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PREFACE
to the Sixth Edition

The sixth edition is an evolutionary improvement over the fifth and earlier editions.  See the 
updated Preface to the First Edition (overleaf) for more detailed information on the book's 
purpose and organization.  The principal changes in this edition are:

	 •	 In addition to the printed version of the text, digital e-book versions are also available.  
These have hotlinks to all the videos and to the downloadable content provided.  There are 
188 videos. All of these are marked in the print version as well, with their URLs provided, 
and they can be downloaded by print-book users.  A Video Contents is provided, and all 
other downloadable items are listed in the Downloads Index.

	 •	 Over 50 new problem assignments have been added. The problem figures are included 
as downloadable PDF files so that students can easily print hard copies on which to work 
the solutions.

	 •	 The author-written programs that come with the book have been completely rewritten to 
improve their interface and usability, and they are now compatible with the latest operat-
ing systems and computers.  The programs Fourbar, Fivebar, Sixbar, Slider, and 
Engine have been combined in a new program called Linkages that does everything 
those programs collectively did with new features added. Program Dynacam also has 
been completely rewritten and is much improved.  Program Matrix is updated. These 
computer programs undergo frequent revision to add features and enhancements.  Profes-
sors who adopt the book for a course and students using the print book may register to 
download the latest student versions of these programs from: http://www.designofma-
chinery.com.  Click on the Student or Professor link.

	 •	 The Working Model program is needed to run the Working Model files included with this 
text.  Some universities have site licenses for this program on their lab computers.  The 
supplier, Design Simulation Technologies, offers student licenses for one-semester or 
one-year periods at moderate cost.  These are available at http://www.design-simulation.
com/Purchase/studentproducts.php.

	 •	 Many small improvements have been made to the discussion of a variety of topics in many 
chapters, based largely on user feedback, and all known errors have been corrected.  

The extensive DVD content that was introduced in the Fifth Edition is now downloadable from 
a website.  These downloads include:

	 •	 The entire Hrones and Nelson Atlas of Coupler Curves and the Zhang et al Atlas of 
Geared Fivebar Coupler Curves.

	 •	 Wang's Mechanism Simulation in a Multimedia Environment contains 105 Working 
Model (WM) files based on the book's figures with AVI files and 19 Matlab® models for 
kinematic analysis and animation.  The AVI files are linked to their figures in the e-books.

	 •	 Videos of two "virtual laboratories" that replicate labs created by the author at WPI are 
provided.  These include demonstrations of the lab machines used and spreadsheet files 
of the acceleration and force data taken during the experiments.  The intent is to allow 
students at other schools to do these exercises as virtual laboratories. 

http://www.designofmachinery.com
http://www.designofmachinery.com
http://www.design-simulation.com/Purchase/studentproducts.php
http://www.design-simulation.com/Purchase/studentproducts.php
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	 •	 A series of 34 Master Lecture Videos by the author that cover most of the topics in the book 
as well as 39 shorter "snippets" from these lectures are woven into the chapters.  Seven 
Demonstration Videos are also provided.  These were recorded over the author's thirty-one 
years of teaching these subjects at WPI and are listed in the Video Contents.

All the downloadable files are accessible to digital-book users through the publisher's website 
via links in the digital book.  Any instructor or student who uses the print book may register 
on my website, http://www.designofmachinery.com , either as a student or instructor, and I 
will send them a password to access a protected site where they can download the latest ver-
sions of my computer programs, Linkages, Dynacam, and Matrix, all videos, and all files 
listed in the Downloads Index.  Note that I personally review each of these requests for access 
and approve only those that are filled out completely and correctly according to the provided 
instructions.  I require complete information and only accept university email addresses. 
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PREFACE
to the First Edition

When I hear, I forget
When I see, I remember
When I do, I understand
Ancient Chinese Proverb

This text is intended for the kinematics and dynamics of machinery topics which are  
often given as a single course, or two-course sequence, in the junior year of most mechani-
cal engineering programs.  The usual prerequisites are first courses in statics, dynamics, 
and calculus.  Usually, the first semester, or portion, is devoted to kinematics and the  
second to dynamics of machinery.  These courses are ideal vehicles for introducing the 
mechanical engineering student to the process of design, since mechanisms tend to be  
intuitive for the typical mechanical engineering student to visualize and create.  

While this text attempts to be thorough and complete on the topics of analysis, it also 
emphasizes the synthesis and design aspects of the subject to a greater degree than most 
texts in print on these subjects.  Also, it emphasizes the use of computer-aided engineering 
as an approach to the design and analysis of this class of problems by providing software 
that can enhance student understanding.  While the mathematical level of this text is 
aimed at second- or third-year university students, it is presented de novo and should be 
understandable to the technical school student as well.  

Part I of this text is suitable for a one-semester or one-term course in kinematics.  
Part II is suitable for a one-semester or one-term course in dynamics of machinery.  Al-
ternatively, both topic areas can be covered in one semester with less emphasis on some 
of the topics covered in the text.   

The writing and style of presentation in the text are designed to be clear, informal, 
and easy to read.  Many example problems and solution techniques are presented and 
spelled out in detail, both verbally and graphically.   All the illustrations are done with 
computer-drawing or drafting programs.   Some scanned photographic images are also 
included.  The entire text, including equations and artwork, is printed directly from the 
author's PDF files by laser typesetting for maximum clarity and quality.  Many suggested 
readings are provided in the bibliography.  Short problems and, where appropriate, many 
longer, unstructured design project assignments are provided at the ends of chapters.  
These projects provide an opportunity for the students to do and understand.
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The author’s approach to these courses and this text is based on over 40 years’ ex-
perience in mechanical engineering design, both in industry and as a consultant.  He has 
taught these subjects since 1967, both in evening school to practicing engineers and in 
day school to younger students.  His approach to the course has evolved a great deal in 
that time, from a traditional approach, emphasizing graphical analysis of many struc-
tured problems, through emphasis on algebraic methods as computers became available, 
through requiring students to write their own computer programs, to the current state 
described above.

The one constant throughout has been the attempt to convey the art of the design 
process to the students in order to prepare them to cope with real engineering problems 
in practice.  Thus, the author has always promoted design within these courses.  Only 
recently, however, has technology provided a means to more effectively accomplish this 
goal, in the form of the graphics microcomputer.  This text attempts to be an improvement 
over those currently available by providing up-to-date methods and techniques for analysis 
and synthesis that take full advantage of the graphics microcomputer, and by emphasizing 
design as well as analysis.   The text also provides a more complete, modern, and thorough 
treatment of cam design than any existing texts in print on the subject.

The author has written three interactive, student-friendly computer programs for 
the design and analysis of mechanisms and machines.  These programs are designed to 
enhance the student’s understanding of the basic concepts in these courses while simul-
taneously allowing more comprehensive and realistic problem and project assignments 
to be done in the limited time available than could ever be done with manual solution 
techniques, whether graphical or algebraic.  Unstructured, realistic design problems which 
have many valid solutions are assigned.  Synthesis and analysis are emphasized equally.  
The analysis methods presented are up to date, using vector equations and matrix tech-
niques wherever applicable.  Manual graphical analysis methods are deemphasized.  The 
graphics output from the computer programs allows the student to see the results of varia-
tion of parameters rapidly and accurately and reinforces learning.  

These computer programs are distributed with this book, and can be run on any 
Windows NT/2000/XP/Vista/Windows7/8/10 capable computer.  Program Linkages 
analyzes the kinematics and dynamics of fourbar, geared fivebar, sixbar, and fourbar 
slider linkages.  It also will synthesize fourbar linkages for two and three positions.   Link-
ages also analyzes the slider-crank linkage as used in the internal combustion engine 
and provides  a complete dynamic analysis of single- and multicylinder engine inline, V, 
and W configurations, allowing the mechanical dynamic design of engines to be done.  
Dynacam allows the design and dynamic analysis of cam-follower systems.  Matrix is a 
general-purpose linear equation system solver.  These are student editions of professional 
programs that are written by the author and that he provides to companies the world over.  

All these programs, except Matrix, provide dynamic, graphical animation of the 
designed devices.  The reader is strongly urged to make use of these programs in order 
to investigate the results of variation of parameters in these kinematic devices.  The pro-
grams are designed to enhance and augment the text rather than be a substitute for it.  The 
converse is also true.  Many solutions to the book's examples and to the problem sets are 
downloadable as files to be opened in these programs.  Most of these solutions can be 
animated on the computer screen for a better demonstration of the concept than is possible 
on the printed page.  The instructor and students are both encouraged to take advantage of 



PREFACE xiii

The author’s intention is that synthesis topics be introduced first to allow the students 
to work on some simple design tasks early in the term while still mastering the analysis 
topics.  Though this is not the “traditional” approach to the teaching of this material, the 
author believes that it is a superior method to that of initial concentration on detailed 
analysis of mechanisms for which the student has no concept of origin or purpose.  

Chapters 1 and 2 are introductory.  Those instructors wishing to teach analysis before 
synthesis can leave Chapters 3 and 5 on linkage synthesis for later consumption.  Chapters 
4, 6, and 7 on position, velocity, and acceleration analysis are sequential and build upon 
each other.  In fact, some of the problem sets are common among these three chapters 
so that students can use their position solutions to find velocities and then later use both 
to find the accelerations in the same linkages.  Chapter 8 on cams is more extensive and 
complete than that of other kinematics texts and takes a design approach.  Chapter 9 on 
gear trains is introductory.  The dynamic force treatment in Part II uses matrix methods 
for the solution of the system simultaneous equations.  Graphical force analysis is not 
emphasized.  Chapter 10  presents an introduction to dynamic systems modeling.  Chapter 
11 deals with force analysis of linkages.  Balancing of rotating machinery and linkages 
is covered in Chapter 12.  Chapters 13 and 14 use the internal combustion engine as an 
example to pull together many dynamic concepts in a design context.  Chapter 15 presents 
an introduction to dynamic systems modeling and uses the cam-follower system as the 
example.  Chapter 16 describes servo- and cam-driven linkages.  Chapters 3, 8, 11, 13, 
and 14 provide open-ended project problems as well as structured problem sets.  The as-
signment and execution of unstructured project problems can greatly enhance the student's 
understanding of the concepts as described by the proverb in the epigraph to this preface.

