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Learning Outcomes

• Convert a Transfer Function to State-Space
Representation.

• Convert a State-Space Representation to a Transfer 
Function Model.

• Linear Approximation of Nonlinear Mathematical 
Models



Lesson #1:  Transfer Function to 
State-Space Representation 



Conversion a Transfer Function 
to State-Space Representation:

• As previously remarked, a mathematical model of the 
system’s differential equation to a transfer function 
algebraically relates a representation of the output to 
a representation of the input, 𝐻(𝑠).  

• This approach is known as classical or frequency-
domain technique.

• In this module, we will explore the conversion of a 
transfer function model of the system to state-space
representation with an example of 2nd-order 
differential equation to get started.  Later, we’ll 
generalize this approach to include nth-order 
differential equations.

• Also, we will use the tf2ss(num, den) function in 
MATLAB® where num is the numerator polynomial 
and the den is the denominator polynomial of the 
transfer function 𝐻 𝑠 , respectively.



Conversion a Transfer Function 
to State-Space Representation:

• A major advantage of the classical approach is that 
they rapidly provide stability and transient 
response information. 

• We can immediately see the effects of varying 
system parameters until an acceptable design is 
met (See Module #6 for detailed information).

• The primary disadvantage of the classical 
approach is that it can be applied only to linear, 
time-invariant (LTI) systems (or systems that can 
be approximated as LTI).



Transfer Function 
Model of the 
Translational 
Mechanical 
System – An 
Example.

• In Module #2, we have the differential equation (DE) of a 
Translational Mechanical System as:

• Suppose that we have a constant input function 𝑓 𝑡 = 𝐹0, and the 
initial displacement is 𝑥0 = 0 and the initial velocity is  ሶ𝑥0 = 0; if we 
apply the Laplace transform on both sides as (check the Laplace 
Transform Table):

𝑚 ሷ𝑥 𝑡 + 𝑘𝑥 𝑡 + 𝑑 ሶ𝑥 𝑡 = 𝑓 𝑡

𝑚 𝑠2𝑋 𝑠 − 𝑥0𝑠 − ሶ𝑥0 + 𝑘𝑋 𝑠 + 𝑑 𝑠𝑋 𝑠 − 𝑥0 = 𝐹0

𝑠2𝑋 𝑠 + Τ𝑘 𝑚 𝑋 𝑠 + Τ𝑑 𝑚 𝑠𝑋 𝑠 =
𝐹0

𝑚

𝐻 𝑠 =
𝑋 𝑠

𝐹 𝑠
=

𝐹0
𝑚

𝑠2 + ൗ𝑑 𝑚 𝑠 + ൗ𝑘 𝑚



Transfer Function 
Model of the 
Translational 
Mechanical 
System – An 
Example.

Where: 
𝐹0

𝑚
is the numerator polynomial and, the s൫

൯

𝑠2 + Τ𝑑 𝑚 𝑠 +

Τ𝑘 𝑚 is the denominator polynomial of the transfer function of the 
Translational Mechanical System.

• So, to convert a transfer function to state-space representation, we 

start with the 2nd-orden linear differential equation; and then 

determine the transfer function, 𝐻(𝑠).

• For the implementation in the MATLAB®, we will define the variables 
num and den as follows: 

den = 𝑠2 + ൗ𝑑 𝑚 𝑠 + ൗ𝑘 𝑚 → 1 ൗ𝑑 𝑚 ൗ𝑘 𝑚

𝑛𝑢𝑚 =
𝐹0
𝑚

→
𝐹0
𝑚



Transfer Function 
Model of the 
Translational 
Mechanical 
System – An 
Example.

• So, the state-space model is formed by state equations:

• And the output equation, 𝑦, is:

• There are two energy storage elements, so we expect two state 
equations. The energy storage elements are the spring, 𝑘, the 
mass, m. Therefore, we choose as our state variables 𝑥 (the energy 

in spring is 
1

2
𝑘𝑦2), and the velocity of mass, ሶ𝑦 (the energy in the 

mass 𝑚 is 
1

2
𝑚𝑣2, where 𝑣 is the first derivative of 𝑦):

ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢

𝑥 → 𝑦

ሶ𝑥 → ሶ𝑦

𝑢 → 𝑓(𝑡)

𝑦 = 𝑪𝑥 + 𝑫𝑢

𝑥 → 𝑦

𝑢 → 𝑓(𝑡)



Transfer Function 
Model of the 
Translational 
Mechanical 
System – An 
Example.

