08 in.).  For this same component 

and alloy, will fracture occur at a stress level of 325 MPa (47,125 psi) when the maximum internal crack length is 

1.0 mm (0.04 in.)?  Why or why not? 
 

  Solution 

 We are asked to determine if an aircraft component will fracture for a given fracture toughness (35 

  

 

MPa m ), stress level (325 MPa), and maximum internal crack length (1.0 mm), given that fracture occurs for the 

same component using the same alloy for another stress level and internal crack length.  It first becomes necessary 

to solve for the parameter Y, using Equation 8.5, for the conditions under which fracture occurred (i.e., σ = 250 

MPa and 2a = 2.0 mm).  Therefore, 

 

  

 

Y =
K Ic

σ π a
=

35 MPa m

(250  MPa) (π)
2 × 10−3 m

2

 

 
 

 

 
 

= 2.50  

 

Now we will solve for the product   

 

Y σ πa   for the other set of conditions, so as to ascertain whether or not this 

value is greater than the KIc for the alloy.  Thus, 

 

  

 

Y σ π a = (2.50)(325 MPa) (π)
1 × 10−3 m

2

 

 
 

 

 
  

 

 

= 32.2 MPa m  (29.5 ksi in.) 

 
Therefore, fracture will not occur since this value 

 

(32.3 MPa m )  is less than the KIc of the material, 

 

35 MPa m . 
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 8.7  Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane 

strain fracture toughness of 

 

40 MPa m  

 

(36.4 ksi in. ).   It has been determined that fracture results at a stress of 

365 MPa (53,000 psi) when the maximum internal crack length is 2.5 mm (0.10 in.).  For this same component and 

alloy, compute the stress level at which fracture will occur for a critical internal crack length of 4.0 mm (0.16 in.). 
 

  Solution 

 This problem asks us to determine the stress level at which an a wing component on an aircraft will 

fracture for a given fracture toughness 

 

(40 MPa m )  and maximum internal crack length (4.0 mm), given that 

fracture occurs for the same component using the same alloy at one stress level (365 MPa) and another internal 

crack length (2.5 mm).  It first becomes necessary to solve for the parameter Y for the conditions under which 

fracture occurred using Equation 8.5.  Therefore, 

 

  

 

Y =
K Ic

σ πa
=

40  MPa m

(365 MPa) (π)
2.5 × 10−3 m

2

 

 
 

 

 
 

= 1.75 

 
Now we will solve for σc using Equation 8.6 as 

 

  

 

σc =
K Ic

Y πa
=

40  MPa m

(1.75) (π)
4 × 10−3 m

2

 

 
 

 

 
 

= 288  MPa  (41,500 psi) 
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 8.8 A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 

 

55 MPa m (50 ksi in. ).  If, during service use, the plate is exposed to a tensile stress of 200 MPa (29,000 psi), 

determine the minimum length of a surface crack that will lead to fracture.  Assume a value of 1.0 for Y. 
 

  Solution 

 For this problem, we are given values of KIc 

 

(55 MPa m ), σ (200 MPa), and Y (1.0) for a large plate and 

are asked to determine the minimum length of a surface crack that will lead to fracture.  All we need do is to solve 

for ac using Equation 8.7;  therefore 

 

  

 

ac =
1
π

K Ic

Y σ

 

 
 

 

 
 

2

=
1
π

55 MPa m

(1.0)(200 MPa)

 

 
 

 

 
 
2

= 0.024  m = 24  mm  (0.95 in.)  
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 8.9  Calculate the maximum internal crack length allowable for a 7075-T651 aluminum alloy (Table 8.1) 

component that is loaded to a stress one half of its yield strength. Assume that the value of Y is 1.35. 
 

  Solution 

 This problem asks us to calculate the maximum internal crack length allowable for the 7075-T651 

aluminum alloy in Table 8.1 given that it is loaded to a stress level equal to one-half of its yield strength.  For this 

alloy,   

 

K Ic = 24 MPa m (22 ksi in. ) ;  also,  σ = σy/2 = (495 MPa)/2 = 248 MPa (36,000 psi).  Now solving for 

2ac using Equation 8.7 yields 

 

  

 

2ac =
2
π

K Ic

Yσ
 
 
 

 
 
 
2

=
2
π

24  MPa m

(1.35)(248  MPa)

 

 
 

 

 
 

2

= 0.0033  m = 3.3 mm  (0.13 in.) 
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 8.10  A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a 

plane strain fracture toughness of 

 

77.0 MPa m (70.1 ksi in. )  and a yield strength of 1400 MPa (205,000 psi).  

The flaw size resolution limit of the flaw detection apparatus is 4.0 mm (0.16 in.).  If the design stress is one half of 

the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to 

detection. 
 

  Solution 

 This problem asks that we determine whether or not a critical flaw in a wide plate is subject to detection 
given the limit of the flaw detection apparatus (4.0 mm), the value of KIc 

 

(77 MPa m ) , the design stress (σy/2 in 

which σ y = 1400 MPa), and Y = 1.0.  We first need to compute the value of ac using Equation 8.7;  thus 

 

  

 

ac =
1
π

K Ic

Yσ
 
 
 

 
 
 
2

=
1
π

77  MPa m

(1.0)
1400  MPa

2

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

2

= 0.0039  m = 3.9  mm  (0.15 in.)  

 

Therefore, the critical flaw is not subject to detection since this value of ac (3.9 mm) is less than the 4.0 mm 

resolution limit. 
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 8.11  After consultation of other references, write a brief report on one or two nondestructive test 

techniques that are used to detect and measure internal and/or surface flaws in metal alloys. 

 

 The student should do this problem on his/her own. 
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 Impact Fracture Testing 
 

 8.12  Following is tabulated data that were gathered from a series of Charpy impact tests on a ductile cast 

iron. 
 

Temperature (°C) Impact Energy (J) 

–25 124 

–50 123 

–75 115 

–85 100 

–100 73 

–110 52 

–125 26 

–150 9 

–175 6 
 

 (a)  Plot the data as impact energy versus temperature. 

 (b)  Determine a ductile-to-brittle transition temperature as that temperature corresponding to the average 

of the maximum and minimum impact energies. 

 (c)  Determine a ductile-to-brittle transition temperature as that temperature at which the impact energy is 

80 J. 
 
  Solution 

 (a)  The plot of impact energy versus temperature is shown below. 
 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

 (b)  The average of the maximum and minimum impact energies from the data is 

 

 

Average =
124 J + 6 J

2
= 65  J  

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –105°C. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 80 J is about –95°C. 
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 8.13  Following is tabulated data that were gathered from a series of Charpy impact tests on a tempered 

4140 steel alloy. 
 

Temperature (°C) Impact Energy (J) 

100 89.3 
75 88.6 
50 87.6 
25 85.4 
0 82.9 

–25 78.9 
–50 73.1 
–65 66.0 
–75 59.3 
–85 47.9 

–100 34.3 
–125 29.3 
–150 27.1 
–175 25.0 

 

 (a) Plot the data as impact energy versus temperature. 

 (b) Determine a ductile-to-brittle transition temperature as that temperature corresponding to the average 

of the maximum and minimum impact energies. 

 (c) Determine a ductile-to-brittle transition temperature as that temperature at which the impact energy is 

70 J. 

 
  Solution 

 The plot of impact energy versus temperature is shown below. 
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 (b)  The average of the maximum and minimum impact energies from the data is 

 

 

Average =
89.3 J + 25 J

2
= 57.2  J  

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –75°C. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 70 J is about –55°C. 
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 Cyclic Stresses (Fatigue) 

 The S-N Curve 

 

 8.14  A fatigue test was conducted in which the mean stress was 50 MPa (7250 psi) and the stress 

amplitude was 225 MPa (32,625 psi). 

 (a) Compute the maximum and minimum stress levels. 

 (b) Compute the stress ratio. 

 (c) Compute the magnitude of the stress range. 
 

  Solution 

 (a)  Given the values of σm (50 MPa) and σa (225 MPa) we are asked to compute σmax and σmin.  From 

Equation 8.14 

 

  

 

σm =
σmax + σmin

2
= 50  MPa  

Or, 
 

σmax + σmin = 100 MPa 

 

Furthermore, utilization of Equation 8.16 yields 

 

  

 

σa =
σmax − σmin

2
= 225 MPa  

 

Or, 
 

σmax – σmin = 450 MPa 

 

Simultaneously solving these two expressions leads to 

 

 

σmax = 275 MPa  (40,000 psi)  

 

σmin = −175 MPa  (−25,500 psi)  

 

 (b)  Using Equation 8.17 the stress ratio R is determined as follows: 

 

  

 

R =
σmin

σmax
=

−175 MPa
275 MPa

= − 0.64  
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 (c)  The magnitude of the stress range σr is determined using Equation 8.15 as 

 

  

 

σ r = σmax − σmin = 275 MPa −  (−175 MPa) = 450 MPa  (65,500  psi)  
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 8.15  A cylindrical 1045 steel bar (Figure 8.34) is subjected to repeated compression-tension stress cycling 

along its axis. If the load amplitude is 22,000 N (4950 lb f), compute the minimum allowable bar diameter to ensure 

that fatigue failure will not occur.  Assume a factor of safety of 2.0. 
 

  Solution 

 From Figure 8.34, the fatigue limit stress amplitude for this alloy is 310 MPa (45,000 psi).  Stress is 

defined in Equation 6.1 as 
    

 

σ =
F
A0

.  For a cylindrical bar 

 

  

 

A0 = π
d0

2

 
 
 

 
 
 
2

 

 

Substitution for A0 into the Equation 6.1 leads to 

 

  

 

σ =  
F
A0

 =  
F

π
d0

2

 
 
 

 
 
 

2
 =  

4F

πd0
2

 

 
 We now solve for d0, taking stress as the fatigue limit divided by the factor of safety.  Thus 

 

  

 

d0 =
4F

π
σ
N

 
 
 

 
 
 

 

 

 

=
(4)(22,000  N)

(π)
310 × 106 N /m2

2

 

 
 

 

 
 

= 13.4 × 10−3 m = 13.4 mm (0.53 in.)  
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 8.16  An 8.0 mm (0.31 in.) diameter cylindrical rod fabricated from a red brass alloy (Figure 8.34) is 

subjected to reversed tension-compression load cycling along its axis.  If the maximum tensile and compressive 

loads are +7500 N (1700 lb f) and -7500 N (-1700 lb f), respectively, determine its fatigue life.  Assume that the 

stress plotted in Figure 8.34 is stress amplitude. 
 

  Solution 

 We are asked to determine the fatigue life for a cylindrical red brass rod given its diameter (8.0 mm) and 

the maximum tensile and compressive loads (+7500 N and -7500 N, respectively).  The first thing that is necessary 

is to calculate values of σmax and σmin using Equation 6.1.  Thus 

 

  

 

σmax =
Fmax

A0
=

Fmax

π
d0

2

 
 
 

 
 
 

2
 

 

 

 =
7500  N

(π)
8.0 × 10−3 m

2

 

 
 

 

 
 

2
= 150  ×  106  N/m2 = 150  MPa  (22,500  psi)  

 

 

  

 

σmin =
Fmin

π
d0

2

 
 
 

 
 
 
2

 

 

 

=
−7500  N

(π)
8.0 × 10−3 m

2

 

 
 

 

 
 
2

= −150 ×  106  N/m2 = −150  MPa  (−22,500 psi)  

 

Now it becomes necessary to compute the stress amplitude using Equation 8.16 as 
 

  

 

σa =
σmax − σmin

2
=

150  MPa − (−150  MPa)
2

= 150  MPa  (22,500  psi)  

 

From Figure 8.34, f for the red brass, the number of cycles to failure at this stress amplitude is about 1 × 105 cycles. 
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 8.17  A 12.5 mm (0.50 in.) diameter cylindrical rod fabricated from a 2014-T6 alloy (Figure 8.34) is 

subjected to a repeated tension-compression load cycling along its axis.  Compute the maximum and minimum 

loads that will be applied to yield a fatigue life of 1.0 × 107 cycles.  Assume that the stress plotted on the vertical 

axis is stress amplitude, and data were taken for a mean stress of 50 MPa (7250 psi). 
 

  Solution 

 This problem asks that we compute the maximum and minimum loads to which a 12.5 mm (0.50 in.) 

diameter 2014-T6 aluminum alloy specimen may be subjected in order to yield a fatigue life of 1.0 × 107 cycles;  

Figure 8.34 is to be used assuming that data were taken for a mean stress of 50 MPa (7250 psi).  Upon consultation 

of Figure 8.34, a fatigue life of 1.0 × 107 cycles corresponds to a stress amplitude of 160 MPa (23,200 psi).  Or, 

from Equation 8.16 

 

  

 

σmax − σmin = 2σa = (2)(160 MPa) = 320  MPa  (46,400  psi)  

 
Since σm = 50 MPa, then from Equation 8.14 

 

  

 

σmax + σmin = 2σm = (2)(50  MPa) = 100  MPa  (14,500  psi)  

 
Simultaneous solution of these two expressions for σmax and σmin yields 

 
σmax = +210 MPa  (+30,400 psi)  

σmin = –110 MPa  (–16,000 psi) 

 

Now, inasmuch as 
    

 

σ =
F
A0

 (Equation 6.1), and 
    

 

A0 = π
d0

2

 
 
 

 
 
 
2

  then 

 

  

 

Fmax =
σmax π d 0

2

4
=

(210 × 106 N /m2) (π)(12.5 × 10−3 m)2

4
= 25,800  N  (6000  lbf )  

 

  

 

Fmin =
σminπ d 0

2

4
=

(−110 × 106 N /m2) (π)(12.5 × 10−3 m)2

4
= −13,500  N  (−3140  lbf )  
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 8.18  The fatigue data for a brass alloy are given as follows: 

 

Stress Amplitude (MPa) Cycles to Failure 

310 2 × 105 

223 1 × 106 

191 3 × 106 

168 1 × 107 

153 3 × 107 

143 1 × 108 

134 3 × 108 

127 1 × 109 

 

 (a) Make an S–N plot (stress amplitude versus logarithm cycles to failure) using these data. 

 (b) Determine the fatigue strength at 5 × 105 cycles. 

 (c) Determine the fatigue life for 200 MPa. 
 

  Solution 

 (a)  The fatigue data for this alloy are plotted below. 

 

 

 

 (b)  As indicated by the “A” set of dashed lines on the plot, the fatigue strength at 5 × 105 cycles [log (5 × 

105) = 5.7] is about 250 MPa. 
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 (c)  As noted by the “B” set of dashed lines, the fatigue life for 200 MPa is about 2 × 106 cycles (i.e., the 

log of the lifetime is about 6.3). 
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 8.19  Suppose that the fatigue data for the brass alloy in Problem 8.18 were taken from torsional tests, and 

that a shaft of this alloy is to be used for a coupling that is attached to an electric motor operating at 1500 rpm.  

Give the maximum torsional stress amplitude possible for each of the following lifetimes of the coupling:  (a) 1 

year, (b) 1 month, (c) 1 day, and (d) 2 hours. 
 

  Solution 

 For each lifetime, first compute the number of cycles, and then read the corresponding fatigue strength 

from the above plot. 

 (a)  Fatigue lifetime = (1 yr)(365 days/yr)(24 h/day)(60 min/h)(1500 cycles/min) = 7.9 × 108 cycles.  The 

stress amplitude corresponding to this lifetime is about 130 MPa. 

 (b) Fatigue lifetime = (30 days)(24 h/day)(60 min/h)(1500 cycles/min) = 6.5 × 107 cycles.  The stress 

amplitude corresponding to this lifetime is about 145 MPa. 

 (c) Fatigue lifetime = (24 h)(60 min/h)(1500 cycles/min) = 2.2 × 106 cycles.  The stress amplitude 

corresponding to this lifetime is about 195 MPa. 

 (d) Fatigue lifetime = (2 h)(60 min/h)(1500 cycles/min) = 1.8 × 105 cycles.  The stress amplitude 

corresponding to this lifetime is about 315 MPa. 
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 8.20  The fatigue data for a ductile cast iron are given as follows: 

 
Stress Amplitude 

[MPa (ksi)] Cycles to Failure 

248 (36.0) 1 × 105 

236 (34.2) 3 × 105 

224 (32.5) 1 × 106 

213 (30.9) 3 × 106 

201 (29.1) 1 × 107 

193 (28.0) 3 × 107 

193 (28.0) 1 × 108 

193 (28.0) 3 × 108 

 

 (a) Make an S–N plot (stress amplitude versus logarithm cycles to failure) using these data. 

 (b) What is the fatigue limit for this alloy? 

 (c) Determine fatigue lifetimes at stress amplitudes of 230 MPa (33,500 psi) and 175 MPa (25,000 psi). 

 (d) Estimate fatigue strengths at 2 × 105 and 6 × 106 cycles. 
 

  Solution 

 (a)  The fatigue data for this alloy are plotted below. 

 

 

 

 (b)  The fatigue limit is the stress level at which the curve becomes horizontal, which is 193 MPa (28,000 

psi). 
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 (c)  As noted by the “A” set of dashed lines, the fatigue lifetime at a stress amplitude of 230 MPa is about 5 

× 105 cycles (log N = 5.7).  From the plot, the fatigue lifetime at a stress amplitude of 230 MPa (33,500 psi) is about 

50,000 cycles (log N = 4.7).  At 175 MPa (25,000 psi) the fatigue lifetime is essentially an infinite number of cycles 

since this stress amplitude is below the fatigue limit. 

 (d) As noted by the “B” set of dashed lines, the fatigue strength at 2 × 105 cycles (log N = 5.3) is about 240 

MPa (35,000 psi);  and according to the “C” set of dashed lines, the fatigue strength at 6 × 106 cycles (log N = 6.78) 

is about 205 MPa (30,000 psi). 
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 8.21  Suppose that the fatigue data for the cast iron in Problem 8.20 were taken for bending-rotating tests, 

and that a rod of this alloy is to be used for an automobile axle that rotates at an average rotational velocity of 750 

revolutions per minute.  Give maximum lifetimes of continuous driving that are allowable for the following stress 

levels: (a) 250 MPa (36,250 psi), (b) 215 MPa (31,000 psi), (c) 200 MPa (29,000 psi), and (d) 150 MPa (21,750 

psi). 
 

  Solution 

 For each stress level, first read the corresponding lifetime from the above plot, then convert it into the 

number of cycles. 
 (a)  For a stress level of 250 MPa (36,250 psi), the fatigue lifetime is approximately 90,000 cycles.  This 

translates into (9 × 104 cycles)(1 min/750 cycles) = 120 min. 

 (b)  For a stress level of 215 MPa (31,000 psi), the fatigue lifetime is approximately 2 × 106 cycles.  This 

translates into (2 × 106 cycles)(1 min/750 cycles) = 2670 min = 44.4 h. 

 (c)  For a stress level of 200 MPa (29,000 psi), the fatigue lifetime is approximately 1 × 107 cycles.  This 

translates into (1 × 107 cycles)(1 min/750 cycles) = 1.33 × 104 min = 222 h. 
 (d)  For a stress level of 150 MPa (21,750 psi), the fatigue lifetime is essentially infinite since we are below 
the fatigue limit [193 MPa (28,000 psi)]. 
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 8.22  Three identical fatigue specimens (denoted A, B, and C) are fabricated from a nonferrous alloy. Each 

is subjected to one of the maximum-minimum stress cycles listed below; the frequency is the same for all three tests. 

 

Specimen σmax (MPa) σmin (MPa) 

A +450 –350 

B +400 –300 

C +340 –340 
 

 (a) Rank the fatigue lifetimes of these three specimens from the longest to the shortest. 

 (b) Now justify this ranking using a schematic S–N plot. 
 

  Solution 

 In order to solve this problem, it is necessary to compute both the mean stress and stress amplitude for each 

specimen.  Since from Equation 8.14, mean stresses are the specimens are determined as follows: 
 

  

 

σm =
σmax + σmin

2
 

 

  

 

σm (A) =
450  MPa + (−350  MPa)

2
= 50 MPa  

 

  

 

σm (B) =
400  MPa + (−300  MPa)

2
= 50 MPa  

 

  

 

σm (C) =
340  MPa + (−340  MPa)

2
= 0 MPa 

 

Furthermore, using Equation 8.16, stress amplitudes are computed as 
 

  

 

σa =
σmax − σmin

2
 

 

  

 

σa (A) =
450  MPa − (−350  MPa)

2
= 400 MPa  

 

  

 

σa (B) =
400  MPa − (−300  MPa)

2
= 350 MPa  

 

  

 

σa (C) =
340  MPa − (−340  MPa)

2
= 340 MPa 

 
On the basis of these results, the fatigue lifetime for specimen C will be greater than specimen B, which in turn will 
be greater than specimen A.  This conclusion is based upon the following S-N plot on which curves are plotted for 
two σm values. 
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 8.23  Cite five factors that may lead to scatter in fatigue life data. 
 

  Solution 

 Five factors that lead to scatter in fatigue life data are (1) specimen fabrication and surface preparation, (2) 

metallurgical variables, (3) specimen alignment in the test apparatus, (4) variation in mean stress, and (5) variation 

in test cycle frequency. 
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 Crack Initiation and Propagation 

 Factors That Affect Fatigue Life 

 

 8.24  Briefly explain the difference between fatigue striations and beachmarks both in terms of (a) size and 

(b) origin. 
 

  Solution 

 (a)  With regard to size, beachmarks are normally of macroscopic dimensions and may be observed with 

the naked eye;  fatigue striations are of microscopic size and it is necessary to observe them using electron 

microscopy. 

 (b)  With regard to origin, beachmarks result from interruptions in the stress cycles;  each fatigue striation 

is corresponds to the advance of a fatigue crack during a single load cycle. 
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 8.25  List four measures that may be taken to increase the resistance to fatigue of a metal alloy. 
 

  Solution 

 Four measures that may be taken to increase the fatigue resistance of a metal alloy are: 

 (1)  Polish the surface to remove stress amplification sites. 

 (2)  Reduce the number of internal defects (pores, etc.) by means of altering processing and fabrication 

techniques. 

 (3)  Modify the design to eliminate notches and sudden contour changes. 

 (4)  Harden the outer surface of the structure by case hardening (carburizing, nitriding) or shot peening. 
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 Generalized Creep Behavior 

 

 8.26  Give the approximate temperature at which creep deformation becomes an important consideration 

for each of the following metals: nickel, copper, iron, tungsten, lead, and aluminum. 
 

  Solution 

 Creep becomes important at about 0.4Tm, Tm being the absolute melting temperature of the metal.  (The 

melting temperatures in degrees Celsius are found inside the front cover of the book.) 

 
 For Ni, 0.4Tm = (0.4)(1455 + 273) = 691

 
K or 418°C (785°F) 

 For Cu, 0.4Tm = (0.4)(1085 + 273) = 543
 
K or 270°C (518°F) 

 For Fe, 0.4Tm = (0.4)(1538 + 273) = 725
 
K or 450°C (845°F) 

 For W, 0.4Tm = (0.4)(3410 + 273) = 1473
 
K or 1200°C (2190°F) 

 For Pb, 0.4Tm = (0.4)(327 + 273) = 240
 
K or −33°C (−27°F) 

 For Al, 0.4Tm = (0.4)(660 + 273) = 373
 
K or 100°C (212°F) 
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 8.27  The following creep data were taken on an aluminum alloy at 400°C (750°F) and a constant stress of 

25 MPa (3660 psi).  Plot the data as strain versus time, then determine the steady-state or minimum creep rate.  

Note:  The initial and instantaneous strain is not included. 

 

Time (min) Strain Time (min) Strain 

0 0.000 16 0.135 

2 0.025 18 0.153 

4 0.043 20 0.172 

6 0.065 22 0.193 

8 0.078 24 0.218 

10 0.092 26 0.255 

12 0.109 28 0.307 

14 0.120 30 0.368 

 
  Solution 

 These creep data are plotted below 
 

 

 

 The steady-state creep rate (∆ε/∆t) is the slope of the linear region (i.e., the straight line that has been 

superimposed on the curve) as 

 

  

 

∆ε
∆t

=
0.230 − 0.09

30 min − 10 min
= 7.0 ×  10-3  min-1 
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 Stress and Temperature Effects 

 

 8.28  A specimen 750 mm (30 in.) long of an S-590 alloy (Figure 8.31) is to be exposed to a tensile stress 

of 80 MPa (11,600 psi) at 815°C (1500°F).  Determine its elongation after 5000 h.  Assume that the total of both 

instantaneous and primary creep elongations is 1.5 mm (0.06 in.). 

 
  Solution 

 From the 815°C line in Figure 8.31, the steady state creep rate   

 

Ý ε s is about 5.5 × 10-6 h-1 at 80 MPa.  The 

steady state creep strain, εs, therefore, is just the product of 
  
Ý ε s  and time as 

 

    

 

εs = Ý ε s x  (time) 

 

 

= (5.5 ×  10−6  h-1) (5,000  h) = 0.0275 

 
Strain and elongation are related as in Equation 6.2;  solving for the steady state elongation, ∆ls, leads to  

 

    

 

∆ls = l0 εs = (750  mm) (0.0275) = 20.6  mm  (0.81 in.) 

 
Finally, the total elongation is just the sum of this ∆ls and the total of both instantaneous and primary creep 

elongations [i.e., 1.5 mm (0.06 in.)].  Therefore, the total elongation is 20.6 mm + 1.5 mm = 22.1 mm (0.87 in.). 
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 8.29  For a cylindrical S-590 alloy specimen (Figure 8.31) originally 10 mm (0.40 in.) in diameter and 500 

mm (20 in.) long, what tensile load is necessary to produce a total elongation of 145 mm (5.7 in.) after 2,000 h at 

730°C (1350°F)?  Assume that the sum of instantaneous and primary creep elongations is 8.6 mm (0.34 in.). 

 
  Solution 

 It is first necessary to calculate the steady state creep rate so that we may utilize Figure 8.31 in order to 
determine the tensile stress.  The steady state elongation, ∆ls, is just the difference between the total elongation and 

the sum of the instantaneous and primary creep elongations;  that is, 

 

    

 

∆ls = 145 mm − 8.6  mm = 136.4  mm  (5.36  in.)  

 

Now the steady state creep rate,   

 

Ý ε s is just 

 

    

 

ε
.

s =
∆ε
∆ t

=

∆ ls
l0
∆ t

=

136.4  mm
500 mm
2,000  h

 

 

= 1.36 × 10-4 h-1 

 

Employing the 730°C line in Figure 8.31, a steady state creep rate of 1.36 × 10-4 h-1 corresponds to a stress σ of 

about 200 MPa (or 29,000 psi)  [since log (1.36 × 10-4) = -3.866].  From this we may compute the tensile load using 

Equation 6.1 as 

 

    

 

F = σA0 = σπ
d0
2

 

 
 

 

 
 
2

 

 

 

= (200 ×  106  N/m2) (π)
10.0 × 10−3 m

2

 

 
 

 

 
 
2

= 15,700  N  (3645  lbf )  
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 8.30  If a component fabricated from an S-590 alloy (Figure 8.30) is to be exposed to a tensile stress of 

300 MPa (43,500 psi) at 650°C (1200°F), estimate its rupture lifetime. 

 
  Solution 

 This problem asks us to calculate the rupture lifetime of a component fabricated from an S-590 alloy 

exposed to a tensile stress of 300 MPa at 650°C.  All that we need do is read from the 650°C line in Figure 8.30 the 

rupture lifetime at 300 MPa;  this value is about 600 h. 
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 8.31  A cylindrical component constructed from an S-590 alloy (Figure 8.30) has a diameter of 12 mm 

(0.50 in.).  Determine the maximum load that may be applied for it to survive 500 h at 925°C (1700°F). 

 
  Solution 

 We are asked in this problem to determine the maximum load that may be applied to a cylindrical S-590 

alloy component that must survive 500 h at 925°C.  From Figure 8.30, the stress corresponding to 500 h is about 50 
MPa (7,250 psi).  Since stress is defined in Equation 6.1 as σ = F/A0, and for a cylindrical specimen, 

    

 

A0 =  π
d0

2

 
 
 

 
 
 
2

, then 

 

  

 

F = σA0 = σπ
d0

2

 
 
 

 
 
 
2

 

 

 

= (50 ×  106  N/m2) (π)
12 × 10−3 m

2

 

 
 

 

 
 

2

= 5655  N  (1424 lbf )  
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 8.32  From Equation 8.19, if the logarithm of   

 

Ý ε s is plotted versus the logarithm of σ, then a straight line 

should result, the slope of which is the stress exponent n. Using Figure 8.31, determine the value of n for the S-590 

alloy at 925°C, and for the initial (i.e., lower-temperature) straight line segments at each of 650°C, 730°C, and 

815°C. 

 
  Solution 

 The slope of the line from a log   

 

Ý ε s versus log σ plot yields the value of n in Equation 8.19;  that is 

 

    

 

n =
∆ log Ý ε s
∆ log σ

 

 

We are asked to determine the values of n for the creep data at the four temperatures in Figure 8.31 [i.e., at 925°C, 

and for the initial (i.e., lower-temperature) straight line segments at each of 650°C, 730°C, and 815°C].  This is 

accomplished by taking ratios of the differences between two log   
Ý ε s  and log σ values.  (Note:  Figure 8.31 plots log 

σ versus log   

 

Ý ε s;  therefore, values of n are equal to the reciprocals of the slopes of the straight-line segments.) 

Thus for 650°C 

 

    

 

n =
∆ log Ý ε s
∆ log σ

 = 

 

log (10−1) − log (10−5)
log (545 MPa) − log (240  MPa)

= 11.2  

 

While for 730°C 

 

    

 

n =
∆ log Ý ε s
∆ log σ

 =

 

log 1( ) − log (10−6)
log (430  MPa) − log (125 MPa)

= 11.2  

 

And at 815°C 

 

    

 

n =
∆ log Ý ε s
∆ log σ

 = 

 

log 1( ) − log (10−6)
log (320  MPa) − log (65 MPa)

= 8.7 

 

And, finally at 925°C 

 

    

 

n =
∆ log Ý ε s
∆ log σ

 = 

 

log 102( ) − log (10−5)
log (350  MPa) − log (44  MPa)

= 7.8  
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 8.33  (a) Estimate the activation energy for creep (i.e., Qc in Equation 8.20) for the S-590 alloy having the 

steady-state creep behavior shown in Figure 8.31. Use data taken at a stress level of 300 MPa (43,500 psi) and 

temperatures of 650°C and 730°C . Assume that the stress exponent n is independent of temperature. (b) Estimate 

  
Ý ε s  at 600°C (873 K) and 300 MPa. 

 
  Solution 

 (a)  We are asked to estimate the activation energy for creep for the S-590 alloy having the steady-state 

creep behavior shown in Figure 8.31, using data taken at σ = 300 MPa and temperatures of 650°C and 730°C.  

Since σ is a constant, Equation 8.20 takes the form 

 

    

 

Ý ε s = K2σnexp −
Qc
RT

 

 
 

 

 
 = K2

' exp −
Qc
RT

 

 
 

 

 
  

 

where     

 

K2
'  is now a constant.  (Note:  the exponent n has about the same value at these two temperatures per 

Problem 8.32.)  Taking natural logarithms of the above expression 

 

    

 

ln Ý ε s =  ln K2
' −

Qc
RT

 

 
For the case in which we have creep data at two temperatures (denoted as T1 and T2) and their corresponding 

steady-state creep rates (
    

 

Ý ε s1
and 

    

 

Ý ε s2
), it is possible to set up two simultaneous equations of the form as above, with 

two unknowns, namely     

 

K2
'  and Qc.  Solving for Qc yields 

 

    

 

Qc = −  
R ln Ý ε s1

− ln Ý ε s2
 
 
 

 
 
 

1
T1

−
1

T2

 

 
 
 

 

 
 
 

 

 
Let us choose T1 as 650°C (923 K) and T2 as 730°C (1003 K);  then from Figure 8.31, at σ = 300 MPa, 

    

 

Ý ε s1
 = 8.9 × 

10-5 h-1 and 
    

 

Ý ε s2
 =  1.3 × 10-2 h-1.  Substitution of these values into the above equation leads to 

 

  

 

Qc = −  
(8.31 J /mol - K) ln (8.9  ×  10−5) − ln (1.3 × 10−2)[ ]

1
923 K

−
1

1003 K

 
  

 
  

 

 

= 480,000 J/mol 
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 (b)  We are now asked to estimate   

 

Ý ε s at 600°C (873 K) and 300 MPa.  It is first necessary to determine the 

value of     

 

K2
' , which is accomplished using the first expression above, the value of Qc, and one value each of   

 

Ý ε s and 

T (say 
    

 

Ý ε s1
 and T1).  Thus, 

 

    

 

K2
' =  Ý ε s1

exp 
Qc
RT1

 

 
  

 

 
   

 

 

=  8.9  ×  10−5 h−1( )exp
480,000  J /mol

(8.31 J /mol - K)(923 K)

 

  
 

  =  1.34 ×  1023 h-1 

 

Now it is possible to calculate   

 

Ý ε s at 600°C (873 K) and 300 MPa as follows: 

 

    

 

Ý ε s =  K2
' exp −

Qc
RT

 

 
 

 

 
  

 

 

=  1.34 × 1023  h−1( )exp −
480,000 J/mol

(8.31 J/mol - K)(873 K)

 

  
 

   

 

= 2.47 × 10-6 h-1 
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 8.34  Steady-state creep rate data are given below for nickel at 1000°C (1273 K): 

 

  

 

Ý ε s (s–1) σ [MPa (psi)] 

10–4 15 (2175) 

10–6 4.5 (650) 

 

If it is known that the activation energy for creep is 272,000 J/mol, compute the steady-state creep rate at a 

temperature of 850°C (1123 K) and a stress level of 25 MPa (3625 psi). 

 
  Solution 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    

 

ln Ý ε s =  ln K2 + n ln σ −
Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and n.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 

 

  

 

ln 1 × 10−4  s−1( )= ln K2 +  n ln (15 MPa) −
272,000 J /mol

(8.31 J/mol - K)(1273 K)
 

 

  

 

ln 1 × 10−6  s−1( )= ln K2 +  n ln (4.5 MPa) −
272,000  J /mol

(8.31 J/mol - K)(1273 K)
 

 
Now, solving simultaneously for n and K2 leads to n = 3.825 and K2 = 466 s-1.  Thus it is now possible to solve for 

  

 

Ý ε s at 25 MPa and 1123 K using Equation 8.20 as 

 

    

 

Ý ε s = K2σnexp −
Qc
RT

 

 
 

 

 
  

 

 

= 466 s−1( )(25 MPa)3.825 exp −
272,000 J/mol

(8.31 J/mol - K)(1123 K)

 

  
 

   

 

2.28 × 10-5 s-1 
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 8.35  Steady-state creep data taken for a stainless steel at a stress level of 70 MPa (10,000 psi) are given 

as follows: 

 

  

 

Ý ε s (s–1) T (K) 

1.0 × 10–5 977 

2.5 × 10–3 1089 

 

If it is known that the value of the stress exponent n for this alloy is 7.0, compute the steady-state creep rate at 1250 

K and a stress level of 50 MPa (7250 psi). 

 
  Solution 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    

 

ln Ý ε s =  lnK2 + n lnσ −
Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and Qc.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 
 

  

 

ln 1.0 × 10−5  s−1( )= ln K2 +  (7.0) ln (70 MPa) −
Qc

(8.31 J/mol - K)(977 K)
 

 

  

 

ln 2.5 × 10−3  s−1( )= ln K2 +  (7.0) ln (70 MPa) −
Qc

(8.31 J/mol - K)(1089 K)
 

 
Now, solving simultaneously for K2 and Qc leads to K2 = 2.55 × 105 s-1 and Qc = 436,000 J/mol.  Thus, it is now 

possible to solve for   

 

Ý ε s at 50 MPa and 1250 K using Equation 8.20 as 
 

    

 

Ý ε s = K2σnexp −
Qc
RT

 

 
 

 

 
  

 

 

= 2.55 ×  105 s−1( )(50 MPa)7.0 exp −
436,000 J/mol

(8.31 J/mol - K)(1250 K)

 

  
 

   

 

0.118 s-1 
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 Alloys for High-Temperature Use 

 

 8.36  Cite three metallurgical/processing techniques that are employed to enhance the creep resistance of 

metal alloys. 

 
  Solution 

 Three metallurgical/processing techniques that are employed to enhance the creep resistance of metal 

alloys are (1) solid solution alloying, (2) dispersion strengthening by using an insoluble second phase, and (3) 

increasing the grain size or producing a grain structure with a preferred orientation. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

DESIGN PROBLEMS 

 

 8.D1  Each student (or group of students) is to obtain an object/structure/component that has failed. It may 

come from your home, an automobile repair shop, a machine shop, etc. Conduct an investigation to determine the 

cause and type of failure (i.e., simple fracture, fatigue, creep). In addition, propose measures that can be taken to 

prevent future incidents of this type of failure. Finally, submit a report that addresses the above issues. 

 

 Each student or group of students is to submit their own report on a failure analysis investigation that was 

conducted. 
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 Principles of Fracture Mechanics 

 

 8.D2  (a) For the thin-walled spherical tank discussed in Design Example 8.1, on the basis of critical crack 

size criterion [as addressed in part (a)], rank the following polymers from longest to shortest critical crack length: 

nylon 6,6 (50% relative humidity), polycarbonate, poly(ethylene terephthalate), and poly(methyl methacrylate). 

Comment on the magnitude range of the computed values used in the ranking relative to those tabulated for metal 

alloys as provided in Table 8.3. For these computations, use data contained in Tables B.4 and B.5 in Appendix B. 

 (b) Now rank these same four polymers relative to maximum allowable pressure according to the leak-

before-break criterion, as described in the (b) portion of Design Example 8.1.  As above, comment on these values 

in relation to those for the metal alloys that are tabulated in Table 8.4. 

 
  Solution 

 (a)  This portion of the problem calls for us to rank four polymers relative to critical crack length in the 

wall of a spherical pressure vessel.  In the development of Design Example 8.1, it was noted that critical crack 
length is proportional to the square of the KIc–σy ratio.  Values of KIc and σy as taken from Tables B.4 and B.5 are 

tabulated below.  (Note:  when a range of σy or KIc values is given, the average value is used.) 

 
 
 Material      

 

KIc (MPa m )  σy (MPa) 

 
 Nylon 6,6 2.75 51.7 

 Polycarbonate 2.2 62.1 

 Poly(ethylene terephthlate) 5.0 59.3 

 Poly(methyl methacrylate) 1.2 63.5 
 

On the basis of these values, the four polymers are ranked per the squares of the KIc–σy ratios as follows: 

 
 

 Material 

    

 

KIc
σ y

 

 
 
 

 

 
 
 

2

 (mm) 

 

 PET 7.11 

 Nylon 6,6 2.83 

 PC 1.26 

 PMMA 0.36 
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These values are smaller than those for the metal alloys given in Table 8.3, which range from 0.93 to 43.1 mm. 

 

 (b)  Relative to the leak-before-break criterion, the 
    

 

KIc
2

- σ y  ratio is used.  The four polymers are ranked 

according to values of this ratio as follows:  

 

 Material 
    

 

K Ic
2

σ y
 (MPa - m)  

 

 PET 0.422 

 Nylon 6,6 0.146 

 PC 0.078 

 PMMA 0.023 

 

These values are all smaller than those for the metal alloys given in Table 8.4, which values range from 1.2 to 11.2 

MPa-m. 
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 Data Extrapolation Methods 

 

 8.D3  An S-590 alloy component (Figure 8.32) must have a creep rupture lifetime of at least 100 days at 

500°C (773 K).  Compute the maximum allowable stress level. 

 
  Solution 

 This problem asks that we compute the maximum allowable stress level to give a rupture lifetime of 100 

days for an S-590 iron component at 773 K.  It is first necessary to compute the value of the Larson-Miller 

parameter as follows: 

 

  

 

T (20 +  log tr) = (773 K) 20 +  log (100 days)(24 h/day)[ ]{ } 

 

= 18.1 × 103 

 

From the curve in Figure 8.32, this value of the Larson-Miller parameter corresponds to a stress level of about 530 

MPa (77,000 psi). 
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 8.D4  Consider an S-590 alloy component (Figure 8.32) that is subjected to a stress of 200 MPa (29,000 

psi).  At what temperature will the rupture lifetime be 500 h? 

 
  Solution 

 We are asked in this problem to calculate the temperature at which the rupture lifetime is 500 h when an S-

590 iron component is subjected to a stress of 200 MPa (29,000 psi).  From the curve shown in Figure 8.32, at 200 

MPa, the value of the Larson-Miller parameter is 22.5 × 103 (K-h).  Thus, 

 

  

 

22.5 ×  103 (K - h) = T (20 +  log tr) 

 

  

 

=  T 20 +  log (500 h)[ ] 

 

Or, solving for T yields T = 991 K (718°C). 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 8.D5  For an 18-8 Mo stainless steel (Figure 8.35), predict the time to rupture for a component that is 

subjected to a stress of 80 MPa (11,600 psi) at 700°C (973 K). 

 
  Solution 

 This problem asks that we determine, for an 18-8 Mo stainless steel, the time to rupture for a component 

that is subjected to a stress of 80 MPa (11,600 psi) at 700°C (973 K).  From Figure 8.35, the value of the Larson-

Miller parameter at 80 MPa is about 23.5 × 103, for T in K and tr in h.  Therefore, 

 

  

 

23.5 ×  103 = T (20 +  log tr) 

 

  

 

=  973(20 +  log tr) 

 
And, solving for tr 

 

  

 

24.15 = 20 +  log tr  

 

which leads to tr = 1.42 × 104 h = 1.6 yr. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 8.D6  Consider an 18-8 Mo stainless steel component (Figure 8.35) that is exposed to a temperature of 

500°C (773 K).  What is the maximum allowable stress level for a rupture lifetime of 5 years?  20 years? 

 
  Solution 

 We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 5 years and 

20 years when an 18-8 Mo stainless steel component is subjected to a temperature of 500°C (773 K).  It first 

becomes necessary to calculate the value of the Larson-Miller parameter for each time.  The values of tr 

corresponding to 5 and 20 years are 4.38 × 104 h and 1.75 × 105 h, respectively.  Hence, for a lifetime of 5 years 

 

  

 

T (20 +  log tr) = 773 20 +  log (4.38 ×  104)[ ]= 19.05 ×  103 

 
And for tr = 20 years 

 

  

 

T (20 +  log tr) = 773 20 +  log (1.75 ×  105)[ ]= 19.51 ×  103 

 

 Using the curve shown in Figure 8.35, the stress values corresponding to the five- and twenty-year 

lifetimes are approximately 260 MPa (37,500 psi) and 225 MPa (32,600 psi), respectively. 
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CHAPTER 9 

 

PHASE DIAGRAMS 

 

PROBLEM SOLUTIONS 

 

 

 Solubility Limit 

 

 9.1  Consider the sugar–water phase diagram of Figure 9.1. 

 (a) How much sugar will dissolve in 1500 g water at 90°C (194°F)? 

 (b) If the saturated liquid solution in part (a) is cooled to 20°C (68°F), some of the sugar will precipitate 

out as a solid.  What will be the composition of the saturated liquid solution (in wt% sugar) at 20°C? 

 (c) How much of the solid sugar will come out of solution upon cooling to 20°C? 
 

  Solution 

 (a)  We are asked to determine how much sugar will dissolve in 1000 g of water at 90°C.  From the 

solubility limit curve in Figure 9.1, at 90°C the maximum concentration of sugar in the syrup is about 77 wt%.  It is 

now possible to calculate the mass of sugar using Equation 4.3 as 

 

    

 

Csugar (wt%) =
msugar

msugar + mwater
× 100  

 

  

 

77 wt% =
msugar

msugar + 1500 g
× 100  

 

Solving for msugar yields msugar = 5022 g 

 (b)  Again using this same plot, at 20°C the solubility limit (or the concentration of the saturated solution) 

is about 64 wt% sugar. 
 (c)  The mass of sugar in this saturated solution at 20°C 

    

 

(m'sugar ) may also be calculated using Equation 

4.3 as follows: 

 

  

 

64 wt% =
m'sugar

m'sugar + 1500 g
× 100 
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which yields a value for 
    

 

m'sugar  of 2667 g.  Subtracting the latter from the former of these sugar concentrations 

yields the amount of sugar that precipitated out of the solution upon cooling 
    

 

m"sugar ;  that is 

 

  

 

m"sugar  =  msugar  −  mÕsugar  =  5022 g −  2667 g =  2355 g  



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 9.2  At 500°C (930°F), what is the maximum solubility (a) of Cu in Ag?  (b) Of Ag in Cu? 
 

  Solution 

 (a)  From Figure 9.7, the maximum solubility of Cu in Ag at 500°C corresponds to the position of the β–(α 

+ β) phase boundary at this temperature, or to about 2 wt% Cu. 

 (b)  From this same figure, the maximum solubility of Ag in Cu corresponds to the position of the α–(α + 

β) phase boundary at this temperature, or about 1.5 wt% Ag. 
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 Microstructure 

 

 9.3  Cite three variables that determine the microstructure of an alloy. 
 

  Solution 

 Three variables that determine the microstructure of an alloy are (1) the alloying elements present, (2) the 

concentrations of these alloying elements, and (3) the heat treatment of the alloy. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 Phase Equilibria 

 
 9.4  What thermodynamic condition must be met for a state of equilibrium to exist? 

 

  Solution 

 In order for a system to exist in a state of equilibrium the free energy must be a minimum for some 

specified combination of temperature, pressure, and composition. 
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 One-Component (or Unary) Phase Diagrams 

 

 9.5  Consider a specimen of ice that is at 210°C and 1 atm pressure.  Using Figure 9.2, the pressure–

temperature phase diagram for H2O, determine the pressure to which the specimen must be raised or lowered to 

cause it (a) to melt, and (b) to sublime. 
 

  Solution 

 The figure below shows the pressure-temperature phase diagram for H2O, Figure 10.2;  a vertical line has 

been constructed at -10°C, and the location on this line at 1 atm pressure (point B) is also noted. 

 

 

 (a)  Melting occurs, (by changing pressure) as, moving vertically (upward) at this temperature, we cross the 

Ice-Liquid phase boundary.  This occurs at approximately 570 atm;  thus, the pressure of the specimen must be 

raised from 1 to 570 atm. 

 (b)  In order to determine the pressure at which sublimation occurs at this temperature, we move vertically 

downward from 1 atm until we cross the Ice-Vapor phase boundary.  This intersection occurs at approximately 

0.0023 atm. 
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 9.6  At a pressure of 0.01 atm, determine (a) the melting temperature for ice, and (b) the boiling 

temperature for water. 

 

  Solution 

 The melting temperature for ice and the boiling temperature for water at a pressure of 0.01 atm may be 

determined from the pressure-temperature diagram for this system, Figure 10.2, which is shown below;  a horizontal 

line has been constructed across this diagram at a pressure of 0.01 atm. 

 

 

 

The melting and boiling temperatures for ice at a pressure of 0.01 atm may be determined by moving horizontally 

across the pressure-temperature diagram at this pressure.  The temperature corresponding to the intersection of the 

Ice-Liquid phase boundary is the melting temperature, which is approximately 1°C.  On the other hand, the boiling 

temperature is at the intersection of the horizontal line with the Liquid-Vapor phase boundary--approximately 16°C. 
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 Binary Isomorphous Systems 

 

 9.7  Given here are the solidus and liquidus temperatures for the germanium-silicon system.  Construct the 

phase diagram for this system and label each region. 

 
Composition 

(wt% Si) 
Solidus 

Temperature 

(°C) 

Liquidus 
Temperature 

(°C) 

0 938 938 

10 1005 1147 

20 1065 1226 

30 1123 1278 

40 1178 1315 

50 1232 1346 

60 1282 1367 

70 1326 1385 

80 1359 1397 

90 1390 1408 

100 1414 1414 
 

  Solution 

 The germanium-silicon phase diagram is constructed below. 
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 Interpretation of Phase Diagrams 

 

 9.8  Cite the phases that are present and the phase compositions for the following alloys: 

 (a) 90 wt% Zn-10 wt% Cu at 400°C (750°F) 

 (b) 75 wt% Sn-25 wt% Pb at 175°C (345°F) 

 (c) 55 wt% Ag-45 wt% Cu at 900°C (1650°F) 

 (d) 30 wt% Pb-70 wt% Mg at 425°C (795°F) 

 (e) 2.12 kg Zn and 1.88 kg Cu at 500°C (930°F) 

 (f) 37 lbm Pb and 6.5 lbm Mg at 400°C (750°F) 

 (g) 8.2 mol Ni and 4.3 mol Cu at 1250°C (2280°F) 

 (h) 4.5 mol Sn and 0.45 mol Pb at 200°C (390°F) 
 

  Solution 

 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. 

 (a)  That portion of the Cu-Zn phase diagram (Figure 9.19) that pertains to this problem is shown below;  

the point labeled “A” represents the 90 wt% Zn-10 wt% Cu composition at 400°C. 

 

 

As may be noted, point A lies within the ε and η phase field.  A tie line has been constructed at 400°C;  its 

intersection with the ε−ε + η phase boundary is at 87 wt% Zn, which corresponds to the composition of the ε phase.  

Similarly, the tie-line intersection with the ε + η−η phase boundary occurs at 97 wt% Zn, which is the composition 

of the η phase.  Thus, the phase compositions are as follows: 
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Cε = 87 wt% Zn-13 wt% Cu 

Cη = 97 wt% Zn-3 wt% Cu
 

 

 (b) That portion of the Pb-Sn phase diagram (Figure 9.8) that pertains to this problem is shown below;  the 

point labeled “B” represents the 75 wt% Sn-25 wt% Pb composition at 175°C. 

 

 

 

As may be noted, point B lies within the α + β phase field.  A tie line has been constructed at 175°C;  its 

intersection with the α−α + β phase boundary is at 16 wt% Sn, which corresponds to the composition of the α 

phase.  Similarly, the tie-line intersection with the α + β−β phase boundary occurs at 97 wt% Sn, which is the 

composition of the β phase.  Thus, the phase compositions are as follows: 

Cα = 16 wt% Sn-84 wt% Pb 

Cβ = 97 wt% Sn-3 wt% Pb
 

 

 (c)  The Ag-Cu phase diagram (Figure 9.7) is shown below;  the point labeled “C” represents the 55 wt% 

Ag-45 wt% Cu composition at 900°C. 
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As may be noted, point C lies within the Liquid phase field.  Therefore, only the liquid phase is present;  its 

composition is 55 wt% Ag-45 wt% Cu. 
 

 (d)  The Mg-Pb phase diagram (Figure 9.20) is shown below;  the point labeled “D” represents the 30 wt% 

Pb-70 wt% Mg composition at 425°C. 
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As may be noted, point D lies within the α phase field.  Therefore, only the α phase is present;  its composition is 

30 wt% Pb-70 wt% Mg. 

 

 (e)  For an alloy composed of 2.12 kg Zn and 1.88 kg Cu and at 500°C, we must first determine the Zn and 

Cu concentrations, as 

 

CZn =
2.12 kg

2.12 kg +  1.88 kg
 ×  100 =  53 wt%  

 

 

CCu =
1.88 kg

2.12 kg +  1.88 kg
 ×  100 =  47 wt% 

 

That portion of the Cu-Zn phase diagram (Figure 9.19) that pertains to this problem is shown below;  the point 

labeled “E” represents the 53 wt% Zn-47 wt% Cu composition at 500°C. 
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As may be noted, point E lies within the β + γ phase field.  A tie line has been constructed at 500°C;  its intersection 

with the β−β + γ phase boundary is at 49 wt% Zn, which corresponds to the composition of the β phase.  Similarly, 

the tie-line intersection with the β + γ−γ phase boundary occurs at 58 wt% Zn, which is the composition of the 

γ phase.  Thus, the phase compositions are as follows: 

Cβ = 49 wt% Zn-51 wt% Cu 

Cγ = 58 wt% Zn-42 wt% Cu
 

 

 (f)  For an alloy composed of 37 lbm Pb and 6.5 lbm Mg and at 400°C, we must first determine the Pb and 

Mg concentrations, as 

 

CPb =
37 lbm

37 lbm +  6.5 lbm
 ×  100 =  85 wt% 

 

 

CMg =
6.5 lbm

37 lbm +  6.5 lbm
 ×  100 =  15 wt% 

 

That portion of the Mg-Pb phase diagram (Figure 9.20) that pertains to this problem is shown below;  the point 

labeled “F” represents the 85 wt% Pb-15 wt% Mg composition at 400°C. 
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As may be noted, point F lies within the L + Mg2Pb phase field.  A tie line has been constructed at 400°C;  it 

intersects the vertical line at 81 wt% Pb, which corresponds to the composition of Mg2Pb.  Furthermore, the tie line 

intersection with the L + Mg2Pb-L phase boundary is at 93 wt% Pb, which is the composition of the liquid phase.  

Thus, the phase compositions are as follows: 
CMg2Pb = 81 wt% Pb-19 wt% Mg 

CL = 93 wt% Pb-7 wt% Mg
 

 

 (g)  For an alloy composed of 8.2 mol Ni and 4.3 mol Cu and at 1250°C, it is first necessary to determine 

the Ni and Cu concentrations, which we will do in wt% as follows: 

 

 

nNi
' = nmNi

ANi = (8.2 mol)(58.69 g/mol) = 481.3 g  

 

 

nCu
' = nmCu

ACu = (4.3 mol)(63.55 g/mol) = 273.3 g  

 

 

CNi =
481.3 g

481.3 g +  273.3 g
 ×  100 = 63.8 wt%  

 

 

CCu =
273.3 g

481.3 g +  273.3 g
 ×  100 = 36.2 wt% 

 

The Cu-Ni phase diagram (Figure 9.3a) is shown below;  the point labeled “G” represents the 63.8 wt% Ni-36.2 

wt% Cu composition at 1250°C. 
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As may be noted, point G lies within the α phase field.  Therefore, only the α phase is present;  its composition is 

63.8 wt% Ni-36.2 wt% Cu. 

 

 (h)  For an alloy composed of 4.5 mol Sn and 0.45 mol Pb and at 200°C, it is first necessary to determine 

the Sn and Pb concentrations, which we will do in weight percent as follows: 

 

 

nSn
’ = nmSn

ASn = (4.5 mol)(118.71 g/mol) = 534.2 g  

 

 

nPb
' = nmPb

APb = (0.45 mol)(207.2 g/mol) = 93.2 g  

 

 

CSn =
534.2 g

534.2 g +  93.2 g
 ×  100 = 85.1 wt% 

 

 

CPb =
93.2 g

534.2 g +  93.2 g
 ×  100 = 14.9 wt% 

 

That portion of the Pb-Sn phase diagram (Figure 9.8) that pertains to this problem is shown below;  the point 

labeled “H” represents the 85.1 wt% Sn-14.9 wt% Pb composition at 200°C. 
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As may be noted, point H lies within the β + L phase field. A tie line has been constructed at 200°C;  its intersection 

with the L−β + L  phase boundary is at 74 wt% Sn, which corresponds to the composition of the L phase.  Similarly, 

the tie-line intersection with the β + L−β phase boundary occurs at 97.5 wt% Sn, which is the composition of the 

β phase.  Thus, the phase compositions are as follows: 

Cβ = 97.5 wt% Sn-2.5 wt% Pb 

CL = 74 wt% Sn-26 wt% Pb 
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 9.9  Is it possible to have a copper–nickel alloy that, at equilibrium, consists of a liquid phase of 

composition 20 wt% Ni–80 wt% Cu and also an α phase of composition 37 wt% Ni–63 wt% Cu?  If so, what will be 

the approximate temperature of the alloy?  If this is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Ni alloy, which at equilibrium, consists of a liquid phase of composition 20 

wt% Ni-80 wt% Cu and an α phase of composition 37 wt% Ni-63 wt% Cu.  From Figure 9.3a, a single tie line does 

not exist within the α + L region that intersects the phase boundaries at the given compositions.  At 20 wt% Ni, the 

L-(α + L) phase boundary is at about 1200°C, whereas at 37 wt% Ni the (L + α)-α phase boundary is at about 

1230°C. 
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 9.10  Is it possible to have a copper-zinc alloy that, at equilibrium, consists of an ε phase of composition 

80 wt% Zn-20 wt% Cu, and also a liquid phase of composition 95 wt% Zn-5 wt% Cu?  If so, what will be the 

approximate temperature of the alloy?  If this is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Zn alloy, which at equilibrium consists of an ε phase of composition 80 wt% 

Zn-20 wt% Cu and also a liquid phase of composition 95 wt% Zn-5 wt% Cu.  From Figure 9.19 a single tie line 

does not exist within the ε + L region which intersects the phase boundaries at the given compositions.  At 80 wt% 

Zn, the ε-(ε + L) phase boundary is at about 575°C, whereas at 95 wt% Zn the (ε + L)-L phase boundary is at about 

490°C. 
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 9.11  A copper-nickel alloy of composition 70 wt% Ni-30 wt% Cu is slowly heated from a temperature of 

1300°C (2370°F). 

 (a) At what temperature does the first liquid phase form? 

 (b) What is the composition of this liquid phase? 

 (c) At what temperature does complete melting of the alloy occur? 

 (d) What is the composition of the last solid remaining prior to complete melting? 
 

  Solution 

 Shown below is the Cu-Ni phase diagram (Figure 9.3a) and a vertical line constructed at a composition of 

70 wt% Ni-30 wt% Cu. 

 

 

 

 (a)  Upon heating from 1300°C, the first liquid phase forms at the temperature at which this vertical line 

intersects the α-(α + L) phase boundary--i.e., about 1345°C. 

 (b)  The composition of this liquid phase corresponds to the intersection with the (α + L)-L phase 

boundary, of a tie line constructed across the α + L phase region at 1345°C--i.e., 59 wt% Ni; 

 (c)  Complete melting of the alloy occurs at the intersection of this same vertical line at 70 wt% Ni with the 

(α + L)-L phase boundary--i.e., about 1380°C; 
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 (d)  The composition of the last solid remaining prior to complete melting corresponds to the intersection 

with α-(α + L) phase boundary, of the tie line constructed across the α + L phase region at 1380°C--i.e., about 79 

wt% Ni. 
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 9.12  A 50 wt% Pb-50 wt% Mg alloy is slowly cooled from 700°C (1290°F) to 400°C (750°F). 

 (a) At what temperature does the first solid phase form? 

 (b) What is the composition of this solid phase? 

 (c) At what temperature does the liquid solidify? 

 (d) What is the composition of this last remaining liquid phase? 
 

  Solution 

 Shown below is the Mg-Pb phase diagram (Figure 9.20) and a vertical line constructed at a composition of 

50 wt% Pb-50 wt% Mg. 

 

 

 

 (a)  Upon cooling from 700°C, the first solid phase forms at the temperature at which a vertical line at this 

composition intersects the L-(α + L) phase boundary--i.e., about 560°C; 

 (b)  The composition of this solid phase corresponds to the intersection with the α-(α + L) phase boundary, 

of a tie line constructed across the α + L phase region at 560°C--i.e., 21 wt% Pb-79 wt% Mg; 

 (c)  Complete solidification  of the alloy occurs at the intersection of this same vertical line at 50 wt% Pb 

with the eutectic isotherm--i.e., about 465°C; 
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 (d)  The composition of the last liquid phase remaining prior to complete solidification corresponds to the 

eutectic composition--i.e., about 67 wt% Pb-33 wt% Mg. 
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 9.13  For an alloy of composition 74 wt% Zn-26 wt% Cu, cite the phases present and their compositions at 

the following temperatures:  850°C, 750°C, 680°C, 600°C, and 500°C. 
 

  Solution 

 This problem asks us to determine the phases present and their concentrations at several temperatures, for 

an alloy of composition 74 wt% Zn-26 wt% Cu.  From Figure 9.19 (the Cu-Zn phase diagram), which is shown 

below with a vertical line constructed at the specified composition: 

 

 

 

 At 850°C, a liquid phase is present;  CL = 74 wt% Zn-26 wt% Cu 

 At 750°C, γ and liquid phases are present;  Cγ = 67 wt% Zn-33 wt% Cu; CL = 77 wt% Zn-23 wt% Cu 

 At 680°C, δ and liquid phases are present;  Cδ = 73 wt% Zn-27 wt% Cu; CL = 82 wt% Zn-18 wt% Cu 

 At 600°C, the δ phase is present;  Cδ = 74 wt% Zn-26 wt% Cu 

 At 500°C, γ and ε phases are present;  Cγ = 69 wt% Zn-31 wt% Cu;  Cε = 78 wt% Zn-22 wt% Cu 
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 9.14  Determine the relative amounts (in terms of mass fractions) of the phases for the alloys and 

temperatures given in Problem 9.8. 
 

  Solution 

 This problem asks that we determine the phase mass fractions for the alloys and temperatures in Problem 

9.8. 

 

 (a)  From Problem 9.8a, ε and η phases are present for a 90 wt% Zn-10 wt% Cu alloy at 400°C, as 

represented in the portion of the Cu-Zn phase diagram shown below (at point A). 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 Cε = 87 wt% Zn-13 wt% Cu 

 Cη = 97 wt% Zn-3 wt% Cu 

Inasmuch as the composition of the alloy C0 = 90 wt% Zn, application of the appropriate lever rule expressions (for 

compositions in weight percent zinc) leads to 

 

  

 

Wε =
Cη − C0

Cη − Cε
=

97 − 90
97 − 87

= 0.70 

 

  

 

Wη =
C0 − Cε
Cη − Cε

=
90 − 87
97 − 87

= 0.30  
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 (b) From Problem 9.8b, α and β phases are present for a 75 wt% Sn-25 wt% Pb alloy at 175°C, as 

represented in the portion of the Pb-Sn phase diagram shown below (at point B). 

 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 Cα = 16 wt% Sn-84 wt% Pb 

 Cβ = 97 wt% Sn-3 wt% Pb
 

Inasmuch as the composition of the alloy C0 = 75 wt% Sn, application of the appropriate lever rule expressions (for 

compositions in weight percent tin) leads to 

 

  

 

Wα =
Cβ − C0

Cβ − Cα
=

97 − 75
97 − 16

= 0.27 

 

  

 

Wβ =
C0 − Cα
Cβ − Cα

=
75 − 16
97 − 16

= 0.73 

 

 (c) From Problem 9.8c, just the liquid phase is present for a 55 wt% Ag-45 wt% Cu alloy at 900°C, as may 
be noted in the Ag-Cu phase diagram shown below (at point C)—i.e., WL = 1.0 
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 (d)  From Problem 9.8d, just the α phase is present for a 30 wt% Pb-70 wt% Mg alloy at 425°C, as may be 

noted in the Mg-Pb phase diagram shown below (at point D)—i.e., Wα = 1.0 
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 (e) From Problem 9.8e, β and γ phases are present for an alloy composed of 2.12 kg Zn and 1.88 kg Cu 

(i.e., of composition 53 wt% Zn-47 wt% Cu) at 500°C.  This is represented in the portion of the Cu-Zn phase 

diagram shown below (at point E). 

 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 Cβ = 49 wt% Zn-51 wt% Cu 

 Cγ = 58 wt% Zn-42 wt% Cu
 

Inasmuch as the composition of the alloy C0 = 53 wt% Zn and application of the appropriate lever rule expressions 

(for compositions in weight percent zinc) leads to 

 

  

 

Wβ =
Cγ − C0

Cγ − Cβ
=

58 − 53
58 − 49

= 0.56 

 

  

 

Wγ =
C0 − Cβ

Cγ − Cβ
=

53 − 49
58 − 49

= 0.44  

 

 (f)  From Problem 9.8f, L and Mg2Pb phases are present for an alloy composed of 37 lbm Pb and 6.5 lbm 

Mg (85 wt% Pb-15 wt% Mg) at 400°C.  This is represented in the portion of the Pb-Mg phase diagram shown 

below (at point F).  
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Furthermore, the compositions of the phases, as determined from the tie line are 
 CMg2Pb = 81 wt% Pb-19 wt% Mg 

 CL = 93 wt% Pb-7 wt% Mg
 

Inasmuch as the composition of the alloy C0 = 85 wt% Pb and application of the appropriate lever rule expressions 

(for compositions in weight percent lead) leads to 

 

  

 

WMg2Pb =
CL − C0

CL − CMg2Pb
=

93 − 85
93 − 81

= 0.67 

 

  

 

WL =
C0 − CMg2Pb

CL − CMg2Pb
=

85 − 81
93 − 81

= 0.33 

 

 (g)  From Problem 9.8g, just the α phase is present (i.e., Wα = 1.0) for an alloy composed of 8.2 mol Ni 

and 4.3 mol Cu (i.e., 63.8 wt% Ni-36.2 wt% Cu) at 1250°C;  such may be noted (as point G) in the Cu-Ni phase 

diagram shown below. 
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 (h)  From Problem 9.8h, β and L phases are present for an alloy composed of 4.5 mol Sn and 0.45 mol Pb 

(85.1 wt% Sn-14.9 wt% Pb ) and at 200°C.  This is represented in the portion of the Pb-Sn phase diagram shown 

below (at point H). 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 
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 Cβ = 97.5 wt% Sn-2.5 wt% Pb 

 CL = 74 wt% Sn-26 wt% Pb 

Inasmuch as the composition of the alloy C0 = 85.1 wt% Sn, application of the appropriate lever rule expressions 

(for compositions in weight percent lead) leads to 

 

  

 

Wβ =
C0 − CL

Cβ − CL
=

85.1 − 74
97.5 − 74

= 0.47  

 

  

 

WL =
Cβ − C0

Cβ − CL
=

97.5 − 85.1
97.5 − 74

= 0.53 
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 9.15  A 1.5-kg specimen of a 90 wt% Pb–10 wt% Sn alloy is heated to 250°C (480°F);  at this temperature 

it is entirely an α-phase solid solution (Figure 9.8).  The alloy is to be melted to the extent that 50% of the specimen 

is liquid, the remainder being the α phase.  This may be accomplished either by heating the alloy or changing its 

composition while holding the temperature constant. 

 (a) To what temperature must the specimen be heated? 

 (b) How much tin must be added to the 1.5-kg specimen at 250°C to achieve this state? 
 

  Solution 

 (a)  Probably the easiest way to solve this part of the problem is by trial and error--that is, on the Pb-Sn 

phase diagram (Figure 9.8), moving vertically at the given composition, through the α + L region until the tie-line 

lengths on both sides of the given composition are the same.  This occurs at approximately 295°C (560°F). 

 (b)  We can also produce a 50% liquid solution at 250°C, by adding Sn to the alloy.  At 250°C and within 

the α + L phase region 

 

Cα = 14 wt% Sn-86 wt% Pb 

CL = 34 wt% Sn-66 wt% Pb 

 

Let C0 be the new alloy composition to give Wα = WL = 0.5.  Then, 

 

  

 

Wα = 0.5 =
CL − C0

CL − Cα
=

34 − C0

34 − 14
 

 
And solving for C0 gives 24 wt% Sn.  Now, let mSn be the mass of Sn added to the alloy to achieve this new 

composition.  The amount of Sn in the original alloy is 

 

(0.10)(1.5 kg) = 0.15 kg 

 

Then, using a modified form of Equation 4.3 

 

  

 

0.15 kg + mSn

1.5 kg + mSn

 

 
 

 

 
 ×100 = 24  

 
And, solving for mSn (the mass of tin to be added), yields mSn = 0.276 kg. 
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 9.16  A magnesium-lead alloy of mass 5.5 kg consists of a solid α phase that has a composition that is just 

slightly below the solubility limit at 200°C (390°F). 

 (a) What mass of lead is in the alloy? 

 (b) If the alloy is heated to 350°C (660°F), how much more lead may be dissolved in the α phase without 

exceeding the solubility limit of this phase? 
 

  Solution 

 (a)  This portion of the problem asks that we calculate, for a Pb-Mg alloy, the mass of lead in 5.5 kg of the 

solid α phase at 200°C just below the solubility limit.  From Figure 9.20, the solubility limit for the α phase at 
200°C corresponds to the position (composition) of the α-α + Mg2Pb phase boundary at this temperature, which is 

about 5 wt% Pb.  Therefore, the mass of Pb in the alloy is just (0.05)(5.5 kg) = 0.28 kg. 

 (b)  At 350°C, the solubility limit of the α phase increases to approximately 25 wt% Pb.  In order to 
determine the additional amount of Pb that may be added (mPb), we utilize a modified form of Equation 4.3 as 

 

  

 

CPb = 25 wt% =
0.28 kg + mPb

5.5 kg + mPb
× 100  

 
Solving for mPb yields mPb = 1.46 kg. 
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 9.17  A 90 wt% Ag-10 wt% Cu alloy is heated to a temperature within the β + liquid phase region.  If the 

composition of the liquid phase is 85 wt% Ag, determine: 

 (a) The temperature of the alloy 

 (b) The composition of the β phase 

 (c) The mass fractions of both phases 
 

  Solution 

 (a)  In order to determine the temperature of a 90 wt% Ag-10 wt% Cu alloy for which β and liquid phases 

are present with the liquid phase of composition 85 wt% Ag, we need to construct a tie line across the β + L phase 

region of Figure 9.7 that intersects the liquidus line at 85 wt% Ag;  this is possible at about 850°C. 

 (b) The composition of the β phase at this temperature is determined from the intersection of this same tie 

line with solidus line, which corresponds to about 95 wt% Ag. 

 (c)  The mass fractions of the two phases are determined using the lever rule, Equations 9.1 and 9.2 with 
C0 = 90 wt% Ag, CL = 85 wt% Ag, and Cβ = 95 wt% Ag, as 

 

  

 

Wβ =
C0 − CL

Cβ − CL
=

90 − 85
95 − 85

= 0.50  

 

  

 

WL =
Cβ − C0

Cβ − CL
=

95 − 90
95 − 85

= 0.50  
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 9.18  A 30 wt% Sn-70 wt% Pb alloy is heated to a temperature within the α + liquid phase region.  If the 

mass fraction of each phase is 0.5, estimate: 

 (a) The temperature of the alloy 

 (b) The compositions of the two phases 
 

  Solution 

 (a) We are given that the mass fractions of α and liquid phases are both 0.5 for a 30 wt% Sn-70 wt% Pb 

alloy and asked to estimate the temperature of the alloy.  Using the appropriate phase diagram, Figure 9.8, by trial 

and error with a ruler, a tie line within the α + L phase region that is divided in half for an alloy of this composition 

exists at about 230°C. 

 (b)  We are now asked to determine the compositions of the two phases. This is accomplished by noting the 

intersections of this tie line with both the solidus and liquidus lines.  From these intersections, Cα = 15 wt% Sn, and 

CL = 43 wt% Sn. 
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 9.19  For alloys of two hypothetical metals A and B, there exist an α, A-rich phase and a β, B-rich phase. 

From the mass fractions of both phases for two different alloys provided in the table below, (which are at the same 

temperature), determine the composition of the phase boundary (or solubility limit) for both α and β phases at this 

temperature. 

 
Alloy Composition Fraction α 

Phase 
Fraction β 

Phase 

60 wt% A–40 wt% B 0.57 0.43 

30 wt% A–70 wt% B 0.14 0.86 

 
 

  Solution 

 The problem is to solve for compositions at the phase boundaries for both α and β phases (i.e., Cα and Cβ).  

We may set up two independent lever rule expressions, one for each composition, in terms of Cα and Cβ as follows: 

 

  

 

Wα1 = 0.57 =
Cβ − C01

Cβ − Cα
=

Cβ − 60

Cβ − Cα
 

 

  

 

Wα2 = 0.14 =
Cβ − C02

Cβ − Cα
=

Cβ − 30

Cβ − Cα
 

 

In these expressions, compositions are given in wt% of A.  Solving for Cα and Cβ from these equations, yield 

 

Cα = 90 (or 90 wt% A-10 wt% B) 

 

Cβ = 20.2 (or 20.2 wt% A-79.8 wt% B) 
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 9.20  A hypothetical A–B alloy of composition 55 wt% B–45 wt% A at some temperature is found to consist 

of mass fractions of 0.5 for both α and β phases. If the composition of the β phase is 90 wt% B–10 wt% A, what is 

the composition of the α phase? 
 

  Solution 

 For this problem, we are asked to determine the composition of the β phase given that 
 

C0 = 55 (or 55 wt% B-45 wt% A) 

 

Cβ = 90 (or 90 wt% B-10 wt% A) 

 

Wα = Wβ = 0.5 

 

If we set up the lever rule for Wα 

 

  

 

Wα = 0.5 =
Cβ − C0

Cβ − Cα
=

90 − 55
90 − Cα

 

 

And solving for Cα 

Cα = 20 (or 20 wt% B-80 wt% A) 
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 9.21 Is it possible to have a copper-silver alloy of composition 50 wt% Ag-50 wt% Cu, which, at 

equilibrium, consists of α and β phases having mass fractions Wα = 0.60 and Wβ = 0.40?  If so, what will be the 

approximate temperature of the alloy?  If such an alloy is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Ag alloy of composition 50 wt% Ag-50 wt% Cu which consists of mass 

fractions Wα = 0.60 and Wβ = 0.40.  Using the appropriate phase diagram, Figure 9.7, and, using Equations 9.1 and 

9.2 let us determine Wα and Wβ at just below the eutectic temperature and also at room temperature.  At just below 

the eutectic, Cα = 8.0 wt% Ag and Cβ = 91.2 wt% Ag;  thus, 

 

  

 

Wα =
Cβ − C0

Cβ − Cα
=

91.2 −  50
91.2 −  8

= 0.50  

 

  

 

Wβ =1.00  −  Wα = 1.00 −  0.50 = 0.50  

 

Furthermore, at room temperature, Cα = 0 wt% Ag and Cβ = 100 wt% Ag;  employment of Equations 9.1 and 9.2 

yields 

 

Wα =
Cβ −  C0

Cβ −  Cα
=

100  −  50
100  −  0

= 0.50  

 

And, Wβ = 0.50.  Thus, the mass fractions of the α and β phases, upon cooling through the α + β phase region will 

remain approximately constant at about 0.5, and will never have values of Wα = 0.60 and Wβ = 0.40 as called for in 

the problem. 
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 9.22  For 11.20 kg of a magnesium-lead alloy of composition 30 wt% Pb-70 wt% Mg, is it possible, at 

equilibrium, to have α and Mg2Pb phases having respective masses of 7.39 kg and 3.81 kg?  If so, what will be the 

approximate temperature of the alloy?  If such an alloy is not possible, explain why. 
 

  Solution 

 Yes, it is possible to have a 30 wt% Pb-70 wt% Mg alloy which has masses of 7.39 kg and 3.81 kg for the 

α and Mg2Pb phases, respectively.  In order to demonstrate this, it is first necessary to determine the mass fraction 

of each phase as follows: 

 

  

 

Wα =
mα

mα + mMg2Pb
=

7.39 kg
7.39 kg + 3.81 kg

= 0.66 

 

  

 

WMg2Pb = 1.00 −  0.66 = 0.34  

 

Now, if we apply the lever rule expression for Wα 

 

  

 

Wα =
CMg2Pb − C0

CMg2Pb − Cα
 

 

Since the Mg2Pb phase exists only at 81 wt% Pb, and C0 = 30 wt% Pb 

 

  

 

Wα = 0.66 =
81 − 30
81 − Cα

 

 

Solving for Cα from this expression yields Cα = 3.7 wt% Pb.  The position along the α−(α + Mg2Pb) phase 

boundary of Figure 9.20 corresponding to this composition is approximately 190°C. 
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 9.23  Derive Equations 9.6a and 9.7a, which may be used to convert mass fraction to volume fraction, and 

vice versa. 
 

  Solution 

 This portion of the problem asks that we derive Equation 9.6a, which is used to convert from phase weight 

fraction to phase volume fraction.  Volume fraction of phase α, Vα, is defined by Equation 9.5 as 

 

 

    

 

Vα =
vα

vα + vβ
 (9.S1) 

 

where vα and vβ are the volumes of the respective phases in the alloy.  Furthermore, the density of each phase is 

equal to the ratio of its mass and volume, or upon rearrangement 

 

 
    

 

vα =
mα
ρα

 (9.S2a) 

 

 

    

 

vβ =
mβ
ρβ

 (9.S2b) 

 

Substitution of these expressions into Equation 9.S1 leads to 

 

 

    

 

Vα =

mα
ρα

mα
ρα

+
mβ
ρβ

 (9.S3) 

 

in which m's and ρ's denote masses and densities, respectively.  Now, the mass fractions of the α and β phases (i.e., 

Wα and Wβ) are defined in terms of the phase masses as 

 

 

    

 

Wα =
mα

mα + mβ
 (9.S4a) 

 

 

    

 

Wβ =
mβ

mα + mβ
 (9.S4b) 

 

Which, upon rearrangement yield 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 
 

    

 

mα = Wα (mα  +  mβ) (9.S5a) 

 
 

    

 

mβ = Wβ (mα  +  mβ) (9.S5b) 

 

Incorporation of these relationships into Equation 9.S3 leads to 

 
 

    

 

Vα =

Wα (mα  +  mβ)
ρα

Wα (mα  +  mβ)
ρα

+
Wβ (mα  +  mβ)

ρβ

 

 
 

 

    

 

Vα =

Wα
ρα

Wα
ρα

+
Wβ
ρβ

 (9.S6) 

which is the desired equation. 

 

 For this portion of the problem we are asked to derive Equation 9.7a, which is used to convert from phase 

volume fraction to mass fraction.  Mass fraction of the α phase is defined as 

 

 

    

 

Wα =
mα

mα + mβ
 (9.S7) 

 

From Equations 9.S2a and 9.S2b 

 

     

 

mα = vαρα  (9.S8a) 

 
 

    

 

mβ = vβρβ  (9.S8b) 

 

Substitution of these expressions into Equation 9.S7 yields 

 

 

    

 

Wα =
vαρα

vαρα + vβρβ
 (9.S9) 
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From Equation 9.5 and its equivalent for Vβ the following may be written: 

 
 

    

 

vα = Vα(vα  +  vβ)  (9.S10a) 

 
 

    

 

vβ = Vβ(vα  +  vβ) (9.S10b) 

 

Substitution of Equations 9.S10a and 9.S10b into Equation 9.S9 yields 

 

    

 

Wα =
Vα(vα  +  vβ)ρα

Vα(vα  +  vβ)ρα + Vβ(vα  +  vβ)ρβ
 

 

 

    

 

Wα =
Vαρα

Vαρα + Vβρβ
 (9.S11) 

 

which is the desired expression. 
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 9.24  Determine the relative amounts (in terms of volume fractions) of the phases for the alloys and 

temperatures given in Problem 9.8a, b, and c.  Below are given the approximate densities of the various metals at 

the alloy temperatures: 

 

Metal Temperature (°C) Density (g/cm3) 

Ag 900 9.97 

Cu 400 8.77 

Cu 900 8.56 

Pb 175 11.20 

Sn 175 7.22 

Zn 400 6.83 

 
 

  Solution 

 This problem asks that we determine the phase volume fractions for the alloys and temperatures in 

Problems 9.8a, b, and c.  This is accomplished by using the technique illustrated in Example Problem 9.3, and also 

the results of Problems 9.8 and 9.14. 

 

 (a)  This is a Cu-Zn alloy at 400°C, wherein 

 

  Cε = 87 wt% Zn-13 wt% Cu 

  Cη = 97 wt% Zn-3 wt% Cu 

  Wε = 0.70 

  Wη = 0.30 

  ρCu = 8.77 g/cm3 

  ρZn = 6.83 g/cm3 

 

 Using these data it is first necessary to compute the densities of the ε and η phases using Equation 4.10a.  

Thus 

 

  

 

ρε =
100

CZn(ε)

ρZn
+

CCu(ε)

ρCu
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=
100

87

6.83 g/cm3
+

13

8.77 g/cm3

=  7.03 g/cm3  

 

 

  

 

ρη =
100

CZn(η)

ρZn
+

CCu(η)

ρCu

 

 

 

=
100

97

6.83 g/cm3
+

3

8.77 g/cm3

= 6.88 g/cm3  

 

Now we may determine the Vε and Vη values using Equation 9.6.  Thus, 

 

  

 

Vε =

Wε
ρε

Wε
ρε

+
Wη

ρη

 

 

 

=

0.70

7.03 g/cm3

0.70

7.03 g/cm3
+

0.30

6.88 g/cm3

= 0.70  

 

 

  

 

Vη =

Wη
ρη

Wε
ρε

+
Wη
ρη

 

 

 

=

0.30

6.88 g/cm3

0.70

7.03 g/cm3
+

0.30

6.88 g/cm3

= 0.30  

 

 (b) This is a Pb-Sn alloy at 175°C, wherein 
 

 Cα = 16 wt% Sn-84 wt% Pb 

 Cβ = 97 wt% Sn-3 wt% Pb 
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 Wα = 0.27 

 Wβ = 0.73 

 ρSn = 7.22 g/cm3 

 ρPb = 11.20 g/cm3 
 

Using this data it is first necessary to compute the densities of the α and β phases.  Thus 

 

  

 

ρα =
100

CSn(α )

ρSn
+

CPb(α)

ρPb

 

 

 

=
100

16

7.22 g/cm3
+

84

11.20 g/cm3

= 10.29  g/cm3 

 

 

  

 

ρβ =
100

CSn(β)

ρSn
+

CPb(β)

ρPb

 

 

 

=
100

97

7.22 g/cm3
+

3

11.20 g/cm3

= 7.30  g/cm3 

 

Now we may determine the Vα and Vβ values using Equation 9.6.  Thus, 

 

  

 

Vα =

Wα
ρα

Wα
ρα

+
Wβ

ρβ

 

 

 

=

0.27

10.29 g/cm3

0.27

10.29 g/cm3
+

0.73

7.30 g/cm3

= 0.21 

 

 

  

 

Vβ =

Wβ

ρβ

Wα
ρα

+
Wβ

ρβ
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=

0.73

7.30 g/cm3

0.27

10.29 g/cm3
+

0.73

7.30 g/cm3

= 0.79 

 

 (c)  This is a Ag-Cu alloy at 900°C, wherein only the liquid phase is present.  Therefore, VL = 1.0. 
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 Development of Microstructure in Isomorphous Alloys 
 

 9.25  (a) Briefly describe the phenomenon of coring and why it occurs. 

 (b) Cite one undesirable consequence of coring. 
 

  Solution 

 (a)  Coring is the phenomenon whereby concentration gradients exist across grains in polycrystalline 

alloys, with higher concentrations of the component having the lower melting temperature at the grain boundaries.  

It occurs, during solidification, as a consequence of cooling rates that are too rapid to allow for the maintenance of 

the equilibrium composition of the solid phase. 

 (b)  One undesirable consequence of a cored structure is that, upon heating, the grain boundary regions will 

melt first and at a temperature below the equilibrium phase boundary from the phase diagram;  this melting results 

in a loss in mechanical integrity of the alloy. 
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 Mechanical Properties of Isomorphous Alloys 

 

 9.26  It is desirable to produce a copper-nickel alloy that has a minimum noncold-worked tensile strength 

of 350 MPa (50,750 psi) and a ductility of at least 48%EL.  Is such an alloy possible?  If so, what must be its 

composition?  If this is not possible, then explain why. 
 

  Solution 

 From Figure 9.6a, a tensile strength greater than 350 MPa (50,750 psi) is possible for compositions 

between about 22.5 and 98 wt% Ni.  On the other hand, according to Figure 9.6b, ductilities greater than 48%EL 

exist for compositions less than about 8 wt% and greater than about 98 wt% Ni. Therefore, the stipulated criteria are 

met only at a composition of 98 wt% Ni. 
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 Binary Eutectic Systems 

 

 9.27  A 45 wt% Pb–55 wt% Mg alloy is rapidly quenched to room temperature from an elevated 

temperature in such a way that the high-temperature microstructure is preserved.  This microstructure is found to 

consist of the α phase and Mg2Pb, having respective mass fractions of 0.65 and 0.35.  Determine the approximate 

temperature from which the alloy was quenched. 
 

  Solution 

 We are asked to determine the approximate temperature from which a 45 wt% Pb-55 wt% Mg alloy was 

quenched, given the mass fractions of α and Mg2Pb phases. We can write a lever-rule expression for the mass 

fraction of the α phase as 

 

  

 

Wα = 0.65 =
CMg2Pb − C0

CMg2Pb − Cα
 

 
The value of C0 is stated as 45 wt% Pb-55 wt% Mg, and CMg2Pb is 81 wt% Pb-19 wt% Mg, which is independent 

of temperature (Figure 9.20);  thus, 

 

  

 

0.65 =
81 − 45
81 − Cα

 

which yields 

Cα = 25.6 wt% Pb 

 
The temperature at which the α–(α + Mg2Pb) phase boundary (Figure 9.20) has a value of 25.6 wt% Pb is about 

360°C (680°F). 
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 Development of Microstructure in Eutectic Alloys 

 

 9.28  Briefly explain why, upon solidification, an alloy of eutectic composition forms a microstructure 

consisting of alternating layers of the two solid phases. 
 

  Solution 

 Upon solidification, an alloy of eutectic composition forms a microstructure consisting of alternating layers 

of the two solid phases because during the solidification atomic diffusion must occur, and with this layered 

configuration the diffusion path length for the atoms is a minimum. 
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 9.29  What is the difference between a phase and a microconstituent? 
 

  Solution 

 A “phase” is a homogeneous portion of the system having uniform physical and chemical characteristics, 

whereas a “microconstituent” is an identifiable element of the microstructure (that may consist of more than one 

phase). 
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 9.30  Is it possible to  have a copper-silver alloy in which the mass fractions of primary β and total β are 

0.68 and 0.925, respectively, at 775°C (1425°F)?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have a Cu-Ag alloy for which the mass fractions of primary β and 

total β are 0.68 and 0.925, respectively at 775°C.  In order to make this determination we need to set up the 

appropriate lever rule expression for each of these quantities.  From Figure 9.7 and at 775°C, Cα = 8.0 wt% Ag, Cβ 

= 91.2 wt% Ag, and Ceutectic = 71.9 wt% Ag. 

 For primary β 

 

  

 

Wβ’ =
C0  −  Ceutectic

Cβ Ê−  Ceutectic
=

C0  −  71.9
91.2 − 71.9

= 0.68  

 

Solving for C0 gives C0 = 85 wt% Ag. 

 Now the analogous expression for total β 

 

  

 

Wβ =
C0  − Cα
Cβ − Cα

=
C0 −  8.0

91.2 − 8.0
= 0.925 

 

And this value of C0 is 85 wt% Ag.  Therefore, since these two C0 values are the same (85 wt% Ag), this alloy is 

possible. 
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 9.31  For 6.70 kg of a magnesium-lead alloy, is it possible to have the masses of primary α and total α of 

4.23 kg and 6.00 kg, respectively, at 460°C (860°F)?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have a Mg-Pb alloy for which the masses of primary α and total α are 

4.23 kg and 6.00 kg, respectively in 6.70 kg total of the alloy at 460°C.  In order to make this determination we first 

need to convert these masses to mass fractions.  Thus, 

 

  

 

Wα' =  
4.23 kg
6.70 kg

= 0.631  

 

  

 

Wα =
6.00 kg
6.70 kg

= 0.896 

 
Next it is necessary to set up the appropriate lever rule expression for each of these quantities.  From Figure 9.20 

and at 460°C, Cα = 41 wt% Pb, CMg2Pb = 81 wt% Pb, and Ceutectic = 66 wt% Pb 

 For primary α 

 

  

 

Wα' =
Ceutectic −  C0

Ceutectic  −  Cα
=

66  −  C0

66 − 41
= 0.631  

 

And solving for C0 gives C0 = 50.2 wt% Pb. 

 Now the analogous expression for total α 

 

  

 

Wα =
CMg2Pb  −  C0

CMg2Pb  − Cα
=

81 −  C0

81 − 41
= 0.896  

 

And this value of C0 is 45.2 wt% Pb.  Therefore, since these two C0 values are different, this alloy is not possible. 
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 9.32  For a copper-silver alloy of composition 25 wt% Ag-75 wt% Cu and at 775°C (1425°F) do the 

following: 

 (a) Determine the mass fractions of α and β phases. 

 (b) Determine the mass fractions of primary α and eutectic microconstituents. 

 (c) Determine the mass fraction of eutectic α. 
 

  Solution 

 (a) This portion of the problem asks that we determine the mass fractions of α and β phases for an 25 wt% 

Ag-75 wt% Cu alloy (at 775°C).  In order to do this it is necessary to employ the lever rule using a tie line that 

extends entirely across the α + β phase field.  From Figure 9.7 and at 775°C, Cα = 8.0 wt% Ag, Cβ = 91.2 wt% Ag, 

and Ceutectic = 71.9 wt% Sn.  Therefore, the two lever-rule expressions are as follows: 

 

  

 

Wα =
Cβ − C0

Cβ − Cα
=

91.2 − 25
91.2 − 8.0

= 0.796  

 

  

 

Wβ =
C0 − Cα
Cβ − Cα

=
25 − 8.0

91.2 − 8.0
= 0.204  

 

 (b) Now it is necessary to determine the mass fractions of primary α and eutectic microconstituents for this 

same alloy.  This requires us to utilize the lever rule and a tie line that extends from the maximum solubility of Ag 

in the α phase at 775°C (i.e., 8.0 wt% Ag) to the eutectic composition (71.9 wt% Ag).  Thus 

 

  

 

Wα' =
Ceutectic Ê−  C0

Ceutectic Ê−  Cα
=

71.9 − 25
71.9 − 8.0

= 0.734  

 

  

 

We =
C0  −  Cα

Ceutectic −  Cα
=

25 − 8.0
71.9 − 8.0

= 0.266  

 

 (c) And, finally, we are asked to compute the mass fraction of eutectic α, Weα.  This quantity is simply the 

difference between the mass fractions of total α and primary α as 

 
Weα = Wα – Wα' = 0.796 – 0.734 = 0.062 
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 9.33  The microstructure of a lead-tin alloy at 180°C (355°F) consists of primary β and eutectic structures.  

If the mass fractions of these two microconstituents are 0.57 and 0.43, respectively, determine the composition of 

the alloy. 
 