Acknowledgments  The sources of photographs and other nonoriginal art used 
in the text are acknowledged in the captions and opposite the title page, but the author 
would also like to express his thanks for the cooperation of all those individuals and 
companies who generously made these items available.  The author would also like to 
thank those who reviewed various sections of the first edition of the text and who made 
many useful suggestions for improvement.  Mr. John Titus of the University of Minnesota 
reviewed Chapter 5 on analytical synthesis and Mr. Dennis Klipp of Klipp Engineering, 
Waterville, Maine, reviewed Chapter 8 on cam design.  Professor William J. Croche-
tiere and Mr. Homer Eckhardt of Tufts University, Medford, MA., reviewed Chapter 
15.  Mr. Eckhardt and Professor Crochetiere of Tufts, and Professor Charles Warren of 
the University of Alabama taught from and reviewed Part I.  Professor Holly K. Ault of 
Worcester Polytechnic Institute thoroughly reviewed the entire text while teaching from 
the prepublication, class-test versions of the complete book.  Professor Michael Keefe 
of the University of Delaware provided many helpful comments.   Sincere thanks also 
go to the large number of undergraduate students and graduate teaching assistants who 
caught many typos and errors in the text and in the programs while using prepublication 
versions.  Since the book's first printing, Profs. D. Cronin, K. Gupta and P. Jensen and 
Mr. R. Jantz have written to point out errors or make suggestions that I have incorporated 
and for which I thank them.  The author takes full responsibility for any errors that may 
remain and invites from all readers their criticisms, suggestions for improvement, and 
identification of errors in the text or programs, so that both can be improved in future 
versions.  Contact norton@wpi.edu.

Robert L. Norton
Mattapoisett, Mass.
August, 1991
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KINEMATICS OF 
MECHANISMS 

Take to Kinematics.  It will repay you.  It is 
more fecund than geometry; 
it adds a fourth dimension to space.

Chebyschev to Sylvester, 1873 





Chapter1
INTRODUCTION
Inspiration most often strikes 
those who are hard at work
Anonymous

1.0	 PURPOSE Watch a lecture video (39:10)*

In this text we will explore the topics of kinematics and dynamics of machinery in re-
spect to the synthesis of mechanisms in order to accomplish desired motions or tasks, and 
also the analysis of mechanisms in order to determine their rigid-body dynamic behavior. 
These topics are fundamental to the broader subject of machine design.  On the premise 
that we cannot analyze anything until it has been synthesized into existence, we will first 
explore the topic of synthesis of mechanisms.  Then we will investigate techniques of 
analysis of mechanisms.  All this will be directed toward developing your ability to 
design viable mechanism solutions to real, unstructured engineering problems by using a 
design process.  We will begin with careful definitions of the terms used in these topics.

1.1	 KINEMATICS AND KINETICS

Kinematics	 The study of motion without regard to forces.

Kinetics	 The study of forces on systems in motion.

These two concepts are really not physically separable.  We arbitrarily separate them 
for instructional reasons in engineering education.  It is also valid in engineering design 
practice to first consider the desired kinematic motions and their consequences, and then 
subsequently investigate the kinetic forces associated with those motions.  The student 
should realize that the division between  kinematics and kinetics is quite arbitrary and 
is done largely for convenience.  One cannot design most dynamic mechanical systems 
without taking both topics into thorough consideration.  It is quite logical to consider them 
in the order listed since, from Newton’s second law, F = ma, one typically needs to know 
the accelerations (a) in order to compute the dynamic forces (F) due to the motion of the 

 	

*  http://www.designofma-
chinery.com/DOM/Intro-
duction.mp4
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1 system’s mass (m).  There are also many situations in which the applied forces are known 
and the resultant accelerations are to be found.

One principal aim of kinematics is to create (design) the desired motions of the 
subject mechanical parts and then mathematically compute the positions, velocities, and 
accelerations that those motions will create on the parts.  Since, for most earthbound 
mechanical systems, the mass remains essentially constant with time, defining the ac-
celerations as a function of time then also defines the dynamic forces as a function of 
time.  Stresses, in turn, will be a function of both applied and inertial (ma) forces.  Since 
engineering design is charged with creating systems that will not fail during their expected 
service life, the goal is to keep stresses within acceptable limits for the materials chosen 
and the environmental conditions encountered.  This obviously requires that all system 
forces be defined and kept within desired limits.  In machinery that moves (the only 
interesting kind), the largest forces encountered are often those due to the dynamics of 
the machine itself.  These dynamic forces are proportional to acceleration, which brings 
us back to kinematics, the foundation of mechanical design.  Very basic and early deci-
sions in the design process involving kinematic principles can be crucial to the success 
of any mechanical design.  A design that has poor kinematics will prove troublesome and 
perform badly.

1.2	 MECHANISMS AND MACHINES

A mechanism is a device that transforms motion to some desirable pattern and typically 
develops very low forces and transmits little power.  Hunt[1] defines a mechanism as “a 
means of transmitting, controlling, or constraining relative movement.”  A machine typi-
cally contains mechanisms that are designed to provide significant forces and transmit 
significant power.[1]  Some examples of common mechanisms are a pencil sharpener, a 
camera shutter, an analog clock, a folding chair, an adjustable desk lamp, and an umbrella. 
Some examples of machines that possess motions similar to the mechanisms listed above 
are a food blender, a bank vault door, an automobile transmission, a bulldozer, a robot, 
and an amusement park ride.  There is no clear-cut dividing line between mechanisms and 
machines.  They differ in degree rather than in kind.  If the forces or energy levels within 
the device are significant, it is considered a machine; if not, it is considered a mechanism.  
A useful working definition of a mechanism is a system of elements arranged to transmit 
motion in a predetermined fashion.  This can be converted to a definition of a machine 
by adding the words and energy after motion.

Mechanisms, if lightly loaded and run at slow speeds, can sometimes be treated 
strictly as kinematic devices; that is, they can be analyzed kinematically without regard 
to forces.  Machines (and mechanisms running at higher speeds), on the other hand, must 
first be treated as mechanisms; a kinematic analysis of their velocities and accelerations 
must be done, and then they must be subsequently analyzed as dynamic systems in which 
their static and dynamic forces due to those accelerations are analyzed using the principles 
of kinetics.  Part I of this text deals with Kinematics of Mechanisms, and Part II with 
Dynamics of Machinery.  The techniques of mechanism synthesis presented in Part I 
are applicable to the design of both mechanisms and machines, since in each case some 
collection of movable members must be created to provide and control the desired mo-
tions and geometry.A machine

A mechanism
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111.3	 A BRIEF HISTORY OF KINEMATICS

Machines and mechanisms have been devised by people since the dawn of history.  The 
ancient Egyptians devised primitive machines to accomplish the building of the pyramids 
and other monuments.  Though the wheel and pulley (on an axle) were not known to the 
Old Kingdom Egyptians, they made use of the lever, the inclined plane (or wedge), and 
probably the log roller. The origin of the wheel and axle is not definitively known.  Its first 
appearance seems to have been in Mesopotamia about 3000 to 4000 B.C. 

A great deal of design effort was spent from early times on the problem of time-
keeping as more sophisticated clockworks were devised.  Much early machine design 
was directed toward military applications (catapults, wall scaling apparatus, etc.). The 
term civil engineering was later coined to differentiate civilian from military applica-
tions of technology.  Mechanical engineering had its beginnings in machine design as 
the inventions of the industrial revolution required more complicated and sophisticated 
solutions to motion control problems.  James Watt (1736-1819) probably deserves the 
title of first kinematician for his synthesis of a straight-line linkage (see Figure 3‑29a) to 
guide the very long stroke pistons in the then new steam engines.    Since the planer was 
yet to be invented (in 1817), no means then existed to machine a long, straight guide to 
serve as a crosshead in the steam engine.  Watt was certainly the first on record to rec-
ognize the value of the motions of the coupler link in the fourbar linkage.  Oliver Evans 
(1755-1819), an early American inventor, also designed a straight-line linkage for a steam 
engine.  Euler (1707-1783) was a contemporary of Watt, though they apparently never 
met.  Euler presented an analytical treatment of mechanisms in his Mechanica Sive Motus 
Scienta Analytice Exposita (1736-1742), which included the concept that planar motion is 
composed of two independent components, namely, translation of a point and rotation of 
the body about that point.  Euler also suggested the separation of the problem of dynamic 
analysis into the “geometrical” and the “mechanical” in order to simplify the determina-
tion of the system’s dynamics.  Two of his contemporaries, d’Alembert and Kant, also 
proposed similar ideas.  This is the origin of our division of the topic into kinematics and 
kinetics as described on a previous page.

In the early 1800s, L’Ecole Polytechnic in Paris, France, was the repository of engi-
neering expertise.  Lagrange and Fourier were among its faculty.  One of its founders 
was Gaspard Monge (1746-1818), inventor of descriptive geometry (which incidentally 
was kept as a military secret by the French government for 30 years because of its value 
in planning fortifications).  Monge created a course in elements of machines and set about 
the task of classifying all mechanisms and machines known to mankind!  His colleague, 
Hachette, completed the work in 1806 and published it as what was probably the first 
mechanism text in 1811.  Andre Marie Ampere (1775-1836), also a professor at L’Ecole 
Polytechnic, set about the formidable task of classifying “all human knowledge.”  In his 
Essai sur la Philosophie des Sciences, he was the first to use the term cinematique, from 
the Greek word for motion,* to describe the study of motion without regard to forces, and 
suggested that “this science ought to include all that can be said with respect to motion 
in its different kinds, independently of the forces by which it is produced.” His term was 
later anglicized to kinematics and germanized to kinematik.  