ሷ𝑦 𝑡 = − Τ𝑑 𝑚 ሶ𝑦 𝑡 − Τ𝑘 𝑚 𝑦 𝑡 +
1

𝑚
𝑓 𝑡 Eq. (5-1)

• In the Eq. (5-1), we picked y(𝑡) and its derivatives to express the 
differential equation, since 𝑥 is already a state variable; then, 
choosing the state variables 𝑥1 and 𝑥2 as defined above, and
differentiating both sides yields:

ሶ𝑥1 = ሶ𝑦 Eq. (5-2)

ሶ𝑥2 = ሷ𝑦 Eq. (5-3)

• Now, substituting the definitions of Eq. (5-2) and Eq. (5-3) into Eq. (5-
1), the state equations are evaluated as:

Eq. (5-4)

𝑥1 = 𝑦𝑥2 = ሶ𝑦 𝑢 = 𝑓(𝑡)

∴ ሶ𝑥2 = − ൗ𝑘 𝑚 𝑥1 − ൗ𝑑 𝑚 𝑥2 + ൗ1 𝑚 𝑢

ሶ𝑥2 = − ൗ𝑑 𝑚 𝑥2 − ൗ𝑘 𝑚 𝑥1 +
1

𝑚
𝑢



Transfer Function 
Model of the 
Translational 
Mechanical 
System – An 
Example.

• In vector-matrix form, Eq. (5-4) become:

Eq. (5-5)
• And the output equation, 𝑦, is:

𝑦 = 1 0
𝑥1
𝑥2

Eq. (5-6)

• In the MATLAB® : A numerical example is available in the 
files of this module titled as “mass_spring_damper.m” in 
Blackboard using the built-in tf2ss(num, den) function.  A 
plot of the response using this technique is shown in the 
next slide.

ሶ𝑥1
ሶ𝑥2

=
0 1

− ൗ𝑘 𝑚 − ൗ𝑑 𝑚

𝑥1
𝑥2

+
0
ൗ1 𝑚

𝑢



Transfer 
Function 
Model of the 
Translational 
Mechanical 
System – Plot.



Transfer Function to 
State-Space
Representation –
Generalizing to nth-
Order Linear 
Differential 
Equations. 

• To represent a general, nth-order, linear differential equation with 
constant coefficients, 𝑎𝑖 and 𝑏0, in state- space representation, we 
consider the differential equation in the form:

• An appropriate way to choose state variables is to choose the 
output, 𝑦(𝑡), and its (𝑛 − 1) derivatives as the state variables.  
Dropping the time, 𝑡, this become:

Eq. (5-7)

𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑎1

𝑑𝑦 𝑡

𝑑𝑡
+ 𝑎0𝑦(𝑡) = 𝑏0𝑢(t)

𝑑𝑛𝑦

𝑑𝑡𝑛
= −𝑎𝑛−1

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
− ⋯ − 𝑎1

𝑑𝑦

𝑑𝑡
− 𝑎0𝑦 + 𝑏0𝑢

𝑥1 = 𝑦

𝑥2 =
𝑑𝑦

𝑑𝑡

𝑢

𝑥𝑛−1 =
𝑑𝑛−1𝑦

𝑑𝑡𝑛−1𝑥𝑛 =
𝑑𝑛𝑦

𝑑𝑡𝑛



Transfer Function to 
State-Space
Representation –
Generalizing to nth-
Order Linear 
Differential 
Equations. 

• Then, differentiating both sides of Eq. (5-7), yields:

Eq. (5-8)

• Substituting the definitions of Eq. (5-7) and Eq. (5-8) into Eq. (5-1), 
the state equations are evaluated as:

ሶ𝑥1 =
𝑑𝑦

𝑑𝑡

ሶ𝑥2 =
𝑑2𝑦

𝑑𝑡2

ሶ𝑥3 =
𝑑3𝑦

𝑑𝑡3

⋮

ሶ𝑥𝑛 =
𝑑𝑛𝑦

𝑑𝑡𝑛



Transfer Function to 
State-Space
Representation –
Generalizing to nth-
Order Linear 
Differential 
Equations. 