  Solution 

 Since there is a primary β microconstituent present, then we know that the alloy composition, C0 is 

between 61.9 and 97.8 wt% Sn (Figure 9.8).  Furthermore, this figure also indicates that Cβ = 97.8 wt% Sn and 

Ceutectic = 61.9 wt% Sn.  Applying the appropriate lever rule expression for Wβ' 

 

  

 

Wβ' =
C0 −  Ceutectic

Cβ Ê−  Ceutectic
=

C0  −  61.9
97.8 − 61.9

= 0.57 

 

and solving for C0 yields C0 = 82.4 wt% Sn. 
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 9.34  Consider the hypothetical eutectic phase diagram for metals A and B, which is similar to that for the 

lead-tin system, Figure 9.8.  Assume that (1) α and β phases exist at the A and B extremities of the phase diagram, 

respectively; (2) the eutectic composition is 47 wt% B-53 wt% A; and (3) the composition of the β phase at the 

eutectic temperature is 92.6 wt% B-7.4 wt% A.  Determine the composition of an alloy that will yield primary α and 

total α mass fractions of 0.356 and 0.693, respectively. 
 

  Solution 

 We are given a hypothetical eutectic phase diagram for which Ceutectic = 47 wt% B, Cβ = 92.6 wt% B at 

the eutectic temperature, and also that Wα' = 0.356 and Wα = 0.693;  from this we are asked to determine the 

composition of the alloy.  Let us write lever rule expressions for Wα' and Wα 

 

  

 

Wα =
Cβ Ê−  C0

Cβ − Cα
=

92.6  −  C0

92.6  −  Cα
= 0.693  

 

  

 

Wα' =
Ceutectic Ê−  C0

Ceutectic Ê−  Cα
=

47  −  C0

47  −  Cα
= 0.356  

 

Thus, we have two simultaneous equations with C0 and Cα as unknowns.  Solving them for C0 gives C0 = 32.6 wt% 

B. 
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 9.35  For an 85 wt% Pb-15 wt% Mg alloy, make schematic sketches of the microstructure that would be 

observed for conditions of very slow cooling at the following temperatures: 600°C (1110°F), 500°C (930°F), 270°C 

(520°F), and 200°C (390°F).  Label all phases and indicate their approximate compositions. 
 

  Solution 

 The illustration below is the Mg-Pb phase diagram (Figure 9.20).  A vertical line at a composition of 85 

wt% Pb-15 wt% Mg has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the 

problem statement (i.e., 600°C, 500°C, 270°C, and 200°C). 

 

 

 

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective 

microstructures along with phase compositions are represented as follows: 
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 9.36  For a 68 wt% Zn-32 wt% Cu alloy, make schematic sketches of the microstructure that would be 

observed for conditions of very slow cooling at the following temperatures: 1000°C (1830°F), 760°C (1400°F), 

600°C (1110°F), and 400°C (750°F).  Label all phases and indicate their approximate compositions. 
 

  Solution 

 The illustration below is the Cu-Zn phase diagram (Figure 9.19).  A vertical line at a composition of 68 

wt% Zn-32 wt% Cu has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the 

problem statement (i.e., 1000°C, 760°C, 600°C, and 400°C). 

 

 

 

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective 

microstructures along with phase compositions are represented as follows: 
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 9.37  For a 30 wt% Zn-70 wt% Cu alloy, make schematic sketches of the microstructure that would be 

observed for conditions of very slow cooling at the following temperatures: 1100°C (2010°F), 950°C (1740°F), 

900°C (1650°F), and 700°C (1290°F).  Label all phases and indicate their approximate compositions. 
 

  Solution 

 The illustration below is the Cu-Zn phase diagram (Figure 9.19).  A vertical line at a composition of 30 

wt% Zn-70 wt% Cu has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the 

problem statement (i.e., 1100°C, 950°C, 900°C, and 700°C). 

 

 

 

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective 

microstructures along with phase compositions are represented as follows: 
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 9.38  On the basis of the photomicrograph (i.e., the relative amounts of the microconstituents) for the lead–

tin alloy shown in Figure 9.17 and the Pb–Sn phase diagram (Figure 9.8), estimate the composition of the alloy, 

and then compare this estimate with the composition given in the figure legend of Figure 9.17. Make the following 

assumptions: (1) the area fraction of each phase and microconstituent in the photomicrograph is equal to its 

volume fraction; (2) the densities of the α and β phases as well as the eutectic structure are 11.2, 7.3, and 8.7 g/cm3, 

respectively; and (3) this photomicrograph represents the equilibrium microstructure at 180°C (355°F). 
 

  Solution 

 Below is shown the micrograph of the Pb-Sn alloy, Figure 9.17: 

 

 

 

Primary α and eutectic microconstituents are present in the photomicrograph, and it is given that their densities are 

11.2 and 8.7 g/cm3, respectively.  Below is shown a square grid network onto which is superimposed outlines of the 

primary α phase areas. 
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 The area fraction of this primary α phase may be determined by counting squares.  There are a total of 644 

squares, and of these, approximately 104 lie within the primary α phase particles.  Thus, the area fraction of primary 

α is 104/644 = 0.16, which is also assumed to be the volume fraction. 

 We now want to convert the volume fractions into mass fractions in order to employ the lever rule to the 

Pb-Sn phase diagram.  To do this, it is necessary to utilize Equations 9.7a and 9.7b as follows:   

 

    

 

Wα' =
Vα' ρα'

Vα' ρα' + Veutectic ρeutectic
 

 

  

 

=
(0.16)(11.2 g /cm3)

(0.16)(11.2 g /cm3) + (0.84)(8.7 g /cm3)
= 0.197  

 

 

    

 

Weutectic =
Veutectic ρeutectic

VαÕραÕ+ Veutectic ρeutectic
 

 

  

 

=
(0.84)(8.7 g /cm3)

(0.16)(11.2 g /cm3) + (0.84)(8.7 g /cm3)
= 0.803 

 

From Figure 9.8, we want to use the lever rule and a tie-line that extends from the eutectic composition (61.9 wt% 

Sn) to the α–(α + β) phase boundary at 180°C (about 18.3 wt% Sn).  Accordingly 

 

    

 

Wα' = 0.197 =
61.9 − C0
61.9 − 18.3

 

 
wherein C0 is the alloy composition (in wt% Sn).  Solving for C0 yields C0 = 53.3 wt% Sn.  This value is in good 

agreement with the actual composition—viz. 50 wt% Sn. 
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 9.39  The room-temperature tensile strengths of pure lead and pure tin are 16.8 MPa and 14.5 MPa, 

respectively. 

 (a) Make a schematic graph of the room-temperature tensile strength versus composition for all 

compositions between pure lead and pure tin. (Hint: you may want to consult Sections 9.10 and 9.11, as well as 

Equation 9.24 in Problem 9.64.) 

 (b) On this same graph schematically plot tensile strength versus composition at 150°C. 

 (c) Explain the shapes of these two curves, as well as any differences between them. 
 

  Solution 

 The (a) and (b) portions of the problem ask that we make schematic plots on the same graph for the tensile 

strength versus composition for lead-tin alloys at both room temperature and 150°C;  such a graph is shown below. 

 

 

 

 (c)  Upon consultation of the Pb-Sn phase diagram (Figure 9.8) we note that, at room temperature (20°C), 

about 1.5 wt% of Sn is soluble in Pb (within the α-phase region at the left extremity of the phase diagram).  

Similarly, only about 1 wt% of Pb is soluble in Sn (within the β-phase region at the left extremity).  Thus, there will 

a solid-solution strengthening effect on both ends of the phase diagram—strength increases slightly with additions 

of Sn to Pb [in the α phase region (left-hand side)] and with additions of Pb to Sn [in the β phase region (right-hand 

side)];  these effects are noted in the above figure.  This figure also shows that the tensile strength of pure lead is 

greater than pure tin, which is in agreement with tensile strength values provided in the problem statement. 

 In addition, at room temperature, for compositions between about 1.5 wt% Sn and 99 wt% Sn, both α and 

β phase will coexist, (Figure 9.8),  Furthermore, for compositions within this range, tensile strength will depend 

(approximately) on the tensile strengths of each of the α and β phases as well as their phase fractions in a manner 

described by Equation 9.24 for the elastic modulus (Problem 9.64).  That is, for this problem 
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(TS)alloy ≅ (TS)αVα  +  (TS)βVβ  
 

in which TS and V denote tensile strength and volume fraction, respectively, and the subscripts represent the 

alloy/phases. Also, mass fractions of the α and β phases change linearly with changing composition (according to 

the lever rule).  Furthermore, although there is some disparity between the densities of Pb and Sn (11.35 versus 7.27 

g/cm3), weight and volume fractions of the α and β phases will also be similar (see Equation 9.6). 

 At 150°C, the curve will be shifted to significantly lower tensile strengths inasmuch as tensile strength 

diminishes with increasing temperature (Section 6.6, Figure 6.14).  In addition, according to Figure 9.8, solubility 

limits for both α and β phases increase—for the α phase from 1.5 to 10 wt% Sn, and for the β phase from 1 to about 

2 wt% Pb.  Thus, the compositional ranges over which solid-solution strengthening occurs increase somewhat from 

the room-temperature ranges;  these effects are also noted on the 150°C curve above.  Furthermore, at 150°C, it 

would be expected that the tensile strength of lead will be greater than that of tin;  and for compositions over which 

both α and β phases coexist, strength will decrease approximately linearly with increasing Sn content. 
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 Equilibrium Diagrams Having Intermediate Phases or Compounds 

 

 9.40  Two intermetallic compounds, AB and AB2, exist for elements A and B.  If the compositions for AB 

and AB2 are 34.3 wt% A–65.7 wt% B and 20.7 wt% A–79.3 wt% B, respectively, and element A is potassium, 

identify element B. 
 

  Solution 

 This problem gives us the compositions in weight percent for the two intermetallic compounds AB and 

AB2, and then asks us to identify element B if element A is potassium.  Probably the easiest way to solve this 

problem is to first compute the ratio of the atomic weights of these two elements using Equation 4.6a;  then, since 

we know the atomic weight of potassium (39.10 g/mol, per inside the front cover), it is possible to determine the 

atomic weight of element B, from which an identification may be made. 

 First of all, consider the AB intermetallic compound;  inasmuch as it contains the same numbers of A and 

B atoms, its composition in atomic percent is 50 at% A-50 at% B.  Equation 4.6a may be written in the form: 

 

  

 

CB
' =

CB AA

CA AB + CB AA
× 100 

 

where AA and AB are the atomic weights for elements A and B, and CA and CB are their compositions in weight 

percent.  For this AB compound, and making the appropriate substitutions in the above equation leads to 

 

  

 

50 at% B =
(65.7 wt% B)(AA)

(34.3 wt% A)(AB) + (65.7 wt% B)(AA )
× 100  

 

Now, solving this expression yields, 

 

AB = 1.916 AA 

 

Since potassium is element A and it has an atomic weight of 39.10 g/mol, the atomic weight of element B is just 

 
AB = (1.916)(39.10 g/mol) = 74.92 g/mol 

 

Upon consultation of the period table of the elements (Figure 2.6) we note the element that has an atomic weight 

closest to this value is arsenic (74.92 g/mol).  Therefore, element B is arsenic, and the two intermetallic compounds 

are KAs and KAs2. 
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 Congruent Phase Transformations 

 Eutectoid and Peritectic Reactions 

 

 9.41  What is the principal difference between congruent and incongruent phase transformations? 
 

  Solution 

 The principal difference between congruent and incongruent phase transformations is that for congruent no 

compositional changes occur with any of the phases that are involved in the transformation.  For incongruent there 

will be compositional alterations of the phases. 
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 9.42  Figure 9.36 is the aluminum-neodymium phase diagram, for which only single-phase regions are 

labeled.  Specify temperature-composition points at which all eutectics, eutectoids, peritectics, and congruent phase 

transformations occur.  Also, for each, write the reaction upon cooling. 
 

  Solution 

 Below is shown the aluminum-neodymium phase diagram (Figure 9.36). 

 

 

 

 There are two eutectics on this phase diagram.  One exists at 12 wt% Nd-88 wt% Al and 632°C.  The 

reaction upon cooling is 

 

 

L → Al +  Al11Nd3 

 

The other eutectic exists at about 97 wt% Nd-3 wt% Al and 635°C.  This reaction upon cooling is 

 

  

 

L →  AlNd3 +  Nd  

 

 There are four peritectics.  One exists at 59 wt% Nd-41 wt% Al and 1235°C.  Its reaction upon cooling is 

as follows: 
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L +  Al2Nd →  Al11Nd3 

 

The second peritectic exists at 84 wt% Nd-16 wt% Al and 940°C.  This reaction upon cooling is 

 

  

 

L +  Al2Nd →  AlNd  

 

The third peritectic exists at 91 wt% Nd-9 wt% Al and 795°C.  This reaction upon cooling is 

 

  

 

L +  AlNd →  AlNd2  

 

The fourth peritectic exists at 94 wt% Nd-6 wt% Al and 675°C.  This reaction upon cooling is 

 

  

 

L +  AlNd2 →  AlNd3 

 

 There is one congruent melting point at about 73 wt% Nd-27 wt% Al and 1460°C.  Its reaction upon 

cooling is 

 

  

 

L →  Al2Nd 

 

 No eutectoids are present. 
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 9.43  Figure 9.37 is a portion of the titanium-copper phase diagram for which only single-phase regions 

are labeled.  Specify all temperature-composition points at which eutectics, eutectoids, peritectics, and congruent 

phase transformations occur.  Also, for each, write the reaction upon cooling. 
 

  Solution 

 Below is shown the titanium-copper phase diagram (Figure 9.37). 

 

 

 

 There is one eutectic on this phase diagram, which exists at about 51 wt% Cu-49 wt% Ti and 960°C.  Its 

reaction upon cooling is 

 

  

 

L →  Ti2Cu +  TiCu 

 

 There is one eutectoid for this system.  It exists at about 7.5 wt% Cu-92.5 wt% Ti and 790°C.  This 

reaction upon cooling is 

 

 

β →  α +  Ti2Cu  

 

 There is one peritectic on this phase diagram.  It exists at about 40 wt% Cu-60 wt% Ti and 1005°C.  The 

reaction upon cooling is 
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β +  L →  Ti2Cu  

 

 There is a single congruent melting point that exists at about 57.5 wt% Cu-42.5 wt% Ti and 982°C.  The 

reaction upon cooling is 

 

  

 

L →  TiCu  
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 9.44  Construct the hypothetical phase diagram for metals A and B between temperatures of 600°C and 

1000°C given the following information: 

● The melting temperature of metal A is 940°C. 

● The solubility of B in A is negligible at all temperatures. 

● The melting temperature of metal B is 830°C. 

● The maximum solubility of A in B is 12 wt% A, which occurs at 700°C. 

● At 600°C, the solubility of A in B is 8 wt% A. 

● One eutectic occurs at 700°C and 75 wt% B–25 wt% A. 

● A second eutectic occurs at 730°C and 60 wt% B–40 wt% A. 

● A third eutectic occurs at 755°C and 40 wt% B–60 wt% A. 

● One congruent melting point occurs at 780°C and 51 wt% B–49 wt% A. 

● A second congruent melting point occurs at 755°C and 67 wt% B–33 wt% A. 

● The intermetallic compound AB exists at 51 wt% B–49 wt% A. 

● The intermetallic compound AB2 exists at 67 wt% B–33 wt% A. 
 

  Solution 

 Below is shown the phase diagram for these two A and B metals. 
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 The Gibbs Phase Rule 

 

 9.45  In Figure 9.38 is shown the pressure–temperature phase diagram for H2O. Apply the Gibbs phase 

rule at points A, B, and C; that is, specify the number of degrees of freedom at each of the points—that is, the 

number of externally controllable variables that need be specified to completely define the system. 
 

  Solution 

 We are asked to specify the value of F for Gibbs phase rule at points A, B, and C on the pressure-

temperature diagram for H2O, Figure 9.38, which is shown below. 

 

 

 

 Gibbs phase rule in general form is 

 

P + F = C + N 

 

For this system, the number of components, C, is 1, whereas N, the number of noncompositional variables, is 2--viz. 

temperature and pressure.  Thus, the phase rule now becomes 

 

P + F = 1 + 2 = 3 

Or 

F = 3 – P 

 

where P is the number of phases present at equilibrium. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 At point A, three phases are present (viz. ice I, ice III, and liquid) and P = 3;  thus, the number of degrees 

of freedom is zero since 

 

F = 3 – P = 3 – 3 = 0 

 

Thus, point A is an invariant point (in this case a triple point), and we have no choice in the selection of externally 

controllable variables in order to define the system. 

 At point B on the figure, only a single (vapor) phase is present (i.e., P = 1), or 

 

F = 3 – P = 3 – 1 = 2 

 

which means that specification of both temperature and pressure are necessary to define the system. 

 And, finally, at point C which is on the phase boundary between liquid and ice I phases, two phases are in 

equilibrium (P = 2);  hence 

 

F = 3 – P = 3 – 2 = 1 

 

Or that we need to specify the value of either temperature or pressure, which determines the value of the other 

parameter (pressure or temperature). 
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 The Iron-Iron Carbide (Fe-Fe3C) Phase Diagram 

 Development of Microstructure in Iron-Carbon Alloys 

 

 9.46  Compute the mass fractions of α ferrite and cementite in pearlite. 
 

  Solution 

 This problem asks that we compute the mass fractions of α ferrite and cementite in pearlite.  The lever-rule 

expression for ferrite is 

 

    

 

Wα =
CFe3C − C0

CFe3C − Cα
 

 
and, since CFe3C = 6.70 wt% C, C0 = 0.76 wt% C, and Cα = 0.022 wt% C 

 

    

 

Wα =
6.70 − 0.76

6.70 − 0.022
= 0.89 

 

Similarly, for cementite 

 

    

 

WFe3C =
C0 − Cα

CFe3C − Cα
=

0.76 − 0.022
6.70 − 0.022

= 0.11 
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 9.47  (a) What is the distinction between hypoeutectoid and hypereutectoid steels? 

 (b) In a hypoeutectoid steel, both eutectoid and proeutectoid ferrite exist. Explain the difference between 

them.  What will be the carbon concentration in each? 
 

  Solution 

 (a)  A “hypoeutectoid” steel has a carbon concentration less than the eutectoid;  on the other hand, a 

“hypereutectoid” steel has a carbon content greater than the eutectoid. 

 (b)  For a hypoeutectoid steel, the proeutectoid ferrite is a microconstituent that formed above the eutectoid 

temperature.  The eutectoid ferrite is one of the constituents of pearlite that formed at a temperature below the 

eutectoid.  The carbon concentration for both ferrites is 0.022 wt% C. 
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 9.48  What is the carbon concentration of an iron–carbon alloy for which the fraction of total ferrite is 

0.94? 
 

  Solution 

 This problem asks that we compute the carbon concentration of an iron-carbon alloy for which the fraction 

of total ferrite is 0.94.  Application of the lever rule (of the form of Equation 9.12) yields 

 

  

 

Wα = 0.94 =
CFe3C − C0

'

CFe3C − Cα
=

6.70 − C0
'

6.70 − 0.022
 

 

and solving for   

 

C0
'
 

 

  

 

C0
' = 0.42 wt% C  
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 9.49  What is the proeutectoid phase for an iron–carbon alloy in which the mass fractions of total ferrite 

and total cementite are 0.92 and 0.08, respectively?  Why? 
 

  Solution 

 In this problem we are given values of Wα and WFe3C (0.92 and 0.08, respectively) for an iron-carbon 

alloy and then are asked to specify the proeutectoid phase.  Employment of the lever rule for total α leads to 

 

  

 

Wα = 0.92 =
CFe3C − C0

CFe3C − Cα
=

6.70 − C0

6.70 − 0.022
 

 

Now, solving for C0, the alloy composition, leads to C0 = 0.56 wt% C.  Therefore, the proeutectoid phase is α-

ferrite since C0 is less than 0.76 wt% C. 
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 9.50  Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727°C (1341°F). 

 (a) What is the proeutectoid phase? 

 (b) How many kilograms each of total ferrite and cementite form? 

 (c) How many kilograms each of pearlite and the proeutectoid phase form? 

 (d) Schematically sketch and label the resulting microstructure. 
 

  Solution 

 (a)  The proeutectoid phase will be Fe3C since 1.15 wt% C is greater than the eutectoid composition (0.76 

wt% C). 

 (b)  For this portion of the problem, we are asked to determine how much total ferrite and cementite form.  

Application of the appropriate lever rule expression yields
 

 

  

 

Wα =
CFe3C − C0

CFe3C − Cα
=

6.70 − 1.15
6.70 − 0.022

= 0.83  

 

which, when multiplied by the total mass of the alloy (1.0 kg), gives 0.83 kg of total ferrite. 

 Similarly, for total cementite, 

 

  

 

WFe3C =
C0 − Cα

CFe3C − Cα
=

1.15 − 0.022
6.70 − 0.022

= 0.17  

 

And the mass of total cementite that forms is (0.17)(1.0 kg) = 0.17 kg. 

 (c)  Now we are asked to calculate how much pearlite and the proeutectoid phase (cementite) form.  

Applying Equation 9.22, in which     

 

C1
'  = 1.15 wt% C 

 

  

 

Wp =
6.70 − C 1

'

6.70 − 0.76
=

6.70 − 1.15
6.70 − 0.76

= 0.93 

 

which corresponds to a mass of 0.93 kg.  Likewise, from Equation 9.23 

 

  

 

WFe3C' =
C1

' − 0.76

5.94
=

1.15 − 0.76
5.94

= 0.07  

 

which is equivalent to 0.07 kg of the total 1.0 kg mass. 

 (d)  Schematically, the microstructure would appear as: 
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 9.51  Consider 2.5 kg of austenite containing 0.65 wt% C, cooled to below 727°C (1341°F). 

 (a) What is the proeutectoid phase? 

 (b) How many kilograms each of total ferrite and cementite form? 

 (c) How many kilograms each of pearlite and the proeutectoid phase form? 

 (d) Schematically sketch and label the resulting microstructure. 
 

  Solution 

 (a)  Ferrite is the proeutectoid phase since 0.65 wt% C is less than 0.76 wt% C. 

 (b)  For this portion of the problem, we are asked to determine how much total ferrite and cementite form.  

For ferrite, application of the appropriate lever rule expression yields
 

 

  

 

Wα =
CFe3C − C0

CFe3C − Cα
=

6.70 − 0.65
6.70 − 0.022

= 0.91  

 

which corresponds to (0.91)(2.5 kg) = 2.27 kg of total ferrite. 

 Similarly, for total cementite, 

 

  

 

WFe3C =
C0 − Cα

CFe3C − Cα
=

0.65 − 0.022
6.70 − 0.022

= 0.09  

 

Or (0.09)(2.5 kg) = 0.23 kg of total cementite form. 

 (c)  Now consider the amounts of pearlite and proeutectoid ferrite. Using Equation 9.20 

 

  

 

Wp =
C 0

' − 0.022

0.74
=

0.65 − 0.022
0.74

= 0.85  

 

This corresponds to (0.85)(2.5 kg) = 2.12 kg of pearlite. 

 Also, from Equation 9.21, 

 

  

 

Wα' =
0.76 − 0.65

0.74
= 0.15 

 

Or, there are (0.15)(2.5 kg) = 0.38 kg of proeutectoid ferrite. 

 (d)  Schematically, the microstructure would appear as: 
 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 9.52  Compute the mass fractions of proeutectoid ferrite and pearlite that form in an iron–carbon alloy 

containing 0.25 wt% C. 
 

  Solution 

 The mass fractions of proeutectoid ferrite and pearlite that form in a 0.25 wt% C iron-carbon alloy are 

considered in this problem.  From Equation 9.20 

 

  

 

Wp =
C0

' − 0.022

0.74
=

0.25 − 0.022
0.74

= 0.31 

 

And, from Equation 9.21 (for proeutectoid ferrite) 

 

  

 

Wα' =
0.76 − C0

'

0.74
=

0.76 − 0.25
0.74

= 0.69  
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 9.53  The microstructure of an iron–carbon alloy consists of proeutectoid ferrite and pearlite;  the mass 

fractions of these two microconstituents are 0.286 and 0.714, respectively.  Determine the concentration of carbon 

in this alloy. 
 

  Solution 

 This problem asks that we determine the carbon concentration in an iron-carbon alloy, given the mass 

fractions of proeutectoid ferrite and pearlite.  From Equation 9.20 

 

  

 

Wp = 0.714 =
C0

' − 0.022

0.74
 

 

which yields     

 

C0
'  = 0.55 wt% C.
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 9.54  The mass fractions of total ferrite and total cementite in an iron-carbon alloy are 0.88 and 0.12, 

respectively.  Is this a hypoeutectoid or hypereutectoid alloy?  Why? 
 

  Solution 

 In this problem we are given values of Wα and WFe3C for an iron-carbon alloy (0.88 and 0.12, 

respectively), and then are asked to specify whether the alloy is hypoeutectoid or hypereutectoid.  Employment of 

the lever rule for total α leads to 

 

  

 

Wα = 0.88 =
CFe3C − C0

CFe3C − Cα
=

6.70 − C0

6.70 − 0.022
 

 

Now, solving for C0, the alloy composition, leads to C0 = 0.82 wt% C.  Therefore, the alloy is hypereutectoid since 

C0 is greater than 0.76 wt% C. 
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 9.55  The microstructure of an iron-carbon alloy consists of proeutectoid ferrite and pearlite;  the mass 

fractions of these microconstituents are 0.20 and 0.80, respectively.  Determine the concentration of carbon in this 

alloy. 
 

  Solution 

 We are asked in this problem to determine the concentration of carbon in an alloy for which     

 

Wα'  = 0.20 

and Wp = 0.80.  If we let     

 

C0
'  equal the carbon concentration in the alloy, employment of the appropriate lever rule 

expression, Equation 9.20, leads to 

 

  

 

Wp =
C0

' − 0.022
0.74

= 0.80 

 

Solving for     

 

C0
'   yields     

 

C0
'  = 0.61 wt% C. 
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 9.56  Consider 2.0 kg of a 99.6 wt% Fe–0.4 wt% C alloy that is cooled to a temperature just below the 

eutectoid. 

 (a) How many kilograms of proeutectoid ferrite form? 

 (b) How many kilograms of eutectoid ferrite form? 

 (c) How many kilograms of cementite form? 
 

  Solution 

 In this problem we are asked to consider 2.0 kg of a 99.6 wt% Fe-0.4 wt% C alloy that is cooled to a 

temperature below the eutectoid. 

 (a)  Equation 9.21 must be used in computing the amount of proeutectoid ferrite that forms.  Thus, 

 

    

 

Wα' =
0.76 − C0

'

0.74
=

0.76 − 0.40
0.74

= 0.49  

 

Or, (0.49)(2.0 kg) = 0.98 kg of proeutectoid ferrite forms. 

 (b)  In order to determine the amount of eutectoid ferrite, it first becomes necessary to compute the amount 
of total ferrite using the lever rule applied entirely across the α + Fe3C phase field, as 

 

    

 

Wα =
CFe3C − C0

Õ

CFe3C − Cα
=

6.70 − 0.40
6.70 − 0.022

= 0.94  

 

which corresponds to (0.94)(2.0 kg) = 1.88 kg.  Now, the amount of eutectoid ferrite is just the difference between 

total and proeutectoid ferrites, or 

 

1.88 kg – 0.98 kg = 0.90 kg 

 

 (c)  With regard to the amount of cementite that forms, again application of the lever rule across the 
entirety of the α + Fe3C phase field, leads to 

 

    

 

WFe3C =
C0

Õ − Cα
CFe3C − Cα

=
0.40 − 0.022
6.70 − 0.022

= 0.057  

 

which amounts to (0.057)(2.0 kg) = 0.114 kg cementite in the alloy. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 9.57  Compute the maximum mass fraction of proeutectoid cementite possible for a hypereutectoid iron–

carbon alloy. 
 

  Solution 

 This problem asks that we compute the maximum mass fraction of proeutectoid cementite possible for a 

hypereutectoid iron-carbon alloy.  This requires that we utilize Equation 9.23 with     

 

C1
'  = 2.14 wt% C, the maximum 

solubility of carbon in austenite.  Thus,  

 

    

 

WFe3C' =
C1

' − 0.76

5.94
=

2.14 − 0.76
5.94

= 0.232  
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 9.58  Is it possible to have an iron-carbon alloy for which the mass fractions of total ferrite and 

proeutectoid cementite are 0.846 and 0.049, respectively?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have an iron-carbon alloy for which Wα = 0.846 and 

 

WFe3 ′ C  = 0.049. 

In order to make this determination, it is necessary to set up lever rule expressions for these two mass fractions in 

terms of the alloy composition, then to solve for the alloy composition of each;  if both alloy composition values are 

equal, then such an alloy is possible.  The expression for the mass fraction of total ferrite is 

 

  

 

Wα =
CFe3C −  C0

CFe3C − Cα
=

6.70 −  C0

6.70 − 0.022
= 0.846  

 

Solving for this C0 yields C0 = 1.05 wt% C.  Now for 

 

WFe3 ′ C  we utilize Equation 9.23 as 

 

  

 

WFe3C' =
C1

' −  0.76

5.94
= 0.049  

 

This expression leads to   

 

C1
'  = 1.05 wt% C.  And, since C0 =   

 

C1
' , this alloy is possible. 
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 9.59  Is it possible to have an iron-carbon alloy for which the mass fractions of total cementite and pearlite 

are 0.039 and 0.417, respectively?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have an iron-carbon alloy for which 

 

WFe3C  = 0.039 and Wp = 0.417. 

In order to make this determination, it is necessary to set up lever rule expressions for these two mass fractions in 

terms of the alloy composition, then to solve for the alloy composition of each;  if both alloy composition values are 

equal, then such an alloy is possible.  The expression for the mass fraction of total cementite is 

 

  

 

WFe3C =
C0 − Cα

CFe3C − Cα
=

C0 − 0.022
6.70 − 0.022

= 0.039  

 

Solving for this C0 yields C0 = 0.28 wt% C.  Therefore, this alloy is hypoeutectoid since C0 is less than the eutectoid 

composition (0.76 wt% ).  Thus, it is necessary to use Equation 9.20 for Wp as 

 

  

 

Wp =
C 0

' −  0.022
0.74

= 0.417  

 

This expression leads to   

 

C 0
'   = 0.33 wt% C.  Since C0 and   

 

C 0
'  are different, this alloy is not possible.  
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 9.60  Compute the mass fraction of eutectoid ferrite in an iron-carbon alloy that contains 0.43 wt% C. 
 

  Solution 

 In order to solve this problem it is necessary to compute mass fractions of total and proeutectoid ferrites, 

and then to subtract the latter from the former.  To calculate the mass fraction of total ferrite, it is necessary to use 

the lever rule and a tie line that extends across the entire α + Fe3C phase field as 

 

  

 

Wα =
CFe3C −  C0

CFe3C − Cα
=

6.70 − 0.43
6.70 − 0.022

= 0.939  

 

Now, for the mass fraction of proeutectoid ferrite we use Equation 9.21 as 

 

  

 

Wα' =
0.76 −  C0

' −
0.74

=
0.76 − 0.43

0.74
= 0.446  

 
And, finally, the mass fraction of eutectoid ferrite Wα'' is just 

 
Wα'' = Wα – Wα' = 0.939 –0.446 = 0.493 
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 9.61  The mass fraction of eutectoid cementite in an iron-carbon alloy is 0.104.  On the basis of this 

information, is it possible to determine the composition of the alloy?  If so, what is its composition?  If this is not 

possible, explain why. 
 

  Solution 

 This problem asks whether or not it is possible to determine the composition of an iron-carbon alloy for 

which the mass fraction of eutectoid cementite is 0.104;  and if so, to calculate the composition.  Yes, it is possible 

to determine the alloy composition;  and, in fact, there are two possible answers.  For the first, the eutectoid 

cementite exists in addition to proeutectoid cementite.  For this case the mass fraction of eutectoid cementite 

(WFe3C'') is just the difference between total cementite and proeutectoid cementite mass fractions;  that is 

 
WFe3C'' = WFe3C – WFe3C' 

 
Now, it is possible to write expressions for WFe3C (of the form of Equation 9.12) and WFe3C' (Equation 9.23) in 

terms of C0, the alloy composition.  Thus, 

 

    

 

WFe3C" =
C0 − Cα

CFe3C − Cα
−  

C0 − 0.76

5.94
 

 

  

 

=
C0 − 0.022

6.70 − 0.022
−  

C0 − 0.76
5.94

= 0.104  

 

And, solving for C0 yields C0 = 1.11 wt% C. 

 For the second possibility, we have a hypoeutectoid alloy wherein all of the cementite is eutectoid 

cementite.  Thus, it is necessary to set up a lever rule expression wherein the mass fraction of total cementite is 

0.104.  Therefore, 

 

  

 

WFe3C =
C0 − Cα

CFe3C − Cα
=

C0 − 0.022
6.70 − 0.022

= 0.104  

 

And, solving for C0 yields C0 = 0.72 wt% C. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 9.62  The mass fraction of eutectoid ferrite in an iron-carbon alloy is 0.82.  On the basis of this 

information, is it possible to determine the composition of the alloy?  If so, what is its composition?  If this is not 

possible, explain why. 
 

  Solution 

 This problem asks whether or not it is possible to determine the composition of an iron-carbon alloy for 

which the mass fraction of eutectoid ferrite is 0.82;  and if so, to calculate the composition.  Yes, it is possible to 

determine the alloy composition;  and, in fact, there are two possible answers.  For the first, the eutectoid ferrite 
exists in addition to proeutectoid ferrite.  For this case the mass fraction of eutectoid ferrite (Wα'') is just the 

difference between total ferrite and proeutectoid ferrite mass fractions;  that is 
 

Wα'' = Wα – Wα' 

 
Now, it is possible to write expressions for Wα (of the form of Equation 9.12) and Wα' (Equation 9.21) in terms of 

C0, the alloy composition.  Thus, 

 

    

 

Wα" =
CFe3C − C0

CFe3C − Cα
−  

0.76 − C0
0.74

 

 

  

 

=
6.70 − C0

6.70 − 0.022
−  

0.76 − C0

0.74
= 0.82  

 
And, solving for C0 yields C0 = 0.70 wt% C. 

 For the second possibility, we have a hypereutectoid alloy wherein all of the ferrite is eutectoid ferrite.  
Thus, it is necessary to set up a lever rule expression wherein the mass fraction of total ferrite is 0.82.  Therefore, 
 

  

 

Wα =
CFe3C − C0

CFe3C − Cα
=

6.70 − C0

6.70 − 0.022
= 0.82  

 
And, solving for C0 yields C0 = 1.22 wt% C. 
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 9.63  For an iron-carbon alloy of composition 5 wt% C-95 wt% Fe, make schematic sketches of the 

microstructure that would be observed for conditions of very slow cooling at the following temperatures:  1175°C 

(2150°F), 1145°C (2095°F), and 700°C (1290°F).  Label the phases and indicate their compositions (approximate). 
 

  Solution 

 Below is shown the Fe-Fe3C phase diagram (Figure 9.24).  A vertical line at a composition of 5 wt% C-95 

wt% Fe has been drawn, and, in addition, horizontal arrows at the three temperatures called for in the problem 

statement (i.e., 1175°C, 1145°C, and 700°C). 

 

 

 

 On the basis of the locations of the three temperature-composition points, schematic sketches of the 

respective microstructures along with phase compositions are represented as follows: 
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 9.64  Often, the properties of multiphase alloys may be approximated by the relationship 

 

 E (alloy) = EαVα + EβVβ (9.24) 

 

where E represents a specific property (modulus of elasticity, hardness, etc.), and V is the volume fraction. The 

subscripts α and β denote the existing phases or microconstituents. Employ the relationship above to determine the 

approximate Brinell hardness of a 99.80 wt% Fe–0.20 wt% C alloy.  Assume Brinell hardnesses of 80 and 280 for 

ferrite and pearlite, respectively, and that volume fractions may be approximated by mass fractions. 
 

  Solution 

 This problem asks that we determine the approximate Brinell hardness of a 99.80 wt% Fe-0.20 wt% C 

alloy, using a relationship similar to Equation 9.24.  First, we compute the mass fractions of pearlite and 

proeutectoid ferrite using Equations 9.20 and 9.21, as 

 

  

 

Wp =
C 0

' − 0.022
0.74

=
0.20 − 0.022

0.74
= 0.24  

 

  

 

Wα' =
0.76 − C 0

'

0.74
=

0.76 − 0.20
0.74

= 0.76 

 

Now, we compute the Brinell hardness of the alloy using a modified form of Equation 9.24 as 

 

  

 

HBalloy = HBα'Wα'  +  HB pWp  

 

= (80)(0.76) + (280)(0.24) = 128 
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 The Influence of Other Alloying Elements 

 

 9.65  A steel alloy contains 97.5 wt% Fe, 2.0 wt% Mo, and 0.5 wt% C. 

 (a) What is the eutectoid temperature of this alloy? 

 (b) What is the eutectoid composition? 

 (c) What is the proeutectoid phase? 

Assume that there are no changes in the positions of other phase boundaries with the addition of Mo. 
 

  Solution 

 (a)  From Figure 9.34, the eutectoid temperature for 2.0 wt% Mo is approximately 850°C. 

 (b)  From Figure 9.35, the eutectoid composition is approximately 0.22 wt% C. 

 (c)  Since the carbon concentration of the alloy (0.5 wt%) is greater than the eutectoid (0.22 wt% C), 

cementite is the proeutectoid phase. 
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 9.66  A steel alloy is known to contain 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C. 

 (a) What is the approximate eutectoid temperature of this alloy? 

 (b) What is the proeutectoid phase when this alloy is cooled to a temperature just below the eutectoid? 

 (c) Compute the relative amounts of the proeutectoid phase and pearlite. 

Assume that there are no alterations in the positions of other phase boundaries with the addition of Ni. 
 

  Solution 

 (a)  From Figure 9.34, the eutectoid temperature for 6.0 wt% Ni is approximately 650°C (1200°F). 

 (b)  From Figure 9.35, the eutectoid composition is approximately 0.62 wt% C.  Since the carbon 

concentration in the alloy (0.2 wt%) is less than the eutectoid (0.62 wt% C), the proeutectoid phase is ferrite. 
 (c)  Assume that the α–(α + Fe3C) phase boundary is at a negligible carbon concentration.  Modifying 

Equation 9.21 leads to 

 

  

 

Wα' =
0.62 − C0

'

0.62 − 0
=

0.62 − 0.20
0.62

= 0.68  

 

Likewise, using a modified Equation 9.20 

 

  

 

Wp =
C0

' − 0

0.62 − 0
=

0.20
0.62

= 0.32  
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CHAPTER 10 

 

PHASE TRANSFORMATIONS IN METALS 

 

PROBLEM SOLUTIONS 

 

 

The Kinetics of Phase Transformations 

 

 10.1  Name the two stages involved in the formation of particles of a new phase. Briefly describe each. 
 

  Solution 

 The two stages involved in the formation of particles of a new phase are nucleation and growth.  The 

nucleation process involves the formation of normally very small particles of the new phase(s) which are stable and 

capable of continued growth.  The growth stage is simply the increase in size of the new phase particles. 
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 10.2  (a) Rewrite the expression for the total free energy change for nucleation (Equation 10.1) for the case 

of a cubic nucleus of edge length a (instead of a sphere of radius r). Now differentiate this expression with respect 

to a (per Equation 10.2) and solve for both the critical cube edge length, a*, and also ΔG*. 

 (b) Is ΔG* greater for a cube or a sphere? Why? 
 

  Solution 

 (a)  This problem first asks that we rewrite the expression for the total free energy change for nucleation 

(analogous to Equation 10.1) for the case of a cubic nucleus of edge length a.  The volume of such a cubic radius is 

a3, whereas the total surface area is 6a2 (since there are six faces each of which has an area of a2).  Thus, the 

expression for ∆G is as follows: 

 

    

 

∆G = a3∆Gv + 6a2γ  

 

Differentiation of this expression with respect to a is as 

 

    

 

d ∆G
da

=
d (a3∆Gv)

da
+

d (6a2γ)
da

 

 

    

 

= 3a2∆Gv + 12a γ  

 

If we set this expression equal to zero as 

 

    

 

3a2∆Gv + 12a γ = 0  

 

and then solve for a (= a*), we have 

 

    

 

a * = −
4 γ

∆Gv
 

 

Substitution of this expression for a in the above expression for ∆G yields an equation for ∆G* as 

 

    

 

∆G * = (a*)3∆Gv + 6(a*)2 γ  

 

    

 

= −
4 γ

∆Gv

 

 
  

 

 
  

3

∆Gv + 6 γ −
4 γ

∆Gv

 

 
  

 

 
  

2
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=
32 γ3

(∆Gv)2
 

 

 (b)  ∆Gv for a cube—i.e.,

    

 

(32)
γ3

(∆Gv)2

 

 
 
 

 

 
 
 
—is greater that for a sphere—i.e., 

    

 

16 π
3

 
 
 

 
 
 

γ3

(∆Gv)2

 

 
 
 

 

 
 
 
 = 

    

 

(16.8)
γ3

(∆Gv)2

 

 
 
 

 

 
 
 
.  The reason for this is that surface-to-volume ratio of a cube is greater than for a sphere. 
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 10.3  If copper (which has a melting point of 1085°C) homogeneously nucleates at 849°C, calculate the 

critical radius given values of –1.77 × 109 J/m3 and 0.200 J/m2, respectively, for the latent heat of fusion and the 

surface free energy. 
 

  Solution 

 This problem states that copper homogeneously nucleates at 849°C, and that we are to calculate the critical 

radius given the latent heat of fusion (–1.77 × 109 J/m3) and the surface free energy (0.200 J/m2).  Solution to this 

problem requires the utilization of Equation 10.6 as 

 

    

 

r * = −
2 γTm
∆H f

 

 
 
 

 

 
 
 

1
Tm − T

 

 
  

 

 
   

 

 

= −
(2)(0.200  J /m2) (1085 +  273 K)

−1.77 × 109 J /m3

 

 
 

 

 
 

1
1085°C −  849°C

 

 
 

 

 
  

 

 

= 1.30 × 10−9 m = 1.30 nm  
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 10.4  (a) For the solidification of iron, calculate the critical radius r* and the activation free energy ΔG* if 

nucleation is homogeneous. Values for the latent heat of fusion and surface free energy are –1.85 × 109 J/m3 and 

0.204 J/m2, respectively. Use the supercooling value found in Table 10.1. 

 (b) Now calculate the number of atoms found in a nucleus of critical size.  Assume a lattice parameter of 

0.292 nm for solid iron at its melting temperature. 
 

  Solution 

 (a)  This portion of the problem asks that we compute r* and ∆G* for the homogeneous nucleation of the 

solidification of Fe.  First of all, Equation 10.6 is used to compute the critical radius.  The melting temperature for 

iron, found inside the front cover is 1538°C;  also values of ∆Hf (–1.85 × 109 J/m3) and γ (0.204 J/m2) are given in 

the problem statement, and the supercooling value found in Table 10.1 is 295°C (or 295 K).  Thus, from Equation 

10.6 we have 

 

  

 

r * = −
2γTm

∆H f

 

 
 
 

 

 
 
 

1
Tm − T

 

 
  

 

 
   

 

 

= −
(2)(0.204 J /m2) (1538 + 273 K)

−1.85 × 109 J /m3

 

 
 

 

 
 

1
295 K

 

 
 

 

 
  

 

= 

 

1.35 ×  10−9 m =  1.35 nm  

 

 For computation of the activation free energy, Equation 10.7 is employed.  Thus 

 

  

 

∆G * =
16 π γ3Tm

2

3∆H f
2

 

 
 
 

 

 
 
 

1

(Tm − T)2
 

 

 

=
(16)(π)(0.204 J /m2) 3

(1538 + 273 K)2

(3)(−1.85 × 109 J /m3)2

 

 
 
 

 

 
 
 

1

(295 K)2

 

 
 

 

 
  

 

 

= 1.57 × 10−18 J  

 

 (b)  In order to compute the number of atoms in a nucleus of critical size (assuming a spherical nucleus of 

radius r*), it is first necessary to determine the number of unit cells, which we then multiply by the number of atoms 

per unit cell.  The number of unit cells found in this critical nucleus is just the ratio of critical nucleus and unit cell 

volumes.  Inasmuch as iron has the BCC crystal structure, its unit cell volume is just a3 where a is the unit cell 
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length (i.e., the lattice parameter);  this value is 0.292 nm, as cited in the problem statement.  Therefore, the number 

of unit cells found in a radius of critical size is just 

 

    

 

# unit cells /particle =

4
3

πr *3

a3
 

 

 

=

4
3

 
 
 

 
 
 (π)(1.35 nm)3

(0.292 nm)3
= 414 unit cells  

 

Inasmuch as 2 atoms are associated with each BCC unit cell, the total number of atoms per critical nucleus is just 

 

 

(414 unit cells / critical nucleus)(2 atoms /unit cell) = 828 atoms /critical nucleus  
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 10.5  (a) Assume for the solidification of iron (Problem 10.4) that nucleation is homogeneous, and the 

number of stable nuclei is 106 nuclei per cubic meter. Calculate the critical radius and the number of stable nuclei 

that exist at the following degrees of supercooling:  200 K and 300 K. 

 (b) What is significant about the magnitudes of these critical radii and the numbers of stable nuclei? 
 

  Solution 

 (a)  For this part of the problem we are asked to calculate the critical radius for the solidification of iron 

(per Problem 10.4), for 200 K and 300 K degrees of supercooling, and assuming that the there are 106 nuclei per 
meter cubed for homogeneous nucleation.  In order to calculate the critical radii, we replace the Tm – T term in 

Equation 10.6 by the degree of supercooling (denoted as ∆T) cited in the problem. 

 For 200 K supercooling, 

 

  

 

r200
* = −

2 γTm

∆H f

 

 
  

 

 
  

1
∆T

 
 
 

 
 
  

 

 

= −
(2)(0.204 J /m2) (1538 + 273 K)

−1.85 ×  10 9 J /m3

 

 
 

 

 
 

1
200 K

 

 
 

 

 
  

 

= 2.00 × 10-9 m = 2.00 nm 

 

 And, for 300 K supercooling, 

 

  

 

r300
* = −

(2)(0.204 J /m2) (1538 + 273 K)

−1.85 ×  10 9 J /m3

 

 
 

 

 
 

1
300 K

 

 
 

 

 
  

 

= 1.33 × 10-9 m = 1.33 nm 

 

 In order to compute the number of stable nuclei  that exist at 200 K and 300 K degrees of supercooling, it 
is necessary to use Equation 10.8. However, we must first determine the value of K1 in Equation 10.8, which in turn 

requires that we calculate ∆G* at the homogeneous nucleation temperature using Equation 10.7;  this was done in 

Problem 10.4, and yielded a value of ∆G* = 1.57 × 10-18 J.  Now for the computation of K1, using the value of n* 

for at the homogenous nucleation temperature (106 nuclei/m3): 

 

    

 

K1 =
n *

exp −
∆G *
kT
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=
106 nuclei /m3

exp −
1.57 × 10−18 J

(1.38 × 10−23 J / atom− K) (1538°C − 295°C)

 

 
 

 

 
 

 

 

= 5.62 × 1045 nuclei/m3 

 

Now for 200 K supercooling, it is first necessary to recalculate the value ∆G* of using Equation 10.7, where, again, 
the Tm – T term is replaced by the number of degrees of supercooling, denoted as ∆T, which in this case is 200 K.  

Thus 

 

  

 

∆G200
* =

16 π γ3Tm
2

3∆H f
2

 

 
 
 

 

 
 
 

1

(∆T)2
 

 

 

=
(16)(π)(0.204 J /m2)3 (1538 + 273 K)2

(3)(−1.85 × 109 J /m3)2

 

 
 

 

 
 

1

(200 K)2

 

 
 

 

 
  

 

= 3.41 × 10-18 J 

 

And, from Equation 10.8, the value of n* is 

 

  

 

n200
* = K1 exp −

∆G200
*

kT

 

 
  

 

 
   

 

 

= (5.62 × 1045 nuclei /m3)exp −
3.41 ×  10−18 J

(1.38 × 10−23 J / atom − K) (1538 K − 200 K)

 

 
 

 

 
  

 

= 3.5 × 10-35 stable nuclei 

 

 Now, for 300 K supercooling the value of ∆G* is equal to 

 

  

 

∆G300
* =

(16)(π)(0.204 J /m2)3 (1538 + 273 K)2

(3)(−1.85 × 109 J /m3)2

 

 
 

 

 
 

1

(300 K)2

 

 
 

 

 
  

 

= 1.51 × 10-18 J 
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from which we compute the number of stable nuclei at 300 K of supercooling as 

 

  

 

n300
* = K1 exp −

∆G300
*

kT

 

 
 
 

 

 
 
  

 

  

 

n* = (5.62 × 1045 nuclei /m3)exp −
1.51 ×  10−18 J

(1.38 × 10−23 J / atom − K) (1538 K − 300 K)

 

 
 

 

 
  

 

= 2.32 × 107 stable nuclei 

 

 (b)  Relative to critical radius, r* for 300 K supercooling is slightly smaller that for 200 K (1.33 nm versus 

2.00 nm).  [From Problem 10.4, the value of r* at the homogeneous nucleation temperature (295 K) was 1.35 nm.]  

More significant, however, are the values of n* at these two degrees of supercooling, which are dramatically 

different—3.5 × 10-35 stable nuclei at ∆T = 200 K, versus 2.32 × 107 stable nuclei at ∆T = 300 K! 
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 10.6  For some transformation having kinetics that obey the Avrami equation (Equation 10.17), the 

parameter n is known to have a value of 1.7.  If, after 100 s, the reaction is 50% complete, how long (total time) will 

it take the transformation to go to 99% completion? 
 

  Solution 

 This problem calls for us to compute the length of time required for a reaction to go to 99% completion.  It 

first becomes necessary to solve for the parameter k in Equation 10.17.  In order to do this it is best manipulate the 

equation such that k is the dependent variable.  We first rearrange Equation 10.17 as 

 

  

 

exp(− kt n) = 1 − y 

 

and then take natural logarithms of both sides: 

 

    − kt n = ln(1 − y)  

 

Now solving for k gives 

 

    
k = −

ln (1 − y)

t n  

 

And, from the problem statement, for y = 0.50 when t = 100 s and given that n = 1.7, the value of k is equal to 

 

  

 

k = −
ln (1 − 0.5)

(100 s)1.7
= 2.76  ×  10-4  

 

We now want to manipulate Equation 10.17 such that t is the dependent variable.  The above equation may be 

written in the form: 

 

    
t n = −

ln (1 − y)
k

 

 

And solving this expression for t leads to 

 

    
t =  −

ln (1 − y)
k

 
  

 
  

1/n
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Now, using this equation and the value of k determined above, the time to 99% transformation completion is equal 

to 

 

 

  

 

t = −
ln (1 − 0.99)

2.76 × 10−4

 

 
 

 

 
 
1/1.7

= 305 s  
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 10.7  Compute the rate of some reaction that obeys Avrami kinetics, assuming that the constants n and k 

have values of 3.0 and 7 × 10-3, respectively, for time expressed in seconds. 
 

  Solution 

 This problem asks that we compute the rate of some reaction given the values of n and k in Equation 10.17.  

Since the reaction rate is defined by Equation 10.18, it is first necessary to determine t0.5, or the time necessary for 

the reaction to reach y = 0.5.  We must first manipulate Equation 10.17 such that t is the dependent variable.  We 

first rearrange Equation 10.17 as 

 

  

 

exp(− kt n) = 1 − y  

 

and then take natural logarithms of both sides: 

 

    

 

− ktn = ln (1 − y)  

 

which my be rearranged so as to read 

 

    

 

t n = −
ln (1 − y)

k
 

 

Now, solving for t from this expression leads to 

 

    

 

t =  −
ln (1 − y)

k

 
  

 
  
1/n

 

 
For t0.5 this equation takes the form 

 

    

 

t0.5 = −
ln (1 − 0.5)

k

 
  

 
  
1/n

 

 

And, incorporation of values for n and k given in the problem statement (3.0 and 7 × 10-3, respectively), then 

 

  

 

t0.5 = −
ln (1 − 0.5)

7 × 10−3

 

 
 

 

 
 
1/3.0

= 4.63  s  

 

Now, the rate is computed using Equation 10.18 as 
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rate =
1

t0.5
=

1
4.63 s

= 0.216  s-1  
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 10.8  It is known that the kinetics of recrystallization for some alloy obey the Avrami equation and that the 

value of n in the exponential is 2.5.  If, at some temperature, the fraction recrystallized is 0.40 after 200 min, 

determine the rate of recrystallization at this temperature. 
 

  Solution 

 This problem gives us the value of y (0.40) at some time t (200 min), and also the value of n (2.5) for the 

recrystallization of an alloy at some temperature, and then asks that we determine the rate of recrystallization at this 

same temperature.  It is first necessary to calculate the value of k.  We first rearrange Equation 10.17 as 

 

    

 

exp(− kt n) = 1 − y  

 

and then take natural logarithms of both sides: 

 

    

 

− ktn = ln (1 − y)  

 

Now solving for k gives 

 

    

 

k = −
ln (1 − y)

t n
 

 

which, using the values cited above for y, n, and t yields 

 

 

  

 

k = −
ln (1 − 0.40)

(200 min)2.5
= 9.0 ×  10-7  

 
At this point we want to compute t0.5, the value of t for y = 0.5, which means that it is necessary to establish a form 

of Equation 10.17 in which t is the dependent variable.  From one of the above equations 

 

 

    

 

t n = −
ln (1 − y)

k
 

 

And solving this expression for t leads to 

 

  

 

t =  −
ln (1 − y)

k

 
  

 
  
1/n
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For t0.5, this equation takes the form 

 

    

 

t0.5 = −
ln (1 − 0.5)

k

 
  

 
  
1/n

 

 

and incorporation of the value of k determined above, as well as the value of n cited in the problem statement (2.5), 
then t0.5 is equal to 

 

  

 

t0.5 = −
ln (1 − 0.5)

9.0 × 10−7

 

 
 

 

 
 
1/2.5

= 226.3  min  

 

Therefore, from Equation 10.18, the rate is just 

 

  

 

rate =
1

t0.5
=

1
226.3 min

= 4.42 ×  10-3  (min)-1 
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 10.9  The kinetics of the austenite-to-pearlite transformation obey the Avrami relationship. Using the 

fraction transformed–time data given here, determine the total time required for 95% of the austenite to transform 

to pearlite: 

 

Fraction Transformed Time (s) 

0.2 12.6 

0.8 28.2 

 
 

  Solution 

 The first thing necessary is to set up two expressions of the form of Equation 10.17, and then to solve 

simultaneously for the values of n and k.   In order to expedite this process, we will rearrange and do some algebraic 

manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

    

 

1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

    

 

ln (1 − y) = − kt n 

 

Or 

 

    

 

− ln (1 − y) = kt n 

 

which may also be expressed as 

 

  

 

ln
1

1 − y

 

 
 

 

 
 = kt n 

 

Now taking natural logarithms again, leads to 

 

    

 

ln ln
1

1 − y

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln t  

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

which is the form of the equation that we will now use.  Using values cited in the problem statement, the two 

equations are thus 

 

  

 

ln ln
1

1 − 0.2

 

 
 

 

 
 

 
 
 

 
 
 

= ln k +  n ln (12.6 s)  

 

  

 

ln ln
1

1 − 0.8

 

 
 

 

 
 

 
 
 

 
 
 

= ln k +  n ln (28.2 s)  

 

Solving these two expressions simultaneously for n and k yields n = 2.453 and k = 4.46 × 10-4. 

 Now it becomes necessary to solve for the value of t at which y = 0.95.  One of the above equations—viz 

 

    

 

− ln (1 − y) = kt n 

 

may be rewritten as 

 

    

 

t n = −
ln (1 − y)

k
 

 

And solving for t leads to 

 

    

 

t =  −
ln (1 − y)

k

 
  

 
  
1/n

 

 

Now incorporating into this expression values for n and k determined above, the time required for 95% austenite 

transformation is equal to 

  

 

t = −
ln (1 − 0.95)

4.64 × 10−4

 

 
 

 

 
 
1/2.453 

= 35.7  s  
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 10.10  The fraction recrystallized–time data for the recrystallization at 600°C of a previously deformed 

steel are tabulated here. Assuming that the kinetics of this process obey the Avrami relationship, determine the 

fraction recrystallized after a total time of 22.8 min. 

 
Fraction 

Recrystallized 
Time (min) 

0.20 13.1 

0.70 29.1 

 
 

  Solution 

 The first thing necessary is to set up two expressions of the form of Equation 10.17, and then to solve 

simultaneously for the values of n and k.   In order to expedite this process, we will rearrange and do some algebraic 

manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

  

 

1 − y = exp − kt n( ) 
 

Now taking natural logarithms 

 

    

 

ln (1 − y) = − kt n 

 

Or 

 

    

 

− ln (1 − y) = kt n 

 

which may also be expressed as 

 

    

 

ln
1

1 − y

 

 
 

 

 
 = kt n  

 

Now taking natural logarithms again, leads to 

 

    

 

ln ln
1

1 − y

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln t  

 

which is the form of the equation that we will now use.   The two equations are thus 
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ln ln
1

1 − 0.20

 

 
 

 

 
 

 
 
 

 
 
 

= ln k +  n ln (13.1 min)  

 

  

 

ln ln
1

1 − 0.70

 

 
 

 

 
 

 
 
 

 
 
 

= ln k +  n ln (29.1 min)  

 

Solving these two expressions simultaneously for n and k yields n = 2.112 and k = 9.75 × 10-4. 

 Now it becomes necessary to solve for y when t = 22.8 min.  Application of Equation 10.17 leads to 

 

    

 

y = 1 −  exp −ktn( ) 

 

 

= 1 −  exp − (9.75 ×  10-4 )(22.8 min)2.112[ ]= 0.51 
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 10.11  (a) From the curves shown in Figure 10.11 and using Equation 10.18, determine the rate of 

recrystallization for pure copper at the several temperatures. 

 (b) Make a plot of ln(rate) versus the reciprocal of temperature (in K–1), and determine the activation 

energy for this recrystallization process. (See Section 5.5.) 

 (c) By extrapolation, estimate the length of time required for 50% recrystallization at room temperature, 

20°C (293 K). 
 

  Solution 

 This problem asks us to consider the percent recrystallized versus logarithm of time curves for copper 

shown in Figure 10.11. 

 (a)  The rates at the different temperatures are determined using Equation 10.18, which rates are tabulated 

below: 
 

 Temperature (°C)  Rate (min)-1 

 

 135  0.105 

 119  4.4 × 10-2 

 113  2.9 × 10-2 

 102  1.25 × 10-2 

 88  4.2 × 10-3 

 43  3.8 × 10-5 
 

 (b)  These data are plotted below. 
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The activation energy, Q, is related to the slope of the line drawn through the data points as 

 

    

 

Q = − Slope (R)  

 

where R is the gas constant.  The slope of this line is equal to 

 

  

 

Slope  =  
∆ ln rate

∆
1
T

 
 
 

 
 
 

 =  
ln  rate1  −  ln  rate2

1
T1

 −  
1
T2

 

 

Let us take 1/T1 = 0.0025 K-1 and  1/T2 = 0.0031 K-1;  the corresponding ln rate values are ln rate1 = -2.6 and ln 

rate2 = -9.4.  Thus, using these values, the slope is equal to 

 

 

Slope  =  
−2.6  −  (−9.4)

0.0025 K-1  −  0.0031 K-1
 =  −1.133 ×  104  K  

 

 

And, finally the activation energy is 

 

  

 

Q = −  (Slope)(R)  =  − (−1.133 × 104  K-1) (8.31 J/mol - K)  

 

= 94,150 J/mol 

 

 (c)  At room temperature (20°C), 1/T = 1/(20 + 273 K) = 3.41 × 10-3 
K-1.  Extrapolation of the data in the 

plot to this 1/T value gives 

 

  

 

ln (rate) ≅ −12.8  

 

which leads to 

 

 

rate ≅ exp (−12.8) = 2.76 ×  10-6  (min) -1 

 

But since 

    

 

rate =
1

t0.5
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t0.5 =
1

rate
=

1

2.76 × 10−6 (min)−1
 

 

 

= 3.62 × 105 min = 250 days  
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 10.12  Determine values for the constants n and k (Equation 10.17) for the recrystallization of copper 

(Figure 10.11) at 102°C. 
 

  Solution 

 In this problem we are asked to determine, from Figure 10.11, the values of the constants n and k (Equation 

10.17) for the recrystallization of copper at 102°C.  One way to solve this problem is to take two values of percent 

recrystallization (which is just 100y, Equation 10.17) and their corresponding time values, then set up two 

simultaneous equations, from which n and k may be determined.  In order to expedite this process, we will rearrange 

and do some algebraic manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

    

 

1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

    

 

ln (1 − y) = − kt n 

 

Or 

 

    

 

− ln (1 − y) = kt n 

 

which may also be expressed as 

 

    

 

ln
1

1 − y

 

 
 

 

 
 = kt n  

 

Now taking natural logarithms again, leads to 

 

    

 

ln ln
1

1 − y

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln t  

 

which is the form of the equation that we will now use.  From the 102°C curve of Figure 10.11, let us arbitrarily 
choose two percent recrystallized values, 20% and 80% (i.e., y1 = 0.20 and y2 = 0.80).  Their corresponding time 

values are t1 = 50 min and t2 = 100 min (realizing that the time axis is scaled logarithmically).  Thus, our two 

simultaneous equations become 
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ln ln
1

1 − 0.2

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln (50)  

 

  

 

ln ln
1

1 − 0.8

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln (100)  

 

from which we obtain the values n = 2.85 and k = 3.21 × 10-6. 
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 Metastable Versus Equilibrium States 

 

 10.13  In terms of heat treatment and the development of microstructure, what are two major limitations of 

the iron–iron carbide phase diagram? 
 

  Solution 

 Two limitations of the iron-iron carbide phase diagram are: 

 (1)  The nonequilibrium martensite does not appear on the diagram;  and 

 (2)  The diagram provides no indication as to the time-temperature relationships for the formation of 

pearlite, bainite, and spheroidite, all of which are composed of the equilibrium ferrite and cementite phases. 
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 10.14  (a) Briefly describe the phenomena of superheating and supercooling. 

 (b) Why do these phenomena occur? 
 

  Solution 

 (a)  Superheating and supercooling correspond, respectively, to heating or cooling above or below a phase 

transition temperature without the occurrence of the transformation. 

 (b)  These phenomena occur because right at the phase transition temperature, the driving force is not 

sufficient to cause the transformation to occur.  The driving force is enhanced during superheating or supercooling. 
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 Isothermal Transformation Diagrams 

 

 10.15  Suppose that a steel of eutectoid composition is cooled to 550°C (1020°F) from 760°C (1400°F) in 

less than 0.5 s and held at this temperature. 

 (a) How long will it take for the austenite-to-pearlite reaction to go to 50% completion? To 100% 

completion? 

 (b) Estimate the hardness of the alloy that has completely transformed to pearlite. 
 

  Solution 

 We are called upon to consider the isothermal transformation of an iron-carbon alloy of eutectoid 

composition. 

 (a)  From Figure 10.22, a horizontal line at 550°C intersects the 50% and reaction completion curves at 

about 2.5 and 6 seconds, respectively;  these are the times asked for in the problem statement. 

 (b)  The pearlite formed will be fine pearlite.  From Figure 10.30a, the hardness of an alloy of composition 

0.76 wt% C that consists of fine pearlite is about 265 HB (27 HRC). 
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 10.16  Briefly cite the differences between pearlite, bainite, and spheroidite relative to microstructure and 

mechanical properties. 
 

  Solution 

 The microstructures of pearlite, bainite, and spheroidite all consist of α-ferrite and cementite phases.  For 

pearlite, the two phases exist as layers which alternate with one another.  Bainite consists of very fine and parallel 

needle-shaped particles of cementite that are surrounded an α-ferrite matrix.  For spheroidite, the matrix is ferrite, 

and the cementite phase is in the shape of sphere-shaped particles. 

 Bainite is harder and stronger than pearlite, which, in turn, is harder and stronger than spheroidite. 
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 10.17  What is the driving force for the formation of spheroidite? 

 

  Solution 

 The driving force for the formation of spheroidite is the net reduction in ferrite-cementite phase boundary 

area. 
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 10.18  Using the isothermal transformation diagram for an iron–carbon alloy of eutectoid composition 

(Figure 10.22), specify the nature of the final microstructure (in terms of microconstituents present and 

approximate percentages of each) of a small specimen that has been subjected to the following time–temperature 

treatments. In each case assume that the specimen begins at 760°C (1400°F) and that it has been held at this 

temperature long enough to have achieved a complete and homogeneous austenitic structure. 

 (a) Cool rapidly to 700°C (1290°F), hold for 104 s, then quench to room temperature. 
 

  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment.   

 

 

 After cooling and holding at 700°C for 104 s, approximately 50% of the specimen has transformed to 

coarse pearlite.  Upon cooling to room temperature, the remaining 50% transforms to martensite.  Hence, the final 

microstructure consists of about 50% coarse pearlite and 50% martensite. 

 

 (b) Reheat the specimen in part (a) to 700°C (1290°F) for 20 h. 
 

  Solution 
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 Heating to 700°C for 20 h the specimen in part (a) will transform the coarse pearlite and martensite to 

spheroidite.  

 

 (c) Rapidly cool to 600°C (1110°F), hold for 4 s, rapidly cool to 450°C (840°F), hold for 10 s, then quench 

to room temperature. 
 

  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment.   

 

 

 

 After cooling to and holding at 600°C for 4 s, approximately 50% of the specimen has transformed to 

pearlite (medium).  During the rapid cooling to 450°C no transformations occur.  At 450°C we start timing again at 

zero time;  while holding at 450°C for 10 s, approximately 50 percent of the remaining unreacted 50% (or 25% of 

the original specimen) will transform to bainite.  And upon cooling to room temperature, the remaining 25% of the 

original specimen transforms to martensite.  Hence, the final microstructure consists of about 50% pearlite 

(medium), 25% bainite, and 25% martensite. 

 

 (d) Cool rapidly to 400°C (750°F), hold for 2 s, then quench to room temperature. 
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  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment.   

 

 

 

 After cooling to and holding at 400°C for 2 s, no of the transformation begin lines have been crossed, and 

therefore, the specimen is 100% austenite.  Upon cooling rapidly to room temperature, all of the specimen 

transforms to martensite, such that the final microstructure is 100% martensite. 

 

 (e) Cool rapidly to 400°C (750°F), hold for 20 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment.   
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 After cooling and holding at 400°C for 20 s, approximately 40% of the specimen has transformed to 

bainite.  Upon cooling to room temperature, the remaining 60% transforms to martensite.  Hence, the final 

microstructure consists of about 40% bainite and 60% martensite. 

 

 (f) Cool rapidly to 400°C (750°F), hold for 200 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment. 
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 After cooling and holding at 400°C for 200 s, the entire specimen has transformed to bainite. Therefore, 

during the cooling to room temperature no additional transformations will occur. Hence, the final microstructure 

consists of 100% bainite. 

 

 (g) Rapidly cool to 575°C (1065°F), hold for 20 s, rapidly cool to 350°C (660°F), hold for 100 s, then 

quench to room temperature. 

 
  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment. 
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 After cooling and holding at 575°C for 20 s, the entire specimen has transformed to fine pearlite. 

Therefore, during the second heat treatment at 350°C no additional transformations will occur. Hence, the final 

microstructure consists of 100% fine pearlite. 

 

 (h) Rapidly cool to 250°C (480°F), hold for 100 s, then quench to room temperature in water. Reheat to 

315°C (600°F) for 1 h and slowly cool to room temperature. 
 

  Solution 

 Below is Figure 10.22 upon which is superimposed the above heat treatment. 
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 After cooling and holding at 250°C for 100 s, no transformations will have occurred—at this point, the 

entire specimen is still austenite.  Upon rapidly cooling to room temperature in water, the specimen will completely 

transform to martensite.  The second heat treatment (at 315°C for 1 h)—not shown on the above plot—will 

transform the material to tempered martensite.  Hence, the final microstructure is 100% tempered martensite. 
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 10.19  Make a copy of the isothermal transformation diagram for an iron–carbon alloy of eutectoid 

composition (Figure 10.22) and then sketch and label time–temperature paths on this diagram to produce the 

following microstructures: 

 (a) 100% fine pearlite 

 (b) 100% tempered martensite 

 (c) 50% coarse pearlite, 25% bainite, and 25% martensite 
 

  Solution 

 Below is shown the isothermal transformation diagram for a eutectoid iron-carbon alloy, with time-

temperature paths that will yield (a) 100% fine pearlite;  (b) 100% tempered martensite;  and (c) 50% coarse 

pearlite, 25% bainite, and 25% martensite. 
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 10.20  Using the isothermal transformation diagram for a 0.45 wt% C steel alloy (Figure 10.39), 

determine the final microstructure (in terms of just the microconstituents present) of a small specimen that has been 

subjected to the following time-temperature treatments. In each case assume that the specimen begins at 845°C 

(1550°F), and that it has been held at this temperature long enough to have achieved a complete and homogeneous 

austenitic structure. 

 (a) Rapidly cool to 250°C (480°F), hold for 103 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 

 

 While rapidly cooling to 250°C about 80% of the specimen transforms to martensite;  during the 1000 s 

isothermal treatment at 250°C no additional transformations occur.  During the final cooling to room temperature, 

the untransformed austenite also transforms to martensite.  Hence, the final microstructure consists of 100% 

martensite. 

 

 (b) Rapidly cool to 700°C (1290°F), hold for 30 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 700°C for 30 s, a portion of specimen has transformed to proeutectoid 

ferrite. While cooling to room temperature, the remainder of the specimen transforms to martensite. Hence, the final 

microstructure consists proeutectoid ferrite and martensite. 

 

 (c) Rapidly cool to 400°C (750°F), hold for 500 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 400°C for 500 s, all of the specimen has transformed to bainite.  Hence, the 

final microstructure consists of 100% bainite. 

 

 (d) Rapidly cool to 700°C (1290°F), hold at this temperature for 105 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and while holding at 700°C the specimen first transforms to proeutectoid ferrite and coarse 

pearlite.  Continued heat treating at 700°C for 105 s results in a further transformation into spheroidite.  Hence, the 

final microstructure consists of 100% spheroidite. 

 

 (e) Rapidly cool to 650°C (1200°F), hold at this temperature for 3 s, rapidly cool to 400°C (750°F), hold 

for 10 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 650°C for 3 s, some of the specimen first transformers to proeutectoid 

ferrite and then to pearlite (medium).  During the second stage of the heat treatment at 400°C, some (but not all) of 

the remaining unreacted austenite transforms to bainite.  As a result of the final quenching, all of the remaining 

austenite transforms to martensite.  Hence, the final microstructure consists of ferrite, pearlite (medium), bainite, 

and martensite. 

 

 (f) Rapidly cool to 450°C (840°F), hold for 10 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 450°C for 10 s, a portion of the specimen first transformers to bainite.  

During the quenching to room temperature, the remainder of the specimen transforms to martensite. Hence, the final 

microstructure consists of bainite and martensite. 

 

 (g) Rapidly cool to 625°C (1155°F), hold for 1 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 625°C for 1 s, a portion of the specimen first transformers to proeutectoid 

ferrite and pearlite.  During the quenching to room temperature, the remainder of the specimen transforms to 

martensite. Hence, the final microstructure consists of ferrite, pearlite, and martensite. 

 

 (h) Rapidly cool to 625°C (1155°F), hold at this temperature for 10 s, rapidly cool to 400°C (750°F), hold 

at this temperature for 5 s, then quench to room temperature. 

 
  Solution 

 Below is Figure 10.39 upon which is superimposed the above heat treatment. 
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 After cooling to and holding at 625°C for 10 s, all of the specimen transformers to proeutectoid ferrite and 

pearlite.  During the second part of the heat treatment at 400°C no additional transformation will occur.  Hence, the 

final microstructure consists of ferrite and pearlite. 
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 10.21  For parts (a), (c), (d), (f), and (h) of Problem 10.20, determine the approximate percentages of the 

microconstituents that form. 

 
  Solution 

 (a)  From Problem 10.20(a) the microstructure consists of 100% martensite. 

 (c)  From Problem 10.20(c) the microstructure consists of 100% bainite. 

 (d)  From Problem 10.20(d) the microstructure consists of 100% spheroidite. 

 (f)  Figure 10.39 onto which the heat treatment for Problem 10.20(f) has been constructed is shown below. 

 

From this diagram, for the isothermal heat treatment at 450°C, the horizontal line constructed at this temperature 

and that ends at the 10 s point spans approximately 70% of the distance between the bainite reaction start and 

reaction completion curves.  Therefore, the final microstructure consists of about 70% bainite and 30% martensite 

(the martensite forms while cooling to room temperature after 10 s at 450°C). 

 

 (h) Figure 10.39 onto which the heat treatment for Problem 10.20(h) has been constructed is shown below. 
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After holding for 10 s at 625°C, the specimen has completely transformed to proeutectoid ferrite and fine pearlite;  

no further reaction will occur at 400°C.  Therefore, we can calculate the mass fractions using the appropriate lever 

rule expressions, Equations 9.20 and 9.21, as follows: 

 

  

 

Wp =
C0

’  −  0.022

0.74
=

0.45 − 0.022
0.74

= 0.58  or  58%  

 

  

 

Wα' =
0.76 −  C0

’

0.74
=

0.76 − 0.45
0.74

= 0.42  or  42% 
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 10.22  Make a copy of the isothermal transformation diagram for a 0.45 wt% C iron-carbon alloy (Figure 

10.39), and then sketch and label on this diagram the time-temperature paths to produce the following 

microstructures: 

 (a) 42% proeutectoid ferrite and 58% coarse pearlite 

 (b) 50% fine pearlite and 50% bainite 

 (c) 100% martensite 

 (d) 50% martensite and 50% austenite 

 
  Solution 

 Below is shown an isothermal transformation diagram for a 0.45 wt% C iron-carbon alloy, with time-

temperature paths that will produce (a) 42% proeutectoid ferrite and 58% coarse pearlite;  (b)  50% fine pearlite and 

50% bainite;  (c)  100% martensite;  and (d) 50% martensite and 50% austenite. 
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 Continuous Cooling Transformation Diagrams 

 

 10.23  Name the microstructural products of eutectoid iron–carbon alloy (0.76 wt% C) specimens that are 

first completely transformed to austenite, then cooled to room temperature at the following rates: 

 (a) 200°C/s, 

 (b) 100°C/s, and 

 (c) 20°C/s. 

 
  Solution 

 We are called upon to name the microstructural products that form for specimens of an iron-carbon alloy of 

eutectoid composition that are continuously cooled to room temperature at a variety of rates.  Figure 10.27 is used in 

these determinations. 

 (a)  At a rate of 200°C/s, only martensite forms. 

 (b)  At a rate of 100°C/s, both martensite and pearlite form. 

 (c)  At a rate of 20°C/s, only fine pearlite forms. 
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 10.24  Figure 10.40 shows the continuous cooling transformation diagram for a 1.13 wt% C iron-carbon 

alloy.  Make a copy of this figure and then sketch and label continuous cooling curves to yield the following 

microstructures: 

 (a) Fine pearlite and proeutectoid cementite 

 (b) Martensite 

 (c) Martensite and proeutectoid cementite 

 (d) Coarse pearlite and proeutectoid cementite 

 (e) Martensite, fine pearlite, and proeutectoid cementite 

 
  Solution 

 Below is shown a continuous cooling transformation diagram for a 1.13 wt% C iron-carbon alloy, with 

continuous cooling paths that will produce (a) fine pearlite and proeutectoid cementite;  (b)  martensite;  (c)  

martensite and proeutectoid cementite;  (d)  coarse pearlite and proeutectoid cementite;  and (e)  martensite, fine 

pearlite, and proeutectoid cementite. 
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 10.25  Cite two important differences between continuous cooling transformation diagrams for plain 

carbon and alloy steels. 

 
  Solution 

 Two important differences between continuous cooling transformation diagrams for plain carbon and alloy 

steels are: (1) for an alloy steel, a bainite nose will be present, which nose will be absent for plain carbon alloys;  

and (2) the pearlite-proeutectoid noses for plain carbon steel alloys are positioned at shorter times than for the alloy 

steels. 
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 10.26 Briefly explain why there is no bainite transformation region on the continuous cooling 

transformation diagram for an iron–carbon alloy of eutectoid composition. 

 
  Solution 

 There is no bainite transformation region on the continuous cooling transformation diagram for an iron-

carbon alloy of eutectoid composition (Figure 10.25) because by the time a cooling curve has passed into the bainite 

region, the entirety of the alloy specimen will have transformed to pearlite. 
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 10.27  Name the microstructural products of 4340 alloy steel specimens that are first completely 

transformed to austenite, then cooled to room temperature at the following rates: 

 (a) 10°C/s, 

 (b) 1°C/s, 

 (c) 0.1°C/s, and 

 (d) 0.01°C/s. 

 
  Solution 

 This problem asks for the microstructural products that form when specimens of a 4340 steel are 

continuously cooled to room temperature at several rates.  Figure 10.28 is used for these determinations. 

 (a) At a cooling rate of 10°C/s, only martensite forms. 

 (b) At a cooling rate of 1°C/s, both martensite and bainite form. 

 (c) At a cooling rate of 0.1°C/s, martensite, proeutectoid ferrite, and bainite form. 

 (d) At a cooling rate of 0.01°C/s, martensite, proeutectoid ferrite, pearlite, and bainite form. 
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 10.28  Briefly describe the simplest continuous cooling heat treatment procedure that would be used in 

converting a 4340 steel from one microstructure to another. 

 (a) (Martensite + bainite) to (ferrite + pearlite) 

 (b) (Martensite + bainite) to spheroidite 

 (c) (Martensite + bainite) to (martensite + bainite + ferrite) 

 
  Solution 

 This problem asks that we briefly describe the simplest continuous cooling heat treatment procedure that 

would be used in converting a 4340 steel from one microstructure to another.  Solutions to this problem require the 

use of Figure 10.28. 

 (a) In order to convert from (martensite + bainite) to (ferrite + pearlite) it is necessary to heat above about 

720°C, allow complete austenitization, then cool to room temperature at a rate slower than 0.006°C/s. 

 (b) To convert from (martensite + bainite) to spheroidite the alloy must be heated to about 700°C for 

several hours. 

 (c) In order to convert from (martensite + bainite) to (martensite + bainite + ferrite) it is necessary to heat 

to above about 720°C, allow complete austenitization, then cool to room temperature at a rate between 0.3°C/s and 

0.02°C/s. 
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 10.29  On the basis of diffusion considerations, explain why fine pearlite forms for the moderate cooling of 

austenite through the eutectoid temperature, whereas coarse pearlite is the product for relatively slow cooling 

rates. 

 
  Solution 

 For moderately rapid cooling, the time allowed for carbon diffusion is not as great as for slower cooling 

rates.  Therefore, the diffusion distance is shorter, and thinner layers of ferrite and cementite form (i.e., fine pearlite 

forms). 
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 Mechanical Behavior of Iron-Carbon Alloys 

 Tempered Martensite 

 

 10.30 Briefly explain why fine pearlite is harder and stronger than coarse pearlite, which in turn is harder 

and stronger than spheroidite. 

 
  Solution 

 The hardness and strength of iron-carbon alloys that have microstructures consisting of α-ferrite and 

cementite phases depend on the boundary area between the two phases.  The greater this area, the harder and 

stronger the alloy inasmuch as (1) these boundaries impede the motion of dislocations, and (2) the cementite phase 

restricts the deformation of the ferrite phase in regions adjacent to the phase boundaries.  Fine pearlite is harder and 

stronger than coarse pearlite because the alternating ferrite-cementite layers are thinner for fine, and therefore, there 

is more phase boundary area.  The phase boundary area between the sphere-like cementite particles and the ferrite 

matrix is less in spheroidite than for the alternating layered microstructure found in coarse pearlite. 
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 10.31  Cite two reasons why martensite is so hard and brittle. 

 
  Solution 

 Two reasons why martensite is so hard and brittle are:  (1)  there are relatively few operable slip systems 

for the body-centered tetragonal crystal structure, and (2) virtually all of the carbon is in solid solution, which 

produces a solid-solution hardening effect. 
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 10.32  Rank the following iron–carbon alloys and associated microstructures from the highest to the 

lowest tensile strength: 

 (a) 0.25 wt%C with spheroidite, 

 (b) 0.25 wt%C with coarse pearlite, 

 (c) 0.60 wt%C with fine pearlite, and 

 (d) 0.60 wt%C with coarse pearlite. 

Justify this ranking. 

 
  Solution 

 This problem asks us to rank four iron-carbon alloys of specified composition and microstructure 

according to hardness.  This ranking is as follows: 

 

0.60 wt% C, fine pearlite 

0.60 wt% C, coarse pearlite 

0.25 wt% C, coarse pearlite 

0.25 wt% C, spheroidite 

 

 The 0.25 wt% C, coarse pearlite is stronger than the 0.25 wt% C, spheroidite since coarse pearlite is 

stronger than spheroidite;  the composition of the alloys is the same.  The 0.60 wt% C, coarse pearlite is stronger 

than the 0.25 wt% C, coarse pearlite, since increasing the carbon content increases the strength.  Finally, the 0.60 

wt% C, fine pearlite is stronger than the 0.60 wt% C, coarse pearlite inasmuch as the strength of fine pearlite is 

greater than coarse pearlite because of the many more ferrite-cementite phase boundaries in fine pearlite. 
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 10.33  Briefly explain why the hardness of tempered martensite diminishes with tempering time (at 

constant temperature) and with increasing temperature (at constant tempering time). 

 
  Solution 

 This question asks for an explanation as to why the hardness of tempered martensite diminishes with 

tempering time (at constant temperature) and with increasing temperature (at constant tempering time).  The 

hardness of tempered martensite depends on the ferrite-cementite phase boundary area;  since these phase 

boundaries are barriers to dislocation motion, the greater the area the harder the alloy.  The microstructure of 

tempered martensite consists of small sphere-like particles of cementite embedded within a ferrite matrix.  As the 

size of the cementite particles increases, the phase boundary area diminishes, and the alloy becomes softer.  

Therefore, with increasing tempering time, the cementite particles grow, the phase boundary area decreases, and the 

hardness diminishes.  As the tempering temperature is increased, the rate of cementite particle growth also 

increases, and the alloy softens, again, because of the decrease in phase boundary area. 
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 10.34  Briefly describe the simplest heat treatment procedure that would be used in converting a 0.76 wt% 

C steel from one microstructure to the other, as follows: 

 (a) Spheroidite to tempered martensite 

 (b) Tempered martensite to pearlite 

 (c) Bainite to martensite 

 (d) Martensite to pearlite 

 (e) Pearlite to tempered martensite 

 (f) Tempered martensite to pearlite 

 (g) Bainite to tempered martensite 

 (h) Tempered martensite to spheroidite 

 
  Solution 

 In this problem we are asked to describe the simplest heat treatment that would be required to convert a 

eutectoid steel from one microstructure to another.  Figure 10.27 is used to solve the several parts of this problem. 

 (a) For spheroidite to tempered martensite, austenitize at a temperature of about 760°C, quench to room 

temperature at a rate greater than about 140°C/s, then isothermally heat at a temperature between 250 and 650°C. 

 (b) For tempered martensite to pearlite, austenitize at a temperature of about 760°C, then cool to room 

temperature at a rate less than about 35°C/s. 

 (c) For bainite to martensite, first austenitize at a temperature of about 760°C, then quench to room 

temperature at a rate greater than about 140°C/s. 

 (d) For martensite to pearlite, first austenitize at a temperature of about 760°C, then cool to room 

temperature at a rate less than about 35°C/s. 

 (e) For pearlite to tempered martensite, first austenitize at a temperature of about 760°C, then rapidly 

quench to room temperature at a rate greater than about 140°C/s, then isothermally heat treat (temper) at a 

temperature between 250 and 650°C. 

 (f) For tempered martensite to pearlite, first austenitize at a temperature of about 760°C, then cool to room 

temperature at a rate less than about 35°C/s. 

 (g) For bainite to tempered martensite, first austenitize at a temperature of about 760°C, then rapidly 

quench to room temperature at a rate greater than about 140°C/s, then isothermally heat treat (temper) at a 

temperature between 250 and 650°C. 

 (h) For tempered martensite to spheroidite simply heat at about 700°C for approximately 20 h. 
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 10.35  (a) Briefly describe the microstructural difference between spheroidite and tempered martensite. 

 (b) Explain why tempered martensite is much harder and stronger. 

 
  Solution 

 (a)  Both tempered martensite and spheroidite have sphere-like cementite particles within a ferrite matrix;  

however, these particles are much larger for spheroidite. 

 (b)  Tempered martensite is harder and stronger inasmuch as there is much more ferrite-cementite phase 

boundary area for the smaller particles;  thus, there is greater reinforcement of the ferrite phase, and more phase 

boundary barriers to dislocation motion. 
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 10.36  Estimate the Rockwell hardnesses for specimens of an iron–carbon alloy of eutectoid composition 

that have been subjected to the heat treatments described in parts (b), (d), (f), (g), and (h) of Problem 10.18. 

 
  Solution 

 This problem asks for estimates of Rockwell hardness values for specimens of an iron-carbon alloy of 

eutectoid composition that have been subjected to some of the heat treatments described in Problem 10.18. 

 (b)  The microstructural product of this heat treatment is 100% spheroidite.  According to Figure 10.30a, 

the hardness of a 0.76 wt% C alloy with spheroidite is about 87 HRB. 

 (d)  The microstructural product of this heat treatment is 100% martensite.  According to Figure 10.32, the 

hardness of a 0.76 wt% C alloy consisting of martensite is about 64 HRC. 

 (f)  The microstructural product of this heat treatment is 100% bainite.  From Figure 10.31, the hardness of 

a 0.76 wt% C alloy consisting of bainite is about 385 HB.  And, conversion from Brinell to Rockwell hardness 

using Figure 6.18 leads to a hardness of 36 HRC. 

 (g) The microstructural product of this heat treatment is 100% fine pearlite.  According to Figure 10.30a, 

the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 27 HRC. 

 (h)  The microstructural product of this heat treatment is 100% tempered martensite.  According to Figure 

10.35, the hardness of a water-quenched eutectoid alloy that was tempered at 315°C for one hour is about 57 HRC. 
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 10.37  Estimate the Brinell hardnesses for specimens of a 0.45 wt% C iron-carbon alloy that have been 

subjected to the heat treatments described in parts (a), (d), and (h) of Problem 10.20. 

 
  Solution 

 This problem asks for estimates of Brinell hardness values for specimens of an iron-carbon alloy of 

composition 0.45 wt% C that have been subjected to some of the heat treatments described in Problem 10.20. 

 (a) The microstructural product of this heat treatment is 100% martensite.  According to Figure 10.32, the 

hardness of a 0.45 wt% C alloy consisting of martensite is about 630 HB. 

 (d) The microstructural product of this heat treatment is 100% spheroidite.  According to Figure 10.30a the 

hardness of a 0.45 wt% C alloy with spheroidite is about 150 HB. 

 (h) The microstructural product of this heat treatment is proeutectoid ferrite and fine pearlite.  According to 

Figure 10.30a, the hardness of a 0.45 wt% C alloy consisting of fine pearlite is about 200 HB. 
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 10.38  Determine the approximate tensile strengths for specimens of a eutectoid iron–carbon alloy that 

have experienced the heat treatments described in parts (a) and (c) of Problem 10.23. 

 
  Solution 

 This problem asks for estimates of tensile strength values for specimens of an iron-carbon alloy of 

eutectoid composition that have been subjected to some of the heat treatments described in Problem 10.23. 

 (a) The microstructural product of this heat treatment is 100% martensite.  According to Figure 10.32, the 

hardness of a 0.76 wt% C alloy is about 690 HB. For steel alloys, hardness and tensile strength are related through 

Equation 6.20a, and therefore 

 

  

 

TS (MPa) = 3.45 ×  HB = (3.45)(690 HB) = 2380  MPa  (345,000  psi)  

 

 (c) The microstructural product of this heat treatment is 100% fine pearlite.  According to Figure 10.30a, 

the hardness of a 0.76 wt% C alloy consisting of fine pearlite is about 265 HB.  Therefore, the tensile strength is 

 

  

 

TS (MPa) = 3.45 ×  HB = (3.45)(265 HB) = 915 MPa  (132,500  psi)  
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 10.39  For a eutectoid steel, describe isothermal heat treatments that would be required to yield specimens 

having the following Rockwell hardnesses: 

 (a) 93 HRB, 

 (b) 40 HRC, and 

 (c) 27 HRC. 

 
  Solution 

 For this problem we are asked to describe isothermal heat treatments required to yield specimens having 

several Brinell hardnesses. 

 (a) From Figure 10.30a, in order for a 0.76 wt% C alloy to have a Rockwell hardness of 93 HRB, the 

microstructure must be coarse pearlite.  Thus, utilizing the isothermal transformation diagram for this alloy, Figure 

10.22, we must rapidly cool to a temperature at which coarse pearlite forms (i.e., to about 675°C), allow the 

specimen to isothermally and completely transform to coarse pearlite.  At this temperature an isothermal heat 

treatment for at least 200 s is required. 

 (b) This portion of the problem asks for a hardness of 40 HRC the microstructure could consist of either (1) 

about 75% fine pearlite and 25% martensite (Figure 10.32), or (2) tempered martensite (Figure 10.35). 

 For case (1), after austenitizing, rapidly cool to about 580°C (Figure 10.22), hold at this temperature for 

about 4 s (to obtain 75% fine pearlite), and then rapidly quench to room temperature. 

 For case (2), after austenitizing, rapidly cool to room temperature in order to achieve 100% martensite.  

Then temper this martensite for about 2000 s at 535°C (Figure 10.35). 