Robert Willis (1800-1875) wrote the text Principles of Mechanism in 1841 while 
a professor of natural philosophy at the University of Cambridge, England.  He attempt-
ed to systematize the task of mechanism synthesis.  He counted five ways of obtaining  

	
*  Ampere is quoted as 
writing “(The science of 
mechanisms) must therefore  
not define a machine, as 
has usually been done, as 
an instrument by the help 
of which the direction and 
intensity of a given force 
can be altered, but as an 
instrument by the help of 
which the direction and 
velocity of a given motion 
can be altered.  To this 
science . . . I have given 
the name Kinematics from 
Κινµα—motion.” in Maun-
der, L. (1979). “Theory 
and Practice.” Proc. 5th 
World Cong. on Theory of 
Mechanisms and Machines, 
Montreal, p. 1.
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1 relative motion between input and output links: rolling contact, sliding contact, linkages, 
wrapping connectors (belts, chains), and tackle (rope or chain hoists). Franz Reuleaux 
(1829-1905) published Theoretische Kinematik in 1875.  Many of his ideas are still cur-
rent and useful.  Alexander Kennedy (1847-1928) translated Reuleaux into English in 
1876.  This text became the foundation of modern kinematics and is still in print! (See 
bibliography at end of chapter.)  He provided us with the concept of a kinematic pair 
(joint), whose shape and interaction define the type of motion transmitted between ele-
ments in the mechanism.  Reuleaux defined six basic mechanical components: the link, the 
wheel, the cam, the screw, the ratchet, and the belt.  He also defined “higher” and “lower” 
pairs, higher having line or point contact (as in a roller or ball bearing) and lower having 
surface contact (as in pin joints).  Reuleaux is generally considered the father of modern 
kinematics and is responsible for the symbolic notation of skeletal, generic linkages used 
in all modern kinematics texts.

In the 20th century, prior to World War II, most theoretical work in kinematics was 
done in Europe, especially in Germany.  Few research results were available in Eng-
lish.  In the United States, kinematics was largely ignored until the 1940s when A. E. R.  
de Jonge wrote What Is Wrong with ‘Kinematics’ and ‘Mechanisms’ ? [2] which called 
upon the U.S. mechanical engineering education establishment to pay attention to the 
European accomplishments in this field.  Since then, much new work has been done, espe-
cially in kinematic synthesis, by American and European engineers and researchers such 
as J. Denavit, A. Erdman, F. Freudenstein, A. S. Hall, R. Hartenberg, R. Kaufman, 
B. Roth, G. Sandor, and A. Soni (all of the United States) and K. Hain (of Germany).  
Since the fall of the “iron curtain” much original work done by Soviet Russian kinemati-
cians has become available in the United States, such as that by Artobolevsky.[3]  Many 
U.S. researchers have applied the computer to solve previously intractable problems, of both 
analysis and synthesis, making practical use of many of the theories of their predecessors.
[4]  This text will make much use of the availability of computers to allow more efficient 
analysis and synthesis of solutions to machine design problems.  Several computer pro-
grams are included with this book for your use.

1.4	 APPLICATIONS OF KINEMATICS

One of the first tasks in solving any machine design problem is to determine the kinematic 
configuration(s) needed to provide the desired motions.  Force and stress analyses typi-
cally cannot be done until the kinematic issues have been resolved.  This text addresses 
the design of kinematic devices such as linkages, cams, and gears.  Each of these terms 
will be fully defined in succeeding chapters, but it may be useful to show some examples 
of kinematic applications in this introductory chapter.  You probably have used many of 
these systems without giving any thought to their kinematics.

Virtually any machine or device that moves contains one or more kinematic ele-
ments such as links, cams, gears, belts, and chains.  Your bicycle is a simple example of a 
kinematic system that contains a chain drive to provide torque multiplication and simple 
cable-operated linkages for braking.  An automobile contains many more examples of 
kinematic devices.  Its steering system, wheel suspensions, and piston engine all contain 
linkages; the engine’s valves are opened by cams; and the transmission is full of gears.  
Even the windshield wipers are linkage-driven.  Figure 1-1a shows a linkage used to 
control the rear wheel movement over bumps of a modern automobile.  
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Construction equipment such as tractors, cranes, and backhoes all use linkages ex-
tensively in their design.  Figure 1-1b shows a small backhoe that is a linkage driven by 
hydraulic cylinders.  Another application using linkages is that of exercise equipment as 
shown in Figure 1-1c.  The examples in Figure 1-1 are all of consumer goods that you 
may encounter in your daily travels.  Many other kinematic examples occur in the realm 
of producer goods—machines used to make the many consumer products that we use.  
You are less likely to encounter these outside of a factory environment.  Once you become 
familiar with the terms and principles of kinematics, you will no longer be able to look at 
any machine or product without seeing its kinematic aspects.

1.5	 A DESIGN PROCESS  Watch a lecture video (29:47)*

Design, Invention, Creativity 

These are all familiar terms but may mean different things to different people.  These 
terms can encompass a wide range of activities from styling the newest look in clothing, 
to creating impressive architecture, to engineering a machine for the manufacture of facial 
tissues.  Engineering design, which we are concerned with here, embodies all three of 
these activities as well as many others.  The word design is derived from the Latin desig-
nare, which means “to designate, or mark out.”  Design can be simply defined as creating 
something new.  Design is a common human activity.  Artwork, clothing, geometric pat-
terns, automobile bodies, and houses are just a few examples of things that are designed.  
Design is a universal constituent of engineering practice.  Engineering design typically 
involves the creation of a device, system, or process using engineering principles.  

The complexity of engineering subjects usually requires that the beginning student 
be served with a collection of structured, set-piece problems designed to elucidate a 

Examples of kinematic devices in general use

(c) Linkage-driven exercise mechanism  
Photo by the author

(b) Utility tractor with backhoe 
Photo by the author

(a) Auto suspension linkage  

FIGURE 1-1 Copyright © 2018 Robert L. Norton:  All Rights Reserved

 	

*  http://www.designof-
machinery.com/DOM/
Design_Process.mp4

http://www.designofmachinery.com/DOM/Design_Process.mp4
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1 particular concept or concepts related to the particular topic.  These textbook problems 
typically take the form of “given A, B, C, and D, find E.” Unfortunately, real-life engi-
neering problems are almost never so structured.  Real design problems more often take 
the form of  “What we need is a framus to stuff this widget into that hole within the time 
allocated to the transfer of this other gizmo.”  The new engineering graduate will search 
in vain among his or her textbooks for much guidance to solve such a problem.  This un-
structured problem statement usually leads to what is commonly called “blank paper 
syndrome.”  Engineers often find themselves staring at a blank sheet of paper pondering 
how to begin solving such an ill-defined problem.

Much of engineering education deals with topics of analysis, which means to de-
compose, to take apart, to resolve into its constituent parts.  This is quite necessary.  The 
engineer must know how to analyze systems of various types, mechanical, electrical, 
thermal, or fluid.  Analysis requires a thorough understanding of both the appropriate 
mathematical techniques and the fundamental physics of the system’s function.  But, 
before any system can be analyzed, it must exist, and a blank sheet of paper provides little 
substance for analysis.  Thus the first step in any engineering design exercise is that of 
synthesis, which means putting together.

The design engineer, in practice, regardless of discipline, continuously faces the chal-
lenge of structuring the unstructured problem.  Inevitably, the problem as posed to the 
engineer is ill-defined and incomplete.  Before any attempt can be made to analyze the 
situation, he or she must first carefully define the problem, using an engineering approach, 
to ensure that any proposed solution will solve the right problem.  Many examples exist 
of excellent engineering solutions that were ultimately rejected because they solved the 
wrong problem, i.e.,  a different one than the client really had.

Much research has been devoted to the definition of various “design processes”  
intended to provide means to structure the unstructured problem and lead to a viable  
solution.  Some of these processes present dozens of steps, others only a few.  The one 
presented in Table 1-1 contains 10 steps and has, in the author’s experience, proved suc-
cessful in over 40 years of practice in engineering design.

Iteration  Before we discuss each of these steps in detail, it is necessary to point 
out that this is not a process in which one proceeds from step one through ten in a linear 
fashion.  Rather it is, by its nature, an iterative process in which progress is made halt-
ingly, two steps forward and one step back.  It is inherently circular.  To iterate means 
to repeat, to return to a previous state.  If, for example, your apparently great idea, upon 
analysis, turns out to violate the second law of thermodynamics, you can return to the 
ideation step and get a better idea!  Or, if necessary, you can return to an earlier step in the 
process, perhaps the background research, and learn more about the problem.  With the 
understanding that the actual execution of the process involves iteration, for simplicity, 
we will now discuss each step in the order listed in Table 1-1.

Identification of Need 

This first step is often done for you by someone, boss or client, saying, “What we need is 
. . ..”  Typically this statement will be brief and lacking in detail.  It will fall far short of 
providing you with a structured problem statement.  For example, the problem statement 
might be “We need a better lawn mower.”

