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Learning Outcomes

 Convert a Transfer Function to State-Space
Representation.

 Convert a State-Space Representation to a Transfer
Function Model.

« Linear Approximation of Nonlinear Mathematical
Models




Lesson #1: Transfer Function to
State-Space Representation




Conversion a Transfer Function

to State-Space Representation:
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* As previously remarked, a mathematical model of the
system’s differential equation to a transfer function
algebraically relates a representation of the output to
a representation of the input, H(s).

« This approach is known as classical or frequency- ‘ 3
domain technique.

* In this module, we will explore the conversion of a
transfer function model of the system to state-space
representation with an example of 2"%-order
differential equation to get started. Later, we'll
8eneralyze this approach to include n'-order

ifferential equations.

* Also, we will use the tf2ss(num, den) function in
MATLAB® where num is the numerator polynomial
and the den is the denominator polynomial of the
transfer function H (s), respectively.
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Conversion a Transfer Function
to State-Space Representation? . A

» A major advantage of the classical approach is that
they rapidly provide stability and transient
response information.

» We can immediately see the effects of varying
system parameters until an acceptable design is
met (See Module #6 for detailed information).

* The primary disadvantage of the classical
approach is that it can be applied only to linear, . :
time-invariant (LTl) systems (or systems that can Sy 1 TN
be approximated as LTI). il T
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Transfer Function
Model of the
Translational
Mechanical
System — An
Example.

« In Module #2, we have the differential equation (DE) of a

Translational Mechanical System as:

mi(t) + kx(t) +dx(t) = f(t)

* Suppose that we have a constant input function f(t) = F,, and the

initial displacement is x, = 0 and the initial velocity is xy = 0; if we
apply the Laplace transform on both sides as (check the Laplace
Transform Table):

m[s?X(s) — %o — Aol + kX(s) + d[sX(s) — o] = Fo

$2X(s) + (/m) X(5) + (Y/m) sX(s) = 2
X(s) .
H(s) = > = m

FO (52 + (Ym)s + (/m) )



Transfer Function
Model of the
Translational
Mechanical
System — An
Example.

Where: 2 |s the numerator polynomial and, the s(s + (%) s +

("/m)) is the denominator polynomial of the transfer function of the
Translational Mechanical System.

* So, to convert a transfer function to state-space representation, we
start with the 2"d-orden linear differential equation; and then
determine the transfer function, H(s).

« For the implementation in the MATLAB®, we will define the variables
num and den as follows:

Fo
num = — - —
m

den = (52 +(Ym) s+ (k/m)) >[1 (Ym) (Km))



Transfer Function
Model of the
Translational
Mechanical
System — An
Example.

So, the state-space model is formed by state equations:
x =Ax + Bu

11“

.

And the output equation, vy, is:
y =Cx+ Du

A
|
There are two energy storage elements, so we expect two state

equations. The energy storage elements are the spring, k, the
mass, m. Therefore, we choose as our state variables x (the energy

in spring is Z ky?), and the velocity of mass, y (the energy in the
mass m is Emvz’ where v is the first derivative of y):




Transfer Function
Model of the
Translational
Mechanical
System — An
Example.

() = —(/m)y(©) = /m)y® +—f(&)  Eq.(5-1)

| Lo

X2 =Y x1 =y u=f(t)

* Inthe Eq. (5-1), we picked y(t) and its derivatives to express the

differential equation, since x is already a state variable; then,
choosing the state variables x; and x, as defined above, and
differentiating both sides yields:

X, = y Eq (5'2)

 Now, substituting the definitions of Eq. (5-2) and Eq. (5-3) into Eq. (5-

1), the state equations are evaluated as:

Xy = —(d/m)xz - (k/m)x1 + %u

S Xy = —(k/m)x1 — (d/m)xz + (1/771)“
Eq. (5-4)



Transfer Function
Model of the
Translational
Mechanical
System — An
Example.

* In vector-matrix form, Eq. (5-4) become:

% 0 1 Xy
L'Cz] B [—(k/m) —(d/m)] lle " [(1;)m)] !
Eq. (5-9)
* And the output equation, y, is:
[1 0] [ ] Eq. (5-6)

* In the MATLAB®: A numerical example is available in the

files of this module titled as “mass_spring_damper.m” in

Blackboard using the built-in tf2ss(num, den) function. A
plot of the response using this technique is shown in the
next slide.