 (c) From Figure 10.30a, in order for a 0.76 wt% C alloy to have a Rockwell hardness of 27 HRC, the 

microstructure must be fine pearlite.  Thus, utilizing the isothermal transformation diagram for this alloy, Figure 

10.22, we must rapidly cool to a temperature at which fine pearlite forms (i.e., at about 580°C), allow the specimen 

to isothermally and completely transform to fine pearlite.  At this temperature an isothermal heat treatment for at 

least 7 s is required. 
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DESIGN PROBLEMS 

 

Continuous Cooling Transformation Diagrams 

Mechanical Behavior of Iron-Carbon Alloys 

 

 10.D1  Is it possible to produce an iron-carbon alloy of eutectoid composition that has a minimum 

hardness of 90 HRB and a minimum ductility of 35%RA?  If so, describe the continuous cooling heat treatment to 

which the alloy would be subjected to achieve these properties.  If it is not possible, explain why. 

 
  Solution 

 This problem inquires as to the possibility of producing an iron-carbon alloy of eutectoid composition that 

has a minimum hardness of 90 HRB and a minimum ductility of 35%RA.  If the alloy is possible, then the 

continuous cooling heat treatment is to be stipulated. 

 According to Figures 10.30a and b, the following is a tabulation of Rockwell B hardnesses and percents 

area reduction for fine and coarse pearlites and spheroidite for a 0.76 wt% C alloy. 

 

 Microstructure HRB %RA 

 Fine pearlite > 100 20 

 Coarse pearlite 93 28 

 Spheroidite 88 67 

 

 Therefore, none of the microstructures meets both of these criteria.  Both fine and coarse pearlites are hard 

enough, but lack the required ductility.  Spheroidite is sufficiently ductile, but does not meet the hardness criterion. 
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 10.D2  Is it possible to produce an iron-carbon alloy that has a minimum tensile strength of 690 MPa 

(100,000 psi) and a minimum ductility of 40%RA?  If so, what will be its composition and microstructure (coarse 

and fine pearlites and spheroidite are alternatives)?  If this is not possible, explain why. 

 
  Solution 

 This problem asks if it is possible to produce an iron-carbon alloy that has a minimum tensile strength of 

690 MPa (100,000 psi) and a minimum ductility of 40%RA.  If such an alloy is possible, its composition and 

microstructure are to be stipulated. 

 From Equation 6.20a, this tensile strength corresponds to a Brinell hardness of 

 

  

 

HB =
TS (MPa)

3.45
=

690 MPa
3.45

= 200  

 

According to Figures 10.30a and b, the following is a tabulation of the composition ranges for fine and coarse 

pearlites and spheroidite that meet the stipulated criteria. 

 

  Compositions for Compositions for 
 Microstructure HB ≥ 200 %RA ≥ 40% 

 Fine pearlite > 0.45 %C < 0.47 %C 

 Coarse pearlite > 0.7 %C < 0.54 %C 

 Spheroidite not possible 0-1.0 %C 

 

Therefore, only fine pearlite has a composition range overlap for both of the hardness and ductility restrictions; the 

fine pearlite would necessarily have to have a carbon content between 0.45 and 0.47 wt% C. 
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 10.D3  It is desired to produce an iron-carbon alloy that has a minimum hardness of 175 HB and a 

minimum ductility of 52%RA.  Is such an alloy possible?  If so, what will be its composition and microstructure 

(coarse and fine pearlites and spheroidite are alternatives)?  If this is not possible, explain why. 

 
  Solution 

 This problem inquires as to the possibility of producing a iron-carbon alloy having a minimum hardness of 

175 HB and a minimum ductility of 52%RA.  The composition and microstructure are to be specified;  possible 

microstructures include fine and coarse pearlites and spheroidite. 

 To solve this problem, we must consult Figures 10.30a and b.  The following is a tabulation of the 

composition ranges for fine and coarse pearlites and spheroidite that meet the stipulated criteria. 

 

  Compositions for Compositions for 
 Microstructure HB ≥ 175 %RA ≥ 52% 

 Fine pearlite > 0.36 %C < 0.33 %C 

 Coarse pearlite > 0.43 %C < 0.40 %C 

 Spheroidite > 0.70 <0-1.0 %C 

 

Thus, only spheroidite has a composition overlap for both of hardness and ductility restrictions;  the spheroidite 

would necessarily have to have a carbon content greater than 0.70 wt% C. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 Tempered Martensite 

 

 10.D4  (a) For a 1080 steel that has been water quenched, estimate the tempering time at 425°C (800°F) to 

achieve a hardness of 50 HRC. 

 (b) What will be the tempering time at 315°C (600°F) necessary to attain the same hardness? 

 
  Solution 

 This problem asks us to consider the tempering of a water-quenched 1080 steel to achieve a hardness of 50 

HRC.  It is necessary to use Figure 10.35. 

 (a) The time necessary at 425°C is about 500 s. 

 (b)  At 315°C, the time required (by extrapolation) is approximately 4 × 106 s (about 50 days). 
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 10.D5  An alloy steel (4340) is to be used in an application requiring a minimum tensile strength of 1380 

MPa (200,000 psi) and a minimum ductility of 43%RA. Oil quenching followed by tempering is to be used. Briefly 

describe the tempering heat treatment. 

 
  Solution 

 We are to consider the tempering of an oil-quenched 4340 steel.  From Figure 10.34, for a minimum tensile 

strength of 1380 MPa (200,000 psi) a tempering temperature of less than 450°C (840°F) is required.  Also, for a 

minimum ductility of 43%RA, tempering must be carried out at a temperature greater than about 400°C (750°F).  

Therefore, tempering must occur at between 400 and 450°C (750 and 840°F) for 1 h. 
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 10.D6  Is it possible to produce an oil-quenched and tempered 4340 steel that has a minimum yield 

strength of 1400 MPa (203,000 psi) and a ductility of at least 42%RA?  If this is possible, describe the tempering 

heat treatment.  If it is not possible, explain why. 

 
  Solution 

 This problem asks if it is possible to produce an oil-quenched and tempered 4340 steel that has a minimum 

yield strength of 1400 MPa (203,000 psi) and a minimum ductility of 42%RA, and, if possible, to describe the 

tempering heat treatment.  In Figure 10.34 is shown the tempering characteristics of this alloy.  According to this 

figure, in order to achieve a minimum yield strength of 1400 MPa a tempering temperature of less that about 410°C 

is required.  On the other hand, tempering must be carried out at greater than about 360°C for a minimum ductility 

of 42%RA.  Therefore, an oil-quenched and tempered 4340 alloy possessing these characteristics is possible;  

tempering would be carried out at between 360°C and 410°C for 1 h. 
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CHAPTER 11 

 

APPLICATIONS AND PROCESSING OF METAL ALLOYS 

 

PROBLEM SOLUTIONS 

 

Ferrous Alloys 

 

 11.1  (a) List the four classifications of steels. (b) For each, briefly describe the properties and typical 

applications. 
 

  Solution 

 This question asks that we list four classifications of steels, and, for each, to describe properties and cite 

typical applications. 

  Low Carbon Steels 

 Properties:  nonresponsive to heat treatments;  relatively soft and weak;  machinable and weldable. 

 Typical applications:  automobile bodies, structural shapes, pipelines, buildings, bridges, and tin cans. 

  Medium Carbon Steels 

 Properties:  heat treatable, relatively large combinations of mechanical characteristics. 

 Typical applications:  railway wheels and tracks, gears, crankshafts, and machine parts. 

  High Carbon Steels 

 Properties:  hard, strong, and relatively brittle. 

 Typical applications:  chisels, hammers, knives, and hacksaw blades. 

  High Alloy Steels (Stainless and Tool) 

 Properties:  hard and wear resistant;  resistant to corrosion in a large variety of environments. 

 Typical applications:  cutting tools, drills, cutlery, food processing, and surgical tools. 
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 11.2  (a) Cite three reasons why ferrous alloys are used so extensively. (b) Cite three characteristics of 

ferrous alloys that limit their utilization. 
 

  Solution 

 (a)  Ferrous alloys are used extensively because: 

  (1)  Iron ores exist in abundant quantities. 

  (2)  Economical extraction, refining, and fabrication techniques are available. 

  (3)  The alloys may be tailored to have a wide range of properties. 

 (b)  Disadvantages of ferrous alloys are: 

  (1)  They are susceptible to corrosion. 

  (2)  They have a relatively high density. 

  (3)  They have relatively low electrical conductivities. 
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 11.3  What is the function of alloying elements in tool steels? 
 

  Solution 

 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard 

and wear-resistant carbide compounds. 
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 11.4  Compute the volume percent of graphite VGr in a 3.5 wt% C cast iron, assuming that all the carbon 

exists as the graphite phase.  Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively. 
 

  Solution 

 We are asked to compute the volume percent graphite in a 3.5 wt% C cast iron.  It first becomes necessary 

to compute mass fractions using the lever rule.  From the iron-carbon phase diagram (Figure 11.2), the tie-line in the 

α and graphite phase field extends from essentially 0 wt% C to 100 wt% C.  Thus, for a 3.5 wt% C cast iron 

 

  

 

Wα  =  
CGr − C0

CGr − Cα
=  

100 − 3.5
100 − 0

=  0.965 

 

  

 

WGr  =  
C0 − Cα
CGr − Cα

=  
3.5 − 0
100 − 0

=  0.035 

 

Conversion from weight fraction to volume fraction of graphite is possible using Equation 9.6a as 

 

    

 

VGr  =  

WGr
ρGr

Wα
ρα

+
WGr
ρGr

 

 

 

=  

0.035

2.3 g/cm3

0.965

7.9 g/cm3
+

0.035

2.3 g/cm3

 

 

= 0.111 or 11.1 vol% 
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 11.5  On the basis of microstructure, briefly explain why gray iron is brittle and weak in tension. 
 

  Solution 

 Gray iron is weak and brittle in tension because the tips of the graphite flakes act as points of stress 

concentration. 
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 11.6  Compare gray and malleable cast irons with respect to (a) composition and heat treatment, (b) 

microstructure, and (c) mechanical characteristics. 
 

  Solution 

 This question asks us to compare various aspects of gray and malleable cast irons. 

 (a)  With respect to composition and heat treatment: 

  Gray iron--2.5 to 4.0 wt% C and 1.0 to 3.0 wt% Si.  For most gray irons there is no heat treatment 

after solidification. 

  Malleable iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si.  White iron is heated in a 

nonoxidizing atmosphere and at a temperature between 800 and 900°C for an extended time period. 

 (b)  With respect to microstructure: 

  Gray iron--Graphite flakes are embedded in a ferrite or pearlite matrix. 

  Malleable iron--Graphite clusters are embedded in a ferrite or pearlite matrix. 

 (c)  With respect to mechanical characteristics: 

  Gray iron--Relatively weak and brittle in tension;  good capacity for damping vibrations. 

  Malleable iron--Moderate strength and ductility. 
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 11.7  Compare white and nodular cast irons with respect to (a) composition and heat treatment, (b) 

microstructure, and (c) mechanical characteristics. 
 

  Solution 

 This question asks us to compare white and nodular cast irons. 

 (a)  With regard to composition and heat treatment: 

  White iron--2.5 to 4.0 wt% C and less than 1.0 wt% Si.  No heat treatment;  however, cooling is 

rapid during solidification. 

  Nodular cast iron--2.5 to 4.0 wt% C, 1.0 to 3.0 wt% Si, and a small amount of Mg or Ce.  A heat 

treatment at about 700°C may be necessary to produce a ferritic matrix. 

 (b)  With regard to microstructure: 

  White iron--There are regions of cementite interspersed within pearlite. 

  Nodular cast iron--Nodules of graphite are embedded in a ferrite or pearlite matrix. 

 (c)  With respect to mechanical characteristics: 

  White iron--Extremely hard and brittle. 

  Nodular cast iron--Moderate strength and ductility. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 11.8 Is it possible to produce malleable cast iron in pieces having large cross-sectional dimensions? Why 

or why not? 
 

  Solution 

 It is not possible to produce malleable iron in pieces having large cross-sectional dimensions.  White cast 

iron is the precursor of malleable iron, and a rapid cooling rate is necessary for the formation of white iron, which 

may not be accomplished at interior regions of thick cross-sections. 
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 Nonferrous Alloys 

 

 11.9  What is the principal difference between wrought and cast alloys? 
 

  Solution 

 The principal difference between wrought and cast alloys is as follows:  wrought alloys are ductile enough 

so as to be hot or cold worked during fabrication, whereas cast alloys are brittle to the degree that shaping by 

deformation is not possible and they must be fabricated by casting. 
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 11.10  Why must rivets of a 2017 aluminum alloy be refrigerated before they are used? 
 

  Solution 

 Rivets of a 2017 aluminum alloy must be refrigerated before they are used because, after being solution 

heat treated, they precipitation harden at room temperature.  Once precipitation hardened, they are too strong and 

brittle to be driven. 
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 11.11  What is the chief difference between heat-treatable and non-heat-treatable alloys? 
 

  Solution 

 The chief difference between heat-treatable and nonheat-treatable alloys is that heat-treatable alloys may be 

strengthened by a heat treatment wherein a precipitate phase is formed (precipitation hardening) or a martensitic 

transformation occurs.  Nonheat-treatable alloys are not amenable to strengthening by such treatments. 
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 11.12  Give the distinctive features, limitations, and applications of the following alloy groups: titanium 

alloys, refractory metals, superalloys, and noble metals. 
 

  Solution 

  Titanium Alloys 

 Distinctive features:  relatively low density, high melting temperatures, and high strengths are possible. 

 Limitation:  because of chemical reactivity with other materials at elevated temperatures, these alloys are 

expensive to refine. 

 Applications:  aircraft structures, space vehicles, and in chemical and petroleum industries. 

  Refractory Metals 

 Distinctive features:  extremely high melting temperatures; large elastic moduli, hardnesses, and strengths. 

 Limitation:  some experience rapid oxidation at elevated temperatures. 

 Applications:  extrusion dies, structural parts in space vehicles, incandescent light filaments, x-ray tubes, 

and welding electrodes. 

  Superalloys 

 Distinctive features:  able to withstand high temperatures and oxidizing atmospheres for long time periods. 

 Applications:  aircraft turbines, nuclear reactors, and petrochemical equipment. 

  Noble Metals 

 Distinctive features:  highly resistant to oxidation, especially at elevated temperatures;  soft and ductile. 

 Limitation:  expensive. 

 Applications:  jewelry, dental restoration materials, coins, catalysts, and thermocouples. 
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 Forming Operations 

 

 11.13  Cite advantages and disadvantages of hot working and cold working. 
 

  Solution 

 The advantages of cold working are: 

  (1)  A high quality surface finish. 

  (2)  The mechanical properties may be varied. 

  (3)  Close dimensional tolerances. 

 The disadvantages of cold working are: 

  (1)  High deformation energy requirements. 

  (2)  Large deformations must be accomplished in steps, which may be expensive. 

  (3)  A loss of ductility. 

 The advantages of hot working are: 

  (1)  Large deformations are possible, which may be repeated. 

  (2)  Deformation energy requirements are relatively low. 

 The disadvantages of hot working are: 

  (1)  A poor surface finish. 

  (2)  A variety of mechanical properties is not possible. 
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 11.14  (a) Cite advantages of forming metals by extrusion as opposed to rolling. (b) Cite some 

disadvantages. 
 

  Solution 

 (a)  The advantages of extrusion as opposed to rolling are as follows: 

  (1)  Pieces having more complicated cross-sectional geometries may be formed. 

  (2)  Seamless tubing may be produced. 

 (b)  The disadvantages of extrusion over rolling are as follows: 

  (1)  Nonuniform deformation over the cross-section. 

  (2)  A variation in properties may result over a cross-section of an extruded piece. 
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 Casting 

 

 11.15  List four situations in which casting is the preferred fabrication technique. 
 

  Solution 

 Four situations in which casting is the preferred fabrication technique are: 

  (1)  For large pieces and/or complicated shapes. 

  (2)  When mechanical strength is not an important consideration. 

  (3)  For alloys having low ductilities. 

  (4)  When it is the most economical fabrication technique. 
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 11.16  Compare sand, die, investment, lost foam, and continuous casting techniques. 
 

  Solution 

 For sand casting, sand is the mold material, a two-piece mold is used, ordinarily the surface finish is not an 

important consideration, the sand may be reused (but the mold may not), casting rates are low, and large pieces are 

usually cast. 

 For die casting, a permanent mold is used, casting rates are high, the molten metal is forced into the mold 

under pressure, a two-piece mold is used, and small pieces are normally cast. 

 For investment casting, a single-piece mold is used, which is not reusable;  it results in high dimensional 

accuracy, good reproduction of detail, and a fine surface finish;  and casting rates are low. 

 For lost foam casting, the pattern is polystyrene foam, whereas the mold material is sand.  Complex 

geometries and tight tolerances are possible.  Casting rates are higher than for investment, and there are few 

environmental wastes. 

 For continuous casting, at the conclusion of the extraction process, the molten metal is cast into a 

continuous strand having either a rectangular or circular cross-section;  these shapes are desirable for subsequent 

secondary metal-forming operations.  The chemical composition and mechanical properties are relatively uniform 

throughout the cross-section. 
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 Miscellaneous Techniques 

 

 11.17  If it is assumed that, for steel alloys, the average cooling rate of the heat-affected zone in the vicinity 

of a weld is 10°C/s, compare the microstructures and associated properties that will result for 1080 (eutectoid) and 

4340 alloys in their HAZs. 
 

  Solution 

 This problem asks that we specify and compare the microstructures and mechanical properties in the heat-

affected weld zones for 1080 and 4340 alloys assuming that the average cooling rate is 10°C/s.  Figure 10.27 shows 

the continuous cooling transformation diagram for an iron-carbon alloy of eutectoid composition (1080), and, in 

addition, cooling curves that delineate changes in microstructure.  For a cooling rate of 10°C/s (which is less than 

35°C/s) the resulting microstructure will be totally pearlite--probably a reasonably fine pearlite.  On the other hand, 

in Figure 10.28 is shown the CCT diagram for a 4340 steel.  From this diagram it may be noted that a cooling rate of 

10°C/s produces a totally martensitic structure.  Pearlite is softer and more ductile than martensite, and, therefore, is 

most likely more desirable. 
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 11.18  Describe one problem that might exist with a steel weld that was cooled very rapidly. 
 

  Solution 

 If a steel weld is cooled very rapidly, martensite may form, which is very brittle.  In some situations, cracks 

may form in the weld region as it cools. 
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 Annealing Processes 
 

 11.19  In your own words describe the following heat treatment procedures for steels and, for each, the 

intended final microstructure: full annealing, normalizing, quenching, and tempering. 
 

  Solution 

 Full annealing--Heat to about 50°C above the A3 line, Figure 11.10 (if the concentration of carbon is less 

than the eutectoid) or above the A1 line (if the concentration of carbon is greater than the eutectoid) until the alloy 

comes to equilibrium;  then furnace cool to room temperature.  The final microstructure is coarse pearlite. 
 Normalizing--Heat to at least 55°C above the A3 line Figure 11.10 (if the concentration of carbon is less 

than the eutectoid) or above the Acm line (if the concentration of carbon is greater than the eutectoid) until the alloy 

completely transforms to austenite, then cool in air.  The final microstructure is fine pearlite. 

 Quenching--Heat to a temperature within the austenite phase region and allow the specimen to fully 

austenitize, then quench to room temperature in oil or water.  The final microstructure is martensite. 

 Tempering--Heat a quenched (martensitic) specimen, to a temperature between 450 and 650°C, for the 

time necessary to achieve the desired hardness.  The final microstructure is tempered martensite. 
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 11.20  Cite three sources of internal residual stresses in metal components. What are two possible adverse 

consequences of these stresses? 
 

  Solution 

 Three sources of residual stresses in metal components are plastic deformation processes, nonuniform 

cooling of a piece that was cooled from an elevated temperature, and a phase transformation in which parent and 

product phases have different densities. 

 Two adverse consequences of these stresses are distortion (or warpage) and fracture. 
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 11.21 Give the approximate minimum temperature at which it is possible to austenitize each of the 

following iron–carbon alloys during a normalizing heat treatment: (a) 0.20 wt% C, (b) 0.76 wt% C, and (c) 0.95 

wt% C. 

 

  Solution 

 (a)  For 0.20 wt% C, heat to at least 905°C (1660°F) since the A3 temperature is 850°C (1560°F). 

 (b)  For 0.76 wt% C, heat to at least 782°C (1440°F) since the A3 temperature is 727°C (1340°F). 

 (c)  For 0.95 wt% C, heat to at least  840°C (1545°F) since the Acm temperature is 785°C (1445°F). 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 11.22  Give the approximate temperature at which it is desirable to heat each of the following iron–carbon 

alloys during a full anneal heat treatment: (a) 0.25 wt% C, (b) 0.45 wt% C, (c) 0.85 wt% C, and (d) 1.10 wt% C. 

 

  Solution 

 (a)  For 0.25 wt% C, heat to about 880°C (1510°F) since the A3 temperature is 830°C (1420°F). 

 (b)  For 0.45 wt% C, heat to about 830°C (1525°F) since the A3 temperature is 780°C (1435°F). 

 (c)  For 0.85 wt% C, heat to about 777°C (1430°F) since the A1 temperature is 727°C (1340°F). 

 (d)  For 1.10 wt% C, heat to about 777°C (1430°F) since the A1 temperature is 727°C (1340°F). 
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 11.23  What is the purpose of a spheroidizing heat treatment? On what classes of alloys is it normally 

used? 
 

  Solution 

 The purpose of a spheroidizing heat treatment is to produce a very soft and ductile steel alloy having a 

spheroiditic microstructure.  It is normally used on medium- and high-carbon steels, which, by virtue of carbon 

content, are relatively hard and strong. 
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 Heat Treatment of Steels 

 

 11.24  Briefly explain the difference between hardness and hardenability. 
 

  Solution 

 Hardness is a measure of a material's resistance to localized surface deformation, whereas hardenability is a 

measure of the depth to which a ferrous alloy may be hardened by the formation of martensite.  Hardenability is 

determined from hardness tests. 
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 11.25  What influence does the presence of alloying elements (other than carbon) have on the shape of a 

hardenability curve? Briefly explain this effect. 
 

  Solution 

 The presence of alloying elements (other than carbon) causes a much more gradual decrease in hardness 

with position from the quenched end for a hardenability curve.  The reason for this effect is that alloying elements 

retard the formation of pearlitic and bainitic structures which are not as hard as martensite. 
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 11.26  How would you expect a decrease in the austenite grain size to affect the hardenability of a steel 

alloy? Why? 
 

  Solution 

 A decrease of austenite grain size will decrease the hardenability.  Pearlite normally nucleates at grain 

boundaries, and the smaller the grain size, the greater the grain boundary area, and, consequently, the easier it is for 

pearlite to form. 
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 11.27  Name two thermal properties of a liquid medium that will influence its quenching effectiveness. 
 

  Solution 

 The two thermal properties of a liquid medium that influence its quenching effectiveness are thermal 

conductivity and heat capacity. 
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 11.28  Construct radial hardness profiles for the following: 

 (a) A 50-mm (2-in.) diameter cylindrical specimen of an 8640 steel alloy that has been quenched in 

moderately agitated oil 
 

  Solution 

 In the manner of Example Problem 11.1, the equivalent distances and hardnesses tabulated below were 

determined from Figures 11.14 and 11.17b. 

 
 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 7 54 

 3/4 R 11 50 

 Midradius 14 45 

 Center 16 44 

 

The resulting hardness profile is plotted below. 

 

 

 

 (b) A 75-mm (3-in.) diameter cylindrical specimen of a 5140 steel alloy that has been quenched in 

moderately agitated oil 
 

  Solution 

 In the manner of Example Problem 11.1, the equivalent distances and hardnesses tabulated below were 

determined from Figures 11.14 and 11.17b. 
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 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 13 41 

 3/4 R 17.5 37 

 Midradius 22 33 

 Center 25 32 

 

The resulting hardness profile is plotted below. 

 

 

 

 (c) A 65-mm (2

 

1

2
-in.) diameter cylindrical specimen of an 8620 steel alloy that has been quenched in 

moderately agitated water 
 

  Solution 

 In the manner of Example Problem 11.1, the equivalent distances and hardnesses tabulated below were 

determined from Figures 11.15 and 11.17a. 

 
 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 2.5 42 

 3/4 R 7 31 

 Midradius 11 25 

 Center 13 24 
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The resulting hardness profile is plotted below. 

 

 

 

 

 (d) A 70-mm (2

 

3

4
-in.) diameter cylindrical specimen of a 1040 steel alloy that has been quenched in 

moderately agitated water. 
 

  Solution 

 In the manner of Example Problem 11.1, the equivalent distances and hardnesses tabulated below were 

determined from Figures 11.14 and 11.17a. 

 
 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 3 48 

 3/4 R 8 30 

 Midradius 13 23 

 Center 15 22 

 

The resulting hardness profile is plotted below. 
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 11.29  Compare the effectiveness of quenching in moderately agitated water and oil by graphing, on a 

single plot, radial hardness profiles for 65-mm (2

 

1

2
-in.) diameter cylindrical specimens of an 8630 steel that have 

been quenched in both media. 
 

  Solution 

 We are asked to compare the effectiveness of quenching in moderately agitated water and oil by graphing, 

on a single plot, hardness profiles for a 65 mm (2-1/2 in.) diameter cylindrical specimen of an 8630 steel that has 

been quenched in both media. 

 For moderately agitated water, the equivalent distances and hardnesses for the several radial positions 

[Figures 11.17a and 11.15] are tabulated below. 
 

 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 2.5 52 

 3/4 R 7 43 

 Midradius 11 36 

 Center 13 33 
 

While for moderately agitated oil, the equivalent distances and hardnesses for the several radial positions [Figures 

11.17b and 11.15] are tabulated below. 

 

 Radial Equivalent HRC 
 Position Distance, mm Hardness 

 Surface 10 37 

 3/4 R 15 32 

 Midradius 18 29 

 Center 20 28 

 

 These data are plotted here. 
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 Precipitation Hardening 
 

 11.30  Compare precipitation hardening (Section 11.9) and the hardening of steel by quenching and 

tempering (Sections 10.5, 10.6, and 10.8) with regard to 

 (a) The total heat treatment procedure 

 (b) The microstructures that develop 

 (c) How the mechanical properties change during the several heat treatment stages 
 

  Solution 

 (a)  With regard to the total heat treatment procedure, the steps for the hardening of steel are as follows: 

  (1)  Austenitize above the upper critical temperature. 

  (2)  Quench to a relatively low temperature. 

  (3)  Temper at a temperature below the eutectoid. 

  (4)  Cool to room temperature. 

 With regard to precipitation hardening, the steps are as follows: 

  (1)  Solution heat treat by heating into the solid solution phase region. 

  (2)  Quench to a relatively low temperature. 

  (3)  Precipitation harden by heating to a temperature that is within the solid two-phase region. 

  (4)  Cool to room temperature. 

 (b)  For the hardening of steel, the microstructures that form at the various heat treating stages in part (a) 

are: 

  (1)  Austenite 

  (2)  Martensite 

  (3)  Tempered martensite 

  (4)  Tempered martensite 

 For precipitation hardening, the microstructures that form at the various heat treating stages in part (a) are: 

  (1)  Single phase 

  (2)  Single phase--supersaturated 

  (3)  Small plate-like particles of a new phase within a matrix of the original phase. 

  (4)  Same as (3) 

 (c)  For the hardening of steel, the mechanical characteristics for the various steps in part (a) are as follows: 

  (1)  Not important 

  (2)  The steel becomes hard and brittle upon quenching. 

  (3)  During tempering, the alloy softens slightly and becomes more ductile. 

  (4)  No significant changes upon cooling to or maintaining at room temperature. 
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 For precipitation hardening, the mechanical characteristics for the various steps in part (a) are as follows: 

  (1)  Not important 

  (2)  The alloy is relatively soft. 

  (3)  The alloy hardens with increasing time (initially), and becomes more brittle;  it may soften 

with overaging. 

  (4)  The alloy may continue to harden or overage at room temperature. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 11.31 What is the principal difference between natural and artificial aging processes? 
 

  Solution 

 For precipitation hardening, natural aging is allowing the precipitation process to occur at the ambient 

temperature;  artificial aging is carried out at an elevated temperature. 
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DESIGN PROBLEMS 

 

  Ferrous Alloys 

  Nonferrous Alloys 

 

 11.D1 Below is a list of metals and alloys: 

 

Plain carbon steel Magnesium 

Brass Zinc 

Gray cast iron Tool steel 

Platinum Aluminum 

Stainless steel Tungsten 

Titanium alloy  

 

Select from this list the one metal or alloy that is best suited for each of the following applications, and cite at least 

one reason for your choice: 

 (a) The block of an internal combustion engine 

 (b) Condensing heat exchanger for steam 

 (c) Jet engine turbofan blades 

 (d) Drill bit 

 (e) Cryogenic (i.e., very low temperature) container 

 (f) As a pyrotechnic (i.e., in flares and fireworks) 

 (g) High-temperature furnace elements to be used in oxidizing atmospheres 
 

  Solution 

 (a)  Gray cast iron would be the best choice for an engine block because it is relatively easy to cast, is wear 

resistant, has good vibration damping characteristics, and is relatively inexpensive. 

 (b)  Stainless steel would be the best choice for a heat exchanger to condense steam because it is corrosion 

resistant to the steam and condensate. 

 (c)  Titanium alloys are the best choice for high-speed aircraft  jet engine turbofan blades because they are 

light weight, strong, and easily fabricated very resistant to corrosion.  However, one drawback is their cost. 

 (d)  A tool steel would be the best choice for a drill bit because it is very hard retains its hardness at high 

temperature and is wear resistant, and, thus, will retain a sharp cutting edge. 

 (e)  For a cryogenic (low-temperature) container, an aluminum alloy would be the best choice;  aluminum 

alloys have an FCC crystal structure, and therefore, are ductile at very low temperatures. 

 (f)  As a pyrotechnic in flares and fireworks, magnesium is the best choice because it ignites easily and burns 
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readily in air with a very bright flame. 

 (g)  Platinum is the best choice for high-temperature furnace elements to be used in oxidizing atmospheres 

because it is very ductile, has a relatively very high melting temperature, and is highly resistant to oxidation. 
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 11.D2  A group of new materials are the metallic glasses (or amorphous metals). Write an essay about 

these materials in which you address the following issues: (1) compositions of some of the common metallic glasses, 

(2) characteristics of these materials that make them technologically attractive, (3) characteristics that limit their 

utilization, (4) current and potential uses, and (5) at least one technique that is used to produce metallic glasses. 

 

  Solution 

 (a)  Compositionally, the metallic glass materials are rather complex;  several compositions are as follows:  

Fe80B20, Fe72Cr8P13C7, Fe67Co18B14Si, Pd77.5Cu6.0Si16.5, and Fe40Ni38Mo4B18. 

 (b)  These materials are exceptionally strong and tough, extremely corrosion resistant, and are easily 

magnetized. 

 (c)  Principal drawbacks for these materials are 1) complicated and exotic fabrication techniques are 

required;  and 2) inasmuch as very rapid cooling rates are required, at least one dimension of the material must be 

small--i.e., they are normally produced in ribbon form. 

 (d)  Potential uses include transformer cores, magnetic amplifiers, heads for magnetic tape players, 

reinforcements for pressure vessels and tires, shields for electromagnetic interference, security tapes for library 

books. 

 (e)  Production techniques include centrifuge melt spinning, planar-flow casting, rapid pressure 

application, arc melt spinning. 
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 11.D3  Of the following alloys, pick the one(s) that may be strengthened by heat treatment, cold work, or 

both: R50500 titanium, AZ31B magnesium, 6061 aluminum, C51000 phosphor bronze, lead, 6150 steel, 304 

stainless steel, and C17200 beryllium copper. 
 

  Solution 

 This question provides us with a list of several metal alloys, and then asks us to pick those that may be 

strengthened by heat treatment, by cold work, or both.  Those alloys that may be heat treated are either those noted 

as "heat treatable" (Tables 11.6 through 11.9), or as martensitic stainless steels (Table 11.4).  Alloys that may be 

strengthened by cold working must not be exceptionally brittle, and, furthermore, must have recrystallization 

temperatures above room temperature (which immediately eliminates lead).  The alloys that fall within the three 

classifications are as follows: 

 

 Heat Treatable Cold Workable Both 

 6150 steel 6150 steel 6150 steel 

 C17200 Be-Cu C17200 Be-Cu C17200 Be-Cu 

 6061 Al 6061 Al 6061 Al 

  304 stainless steel  

  R50500 Ti  

  C51000 phosphor bronze 

  AZ31B Mg 
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 11.D4  A structural member 100 mm (4 in.) long must be able to support a load of 50,000 N (11,250 lb f) 

without experiencing any plastic deformation. Given the following data for brass, steel, aluminum, and titanium, 

rank them from least to greatest weight in accordance with these criteria. 

 

Alloy 
Yield Strength 

[MPa (ksi)] 
Density 

(g/cm3) 

Brass 415 (60) 8.5 

Steel 860 (125) 7.9 

Aluminum 310 (45) 2.7 

Titanium 550 (80) 4.5 

 
 

  Solution 

 This problem asks us to rank four alloys (brass, steel, titanium, and aluminum), from least to greatest 
weight for a structural member to support a 50,000 N (11,250 lbf) load without experiencing plastic deformation.  

From Equation 6.1, the cross-sectional area (A0) must necessarily carry the load (F) without exceeding the yield 

strength (σy), as 

 

    

 

A0 =
F

σ y
 

 

Now, given the length l, the volume of material required (V) is just 

 

  

 

V =  lA0 =  
lF
σ y

 

 

Finally, the mass of the member (m) is 
 

    

 

m =  Vρ =  
ρ lF
σ y

 

 

Here ρ 
is the density.  Using the values given for these alloys 

 

  

 

m (brass) =  
(8.5 g/cm3) (10 cm)(50,000 N)

(415 × 106 N /m2) 1 m

102 cm

 

 
 

 

 
 
2

=  102 g  

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

  

 

m (steel) =  
(7.9 g/cm3) (10 cm)(50,000 N)

(860 × 106 N /m2) 1 m

102 cm

 

 
 

 

 
 
2

=  46 g  

 

  

 

m (aluminum) =  
(2.7 g/cm3) (10 cm)(50,000 N)

(310 × 106 N /m2) 1 m

102 cm

 

 
 

 

 
 
2

=  43.5 g 

 

  

 

m (titanium) =  
(4.5 g/cm3) (10 cm)(50,000 N)

(550 × 106 N /m2) 1 m

102 cm

 

 
 

 

 
 

2
=  40.9 g  

 
Thus, titanium would have the minimum weight (or mass), followed by aluminum, steel, and brass. 
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 11.D5  Discuss whether it would be advisable to hot work or cold work the following metals and alloys on 

the basis of melting temperature, oxidation resistance, yield strength, and degree of brittleness: tin, tungsten, 

aluminum alloys, magnesium alloys, and a 4140 steel. 
 

  Solution 

 Tin would almost always be hot-worked.  Even deformation at room temperature would be considered hot-

working inasmuch as its recrystallization temperature is below room temperature (Table 7.2). 

 Tungsten is hard and strong at room temperature, has a high recrystallization temperature, and experiences 

oxidation at elevated temperatures.  Cold-working is difficult because of its strength, and hot-working is not 

practical because of oxidation problems.  Most tungsten articles are fabricated by powder metallurgy, or by using 

cold-working followed by annealing cycles. 

 Most aluminum alloys may be cold-worked since they are ductile and have relatively low yield strengths. 

 Magnesium alloys are normally hot-worked inasmuch as they are quite brittle at room temperature.  Also, 

magnesium alloys have relatively low recrystallization temperatures. 

 A 4140 steel could be cold-worked in an over-tempered state which leaves it soft and relatively ductile, 

after which quenching and tempering heat treatments may be employed to strengthen and harden it. This steel would 

probably have a relatively high recrystallization temperature, and hot-working may cause oxidation. 
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 Heat Treatment of Steels 

 

 11.D6  A cylindrical piece of steel 25 mm (1.0 in.) in diameter is to be quenched in moderately agitated oil. 

Surface and center hardnesses must be at least 55 and 50 HRC, respectively.  Which of the following alloys will 

satisfy these requirements: 1040, 5140, 4340, 4140, and 8640?  Justify your choice(s). 
 

  Solution 

 In moderately agitated oil, the equivalent distances from the quenched end for a one-inch diameter bar for 

surface and center positions are 3 mm (1/8 in.) and 8 mm (11/32 in.), respectively [Figure 11.17b].  The hardnesses 

at these two positions for the alloys cited (as determined using Figure 11.14) are given below. 

 

  Surface Center 
 Alloy Hardness (HRC) Hardness (HRC) 

 1040 50 30 

 5140 56 49 

 4340 57 57 

 4140 57 55 

 8640 57 53 

 

 Thus, alloys 4340, 4140, and 8640 will satisfy the criteria for both surface and center hardnesses. 
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 11.D7 A cylindrical piece of steel 75 mm (3 in.) in diameter is to be austenitized and quenched such that a 

minimum hardness of 40 HRC is to be produced throughout the entire piece.  Of the alloys 8660, 8640, 8630, and 

8620, which will qualify if the quenching medium is (a) moderately agitated water, and (b) moderately agitated oil? 

Justify your choice(s). 
 

  Solution 

 (a)  This problem calls for us to decide which of 8660, 8640, 8630, and 8620 alloys may be fabricated into 

a cylindrical piece 75 mm (3 in.) in diameter which, when quenched in mildly agitated water, will produce a 

minimum hardness of 40 HRC throughout the entire piece. 

 The center of the steel cylinder will cool the slowest and therefore will be the softest.  In moderately 

agitated water the equivalent distance from the quenched end for a 75 mm diameter bar for the center position is 

about 17 mm (11/16 in.) [Figure 11.17a].  The hardnesses at this position for the alloys cited (Figure 11.15) are 

given below. 

 

  Center 
 Alloy Hardness (HRC) 

 8660 58 

 8640 42 

 8630 30 

 8620 22 

 

Therefore, only 8660 and 8640 alloys will have a minimum of 40 HRC at the center, and therefore, throughout the 

entire cylinder. 

 (b) This part of the problem asks us to do the same thing for moderately agitated oil.  In moderately 

agitated oil the equivalent distance from the quenched end for a 75 mm diameter bar at the center position is about 

25.5 mm (1-1/32 in.) [Figure 11.17b].  The hardnesses at this position for the alloys cited (Figure 11.15) are given 

below. 

 

  Center 
 Alloy Hardness (HRC) 

 8660 53 

 8640 37 

 8630 26 

 8620 < 20 
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Therefore, only the 8660 alloy will have a minimum of 40 HRC at the center, and therefore, throughout the entire 

cylinder. 
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 11.D8 A cylindrical piece of steel 38 mm (1

 

1

2
in.) in diameter is to be austenitized and quenched such that 

a microstructure consisting of at least 80% martensite will be produced throughout the entire piece.  Of the alloys 

4340, 4140, 8640, 5140, and 1040, which will qualify if the quenching medium is (a) moderately agitated oil and 

(b) moderately agitated water? Justify your choice(s). 
 

  Solution 

 (a)  Since the cooling rate is lowest at the center, we want a minimum of 80% martensite at the center 

position.  From Figure 11.17b, the cooling rate is equal to an equivalent distance from the quenched end of 12 mm 

(1/2 in.).  According to Figure 11.14, the hardness corresponding to 80% martensite for these alloys is 50 HRC.  

Thus, all we need do is to determine which of the alloys have a 50 HRC hardness at an equivalent distance from the 

quenched end of 12 mm (1/2 in.).  At an equivalent distance of 12 mm (1/2 in.), the following hardnesses are 

determined from Figure 11.14 for the various alloys. 
 

 Alloy Hardness (HRC) 

 4340 56 

 4140 53 

 8640 49 

 5140 43 

 1040 25 
 

Thus, only alloys 4340 and 4140 will qualify. 

 (b) For moderately agitated water, the cooling rate at the center of a 38 mm diameter specimen is 7 mm 

(5/16 in.) equivalent distance from the quenched end [Figure 11.17a].  At this position, the following hardnesses are 

determined from Figure 11.14 for the several alloys. 

 

 Alloy Hardness (HRC) 

 4340 57 

 4140 55 

 8640 54 

 5140 51 

 1040 33 

 

It is still necessary to have a hardness of 50 HRC or greater at the center;  thus, alloys 4340, 4140, 8640, and 5140 

qualify. 
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 11.D9  A cylindrical piece of steel 90 mm (3

 

1

2
 in.) in diameter is to be quenched in moderately agitated 

water.  Surface and center hardnesses must be at least 55 and 40 HRC, respectively.  Which of the following alloys 

will satisfy these requirements:  1040, 5140, 4340, 4140, 8620, 8630, 8640, and 8660?  Justify your choices. 
 

  Solution 

 A ninety-millimeter (three and one-half inch) diameter cylindrical steel specimen is to be quenched in 

moderately agitated water.  We are to decide which of eight different steels will have surface and center hardnesses 

of at least 55 and 40 HRC, respectively. 

 In moderately agitated water, the equivalent distances from the quenched end for a 90 mm diameter bar for 

surface and center positions are 3 mm (1/8 in.) and 22 mm (7/8 in.), respectively [Figure 11.17a].  The hardnesses at 

these two positions for the alloys cited are given below.  The hardnesses at these two positions for the alloys cited 

are given below (as determined from Figures 11.14 and 11.15). 

 

  Surface Center 
 Alloy Hardness (HRC) Hardness (HRC) 

 1040 50 < 20 

 5140 56 34 

 4340 57 53 

 4140 57 45 

 8620 42 < 20 

 8630 51 28 

 8640 56 38 

 8660 64 55 

 

Thus, alloys 4340, 4140, and 8660 will satisfy the criteria for both surface hardness (minimum 55 HRC) and center 

hardness (minimum 40 HRC). 
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 11.D10  A cylindrical piece of 4140 steel is to be austenitized and quenched in moderately agitated oil.  If 

the microstructure is to consist of at least 50% martensite throughout the entire piece, what is the maximum 

allowable diameter?  Justify your answer. 
 

  Solution 

 From Figure 11.14, the equivalent distance from the quenched end of a 4140 steel to give 50% martensite 

(or a 42.5 HRC hardness) is 27 mm (1-1/8 in.).  Thus, the quenching rate at the center of the specimen should 

correspond to this equivalent distance.  Using Figure 11.17b, the center specimen curve takes on a value of 27 mm 

(1-1/8 in.) equivalent distance at a diameter of about 83 mm (3.3 in.). 
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 11.D11  A cylindrical piece of 8640 steel is to be austenitized and quenched in moderately agitated oil.  If 

the hardness at the surface of the piece must be at least 49 HRC, what is the maximum allowable diameter?  Justify 

your answer. 
 

  Solution 

 We are to determine, for a cylindrical piece of 8640 steel, the minimum allowable diameter possible in 

order yield a surface hardness of 49 HRC, when the quenching is carried out in moderately agitated oil. 

 From Figure 11.15, the equivalent distance from the quenched end of an 8640 steel to give a hardness of 49 

HRC is about 12 mm (15/32 in.).  Thus, the quenching rate at the surface of the specimen should correspond to this 

equivalent distance.  Using Figure 11.17b, the surface specimen curve takes on a value of 12 mm equivalent 

distance at a diameter of about 75 mm (3 in.). 
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 11.D12 Is it possible to temper an oil-quenched 4140 steel cylindrical shaft 100 mm (4 in.) in diameter so 

as to give a minimum tensile strength of 850 MPa (125,000 psi) and a minimum ductility of 21%EL?  If so, specify a 

tempering temperature.  If this is not possible, then explain why. 
 

  Solution 

 This problem asks if it is possible to temper an oil-quenched 4140 steel cylindrical shaft 100 mm (4 in.) in 

diameter so as to give a minimum tensile strength of 850 MPa (125,000 psi) and a minimum ductility of 21%EL.  In 

order to solve this problem it is necessary to use Figures 11.20a and 11.20c, which plot, respectively, tensile 

strength and ductility versus tempering temperature.  For the 100 mm diameter line of Figure 11.20a, tempering 

temperatures less than about 560°C are required to give a tensile strength of at least 850 MPa.  Furthermore, from 

Figure 11.20c, for the 100 mm diameter line, tempering temperatures greater than about 585°C will give ductilities 

greater than 21%EL.  Hence, it is not possible to temper this alloy to produce the stipulated minimum tensile 

strength and ductility.  To meet the tensile strength minimum, T(tempering) < 560°C, whereas for ductility 

minimum, T(tempering) > 585°C;  thus, there is no overlap of these tempering temperature ranges. 
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 11.D13  Is it possible to temper an oil-quenched 4140 steel cylindrical shaft 12.5 mm (0.5 in.) in diameter 

so as to give a minimum yield strength of 1000 MPa (145,000 psi) and a minimum ductility of 16%EL?  If so, 

specify a tempering temperature.  If this is not possible, then explain why. 
 

  Solution 

 This problem asks if it is possible to temper an oil-quenched 4140 steel cylindrical shaft 12.5 mm (0.5 in.) 

in diameter so as to give a minimum yield strength of 1000 MPa (145,000 psi) and a minimum ductility of 16%EL.  

In order to solve this problem it is necessary to use Figures 11.20b and 11.20c, which plot, respectively, yield 

strength and ductility versus tempering temperature.  For the 12.5 mm diameter line of Figure 11.20b, tempering 

temperatures less than about 600°C are required to give a yield strength of at least 1000 MPa.  Furthermore, from 

Figure 11.20c, for the 12.5 mm diameter line, tempering temperatures greater than about 550°C will give ductilities 

greater than 17%EL.  Hence, it is possible to temper this alloy to produce the stipulated minimum yield strength and 

ductility;  the tempering temperature will lie between 550°C and 600°C. 
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 Precipitation Hardening 

 

 11.D14  Copper-rich copper–beryllium alloys are precipitation hardenable. After consulting the portion of 

the phase diagram (Figure 11.30), do the following: 

 (a) Specify the range of compositions over which these alloys may be precipitation hardened. 

 (b) Briefly describe the heat-treatment procedures (in terms of temperatures) that would be used to 

precipitation harden an alloy having a composition of your choosing, yet lying within the range given for part (a). 
 

  Solution 

 This problem is concerned with the precipitation-hardening of copper-rich Cu-Be alloys.  It is necessary for 

us to use the Cu-Be phase diagram (Figure 11.30), which is shown below. 

 

 

 

 (a)  The range of compositions over which these alloys may be precipitation hardened is between 

approximately 0.2 wt% Be (the maximum solubility of Be in Cu at about 300°C) and 2.7 wt% Be (the maximum 

solubility of Be in Cu at 866°C). 

 (b)  The heat treatment procedure, of course, will depend on the composition chosen.  First of all, the 

solution heat treatment must be carried out at a temperature within the α phase region, after which, the specimen is 

quenched to room temperature. Finally, the precipitation heat treatment is conducted at a temperature within the α + 
γ2 phase region. 

 For example, for a 1.5 wt% Be-98.5 wt% Cu alloy, the solution heat treating temperature must be between 

about 600°C (1110°F) and 900°C (1650°F), while the precipitation heat treatment would be below 600°C (1110°F), 
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and probably above 300°C (570°F).  Below 300°C, diffusion rates are low, and heat treatment times would be 

relatively long. 
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 11.D15  A solution heat-treated 2014 aluminum alloy is to be precipitation hardened to have a minimum 

tensile strength of 450 MPa (65,250 psi) and a ductility of at least 15%EL.  Specify a practical precipitation heat 

treatment in terms of temperature and time that would give these mechanical characteristics.  Justify your answer. 
 

  Solution 

 We are asked to specify a practical heat treatment for a 2014 aluminum alloy that will produce a minimum 

tensile strength of 450 MPa (65,250 psi), and a minimum ductility of 15%EL.  From Figure 11.27a, the following 

heat treating temperatures and time ranges are possible to the give the required tensile strength. 

 

 Temperature (°C) Time Range (h) 

 260 0.02-0.2 

 204 0.02-10 

 149 3-600 

 121 > 35-? 

 

With regard to temperatures and times to give the desired ductility [Figure 11.27b]: 

 

 Temperature (°C) Time Range (h) 

 260 < 0.01, > 40 

 204 < 0.15 

 149 < 10 

 121 < 500 

 

From these tabulations, the following may be concluded: 

 It is not possible to heat treat this alloy at 260°C so as to produce the desired set of properties— there is no 

overlap of the two sets of time ranges. 

 At 204°C, the heat treating time would be between 0.02 and 0.15 h;  times lying within this range are 

impractically short. 

 At 149°C, the time would be between 3 and 10 h. 

 Finally, at 121°C, the time range is 35 to about 500 h. 
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 11.D16  Is it possible to produce a precipitation-hardened 2014 aluminum alloy having a minimum tensile 

strength of 425 MPa (61,625 psi) and a ductility of at least 12%EL?  If so, specify the precipitation heat treatment.  

If it is not possible, explain why. 
 

  Solution 

 This problem inquires as to the possibility of producing a precipitation-hardened 2014 aluminum alloy 

having a minimum tensile strength of 425 MPa (61,625 psi) and a ductility of at least 12%EL.  In order to solve this 

problem it is necessary to consult Figures 11.27a and 11.27b.  Below are tabulated the times required at the various 

temperatures to achieve the stipulated tensile strength. 

 

 Temperature (°C) Time Range (h) 

 260 < 0.5 

 204 < 15 

 149 1-1000 

 121 > 35-? 

 

With regard to temperatures and times to give the desired ductility: 

 

 Temperature (°C) Time Range (h) 

 260 < 0.02, > 10 

 204 < 0.4, > 350 

 149 < 20 

 121 < 1000 

 

From these tabulations, the following may be concluded: 

 At 260°C, the heat treating time would need to be less than 0.02 h (1.2 min), which is impractically short. 

 At 204°C, the heat treatment would need to be less than 0.4 h (24 min), which is a little on the short side. 

 At 149°C, the time range would be between 1 and 20 h. 

 Finally, at 121°C, this property combination is possible for virtually all times less than about 1000 h. 
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CHAPTER 12 

 

STRUCTURES AND PROPERTIES OF CERAMICS 

 

PROBLEM SOLUTIONS 

 

 

 Crystal Structures 

 

 12.1  For a ceramic compound, what are the two characteristics of the component ions that determine the 

crystal structure? 
 

  Solution 

 The two characteristics of component ions that determine the crystal structure of a ceramic compound are:  

1) the magnitude of the electrical charge on each ion, and 2) the relative sizes of the cations and anions. 
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 12.2  Show that the minimum cation-to-anion radius ratio for a coordination number of 4 is 0.225. 
 

  Solution 

 In this problem we are asked to show that the minimum cation-to-anion radius ratio for a coordination 

number of four is 0.225.  If lines are drawn from the centers of the anions, then a tetrahedron is formed.  The 

tetrahedron may be inscribed within a cube as shown below. 

 

 

 

The spheres at the apexes of the tetrahedron are drawn at the corners of the cube, and designated as positions A, B, 

C, and D.  (These are reduced in size for the sake of clarity.)  The cation resides at the center of the cube, which is 

designated as point E.  Let us now express the cation and anion radii in terms of the cube edge length, designated as 

a.  The spheres located at positions A and B touch each other along the bottom face diagonal.  Thus, 

 

    

 

AB =  2rA  

 

But 

    

 

(AB)2  =  a2 + a2 = 2a2 

 

or 

 

    

 

AB =  a 2 =  2rA  

And 
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a =  
2rA

2
 

 

There will also be an anion located at the corner, point F (not drawn), and the cube diagonal   

 

AEF  will be related to 

the ionic radii as 

 

    

 

AEF =  2(rA +  rC) 

 

(The line AEF has not been drawn to avoid confusion.)  From the triangle ABF 

 

    

 

(AB)2  +  (FB)2  =  ( AEF)2  

 

But,  

    

 

FB =  a =  
2rA

2
 

and 

 

    

 

AB =  2rA  

from above.  Thus, 

 

    

 

(2rA)2  +  
2rA

2

 

 
 

 

 
 
2

 =  2(rA +  rC)[ ]2
 

 
Solving for the rC/rA ratio leads to 

 

    

 

rC
rA

 =  
6 −  2

2
 =  0.225 
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 12.3  Show that the minimum cation-to-anion radius ratio for a coordination number of 6 is 0.414. [Hint: 

Use the NaCl crystal structure (Figure 12.2), and assume that anions and cations are just touching along cube 

edges and across face diagonals.] 
 

  Solution 

 This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number of 6 

is 0.414 (using the rock salt crystal structure).  Below is shown one of the faces of the rock salt crystal structure in 

which anions and cations just touch along the edges, and also the face diagonals. 

 

 

 

From triangle FGH, 

 

    

 

GF =  2rA 

and 

 

    

 

FH =  GH =  rA +  rC  

 

Since FGH is a right triangle 

 

    

 

(GH )2  +  (FH )2  =  (FG)2  

or 

 

    

 

(rA +  rC)2  +  (rA +  rC)2  =  (2rA)2  

 

which leads to 
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rA +  rC =  
2rA

2
 

 
Or, solving for rC/rA 

 

    

 

rC
rA

 =  
2
2

 −  1
 
 
 

 
 
  =  0.414  
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 12.4  Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is 0.732. 
 

  Solution 

 This problem asks us to show that the minimum cation-to-anion radius ratio for a coordination number of 8 

is 0.732.  From the cubic unit cell shown below 

 

 

 
the unit cell edge length is 2rA, and from the base of the unit cell 

 

    

 

x2 =  (2rA)2  +  (2rA)2  =  8rA
2  

Or 

 

    

 

x =  2rA 2  

 

Now from the triangle that involves x, y, and the unit cell edge 

 

    

 

x2 +  (2rA)2  =  y2 =  (2rA + 2rC)2  

 

    

 

(2rA 2)2  +  4rA
2 =  (2rA +  2rC)2 

 

Which reduces to 

 

    

 

2rA( 3 −  1) =  2rC  

Or 
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rC
rA

=  3 −  1 =  0.732  
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 12.5 On the basis of ionic charge and ionic radii given in Table 12.3, predict crystal structures for the 

following materials: 

 (a) CsI, 

 (b) NiO, 

 (c) KI, and 

 (d) NiS. 

Justify your selections. 
 

  Solution 

 This problem calls for us to predict crystal structures for several ceramic materials on the basis of ionic 

charge and ionic radii. 

 (a)  For CsI, using data from Table 12.3 

 

  

 

r
Cs+

rI−
=  

0.170 nm
0.220 nm

=  0.773  

 

Now, from Table 12.2, the coordination number for each cation (Cs+) is eight, and, using Table 12.4, the predicted 

crystal structure is cesium chloride. 

 (b)  For NiO, using data from Table 12.3 

 

  

 

r
Ni2+

rO2−
=  

0.069 nm
0.140 nm

=  0.493 

 

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride (Table 12.4). 

 (c)  For KI, using data from Table 12.3 

 

  

 

r
K +

rI−
=  

0.138 nm
0.220 nm

=  0.627 

 

The coordination number is six (Table 12.2), and the predicted crystal structure is sodium chloride (Table 12.4). 

 (d)  For NiS, using data from Table 12.3 

 

  

 

r
Ni2+

rS2−
=  

0.069 nm
0.184 nm

=  0.375  

 

The coordination number is four (Table 12.2), and the predicted crystal structure is zinc blende (Table 12.4). 
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 12.6  Which of the cations in Table 12.3 would you predict to form iodides having the cesium chloride 

crystal structure?  Justify your choices. 
 

  Solution 

 We are asked to cite the cations in Table 12.3 which would form iodides having the cesium chloride crystal 

structure.  First of all, the possibilities would include only the monovalent cations Cs+, K+, and Na+.  Furthermore, 
the coordination number for each cation must be 8, which means that 0.732 < rC/rA < 1.0 (Table 12.2).  From Table 

12.3 the rC/rA ratios for these three cations and the I- ion are as follows: 

 

  

 

r
Cs+

rI−
=  

0.170 nm
0.220 nm

=  0.77  

 

  

 

r
K +

rI−
=  

0.138 nm
0.220 nm

=  0.63 

 

  

 

r
Na+

rI−
=  

0.102 nm
0.220 nm

=  0.46  

 

Thus, only cesium will form the CsCl crystal structure with iodine. 
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 12.7  Compute the atomic packing factor for the rock salt crystal structure in which rC/rA = 0.414. 
 

  Solution 

 This problem asks that we compute the atomic packing factor for the rock salt crystal structure when rC/rA 

= 0.414.  From Equation 3.2 

 

    

 

APF =  
VS
VC

 

 
With regard to the sphere volume, VS, there are four cation and four anion spheres per unit cell.  Thus, 

 

  

 

VS  =  (4)
4
3

π rA
3 

 
 

 
 
 +  (4)

4
3

π rC
3 

 
 

 
 
  

 
But, since rC/rA = 0.414 

 

    

 

VS  =  
16
3

π rA
3 1 +  (0.414)3[ ]=  (17.94) rA

3 

 
Now, for rC/rA = 0.414 the corner anions in Table 12.2 just touch one another along the cubic unit cell edges such 

that 

 

    

 

VC  =  a3 =  2(rA + rC)[ ]3
 

 

    

 

= 2(rA + 0.414rA)[ ]3
= (22.62) rA

3  

Thus 

 

    

 

APF =  
VS
VC

=  
(17.94) rA

3

(22.62) rA
3

=  0.79  
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 12.8  The zinc blende crystal structure is one that may be generated from close-packed planes of anions. 

 (a) Will the stacking sequence for this structure be FCC or HCP? Why? 

 (b) Will cations fill tetrahedral or octahedral positions? Why? 

 (c) What fraction of the positions will be occupied? 
 

  Solution 

 This question is concerned with the zinc blende crystal structure in terms of close-packed planes of anions. 

 (a)  The stacking sequence of close-packed planes of anions for the zinc blende crystal structure will be the 

same as FCC (and not HCP) because the anion packing is FCC (Table 12.4). 

 (b)  The cations will fill tetrahedral positions since the coordination number for cations is four (Table 

12.4). 

 (c)  Only one-half of the tetrahedral positions will be occupied because there are two tetrahedral sites per 

anion, and yet only one cation per anion. 
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 12.9  The corundum crystal structure, found for Al2O3, consists of an HCP arrangement of O2- ions; the 

Al3+ ions occupy octahedral positions. 

 (a) What fraction of the available octahedral positions are filled with Al3+ ions? 

 (b) Sketch two close-packed O2–planes stacked in an AB sequence, and note octahedral positions that will 

be filled with the Al3+ ions. 
 

  Solution 

 This question is concerned with the corundum crystal structure in terms of close-packed planes of anions. 

 (a)  For this crystal structure, two-thirds of the octahedral positions will be filled with Al3+ ions since there 

is one octahedral site per O2- ion, and the ratio of Al3+ to O2- ions is two-to-three. 

 (b)  Two close-packed O2- planes and the octahedral positions between these planes that will be filled with 

Al3+ ions are sketched below. 
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 12.10  Iron sulfide (FeS) may form a crystal structure that consists of an HCP arrangement of S2- ions. 

 (a) Which type of interstitial site will the Fe2+ ions occupy? 

 (b) What fraction of these available interstitial sites will be occupied by Fe2+ ions? 
 

  Solution 

 (a)  This portion of the problem asks that we specify which type of interstitial site the Fe2+ ions will occupy 
in FeS if the S2- ions form an HCP arrangement.  Since, from Table 12.3, rS2- = 0.184 nm and rFe2+= 0.077 nm, 

then 

 

  

 

r
Fe2+

rS2−
=  

0.077 nm
0.184 nm

=  0.418 

 
Inasmuch as rC/rA is between 0.414 and 0.732, the coordination number for Fe2+ is 6 (Table 12.2);  therefore, 

tetrahedral octahedral positions are occupied. 

 (b)  We are now asked what fraction of these available interstitial sites are occupied by Fe2+ ions. Since 

there is 1 octahedral site per S2- ion, and the ratio of Fe2+ to S2- is 1:1, all of these sites are occupied with Fe2+ ions. 
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 12.11  Magnesium silicate, Mg2SiO4, forms in the olivine crystal structure that consists of an HCP 

arrangement of O2- ions. 

 (a) Which type of interstitial site will the Mg2+ ions occupy?  Why? 

 (b) Which type of interstitial site will the Si4+ ions occupy?  Why? 

 (c) What fraction of the total tetrahedral sites will be occupied? 

 (d) What fraction of the total octahedral sites will be occupied? 
 

  Solution 

 (a) We are first of all asked to cite, for Mg2SiO4, which type of interstitial site the Mg2+ ions will occupy.   

From Table 12.3, the cation-anion radius ratio is 

 

  

 

r
Mg2+

rO2−
=  

0.072 nm
0.140 nm

=  0.514  

 

Since this ratio is between 0.414 and 0.732, the Mg2+ ions will occupy octahedral sites (Table 12.2). 

 (b)  Similarly, for the Si4+ ions 

 

  

 

r
Si4 +

rO2−
=  

0.040 nm
0.140 nm

=  0.286  

 

Since this ratio is between 0.225 and 0.414, the Si4+ ions will occupy tetrahedral sites. 

 (c) For each Mg2SiO4 formula unit, there are four O2- ions, and, therefore, eight tetrahedral sites;  

furthermore, since there is one Si4+ ion per four O2- ions (eight tetrahedral sites), one-eighth of the tetrahedral sites 

will be occupied. 

 (d) Also, inasmuch as the Mg2+ to O2- ratio is 1:2, and there is one octahedral site per O2- ion, one-half of 

these sites will be filled. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 12.12 Using the Molecule Definition Utility found in both “Metallic Crystal Structures and 

Crystallography” and “Ceramic Crystal Structures” modules of VMSE, located on the book’s web site 

[www.wiley.com/college/callister (Student Companion Site)], generate (and print out) a three-dimensional unit cell 

for titanium dioxide, TiO2, given the following: (1) The unit cell is tetragonal with a = 0.459 nm and c = 0.296 nm, 

(2) oxygen atoms are located at the following point coordinates: 

 0.356  0.356  0 0.856  0.144  

 

1

2
 

 0.664  0.664  0 0.144  0.856  

 

1

2
 

and (3) Ti atoms are located at the following point coordinates: 

 0  0  0 1  0  1 

 1  0  0 0  1  1 

 0  1  0 1  1  1 

 0  0  1 

 

1

2
  

 

1

2
  

 

1

2
 

 1  1  0 

 

  Solution 

 First of all, open the “Molecular Definition Utility”;  it may be found in either of “Metallic Crystal 

Structures and Crystallography” or “Ceramic Crystal Structures” modules. 

 In the “Step 1” window, it is necessary to define the atom types, colors for the spheres (atoms), and specify 

atom sizes.  Let us enter “O” as the name for the oxygen ions (since “O” the symbol for oxygen), and “Ti” as the 

name for the titanium ions.  Next it is necessary to choose a color for each atom type from the selections that appear 

in the pull-down menu—for example, “Red” for O and “Light Cyan” for Ti.  In the “Atom Size” window, it is 

necessary to enter an atom/ion size.  In the instructions for this step, it is suggested that the atom/ion diameter in 

nanometers be used.  From the table found inside the front cover of the textbook, the atomic radii for oxygen and 

titanium are 0.140 nm and 0.068 nm, respectively, and, therefore, their ionic diameters are twice these values (i.e., 

0.280 nm and 0.136 nm);  therefore, we enter the values “0.280” and “0.136” for the two atom types.  Now click on 

the “Register” button, followed by clicking on the “Go to Step 2” button. 

 In the “Step 2” window we specify positions for all of the atoms within the unit cell;  their point 

coordinates are specified in the problem statement.  Let’s begin with oxygen.  Click on the red sphere that is located 

to the right of the “Molecule Definition Utility” box.  Some of the point coordinates for the oxygen ions are 

fractional ones;  in these instances, the unit cell lattice parameters--a or c (i.e., 0.459 or 0.296) are multiplied by the 

fraction.  For example, one oxygen ion is located at the 0.856  0.144  

 

1

2
coordinate.  Therefore, the x, y, and z atoms 

positions are (0.856)(0.459) = 0.393, (0.144)(0.459) = 0.066, and 

 

1
2

(0.296) = 0.148, respectively.  Thus, we enter 

“0.393” in the “x” position box, “0.066” in the “y” position box, and “0.148” in the “z” position box.  [Note:  the 
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first two point coordinates relate to the a lattice parameter (0.459 nm), whereas the third applies to the c lattice 

parameter (0.296 nm).]  Next we click on the “Register Atom Position” button.  Now we repeat the procedure for 

the remaining oxygen ions 

 After this step has been completed, it is necessary to specify positions for the titanium ions.  To begin, we 

click on the light cyan sphere that is located next to the “Molecule Definition Utility” box.  One Ti ion will be 

positioned at the origin of the coordinate system—i.e., its point coordinates are 0 0 0, and, therefore, we enter a “0” 

(zero) in each of the “x”, “y”, and “z” atom position boxes.  Next we click on the “Register Atom Position” button.  

And the enter the coordinate for all of the other titanium ions 

 

 For the oxygen ions, x, y, and z atom position entries for the 4 sets of point coordinates are as follows: 

 0.163, 0.163, 0 

 0.305, 0.305, 0 

 0.393, 0.066, 0.148 

 0.066, 0.393, 0.148 

 

 Now, for the titanium ions, the x, y, and z atom position entries for all 9 sets of point coordinates are as 

follows: 

 0, 0, 0 

 0.459, 0, 0 

 0, 0.459, 0 

 0, 0, 0.296 

 0.459, 0.459, 0 

 0.459, 0, 0.296 

 0, 0.459, 0.296 

 0.459, 0.459, 0.296 

 0.230, 0.230, 0.148 

 

 In Step 3, we may specify which atoms are to be represented as being bonded to one another, and which 

type of bond(s) to use (single solid, single dashed, double, and triple are possibilities), or we may elect to not 

represent any bonds at all (in which case we are finished).  If it is decided to show bonds, probably the best thing to 

do is to represent unit cell edges as bonds.  Your resulting image may be rotated by using mouse click-and-drag 

 Your image should appear as the following screen shot. 
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Here the darker spheres represent titanium ions, while oxygen ions are depicted by the lighter balls. 
 

 [Note:  Unfortunately, with this version of the Molecular Definition Utility, it is not possible to save either the data 

or the image that you have generated.  You may use screen capture (or screen shot) software to record and store 

your image.] 
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 12.13  Calculate the density of FeO, given that it has the rock salt crystal structure. 
 

  Solution 

 We are asked to calculate the theoretical density of FeO.  This density may be computed using Equation 

(12.1) as 

 

  

 

ρ  =  
′ n AFe +  AO( )

VC N A
 

 

Since the crystal structure is rock salt, n' = 4 formula units per unit cell.  Using the ionic radii for Fe2+ and O2- from 

Table 12.3, the unit cell volume is computed as follows: 

 

  

 

VC = a3 =  2r
Fe2+  +  2r

O2-( )3
 =  2 (0.077  nm)  +  2 (0.140  nm)[ ]3

 

 

 

=  0.0817 
nm3

unit cell
=  8.17 ×  10-23 cm3

unit cell
 

 

Thus, 

 

 

ρ  =  
(4 formula units/unit cell)(55.85 g/mol +  16.00 g/mol)

8.17 ×  10-23  cm3/unit cell( ) 6.022 ×  1023  formula units/mol( )
 

 

= 5.84 g/cm3 
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 12.14  Magnesium oxide has the rock salt crystal structure and a density of 3.58 g/cm3. 

 (a) Determine the unit cell edge length. 

 (b) How does this result compare with the edge length as determined from the radii in Table 12.3, 

assuming that the Mg2+ and O2- ions just touch each other along the edges? 
 

  Solution 

 (a)  This part of the problem calls for us to determine the unit cell edge length for MgO.  The density of 

MgO is 3.58 g/cm3 and the crystal structure is rock salt.  From Equation 12.1 

 

    

 

ρ  =  
′ n ( AMg +  AO)

VC N A
 =  

′ n (AMg +  AO)
a3 N A

 

 

Or, solving for a 

 

  

 

a  =  
′ n (AMg +  AO)

ρ N A

 

 
 
 

 

 
 
 

1/ 3

 

 

Inasmuch as there are 4 formula units per unit cell for the rock salt crystal structure, and the atomic weights of 

magnesium and oxygen are 24.31 and 16.00 g/mol, respectively, when we solve for a from the above equation 

 

 

a =  
(4 formula units/unit cell)(24.31 g/mol +  16.00 g/mol)

(3.58 g/cm3)(6.022 ×  1023 formula units/mol)
 

 
 

 

 
 
1/ 3

 

 

 

=  4.21 ×  10 -8  cm =  0.421 nm 

 

 (b)  The edge length is determined from the Mg2+ and O2- radii for this portion of the problem.  Now for 

the rock salt crystal structure 

 

  

 

a =  2rMg2+  +  2rO2-  

 

From Table 12.3 

 

  

 

a =  2(0.072  nm) +  2(0.140  nm) =  0.424  nm 
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 12.15  Compute the theoretical density of diamond given that the C—C distance and bond angle are 0.154 

nm and 109.5°, respectively.  How does this value compare with the measured density? 
 

  Solution 

 This problem asks that we compute the theoretical density of diamond given that the C—C distance and 

bond angle are 0.154 nm and 109.5°, respectively.  The first thing we need do is to determine the unit cell edge 

length from the given C—C distance.  The drawing below shows the cubic unit cell with those carbon atoms that 

bond to one another in one-quarter of the unit cell. 

 

 

From this figure, φ is one-half of the bond angle or φ = 109.5°/2 = 54.75°, which means that 

 

  

 

θ =  90° −  54.75° =  35.25° 

 

since the triangle shown is a right triangle.  Also, y = 0.154 nm, the carbon-carbon bond distance. 

Furthermore, x = a/4, and therefore, 

 

    

 

x =  
a
4

=  y sin θ 

Or 

    

 

a =  4y sin θ =  (4)(0.154  nm)(sin 35.25°) =  0.356  nm  

 

= 3.56 × 10-8 cm 

 

The unit cell volume, VC is just a3, that is 

 

  

 

VC  =  a3 =  (3.56 ×  10-8  cm)3  =  4.51 × 10−23 cm3 
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We must now utilize a modified Equation 12.1 since there is only one atom type.  There are 8 equivalent atoms per 

unit cell, and therefore 

 

  

 

ρ =  
nÕAC

VC N A
 

 

 

=  
(8 atoms/unit cell)(12.01 g/g - atom)

(4.51 ×  10-23  cm3/unit cell)(6.022 ×  1023  atoms/g - atom)
 

 

= 3.54 g/cm3 

 

The measured density is 3.51 g/cm3. 
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 12.16  Compute the theoretical density of ZnS given that the Zn—S distance and bond angle are 0.234 nm 

and 109.5°, respectively. How does this value compare with the measured density? 
 

  Solution 

 This problem asks that we compute the theoretical density of ZnS given that the Zn—S distance and bond 

angle are 0.234 nm and 109.5°, respectively.  The first thing we need do is to determine the unit cell volume from 

the given Zn—S distance.  From the previous problem, the unit cell volume VC is just a3, a being the unit cell edge 

length, and 

 

    

 

VC  =  (4y sin θ)3 =  (4)(0.234 nm)(sin 35.25°)[ ]3 

 

= 0.1576 nm3 = 1.576 × 10-22 cm3 

 

Now we must utilize Equation 12.1 with n' = 4 formula units, and AZn and AS being 65.41 and 32.06 g/mol, 

respectively.  Thus 

 

    

 

ρ =
n'Ê(AZn  +  AS)

VC N A
 

 

 

=  
(4 formula units/unit cell)(65.41 g/mol +  32.06 g/mol)

(1.576 ×  10-22  cm3/unit cell)(6.022 ×  1023  formula units/mol)
 

 

= 4.11 g/cm3 

 

The measured value of the density is 4.10 g/cm3. 
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 12.17  Cadmium sulfide (CdS) has a cubic unit cell, and from x-ray diffraction data it is known that the cell 

edge length is 0.582 nm.  If the measured density is 4.82 g/cm3, how many Cd2+ and S2- ions are there per unit cell? 
 

  Solution 

 We are asked to determine the number of Cd2+ and S2- ions per unit cell for cadmium sulfide (CdS).  For 

CdS, a = 0.582 nm and ρ = 4.82 g/cm3.  Solving for   

 

n'  from Equation 12.1, we get 

 

 

′ n  =  
ρVC NA

ACd + AS
 =  

ρa3NA

ACd + AS
 

 

 

=  
(4.82 g/cm3)(5.82 ×  10−8 cm)3(6.022 ×  1023 formula units /mol)

(112.41 g/mol + 32.06 g/mol)
 

 

= 3.96 or almost 4 

 

Therefore, there are four Cd2+ and four S2- per unit cell. 
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 12.18  (a) Using the ionic radii in Table 12.3, compute the theoretical density of CsCl. (Hint: Use a 

modification of the result of Problem 3.3.) 

 (b) The measured density is 3.99 g/cm3. How do you explain the slight discrepancy between your 

calculated value and the measured one? 
 

  Solution 

 (a)  We are asked to compute the density of CsCl.  Modifying the result of Problem 3.3, we get 

 

  

 

a =  
2r

Cs+ + 2r
Cl−

3
=  

2 (0.170  nm) + 2 (0.181 nm)
3

 

 

= 0.405 nm = 4.05 × 10-8 cm 

 

From Equation 12.1 

 

  

 

ρ  =  ′ n (ACs +  ACl)
VC N A

 =  ′ n (ACs +  ACl)
a3 N A

 

 

For the CsCl crystal structure, n' = 1 formula unit/unit cell, and thus 

 

 

ρ  =  
(1 formula unit/unit cell)(132.91 g/mol +  35.45 g/mol)

(4.05 ×  10-8  cm)3/unit cell(6.022 ×  1023  formula units/mol)
 

 

= 4.21 g/cm3 

 

 (b)  This value of the density is greater than the measured density (3.99 g/cm3).  The reason for this 

discrepancy is that the ionic radii in Table 12.3, used for this computation, were for a coordination number of six, 

when, in fact, the coordination number of both Cs+ and Cl-
 
is eight.  The ionic radii should be slightly greater, 

leading
 
to a larger VC value, and a lower density. 
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 12.19  From the data in Table 12.3, compute the theoretical density of CaF2, which has the fluorite 

structure. 
 

  Solution 

 A unit cell of the fluorite structure is shown in Figure 12.5.  It may be seen that there are four CaF2 units 

per unit cell (i.e., n' = 4 formula units/unit cell).  Assume that for each of the eight small cubes in the unit cell 

 

  

 

a =  
2r

Ca2+ + 2r
F−

3
 

 

and, from Table 12.3 

 

  

 

a =  
2 (0.100  nm) + 2 (0.133 nm)

3
=  0.269  nm =  2.69 ×  10-8  cm  

 

The volume of the unit cell is just 

 

  

 

VC =  (2a)3 =  (2)(2.69 ×  10-8  cm)[ ]3
= 1.56 × 10−22 cm3 

 

Thus, from Equation 12.1 

 

    

 

ρ =
n'Ê( ACa + 2AF)

VC N A
 

 

 

=
(4 formula units/unit cell) 40.08 g/mol +  (2)(19.00 g/mol)[ ]

(1.56 ×  10-22  cm3/unit cell)( 6.022 ×  1023 formula units/mol)
 

 

= 3.33 g/cm3 

 

The measured density is 3.18 g/cm3. 
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 12.20  A hypothetical AX type of ceramic material is known to have a density of 2.65 g/cm3 and a unit cell 

of cubic symmetry with a cell edge length of 0.43 nm.  The atomic weights of the A and X elements are 86.6 and 

40.3 g/mol, respectively.  On the basis of this information, which of the following crystal structures is (are) possible 

for this material:  rock salt, cesium chloride, or zinc blende?  Justify your choice(s). 
 

  Solution 

 We are asked to specify possible crystal structures for an AX type of ceramic material given its density 

(2.65 g/cm3), that the unit cell has cubic symmetry with edge length of 0.43 nm (4.3 × 10-8 cm), and the atomic 

weights of the A and X elements (86.6 and 40.3 g/mol, respectively).  Using Equation 12.1 and solving for n' yields 

 

    

 

n' =
ρVC N A

AC +  AA∑∑
 

 

 

=
(2.65 g/cm3) (4.30 ×  10-8  cm)3/unit cell [ ](6.022 ×  1023  formula units/mol)

(86.6 +  40.3) g/mol
 

 

= 1.00 formula units/unit cell 

 

Of the three possible crystal structures, only cesium chloride has one formula unit per unit cell, and therefore, is the 

only possibility. 
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 12.21  The unit cell for MgFe2O4 (MgO-Fe2O3) has cubic symmetry with a unit cell edge length of 0.836 

nm.  If the density of this material is 4.52 g/cm3, compute its atomic packing factor.  For this computation, you will 

need to use ionic radii listed in Table 12.3. 
 

  Solution 

 This problem asks us to compute the atomic packing factor for MgFe2O4 given its density and unit cell 

edge length.  It is first necessary to determine the number of formula units in the unit cell in order to calculate the 

sphere volume.  Solving for n' from Equation 12.1 leads to 

 

    

 

n' =
ρVC N A

AC +  AA∑∑
 

 

 

=
(4.52 g/cm3) (8.36 ×  10-8  cm)3 /unit cell [ ](6.022 ×  1023 formula units/mol)

(1)(24.31 g/mol) +  (2)(55.85 g/mol) +  (4)(16.00 g/mol)
 

 

=  8.0 formula units/unit cell 
 
Thus, in each unit cell there are 8 Mg2+, 16 Fe3+, and 32 O2- ions.  From Table 12.3, rMg2+ = 0.072 nm, rFe3+ = 

0.069 nm, and rO2- = 0.140 nm.  Thus, the total sphere volume in Equation 3.2 (which we denote as VS), is just 

 

  

 

VS  =  (8)
4
3

π
 
 
 

 
 
 (7.2 × 10−9 cm)3 +  (16)

4
3

π
 
 
 

 
 
 (6.9 × 10−9 cm)3 

 

 

+ (32)
4
3

π
 
 
 

 
 
 (1.40 × 10−8 cm)3 

 

= 4.02 × 10-22 cm3 
 

Now, the unit cell volume (VC) is just 

 

  

 

VC = a3 = (8.36 ×  10-8  cm)3 = 5.84 × 10−22 cm3 
 

Finally, the atomic packing factor (APF) from Equation 3.2 is just 
 

  

 

APF =
VS

VC
=

4.02 ×  10-22  cm3

5.84 ×  10-22  cm3
= 0.688 
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 12.22  The unit cell for Cr2O3 has hexagonal symmetry with lattice parameters a = 0.4961 nm and c = 

1.360 nm. If the density of this material is 5.22 g/cm3, calculate its atomic packing factor.  For this computation 

assume ionic radii of 0.062 nm and 0.140 nm, respectively for Cr3+ and O2-. 
 

  Solution 

 This problem asks for us to calculate the atomic packing factor for chromium oxide given values for the a 

and c lattice parameters, and the density.  It first becomes necessary to determine the value of n' in Equation 12.1.  
This necessitates that we calculate the value of VC, the unit cell volume.  In Problem 3.6 it was shown that the area 

of the hexagonal base (AREA) is related to a as 

 

  

 

AREA =  6R2 3 = 6
a
2

 
 
 

 
 
 

2

3 = 1.5a2 3  

 

inasmuch as, for HCP, a = 2R (where R is the atomic radius).  Now, incorporating the value of a provided in the 

problem statement into the above expression leads to 

 

 

AREA = (1.5)(4.961 ×  10-8  cm)2( 3) = 6.39 × 10−15 cm2  

 

The unit cell volume now is just 

 

  

 

VC  =  (AREA)(c) =  (6.39 ×  10-15  cm2)(1.360 ×  10-7  cm) 

 

= 8.70 × 10-22 cm3 

 

Now, solving for n' (Equation 12.1) yields 

 

    

 

n'  =  
ρN AVC

AC +  AA∑∑
 

 

 

=
(5.22 g/cm3)(6.022 ×  1023 formula units/mol)(8.70 ×  10-22  cm3/unit cell)

(2)(52.00 g/mol) +  (3)(16.00g/mol)
 

 

= 18.0 formula units/unit cell 
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Or, there are 18 Cr2O3 units per unit cell, or 36 Cr3+ ions and 54 O2- ions.  As given in the problem statement, the 

radii of these two ion types are 0.062 and 0.140 nm, respectively.  Thus, the total sphere volume in Equation 3.2 

(which we denote as VS), is just 

 

  

 

VS  =  (36)
4
3

π
 
 
 

 
 
 (rCr3+ )3  +  (54)

4
3

π
 
 
 

 
 
 (rO2− )3 

 

 

=  (36)
4
3

π
 
 
 

 
 
 (6.2 × 10−9 cm)3  +  (54)

4
3

π
 
 
 

 
 
 (1.4 × 10−8 cm)3 

 

= 6.57 × 10-22 cm3 

 

Finally, the APF is just 

 

  

 

APF =
VS

VC

=
6.57 ×  10 -22 cm3

8.70 ×  10 -22  cm3
= 0.755 
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 12.23  Compute the atomic packing factor for the diamond cubic crystal structure (Figure 12.15). Assume 

that bonding atoms touch one another, that the angle between adjacent bonds is 109.5°, and that each atom internal 

to the unit cell is positioned a/4 of the distance away from the two nearest cell faces (a is the unit cell edge length). 
 

  Solution 

 We are asked in this problem to compute the atomic packing factor for the diamond cubic crystal structure, 

given that the angle between adjacent bonds is 109.5°.  The first thing that we must do is to determine the unit cell 
volume VC in terms of the atomic radius r.  From Problem 12.15 the following relationship was developed 

 

    

 

a =  4 y sin θ  

 
in which y = 2r and θ = 35.25°.  Furthermore, since the unit cell is cubic, VC = a3;  therefore 

 

    

 

VC = (4y sin θ)3 =  (4)(2r)(sin 35.25°)[ ]3 = 98.43 r3 

 
Now, it is necessary to determine the sphere volume in the unit cell, VS, in terms of r.  For this unit cell (Figure 

12.15) there are 4 interior atoms, 6 face atoms, and 8 corner atoms.  The entirety of the interior atoms, one-half of 

each face atom, and one-eighth of each corner atom belong to the unit cell.  Therefore, there are 8 equivalent atoms 

per unit cell;  hence 

 

    

 

VS  =  (8)
4
3

π r3 
 
 

 
 
 =  33.51 r3 

 

Finally, the atomic packing factor is just 

 

    

 

APF =   
VS
VC

=  
33.51 r3

98.43 r3
=  0.340  
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 12.24  Compute the atomic packing factor for cesium chloride using the ionic radii in Table 12.3 and 

assuming that the ions touch along the cube diagonals. 
 

  Solution 

 We are asked in this problem to compute the atomic packing factor for the CsCl crystal structure.  This 

requires that we take the ratio of the sphere volume within the unit cell and the total unit cell volume.  From Figure 

12.3 there is the equivalence of one Cs and one Cl ion per unit cell;  the ionic radii of these two ions are 0.170 nm 
and 0.181 nm, respectively (Table 12.3).  Thus, the sphere volume, VS, is just 

 

    

 

VS  =  
4
3

(π) (0.170 nm)3 +  (0.181 nm)3[ ] =  0.0454  nm3 

 

For CsCl the unit cell edge length, a, in terms of the atomic radii is just 

 

    

 

a  =  
2r

Cs+  +  2r
Cl-

3
 =  

2(0.170 nm) +  2(0.181 nm)
3

 

 

= 0.405 nm 

 

Since VC = a3 

 

VC = (0.405 nm)3 = 0.0664 nm3 

 

And, finally the atomic packing factor is just 

 

    

 

APF =
VS
VC

=
0.0454 nm3

0.0664 nm3 = 0.684  
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 12.25  For each of the following crystal structures, represent the indicated plane in the manner of Figures 

3.11 and 3.12, showing both anions and cations: 

 (a) (100) plane for the rock salt crystal structure, 

 (b) (110) plane for the cesium chloride crystal structure, 

 (c) (111) plane for the zinc blende crystal structure, and 

 (d) (110) plane for the perovskite crystal structure. 
 

  Solution 

 (a)  A (100) plane for the rock salt crystal structure would appear as 

 

 

 (b)  A (110) plane for the cesium chloride crystal structure would appear as 

 

 

 

 (c)  A (111) plane for the zinc blende crystal structure would appear as 
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 (d)  A (110) plane for the perovskite crystal structure would appear as 
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 Silicate Ceramics 

 

 12.26  In terms of bonding, explain why silicate materials have relatively low densities. 
 

  Solution 

 The silicate materials have relatively low densities because the atomic bonds are primarily covalent in 

nature (Table 12.1), and, therefore, directional.  This limits the packing efficiency of the atoms, and therefore, the 

magnitude of the density. 
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 12.27  Determine the angle between covalent bonds in an 

 

SiO4
4−  tetrahedron. 

 

  Solution 

 This problem asks for us to determine the angle between covalent bonds in the   

 

SiO4
4−  tetrahedron.  Below 

is shown one such tetrahedron situated within a cube. 
 

 

 

Now if we extend the base diagonal from one corner to the other, it is the case that 

 

    

 

(2y)2 = a2 + a2 = 2a2  

or 

    

 

y =  
a 2

2
 

 

Furthermore, x = a/2, and 
 

    

 

tan θ =  
x
y

=
a /2

a 2 /2
=

1
2

 

 

From which 

  

 

θ = tan-1 1
2

 
 
 

 
 
 = 35.26°  

 

Now, solving for the angle φ 
 

 

φ =  180° −  90° − 35.26° =  54.74° 

 

Finally, the bond angle is just 2φ, or 2φ = (2)(54.74°) = 109.48°. 
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 Imperfections in Ceramics 

 

 12.28  Would you expect Frenkel defects for anions to exist in ionic ceramics in relatively large 

concentrations? Why or why not? 
 

  Solution 

 Frenkel defects for anions would not exist in appreciable concentrations because the anion is quite large 

and is highly unlikely to exist as an interstitial. 
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 12.29  Calculate the fraction of lattice sites that are Schottky defects for sodium chloride at its melting 

temperature (801°C). Assume an energy for defect formation of 2.3 eV. 
 

  Solution 

 We are asked in this problem to calculate the fraction of lattice sites that are Schottky defects for NaCl at 

its melting temperature (801°C), assuming that the energy for defect formation is 2.3 eV.  In order to solve this 
problem it is necessary to use Equation 12.3 and solve for the Ns/N ratio.  Rearrangement of this expression and 

substituting values for the several parameters leads to 

 

  

 

N s

N
 =  exp − 

Qs

2kT

 
 
 

 
 
  

 

 

=  exp − 
2.3 eV

(2)(8.62 ×10-5  eV/K)(801 +  273 K)

 

 
 

 

 
  

 

= 4.03 × 10-6 
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 12.30  Calculate the number of Frenkel defects per cubic meter in zinc oxide at 1000°C.  The energy for 

defect formation is 2.51 eV, while the density for ZnO is 5.55 g/cm3 at (1000°C). 
 

  Solution 

 This problem asks that we compute the number of Frenkel defects per cubic meter in zinc oxide at 1000°C.  

Solution of this problem is possible using Equation 12.2.  However, we must first determine the value of N, the 

number of lattice sites per cubic meter, which is possible using a modified form of Equation 4.2;  thus 

 

  

 

N =  
N Aρ

AZn +  AO
 

 

 

=  
(6.022 ×  1023 atoms/mol)(5.55 g/cm3)(106  cm3/m3)

65.41 g/mol +  16.00 g/mol
 

 

= 4.11 × 1028 lattice sites/m3 

 
And, finally the value of Nfr is computed using Equation 12.2 as 

 

  

 

N fr  =  N exp − 
Q fr

2kT

 

 
 

 

 
  

 

 

=  (4.11 ×  1028  lattice sites/m3) exp - 
2.51 eV

(2)(8.62 ×  10-5  eV/K)(1000 +  273 K)

 

 
 

 

 
  

 

= 4.43 × 1023 defects/m3 
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 12.31  Using the data given below that relate to the formation of Schottky defects in some oxide ceramic 

(having the chemical formula MO), determine the following: 

 (a) The energy for defect formation (in eV), 

 (b) The equilibrium number of Schottky defects per cubic meter at 1000°C, and 

 (c) The identity of the oxide (i.e., what is the metal M?) 

 

T (°C) ρ (g/cm3) Ns (m
–3) 

750 5.50 9.21 × 1019 

1000 5.44 ? 

