
Cam-Follower Kinematics

TABLE 9.1 Cam Follower Kinematics for Constant Velocity Motion Rise Displacement: $\Delta R_i = H_0 + \frac{H_i t_i}{T_i} = H_0 + \frac{H_i \phi_i}{\beta_i}$ $\Delta R_j = H_F + H_j \left(1 - \frac{t_j}{T_j}\right) = H_F + H_j \left(1 - \frac{\phi_j}{\beta_j}\right)$ Velocity: $v_i = \frac{H_i}{T_i} = \frac{H_i \omega}{\beta_i}$ $v_j = \frac{-H_j}{T_j} = \frac{-H_j \omega}{\beta_j}$ Acceleration: $a = 0 \ (\infty \ \text{at transitions})$ $a = 0 \ (\infty \ \text{at transitions})$

Constant velocity motion curves.

	Rise	Fall
For $0 < t < 0.5 T (0 < \phi < 0.5 \beta)$:		
Displacement:	$\Delta R_i = H_0 + 2H_i \left(\frac{t_i}{T_i}\right)^2$ $= H_0 + 2H_i \left(\frac{\phi_i}{\beta_i}\right)^2$	$\Delta R_i = H_F + H_j - 2H_j \left(\frac{t_j}{T_j}\right)^2$ $= H_F + H_j - 2H_j \left(\frac{\phi_j}{B_j}\right)^2$
Velocity:	$v_i = \frac{4H_it_i}{T_i^2} = \frac{4H_i\omega\phi_i}{\beta_i^2}$	$v_j = rac{-4H_jt_j}{T_i^2} = rac{-4H_j\omega\phi_j}{eta_i^2}$
Acceleration:	$a_i = \frac{4H_i}{T_i^2} = \frac{4H_i\omega^2}{\beta_i^2}$	$a_j = \frac{-4H_j}{T_j^2} = \frac{-4H_j\omega^2}{\beta_j^2}$
For 0.5 $T < t < T$ (0.5 $\beta < \phi < \beta$):		
Displacement:	$\Delta R_i = H_0 + H_i - 2H_i \left(1 - \frac{t_i}{T_i} \right)^2$ $= H_0 + H_i + 2H_i \left(1 - \frac{\phi_i}{\beta_i} \right)^2$	$\Delta R_j = H_F + 2H_j \left(1 - \frac{t_j}{T_j} \right)^2$ $= H_F + 2H_j \left(1 - \frac{\phi_j}{\beta_j} \right)^2$
Velocity:	$v_i = \frac{4H_i}{T_i} \left(1 - \frac{t_i}{T_i} \right) = \frac{4H_i\omega}{\beta_i} \left(1 - \frac{\phi_i}{\beta_i} \right)$	$v_i = \frac{-4H_j}{T_j} \left(1 - \frac{t_j}{T_j} \right) = \frac{-4H_j\omega}{\beta_j} \left(1 - \frac{\phi_j}{\beta_j} \right)$
Acceleration:	$a_i = \frac{-4H_i}{T_i^2} = \frac{-4H_i\omega^2}{\beta_i^2}$	$a_j = \frac{4H_j}{T_i^2} = \frac{4H_j\omega^2}{\beta_i^2}$