A Design Process

 1 Identification of Need

 2 Background Research

 3 Goal Statement

 4 Performance Specifi-
cations

 5 Ideation and Inven-
tion

 6 Analysis

 7 Selection

 8 Detailed Design

 9 Prototyping and Test-
ing

 10 Production
 

TABLE 1-1

Blank paper syndrome
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11Background Research

This is the most important phase in the process, and is unfortunately often the most 
neglected.  The term research, used in this context, should not conjure up visions of 
white-coated scientists mixing concoctions in test tubes.  Rather this is research of a more 
mundane sort, gathering background information on the relevant physics, chemistry, or 
other aspects of the problem.  Also it is desirable to find out if this, or a similar problem, 
has been solved before.  There is no point in reinventing the wheel.  If you are lucky 
enough to find a ready-made solution on the market, it will no doubt be more economical 
to purchase it than to build your own.  Most likely this will not be the case, but you may 
learn a great deal about the problem to be solved by investigating the existing “art” associ-
ated with similar technologies and products.  Many companies purchase, disassemble, and 
analyze their competitors’ products, a process sometimes referred to as “benchmarking.”

The patent literature and technical publications in the subject area are obvious 
sources of information and are accessible via the World Wide Web.  The U.S. Patent and 
Trademark Office operates a web site at www.uspto.gov where you can search patents by 
keyword, inventor, title, patent number, or other data.  You can print a copy of the patent 
from the site.  A commercial site at www.delphion.com also provides copies of extant 
patents including those issued in European countries.  The “disclosure” or “specification” 
section of a patent is required to describe the invention in such detail that anyone “skilled 
in the art” could make the invention.  In return for this full disclosure, the government 
grants the inventor a 20-year monopoly on the claimed invention.  After that term expires, 
anyone can use it.  Clearly, if you find that the solution exists and is covered by a patent 
still in force, you have only a few ethical choices: buy the patentee’s existing solution, 
design something that does not conflict with the patent, or drop the project.  

Technical publications in engineering are numerous and varied and are provided by a 
large number of professional organizations.  For the subject matter of this text, the Ameri-
can Society of Mechanical Engineers (ASME), which offers inexpensive student mem-
berships, and the International Federation for the Theory of Machines and Mechanisms 
(IFToMM) both publish relevant journals, the ASME Journal of Mechanical Design 
and Mechanism and Machine Theory, respectively.  Your school library may subscribe 
to these, and you can purchase copies of articles from their web sites at http://mechani-
caldesign.asmedigitalcollection.asme.org/journal.aspx and http://www.journals.elsevier.
com/mechanism-and-machine-theory/, respectively.

The World Wide Web provides an incredibly useful resource for the engineer or 
student looking for information on any subject.  The many search engines available will 
deliver a wealth of information in response to selected keywords.  The web makes it easy 
to find sources for purchased hardware, such as gears, bearings, and motors, for your ma-
chine designs.  In addition, much machine design information is available from the web.  
A number of useful web sites are catalogued in the bibliography of this chapter.

It is very important that sufficient energy and time be expended on this research and 
preparation phase of the process in order to avoid the embarrassment of concocting a great 
solution to the wrong problem.  Most inexperienced (and some experienced) engineers 
give too little attention to this phase and jump too quickly into the ideation and invention 
stage of the process.  This must be avoided!  You must discipline yourself to not try to 
solve the problem before thoroughly preparing yourself to do so.

Identifying the need

Reinventing the wheel

Grass shorteners

http://mechanicaldesign.asmedigitalcollection.asme.org/journal.aspx
http://mechanicaldesign.asmedigitalcollection.asme.org/journal.aspx
http://www.journals.elsevier.com/mechanism-and-machine-theory/
http://www.journals.elsevier.com/mechanism-and-machine-theory/
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1 Goal Statement

Once the background of the problem area as originally stated is fully understood, you will 
be ready to recast that problem into a more coherent goal statement.  This new problem 
statement should have three characteristics.  It should be concise, be general, and be un-
colored by any terms that predict a solution.  It should be couched in terms of functional 
visualization, meaning to visualize its function, rather than any particular embodiment.  
For example, if the original statement of need was  “Design a Better Lawn Mower,” after 
research into the myriad of ways to cut grass that have been devised over the ages, the 
wise designer might restate the goal as “Design a Means to Shorten Grass.” The original 
problem statement has a built-in trap in the form of the colored words “lawn mower.” For 
most people, this phrase will conjure up a vision of something with whirring blades and a 
noisy engine.  For the ideation phase to be most successful, it is necessary to avoid such 
images and to state the problem generally, clearly, and concisely.  As an exercise, list 10 
ways to shorten grass.  Most of them would not occur to you had you been asked for 10 
better lawn mower designs.  You should use functional visualization to avoid unneces-
sarily limiting your creativity!

Performance Specifications * 

When the background is understood, and the goal clearly stated, you are ready to formu-
late a set of performance specifications (also called task specifications).  These should not 
be design specifications. The difference is that performance specifications define what 
the system must do, while design specifications define how it must do it.  At this stage of 
the design process it is unwise to attempt to specify how the goal is to be accomplished.  
That is left for the ideation phase.  The purpose of the performance specifications is to 
carefully define and constrain the problem so that it both can be solved and can be shown 
to have been solved after the fact.  A sample set of performance specifications for our 
“grass shortener” is shown in Table 1-2.

Note that these specifications constrain the design without overly restricting the engi-
neer’s design freedom.  It would be inappropriate to require a gasoline engine for specifi-
cation 1, because other possibilities exist that will provide the desired mobility.  Likewise, 
to demand stainless steel for all components in specification 2 would be unwise, since 
corrosion resistance can be obtained by other, less-expensive means.  In short, the perfor-
mance specifications serve to define the problem in as complete and as general a manner 
as possible, and they serve as a contractual definition of what is to be accomplished.  The 
finished design can be tested for compliance with the specifications. 

Ideation and Invention

This step is full of both fun and frustration.  This phase is potentially the most satisfying 
to most designers, but it is also the most difficult.  A great deal of research has been done 
to explore the phenomenon of creativity. It is, most agree, a common human trait.  It 
is certainly exhibited to a very high degree by all young children.  The rate and degree 
of development that occurs in the human from birth through the first few years of life 
certainly requires some innate creativity.  Some have claimed that our methods of West-
ern education tend to stifle children’s natural creativity by encouraging conformity and 
restricting individuality.  From “coloring within the lines” in kindergarten to imitating the 

 	

*  Orson Welles, famous 
author and filmmaker, once 
said, “The enemy of art is 
the absence of limitations.”  
We can paraphrase that as 
The enemy of design is the 
absence of specifications.

TABLE 1-2
Performance Specifica-
tions

1 Device to have 
self-contained power 
supply.

2 Device to be corrosion 
resistant.

3 Device to cost less 
than $100.00.

4 Device to emit < 80 
dB sound intensity at 
10 m.

5 Device to shorten 
1/4 acre of grass per 
hour.

6 etc. .  .  .  etc.

Performance 
Specifications

Lorem
Ipsum
Dolor amet
Euismod
Volutpat
Laoreet
Adipiscing
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11textbook’s writing patterns in later grades, individuality is suppressed in favor of a social-
izing conformity.  This is perhaps necessary to avoid anarchy but probably does have the 
effect of reducing the individual’s ability to think creatively.  Some claim that creativity 
can be taught, others that it is only inherited.  No hard evidence exists for either theory.  
It is probably true that one’s lost or suppressed creativity can be rekindled.  Other studies 
suggest that most everyone underutilizes his or her potential creative abilities.  You can 
enhance your creativity through various techniques.

Creative Process  Many techniques have been developed to enhance or inspire 
creative problem solving.  In fact, just as design processes have been defined, so has the 
creative process shown in Table 1-3.  This creative process can be thought of as a subset 
of the design process and to exist within it.  The ideation and invention step can thus be 
broken down into these four substeps.

Idea Generation  is the most difficult of these steps.  Even very creative people 
have difficulty inventing “on demand.”  Many techniques have been suggested to improve 
the yield of ideas.  The most important technique is that of deferred judgment, which 
means that your criticality should be temporarily suspended.  Do not try to judge the 
quality of your ideas at this stage.  That will be taken care of later, in the analysis phase.  
The goal here is to obtain as large a quantity of potential designs as possible.  Even su-
perficially ridiculous suggestions should be welcomed, as they may trigger new insights 
and suggest other more realistic and practical solutions.

Brainstorming  is a technique for which some claim great success in generat-
ing creative solutions.  This technique requires a group, preferably 6 to 15 people, and 
attempts to circumvent the largest barrier to creativity, which is fear of ridicule.  Most 
people, when in a group, will not suggest their real thoughts on a subject, for fear of be-
ing laughed at.  Brainstorming’s rules require that no one be allowed to make fun of or 
criticize anyone’s suggestions, no matter how ridiculous.  One participant acts as “scribe” 
and is duty bound to record all suggestions, no matter how apparently silly.  When done 
properly, this technique can be fun and can sometimes result in a “feeding frenzy” of ideas 
that build upon each other.  Large quantities of ideas can be generated in a short time.  
Judgment on their quality is deferred to a later time.

When you are working alone, other techniques are necessary.  Analogies and in-
version are often useful.  Attempt to draw analogies between the problem at hand and 
other physical contexts.  If it is a mechanical problem, convert it by analogy to a fluid or 
electrical one.  Inversion turns the problem inside out.  For example, consider what you 
want moved to be stationary and vice versa.  Insights often follow.  Another useful aid to 
creativity is the use of synonyms.  Define the action verb in the problem statement, and 
then list as many synonyms for that verb as possible.  For example:

Problem statement:  Move this object from point A to point B. 
The action verb is “move.”  Some synonyms are push, pull, slip, slide, shove, throw, eject, 
jump, spill.