Eq. (5-9)
• In vector-matrix form, Eq. (5-9) become:

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝑥3
ሶ𝑥3 = 𝑥4
⋮

ሶ𝑥𝑛−1 = 𝑥𝑛
𝑥𝑛 = −𝑎0𝑥1 − 𝑎1𝑥2 − 𝑎2𝑥3⋯𝑎𝑛−1𝑥𝑛 + 𝑏0𝑢

Eq. (5-10)

ሶ𝑥1
ሶ𝑥2
ሶ𝑥3
⋮
ሶ𝑥𝑛

=

0 1 0 0 0 0 ⋯ 0
0 0 1 0 0 0 ⋯ 0
0 0 0 1 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0 0 ⋯ 1

−𝑎0 −𝑎1 −𝑎2 −𝑎3 −𝑎4 −𝑎5 ⋯ −𝑎𝑛−1

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−1
𝑥𝑛

+

0
0
0
⋮
0
𝑏0

𝑢



Transfer Function to 
State-Space
Representation –
Generalizing to nth-
Order Linear 
Differential 
Equations. 

• And the output equation, 𝑦, become:

Eq. (5-11)𝑦 = 1 0 0 ⋯ 0

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−1
𝑥𝑛



Differential Equation 

Model

Transfer Function 

Model

State Space

Model

Remember: The dynamics of many systems, whether they are 
mechanical, electrical, thermal, economic, biological, and so on, may 
be described in terms of:

Or



Lesson #2: 

Conversion State-Space to Transfer 
Function Representation



Conversion of State-Space to 
Transfer Function Representation

• Next, we’ll focus on how to derive the transfer 
function of a single-input, single-output (SISO) 
system from the state-space equations.

• Let us consider the system whose transfer function 
is given by:

Eq. (5-12)
𝐺 𝑠 =

𝑌(𝑠)

𝑈(𝑠)



Conversion of State-Space to 
Transfer Function Representation

• This system may be represented in state space by the following 
equations:

Eq. (5-13)

• The Laplace Transforms of Eq. (5-12) and (5-13) are given by:

Eq. (5-14)

ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢

𝑦 = 𝑪𝑥 + 𝑫𝑢

𝑠𝑋 𝑠 − 𝑥 0 = 𝑨𝑋 𝑠 + 𝑩𝑈(𝑠)

𝑌(𝑠) = 𝑪𝑋(𝑠) + 𝑫𝑈(𝑠)



Conversion of State-Space to 
Transfer Function Representation

• In Eq. (5-14), we set 𝑥(0) to be zero; then, we have:

Eq. (5-15)

• Pre-multiplying 𝑠𝐼 − 𝑨 −1 to both sides of Eq. (5-15), we 
obtain:

𝑠𝐼 − 𝑨 −1 𝑠𝐼 − 𝑨 𝑋(𝑠) = 𝑠𝐼 − 𝑨 −1𝑩𝑈(𝑠)

→ 𝑋(𝑠) = 𝑠𝐼 − 𝑨 −1𝑩𝑈(𝑠) Eq. (5-16)

𝑠𝑋 𝑠 − 𝑥 0 = 𝑨𝑋 𝑠 + 𝑩𝑈(𝑠)
0

∴ 𝑠𝑋 𝑠 − 𝑨𝑋 𝑠 = 𝑩𝑈(𝑠)

→ 𝑠𝐼 − 𝑨 𝑋(𝑠) = 𝑩𝑈(𝑠)



Conversion of State-Space to 
Transfer Function Representation

• The output 𝑌(𝑠) can be found by substituting Eq. (5–16) into 
Eq. (5–14):

Eq. (5-17)

• Comparing Eq. (5–17) with Eq. (5-12), we see that the transfer 
function of the system, 𝐺 𝑠 , is:

→ 𝐺 𝑠 = 𝐶 𝑠𝐼 − 𝑨 −1𝑩+ 𝑫 Eq. (5-18)

• In Blackboard, download a file titled “State Space to Transfer 
Function Examples” to have access to a numerical examples on 
the application of the Eq. (5-18).  Also, there is a file available in 
the files of this module titled as “ss_2_tf.m” in Blackboard using 
the built-in ss2tf(A,B,C,D) function.

→ 𝑌 𝑠 = 𝐶 𝑠𝐼 − 𝑨 −1𝑩+𝑫 𝑈(𝑠)



Linear Approximation of Nonlinear 
Mathematical Models

• In practice, many electromechanical systems, 
hydraulic systems, pneumatic systems, and so on, 
involve non-linear relationships among the variables.