1250 5.37 5.0 × 1022 

 
  Solution 

 This problem provides for some oxide ceramic, at temperatures of 750°C and 1250°C, values for density 

and the number of Schottky defects per cubic meter.  The (a) portion of the problem asks that we compute the 

energy for defect formation.  To begin, let us combine a modified form of Equation 4.2 and Equation 12.3 as 

 

    

 

N s =  N exp − 
Qs
2kT

 

 
 

 

 
  

 

  

 

=  
N Aρ

AM +  AO

 

 
 

 

 
  exp − 

Qs

2kT

 
 
 

 
 
  

 
Inasmuch as this is a hypothetical oxide material, we don't know the atomic weight of metal M, nor the value of Qs 

in the above equation.  Therefore, let us write equations of the above form for two temperatures, T1 and T2.  These 

are as follows: 

 

 
  

 

N s1 =  
N Aρ1

AM +  AO

 

 
 

 

 
  exp − 

Qs

2kT1

 

 
 

 

 
  (12.S1a) 

 

 
  

 

N s2 =  
N Aρ2

AM +  AO

 

 
 

 

 
  exp − 

Qs

2kT2

 

 
 

 

 
  (12.S1b) 

 

Dividing the first of these equations by the second leads to 
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N s1

N s2
=  

N Aρ1

AM +  AO

 

 
 

 

 
  exp − 

Qs

2kT1

 

 
 

 

 
 

N Aρ2

AM +  AO

 

 
 

 

 
  exp − 

Qs

2kT2

 

 
 

 

 
 

 

 

which, after some algebraic manipulation, reduces to the form 

 

 

    

 

N s1
N s2

=  
ρ1
ρ2

 exp − 
Qs
2k

1
T1

 −  
1

T2

 

 
  

 

 
  

 

 
 
 

 

 
 
 
 (12.S2) 

 

Now, taking natural logarithms of both sides of this equation gives 

 

  

 

ln  
N s1

N s2

 

 
 

 

 
 =  ln 

ρ1

ρ2

 

 
 

 

 
  −  

Qs

2k
1
T1

 −  
1
T2

 

 
 

 

 
  

 
and solving for Qs leads to the expression 

 

  

 

Qs  =  

−2k ln
N s1

N s2

 

 
 

 

 
  −  ln

ρ1

ρ2

 

 
 

 

 
 

 

 
 

 

 
 

1
T1

 −  
1
T2

 

 
Let us take T1 = 750°C and T2 = 1250°C, and we may compute the value of Qs as 

 

  

 

Qs  =  

−(2)(8.62 ×  10-5  eV/K) ln  
9.2 ×  1019  m-3

5.0 ×  1022  m-3

 

 
 

 

 
  −  ln 

5.50 g/cm3

5.37 g/cm3

 

 
 

 

 
 

 

 
 
 

 

 
 
 

1
750 +  273 K

 −  
1

1250 +  273 K

 

 

= 3.40 eV 

 
 (b)  It is now possible to solve for Ns at 1000°C using Equation 12.S2 above.  This time let's take T1 = 

1000°C and T2 = 750°C.  Thus, solving for Ns1, substituting values provided in the problem statement and Qs 

determined above yields 

 

    

 

N s1 =  
N s2 ρ1

ρ2
 exp − 

Qs
2k

1
T1

 −  
1

T2
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=  
(9.2 ×  1019  m-3)( 5.44 g/cm3)

5.50 g/cm3
 exp − 3.40 eV

(2)(8.62 ×  10-5  eV/K)

1
1000 +  273 K

 −  
1

750 +  273 K

 
 
 

 
 
 

 

 
 

 

 
  

 

= 4.0 x 1021 m-3 

 

 (c)  And, finally, we want to determine the identity of metal M.  This is possible by computing the atomic 
weight of M (AM) from Equation 12.S1a.  Rearrangement of this expression leads to 

 

  

 

  
N Aρ1

AM +  AO

 

 
 

 

 
  =  N s1exp 

Qs

2kT1

 

 
 

 

 
  

 

And, after further algebraic manipulation 

 

  

 

  
N Aρ1

N s1exp 
Qs

2kT1

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

 =  AM +  AO  

 
And, solving this expression for AM gives 

 

  

 

 AM =   
N Aρ1

N s1exp 
Qs

2kT1

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

 −  AO  

 
Now, assuming that T1 = 750°C, the value of AM is 

 

  

 

 AM =   
(6.022 ×  1023 ions/mol)( 5.50 g/cm3)(106  cm3 /m3)

(9.2 ×  1019  ions/m3) exp 
3.40 eV

(2)(8.62 ×  10-5  eV/K)(750 +  273 K)

 

 
 

 

 
 

 

 
  

 
 
 

 

 
  

 
 
 

 −   16.00 g/mol  

 

= 136.7 g/mol 

 

Upon consultation of the periodic table in Figure 2.6, the divalent metal (i.e., that forms M2+ ions) that has an 

atomic weight closest to 136.7 g/mol is barium.  Thus, this metal oxide is BaO. 
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 12.32  In your own words, briefly define the term “stoichiometric.” 

 
  Solution 

 Stoichiometric means having exactly the ratio of anions to cations as specified by the chemical formula for 

the compound. 
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 12.33  If cupric oxide (CuO) is exposed to reducing atmospheres at elevated temperatures, some of the 

Cu2+ ions will become Cu+. 

 (a) Under these conditions, name one crystalline defect that you would expect to form in order to maintain 

charge neutrality. 

 (b) How many Cu+ ions are required for the creation of each defect? 

 (c) How would you express the chemical formula for this nonstoichiometric material? 

 
  Solution 

 (a)  For a Cu2+O2- compound in which a small fraction of the copper ions exist as Cu+, for each Cu+ 

formed there is one less positive charge introduced (or one more negative charge).  In order to maintain charge 

neutrality, we must either add an additional positive charge or subtract a negative charge.  This may be 

accomplished be either creating Cu2+ interstitials or O2- vacancies. 

 (b)  There will be two Cu+ ions required for each of these defects. 
 (c)  The chemical formula for this nonstoichiometric material is Cu1+xO or CuO1-x, where x is some small 

fraction. 
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 12.34  (a) Suppose that Li2O is added as an impurity to CaO. If the Li+ substitutes for Ca2+, what kind of 

vacancies would you expect to form? How many of these vacancies are created for every Li+ added? 

 (b) Suppose that CaCl2 is added as an impurity to CaO. If the Cl- substitutes for O2-, what kind of 

vacancies would you expect to form?  How many of the vacancies are created for every Cl- added? 

 
  Solution 

 (a) For Li+ substituting for Ca2+ in CaO, oxygen vacancies would be created.  For each Li+ substituting for 

Ca2+, one positive charge is removed;  in order to maintain charge neutrality, a single negative charge may be 

removed.  Negative charges are eliminated by creating oxygen vacancies, and for every two Li+ ions added, a single 

oxygen vacancy is formed. 

 (b)  For Cl- substituting for O2- in CaO, calcium vacancies would be created.  For each Cl- substituting for 

an O2-, one negative charge is removed;  in order to maintain charge neutrality, two Cl- ions will lead to the 

formation of one calcium vacancy. 
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 12.35  What point defects are possible for Al2O3 as an impurity in MgO?  How many Al3+ ions must be 

added to form each of these defects? 

 
  Solution 

 For every Al3+ ion that substitutes for Mg2+ in MgO, a single positive charge is added.  Thus, in order to 

maintain charge neutrality, either a positive charge must be removed or a negative charge must be added. 

 Negative charges are added by forming O2- interstitials, which are not likely to form. 

 Positive charges may be removed by forming Mg2+ vacancies, and one magnesium vacancy would be 

formed for every two Al3+ ions added. 
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 Ceramic Phase Diagrams 

 

 12.36  For the ZrO2–CaO system (Figure 12.26), write all eutectic and eutectoid reactions for cooling. 

 
  Solution 

 There is only one eutectic for the portion of the ZrO2-CaO system shown in Figure 12.26.  It occurs at 

approximately 2250°C and 23.5 wt% CaO, and, upon cooling, the reaction is 

 

  

 

Liquid →  cubic ZrO2 +  CaZrO3  

 

There are two eutectoids.  One occurs at about 1000°C and about 2 wt% CaO;  its reaction upon cooling is as 

follows: 

 

  

 

tetragonal →  monoclinic ZrO2 +  cubic ZrO2  

 

The second eutectoid occurs at about 850°C and 7 wt% CaO.  This reaction is 

 

  

 

cubic →  monoclinic ZrO2 +  CaZr4O9  
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 12.37  From Figure 12.25, the phase diagram for the MgO–Al2O3 system, it may be noted that the spinel 

solid solution exists over a range of compositions, which means that it is nonstoichiometric at compositions other 

than 50 mol% MgO–50 mol% Al2O3. 

 (a) The maximum nonstoichiometry on the Al2O3-rich side of the spinel phase field exists at about 2000°C 

(3630°F) corresponding to approximately 82 mol% (92 wt%) Al2O3. Determine the type of vacancy defect that is 

produced and the percentage of vacancies that exist at this composition. 

 (b) The maximum nonstoichiometry on the MgO-rich side of the spinel phase field exists at about 2000°C 

(3630°F) corresponding to approximately 39 mol% (62 wt%) Al2O3. Determine the type of vacancy defect that is 

produced and the percentage of vacancies that exist at this composition. 

 
  Solution 

 (a)  For this portion of the problem we are to determine the type of vacancy defect that is produced on the 
Al2O3-rich side of the spinel phase field (Figure 12.25) and the percentage of these vacancies at the maximum 

nonstoichiometry (82 mol% Al2O3).  On the alumina-rich side of this phase field, there is an excess of Al3+ ions, 

which means that some of the Al3+  ions substitute for Mg2+ ions.  In order to maintain charge neutrality, Mg2+ 

vacancies are formed, and for every Mg2+ vacancy formed, two Al3+ ions substitute for three Mg2+ ions. 

 Now, we will calculate the percentage of Mg2+ vacancies that exist at 82 mol% Al2O3.  Let us arbitrarily 

choose as our basis 50 MgO-Al2O3 units of the stoichiometric material, which consists of 50 Mg2+ ions and 100 

Al3+ ions.  Furthermore, let us designate the number of Mg2+ vacancies as x, which means that 2x Al3+ ions have 

been added and 3x Mg2+ ions have been removed (two of which are filled with Al3+ ions).  Using our 50 MgO-
Al2O3 unit basis, the number of moles of Al2O3 in the nonstoichiometric material is (100 + 2x)/2;  similarly the 

number of moles of MgO is (50 – 3x).  Thus, the expression for the mol% of Al2O3 is just 

 

    

 

mol% Al2O3 =  

100 + 2x
2

100 + 2x
2

+ (50 − 3x)

 

 

 
 
 

 

 

 
 
 

×  100  

 

If we solve for x when the mol% of Al2O3 = 82, then x = 12.1.  Thus, adding 2x or (2)(12.1) = 24.2 Al3+ ions to the 

original material consisting of 100 Al3+ and 50 Mg2+ ions will produce 12.1 Mg2+ vacancies.  Therefore, the 

percentage of vacancies is just 

 

  

 

% vacancies =
12.1

100 + 50
× 100 = 8.1%  
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 (b)  Now, we are asked to make the same determinations for the MgO-rich side of the spinel phase field, 

for 39 mol% Al2O3.  In this case, Mg2+ ions are substituting for Al3+ ions.  Since the Mg2+ ion has a lower charge 

than the Al3+ ion, in order to maintain charge neutrality, negative charges must be eliminated, which may be 

accomplished by introducing O2- vacancies.  For every 2 Mg2+ ions that substitute for 2 Al3+ ions, one O2- 

vacancy is formed. 

 Now, we will calculate the percentage of O2- vacancies that exist at 39 mol% Al2O3.  Let us arbitrarily 

choose as our basis 50 MgO-Al2O3 units of the stoichiometric material which consists of 50 Mg2+ ions 100 Al3+ 

ions.  Furthermore, let us designate the number of O2- vacancies as y, which means that 2y Mg2+ ions have been 

added and 2y Al3+ ions have been removed.  Using our 50 MgO-Al2O3 unit basis, the number of moles of Al2O3 in 

the nonstoichiometric material is (100 – 2y)/2;  similarly the number of moles of MgO is (50 + 2y).  Thus, the 
expression for the mol% of Al2O3 is just 

 

    

 

mol% Al2O3 =  

100 − 2 y
2

100 − 2 y
2

+ (50 + 2y)

 

 

 
 
 

 

 

 
 
 

× 100 

 

If we solve for y when the mol% of Al2O3 = 39, then y = 7.91.  Thus, 7.91 O2- vacancies are produced in the 

original material that had 200 O2- ions.  Therefore, the percentage of vacancies is just 

 

  

 

% vacancies =
7.91
200

× 100 = 3.96%  
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 12.38  When kaolinite clay [Al2(Si2O5)(OH)4] is heated to a sufficiently high temperature, chemical water 

is driven off. 

 (a) Under these circumstances, what is the composition of the remaining product (in weight percent 

Al2O3)? 

 (b) What are the liquidus and solidus temperatures of this material 

 
  Solution 

 (a)  The chemical formula for kaolinite clay may also be written as Al2O3–2SiO2-2H2O.  Thus, if we 

remove the chemical water, the formula becomes Al2O3–2SiO2.  The formula weight for Al2O3 is just (2)(26.98 

g/mol) + (3)(16.00 g/mol) = 101.96 g/mol;  and for SiO2 the formula weight is 28.09 g/mol + (2)(16.00 g/mol) = 

60.09 g/mol.  Thus, the composition of this product, in terms of the concentration of Al2O3, CAl2O3
, in weight 

percent is just 

 

    

 

CAl2O3
=

101.96 g /mol
101.96 g /mol + (2)(60.09 g /mol)

× 100 = 45.9 wt%  

 
 (b)  The liquidus and solidus temperatures for this material as determined from the SiO2–Al2O3 phase 

diagram, Figure 12.27, are 1825°C and 1587°C, respectively. 
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 Brittle Fracture of Ceramics 

 

 12.39  Briefly explain 

 (a) why there may be significant scatter in the fracture strength for some given ceramic material, and 

 (b) why fracture strength increases with decreasing specimen size. 

 
  Solution 

 (a)  There may be significant scatter in the fracture strength for some given ceramic material because the 

fracture strength depends on the probability of the existence of a flaw that is capable of initiating a crack;  this 

probability varies from specimen to specimen of the same material. 

 (b)  The fracture strength increases with decreasing specimen size because as specimen size decreases, the 

probably of the existence of a flaw of that is capable of initiating a crack diminishes. 
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 12.40 The tensile strength of brittle materials may be determined using a variation of Equation 8.1.  

Compute the critical crack tip radius for an Al2O3 specimen that experiences tensile fracture at an applied stress of 

275 MPa (40,000 psi). Assume a critical surface crack length of 2 × 10-3 mm and a theoretical fracture strength of 

E/10, where E  is the modulus of elasticity. 

 
  Solution 

 We are asked for the critical crack tip radius for an Al2O3 material. From Equation 8.1 

 

    

 

σm = 2σ0
a

ρt

 

 
  

 

 
  

1/2

 

 
Fracture will occur when σm reaches the fracture strength of the material, which is given as E/10;  thus 

 

    

 

E
10

= 2σ0
a

ρt

 

 
  

 

 
  

1/2

 

 
Or, solving for ρt

 

 

  

 

ρt =
400 aσ0

2

E2
 

 

From Table 12.5, E = 393 GPa, and thus, 

 

  

 

ρt =
(400)(2 × 10−3 mm) (275 MPa)2

(393 × 103 MPa) 2
 

 

= 3.9 × 10-7 mm = 0.39 nm 
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 12.41  The fracture strength of glass may be increased by etching away a thin surface layer.  It is believed 

that the etching may alter surface crack geometry (i.e., reduce crack length and increase the tip radius).  Compute 

the ratio of the original and etched crack tip radii for an eightfold increase in fracture strength if two-thirds of the 

crack length is removed. 

 
  Solution 

 This problem asks that we compute the crack tip radius ratio before and after etching.  Let 

 

    

 

ρt  =  original crack tip radius,  and  

    

 

ρt
' = etched crack tip radius 

 

Also, 

      

 

σ f
' = σ f  

 

    

 

a ' =
a
3

 

 

  

 

σ0
' = 8σ0 

 

 

Solving for 
    

 

ρt
'

ρt
 from the following 

 

      

 

σ f = 2σ0
a

ρt

 

 
  

 

 
  

1/2

= σ f
' = 2σ0

' a '

ρt
'

 

 

 
 
 

 

 

 
 
 

1/2

 

 

yields 

 

  

 

ρt
'

ρt
=

σ0
'

σ0

 

 
 

 

 
 
2

a'

a

 

 
 

 

 
 =

8σ0

σ0

 

 
 

 

 
 
2

a/ 3
a

 
 
 

 
 
 = 21.3 
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 Stress-Strain Behavior 

 

 12.42  A three-point bending test is performed on a glass specimen having a rectangular cross section of 

height d = 5 mm (0.2 in.) and width b = 10 mm (0.4 in.);  the distance between support points is 45 mm (1.75 in.). 

 (a) Compute the flexural strength if the load at fracture is 290 N (65 lb f). 

 (b) The point of maximum deflection Δy occurs at the center of the specimen and is described by 

 

  

 

∆y =
FL3

48EI
 

 

where E is the modulus of elasticity and I is the cross-sectional moment of inertia.  Compute ∆y at a load of 266 N 

(60 lb f). 

 
  Solution 

 (a) For this portion of the problem we are asked to compute the flexural strength for a glass specimen that 

is subjected to a three-point bending test.  The flexural strength (Equation 12.7a) is just 

 

    

 

σ fs =
3Ff L

2bd2
 

 

for a rectangular cross-section.  Using the values given in the problem statement, 

 

  

 

σ fs  =
(3)(290 N)(45 × 10−3 m)

(2)(10 × 10−3 m)(5 × 10−3 m)2
= 7.83 ×  107  N/m2 = 78.3 MPa  (10,660  psi)  

 

 (b)  We are now asked to compute the maximum deflection.  From Table 12.5, the elastic modulus (E) for 

glass is 69 GPa (10 × 106 psi).  Also, the moment of inertia for a rectangular cross section (Figure 12.32) is just 

 

    

 

I =  
bd3

12
 

 

Thus, 

 

  

 

∆y =
FL3

48E
bd3

12

 

 
 

 

 
 

=
FL3

4Ebd3
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=
(266 N)(45 × 10−3 m)3

(4)(69 × 109 N/m2)(10 × 10−3 m)(5 × 10−3 m)3
 

 

= 7.0 × 10-5 m = 7.0 × 10-2 mm  (2.5 × 10-3 in.) 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 12.43  A circular specimen of MgO is loaded using a three-point bending mode.  Compute the minimum 

possible radius of the specimen without fracture, given that the applied load is 425 N (95.5 lb f), the flexural 

strength is 105 MPa (15,000 psi), and the separation between load points is 50 mm (2.0 in.). 

 
  Solution 

 We are asked to calculate the maximum radius of a circular specimen of MgO that is loaded using three-

point bending.  Solving for R from Equation 12.7b 

 

    

 

R =
Ff L

σ fsπ

 

 
 
 

 

 
 
 

1/3

 

 

which, when substituting the parameters stipulated in the problem statement, yields 

 

  

 

R =
(425 N)(50 × 10−3 m)
(105 × 106 N /m2) (π)

 

 
 

 

 
 
1/3

 

 

= 4.0 × 10-3 m = 4.0 mm  (0.16 in.) 
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 12.44  A three-point bending test was performed on an aluminum oxide specimen having a circular cross 

section of radius 3.5 mm (0.14 in.);  the specimen fractured at a load of 950 N (215 lb f) when the distance between 

the support points was 50 mm (2.0 in.).  Another test is to be performed on a specimen of this same material, but 

one that has a square cross section of 12 mm (0.47 in.) length on each edge.  At what load would you expect this 

specimen to fracture if the support point separation is 40 mm (1.6 in.)? 

 
  Solution 

 For this problem, the load is given at which a circular specimen of aluminum oxide fractures when 

subjected to a three-point bending test;  we are then are asked to determine the load at which a specimen of the same 

material having a square cross-section fractures.  It is first necessary to compute the flexural strength of the 
aluminum oxide, Equation 12.7b, and then, using this value, we may calculate the value of Ff in Equation 12.7a.  

From Equation 12.7b 

 

    

 

σ fs =
Ff L

πR3
 

 

 

=
(950 N)(50 × 10−3 m)

(π)(3.5 × 10−3 m)3
= 352 ×  106  N/m2 = 352 MPa   (50,000 psi) 

 
Now, solving for Ff from Equation 12.7a, realizing that b = d = 12 mm, yields 

 

    

 

Ff  =
2σ fsd3

3L
 

 

  

 

=
(2)(352 × 106 N /m2)(12 × 10−3 m)3

(3)(40 × 10−3 m)
= 10,100 N   (2165 lbf )  
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 12.45  (a)  A three-point transverse bending test is conducted on a cylindrical specimen of aluminum oxide 

having a reported flexural strength of 390 MPa (56,600 psi).   If the specimen radius is 2.5 mm (0.10 in.) and the 

support point separation distance is 30 mm (1.2 in.), predict whether or not you would expect the specimen to 

fracture when a load of 620 N (140 lb f) is applied.  Justify your prediction. 

 (b) Would you be 100% certain of the prediction in part (a)? Why or why not? 

 
  Solution 

 (a)  This portion of the problem asks that we determine whether or not a cylindrical specimen of aluminum 

oxide having a flexural strength of 390 MPa (56,600 psi) and a radius of 2.5 mm will fracture when subjected to a 

load of 620 N in a three-point bending test;  the support point separation is given as 30 mm.  Using Equation 12.7b 
we will calculate the value of σ;  if this value is greater than σfs (390 MPa), then fracture is expected to occur.  

Employment of Equation 12.7b yields 

 

  

 

σ =
FL

πR3
 

 

 

=
(620 N)(30 × 10−3 m)

(π)(2.5 × 10−3 m)3
=  379 ×  106  N/m2 = 379  MPa  (53,500 psi)  

 
Since this value is less than the given value of σfs (390 MPa), then fracture is not predicted. 

 (b)  The certainty of this prediction is not 100% because there is always some variability in the flexural 
strength for ceramic materials, and since this value of σ (379 MPa) is relatively close to σfs (390 MPa) then there is 

some chance that fracture will occur. 
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 Mechanisms of Plastic Deformation 

 

 12.46 Cite one reason why ceramic materials are, in general, harder yet more brittle than metals. 

 
  Solution 

 Crystalline ceramics are harder yet more brittle than metals because they (ceramics) have fewer slip 

systems, and, therefore, dislocation motion is highly restricted. 
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 Miscellaneous Mechanical Considerations 

 

 12.47  The modulus of elasticity for beryllium oxide (BeO) having 5 vol% porosity is 310 GPa (45 × 106 

psi). 

 (a) Compute the modulus of elasticity for the nonporous material. 

 (b) Compute the modulus of elasticity for 10 vol% porosity. 

 
  Solution 

 (a) This portion of the problem requests that we compute the modulus of elasticity for nonporous BeO 

given that E = 310 GPa for a material having 5 vol% porosity.  Thus, we solve Equation 12.9 for E0, using P = 0.05, 

which gives 

 

    

 

E0 =
E

1 − 1.9P + 0.9P2
 

 

 

=
310 GPa

1 − (1.9)(0.05) + (0.9)(0.05)2
= 342  GPa   (49.6 ×  106  psi)  

 

 (b)  Now we are asked to determine the value of E at P = 10 vol% (i.e., 0.10).  Using Equation 12.9 we get 

 

    

 

E = E0(1 −  1.9P +  0.9P2)  

 

 

= (342 GPa) 1 −  (1.9)(0.10) +  (0.9)(0.10)2[ ]= 280 GPa  (40.6  ×  106  psi)  
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 12.48  The modulus of elasticity for boron carbide (B4C) having 5 vol% porosity is 290 GPa (42 × 106 psi). 

 (a) Compute the modulus of elasticity for the nonporous material. 

 (b) At what volume percent porosity will the modulus of elasticity be 235 GPa (34 × 106 psi)? 

 
  Solution 

 (a) This portion of the problem requests that we compute the modulus of elasticity for nonporous B4C 

given that E = 290 GPa (42 × 106 psi) for a material having 5 vol% porosity.  Thus, we solve Equation 12.9 for E0, 

using P = 0.05, which gives 

 

    

 

E0 =
E

1 − 1.9P + 0.9P2
 

 

 

=
290 GPa

1 − (1.9)(0.05) + (0.9)(0.05)2
= 320 GPa   (46.3  ×  106  psi)  

 

 (b) Now we are asked to compute the volume percent porosity at which the elastic modulus of B4C is 235 

MPa (34 × 106 psi).  Since from part (a), E0 = 320 GPa, and using Equation 12.9 we get 

 

  

 

E
E0

=
235 MPa
320 MPa

= 0.734 = 1 − 1.9P + 0.9P2  

 

Or 

 

  

 

0.9P2 −  1.9P +  0.266 =  0  

 

Now, solving for the value of P using the quadratic equation solution yields 

 

  

 

P =
1.9 ± (−1.9)2 − (4)(0.9)(0.266)

(2)(0.9)
 

 

The positive and negative roots are 

P+ = 1.96 

P- = 0.151 

 

Obviously, only the negative root is physically meaningful, and therefore the value of the porosity to give the 

desired modulus of elasticity is 15.1 vol%. 
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 12.49  Using the data in Table 12.5, do the following: 

 (a) Determine the flexural strength for nonporous MgO assuming a value of 3.75 for n in Equation 12.10. 

 (b) Compute the volume fraction porosity at which the flexural strength for MgO is 62 MPa (9000 psi). 

 
  Solution 

 (a)  This part of the problem asks us to determine the flexural strength of nonporous MgO assuming that 

the value of n in Equation 12.10 is 3.75.  Taking natural logarithms of both sides of Equation 12.10 yields 

 

    

 

ln σ fs =  lnσ0 −  nP  

 
In Table 12.5 it is noted that for P = 0.05, σfs = 105 MPa.  For the nonporous material P = 0 and, ln σ0 = ln σfff sss .  

Solving for ln σ0 from the above equation and using these data gives 

 

    

 

lnσ0 = lnσ fs +  nP  

 

= ln (105 MPa) + (3.75)(0.05) = 4.841 

 

or σ0 = e4.841 = 127 MPa (18,100 psi) 

 (b)  Now we are asked to compute the volume percent porosity to yield a σfs of 62 MPa (9000 psi).  Taking 

the natural logarithm of Equation 12.10 and solving for P leads to 

 

    

 

P =
ln σ0 − ln σ fs

n
 

 

 

=  
ln (127  MPa)   −   ln (62  MPa)

3.75
 

 

= 0.19 or 19 vol% 
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 12.50 The flexural strength and associated volume fraction porosity for two specimens of the same ceramic 

material are as follows: 

 

σfs (MPa) P 

100 0.05 

50 0.20 

 

 (a) Compute the flexural strength for a completely nonporous specimen of this material. 

 (b) Compute the flexural strength for a 0.10 volume fraction porosity. 

 
  Solution 

 (a)  Given the flexural strengths at two different volume fraction porosities, we are asked to determine the 

flexural strength for a nonporous material.  If the natural logarithm is taken of both sides of Equation 12.10, then 
 

    

 

lnσ fs = lnσ0 −  nP  

 

Using the data provided in the problem statement, two simultaneous equations may be written as 

 

  

 

ln (100 MPa) = ln σ0 − (0.05) n 

 

  

 

ln (50 MPa) = ln σ0 − (0.20) n 

 

Solving for n and σ0 leads to n = 4.62 and σ0 = 126 MPa.  For the nonporous material, P = 0, and, from Equation 

12.10, σ0 = σfs.  Thus, σfs for P = 0 is 126 MPa. 

 (b)  Now, we are asked for σfs at P = 0.10 for this same material.  Utilizing Equation 12.10 yields 

 

    

 

σ fs = σ0 exp (− nP)  

 

 

= (126  MPa) exp − (4.62)(0.10)[ ] 

 

= 79.4 MPa 
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DESIGN PROBLEMS 

 

 Crystal Structures 

 

 12.D1  Gallium arsenide (GaAs) and gallium phosphide (GaP) both have the zinc blende crystal structure 

and are soluble in one another at all concentrations. Determine the concentration in weight percent of GaP that 

must be added to GaAs to yield a unit cell edge length of 0.5570 nm. The densities of GaAs and GaP are 5.316 and 

4.130 g/cm3, respectively. 

 
  Solution 

 This problem asks that we determine the concentration (in weight percent) of GaP that must be added to 

GaAs to yield a unit cell edge length of 0.5570 nm.  The densities of GaAs and GaP were given in the problem as 

5.307 and 4.130 g/cm3, respectively.  To begin, it is necessary to employ Equation (13.1), and solve for the unit cell 

volume, VC, for the GaP-GaAs alloy as 

 

    

 

VC  =  
n' Aave

ρaveN A
 

 

where Aave and ρave are the atomic weight and density, respectively, of the InAs-GaAs alloy.  Inasmuch as both of 

these materials have the zinc blende crystal structure, which has cubic symmetry, VC is just the cube of the unit cell 

length, a.  That is 

 

VC = a3 = (0.5570 nm)3 

 

 

=  (5.570  ×  10−8  cm)3 = 1.728  ×  10−22  cm3 

 
It is now necessary to construct expressions for Aave and ρave in terms of the concentration of indium arsenide, 

CInAs using Equations 4.11a and 4.10a.  For Aave we have 

 

  

 

Aave =  
100

CGaP

AGaP
 +  

(100  −  C
GaP

)
AGaAs

 

 

  

 

=  
100

C
GaP

100.69 g/mol
 +  

(100  −  C
GaP

)
144.64 g/mol
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whereas for ρave 

 

  

 

ρave =  
100

CGaP

ρGaP
 +  

(100  −  CGaP )
ρGaAs

 

 

  

 

=  
100

CGaP

4.130 g/cm3
 +  

(100  −  CGaP )
5.316 g/cm3

 

 

Within the zinc blende unit cell there are four formula units, and thus, the value of n' in Equation 12.1 is 4;  hence, 

this expression may be written in terms of the concentration of GaP in weight percent as follows: 

 

VC = 1.728 × 10-22 cm3 

 

    

 

=  
n' Aave

ρaveN A
 

 

  

 

=  

(4 formula units/unit cell)
100

CGaP

100.69 g/mol
 +  

(100  −  CGaP )
144.64 g/mol

 

 

 
 
 
 

 

 

 
 
 
 

100
CGaP

4.130 g/cm3
 +  

(100  −  CGaP )
5.316 g/cm3

 

 

 
 
 
 

 

 

 
 
 
 

(6.022  ×  1023  formula units/mol)

 

 

 
And solving this expression for CGaP leads to CGaP = 33.7 wt%. 
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 Stress-Strain Behavior 

 

 12.D2  It is necessary to select a ceramic material to be stressed using a three-point loading scheme 

(Figure 12.32).  The specimen must have a circular cross section and a radius of 2.5 mm (0.10 in.), and must not 

experience fracture or a deflection of more than 6.2 × 10-2 mm (2.4 × 10-3 in.) at its center when a load of 275 N (62 

lb f) is applied.  If the distance between support points is 45 mm (1.77 in.), which of the materials in Table 12.5 are 

candidates?  The magnitude of the centerpoint deflection may be computed using the equation supplied in Problem 

12.42. 

 
  Solution 

 This problem asks for us to determine which of the ceramic materials in Table 12.5, when fabricated into 
cylindrical specimens and stressed in three-point loading, will not fracture when a load of 275 N (62 lbf) is applied, 

and also will not experience a center-point deflection of more than 6.2 × 10-2 mm (2.4 × 10-3 in.).  The first of these 

criteria is met by those materials that have flexural strengths greater than the stress calculated using Equation 12.7b.  

According to this expression 
 

    

 

σ fs =
FL

π R3
 

 

 

=
(275 N)(45 × 10−3 m)

(π)(2.5 × 10−3 m)3
= 252 × 106 N /m2 = 252 MPa (35,000 psi)  

 
Of the materials in Table 12.5, the following have flexural strengths greater than this value: Si3N4, ZrO2, SiC, and 

Al2O3 

 For the second criterion we must solve for the magnitude of the modulus of elasticity, E, from the equation 

given in Problem 12.42 where the expression for the cross-sectional moment of inertia appears in Figure 12.32;  that 

is, for a circular cross-section 
  

 

I =
π R4

4
.  Solving for E from these two expressions 

 

    

 

E =
FL3

12 π R4∆y
 

 

 

=
(275 N)(45 × 10−3 m)3

(12)(π)(2.5 × 10−3 m)4(6.2 × 10−5 m)
 

 

= 274 × 109 N/m2  = 274 GPa  (38 × 106 psi) 
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Of those materials that satisfy the first criterion, only Al2O3, Si3N4, and SiC have moduli of elasticity greater than 

this value (Table 12.5), and, therefore, are possible candidates. 
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CHAPTER 13 

 

APPLICATIONS AND PROCESSING OF CERAMICS 

 

PROBLEM SOLUTIONS 

 

 

Glasses 

Glass-Ceramics 

 

 13.1  Cite the two desirable characteristics of glasses. 
 

  Solution 

 Two desirable characteristics of glasses are optical transparency and ease of fabrication. 
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 13.2  (a) What is crystallization? 

 (b) Cite two properties that may be improved by crystallization. 
 

  Solution 

 (a)  Crystallization is the process whereby a glass material is caused to transform to a crystalline solid, 

usually as a result of a heat treatment. 

 (b)  Two properties that may be improved by crystallization are (1) a lower coefficient of thermal 

expansion, and (2) higher strength. 
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 Refractories 

 

 13.3  For refractory ceramic materials, cite three characteristics that improve with and two characteristics 

that are adversely affected by increasing porosity. 
 

  Solution 

 For refractory ceramic materials, three characteristics that improve with increasing porosity are (1) 

decreased thermal expansion and contraction upon thermal cycling, (2) improved thermal insulation, and (3) 

improved resistance to thermal shock.  Two characteristics that are adversely affected are (1) load-bearing capacity 

and (2) resistance to attack by corrosive materials. 
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 13.4  Find the maximum temperature to which the following two magnesia–alumina refractory materials 

may be heated before a liquid phase will appear. 

 (a) A spinel-bonded alumina material of composition 95 wt% Al2O3-5 wt% MgO. 

 (b) A magnesia-alumina spinel of composition 65 wt% Al2O3-35 wt% MgO. 

 Consult Figure 12.25. 
 

  Solution 

 (a)  From Figure 12.25, for a spinel-bonded magnesia material (95 wt% Al2O3-5 wt% MgO), the maximum 

temperature without a liquid phase corresponds to the temperature of the eutectic isotherm on the Al2O3-rich side of 

the phase diagram, which is approximately 2000°C (3630°F). 

 (b) The maximum temperature without the formation of a liquid phase for a magnesia-alumina spinel (65 

wt% Al2O3-35 wt% MgO) lies at the phase boundary between MgAl2O4(ss)-MgAl2O4 + Liquid phase fields (just 

slightly to the left of the congruent melting point at which the two phase boundaries become tangent);  this 

temperature is approximately 2030°C (3685°F). 
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 13.5  Upon consideration of the SiO2–Al2O3 phase diagram, Figure 12.27, for each pair of the following 

list of compositions, which would you judge to be the more desirable refractory? Justify your choices. 

 (a) 20 wt% Al2O3-80 wt% SiO2 and 25 wt% Al2O3-75 wt% SiO2 

 (b) 70 wt% Al2O3-30 wt% SiO2 and 80 wt% Al2O3-20 wt% SiO2 
 

  Solution 

 (a) The 25 wt% Al2O3-75 wt% SiO2 will be more desirable because the liquidus temperature will be 

greater for this composition;  therefore, at any temperature within the mullite + liquid region on the phase diagram, 

there will be a lower fraction of the liquid phase present than for the 20 wt% Al2O3-80 wt% SiO2 composition, and, 

thus, the mechanical integrity will be greater. 

 (b) The 80 wt% Al2O3-20 wt% SiO2 composition will be more desirable because, for this composition, a 

liquid phase does not form until about 1890°C, whereas, for the 70 wt% Al2O3-30 wt% SiO2 material, a liquid 

phase forms at a much lower temperature--1587°C. 
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 13.6  Compute the mass fractions of liquid in the following refractory materials at 1600°C (2910°F): 

 (a) 6 wt% Al2O3-94 wt% SiO2 

 (b) 10 wt% Al2O3-90 wt% SiO2 

 (c) 30 wt% Al2O3-70 wt% SiO2 

 (d) 80 wt% Al2O3-20 wt% SiO2 
 

  Solution 

 This problem calls for us to compute the mass fractions of liquid for two fireclay refractory materials at 
1600°C. In order to solve this problem it is necessary that we use the SiO2-Al2O3 phase diagram (Figure 12.27) in 

conjunction with tie-lines and the lever rule at 1600°C. 
 (a)  For the 6 wt% Al2O3-94 wt% SiO2 composition, the appropriate lever-rule expression is 

 

  

 

WL =  
C0 − CSiO2

CL − CSiO2

 

 
For a tie-line constructed across the SiO2-Liquid phase field at 1600°C 

 CL= 7 wt% Al2O3 

 CSiO2
 = 0 wt% Al2O3 

And, inasmuch as C0 =  6 wt% Al2O3 the mass fraction of liquid using the above lever-rule expression is 

 

  

 

WL =  
6 − 0
7 − 0

= 0.86 

 
 (b)  For the 10 wt% Al2O3-90 wt% SiO2 composition, the appropriate lever-rule expression is 

 

  

 

WL =  
Cmullite −  C0

Cmullite −  CL
 

 

For a tie-line constructed across the Mullite (ss)-Liquid phase field at 1600°C 
 Cmullite = 72 wt% Al2O3 

 CL = 8 wt% Al2O3 

And, inasmuch as C0 =  10 wt% Al2O3 the mass fraction of liquid using the above lever-rule expression is 

 

  

 

WL =  
72 − 10
72 − 8

= 0.97 
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 (c)  For the 30 wt% Al2O3-70 wt% SiO2 composition, the appropriate lever-rule expression is 

 

  

 

WL =  
Cmullite −  C0

Cmullite −  CL
 

 

For a tie-line constructed across the Mullite (ss)-Liquid phase field at 1600°C 
 Cmullite = 72 wt% Al2O3 

 CL = 8 wt% Al2O3 

And, inasmuch as C0 =  30 wt% Al2O3 the mass fraction of liquid using the above lever-rule expression is 

 

  

 

WL =  
72 − 30
72 − 8

= 0.66 

 
 (d)  For the 80 wt% Al2O3-20 wt% SiO2 composition at 1600°C, only alumina and mullite phases are 

present;  thus WL = 0. 
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 13.7  For the MgO–Al2O3 system, what is the maximum temperature that is possible without the formation 

of a liquid phase? At what composition or over what range of compositions will this maximum temperature be 

achieved? 
 

  Solution 

 This problem asks that we specify, for the MgO-Al2O3 system, Figure 12.25, the maximum temperature 

without the formation of a liquid phase;  it is approximately 2800°C which is possible for pure MgO. 
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 Cements 

 

 13.8  Compare the manner in which the aggregate particles become bonded together in clay-based 

mixtures during firing and in cements during setting. 
 

  Solution 

 For clay-based aggregates, a liquid phase forms during firing, which infiltrates the pores between the 

unmelted particles;  upon cooling, this liquid becomes a glass, that serves as the bonding phase. 

 With cements, the bonding process is a chemical, hydration reaction between the water that has been added 

and the various cement constituents.  The cement particles are bonded together by reactions that occur at the particle 

surfaces. 
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 Fabrication and Processing of Glasses and Glass-Ceramics 

 

 13.9  Soda and lime are added to a glass batch in the form of soda ash (Na2CO3) and limestone (CaCO3). 

During heating, these two ingredients decompose to give off carbon dioxide (CO2), the resulting products being 

soda and lime. Compute the weight of soda ash and limestone that must be added to 100 lbm of quartz (SiO2) to 

yield a glass of composition 75 wt% SiO2, 15 wt% Na2O, and 10 wt% CaO. 

 

  Solution 

 We are asked to compute the weight of soda ash and limestone that must be added to 100 lbm of SiO2 to 

yield a glass composition of 75 wt% SiO2, 15 wt% Na2O, and 10 wt% CaO.  Let x equal the weight of Na2O and y 

equal the weight of CaO.  Then, employment of a modified form Equation 4.3, we may write the following 

expressions for the concentrations of Na2O (CNa2O) and CaO (CCaO): 

 

  

 

CNa2O =  15 wt% =  
x

100 +  x +  y
 ×  100 

 

  

 

CCaO =  10 wt% =  
y

100 +  x +  y
 ×  100  

 

Solving for x and y from these two expressions yields x = 20.0 lbm Na2O and y = 13.3 lbm CaO. 

 Now, in order to compute the weights of Na2CO3 and CaCO3, we must employ molecular weights.  The 

molecular weights of Na2CO3 (MWNa2CO3
) and Na2O (MWNa2O) are as follows: 

 

    

 

MWNa2CO3
= 2(ANa ) + AC + 3(AO)  

 

= 2(22.99 g/mol) + 12.01 g/mol + 3(16.00g/mol) = 105.99 g/mol 

 

    

 

MWNa2O = 2(ANa ) + AO 

 

= 2(22.99 g/mol) + 16.00 g/mol = 61.98 g/mol 

 

And, finally, the mass of Na2CO3 (mNa2CO3
) is equal to 

 

  

 

mNa2CO3
 =  (20.0 lbm)

MWNa2CO3

MWNa2O
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=  (20.0  lbm)
105.99 g/mol
61.98 g/mol

 

 
 

 

 
 =  34.2 lbm 

 

Likewise, the molecular weights of CaCO3 (MWCaCO3
) and CaO (MWCaO) are as follows: 

 

    
MWCaCO3

= ACa + AC + 3(AO )  

 
= 40.08 g/mol + 12.01 g/mol + (3)(16.00 g/mol) = 100.09 g/mol 

 

    
MWCaO = ACa + AO  

 

= 40.08 g/mol + 16.00 g/mol = 56.08 g/mol 

 
Such that the mass of CaCO3 (mCaCO3

) is equal to 

 

  

 

mCaCO3
 =  (13.3 lbm)

MWCaCO3

MWCaO

 

 
 

 

 
  

 

 

=  (13.3 lbm)
100.09 g /mol
56.08 g /mol

 

 
 

 

 
 =  23.7 lbm 
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 13.10  What is the distinction between glass transition temperature and melting temperature? 
 

  Solution 

 The glass transition temperature is, for a noncrystalline ceramic, that temperature at which there is a change 

of slope for the specific volume versus temperature curve (Figure 13.6). 

 The melting temperature is, for a crystalline material and upon cooling, that temperature at which there is a 

sudden and discontinuous decrease in the specific-volume-versus-temperature curve. 
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 13.11  Compare the temperatures at which soda–lime, borosilicate, 96% silica, and fused silica may be 

annealed. 
 

  Solution 

 The annealing point is that temperature at which the viscosity of the glass is 1012 Pa-s (1013 P).  From 

Figure 13.7, these temperatures for the several glasses are as follows: 

 

 Glass Annealing Temperature 

 Soda-lime 500°C (930°F) 

 Borosilicate 565°C (1050°F) 

 96% Silica 930°C (1705°F) 

 Fused silica 1170°C (2140°F) 
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 13.12  Compare the softening points for 96% silica, borosilicate, and soda–lime glasses. 
 

  Solution 

 The softening point of a glass is that temperature at which the viscosity is 4 × 106 Pa-s;  from Figure 13.7, 

these temperatures for the 96% silica, borosilicate, and soda-lime glasses are 1540°C (2800°F), 830°C (1525°F), 

and 700°C (1290°F), respectively. 
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 13.13  The viscosity η of a glass varies with temperature according to the relationship 

 

 

η = A exp
Qvis

RT

 
 
 

 
 
  

 

where Qvis is the energy of activation for viscous flow, A is a temperature-independent constant, and R and T are, 

respectively, the gas constant and the absolute temperature. A plot of ln η versus l/T should be nearly linear, and 

with a slope of Qvis/R. Using the data in Figure 13.7, (a) make such a plot for the borosilicate glass, and (b) 

determine the activation energy between temperatures of 500 and 900°C. 
 

  Solution 

 (a)  Below is shown the logarithm viscosity versus reciprocal of temperature plot for the borosilicate glass, 

using the data in Figure 13.7.  The dashed line has been drawn through the data points corresponding to 

temperatures between 500 and 900ºC (as stipulated in the problem statement). 

 

 

 

 
 (b)  The activation energy, Qvis, may be computed according to 
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Qvis =  R
∆ ln η

∆
1
T

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

= R
ln η1 − ln η2

1
T1

−
1
T2

 

 

 
 
 
 

 

 

 
 
 
 
 

 

where R is the gas constant, and 

  

 

∆ ln η

∆
1
T

 
 
 

 
 
 

 is the slope of the dashed line that has been constructed. Taking 1/T1 and 

1/T2 as 0.8 × 10-3 and 1.3 × 10-3 K-1, respectively, then the corresponding values of ln η1 and ln η2 are 10.59 and 

32.50.  Therefore, 

 

  

 

Qvis = R
ln η1 − ln η2

1
T1

−
1
T2

 

 

 
 
 
 

 

 

 
 
  

= (8.31 J/mol − K)
10.59 − 32.50

0.8 × 10−3 K−1 − 1.3 × 10−3 K−1

 

 
 

 

 
  

 

= 364,000 J/mol 
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 13.14 For many viscous materials, the viscosity η may be defined in terms of the expression 

 

  

 

η =  
σ

dε /dt
 

 

where σ and dε/dt are, respectively, the tensile stress and the strain rate. A cylindrical specimen of a soda-lime 

glass of diameter 5 mm (0.2 in.) and length 100 mm (4 in.) is subjected to a tensile force of 1 N (0.224 lb f) along its 

axis.  If its deformation is to be less than 1 mm (0.04 in.) over a week’s time, using Figure 13.7, determine the 

maximum temperature to which the specimen may be heated. 
 

  Solution 

 This problem calls for us to determine the maximum temperature to which a cylindrical specimen of soda-

lime glass may be heated in order that its deformation be less than 1 mm over a week's time.  According to Equation 

6.1 

 

  

 

σ =  
F
A0

=  
1 N

π
5 × 10−3 m

2

 

 
 

 

 
 

2
=  5.09 ×  104  Pa  

 

Also, 

 

    

 

dε
dt

=  

d
∆l
l0

 

 
  

 

 
  

dt
 

 

 

=  
1 mm /100 mm

(1 wk)(7 days /week)(24 h /day)(3600 s /h)
=  1.653 ×  10-8  s-1 

 

Thus, 

 

  

 

η =  
σ

dε /dt
=  

5.09 × 104 Pa

1.653 × 10−8 s−1
=  3.1 ×  1012  Pa - s  

 

From Figure 13.7, the temperature at which the viscosity of the soda-lime glass is 3.1 × 1012 Pa-s is about 500°C 

(930°F). 
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 13.15  (a) Explain why residual thermal stresses are introduced into a glass piece when it is cooled. 

 (b) Are thermal stresses introduced upon heating? Why or why not? 
 

  Solution 

 (a)  Residual thermal stresses are introduced into a glass piece when it is cooled because surface and 

interior regions cool at different rates, and, therefore, contract different amounts;  since the material will experience 

very little, if any deformation, stresses are established. 

 (b)  Yes, thermal stresses will be introduced because of thermal expansion upon heating for the same 

reason as for thermal contraction upon cooling. 
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 13.16  Borosilicate glasses and fused silica are resistant to thermal shock. Why is this so? 
 

  Solution 

 Borosilicate glasses and fused silica are resistant to thermal shock because they have relatively low 

coefficients of thermal expansion;  therefore, upon heating or cooling, the difference in the degree of expansion or 

contraction across a cross-section of a ware that is constructed from these materials will be relatively low. 
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 13.17  In your own words, briefly describe what happens as a glass piece is thermally tempered. 

 

 Thermal tempering of glasses is described in Section 13.9. 
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 13.18  Glass pieces may also be strengthened by chemical tempering. With this procedure, the glass 

surface is put in a state of compression by exchanging some of the cations near the surface with other cations 

having a larger diameter.  Suggest one type of cation that, by replacing Na+, will induce chemical tempering in a 

soda–lime glass. 
 

  Solution 

 Chemical tempering will be accomplished by substitution, for Na+, another monovalent cation with a 

slightly larger diameter.  From Table 12.3, both K+ and Cs+ fill these criteria, having ionic radii of 0.138 and 0.170 

nm, respectively, which are larger than the ionic radius of Na+ (0.102 nm).  In fact, soda-lime glasses are tempered 

by a K+-Na+ ion exchange. 
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 Fabrication and Processing of Clay Products 

 

 13.19  Cite the two desirable characteristics of clay minerals relative to fabrication processes. 
 

  Solution 

 Two desirable characteristics of clay minerals relative to fabrication processes are (1) they become 

hydroplastic (and therefore formable) when mixed with water;  and (2) during firing, clays melt over a range of 

temperatures, which allows some fusion and bonding of the ware without complete melting and a loss of mechanical 

integrity and shape. 
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 13.20  From a molecular perspective, briefly explain the mechanism by which clay minerals become 

hydroplastic when water is added. 
 

  Solution 

 Clays become hydroplastic when water is added because the water molecules occupy regions between the 

layered molecular sheets;  these water molecules essentially eliminate the secondary molecular bonds between 

adjacent sheets, and also form a thin film around the clay particles.  The net result is that the clay particles are 

relatively free to move past one another, which is manifested as the hydroplasticity phenomenon. 
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 13.21  (a) What are the three main components of a whiteware ceramic such as porcelain? 

 (b) What role does each component play in the forming and firing procedures? 
 

  Solution 

 (a)  The three components of a whiteware ceramic are clay, quartz, and a flux. 

 (b)  With regard to the role that each component plays: 

  Quartz acts as a filler material. 

  Clay facilitates the forming operation since, when mixed with water, the mass may be made to 

become either hydroplastic or form a slip. Also, since clays melt over a range of temperatures, the shape of the piece 

being fired will be maintained. 

  The flux facilitates the formation of a glass having a relatively low melting temperature. 
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 13.22  (a) Why is it so important to control the rate of drying of a ceramic body that has been 

hydroplastically formed or slip cast? 

 (b) Cite three factors that influence the rate of drying, and explain how each affects the rate. 
 

  Solution 

 (a)  It is important to control the rate of drying inasmuch as if the rate of drying is too rapid, there will be 

nonuniform shrinkage between surface and interior regions, such that warping and/or cracking of the ceramic ware 

may result. 

 (b)  Three factors that affect the rate of drying are temperature, humidity, and rate of air flow.  The rate of 

drying is enhanced by increasing both the temperature and rate of air flow, and by decreasing the humidity of the 

air. 
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 13.23  Cite one reason why drying shrinkage is greater for slip cast or hydroplastic products that have 

smaller clay particles. 
 

  Solution 

 The reason that drying shrinkage is greater for products having smaller clay particles is because there is 

more particle surface area, and, consequently, more water will surround a given volume of particles.  The drying 

shrinkage will thus be greater as this water is removed, and as the interparticle separation decreases. 
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 13.24  (a) Name three factors that influence the degree to which vitrification occurs in clay-based ceramic 

wares. 

 (b) Explain how density, firing distortion, strength, corrosion resistance, and thermal conductivity are 

affected by the extent of vitrification. 
 

  Solution 

 (a)  Three factors that influence the degree to which vitrification occurs in clay-based ceramic wares are:  

(1) composition (especially the concentration of flux present);  (2) the temperature of firing;  and (3) the time at the 

firing temperature. 

 (b)  Density will increase with degree of vitrification since the total remaining pore volume decreases. 

 Firing distortion will increase with degree of vitrification since more liquid phase will be present at the 

firing temperature. 

 Strength will also increase with degree of vitrification inasmuch as more of the liquid phase forms, which 

fills in a greater fraction of pore volume.  Upon cooling, the liquid forms a glass matrix of relatively high strength. 

 Corrosion resistance normally increases also, especially at service temperatures below that at which the 

glass phase begins to soften.  The rate of corrosion is dependent on the amount of surface area exposed to the 

corrosive medium;  hence, decreasing the total surface area by filling in some of the surface pores, diminishes the 

corrosion rate. 

 Thermal conductivity will increase with degree of vitrification. The glass phase has a higher conductivity 

than the pores that it has filled. 
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 Powder Pressing 

 

 13.25  Some ceramic materials are fabricated by hot isostatic pressing. Cite some of the limitations and 

difficulties associated with this technique. 
 

  Solution 

 The principal disadvantage of hot-isostatic pressing is that it is expensive.  The pressure is applied on a 

pre-formed green piece by a gas.  Thus, the process is slow, and the equipment required to supply the gas and 

withstand the elevated temperature and pressure is costly. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

DESIGN PROBLEM 
 

 13.D1  Some of our modern kitchen cookware is made of ceramic materials. 

 (a) List at least three important characteristics required of a material to be used for this application. 

 (b) Make a comparison of three ceramic materials as to their relative properties and, in addition, to cost. 

 (c) On the basis of this comparison, select the material most suitable for the cookware. 
 

  Solution 

 (a)  Important characteristics that are required of a ceramic material to be used for kitchen cookware are:  

(1) it must have a high resistance to thermal shock (Section 19.5) in order to withstand relatively rapid changes in 

temperature;  (2) it must have a relatively high thermal conductivity;  3)  it must be relatively strong and tough in 

order to endure normal kitchen use;  and 4) it must be nontoxic. 

 (b)  Possible materials worth considering are a common soda-lime glass, a borosilicate (Pyrex) glass, and a 

glass ceramic.  These materials and some of their characteristics are discussed in this chapter.  Using Equation 17.9 

a comparison of the resistance to thermal shock may be made.  The student will need to obtain cost information. 

 (c)  It is left to the student to make this determination and justify the decision. 
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CHAPTER 14 

 

POLYMER STRUCTURES 

 

PROBLEM SOLUTIONS 

 

 

 Hydrocarbon Molecules 

 Polymer Molecules 

 The Chemistry of Polymer Molecules 

 

 14.1  On the basis of the structures presented in this chapter, sketch repeat unit structures for the following 

polymers:  (a) polychlorotrifluoroethylene, and (b) poly(vinyl alcohol). 
 

  Solution 

 The repeat unit structures called for are sketched below. 

 (a)  Polychlorotrifluoroethylene 

 

 

 (b)  Poly(vinyl alcohol) 
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 Molecular Weight 

 

 14.2  Compute repeat unit molecular weights for the following: (a) poly(vinyl chloride), (b) poly(ethylene 

terephthalate), (c) polycarbonate, and (d) polydimethylsiloxane. 
 

  Solution 

 (a) For poly(vinyl chloride), each repeat unit consists of two carbons, three hydrogens, and one chlorine 

(Table 14.3).  If AC, AH and ACl represent the atomic weights of carbon, hydrogen, and chlorine, respectively, then 

 

m = 2(AC) + 3(AH) + (ACl) 

 

= (2)(12.01 g/mol) + (3)(1.008 g/mol) + 35.45 g/mol = 62.49 g/mol 

 

 (b)  For poly(ethylene terephthalate), from Table 14.3, each repeat unit has ten carbons, eight hydrogens, 

and four oxygens.  Thus, 

 

m = 10(AC) + 8(AH) + 4(AO) 

 

= (10)(12.01 g/mol) + (8)(1.008 g/mol) + (4)(16.00 g/mol) = 192.16 g/mol 

 

 (c)  For polycarbonate, from Table 14.3, each repeat unit has sixteen carbons, fourteen hydrogens, and 

three oxygens.  Thus, 

 

m = 16(AC) + 14(AH) + 3(AO) 

 

= (16)(12.01 g/mol) + (14)(1.008 g/mol) + (3)(16.00 g/mol) 

 

= 254.27 g/mol 

 

 (d) For polydimethylsiloxane, from Table 14.5, each repeat unit has two carbons, six hydrogens, one 

silicon and one oxygen.  Thus, 

 

m = 2(AC) + 6(AH) + (ASi) + (AO) 

 

= (2)(12.01 g/mol) + (6)(1.008 g/mol) + (28.09 g/mol) + (16.00 g/mol) = 74.16 g/mol 
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 14.3  The number-average molecular weight of a polypropylene is 1,000,000 g/mol. Compute the degree of 

polymerization. 
 

  Solution 

 We are asked to compute the degree of polymerization for polypropylene, given that the number-average 

molecular weight is 1,000,000 g/mol.  The repeat unit molecular weight of polypropylene is just 

 

m = 3(AC) + 6(AH) 

 

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol 

 

Now it is possible to compute the degree of polymerization using Equation 14.6 as 

 

  

 

DP =
M n
m

=
1,000,000 g/mol

42.08 g/mol
=  23,760  
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 14.4  (a) Compute the repeat unit molecular weight of polystyrene. 

 (b) Compute the number-average molecular weight for a polystyrene for which the degree of 

polymerization is 25,000. 
 

  Solution 

 (a)  The repeat unit molecular weight of polystyrene is called for in this portion of the problem.  For 

polystyrene, from Table 14.3, each repeat unit has eight carbons and eight hydrogens.  Thus, 

 

m = 8(AC) + 8(AH) 

 

= (8)(12.01 g/mol) + (8)(1.008 g/mol) = 104.14 g/mol 

 

 (b)  We are now asked to compute the number-average molecular weight. Since the degree of 

polymerization is 25,000, using Equation 14.6 

 

  

 

M n =  (DP)m = (25,000)(104.14 g/mol) =  2.60 ×  106  g/mol  
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 14.5 Below, molecular weight data for a polypropylene material are tabulated.  Compute (a) the number-

average molecular weight, (b) the weight-average molecular weight, and (c) the degree of polymerization. 

 
Molecular Weight 

Range (g/mol) x i w i 

8,000–16,000 0.05 0.02 

16,000–24,000 0.16 0.10 

24,000–32,000 0.24 0.20 

32,000–40,000 0.28 0.30 

40,000–48,000 0.20 0.27 

48,000–56,000 0.07 0.11 

 
  Solution 

 (a)  From the tabulated data, we are asked to compute   

 

M n, the number-average molecular weight.  This is 

carried out below. 

 

 Molecular wt 
 Range Mean Mi xi xiMi 

 8,000-16,000 12,000 0.05 600 

 16,000-24,000 20,000 0.16 3200 

 24,000-32,000 28,000 0.24 6720 

 32,000-40,000 36,000 0.28 10,080 

 40,000-48,000 44,000 0.20 8800 

 48,000-56,000 52,000 0.07 3640 

    ____________________________ 
    

  

 

M n = xiM i∑ = 33,040 g/mol
 

 

 

 (b)  From the tabulated data, we are asked to compute   

 

M w , the weight-average molecular weight. 

 

 Molecular wt. 
 Range Mean Mi wi wiMi 

 8,000-16,000 12,000 0.02 240 

 16,000-24,000 20,000 0.10 2000 

 24,000-32,000 28,000 0.20 5600 
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 32,000-40,000 36,000 0.30 10,800 

 40,000-48,000 44,000 0.27 11,880 

 48,000-56,000 52,000 0.11 5720 

    ___________________________ 
    

  

 

M w = wiM i∑ = 36,240 g/mol  

 

 (c)  Now we are asked to compute the degree of polymerization, which is possible using Equation 14.6.  

For polypropylene, the repeat unit molecular weight is just 

 
m = 3(AC) + 6(AH) 

 

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol 

 

And 

  

 

DP =
M n
m

=
33,040 g/mol
42.08 g/mol

= 785 
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 14.6  Molecular weight data for some polymer are tabulated here. Compute (a) the number-average 

molecular weight, and (b) the weight-average molecular weight. (c) If it is known that this material's degree of 

polymerization is 710, which one of the polymers listed in Table 14.3 is this polymer?  Why? 

 
Molecular Weight 

Range g/mol x i w i 
15,000–30,000 0.04 0.01 

30,000–45,000 0.07 0.04 

45,000–60,000 0.16 0.11 

60,000–75,000 0.26 0.24 

75,000–90,000 0.24 0.27 

90,000–105,000 0.12 0.16 

105,000–120,000 0.08 0.12 

120,000–135,000 0.03 0.05 

 

 
  Solution 

 (a)  From the tabulated data, we are asked to compute   

 

M n, the number-average molecular weight.  This is 

carried out below. 

 

 Molecular wt. 
 Range Mean Mi xi xiMi 

 15,000-30,000 22,500 0.04 900 

 30,000-45,000 37,500 0.07 2625 

 45,000-60,000 52,500 0.16 8400 

 60,000-75,000 67,500 0.26 17,550 

 75,000-90,000 82,500 0.24 19,800 

 90,000-105,000 97,500 0.12 11,700 

 105,000-120,000 112,500 0.08 9000 

 120,000-135,000 127,500 0.03 3825 
    _________________________

  

    
  

 

M n = xiM i∑ = 73,800 g/mol
 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 (b)  From the tabulated data, we are asked to compute   

 

M w , the weight-average molecular weight.  This 

determination is performed as follows: 

 

 Molecular wt. 
 Range Mean Mi wi wiMi 

 15,000-30,000 22,500 0.01 225 

 30,000-45,000 37,500 0.04 1500 

 45,000-60,000 52,500 0.11 5775 

 60,000-75,000 67,500 0.24 16,200 

 75,000-90,000 82,500 0.27 22,275 

 90,000-105,000 97,500 0.16 15,600 

 105,000-120,000 112,500 0.12 13,500 

 120,000-135,000 127,500 0.05 6375 
    _________________________ 
    

  

 

M w = wiM i∑ = 81,450 g/mol  

 

 (c)  We are now asked if the degree of polymerization is 710, which of the polymers in Table 14.3 is this 

material?  It is necessary to compute m in Equation 14.6 as 

 

  

 

m =
M n
DP

=
73,800 g/mol

710
= 103.94 g/mol  

 

The repeat unit molecular weights of the polymers listed in Table 14.3 are as follows: 

 

  Polyethylene--28.05 g/mol 

  Poly(vinyl chloride)--62.49 g/mol 

  Polytetrafluoroethylene--100.02 g/mol 

  Polypropylene--42.08 g/mol 

  Polystyrene--104.14 g/mol 

  Poly(methyl methacrylate)--100.11 g/mol 

  Phenol-formaldehyde--133.16 g/mol 

  Nylon 6,6--226.32 g/mol 

  PET--192.16 g/mol 

  Polycarbonate--254.27 g/mol 

 
Therefore, polystyrene is the material since its repeat unit molecular weight is closest to that calculated above. 
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 14.7  Is it possible to have a poly(methyl methacrylate) homopolymer with the following molecular weight 

data and a of polymerization of 527? Why or why not? 

 
Molecular Weight 

Range (g/mol) w i x i 

8,000–20,000 0.02 0.05 

20,000–32,000 0.08 0.15 

32,000–44,000 0.17 0.21 

44,000–56,000 0.29 0.28 

56,000–68,000 0.23 0.18 

68,000–80,000 0.16 0.10 

80,000–92,000 0.05 0.03 

 

 
  Solution 

 This problem asks if it is possible to have a poly(methyl methacrylate) homopolymer with the given 

molecular weight data and a degree of polymerization of 527.  The appropriate data are given below along with a 

computation of the number-average molecular weight. 

 

 Molecular wt. 
 Range Mean Mi xi xiMi 

 8,000-20,000 14,000 0.05 700 

 20,000-32,000 26,000 0.15 3900 

 32,000-44,000 38,000 0.21 7980 

 44,000-56,000 50,000 0.28 14,000 

 56,000-68,000 62,000 0.18 11,160 

 68,000-80,000 74,000 0.10 7400 

 80,000-92,000 86,000 0.03 2580 
    _________________________ 
    

  

 

M n =  xiM i∑  =  47,720 g/mol
 

 

For PMMA, from Table 14.3, each repeat unit has five carbons, eight hydrogens, and two oxygens.  Thus, 

 

m = 5(AC) + 8(AH) + 2(AO) 
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= (5)(12.01 g/mol) + (8)(1.008 g/mol) + (2)(16.00 g/mol) = 100.11 g/mol 

 

Now, we will compute the degree of polymerization using Equation 14.6 as 

 

  

 

DP =  
M n

m
 =  

47,720 g/mol
100.11 g/mol

 =  477  

 

Thus, such a homopolymer is not possible since the calculated degree of polymerization is 477 (and not 527). 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 14.8  High-density polyethylene may be chlorinated by inducing the random substitution of chlorine atoms 

for hydrogen. 

 (a) Determine the concentration of Cl (in wt%) that must be added if this substitution occurs for 5% of all 

the original hydrogen atoms. 

 (b) In what ways does this chlorinated polyethylene differ from poly(vinyl chloride)? 

 
  Solution 

 (a)  For chlorinated polyethylene, we are asked to determine the weight percent of chlorine added for 5% 

Cl substitution of all original hydrogen atoms.  Consider 50 carbon atoms;  there are 100 possible side-bonding 

sites.  Ninety-five are occupied by hydrogen and five are occupied by Cl.  Thus, the mass of these 50 carbon atoms, 

mC, is just 

 

mC = 50(AC) = (50)(12.01 g/mol) = 600.5 g 

 

Likewise, for hydrogen and chlorine, 

 

mH = 95(AH)  = (95)(1.008 g/mol) = 95.76 g 

 
mCl = 5(ACl) = (5)(35.45 g/mol) = 177.25 g 

 
Thus, the concentration of chlorine, CCl, is determined using a modified form of Equation 4.3 as 

 

    

 

CCl =  
mCl

mC +  mH  +  mCl
 x 100 

 

 

=  
177.25 g

600.5 g +  95.76 g +  177.25 g
 ×  100 =  20.3 wt% 

 

 (b)  Chlorinated polyethylene differs from poly(vinyl chloride), in that, for PVC, (1) 25% of the side-

bonding sites are substituted with Cl, and (2) the substitution is probably much less random. 
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 Molecular Shape 

 

 14.9 For a linear polymer molecule, the total chain length L depends on the bond length between chain 

atoms d, the total number of bonds in the molecule N, and the angle between adjacent backbone chain atoms θ, as 

follows: 

 
    

 

L =  Nd sin 
θ
2

 
 
 

 
 
  (14.11) 

Furthermore, the average end-to-end distance for a series of polymer molecules r in Figure 14.6 is equal to 

 

   

 

r =  d N  (14.12) 

 

A linear polytetrafluoroethylene has a number-average molecular weight of 500,000 g/mol; compute average 

values of L and r for this material. 

 
  Solution 

 This problem first of all asks for us to calculate, using Equation 14.11, the average total chain length, L, for 

a linear polytetrafluoroethylene polymer having a number-average molecular weight of 500,000 g/mol.   It is 

necessary to calculate the degree of polymerization, DP, using Equation 14.6.  For polytetrafluoroethylene, from 

Table 14.3, each repeat unit has two carbons and four flourines.  Thus, 

 

m = 2(AC) + 4(AF) 

 

= (2)(12.01 g/mol) + (4)(19.00 g/mol) = 100.02 g/mol 

 

and 

  

 

DP =  
M n
m

 =  
500,000 g/mol
100.02 g/mol

 =  5000  

 

which is the number of repeat units along an average chain.  Since there are two carbon atoms per repeat unit, there 

are two C—C chain bonds per repeat unit, which means that the total number of chain bonds in the molecule, N, is 

just (2)(5000) = 10,000 bonds.  Furthermore, assume that for single carbon-carbon bonds, d = 0.154 nm and θ = 

109° (Section 14.4);  therefore, from Equation 14.11 

 

    

 

L =  Nd sin 
θ
2
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=  (10,000)(0.154 nm) sin 
109°

2

 
 
 

 
 
 

 

 
 

 

 
  =  1254 nm 

 

 It is now possible to calculate the average chain end-to-end distance, r, using Equation 14.12 as 

 

  

 

r =  d N  =  (0.154 nm) 10,000 =  15.4 nm  
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 14.10  Using the definitions for total chain molecule length, L (Equation 14.11) and average chain end-to-

end distance r (Equation 14.12), for a linear polyethylene determine: 

 (a) the number-average molecular weight for L = 2500 nm; 

 (b) the number-average molecular weight for r = 20 nm. 

 
  Solution 

 (a)  This portion of the problem asks for us to calculate the number-average molecular weight for a linear 

polyethylene for which L in Equation 14.11 is 2500 nm.  It is first necessary to compute the value of N using this 

equation, where, for the C—C chain bond, d = 0.154 nm, and θ = 109°.  Thus 

 

    

 

N =  
L

d sin 
θ
2

 
 
 

 
 
 

 

 

 

=  
2500 nm

(0.154 nm) sin 
109°

2

 
 
 

 
 
 

 =  19,940  

 

Since there are two C—C bonds per polyethylene repeat unit, there is an average of N/2 or 19,940/2 = 9970 repeat 

units per chain, which is also the degree of polymerization, DP.  In order to compute the value of   

 

M n using 

Equation 14.6, we must first determine m for polyethylene.  Each polyethylene repeat unit consists of two carbon 

and four hydrogen atoms, thus 

 
m = 2(AC) + 4(AH) 

 

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol 

 

Therefore 

  

 

M n =  (DP)m =  (9970)(28.05 g/mol) =  280,000 g/mol  

 

 (b)  Next, we are to determine the number-average molecular weight for r = 20 nm.  Solving for N from 

Equation 14.12 leads to 

 

  

 

N =  
r2

d2
 =  

(20  nm)2

(0.154 nm)2
 =  16,900  
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which is the total number of bonds per average molecule.  Since there are two C—C bonds per repeat unit, then DP 

= N/2 = 16,900/2 = 8450.  Now, from Equation 14.6 

 

  

 

M n =  (DP)m =  (8450)(28.05 g/mol) =  237,000 g/mol  
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 Molecular Configurations 

 

 14.11  Sketch portions of a linear polystyrene molecule that are (a) syndiotactic, (b) atactic, and (c) 

isotactic.  Use two-dimensional schematics per footnote 8 of this chapter. 

 
  Solution 

 We are asked to sketch portions of a linear polystyrene molecule for different configurations (using two-

dimensional schematic sketches). 

 (a)  Syndiotactic polystyrene 

 

 

 

 (b)  Atactic polystyrene 

 

 

 

 (c)  Isotactic polystyrene 
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 14.12  Sketch cis and trans structures for (a) butadiene, and (b) chloroprene. Use two-dimensional 

schematics per footnote 11 of this chapter. 

 
  Solution 

 This problem asks for us to sketch cis and trans structures for butadiene and chloroprene. 

 (a)  The structure for cis polybutadiene (Table 14.5) is 

 

 

 

The structure of trans butadiene is 

 

 

 

 (b)  The structure of cis chloroprene (Table 14.5) is 

 

 

The structure of trans chloroprene is 
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 Thermoplastic and Thermosetting Polymers 

 

 14.13  Make comparisons of thermoplastic and thermosetting polymers (a) on the basis of mechanical 

characteristics upon heating, and (b) according to possible molecular structures. 

 
  Solution 

 (a)  Thermoplastic polymers soften when heated and harden when cooled, whereas thermosetting polymers, 

harden upon heating, while further heating will not lead to softening. 

 (b)  Thermoplastic polymers have linear and branched structures, while for thermosetting polymers, the 

structures will normally be network or crosslinked. 
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 14.14  (a) Is it possible to grind up and reuse phenol-formaldehyde? Why or why not? 

 (b) Is it possible to grind up and reuse polypropylene? Why or why not? 

 
  Solution 

 (a)  It is not possible to grind up and reuse phenol-formaldehyde because it is a network thermoset polymer 

and, therefore, is not amenable to remolding. 

 (b)  Yes, it is possible to grind up and reuse polypropylene since it is a thermoplastic polymer, will soften 

when reheated, and, thus, may be remolded. 
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 Copolymers 

 

 14.15  Sketch the repeat structure for each of the following alternating copolymers: (a) poly(butadiene-

chloroprene), (b) poly(styrene-methyl methacrylate), and (c) poly(acrylonitrile-vinyl chloride). 

 
  Solution 

 This problem asks for sketches of the repeat unit structures for several alternating copolymers. 

 (a)  For poly(butadiene-chloroprene) 

 

 

 

 (b)  For poly(styrene-methyl methacrylate) 

 

 

 

 (c)  For poly(acrylonitrile-vinyl chloride) 
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 14.16  The number-average molecular weight of a poly(styrene-butadiene) alternating copolymer is 

1,350,000 g/mol; determine the average number of styrene and butadiene repeat units per molecule. 

 
  Solution 

 Since it is an alternating copolymer, the number of both types of repeat units will be the same.  Therefore, 

consider them as a single repeat unit, and determine the number-average degree of polymerization. For the styrene 

repeat unit, there are eight carbon atoms and eight hydrogen atoms, while the butadiene repeat consists of four 

carbon atoms and six hydrogen atoms.  Therefore, the styrene-butadiene combined repeat unit weight is just 

 
m = 12(AC) + 14(AH) 

 

= (12)(12.01 g/mol) + (14)(1.008 g/mol) = 158.23 g/mol 

 

From Equation 14.6, the degree of polymerization is just 

 

  

 

DP =  
M n
m

 =  
1,350,000 g/mol

158.23 g/mol
 =  8530 

 

Thus, there is an average of 8530 of both repeat unit types per molecule. 
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 14.17  Calculate the number-average molecular weight of a random nitrile rubber [poly(acrylonitrile-

butadiene) copolymer] in which the fraction of butadiene repeat units is 0.30; assume that this concentration 

corresponds to a degree of polymerization of 2000. 

 
  Solution 

 This problem asks for us to calculate the number-average molecular weight of a random nitrile rubber 

copolymer.  For the acrylonitrile repeat unit there are three carbon, one nitrogen, and three hydrogen atoms. Thus, 

its repeat unit molecular weight is 

 

mAc = 3(AC) + (AN) + 3(AH) 

 

= (3)(12.01 g/mol) + 14.01 g/mol + (3)(1.008 g/mol) = 53.06 g/mol 

 

The butadiene repeat unit is composed of four carbon and six hydrogen atoms. Thus, its repeat unit molecular 

weight is 

 
mBu = 4(AC) + 6(AH) 

 

= (4)(12.01 g/mol) + (6)(1.008 g/mol) = 54.09 g/mol 

 

From Equation 14.7, the average repeat unit molecular weight is just 

 

  

 

m =  fAcmAc +  fBumBu 

 

= (0.70)(53.06 g/mol) + (0.30)(54.09 g/mol) = 53.37 g/mol 

 

Since DP = 2000 (as stated in the problem),   

 

M n may be computed using Equation 14.6 as 

 

  

 

M n =  m (DP) =  (53.37 g/mol)(2000) =  106,740 g/mol  
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 14.18  An alternating copolymer is known to have a number-average molecular weight of 250,000 g/mol 

and a degree of polymerization of 3420. If one of the repeat units is styrene, which of ethylene, propylene, 

tetrafluoroethylene, and vinyl chloride is the other repeat unit? Why? 

 
  Solution 

 For an alternating copolymer which has a number-average molecular weight of 250,000 g/mol and a degree 

of polymerization of 3420, we are to determine one of the repeat unit types if the other is styrene.  It is first 

necessary to calculate   

 

m  using Equation 14.6 as 
 

  

 

m  =  
M n
DP

 =  
250,000 g/mol

3420
 =  73.10 g/mol  

 
Since this is an alternating copolymer we know that chain fraction of each repeat unit type is 0.5;  that is fs = fx = 

0.5, fs and fx being, respectively, the chain fractions of the styrene and unknown repeat units.  Also, the repeat unit 

molecular weight for styrene is 

 
ms = 8(AC) + 8(AH) 

 

= 8(12.01 g/mol) + 8(1.008 g/mol) = 104.14 g/mol 

 
Now, using Equation 14.7, it is possible to calculate the repeat unit weight of the unknown repeat unit type, mx.  

Thus 
 

  

 

mx  =  
m −  fsms  

fx
 

 

 

=  
73.10 g/mol -  (0.5)(104.14 g/mol)

0.5
 =  42.06 g/mol  

 

 Finally, it is necessary to calculate the repeat unit molecular weights for each of the possible other repeat 

unit types.  These are calculated below: 

 
 methylene = 2(AC) + 4(AH) = 2(12.01 g/mol) + 4(1.008 g/mol) = 28.05 g/mol 

 mpropylene = 3(AC) + 6(AH) = 3(12.01 g/mol) + 6(1.008 g/mol) = 42.08 g/mol 

 mTFE = 2(AC) + 4(AF) = 2(12.01 g/mol) + 4(19.00 g/mol) = 100.02 g/mol 

 mVC = 2(AC) + 3(AH) + (ACl) = 2(12.01 g/mol) + 3(1.008 g/mol) + 35.45 g/mol = 62.49 g/mol 

 
Therefore, propylene is the other repeat unit type since its m value is almost the same as the calculated mx. 
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 14.19  (a) Determine the ratio of butadiene to styrene repeat units in a copolymer having a number-

average molecular weight of 350,000 g/mol and degree of polymerization of 4425. 

 (b) Which type(s) of copolymer(s) will this copolymer be, considering the following possibilities: random, 

alternating, graft, and block? Why? 

 
  Solution 

 (a)  This portion of the problem asks us to determine the ratio of butadiene to styrene repeat units in a 

copolymer having a weight-average molecular weight of 350,000 g/mol and a degree of polymerization of 4425.  It 

first becomes necessary to calculate the average repeat unit molecular weight of the copolymer,   

 

m , using Equation 

14.6 as 

 

  

 

m  =  
M n
DP

 =  
350,000 g/mol

4425
 =  79.10 g/mol  

 
If we designate fb as the chain fraction of butadiene repeat units, since the copolymer consists of only two repeat 

unit types, the chain fraction of styrene repeat units fs is just 1 – fb.  Now, Equation 14.7 for this copolymer may be 

written in the form 

 

  

 

m  =  fbmb +  fsms  =  fbmb +  (1 −  fb)ms  

 
in which mb and ms are the repeat unit molecular weights for butadiene and styrene, respectively.  These values are 

calculated as follows: 

 
mb = 4(AC) + 6(AH) = 4(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol 

 
ms = 8(AC) + 8(AH) = 8(12.01 g/mol) + 8(1.008 g/mol) = 104.14 g/mol 

 

 
Solving for fb in the above expression yields 

 

  

 

fb =  
m  −  ms  
mb −  ms

 =  
79.10 g/mol −  104.14 g/mol
54.09 g/mol −  104.14 g/mol

 =  0.50  

 
Furthermore, fs = 1 – fb = 1 – 0.50 = 0.50;  or the ratio is just 
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fb

fs
 =  

0.50
0.50

 =  1.0  

 

 (b) Of the possible copolymers, the only one for which there is a restriction on the ratio of repeat unit types 

is alternating;  the ratio must be 1:1.  Therefore, on the basis of the result in part (a), the possibilities for this 

copolymer are not only alternating, but also random, graft, and block. 
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 14.20  Crosslinked copolymers consisting of 60 wt% ethylene and 40 wt% propylene may have elastic 

properties similar to those for natural rubber.  For a copolymer of this composition, determine the fraction of both 

repeat unit types. 

 
  Solution 

 For a copolymer consisting of 60 wt% ethylene and 40 wt% propylene, we are asked to determine the 

fraction of both repeat unit types. 
 In 100 g of this material, there are 60 g of ethylene and 40 g of propylene.  The ethylene (C2H4) molecular 

weight is 

 
m(ethylene) = 2(AC) + 4(AH) 

 

= (2)(12.01 g/mol) + (4)(1.008 g/mol) = 28.05 g/mol 

 
The propylene (C3H6) molecular weight is 

 
m(propylene) = 3(AC) + 6(AH) 

 

= (3)(12.01 g/mol) + (6)(1.008 g/mol) = 42.08 g/mol 

 

Therefore, in 100 g of this material, there are 

 

 

60  g
28.05 g/mol

= 2.14 mol of ethylene  

 

and 

 

40  g
42.08  g/mol

= 0.95 mol of propylene  

 

Thus, the fraction of the ethylene repeat unit, f(ethylene), is just 

 

  

 

f (ethylene) =
2.14  mol

2.14  mol + 0.95 mol
=  0.69  

 

Likewise, 
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f (propylene) =
0.95 mol

2.14  mol + 0.95 mol
=  0.31 
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 14.21  A random poly(isobutylene-isoprene) copolymer has a number-average molecular weight of 

200,000 g/mol and a degree of polymerization of 3000.  Compute the fraction of isobutylene and isoprene repeat 

units in this copolymer. 

 
  Solution 

 For a random poly(isobutylene-isoprene) copolymer in which   

 

M n = 200,000
 
g/mol and DP = 3000, we are 

asked to compute the fractions of isobutylene and isoprene repeat units. 

 From Table 14.5, the isobutylene repeat unit has four carbon and eight hydrogen atoms.  Thus, 

 
mib = (4)(12.01 g/mol) + (8)(1.008 g/mol) = 56.10 g/mol 

 

Also, from Table 14.5, the isoprene repeat unit has five carbon and eight hydrogen atoms, and 

 
mip = (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol 

 

From Equation 14.7 

 

  

 

m  =  f ibmib +  f ipmip  

 
Now, let x = fib, such that 

 

  

 

m  =  56.10x +  (68.11)(1 −  x)  

 
since fib + fip = 1.  Also, from Equation 14.6 

 

    

 

DP =  
M n
m 

 

Or 

 

  

 

3000 =
200,000  g/mol

[56.10 x + 68.11(1 − x)]  g/mol
 

 
Solving for x leads to x = fib = f(isobutylene) = 0.12.  Also, 

 

f(isoprene) = 1 – x = 1 – 0.12 = 0.88 
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 Polymer Crystallinity 

 

 14.22  Explain briefly why the tendency of a polymer to crystallize decreases with increasing molecular 

weight. 

 
  Solution 

 The tendency of a polymer to crystallize decreases with increasing molecular weight because as the chains 

become longer it is more difficult for all regions along adjacent chains to align so as to produce the ordered atomic 

array. 
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 14.23  For each of the following pairs of polymers, do the following: (1) state whether or not it is possible 

to determine whether one polymer is more likely to crystallize than the other; (2) if it is possible, note which is the 

more likely and then cite reason(s) for your choice; and (3) if it is not possible to decide, then state why. 

 (a) Linear and syndiotactic poly(vinyl chloride); linear and isotactic polystyrene. 

 (b) Network phenol-formaldehyde; linear and heavily crosslinked cis-isoprene. 

 (c) Linear polyethylene; lightly branched isotactic polypropylene. 

 (d) Alternating poly(styrene-ethylene) copolymer; random poly(vinyl chloride-tetrafluoroethylene) 

copolymer. 

 
  Solution 

 (a) Yes, for these two polymers it is possible to decide.  The linear and syndiotactic poly(vinyl chloride) is 

more likely to crystallize;  the phenyl side-group for polystyrene is bulkier than the Cl side-group for poly(vinyl 

chloride).  Syndiotactic and isotactic isomers are equally likely to crystallize. 

 (b) No, it is not possible to decide for these two polymers.  Both heavily crosslinked and network polymers 

are not likely to crystallize. 

 (c) Yes, it is possible to decide for these two polymers.  The linear polyethylene is more likely to 

crystallize.  The repeat unit structure for polypropylene is chemically more complicated than is the repeat unit 

structure for polyethylene.  Furthermore, branched structures are less likely to crystallize than are linear structures. 

 (d) Yes, it is possible to decide for these two copolymers.  The alternating poly(styrene-ethylene) 

copolymer is more likely to crystallize.  Alternating copolymers crystallize more easily than do random copolymers. 
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 14.24  The density of totally crystalline polypropylene at room temperature is 0.946 g/cm3.  Also, at room 

temperature the unit cell for this material is monoclinic with lattice parameters 

 
 a = 0.666 nm α = 90° 

 b = 2.078 nm β = 99.62° 

 c = 0.650 nm γ = 90° 

If the volume of a monoclinic unit cell, Vmono, is a function of these lattice parameters as 

 
Vmono = abc sin β 

determine the number of repeat units per unit cell. 

 
  Solution 

 For this problem we are given the density of polypropylene (0.946 g/cm3), an expression for the volume of 

its unit cell, and the lattice parameters, and are asked to determine the number of repeat units per unit cell.  This 

computation necessitates the use of Equation 3.5, in which we solve for n.  Before this can be carried out we must 

first calculate VC, the unit cell volume, and A the repeat unit molecular weight.  For VC 

 

VC = abc sin β 

 

= (0.666 nm)(2.078 nm)(0.650 nm) sin (99.62°) 

 

= 0.8869 nm3 = 8.869 × 10-22 cm3 

 

The repeat unit for polypropylene is shown in Table 14.3, from which the value of A may be determined as follows: 

 
A = 3(AC) + 6(AH) 

 

= 3(12.01 g/mol) + 6(1.008 g/mol) 

 

= 42.08 g/mol 

 

Finally, solving for n from Equation 3.5 leads to 
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n =  
ρVC N A

A
 

 

 

=  
(0.946 g/cm3)(8.869 ×  10 -22  cm3/unit cell)(6.022 ×  1023  repeat units/mol)

42.08 g/mol
 

 

= 12.0 repeat unit/unit cell 
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 14.25  The density and associated percent crystallinity for two polytetrafluoroethylene materials are as 

follows: 

 
ρ (g/cm3) crystallinity (%) 

2.144 51.3 

2.215 74.2 

 

 (a) Compute the densities of totally crystalline and totally amorphous polytetrafluoroethylene. 

 (b) Determine the percent crystallinity of a specimen having a density of 2.26 g/cm3. 

 
  Solution 

 (a)  We are asked to compute the densities of totally crystalline and totally amorphous 

polytetrafluoroethylene (ρc and ρa from Equation 14.8).  From Equation 14.8 let 
    

 

C =
% crystallinity

100
, such that 

 

    

 

C =  
ρc (ρs −  ρa)
ρs (ρc −  ρa)

 

 

Rearrangement of this expression leads to 

 

    

 

ρc (C ρs −  ρs) +  ρcρa −  Cρs ρa =  0 

 
in which ρc and ρa are the variables for which solutions are to be found.  Since two values of ρs and C are specified 

in the problem statement, two equations may be constructed as follows: 

 

    

 

ρc (C1 ρs1 −  ρs1) +  ρcρa −  C1 ρs1 ρa =  0  

 

    

 

ρc (C2 ρs2 −  ρs2) +  ρcρa −  C2 ρs2 ρa =  0  

 

In which ρs1 = 2.144 g/cm3, ρs2 = 2.215 g/cm3, C1 = 0.513, and C2 = 0.742.  Solving the above two equations for 

ρa and ρc leads to 

 

    

 

ρa =  
ρs1 ρs2 (C1 −  C2)
C1 ρs1 −  C2 ρs2
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=  
(2.144 g/cm3)( 2.215 g/cm3)(0.513 −  0.742)
(0.513)(2.144 g/cm3) −  (0.742)(2.215 g/cm3)

 =  2.000 g/cm3 

 

And 

 

    

 

ρc =  
ρs1ρs2 (C2 −  C1)

ρs2 (C2 −  1) −  ρs1 (C1 −  1)
 

 

 

=  
(2.144 g/cm3)( 2.215 g/cm3)(0.742 −  0.513)

(2.215 g/cm3)(0.742 −  1) −  (2.144 g/cm3)(0.513 −  1)
 =  2.301 g/cm3 

 

 (b)  Now we are to determine the % crystallinity for ρs = 2.26 g/cm3.  Again, using Equation 14.8 

 

  

 

% crystallinity =  
ρc (ρs  −  ρa)
ρs (ρc −  ρa)

 ×  100  

 

 

=  
(2.301 g/cm3)(2.260 g/cm3 −  2.000 g/cm3)
(2.260 g/cm3)(2.301 g/cm3 −  2.000 g/cm3)

 ×  100  

 

= 87.9% 
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 14.26  The density and associated percent crystallinity for two nylon 6,6 materials are as follows: 

 
ρ (g/cm3) crystallinity (%) 

1.188 67.3 

1.152 43.7 

 

 (a) Compute the densities of totally crystalline and totally amorphous nylon 6,6. 

 (b) Determine the density of a specimen having 55.4% crystallinity. 

 
  Solution 

 (a)  We are asked to compute the densities of totally crystalline and totally amorphous nylon 6,6 (ρc and ρa 

from Equation 14.8).  From Equation 14.8 let 
    

 

C =
% crystallinity

100
, such that 

 

    

 

C =  
ρc (ρs −  ρa)
ρs (ρc −  ρa)

 

 

Rearrangement of this expression leads to 

 

    

 

ρc (C ρs − ρs) +  ρcρa −  C ρsρa =  0  

 
in which ρc and ρa are the variables for which solutions are to be found.  Since two values of ρs and C are specified 

in the problem, two equations may be constructed as follows: 

 

  

 

ρc (C1 ρs1  −  ρs1)  +  ρcρa  −  C1ρs1ρa  =  0  

 

    

 

ρc (C2 ρs2  −  ρs2)  +  ρcρa  −  C2ρs2ρa  =  0  

 

In which ρs1 = 1.188 g/cm3, ρs2 = 1.152 g/cm3, C1 = 0.673, and C2 = 0.437.  Solving the above two equations for 

ρa and ρc leads to 

 

    

 

ρa  =  
ρs1 ρs2 (C1  −  C2)
C1 ρs1  −  C2 ρs2
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=  
(1.188  g/cm3)(1.152  g/cm3)(0.673− 0.437)
(0.673)(1.188  g/cm3)− (0.437)(1.152  g/cm3)

=  1.091 g/cm3 

 

And 

 

    

 

ρc =  
ρs1 ρs2 (C2  −  C1)

ρs2 (C2  −  1)  −  ρs1(C1  − 1)
 

 

 

=  
(1.188  g/cm3)(1.152  g/cm3)(0.437 − 0.673)

(1.152  g/cm3)(0.437 −1) − (1.188  g/cm3)(0.673−1)
=  1.242 g/cm3 

 
 (b)  Now we are asked to determine the density of a specimen having 55.4% crystallinity.  Solving for ρs 

from Equation 14.8 and substitution for ρa and ρc which were computed in part (a) yields 

 

    

 

ρs =  
−ρc ρa

C (ρc − ρa) − ρc
 

 

 

=  
−(1.242  g/cm3)(1.091 g/cm3)

(0.554)(1.242  g/cm3 −  1.091 g/cm3)−  1.242  g/cm3
 

 

= 1.170 g/cm3 
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 Diffusion in Polymeric Materials 

 

 

 14.27  Consider the diffusion of water vapor through a polypropylene (PP) sheet 2 mm thick.  The 

pressures of H2O at the two faces are 1 kPa and 10 kPa, which are maintained constant. Assuming conditions of 

steady state, what is the diffusion flux [in [(cm3 STP)/cm2-s] at 298 K? 

 
  Solution 

 This is a permeability problem in which we are asked to compute the diffusion flux of water vapor through 

a 2-mm thick sheet of polypropylene.  In order to solve this problem it is necessary to employ Equation 14.9. The 
permeability coefficient of H2O through PP is given in Table 14.6 as 38 × 10-13 (cm3 STP)-cm/cm2-s-Pa.  Thus, 

from Equation 14.9 

 

    

 

J =  PM
∆P
∆x

= PM
P2 − P1

∆x
 

 
and taking P1 = 1 kPa (1,000 Pa) and P2 = 10 kPa (10,000 Pa) we get 

 

 

=  38 ×  10-13 (cm3 STP)(cm)

cm2 - s - Pa

 

 
 

 

 
  

10,000 Pa −1,000 Pa
0.2 cm

 
 
 

 
 
  

 

 

=  1.71 ×  10-7 (cm3 STP)

cm2 - s
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 14.28 Argon diffuses through a high density polyethylene (HDPE) sheet 40 mm thick at a rate of 4.0 × 10–7 

(cm3 STP)/cm2-s at 325 K. The pressures of argon at the two faces are 5000 kPa and 1500 kPa, which are 

maintained constant. Assuming conditions of steady state, what is the permeability coefficient at 325 K? 