By whatever means, the aim in this ideation step is to generate a large number of 
ideas without particular regard to quality.  But, at some point, your “mental well” will go 
dry.  You will have then reached the step in the creative process called frustration.  It is 
time to leave the problem and do something else for a time.  While your conscious mind 
is occupied with other concerns, your subconscious mind will still be hard at work on the 

The Creative Process

5a Idea Generation

5b Frustration

5c Incubation

5d Eureka!

TABLE 1-3

Brainstorming

Frustration

Eureka!
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1 problem.  This is the step called incubation. Suddenly, at a quite unexpected time and 
place, an idea will pop into your consciousness, and it will seem to be the obvious and 
“right” solution to the problem . . .  Eureka!  Most likely, later analysis will discover some 
flaw in this solution.  If so, back up and iterate! More ideation, perhaps more research, 
and possibly even a redefinition of the problem may be necessary.

In “Unlocking Human Creativity,”[5] Wallen describes three requirements for creative 
insight:

	 •	 Fascination with a problem.

	 •	 Saturation with the facts, technical ideas, data, and the background of the problem.

	 •	 A period of reorganization.

The first of these provides the motivation to solve the problem.  The second is the back-
ground research step described above.  The period of reorganization refers to the frus-
tration phase when your subconscious works on the problem.  Wallen[5] reports that 
testimony from creative people tells us that in this period of reorganization they have no 
conscious concern with the particular problem and that the moment of insight frequently 
appears in the midst of relaxation or sleep.  So to enhance your creativity, saturate yourself 
in the problem and related background material.  Then relax and let your subconscious 
do the hard work!

Analysis

Once you are at this stage, you have structured the problem, at least temporarily, and can 
now apply more sophisticated analysis techniques to examine the performance of the 
design in the analysis phase of the design process.  (Some of these analysis methods 
will be discussed in detail in the following chapters.)  Further iteration will be required 
as problems are discovered from the analysis.  Repetition of as many earlier steps in the 
design process as necessary must be done to ensure the success of the design.

Cost ReliabilitySafety Performance RANK

Weighting 
  Factor

Design 1

Design 2

Design 3

Design 4

Design 5

1.80
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   .60
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.60

.90
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1.20

5.3

3.5

4.7

5.8
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FIGURE 1-2  

A decision matrix
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When the technical analysis indicates that you have some potentially viable designs, the 
best one available must be selected for detailed design, prototyping, and testing.  The 
selection process usually involves a comparative analysis of the available design solu-
tions.  A decision matrix sometimes helps to identify the best solution by forcing you to 
consider a variety of factors in a systematic way.  A decision matrix for our better grass 
shortener is shown in Figure 1-2.  Each design occupies a row in the matrix.  The columns 
are assigned categories in which the designs are to be judged, such as cost, ease of use, 
efficiency, performance, reliability, and any others you deem appropriate to the particular 
problem.  Each category is then assigned a weighting factor, which measures its relative 
importance.  For example, reliability may be a more important criterion to the user than 
cost, or vice versa.  You as the design engineer have to exercise your judgment as to the 
selection and weighting of these categories.  The body of the matrix is then filled with 
numbers that rank each design on a convenient scale, such as 1 to 10, in each of the catego-
ries.  Note that this is ultimately a subjective ranking on your part.  You must examine the 
designs and decide on a score for each.  The scores are then multiplied by the weighting 
factors (which are usually chosen so as to sum to a convenient number such as 1) and the 
products are summed for each design.  The weighted scores then give a ranking of the 
designs.  Be cautious in applying these results.  Remember the source and subjectivity of 
your scores and the weighting factors!  There is a temptation to put more faith in these 
results than is justified.  After all, they look impressive!  They can even be taken out to 
several decimal places!  (But they shouldn’t be.)  The real value of a decision matrix is 
that it breaks the problem into more tractable pieces and forces you to think about the 
relative value of each design in many categories.  You can then make a more informed 
decision as to the “best” design.

Detailed Design 

This step usually includes the creation of a complete set of assembly and detail drawings 
or computer-aided design (CAD) part files for each and every part used in the design.  
Each detail drawing must specify all the dimensions and the material specifications nec-
essary to make that part.  From these drawings (or CAD files) a prototype test model (or 
models) must be constructed for physical testing.  Most likely the tests will discover more 
flaws, requiring further iteration.

Prototyping and Testing

Models  Ultimately, one cannot be sure of the correctness or viability of any design 
until it is built and tested.  This usually involves the construction of a prototype physical 
model.  A mathematical model, while very useful, can never be as complete and accu-
rate a representation of the actual physical system as a physical model, due to the need 
to make simplifying assumptions.  Prototypes are often very expensive but may be the 
most economical way to prove a design, short of building the actual, full-scale device.  
Prototypes can take many forms, from working scale models to full-size, but simpli-
fied, representations of the concept.  Scale models introduce their own complications in  
regard to proper scaling of the physical parameters.  For example, volume of material var-
ies as the cube of linear dimensions, but surface area varies as the square.  Heat transfer 



DESIGN OF MACHINERY 6ed      CHAPTER  114

1 to the environment may be proportional to surface area, while heat generation may be 
proportional to volume.  So linear scaling of a system, either up or down, may lead to 
behavior different from that of the full-scale system.  One must exercise caution in scal-
ing physical models.  You will find as you begin to design linkage mechanisms that a 
simple cardboard model of your chosen link lengths, joined together with thumbtacks 
for pivots, will tell you a great deal about the quality and character of the mechanism’s 
motions.  You should get into the habit of making such simple articulated models for all 
your linkage designs.

Testing  of the model or prototype may range from simply actuating it and observ-
ing its function to attaching extensive instrumentation to accurately measure displace-
ments, velocities, accelerations, forces, temperatures, and other parameters.  Tests may 
need to be done under controlled environmental conditions such as high or low tempera-
ture or humidity.  The microcomputer has made it possible to measure many phenomena 
more accurately and inexpensively than could be done before.

Production

Finally, with enough time, money, and perseverance, the design will be ready for produc-
tion.  This might consist of the manufacture of a single final version of the design, but 
more likely will mean making thousands or even millions of your widget.  The danger, 
expense, and embarrassment of finding flaws in your design after making large quantities 
of defective devices should inspire you to use the greatest care in the earlier steps of the 
design process to ensure that it is properly engineered.

The design process is widely used in engineering.  Engineering is usually defined in 
terms of what an engineer does, but engineering can also be defined in terms of how the 
engineer does what he or she does.  Engineering is as much a method, an approach, a 
process, a state of mind for problem solving, as it is an activity.  The engineering approach 
is that of thoroughness, attention to detail, and consideration of all the possibilities.  While 
it may seem a contradiction in terms to emphasize “attention to detail” while extolling the 
virtues of open-minded, freewheeling, creative thinking, it is not.  The two activities are 
not only compatible, they are also symbiotic.  It ultimately does no good to have creative, 
original ideas if you do not, or cannot, carry out the execution of those ideas and “reduce 
them to practice.”  To do this you must discipline yourself to suffer the nitty-gritty, nettle-
some, tiresome details that are so necessary to the completion of any one phase of the 
creative design process.  For example, to do a creditable job in the design of anything, 
you must completely define the problem.  If you leave out some detail of the problem 
definition, you will end up solving the wrong problem.  Likewise, you must thoroughly 
research the background information relevant to the problem.  You must exhaustively 
pursue conceptual potential solutions to your problem.  You must then extensively ana-
lyze these concepts for validity.  And, finally, you must detail your chosen design down 
to the last nut and bolt to be confident it will work.  If you wish to be a good designer and 
engineer, you must discipline yourself to do things thoroughly and in a logical, orderly 
manner, even while thinking great creative thoughts and iterating to a solution.  Both at-
tributes, creativity and attention to detail, are necessary for success in engineering design.
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111.6	 OTHER APPROACHES TO DESIGN

In recent years, an increased effort has been directed toward a better understanding of de-
sign methodology and the design process.  Design methodology is the study of the process 
of designing.  One goal of this research is to define the design process in sufficient detail 
to allow it to be encoded in a form amenable to execution in a computer, using “artificial 
intelligence” (AI).  

Dixon[6] defines a design as a state of information which may be in any of several 
forms: 

. . . words, graphics, electronic data, and/or others.  It may be partial or complete.  It 
ranges from a small amount of highly abstract information early in the design process 
to a very large amount of detailed information later in the process sufficient to perform 
manufacturing. It may include, but is not limited to, information about size and shape, 
function, materials, marketing, simulated performance, manufacturing processes, toler-
ances, and more.  Indeed, any and all information relevant to the physical or economic 
life of a designed object is part of its design.

He goes on to describe several generalized states of information such as the requirements 
state that is analogous to our performance specifications.  Information about the physi-
cal concept is referred to as the conceptual state of information and is analogous to our 
ideation phase.  His feature configuration and parametric states of information are similar 
in concept to our detailed design phase.  Dixon then defines a design process as

The series of activities by which the information about the designed object is changed 
from one information state to another.

Axiomatic Design

N. P. Suh[7] suggests an axiomatic approach to design in which there are four domains: 
customer domain, functional domain, physical domain, and process domain. These 
represent a range from “what” to “how,” i.e., from a state of defining what the customer 
wants through determining the functions required and the needed physical embodiment, 
to how a process will achieve the desired end.  He defines two axioms that need to be 
satisfied to accomplish this:

	 1	 Maintain the independence of the functional requirements.

	 2	 Minimize the information content.

The first of these refers to the need to create a complete and nondependent set of perfor-
mance specifications.  The second indicates that the best design solution will have the 
lowest information content (i.e., the least complexity).  Others have earlier referred to 
this second idea as KISS, which stands, somewhat crudely, for “keep it simple, stupid.”