• If such system operates around an equilibrium point 
and if the signals involved are small signals, then it is 
possible to approximate the nonlinear system by a 
linear system that works within a limited operating 
range.

• The linearization procedure is based on the 
expansion of nonlinear function into a Taylor series 
about the operating point and the retention of only the 
linear term. 



Linear Approximation of Nonlinear 
Mathematical Models

• The higher-order terms neglected terms in Taylor 
series must be small enough; that is, the variables 
deviate only slightly from the operating condition.

• In summary, to obtain a linear approximation to the 
nonlinear system, we will expand the equations that 
represent the system into a Taylor series about the 
normal operating point.



Linear Approximation of Nonlinear 
Mathematical Models

• The Taylor series expansion of nonlinear function is as follows:

𝑦 = 𝑓 ҧ𝑥1, ҧ𝑥2 +
𝜕𝑓

𝜕𝑥1
𝑥1 − ҧ𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑥2 − ҧ𝑥2

+
1

2!
ቈ



𝜕2𝑓

𝜕𝑥1
2 𝑥1 − ҧ𝑥1

2 + 2
𝜕2𝑓

𝜕𝑥1𝜕𝑥2
𝑥1 − ҧ𝑥1 𝑥2 − ҧ𝑥2

+
𝜕2𝑓

𝜕𝑥2
2 𝑥2 − ҧ𝑥2

2 +⋯

where the partial derivatives are evaluated at 𝑥1 = ҧ𝑥1and 𝑥2 = ҧ𝑥2.  
Near the normal operating point, the higher-order terms may be 
neglected. The linear mathematical model of this nonlinear system 
about the normal operating condition is then given by:



Linear Approximation of Nonlinear 
Mathematical Models

𝑦 − ത𝑦 = 𝑎 𝑥1 − ҧ𝑥1 + b 𝑥2 − ҧ𝑥2

• Where:
ത𝑦 = 𝑓 ҧ𝑥1, ҧ𝑥2

𝑎 =
𝜕𝑓

𝜕𝑥1
|𝑥1= ҧ𝑥1,𝑥2− ҧ𝑥2

And

𝑏 =
𝜕𝑓

𝜕𝑥2
|𝑥1= ҧ𝑥1,𝑥2− ҧ𝑥2

• As an example, we linearize the nonlinear equation 𝑧 = 𝑥𝑦 in the 
region 5 ≤ 𝑥 ≥ 7, 10 ≤ y ≥ 12; and find the error if the 
linearized equation is used to calculate the value of z when 𝑥 = 5, 
𝑦 = 10.



Linear Approximation of Nonlinear 
Mathematical Models

• Since the region considered is given by 5 ≤ 𝑥 ≥ 7, 10 ≤ y ≥
12, we can choose ҧ𝑥 = 6, and ത𝑦 = 11 as the operating point.  
Then, we obtain a linearized equation for the nonlinear equation 
near a point ҧ𝑥 = 6, and ത𝑦 = 11.

• Expanding the nonlinear equation into a Taylor series about point
x = ҧ𝑥, and y = ത𝑦 and neglecting the higher-order terms, we have:

𝑧 − ҧ𝑧 = 𝑎 𝑥 − ҧ𝑥 + b y − ത𝑦

𝑎 =
𝜕(𝑥𝑦)

𝜕𝑥
|x= ҧ𝑥, y =ത𝑦 = ത𝑦 = 11

𝑏 =
𝜕(𝑥𝑦)

𝜕𝑦
|x= ҧ𝑥, y = ത𝑦 = ҧ𝑥 = 6

ҧ𝑧 = ҧ𝑥 ത𝑦 = 6 11 = 66



Linear Approximation of Nonlinear 
Mathematical Models

• Then, the linearized equation is:  

𝑧 − 66 = 11 𝑥 − 6 + 6 𝑦 − 11 or 

𝑧 = 11𝑥 + 6𝑦 − 66

• When 𝑥 = 5 and 𝑦 = 10, the value of 𝑧 given by the linearized
equation is:

𝑧 = 11𝑥 + 6𝑦 − 66
= 11 5 + 6 10 − 66 = 49

• The exact value of 𝑧 = 𝑥𝑦 = 5 10 = 50.  So, the error is 
𝑒 = 50 − 49 = 1.  In terms of percentage, the error is 2%.
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