Transfer

Function
Model of the
Translational
Mechanical

System — Plot.
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« To represent a general, n'-order, linear differential equation with
constant coefficients, a; and by, in state- space representation, we
consider the differential equation in the form:

Transfer Function to

dr dn? d
State-Space i s g+ S gy (©) = bou(y
'  An appropriate way to choose state variables is to choose the
Representatlon _ output, y(t), and its (n — 1) derivatives as the state variables.
General |Z| ng tO nth_ Dropping the time, t, this become:
n n—1

O d L u:_an—ld _y_ —alﬂ—a0y+b0u

rder Linear den den-1 dt |
Differential X u

' \’ 1=y
Equations. eyt lw
n dtn n-— dtn—1 2 dt

Eq. (5-7)



Transfer Function to
State-Space
Representation —
Generalizing to n™-
Order Linear
Differential
Equations.

« Then, differentiating both sides of Eq. (5-7), yields:
dy

T de
d?y

T de?
d3y

=. -

X1
X,
X3
vy
Xp = I

Eq. (5-8)

* Substituting the definitions of Eq. (5-7) and Eq. (5-8) into Eq. (5-1),
the state equations are evaluated as:



X1 = X
Xy = X3

Transfer Function to =
State-Space R o SO
Representation —

Generalizing to ntn-

* In vector-matrix form, Eq. (5-9) become:

Order Linear “ fo 0 1 0 o0 o0 - o
; : 2 0 0 0 1 0 0 - 0
Differential ol

" . 0 0 0 0 0
Equatlons - |—0y —aq4 —a —az —a4 —as - —Anp_qlL

Eq. (5-9)
X1 0
X9 0
e
Xn-1 0
Xn 1 Lbg.




Transfer Function to
State-Space
Representation —
Generalizing to n™-
Order Linear
Differential
Equations.

 And the output equation, y, become:

y=[1 0 0 -

0]

Eq. (5-11)



Remember: The dynamics of many systems, whether they are
mechanical, electrical, thermal, economic, biological, and so on, may
be described in terms of;

Differential Equation Transfer Function Or State Space
Model Model Model




Lesson #2:

Conversion State-Space to Transfer
Function Representation




Conversion of State-Space to
Transfer Function Representation

- fr
Vil o) Vo b =X ux

& 3bt e (éy “; b ' '« Next, we'll focus on how to derive the transfer
,1J7~ﬂ) 2 &7’52 e « o\ function of a single-input, single-output (SISO)
SR as,, e ﬁL ~system from the state-space equations.

j * Let us consider the system whose transfer function
4 is given by:

Y(s)
‘=56 Eq. (5-12)




. Conversion of State-Space to
% [ransfer Function Representation

"+ This system may be represented in state space by the following

i e equations:
af X (Mo
Cx 41 b o il - —
*,wiif’ T T 2 = Av Bu Eq. (5-13)
3+ n¥ (X% 36x -4 A y = Cx + Du G
D =

 The Laplace Transforms of Eq. (5-12) and (5-13) are given by:

sX(s) —x(0) = AX(s) + BU(s)

Y(s) = CX(s) + DU(s)  Eq.(5-14)




— ~ Conversion of State-Space to
P Bl N, Transfer Function Representation

2+ &.3164¥F
L
- /-——-'"'—’— (
(20 V&bt =X ux s

C [.k, V) ‘ | ‘

L 5 ’c
bt4c (@ v ' . | 0
¢ R y

T8 2pex ,oy3 g &3 Y sX(s) — x€0) = AX(s) + BU(s)
- sX(s) — AX(s) = BU(s)

'.- ~
(x) =S

-+ In Eq. (5-14), we set x(0) to be zero; then, we have:

// 5% oo (o
S Jdbel & . 5

et = F8L 4 g3 (x4 36x -+ i

e Pre-multiplying (sI — A)~* to both sides of Eq. (5-15), we
obtain:
(sl —A) (sl —A)X(s) = (s] — A)IBU(s)

- X(s) = (s —A)"1BU(s) Eq. (5-16)




~ Conversion of State-Space to
« |ransfer Function Representation

\ + Theoutput Y(s) can be found by substituting Eq. (5-16) into
- Eq. (5-14):

e Y @ N - Y(s)=[C(sI—A)"'B+D]U(s)
f T 2ftx A5 : Eq. (5-17)

W Syl L e : _ _
7 et = CFL 4 (ol '+ Comparing Eq. (5-17) with Eq. (5-12), we see that the transfer
55047 & . function of the system, G (s), is:

- G(s) = [C(s] — A)~'B + D] Eq. (5-18)

* In Blackboard, download a file titled “State Space to Transfer
. Function Examples” to have access to a numerical examples on
the application of the Eq. (5-18). Also, there is a file available in
- _, the files of this module titled as “ss_2_tf.m" in Blackboard using
R the built-in ss2tf(A,B,C,D) function.