The implementation of both Dixon’s and Suh’s approaches to the design process 
is somewhat complicated.  The interested reader is referred to the literature cited in the 
bibliography to this chapter for more complete information.
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1 1.7	 MULTIPLE SOLUTIONS

Note that by the nature of the design process, there is not any one correct answer or 
solution to any design problem.  Unlike the structured “engineering textbook” problems, 
which most students are used to, there is no right answer “in the back of the book” for 
any real design problem.*  There are as many potential solutions as there are designers 
willing to attempt them.  Some solutions will be better than others, but many will work.  
Others will not!  There is no “one right answer” in design engineering, which is what 
makes it interesting.  The only way to determine the relative merits of various potential 
design solutions is by thorough analysis, which usually will include physical testing of 
constructed prototypes.  Because this is a very expensive process, it is desirable to do as 
much analysis on paper, or in the computer, as possible before actually building the device. 
Where feasible, mathematical models of the design, or parts of the design, should be cre-
ated.  These may take many forms, depending on the type of physical system involved.  In 
the design of mechanisms and machines, it is usually possible to write the equations for 
the rigid-body dynamics of the system, and solve them in “closed form” with (or without) 
a computer.  Accounting for the elastic deformations of the members of the mechanism or 
machine usually requires more complicated approaches using finite difference techniques 
or the finite element method (FEM).

1.8	 HUMAN FACTORS ENGINEERING

With few exceptions, all machines are designed to be used by humans.  Even robots must 
be programmed by a human.  Human factors engineering is the study of the human-
machine interaction and is defined as an applied science that coordinates the design of 
devices, systems, and physical working conditions with the capacities and requirements of 
the worker.  The machine designer must be aware of this subject and design devices to “fit 
the man”  rather than expect the man to adapt to fit the machine.  The term ergonomics 
is synonymous with human factors engineering.  We often see reference to the good or 
bad ergonomics of an automobile interior or a household appliance.  A machine designed 
with poor ergonomics will be uncomfortable and tiring to use and may even be dangerous. 
(Have you programmed your VCR lately, or set its clock?)

There is a wealth of human factors data available in the literature.  Some references 
are noted in the bibliography.  The type of information that might be needed for a machine 
design problem ranges from dimensions of the human body and their distribution among 
the population by age and gender, to the ability of the human body to withstand accelera-
tions in various directions, to typical strengths and force-generating ability in various 
positions.  Obviously, if you are designing a device that will be controlled by a human 
(a grass shortener, perhaps), you need to know how much force the user can exert with 
hands held in various positions, what the user’s reach is, and how much noise the ears 
can stand without damage.  If your device will carry the user on it, you need data on the 
limits of acceleration that the body can tolerate.  Data on all these topics exist.  Much of 
it was developed by the government which regularly tests the ability of military personnel 
to withstand extreme environmental conditions.  Part of the background research of any 
machine design problem should include some investigation of human factors.

 
*  A student once com-
mented that “Life is an odd-
numbered problem.”  This 
(slow) author had to ask for 
an explanation, which was, 
“The answer is not in the 
back of the book.”

Make the machine 
fit the man
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111.9	 THE ENGINEERING REPORT Watch a short video (15:57)*

Communication of your ideas and results is a very important aspect of engineering.  Many 
engineering students picture themselves in professional practice spending most of their 
time doing calculations of a nature similar to those they have done as students.  Fortu-
nately, this is seldom the case, as it would be very boring.  Actually, engineers spend the 
largest percentage of their time communicating with others, either orally or in writing.  
Engineers write proposals and technical reports, give presentations, and interact with sup-
port personnel and managers.  When your design is done, it is usually necessary to present 
the results to your client, peers, or employer.  The usual form of presentation is a formal 
engineering report.  Thus, it is very important for the engineering student to develop his 
or her communication skills.  You may be the cleverest person in the world, but no one 
will know that if you cannot communicate your ideas clearly and concisely.  In fact, if 
you cannot explain what you have done, you probably don’t understand it yourself.  To 
give you some experience in this important skill, the design project assignments in later 
chapters are intended to be written up in formal engineering reports.  Information on the 
writing of engineering reports can be found in the suggested readings in the bibliography 
at the end of this chapter.

1.10	 UNITS  Watch a short video (10:07)*

There are several systems of units used in engineering.  The most common in the United 
States are the U.S. foot-pound-second (fps) system, the U.S. inch-pound-second (ips) 
system, and the Systeme International (SI).  All systems are created from the choice of 
three of the quantities in the general expression of Newton’s second law

F ml
t

= 2 (1.1a)

where F is force, m is mass, l is length, and t is time.  The units for any three of these 
variables can be chosen, and the other is then derived in terms of the chosen units.  The 
three chosen units are called base units, and the remaining one is then a derived unit.

Most of the confusion that surrounds the conversion of computations between either 
one of the U.S. systems and the SI system is due to the fact that the SI system uses a dif-
ferent set of base units than the U.S. systems.  Both U.S. systems choose force, length, 
and time as the base units.  Mass is then a derived unit in the U.S. systems, and they are 
referred to as gravitational systems because the value of mass is dependent on the local 
gravitational constant. The SI system chooses mass, length, and time as the base units 
and force is the derived unit.  SI is then referred to as an absolute system since the mass 
is a base unit whose value is not dependent on local gravity.

The U.S. foot-pound-second (fps) system requires that all lengths be measured in 
feet (ft), forces in pounds (lb), and time in seconds (sec).  Mass is then derived from 
Newton’s law as 

m Ft
l

=
2

(1.1b)

and the units are  pound seconds squared per foot (lb-sec2/ft) = slugs.

 	

*  http://www.designofma-
chinery.com/DOM/Units.
mp4

 	

*  http://www.designofma-
chinery.com/DOM/Docu-
mentation.mp4

http://www.designofmachinery.com/DOM/Documentation.mp4
http://www.designofmachinery.com/DOM/Units.mp4
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1 The U.S. inch-pound-second (ips) system requires that all lengths be measured in 
inches (in), forces in pounds (lb), and time in seconds (sec).  Mass is still derived from 
Newton’s law, equation 1.1b, but the units are now:

Pound-seconds squared per inch (lb-sec2/in) = blobs 

This mass unit is not slugs!  It is worth twelve slugs or one blob.*

Weight is defined as the force exerted on an object by gravity.  Probably the most 
common units error that students make is to mix up these two unit systems (fps and ips) 
when converting weight units (which are pounds force) to mass units.  Note that the 
gravitational acceleration constant (g) on earth at sea level is approximately 32.2 feet per 
second squared, which is equivalent to 386 inches per second squared.  The relationship 
between mass and weight is:

Mass = weight / gravitational acceleration

m W
g

= (1.2)

It should be obvious that, if you measure all your lengths in inches and then use g = 32.2 feet/
sec2 to compute mass, you will have an error of a factor of twelve in your results.  This is a seri-
ous error, large enough to crash the airplane you designed.  Even worse off is the student who 

neglects to convert weight to mass at all in his calculations.  He will have an error of either 32.2 
or 386 in his results.  This is enough to sink the ship!†  

To even further add to the student’s confusion about units is the common use of the 
unit of pounds mass (lbm).  This unit is often used in fluid dynamics and thermodynam-
ics and comes about through the use of a slightly different form of Newton’s equation:

F ma
gc

= (1.3)

where m = mass in lbm, a = acceleration, and gc = the gravitational constant.  

The value of the mass of an object measured in pounds mass (lbm) is numerically 
equal to its weight in pounds force (lbf).  However the student must remember to divide 
the value of m in lbm by gc when substituting into this form of Newton’s equation.  Thus 
the lbm will be divided either by 32.2 or by 386 when calculating the dynamic force.  
The result will be the same as when the mass is expressed in either slugs or blobs in the  
F = ma form of the equation.  Remember that in round numbers at sea level on earth:
	 1 lbm = 1 lbf 		  1 slug = 32.2 lbf		  1 blob = 386 lbf

The SI system requires that lengths be measured in meters (m), mass in kilograms 
(kg), and time in seconds (sec).  This is sometimes also referred to as the mks system.  
Force is derived from Newton’s law, equation 1.1b, and the units are:

kilogram-meters per second2 (kg-m/s2) = newtons

Thus in the SI system there are distinct names for mass and force which helps allevi-
ate confusion.  When converting between SI and U.S. systems, be alert to the fact that 
mass converts from kilograms (kg) to either slugs (sl) or blobs (bl), and force converts 
from newtons (N) to pounds (lb). The gravitational constant (g) in the SI system is ap-
proximately 9.81 m/s2.

	
*  It is unfortunate that the 
mass unit in the ips system 
has never officially been 
given a name such as the 
term slug used for mass 
in the fps system.  The 
author boldly suggests (with 
tongue only slightly in 
cheek) that this unit of mass 
in the ips system be called 
a blob (bl) to distinguish it 
more clearly from the slug 
(sl), and to help the student 
avoid some of the common 
units errors listed above.  

Twelve slugs = one blob 

Blob does not sound any 
sillier than slug, is easy to 
remember, implies mass, 
and has a convenient abbre-
viation (bl) which is an ana-
gram for the abbreviation 
for pound (lb).  Besides, if 
you have ever seen a garden 
slug, you know it looks just 
like a “little blob.”  

	
†  A 125-million-dollar 
space probe was lost 
because NASA failed to 
convert data that had been 
supplied in ips units by its 
contractor, Lockheed Aero-
space, into the metric units 
used in the NASA computer 
programs that controlled 
the spacecraft.  It was sup-
posed to orbit the planet 
Mars, but instead either 
burned up in the Martian 
atmosphere or crashed into 
the planet because of this 
units error.  Source: The 
Boston Globe, October 1, 
1999, p. 1.
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11

The principal system of units used in this textbook will be the U.S. ips system.  Most 
machine design in the United States is still done in this system.  Table 1-4 shows some 
of the variables used in this text and their units.  Table 1-5 provides conversion factors 
between the U.S. and SI systems.  

