ACCELERATION Analysis of Linkages

Acceleration Polygon

Acceleration Polygon:

- As remarked, the acceleration polygon is a graphical representation in the study of four-bar mechanisms, depicting the relationships between angular accelerations of all links in the mechanism.
- Given a known configuration of a four-bar mechanism with the crank specified angular velocity (ω_2) and angular acceleration (α_2) , we can construct the acceleration polygon and determine α_3 and α_4 .
- Next, we establish the graphical approach for conducting acceleration analysis in four-bar mechanisms:

 $\mathbf{R}_{BA} \qquad \mathbf{R}_{BO_4} \\ \mathbf{R}_{AO_2} \qquad \mathbf{R}_{O_4O_2} \\ \mathbf{Q}_2 \qquad \mathbf{Q}_2 \qquad \mathbf{Q}_4$

Acceleration Polygon:

The acceleration equation is obtained from the time derivative of the velocity equation as $A_A + A_{BA} = A_B$. Since R_{AO_2} , R_{BA} , and R_{BO_2} are moving vectors with constant lengths, their acceleration vectors have normal and tangential components:

$$\mathbf{A}_{A}^{n} + \mathbf{A}_{A}^{t} + \mathbf{A}_{BA}^{n} + \mathbf{A}_{BA}^{t} - \mathbf{A}_{B}^{n} - \mathbf{A}_{B}^{t} = \mathbf{0}$$

Or,

$$-\boldsymbol{\omega}_{2}^{2}\mathbf{R}_{AO_{2}}+\boldsymbol{\alpha}_{2}\breve{\mathbf{R}}_{AO_{2}}-\boldsymbol{\omega}_{3}^{2}\mathbf{R}_{BA}+\boldsymbol{\alpha}_{3}\breve{\mathbf{R}}_{BA}-(-\boldsymbol{\omega}_{4}^{2}\mathbf{R}_{BO_{4}})-\boldsymbol{\alpha}_{4}\breve{\mathbf{R}}_{BO_{4}}=\mathbf{0}$$

We note that since ω_2 , ω_3 , ω_4 , and α_2 are known, \mathbf{A}_A^n , \mathbf{A}_A^t , \mathbf{A}_{BA}^n , and \mathbf{A}_B^n can completely be constructed. The remaining components, \mathbf{A}_{BA}^t and \mathbf{A}_B^t , have known axes but unknown magnitudes. We rearrange the terms such that these unknown terms appear as the **last** component in the equation:

$$-\omega_{2}^{2}\mathbf{R}_{AO_{2}} + \alpha_{2}\breve{\mathbf{R}}_{AO_{2}} - \omega_{3}^{2}\mathbf{R}_{BA} - (-\omega_{4}^{2}\mathbf{R}_{BO_{4}}) + \alpha_{3}\breve{\mathbf{R}}_{BA} - \alpha_{4}\breve{\mathbf{R}}_{BO_{4}} = \mathbf{0}$$

All known these quantities (because the position α_{3} and α_{4} are to be determined

and velocity analysis has been performed).

 α_3 and α_4 are to be determined (unknown quantities)

- 1. Select a point in a convenient position as the reference for zero acceleration. Name this point O_A (origin of accelerations).
- 2. Compute the magnitude of \mathbf{A}_{A}^{n} as $R_{AO_{2}}\omega_{2}^{2}$. From
 - O_V construct vector \mathbf{A}_A^n in the opposite direction of \mathbf{R}_{AO_2} .
- 3. Compute the magnitude of \mathbf{A}_{A}^{t} as $R_{AO_{2}}\alpha_{2}$. The direction of \mathbf{A}_{A}^{t} is determined by rotating $\mathbf{R}_{AO_{2}}$
 - 90° in the direction of α_2 . Add this vector to \mathbf{A}_A^n

Note that the sum of \mathbf{A}_{A}^{n} and \mathbf{A}_{A}^{t} is \mathbf{A}_{A} .