PRELLEDSSY /-




~ Linear Approximation of Nonlinear
« Mathematical Models

* In practice, many electromechanical systems,
hydraulic systems, pneumatic systems, and so on,
Involve non-linear relationships among the variables.

,;_W / 2¢ : "9,{52 , . 2% N . |
CC ;5 ‘f’ ‘fé‘ e * |f such system operates around an equilibrium point
/22t 7 ‘

M o L e | and if the signals involved are small signals, then it is
meut = Y84 410 (\ - possible to approximate the nonlinear system by a
linear system that works within a limited operating
range.

* The linearization procedure is based on the
expansion of nonlinear function into a Taylor series

| about the operating point and the retention of only the
T, linear term.




Linear Approximation of Nonlinear
Mathematical Models

~ ~ « The higher-order terms neglected terms in Taylor
series must be small enough; that is, the variables

deviate only slightly from the operating condition.
7 D itk L SHS =P

= %W 5t o e %t In summary, to obtain a linear approximation to the
' nonlinear system, we will expand the equations that
- represent the system into a Taylor series about the
normal operating point.




~ Linear Approximation of Nonlinear
« Mathematical Models

- * The Taylor series expansion of nonlinear function is as follows:

~ )] /'.(‘
c(> V)

d d
y = (X1, %) + [% (x1 —X1) + —f(xz — X3)
1

2f X 4_“"'#“62f I 02
Ca /qu‘/'/ /d) < 4\.- -
et = 5’ 4 -t‘-l/\""’ (r)(( 1 azf azf
p K ‘(o) 4 — \2 — —
— +—— (x4 — X + 2 X1 —X1) (x>, — X
n o1 axf( 1 1) axlaxz( 1 1)( 2 2)
+62f( )2 | +
— x _x o0
dx2 2 2

where the partial derivatives are evaluated at x; = x;and x, = X,.

Near the normal operating point, the higher-order terms may be

ﬁ neglected. The linear mathematical model of this nonlinear system
oy about the normal operating condition is then given by:




— ~ Linear Approximation of Nonlinear
e . Vathematical Models

2+ &.3164¥F

r—i( ‘s(/) -5 x
-

(/74? /”E’Tz:f—:x‘,ux _ | -~ '_ ’ y—y =alx; —x1) +b(x; — x;)

& abt4e @

y = f(x, %)

A~ b |
T 262x a8
CW B354t LD EEREC q = daf |
2 ot . -~ — 5. Ilxqi=x{x,—x%
et 5’(})4 + Y ( )(“){ ‘(" d Ox, FrTr¥uXeTX2
. P
0 ' ;.; And
- ,"" _ af
T e

© 0« Asan example, we linearize the nonlinear equation z = xy inthe
. region5 < x >7,10 <y = 12; and find the error if the

\ ' linearized equation is used to calculate the value of z when x = 5,
oy y = 10.




Linear Approximation of Nonlinear
Mathematical Models

‘ -+ Since the region considered isgivenby 5 <x>7,10<y >
' 12, we can choose X = 6,and y = 11 as the operating point.
Then, we obtain a linearized equation for the nonlinear equation
nearapointx = 6,and y = 11.

4

7 ) 4/fx4<>3~752f—;"5 . . . : :
fc W sl P e 1. * Expanding the nonlinear equation into a Taylor series about point

X = X, and y = y and neglecting the higher-order terms, we have:

z—zZ=a(x—x)+bly—%¥)
7=xy = (6)(11) = 66

_0(xy) _

— ax |Xx,yy y=11
d(x

b = () =xXx=6

3y |x=%, y =y



~ Linear Approximation of Nonlinear
« Mathematical Models

-« Then, the linearized equation is:
3 z—66=11(x —6) + 6(y —11) or

3¢ ; 2, 2 > - -
Sh X oA z=11x + 6y — 66

Cx 93h¢t Lo E: . L
Mo = PP 5 L aw T b When.x =5 and y = 10, the value of z given by the linearized
J¢4. + 1 (\X% A & cquation is:
O N z=11x + 6y — 66
= 11(5) + 6(10) — 66 = 49

"« Theexactvalue of z = xy = (5)(10) = 50. So, the erroris
* e =50—49 = 1. Interms of percentage, the error is 2%.
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