The student is cautioned to always check the units in any equation written for a prob-
lem solution, whether in school or in professional practice after graduation.  If properly 
written, an equation should cancel all units across the equal sign.  If it does not, then you 
can be absolutely sure it is incorrect.  Unfortunately, a unit balance in an equation does 
not guarantee that it is correct, as many other errors are possible.  Always double-check 
your results.  You might save a life.

Variable Symbol ips unit fps unit SI unit

Force F pounds (lb) pounds (lb) newtons (N )

Length l inches (in) feet (ft) meters (m)

Time t seconds (sec) seconds (sec) seconds (sec)

Mass m lb–sec 2/in = bl kilograms (kg)lb–sec 2/ft  = sl
Weight W pounds (lb) pounds (lb) newtons (N )

Velocity v in/sec ft/sec m/sec

Acceleration a in/sec2 ft/sec2 m/sec2

Jerk j in/sec3 ft/sec3 m/sec3

Angle θ degrees (deg) degrees (deg) degrees (deg)

Angle θ radians (rad) radians (rad) radians (rad)

Angular velocity ω rad/sec rad/sec rad/sec

Angular acceleration α rad/sec2 rad/sec2 rad/sec2

Angular jerk ϕ rad/sec3 rad/sec3 rad/sec3

Torque T lb–in lb–ft N–m

Mass moment of inertia I lb–in–sec2 lb–ft–sec2 N–m–sec2

Energy E in–lb f t–lb joules (J)

Power P in–lb/sec ft–lb/sec watts (W)

Volume V in3 ft3 m3

Mass density ρ bl/in3 sl/ft3 kg/m3

Weight density γ lb/in3 lb/ft3 N/m3

TABLE  1-4 Variables and Units
Base Units in Boldface – Abbreviations in ( )
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1

From U.S. Customary Units to Metric Units

1 Blob (bl)  =  175.127  Kilograms (kg)
1 Cubic inch (in3)  = 16.387 Cubic centimeters (cc)
1 Foot (ft)  =  0.304 8  Meter (m)
1 Horsepower (hp)  =  745.699  Watts (W)
1 Inch (in)  =  0.025 4  Meter (m)
1 Mile, U.S. statute (mi)  =  1 609.344  Meters (m)
1 Pound force (lb)  =  4.448 2  Newtons (N)
 = 444 822.2 Dynes
1 Pound mass (lbm)  =  0.453 6  Kilogram (kg)
1 Pound-foot (lb-ft)  =  1.355 8  Newton-meter (N-m)
  =  1.355 8  Joules (J)
1 Pound-foot/second (lb-ft/sec)  =  1.355 8  Watts (W)
1 Pound-inch (lb-in)  =  0.112 8  Newton-meter (N-m)
 =  0.112 8  Joule (J)
1 Pound-inch/second (lb-in/sec)  =  0.112 8  Watt (W)
1 Pound/foot2 (lb/ft2)  =  47.880 3  Pascals (Pa)
1 Pound/inch2 (lb/in2), (psi)  =  6 894.757  Pascals (Pa)
1 Revolution/minute (rpm) = 0.104 7  Radian/second (rad/s)
1 Slug (sl) =  14.593 9  Kilograms (kg)
1 Ton, short (2000 lbm)  =  907.184 7  Kilograms (kg)

Between U.S. Customary Units 
1 Blob (bl)  =  12  Slugs (sl)
1 Blob (bl)  =  386  Pounds mass (lbm)
1 Foot (ft)  =  12  Inches (in)
1 Horsepower (hp)  =  550  Pound-feet/second (lb-ft/sec)
1 Knot  = 1.151 5 Miles/hour (mph)
1 Mile, U.S. statute (mi)  =  5 280 Feet (ft)
1 Mile/hour = 1.4667  Feet/second (ft/sec)
1 Pound force (lb)  =  16  Ounces (oz)
1 Pound mass (lbm)  =  0.0311  Slug (sl)
1 Pound-foot (lb-ft)  =  12  Pound-inches (lb-in)
1 Pound-foot/second (lb-ft/sec)  =  0.001 818 Horsepower (hp) 
1 Pound-inch (lb-in)  =  0.083 3  Pound-foot (lb-ft)
1 Pound-inch/second (lb-in/sec)  =  0.021 8  Horsepower (hp) 
1 Pound/inch2 (lb/in2), (psi)  =  144  Pounds/foot2 (lb/ft2) 
1 Radian/second (rad/sec) = 9.549  Revolutions/minute (rpm)
1 Slug (sl) =  32.174 Pounds mass (lbm) 
1 Ton, short  =  2000 Pounds mass (lbm)

TABLE  1-5 Conversion Factors
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111.11	 A DESIGN CASE STUDY

Of all the myriad activities that the practicing engineer engages in, the one that is at once 
the most challenging and potentially the most satisfying is design.  Doing calculations to 
analyze a clearly defined and structured problem, no matter how complex, may be dif-
ficult, but the exercise of creating something from scratch, to solve a problem that is often 
poorly defined, is very difficult.  The sheer pleasure and joy at conceiving a viable solution 
to such a design problem is one of life’s great satisfactions for anyone, engineer or not.  

Some years ago, a very creative engineer of the author’s acquaintance, George A. 
Wood Jr., heard a presentation by another creative engineer of the author’s acquaintance, 
Keivan Towfigh, about one of his designs.  Years later, Mr. Wood himself wrote a short 
paper about creative engineering design in which he reconstructed Mr. Towfigh’s pre-
sumed creative process when designing the original invention.  Both Mr. Wood and Mr. 
Towfigh have kindly consented to the reproduction of that paper here.  It serves, in this 
author’s opinion, as an excellent example and model for the student of engineering design 
to consider when pursuing his or her own design career.

Educating for Creativity in Engineering[9]

by George A. Wood Jr.
One facet of engineering, as it is practiced in industry, is the creative process.  Let us define 

creativity as Rollo May does in his book, The Courage to Create.[10]  It is “the process of bringing 
something new into being.”  Much of engineering has little to do with creativity in its fullest sense.  
Many engineers choose not to enter into creative enterprise, but prefer the realms of analysis, testing 
and product or process refinement.  Many others find their satisfaction in management or business 
roles and are thus removed from engineering creativity as we shall discuss it here.  

From the outset, I wish to note that the less creative endeavors are no less important or satisfy-
ing to many engineers than is the creative experience to those of us with the will to create.  It would 
be a false goal for all engineering schools to assume that their purpose was to make all would-be 
engineers creative and that their success should be measured by the “creative quotient” of their 
graduates.

On the other hand, for the student who has a creative nature, a life of high adventure awaits if 
he can find himself in an academic environment which recognizes his needs, enhances his abilities 
and prepares him for a place in industry where his potential can be realized.

In this talk I will review the creative process as I have known it personally and witnessed it 
in others.  Then I shall attempt to indicate those aspects of my training that seemed to prepare me 
best for a creative role and how this knowledge and these attitudes toward a career in engineering 
might be reinforced in today’s schools and colleges.

During a career of almost thirty years as a machine designer, I have seen and been a part of a 
number of creative moments.  These stand as the high points of my working life.  When I have been 
the creator I have felt great elation and immense satisfaction.  When I have been with others at their 
creative moments I have felt and been buoyed up by their delight.  To me, the creative moment is the 
greatest reward that the profession of engineering gives.

Let me recount an experience of eight years ago when I heard a paper given by a creative man 
about an immensely creative moment.  At the First Applied Mechanisms Conference in Tulsa, Okla-
homa, was a paper entitled The Four-Bar Linkage as an Adjustment Mechanism.[11]  It was nestled 
between two “how to do it”  academic papers with graphs and equations of interest to engineers in 
the analysis of their mechanism problems.  This paper contained only one very elementary equation 
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1 and five simple illustrative figures; yet, I remember it now more clearly than any other paper I have 
ever heard at mechanism conferences.  The author was Keivan Towfigh and he described the appli-
cation of the geometric characteristics of the instant center of the coupler of a four bar mechanism.

His problem had been to provide a simple rotational adjustment for the oscillating mirror of an 
optical galvanometer.  To accomplish this, he was required to rotate the entire galvanometer assem-
bly about an axis through the center of the mirror and perpendicular to the pivot axis of the mirror.  
High rigidity of the system after adjustment was essential with very limited space available and low 
cost required, since up to sixteen of these galvanometer units were used in the complete instrument.  

His solution was to mount the galvanometer elements on the coupler link of a one-piece, flexure 
hinged, plastic four bar mechanism so designed that the mirror center was at the instant center* of 
the linkage at the midpoint of its adjustment.  (See Fig 4.) It is about this particular geometric point 
(see Fig 1.) that pure rotation occurs and with proper selection of linkage dimensions this condi-
tion of rotation without translation could be made to hold sufficiently accurately for the adjustment 
angles required.

Unfortunately, this paper was not given the top prize by the judges of the conference.  Yet, 
it was, indirectly, a description of an outstandingly creative moment in the life of a creative man.

Let us look at this paper together and build the steps through which the author probably pro-
gressed in the achievement of his goal.  I have never seen Mr. Towfigh since, and I shall therefore 
describe a generalized creative process which may be incorrect in some details but which, I am sure, 
is surprisingly close to the actual story he would tell.  

The galvanometer problem was presented to Mr. Towfigh by his management.  It was, no doubt, 
phrased something like this:  “In our new model, we must improve the stability of the adjustment of 
the equipment but keep the cost down.  Space is critical and low weight is too.  The overall design 
must be cleaned up, since customers like modern, slim-styled equipment and we’ll lose sales to oth-
ers if we don’t keep ahead of them on all points.  Our industrial designer has this sketch that all of 
us in sales like and within which you should be able to make the mechanism fit.”