- 4. Compute the magnitude of \mathbf{A}_{BA}^{n} as $R_{BA}\omega_{3}^{2}$. Add this vector in the opposite direction of \mathbf{R}_{BA} to the other two vectors.
- 5. Compute the magnitude of \mathbf{A}_{B}^{n} as $R_{B}\omega_{4}^{2}$. Note that

 \mathbf{A}_{B}^{n} is in the opposite direction of $\mathbf{R}_{BO_{4}}$. Since

 \mathbf{A}_{B}^{n} itself appears with a negative sign in the acceleration equation, it should be added to the other vectors in the diagram as shown; i.e., head-to-tail.

$$-\omega_2^2 \mathbf{R}_{AO_2} + \alpha_2 \mathbf{\bar{R}}_{AO_2} - \omega_3^2 \mathbf{R}_{BA} - (-\omega_4^2 \mathbf{R}_{BO_4}) + \alpha_3 \mathbf{\bar{R}}_{BA} - \alpha_4 \mathbf{\bar{R}}_{BO_4} = \mathbf{0}$$

All known these quantities (because the position and velocity analysis has been performed).

 α_3 and α_4 are to be determined (unknown quantities)

Procedure to Draw the Acceleration F

- 5. Since \mathbf{A}_{BA}^{t} must be perpendicular to \mathbf{R}_{BA} , draw line perpendicular to \mathbf{R}_{BA} in anticipation of adding \mathbf{A}_{BA}^{t} to the diagram.
- 6. Since \mathbf{A}_{B}^{t} must be perpendicular to $\mathbf{R}_{BO_{4}}$, draw a line perpendicular to $\mathbf{R}_{BO_{4}}$ closing (completing) the polygon.

$$-\boldsymbol{\omega}_{2}^{2}\mathbf{R}_{AO_{2}} + \boldsymbol{\alpha}_{2} \mathbf{\bar{R}}_{AO_{2}} - \boldsymbol{\omega}_{3}^{2}\mathbf{R}_{BA} - (-\boldsymbol{\omega}_{4}^{2}\mathbf{R}_{BO_{4}}) + \boldsymbol{\alpha}_{3} \mathbf{\bar{R}}_{BA} - \boldsymbol{\alpha}_{4} \mathbf{\bar{R}}_{BO_{4}} = \mathbf{0}$$

All known these quantities (because the position and velocity analysis has been performed).

 α_3 and α_4 are to be determined (unknown quantities)

- 8. Construct vectors \mathbf{A}_{BA}^{t} and \mathbf{A}_{B}^{t} on the polygon.
- 9. Determine the magnitude of \mathbf{A}_{BA}^{t} from the polygon. Compute α_{3} as $\alpha_{3} = A_{BA}^{t} / R_{BA}$ (in this diagram it is CW).
- 10. Determine the magnitude of \mathbf{A}_{B}^{t} from the polygon. Compute α_{4} as $\alpha_{4} = A_{B}^{t} / R_{BO_{4}}$ (in this diagram it is CCW).

Secondary equation(s)

We can use the polygon method to determine acceleration of a coupler point, such as *P*. It is assumed that all the angular velocities and accelerations have already been determined.

For the position vector $\mathbf{R}_{PO_2} = \mathbf{R}_{AO_2} + \mathbf{R}_{PA}$, th acceleration expression becomes

$$\mathbf{A}_{P} = \mathbf{A}_{A} + \mathbf{A}_{PA} = \mathbf{A}_{A}^{n} + \mathbf{A}_{A}^{t} + \mathbf{A}_{PA}^{n} + \mathbf{A}_{PA}^{t}$$
$$= -\boldsymbol{\omega}_{2}^{2}\mathbf{R}_{AO_{2}} + \boldsymbol{\omega}_{2}\mathbf{\overline{R}}_{AO_{2}} - \boldsymbol{\omega}_{3}^{2}\mathbf{R}_{PA} + \boldsymbol{\omega}_{3}\mathbf{\overline{R}}_{PA}$$

All four vectors can be constructed graphically. \exists vector sum is the acceleration of *P*.

The End of Module #7

Thank you, Prof. Veras