 
  Solution 

 This problem asks us to compute the permeability coefficient for argon through high density polyethylene 

at 325 K given a steady-state permeability situation.  It is necessary for us to Equation 14.9 in order to solve this 

problem. Rearranging this expression and solving for the permeability coefficient gives 

 

    

 

PM =
J ∆x
∆P

=
J ∆x

P2 − P1
 

 
Taking P1 = 1500 kPa (1,500,000 Pa) and P2 = 5000 kPa (5,000,000 Pa), the permeability coefficient of Ar through 

HDPE is equal to 

 

  

 

PM =

4.0 ×  10-7 (cm3 STP)

cm2 - s

 

 
 

 

 
 (4 cm)

(5,000,000 Pa -  1,500,000 Pa)
 

 

 

= 4.57 ×  10-13 (cm3 STP)(cm)

cm2 - s - Pa
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 14.29  The permeability coefficient of a type of small gas molecule in a polymer is dependent on absolute 

temperature according to the following equation: 

 

  

 

PM  =  PM 0
 exp − 

Qp

RT

 

 
 

 

 
  

where 

 

PM 0
and Qp are constants for a given gas-polymer pair. Consider the diffusion of hydrogen through a 

poly(dimethyl siloxane)  (PDMSO) sheet 20 mm thick. The hydrogen pressures at the two faces are 10 kPa and 1 

kPa, which are maintained constant. Compute the diffusion flux [in (cm3 STP)/cm2 –s]  at 350 K. For this diffusion 

system 

 

 

PM0
= 1.45 ×  10−8  (cm3 STP)(cm)/cm2 - s - Pa  

 Qp = 13.7 kJ/mol 

Also, assume a condition of steady state diffusion 

 
  Solution 

 This problem asks that we compute the diffusion flux at 350 K for hydrogen in poly(dimethyl siloxane) 

(PDMSO).  It is first necessary to compute the value of the permeability coefficient at 350 K.  The temperature 
dependence of PM is given in the problem statement, as follows: 

 

    

 

PM  =  PM0
 exp − 

Qp

RT

 

 
  

 

 
   

 
And, incorporating values provided for the constants PM0

 and Qp, we get 

 

  

 

PM =  1.45 ×  10-8  
(cm3 STP)(cm)

cm2 - s - Pa

 

 
 

 

 
  exp −

13,700  J/mol
(8.31 J/mol- K)(350 K)

 

 
 

 

 
  

 

 

= 1.31 ×  10−10  
(cm3 STP)(cm)

cm2 - s - Pa
 

 

And, using Equation 14.9, the diffusion flux is equal to 

 

    

 

J =  PM
∆P
∆x

= PM
P2 − P1

∆x
 

 

 

= 1.31 ×  10-10 (cm3 STP)(cm)

cm2 - s - Pa
 

10,000 Pa -1,000 Pa
2.0 cm
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=  5.90 ×  10-7 (cm3 STP)

cm2 - s
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CHAPTER 15 

 

CHARACTERISTICS, APPLICATIONS, AND PROCESSING OF POLYMERS 

 

PROBLEM SOLUTIONS 

 

 

 Stress-Strain Behavior 

 

 15.1 From the stress–strain data for poly(methyl methacrylate) shown in Figure 15.3, determine the 

modulus of elasticity and tensile strength at room temperature [20°C (68°F)], and compare these values with those 

given in Table 15.1. 
 

  Solution 

 From Figure 15.3, the elastic modulus is the slope in the elastic linear region of the 20°C curve, which is 

 

  

 

E =
∆ (stress)
∆ (strain)

=
30  MPa − 0  MPa

9 × 10−3 − 0
= 3.3 GPa   (483,000  psi)  

 

The value range cited in Table 15.1 is 2.24 to 3.24 GPa (325,000 to 470,000 psi).  Thus, the plotted value is a little 

on the high side. 

 The tensile strength corresponds to the stress at which the curve ends, which is 52 MPa (7500 psi).  This 

value lies within the range cited in Table 15.1—48.3 to 72.4 MPa (7000 to 10,500 psi). 
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 15.2  Compute the elastic moduli for the following polymers, whose stress-strain behaviors may be 

observed in the “Tensile Tests” module of Virtual Materials Science and Engineering (VMSE):  (a)  high-density 

polyethylene, (b) nylon, and (c) phenol-formaldehyde (bakelite).  How do these values compare with those presented 

in Table 15.1 for the same polymers? 
 

  Solution 

 The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 

 

    

 

E =
∆ σ
∆ ε

=  
σ2  −  σ1

ε2  −  ε1
 

 

Since all the stress-strain curves pass through the origin, we make take σ1 = 0 and ε1 = 0.  Determinations of σ2 and 

ε2 are possible by moving the cursor to some arbitrary point in the linear region of the curve and then reading 

corresponding values in the “Stress” and “Strain” windows that are located below the plot. 

 (a)  For high-density polyethylene, we selected σ2 = 6.0 MPa with its corresponding ε2 = 0.0152.  

Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

6.0  MPa −  0  MPa
0.0152  −  0

 =  395 MPa  =  0.395 GPa  

 

 The elastic modulus (average) for high-density polyethylene given in Table 15.1 is 1.08 GPa, which is 

significantly higher than this value. 

 (b)  For nylon, we selected σ2 = 24.3 MPa with its corresponding ε2 = 0.0085.  Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

24.3 MPa −  0  MPa
0.0085 −  0

 =  2860  MPa  =  2.86  GPa  

 

 The elastic modulus range for nylon 6,6 given in Table 15.1 is 1.58 GPa to 3.80 GPa;  therefore, the value 

for the VMSE nylon lies within this range. 
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 (c)  For phenol-formaldehyde (bakelite), we selected σ2 = 33.0 MPa with its corresponding ε2 = 0.0068.  

Therefore, 

 

    

 

E =  
σ2  −  σ1

ε2  −  ε1
 =  

33.0  MPa −  0  MPa
0.0068  −  0

 =  4850  MPa  =  4.85 GPa  

 

 The elastic modulus range for the phenol-formaldehyde given in Table 15.1 is 2.76 GPa to 4.83 GPa;  

therefore, this value for the VMSE phenol-formaldehyde lies just above the maximum value for this range. 
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 15.3  For the nylon polymer, whose stress strain behavior may be observed in the “Tensile Tests” module 

of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the yield strength, and 

 (b) the approximate ductility, in percent elongation. 

How do these values compare with those for the nylon material presented in Table 15.1? 
 

  Solution 

 (a)  The yield strength corresponds to the first maximum (just beyond the initial linear-elastic region) of the 

stress-strain curve.  This reading in the stress window located below the plot as the curser point is dragged along the 

stress-strain curve is 84 MPa. 

 (b)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 

44.5%) minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 

100—in this case about 4%);  this gives a value of about 40%EL. 

 

 For nylon 6,6, the range of values of yield strength presented in Table 15.1 is 44.8 MPa to 82.8 MPa;  

therefore, the value for the VMSE nylon lies slightly above the upper value.  The ductility range for nylon 6,6 is  

15%EL to 300%EL;  therefore, our value (40%EL) lies within this range. 
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 15.4  For the phenol-formaldehyde (Bakelite) polymer, whose stress strain behavior may be observed in 

the “Tensile Tests” module of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the tensile strength, and 

 (b) the approximate ductility, in percent elongation. 

How do these values compare with those for the phenol-formaldehyde material presented in Table 15.1? 
 

  Solution 

 (a)  The tensile strength corresponds to the stress at which fracture occurs.  This reading in the stress 

window located below the plot as the curser point is dragged along the stress-strain curve is 52 MPa. 

 (b)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 

1.29%) minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 

100—in this case about 1%);  this gives a value of about 0.3%EL. 

 

 For phenol-formaldehyde, the range of values of tensile strength presented in Table 15.1 is 34.5 MPa to 

62.1 MPa;  therefore, the value for the VMSE material (52 MPa) lies within this range.  The ductility range for 

phenol-formaldehyde is 1.5%EL to 2.0%EL;  therefore, our value (0.3%EL) lies below the lower limit. 
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 Viscoelastic Deformation 

 

 15.5  In your own words, briefly describe the phenomenon of viscoelasticity. 

 

 The explanation of viscoelasticity is given in Section 15.4. 
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 15.6  For some viscoelastic polymers that are subjected to stress relaxation tests, the stress decays with 

time according to 

 
  

 

σ(t) = σ(0) exp −
t
τ

 
 
 

 
 
  (15.10) 

where σ(t) and σ(0) represent the time-dependent and initial (i.e., time = 0) stresses, respectively, and t and τ denote 

elapsed time and the relaxation time; τ is a time-independent constant characteristic of the material. A specimen of 

some viscoelastic polymer the stress relaxation of which obeys Equation 15.10 was suddenly pulled in tension to a 

measured strain of 0.6; the stress necessary to maintain this constant strain was measured as a function of time. 

Determine Er(10) for this material if the initial stress level was 2.76 MPa (400 psi), which dropped to 1.72 MPa 

(250 psi) after 60 s. 
 

  Solution 

 This problem asks for a determination of the relaxation modulus of a viscoelastic material, which behavior 

is according to Equation 15.10--i.e., 

 

    

 

σ(t) = σ(0) exp −
t
τ

 
 
 

 
 
  

 

We want to determine σ(10), but it is first necessary to compute τ from the data provided in the problem statement.  

Thus, solving for τ from the above expression, 
 

  

 

τ =
− t

ln
σ(t)
σ(0)

 

  
 

  

=
− 60  s

ln
1.72  MPa
2.76  MPa

 
  

 
  

= 127  s  

 

Therefore, 

 

 

σ(10) = (2.76  MPa) exp −
10  s
127  s

 
 
 

 
 
 = 2.55 MPa  

 

Now, using Equation 15.1 

 

  

 

Er (10) =
σ (10)

ε0
=

2.55 MPa
0.6

= 4.25 MPa  (616  psi)  
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 15.7  In Figure 15.28, the logarithm of Er(t) versus the logarithm of time is plotted for polyisobutylene at a 

variety of temperatures.  Make a plot of Er(10) versus temperature and then estimate its Tg. 
 

  Solution 

 Below is plotted the logarithm of Er(10) versus temperature. 

 

 

 
The glass-transition temperature is that temperature corresponding to the abrupt decrease in log Er(10), which for 

this polyisobutylene material is about -60°C. 
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 15.8  On the basis of the curves in Figure 15.5, sketch schematic strain–time plots for the following 

polystyrene materials at the specified temperatures: 

 (a) Amorphous at 120°C 

 (b) Crosslinked at 150°C 

 (c) Crystalline at 230°C 

 (d) Crosslinked at 50°C 
 

  Solution 

 (a) Amorphous polystyrene at 120°C behaves a rubbery material (Figure 15.8, curve C);  therefore, the 

strain-time behavior would be as Figure 15.5c. 

 (b) Crosslinked polystyrene at 150°C behaves as a viscoelastic material (Figure 15.8, curve B);  therefore, 

the strain-time behavior will be as Figure 15.5c. 

 (c) Crystalline polystyrene at 230°C behaves as a viscous liquid (Figure 15.8, curve A);  therefore, the 

strain-time behavior will be as Figure 15.5d. 

 (d) Crosslinked polystyrene at 50°C behaves in a glassy manner (Figure 15.8, curve B);  therefore, the 

strain-time behavior will be as Figure 15.5b. 
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 15.9  (a) Contrast the manner in which stress relaxation and viscoelastic creep tests are conducted. 

 (b) For each of these tests, cite the experimental parameter of interest and how it is determined. 
 

  Solution 

 (a)  Stress relaxation tests are conducted by rapidly straining the material elastically in tension, holding the 

strain level constant, and then measuring the stress as a function of time.  For viscoelastic creep tests, a stress 

(usually tensile) is applied instantaneously and maintained constant while strain is measured as a function of time. 

 (b)  The experimental parameters of interest from the stress relaxation and viscoelastic creep tests are the 

relaxation modulus and creep modulus (or creep compliance), respectively.  The relaxation modulus is the ratio of 

stress measured after 10 s and strain (Equation 15.1);  creep modulus is the ratio of stress and strain taken at a 

specific time (Equation 15.2). 
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 15.10 Make two schematic plots of the logarithm of relaxation modulus versus temperature for an 

amorphous polymer (curve C in Figure 15.8). 

 (a) On one of these plots demonstrate how the behavior changes with increasing molecular weight. 

 (b) On the other plot, indicate the change in behavior with increasing crosslinking. 
 

  Solution 

 (a)  This portion of the problem calls for a plot of log Er(10) versus temperature demonstrating how the 

behavior changes with increased molecular weight.  Such a plot is given below.  Increasing molecular weight 

increases both glass-transition and melting temperatures. 

 

 
 

 
 (b)  We are now called upon to make a plot of log Er(10) versus temperature demonstrating how the 

behavior changes with increased crosslinking.  Such a plot is given below.  Increasing the degree of crosslinking 

will increase the modulus in both glassy and rubbery regions. 
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 Fracture of Polymers 

 Miscellaneous Mechanical Considerations 

 

 15.11  For thermoplastic polymers, cite five factors that favor brittle fracture. 
 

  Solution 

 For thermoplastic polymers, five factors that favor brittle fracture are as follows:  (1) a reduction in 

temperature, (2) an increase in strain rate, (3) the presence of a sharp notch, (4) increased specimen thickness, and 

(5) modifications of the polymer structure. 
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 15.12  (a) Compare the fatigue limits for polystyrene (Figure 15.11) and the cast iron for which fatigue 

data are given in Problem 8.20. 

 (b) Compare the fatigue strengths at 106 cycles for poly(ethylene terephthalate) (PET, Figure 15.11) and 

red brass (Figure 8.34). 
 

  Solution 

 (a) The fatigue limits for polystyrene and the cast iron are 10.5 MPa (1500 psi) and 193 MPa (28,000 psi), 

respectively. 

 (b)  At 106 cycles, the fatigue strengths of PET and red brass are 15 MPa (2175 psi) and 115 MPa (16,700 

psi ), respectively. 
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 Deformation of Semicrystalline Polymers 

 

 15.13 In your own words, describe the mechanisms by which semicrystalline polymers (a) elastically 

deform and (b) plastically deform, and (c) by which elastomers elastically deform. 

 

 (a) and (b)  The mechanisms by which semicrystalline polymers elastically and plastically deform are 

described in Section 15.7. 

 (c)  The explanation of the mechanism by which elastomers elastically deform is provided in Section 15.9. 
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 Factors That Influence the Mechanical Properties of Semicrystalline 

 Polymers 

 Deformation of Elastomers 

 

 15.14  Briefly explain how each of the following influences the tensile modulus of a semicrystalline 

polymer and why: 

 (a) Molecular weight 

 (b) Degree of crystallinity 

 (c) Deformation by drawing 

 (d) Annealing of an undeformed material 

 (f) Annealing of a drawn material 
 

  Solution 

 (a)  The tensile modulus is not directly influenced by a polymer's molecular weight. 

 (b)  Tensile modulus increases with increasing degree of crystallinity for semicrystalline polymers.  This is 

due to enhanced secondary interchain bonding which results from adjacent aligned chain segments as percent 

crystallinity increases.  This enhanced interchain bonding inhibits relative interchain motion. 

 (c)  Deformation by drawing also increases the tensile modulus.  The reason for this is that drawing 

produces a highly oriented molecular structure, and a relatively high degree of interchain secondary bonding. 

 (d)  When an undeformed semicrystalline polymer is annealed below its melting temperature, the tensile 

modulus increases. 

 (e)  A drawn semicrystalline polymer that is annealed experiences a decrease in tensile modulus as a result 

of a reduction in chain-induced crystallinity, and a reduction in interchain bonding forces. 
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 15.15  Briefly explain how each of the following influences the tensile or yield strength of a semicrystalline 

polymer and why: 

 (a) Molecular weight 

 (b) Degree of crystallinity 

 (c) Deformation by drawing 

 (d) Annealing of an undeformed material 
 

  Solution 

 (a)  The tensile strength of a semicrystalline polymer increases with increasing molecular weight.  This 

effect is explained by increased chain entanglements at higher molecular weights. 

 (b)  Increasing the degree of crystallinity of a semicrystalline polymer leads to an enhancement of the 

tensile strength.  Again, this is due to enhanced interchain bonding and forces;  in response to applied stresses, 

interchain motions are thus inhibited. 

 (c)  Deformation by drawing increases the tensile strength of a semicrystalline polymer.  This effect is due 

to the highly oriented chain structure that is produced by drawing, which gives rise to higher interchain secondary 

bonding forces. 

 (d)  Annealing an undeformed semicrystalline polymer produces an increase in its tensile strength. 
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 15.16 Normal butane and isobutane have boiling temperatures of –0.5 and –12.3°C (31.1 and 9.9°F), 

respectively. Briefly explain this behavior on the basis of their molecular structures, as presented in Section 14.2. 
 

  Solution 

 Normal butane has a higher melting temperature as a result of its molecular structure (Section 14.2).  There 

is more of an opportunity for van der Waals bonds to form between two molecules in close proximity to one another 

than for isobutane because of the linear nature of each normal butane molecule. 
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 15.17 The tensile strength and number-average molecular weight for two poly(methyl methacrylate) 

materials are as follows: 

 
Tensile Strength 

(MPa) 
Number-Average 

 Molecular Weight (g/mol) 

107 40,000 

170 60,000 

 

Estimate the tensile strength at a number-average molecular weight of 30,000 g/mol. 
 

  Solution 

 This problem gives us the tensile strengths and associated number-average molecular weights for two 

poly(methyl methacrylate) materials and then asks that we estimate the tensile strength for   

 

M n = 30,000 g/mol.  

Equation 15.3 cites the dependence of the tensile strength on   

 

M n.  Thus, using the data provided in the problem 

statement, we may set up two simultaneous equations from which it is possible to solve for the two constants TS∞ 

and A.  These equations are as follows: 

 

  

 

107  MPa = TS∞ −
A

40,000  g /mol
 

 

  

 

170  MPa = TS∞ −
A

60,000  g /mol
 

 

Thus, the values of the two constants are:  TS∞ = 296 MPa and A = 7.56 × 106 MPa-g/mol.  Substituting these 

values into Equation 15.3 for   

 

M n = 30,000 g/mol leads to 

 

  

 

TS = TS∞ −
A

30,000  g /mol
 

 

 

= 296  MPa −  
7.56 × 106 MPa - g /mol

30,000  g /mol
 

 

= 44 MPa 
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 15.18 The tensile strength and number-average molecular weight for two polyethylene materials are as 

follows: 
 

Tensile Strength 

(MPa) 
Number-Average 

Molecular Weight (g/mol) 
85 12,700 

150 28,500 

 

Estimate the number-average molecular weight that is required to give a tensile strength of 195 MPa. 
 

  Solution 

 This problem gives us the tensile strengths and associated number-average molecular weights for two 

polyethylene materials and then asks that we estimate the   

 

M n that is required for a tensile strength of 195 MPa.  

Equation 15.3 cites the dependence of the tensile strength on   

 

M n.  Thus, using the data provided in the problem 

statement, we may set up two simultaneous equations from which it is possible to solve for the two constants TS∞ 

and A.  These equations are as follows: 

 

  

 

85 MPa = TS∞ −
A

12,700  g /mol
 

 

  

 

150  MPa = TS∞ −
A

28,500  g /mol
 

 

Thus, the values of the two constants are:  TS∞ = 202 MPa and A = 1.489 × 106 MPa-g/mol.  Solving for   

 

M n in 

Equation 15.3 and substituting TS = 195 MPa as well as the above values for TS∞ and A leads to 

 

  

 

M n =
A

TS∞ − TS
 

 

 

=
1.489 × 106 MPa - g /mol

202  MPa −  195 MPa
= 213,000 g/mol  
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 15.19  For each of the following pairs of polymers, do the following: (1) state whether or not it is possible 

to decide whether one polymer has a higher tensile modulus than the other; (2) if this is possible, note which has the 

higher tensile modulus and then cite the reason(s) for your choice; and (3) if it is not possible to decide, then state 

why. 

 (a) Random acrylonitrile-butadiene copolymer with 10% of possible sites crosslinked; alternating 

acrylonitrile-butadiene copolymer with 5% of possible sites crosslinked 

 (b) Branched and syndiotactic polypropylene with a degree of polymerization of 5000; linear and isotactic 

polypropylene with a degree of polymerization of 3000 

 (c) Branched polyethylene with a number-average molecular weight of 250,000 g/mol; linear and isotactic 

poly(vinyl chloride) with a number-average molecular weight of 200,000 g/mol 
 

  Solution 

For each of four pairs of polymers, we are to do the following:  (1) determine whether or not it is possible to decide 

which has the higher tensile modulus;  (2)  if so, note which has the higher tensile modulus and then state the 

reasons for this choice;  and (3)  if it is not possible to decide, then state why. 

 (a)  No, it is not possible.  The random acrylonitrile-butadiene copolymer will tend to a lower degree of 

crystallinity than the alternating acrylonitrile-butadiene copolymer inasmuch as random copolymers don’t normally 

crystallize.  On this basis only, the alternating material would have a higher modulus inasmuch as tensile modulus 

increases with degree of crystallinity.  On the other hand, the random copolymer has a higher degree of crosslinking 

(10% versus 5% for the alternating copolymer), and, on this basis only would have the higher tensile modulus—an 

increase in crosslinking leads to an increase in E.  Thus, this determination is not possible;  with regard to degree of 

crystallinity the alternating material has the higher E, whereas the random copolymer would have a higher E value 

on the basis of degree of crosslinking. 

 (b)  Yes, it is possible.  The linear and isotactic polypropylene will have a greater tensile modulus.  Linear 

polymers are more likely to crystallize that branched ones.  The likelihood of crystallization for both syndiotactic 

and isotactic polypropylene is about the same, and, therefore, degree is crystallization is not a factor.  Furthermore, 

tensile modulus is relatively insensitive to degree of polymerization (i.e., molecular weight)—the fact that branched 

PP has the higher molecular weight is not important. 

 (c)  No, it is not possible.  Linear polymers have higher degrees of crystallization (and higher tensile 

moduli) than branched polymers—on this basis, the PVC material should have the higher value of E.  On the other 

hand, PVC has a more complex repeat unit structure than does polyethylene, which means that, on this basis, the PE 

would have a higher degree of crystallinity and also a greater  tensile modulus.  Also, tensile modulus is relatively 

independent of number-average molecular weight.  Therefore, this determination is not possible since it is not 

possible to determine which of the two materials has the greater degree of crystallinity. 
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 15.20  For each of the following pairs of polymers, do the following: (1) state whether or not it is possible 

to decide whether one polymer has a higher tensile strength than the other; (2) if this is possible, note which has the 

higher tensile strength and then cite the reason(s) for your choice; and (3) if it is not possible to decide, then state 

why. 

 (a) Syndiotactic polystyrene having a number-average molecular weight of 600,000 g/mol; atactic 

polystyrene having a number-average molecular weight of 500,000 g/mol 

 (b) Random acrylonitrile-butadiene copolymer with 10% of possible sites crosslinked; block acrylonitrile-

butadiene copolymer with 5% of possible sites crosslinked 

 (c) Network polyester; lightly branched polypropylene 
 

  Solution 

 For each of three pairs of polymers, we are to do the following:  (1) determine whether or not it is possible 

to decide which has the higher tensile strength;  (2)  if it is possible, then note which has the higher tensile strength 

and then state the reasons for this choice;  and (3)  if it is not possible to decide, to state why. 

 (a) Yes it is possible.  The syndiotactic polystyrene has the higher tensile strength.  Syndiotactic polymers 

are more likely to crystallize than atactic ones;  the greater the crystallinity, the higher the tensile strength.  

Furthermore, the syndiotactic also has a higher molecular weight;  increasing molecular weight also enhances the 

strength. 

 (b) No it is not possible.  The random acrylonitrile-butadiene copolymer has more crosslinking;  increased 

crosslinking leads to an increase in strength.  However, the block copolymeric material will most likely have a 

higher degree of crystallinity;  and increasing crystallinity improves the strength. 

 (c) Yes it is possible.  The network polyester will display a greater tensile strength.  Relative chain motion 

is much more restricted than for the lightly branched polypropylene since there are many more of the strong 

covalent bonds for the network structure. 
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 15.21  Would you expect the tensile strength of polychlorotrifluoroethylene to be greater than, the same as, 

or less than that of a polytetrafluoroethylene specimen having the same molecular weight and degree of 

crystallinity? Why? 
 

  Solution 

 The strength of a polychlorotrifluoroethylene having the repeat unit structure 

 

 

 

will be greater than for a polytetrafluoroethylene having the same molecular weight and degree of crystallinity.  The 

replacement of one fluorine atom within the PTFE repeat unit with a chlorine atom leads to a higher interchain 

attraction, and, thus, a stronger polymer. Furthermore, poly(vinyl chloride) is stronger than polyethylene (Table 

15.1) for the same reason. 
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 15.22  For each of the following pairs of polymers, plot and label schematic stress–strain curves on the 

same graph [i.e., make separate plots for parts (a), (b), and (c)]. 

 (a) Isotactic and linear polypropylene having a weight-average molecular weight of 120,000 g/mol; atactic 

and linear polypropylene having a weight-average molecular weight of 100,000 g/mol 

 (b) Branched poly(vinyl chloride) having a degree of polymerization of 2000; heavily crosslinked 

poly(vinyl chloride) having a degree of polymerization of 2000 

 (c) Poly(styrene-butadiene) random copolymer having a number-average molecular weight of 100,000 

g/mol and 10% of the available sites crosslinked and tested at 20°C; poly(styrene-butadiene) random copolymer 

having a number-average molecular weight of 120,000 g/mol and 15% of the available sites crosslinked and tested 

at -85°C. Hint:  poly(styrene-butadiene) copolymers may exhibit elastomeric behavior. 
 

  Solution 

 (a) Shown below are the stress-strain curves for the two polypropylene materials.  These materials will 

display the stress-strain behavior of a normal plastic, curve B in Figure 15.1. However, the isotactic/linear will have 

a higher degree of crystallinity (since isotactic are more likely to crystallize than atactic/linear), and therefore, will 

have a higher tensile modulus and strength.  Furthermore, the isotactic/linear also has a higher molecular weight 

which also leads to an increase in strength. 

 

 
 (b) Shown below are the stress-strain curves for the two polyvinyl chloride materials.  The branched PVC 

will probably display the stress-strain behavior of a plastic, curve B in Figure 15.1.  However, the heavily 

crosslinked PVC will undoubtedly have a higher tensile modulus, and, also a higher strength, and will most likely 

fail in a brittle manner--as curve A, Figure 15.1;  these are the typical characteristics of a heavily crosslinked 

polymer. 
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 (c) Shown below are the stress-strain curves for the two poly(styrene-butadiene) random copolymers.  The 

copolymer tested at 20°C will display elastomeric behavior (curve C of Figure 15.1) inasmuch as it is a random 

copolymer that is lightly crosslinked;  furthermore, the temperature of testing is above its glass transition 

temperature.  On the other hand, since -85°C is below the glass transition temperature of the poly(styrene-

butadiene) copolymer, the stress-strain behavior under these conditions is as curve A of Figure 15.1. 
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 15.23  List the two molecular characteristics that are essential for elastomers. 
 

  Solution 

 Two molecular characteristics essential for elastomers are:  (1) they must be amorphous, having chains that 

are extensively coiled and kinked in the unstressed state;  and (2) there must be some crosslinking. 
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 15.24  Which of the following would you expect to be elastomers and which thermosetting polymers at 

room temperature? Justify each choice. 

 (a) Epoxy having a network structure 

 (b) Lightly crosslinked poly(styrene-butadiene) random copolymer that has a glass-transition temperature 

of -50°C 

 (c) Lightly branched and semicrystalline polytetrafluoroethylene that has a glass-transition temperature of 

-100°C 

 (d) Heavily crosslinked poly(ethylene-propylene) random copolymer that has a glass-transition 

temperature of 0°C 

 (e) Thermoplastic elastomer that has a glass-transition temperature of 75°C 
 

  Solution 

 This question asks us to choose from a list of materials those that would be expected to be elastomers and 

those that would be thermosetting polymers. 

 (a) Epoxy having a network structure will be a thermoset polymer since it has a network structure.  It 

would not be an elastomer since it does not have a crosslinked chain structure. 

 (b) A lightly crosslinked poly(styrene-butadiene) random copolymer that has a glass-transition temperature 

of -50°C will be an elastomer since it 1) is a random copolymer, 2) is lightly crosslinked, and 3) is being used at a 

temperature above its glass transition.  All three of these criteria are requisites for an elastomer. 

 (c) Lightly branched and semicrystalline PTFE would be neither an elastomer nor a thermoset.  It is not 

crosslinked nor does it have a network structure. 

 (d) A heavily crosslinked poly(ethylene-propylene) random copolymer would be a thermoset inasmuch as 

it is heavily crosslinked. 

 (e) A thermoplastic elastomer that has a glass-transition temperature of 75°C is neither an elastomer nor a 

thermoset.  Since it is a thermoplastic it is not a thermoset.  Furthermore, room temperature is below its glass-

transition temperature, and, therefore, it will not display elastomeric behavior. 
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 15.25  Ten kilogram of polybutadiene is vulcanized with 4.8 kg sulfur.  What fraction of the possible 

crosslink sites is bonded to sulfur crosslinks, assuming that, on the average, 4.5 sulfur atoms participate in each 

crosslink? 
 

  Solution 

 This problem asks that we compute the fraction of possible crosslink sites in 10 kg of polybutadiene when 

4.8 kg of S is added, assuming that, on the average, 4.5 sulfur atoms participate in each crosslink bond.  Given the 

butadiene repeat unit in Table 14.5, we may calculate its molecular weight as follows: 

 
A(butadiene) = 4(AC) + 6(AH) 

 

= (4)(12.01 g/mol) + 6(1.008 g/mol) = 54.09 g/mol 

 

Which means that in 10 kg of butadiene there are 
  

 

10,000 g
54.09 g/mol

 =  184.9 mol =  nbuta.  

 For the vulcanization polybutadiene, there are two possible crosslink sites per repeat unit--one for each of 

the two carbon atoms that are doubly bonded.  Furthermore, each of these crosslinks forms a bridge between two 

repeat units.  Therefore, we can say that there is the equivalent of one crosslink per repeat unit.  Let us now 

calculate the number of moles of sulfur (nsulfur) that react with the butadiene, by taking the mole ratio of sulfur to 

butadiene, and then dividing this ratio by 4.5 atoms per crosslink;  this yields the fraction of possible sites that are 

crosslinked.  Thus 

 

  

 

nsulfur =
4800  g

32.06  g /mol
= 149.7 mol 

And 

 

  

 

fraction sites crosslinked =

nsulfur

nbuta

4.5
 =  

149.7  mol
184.9  mol

4.5
= 0.180  
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 15.26 Compute the weight percent sulfur that must be added to completely crosslink an alternating 

chloroprene-acrylonitrile copolymer, assuming that five sulfur atoms participate in each crosslink. 
 

  Solution 

 For an alternating chloroprene-acrylonitrile copolymer, we are asked to compute the weight percent sulfur 

necessary for complete crosslinking, assuming that, on the average, five sulfur atoms participate in each crosslink.  

The chloroprene and acrylonitrile repeat units are shown in Table 14.5, from which it may be noted that there are 

two possible crosslink sites on each chloroprene repeat unit (one site at each of the two carbon atoms that are 

doubly bonded), and no possible sites for acrylonitrile;  also, since it is an alternating copolymer, the ratio of 

chloroprene to acrylonitrile repeat units is 1:1.  Thus, for each pair of combined chloroprene-acrylonitrile repeat 

units that crosslink, ten sulfur atoms are required, or, for complete crosslinking, the sulfur-to-(chloroprene-

acrylonitrile) ratio is 5:1. 

 Now, let us consider as our basis, one mole of the combined chloroprene-acrylonitrile repeat unit.  In order 

for complete crosslinking, five moles of sulfur are required.  Thus, for us to convert this composition to weight 

percent, it is necessary to convert moles to mass.  The acrylonitrile repeat unit consists of three carbon atoms, three 

hydrogen atoms, and one nitrogen atom;  the chloroprene repeat unit is composed of four carbons, five hydrogens, 

and one chlorine.  This gives a molecular weight for the combined repeat unit of 

 
m(chloroprene-acrylonitrile) = 3(AC) + 3(AH) + AN + 4(AC) + 5(AH) + ACl 

 

= 7(12.01 g/mol) + 8(1.008 g/mol)  + 14.007 g/mol + 35.45 g/mol = 141.59 g/mol 

 

Or, in one mole of this combined repeat unit, there are 141.59 g.  Furthermore, for complete crosslinking 5.0 mol of 

sulfur is required, which amounts to (5.0 mol)(32.06 g/mol) = 160.3 g.  Thus, the concentration of S in weight 

percent CS is just 

 

  

 

CS =
160.3 g

160.3 g + 141.59  g
×  100 = 53.1 wt% 
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 15.27  The vulcanization of polyisoprene is accomplished with sulfur atoms according to Equation 15.4.  If 

57 wt% sulfur is combined with polyisoprene, how many crosslinks will be associated with each isoprene repeat 

unit if it is assumed that, on the average, six sulfur atoms participate in each crosslink? 
 

  Solution 

 This problem asks for us to determine how many crosslinks form per isoprene repeat unit when 57 wt% 

sulfur is added.  If we arbitrarily consider 100 g of the vulcanized material, 57 g will be sulfur and 43 g will be 

polyisoprene.  Next, let us find how many moles of sulfur and isoprene correspond to these masses.  The atomic 

weight of sulfur is 32.06 g/mol, and thus, 

 

 

#  moles S =
57  g

32.06  g /mol
= 1.78  mol 

 

Now, in each isoprene repeat unit there are five carbon atoms and eight hydrogen atoms.  Thus, the molecular 

weight of a mole of isoprene units is 

 

(5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol 

 

Or, in 43 g of polyisoprene, the number of moles is equal to 

 

 

#  moles isoprene =
43 g

68.11 g /mol
= 0.631  mol  

 

Therefore, the ratio of moles of S to the number of moles of polyisoprene is 

 

 

1.78  mol
0.631 mol

:1 =  2.82 :1 

 

When all possible sites are crosslinked, the ratio of the number of moles of sulfur to the number of moles of 

isoprene is 6:1;  this is because there are two crosslink sites per repeat unit and each crosslink is shared between 

repeat units on adjacent chains, and there are 6 sulfur atoms per crosslink.   Finally, to determine the fraction of sites 

that are crosslinked, we just divide the actual crosslinked sulfur/isoprene ratio by the completely crosslinked ratio.  

Or, 

 

 

fraction of repeat unit sites crosslinked =
2.82 /1

6 /1
=  0.470 
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 15.28  For the vulcanization of polyisoprene, compute the weight percent of sulfur that must be added to 

ensure that 8% of possible sites will be crosslinked;  assume that, on the average, three sulfur atoms are associated 

with each crosslink. 
 

  Solution 

 We are asked what weight percent of sulfur must be added to polyisoprene in order to ensure that 8% of 

possible sites are crosslinked, assuming that, on the average, three sulfur atoms are associated with each crosslink.  

Table 14.5 shows the repeat unit for cis-isoprene.  For each of these units there are two possible crosslink sites;  one 

site is associated with each of the two carbon atoms that are involved in the chain double bond.  Since 8% of the 

possible sites are crosslinked, for each 100 isoprene repeat units 8 of them are crosslinked;  actually there are two 

crosslink sites per repeat unit, but each crosslink is shared by two chains.  Furthermore, on the average we assume 

that each crosslink is composed of 3 sulfur atoms;  thus, there must be 3 × 8 or 24 sulfur atoms added for every 100 

isoprene repeat units.  In terms of moles, it is necessary to add 24 moles of sulfur to 100 moles of isoprene.  The 

atomic weight of sulfur is 32.06 g/mol, while the molecular weight of isoprene is 

 

A(isoprene) = 5(AC) + 8(AH) 

 

= (5)(12.01 g/mol) + (8)(1.008 g/mol) = 68.11 g/mol 

 
The mass of sulfur added (mS) is 

 

mS = (24 mol)(32.06 g/mol) = 769.4 g 

 

While for isoprene 

 

mip = (100 mol)(68.11 g/mol) = 6811 g 

 

Or, the concentration of sulfur in weight percent (Equation 4.3) is just 

 

  

 

CS =
mS

mS +  mip
 ×  100 =  

769.4 g
769.4 g + 6811 g

×  100 = 10.1 wt%  
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 15.29 Demonstrate, in a manner similar to Equation 15.4, how vulcanization may occur in a butadiene 

rubber. 
 

  Solution 

 The reaction by which a butadiene rubber may become vulcanized is as follows: 
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 Crystallization 

 

 15.30  Determine values for the constants n and k (Equation 10.17) for the crystallization of polypropylene 

(Figure 15.17) at 160°C. 
 

  Solution 

 In this problem we are asked to determine the values of the constants n and k (Equation 10.17) for the 

crystallization of polypropylene at 160°C (Figure 15.17).  One way to solve this problem is to take two values of 

percent recrystallization (which is just 100y, Equation 10.17) and their corresponding time values, then set up two 

simultaneous equations, from which n and k may be determined.  In order to expedite this process, we will rearrange 

and do some algebraic manipulation of Equation 10.17.  First of all, we rearrange as follows: 

 

    

 

1 − y = exp − kt n( ) 

 

Now taking natural logarithms 

 

    

 

ln (1 − y) = − kt n 

 

Or 

 

    

 

− ln (1 − y) = kt n 

 

which may also be expressed as 

 

    

 

ln
1

1 − y

 

 
 

 

 
 = kt n  

 

Now taking natural logarithms again, leads to 

 

    

 

ln ln
1

1 − y

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln t  

 

which is the form of the equation that we will now use.  From the 160°C curve of Figure 15.17, let us arbitrarily 
choose two percent crystallized values of 20% and 80% (i.e., y1 = 0.20 and y2 = 0.80).  The corresponding time 
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values are t1 = 3400 min and t2 = 6700 min (realizing that the time axis is scaled logarithmically).  Thus, our two 

simultaneous equations become 

 

  

 

ln ln
1

1 − 0.20

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln (3400)  

 

  

 

ln ln
1

1 − 0.80

 

 
 

 

 
 

 

 
 

 

 
 = ln k + n ln (6700)  

 

from which we obtain the values n = 2.91 and k = 1.182 × 10-11. 
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 Melting and Glass Transition Temperatures 

 

 15.31  Name the following polymer(s) that would be suitable for the fabrication of cups to contain hot 

coffee: polyethylene, polypropylene, poly(vinyl chloride), PET polyester, and polycarbonate. Why? 
 

  Solution 

 This question asks us to name which, of several polymers, would be suitable for the fabrication of cups to 

contain hot coffee.  At its glass transition temperature, an amorphous polymer begins to soften. The maximum 

temperature of hot coffee is probably slightly below 100°C (212°F).  Of the polymers listed, only polystyrene and 

polycarbonate have glass transition temperatures of 100°C or above (Table 15.2), and would be suitable for this 

application. 
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 15.32  Of those polymers listed in Table 15.2, which polymer(s) would be best suited for use as ice cube 

trays? Why? 
 

  Solution 

 In order for a polymer to be suited for use as an ice cube tray it must have a glass-transition temperature 

below 0°C.  Of those polymers listed in Table 15.2 only low-density and high-density polyethylene, PTFE, and 

polypropylene satisfy this criterion. 
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 Factors That Influence Melting and Glass Transition Temperatures 

 

 15.33 For each of the following pairs of polymers, plot and label schematic specific volume versus 

temperature curves on the same graph [i.e., make separate plots for parts (a), (b), and (c)]. 

 (a) Spherulitic polypropylene, of 25% crystallinity, and having a weight-average molecular weight of 

75,000 g/mol; spherulitic polystyrene, of 25% crystallinity, and having a weight-average molecular weight of 

100,000 g/mol 

 (b) Graft poly(styrene-butadiene) copolymer with 10% of available sites crosslinked; random poly(styrene-

butadiene) copolymer with 15% of available sites crosslinked 

 (c) Polyethylene having a density of 0.985 g/cm3 and a degree of polymerization of 2500; polyethylene 

having a density of 0.915 g/cm3 and a degree of polymerization of 2000 
 

  Solution 

 (a) Shown below are the specific volume-versus-temperature curves for the polypropylene and polystyrene 

materials.  Since both polymers are 25% crystalline, they will exhibit behavior similar to curve B in Figure 15.18.  

However, polystyrene will have higher melting and glass transition temperatures due to the bulkier side group in its 

repeat unit structure, and since it has a higher weight-average molecular weight. 

 

 (b) Shown below are the specific volume-versus-temperature curves for the graft and random poly(styrene-

butadiene) copolymers.  Since these materials are graft and random copolymers, both will be highly noncrystalline, 

and, thus, will display the behavior similar to curve A in Figure 15.18.  However, since the random has the greater 

degree of crosslinking, it will also have the higher glass transition temperature. 
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 (c) Shown below are the specific volume-versus-temperature curves for the two polyethylene materials.  

The polyethylene having a density of 0.985 g/cm3 will be highly crystalline, and, thus, will exhibit a behavior 

similar to curve C in Figure 15.18.  On the other hand, the other material, of lower density will have some branching 

and also be semicrystalline;  thus, its behavior will be similar to curve B of Figure 15.18.  In addition, the melting 

temperature of the higher density material will be greater since it has less branching and a higher degree of 

polymerization. 
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 15.34  For each of the following pairs of polymers, do the following: (1) state whether or not it is possible 

to determine whether one polymer has a higher melting temperature than the other; (2) if it is possible, note which 

has the higher melting temperature and then cite reason(s) for your choice; and (3) if it is not possible to decide, 

then state why. 

 (a) Isotactic polystyrene that has a density of 1.12 g/cm3 and a weight-average molecular weight of 

150,000 g/mol; syndiotactic polystyrene that has a density of 1.10 g/cm3 and a weight-average molecular weight of 

125,000 g/mol 

 (b) Linear polyethylene that has a degree of polymerization of 5,000; linear and isotactic polypropylene 

that has a degree of polymerization of 6,500 

 (c) Branched and isotactic polystyrene that has a degree of polymerization of 4,000; linear and isotactic 

polypropylene that has a degree of polymerization of 7,500 
 

  Solution 

  (a) Yes, it is possible to determine which of the two polystyrenes has the higher Tm.  The isotactic 

polystyrene will have the higher melting temperature because it has a higher density (i.e., less branching) and also 

the greater weight-average molecular weight. 

 (b) Yes, it is possible to determine which polymer has the higher melting temperature.  The polypropylene 

will have the higher Tm because it has a bulky phenyl side group in its repeat unit structure, which is absent in the 

polyethylene.  Furthermore, the polypropylene has a higher degree of polymerization. 

 (c) No, it is not possible to determine which of the two polymers has the higher melting temperature.  The 

polystyrene has a bulkier side group than the polypropylene;  on the basis of this effect alone, the polystyrene 

should have the greater Tm.  However, the polystyrene has more branching and a lower degree of polymerization;  

both of these factors lead to a lowering of the melting temperature. 
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 15.35  Make a schematic plot showing how the modulus of elasticity of an amorphous polymer depends on 

the glass transition temperature. Assume that molecular weight is held constant. 
 

  Solution 

 For an amorphous polymer, the elastic modulus may be enhanced by increasing the number of crosslinks 

(while maintaining the molecular weight constant);  this will also enhance the glass transition temperature.  Thus, 

the modulus-glass transition temperature behavior would appear as 
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 Elastomers 

 Fibers 

 Miscellaneous Applications 

 

 15.36  Briefly explain the difference in molecular chemistry between silicone polymers and other polymeric 

materials. 
 

  Solution 

 The backbone chain of most polymers consists of carbon atoms that are linked together.  For the silicone 

polymers, this backbone chain is composed of silicon and oxygen atoms that alternate positions. 
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 15.37  List two important characteristics for polymers that are to be used in fiber applications. 
 

  Solution 

 Two important characteristics for polymers that are to be used in fiber applications are:  (1) they must have 

high molecular weights, and (2) they must have chain configurations/structures that will allow for high degrees of 

crystallinity. 
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 15.38  Cite five important characteristics for polymers that are to be used in thin-film applications. 
 

  Solution 

 Five important characteristics for polymers that are to be used in thin-film applications are:  (1) low 

density;  (2) high flexibility;  (3) high tensile and tear strengths;  (4) resistance to moisture/chemical attack;  and (5) 

low gas permeability. 
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 Polymerization 

 

 15.39  Cite the primary differences between addition and condensation polymerization techniques. 
 

  Solution 

 For addition polymerization, the reactant species have the same chemical composition as the monomer 

species in the molecular chain. This is not the case for condensation polymerization, wherein there is a chemical 

reaction between two or more monomer species, producing the repeating unit.  There is often a low molecular 

weight by-product for condensation polymerization;  such is not found for addition polymerization. 
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 15.40  (a) How much ethylene glycol must be added to 47.3 kg of terephthalic acid to produce a linear 

chain structure of poly(ethylene terephthalate) according to Equation 15.9? 

 (b) What is the mass of the resulting polymer? 
 

  Solution 

 (a)  This problem asks that we determine how much ethylene glycol must be added to 47.3 kg of 

terephthalic acid to produce a linear chain structure of poly(ethylene terephthalate) according to Equation 15.9.  

Since the chemical formulas are provided in this equation we may calculate the molecular weights of each of these 

materials as follows: 

 

    

 

MW(ethylene glycol) =  2( AC) +  6( AH ) +  2( AO)  

 

  

 

=  2(12.01 g/mol) +  6(1.008 g/mol) +  2(16.00 g/mol) =  62.07 g/mol  

 

 

    

 

MW(terephthalic acid) =  8( AC) +  6( AH ) +  4( AO)  

 

  

 

=  8 (12.01 g/mol) +  6(1.008 g/mol) +  4(16.00 g/mol) =  166.13 g/mol  

 

The 47.3 kg mass of terephthalic acid equals 47,300 g or 

 

47,300 g
166.13 g /mol

 = 284.72 mol.  Since, according to 

Equation 15.9, each mole of terephthalic acid used requires one mole of ethylene glycol, which is equivalent to 

(284.72 mol)(62.07 g/mol) = 17,673 g = 17.673 kg. 

 (b)  Now we are asked for the mass of the resulting polymer.  Inasmuch as one mole of water is given off 

for every repeat unit produced, this corresponds to 284.72 moles or (284.72 mol)(18.02 g/mol) = 5130 g or 5.130 kg 

since the molecular weight of water is 18.02 g/mol.  The mass of poly(ethylene terephthalate) is just the sum of the 

masses of the two reactant materials [as computed in part (a)] minus the mass of water released, or 

 

 

mass [poly(ethylene terephthalate)] =  47.300 kg +  17.673 kg −  5.130 kg =  59.843 kg  
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 15.41  Nylon 6,6 may be formed by means of a condensation polymerization reaction in which 

hexamethylene diamine [NH2—(CH2)6—NH2] and adipic acid react with one another with the formation of water 

as a byproduct. What masses of hexamethylene diamine and adipic acid are necessary to yield 37.5 kg of completely 

linear nylon 6,6? (Note: the chemical equation for this reaction is the answer to Concept Check 15.12.) 
 

  Solution 

 This problem asks for us to calculate the masses of hexamethylene diamine and adipic acid necessary to 

yield 37.5 kg of completely linear nylon 6,6.  The chemical equation for this reaction is the answer to Concept 

Check 15.12, which is as follows: 
 

 

 

From this equation we may calculate the molecular weights of these molecules. 

 

    

 

MW(adipic) =  6( AC) +  10( AH ) +  4( AO) 

 

  

 

=  6(12.01 g/mol) +  10(1.008 g/mol) +  4(16.00 g/mol) =  146.14 g/mol  

 

 

    

 

MW(hexamethylene) =  6( AC) +  16( AH ) +  2( AN )  

 

  

 

=  6(12.01 g/mol) +  16(1.008 g/mol) +  2(14.01 g/mol) =  116.21 g/mol  

 

 

    

 

MW(nylon) =  12( AC) +  22( AH ) +  2( AN ) +  2( AO)  
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=  12(12.01 g/mol) +  22(1.008 g/mol) +  2(14.01 g/mol) +  2(16.00 g/mol)  

 

= 226.32 g/mol 

 

The mass of 37.5 kg of nylon 6,6 equals 37,500 g or 

 

  

 

m(nylon) =  
37,500 g

226.32 g /mol
=  165.7 mol  

 

Since, according to the chemical equation given above, each mole of nylon 6,6 that is produced requires one mole 

each of adipic acid and hexamethylene diamine, with two moles of water as the by-product.  The masses 

corresponding to 165.7 moles of adipic acid and hexamethylene diamine are as follows: 

 

  

 

m(adipic) =  (165.7 mol)(146.14 g/mol) =  24,215 g =  24.215 kg  

 

  

 

m(hexamethylene) =  (165.7 mol)(116.21 g/mol) =  19,256 g =  19.256 kg  
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 Polymer Additives 

 

 15.42  What is the distinction between dye and pigment colorants? 
 

  Solution 

 The distinction between dye and pigment colorants is that a dye dissolves within and becomes a part of the 

polymer structure, whereas a pigment does not dissolve, but remains as a separate phase. 
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 Forming Techniques for Plastics 

 

 15.43  Cite four factors that determine what fabrication technique is used to form polymeric materials. 
 

  Solution 

 Four factors that determine what fabrication technique is used to form polymeric materials are:  (1) whether 

the polymer is thermoplastic or thermosetting;  (2) if thermoplastic, the softening temperature;  (3) atmospheric 

stability;  and (4) the geometry and size of the finished product. 
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 15.44  Contrast compression, injection, and transfer molding techniques that are used to form plastic 

materials. 
 

  Solution 

 This question requests that we compare polymer molding techniques.  For compression molding, both heat 

and pressure are applied after the polymer and necessary additives are situated between the mold members.  For 

transfer molding, the solid materials (normally thermosetting in nature) are first melted in the transfer chamber prior 

to being forced into the die.  And, for injection molding (normally used for thermoplastic materials), the raw 

materials are impelled by a ram through a heating chamber, and finally into the die cavity. 
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 Fabrication of Fibers and Films 

 

 15.45  Why must fiber materials that are melt spun and then drawn be thermoplastic? Cite two reasons. 
 

  Solution 

 Fiber materials that are melt spun must be thermoplastic because:  (1) In order to be melt spun, they must 

be capable of forming a viscous liquid when heated, which is not possible for thermosets.  (2) During drawing, 

mechanical elongation must be possible;  inasmuch as thermosetting materials are, in general, hard and relatively 

brittle, they are not easily elongated. 
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 15.46  Which of the following polyethylene thin films would have the better mechanical characteristics: (1) 

formed by blowing, or (2) formed by extrusion and then rolled? Why? 
 

  Solution 

 Of the two polymers cited, the one that was formed by extrusion and then rolled would have the higher 

strength.  Both blown and extruded materials would have roughly comparable strengths;  however the rolling 

operation would further serve to enhance the strength of the extruded material. 
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DESIGN QUESTIONS 

 

 15.D1 (a) List several advantages and disadvantages of using transparent polymeric materials for eyeglass 

lenses. 

 (b) Cite four properties (in addition to being transparent) that are important for this application. 

 (c) Note three polymers that may be candidates for eyeglass lenses, and then tabulate values of the 

properties noted in part (b) for these three materials. 
 

  Solution 

 (a)  Several advantages of using transparent polymeric materials for eyeglass lenses are:  they have 

relatively low densities, and, therefore, are light in weight;  they are relatively easy to grind to have the desired 

contours;  they are less likely to shatter than are glass lenses;  wraparound lenses for protection during sports 

activities are possible;  and they filter out more ultraviolet radiation than do glass lenses. 

 The principal disadvantage of these types of lenses is that some are relatively soft and are easily scratched 

(although antiscratch coatings may be applied).  Plastic lenses are not as mechanically stable as glass, and, therefore, 

are not as precise optically. 

 (b)  Some of the properties that are important for polymer lens materials are:  they should be relatively hard 

in order to resist scratching;  they must be impact resistant;  they should be shatter resistant;  they must have a 

relatively high index of refraction such that thin lenses may be ground for very nearsighted people;  and they should 

absorb significant proportions of all types of ultraviolet radiation, which radiation can do damage to the eye tissues. 

 (c)  Of those polymers discussed in this chapter and Chapter 14, likely lens candidates are polystyrene, 

poly(methyl methacrylate), and polycarbonate;  these three materials are not easily crystallized, and, therefore, are 

normally transparent.  Upon consultation of their fracture toughnesses (Table B.5 in Appendix B), polycarbonate is 

the most superior of the three. 

 Commercially, the two plastic lens materials of choice are polycarbonate and allyl diglycol carbonate 

(having the trade name CR-39).  Polycarbonate is very impact resistant, but not as hard as CR-39.  Furthermore, PC 

comes in both normal and high refractive-index grades. 
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 15.D2  Write an essay on polymeric materials that are used in the packaging of food products and drinks. 

Include a list of the general requisite characteristics of materials that are used for these applications. Now cite a 

specific material that is utilized for each of three different container types and the rationale for each choice. 
 

  Solution 

 There are three primary requirements for polymeric materials that are utilized in the packaging of food 

products and drinks;  these are:  (1) sufficient strength, to include tensile, tear, and impact strengths;  (2)  barrier 

protection--that is, being resistant to permeation by oxygen, water vapor, and carbon dioxide;  and (3)  being 

nonreactive with the food/drink contents--such reactions can compromise the integrity of the packaging material, or 

they can produce toxic by-products. 

 With regard to strength, poly(ethylene terephthalate) (PET or PETE) and oriented polypropylene (OPP) 

have high tensile strengths, linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) have 

high tear strengths, while those polymers having the best impact strengths are PET and poly(vinyl chloride) (PVC).  

Relative to barrier characteristics, ethylene vinyl alcohol (EVOH) and poly(vinylidene chloride) (PVDC) 

copolymers are relatively impermeable to oxygen and carbon dioxide, whereas high-density polyethylene (HDPE), 

PVDC, polypropylene, and LDPE are impervious to water vapor. 

 Most common polymers are relatively nonreactive with food products, and are considered safe;  exceptions 

are acrylonitrile and plasticizers used in PVC materials. 

 The aesthetics of packaging polymers are also important in the marketing of food and drink products.  

Some will be colored, many are adorned with printing, others need to be transparent and clear, and many need to be 

resistant to scuffing. 

 On the basis of the preceding discussion, examples of polymers that are used for specific applications are 

as follows: 

   PET(E) for soda pop containers; 

   PVC for beer containers; 

   LDPE and HDPE films for packaging bread and bakery products. 
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 15.D3  Write an essay on the replacement of metallic automobile components by polymers and composite 

materials. Address the following issues: (1) Which automotive components (e.g., crankshaft) now use polymers 

and/or composites? (2) Specifically what materials (e.g., high-density polyethylene) are now being used? (3) What 

are the reasons for these replacements? 
 

  Solution 

 The primary reasons that the automotive industry has replaced metallic automobile components with 

polymer and composite materials are:  polymers/composites (1) have lower densities, and afford higher fuel 

efficiencies;  (2) may be produced at lower costs but with comparable mechanical characteristics;  (3) are in many 

environments more corrosion resistant; (4) reduce noise, and (5) are thermally insulating and thus reduce the 

transference of heat. 

These replacements are many and varied.  Several are as follows: 

 Bumper fascia are molded from an elastomer-modified polypropylene. 

 Overhead consoles are made of poly(phenylene oxide) and recycled polycarbonate. 

 Rocker arm covers are injection molded of a glass- and mineral-reinforced nylon 6,6 composite. 

 Torque converter reactors, water outlets, pulleys, and brake pistons, are made from phenolic thermoset 

composites that are reinforced with glass fibers. 

 Air intake manifolds are made of a glass-reinforced nylon 6,6. 
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CHAPTER 16 

 

COMPOSITES 

 

PROBLEM SOLUTIONS 

 

 

Large-Particle Composites 

 

 16.1  The mechanical properties of aluminum may be improved by incorporating fine particles of 

aluminum oxide (Al2O3).  Given that the moduli of elasticity of these materials are, respectively, 69 GPa (10 × 106 

psi) and 393 GPa (57 × 106 psi), plot modulus of elasticity versus the volume percent of Al2O3 in Al from 0 to 100 

vol%, using both upper- and lower-bound expressions. 
 

  Solution 

 The elastic modulus versus the volume percent of Al2O3 is shown below, on which is included both upper 

and lower bound curves;  these curves were generated using Equations 16.1 and 16.2, respectively, and using the 

moduli of elasticity for aluminum and Al2O3 that were given in the problem statement. 
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 16.2  Estimate the maximum and minimum thermal conductivity values for a cermet that contains 85 vol% 

titanium carbide (TiC) particles in a cobalt matrix.  Assume thermal conductivities of 27 and 69 W/m-K for TiC and 

Co, respectively. 
 

  Solution 

 This problem asks for the maximum and minimum thermal conductivity values for a TiC-Co cermet.  

Using a modified form of Equation 16.1 the maximum thermal conductivity kmax is calculated as 

 

  

 

kmax  =  kmVm +  k pVp =  kCoVCo +  kTiCVTiC  

 

 

=  (69 W/m - K)(0.15) +  (27 W/m - K)(0.85) =  33.3 W/m - K  

 
 Using a modified form of Equation 16.2, the minimum thermal conductivity kmin will be 

 

  

 

kmin =
kCokTiC

VCokTiC + VTiCkCo
 

 

 

=  
(69 W/m - K)(27 W/m - K)

(0.15)(27 W/m - K) + (0.85)(69 W/m - K)
 

 

= 29.7 W/m-K 
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 16.3  A large-particle composite consisting of tungsten particles within a copper matrix is to be prepared.  

If the volume fractions of tungsten and copper are 0.60 and 0.40, respectively, estimate the upper limit for the 

specific stiffness of this composite given the data that follow. 

 
 Specific Gravity Modulus of Elasticity 

(GPa) 

Copper 8.9 110 

Tungsten 19.3 407 

 
  Solution 

 Given the elastic moduli and specific gravities for copper and tungsten we are asked to estimate the upper 

limit for specific stiffness when the volume fractions of tungsten and copper are 0.60 and 0.40, respectively.  There 

are two approaches that may be applied to solve this problem.  The first is to estimate both the upper limits of elastic 
modulus [Ec(u)] and specific gravity (ρc) for the composite, using expressions of the form of Equation 16.1, and 

then take their ratio.  Using this approach 

 

    

 

Ec(u) =  ECuVCu  +  EWVW  

 

 

=  (110  GPa)(0.40) +  (407  GPa)(0.60)  

 

= 288 GPa 

 

And 

 

  

 

ρc =  ρCuVCu +  ρWVW  

 

 

=  (8.9)(0.40) +  (19.3)(0.60) =  15.14  

 

Therefore 

 

  

 

Specific Stiffness =  
Ec (u)

ρc
=

288 GPa
15.14

= 19.0 GPa  

 

 With the alternate approach, the specific stiffness is calculated, again employing a modification of 

Equation 16.1, but using the specific stiffness-volume fraction product for both metals, as follows: 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

    

 

Specific Stiffness =  
ECu
ρCu

VCu  +  
EW
ρW

VW  

 

 

=  
110 GPa

8.9
(0.40) +  

407 GPa
19.3

(0.60) =  17.6 GPa 
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 16.4  (a) What is the distinction between cement and concrete? 

 (b) Cite three important limitations that restrict the use of concrete as a structural material. 

 (c) Briefly explain three techniques that are utilized to strengthen concrete by reinforcement. 
 

  Solution 

 (a)  Concrete consists of an aggregate of particles that are bonded together by a cement. 

 (b)  Three limitations of concrete are:  (1) it is a relatively weak and brittle material;  (2) it experiences 

relatively large thermal expansions (contractions) with changes in temperature;  and (3) it may crack when exposed 

to freeze-thaw cycles. 

 (c)  Three reinforcement strengthening techniques are:  (1) reinforcement with steel wires, rods, etc.;  (2) 

reinforcement with fine fibers of a high modulus material;  and (3) introduction of residual compressive stresses by 

prestressing or posttensioning. 
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 Dispersion-Strengthened Composites 

 

 16.5  Cite one similarity and two differences between precipitation hardening and dispersion 

strengthening. 
 

  Solution 

 The similarity between precipitation hardening and dispersion strengthening is the strengthening 

mechanism--i.e., the precipitates/particles effectively hinder dislocation motion. 

 The two differences are:  (1) the hardening/strengthening effect is not retained at elevated temperatures for 

precipitation hardening--however, it is retained for dispersion strengthening;  and (2) the strength is developed by a 

heat treatment for precipitation hardening--such is not the case for dispersion strengthening. 
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 Influence of Fiber Length 

 

 16.6  For some glass fiber-epoxy matrix combination, the critical fiber length-fiber diameter ratio is 50.  

Using the data in Table 16.4, determine the fiber-matrix bond strength. 
 

  Solution 

 This problem asks that, for a glass fiber-epoxy matrix combination, to determine the fiber-matrix bond 
strength if the critical fiber length-fiber diameter ratio is 50.  Thus, we are to solve for τc in Equation 16.3.  Since 

we are given that 
  

 

σ f
∗  = 3.45 GPa from Table 16.4, and that 

  

 

lc
d

 = 50, then 

 

  

 

τ c =  σ f
∗ d

2 lc

 

 
 

 

 
 =  (3.45 ×  103  MPa) 1

2

 

 
 

 

 
 

1
50

 

 
 

 

 
 =  34.5 MPa 
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 16.7  (a) For a fiber-reinforced composite, the efficiency of reinforcement η is dependent on fiber length l 

according to 
 

 

η =
l −  2x

l
 

where x represents the length of the fiber at each end that does not contribute to the load transfer. Make a plot of η 

versus l to l = 40 mm (1.6 in.) assuming that x = 0.75 mm (0.03 in.). 

 (b) What length is required for a 0.80 efficiency of reinforcement? 
 

  Solution 

 (a)  The plot of reinforcement efficiency versus fiber length is given below. 

 

 

 

 (b)  This portion of the problem asks for the length required for a 0.80 efficiency of reinforcement.  

Solving for l from the given expression 

 

    

 

l =  
2x

1 − η
 

 

Or, when x = 0.75 mm (0.03 in.) and η = 0.80, then 

 

  

 

l =  
(2)(0.75 mm)

1 − 0.80
=  7.5 mm  (0.30 in.)  
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 Influence of Fiber Orientation and Concentration 

 

 16.8  A continuous and aligned fiber-reinforced composite is to be produced consisting of 30 vol% aramid 

fibers and 70 vol% of a polycarbonate matrix; mechanical characteristics of these two materials are as follows: 

 
 Modulus of Elasticity 

[GPa (psi)] 
Tensile Strength [MPa 

(psi)] 

Aramid fiber 
131 (19 × 106) 3600 (520,000) 

Polycarbonate 
2.4 (3.5 × 105) 65 (9425) 

 

Also, the stress on the polycarbonate matrix when the aramid fibers fail is 45 MPa (6500 psi). 

For this composite, compute 

 (a) the longitudinal tensile strength, and 

 (b) the longitudinal modulus of elasticity 
 

  Solution 

 This problem calls for us to compute the longitudinal tensile strength and elastic modulus of an aramid 

fiber-reinforced polycarbonate composite. 

 (a)  The longitudinal tensile strength is determined using Equation 16.17 as 

 

    

 

σcl
∗  =  σm

' (1 − V f ) +   σ f
∗ V f  

 

 

=  (45 MPa)(0.70) +  (3600)(0.30)  

 

 

=  1100 MPa  (160,000 psi)  

 

 (b)  The longitudinal elastic modulus is computed using Equation 16.10a as 

 

    

 

Ecl =  EmVm +  E f V f  

 

 

=  (2.4 GPa)(0.70) +  (131 GPa)(0.30)  

 

 

=  41 GPa (5.95 ×  106  psi) 
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 16.9  Is it possible to produce a continuous and oriented aramid fiber-epoxy matrix composite having 

longitudinal and transverse moduli of elasticity of 57.1 GPa (8.28 × 106 psi) and 4.12 GPa (6 × 105 psi), 

respectively?  Why or why not?  Assume that the modulus of elasticity of the epoxy is 2.4 GPa (3.50 × 105 psi). 
 

  Solution 

 This problem asks for us to determine if it is possible to produce a continuous and oriented aramid fiber-

epoxy matrix composite having longitudinal and transverse moduli of elasticity of 57.1 GPa and 4.12 GPa, 

respectively, given that the modulus of elasticity for the epoxy is 2.4 GPa.  Also, from Table 16.4 the value of E for 
aramid fibers is 131 GPa.  The approach to solving this problem is to calculate values of Vf for both longitudinal and 

transverse cases using the data and Equations 16.10b and 16.16;  if the two Vf values are the same then this 

composite is possible. 
 For the longitudinal modulus Ecl (using Equation 16.10b), 

 

    

 

Ecl =  Em(1 −  V fl) +  E f V fl  

 

  

 

57.1 GPa =  (2.4 GPa)(1 −  V fl) +  (131 GPa)V fl  

 
Solving this expression for Vfl (i.e., the volume fraction of fibers for the longitudinal case) yields Vfl = 0.425. 

 Now, repeating this procedure for the transverse modulus Ect (using Equation 16.16) 

 

    

 

Ect  =  
EmE f

(1 − V ft)E f + V ftEm
 

 

  

 

4.12 GPa =  
(2.4 GPa)(131 GPa)

(1 − V ft) (131 GPa) + V ft (2.4 GPa)
 

 
Solving this expression for Vft (i.e., the volume fraction of fibers for the transverse case), leads to Vft = 0.425.  

Thus, since Vfl and Vft are equal, the proposed composite is possible. 
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 16.10  For a continuous and oriented fiber-reinforced composite, the moduli of elasticity in the 

longitudinal and transverse directions are 19.7 and 3.66 GPa (2.8 × 106 and 5.3 × 105 psi), respectively.  If the 

volume fraction of fibers is 0.25, determine the moduli of elasticity of fiber and matrix phases. 
 

  Solution 

 This problem asks for us to compute the elastic moduli of fiber and matrix phases for a continuous and 

oriented fiber-reinforced composite.  We can write expressions for the longitudinal and transverse elastic moduli 

using Equations 16.10b and 16.16, as 

 

    

 

Ecl =  Em(1 −  V f ) +  E f V f  

 

  

 

19.7 GPa =  Em (1 −  0.25) +  E f (0.25)  

 

And 

 

    

 

Ect  =  
EmE f

(1 − V f )E f +V f Em
 

 

  

 

3.66 GPa =  
EmE f

(1 − 0.25)E f + 0.25Em
 

 
Solving these two expressions simultaneously for Em and Ef leads to 

 

  

 

Em =  2.79 GPa  (4.04 ×  105  psi)  

  

 

E f  =  70.4 GPa  (10.2 ×  106  psi)  
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 16.11  (a) Verify that Equation 16.11, the expression for the fiber load–matrix load ratio (F f/Fm), is valid. 

 (b) What is the F f/Fc ratio in terms of E f, Em, and V f? 
 

  Solution 

 (a)  In order to show that the relationship in Equation 16.11 is valid, we begin with Equation 16.4—i.e., 

 

  

 

Fc = Fm + Ff  

 

which may be manipulated to the form 

 

    

 

Fc
Fm

=  1 +  
Ff

Fm
 

or 

 

    

 

Ff

Fm
=  

Fc
Fm

−  1 

 

For elastic deformation, combining Equations 6.1 and 6.5 

 

    

 

σ =
F
A

=  εE  

 

or 

 

    

 

F =  AεE  

 
We may write expressions for Fc and Fm of the above form as 

 

    

 

Fc =  AcεEc  

 

    

 

Fm =  AmεEm  

 
which, when substituted into the above expression for Ff/Fm, gives 

 

    

 

Ff

Fm
=  

AcεEc
AmεEm

−  1 
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But, Vm = Am/Ac, which, upon rearrangement gives 

 

    

 

Ac
Am

=
1

Vm
 

 

which, when substituted into the previous expression leads to 

 

    

 

Ff

Fm
=  

Ec
EmVm

−  1 

 
Also, from Equation 16.10a, Ec = EmVm + EfVf, which, when substituted for Ec into the previous expression, yields 

 

    

 

Ff

Fm
=  

EmVm + E f V f

EmVm
−  1 

 

    

 

=  
EmVm + E f V f − EmVm

EmVm
=  

E f V f

EmVm
 

 

the desired result. 
 (b)  This portion of the problem asks that we establish an expression for Ff/Fc.  We determine this ratio in a 

similar manner.  Now Fc = Ff + Fm (Equation 16.4), or division by Fc leads to 

 

    

 

1 =
Ff

Fc
+  

Fm
Fc

 

 

which, upon rearrangement, gives 

 

    

 

Ff

Fc
=  1 −

Fm
Fc

 

 
Now, substitution of the expressions in part (a) for Fm and Fc that resulted from combining Equations 6.1 and 6.5 

results in 

    

 

Ff

Fc
=  1 −

AmεEm
AcεEc

=  1 −
AmEm
AcEc
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Since the volume fraction of fibers is equal to Vm = Am/Ac, then the above equation may be written in the form 

 

    

 

Ff

Fc
=  1 −

VmEm
Ec

 

 
And, finally substitution of Equation 16.10(a) for Ec into the above equation leads to the desired result as follows: 

 

    

 

Ff

Fc
=  1 −

VmEm
VmEm + V f E f

 

 

    

 

=  
VmEm + V f E f − VmEm

VmEm + V f E f
 

 

  

 

=
V f E f

VmEm + V f E f
 

 

    

 

=
V f E f

(1 − V f )Em + V f E f
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 16.12  In an aligned and continuous glass fiber-reinforced nylon 6,6 composite, the fibers are to carry 

94% of a load applied in the longitudinal direction. 

 (a) Using the data provided, determine the volume fraction of fibers that will be required. 

 (b) What will be the tensile strength of this composite?  Assume that the matrix stress at fiber failure is 30 

MPa (4350 psi). 

 
 Modulus of Elasticity 

[GPa (psi)] 
Tensile Strength 

[MPa (psi)] 

Glass fiber 72.5 (10.5 × 106) 3400 (490,000) 

Nylon 6,6 3.0 (4.35 × 105) 76 (11,000) 

 
  Solution 

 (a)  Given some data for an aligned and continuous glass-fiber-reinforced nylon 6,6 composite, we are 

asked to compute the volume fraction of fibers that are required such that the fibers carry 94% of a load applied in 

the longitudinal direction.  From Equation 16.11 

 

    

 

Ff

Fm
=  

E f V f

EmVm
=  

E f V f

Em (1 − V f )
 

 
Now, using values for Ff and Fm from the problem statement 

 

  

 

Ff

Fm
=  

0.94
0.06

=  15.67 

 
And when we substitute the given values for Ef and Em into the first equation leads to 

 

  

 

Ff

Fm
=  15.67 =  

(72.5 GPa)V f

(3.0 GPa)(1 − V f )
 

 
And, solving for Vf yields, Vf = 0.393. 

 

 (b)  We are now asked for the tensile strength of this composite. From Equation 16.17, 

 

    

 

σcl
∗  =  σm

' (1 − V f ) + σ f
∗ V f  
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=  (30 MPa)(1 − 0.393) + (3400 MPa)(0.393)  

 

= 1354 MPa  (196,400 psi) 

 

since values for 
  

 

σ f
∗  (3400 MPa) and   

 

σm
'  (30 MPa) are given in the problem statement. 
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 16.13  Assume that the composite described in Problem 16.8 has a cross-sectional area of 320 mm2 (0.50 

in.2) and is subjected to a longitudinal load of 44,500 N (10,000 lb f). 

 (a) Calculate the fiber–matrix load ratio. 

 (b) Calculate the actual loads carried by both fiber and matrix phases. 

 (c) Compute the magnitude of the stress on each of the fiber and matrix phases. 

 (d) What strain is experienced by the composite? 

 
  Solution 

 The problem stipulates that the cross-sectional area of a composite, Ac, is 320 mm2 (0.50 in.2), and the 

longitudinal load, Fc, is 44,500 N (10,000 lbf) for the composite described in Problem 16.8.  Also, for this 

composite 

 Vf = 0.3 

 Vm = 0.7 

 Ef = 131 GPa 

 Em = 2.4 GPa 

 
 (a)  First, we are asked to calculate the Ff/Fm ratio.  According to Equation 16.11 

 

  

 

Ff

Fm
=  

E f V f

EmVm
=  

(131 GPa)(0.30)
(2.4 GPa)(0.70)

=  23.4  

 
Or, Ff = 23.4Fm 

 (b)  Now, the actual loads carried by both phases are called for.  From Equation 16.4 

 

  

 

Ff  +  Fm =  Fc =  44,500  N  

 

  

 

23.4Fm +  Fm =  44,500  N  

 

which leads to  

  

 

Fm =  1824  N  (410 lbf )  

 

  

 

Ff  =  Fc − Fm = 44,500  N − 1824  N =  42,676 N  (9590 lbf )  

 

 (c)  To compute the stress on each of the phases, it is first necessary to know the cross-sectional areas of 

both fiber and matrix.  These are determined as 
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A f  =  V f Ac =  (0.30)(320  mm2) =  96 mm2  (0.15 in.2)  

 

  

 

Am =  Vm Ac =  (0.70)(320  mm2) =  224 mm2  (0.35 in.2)  

 

Now, the stresses are determined using Equation 6.1 as 

 

  

 

σ f  =  
Ff

A f
=  

42,676 N

(96 mm2)(1 m/1000 mm)2
=  445 ×106 N/m2 = 445 MPa  (63,930  psi)  

 

  

 

σm =  
Fm

Am
=  

1824 N

(224 mm2)(1 m/1000 mm)2
=  8.14 ×  106 N/m2 = 8.14 MPa  (1170 psi)  

 

 (d)  The strain on the composite is the same as the strain on each of the matrix and fiber phases;  applying 

Equation 6.5 to both matrix and fiber phases leads to 

 

  

 

εm =  
σm

Em
=  

8.14 MPa

2.4 × 103 MPa
=  3.39 ×  10-3 

 

  

 

ε f  =  
σ f

E f
=  

445 MPa

131 × 103 MPa
=  3.39 ×  10-3  
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 16.14  A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1130 mm2 

(1.75 in.2) is subjected to an external tensile load.  If the stresses sustained by the fiber and matrix phases are 156 

MPa (22,600 psi) and 2.75 MPa (400 psi), respectively, the force sustained by the fiber phase is 74,000 N (16,600 

lb f) and the total longitudinal strain is 1.25 × 10-3, determine 

 (a) the force sustained by the matrix phase 

 (b) the modulus of elasticity of the composite material in the longitudinal direction, and 

 (c) the moduli of elasticity for fiber and matrix phases. 

 
  Solution 

 (a)  For this portion of the problem we are asked to calculate the force sustained by the matrix phase.  It is 
first necessary to compute the volume fraction of the matrix phase, Vm.  This may be accomplished by first 

determining Vf and then Vm from Vm = 1 – Vf.  The value of Vf may be calculated since, from the definition of stress 

(Equation 6.1), and realizing Vf = Af/Ac as 

 

  

 

σ f  =  
Ff

A f
=  

Ff

V f Ac
 

 
Or, solving for Vf 

 

  

 

V f  =  
Ff

σ f Ac
=  

74,000 N

(156 × 106 N /m2)(1130 mm2)(1 m/1000 mm)2
=  0.420  

 

Also 

 

  

 

Vm =  1 − V f  =  1 − 0.420 =  0.580  

 
And, an expression for σm analogous to the one for σf above is 

 

    

 

σm =  
Fm
Am

=  
Fm

VmAc
 

 

From which 

 

  

 

Fm =  Vmσm Ac =  (0.580)(2.75 ×  106  N/m2)(1.13 ×  10-3  m2) =  1802  N   (406  lbf )  
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 (b)  We are now asked to calculate the modulus of elasticity in the longitudinal direction.  This is possible 

realizing that 
    

 

Ec =
σc
ε

 (from Equation 6.5) and that 
    

 

σc =  
Fm + Ff

Ac
 (from Equation 6.1).  Thus 

 

  

 

Ec =  
σc

ε
=

Fm + Ff

Ac

ε
=

Fm + Ff

εAc
 

 

 

=  
1802 N + 74,000 N

(1.25 × 10−3)(1130 mm2)(1 m/1000 mm)2
=  53.7 ×109 N/m2 = 53.7  GPa  (7.77 ×  106  psi)  

 

 (c)  Finally, it is necessary to determine the moduli of elasticity for the fiber and matrix phases.  This is 

possible assuming Equation 6.5 for the matrix phase—i.e.,  

 

    

 

Em =  
σm
εm

 

 

and, since this is an isostrain state, εm = εc = 1.25 × 10-3.  Thus 

 

  

 

Em =  
σm

εc
=  

2.75 × 106 N /m2

1.25 × 10−3
=  2.2 ×  109  N/m2  

 

 

=  2.2 GPa  (3.2 ×  105  psi)  

 

The elastic modulus for the fiber phase may be computed in an analogous manner: 

 

  

 

E f  =  
σ f

ε f
=  

σ f

εc
=  

156 × 106 N /m2

1.25 × 10−3
=  1.248 ×  1011  N/m2 

 

 

=  124.8 GPa  (18.1 ×  106  psi)  
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 16.15  Compute the longitudinal strength of an aligned carbon fiber-epoxy matrix composite having a 0.25 

volume fraction of fibers, assuming the following: (1) an average fiber diameter of 10 × 10-3 mm (3.94 × 10-4 in.), 

(2) an average fiber length of 5 mm (0.20 in.), (3) a fiber fracture strength of 2.5 GPa (3.625 × 105 psi), (4) a fiber-

matrix bond strength of 80 MPa (11,600 psi), (5) a matrix stress at fiber failure of 10.0 MPa (1450 psi), and (6) a 

matrix tensile strength of 75 MPa (11,000 psi). 

 
  Solution 

 It is first necessary to compute the value of the critical fiber length using Equation 16.3.  If the fiber length 
is much greater than lc, then we may determine the longitudinal strength using Equation 16.17, otherwise, use of 

either Equation 16.18 or Equation 16.19 is necessary.  Thus, from Equation 16.3 

 

  

 

lc =  
σ f

∗ d

2τ c
=  

(2.5 × 103 MPa)(10 × 10−3 mm)
2 (80 MPa)

=  0.16 mm 

 
Inasmuch as l >> lc (5.0 mm >> 0.16 mm), then use of Equation 16.17 is appropriate.  Therefore, 

 

    

 

σcl
∗  =  σm

' (1 − V f ) + σ f
∗ V f  

 

= (10 MPa)(1 – 0.25) + (2.5 × 103 MPa)(0.25) 

 

= 633 MPa  (91,700 psi) 
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 16.16  It is desired to produce an aligned carbon fiber-epoxy matrix composite having a longitudinal 

tensile strength of 750 MPa (109,000 psi).  Calculate the volume fraction of fibers necessary if (1) the average fiber 

diameter and length are 1.2 × 10-2 mm (4.7 × 10-4 in.) and 1 mm (0.04 in.), respectively; (2) the fiber fracture 

strength is 5000 MPa (725,000 psi); (3) the fiber-matrix bond strength is 25 MPa (3625 psi); and (4) the matrix 

stress at fiber failure is 10 MPa (1450 psi). 

 
  Solution 

 It is first necessary to compute the value of the critical fiber length using Equation 16.3.  If the fiber length 
is much greater than lc, then we may determine Vf using Equation 16.17, otherwise, use of either Equation 16.18 or 

Equation 16.19 is necessary.  Thus, 

 

  

 

lc =  
σ f

∗ d

2τ c
=  

(5000 MPa)(1.2 × 10−2 mm)
2 (25 MPa)

=  1.20  mm  

 
Inasmuch as l < lc (1.0 mm < 1.20 mm), then use of Equation 16.19 is required.  Therefore, 

 

    

 

σcd'
∗  =  

lτc
d

V f  +  σm
' (1 − V f )  

 

  

 

750 MPa =  
(1.0 × 10−3 m) (25 MPa)

0.012 × 10−3 m
(V f ) +  (10  MPa)(1 − V f )  

 
Solving this expression for Vf leads to Vf = 0.357. 
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 16.17  Compute the longitudinal tensile strength of an aligned glass fiber-epoxy matrix composite in which 

the average fiber diameter and length are 0.010 mm (4 × 10-4 in.) and 2.5 mm (0.10 in.), respectively, and the 

volume fraction of fibers is 0.40.  Assume that (1) the fiber-matrix bond strength is 75 MPa (10,900 psi), (2) the 

fracture strength of the fibers is 3500 MPa (508,000 psi), and (3) the matrix stress at fiber failure is 8.0 MPa (1160 

psi). 

 
  Solution 

 It is first necessary to compute the value of the critical fiber length using Equation 16.3.  If the fiber length 

is much greater than lc, then we may determine 
  

 

σcl
∗  using Equation 16.17, otherwise, use of either Equations 16.18 

or 16.19 is necessary.  Thus, 

 

  

 

lc =  
σ f

∗ d

2τ c
=  

(3500 MPa)(0.010 mm)
2 (75 MPa)

=  0.233 mm  (0.0093 in.)  

 
Inasmuch as l > lc (2.5 mm > 0.233 mm), but since l is not much greater than lc, then use of Equation 16.18 is 

necessary.  Therefore, 

 

    

 

σcd
∗  =  σ f

∗ V f 1 −
lc
2 l

 

 
 

 

 
 +  σm

' (1 − V f )  

 

 

=  (3500 MPa)(0.40) 1 −
0.233 mm

(2)(2.5 mm)

 

 
 

 

 
 +  (8.0 MPa)(1 − 0.40)  

 

= 1340 MPa  (194,400 psi) 
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 16.18  (a) From the moduli of elasticity data in Table 16.2 for glass fiber-reinforced polycarbonate 

composites, determine the value of the fiber efficiency parameter for each of 20, 30, and 40 vol% fibers. 

 (b) Estimate the modulus of elasticity for 50 vol% glass fibers. 

 
  Solution 

 (a)  This portion of the problem calls for computation of values of the fiber efficiency parameter.  From 

Equation 16.20 

 

    

 

Ecd  =  KE f V f  +  EmVm  

 

Solving this expression for K yields 

 

  

 

K =  
Ecd − EmVm

E f V f
=  

Ecd − Em(1 − V f )
E f V f

 

 
For glass fibers, Ef = 72.5 GPa (Table 16.4);  using the data in Table 16.2, and taking an average of the extreme Em 

values given, Em = 2.29 GPa (0.333 × 106 psi).  And, for Vf = 0.20 

 

    

 

K =  
5.93 GPa − (2.29 GPa)(1 − 0.2)

(72.5 GPa)(0.2)
=  0.283  

 
 For Vf = 0.3 

 

    

 

K =  
8.62 GPa − (2.29 GPa)(1 − 0.3)

(72.5 GPa)(0.3)
=  0.323  

 
 And, for Vf = 0.4 

 

    

 

K =  
11.6 GPa − (2.29 GPa)(1 − 0.4)

(72.5 GPa)(0.4)
=  0.353  

 
 (b)  For 50 vol% fibers (Vf = 0.50), we must assume a value for K. Since it is increasing with Vf, let us 

estimate it to increase by the same amount as going from 0.3 to 0.4—that is, by a value of 0.03.  Therefore, let us 

assume a value for K of 0.383.  Now, from Equation 16.20 

 

    

 

Ecd  =  KE f V f  +  EmVm  
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=  (0.383)(72.5 GPa)(0.5) +  (2.29 GPa)(0.5)  

 

 

=  15.0 GPa  (2.18 ×  106  psi)  
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 The Fiber Phase 

 The Matrix Phase 

 

 16.19  For a polymer-matrix fiber-reinforced composite, 

 (a) List three functions of the matrix phase. 

 (b) Compare the desired mechanical characteristics of matrix and fiber phases. 

 (c) Cite two reasons why there must be a strong bond between fiber and matrix at their interface. 

 
  Solution 

 (a)  For polymer-matrix fiber-reinforced composites, three functions of the polymer-matrix phase are:  (1) 

to bind the fibers together so that the applied stress is distributed among the fibers;  (2) to protect the surface of the 

fibers from being damaged;  and (3) to separate the fibers and inhibit crack propagation. 

 (b)  The matrix phase must be ductile and is usually relatively soft, whereas the fiber phase must be stiff 

and strong. 

 (c)  There must be a strong interfacial bond between fiber and matrix in order to:  (1) maximize the stress 

transmittance between matrix and fiber phases;  and (2) minimize fiber pull-out, and the probability of failure. 
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 16.20  (a) What is the distinction between matrix and dispersed phases in a composite material? 

 (b) Contrast the mechanical characteristics of matrix and dispersed phases for fiber-reinforced 

composites. 

 
  Solution 

 (a)  The matrix phase is a continuous phase that surrounds the noncontinuous dispersed phase. 

 (b)  In general, the matrix phase is relatively weak, has a low elastic modulus, but is quite ductile.  On the 

other hand, the fiber phase is normally quite strong, stiff, and brittle. 
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 Polymer-Matrix Composites 

 

 16.21  (a) Calculate and compare the specific longitudinal strengths of the glass-fiber, carbon-fiber, and 

aramid-fiber reinforced epoxy composites in Table 16.5 with the following alloys: tempered (315°C) 440A 

martensitic stainless steel, normalized 1020 plain-carbon steel, 2024-T3 aluminum alloy, cold-worked (HO2 

temper) C36000 free-cutting brass, rolled AZ31B magnesium alloy, and annealed Ti-6Al-4V titanium alloy. 

 (b) Compare the specific moduli of the same three fiber-reinforced epoxy composites with the same metal 

alloys. Densities (i.e., specific gravities), tensile strengths, and moduli of elasticity for these metal alloys may be 

found in Tables B.1, B.4, and B.2, respectively, in Appendix B. 

 
  Solution 

 (a)  This portion of the problem calls for us to calculate the specific longitudinal strengths of glass-fiber, 

carbon-fiber, and aramid-fiber reinforced epoxy composites, and then to compare these values with the specific 

strengths of several metal alloys. 
 The longitudinal specific strength of the glass-reinforced epoxy material (Vf = 0.60) in Table 16.5 is just 

the ratio of the longitudinal tensile strength and specific gravity as 

 

  

 

1020 MPa
2.1

=  486  MPa  

 

 For the carbon-fiber reinforced epoxy 

 

  

 

1240 MPa
1.6

=  775 MPa  

 

 And, for the aramid-fiber reinforced epoxy 

 

  

 

1380 MPa
1.4

=  986 MPa  

 

 Now, for the metal alloys we use data found in Tables B.1 and  B.4 in Appendix B (using the density 

values from Table B.1 for the specific gravities). For the 440A tempered martensitic steel 

 

 

1790  MPa
7.80

=  229  MPa  

 

 For the normalized 1020 plain carbon steel, the ratio is 
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440 MPa
7.85

=  56 MPa  

 

 For the 2024-T3 aluminum alloy 

 

 

485 MPa
2.77

=  175 MPa 

 

 For the C36000 brass (cold worked) 

 

 

400 MPa
8.50

=  47  MPa 

 

 For the AZ31B (rolled) magnesium alloy 

 

 

290 MPa
1.77

=  164 MPa  

 

 For the annealed Ti-6Al-4V  titanium alloy 

 

 

900 MPa
4.43

=  203 MPa  

 

 (b)  The longitudinal specific modulus is just the longitudinal tensile modulus-specific gravity ratio.  For 

the glass-fiber reinforced epoxy, this ratio is 

 

  

 

45 GPa
2.1

=  21.4 GPa  

 

 For the carbon-fiber reinforced epoxy 

 

  

 

145 GPa
1.6

=  90.6 GPa  

 

 And, for the aramid-fiber reinforced epoxy 

 

  

 

76 GPa
1.4

=  54.3 GPa  
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 The specific moduli for the metal alloys (Tables B.1 and B.2) are as follows: 

 For the 440A tempered martensitic steel 

 

 

200 GPa
7.80

=  25.6 GPa  

 

 For the normalized 1020 plain-carbon steel 

 

  

 

207 GPa
7.85

=  26.4  GPa  

 

 For the 2024-T3 aluminum alloy 

 

 

72.4 GPa
2.77

=  26.1 GPa 

 

 For the cold-worked C36000 brass 

 

 

97 GPa
8.50

=  11.4  GPa 

 

 For the rolled AZ31B magnesium alloy 

 

  

 

45 GPa
1.77

=  25.4 GPa  

 

 For the Ti-6Al-4V titanium alloy 

 

 

114 GPa
4.43

=  25.7 GPa 
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 16.22  (a) List four reasons why glass fibers are most commonly used for reinforcement. 

 (b) Why is the surface perfection of glass fibers so important? 

 (c) What measures are taken to protect the surface of glass fibers? 

 
  Solution 

 (a)  The four reasons why glass fibers are most commonly used for reinforcement are listed at the 

beginning of Section 16.8 under "Glass Fiber-Reinforced Polymer (GFRP) Composites." 

 (b)  The surface perfection of glass fibers is important because surface flaws or cracks act as points of 

stress concentration, which will dramatically reduce the tensile strength of the material. 

 (c)  Care must be taken not to rub or abrade the surface after the fibers are drawn.  As a surface protection, 

newly drawn fibers are coated with a protective surface film. 
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 16.23 Cite the distinction between carbon and graphite. 

 
  Solution 

 "Graphite" is crystalline carbon having the structure shown in Figure 12.17, whereas "carbon" will consist 

of some noncrystalline material as well as areas of crystal misalignment. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 16.24  (a) Cite several reasons why fiberglass-reinforced composites are utilized extensively. 