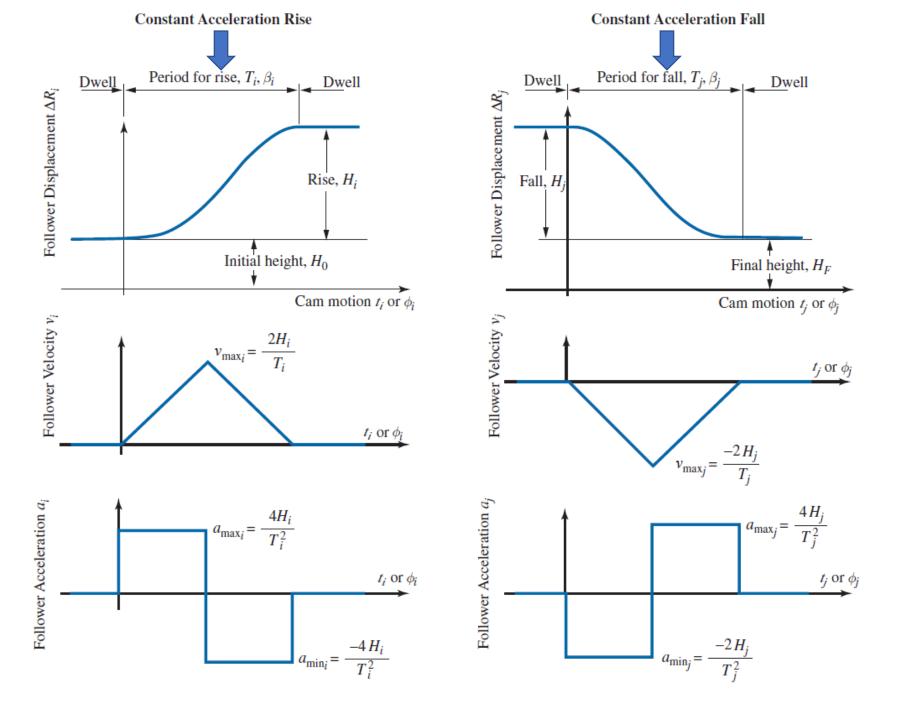


Figure (c)
Constant
Acceleration
Motion Curves.

TABLE 9.3 Cam Follower Kinematics for Harmonic Motion

IABLE 9.3	Cam Follower Kinematics for Harmonic Motion	
	Rise	Fall
Displacement:	$\Delta R_i = H_0 + \frac{H_i}{2} \left[1 - \cos \left(\frac{\pi t_i}{T_i} \right) \right]$ $= H_0 + \frac{H_i}{2} \left[1 - \cos \left(\frac{\pi \phi_i}{\beta_i} \right) \right]$	$\Delta R_j = H_F + \frac{H_j}{2} \left[1 + \cos \left(\frac{\pi t_j}{T_j} \right) \right]$ $= H_F + \frac{H_j}{2} \left[1 - \cos \left(\frac{\pi \phi_j}{\beta_j} \right) \right]$
Velocity:	$v_{i} = \frac{\pi H_{i}}{2T_{i}} \left[\sin \left(\frac{\pi t_{i}}{T_{i}} \right) \right]$ $= \frac{\pi H_{i} \omega}{2\beta_{i}} \left[\sin \left(\frac{\pi \phi_{i}}{\beta_{i}} \right) \right]$	$v_{j} = \frac{-\pi H_{j}}{2T_{j}} \left[\sin \left(\frac{\pi t_{j}}{T_{j}} \right) \right]$ $= \frac{-\pi H_{j}\omega}{2\beta_{j}} \left[\sin \left(\frac{\pi \phi_{j}}{\beta_{j}} \right) \right]$
Acceleration:	$a_{i} = \frac{\pi^{2} H_{i}}{2T_{i}^{2}} \left[\cos \left(\frac{\pi t_{i}}{T_{i}} \right) \right]$ $= \frac{\pi^{2} H_{i} \omega^{2}}{2\beta_{i}^{2}} \left[\cos \left(\frac{\pi \phi_{i}}{\beta_{i}} \right) \right]$	$a_{j} = \frac{-\pi^{2} H_{i}}{2T_{i}^{2}} \left[\cos \left(\frac{\pi t_{j}}{T_{j}} \right) \right]$ $= \frac{-\pi^{2} H_{j} \omega^{2}}{2\beta_{j}^{2}} \left[\cos \left(\frac{\pi \phi_{j}}{\beta_{j}} \right) \right]$

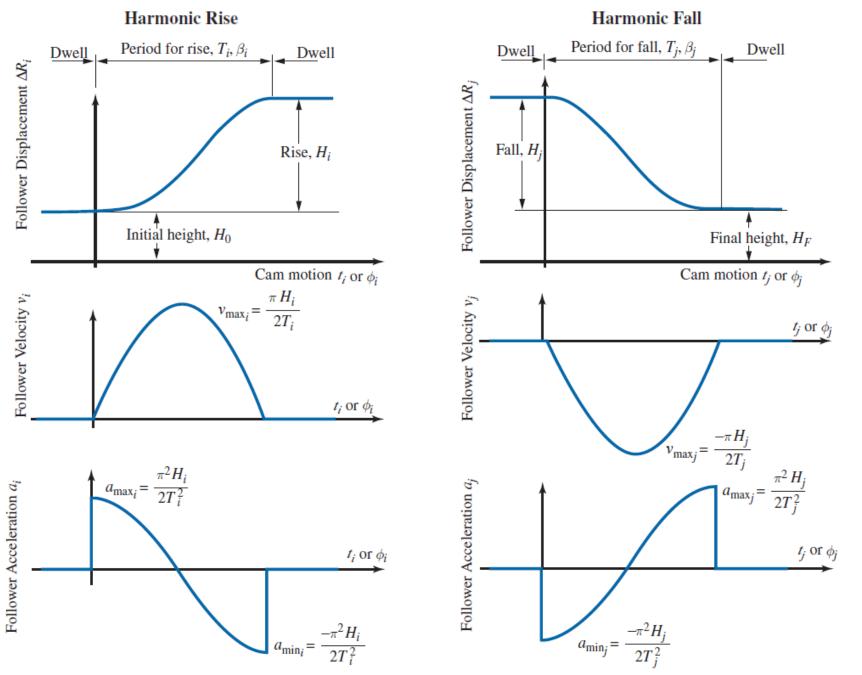


Figure (d)

Harmonic

Motion Curves.