 (b) Cite several limitations of this type of composite. 

 
  Solution 

 (a)  Reasons why fiberglass-reinforced composites are utilized extensively are:  (1) glass fibers are very 

inexpensive to produce;  (2) these composites have relatively high specific strengths;  and (3) they are chemically 

inert in a wide variety of environments. 

 (b)  Several limitations of these composites are:  (1) care must be exercised in handling the fibers inasmuch 

as they are susceptible to surface damage;  (2)  they are lacking in stiffness in comparison to other fibrous 

composites;  and (3) they are limited as to maximum temperature use. 
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 Hybrid Composites 

 

 16.25  (a) What is a hybrid composite? 

 (b) List two important advantages of hybrid composites over normal fiber composites. 

 
  Solution 

 (a)  A hybrid composite is a composite that is reinforced with two or more different fiber materials in a 

single matrix. 

 (b)  Two advantages of hybrid composites are:  (1) better overall property combinations, and (2) failure is 

not as catastrophic as with single-fiber composites. 
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 16.26  (a) Write an expression for the modulus of elasticity for a hybrid composite in which all fibers of 

both types are oriented in the same direction. 

 (b) Using this expression, compute the longitudinal modulus of elasticity of a hybrid composite consisting 

of aramid and glass fibers in volume fractions of 0.30 and 0.40, respectively, within a polyester resin matrix [Em = 

2.5 GPa (3.6 × 105 psi)]. 

 
  Solution 

 (a)  For a hybrid composite having all fibers aligned in the same direction 

 

    

 

Ecl =  EmVm +  E f 1V f 1 +  E f 2V f 2  

 

in which the subscripts f1 and f2 refer to the two types of fibers. 

 (b)  Now we are asked to compute the longitudinal elastic modulus for a glass- and aramid-fiber hybrid 

composite.  From Table 16.4, the elastic moduli of aramid and glass fibers are, respectively, 131 GPa (19 × 106 psi) 

and 72.5 GPa (10.5 × 106 psi).  Thus, from the previous expression 

 

  

 

Ecl  =  (2.5 GPa)(1.0 −  0.30 −  0.40) +  (131 GPa)(0.30) +  (72.5 GPa)(0.40)  

 

 

=  69.1 GPa  (10.0 ×  106  psi)  
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 16.27  Derive a generalized expression analogous to Equation 16.16 for the transverse modulus of 

elasticity of an aligned hybrid composite consisting of two types of continuous fibers. 

 
  Solution 

 This problem asks that we derive a generalized expression analogous to Equation 16.16 for the transverse 

modulus of elasticity of an aligned hybrid composite consisting of two types of continuous fibers.  Let us denote the 

subscripts f1 and f2 for the two fiber types, and m , c, and t subscripts for the matrix,  composite, and transverse 

direction, respectively.  For the isostress state, the expressions analogous to Equations 16.12 and 16.13 are 

 

    

 

σc =  σm =  σ f 1 =  σ f 2  

 

And 

 

    

 

εc =  εmVm +  ε f 1V f 1 +  ε f 2V f 2  

 

Since ε = σ/E (Equation 6.5), making substitutions of the form of this equation into the previous expression yields 

 

    

 

σ
Ect

=  
σ

Em
Vm +  

σ
E f 1

V f 1 +  
σ

E f 2
V f 2  

 

Thus 

 

    

 

1
Ect

=  
Vm
Em

+  
V f 1

E f 1
+  

V f 2

E f 2
 

 

    

 

=  
VmE f 1E f 2 + V f 1EmE f 2 + V f 2EmE f 1

EmE f 1E f 2
 

 

And, finally, taking the reciprocal of this equation leads to 

 

    

 

Ect  =  
EmE f 1E f 2

VmE f 1E f 2 + V f 1EmE f 2 + V f 2EmE f 1
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 Processing of Fiber-Reinforced Composites 

 

 16.28  Briefly describe pultrusion, filament winding, and prepreg production fabrication processes; cite 

the advantages and disadvantages of each. 

 
  Solution 

 Pultrusion, filament winding, and prepreg fabrication processes are described in Section 16.13. 

 For pultrusion, the advantages are:  the process may be automated, production rates are relatively high, a 

wide variety of shapes having constant cross-sections are possible, and very long pieces may be produced.  The 

chief disadvantage is that shapes are limited to those having a constant cross-section. 

 For filament winding, the advantages are:  the process may be automated, a variety of winding patterns are 

possible, and a high degree of control over winding uniformity and orientation is afforded.  The chief disadvantage 

is that the variety of shapes is somewhat limited. 

 For prepreg production, the advantages are:  resin does not need to be added to the prepreg, the lay-up 

arrangement relative to the orientation of individual plies is variable, and the lay-up process may be automated.  The 

chief disadvantages of this technique are that final curing is necessary after fabrication, and thermoset prepregs must 

be stored at subambient temperatures to prevent complete curing. 
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 Laminar Composites 

 Sandwich Panels 

 

 16.29  Briefly describe laminar composites. What is the prime reason for fabricating these materials? 

 
  Solution 

 Laminar composites are a series of sheets or panels, each of which has a preferred high-strength direction.  

These sheets are stacked and then cemented together such that the orientation of the high-strength direction varies 

from layer to layer. 

 These composites are constructed in order to have a relatively high strength in virtually all directions 

within the plane of the laminate. 
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 16.30  (a) Briefly describe sandwich panels. 

 (b) What is the prime reason for fabricating these structural composites? 

 (c) What are the functions of the faces and the core? 

 
  Solution 

 (a)  Sandwich panels consist of two outer face sheets of a high-strength material that are separated by a 

layer of a less-dense and lower-strength core material. 

 (b)  The prime reason for fabricating these composites is to produce structures having high in-plane 

strengths, high shear rigidities, and low densities. 

 (c)  The faces function so as to bear the majority of in-plane tensile and compressive stresses.  On the other 

hand, the core separates and provides continuous support for the faces, and also resists shear deformations 

perpendicular to the faces. 
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DESIGN PROBLEMS 

 

 16.D1  Composite materials are now being utilized extensively in sports equipment. 

 (a) List at least four different sports implements that are made of, or contain composites. 

 (b) For one of these implements, write an essay in which you do the following: (1) Cite the materials that 

are used for matrix and dispersed phases, and, if possible, the proportions of each phase; (2) note the nature of the 

dispersed phase (i.e., continuous fibers); and (3) describe the process by which the implement is fabricated. 

 
  Solution 

 Inasmuch as there are a number of different sports implements that employ composite materials, no attempt 

will be made to provide a complete answer for this question.  However, a list of this type of sporting equipment 

would include skis and ski poles, fishing rods, vaulting poles, golf clubs, hockey sticks, baseball and softball bats, 

surfboards and boats, oars and paddles, bicycle components (frames, wheels, handlebars), canoes, and tennis and 

racquetball rackets. 
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 Influence of Fiber Orientation and Concentration 

 

 16.D2  It is desired to produce an aligned and continuous fiber-reinforced epoxy composite having a 

maximum of 50 vol% fibers. In addition, a minimum longitudinal modulus of elasticity of 50 GPa (7.3 × 106 psi) is 

required, as well as a minimum tensile strength of 1300 MPa (189,000 psi). Of E-glass, carbon (PAN standard 

modulus), and aramid fiber materials, which are possible candidates and why? The epoxy has a modulus of 

elasticity of 3.1 GPa (4.5 × 105 psi) and a tensile strength of 75 MPa (11,000 psi). In addition, assume the following 

stress levels on the epoxy matrix at fiber failure: E-glass—70 MPa (10,000 psi); carbon (PAN standard modulus)—30 

MPa (4350 psi); and aramid—50 MPa (7250 psi). Other fiber data are contained in Tables B.2 and B.4 in 

Appendix B. For aramid and carbon fibers, use average strengths computed from the minimum and maximum 

values provided in Table B.4. 

 
  Solution 

 In order to solve this problem, we want to make longitudinal elastic modulus and tensile strength 

computations assuming 50 vol% fibers for all three fiber materials, in order to see which meet the stipulated criteria 

[i.e., a minimum elastic modulus of 50 GPa (7.3 × 106 psi), and a minimum tensile strength of 1300 MPa (189,000 

psi)].  Thus, it becomes necessary to use Equations 16.10b and 16.17 with Vm = 0.5 and Vf = 0.5, Em = 3.1 GPa, and 

  

 

σm
∗  = 75 MPa. 

 For glass, Ef = 72.5 GPa and 
  

 

σ f
∗  = 3450 MPa.  Therefore, 

 

    

 

Ecl =  Em(1 −  V f ) +  E f V f  

 

 

=  (3.1 GPa)(1 −  0.5) +  (72.5 GPa)(0.5) =  37.8 GPa  (5.48 ×  106  psi)  

 

Since this is less than the specified minimum (i.e., 50 GPa), glass is not an acceptable candidate. 

 

 For carbon (PAN standard-modulus), Ef = 230 GPa and 
  

 

σ f
∗  = 4000 MPa (the average of the range of 

values in Table B.4), thus, from Equation 16.10b 

 

  

 

Ecl  =  (3.1 GPa)(0.5) +  (230 GPa)(0.5) =  116.6 GPa  (16.9 ×  106  psi)  

 

which is greater than the specified minimum.  In addition, from Equation 16.17 

 

    

 

σcl
∗  =  σm

Õ(1 − V f ) + σ f
∗ V f  
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=  (30 MPa)(0.5) +  (4000 MPa)(0.5) =  2015 MPa  (292,200 psi)  

 

which is also greater than the minimum (1300 MPa).  Thus, carbon (PAN standard-modulus) is a candidate. 

 

 For aramid, Ef = 131 GPa and 
  

 

σ f
∗  = 3850 MPa (the average of the range of values in Table B.4), thus 

(Equation 16.10b) 

 

  

 

Ecl  =  (3.1 GPa)(0.5) +  (131 GPa)(0.5) =  67.1 GPa  (9.73 ×  106  psi)  

 

which value is greater than the minimum. In addition, from Equation 16.17 

 

  

 

σcl
∗  =  σm

’ (1 − V f ) + σ f
∗V f  

 

 

=  (50 MPa)(0.5) +  (3850 MPa)(0.5) =  1950 MPa  (283,600 psi)  

 

which is also greater than the minimum strength value.  Therefore, of the three fiber materials, both the carbon 

(PAN standard-modulus) and the aramid meet both minimum criteria. 
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 16.D3  It is desired to produce a continuous and oriented carbon fiber-reinforced epoxy having a modulus 

of elasticity of at least 83 GPa (12 × 106 psi) in the direction of fiber alignment.  The maximum permissible specific 

gravity is 1.40.  Given the following data, is such a composite possible?  Why or why not?  Assume that composite 

specific gravity may be determined using a relationship similar to Equation 16.10a. 

 
 

SpecificGravity 

Modulus of Elasticity 

[GPa (psi)] 

Carbon fiber 1.80 260 (37 × 106) 

Epoxy 1.25 2.4 (3.5 × 105) 

 

 
  Solution 

 This problem asks us to determine whether or not it is possible to produce a continuous and oriented 

carbon fiber-reinforced epoxy having a modulus of elasticity of at least 83 GPa in the direction of fiber alignment, 

and a maximum specific gravity of 1.40.  We will first calculate the minimum volume fraction of fibers to give the 

stipulated elastic modulus, and then the maximum volume fraction of fibers possible to yield the maximum 

permissible specific gravity;  if there is an overlap of these two fiber volume fractions then such a composite is 

possible. 

 With regard to the elastic modulus, from Equation 16.10b 

 

  

 

Ecl  =  Em(1 −  V f ) +  E f V f  

 

  

 

83 GPa =  (2.4 GPa)(1 − V f ) +  (260 GPa)(V f )  

 
Solving for Vf yields Vf = 0.31.  Therefore, Vf > 0.31 to give the minimum desired elastic modulus. 

 Now, upon consideration of the specific gravity (or density), ρ, we employ the following modified form of 

Equation 16.10b 

 

    

 

ρc =  ρm(1 − V f ) +  ρ f V f  

 

  

 

1.40 =  1.25(1 − V f ) +  1.80(V f )  

 
And, solving for Vf from this expression gives Vf = 0.27.  Therefore, it is necessary for Vf < 0.27 in order to have a 

composite specific gravity less than 1.40. 
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 Hence, such a composite is not possible since there is no overlap of the fiber volume fractions as computed 

using the two stipulated criteria. 
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 16.D4  It is desired to fabricate a continuous and aligned glass fiber-reinforced polyester having a tensile 

strength of at least 1400 MPa (200,000 psi) in the longitudinal direction. The maximum possible specific gravity is 

1.65. Using the following data, determine if such a composite is possible. Justify your decision. Assume a value of 

15 MPa for the stress on the matrix at fiber failure. 

 
 Specific Gravity Tensile Strength 

[MPa (psi)] 

Glass fiber 2.50 3500 (5 × 105) 

Polyester 1.35 50 (7.25 × 103) 

 

 
  Solution 

 This problem asks us to determine whether or not it is possible to produce a continuous and oriented glass 

fiber-reinforced polyester having a tensile strength of at least 1400 MPa in the longitudinal direction, and a 

maximum specific gravity of 1.65.  We will first calculate the minimum volume fraction of fibers to give the 

stipulated tensile strength, and then the maximum volume fraction of fibers possible to yield the maximum 

permissible specific gravity;  if there is an overlap of these two fiber volume fractions then such a composite is 

possible. 

 With regard to tensile strength, from Equation 16.17 

 

    

 

σcl
∗  =  σm

' (1 − V f ) + σ f
∗ V f  

 

  

 

1400 MPa =  (15 MPa)(1 − V f ) +  (3500 MPa) (V f )  

 
 Solving for Vf yields Vf = 0.397.  Therefore, Vf > 0.397 to give the minimum desired tensile strength. 

 Now, upon consideration of the specific gravity (or density), ρ, we employ the following modified form of 

Equation 16.10b: 

 

    

 

ρc =  ρm(1 − V f ) +  ρ f V f  

 

  

 

1.65 =  1.35(1 − V f ) +  2.50 (V f )  

 
And, solving for Vf from this expression gives Vf = 0.261.  Therefore, it is necessary for Vf < 0.261 

in order to have a composite specific gravity less than 1.65. 
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 Hence, such a composite is not possible since there is no overlap of the fiber volume fractions as computed 

using the two stipulated criteria. 
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 16.D5  It is necessary to fabricate an aligned and discontinuous carbon fiber-epoxy matrix composite 

having a longitudinal tensile strength of 1900 MPa (275,000 psi) using 0.45 volume fraction of fibers. Compute the 

required fiber fracture strength assuming that the average fiber diameter and length are 8 × 10-3 mm (3.1 × 10-4 in.) 

and 3.5 mm (0.14 in.), respectively. The fiber-matrix bond strength is 40 MPa (5800 psi), and the matrix stress at 

fiber failure is 12 MPa (1740 psi). 

 
  Solution 

 In this problem, for an aligned and discontinuous carbon fiber-epoxy matrix composite having a 

longitudinal tensile strength of 1900 MPa, we are asked to compute the required fiber fracture strength, given the 

following:  the average fiber diameter (8.0 × 10-3 mm), the average fiber length (3.5 mm), the volume fraction of 

fibers (0.45), the fiber-matrix bond strength (40 MPa), and the matrix stress at fiber failure (12 MPa). 

 To begin, since the value of 
  

 

σ f
∗  is unknown, calculation of the value of lc in Equation 16.3 is not possible, 

and, therefore, we are not able to decide which of Equations 16.18 and 16.19 to use.  Thus, it is necessary to 

substitute for lc in Equation 16.3 into Equation 16.18, solve for the value of 
  

 

σ f
∗ , then, using this value, solve for lc 

from Equation 16.3.  If l > lc, we use Equation 16.18, otherwise Equation 16.19 must be used.  Note:  the 
  

 

σ f
∗  

parameters in Equations 16.18 and 16.3 are the same.  Realizing this, and substituting for lc in Equation 16.3 into 

Equation 16.18 leads to 

 

  

 

σcd
∗  =  σ f

∗V f 1  −  
lc
2l

 

 
 

 

 
 +  σm

' (1 − V f ) =  σ f
∗V f 1 −  

σ f
∗ d

4τ cl

 

 

 
 
 

 

 

 
 
 

+  σm
' (1 − V f ) 

 

    

 

=  σ f
∗ V f  −  

σ f
∗2V f d

4τcl
+  σm

' −  σm
' V f  

 

This expression is a quadratic equation in which 
  

 

σ f
∗  is the unknown.  Rearrangement into a more convenient form 

leads to 

 

  

 

σ f
∗2

V f d

4τ cl

 

 
 

 

 
 −  σ f

∗ (V f ) +  σcd
∗ − σm

' (1 − V f )[ ]=  0  

 

Or 

 

    

 

aσ f
∗2  +  bσ f

∗ +  c =  0 
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where 

 

    

 

a =  
V f d

4τcl
 

 

 

=  
(0.45)(8 × 10−6 m)

(4)(40 MPa)(3.5 × 10−3 m)
=  6.43 ×  10-6  (MPa)-1   4.29 × 10−8 (psi)−1[ ] 

 

Furthermore, 

 

  

 

b = −V f  = − 0.45 

 

And 

  

 

c =  σcd
∗  −  σm

' (1 − V f ) 

 

 

=  1900 MPa −  (12 MPa)(1 − 0.45) =  1893.4 MPa  (274,043 psi)  

 

Now solving the above quadratic equation for 
  

 

σ f
∗  yields 

 

    

 

σ f
∗ =  

− b ± b2 − 4ac

2a
 

 

 

=  
− (− 0.45) ± (− 0.45)2 − (4) 6.43 × 10−6 (MPa)−1[ ](1893.4 MPa)

(2) 6.43 × 10−6 (MPa)−1[ ]
 

 

 

=  
0.4500 ± 0.3922

1.286 × 10−5
MPa   

0.4500 ± 0.3943

8.58 × 10−8
psi

 

 
 

 

 
  

 

This yields the two possible roots as 

 

  

 

σ f
∗ (+) =  

0.4500 + 0.3922

1.286 × 10−5
MPa =  65,500  MPa  (9.84 ×  106  psi)  

 

  

 

σ f
∗ (−) =  

0.4500 − 0.3922

1.286 × 10−5
MPa =  4495 MPa  (650,000 psi)  
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Upon consultation of the magnitudes of 
  

 

σ f
∗  for various fibers and whiskers in Table 16.4, only 

  

 

σ f
∗ (−)  is 

reasonable.  Now, using this value, let us calculate the value of lc using Equation 16.3 in order to ascertain if use of 

Equation 16.18 in the previous treatment was appropriate.  Thus 

 

  

 

lc =  
σ f

∗ d

2τ c
=  

(4495 MPa)(0.008 mm)
(2)(40 MPa)

=  0.45 mm  (0.0173 in.)  

 

Since l > lc (3.5 mm > 0.45 mm), our choice of Equation 16.18 was indeed appropriate, and 
  

 

σ f
∗  = 4495 MPa 

(650,000 psi). 
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 16.D6  A tubular shaft similar to that shown in Figure 16.11 is to be designed that has an outside diameter 

of 80 mm (3.15 in.) and a length of 0.75 m (2.46 ft). The mechanical characteristic of prime importance is bending 

stiffness in terms of the longitudinal modulus of elasticity. Stiffness is to be specified as maximum allowable 

deflection in bending; when subjected to three-point bending as in Figure 12.32, a load of 1000 N (225 lb f) is to 

produce an elastic deflection of no more than 0.40 mm (0.016 in.) at the midpoint position. 

Continuous fibers that are oriented parallel to the tube axis will be used; possible fiber materials are glass, and 

carbon in standard-, intermediate-, and high-modulus grades. The matrix material is to be an epoxy resin, and fiber 

volume fraction is 0.35. 

 (a) Decide which of the four fiber materials are possible candidates for this application, and for each 

candidate determine the required inside diameter consistent with the above criteria. 

 (b) For each candidate, determine the required cost, and on this basis, specify the fiber that would be the 

least expensive to use. 

 Elastic modulus, density, and cost data for the fiber and matrix materials are contained in Table 16.6. 

 
  Solution 

 (a)  This portion of the problem  calls for a determination of which of the four fiber types is suitable for  a 

tubular shaft, given that the fibers are to be continuous and oriented with a volume fraction of 0.35.   Using 

Equation 16.10 it is possible to solve for the elastic modulus of the shaft for each of the fiber types.  For example, 

for glass (using moduli data in Table 16.6) 
 

    

 

Ecs = Em (1 − V f ) + E f V f  

 

 

= (2.4 GPa)(1.00 − 0.35) + (72.5 GPa)(0.35) = 26.9 GPa 
 
This value for Ecs as well as those computed in a like manner for the three carbon fibers are listed in Table 16.D1. 

 

Table 16.D1 Composite Elastic Modulus for Each of Glass and Three Carbon Fiber Types for Vf = 0.35 

 

 

 Fiber Type Ecs (GPa) 

 

 Glass 26.9 

 Carbon—standard modulus 82.1 

 Carbon—intermediate modulus 101.3 

 Carbon—high modulus 141.6 
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 It now becomes necessary to determine, for each fiber type, the inside diameter di.  Rearrangement of 

Equation 16.23 such that di is the dependent variable leads to 

 

    

 

di  =  d0
4 −

4FL3

3πE∆y

 

 
 
 

 

 
 
 

1/4

 

 
The di values may be computed by substitution into this expression for E the Ecs data in Table 16.D1 and the 

following 

 

  F = 1000 N 

  L = 0.75 m 

  ∆y = 0.4 mm 
  d0 = 80 mm 

 
These di data are tabulated in the first column of Table 16.D2.  Thus, all four materials are candidates for this 

application, and the inside diameter for each material is given in the first column of this table. 

 

 

Table 16.D2  Inside Tube Diameter, Total Volume, and Fiber, Matrix, and Total Costs for Three Carbon-Fiber 

Epoxy-Matrix Composites 

 

  

  Inside Total Fiber Matrix Total 
  Diameter Volume Cost Cost Cost 

 Fiber Type (mm) (cm3) ($) ($) ($) 

 
 Glass 70.2 867 1.64 3.86 5.50 

 Carbon--standard 
     modulus 77.2 259 9.79 1.15 10.94 

 Carbon--intermediate 
     modulus 77.7 214 12.81 0.95 13.76 

 Carbon--high modulus 78.4 149 23.47 0.66 24.13 
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 (b)  Also included in Table 16.D2 is the total volume of material required for the tubular shaft for each 
fiber type;  Equation 16.24 was utilized for these computations.  Since Vf = 0.35, 35% this volume is fiber and the 

other 65% is epoxy matrix.  In the manner of Design Example 16.1, the masses and costs of fiber and matrix 

materials were determined, as well as the total composite cost.  These data are also included in Table 16.D2.  Here it 

may be noted that the glass fiber yields the least expensive composite, followed by the standard-, intermediate-, and 

high-modulus carbon fiber materials. 
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CHAPTER 17 

 

CORROSION AND DEGRADATION OF MATERIALS 

 

PROBLEM SOLUTIONS 

 

Electrochemical Considerations 

 

 17.1  (a) Briefly explain the difference between oxidation and reduction electrochemical reactions. 

 (b) Which reaction occurs at the anode and which at the cathode? 
 

  Solution 

 (a)  Oxidation is the process by which an atom gives up an electron (or electrons) to become a cation.   

Reduction is the process by which an atom acquires an extra electron (or electrons) and becomes an anion. 

 (b)  Oxidation occurs at the anode;  reduction at the cathode. 
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 17.2  (a) Write the possible oxidation and reduction half-reactions that occur when magnesium is 

immersed in each of the following solutions: (i) HCl, (ii) an HCl solution containing dissolved oxygen, (iii) an HCl 

solution containing dissolved oxygen and, in addition, Fe2+ ions. 

 (b) In which of these solutions would you expect the magnesium to oxidize most rapidly? Why? 
 

  Solution 

 (a)  This problem asks that we write possible oxidation and reduction half-reactions for magnesium in 

various solutions. 

 (i)  In HCl, possible reactions are 

 

  

 

Mg →  Mg2+  +  2e-   (oxidation)  

 

    

 

2H+ +  2e- →  H2   (reduction)  

 

 (ii)  In an HCl solution containing dissolved oxygen, possible reactions are 

 

  

 

Mg →  Mg2+  +  2e-   (oxidation)  

 

    

 

4H+ +  O2 +  4e- →  2H2O   (reduction)  

 

 (iii)  In an HCl solution containing dissolved oxygen and Fe2+ ions, possible reactions are 

 

  

 

Mg →  Mg2+  +  2e-   (oxidation)  

 

    

 

4H+ +  O2 +  4e- →  2H2O   (reduction)  

 

    

 

Fe2+ +  2e- →  Fe   (reduction)  

 

 (b)  The magnesium would probably oxidize most rapidly in the HCl solution containing dissolved oxygen 

and Fe2+ ions because there are two reduction reactions that will consume electrons from the oxidation of 

magnesium. 
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 17.3 Demonstrate that (a) the value of ℱ  in Equation 17.19 is 96,500 C/mol, and (b) at 25°C (298 K), 

 

 

RT
nF

ln x =
0.0592

n
log x  

 

  Solution 

 (a)  The Faraday constant ℱ  (represented here as “F”) is just the product of the charge per electron and 

Avogadro's number;  that is 

 

  

 

F =  e N A =  (1.602 ×  10-19  C/electron)(6.022 ×  1023 electrons/mol) 

 

= 96,472 C/mol 

 

 (b)  At 25°C (298
 
K), 

 

  

 

RT
nF

ln(x) =  
(8.31 J /mol - K)(298 K)

(n)(96,472 C /mol)
(2.303) log (x)  

 

    

 

=  
0.0592

n
log (x)  

 

This gives units in volts since a volt is a J/C. 
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 17.4  (a) Compute the voltage at 25°C of an electrochemical cell consisting of pure cadmium immersed in 

a 2 × 10-3 M solution of Cd2+ ions, and pure iron in a 0.4 M solution of Fe2+ ions. 

 (b) Write the spontaneous electrochemical reaction. 
 

  Solution 

 (a) We are asked to compute the voltage of a nonstandard Cd-Fe electrochemical cell.  Since iron is lower 

in the emf series (Table 17.1), we will begin by assuming that iron is oxidized and cadmium is reduced, as 

 

 

Fe +  Cd2+  →  Fe2+  +  Cd 

 

and Equation 17.20 takes the form 

 

  

 

∆V =  (VCd
 −  VFe

) −  
0.0592

2
log 

[Fe2+ ]

[Cd2+ ]
 

 

 

=  − 0.403 V −  (− 0.440 V)[ ] −  
0.0592

2
log 

0.40

2 × 10−3

 

 
 

 

 
  

 

= – 0.031 V 

 

since, from Table 17.1, the standard potentials for Cd and Fe are –0.403 and –0.440, respectively. 

 (b)  Since the ∆V is negative, the spontaneous cell direction is just the reverse of that above, or 

 

 

Fe2+  +  Cd →  Fe +  Cd2+  
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 17.5 A Zn/Zn2+ concentration cell is constructed in which both electrodes are pure zinc. The Zn2+ 

concentration for one cell half is 1.0 M , for the other, 10-2 M . Is a voltage generated between the two cell halves? 

If so, what is its magnitude and which electrode will be oxidized? If no voltage is produced, explain this result. 
 

  Solution 

 This problem calls for us to determine whether or not a voltage is generated in a Zn/Zn2+ concentration 

cell, and, if so, its magnitude. Let us label the Zn cell having a 1.0 M Zn2+ solution as cell 1, and the other as cell 2.  

Furthermore, assume that oxidation occurs within cell 2, wherein 

 

[Zn2
2+ ]  = 10-2 M.  Hence, 

 

 

Zn2 +  Zn1
2+ →  Zn2

2+  + Zn1 

 

and, employing Equation 17.20 leads to 

 

  

 

∆V =  −  
0.0592

2
log 

Zn2
2+[ ]

Zn1
2+[ ]

 

 

  

 

=  −
0.0592

2
log 

10−2 M

1.0 M

 

 
 

 

 
 = + 0.0592 V  

 

Therefore, a voltage of 0.0592 V is generated when oxidation occurs in the cell having the Zn2+ concentration of  

10-2 M. 
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 17.6  An electrochemical cell is composed of pure copper and pure lead electrodes immersed in solutions 

of their respective divalent ions. For a 0.6 M  concentration of Cu2+, the lead electrode is oxidized yielding a cell 

potential of 0.507 V. Calculate the concentration of Pb2+ ions if the temperature is 25°C. 
 

  Solution 

 We are asked to calculate the concentration of Pb2+ ions in a copper-lead electrochemical cell.  The 

electrochemical reaction that occurs within this cell is just 

 

 

Pb +  Cu2+  →  Pb2+  +  Cu 

 

while ∆V = 0.507 V and [Cu2+] = 0.6 M.  Thus, Equation 17.20 is written in the form 

 

  

 

∆V =  (VCu
 −  VPb

) −  
0.0592

2
log 

[Pb2+ ]

[Cu2+ ]
 

 

This equation may be rewritten as 

 

  

 

−
∆V −  (VCu

 −  VPb
)

0.0296
 = log 

[Pb2+ ]

[Cu2+ ]
 

 

Solving this expression for [Pb2+] gives 

 

  

 

[Pb2+ ] =  [Cu2+ ] exp − (2.303)
∆V − (VCu

−VPb
)

0.0296

 

 
 

 

 
  

 

The standard potentials from Table 17.1 are 
    
VCu
  = +0.340 V and   

 

VPb
 = – 0.126 V.  Therefore,

 

 

  

 

[Pb2+ ] =  (0.6 M ) exp− (2.303)
0.507 V − {0.340 V − (−0.126 V)}

0.0296

 

 
 

 

 
  

 

  

 

=  2.5 ×  10-2  M  
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 17.7  An electrochemical cell is constructed such that on one side a pure nickel electrode is in contact with 

a solution containing Ni2+ ions at a concentration of 3 × 10-3 M.  The other cell half consists of a pure Fe electrode 

that is immersed in a solution of Fe2+ ions having a concentration of 0.1 M. At what temperature will the potential 

between the two electrodes be +0.140 V? 
 

  Solution 

 This problem asks for us to calculate the temperature for a nickel-iron electrochemical cell when the 

potential between the Ni and Fe electrodes is +0.140 V.  On the basis of their relative positions in the standard emf 

series (Table 17.1), assume that Fe is oxidized and Ni is reduced.  Thus, the electrochemical reaction that occurs 

within this cell is just 

 

 

Ni2+  +  Fe →  Ni +  Fe2+  

 

Thus, Equation 17.20 is written in the form 

 

  

 

∆V =  (VNi
−  VFe

) −  
RT
nF

ln
[Fe2+ ]

[Ni2+ ]
 

 

Solving this expression for T gives 

 

  

 

T =  −
nF
R

∆V − (VNi
−VFe

)

ln
[Fe2+ ]

[Ni2+ ]

 

 

 
 
 
 

 

 

 
 
 
 

 

 

The standard potentials from Table 17.1 are   

 

VFe
 = – 0.440 V and   

 

VNi
 = – 0.250 V.  Therefore, 

 

  

 

T = −
(2)(96,500 C /mol)

8.31 J /mol - K
0.140 V − {−0.250 V − (−0.440 V)}

ln
0.1 M

3 ×  10−3 M

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

= 331 K = 58°C 
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 17.8  For the following pairs of alloys that are coupled in seawater, predict the possibility of corrosion; if 

corrosion is probable, note which metal/alloy will corrode. 

 (a) Aluminum and magnesium 

 (b) Zinc and a low-carbon steel 

 (c) Brass (60Cu–40Zn) and Monel (70Ni–30Cu) 

 (d) Titanium and 304 stainless steel 

 (e) Cast iron and 316 stainless steel 
 

  Solution 

 This problem asks, for several pairs of alloys that are immersed in seawater, to predict whether or not 

corrosion is possible, and if it is possible, to note which alloy will corrode.  In order to make these predictions it is 

necessary to use the galvanic series, Table 17.2.  If both of the alloys in the pair reside within the same set of 

brackets in this table, then galvanic corrosion is unlikely.  However, if the two alloys do not lie within the same set 

of brackets, then that alloy appearing lower in the table will experience corrosion. 

 (a)  For the aluminum-magnesium couple, corrosion is possible, and magnesium will corrode. 

 (b) For the zinc-low carbon steel couple, corrosion is possible, and zinc will corrode. 

 (c) For the brass-monel couple, corrosion is unlikely inasmuch as both alloys appear within the same set of 

brackets. 

 (d) For the titanium-304 stainless steel pair, the stainless steel will corrode, inasmuch as it is below 

titanium in both its active and passive states. 

 (e) For the cast iron-316 stainless steel couple, the cast iron will corrode since it is below stainless steel in 

both active and passive states. 
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 17.9  (a) From the galvanic series (Table 17.2), cite three metals or alloys that may be used to galvanically 

protect 304 stainless steel in the active state. 

 (b) As Concept Check 17.4(b) notes, galvanic corrosion is prevented by making an electrical contact 

between the two metals in the couple and a third metal that is anodic to the other two.  Using the galvanic series, 

name one metal that could be used to protect a copper–aluminum galvanic couple. 
 

  Solution 

 (a)  The following metals and alloys may be used to galvanically protect 304 stainless steel in the active 

state: cast iron, iron/steels, aluminum/aluminum alloys, cadmium,  zinc, magnesium/magnesium alloys.  These 

metals/alloys appear below cast iron in the galvanic series. Table 17.2. 

 (b) Zinc and magnesium may be used to protect a copper-aluminum galvanic couple; these metals are 

anodic to aluminum in the galvanic series. 
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 Corrosion Rates 

 

 17.10  Demonstrate that the constant K in Equation 17.23 will have values of 534 and 87.6 for the CPR in 

units of mpy and mm/yr, respectively. 
 

  Solution 

 This problem is just an exercise in unit conversions.  The parameter K in Equation 17.23 must convert the 

units of W, ρ, A, and t, into the unit scheme for the CPR. 

 For CPR in mpy (mil/yr) 

 

    

 

K =  
W (mg)(1 g /1000 mg)

ρ
g

cm3

 

 
 

 

 
 

2.54 cm
in.

 
 
 

 
 
 
3

A(in.2) 
  

 
  

1 in.
1000 mil

 

 
 

 

 
 [ t(h)]

1 day
24 h

 

 
 

 

 
 

1 yr
365 days

 

 
 

 

 
 

 

 

= 534.6 

 

 For CPR in mm/yr 

 

  

 

K =  
W (mg)(1 g /1000 mg)

ρ
g

cm3

 
 
 

 
 
 

1 cm
10 mm

 

 
 

 

 
 
3

A(cm2)[ ] 10 mm
cm

 
 
 

 
 
 

2

t(h)[ ]
1 day
24 h

 

 
 

 

 
 

1 yr
365 days

 

 
 

 

 
 

 

 

= 87.6 
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 17.11  A piece of corroded steel plate was found in a submerged ocean vessel. It was estimated that the 

original area of the plate was 10 in.2 and that approximately 2.6 kg had corroded away during the submersion. 

Assuming a corrosion penetration rate of 200 mpy for this alloy in seawater, estimate the time of submersion in 

years. The density of steel is 7.9 g/cm3. 
 

  Solution 

 This problem calls for us to compute the time of submersion of a steel plate.  In order to solve this problem, 

we must first rearrange Equation 17.23, as 

 

  

 

t =  
KW

ρA (CPR)
 

 

Thus, using values for the various parameters given in the problem statement 

 

  

 

t =  
(534)(2.6 × 106 mg)

(7.9 g/cm3)(10 in.2)(200 mpy)
 

 

 

=  8.8 ×  104  h =  10 yr  
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 17.12  A thick steel sheet of area 400 cm2 is exposed to air near the ocean.  After a one-year period it was 

found to experience a weight loss of 375 g due to corrosion.  To what rate of corrosion, in both mpy and mm/yr, 

does this correspond? 
 

  Solution 

 This problem asks for us to calculate the CPR in both mpy and mm/yr for a thick steel sheet of area 400 

cm2 which experiences a weight loss of 375 g after one year.  Employment of Equation 17.23 leads to 

 

    

 

CPR(mm/yr) =  
KW
ρA t

 

 

 

=  
(87.6)(375 g)(103 mg/g)

(7.9 g/cm3)(400 cm2) (24 h/day)(365 day/yr)(1 yr)
 

 

= 1.2 mm/yr 

 

 Also 

 

 

CPR(mpy) =  
(534)(375 g)(103 mg/g)

(7.9 g/cm3)(400 in.2)(1 in./2.54 cm)2 (24 h/day)(365 day/yr)(1 yr)
 

 

= 46.7 mpy 
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 17.13  (a) Demonstrate that the CPR is related to the corrosion current density i (A/cm2) through the 

expression 

 

 
    

 

CPR =  
KA i
nρ

 (17.38) 

where K is a constant, A is the atomic weight of the metal experiencing corrosion, n is the number of electrons 

associated with the ionization of each metal atom, and ρ is the density of the metal. 

 (b) Calculate the value of the constant K for the CPR in mpy and i in μA/cm2 (10–6 A/cm2). 
 

  Solution 

 (a)  We are to demonstrate that the CPR is related to the corrosion current density, i, in A/cm2 through the 

expression 

 

    

 

CPR =  
KA i
nρ

 

 

in which K is a constant, A is the atomic weight, n is the number of electrons ionized per metal atom, and ρ is the 

density of the metal.  Possibly the best way to make this demonstration is by using a unit dimensional analysis.  The 

corrosion rate, r, in Equation 17.24 has the units (SI) 

 

  

 

r =  
i

nF
=  

C/m2 - s
(unitless)(C /mol)

=  
mol

m2 - s
 

 

The units of CPR in Equation 17.23 are length/time, or in the SI scheme, m/s.  In order to convert the above 

expression to the units of m/s it is necessary to multiply r by the atomic weight A and divide by the density ρ as 

 

    

 

rA
ρ

=  
(mol /m2 - s)(g /mol)

g /m3
=  m/s  

 

Thus, the CPR is proportional to r, and substituting for r from Equation 17.24 into the above expression leads to 

 

    

 

CPR =  K"r =  
K ' A i
nFρ

 

 

in which K' and K" are constants which will give the appropriate units for CPR.  Also, since F (i.e., Faraday’s 

constant) is also a constant, this expression will take the form 
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CPR =  
KA i
nρ

 

 

in which K = K'/F. 

 (b)  Now we will calculate the value of K in order to give the CPR in mpy for i in µA/cm2 (10-6 A/cm2).  It 

should be noted that the units of A (in µA/cm2 ) are amperes or C/s.  Substitution of the units normally used into the 

former CPR expression above leads to 

 

    

 

CPR =  K '
A i

nFρ
 

 

    

 

=  K '  
(g /mol)(C /s - cm2)

(unitless)(C /mol)(g /cm3)
=  cm/s  

 

Since we want the CPR in mpy and i is given in µA/cm2, and realizing that K = K'/F leads to 

 

  

 

K =  
1

96,500 C /mol

 

 
 

 

 
 

10−6 C
µC

 

 
 

 

 
 

1 in.
2.54 cm

 

 
 

 

 
 

103 mil
in.

 

 
 

 

 
 

3.1536 × 107 s
yr

 

 
 

 

 
  

 

= 0.129 
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 17.14  Using the results of Problem 17.13, compute the corrosion penetration rate, in mpy, for the 

corrosion of iron in citric acid (to form Fe2+ ions) if the corrosion current density is 1.15 × 10-5 A/cm2. 
 

  Solution 

 We are asked to compute the CPR in mpy for the corrosion of Fe for a corrosion current density of 1.15 × 

10-5 A/cm2 (11.5 µA/cm2).  From Problem 17.13, the value of K in Equation 17.38 is 0.129, and therefore 

 

    

 

CPR =  
KA i
nρ

 

 

 

=  
(0.129)(55.85 g/mol)(11.5 µA/cm2)

(2)(7.9 g/cm3)
=  5.24  mpy 
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 Prediction of Corrosion Rates 

 

 17.15  (a)  Cite the major differences between activation and concentration polarizations. 

 (b)  Under what conditions is activation polarization rate controlling? 

 (c)  Under what conditions is concentration polarization rate controlling? 
 

  Solution 

 (a)  Activation polarization is the condition wherein a reaction rate is controlled by one step in a series of 

steps that takes place at the slowest rate.  For corrosion, activation polarization is possible for both oxidation and 

reduction reactions.  Concentration polarization occurs when a reaction rate is limited by diffusion in a solution.  

For corrosion, concentration polarization is possible only for reduction reactions. 

 (b)  Activation polarization is rate controlling when the reaction rate is low and/or the concentration of 

active species in the liquid solution is high. 

 (c)  Concentration polarization is rate controlling when the reaction rate is high and/or the concentration of 

active species in the liquid solution is low. 
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 17.16  (a)  Describe the phenomenon of dynamic equilibrium as it applies to oxidation and reduction 

electrochemical reactions. 

 (b)  What is the exchange current density? 
 

  Solution 

 (a)  The phenomenon of dynamic equilibrium is the state wherein oxidation and reduction reactions are 

occurring at the same rate such that there is no net observable reaction. 

 (b)  The exchange current density is just the current density which is related to both the rates of oxidation 

and reduction (which are equal) according to Equation 17.26 for the dynamic equilibrium state. 
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 17.17  Lead experiences corrosion in an acid solution according to the reaction 

Pb + 2H+ → Pb2+ + H2 

The rates of both oxidation and reduction half-reactions are controlled by activation polarization. 

 (a) Compute the rate of oxidation of Pb (in mol/cm2-s) given the following activation polarization data: 

 
For Lead For Hydrogen 

 

V(Pb/Pb2+ ) = −0.126  V 

 

V(H+ /H2 ) = 0 V  

i0 = 2 × 10–9 A/cm2 i0 = 1.0 × 10–8 A/cm2 

β = +0.12 β = –0.10 

 

 (b)  Compute the value of the corrosion potential. 
 

  Solution 

 (a)  This portion of the problem asks that we compute the rate of oxidation for Pb given that both the 

oxidation and reduction reactions are controlled by activation polarization, and also given the polarization data for 

both lead oxidation and hydrogen reduction.  The first thing necessary is to establish relationships of the form of 

Equation 17.25 for the potentials of both oxidation and reduction reactions.  Next we will set these expressions 

equal to one another, and then solve for the value of i which is really the corrosion current density, ic.  Finally, the 

corrosion rate may be calculated using Equation 17.24.  The two potential expressions are as follows: 

 For hydrogen reduction 

 

  

 

VH =  V
(H+ /H2 )

 +  βH log 
i

i0H

 

 
 
 

 

 
 
  

 

 And for Pb oxidation 

 

  

 

VPb =  V
(Pb/Pb2+ )

 +  βPb log 
i

i0Pb

 

 
 
 

 

 
 
  

 
Setting VH = VPb and solving for log i (log ic) leads to 

 

  

 

log ic =  
1

βPb − βH

 

 
 

 

 
 V(H+ /H2 ) − V

(Pb/Pb2+ )
− βH log i0H

+ βPb log i0Pb
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And, incorporating values for the various parameters provided in the problem statement leads to 

 

  

 

log ic =  
1

0.12 − (−0.10)

 

 
 

 

 
 0 − (− 0.126) − (−0.10){log(1.0 × 10−8)} + (0.12){log(2  ×  10−9)}[ ] 

 

= –7.809 

 

Or 

 

  

 

ic =  10-7.809  =  1.55 ×  10-8  A/cm2  

 

And from Equation 17.24 

 

    

 

r =  
ic

nF
 

 

 

=  
1.55 × 10−8 C /s - cm2

(2)(96,500 C /mol)
=  8.03 ×  10-14  mol/cm2 - s  

 
 (b)  Now it becomes necessary to compute the value of the corrosion potential, Vc.  This is possible by 

using either of the above equations for VH or VPb and substituting for i the value determined above for ic.  Thus 

 

  

 

Vc =  V
(H+/H2 )

 +  βH log 
ic

i0H

 

 
 
 

 

 
 
  

 

 

=  0 +  (− 0.10 V) log
1.55 × 10−8 A /cm2

1.0 × 10−8 A /cm2

 

 
 

 

 
 =  − 0.019 V  
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 17.18  The corrosion rate is to be determined for some divalent metal M in a solution containing hydrogen 

ions.  The following corrosion data are known about the metal and solution: 

 
For Metal M For Hydrogen 

 

V(M/M2+ ) = −0.47 V 

 

V(H+ /H2 ) = 0 V  

i0 = 5 × 10–10 A/cm2 i0 = 2 × 10–9 A/cm2 

β = +0.15 β = –0.12 

 

 (a)  Assuming that activation polarization controls both oxidation and reduction reactions, determine the 

rate of corrosion of metal M (in mol/cm2-s). 

 (b)  Compute the corrosion potential for this reaction. 
 

  Solution 

 (a)  This portion of the problem asks that we compute the rate of oxidation for a divalent metal M given 

that both the oxidation and reduction reactions are controlled by activation polarization, and also given the 

polarization data for both M oxidation and hydrogen reduction.  The first thing necessary is to establish 

relationships of the form of Equation 17.25 for the potentials of both oxidation and reduction reactions.  Next we 

will set these expressions equal to one another, and then solve for the value of i which is really the corrosion current 
density, ic.  Finally, the corrosion rate may be calculated using Equation 17.24.  The two potential expressions are 

as follows: 

 For hydrogen reduction 

 

  

 

VH =  V
(H+ /H2 )

 +  βH log 
i

i0H

 

 
 
 

 

 
 
  

 

 And for M oxidation 

 

  

 

VM =  V
(M/M2+ )

 +  βM log 
i

i0M

 

 
 
 

 

 
 
  

 
Setting VH = VM and solving for log i (log ic) leads to 
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log ic =  
1

βM − βH

 

 
 

 

 
 V(H+ /H2 ) − V

(M/M2+ )
− βH log i0H

+ βM log i0M
 
  

 
   

 

And, incorporating values for the various parameters provided in the problem statement leads to 

 

  

 

log ic =  
1

0.15 − (−0.12)

 

 
 

 

 
 0 − (−0.47) − (−0.12){log(2  ×  10−9)} + (0.15){log(5 ×  10−10)}[ ] 

 

= – 7.293 

 

Or 

 

  

 

ic =  10-7.293  =  5.09 ×  10-8  A/cm2 

 

And from Equation 17.24 

 

    

 

r =  
ic

nF
 

 

 

=  
5.09 × 10−8 C /s - cm2

(2)(96,500 C /mol)
=  2.64 ×  10-13  mol/cm2 - s 

 
 (b)  Now it becomes necessary to compute the value of the corrosion potential, Vc.  This is possible by 

using either of the above equations for VH or VM and substituting for i the value determined above for ic.  Thus 

 

  

 

Vc =  V
(H+/H2 )

 +  βH log 
ic

i0H

 

 
 
 

 

 
 
  

 

 

=  0 +  (−0.12 V) log 
5.09 × 10−8 A /cm2

2  ×  10−9 A /cm2

 

 
 

 

 
 = −0.169 V 
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 17.19  The influence of increasing solution velocity on the overvoltage-versus-log current density behavior 

for a solution that experiences combined activation–concentration polarization is indicated in Figure 17.26. On the 

basis of this behavior, make a schematic plot of corrosion rate versus solution velocity for the oxidation of a metal; 

assume that the oxidation reaction is controlled by activation polarization. 
 

  Solution 

 This problem asks that we make a schematic plot of corrosion rate versus solution velocity.  The reduction 

reaction is controlled by combined activation-concentration polarization for which the overvoltage versus logarithm 

current density is presented in Figure 17.26.  The oxidation of the metal is controlled by activation polarization, 

such that the electrode kinetic behavior for the combined reactions would appear schematically as shown below. 
 

 
 

Thus, the plot of corrosion rate versus solution velocity would be as 
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The corrosion rate initially increases with increasing solution velocity (for velocities v1, v2, and v3), corresponding 

to intersections in the concentration polarization regions for the reduction reaction.  However, for the higher 
solution velocities (v4 and v5), the metal oxidation line intersects the reduction reaction curve in the linear activation 

polarization region, and, thus, the reaction becomes independent of solution velocity. 
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 Passivity 

 

 17.20  Briefly describe the phenomenon of passivity. Name two common types of alloy that passivate. 
 

  Solution 

 Passivity is the loss of chemical reactivity, under particular environmental conditions, of normally active 

metals and alloys. Stainless steels and aluminum alloys often passivate. 
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 17.21  Why does chromium in stainless steels make them more corrosion resistant in many environments 

than plain carbon steels? 
 

  Solution 

 The chromium in stainless steels causes a very thin and highly adherent surface coating to form over the 

surface of the alloy, which protects it from further corrosion.  For plain carbon steels, rust, instead of this adherent 

coating, forms. 
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 Forms of Corrosion 

 

 17.22  For each form of corrosion, other than uniform, do the following: 

 (a)  Describe why, where, and the conditions under which the corrosion occurs. 

 (b)  Cite three measures that may be taken to prevent or control it. 

 

 For each of the forms of corrosion, the conditions under which it occurs, and measures that may be taken to 

prevent or control it are outlined in Section 17.7. 
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 17.23  Briefly explain why cold-worked metals are more susceptible to corrosion than noncold-worked 

metals. 
 

  Solution 

 Cold-worked metals are more susceptible to corrosion than noncold-worked metals because of the 

increased dislocation density for the latter.  The region in the vicinity of a dislocation that intersects the surface is at 

a higher energy state, and, therefore, is more readily attacked by a corrosive solution. 
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 17.24  Briefly explain why, for a small anode-to-cathode area ratio, the corrosion rate will be higher than 

for a large ratio. 
 

  Solution 

 For a small anode-to-cathode area ratio, the corrosion rate will be higher than for a large ratio.  The reason 

for this is that for some given current flow associated with the corrosion reaction, for a small area ratio the current 

density at the anode will be greater than for a large ratio.  The corrosion rate is proportional to the current density (i) 

according to Equation 17.24. 
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 17.25  For a concentration cell, briefly explain why corrosion occurs at that region having the lower 

concentration. 
 

  Solution 

 For a concentration cell, corrosion occurs at that region having the lower concentration.  In order to explain 

this phenomenon let us consider an electrochemical cell consisting of two divalent metal M electrodes each of 

which is immersed in a solution containing a different concentration of its M2+ ion;  let us designate the low and 

high concentrations of M2+ as   

 

[ML
2+ ] and   

 

[MH
2+ ], respectively.  Now assuming that reduction and oxidation 

reactions occur in the high- and low-concentration solutions, respectively, let us determine the cell potential in terms 

of the two [M2+]'s;  if this potential is positive then we have chosen the solutions in which the reduction and 

oxidation reactions appropriately. 

 Thus, the two half-reactions in the form of Equations 17.16 are 

 

     

 

MH
2+ +  2e- →  M  

    

 

VM
 

 

     

 

M →  ML
2+ + 2e-  

    

 

−VM
 

 

Whereas the overall cell reaction is 

 

  

 

MH
2+ +  M →  M +  ML

2+ 

 

From Equation 17.19, this yields a cell potential of 

 

  

 

∆V =  VM
−  VM

−  
RT
nF

ln 
[ML

2+ ]

[MH
2+ ]

 

 
  

 

 
   

 

    

 

 = −
RT
nF

ln 
[ML

2+ ]

[MH
2+ ]

 

 
 
 

 

 
 
  

 

Inasmuch as   

 

[ML
2+ ] < [MH

2+ ] then the natural logarithm of the   

 

[M2+ ] ratio is negative, which yields a positive 

value for ∆V.  This means that the electrochemical reaction is spontaneous as written, or that oxidation occurs at the 

electrode having the lower M2+ concentration. 
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 Corrosion Prevention 

 

 17.26  (a)  What are inhibitors? 

 (b)  What possible mechanisms account for their effectiveness? 
 

  Solution 

 (a)  Inhibitors are substances that, when added to a corrosive environment in relatively low concentrations, 

decrease the environment's corrosiveness. 

 (b)  Possible mechanisms that account for the effectiveness of inhibitors are:  (1) elimination of a 

chemically active species in the solution;  (2) attachment of inhibitor molecules to the corroding surface so as to 

interfere with either the oxidation or reduction reaction;  and (3) the formation of a very thin and protective coating 

on the corroding surface. 
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 17.27  Briefly describe the two techniques that are used for galvanic protection. 
 

  Solution 

 Descriptions of the two techniques used for galvanic protection are as follows: 

 (1)  A sacrificial anode is electrically coupled to the metal piece to be protected, which anode is also 

situated in the corrosion environment.  The sacrificial anode is a metal or alloy that is chemically more reactive in 

the particular environment.  It (the anode) preferentially oxidizes, and, upon giving up electrons to the other metal, 

protects it from electrochemical corrosion. 

 (2)  An impressed current from an external dc power source provides excess electrons to the metallic 

structure to be protected. 
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 Oxidation 

 

 17.28  For each of the metals listed in the table, compute the Pilling–Bedworth ratio. Also, on the basis of 

this value, specify whether or not you would expect the oxide scale that forms on the surface to be protective, and 

then justify your decision. Density data for both the metal and its oxide are also tabulated. 

 

Metal 
Metal Density 

(g/cm3) Metal Oxide 
Oxide Density 

(g/cm3) 
Zr 6.51 ZrO2 5.89 

Sn 7.30 SnO2 6.95 

Bi 9.80 Bi2O3 8.90 

 
 

  Solution 

 With this problem we are given, for three metals, their densities, oxide chemical formulas, and oxide 

densities, and are asked to compute the Pilling-Bedworth ratios, and then to specify whether or not the oxide scales 

that form will be protective.  The general form of the equation used to calculate this ratio is Equation 17.32 (or 

Equation 17.33). For zirconium, oxidation occurs by the reaction 

 

 

Zr +  O2 →   ZrO2 

 

and therefore, from Equation 17.32 

 

  

 

P − B ratio =  
AZrO2

ρZr

AZrρZrO2

 

 

 

=  
(123.22 g/mol)(6.51 g/cm3)
(91.22 g/mol)(5.89 g/cm3)

=  1.49  

 

Thus, this would probably be a protective oxide film since the P-B ratio lies between one and two. 

 The oxidation reaction for Sn  is just 

 

 

Sn +  O2 →  SnO2  

 

and the P-B ratio is (Equation 17.32) 
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P − B ratio =  
ASnO2

ρSn

ASn ρSnO2

 

 

 

=  
(150.71 g/mol)(7.30 g/cm3)
(118.71 g/mol)(6.95 g/cm3)

=  1.33 

 

Hence, the film would most likely be protective since the ratio lies between one and two. 

 Now for Bi,  the reaction for its oxidation is 

 

 

2Bi +  3
2

O2 →  Bi2O3  

 

and the P-B ratio is (Equation 17.33) 

 

  

 

P − B ratio =  
ABi2O3

ρBi

(2) ABi ρBi2O3

 

 

 

=  
(465.96 g/mol)(9.80 g/cm3)

(2)(208.98 g/mol)(8.90 g/cm3)
=  1.23 

 

Thus, the Bi2O3 film would probably be protective since the ratio is between one and two. 
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 17.29  According to Table 17.3, the oxide coating that forms on silver should be nonprotective, and yet Ag 

does not oxidize appreciably at room temperature and in air. How do you explain this apparent discrepancy? 
 

  Solution 

 Silver does not oxidize appreciably at room temperature and in air even though, according to Table 17.3, 

the oxide coating should be nonprotective.  The reason for this is that the oxidation of silver in air is not 

thermodynamically favorable;  therefore, the lack of a reaction is independent of whether or not a protective scale 

forms. 
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 17.30  In the table, weight gain-time data for the oxidation of copper at an elevated temperature are 

tabulated. 

 
W (mg/cm2) Time (min) 

0.316 15 

0.524 50 

0.725 100 

 

 (a)  Determine whether the oxidation kinetics obey a linear, parabolic, or logarithmic rate expression. 

 (b)  Now compute W after a time of 450 min. 
 

  Solution 

 For this problem we are given weight gain-time data for the oxidation of Cu at an elevated temperature. 

 (a)  We are first asked to determine whether the oxidation kinetics obey a parabolic, linear, or logarithmic 

rate expression, which expressions are represented by Equations 17.34, 17.35, and 17.36, respectively.  One way to 

make this determination is by trial and error.  Let us assume that the parabolic relationship is valid;  that is from 

Equation 17.34 

 

    

 

W 2 =  K1t +  K2 

 

which means that we may establish three simultaneous equations using the three sets of given W and t values, then 
using two combinations of two pairs of equations, solve for K1 and K2;  if K1 and K2 have the same values for both 

solutions, then the kinetics are parabolic.  If the values are not identical then the other kinetic relationships need to 

be explored.  Thus, the three equations are 

 

  

 

(0.316) 2 =  0.100 =  15K1 +  K2  

  

 

(0.524) 2 =  0.275 =  50K1 +  K2  

  

 

(0.725) 2 =  0.526 =  100K1 +  K2  

 
From the first two equations K1 = 5 × 10-3 and K2 = 0.025;  these same two values are obtained using the last two 

equations.  Hence, the oxidation rate law is parabolic. 

 (b) Since a parabolic relationship is valid, this portion of the problem calls for us to determine W after a 
total time of 450 min.  Again, using Equation 17.34 and the values of K1 and K2 

 

    

 

W 2 =  K1t +  K2 
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=  (5 ×  10-3)(450 min) +  0.025 =  2.28  

 

Or W = 

 

2.28  = 1.51 mg/cm2. 
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 17.31  In the table, weight gain–time data for the oxidation of some metal at an elevated temperature are 

tabulated. 

 
W (mg/cm2) Time (min) 

4.66 20 

11.7 50 

41.1 135 

 

 (a)  Determine whether the oxidation kinetics obey a linear, parabolic, or logarithmic rate expression. 

 (b)  Now compute W after a time of 1000 min. 
 

  Solution 

  For this problem we are given weight gain-time data for the oxidation of some metal at an elevated 

temperature. 

 (a)  We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or logarithmic 

rate expression, which expressions are described by Equations 17.35, 17.34, and 17.36, respectively.  One way to 

make this determination is by trial and error. Let us assume that the rate expression is linear, that is from Equation 

17.35 
 

  

 

W =  K3t  
 

which means that we may establish three simultaneous equations using the three sets of given W and t values, then 

solve for K3 for each;  if K3 is the same for all three cases, then the rate law is linear.  If the values are not the same 

then the other kinetic relationships need to be explored.  Thus, the three equations are 

 

  

 

4.66 = 20K3 

  

 

11.7 = 50K3 

  

 

41.1 = 175K3 

 

In all three instances the value of K3 is about equal to 0.234, which means the oxidation rate obeys a linear 

expression. 

 (b) Now we are to calculate W after a time of 1000 min;  thus 

 

W = K3t = (0.234)(1000 min) = 234 mg/cm2 
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 17.32  In the table, weight gain–time data for the oxidation of some metal at an elevated temperature are 

tabulated. 

 
W (mg/cm2) Time (min) 

1.90 25 

3.76 75 

6.40 250 

 

 (a)  Determine whether the oxidation kinetics obey a linear, parabolic, or logarithmic rate expression. 

 (b)  Now compute W after a time of 3500 min. 
 

  Solution 

 For this problem we are given weight gain-time data for the oxidation of some metal at an elevated 

temperature. 

 (a)  We are first asked to determine whether the oxidation kinetics obey a linear, parabolic, or logarithmic 

rate expression, which expressions are described by Equations 17.35, 17.34, and 17.36, respectively.  One way to 

make this determination is by trial and error. Let us assume that the kinetic rate is parabolic, that is from Equation 

17.34 

W2 = K1t + K2 

 

which means that we may establish three simultaneous equations using the three sets of given W and t values, then 

using two combinations of two pairs of equations, solve for K1 and K2;  if K1 and K2 have the same values for both 

solutions, then the weight gain-time relationships are parabolic.  If the values are not the same then the other kinetic 

relationships need to be explored.  Thus, the three equations are 

 

(1.90)2 = 3.610 = 25K1 + K2 

(3.67)2 = 13.47 = 75K1 + K2 

(6.40)2 = 40.96 = 250K1 + K2 

 

From the first two equations K1 = 0.197 and K2 = -1.32;  while from the second and third equations K1 = 0.157 and 

K2 = 1.689.  Thus, a parabolic rate expression is not obeyed by this reaction. 

 Let us now investigate linear kinetics in the same manner, using Equation 17.35, W = K3t.  The three 

equations are thus 
1.90 = 25K3 

3.67 = 75K3 
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6.40 = 250K3 

 
And three K3 values may be computed (one for each equation) which are 7.60 × 10-2, 4.89 × 10-2, and 2.56 × 10-2.  

Since these K3 values are all different, a linear rate law is not a possibility, and, by process of elimination, a 

logarithmic expression is obeyed. 

 

 (b)  In order to determine the value of W after 3500 min, it is first necessary that we solve for the K4, K5, 

and K6 constants of Equation 17.36. One way this may be accomplished is to use an equation solver.  In some 

instances it is desirable to express Equation 17.36 in exponential form, as 

 

    

 

K5 +  K6 =  10W /K4  

 

For some solvers, using the above expression, the following instructions can be used: 

 

  K5 *t1 + K6 = 10^(W1/K4) 

  K5 *t2 + K6 = 10^(W2/K4)  

  K5 *t3 + K6 = 10^(W3/K4) 

 

  t1 = 25;  W1 = 1.90 

  t2 = 75;   W2 = 3.67 

  t3 = 250; W3 = 6.40 

 

The resulting solutions—i.e., values for the K parameters—are 

 
  K4 = 6.50 

  K5 = 0.0342 

  K6 = 1.1055 

 

Now solving Equation 17.36 for W at a time of 3500 min 

 

    

 

W =  K4 log (K5t + K6)  

 

 

=  6.50 log (0.0342)(3500 min) + 1.1055[ ] 

 

= 13.53 mg/cm2 
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DESIGN PROBLEMS 
 

 17.D1  A brine solution is used as a cooling medium in a steel heat exchanger. The brine is circulated 

within the heat exchanger and contains some dissolved oxygen. Suggest three methods, other than cathodic 

protection, for reducing corrosion of the steel by the brine. Explain the rationale for each suggestion. 
 

  Solution 

 Possible methods that may be used to reduce corrosion of the heat exchanger by the brine solution are as 

follows: 

 (1)  Reduce the temperature of the brine;  normally, the rate of a corrosion reaction increases with 

increasing temperature. 

 (2)  Change the composition of the brine;  the corrosion rate is often quite dependent on the composition of 

the corrosion environment. 

 (3)  Remove as much dissolved oxygen as possible.  Under some circumstances, the dissolved oxygen may 

form bubbles, which can lead to erosion-corrosion damage. 

 (4)  Minimize the number of bends and/or changes in pipe contours in order to minimize erosion-corrosion. 

 (5)  Add inhibitors. 

 (6)  Avoid connections between different metal alloys. 
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 17.D2  Suggest an appropriate material for each of the following applications, and, if necessary, 

recommend corrosion prevention measures that should be taken. Justify your suggestions. 

 (a)  Laboratory bottles to contain relatively dilute solutions of nitric acid 

 (b)  Barrels to contain benzene 

 (c)  Pipe to transport hot alkaline (basic) solutions 

 (d)  Underground tanks to store large quantities of high-purity water 

 (e)  Architectural trim for high-rise buildings 
 

  Solution 

 This question asks that we suggest appropriate materials, and if necessary, recommend corrosion 

prevention measures that should be taken for several specific applications.  These are as follows: 

 (a)  Laboratory bottles to contain relatively dilute solutions of nitric acid.  Probably the best material for 

this application would be polytetrafluoroethylene (PTFE).  The reasons for this are:  (1)  it is flexible and will not 

easily break if dropped;  and (2)  PTFE is resistant to this type of acid, as noted in Table 17.4. 

 (b)  Barrels to contain benzene.  Poly(ethylene terephthalate) (PET) would be suited for this application, 

since it is resistant to degradation by benzene (Table 17.4), and is less expensive than the other two materials listed 

in Table 17.4 (see Appendix C). 

 (c)  Pipe to transport hot alkaline (basic) solutions.  The best material for this application would probably 

be a nickel alloy (Section 13.3).  Polymeric materials listed in Table 17.4 would not be suitable inasmuch as the 

solutions are hot. 

 (d)  Underground tanks to store large quantities of high-purity water.  The outside of the tanks should 

probably be some type of low-carbon steel that is cathodically protected (Sections 17.8 and 17.9).  Inside the steel 

shell should be coated with an inert polymeric material;  polytetrafluoroethylene or some other fluorocarbon would 

probably be the material of choice (Table 17.4). 

 (e)  Architectural trim for high-rise buildings.  The most likely candidate for this application would 

probably be an aluminum alloy.  Aluminum and its alloys are relatively corrosion resistant in normal atmospheres 

(Section 16.8), retain their lustrous appearance, and are relatively inexpensive (Appendix C). 
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 17.D3  Each student (or group of students) is to find a real-life corrosion problem that has not been solved, 

conduct a thorough investigation as to the cause(s) and type(s) of corrosion, and, finally, propose possible solutions 

for the problem, indicating which of the solutions is best and why. Submit a report that addresses the above issues. 

 

 Each student or group of students is to submit their own report on a corrosion problem investigation that 

was conducted. 
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CHAPTER 18 

 

ELECTRICAL PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Ohm’s Law 

Electrical Conductivity 

 

 18.1  (a) Compute the electrical conductivity of a 5.1-mm (0.2-in.) diameter cylindrical silicon specimen 51 

mm (2 in.) long in which a current of 0.1 A passes in an axial direction. A voltage of 12.5 V is measured across two 

probes that are separated by 38 mm (1.5 in.). 

 (b) Compute the resistance over the entire 51 mm (2 in.) of the specimen. 
 

  Solution 

 This problem calls for us to compute the electrical conductivity and resistance of a silicon specimen. 

 (a)  We use Equations 18.3 and 18.4 for the conductivity, as 

 

    

 

σ =
1
ρ

=
Il

VA
=

Il

Vπ
d
2

 
 
 

 
 
 
2

 

 

And, incorporating values for the several parameters provided in the problem statement, leads to 

 

 

σ =
(0.1 A)(38 × 10−3 m)

(12.5 V)(π)
5.1 × 10−3 m

2

 

 
 

 

 
 
2

= 14.9  (Ω - m) -1  

 

 (b)  The resistance, R, may be computed using Equations 18.2 and 18.4, as 

 

  

 

R =
ρl
A

=
l

σA
 =  

l

σπ
d
2

 
 
 

 
 
 

2
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=
51 × 10−3 m

14.9 (Ω − m)−1[ ] (π)
5.1 × 10−3 m

2

 

 
 

 

 
 
2

= 168 Ω  
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 18.2  A copper wire 100 m long must experience a voltage drop of less than 1.5 V when a current of 2.5 A 

passes through it. Using the data in Table 18.1, compute the minimum diameter of the wire. 
 

  Solution 

 For this problem, given that a copper wire 100 m long must experience a voltage drop of less than 1.5 V 

when a current of 2.5 A passes through it, we are to compute the minimum diameter of the wire.  Combining 

Equations 18.3 and 18.4 and solving for the cross-sectional area A leads to 

 

  

 

A =
Ilρ
V

=
Il

Vσ
 

 

From Table 18.1, for copper σ = 6.0 × 107 (Ω-m)-1.  Furthermore, inasmuch as 
  

 

A = π
d
2

 
 
 

 
 
 
2

  for a cylindrical wire, 

then 

 

    

 

π
d
2

 
 
 

 
 
 
2

=
Il

Vσ
 

or 

 

    

 

d =
4 Il

πVσ
 

 

When values for the several parameters given in the problem statement are incorporated into this expression, we get 

 

  

 

d =
(4)(2.5 A)(100 m)

(π)(1.5 V) 6.0 × 107 (Ω − m)−1[ ]
 

 

= 1.88 × 10-3 m = 1.88 mm 
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 18.3  An aluminum wire 4 mm in diameter is to offer a resistance of no more than 2.5 Ω.  Using the data in 

Table 18.1, compute the maximum wire length. 
 

  Solution 

 This problem asks that we compute, for an aluminum wire 4 mm in diameter, the maximum length such 

that the resistance will not exceed 2.5 Ω. From Table 18.1 for aluminum, σ = 3.8 × 107 (Ω-m)-1.  If d is the 

diameter then, combining Equations 18.2 and 18.4 leads to 

 

  

 

l =
RA
ρ

= RσA = Rσπ
d
2

 
 
 

 
 
 

2

 

 

 

= (2.5 Ω) 3.8 × 107 (Ω − m)−1[ ](π)
4 × 10−3 m

2

 

 
 

 

 
 
2

= 1194 m 
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 18.4  Demonstrate that the two Ohm’s law expressions, Equations 18.1 and 18.5, are equivalent. 
 

  Solution 

 Let us demonstrate, by appropriate substitution and algebraic manipulation, that Equation 18.5 may be 

made to take the form of Equation 18.1.  Now, Equation 18.5 is just 

 

J = σE 

 

(In this equation we represent the electric field with an “E”.)  But, by definition, J is just the current density, the 

current per unit cross-sectional area, or 
  

 

J =
I
A

.  Also, the electric field is defined by 
  

 

E =
V
l

.  And, substituting 

these expressions into Equation 18.5 leads to 

 

    

 

I
A

= σ
V
l

 

 

But, from Equations 18.2 and 18.4 

 

    

 

σ =
l

RA
 

and 

 

  

 

I
A

=
l

RA

 
 
 

 
 
 

V
l

 
 
 

 
 
  

 

Solving for V from this expression gives V = IR, which is just Equation 18.1. 
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 18.5  (a) Using the data in Table 18.1, compute the resistance of a copper wire 3 mm (0.12 in.) in diameter 

and 2 m (78.7 in.) long. (b) What would be the current flow if the potential drop across the ends of the wire is 0.05 

V? (c) What is the current density? (d) What is the magnitude of the electric field across the ends of the wire? 
 

  Solution 

 (a)  In order to compute the resistance of this copper wire it is necessary to employ Equations 18.2 and 

18.4.  Solving for the resistance in terms of the conductivity, 

 

    

 

R =
ρ l
A

=
l

σA
=

l

σπ
d
2

 
 
 

 
 
 
2

 

 

From Table 18.1, the conductivity of copper is 6.0 × 107 (Ω-m)-1, and  

 

  

 

R =
l

σπ
d
2

 
 
 

 
 
 
2

=
2 m

6.0 × 107 (Ω − m)−1[ ](π)
3 × 10−3 m

2

 

 
 

 

 
 

2
 

 

= 4.7 × 10-3 Ω 

 

 (b)  If V = 0.05 V then, from Equation 18.1 

 

  

 

I =
V
R

=
0.05 V

4.7 × 10−3 Ω
= 10.6  A  

 

 (c)  The current density is just 

 

  

 

J =
I
A

=
I

π
d
2

 
 
 

 
 
 
2

=
10.6 A

π
3 × 10−3 m

2

 

 
 

 

 
 

2
= 1.5 × 106  A/m2  

 

 (d)  The electric field is just 

 

  

 

E =
V
l

=
0.05 V

2 m
= 2.5 ×  10-2  V/m 
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 Electronic and Ionic Conduction 

 

 18.6  What is the distinction between electronic and ionic conduction? 
 

  Solution 

 When a current arises from a flow of electrons, the conduction is termed electronic;  for ionic conduction, 

the current results from the net motion of charged ions. 
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 Energy Band Structures in Solids 

 

 18.7  How does the electron structure of an isolated atom differ from that of a solid material? 
 

  Solution 

 For an isolated atom, there exist discrete electron energy states (arranged into shells and subshells);  each 

state may be occupied by, at most, two electrons, which must have opposite spins.  On the other hand, an electron 

band structure is found for solid materials;  within each band exist closely spaced yet discrete electron states, each 

of which may be occupied by, at most, two electrons, having opposite spins.  The number of electron states in each 

band will equal the total number of corresponding states contributed by all of the atoms in the solid. 
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 Conduction in Terms of Band and Atomic Bonding Models 

 

 18.8  In terms of electron energy band structure, discuss reasons for the difference in electrical 

conductivity between metals, semiconductors, and insulators. 
 

  Solution 

 For metallic materials, there are vacant electron energy states adjacent to the highest filled state;  thus, very 

little energy is required to excite large numbers of electrons into conducting states. These electrons are those that 

participate in the conduction process, and, because there are so many of them, metals are good electrical conductors. 

 There are no empty electron states adjacent to and above filled states for semiconductors and insulators, but 

rather, an energy band gap across which electrons must be excited in order to participate in the conduction process.  

Thermal excitation of electrons will occur, and the number of electrons excited will be less than for metals, and will 

depend on the band gap energy.  For semiconductors, the band gap is narrower than for insulators;  consequently, at 

a specific temperature more electrons will be excited for semiconductors, giving rise to higher conductivities. 
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 Electron Mobility 

 

 18.9  Briefly tell what is meant by the drift velocity and mobility of a free electron. 
 

  Solution 

 The drift velocity of a free electron is the average electron velocity in the direction of the force imposed by 

an electric field. 

 The mobility is the proportionality constant between the drift velocity and the electric field.  It is also a 

measure of the frequency of scattering events (and is inversely proportional to the frequency of scattering). 
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 18.10  (a) Calculate the drift velocity of electrons in germanium at room temperature and when the 

magnitude of the electric field is 1000 V/m. (b) Under these circumstances, how long does it take an electron to 

traverse a 25-mm (1-in.) length of crystal? 
 

  Solution 

 (a) The drift velocity of electrons in Ge may be determined using Equation 18.7.  Since the room 

temperature mobility of electrons is 0.38 m2/V-s (Table 18.3), and the electric field is 1000 V/m (as stipulated in the 

problem statement), 

 

    

 

vd = µeE  

 

 

= (0.38  m2/V - s)(1000  V/m) = 380 m/s  

 

 (b)  The time, t, required to traverse a given length, l (= 25 mm), is just 

 

  

 

t =
l

vd
=

25 × 10−3 m
380 m/s

= 6.6 ×  10-5  s  
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 18.11  At room temperature the electrical conductivity and the electron mobility for copper are 6.0 × 107 

(Ω-m)-1 and 0.0030 m2/V-s, respectively. (a) Compute the number of free electrons per cubic meter for copper at 

room temperature. (b) What is the number of free electrons per copper atom?  Assume a density of 8.9 g/cm3. 
 

  Solution 

 (a) The number of free electrons per cubic meter for copper at room temperature may be computed using 

Equation 18.8 as 

 

    

 

n =
σ

| e | µe
 

 

 

=
6.0 × 107 (Ω − m)−1

(1.602 × 10−19 C)(0.003 m2/V - s)
 

 

= 1.25 × 1029 m-3 

 

 (b)  In order to calculate the number of free electrons per copper atom, we must first determine the number 
of copper atoms per cubic meter, NCu.  From Equation 4.2 (and using the atomic weight value for Cu found inside 

the front cover—viz. 63.55 g/mol) 

 

  

 

NCu =
N A ′ ρ 

ACu
 

 

 

=
(6.022 × 1023 atoms /mol)(8.9 g/cm3)(106 cm3 /m3)

63.55 g/mol
 

 

= 8.43 × 1028 m-3 

 

(Note:  in the above expression, density is represented by ρ' in order to avoid confusion with resistivity which is 
designated by ρ.)   And, finally, the number of free electrons per aluminum atom is just n/NCu 

 

  

 

n
NCul

=
1.25 × 1029 m−3

8.43 × 1028 m−3
= 1.48  
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 18.12  (a) Calculate the number of free electrons per cubic meter for gold assuming that there are 1.5 free 

electrons per gold atom.  The electrical conductivity and density for Au are 4.3 × 107 (Ω-m)-1 and 19.32 g/cm3, 

respectively. (b) Now compute the electron mobility for Au. 
 

  Solution 

 (a)  This portion of the problem asks that we calculate, for gold, the number of free electrons per cubic 

meter (n) given that there are 1.5 free electrons per gold atom, that the electrical conductivity is 4.3 × 107 (Ω-m)-1, 

and that the density   

 

(ρAu
' )  is 19.32 g/cm3.  (Note:  in this discussion, the density of silver is represented by   

 

ρAu
'  in 

order to avoid confusion with resistivity which is designated by ρ.)  Since n = 1.5NAu, and NAu is defined in 

Equation 4.2 (and using the atomic weight of Au found inside the front cover—viz 196.97 g/mol), then  

 

  

 

n = 1.5N Au = 1.5 
ρAu

' N A

AAu

 

 
 
 

 

 
 
 
 

 

 

= 1.5 
(19.32 g/cm3)(6.022 × 1023 atoms /mol)

196.97 g/mol

 

 
 

 

 
  

 

= 8.86 × 1022 cm-3 = 8.86 × 1028 m-3 

 
 (b)  Now we are asked to compute the electron mobility, µe.  Using Equation 18.8 

 

  

 

µe =
σ

n | e |
 

 

 

=  
4.3 × 107 (Ω − m)−1

(8.86 × 1028 m−3)(1.602 × 10−19 C)
= 3.03 ×  10-3  m2/V - s 
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 Electrical Resistivity of Metals 

 

 18.13  From Figure 18.38, estimate the value of A in Equation 18.11 for zinc as an impurity in copper–zinc 

alloys. 
 

  Solution 

 We want to solve for the parameter A in Equation 18.11 using the data in Figure 18.38.  From Equation 

18.11 

 

    

 

A =
ρi

ci (1 − ci )
 

 
However, the data plotted in Figure 18.38 is the total resistivity, ρtotal, and includes both impurity (ρi) and thermal 

(ρt) contributions (Equation 18.9).  The value of ρt is taken as the resistivity at ci = 0 in Figure 18.38, which has a 

value of 1.7 × 10-8 (Ω-m);  this must be subtracted out.  Below are tabulated values of A determined at ci = 0.10, 

0.20, and 0.30, including other data that were used in the computations.  (Note:  the ci values were taken from the 

upper horizontal axis of Figure 18.38, since it is graduated in atom percent zinc.) 

 
 ci 1 – ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m) 

 0.10 0.90 4.0 × 10-8 2.3 × 10-8 2.56 × 10-7
 

 0.20 0.80 5.4 × 10-8 3.7 × 10-8 2.31 × 10-7
 

 0.30 0.70 6.15 × 10-8 4.45 × 10-8 2.12 × 10-7
 

 
So, there is a slight decrease of A with increasing ci. 
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 18.14  (a) Using the data in Figure 18.8, determine the values of ρ0 and a from Equation 18.10 for pure 

copper. Take the temperature T to be in degrees Celsius. (b) Determine the value of A in Equation 18.11 for nickel 

as an impurity in copper, using the data in Figure 18.8. (c) Using the results of parts (a) and (b), estimate the 

electrical resistivity of copper containing 1.75 at% Ni at 100°C. 
 

  Solution 

 (a)  Perhaps the easiest way to determine the values of ρ0 and a in Equation 18.10 for pure copper in 

Figure 18.8, is to set up two simultaneous equations using two resistivity values (labeled ρt1 and ρt2) taken at two 

corresponding temperatures (T1 and T2).  Thus, 

 

    

 

ρt1 = ρ0 +  aT1  

 

    

 

ρt2 = ρ0 +  aT2  

 
And solving these equations simultaneously lead to the following expressions for a and ρ0: 

 

    

 

a =
ρt1 − ρt2

T1 − T2
 

 

    

 

ρ0 = ρt1 −  T1
ρt1 − ρt2

T1 −T2

 

 
 
 

 

 
 
 
 

 

    

 

= ρt2
 −  T2

ρt1 − ρt2
T1 − T2

 

 
 
 

 

 
 
 
 

 

From Figure 18.8, let us take T1 = –150°C, T2 = –50°C, which gives ρt1 = 0.6 × 10-8 (Ω-m), and ρt2 = 1.25 × 10-8 

(Ω-m).  Therefore 

 

    

 

a =
ρt1 − ρt2

T1 − T2
 

 

 

=  
(0.6 ×  10-8) −  (1.25 ×  10-8)[ ]Ω - m( )

−150°C −  (−50°C)
 

 

6.5 × 10-11 (Ω-m)/°C 
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and 

 

    

 

ρ0 = ρt1 −  T1
ρt1 − ρt2

T1 −T2

 

 
 
 

 

 
 
 
 

 

 

= (0.6 ×  10-8) −  (−150) 
(0.6 ×  10-8) −  (1.25 ×  10-8)[ ]Ω - m( )

−150°C −  (−50°C)
 

 

= 1.58 × 10-8 (Ω-m) 

 

 (b)  For this part of the problem, we want to calculate A from Equation 18.11 

 

  

 

ρi = Aci (1 −  ci)  

 
In Figure 18.8, curves are plotted for three ci values (0.0112, 0.0216, and 0.0332).  Let us find A for each of these 

ci's by taking a ρtotal from each curve at some temperature (say 0°C) and then subtracting out ρi for pure copper at 

this same temperature (which is 1.7 × 10-8 Ω-m).  Below is tabulated values of A determined from these three ci 

values, and other data that were used in the computations. 

 

 ci 1 – ci ρtotal (Ω-m) ρi (Ω-m) A (Ω-m) 

 0.0112 0.989 3.0 × 10-8 1.3 × 10-8 1.17 × 10-6
 

 0.0216 0.978 4.2 × 10-8 2.5 × 10-8 1.18 × 10-6
 

 0.0332 0.967 5.5 × 10-8 3.8 × 10-8 1.18 × 10-6
 

 

The average of these three A values is 1.18 × 10-6 (Ω-m). 

 (c)  We use the results of parts (a) and (b) to estimate the electrical resistivity of copper containing 1.75 
at% Ni (ci = 0.0175) at 100°C.  The total resistivity is just 

 

    

 

ρtotal = ρt  +  ρi  

 
Or incorporating the expressions for ρt and ρi from Equations 18.10 and 18.11, and the values of ρ0, a, and A 

determined above, leads to 
 

  

 

ρtotal = (ρ0 +  aT) +  Aci (1 −  ci)  
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=  {1.58 ×  10 -8 (Ω - m) +  [6.5 ×  10 -11  (Ω - m) /°C](100°C)} 

 

+ {[1.18 ×  10 -6  (Ω - m)](0.0175) (1 −  0.0175)} 

 

= 4.25 × 10-8 (Ω-m) 
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 18.15  Determine the electrical conductivity of a Cu-Ni alloy that has a yield strength of 125 MPa (18,000 

psi). You will find Figure 7.16 helpful. 
 

  Solution 

 We are asked to determine the electrical conductivity of a Cu-Ni alloy that has a yield strength of 125 MPa.  

From Figure 7.16b, the composition of an alloy having this tensile strength is about 20 wt% Ni.  For this 

composition, the resistivity is about 27 × 10-8 Ω-m (Figure 18.9).  And since the conductivity is the reciprocal of the 

resistivity, Equation 18.4, we have 

 

 

σ =
1
ρ

=
1

27 × 10−8 Ω − m
= 3.70 ×  106  (Ω - m)-1  
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 18.16  Tin bronze has a composition of 92 wt% Cu and 8 wt% Sn, and consists of two phases at room 

temperature: an α phase, which is copper containing a very small amount of tin in solid solution, and an ε phase, 

which consists of approximately 37 wt% Sn. Compute the room temperature conductivity of this alloy given the 

following data: 

 
Phase Electrical Resistivity 

(Ω-m) 
Density (g/cm3) 

α 1.88 × 10–8 8.94 

ε 5.32 × 10–7 8.25 

 
 

  Solution 

 This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn alloy which 

composition is 92 wt% Cu-8 wt% Sn.  It is first necessary for us to determine the volume fractions of the α and ε 

phases, after which the resistivity (and subsequently, the conductivity) may be calculated using Equation 18.12.  

Weight fractions of the two phases are first calculated using the phase diagram information provided in the problem. 

 We may represent a portion of the phase diagram near room temperature as follows: 

 

Applying the lever rule to this situation 

 

  

 

Wα =
Cε − C0

Cε − Cα
=

37 − 8
37 − 0

= 0.784  

 

  

 

Wε =
C0 − Cα
Cε − Cα

=
8 − 0
37 − 0

= 0.216  
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We must now convert these mass fractions into volume fractions using the phase densities given in the problem 

statement.  (Note:  in the following expressions, density is represented by ρ' in order to avoid confusion with 

resistivity which is designated by ρ.)  Utilization of Equations 9.6a and 9.6b leads to 

 

    

 

Vα =

Wα
ρ'α

Wα
ρ'α

+
Wε
ρ'ε

 

 

 

=

0.784

8.94 g/cm3

0.784

8.94 g/cm3
+

0.216

8.25 g/cm3

 

 

= 0.770 

 

 

    

 

Vε =

Wε
ρ'ε

Wα
ρ'α

+
Wε
ρ'ε

 

 

 

=

0.216

8.25 g/cm3

0.784

8.94 g/cm3
+

0.216

8.25 g/cm3

 

 

= 0.230 

 

Now, using Equation 18.12 

 

    

 

ρ = ραVα  +  ρεVε 

 

 

= (1.88 ×  10-8  Ω - m)(0.770) +  (5.32 ×  10-7  Ω - m) (0.230)  

 

= 1.368 × 10-7 Ω-m 
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Finally, for the conductivity (Equation 18.4) 

 

 

σ =
1
ρ

=
1

1.368 × 10−7 Ω − m
= 7.31 ×  106  (Ω - m) -1  
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 18.17  A cylindrical metal wire 2 mm (0.08 in.) in diameter is required to carry a current of 10 A with a 

minimum of 0.03 V drop per foot (300 mm) of wire.  Which of the metals and alloys listed in Table 18.1 are possible 

candidates? 
 

  Solution 

 We are asked to select which of several metals may be used for a 2 mm diameter wire to carry 10 A, and 

have a voltage drop less than 0.03 V per foot (300 mm).  Using Equations 18.3 and 18.4, let us determine the 

minimum conductivity required, and then select from Table 18.1, those metals that have conductivities greater than 

this value.  Combining Equations 18.3 and 18.4, the minimum conductivity is just 

 

  

 

σ =
1
ρ

=
Il

VA
=

Il

Vπ
d
2

 
 
 

 
 
 

2
 

 

 

=
(10 A)(300 × 10−3 m)

(0.03 V) (π)
2 × 10−3 m

2

 

 
 

 

 
 
2

= 3.2 ×  107  (Ω - m) -1  

 

Thus, from Table 18.1, only aluminum, gold, copper, and silver are candidates. 
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 Intrinsic Semiconduction 

 

 18.18  (a) Using the data presented in Figure 18.16, determine the number of free electrons per atom for 

intrinsic germanium and silicon at room temperature (298 K). The densities for Ge and Si are 5.32 and 2.33 g/cm3, 

respectively. 

 (b) Now explain the difference in these free-electron-per-atom values. 
 

  Solution 

 (a)  For this part of the problem, we first read, from Figure 18.16, the number of free electrons (i.e., the 

intrinsic carrier concentration) at room temperature (298 K).   These values are ni(Ge) = 5 × 1019 m-3 and ni(Si) = 7 

× 1016 m-3. 
 Now, the number of atoms per cubic meter for Ge and Si (NGe and NSi, respectively) may be determined 

using Equation 4.2 which involves the densities (    

 

ρGe
'  and     

 

ρSi
' ) and atomic weights (AGe and ASi).  (Note:  here we 

use ρ' to represent density in order to avoid confusion with resistivity, which is designated by ρ.  Also, the atomic 

weights for Ge and Si, 72.64 and 28.09 g/mol, respectively, are found inside the front cover.)  Therefore, 

 

      

 

NGe =
N AρGe

'

AGe
 

 

 

=
(6.022 × 1023 atoms/mol)(5.32 g/cm3)(106 cm3/m3)

72.64 g/mol
 

 

= 4.41 × 1028 atoms/m3 

 

Similarly, for Si 

 

      

 

NSi =
N AρSi

'

ASi
 

 

 

=
(6.022 × 1023 atoms /mol)(2.33 g/cm3)(106 cm3/m3)

28.09 g/mol
 

 

= 5.00 × 1028 atoms/m3 

 
 Finally, the ratio of the number of free electrons per atom is calculated by dividing ni by N.  For Ge 
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ni (Ge)
NGe

=
5 × 1019 electrons /m3

4.41 × 1028 atoms /m3
 

 

1.13 × 10-9 electron/atom 

 

And, for Si 

 

  

 

ni(Si)

NSi
=

7 × 1016 electrons /m3

5.00 × 1028 atoms /m3
 

 

= 1.40 × 10-12 electron/atom 

 

 (b)  The difference is due to the magnitudes of the band gap energies (Table 18.3).  The band gap energy at 

room temperature for Si (1.11 eV) is larger than for Ge (0.67 eV), and, consequently, the probability of excitation 

across the band gap for a valence electron is much smaller for Si. 
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 18.19  For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as 

follows: 

 

 

 

ni ∝ exp −
Eg

2kT

 

 
 

 

 
  (18.35a) 

or taking natural logarithms, 

 

 

 

ln ni ∝ −
Eg

2kT
 (18.35b) 

 

Thus, a plot of ln n i versus 1/T (K)–1 should be linear and yield a slope of  –Eg/2k. Using this information and the 

data presented in Figure 18.16, determine the band gap energies for silicon and germanium, and compare these 

values with those given in Table 18.3. 
 

  Solution 

 This problem asks that we make plots of ln ni versus reciprocal temperature for both Si and Ge, using the 

data presented in Figure 18.16, and then determine the band gap energy for each material realizing that the slope of 
the resulting line is equal to – Eg/2k. 

 Below is shown such a plot for Si. 
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The slope of the line is equal to 

 

    

 

Slope =  
∆ ln ηi

∆ 
1
T

 
 
 

 
 
 

 =  
ln η1 −  ln η2

1
T1

 −  
1

T2

 

 
Let us take 1/T1 = 0.001 and 1/T2 = 0.007;  their corresponding ln η values are ln η1 = 54.80 and ln η2 = 16.00.  

Incorporating these values into the above expression leads to a slope of 

 

 

Slope =  
54.80  −  16.00
0.001 −  0.007

 =  − 6467  

 
This slope leads to an Eg value of 

 
Eg = – 2k (Slope) 

 

 

= − 2(8.62 x 10−5 eV/K)(− 6467) = 1.115 eV  
 

The value cited in Table 18.3 is 1.11 eV. 

 

 Now for Ge, an analogous plot is shown below. 
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We calculate the slope and band gap energy values in the manner outlined above.  Let us take 1/T1 = 0.001 and 1/T2 

= 0.011;  their corresponding ln η values are ln η1 = 55.56 and ln η2 = 14.80.  Incorporating these values into the 

above expression leads to a slope of 

 

  

 

Slope =  
55.56ÊÊ−  14.80
0.001 −  0.011

 =  − 4076  

 
This slope leads to an Eg value of 

 
Eg = – 2k (Slope) 

 

 

= − 2(8.62 × 10−5 eV/K)(− 4076) = 0.70 eV  

 

This value is in good agreement with the 0.67 eV cited in Table 18.3. 
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 18.20  Briefly explain the presence of the factor 2 in the denominator of Equation 18.35a. 
 

  Solution 

 The factor 2 in Equation 18.35a takes into account the creation of two charge carriers (an electron and a 

hole) for each valence-band-to-conduction-band intrinsic excitation;  both charge carriers may participate in the 

conduction process. 
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 18.21 At room temperature the electrical conductivity of PbTe is 500 (Ω-m)–1, whereas the electron and 

hole mobilities are 0.16 and 0.075 m2/V-s, respectively. Compute the intrinsic carrier concentration for PbTe at 

room temperature. 
 

  Solution 

 In this problem we are asked to compute the intrinsic carrier concentration for PbTe at room temperature.  

Since the conductivity and both electron and hole mobilities are provided in the problem statement, all we need do 
is solve for n and p (i.e., ni) using Equation 18.15.  Thus, 

 

  

 

ni =
σ

|e |(µe + µh)
 

 

 

=
500 (Ω - m)−1

(1.602 × 10−19 C)(0.16 + 0.075) m2/V - s
 

 

= 1.33 × 1022 m-3 
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 18.22  Is it possible for compound semiconductors to exhibit intrinsic behavior? Explain your answer. 
 

  Solution 

 Yes, compound semiconductors can exhibit intrinsic behavior.  They will be intrinsic even though they are 

composed of two different elements as long as the electrical behavior is not influenced by the presence of other 

elements. 
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 18.23  For each of the following pairs of semiconductors, decide which will have the smaller band gap 

energy, Eg, and then cite the reason for your choice. (a) ZnS and CdSe, (b) Si and C (diamond), (c) Al2O3 and 

ZnTe, (d) InSb and ZnSe, and (e) GaAs and AlP. 
 

  Solution 

 This problem calls for us to decide for each of several pairs of semiconductors, which will have the smaller 

band gap energy and then cite a reason for the choice. 

 (a) Cadmium selenide will have a smaller band gap energy than zinc sulfide.  Both are II-VI compounds, 

and Cd and Se are both lower vertically in the periodic table (Figure 2.6) than Zn and S.  In moving from top to 
bottom down the periodic table, Eg decreases. 

 (b) Silicon will have a smaller band gap energy than diamond since Si is lower in column IVA of the 

periodic table than is C. 

 (c) Zinc telluride will have a smaller band gap energy that aluminum oxide.  There is a greater disparity 

between the electronegativities for aluminum and oxygen [1.5 versus 3.5 (Figure 2.7)] than for zinc and tellurium 

(1.6 and 2.1).  For binary compounds, the larger the difference between the electronegativities of the elements, the 

greater the band gap energy. 

 (d) Indium antimonide will have a smaller band gap energy than zinc selenide.  These materials are III-V 

and II-VI compounds, respectively;  Thus, in the periodic table, In and Sb are closer together horizontally than are 

Zn and Se.  Furthermore, both In and Sb reside below Zn and Se in the periodic table. 

 (e) Gallium arsenide will have a smaller band gap energy than aluminum phosphide.  Both are III-V 

compounds, and Ga and As are both lower vertically in the periodic table than Al and P. 
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 Extrinsic Semiconduction 

 

 18.24  Define the following terms as they pertain to semiconducting materials: intrinsic, extrinsic, 

compound, elemental. Now provide an example of each. 
 

  Solution 

 These semiconductor terms are defined in the Glossary.  Examples are as follows:  intrinsic--high purity 

(undoped) Si, GaAs, CdS, etc.; extrinsic--P-doped Ge, B-doped Si, S-doped GaP, etc.;  compound--GaAs, InP, CdS, 

etc.;  elemental--Ge and Si. 
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 18.25  An n-type semiconductor is known to have an electron concentration of 3 × 1018 m-3. If the electron 

drift velocity is 100 m/s in an electric field of 500 V/m, calculate the conductivity of this material. 
 

  Solution 

 The conductivity of this material may be computed using Equation 18.16.  But before this is possible, it is 
necessary to calculate the value of µe from Equation 18.7.  Thus, the electron mobility is equal to 

 

  

 

µe =
vd
E

 

 

 

=
100 m/s
500 V/m

= 0.20 m2/V − s  

 

Thus, from Equation 18.16, the conductivity is 

 

  

 

σ = n | e |µe  

 

 

= (3 × 1018 m−3)(1.602 × 10−19 C)(0.20 m2/V − s)  

 

= 0.096 (Ω-m)-1 
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 18.26  (a) In your own words, explain how donor impurities in semiconductors give rise to free electrons in 

numbers in excess of those generated by valence band–conduction band excitations. (b) Also explain how acceptor 

impurities give rise to holes in numbers in excess of those generated by valence band–conduction band excitations. 

 

 The explanations called for are found in Section 18.11. 
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 18.27  (a) Explain why no hole is generated by the electron excitation involving a donor impurity atom. (b) 

Explain why no free electron is generated by the electron excitation involving an acceptor impurity atom. 
 

  Solution 

 (a)  No hole is generated by an electron excitation involving a donor impurity atom because the excitation 

comes from a level within the band gap, and thus, no missing electron is created within the normally filled valence 

band. 

 (b)  No free electron is generated by an electron excitation involving an acceptor impurity atom because the 

electron is excited from the valence band into the impurity level within the band gap;  no free electron is introduced 

into the conduction band. 
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 18.28  Will each of the following elements act as a donor or an acceptor when added to the indicated 

semiconducting material? Assume that the impurity elements are substitutional. 

 
Impurity Semiconductor 

P Ge 

S AlP 

In CdTe 

Al Si 

Cd GaAs 

Sb ZnSe 

 
 
  Solution 

 Phosphorus will act as a donor in Ge.  Since it (P) is from group VA of the periodic table (Figure 2.6), a P 

atom has one more valence electron than a Ge atom. 

 Sulfur will act as a donor in AlP.  Since S is from group VIA of the periodic table, it will substitute for P;  

also, an S atom has one more valence electron than a P atom. 

 Indium will act as a donor in CdTe.  Since In is from group IIIA of the periodic table, it will substitute for 

Cd;  furthermore, an In atom has one more valence electron than a Cd atom. 

 Aluminum will act as an acceptor in Si.  Since it (Al) is from group IIIA of the periodic table (Figure 2.6), 

an Al atom has one less valence electron than a Si atom. 

 Cadmium will act as an acceptor in GaAs.  Since Cd is from group IIB of the periodic table, it will 

substitute for Ga;  furthermore, a Cd atom has one less valence electron than a Ga atom. 

 Antimony will act as an acceptor in ZnSe.  Since Sb is from group VA of the periodic table, it will 

substitute for Se;  and, an Sb atom has one less valence electron than an Se atom. 
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 18.29  (a) The room-temperature electrical conductivity of a silicon specimen is 5.93 × 10–3 (Ω-m)–1. The 

hole concentration is known to be 7.0 × 1017 m–3. Using the electron and hole mobilities for silicon in Table 18.3, 

compute the electron concentration. (b) On the basis of the result in part (a), is the specimen intrinsic, n-type 

extrinsic, or p-type extrinsic? Why? 
 
  Solution 

 (a)  In this problem, for a Si specimen, we are given values for p (7.0 × 1017 m-3)  and σ [5.93 ×  10-3 (Ω-

m)-1], while values for µh and µe (0.05 and 0.14 m2/V-s, respectively) are found in Table 18.3.  In order to solve 

for n we must use Equation 18.13, which, after rearrangement, leads to 

 

    

 

n =
σ − p | e | µh

| e | µe
 

 

 

=  
5.93 ×  10−3 (Ω − m)−1 − (7.0 × 1017 m−3)(1.602 × 10−19 C)(0.05 m2 /V - s)

(1.602 × 10−19 C)(0.14 m2 /V - s)
 

 

= 1.44 × 1016 m-3 

 

 (b)  This material is p-type extrinsic since p (7.0 × 1017 m-3) is greater than n (1.44 × 1016 m-3). 
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 18.30  Germanium to which 5 × 1022 m-3 Sb atoms have been added is an extrinsic semiconductor at room 

temperature, and virtually all the Sb atoms may be thought of as being ionized (i.e., one charge carrier exists for 

each Sb atom).  (a) Is this material n-type or p-type?  (b) Calculate the electrical conductivity of this material, 

assuming electron and hole mobilities of 0.1 and 0.05 m2/V-s, respectively. 
 
  Solution 

 (a) (a)  This germanium material to which has been added 5 × 1022 m-3 Sb atoms is n-type since Sb is a 

donor in Ge.  (Antimony is from group VA of the periodic table--Ge is from group IVA.) 

 (b)  Since this material is n-type extrinsic, Equation 18.16 is valid. Furthermore, each Sb will donate a 

single electron, or the electron concentration is equal to the Sb concentration since all of the Sb atoms are ionized at 

room temperature;  that is n = 5 × 1022 m-3, and, as given in the problem statement, µe = 0.1 m2/V-s.  Thus 

 

    

 

σ = n | e |µe  

 

 

= (5 ×  10 22  m-3)(1.602 ×  10-19  C)(0.1  m2/V - s)  

 

= 800 (Ω-m)-1 
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 18.31  The following electrical characteristics have been determined for both intrinsic and p-type extrinsic 

indium phosphide (InP) at room temperature: 

 
 σ (Ω -m)–1 n (m–3) p (m–3) 

Intrinsic 2.5 × 10-6 3.0 × 1013 3.0 × 1013 

Extrinsic (n-type) 3.6 × 10-5 4.5 × 1014 2.0 × 1012 

 

Calculate electron and hole mobilities. 
 
  Solution 

 In order to solve for the electron and hole mobilities for InP, we must write conductivity expressions for 

the two materials, of the form of Equation 18.13—i.e., 

 

    

 

σ = n | e | µe +  p | e | µh 

 

For the intrinsic material 

 

  

 

2.5 ×  10-6  (Ω - m) -1  =  (3.0 ×  1013  m-3)(1.602 ×  10-19  C) µe  

  

 

+ (3.0 ×  1013 m-3)(1.602 ×  10-19  C) µh  

 

which reduces to 

  

 

0.52 = µe +  µh  

 

Whereas, for the extrinsic InP 

 

  

 

3.6 ×  10-5  (Ω - m) -1  =  (4.5 ×  1014  m-3)(1.602 ×  10-19  C) µe  

  

 

+ (2.0 ×  1012  m-3)(1.602 ×  10-19  C) µh 

 

which may be simplified to 

 

  

 

112.4  =  225µe +  µh  

 

Thus, we have two independent expressions with two unknown mobilities. Upon solving these equations 

simultaneously, we get µe = 0.50 m2/V-s and µh = 0.02 m2/V-s.
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 The Temperature Dependence of Carrier Concentration 

 
 18.32  Calculate the conductivity of intrinsic silicon at 100°C. 

 
  Solution 

 In order to estimate the electrical conductivity of intrinsic silicon at 100°C, we must employ Equation 

18.15.  However, before this is possible, it is necessary to determine values for ni, µe, and µh.  According to Figure 

18.16, at 100°C (373 K), ni = 2 × 1018 m-3, whereas from the "<1020 m-3" curves of Figures 18.19a and 18.19b, at 

100ºC (373 K), µe = 0.09 m2/V-s and µh = 0.032 m2/V-s (realizing that the mobility axes of these two plot are 

scaled logarithmically).  Thus, the conductivity at 100°C is 

 

    

 

σ =  ni | e |(µe +  µh)  

 

  

 

σ =  (2 ×  1018 m−3)(1.602 × 10−19 C)(0.09 m2/V - s  +  0.032 m2 /V − s)  

 

 

= 0.039 (Ω - m) -1 
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 18.33  At temperatures near room temperature, the temperature dependence of the conductivity for 

intrinsic germanium is found to equal 
 

 

 

σ = CT −3/ 2 exp −
Eg

2kT

 

 
 

 

 
  (18.36) 

 

where C is a temperature-independent constant and T is in Kelvins. Using Equation 18.36, calculate the intrinsic 

electrical conductivity of germanium at 150°C. 
 
  Solution 

 It first becomes necessary to solve for C in Equation 18.36 using the room-temperature (298 K) 

conductivity [2.2 (Ω-m)-1] (Table 18.3).  This is accomplished by taking natural logarithms of both sides of 

Equation 18.36 as 

 

    

 

ln σ = ln C −
3
2

lnT −  
Eg

2 kT
 

 
and after rearranging and substitution of values for Eg (0.67 eV, Table 18.3), and the room-temperature 

conductivity, we get 

 

    

 

ln C = ln σ +  
3
2

lnT +  
Eg

2 kT
 

 

 

= ln (2.2) +  
3
2

ln (298) +  
0.67 eV

(2)(8.62 × 10−5 eV/K)(298 K)
 

 

= 22.38 

 

Now, again using Equation 18.36, we are able to compute the conductivity at 423 K (150°C) 

 

    

 

ln σ = ln C −
3
2

ln T −
Eg

2 kT
 

 

 

= 22.38 −
3
2

ln (423 K) −
0.67 eV

(2)(8.62 × 10−5 eV/K)(423 K)
 

 

= 4.12 
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which leads to 

 

σ = e4.12 = 61.6 (Ω-m)-1. 
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 18.34  Using Equation 18.36 and the results of Problem 18.33, determine the temperature at which the 

electrical conductivity of intrinsic germanium is 22.8 (Ω-m)–1. 
 
  Solution 

 This problem asks that we determine the temperature at which the electrical conductivity of intrinsic Ge is 

22.8 (Ω-m)-1, using Equation 18.36 and the results of Problem 18.33.  First of all, taking logarithms of Equation 

18.36 

 

    

 

ln σ = ln C −
3
2

ln T −
Eg

2 kT
 

 

And, from Problem 18.33 the value of ln C was determined to be 22.38.  Using this and σ = 22.8 (Ω-m)-1, the above 

equation takes the form 

 

    

 

ln 22.8 = 22.38 −
3
2

ln T −
0.67 eV

(2)(8.62 × 10−5 eV/K)(T)
 

 

In order to solve for T from the above expression it is necessary to use an equation solver.  For some solvers, the 

following set of instructions may be used: 

 

ln(22.8) = 22.38 –1.5*ln(T) – 0.67/(2*8.62*10^-5*T) 

 

The resulting solution is T = 375, which value is the temperature in K;  this corresponds to T(ºC) = 375 – 273 = 

102°C. 
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 18.35 Estimate the temperature at which GaAs has an electrical conductivity of 3.7 3 1023 (V-m)21 

assuming the temperature dependence for σ of Equation 18.36.  The data shown in Table 18.3 might prove helpful. 
 
  Solution 

 This problem asks that we estimate the temperature at which GaAs has an electrical conductivity of 3.7 × 

10-3 (Ω-m)-1 assuming that the conductivity has a temperature dependence as shown in Equation 18.36.  From the 

room temperature (298 K) conductivity [10-6 (Ω-m)-1] and band gap energy (1.42 eV) of Table 18.3 we determine 

the value of C (Equation 18.36) by taking natural logarithms of both sides of the equation, and after rearrangement 

as follows: 

 

    

 

ln C = ln σ +
3
2

ln T +
Eg

2 kT
 

 

 

=  ln 10−6 (Ω − m)−1[ ] +  
3
2

ln (298 K) +  
1.42 eV

(2)(8.62 × 10−5 eV/K)(298 K)
 

 

= 22.37 

 

Now we substitute this value into Equation 18.36  in order to determine the value of T for which σ = 3.7 × 10-3 (Ω-

m)-1,  thus 

 

    

 

ln σ = ln C −
3
2

ln T −
Eg

2 kT
 

 

  

 

ln 3.7 ×  10-3  (Ω - m) -1[ ]= 22.37 −
3
2

lnT −
1.42 eV

(2)(8.62 × 10−5 eV /K) (T)
 

 

This equation may be solved for T using an equation solver.  For some solvers, the following set of instructions may 

be used: 

 

ln(3.7*10^–3) = 22.37 – 1.5*ln(T) – 1.42/(2*8.62*10^–5*T) 

 

The resulting solution is T = 437; this value is the temperature in K which corresponds to T(ºC) = 437 K – 273 = 

164°C. 
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 18.36  Compare the temperature dependence of the conductivity for metals and intrinsic semiconductors. 

Briefly explain the difference in behavior. 
 
  Solution 

 For metals, the temperature dependence is described by Equation 18.10 (and converting from resistivity to 

conductivity using Equation 18.4), as 

 

    

 

σ =
1

ρ0 + aT
 

 

That is, the electrical conductivity decreases with increasing temperature. 

 Alternatively, from Equation 18.8, the conductivity of metals is equal to 

 

    

 

σ =  n | e |µe  

 
As the temperature rises, n will remain virtually constant, whereas the mobility (µe) will decrease, because the 

thermal scattering of free electrons will become more efficient.  Since |e| is independent of temperature, the net 

result will be diminishment in the magnitude of σ.
 

 

 For intrinsic semiconductors, the temperature-dependence of conductivity is just the opposite of that for 

metals—i.e, conductivity increases with rising temperature.  One explanation is as follows:  Equation 18.15 

describes the conductivity;  i.e., 

 

    

 

σ =  n | e |(µe +  µh) =  p | e |(µe +  µh)
= ni | e |(µe +  µh)

 

 

Both n and p increase dramatically with rising temperature (Figure 18.16), since more thermal energy becomes 
available for valence band-conduction band electron excitations.  The magnitudes of µe and µh will diminish 

somewhat with increasing temperature (per the upper curves of Figures 18.19a and 18.19b), as a consequence of the 
thermal scattering of electrons and holes.  However, this reduction of µe and µh will be overwhelmed by the 

increase in n and p, with the net result is that σ increases with temperature. 

 An alternative explanation is as follows:  for an intrinsic semiconductor the temperature dependence is 

represented by an equation of the form of Equation 18.36.  This expression contains two terms that involve 

temperature—a preexponential one (in this case T -3/2) and the other in the exponential.  With rising temperature the 
preexponential term decreases, while the exp (–Eg/2kT) parameter increases.  With regard to relative magnitudes, 
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the exponential term increases much more rapidly than the preexponential one, such that the electrical conductivity 

of an intrinsic semiconductor increases with rising temperature. 
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 Factors That Affect Carrier Mobility 

 

 18.37  Calculate the room-temperature electrical conductivity of silicon that has been doped with 5 × 1022 

m–3 of boron atoms. 
 
  Solution 

 This problems asks that we determine the room-temperature electrical conductivity of silicon that has been 

doped with 5 × 1022 m-3 of boron atoms.  Inasmuch as B is a group IIIA element in the periodic table (Figure 2.6) it 

acts as an acceptor in silicon.   Thus, this material is p-type extrinsic, and it is necessary to use Equation 18.17, with 

p = 5 × 1022 m-3 since at room temperature all of the B acceptor impurities are ionized.  The hole mobility, from 

Figure 18.18 at an impurity concentration of 5 × 1022 m-3, is 0.028 m2/V-s.  Therefore, the conductivity is equal to 

 

    

 

σ = p | e | µh = (5 ×  1022 m−3)(1.602 × 10−19 C)(0.028 m2 /V − s) = 224 (Ω − m)−1 
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 18.38  Calculate the room-temperature electrical conductivity of silicon that has been doped with 2 × 1023 

m–3 of arsenic atoms. 
 
  Solution 

 Here we are asked to calculate the room-temperature electrical conductivity of silicon that has been doped 

with 2 × 1023 m-3 of arsenic atoms.  Inasmuch as As is a group VA element in the periodic table (Figure 2.6) it acts 

as a donor in silicon.   Thus, this material is n-type extrinsic, and it is necessary to use Equation 18.16, with n = 2 × 

1023 m-3 since at room temperature all of the As donor impurities are ionized.  The electron mobility, from Figure 

18.18 at an impurity concentration of 2 × 1023 m-3, is 0.05 m2/V-s.  Therefore, the conductivity is equal to 

 

    

 

σ = n | e | µe = (2 × 1023 m−3)(1.602 × 10−19 C)(0.05 m2 /V − s) = 1600 (Ω − m)−1 
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 18.39  Estimate the electrical conductivity, at 125°C, of silicon that has been doped with 1023 m–3 of 

aluminum atoms. 
 
  Solution 

 In this problem we are to estimate the electrical conductivity, at 125°C, of silicon that has been doped with 

1023 m-3 of aluminum atoms.  Inasmuch as Al is a group IIIA element in the periodic table (Figure 2.6) it acts as an 

acceptor in silicon.  Thus, this material is p-type extrinsic, and it is necessary to use Equation 18.17;  p in this 

expression is 1023 m-3 since at 125°C all of the Al acceptor impurities are ionized.  The hole mobility is determined 

using Figure 18.19b.  From the 1023 m-3 impurity concentration curve and at 125°C (398 K), µh = 0.017 m2/V-s.  

Therefore, the conductivity is equal to 

 

    

 

σ = p | e | µh = (1023 m−3)(1.602 × 10−19 C)(0.017 m2 /V − s) = 272 (Ω − m)−1  
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 18.40  Estimate the electrical conductivity, at 85°C, of silicon that has been doped with 1020 m–3 of 

phosphorus atoms. 
 
  Solution 

 In this problem we are to estimate the electrical conductivity, at 85°C, of silicon that has been doped with 

1020 m-3 of phosphorus atoms.  Inasmuch as P is a group VA element in the periodic table (Figure 2.6) it acts as a 

donor in silicon.  Thus, this material is n-type extrinsic, and it is necessary to use Equation 18.16;  n in this 

expression is 1020 m-3 since at 85°C all of the P donor impurities are ionized.  The electron mobility is determined 

using Figure 18.19a.  From the <1020 m-3 impurity concentration curve and at 85°C (358 K,) µe = 0.1 m2/V-s.  

Therefore, the conductivity is equal to 

 

  

 

σ = n | e | µe = (1020 m−3)(1.602 × 10−19 C)(0.1 m2 /V − s) = 1.6 (Ω − m)−1 
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 The Hall Effect 

 

 18.41  Some hypothetical metal is known to have an electrical resistivity of 4 × 10-8 (Ω-m).  Through a 

specimen of this metal that is 25 mm thick is passed a current of 30 A; when a magnetic field of 0.75 tesla is 

simultaneously imposed in a direction perpendicular to that of the current, a Hall voltage of -1.26 × 10-7 V is 

measured. Compute (a) the electron mobility for this metal, and (b) the number of free electrons per cubic meter. 
 
  Solution 

 (a) This portion of the problem calls for us to determine the electron mobility for some hypothetical metal 

using the Hall effect.  This metal has an electrical resistivity of 4 × 10-8 (Ω-m), while the specimen thickness is 25 

mm, Ix = 30 A and Bz = 0.75 tesla;  under these circumstances a Hall voltage of –1.26 × 10-7 V is measured.  It is 

first necessary to convert resistivity to conductivity (Equation 18.4).  Thus 

 

 

σ =
1
ρ

=
1

4 ×  10−8 (Ω − m)
= 2.5 ×  107  (Ω - m) -1  

 

The electron mobility may be determined using Equation 18.20b;  and upon incorporation of Equation 18.18, we 

have 
 

    

 

µe =  RH σ  

 

    

 

=  
VH d σ

I xBz
 

 

 

=
−1.26 × 10−7 V( )(25 × 10−3 m) 2.5 × 107 (Ω − m)−1[ ]

(30 A)(0.75 tesla)
 

 

 

=  0.0035 m2/V - s  
 

 (b)  Now we are to calculate the number of free electrons per cubic meter.  From Equation 18.8 we have 
 

  

 

n  =
σ

| e | µe
 

 

 

=  
2.5 × 107 (Ω - m)−1

(1.602 × 10−19 C)(0.0035 m2/V - s)
 

 

 

= 4.46 ×  1028  m-3 
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 18.42  Some metal alloy is known to have electrical conductivity and electron mobility values of 1.5 × 107 

(Ω-m)-1 and 0.0020 m2/V-s, respectively.  Through a specimen of this alloy that is 35 mm thick is passed a current of 

45 A. What magnetic field would need to be imposed to yield a Hall voltage of -1.0 × 10-7 V? 
 
  Solution 

 In this problem we are asked to determine the magnetic field required to produce a Hall voltage of -1.0 × 

10-7 V, given that σ = 1.5 × 107 (Ω-m)-1, µe = 0.0020 m2/V-s, Ix = 45 A, and d = 35 mm.  Combining Equations 

18.18 and 18.20b, and after solving for Bz, we get 

 

  

 

Bz =
VH d

I xRH
=

VH σd

I xµe
 

 

 

=  
−1.0 × 10−7 V( )1.5 × 107 (Ω − m)−1[ ](35 × 10−3 m)

(45 A)(0.0020 m2 /V - s)
 

 

= 0.58 tesla 
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 Semiconducting Devices 

 

 18.43  Briefly describe electron and hole motions in a p–n junction for forward and reverse biases; then 

explain how these lead to rectification. 

 

 The explanations called for are found in Section 18.15. 
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 18.44  How is the energy in the reaction described by Equation 18.21 dissipated? 
 
  Solution 

 The energy generated by the electron-hole annihilation reaction, Equation 18.21, is dissipated as heat. 
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 18.45  What are the two functions that a transistor may perform in an electronic circuit? 
 
  Solution 

 In an electronic circuit, a transistor may be used to (1) amplify an electrical signal, and (2) act as a 

switching device in computers. 
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 18.46  Cite the differences in operation and application for junction transistors and MOSFETs. 

 

 The differences in operation and application for junction transistors and MOSFETs are described in 

Section 18.15. 
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 Conduction in Ionic Materials 

 

 18.47 We noted in Section 12.5 (Figure 12.22) that in FeO (wüstite), the iron ions can exist in both Fe2+ 

and Fe3+ states. The number of each of these ion types depends on temperature and the ambient oxygen pressure. 

Furthermore, we also noted that in order to retain electroneutrality, one Fe2+ vacancy will be created for every two 

Fe3+ ions that are formed; consequently, in order to reflect the existence of these vacancies the formula for wüstite 

is often represented as Fe (1 – x) O where x is some small fraction less than unity. 

 In this nonstoichiometric Fe(1 – x) O material, conduction is electronic, and, in fact, it behaves as a p-type 

semiconductor. That is, the Fe3+ ions act as electron acceptors, and it is relatively easy to excite an electron from 

the valence band into an Fe3+ acceptor state, with the formation of a hole. Determine the electrical conductivity of a 

specimen of wüstite that has a hole mobility of 1.0 × 10–5 m2/V-s and for which the value of x is 0.060. Assume that 

the acceptor states are saturated (i.e., one hole exists for every Fe3+ ion). Wüstite has the sodium chloride crystal 

structure with a unit cell edge length of 0.437 nm. 
 
  Solution 

 We are asked in this problem to determine the electrical conductivity for the nonstoichiometric   Fe(1 - x)O, 

given x = 0.060 and that the hole mobility is 1.0 × 10-5 m2/V-s.  It is first necessary to compute the number of 

vacancies per cubic meter for this material.  For this determination let us use as our basis 10 unit cells.  For the 

sodium chloride crystal structure there are four cations and four anions per unit cell.  Thus, in ten unit cells of FeO 

there will normally be forty O2- and forty Fe2+ ions.  However, when x = 0.06, (0.06)(40) = 2.4 of the Fe2+ sites 

will be vacant.  (Furthermore, there will be 4.8 Fe3+ ions in these ten unit cells inasmuch as two Fe3+ ions are 

created for every vacancy).  Therefore, each unit cell will, on the average contain 0.24 vacancies.  Now, the number 

of vacancies per cubic meter is just the number of vacancies per unit cell divided by the unit cell volume;  this 

volume is just the unit cell edge length (0.437 nm) cubed.  Thus 

 

 

# vacancies

m3
=

0.24 vacancies /unit cell

(0.437 × 10−9 m)3
 

 

 

=  2.88 ×  1027  vacancies/m3 

 

Inasmuch as it is assumed that the vacancies are saturated, the number of holes (p) is also 2.88 × 1027 m-3.  It is 

now possible, using Equation 18.17, to compute the electrical conductivity of this material as 
 

    

 

σ =  p | e |µh  

 

 

=  (2.88 ×  1027  m-3)(1.602 ×  10-19  C)(1.0 ×  10-5  m2/V - s) =  4613 (Ω - m) -1 
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 18.48 At temperatures between 775°C (1048 K) and 1100°C (1373 K), the activation energy and 

preexponential for the diffusion coefficient of Fe2+ in FeO are 102,000 J/mol and 7.3 × 10-8 m2/s, respectively. 

Compute the mobility for an Fe2+ ion at 1000°C (1273 K). 
 
  Solution 

 For this problem, we are given, for FeO, the activation energy (102,000 J/mol) and preexponential (7.3 × 

10-8 m2/s) for the diffusion coefficient of Fe2+ and are asked to compute the mobility for a Fe2+ ion at 1273 K.  The 
mobility, µFe2+, may be computed using Equation 18.23;  however, this expression also includes the diffusion 

coefficient D Fe2+, which is determined using Equation 5.8 as 

 

  

 

DFe2+ = D0 exp −
Qd

RT

 
 
 

 
 
  

 

 

= (7.3 ×  10-8  m2/s) exp −
102,000 J /mol

(8.31 J/mol - K)(1273 K)

 

 
 

 

 
  

 

 

= 4.74  ×  10-12  m2/s  

 
Now solving for µFe2+ yields 

 

  

 

µFe2+ =
n

Fe2+ eD
Fe2+

kT
 

 

 

=  
(2)(1.602 × 10−19 C /atom)(4.74 × 10−12 m2 /s)

(1.38 × 10−23 J/atom - K) (1273 K)
 

 

 

=  8.64 ×  10-11  m2/V - s  

 
(Note:  the value of nFe2+ is two, inasmuch as two electrons are involved in the ionization of Fe to Fe2+.) 
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 Capacitance 

 

 18.49  A parallel-plate capacitor using a dielectric material having an εr of 2.5 has a plate spacing of 1 

mm (0.04 in.).  If another material having a dielectric constant of 4.0 is used and the capacitance is to be 

unchanged, what must be the new spacing between the plates? 
 
  Solution 

 We want to compute the plate spacing of a parallel-plate capacitor as the dielectric constant is increased 

form 2.5 to 4.0, while maintaining the capacitance constant.  Combining Equations 18.26 and 18.27 yields 

 

  

 

C =
εA
l

=
εrε0 A

l
 

 

Now, let us use the subscripts 1 and 2 to denote the initial and final states, respectively.  Since C1 = C2, then 

 

    

 

εr1ε0 A

l1
=  

εr2 ε0 A

l2
 

 
And, solving for l2

 

 

  

 

l2 =  
εr2l1
εr1

=  
(4.0)(1 mm)

2.5
=  1.6 mm  
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 18.50  A parallel-plate capacitor with dimensions of 100 mm by 25 mm and a plate separation of 3 mm 

must have a minimum capacitance of 38 pF (3.8 × 10-11 F) when an ac potential of 500 V is applied at a frequency 

of 1 MHz.  Which of those materials listed in Table 18.5 are possible candidates?  Why? 
 
  Solution 

 This problem asks for us to ascertain which of the materials listed in Table 18.5 are candidates for a 

parallel-plate capacitor that has dimensions of 100 mm by 25 mm, a plate separation of 3 mm so as to have a 

minimum capacitance of 3.8 × 10-11 F, when an ac potential of 500 V is applied at 1 MHz.  Upon combining 
Equations 18.26 and 18.27 and solving for the dielectric constant εr we get 

 

  

 

εr  =  
ε

ε0
=  

lC
ε0 A

 

 

 

=  
(3 × 10−3 m)(3.8 × 10−11 F)

(8.85 × 10−12 F /m)(100 × 10−3 m)(25 × 10−3 m)
 

 

= 5.15 

 
Thus, the minimum value of εr to achieve the desired capacitance is 5.15 at 1 MHz.  Of those materials listed in the 

table, titanate ceramics, mica, steatite, soda-lime glass, and porcelain are candidates. 
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 18.51  Consider a parallel-plate capacitor having an area of 2500 mm2 and a plate separation of 2 mm, 

and with a material of dielectric constant 4.0 positioned between the plates. (a) What is the capacitance of this 

capacitor? (b) Compute the electric field that must be applied for 8.0 ×  10-9 C to be stored on each plate. 
 
  Solution 

 In this problem we are given, for a parallel-plate capacitor, its area (2500 mm2), the plate separation (2 
mm), and that a material having an εr of 4.0 is positioned between the plates. 

 (a)  We are first asked to compute the capacitance.  Combining Equations 18.26 and 18.27, and solving for 

C yields 

 

  

 

C =  
εA
l

=  
εrε0 A

l
 

 

 

=  
(4.0)(8.85 × 10−12 F /m)(2500 mm2)(1 m2 /106 mm2)

2 ×  10−3 m
 

 

= 4.43 × 10-11 F = 44.3 pF 

 

 (b)  Now we are asked to compute the electric field that must be applied in order that 8 × 10-9 C be stored 

on each plate.  First we need to solve for V in Equation 18.24 as 

 

  

 

V =  
Q
C

=  
8 × 10−9 C

4.43 ×  10−11 F
=  181 V 

 

The electric field E may now be determined using Equation 18.6;  thus 

 

  

 

E =  
V
l

=  
181 V

2  ×  10−3 m
=  9.1 ×  104  V/m  
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 18.52  In your own words, explain the mechanism by which charge storing capacity is increased by the 

insertion of a dielectric material within the plates of a capacitor. 

 

 This explanation is found in Section 18.19. 
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 Field Vectors and Polarization 

 Types of Polarization 

 

 18.53  For NaCl, the ionic radii for Na+ and Cl- ions are 0.102 and 0.181 nm, respectively.  If an 

externally applied electric field produces a 5% expansion of the lattice, compute the dipole moment for each Na+–

Cl- pair. Assume that this material is completely unpolarized in the absence of an electric field. 
 
  Solution 

 Shown below are the relative positions of Na+ and Cl- ions, without and with an electric field present. 

 

 

Now, 

 

  

 

d =  rNa+  +  r
Cl-

 =  0.102  nm +  0.181 nm =  0.283 nm  

 

and 

 

  

 

∆d =  0.05 d =  (0.05)(0.283 nm) =  0.0142  nm =  1.42 ×  10 -11 m 

 

From Equation 18.28, the dipole moment, p, is just 

 

    

 

p =  q ∆d  

 

 

=  (1.602 ×  10-19  C)(1.42 ×  10-11  m) 

 

= 2.26 × 10-30 C-m 
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 18.54  The polarization P of a dielectric material positioned within a parallel-plate capacitor is to be 1.0 × 

10-6 C/m2. 

 (a) What must be the dielectric constant if an electric field of 5 × 104 V/m is applied? 

 (b) What will be the dielectric displacement D? 
 
  Solution 

 (a)  In order to solve for the dielectric constant in this problem, we must employ Equation 18.32, in which 
the polarization and the electric field are given.  Solving for εr from this expression gives 

 

    

 

εr  =  
P

ε0E
+  1 

 

 

=  
1.0 × 10−6  C /m2

(8.85 × 10−12  F /m)(5 × 104  V /m)
+  1 

 

= 3.26 

 

 (b)  The dielectric displacement may be determined using Equation 18.31, as 

 

    

 

D =  ε0E +  P  

 

 

=  (8.85 ×  10-12  F/m)(5 ×  104  V/m) +  1.0 ×  10-6  C/m2  

 

= 1.44 × 10-6 C/m2 
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 18.55 A charge of 3.5 × 10-11 C is to be stored on each plate of a parallel-plate capacitor having an area of 

160 mm2 (0.25 in.2) and a plate separation of 3.5 mm (0.14 in.). 

 (a) What voltage is required if a material having a dielectric constant of 5.0 is positioned within the 

plates? 

 (b) What voltage would be required if a vacuum were used? 

 (c) What are the capacitances for parts (a) and (b)? 

 (d) Compute the dielectric displacement for part (a). 

 (e) Compute the polarization for part (a). 
 
  Solution 

 (a)  We want to solve for the voltage when Q = 3.5 × 10-11 C, A = 160 mm2, l = 3.5 mm, and εr = 5.0.  

Combining Equations 18.24, 18.26, and 18.27 yields 

 

    

 

C =
Q
V

=  ε
A
l

= εrε0
A
l

 

 

Or 

  

 

Q
V

= εrε0
A
l

 

 

And, solving for V, and incorporating values provided in the problem statement, leads to 

 

    

 

V =  
Q l

εrε0 A
 

 

 

=  
(3.5 × 10−11 C)(3.5 × 10−3 m)

(5.0)(8.85 × 10−12 F /m)(160 mm2)(1 m2 /106 mm2)
 

 

= 17.3 V 

 

 (b)  For this same capacitor, if a vacuum is used 

 

    

 

V =  
Q l
ε0 A

 

 

 

=  
(3.5 × 10−11 C)(3.5 × 10−3 m)

(8.85 × 10−12 F /m)(160 × 10−6 m2)
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= 86.5 V 

 

 (c)  The capacitance for part (a) is just 

 

  

 

C =  
Q
V

=  
3.5 × 10−11 C

17.3 V
=  2.0 ×  10-12  F  

 

While for part (b) 

 

  

 

C =  
Q
V

=  
3.5 × 10−11 C

86.5 V
=  4.0 ×  10-13  F  

 

 (d)  The dielectric displacement may be computed by combining Equations 18.31, 18.32 and 18.6, as 

 

    

 

D = ε0E + P =  ε0E + ε0(εr − 1)E  = ε0εrE =
ε0εrV

l
 

 
And incorporating values for εr and l provided in the problem statement, as well as the value of V computed in part 

(a) 

 

  

 

D =  
(8.85 × 10−12 F /m) (5.0)(17.3 V)

3.5 × 10−3 m
 

 

= 2.2 × 10-7 C/m2 

 

 (e)  The polarization is determined using Equations 18.32 and 18.6 as 

 

    

 

P =  ε0(εr − 1)E =  ε0(εr − 1)
V
l

 

 

 

=  
(8.85 × 10−12 F /m) (5.0 − 1)(17.3 V)

3.5 × 10−3 m
 

 

= 1.75 × 10-7 C/m2 
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 18.56  (a) For each of the three types of polarization, briefly describe the mechanism by which dipoles are 

induced and/or oriented by the action of an applied electric field. (b) For solid lead titanate (PbTiO3), gaseous 

neon, diamond, solid KCl, and liquid NH3 what kind(s) of polarization is (are) possible? Why? 
 
  Solution 

 (a)  For electronic polarization, the electric field causes a net displacement of the center of the negatively 

charged electron cloud relative to the positive nucleus.  With ionic polarization, the cations and anions are displaced 

in opposite directions as a result of the application of an electric field.  Orientation polarization is found in 

substances that possess permanent dipole moments;  these dipole moments become aligned in the direction of the 

electric field. 

 (b) Electronic, ionic, and orientation polarizations would be observed in lead titanate.  The lead, titanium, 

and oxygen would undoubtedly be largely ionic in character.  Furthermore, orientation polarization is also possible 

inasmuch as permanent dipole moments may be induced in the same manner as for BaTiO3 as shown in Figure 

18.35. 

 Only electronic polarization is to be found in gaseous neon;  being an inert gas, its atoms will not be 

ionized nor possess permanent dipole moments. 

 Only electronic polarization is to be found in solid diamond;  this material does not have molecules with 

permanent dipole moments, nor is it an ionic material. 

 Both electronic and ionic polarizations will be found in solid KCl, since it is strongly ionic.  In all 

probability, no permanent dipole moments will be found in this material. 

 Both electronic and orientation polarizations are found in liquid NH3.  The NH3 molecules have permanent 

dipole moments that are easily oriented in the liquid state. 
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 18.57  (a) Compute the magnitude of the dipole moment associated with each unit cell of BaTiO3, as 

illustrated in Figure 18.35. 

 (b) Compute the maximum polarization that is possible for this material. 
 
  Solution 

 (a)  This portion of the problem asks that we compute the magnitude of the dipole moment associated with 

each unit cell of BaTiO3, which is illustrated in Figure 18.35.  The dipole moment p is defined by Equation 18.28 as 

p = qd in which q is the magnitude of each dipole charge, and d is the distance of separation between the charges.  

Each Ti4+ ion has four units of charge associated with it, and thus q = (4)(1.602 × 10-19 C) = 6.41 × 10-19 C.  

Furthermore, d is the distance the Ti4+ ion has been displaced from the center of the unit cell, which is just 0.006 

nm + 0.006 nm = 0.012 nm [Figure 18.35(b)].  Hence 

 

  

 

p =  qd =  (6.41 ×  10-19  C)(0.012 ×  10 -9  m)  

 

= 7.69 × 10-30 C-m 

 

 (b)  Now it becomes necessary to compute the maximum polarization that is possible for this material.  The 

maximum polarization will exist when the dipole moments of all unit cells are aligned in the same direction.  

Furthermore, it is computed by dividing the above value of p by the volume of each unit cell, which is equal to the 

product of three unit cell edge lengths, as shown in Figure 18.35.  Thus 

 

    

 

P =  
p

VC
 

 

 

=  
7.69 × 10−30 C − m

(0.403 × 10−9 m)(0.398 × 10−9 m)(0.398 × 10−9 m)
 

 

= 0.121 C/m2 
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 Frequency Dependence of the Dielectric Constant 

 

 18.58  The dielectric constant for a soda–lime glass measured at very high frequencies (on the order of 

1015 Hz) is approximately 2.3. What fraction of the dielectric constant at relatively low frequencies (1 MHz) is 

attributed to ionic polarization? Neglect any orientation polarization contributions. 
 
  Solution 

 For this soda-lime glass, in order to compute the fraction of the dielectric constant at low frequencies that is 
attributed to ionic polarization, we must determine the εr within this low-frequency regime;  such is tabulated in 

Table 18.5, and at 1 MHz its value is 6.9.  Thus, this fraction is just 

 

    

 

fraction =  
εr (low) − εr (high)

εr (low)
 

 

  

 

=  
6.9 − 2.3

6.9
=  0.67  
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 Ferroelectricity 

 

 18.59  Briefly explain why the ferroelectric behavior of BaTiO3 ceases above its ferroelectric Curie 

temperature. 
 
  Solution 

 The ferroelectric behavior of BaTiO3 ceases above its ferroelectric Curie temperature because the unit cell 

transforms from tetragonal geometry to cubic;  thus, the Ti4+ is situated at the center of the cubic unit cell, there is 

no charge separation, and no net dipole moment. 
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DESIGN PROBLEMS 

 

Electrical Resistivity of Metals 

 

 18.D1  A 95 wt% Pt-5 wt% Ni alloy is known to have an electrical resistivity of 2.35 × 10-7 Ω-m at room 

temperature (25°C).  Calculate the composition of a platinum-nickel alloy that gives a room-temperature resistivity 

of 1.75 × 10-7 Ω-m.  The room-temperature resistivity of pure platinum may be determined from the data in Table 

18.1; assume that platinum and nickel form a solid solution. 
 
  Solution 

 This problem asks that we calculate the composition of a platinum-nickel alloy that has a room temperature 

resistivity of 1.75 × 10-7 Ω-m. The first thing to do is, using the 95 Pt-5 Ni resistivity data, determine the impurity 

contribution, and, from this result, calculate the constant A in Equation 18.11.  Thus, 

 

  

 

ρtotal =  2.35 ×  10-7  (Ω - m) =  ρi +  ρt  

 

From Table 18.1, for pure platinum, and using Equation 18.4 

 

  

 

ρt  =  
1
σ

=  
1

0.94 × 107 (Ω − m)−1
=  1.064 ×  10-7  (Ω - m)  

 

Thus, for the 95 Pt-5 Ni alloy 

 

  

 

ρi =  ρtotal −  ρt  =  2.35 ×  10-7  −  1.064 ×  10-7  

 

= 1.286 × 10-7 (Ω-m) 

 

In the problem statement, the impurity (i.e., nickel) concentration is expressed in weight percent.  However, 

Equation 18.11 calls for concentration in atom fraction (i.e., atom percent divided by 100).  Consequently, 

conversion from weight percent to atom fraction is necessary.  (Note:  we now choose to denote the atom fraction of 

nickel as 
      

 

cNi
' , and the weight percents of Ni and Pt by CNi and CPt, respectively.)  Using these notations, this 

conversion may be accomplished by using a modified form of Equation 4.6a as 

 

    

 

cNi
'  =  

CNi
'

100
=

CNi APt

CNi APt + CPt ANi
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Here ANi and APt denote the atomic weights of nickel and platinum (which values are 58.69 and 195.08 g/mol, 

respectively).  Thus 

 

    

 

cNi
'  =  

(5 wt%)(195.08 g /mol)
(5 wt%)(195.08 g /mol) + (95 wt%)(58.69 g /mol)

 

 

= 0.15 

 

Now, solving for A in Equation 18.11 

 

    

 

A =  
ρi

cNi
' 1 − cNi

' 
 
  

 
 

 

 

 

=  
1.286 × 10−7 (Ω − m)

(0.15)(1 − 0.15)
=  1.01 ×  10-6  (Ω - m)  

 

Now it is possible to compute the 
      

 

cNi
'  to give a room temperature resistivity of 1.75 × 10-7 Ω-m.  Again, we must 

determine ρi as
 

 

    

 

ρi  =  ρtotal −  ρt  

 

 

=  1.75 ×  10-7  −  1.286 ×  10-7  =  4.64 ×  10-8  (Ω - m)  

 

If Equation 18.11 is expanded, then 

 

      

 

ρi  =  A cNi
'  −  A cNi

' 2
 

 

Or, rearranging this equation, we have 

 

      

 

A cNi
' 2

 −  A cNi
'  +  ρi  =  0  

 

 

Now, solving for 
      

 

cNi
'  (using the quadratic equation solution) 
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cNi
'  =   

A ± A2 − 4 Aρi
2 A

 

 

Again, from the above 

 A = 1.01 × 10-6 (Ω-m) 

 ρi = 4.64 × 10-8 (Ω-m) 

which leads to 

 

 

    

 

cNi
'  =   

1.01 × 10−6 ± (1.01 × 10−6)2 − (4)(1.01 × 10−6)(4.64 × 10−8)
(2)(1.01 × 10−6)

 

 

And, taking the negative root, 

 

    

 

cNi
'  = 0.0483

 

 

Or, in terms of atom percent, 

 

    

 

CNi
Õ = 100cNi

Õ = (100)(0.0483) = 4.83 at%  

 

While the concentration of platinum is 

 

    

 

CPt
Õ= 100 − CNi

Õ = 100.00 − 4.83 = 95.17 at% 

 

Now, converting this composition to weight percent Ni, requires that we use Equation 4.7a as 

 

    

 

CNi =  
CNi

' ANi

CNi
' ANi + CPt

' APT

×  100  

 

 

=  
(4.83 at%)(58.69 g /mol)

(4.83 at%)(58.69 g /mol) + (95.17 at%)(195.08 g /mol)
× 100  

 

= 1.50 wt% 
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 18.D2  Using information contained in Figures 18.8 and 18.38, determine the electrical conductivity of an 

80 wt% Cu-20 wt% Zn alloy at -150°C (-240°F). 
 
  Solution 

 This problem asks that we determine the electrical conductivity of an 80 wt% Cu-20 wt% Zn alloy at  

–150°C using information contained in Figures 18.8 and 18.38.  In order to solve this problem it is necessary to 

employ Equation 18.9 which is of the form 

 

    

 

ρtotal =  ρt  +  ρi  

 
since it is assumed that the alloy is undeformed.  Let us first determine the value of ρi at room temperature (25°C) 

which value will be independent of temperature.  From Figure 18.8, at 25°C and for pure Cu, ρt(25) = 1.75 × 10-8 

Ω-m.  Now, since it is assumed that the curve in Figure 18.38 was generated also at room temperature, we may take 

ρ as ρtotal(25) at 80 wt% Cu-20 wt% Zn which has a value of 5.3 × 10-8 Ω-m.  Thus 

 

    

 

ρi  =  ρtotal (25) −  ρt (25)  

 

 

=  5.3 ×  10-8  Ω - m −  1.75 ×  10-8  Ω - m =  3.55 ×  10-8  Ω - m  

 
Finally, we may determine the resistivity at –150°C, ρtotal(–150), by taking the resistivity of pure Cu at –150°C 

from Figure 18.8, which gives us ρt(–150) = 0.55 × 10-8 Ω-m.  Therefore 

 

  

 

ρtotal (−150) =  ρi +  ρt (−150)  

 

 

=  3.55 ×  10-8  Ω - m +  0.55 ×  10-8  Ω - m =  4.10 ×  10-8  Ω - m  

 

And, using Equation 18.4 the conductivity is calculated as 

 

 

σ =  
1
ρ

=  
1

4.10 × 10−8 Ω − m
=  2.44 ×  107  (Ω - m) -1 
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 18.D3  Is it possible to alloy copper with nickel to achieve a minimum tensile strength of 375 MPa (54,400 

psi) and yet maintain an electrical conductivity of 2.5 × 106 (Ω-m)-1?  If not, why?  If so, what concentration of 

nickel is required?  You may want to consult Figure 7.16a. 
 
  Solution 

 To solve this problem, we want to consult Figures 7.16a and 18.9 in order to determine the Ni 

concentration ranges over which the tensile strength is greater than 375 MPa (54,500 psi) and the conductivity 

exceeds 2.5 × 106 (Ω-m)-1. 

 From Figure 7.16a, a Ni concentration greater than about 30 wt% is necessary for a tensile strength in 

excess of 375 MPa.  In Figure 18.9 is plotted the resistivity versus the Ni content.  Since conductivity is the 

reciprocal of resistivity, the resistivity must be less than 40 × 10-8 Ω-m--i.e., 

 

1

2.5 × 106 (Ω − m)−1
.  According to 

the figure, this will be the case for Ni concentrations less than 32.5 wt%. 

 Hence, it is possible to prepare an alloy meeting the criteria.  The concentration of Ni would have to lie 

between about 30 and 32.5 wt%. 
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 Extrinsic Semiconduction 

 Factors That Affect Carrier Mobility 

 

 18.D4  Specify an acceptor impurity type and concentration (in weight percent) that will produce a p-type 

silicon material having a room temperature electrical conductivity of 50 (Ω-m)-1. 
 
  Solution 

 First of all, those elements which, when added to silicon render it p-type, lie one group to the left of silicon 

in the periodic table;  these include the group IIIA elements (Figure 2.6)--i.e., boron, aluminum, gallium, and 

indium. 

 Since this material is extrinsic and p-type, p >> n, and the electrical conductivity is a function of the hole 

concentration according to Equation 18.17.  Also, the number of holes is about equal to the number of acceptor 
impurities, Na.  That is 

 
p ~ Na 

 
From Equation 18.17, the conductivity is a function of both the hole concentration (p) and the hole mobility (µh).  

Furthermore, the room-temperature hole mobility is dependent on impurity concentration (Figure 18.18).  One way 

to solve this problem is to use an iterative approach—i.e., assume some acceptor impurity concentration (which will 

also equal the value of p), then determine a "calculated" hole mobility from Equation 18.17—i.e., 

 

  

 

µh =
σ

p | e |
 

 
and, finally, compare this mobility with the "measured" value from Figure 18.18, taken at the assumed p (i.e., Na) 

value. 

 Let us begin by assuming that Na = 1022 m-3.  Thus, the "calculated" mobility value is 

 

  

 

µh =
σ

p | e |
=

50 (Ω − m)−1

(1022 m−3)(1.602 × 10−19 C)
= 0.0312 m2 /V − s  

 

From Figure 18.18, at an impurity concentration of 1022 m-3 the "measured" hole mobility is 0.0362 m2/V-s, which 

is slightly higher than the "calculated" value. 

 For our next choice, let us assume a lower impurity concentration, say 5 × 1021 m-3.  At this lower 

concentration there will be an increase of both "calculated" and "measured" electron mobilities.  The "calculated" 

value is just 
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µh =
σ

p | e |
=

50 (Ω − m)−1

(5 ×  1021 m−3)(1.602 × 10−19 C)
= 0.0624 m2 /V − s  

 

Whereas, Figure 18.18 yields a "measured" µh of 0.0394 m2/V-s, which is lower than the "calculated" value.  

Therefore, the correct impurity concentration will lie somewhere between 5 × 1021 and 1022 m-3 probably closer to 

the latter of these two values.  At 8.0 × 1022 m-3, both "measured" and "calculated" µh values are about equal 

(0.039 m2/V-s). 

 It next becomes necessary to calculate the concentration of acceptor impurities in atom percent.  This 
computation first requires the determination of the number of silicon atoms per cubic meter, NSi, using Equation 

4.2, which is as follows 

 

      

 

NSi =  
N A ρSi

'

ASi
 

 

 

=  
(6.022 × 1023 atoms /mol)(2.33 g /cm3)(106 cm3 /m3)

28.09 g /mol
 

 

= 5.0 × 1028 m-3 

 

(Note:  in the above discussion, the density of silicon is represented by   

 

ρSi
'  in order to avoid confusion with 

resistivity, which is designated by ρ.) 

 

 The concentration of acceptor impurities in atom percent     

 

(Ca
' )  is just the ratio of Na and (Na + NSi) 

multiplied by 100 as 

 

    

 

Ca
Õ=  

N a

N a + NSi
×  100  

 

 

=  
8.0 × 1022 m−3

(8.0 × 1022 m−3) + (5.0 × 1028 m−3)
×  100 =  1.6 ×  10-4  at% 

 
Now, conversion to weight percent (Ca) is possible using Equation 4.7a as 

 

    

 

Ca =  
Ca

' Aa

Ca
' Aa + CSi

' ASi

×  100  
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where Aa and ASi are the atomic weights of the acceptor and silicon, respectively.  Thus, the concentration in weight 

percent will depend on the particular acceptor type.  For example, for boron 

 

    

 

CB =  
CB

' AB

CB
' AB + CSi

' ASi

×  100  

 

 

=  
(1.6 × 10−4 at%) (10.81 g /mol)

(1.6 × 10−4 at%) (10.81 g/mol) + (99.99984 at%)(28.09 g/mol)
×  100  

 

= 6.16 × 10-5 wt% 

 

Similar calculations may be carried out for the other possible acceptor impurities which yield 

 

  

 

CAl =  1.54 ×  10-4  wt% 

 

  

 

CGa =  3.97 ×  10-4  wt% 

 

  

 

CIn =  6.54 ×  10-4  wt%  
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 18.D5  One integrated circuit design calls for diffusing boron into very high purity silicon at an elevated 

temperature. It is necessary that at a distance 0.2 µm from the surface of the silicon wafer, the room-temperature 

electrical conductivity be 1.2 × 103 (Ω-m)-1. The concentration of B at the surface of the Si is maintained at a 

constant level of 1.0 × 1025 m-3; furthermore, it is assumed that the concentration of B in the original Si material is 

negligible, and that at room temperature the boron atoms are saturated. Specify the temperature at which this 

diffusion heat treatment is to take place if the treatment time is to be one hour. The diffusion coefficient for the 

diffusion of B in Si is a function of temperature as 

 

  

 

D(m2/s) =  2.4 ×  10-4  exp −
347 kJ/mol

RT

 
 
 

 
 
  

 
  Solution 

 This problem asks for us to determine the temperature at which boron is to be diffused into high-purity 

silicon in order to achieve a room-temperature electrical conductivity of 1.2 × 103 (Ω-m)-1 at a distance 0.2 µm 

from the surface if the B concentration at the surface is maintained at 1.0 × 1025 m-3.  It is first necessary for us to 

compute the hole concentration (since B is an acceptor in Si) at this 0.2 µm location. 

 From Equation 18.17, the conductivity is a function of both the hole concentration (p) and the hole 
mobility (µh).  Furthermore, the room-temperature hole mobility is dependent on impurity concentration (Figure 

18.18).  One way to solve this problem is to use an iterative approach—i.e., assume some boron concentration, NB 

(which will also equal the value of p), then determine a "calculated" hole mobility from Equation 18.17—i.e., 

 

  

 

µh =
σ

p | e |
 

 
and then compare this mobility with the "measured" value from Figure 18.18, taken at the assumed p (i.e., NB). 

 Let us begin by assuming that NB = 1023 m-3.  Thus, the "calculated" mobility value is 

 

  

 

µh =
σ

p | e |
=

1.2  ×  103 (Ω − m)−1

(1023 m−3)(1.602 × 10−19 C)
= 0.075 m2 /V − s  

 

From Figure 18.18, at an impurity concentration of 1023 m-3 the "measured" hole mobility is 0.024 m2/V-s, which 

is lower than the "calculated" value. 

 For our next choice, let us assume a higher boron concentration, say 1024 m-3.  At this higher 

concentration there will be a decrease of both "calculated" and "measured" hole mobilities.  The "calculated" value 

is just 
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µh =
σ

p | e |
=

1.2  ×  103 (Ω − m)−1

(1024 m−3)(1.602 × 10−19 C)
= 0.0075 m2 /V − s  

 

Whereas, Figure 18.18 yields a "measured" µh of 0.01 m2/V-s, which is lower than the "calculated" value. 

Therefore, the correct impurity concentration will lie somewhere between 1023 and 1024 m-3.  At 6.0 × 1023 m-3, 

"measured" and "calculated" values are about equal (0.0125 m2/V-s). 

 

 With regard to diffusion, the problem is one involving the nonsteady-state diffusion of B into the Si, 

wherein we have to solve for temperature.  Temperature is incorporated into the diffusion coefficient expression 

given in the problem.  But we must first employ the solution to Fick's second law for constant surface composition 
boundary conditions, Equation 5.5;  in this expression C0 is taken to be zero inasmuch as the problem stipulates that 

the initial boron concentration may be neglected.  Thus, 

 

    

 

Cx − C0
Cs − C0

=  1 −  erf
x

2 Dt

 

 
  

 

 
   

 

  

 

6.0 × 1023 m−3 − 0

1.0 × 1025 m−3 − 0
=  1 −  erf

x
2 Dt

 

 
  

 

 
   

 

which reduces to 

 

  

 

0.9400 =  erf
x

2 Dt

 

 
  

 

 
   

 

In order to solve this expression for a value 
    

 

x
2 Dt

 of it is necessary to interpolate using data in Table 5.1.  Thus 

 

 z erf(z) 

 1.3 0.9340 

 z 0.9400 

 1.4 0.9523 

 

 

  

 

z − 1.3
1.4 − 1.3

=  
0.9400 − 0.9340
0.9523 − 0.9340
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From which, z = 1.3328;  which is to say 

 

  

 

1.3328 =
x

2 Dt
 

 

Inasmuch as there are 3600 s/h (= t) and x = 0.2 µm (= 2 × 10-7 m) the above equation becomes 

 

  

 

1.3328 =  
2 × 10−7 m

2 (D)(3600 s)
 

 

which, when solving for the value of D, leads to 

 

  

 

D =
1

3600 s
2 × 10−7 m
(2)(1.3328)

 

 
 

 

 
 
2

= 1.56 × 10−18 m2 /s  

 

Now, equating this value to the expression for D given in the problem gives 

 

  

 

D =  1.56  ×  10-18  m2/s =  (2.4 ×  10-4 ) exp −
347,000 J/mol

(8.31 J/mol - K)(T)

 

 
 

 

 
  

 

To solve for T, let us take the natural logarithms of both sides of the above equation;  this leads to 

 

  

 

ln(1.56 × 10−18) = ln(2.4 × 10−4 ) −
347,000
8.31T

 

 

  

 

−41.002 = − 8.335 −
4.176 × 104

T
 

 
which yields a value for T of 1278 K (1005°C). 
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 Conduction in Ionic Materials 

 

 18.D6 Problem 18.47 noted that FeO (wüstite) may behave as a semiconductor by virtue of the 

transformation of Fe2+ to Fe3+ and the creation of Fe2+ vacancies; the maintenance of electroneutrality requires 

that for every two Fe3+ ions, one vacancy is formed. The existence of these vacancies is reflected in the chemical 

formula of this nonstoichiometric wüstite as   Fe (1 – x)O, where x is a small number having a value less than unity. 

The degree of nonstoichiometry (i.e., the value of x) may be varied by changing temperature and oxygen partial 

pressure. Compute the value of x that is required to produce an Fe (1 – x)O material having a p-type electrical 

conductivity of 2000 (Ω-m)-1; assume that the hole mobility is 1.0 × 10-5 m2/V-s, the crystal structure for FeO is 

sodium chloride (with a unit cell edge length of 0.437 nm), and that the acceptor states are saturated. 
 
  Solution 

 This problem asks, for the nonstoichiometric Fe(1 - x)O, given the electrical conductivity [2000 (Ω-m)-1] 

and hole mobility (1.0 × 10-5 m2/V-s) that we determine the value of x.  It is first necessary to compute the number 

of holes per unit volume (p) using Equation 18.17.  Thus 

 

    

 

p =
σ

| e | µh
 

 

 

=  
2000 (Ω − m)-1

(1.602 × 10−19 C)(1.0 × 10−5 m2 /V - s)
=  1.25 ×  1027  holes/m3 

 

Inasmuch as it is assumed that the acceptor states are saturated, the number of vacancies is also 1.25 × 1027 m-3.  

Next, it is possible to compute the number of vacancies per unit cell by taking the product of the number of 

vacancies per cubic meter times the volume of a unit cell.  This volume is just the unit cell edge length (0.437 nm) 

cubed: 

 

 

# vacancies
unit cell

= (1.25 × 1027 m−3)(0.437 × 10−9 m)3 = 0.10  

 

A unit cell for the sodium chloride structure contains the equivalence of four cations and four anions.  Thus, if we 

take as a basis for this problem 10 unit cells, there will be one vacancy, 40 O2- ions, and 39 iron ions (since one of 

the iron sites is vacant). (It should also be noted that since two Fe3+ ions are created for each vacancy, that of the 39 

iron ions, 37 of them are Fe2+ and 2 of them are Fe3+).  In order to find the value of (1 – x)  in the chemical formula, 

we just take the ratio of the number of total Fe ions (39) and the number of total Fe ion sites (40).  Thus 
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(1 − x ) =  
39
40

=  0.975 

 
Or the formula for this nonstoichiometric material is Fe0.975O. 
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 Semiconductor Devices 

 

 18.D7  One of the procedures in the production of integrated circuits is the formation of a thin insulating 

layer of SiO2 on the surface of chips (see Figure 18.26). This is accomplished by oxidizing the surface of the silicon 

by subjecting it to an oxidizing atmosphere (i.e., gaseous oxygen or water vapor) at an elevated temperature. The 

rate of growth of the oxide film is parabolic—that is, the thickness of the oxide layer (x) is a function of time (t) 

according to the following equation: 

 

 x2 = Bt (18.37) 

Here the parameter B is dependent on both temperature and the oxidizing atmosphere. 

 (a) For an atmosphere of O2 at a pressure of 1 atm, the temperature dependence of B (in units of μm2/h) is 

as follows: 

 

 

 

B = 800 exp  −
1.24 eV

kT

 
 
 

 
 
  (18.38a) 

where k is Boltmann’s constant (8.62 × 10–5 eV/atom) and T is in K. Calculate the time required to grow an oxide 

layer (in an atmosphere of O2) that is 75 nm thick at both 750°C and 900°C. 

 (b) In an atmosphere of H2O (1 atm pressure), the expression for B (again in units of μm2/h) is 

 

 

 

B = 215exp  −
0.70 eV

kT

 
 
 

 
 
  (18.38b) 

Now calculate the time required to grow an oxide layer that is 75 nm thick (in an atmosphere of H2O) at both 

750°C and 900°C, and compare these times with those computed in part (a). 
 
  Solution 

 (a)  In this portion of the problem we are asked to determine the time required to grow a layer of SiO2 that is 

75 nm (i.e., 0.075 µm) thick on the surface of a silicon chip at 900°C, in an atmosphere of O2 (oxygen pressure = 1 

atm).  Thus, using Equation 18.37, it is necessary to solve for the time t.  However, before this is possible, we must 

calculate the value of B from Equation 18.38a as follows: 

 

  

 

B =  800 exp − 
1.24 eV

kT

 
 
 

 
 
  =  (800) exp −

1.24 eV

(8.62 ×  10-5  eV/atom- K)(900 +  273 K)

 

 
 

 

 
  

 

= 0.00378 µm2/h 
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Now, solving for t from Equation 18.37 using the above value for B and that x = 0.075 µm, we have 

 

  

 

t =  
x2

B
 =  

(0.075 µm)2

0.00378 µm2 / h
 

 

= 1.49 h 

 

 Repeating the computation for B at 750°C: 

 

  

 

B =  (800) exp −
1.24 eV

(8.62 ×  10-5  eV/atom- K)(750 +  273 K)

 

 
 

 

 
  

 

= 6.25 × 10-4
 µm2/h 

 

And solving for the oxidation time as above 

 

  

 

t  =  
(0.075 µm)2

6.25 ×  10-4  µm2 / h
 =  9.0 h 

 

 

 (b)  This part of the problem asks for us to compute the heating times to form an oxide layer 75 nm thick at 

the same two temperatures (900°C and 750°C) when the atmosphere is water vapor (1 atm pressure).  At 900°C, the 

value of B is determined using Equation 18.38b, as follows: 

 

  

 

B =  215 exp − 
0.70 eV

kT

 
 
 

 
 
  =  (215) exp − 

0.70 eV

(8.62 ×  10-5  eV/atom- K)(900 +  273 K)

 

 
 

 

 
  

 

= 0.212 µm2/h 

 

And computation of the time t from the rearranged form of Equation 18.37, leads to 

 

  

 

t =  
x2

B
 =  

(0.075 µm)2

0.212 µm2 / h
 

 

= 0.0265 h = 95.5 s 

 

 And at 750°C, the value of B is 
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B =  (215) exp − 
0.70 eV

(8.62 ×  10-5  eV/atom- K)(750 +  273 K)

 

 
 

 

 
  =  0.0767 µm2 / h  

 

Whereas the time required to grow the 75 nm oxide layer is 

 

  

 

t =  
x2

B
 =  

(0.075 µm)2

0.0767 µm2 / h
 

 

= 0.073 h = 264 s 

 

 From the above computations, it is very apparent (1) that the 75 nm oxide layer forms more rapidly at 900°C 

(than at 750°C) in both O2 and H2O gaseous atmospheres, and (2) that the oxide layer formation is more rapid in 

water vapor than in oxygen. 
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 18.D8  The base semiconducting material used in virtually all of our modern integrated circuits is silicon. 

However, silicon has some limitations and restrictions. Write an essay comparing the properties and applications 

(and/or potential applications) of silicon and gallium arsenide. 
 
  Solution 

 We are asked to compare silicon and gallium arsenide semiconductors relative to properties and 

applications. 

 The following are the characteristics and applications for Si:  (1)  being an elemental semiconductor, it is 

cheaper to grow in single-crystalline form;  (2)  because of its electron band structure, it is best used in transistors;  

(3)  electronic processes are relatively slow due to the low mobilities for electrons and holes (Table 18.3). 

 For GaAs:  (1)  it is much more expensive to produce inasmuch as it is a compound semiconductor;  (2)  

because of its electron band structure it is best used in light-emitting diodes and semiconducting lasers;  (3) its band 

gap may be altered by alloying;  (4)  electronic processes are more rapid than in Si due to the greater mobilities for 

electrons and holes;  (5) absorption of electromagnetic radiation is greater in GaAs, and therefore, thinner layers are 

required for solar cells. 
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CHAPTER 19 

 

THERMAL PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Heat Capacity 

 

 19.1  Estimate the energy required to raise the temperature of 2 kg (4.42 lbm) of the following materials 

from 20 to 100°C (68 to 212°F): aluminum, steel, soda–lime glass, and high-density polyethylene. 
 
  Solution 

 The energy, E, required to raise the temperature of a given mass of material, m, is the product of the 

specific heat, the mass of material, and the temperature change, ∆T, as 

 

    

 

E =  cpm ∆T  

 

The ∆T in this problem is equal to 100°C – 20°C = 80°C (= 80
 
K), while the mass is 2 kg, and the specific heats are 

presented in Table 19.1.  Thus, 

 

  

 

E(aluminum) =  (900 J/kg - K)(2 kg)(80 K) =  1.44 ×  105  J  

 

  

 

E(steel) =  (486 J/kg - K)(2 kg)(80 K) =  7.78 ×  104  J  

 

  

 

E(glass) =  (840 J/kg - K)(2 kg)(80 K) =  1.34 ×  105  J  

 

  

 

E(HDPE) =  (1850 J/kg - K)(2 kg)(80 K) =  2.96 ×  105  J  
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 19.2  To what temperature would 25 lbm of a 1025 steel specimen at 25°C (77°F) be raised if 125 Btu of 

heat is supplied? 
 
  Solution 

 We are asked to determine the temperature to which 25 lbm of steel initially at 25°C would be raised if 125 

Btu of heat is supplied.  This is accomplished by utilization of a modified form of Equation 19.1 as 

 

    

 

∆T =  
∆Q

m cp
 

 
in which ∆Q is the amount of heat supplied, m is the mass of the specimen, and cp is the specific heat.  From Table 

19.1, cp = 486 J/kg-K for steel, which in Customary U.S. units is just 

 

  

 

cp =  (486 J/kg - K)
2.39 × 10−4 Btu/lbm - °F

1 J/kg - K

 

 
 

 

 
 =  0.116 Btu/lbm - °F  

 

Thus 

 

  

 

∆T =  
125 Btu

(25 lbm)(0.116 Btu/lbm - °F)
=  43.1°F  

 

and 

 

  

 

T f  =  T0 +  ∆T =  77°F +  43.1°F =  120.1°F  (49°C)  
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 19.3  (a) Determine the room temperature heat capacities at constant pressure for the following materials: 

aluminum, silver, tungsten, and 70Cu-30Zn brass. (b) How do these values compare with one another? How do you 

explain this? 
 
  Solution 

 (a)  This problem asks that we determine the room-temperature heat capacities at constant pressure, Cp, for 

aluminum, silver, tungsten, and 70Cu-30Zn brass.  All we need do is multiply the cp values in Table 19.1 by the 

atomic weights (values are found inside the front cover), taking into account the conversion from grams to 

kilograms (for the atomic weights).  Thus, for Al 

 

  

 

C p =  (900 J/kg - K)(1 kg/1000 g)(26.98 g/mol) =  24.3 J/mol - K  

 

 For Ag 

 

  

 

C p =  (235 J/kg - K)(1 kg/1000 g)(107.87 g/mol) =  25.4 J/mol - K  

 

 For W 

 

  

 

C p =  (138 J/kg - K)(1 kg/1000 g)(183.84 g/mol) =  25.4 J/mol - K  

 

 For brass it is first necessary to compute the alloy atomic weight (Aave) using Equation 4.11a as follows: 

 

 

Aave =
100

CCu

ACu
+

CZn

AZn

 

 

 

=
100

70 wt%
63.55 g /mol

+
30 wt%

65.41 g /mol

 

 

= 64.09 g/mol 

Thus 

  

 

C p =  (375 J/kg - K)(1 kg/1000 g)(64.09 g/mol) =  24.0 J/mol - K  

 
 (b)  These values of Cp are very close to one another because room temperature is considerably above the 

Debye temperature for these metals;  therefore, the values of Cp should be about equal to 3R [(3)(8.31 J/mol-K) = 

24.9 J/mol-K], which is indeed the case for all four of these metals. 
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 19.4 For aluminum, the heat capacity at constant volume Cv at 30 K is 0.81 J/mol-K, and the Debye 

temperature is 375 K. Estimate the specific heat (a) at 50 K and (b) at 425 K. 
 
  Solution 

 (a)  For aluminum, Cv at 50
 

K may be approximated by Equation 19.2, since this temperature is 

significantly below the Debye temperature (375 K).  The value of Cv at 30
 
K is given, and thus, we may compute 

the constant A as 

 

  

 

A =  
Cv

T 3
=  

0.81 J /mol - K

(30 K)3
=  3.00 ×  10-5 J/mol - K4  

 

Therefore, at 50
 
K 

 

  

 

Cv  =  AT 3 =  (3.00 ×  10-5  J/mol - K4 ) (50 K)3  =  3.75 J/mol - K  

 

and 

 

  

 

cv  =  (3.75 J/mol - K)(1 mol/26.98 g)(1000 g/kg) =  139 J/kg - K  

 
 (b)  Since 425

 
K is above the Debye temperature, a good approximation for Cv is 

 

    

 

Cv =  3R 

 

  

 

=  (3)(8.31 J/mol - K) =  24.9 J/mol - K  

 

And, converting this to specific heat 

 

  

 

cv  =  (24.9 J/mol - K)(1 mol/26.98 g)(1000 g/kg) =  923 J/kg - K  
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 19.5 The constant A in Equation 19.2 is 12π4R/5

 

θD
3 , where R is the gas constant and θD is the Debye 

temperature (K). Estimate θD for copper, given that the specific heat is 0.78 J/kg-K at 10 K. 
 
  Solution 

 For copper, we want to compute the Debye temperature, θD, given the expression for A in Equation 19.2 

and the heat capacity at 10
 
K.  First of all, let us determine the magnitude of A, as 

 

    

 

A =  
Cv

T 3
 

 

 

=  
(0.78 J/mol - K)(1 kg /1000 g)(63.55 g/mol)

(10 K)3
 

 

 

=  4.96 ×  10-5  J/mol - K4  

 

As stipulated in the problem statement 

 

    

 

A =  
12 π4R

5θD
3

 

 
Or, solving for θD 

 

    

 

θD =  
12 π4R

5A

 

 
  

 

 
  

1/3

 

 

 

=  
(12)(π)4 (8.31 J/mol - K)

(5)(4.96 × 10−5 J/mol - K4 )

 

 
 

 

 
 
1/ 3

= 340 K  
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 19.6  (a) Briefly explain why Cv rises with increasing temperature at temperatures near 0 K. (b) Briefly 

explain why Cv becomes virtually independent of temperature at temperatures far removed from 0 K. 
 
  Solution 

 (a)  The reason that Cv rises with increasing temperature at temperatures near 0 K is because, in this 

temperature range, the allowed vibrational energy levels of the lattice waves are far apart relative to the available 

thermal energy, and only a portion of the lattice waves may be excited.  As temperature increases, more of the 

lattice waves may be excited by the available thermal energy, and, hence, the ability of the solid to absorb energy 

(i.e., the magnitude of the heat capacity) increases. 
 (b)  At temperatures far removed from 0 K, Cv becomes independent of temperature because all of the 

lattice waves have been excited and the energy required to produce an incremental temperature change is nearly 

constant. 
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 Thermal Expansion 

 

 19.7  An aluminum wire 10 m (32.8 ft) long is cooled from 38 to -1°C (100 to 30°F). How much change in 

length will it experience? 
 
  Solution 

 In order to determine the change in length of the aluminum wire, we must employ a rearranged form of 

Equation 19.3b and using the value of αl taken from Table 19.1 [23.6 × 10-6 (°C)-1] as 

 

    

 

∆l =  l0αl∆T = l0αl (Tf − T0)  

 

 

=  (10 m) 23.6 × 10−6 (°C)-1[ ](−1°C − 38°C)  

 

 

=  − 9.2 ×  10-3  m =  − 9.2 mm  (−0.36 in.)  
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 19.8  A 0.1 m (3.9 in.) rod of a metal elongates 0.2 mm (0.0079 in.) on heating from 20 to 100°C (68 to 

212°F). Determine the value of the linear coefficient of thermal expansion for this material. 
 
  Solution 

 The linear coefficient of thermal expansion for this material may be determined using a rearranged form of 

Equation 19.3b as 

 

  

 

α l  =  
∆ l

l0∆T
=  

∆ l
l0 (T f − T0)

=
0.2 × 10−3 m

(0.1 m)(100°C − 20°C)
 

 

 

=  25.0 ×  10-6  (°C)-1  
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 19.9  Briefly explain thermal expansion using the potential energy-versus-interatomic spacing curve. 

 

 The phenomenon of thermal expansion using the potential energy-versus-interatomic spacing curve is 

explained in Section 19.3. 
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 19.10  Compute the density for nickel at 500°C, given that its room-temperature density is 8.902 g/cm3. 

Assume that the volume coefficient of thermal expansion, αv, is equal to 3α l. 
 
  Solution 

 In this problem we are asked to determine the density of nickel at 500°C.  Let us use as the basis for this 

determination 1 cm3 of material at 20°C, which has a mass of 8.902 g;  it is assumed that this mass will remain 

constant upon heating to 500°C.  Let us compute the volume expansion of this cubic centimeter of nickel as it is 

heated to 500°C.  A volume expansion expression is given in Equation 19.4—viz., 

 

  

 

∆V
V0

=  αv∆T  

or 

 

    

 

∆V = V0αv∆T  

 

Also, αv = 3αl, as stipulated in the problem.  The value of αl given in Table 19.1 for nickel is 13.3 × 10-6 (°C)-1.  

Therefore, the volume, V, of this specimen of Ni at 500°C is just 

 

    

 

V =  V0 +  ∆V =  V0 1 + αv∆T( ) =  V0 1 + 3αl∆T( ) 
 

  

 

=  (1 cm3 ) 1 + (3) 13.3 × 10−6 (°C)−1[ ](500°C − 20°C){ } 

 

  

 

=  1.01915 cm3  

 

 Thus, the density is just the 8.902 g divided by this new volume—i.e., 

 

  

 

ρ =  
8.902 g

1.01915 cm3
=  8.735 g/cm3  
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 19.11 When a metal is heated its density decreases. There are two sources that give rise to this 

diminishment of ρ: (1) the thermal expansion of the solid, and (2) the formation of vacancies (Section 4.2). Consider 

a specimen of copper at room temperature (20°C) that has a density of 8.940 g/cm3. (a) Determine its density upon 

heating to 1000°C when only thermal expansion is considered. (b) Repeat the calculation when the introduction of 

vacancies is taken into account. Assume that the energy of vacancy formation is 0.90 eV/atom, and that the volume 

coefficient of thermal expansion, αv is equal to 3α l. 
 
  Solution 

 (a)  In this portion of the problem we are asked to determine the density of copper at 1000°C on the basis 

of thermal expansion considerations.  The basis for this determination will be 1 cm3 of material at 20°C;  this 

volume of copper has a mass of 8.940 g, which mass is assumed to remain constant upon heating to the 1000°C.  

Let us first compute the volume expansion of this cubic centimeter of copper as it is heated to 1000°C.  According 

to Equation 19.4 volume expansion is equal to 

 

    

 

∆V
V0

=  αv∆T  

 
where αv, the volume coefficient of thermal expansion, as stipulated in the problem statement, is equal to 3αl.  The 

value of αl given in Table 19.1 for copper is 17.0 × 10-6 (°C)-1.  Therefore, the volume of this specimen of Cu at 

1000°C (V) is equal to 

 

    

 

V =  V0 +  ∆V =  V0 + V0αv∆T = V0(1 + αv∆T)  

 

    

 

= V0(1 + 3αl∆T) = V0 1 + 3αl(Tf − T0) 
  

 
   

 

 

=  (1 cm3) 1 + (3) 17.0 × 10−6 (°C)−1[ ](1000°C − 20°C){ } 

 

 

=  1.04998 cm3 

 

Thus, the density is just the 8.940 g divided by this new volume—i.e., 

 

 

ρ =  
8.940 g

1.04998 cm3
=  8.514 g/cm3  

 

 (b)  Now we are asked to compute the density at 1000°C  taking into consideration the creation of 

vacancies which will further lower the density.  To begin, this determination requires that we calculate the number 
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of vacancies using Equation 4.1.  But it first becomes necessary to compute the number of Cu atoms per cubic 
centimeter (NCu) at 1000°C using Equation 4.2.  Thus, 

 

  

 

NCu =  
N A ρCu

ACu
 

 

 

=  
(6.022 × 1023 atoms /mol)(8.514 g/cm3)

63.55 g/mol
 

 

 

=  8.07 ×  1022  atoms/cm3 

 
Now, from Equation 4.1, the total number of vacancies, Nv, is computed as 

 

  

 

N v  =  NCu exp −
Qv

kT

 
 
 

 
 
  

 

 

=  (8.07 ×  1022  atoms/cm3) exp −
0.90 eV /atom

(8.62 × 10−5 eV /K) (1000 + 273 K)

 

 
 

 

 
  

 

 

=  2.212 ×  1019  vacancies/cm3 

 

We now want to determine the number of vacancies per unit cell, which is possible if the unit cell volume is 
multiplied by Nv.  The unit cell volume (VC) may be calculated using Equation 3.5 taking n = 4 inasmuch as Cu has 

the FCC crystal structure.  Thus, from a rearranged form of Equation 3.5 

 

  

 

VC  =  
nACu

ρCu N A
 

 

 

=  
(4 atoms/unit cell)(63.55 g/mol)

(8.514 g/cm3)(6.022 × 1023 atoms /mol)
 

 

 

=  4.958 ×  10-23 cm3/unit cell 

 
Now, the number of vacancies per unit cell, nv, is just 

 

    

 

nv =  N vVC  

 

 

=  (2.212 ×  1019  vacancies/cm3)(4.958 ×  10-23  cm3/unit cell)  
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= 0.001097 vacancies/unit cell 

 

What this means is that instead of there being 4.0000 atoms per unit cell, there are only 4.0000 – 0.001097 = 

3.998903 atoms per unit cell.  And, finally, the density may be computed using Equation 3.5 taking n = 3.998903;  

thus 

 

  

 

ρCu =  
nACu

VC  N A
 

 

 

=  
(3.998903 atoms/unit cell)(63.55 g/mol)

(4.958 × 10−23 cm3/unit cell)(6.022 × 1023 atoms /mol)
 

 

 

=  8.512 g/cm3 

 

Thus, the influence of the vacancies is almost insignificant--their presence reduces the density by only 0.002 g/cm3 

(from 8.514 g/cm3 to 8.512 g/cm3). 
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 19.12 The difference between the specific heats at constant pressure and volume is described by the 

expression 

 

 
  

 

cp − cv =
α v

2 v0T
β

 (19.10) 

where αv is the volume coefficient of thermal expansion, v0 is the specific volume (i.e., volume per unit mass, or the 

reciprocal of density), β is the compressibility, and T is the absolute temperature. Compute the values of cv at room 

temperature (293 K) for copper and nickel using the data in Table 19.1, assuming that αv = 3α l and given that the 

values of β for Cu and Ni are 8.35 × 10-12 and 5.51 × 10-12 (Pa)-1, respectively. 
 
  Solution 

 This problem asks that we calculate the values of cv for copper and nickel at room temperature using 

Equation 19.10, the data in Table 19.1, given that αv = 3αl, and also values of the compressibility.  From Equation 

19.10 

 

  

 

cv = cp −
α v

2 v0T
β

 

 

And, from Table 19.1 and the problem statement 

 
 cp(Cu) = 386 J/kg-K 

 cp(Ni) = 443 J/kg-K 

 αv(Cu) = (3)[17.0 × 10-6 (°C)-1] = 5.10 × 10-5 (°C)-1 

 αv(Ni) = (3)[(13.3 × 10-6 (°C)-1] = 3.99 × 10-5 (°C)-1 

 β(Cu) = 8.35 × 10-12 (Pa)-1 

 β(Ni) = 5.51 × 10-12 (Pa)-1 

 

The specific volume is just the reciprocal of the density;  thus, in units of m3/kg 

 

  

 

v0 (Cu) =
1
ρ

=
1

8.94 g/cm3

 

 
 

 

 
 

1000 g
kg

 

 
 

 

 
 

1 m
100 cm

 

 
 

 

 
 
3

= 1.119 × 10−4 m3/kg 

 

  

 

v0 (Ni) =
1

8.90 g/cm3

 

 
 

 

 
 

1000 g
kg

 

 
 

 

 
 

1 m
100 cm

 

 
 

 

 
 

3

= 1.124 × 10−4 m3 / kg  
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Therefore, for copper 

 

  

 

cv (Cu) = cp (Cu) −
α v

2 (Cu) v0 (Cu)T
β(Cu)

 

 

 

=  386 J/kg - K −  
5.10 × 10−5 (°C)−1[ ]2

(1.119 ×  10−4 m3 / kg) (293 K)

8.35 × 10−12 (N/m2)−1
 

 

= 376 J/kg-K 

 

And, also for nickel 

 

  

 

cv (Ni) =  443 J/kg - K −  
3.99 × 10−5 (°C)−1[ ]2(1.124 × 10−4 m3 / kg) (293 K)

5.51 × 10−12 (N/m2)−1
 

 

= 433 J/kg-K 
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 19.13  To what temperature must a cylindrical rod of tungsten 10.000 mm in diameter and a plate of 316 

stainless steel having a circular hole 9.988 mm in diameter have to be heated for the rod to just fit into the hole? 

Assume that the initial temperature is 25°C. 
 
  Solution 

 This problem asks for us to determine the temperature to which a cylindrical rod of tungsten 10.000 mm in 

diameter must be heated in order for it of just fit into a 9.988 mm diameter circular hole in a plate of 316 stainless 

steel, assuming that the initial temperature is 25°C.  This requires the use of Equation 19.3a, which is applied to the 

diameters of both the rod and hole.  That is 

 

    

 

d f − d0

d0
=  αl (Tf  −  T0)  

 
Solving this expression for df yields 

 

    

 

d f  =  d0 1 + αl (T f −T0) 
  

 
   

 
Now all we need do is to establish expressions for df(316 stainless) and df (W), set them equal to one another, and 

solve for Tf.  According to Table 19.1, αl(316 stainless) = 16.0 × 10-6 (°C)-1 and αl (W) = 4.5 × 10-6 (°C)-1.  Thus 

 

  

 

d f (316 stainless) =  d f (W)  

 

  

 

(9.988 mm) 1 + {16.0 × 10−6 (°C)−1}(T f − 25°C)[ ] 

 

  

 

= (10.000 mm) 1 + {4.5 × 10−6 (°C)−1}(T f − 25°C)[ ] 
 
Now solving for Tf gives Tf = 129.5°C 
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 Thermal Conductivity 

 

 19.14  (a) Calculate the heat flux through a sheet of steel 10 mm (0.39 in.) thick if the temperatures at the 

two faces are 300 and 100°C (572 and 212°F); assume steady-state heat flow. (b) What is the heat loss per hour if 

the area of the sheet is 0.25 m2 (2.7 ft2)? (c) What will be the heat loss per hour if soda–lime glass instead of steel is 

used? (d) Calculate the heat loss per hour if steel is used and the thickness is increased to 20 mm (0.79 in.). 
 
  Solution 

 (a)  The steady-state heat flux through the plate may be computed using Equation 19.5;  the thermal 

conductivity for steel, found in Table 19.1, is 51.9 W/m-K.  Therefore, 

 

    

 

q = − k
∆T
∆x

 

 

 

=  − (51.9 W/m - K) 
(100 + 273 K) − (300 + 273 K)

10 × 10−3 m

 

 
 

 

 
  

 

 

=  1.04 ×  106  W/m2  

 

 (b)  Let dQ/dt represent the total heat loss such that 

 

    

 

dQ
dt

=  qAt  

 

where A and t are the cross-sectional area and time, respectively. Thus, 

 

  

 

dQ
dt

=  (1.04 ×  106  J/s - m2)(0.25 m2) (60 s/min)(60 min/h)  

 

 

=  9.3 ×  108  J/h  (8.9 ×  105  Btu/h)  

 

 (c)  If soda-lime glass is used (k = 1.7 W/m-K, Table 19.1), 

 

    

 

dQ
dt

= − k A t
∆T
∆x

 

 

 

=  −  (1.7 J/s - m- K)(0.25 m2) (3600 s/h)
− 200 K

10 × 10−3 m
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=  3.06 ×  107  J/h  (2.9 ×  104  Btu/h)  

 

 (d)  If the thickness of the steel is increased to 20 mm, then 

 

  

 

dQ
dt

= − k A t
∆T
∆x

= − (51.9 W/m - K)(0.25 m2) (3600 s/h) 
− 200 K

20 × 10−3 m

 

 
 

 

 
  

 

 

=  4.7 ×  108  J/h  (4.5 ×  105  Btu/h)  
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 19.15  (a) Would you expect Equation 19.7 to be valid for ceramic and polymeric materials? Why or why 

not? (b) Estimate the value for the Wiedemann–Franz constant L [in Ω-W/(K)2] at room temperature (293 K) for 

the following nonmetals: silicon (intrinsic), glass-ceramic (Pyroceram), fused silica, polycarbonate, and 

polytetrafluoroethylene. Consult Tables B.7 and B.9 in Appendix B. 
 
  Solution 

 (a)  Equation 19.7 is not valid for ceramic and polymeric materials since, in the development of this 

expression, it is assumed that free electrons are responsible for both electrical and thermal conduction.  Such is the 

case for most metals.  For ceramics and polymers, free electrons are the primary contributors to the electrical 

conductivity.  However, free electrons do not contribute significantly to the thermal conductivity.  For ceramics, 

thermal conduction is primarily by means of phonons;  for polymers, the energy transfer is made by chain 

vibrations, translations, and rotations. 

 (b)  Estimated room-temperature values of L, in Ω-W/(K)2, for the several materials are determined below.  

Electrical conductivity values were determined by taking reciprocals of the electrical resistivities given in Table B.9, 

Appendix B;  thermal conductivities are taken from Table B.7 in the same appendix.  (Note:  when a range of values 

is given in these tables, an average value is used in the computation.) 