Source: Myszka, D.H. Machines and Mech. Applied Kinematic Analysis. Prentice Hall. 4th Edition. USA.

TABLE 9.4	Cam Follower Kinematics for Cycloidal Motion	
	Rise	Fall
Displacement:	$\Delta R_i = H_0 + H_i \left[\frac{t_i}{T_i} - \frac{1}{2\pi} \sin\left(\frac{2\pi t_i}{T_i}\right) \right]$	$\Delta R_j = H_F + H_j \left[1 - \frac{t_j}{T_j} + \frac{1}{2\pi} \sin\left(\frac{2\pi t_j}{T_j}\right) \right]$
	$= H_0 + H_i \left[\frac{\phi_i}{\beta_i} - \frac{1}{2\pi} \sin \left(\frac{2\pi \phi_i}{\beta_i} \right) \right]$	$= H_F + H_j \left[\frac{\phi_j}{\beta_j} - \frac{1}{2\pi} \sin\left(\frac{2\pi\phi_j}{\beta_j}\right) \right]$
Velocity:	$v_i = \frac{H_i}{T_i} \left[1 - \cos \left(\frac{2\pi t_i}{T_i} \right) \right]$	$v_j = \frac{-H_j}{T_i} \left[1 - \cos \left(\frac{2\pi t_i}{T_i} \right) \right]$
	$= \frac{H_i \omega}{\beta_i} \left[1 - \cos \left(\frac{2\pi \phi_i}{\beta_i} \right) \right]$	$= \frac{-H_j \omega}{\beta_j} \left[1 - \cos \left(\frac{2\pi \phi_j}{\beta_j} \right) \right]$
Acceleration:	$a_i = \frac{2\pi H_i}{T_i^2} \left[\sin \left(\frac{2\pi t_i}{T_i} \right) \right]$	$a_j = \frac{-2\pi H_j}{T_j^2} \left[\sin \left(\frac{2\pi t_j}{T_j} \right) \right]$
	$= \frac{2\pi H_i \omega^2}{\beta_i^2} \left[\sin \left(\frac{2\pi \phi_i}{\beta_i} \right) \right]$	$= \frac{-2\pi H_j \omega^2}{\beta_j^2} \left[\sin \left(\frac{2\pi \phi_j}{\beta_j} \right) \right]$

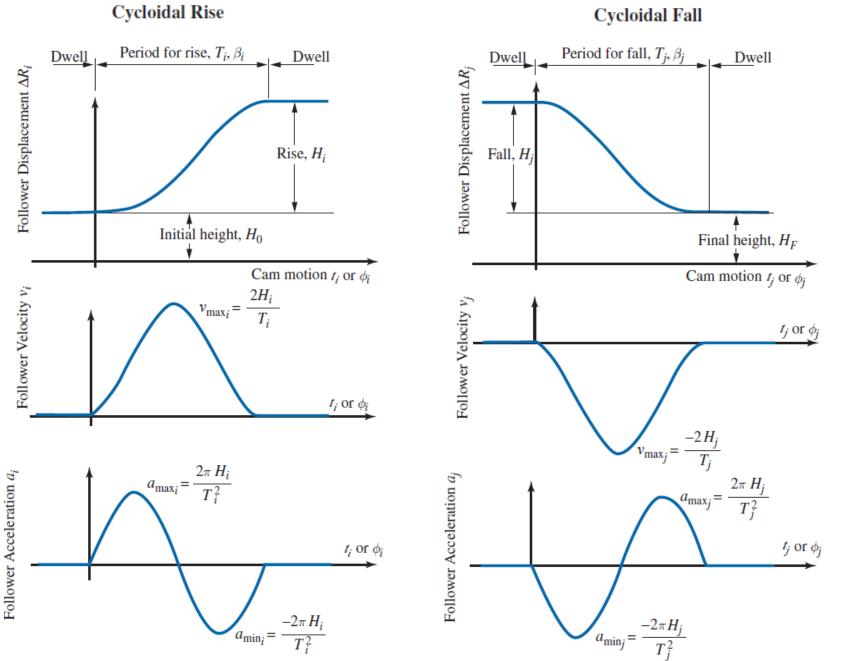


Figure (e)

Cycloidal

Motion Curves.