 

 For intrinsic silicon 

 

  

 

L =  
k

σT
=  

141 W/m - K

1
2500 (Ω − m)

 

 
 

 

 
 (293 K)

=  1203  Ω - W/K2 

 

 For Pyroceram glass-ceramic 

 

  

 

L =  
3.3 W /m- K

1

2 × 10−14 (Ω − m)

 

 
 

 

 
 (293 K)

=  2.3 ×  1012  Ω - W/K2  

 

 For fused silica 

 

  

 

L =  
1.4 W /m- K

1

1018 (Ω − m)

 

 
 

 

 
 (293 K)

=  4.8 × 1015  Ω - W/K2 

 

 For polycarbonate 
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L =  
0.20 W /m- K

1

2  ×  1014 (Ω − m)

 

 
 

 

 
 (293 K)

=  1.4 × 1011  Ω - W/K2  

 

 For polytetrafluoroethylene 

 

  

 

L =  
0.25 W /m- K

1

1017 (Ω − m)

 

 
 

 

 
 (293 K)

=  8.5 × 1013  Ω - W/K2 
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 19.16 Briefly explain why the thermal conductivities are higher for crystalline than noncrystalline 

ceramics. 
 
  Solution 

 Thermal conductivities are higher for crystalline than for noncrystalline ceramics because, for 

noncrystalline, phonon scattering, and thus the resistance to heat transport, is much more effective due to the highly 

disordered and irregular atomic structure. 
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 19.17  Briefly explain why metals are typically better thermal conductors than ceramic materials. 
 
  Solution 

 Metals are typically better thermal conductors than are ceramic materials because, for metals, most of the 

heat is transported by free electrons (of which there are relatively large numbers).  In ceramic materials, the primary 

mode of thermal conduction is via phonons, and phonons are more easily scattered than are free electrons. 
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 19.18  (a) Briefly explain why porosity decreases the thermal conductivity of ceramic and polymeric 

materials, rendering them more thermally insulative. (b) Briefly explain how the degree of crystallinity affects the 

thermal conductivity of polymeric materials and why. 
 
  Solution 

 (a)  Porosity decreases the thermal conductivity of ceramic and polymeric materials because the thermal 

conductivity of a gas phase that occupies pore space is extremely small relative to that of the solid material.  

Furthermore, contributions from gaseous convection are generally insignificant. 

 (b)  Increasing the degree of crystallinity of a semicrystalline polymer enhances its thermal conductivity;  

the vibrations, rotations, etc. of the molecular chains are more effective modes of thermal transport when a 

crystalline structure prevails. 
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 19.19  For some ceramic materials, why does the thermal conductivity first decrease and then increase 

with rising temperature? 
 
  Solution 

 For some ceramic materials, the thermal conductivity first decreases with rising temperature because the 

scattering of lattice vibrations increases with temperature.  At higher temperatures, the thermal conductivity will 

increase for some ceramics that are porous because radiant heat transfer across pores may become important, which 

process increases with rising temperature. 
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 19.20 For each of the following pairs of materials, decide which has the larger thermal conductivity. 

Justify your choices. 

 (a) Pure copper; aluminum bronze (95 wt% Cu-5 wt% Al). 

 (b) Fused silica; quartz. 

 (c) Linear polyethylene; branched polyethylene. 

 (d) Random poly(styrene-butadiene) copolymer; alternating poly(styrene-butadiene) copolymer. 
 
  Solution 

 This question asks for us to decide, for each of several pairs of materials, which has the larger thermal 

conductivity and why. 

 (a)  Pure copper will have a larger conductivity than aluminum bronze because the impurity atoms in the 

latter will lead to a greater degree of free electron scattering. 

 (b)  Quartz will have a larger conductivity than fused silica because fused silica is noncrystalline (whereas 

quartz is crystalline) and lattice vibrations are more effectively scattered in noncrystalline materials. 

 (c)  The linear polyethylene will have the larger conductivity than the branched polyethylene because the 

former will have the higher degree of crystallinity.  Linear polymers have higher degrees of crystallinity than 

branched polymers.  Since heat transfer is accomplished by molecular chain vibrations, and the coordination of 

these vibrations increases with percent crystallinity, the higher the crystallinity, the greater the thermal conductivity. 

 (d)  The alternating poly(styrene-butadiene) copolymer will have a higher crystallinity than the random 

copolymer;  alternating copolymers crystallize more easily than random ones.  The influence of crystallinity on 

conductivity is explained in part (c). 
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 19.21  We might think of a porous material as being a composite wherein one of the phases is a pore 

phase. Estimate upper and lower limits for the room-temperature thermal conductivity of a magnesium oxide 

material having a volume fraction of 0.30 of pores that are filled with still air. 
 
  Solution 

 This problem asks that we treat a porous material as a composite wherein one of the phases is a pore phase, 

and that we estimate upper and lower limits for the room-temperature thermal conductivity of a magnesium oxide 
material having a 0.30 volume fraction of pores.  The upper limit of k (kupper) may be determined using Equation 

16.1 with thermal conductivity substituted for the elastic modulus, E.  From Table 19.1, the value of k for MgO is 

37.7 W/m-K, while for still air in the pore phase, k = 0.02 W/m-K (Section 19.4).  Thus 

 

  

 

kupper  =  Vpkair  +  VMgOkMgO  

 

= (0.30)(0.02 W/m-K) + (0.70)(37.7 W/m-K) = 26.4 W/m-K 

 

 For the lower limit we employ a modification of Equation 16.2 as 

 

  

 

klower  =  
kairkMgO

VpkMgO + VMgOkair
 

 

 

=  
(0.02 W/m - K)(37.7 W /m- K)

(0.30)(37.7 W /m- K) + (0.70)(0.02 W /m- K)
=  0.067 W/m - K  
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 19.22  Nonsteady-state heat flow may be described by the following partial differential equation: 

 

 

∂T
∂t

= DT
∂2T

∂x2
 

where DT is the thermal diffusivity; this expression is the thermal equivalent of Fick’s second law of diffusion 

(Equation 5.4b). The thermal diffusivity is defined according to 

 

 

DT =
k

ρc p
 

In this expression, k, ρ, and cp represent the thermal conductivity, the mass density, and the specific heat at constant 

pressure, respectively. 

 (a) What are the SI units for DT? 

 (b) Determine values of DT for aluminum, steel, aluminum oxide, soda–lime glass, polystyrene, and nylon 

6,6 using the data in Table 19.1. Density values are included in Table B.1, Appendix B. 
 
  Solution 

 (a)  The units of DT are 

 

    

 

DT  =  
k (J /s - m- K)

ρ(kg /m3) cp (J /kg - K)
= m2 /s 

 
 (b)  The values of DT for the several materials are given below. (Note:  values for k and cp are taken from 

Table 19.1;  density values are from Table B.1, Appendix B, and converted to units of kilograms per meter cubed): 

 

 For aluminum 

 

  

 

DT  =  
k

ρ cp
=  

247 W/m - K

(2.71 × 103 kg/m3) (900 J/kg - K)
=  1.0 ×  10-4  m2/s  

 

 For steel 

 

  

 

DT  =  
51.9 W/m - K

(7.9 × 103 kg/m3) (486 J/kg - K)
=  1.4 ×  10-5  m2/s  

 

 For aluminum oxide 
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DT  =  
39 W/m - K

(4 × 103 kg/m3) (775 J/kg - K)
=  1.26 ×  10-5  m2/s  

 

 For soda-lime glass 

 

  

 

DT  =  
1.7 W/m - K

(2.5 × 103 kg/m3) (840 J/kg - K)
=  8.1 ×  10-7  m2/s  

 

 For polystyrene 

 

  

 

DT  =  
0.13 W/m - K

(1.05 × 103 kg/m3) (1170 J/kg - K)
=  1.06 ×  10-7  m2/s  

 

 For nylon 6,6 

 

  

 

DT  =  
0.24 W/m - K

(1.14 × 103 kg/m3) (1670 J/kg - K)
=  1.3 ×  10-7  m2/s  
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 Thermal Stresses 

 

 19.23  Beginning with Equation 19.3, show that Equation 19.8 is valid. 
 
  Solution 

 We want to show that Equation 19.8 is valid beginning with Equation 19.3.  Upon examination of Equation 

19.3b, 

 

  

 

∆l
l0

=  α l∆T  

 

it may be noted that the term on the left-hand side is the same expression as that for the definition of engineering 

strain (Equation 6.2);  that is 

 

  

 

ε =
∆l
l0

 

 

Furthermore, elastic stress and strain are related through Hooke's law, Equation 6.5: 

 

    

 

σ = Eε 

 

Making appropriate substitutions and algebraic manipulations gives 

 

  

 

∆l
l0

=  ε =  
σ
E

=  α l∆T  

Or, solving for σ 
 

    

 

σ =  Eαl∆T  

 

which is the form of Equation 19.8. 
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 19.24  (a) Briefly explain why thermal stresses may be introduced into a structure by rapid heating or 

cooling. (b) For cooling, what is the nature of the surface stresses? (c) For heating, what is the nature of the 

surface stresses? 
 
  Solution 

 (a)  Thermal stresses may be introduced into a structure by rapid heating or cooling because temperature 

gradients will be established across the cross section due to more rapid temperature changes at the surface than 

within the interior;  thus, the surface will expand or contract at a different rate than the interior and since this surface 

expansion or contraction will be restrained by the interior, stresses will be introduced. 

 (b)  For cooling, the surface stresses will be tensile in nature since the interior contracts to a lesser degree 

than the cooler surface. 

 (c)  For heating, the surface stresses will be compressive in nature since the interior expands to a lesser 

degree than the hotter surface. 
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 19.25  (a) If a rod of 1025 steel 0.5 m (19.7 in.) long is heated from 20 to 80°C (68 to 176°F) while its ends 

are maintained rigid, determine the type and magnitude of stress that develops. Assume that at 20°C the rod is 

stress free. (b) What will be the stress magnitude if a rod 1 m (39.4 in.) long is used? (c) If the rod in part (a) is 

cooled from 20 to -10°C (68 to 14°F), what type and magnitude of stress will result? 
 
  Solution 

 (a)  We are asked to compute the magnitude of the stress within a 1025 steel rod that is heated while its 

ends are maintained rigid.  To do this we employ Equation 19.8, using a value of 207 GPa for the modulus of 

elasticity of steel (Table 6.1), and a value of 12.0 × 10-6 (°C)-1 for αl (Table 19.1).  Therefore 

 

  

 

σ =  Eα l (T0 −  T f )  

 

 

=  (207 ×  103 MPa) 12.0 × 10−6 (°C)−1[ ](20°C − 80°C)  

 

= –150 MPa   (–21,800 psi) 

 

The stress will be compressive since its sign is negative. 

 (b)  The stress will be the same [–150 MPa (–21,800 psi )], since stress is independent of bar length. 

 (c)  Upon cooling the indicated amount, the stress becomes 

 

    

 

σ =  Eαl (T0 −  Tf )  

 

 

=  (207 ×  103 MPa) 12.0 × 10−6 (°C)−1[ ] (20°C − (−10°C)[ ] 

 

= +74.5 MPa  (+10,900 psi) 

 

This stress will be tensile since its sign is positive. 
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 19.26  A copper wire is stretched with a stress of 70 MPa (10,000 psi) at 20°C (68°F). If the length is held 

constant, to what temperature must the wire be heated to reduce the stress to 35 MPa (5000 psi)? 
 
  Solution 

 We want to heat the copper wire in order to reduce the stress level from 70 MPa to 35 MPa;  in doing so, 

we reduce the stress in the wire by 70 MPa – 35 MPa = 35 MPa, which stress will be a compressive one (i.e., σ = –

35 MPa).  Solving for Tf from Equation 19.8 [and using values for E and αl of 110 GPa (Table 6.1) and 17.0 × 10-6 

(°C)-1 (Table 19.1),  respectively] yields 

 

    

 

Tf  =  T0 −
σ

Eαl
 

 

 

=  20°C −  
− 35 MPa

(110 × 103 MPa) 17.0 × 10−6 (°C)−1[ ]
 

 

= 20°C + 19°C = 39°C  (101°F) 
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 19.27  If a cylindrical rod of nickel 100.00 mm long and 8.000 mm in diameter is heated from 20°C to 

200°C while its ends are maintained rigid, determine its change in diameter. You may want to consult Table 6.1. 
 
  Solution 

 This problem asks for us to determine the change in diameter of a cylindrical nickel rod 100.00 mm long 

and 8.000 mm in diameter when it is heated from 20°C to 200°C while its ends are maintained rigid.  There will be 

two contributions to the diameter increase of the rod;  the first is due to thermal expansion (which will be denoted as 
∆d1), while the second is from Poisson's lateral expansion as a result of elastic deformation from stresses that are 

established from the inability of the rod to elongate as it is heated (denoted as ∆d2).  The magnitude of ∆d1 may be 

computed using a modified form of Equation 19.3 as 

 

    

 

∆d1 =  d0 αl (Tf − T0)  

 

From Table 19.1 the value of αl for nickel is 13.3 × 10-6 (°C)-1.  Thus, 

 

  

 

∆d1 =  (8.000 mm) 13.3 × 10−6 (°C)−1[ ](200°C − 20°C)  

 

= 0.0192 mm 

 
 Now, ∆d2 is related to the transverse strain (εx) according to a modified form of Equation 6.2 as 

 

  

 

∆d2

d0
= εx  

 
Also, transverse strain and longitudinal strain (εz) are related according to Equation 6.8: 

 

  

 

εx = − νεz  

 
where ν is Poisson’s ratio.  Substitution of this expression for εx into the first equation above leads to 

 

    

 

∆d2
d0

= − νεz  

 

Furthermore, the longitudinal strain is related to the modulus of elasticity through Equation 6.5—i.e., 
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εz =
σ
E

 

 

And, therefore, 

 

    

 

∆d2
d0

= − ν
σ
E

 

 

Now, from Equation 19.8 stress is equal to 

 

    

 

σ = Eαl(T0 − Tf ) 

 

which, when substituted into the preceding equation leads to 

 

    

 

∆d2
d0

= −
νEαl(T0 − Tf )

E
= − ναl(T0 − Tf )  

 
Solving for ∆d2 and realizing that, for nickel, ν = 0.31 (Table 6.1) yields 

 

    

 

∆d2 = − d0ναl(T0 −  Tf ) 

 

 

=  − (8.000 mm)(0.31) 13.3 × 10−6 (°C)−1[ ](20°C − 200°C)  

 

= 0.0059 mm 

 
Finally, the total ∆d is just ∆d1 + ∆d2 = 0.0192 mm + 0.0059 mm = 0.0251 mm. 
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 19.28  The two ends of a cylindrical rod of 1025 steel 75.00 mm long and 10.000 mm in diameter are 

maintained rigid.  If the rod is initially at 25°C, to what temperature must it be cooled to have a 0.008-mm 

reduction in diameter? 
 
  Solution 

 This problem asks for us to determine to what temperature a cylindrical rod of 1025 steel 75.00 mm long 

and 10.000 mm in diameter must be cooled from 25°C in order to have a 0.008 mm reduction in diameter if the rod 

ends are maintained rigid.  There will be two contributions to the diameter decrease of the rod;  the first is due to 
thermal contraction (which will be denoted as ∆d1), while the second is from Poisson's lateral contraction as a result 

of elastic deformation from stresses that are established from the inability of the rod to contract as it is cooled 
(denoted as ∆d2).  The magnitude of ∆d1 may be computed using a modified form of Equation 19.3b as 

 

    

 

∆d1 =  d0 αl (Tf − T0)  

 
 Now, ∆d2 is related to the transverse strain (εx) according to a modified form of Equation 6.2 as 

 

    

 

∆d2
d0

= εx  

 
Also, transverse strain and longitudinal strain (εz) are related according to Equation 6.8: 

 

  

 

εx = − νεz  

 
where ν is Poisson’s ratio.  Substitution of this expression for εx into the first equation above leads to 

 

    

 

∆d2
d0

= − νεz  

 

Furthermore, the longitudinal strain is related to the modulus of elasticity through Equation 6.5—i.e., 

 

  

 

εz =
σ
E

 

 

And, therefore, 

 

    

 

∆d2
d0

= − ν
σ
E
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Now, from Equation 19.8 stress is equal to 

 

    

 

σ = Eαl(T0 − Tf ) 

 

which, when substituted into the preceding equation leads to 

 

    

 

∆d2
d0

= −
νEαl(T0 − Tf )

E
= − ναl(T0 − Tf )  

 
And, solving for ∆d2 from this expression 

 

  

 

∆d2 = − d0να l(T0 −  T f ) 

 
The total ∆d is just ∆d = ∆d1 + ∆d2, and 

 

    

 

∆d =  d0αl(Tf − T0) +  d0ναl(Tf − T0) =  d0αl(Tf − T0)(1 +  ν)  

 

The values of ν and αl for 1025 steel are 0.30 and 12.0 × 10-6 (°C)-1, respectively (Tables 6.1 and 19.1).  

Incorporating, into the above equation, these values, as well as those for ∆d, d0, and T0 cited in the problem 

statement gives 

 

  

 

− (0.008 mm) = (10.000 mm) 12.0 × 10−6 (°C)−1[ ](T f − 25°C) (1 + 0.30)  

 
And, finally, solving the above expression for Tf yields Tf = – 26.3°C. 
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 19.29  What measures may be taken to reduce the likelihood of thermal shock of a ceramic piece? 
 
  Solution 

 According to Equation 19.9, the thermal shock resistance of a ceramic piece may be enhanced by 

increasing the fracture strength and thermal conductivity, and by decreasing the elastic modulus and linear 
coefficient of thermal expansion.  Of these parameters, σf and αl are most amenable to alteration, usually be 

changing the composition and/or the microstructure. 
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DESIGN PROBLEMS 
 

 Thermal Expansion 

 

 19.D1  Railroad tracks made of 1025 steel are to be laid during the time of year when the temperature 

averages 10°C (50°F). If a joint space of 4.6 mm (0.180 in.) is allowed between the standard 11.9-m (39-ft) long 

rails, what is the hottest possible temperature that can be tolerated without the introduction of thermal stresses? 
 
  Solution 

 For these railroad tracks, each end is allowed to expand one-half of the joint space distance, or the track 
may expand a total of this distance (4.6 mm).  Equation 19.3a is used to solve for Tf, where the value αl for the 1025 

steel [12.0 × 10-6 (°C)-1] is found in Table 19.1.  Thus, solving for Tf from Equation 19.3a leads to 

 

    

 

Tf  =
∆ l

αll0
+  T0 

 

 

=  
4.6 × 10−3 m

12.0 × 10−6 (°C)−1[ ](11.9 m)
+  10°C  

 

= 32.2°C + 10°C = 42.2°C  (108°F) 
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 Thermal Stresses 

 

 19.D2  The ends of a cylindrical rod 6.4 mm (0.25 in.) in diameter and 250 mm (10 in.) long are mounted 

between rigid supports. The rod is stress free at room temperature [20°C (68°F)]; and upon cooling to -40°C (-

40°F), a maximum thermally induced tensile stress of 125 MPa (18,125 psi) is possible. Of which of the following 

metals or alloys may the rod be fabricated: aluminum, copper, brass, 1025 steel, and tungsten? Why? 
 
  Solution 

 This is really a materials selection problem in which we must decide for which of the five metals listed, the 

stress in the rod will not exceed 125 MPa (18,125 psi), when it is heated while its ends are mounted in rigid 
supports.  Upon examination of Equation 19.8, it may be noted that all we need do is to compute the Eαl∆T product 

for each of the candidate materials, and then note for which of them the stress is less than the stipulated maximum.  
[The value of ∆T is T0 – Tf  = 20°C – (–40°C) = 60°C.] These parameters and their product for each of the alloys 

are tabulated below.  (Modulus of elasticity values were taken from Table 6.1, while the αl values came from Table 

19.1.) 

 

 Alloy αl (°C)-1 E (MPa) αlE∆T (MPa) 

 Aluminum 23.6 × 10-6 69 × 103 98 

 Copper 17.0 × 10-6 110 × 103 112 

 Brass 20.0 × 10-6 97 × 103 116 

 1025 Steel 12.0 × 10-6 207 × 103 149 

 Tungsten 4.5 × 10-6 407 × 103 110 

 

Thus, aluminum, copper, brass, and tungsten are suitable candidates. 
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 19.D3  (a) What are the units for the thermal shock resistance parameter (TSR)? (b) Rank the following 

ceramic materials according to their thermal shock resistance: glass-ceramic (Pyroceram), partially stabilized 

zirconia, and borosilicate (Pyrex) glass. Appropriate data may be found in Tables B.2, B.4, B.6, and B.7 of 

Appendix B. 
 
  Solution 

 (a)  This portion of the problem asks that we cite the units for the thermal shock resistance parameter 

(TSR).  From Equation 19.9 

 

    

 

TSR =  
σ f (N /m2) k (W /m- K)

E(N /m2) αl (°C)−1
= W /m 

 

(Note:  in reducing units in the above expression, we have assumed that units of temperature in K and °C are 

equivalent) 

 

 (b) Now we are asked to rank glass-ceramic (Pyroceram), partially-stabilized zirconia, and borosilicate 

(Pyrex) glass as to their thermal shock resistance.  Thus, all we need do is calculate, for each, the value of TSR using 
Equation 19.9.  Values of E, σf, αl, and k are found, respectively, in Tables B.2, B.4, B.6, and B.7, Appendix B.  

(Note:  whenever a range for a property value in these tables is cited, the average of the extremes is used.) 

 For the glass-ceramic 

 

  

 

TSR =  
σ f  k

E α l
 

 

 

=  
(247 MPa)(3.3 W/m - K)

(120 × 103 MPa) 6.5 × 10−6 (°C)−1[ ]
=  1045 W/m  

 

 For partially-stabilized zirconia 

 

  

 

TSR =
(1150 MPa)(2.7 W/m - K)

(205 × 103 MPa) 9.6 × 10−6 (°C)−1[ ]
=  1578 W/m  

 

 And, for borosilicate glass 

 

  

 

TSR =
(69 MPa)(1.4 W/m - K)

(70 × 103 MPa) 3.3 × 10−6 (°C)−1[ ]
=  418 W/m  
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 Thus, these materials may be ranked according to their thermal shock resistance from the greatest to the 

least as follows:  partially-stabilized zirconia, glass-ceramic, and borosilicate glass. 
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 19.D4  Equation 19.9, for the thermal shock resistance of a material, is valid for relatively low rates of 

heat transfer. When the rate is high, then, upon cooling of a body, the maximum temperature change allowable 

without thermal shock, ΔT f, is approximately 

 

 

∆T f =
σ f

Eα l
 

where σ f is the fracture strength. Using the data in Tables B.2, B.4, and B.6 (Appendix B), determine ΔT f for a 

glass-ceramic (Pyroceram), partially stabilized zirconia, and fused silica. 
 
  Solution 

 We want to compute the maximum temperature change allowable without thermal shock for these three 

ceramic materials, which temperature change is a function of the fracture strength, elastic modulus, and linear 
coefficient of thermal expansion.  These data and the ∆Tf's are tabulated below.  (Values for E, σf, and αl are taken 

from Tables B.2, B.4, B.6 in Appendix B.) 

 

 Material σf (MPa) E (MPa) αl (°C)-1 ∆Tf (°C) 

 Glass ceramic 247 120 × 103 6.5 × 10-6 317 

 Zirconia 1150 205 × 103 9.6 × 10-6 584 

 Fused silica 104 73 × 103 0.4 × 10-6 3562 
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CHAPTER 20 

 

MAGNETIC PROPERTIES 

 

PROBLEM SOLUTIONS 

 

Basic Concepts 

 

 20.1  A coil of wire 0.20 m long and having 200 turns carries a current of 10 A. 

 (a) What is the magnitude of the magnetic field strength H? 

 (b) Compute the flux density B if the coil is in a vacuum. 

 (c) Compute the flux density inside a bar of titanium that is positioned within the coil. The susceptibility for 

titanium is found in Table 20.2. 

 (d) Compute the magnitude of the magnetization M. 
 
  Solution 

 (a)  We may calculate the magnetic field strength generated by this coil using Equation 20.1 as 

 

    

 

H =  
NI
l

 

 

 

=  
(200 turns)(10 A)

0.20 m
=  10,000  A - turns/m 

 

 (b)  In a vacuum, the flux density is determined from Equation 20.3.  Thus, 

 

    

 

B0 =  µ0H  

 

 

=  (1.257 ×  10-6  H/m)(10,000 A - turns/m) =  1.257 ×  10-2  tesla 
 

 (c)  When a bar of titanium is positioned within the coil, we must use an expression that is a combination 
of Equations 20.5 and 20.6 in order to compute the flux density given the magnetic susceptibility.  Inasmuch as χm 

= 1.81 × 10-4 (Table 20.2), then 

 

    

 

B =  µ0H +  µ0M =  µ0H +  µ0χmH =  µ0H(1 +  χm)  

 

 

=  (1.257 ×  10-6  H/m) (10,000 A - turns/m)(1 +  1.81 ×  10-4 ) 
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= 1.257 × 10-2 tesla 
 

which is essentially the same result as part (b).  This is to say that the influence of the titanium bar within the coil 

makes an imperceptible difference in the magnitude of the B field. 

 (d)  The magnetization is computed from Equation 20.6: 

 

  

 

M =  χmH =  (1.81 ×  10-4 )(10,000 A - turns/m) =  1.81 A/m 
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 20.2 Demonstrate that the relative permeability and the magnetic susceptibility are related according to 

Equation 20.7. 
 
  Solution 

 This problem asks us to show that χm and µr are related according to χm = µr – 1.  We begin with Equation 

20.5 and substitute for M using Equation 20.6.  Thus, 

 

    

 

B =  µ0H +  µ0M =  µ0H +  µ0χmH  

 

But B is also defined in Equation 20.2 as 

 

    

 

B =  µH  

 

When the above two expressions are set equal to one another as 

 

    

 

µH =  µ0H +  µ0χmH  

 

This leads to 

    

 

µ =  µ0(1 +  χm)  

 
If we divide both sides of this expression by µ0, and from the definition of µr (Equation 20.4), then 

 

  

 

µ
µ0

=  µr  =  1 +  χm 

 

or, upon rearrangement 

 

    

 

χm =  µr −1 

 

which is the desired result. 
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 20.3  It is possible to express the magnetic susceptibility χm in several different units. For the discussion of 

this chapter, χm was used to designate the volume susceptibility in SI units, that is, the quantity that gives the 

magnetization per unit volume (m3) of material when multiplied by H. The mass susceptibility χm (kg) yields the 

magnetic moment (or magnetization) per kilogram of material when multiplied by H; and, similarly, the atomic 

susceptibility χm(a) gives the magnetization per kilogram-mole. The latter two quantities are related to χm through 

the relationships 

 χm = χm(kg) × mass density (in kg/m3) 

 χm(a)  = χm(kg) × atomic weight (in kg)] 

When using the cgs–emu system, comparable parameters exist, which may be designated by χ′m, χ′m(g), and χ′m(a); 

the χm and χ′m are related in accordance with Table 20.1. From Table 20.2, χm for silver is –2.38 × 10–5; convert 

this value into the other five susceptibilities. 
 
  Solution 

 For this problem, we want to convert the volume susceptibility of copper (i.e., – 2.38 × 10-5) into other 

systems of units. 

 For the mass susceptibility  

 

    

 

χm (kg) =
χm

ρ (kg /m3)
 

 

 

=  
− 2.38 × 10−5

10.49 × 103 kg /m3
=  − 2.27 ×  10-9  

 

 For the atomic susceptibility 

 

  

 

χm (a) =  χm (kg) ×  atomic weight (in kg)[ ] 

 

 

=  (− 2.27 ×  10-9) (0.10787 kg/mol) = − 2.45 ×  10-10  

 

 For the cgs-emu susceptibilities, 

 

  

 

χ m
' =  

χm

4π
=  

− 2.38 × 10−5

4π
= −1.89 ×  10-6  

 

  

 

χm
' (g) =  

χ m
'

ρ(g / cm3)
=  

−1.89 × 10−6

10.49 g/cm3
=  −1.80 ×  10-7  
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χ m
' (a) =  χm

' (g) × atomic weight (in g)[ ] 

 

 

=  (−1.80 ×  10-7)(107.87 g/mol) = −1.94 ×  10-5  
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 20.4  (a) Explain the two sources of magnetic moments for electrons. 

 (b) Do all electrons have a net magnetic moment? Why or why not? 

 (c) Do all atoms have a net magnetic moment? Why or why not? 
 
  Solution 

 (a)  The two sources of magnetic moments for electrons are the electron's orbital motion around the 

nucleus, and also, its spin. 

 (b)  Each electron will have a net magnetic moment from spin, and possibly, orbital contributions, which 

do not cancel for an isolated atom. 

 (c)  All atoms do not have a net magnetic moment.  If an atom has completely filled electron shells or 

subshells, there will be a cancellation of both orbital and spin magnetic moments. 
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 Diamagnetism and Paramagnetism 

 Ferromagnetism 

 

 20.5  The magnetic flux density within a bar of some material is 0.435 tesla at an H field of 3.44 × 105 A/m. 

Compute the following for this material: (a) the magnetic permeability, and (b) the magnetic susceptibility. (c) What 

type(s) of magnetism would you suggest is(are) being displayed by this material? Why? 
 
  Solution 

 (a)  The magnetic permeability of this material may be determined according to Equation 20.2 as 

 

  

 

µ =
B
H

=
0.435 tesla

3.44 × 105 A /m
=  1.2645 ×  10-6  H/m  

 

 (b)  The magnetic susceptibility is calculated using a combined form of Equations 20.4 and 20.7 as 

 

  

 

χm = µr − 1 =
µ

µ0
− 1  

 

 

=
1.2645 × 10−6 H /m

1.257 × 10−6 H /m
−  1 =  6.0 ×  10-3  

 

 (c)  This material would display both diamagnetic and paramagnetic behavior.  All materials are 

diamagnetic, and since χm is positive and on the order of 10-3, there would also be a paramagnetic contribution. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 20.6 The magnetization within a bar of some metal alloy is 3.2 × 105 A/m at an H field of 50 A/m. Compute 

the following: (a) the magnetic susceptibility, (b) the permeability, and (c) the magnetic flux density within this 

material. (d) What type(s) of magnetism would you suggest as being displayed by this material? Why? 
 
  Solution 

 (a)  This portion of the problem calls for us to compute the magnetic susceptibility within a bar of some 

metal alloy when M = 3.2 × 105 A/m and H = 50 A/m.  This requires that we solve for χm from Equation 20.6 as 

 

  

 

χm =  
M
H

=  
3.2 × 105 A /m

50 A /m
=  6400  

 

 (b)  In order to calculate the permeability we must employ a combined form of Equations 20.4 and 20.7 as 

follows: 

 

  

 

µ =  µr µ0 =  (χm +  1)µ0  

 

 

=  (6400 +  1)(1.257 ×  10-6  H/m) =  8.05 ×  10-3  H/m 

 

 (c)  The magnetic flux density may be determined using Equation 20.2 as 

 

  

 

B =  µH =  (8.05 ×  10-3  H/m) (50 A/m) =  0.40 tesla  

 
 (d)  This metal alloy would exhibit ferromagnetic behavior on the basis of the magnitude of its χm (6400), 

which is considerably larger than the χm values for diamagnetic and paramagnetic materials listed in Table 20.2. 
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 20.7  Compute (a) the saturation magnetization and (b) the saturation flux density for cobalt, which has a 

net magnetic moment per atom of 1.72 Bohr magnetons and a density of 8.90 g/cm3. 
 
  Solution 

 (a)  The saturation magnetization for Co may be determined in the same manner as was done for Ni in 

Example Problem 20.1.  Thus, using a modified form of Equation 20.9 

 

  

 

M s = 1.72µB N  

 
in which µB is the Bohr magneton and N is the number of Co atoms per cubic meter.  Also, there are 1.72 Bohr 

magnetons per Co atom.  Now, N (the number of cobalt atoms per cubic meter) is related to the density and atomic 

weight of Co, and Avogadro's number according to Equation 20.10 as 

 

  

 

N =  
ρCo N A

ACo
 

 

 

=  
(8.90 × 106 g/m3)(6.022 × 1023 atoms/mol)

58.93 g/mol
 

 

 

=  9.10 ×  1028  atoms/m3 

 

Therefore, 

 

  

 

M s  = 1.72 µB N = (1.72  BM/atom)(9.27 ×  10-24  A - m2/BM)(9.10 ×  1028  atoms/m3) 

 

 

=  1.45 ×  106  A/m 

 

 (b)  The saturation flux density is determined according to Equation 20.8.  Thus 

 

    

 

Bs =  µ0M s  

 

 

=  (1.257 ×  10-6  H/m)(1.45 ×  106  A/m) =  1.82 tesla  
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 20.8  Confirm that there are 2.2 Bohr magnetons associated with each iron atom, given that the saturation 

magnetization is 1.70 × 106 A/m, that iron has a BCC crystal structure, and that the unit cell edge length is 0.2866 

nm. 
 
  Solution 

 We want to confirm that there are 2.2 Bohr magnetons associated with each iron atom.  Therefore, let       

 

nB
'  

be the number of Bohr magnetons per atom, which we will calculate.  This is possible using a modified and 

rearranged form of Equation 20.9—that is 

 

      

 

n B
' =  

M s
µBN

 

 

Now, N is just the number of atoms per cubic meter, which is the number of atoms per unit cell (two for BCC, 

Section 3.4) divided by the unit cell volume-- that is, 

 

  

 

N =  
2

VC
=

2

a3
 

 

a being the BCC unit cell edge length.  Thus 

 

  

 

nB
' =  

M s

NµB
=

M s  a3

2µB
 

 

 

=
(1.70 ×  106 A /m) (0.2866  ×  10−9 m)3 / unit cell[ ]

(2 atoms/unit cell)(9.27  × 10-24 A - m2 /BM)
 

 

= 2.16 Bohr magnetons/atom 
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 20.9 Assume there exists some hypothetical metal that exhibits ferromagnetic behavior and that has (1) a 

simple cubic crystal structure (Figure 3.24), (2) an atomic radius of 0.153 nm, and (3) a saturation flux density of 

0.76 tesla.  Determine the number of Bohr magnetons per atom for this material. 
 
  Solution 

 We are to determine the number of Bohr magnetons per atom for a hypothetical metal that has a simple 

cubic crystal structure, an atomic radius of 0.153 nm, and a saturation flux density of 0.76 tesla.  It becomes 

necessary to employ Equation 20.8 and a modified form of Equation 20.9 as follows: 

 

    

 

nB  =  
M s

µBN
 =  

Bs
µ0

µBN
 =  

Bs
µ0µBN

 

 
Here nB is the number of Bohr magnetons per atom, and N is just the number of atoms per cubic meter, which is the 

number of atoms per unit cell [one for simple cubic (Figure 3.23)] divided by the unit cell volume—that is, 

 

    

 

N =  
1

VC
 

 

which, when substituted into the above equation gives 

 

    

 

nB =  
BsVC

µ0µB
 

 

For the simple cubic crystal structure (Figure 3.23), a = 2r, where r is the atomic radius, and VC = a3 = (2r)3.  

Substituting this relationship into the above equation yields 

 

    

 

nB =  
Bs (2r)3

µ0 µB
 

 

 

=  
(0.76 tesla)(8)(0.153 × 10−9 m)3

(1.257 × 10−6 H /m)(9.27 × 10−24 A - m2 /BM)
=  1.87 Bohr magnetons/atom  
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 20.10  There is associated with each atom in paramagnetic and ferromagnetic materials a net magnetic 

moment. Explain why ferromagnetic materials can be permanently magnetized whereas paramagnetic ones cannot. 
 
  Solution 

  Ferromagnetic materials may be permanently magnetized (whereas paramagnetic ones may not) because 

of the ability of net spin magnetic moments of adjacent atoms to align with one another.  This mutual magnetic 

moment alignment in the same direction exists within small volume regions--domains.  When a magnetic field is 

applied, favorably oriented domains grow at the expense of unfavorably oriented ones, by the motion of domain 

walls.  When the magnetic field is removed, there remains a net magnetization by virtue of the resistance to 

movement of domain walls;  even after total removal of the magnetic field, the magnetization of some net domain 

volume will be aligned near the direction that the external field was oriented. 

 For paramagnetic materials, there is no magnetic dipole coupling, and, consequently, domains do not form.  

When a magnetic field is removed, the atomic dipoles assume random orientations, and no magnetic moment 

remains. 
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 Antiferromagnetism and Ferrimagnetism 

 

 20.11  Consult another reference in which Hund’s rule is outlined, and on its basis explain the net 

magnetic moments for each of the cations listed in Table 20.4. 
 
  Solution 

 Hund's rule states that the spins of the electrons of a shell will add together in such a way as to yield the 

maximum magnetic moment.  This means that as electrons fill a shell the spins of the electrons that fill the first half 

of the shell are all oriented in the same direction;  furthermore, the spins of the electrons that fill the last half of this 

same shell will all be aligned and oriented in the opposite direction.  For example, consider the iron ions in Table 

20.4;  from Table 2.2, the electron configuration for the outermost shell for the Fe atom is 3d64s2.  For the Fe3+ ion 

the outermost shell configuration is 3d5, which means that five of the ten possible 3d states are filled with electrons.  

According to Hund's rule the spins of all of these electrons are aligned, there will be no cancellation, and therefore, 

there are five Bohr magnetons associated with each Fe3+ ion, as noted in the table.  For Fe2+ the configuration of 

the outermost shell is 3d6, which means that the spins of five electrons are aligned in one direction, and the spin of a 

single electron is aligned in the opposite direction, which cancels the magnetic moment of one of the other five;  

thus, this yields a net moment of four Bohr magnetons. 

 For Mn2+ the electron configuration is 3d5, the same as Fe3+, and, therefore it will have the same number 

of Bohr magnetons (i.e., five). 

 For Co2+ the electron configuration is 3d7, which means that the spins of five electrons are in one 

direction, and two are in the opposite direction, which gives rise to a net moment of three Bohr magnetons. 

 For Ni2+ the electron configuration is 3d8 which means that the spins of five electrons are in one direction, 

and three are in the opposite direction, which gives rise to a net moment of two Bohr magnetons. 

 For Cu2+ the electron configuration is 3d9 which means that the spins of five electrons are in one direction, 

and four are in the opposite direction, which gives rise to a net moment of one Bohr magneton. 
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 20.12  Estimate (a) the saturation magnetization, and (b) the saturation flux density of nickel ferrite 

[(NiFe2O4)8], which has a unit cell edge length of 0.8337 nm. 
 
  Solution 

 (a)  The saturation magnetization of nickel ferrite is computed in the same manner as Example Problem 

20.2;  from Equation 20.13 

 

    

 

M s =  
nB µB

a3
 

 

Now, nB is just the number of Bohr magnetons per unit cell.  The net magnetic moment arises from the Ni2+ ions, 

of which there are eight per unit cell, each of which has a net magnetic moment of two Bohr magnetons (Table 
20.4).  Thus, nB is sixteen.  Therefore, from the above equation 

 

  

 

M s  =  
(16 BM /unit cell)(9.27 × 10−24 A - m2 /BM)

(0.8337 × 10−9 m)3 / unit cell
 

 

 

=  2.56 ×  105  A/m 

 

 (b)  This portion of the problem calls for us to compute the saturation flux density.  From Equation 20.8 

 

    

 

Bs =  µ0 M s  

 

 

=  (1.257 ×  10-6  H/m)(2.56 ×  105  A/m) =  0.32 tesla  
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 20.13  The chemical formula for manganese ferrite may be written as (MnFe2O4)8 because there are eight 

formula units per unit cell. If this material has a saturation magnetization of 5.6 × 105 A/m and a density of 5.00 

g/cm3, estimate the number of Bohr magnetons associated with each Mn2+ ion. 
 
  Solution 

 We want to compute the number of Bohr magnetons per Mn2+ ion in (MnFe2O4)8.  Let nB represent the 

number of Bohr magnetons per Mn2+ ion;  then, using Equation 20.9, we have 

 

    

 

M s =  nB µBN  

 

in which N is the number of Mn2+ ions per cubic meter of material.  But, from Equation 20.10 

 

    

 

N =  
ρN A

A
 

 
Here A is the molecular weight of MnFe2O4 (230.64 g/mol).  Thus, combining the previous two equations 

 

    

 

M s =  
nB µB ρN A

A
 

 

or, upon rearrangement (and expressing the density in units of grams per meter cubed), 

 

    

 

nB =  
M s A

µB ρN A
 

 

 

=  
(5.6 × 105 A/m) (230.64 g/mol)

(9.27 × 10−24 A - m2/BM)(5.00 × 106 g/m3)(6.022 × 1023 ions /mol)
 

 

 

=  4.6 Bohr magnetons/Mn2+  ion  
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 20.14  The formula for yttrium iron garnet (Y3Fe5O12) may be written in the form 

 

Y3
cFe2

aFe3
dO12 , where 

the superscripts a, c, and d represent different sites on which the Y3+ and Fe3+ ions are located.  The spin magnetic 

moments for the Y3+ and Fe3+ ions positioned in the a and c sites are oriented parallel to one another and 

antiparallel to the Fe3+ ions in d sites. Compute the number of Bohr magnetons associated with each Y3+ ion, given 

the following information: (1) each unit cell consists of eight formula (Y3Fe5O12) units; (2) the unit cell is cubic 

with an edge length of 1.2376 nm; (3) the saturation magnetization for this material is 1.0 × 104 A/m; and (4) 

assume that there are 5 Bohr magnetons associated with each Fe3+ ion. 
 
  Solution 

 For this problem we are given that yttrium iron garnet may be written in the form   

 

Y3
cFe2

aFe3
dO12  where the 

superscripts a, c, and d represent different sites on which the Y3+ and Fe3+ ions are located, and that the spin 

magnetic moments for the ions on a and c sites are oriented parallel to one another and antiparallel to the Fe3+ ions 

on the d sites.  We are to determine the number of Bohr magnetons associated with each Y3+ ion given that each 

unit cell consists of eight formula units, the unit cell is cubic with an edge length of 1.2376 nm, the saturation 

magnetization for the material is 1.0 × 104 A/m, and that there are 5 Bohr magnetons for each Fe3+ ion. 
 The first thing to do is to calculate the number of Bohr magnetons per unit cell, which we will denote nB.  

Solving for nB using Equation 20.13, we get 

 

    

 

nB =  
M s a3

µB
 

 

 

=  
(1.0 × 104 A /m)(1.2376 × 10−9 m)3

9.27 × 10−24 A - m2 /BM
=  2.04 Bohr magnetons/unit cell  

 

Now, there are 8 formula units per unit cell or 

 

2.04
8

= 0.255 Bohr magnetons per formula unit.  Furthermore, for 

each formula unit there are two Fe3+ ions on a sites and three Fe3+ on d sites which magnetic moments are aligned 

antiparallel.  Since there are 5 Bohr magnetons associated with each Fe3+ ion, the net magnetic moment 

contribution per formula unit from the Fe3+ ions is 5 Bohr magnetons.  This contribution is antiparallel to the 

contribution from the Y3+ ions, and since there are three Y3+ ions per formula unit, then 

 

 

No. of Bohr magnetons/Y 3+  =  
0.255 BM + 5 BM

3
=  1.75 BM  
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 The Influence of Temperature on Magnetic Behavior 

 

 20.15  Briefly explain why the magnitude of the saturation magnetization decreases with increasing 

temperature for ferromagnetic materials, and why ferromagnetic behavior ceases above the Curie temperature. 
 
  Solution 

 For ferromagnetic materials, the saturation magnetization decreases with increasing temperature because 

the atomic thermal vibrational motions counteract the coupling forces between the adjacent atomic dipole moments, 

causing some magnetic dipole misalignment.  Ferromagnetic behavior ceases above the Curie temperature because 

the atomic thermal vibrations are sufficiently violent so as to completely destroy the mutual spin coupling forces. 
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 Domains and Hysteresis 

 

 20.16  Briefly describe the phenomenon of magnetic hysteresis, and why it occurs for ferromagnetic and 

ferrimagnetic materials. 

 

 The phenomenon of magnetic hysteresis and an explanation as to why it occurs for ferromagnetic and 

ferrimagnetic materials is given in Section 20.7. 
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 20.17  A coil of wire 0.1 m long and having 15 turns carries a current of 1.0 A. 

 (a) Compute the flux density if the coil is within a vacuum. 

 (b) A bar of an iron–silicon alloy, the B-H behavior for which is shown in Figure 20.29, is positioned 

within the coil. What is the flux density within this bar? 

 (c) Suppose that a bar of molybdenum is now situated within the coil. What current must be used to 

produce the same B field in the Mo as was produced in the iron–silicon alloy [part (b)] using 1.0 A? 
 
  Solution 

 (a)  This portion of the problem asks that we compute the flux density in a coil of wire 0.1 m long, having 

15 turns, and carrying a current of 1.0 A, and that is situated in a vacuum.  Combining Equations 20.1 and 20.3, and 

solving for B yields 

 

    

 

B0 =  µ0H =  
µ0NI

l
 

 

 

=  
(1.257 × 10−6 H /m) (15 turns) (1.0 A)

0.1 m
=  1.89 ×  10-4  tesla 

 

 (b)  Now we are to compute the flux density with a bar of the iron-silicon alloy, the B-H behavior for 

which is shown in Figure 20.29.  It is necessary to determine the value of H using Equation 20.1 as 
 

  

 

H =  
NI
l

=  
(15 turns)(1.0 A)

0.1 m
=  150 A - turns/m 

 

Using the curve in Figure 20.29, B = 1.65 tesla at H = 150 A-turns/m, as demonstrated below. 
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 (c)  Finally, we are to assume that a bar of Mo is situated within the coil, and to calculate the current that is 

necessary to produce the same B field as when the iron-silicon alloy in part (b) was used.  Molybdenum is a 

paramagnetic material having a χm of 1.19 × 10-4 (Table 20.2).  Combining Equations 20.2, 20.4, and 20.7 we solve 

for H 

 

    

 

H =  
B
µ

=  
B

µ0 µr
=

B
µ0(1 + χm)

 

 

And when Mo is positioned within the coil, then, from the above equation 

 

  

 

H =  
1.65 tesla

(1.257 × 10−6 H /m)(1 + 1.19 x 10−4)
=  1.312 ×  106  A - turns/m 

 

Now, the current may be determined using Equation 20.1: 

 

  

 

I =  
Hl
N

=  
(1.312 × 106 A - turns /m) (0.1 m)

15 turns
=  8750 A  
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 20.18  A ferromagnetic material has a remanence of 1.25 teslas and a coercivity of 50,000 A/m. Saturation 

is achieved at a magnetic field intensity of 100,000 A/m, at which the flux density is 1.50 teslas. Using these data, 

sketch the entire hysteresis curve in the range H = –100,000 to +100,000 A/m. Be sure to scale and label both 

coordinate axes. 
 
  Solution 

 The B versus H curve for this material is shown below. 
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 20.19  The following data are for a transformer steel: 

 
 B  B 

H (A/m) (teslas) H (A/m) (teslas) 
0 0 200 1.04 

10 0.03 400 1.28 

20 0.07 600 1.36 

50 0.23 800 1.39 

100 0.70 1000 1.41 

150 0.92   

 

 (a) Construct a graph of B versus H. 

 (b) What are the values of the initial permeability and initial relative permeability? 

 (c) What is the value of the maximum permeability? 

 (d) At about what H field does this maximum permeability occur? 

 (e) To what magnetic susceptibility does this maximum permeability correspond? 
 
  Solution 

 (a)  The B-H data for the transformer steel provided in the problem statement are plotted below. 
 

 

 

 (b)  The first four data points are plotted below. 
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The slope of the initial portion of the curve is µi (as shown), is 

 

  

 

µ i =
∆B
∆H

=  
(0.15 − 0) tesla
(50 − 0) A /m

=  3.0 ×  10-3  H/m  

 
Also, the initial relative permeability, µri, (Equation 20.4) is just 

 

  

 

µri =  
µ i

µ0
=

3.0 × 10−3 H /m

1.257 × 10−6 H /m
=  2387  

 

 (c)  The maximum permeability is the tangent to the B-H curve having the greatest slope;  it is drawn on 

the plot below, and designated as µ(max). 
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The value of µ(max) is (modifying Equation 20.2) 

 

  

 

µ(max) =
∆B
∆H

=  
(1.3 − 0.3) tesla
(160 − 45) A - m

=  8.70 ×  10 -3 H/m 

 

 (d)  The H field at which µ(max) occurs is approximately 80 A/m [as taken from the plot shown in part 

(c)]. 

 (e)  We are asked for the maximum susceptibility, χ(max).  Combining modified forms of Equations 20.7 

and 20.4 yields 

 

    
χ(max) =  µ r (max) − 1 =

µ (max)
µ0

−  1 

 

 

=  
8.70 × 10−3 H /m

1.257 × 10−6 H /m
−  1 =  6920 
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 20.20  An iron bar magnet having a coercivity of 4000 A/m is to be demagnetized.  If the bar is inserted 

within a cylindrical wire coil 0.15 m long and having 100 turns, what electric current is required to generate the 

necessary magnetic field? 
 
  Solution 

 In order to demagnetize a magnet having a coercivity of 4000 A/m, an H field of 4000 A/m must be 

applied in a direction opposite to that of magnetization.  According to Equation 20.1 

 

    

 

I =
Hl
N

 

 

 

=  
(4000 A/m) (0.15 m)

100 turns
=  6 A  
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 20.21  A bar of an iron–silicon alloy having the B–H  behavior shown in Figure 20.29 is inserted within a 

coil of wire 0.20 m long and having 60 turns, through which passes a current of 0.1 A. 

 (a) What is the B field within this bar? 

 (b) At this magnetic field, 

 (i) What is the permeability? 

 (ii) What is the relative permeability? 

 (iii) What is the susceptibility? 

 (iv) What is the magnetization? 
 
  Solution 

 (a)  We want to determine the magnitude of the B field within an iron-silicon alloy, the B-H behavior for 

which is shown in Figure 20.29, when l = 0.20 m, N = 60 turns, and I = 0.1 A.  Applying Equation 20.1 

 

  

 

H =
NI
l

=  
(60 turns) (0.1 A)

0.20 m
=  30 A/m 

 

Below is shown the B-versus-H plot for this material.  The B value from the curve corresponding to H = 30 A/m is 

about 1.37 tesla. 

 

 

 

 (b) 

  (i)  The permeability at this field is just ∆B/∆H of the tangent of the B-H curve at H = 30 A/m.  

The slope of this line as drawn in the above figure is 
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µ =  
∆B
∆H

=  
(1.70 − 1.04) tesla

(60 − 0) A /m
=  1.10 ×  10-2  H/m 

 

  (ii)  From Equation 20.4, the relative permeability is 

 

  

 

µr  =
µ

µ0
=

1.10 × 10−2 H /m

1.257 × 10−6 H /m
=  8751 

 

  (iii)  Using Equation 20.7, the susceptibility is 

 

  

 

χm =  µr − 1 =  8751 −  1 =  8750 

 

  (iv)  The magnetization is determined from Equation 20.6 as 

 

  

 

M =  χmH =  (8750)(30 A/m) =  2.63 ×  105  A/m 
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 Magnetic Anisotropy 

 

 20.22  Estimate saturation values of H for single-crystal iron in [100], [110], and [111] directions. 
 
  Solution 

 This problem asks for us to estimate saturation values of H for single crystal iron in the [100], [110], and 

[111] directions.  All we need do is read values of H at the points at which saturation is achieved on the [100], 

[110], and [111] curves for iron shown in Figure 20.17.  Saturation in the [100] direction is approximately 5400 

A/m.  Corresponding values in [110] and [111] directions are approximately 40,000 and 47,000 A/m, respectively. 
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 20.23  The energy (per unit volume) required to magnetize a ferromagnetic material to saturation (E s) is 

defined by the following equation: 

 

Es = µ00

M s∫ H dM  

That is, Es is equal to the product of μ0 and the area under an M versus H curve, to the point of saturation 

referenced to the ordinate (or M) axis—for example, in Figure 20.17 the area between the vertical axis and the 

magnetization curve to Ms. Estimate Es values (in J/m3) for single-crystal nickel in [100], [110], and [111] 

directions. 
 
  Solution 

 In this problem we are asked to estimate the energy required to magnetize single crystals of nickel in [100], 
[110], and [111] directions.  These energies correspond to the products of µ0 and the areas between the vertical axis 

of Figure 20.17 and the three curves for single crystal nickel taken to the saturation magnetization.  For the [100] 

direction this area is about 15.8 × 108 A2/m2. When this value is multiplied by the value of µ0 (1.257 × 10-6 H/m), 

we get a value of about 1990 J/m3.  The corresponding approximate areas for [110] and [111] directions are 9.6 × 

108 A2/m2 and 3.75 × 108 A2/m2, respectively;  when multiplied by µ0 the respective energies for [110] and [111] 

directions are 1210 and 470 J/m3. 
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 Soft Magnetic Materials 

 Hard Magnetic Materials 

 

 20.24  Cite the differences between hard and soft magnetic materials in terms of both hysteresis behavior 

and typical applications. 
 
  Solution 

 Relative to hysteresis behavior, a hard magnetic material has a high remanence, a high coercivity, a high 

saturation flux density, high hysteresis energy losses, and a low initial permeability;  a soft magnetic material, on the 

other hand, has a high initial permeability, a low coercivity, and low hysteresis energy losses. 

 With regard to applications, hard magnetic materials are utilized for permanent magnets;  soft magnetic 

materials are used in devices that are subjected to alternating magnetic fields such as transformer cores, generators, 

motors, and magnetic amplifier devices. 
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 20.25  Assume that the commercial iron (99.95 wt% Fe) in Table 20.5 just reaches the point of saturation 

when inserted within the coil in Problem 20.1. Compute the saturation magnetization. 
 
  Solution 

 We want to determine the saturation magnetization of the 99.95 wt% Fe in Table 20.5, if it just reaches 

saturation when inserted within the coil described in Problem 20.1—i.e., l = 0.20 m, N = 200 turns, and A = 10 A.  It 

is first necessary to compute the H field within this coil using Equation 20.1 as 

 

  

 

Hs  =  
NI
l

=  
(200 turns)(10 A)

0.20 m
=  10,000 A - turns/m 

 

Now, the saturation magnetization may be determined from a rearranged form of Equation 20.5 as 

 

    

 

M s =  
Bs − µ0 Hs

µ0
 

 
The value of Bs in Table 20.5 is 2.14 tesla;  thus, 

 

  

 

M s  =  
(2.14 tesla) − (1.257 × 10−6 H /m)(10,000A /m)

1.257 × 10−6 H /m
 

 

 

=  1.69 ×  106  A/m 
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 20.26  Figure 20.30 shows the B-versus-H curve for a steel alloy. 

 (a) What is the saturation flux density? 

 (b) What is the saturation magnetization? 

 (c) What is the remanence? 

 (d) What is the coercivity? 

 (e) On the basis of data in Tables 20.5 and 20.6, would you classify this material as a soft or hard 

magnetic material? Why? 
 
  Solution 

 The B-versus-H curve of Figure 20.30 is shown below. 

 

 

 

 (a)  The saturation flux density for the steel, the B-H behavior for which is shown in Figure 20.30, is 1.3 

tesla, the maximum B value shown on the plot. 

 (b)  The saturation magnetization is computed from Equation 20.8 as 

 

    

 

M s =
Bs
µ0

 

 

 

=  
1.3 tesla

1.257 × 10−6 H /m
=  1.03 ×  106  A/m 

 
 (c)  The remanence, Br, is read from this plot as from the hysteresis loop shown in Figure 20.14;  its value 

is about 0.80 tesla. 
 (d)  The coercivity, Hc, is read from this plot as from Figure 20.14;  the value is about 80 A/m. 
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 (e)  On the basis of Tables 20.5 and 20.6, this is most likely a soft magnetic material.  The saturation flux 

density (1.3 tesla) lies within the range of values cited for soft materials, and the remanence (0.80 tesla) is close to 
the values given in Table 20.6 for hard magnetic materials.  However, the Hc (80 A/m) is significantly lower than 

for hard magnetic materials.  Also, if we estimate the area within the hysteresis curve, we get a value of 

approximately 250 J/m3, which is in line with the hysteresis loss per cycle for soft magnetic materials. 
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 Magnetic Storage 
 

 20.27  Briefly explain the manner in which information is stored magnetically. 

 

 The manner in which information is stored magnetically is discussed in Section 20.11. 
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 Superconductivity 

 

 20.28  For a superconducting material at a temperature T below the critical temperature TC, the critical 

field HC (T), depends on temperature according to the relationship 

 

 
  

 

HC (T) = HC (0) 1 −
T 2

TC
2

 

 
  

 

 
   (20.14) 

where HC(0) is the critical field at 0 K. 

 (a) Using the data in Table 20.7, calculate the critical magnetic fields for tin at 1.5 and 2.5 K.. 

 (b) To what temperature must tin be cooled in a magnetic field of 20,000 A/m for it to be superconductive? 
 
  Solution 

 (a)  Given Equation 20.14 and the data in Table 20.7, we are asked to calculate the critical magnetic fields 
for tin at 1.5 and 2.5 K.  From the table, for Sn, TC = 3.72 K and BC(0) = 0.0305 tesla.  Thus, from Equation 20.2 

 

    

 

HC (0) =
BC (0)

µ0
 

 

 

=  
0.0305 tesla

1.257 × 10−6 H /m
=  2.43 ×  104  A/m  

 
Now, solving for HC(1.5) and HC(2.5) using Equation 20.14 yields 

 

    

 

HC (T) = HC (0) 1 −
T 2

TC
2

 

 
 
 

 

 
 
 
 

 

  

 

HC (1.5) = (2.43 × 104 A /m) 1 −
(1.5 K)2

(3.72 K)2

 

 
 

 

 
 = 2.03 × 104 A/m 

 

  

 

HC (2.5) = (2.43 × 104 A /m) 1 −
(2.5 K)2

(3.72 K)2

 

 
 

 

 
 = 1.33 × 104 A/m 

 

 (b)  Now we are to determine the temperature to which tin must be cooled in a magnetic field of 20,000 

A/m in order for it to be superconductive.  All we need do is to solve for T from Equation 20.14—i.e.,  
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T =  TC 1 −
HC (T)

HC (0)
 

 
And, since the value of HC(0) was computed in part (a) (i.e., 24,300 A/m), then 

 

  

 

T =  (3.72 K) 1 −
20,000 A/m
24,300 A/m

=  1.56 K  
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 20.29  Using Equation 20.14, determine which of the superconducting elements in Table 20.7 are 

superconducting at 3 K and in a magnetic field of 15,000 A/m. 
 
  Solution 

 We are asked to determine which of the superconducting elements in Table 20.7 are superconducting at 3 

K and in a magnetic field of 15,000 A/m.  First of all, in order to be superconductive at 3 K within any magnetic 

field, the critical temperature must be greater than 3 K. Thus, aluminum, titanium, and tungsten may be eliminated 

upon inspection.  Now, for each of lead, mercury, and tin it is necessary, using Equation 20.14, to compute the 
value of HC(3)—also substituting for HC(0) from Equation 20.3;  if HC(3) is greater than 15,000 A/m then the 

element will be superconductive.  Hence, for Pb 

 

    

 

HC (2) = HC (0) 1 −
T 2

TC
2

 

 
 
 

 

 
 
 

=
BC (0)

µ0
1 −

T 2

TC
2

 

 
 
 

 

 
 
 
 

 

 

=
0.0803 tesla

1.257 × 10−6 H /m
1 −

(3.0 K)2

(7.19 K)2

 

 
 

 

 
 =  5.28 ×  104  A/m  

 

Since this value is greater than 15,000 A/m, Pb will be superconductive. 

 Similarly for Hg 

 

  

 

HC (3)  =
0.0411 tesla

1.257 × 10−6 H /m
1 −

(3.0 K)2

(4.15 K)2

 

 
 

 

 
 =  1.56 ×  104  A/m  

 

Inasmuch as this value is greater than 15,000 A/m, Hg will be superconductive. 

 As for Sn 

 

  

 

HC (3)  =
0.0305 tesla

1.257 × 10−6 H /m
1 −

(3.0 K)2

(3.72 K)2

 

 
 

 

 
 =  8.48 ×  103  A/m 

 

Therefore, Sn is not superconductive. 
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 20.30  Cite the differences between type I and type II superconductors. 
 
  Solution 

 For type I superconductors, with increasing magnetic field the material is completely diamagnetic and 
superconductive below HC, while at HC conduction becomes normal and complete magnetic flux penetration takes 

place.  On the other hand, for type II superconductors upon increasing the magnitude of the magnetic field, the 

transition from the superconducting to normal conducting states is gradual between lower-critical and upper-critical 

fields;  so also is magnetic flux penetration gradual.  Furthermore, type II generally have higher critical temperatures 

and critical magnetic fields. 
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 20.31  Briefly describe the Meissner effect. 
 
  Solution 

 The Meissner effect is a phenomenon found in superconductors wherein, in the superconducting state, the 

material is diamagnetic and completely excludes any external magnetic field from its interior.  In the normal 

conducting state complete magnetic flux penetration of the material occurs. 
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 20.32  Cite the primary limitation of the new superconducting materials that have relatively high critical 

temperatures. 
 
  Solution 

 The primary limitation of the new superconducting materials that have relatively high critical temperatures 

is that, being ceramics, they are inherently brittle. 
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DESIGN PROBLEMS 

 

Ferromagnetism 

 

 20.D1  A cobalt–nickel alloy is desired that has a saturation magnetization of 1.3 × 106 A/m. Specify its 

composition in weight percent nickel. Cobalt has an HCP crystal structure with c/a ratio of 1.623, whereas the 

maximum solubility of Ni in Co at room temperature is approximately 35 wt%. Assume that the unit cell volume for 

this alloy is the same as for pure Co. 
 
  Solution 

 For this problem we are asked to determine the composition of a Co-Ni alloy that will yield a saturation 

magnetization of 1.3 × 106 A/m.  To begin, let us compute the number of Bohr magnetons per unit cell nB for this 

alloy from an expression that results from combining Equations 20.11 and 20.12.  That is 

 

  

 

nB = ′ N VC =
M s VC

µB
 

 
in which Ms is the saturation magnetization, VC is the unit cell volume, and µB is the magnitude of the Bohr 

magneton.  According to Equation 3.S1 (the solution to Problem 3.7), for HCP 

 

  

 

VC  =  6 R2c 3  

 

And, as stipulated in the problem statement, c = 1.623a; in addition, for HCP, the unit cell edge length, a, and the 

atomic radius, R are related as a = 2R.  Making these substitutions into the above equation leads to the following: 

 

  

 

VC  =  6 R2c 3 = 6 R2 (1.623a) 3 = 6 R2 (1.623)(2R) 3  

 

  

 

= 12 R3(1.623) 3  

 

From the inside of the front cover of the book, the value of R for Co is given as 0.125 nm (1.25 × 10-10 m).  

Therefore, 

 

  

 

VC  = (12)(1.25 ×  10-10  m)3(1.623) 3  

 

 

=  6.59 ×  10 -29 m3 
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And, now solving for nB from the first equation above, yields 

 

  

 

nB =  =
M s VC

µB
=

(1.3 × 106 A /m)(6.59 × 10−29 m3 / unit cell)
9.27 × 10−24 A - m2

Bohr magneton

 

 

 

=  9.24  
Bohr magneton

unit cell
 

 

Inasmuch as there are 1.72 and 0.60 Bohr magnetons for each of Co and Ni (Section 20.4), and, for HCP, there are 

6 equivalent atoms per unit cell (Section 3.4), if we represent the fraction of Ni atoms by x, then 

 

  

 

nB =  9.24 Bohr  magnetons/unit cell 

 

  

 

=  
0.60 Bohr magnetons

Ni atom

 

 
 

 

 
 

6 x Ni atoms
unit cell

 

 
 

 

 
 +  

1.72 Bohr magnetons
Co atom

 

 
 

 

 
 

(6) (1 − x) Co atoms
unit cell

 

 
 

 

 
  

 

And solving for x, the fraction of Ni atoms , x = 0.161, or 16.1 at% Ni. 

 In order to convert this composition to weight percent, we employ Equation 4.7 as 

 

  

 

CNi =  
CNi

' ANi

CNi
' ANi + CCo

' ACo

×  100 

 

 

=  
(16.1 at%)(58.69 g/mol)

(16.1 at%)(58.69 g/mol) + (83.9 at%)(58.93 g/mol)
× 100 

 

= 16.0 wt% 
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 Ferrimagnetism 

 

 20.D2  Design a cubic mixed-ferrite magnetic material that has a saturation magnetization of 4.6 × 105 

A/m. 
 
  Solution 

 This problem asks that we design a cubic mixed-ferrite magnetic material that has a saturation 

magnetization of 4.6 × 105 A/m.  From Example Problem 20.2 the saturation magnetization for Fe3O4 is 5.0 × 105 

A/m.  In order to decrease the magnitude of Ms it is necessary to replace some fraction of the Fe2+ with another 

divalent metal ion that has a smaller magnetic moment.  From Table 20.4 it may be noted that Co2+, Ni2+, and 

Cu2+, with 3, 2, and 1 Bohr magnetons per ion, respectively, have fewer than the 4 Bohr magnetons/Fe2+ ion.  Let 

us first consider Co2+ (with 3 Bohr magnetons per ion) and employ Equation 20.13 to compute the number of Bohr 

magnetons per unit cell (nB), assuming that the Co2+ addition does not change the unit cell edge length (0.839 nm, 

Example Problem 20.2).  Thus, 

 

    

 

nB =  
M s a3

µB
 

 

 

=  
(4.6 × 105 A/m)(0.839 × 10−9 m)3/unit cell

9.27 × 10−24 A - m2/Bohr magneton
 

 

= 29.31 Bohr magnetons/unit cell 

 

If we let xCo represent the fraction of Co2+ that have substituted for Fe2+, then the remaining unsubstituted Fe2+ 

fraction is equal to 1 – xCo.  Furthermore, inasmuch as there are 8 divalent ions per unit cell, we may write the 

following expression: 

 

  

 

nB (Co) =  8 3xCo +  4(1 −  xCo)[ ] =  29.31 

 

which leads to xCo = 0.336.  Thus, if 33.6 at% of the Fe2+ in Fe3O4 are replaced with Co2+, the saturation 

magnetization will be decreased to 4.6 × 105 A/m. 

 

 For the cases of Ni2+ and Cu2+ substituting for Fe2+,  the equivalents of the preceding equation for the 

number of Bohr magnetons per unit cell will read as follows: 
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nB (Ni) =  8 2xNi +  4(1 −  xNi)[ ] =  29.31 

 

  

 

nB (Cu) =  8 xCu +  4(1 −  xCu)[ ] =  29.31  

 

with the results that 
 xNi = 0.168 (or 16.8 at%) 

 xCu = 0.112 (11.2 at%) 

will yield the 4.6 × 105 A/m saturation magnetization. 
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CHAPTER 21 

 

OPTICAL PROPERTIES 

 

Electromagnetic Radiation 

 

 21.1  Visible light having a wavelength of 6 × 10-7 m appears orange. Compute the frequency and energy 

of a photon of this light. 
 
  Solution 

 In order to compute the frequency of a photon of orange light, we must use Equation 21.2 as 

 

  

 

ν =
c
λ

=
3 × 108 m/s

6 × 10−7 m
=  5 ×  1014  s-1  

 

Now, for the energy computation, we employ Equation 21.3 as follows: 

 

  

 

E =
hc
λ

=
(6.63 × 10−34 J - s)(3 × 108 m/s)

6 × 10−7 m
 

 

 

=  3.31 ×  10-19  J  (2.07 eV)  



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 Light Interactions with Solids 

 

 21.2 Distinguish between materials that are opaque, translucent, and transparent in terms of their 

appearance and light transmittance. 
 
  Solution 

 Opaque materials are impervious to light transmission;  it is not possible to see through them. 

 Light is transmitted diffusely through translucent materials (there is some internal light scattering).  Objects 

are not clearly distinguishable when viewed through a translucent material. 

 Virtually all of the incident light is transmitted through transparent materials, and one can see clearly 

through them. 
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 Atomic and Electronic Interactions 

 

 21.3  (a) Briefly describe the phenomenon of electronic polarization by electromagnetic radiation. (b) 

What are two consequences of electronic polarization in transparent materials? 
 
  Solution 

 (a)  The phenomenon of electronic polarization by electromagnetic radiation is described in Section 21.4. 

 (b)  Two consequences of electronic polarization in transparent materials are absorption and refraction. 
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 Optical Properties of Metals 

 

 21.4  Briefly explain why metals are opaque to electromagnetic radiation having photon energies within 

the visible region of the spectrum. 
 
  Solution 

 The electron band structures of metals are such that empty and available electron states are adjacent to 

filled states.  Electron excitations from filled to empty states are possible with the absorption of electromagnetic 

radiation having frequencies within the visible spectrum, according to Equation 21.6.  The light energy is totally 

absorbed or reflected, and, since none is transmitted, the material is opaque. 
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 Refraction 

 

 21.5  In ionic materials, how does the size of the component ions affect the extent of electronic 

polarization? 
 
  Solution 

 In ionic materials, the larger the size of the component ions the greater the degree of electronic 

polarization. 
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 21.6  Can a material have an index of refraction less than unity? Why or why not? 
 
  Solution 

 In order for a material to have an index of refraction less than unity, the velocity of light in the material (v) 

would necessarily have to be greater than the velocity of light in a vacuum (Equation 21.7).  This is not possible. 
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 21.7  Compute the velocity of light in calcium fluoride (CaF2), which has a dielectric constant ∈ r of 2.056 

(at frequencies within the visible range) and a magnetic susceptibility of -1.43 × 10-5. 
 
  Solution 

 We want to compute the velocity of light in calcium fluoride given that εr = 2.056 and χm = -1.43 × 10-5.  

The velocity is determined using Equation 21.8;  but first, we must calculate the values of ε and µ for calcium 

fluoride.  According to Equation 18.27 

 

  

 

ε =  εrε0 =  (2.056)(8.85 ×  10-12  F/m) =  1.82 ×  10-11  F/m  

 

Now, combining Equations 20.4 and 20.7 

 

    

 

µ =  µ0 µr = µ0(χm +  1) 

 

 

=  (1.257 ×  10-6  H/m)(1 −  1.43 ×  10-5) =  1.257 ×  10-6  H/m 

 

And, finally, from Equation 21.8 

 

  

 

v =
1
εµ

 

 

 

=  
1

(1.82 × 10−11 F /m)(1.257 × 10−6 H /m)
 

 

 

=  2.09 ×  108  m/s  
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 21.8  The indices of refraction of fused silica and a soda–lime glass within the visible spectrum are 1.458 

and 1.51, respectively. For each of these materials determine the fraction of the relative dielectric constant at 60 Hz 

that is due to electronic polarization, using the data of Table 18.5.  Neglect any orientation polarization effects. 
 
  Solution 

 The frequencies of visible radiation are on the order of 1015 Hz (Figure 21.2).  At these frequencies only 
electronic polarization is operable (Figure 18.34).  Thus, εr from Equation 21.10 is the electronic contribution to εr;  

let us designate it as     

 

εr
' .  Or, in other words 

 

  

 

εr
' =  n2  

 

For fused silica 

 

    

 

εr
' (silica) =  (1.458)2  =  2.13 

 

And, for soda-lime glass 

 

  

 

εr
' (glass) =  (1.51)2  =  2.28  

 

The fraction of the electronic contribution is just the ratio of     

 

εr
'  and εr, where εr values are taken from Table 18.5 

(4.0 and 6.9 for fused silica and soda-lime glass, respectively).  Thus 

 

    

 

εr
' (silica)

εr (60 Hz)
=

2.13
4.0

=  0.53 

 

and 

 

  

 

εr
' (glass)

εr (60 Hz)
=

2.28
6.9

=  0.33  
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 21.9  Using the data in Table 21.1, estimate the dielectric constants for borosilicate glass, periclase 

(MgO), poly(methyl methacrylate), and polypropylene, and compare these values with those cited in the table 

below. Briefly explain any discrepancies. 

 
Material Dielectric Constant 

(1 MHz) 

Borosilicate glass 4.65 

Periclase 9.65 

Poly(methyl methacrylate) 2.76 

Polypropylene 2.30 

 
 
  Solution 

 This problem asks for us, using data in Table 21.1, to estimate the dielectric constants for borosilicate 

glass, periclase (MgO), poly(methyl methacrylate), and polypropylene, and then to compare these values with those 

cited in the table provided, and briefly explain any discrepancies.  From Equation 21.10 

 

    

 

εr  =  n2 

 

Thus, for borosilicate glass, since n = 1.47 

 

    

 

εr  =  (1.47)2  =  2.16  

 

Similarly, for periclase 

 

    

 

εr  =  (1.74)2  =  3.03  

 

And, for PMMA 

 

    

 

εr  =  (1.49)2  =  2.22  

 

For polypropylene 

 

    

 

εr  =  (1.49)2  =  2.22  
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When we compare the values of εr for the polymers with those in the table at frequencies of 1 MHz, there is 

reasonable agreement (i.e., 2.22 versus 2.76 for PMMA, and 2.22 versus 2.30 for polypropylene).  However, for 

borosilicate glass and periclase there are some significant discrepancies (i.e., 2.16 versus 4.65 for the borosilicate 

glass, and 3.03 versus 9.65 for the periclase).  The reason for these discrepancies is that for these two materials an 

ionic component to the dielectric constant is present at 1 MHz, but is absent at frequencies within the visible 

electromagnetic spectrum, which frequencies are on the order 109 MHz (1015 Hz).  These effects may be noted in 

Figure 18.34. 
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 21.10  Briefly describe the phenomenon of dispersion in a transparent medium. 
 
  Solution 

 Dispersion in a transparent medium is the phenomenon wherein the index of refraction varies slightly with 

the wavelength of the electromagnetic radiation. 
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 Reflection 

 

 21.11  It is desired that the reflectivity of light at normal incidence to the surface of a transparent medium 

be less than 6.0%.  Which of the following materials in Table 21.1 are likely candidates: silica glass, Pyrex glass, 

corundum, spinel, polystyrene, and polytetrafluoroethylene?  Justify your selection(s). 
 
  Solution 

 For this problem we want to compute the maximum value of ns in Equation 21.13 that will give R = 0.060.  

Then we are to consult Table 21.1 in order to ascertain which of the materials listed have indices of refraction less 

than this maximum value.  From Equation 21.13 

 

  

 

0.060 =  
(ns − 1)2

(ns +1)2
=  

ns
2 − 2 ns + 1

ns
2 + 2 ns + 1

 

 

or, upon rearrangement 

 

  

 

0.94 ns
2 −  2.12 ns  +  0.94 =  0  

 
The value of ns is determined by using the quadratic equation solution as follows: 

 

  

 

ns =
− (−2.12) ± (− 2.12)2 − (4)(0.94)(0.94)

(2)(0.94)
 

 

 

=
2.12 ± 0.98

1.88
 

 
The two solutions are:  ns(+) = 1.65 and ns(–) = 0.606.  The ns(+) solution is the one that is physically reasonable.  

Thus, of the materials listed, silica glass, Pyrex glass, polystyrene, and PTFE have indices of refraction less than 

1.65, and would be suitable for this application. 
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 21.12  Briefly explain how reflection losses of transparent materials are minimized by thin surface 

coatings. 
 
  Solution 

 The thickness and dielectric constant of a thin surface coating are selected such that there is destructive 

interference between the light beam that is reflected from the lens-coating interface and the light beam that is 

reflected from the coating-air interface;  thus, the net intensity of the total reflected beam is very low. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 21.13  The index of refraction of corundum (Al2O3) is anisotropic. Suppose that visible light is passing 

from one grain to another of different crystallographic orientation and at normal incidence to the grain boundary.  

Calculate the reflectivity at the boundary if the indices of refraction for the two grains are 1.757 and 1.779 in the 

direction of light propagation. 
 
  Solution 

 This problem calls for a calculation of the reflectivity between two corundum grains having different 

orientations and indices of refraction (1.757 and 1.779) in the direction of light propagation, when the light is at 

normal incidence to the grain boundary.  We must employ Equation 21.12 since the beam is normal to the grain 

boundary.  Thus, 

 

  

 

R =  
n2 − n1

n2 + n1

 

 
 

 

 
 

2

 

 

 

=  
1.779 − 1.757
1.779 + 1.757

 

 
 

 

 
 
2

=  3.87 ×  10-5 
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 Absorption 

 

 21.14  Zinc telluride has a band gap of 2.26 eV. Over what range of wavelengths of visible light is it 

transparent? 
 
  Solution 

 This problem asks us to determine the range of visible light wavelengths over which ZnTe (Eg = 2.26 eV) 

is transparent.  Only photons having energies of 2.26 eV or greater are absorbed by valence-band-to-conduction-

band electron transitions.  Thus, photons having energies less than 2.26 eV are not absorbed;  the minimum photon 

energy for visible light is 1.8 eV (Equation 21.16b), which corresponds to a wavelength of 0.7 µm.  From Equation 

21.3, the wavelength of a photon having an energy of 2.26 eV (i.e., the band-gap energy) is just 

 

  

 

λ =  
hc
E

=  
(4.13 × 10−15 eV- s)(3 × 108 m/s)

2.26 eV
 

 

 

=  5.5 ×  10-7  m =  0.55 µm 

 

Thus, pure ZnTe is transparent to visible light having wavelengths between 0.55 and 0.7 µm. 
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 21.15  Briefly explain why the magnitude of the absorption coefficient (β in Equation 21.18) depends on 

the radiation wavelength. 
 
  Solution 

 The magnitude of the absorption coefficient (β in Equation 21.18) depends on the radiation wavelength for 

intrinsic insulators and semiconducting materials.  This is because, for photons having energies less than the band-

gap energy (or in terms of wavelength, when 

    

 

λ >
h c
Eg

), photon absorption due to valence-band-to-conduction-band 

electron transitions are not possible, and, therefore, the value of β will be relatively small.  On the other hand, when 

photons having energies equal to or greater than the band gap energy (i.e., when 

    

 

λ ≤
h c
Eg

) these electron transitions 

by the absorption of photons will occur with the result that the magnitude of β will be relatively large. 

 In addition, there may be impurity levels that lie within the band gap (Section 21.7) from or to which 

electron excitations may occur with the absorption of light radiation at specific wavelengths. 
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 21.16  The fraction of nonreflected radiation that is transmitted through a 10-mm thickness of a 

transparent material is 0.90. If the thickness is increased to 20 mm, what fraction of light will be transmitted? 
 
  Solution 

 In this problem we are asked to calculate the fraction of nonreflected light transmitted through a 20-mm 

thickness of transparent material, given that the fraction transmitted through a 10-mm thickness is 0.90. From 

Equation 21.18, the fraction of nonreflected light transmitted is just     

 

IT
' / I0

' .  Using this expression we must first 

determine the value of β;  this is possible by algebraic manipulation of Equation 21.18.  Dividing both sides of the 

equation by     

 

I0
' , and then taking natural logarithms leads to 

 

    

 

ln
IT

'

I0
'

 

 

 
  

 

 

 
  

= −βx  

 

Now solving for β and also incorporating values for     

 

IT
' / I0

'  and x provided in the problem statement gives 

 

    

 

β = −
1
x

ln
IT
'

I0
'

 

 

 
 

 

 

 
 
 

 

 

=  −  
1

10 mm

 

 
 

 

 
 ln (0.90) =  1.05 ×  10-2 mm-1 

 

And computation of     

 

IT
' / I0

'  when x = 20 mm (Equation 21.18) is as follows: 

 

    

 

IT
'

I0
'

=  exp (− βx)  

 

 

=  exp −(1.05 × 10−2 mm−1)(20 mm)[ ]=  0.81 
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 Transmission 

 

 21.17  Derive Equation 21.19, starting from other expressions given in the chapter. 
 
  Solution 

 The problem asks that we derive Equation 21.19, which is 

 

    

 

IT  =  I0(1 − R)2  e−βl  

 
If we examine Figure 21.7, at the front (or left) interface, some of the incident beam having intensity I0 is reflected.  

Since IR = I0R at this surface, then  

 

    

 

IT
' =  I0 −  I0R =  I0(1 − R)  

 

in which     

 

IT
'  is the intensity of the nonreflected beam at the front surface that is transmitted. 

 Now there will be absorption of this transmitted beam as it passes through the solid and transparent 

medium according to Equation 21.18. Just inside the back (or right) interface, the beam has passed through a 

thickness l of this material (x = l) and, therefore, the intensity of the transmitted beam at this point     

 

(IT
'' )  is just 

 

    

 

IT
'' =  I0(1 − R) e-βl  

 

 Finally, a second reflection will occur at the back interface as the beam passes out of the medium.  The 

intensity of the reflected beam     

 

(IR
'' )  is just 

 

    

 

IR
'' =  I T

'' R = I0R(1 − R) e-βl  

 
And the intensity of the final transmitted beam (IT) becomes 

 

    

 

IT =  IT
'' − IR

''  

 

    

 

= I0(1 − R) e-βl − I0R(1 − R) e-βl 

 

    

 

= I0(1 − R)2 e-βl  
 

which is Equation 21.19, the desired expression. 
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 21.18  The transmissivity T  of a transparent material 20 mm thick to normally incident light is 0.85. If the 

index of refraction of this material is 1.6, compute the thickness of material that will yield a transmissivity of 0.75. 

All reflection losses should be considered. 
 
  Solution 

 We are asked to compute the thickness of material to yield a transmissivity of 0.75 given that T is 0.85 

when l = 20 mm, n = 1.6, and for normally incident radiation.  The first requirement is that we calculate the value of 

β for this material using Equations 21.13 and 21.19.  The value of R is determined using Equation 21.13 as 

 

  

 

R =  
(ns − 1)2

(ns +1)2
 

 

 

=  
(1.6 − 1)2

(1.6 + 1)2
=  5.33 ×  10-2  

 
Now, it is necessary to compute the value of β using Equation 21.19.  Dividing both sides of Equation 21.19 by I0(1 

– R)2 leads to 

 

    

 

IT

I0 (1 − R)2
= e-βl  

 

And taking the natural logarithms of both sides of this expression gives 

 

    

 

ln
IT

I0 (1 − R)2

 

 
 
 

 

 
 
 

= −βl  

 

and solving for β we get 
 

    

 

β = −
1
l

ln 
IT

I0 (1 − R)2

 

 
 
 

 

 
 
 
 

 
Since the transmissivity is T is equal to IT/I0, then the above equation takes the form 

 

    

 

β = −
1
l

ln 
T

(1 − R)2
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Using values for l and T provided in the problem statement, as well as the value of R determined above, we solve 

for β as 

 

 

β =  −
1

20 mm

 

 
 

 

 
 ln 

0.85

(1 − 5.33 × 10−2)2

 

 
 

 

 
 =  2.65 ×  10-3  mm-1  

 

Now, solving for l when T = 0.75 using the rearranged form of Equation 21.19 above 

 

  

 

l = −
1
β

ln 
T

(1 − R)2

 

 
 

 

 
  

 

 

=  −
1

2.65 × 10−3 mm−1
ln 

0.75

(1 − 5.33 × 10−2)2

 

 
 

 

 
  

 

= 67.3 mm 
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 Color 

 

 21.19  Briefly explain what determines the characteristic color of (a) a metal and (b) a transparent 

nonmetal. 
 
  Solution 

 (a)  The characteristic color of a metal is determined by the distribution of wavelengths of the nonabsorbed 

light radiation that is reflected. 

 (b)  The characteristic color of a transparent nonmetal is determined by the distribution of wavelengths of 

the nonabsorbed light radiation that is transmitted through the material. 
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 21.20  Briefly explain why some transparent materials appear colored while others are colorless. 
 
  Solution 

 For a transparent material that appears colorless, any absorption within its interior is the same for all visible 

wavelengths.  On the other hand, if there is any selective absorption of visible light (usually by electron excitations), 

the material will appear colored, its color being dependent on the frequency distribution of the transmitted light 

beam. 
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 Opacity and Translucency in Insulators 

 

 21.21  Briefly describe the three absorption mechanisms in nonmetallic materials. 

 

 The three absorption mechanisms in nonmetallic materials involve electronic polarization, electron 

transitions, and scattering.  Electronic polarization is described in Section 21.4;  absorption by electron transitions is 

discussed in Sections 21.4 and 21.7;  and scattering is discussed in Section 21.10. 
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 21.22  Briefly explain why amorphous polymers are transparent, while predominantly crystalline polymers 

appear opaque or, at best, translucent. 
 
  Solution 

 Amorphous polymers are normally transparent because there is no scattering of a light beam within the 

material.  However, for semicrystalline polymers, visible light will be scattered at boundaries between amorphous 

and crystalline regions since they have different indices of refraction.  This leads to translucency or, for extensive 

scattering, opacity, except for semicrystalline polymers having very small crystallites. 
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 Luminescence 

 Photoconductivity 

 Lasers 

 

 21.23  (a) In your own words describe briefly the phenomenon of luminescence. 

 (b) What is the distinction between fluorescence and phosphorescence? 
 
  Solution 

 (a)  The phenomenon of luminescence is described in Section 21.11. 

 (b)  The feature that distinguishes fluorescence from phosphorescence is the magnitude of the time interval 

between photon absorption and reemission events.  Fluorescence is for delay times less than a second;  

phosphorescence occurs for longer times. 
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 21.24  In your own words, briefly describe the phenomenon of photoconductivity. 

 

 The phenomenon of photoconductivity is explained in Section 21.12. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 21.25  Briefly explain the operation of a photographic lightmeter. 
 
  Solution 

 A photographic light meter is used to measure the intensity of incident light radiation.  Each photon of 

incident light induces a valence-band-to-conduction band electron transition in which both electrons and holes are 

produced, as depicted in Figure 21.5a.  The magnitude of the photoinduced current resulting from these transitions 

is registered, which is proportional to the numbers of electrons and holes, and thus, the number of incident photons, 

or, equivalently, the intensity of the incident light radiation. 
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 21.26 In your own words, describe how a ruby laser operates. 

 

 Section 21.13 contains a description of the operation of a ruby laser. 
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 21.27  Compute the difference in energy between metastable and ground electron states for the ruby laser. 
 
  Solution 

 This problem asks for the difference in energy between metastable and ground electron states for a ruby 

laser.  The wavelength of the radiation emitted by an electron transition from the metastable to ground state is cited 

as 0.6943 µm.  The difference in energy between these states, ∆E, may be determined from a combined form of 

Equations 21.6 and 21.2, as 

 

    

 

∆E =  hν =
hc
λ

 

 

 

=  
(4.13 × 10−15 eV- s)(3 × 108 m/s)

6.943 × 10−7 m
 

 

= 1.78 eV 
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 Optical Fibers in Communications 

 

 21.28  At the end of Section 21.14 it was noted that the intensity of light absorbed while passing through a 

16-kilometer length of optical fiber glass is equivalent to the light intensity absorbed through for a 25-mm thickness 

of ordinary window glass. Calculate the absorption coefficient β of the optical fiber glass if the value of β for the 

window glass is 5 × 10–4 mm–1. 
 
  Solution 

 This problem asks for us to determine the value of the absorption coefficient for optical fiber glass given 

that β for window glass is 5 × 10-4 mm-1;   furthermore,  the intensity of nonabsorbed light transmitted through a 

25-mm thickness of window glass is equivalent to the nonabsorbed light transmitted through a 16-km length of the 

optical fiber material.  Using Equation 21.18, it is first necessary to compute the fraction of light transmitted 

through the window glass—i.e., 

    

 

IT
'

I0
'

.  Thus 

 

    

 

IT
'

I0
'

= e−βx  

 

  

 

 =   e−  (5  ×  10−4 mm−1)(25 mm) = 0.9876  

 

Now, solving for β from Equation 21.18 leads to 

 

    

 

β = −
1
x

ln
IT

'

I0
'

 

 

 
  

 

 

 
  
 

 

And substitution into this expression the above value for 

    

 

IT
'

I0
'

 (0.9876) as well as parameters for the optical fiber 

glass—x = 16 km = 16 × 103 m = 16 × 106 mm—yields 

 

 

β = −
1

16 ×106 mm
ln (0.9876) = 7.80 × 10−10 mm−1  
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DESIGN PROBLEM 

 

Atomic and Electronic Interactions 

 

 21.D1  Gallium arsenide (GaAs) and gallium phosphide (GaP) are compound semiconductors that have 

room-temperature band gap energies of 1.42 and 2.25 eV, respectively, and form solid solutions in all proportions. 

Furthermore, the band gap of the alloy increases approximately linearly with GaP additions (in mol%). Alloys of 

these two materials are used for light-emitting diodes wherein light is generated by conduction band-to-valence 

band electron transitions. Determine the composition of a GaAs–GaP alloy that will emit orange light having a 

wavelength of 0.60 μm. 
 
  Solution 

  This problem stipulates that GaAs and GaP have room-temperature band gap energies of 1.42 and 2.25 

eV, respectively, that they form solid solutions in all proportions, that alloys of these two semiconductors are used 

for light-emitting diodes wherein light is generated by conduction band-to-valence band electron transitions, and 

that the band gap of a GaAs-GaP alloy increases approximately linearly with GaP additions (in mol%).  We are 

asked to determine the composition of an alloy that will emit red light having a wavelength of 0.60 µm.  It first 

becomes necessary to compute the band-gap energy corresponding to this wavelength of light using Equation 21.3 

as 

 

    

 

Eg =
hc
λ

 

 

 

=  
(4.13 × 10−15 eV- s)(3 × 108 m/s)

0.60 × 10−6 m
=  2.065 eV  

 
Realizing that at 0 mol% GaP, Eg = 1.42 eV, while at 100 mol% GaP, Eg = 2.25 eV, it is possible to set up the 

relationship 

 

  

 

100 mol% − CGaP

100 mol% − 0 mol%
=  

2.25 eV − 2.065 eV
2.25 eV − 1.42 eV

 

 
Solving for CGaP, the composition of GaP, we get CGaP = 77.7 mol%. 

 


	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21