Then followed a list of specifications the mechanism must meet, a time when the new model 
should be in production and, of course, the request for some new feature that would result in a strong 
competitive edge in the marketplace.  

I wish to point out that the galvanometer adjustment was probably only one hoped-for im-
provement among many others.  The budget and time allowed  were little more than enough needed 
for conventional redesign, since this cost must be covered by the expected sales of the resulting 
instrument.  For every thousand dollars spent in engineering, an equivalent increase in sales or 
reduction in manufacturing cost must be realized at a greater level than the money will bring if 
invested somewhere else.

In approaching this project, Mr. Towfigh had to have a complete knowledge of the equipment 
he was designing.  He had to have run the earlier models himself.  He must have adjusted the mir-
rors of existing machines many times.  He had to be able to visualize the function of each element 
in the equipment in its most basic form.

Secondly, he had to ask himself (as if he were the customer) what operational and maintenance 
requirements would frustrate him most.  He had to determine which of these might be improved 
within the design time available.  In this case he focused on the mirror adjustment.  He considered 
the requirement of rotation without translation.  He determined the maximum angles that would be 
necessary and the allowable translation that would not affect the practical accuracy of the equip-
ment.  He recognized the desirability of a one screw adjustment.  He spent a few hours thinking 
of all the ways he had seen of rotating an assembly about an arbitrary point.  He kept rejecting 
each solution as it came to him as he felt, in each case, that there was a better way.  His ideas had 
too many parts, involved slides, pivots, too many screws, were too vibration sensitive or too large.

	
*  The theory of instant 
centers will be thoroughly 
explained in Chapter 6.

(research)

(ideation)

(frustration)
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(incubation)

(Eureka!)
	
*  Defined in Chapter 6.

He thought about the problem that evening and at other times while he proceeded with the 
design of other aspects of the machine.  He came back to the problem several times during the next 
few days.  His design time was running out.  He was a mechanism specialist and visualized a host 
of cranks and bars moving the mirrors.  Then one day, probably after a period when he had turned 
his attention elsewhere, on rethinking of the adjustment device, an image of the system based on 
one of the elementary characteristics of a four bar mechanism came to him.

I feel certain that this was a visual image, as clear as a drawing on paper.  It was probably 
not complete but involved two inspirations.  First was the characteristics of the instant center.* (See 
Figs 1, 2, 3.)  Second was the use of flexure hinge joints which led to a one-piece plastic molding.  
(See Fig 4.) I am sure that at this moment he had a feeling that this solution was right.  He knew it 
with certainty.  The whole of his engineering background told him.  He was elated.  He was filled 
with joy.  His pleasure was not because of the knowledge that his superiors would be impressed or 
that his security in the company would be enhanced.  It was the joy of personal victory, the aware-
ness that he had conquered.

The creative process has been documented before by many others far more qualified to analyze 
the working of the human mind than I.  Yet I would like to address, for the remaining minutes, how 
education can enhance this process and help more engineers, designers and draftsmen extend their 
creative potential.  
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1 The key elements I see in creativity that have greatest bearing on the quality that results from 
the creative effort are visualization and basic knowledge that gives strength to the feeling that the 
right solution has been achieved.  There is no doubt in my mind that the fundamental mechanical 
principles that apply in the area in which the creative effort is being made must be vivid in the mind 
of the creator.  The words that he was given in school must describe real elements that have physical, 
visual significance.  F = ma must bring a picture to his mind vivid enough to touch.

If a person decides to be a designer, his training should instill in him a continuing curiosity to 
know how each machine he sees works.  He must note its elements and mentally see them function 
together even when they are not moving.  I feel that this kind of solid, basic knowledge couples with 
physical experience to build ever more critical levels at which one accepts a tentative solution as 
“right.” 

It should be noted that there have been times for all of us when the inspired “right” solution 
has proven wrong in the long run.  That this happens does not detract from the process but indicates 
that creativity is based on learning and that failures build toward a firmer judgment base as the 
engineer matures.  These failure periods are only negative, in the growth of a young engineer, when 
they result in the fear to accept a new challenge and beget excessive caution which then stifles the 
repetition of the creative process.

What would seem the most significant aspects of an engineering curriculum to help the poten-
tially creative student develop into a truly creative engineer?  

First is a solid, basic knowledge in physics, mathematics, chemistry and those subjects relat-
ing to his area of interest.  These fundamentals should have physical meaning to the student and a 
vividness that permits him to explain his thoughts to the untrained layman.  All too often technical 
words are used to cover cloudy concepts.  They serve the ego of the user instead of the education 
of the listener.

Second is the growth of the student’s ability to visualize.  The creative designer must be able to 
develop a mental image of that which he is inventing.  The editor of the book Seeing with the Mind’s 
Eye,[12] by Samuels, says in the preface:  

		  “. . .  visualization is the way we think.  Before words, images were.  Visualization is the heart 
of the bio-computer.  The human brain programs and self-programs through its images.  Riding 
a bicycle, driving a car, learning to read, baking a cake, playing golf - all skills are acquired 
through the image making process.  Visualization is the ultimate consciousness tool.”  

Obviously, the creator of new machines or products must excel in this area.  
To me, a course in Descriptive Geometry is one part of an engineer’s training that enhances 

one’s ability to visualize theoretical concepts and graphically reproduce the result.  This ability is 
essential when one sets out to design a piece of new equipment.   First, he visualizes a series of 
complete machines with gaps where the problem or unknown areas are.  During this time, a number 
of directions the development could take begin to form.  The best of these images are recorded on 
paper and then are reviewed with those around him until, finally, a basic concept emerges.  

The third element is the building of the student’s knowledge of what can be or has been done 
by others with different specialized knowledge than he has.  This is the area to which experience will 
add throughout his career as long as he maintains an enthusiastic curiosity.  Creative engineering 
is a building process.  No one can develop a new concept involving principles about which he has 
no knowledge.  The creative engineer looks at problems in the light of what he has seen, learned 
and experienced and sees new ways for combining these to fill a new need.

Fourth is the development of the ability of the student to communicate his knowledge to others.  
This communication must involve not only skills with the techniques used by technical people but 
must also include the ability to share engineering concepts with untrained shop workers, business 
people and the general public.  The engineer will seldom gain the opportunity to develop a concept 

(analysis)



INTRODUCTION 25

11truly ingenious ideas are lost because the creator cannot transfer his vivid image to those who might 
finance or market it.

Fifth is the development of a student’s knowledge of the physical result of engineering.  The 
more he can see real machines doing real work, the more creative he can be as a designer.  The 
engineering student should be required to run tools, make products, adjust machinery and visit fac-
tories.  It is through this type of experience that judgement grows as to what makes a good machine, 
when approximation will suffice and where optimization should halt.

It is often said that there has been so much theoretical development in engineering during the 
past few decades that the colleges and universities do not have time for the basics I have outlined 
above.  It is suggested that industry should fill in the practice areas that colleges have no time for, 
so that the student can be exposed to the latest technology.  To some degree I understand and sym-
pathize with this approach, but I feel that there is a negative side that needs to be recognized.  If a 
potentially creative engineer leaves college without the means to achieve some creative success as 
he enters his first job, his enthusiasm for creative effort is frustrated and his interest sapped long 
before the most enlightened company can fill in the basics.  Therefore, a result of the “basics later” 
approach often is to remove from the gifted engineering student the means to express himself visu-
ally and physically.  Machine design tasks therefore become the domain of the graduates of technical 
and trade schools and the creative contribution by many a brilliant university student to products 
that could make all our lives richer is lost.

As I said at the start, not all engineering students have the desire, drive and enthusiasm that 
are essential to creative effort.  Yet I feel deeply the need for the enhancement of the potential of 
those who do.  That expanding technology makes course decisions difficult for both student and 
professor is certainly true.  The forefront of academic thought has a compelling attraction for both 
the teacher and the learner.  Yet I feel that the development of strong basic knowledge, the abilities 
to visualize, to communicate, to respect what has been done, to see and feel real machinery, need 
not exclude or be excluded by the excitement of the new.  I believe that there is a curriculum bal-
ance that can be achieved which will enhance the latent creativity in all engineering and science 
students.  It can give a firm basis for those who look towards a career of mechanical invention and 
still include the excitement of new technology.  

I hope that this discussion may help in generating thought and providing some constructive 
suggestions that may lead more engineering students to find the immense satisfaction of the cre-
ative moment in the industrial environment.  In writing this paper I have spent considerable time 
reflecting on my years in engineering and I would close with the following thought.  For those of 
us who have known such times during our careers, the successful culminations of creative efforts 
stand among our most joyous hours.

Mr. Wood’s description of his creative experiences in engineering design and the edu-
cational factors which influenced them closely parallels this author’s experience as well.  
The student is well advised to follow his prescription for a thorough grounding in the 
fundamentals of engineering and communication skills.  A most satisfying career in the 
design of machinery can result.

1.12	 WHAT’S TO COME

In this text we will explore the design of machinery in respect to the synthesis of mecha-
nisms in order to accomplish desired motions or tasks, and also the analysis of mecha-
nisms in order to determine their rigid-body dynamic behavior.  On the premise that 
we cannot analyze anything until it has been synthesized into existence, we will first 
explore the synthesis of mechanisms.  Then we will investigate the analysis of those and 
other mechanisms for their kinematic behavior.  Finally, in Part II we will deal with the 
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1 dynamic analysis of the forces and torques generated by these moving machines.  These 
topics cover the essence of the early stages of a design project.  Once the kinematics and 
kinetics of a design have been determined, most of the conceptual design will have been 
accomplished.  What then remains is detailed design—sizing the parts against failure.  
The topic of detailed design is discussed in other texts such as reference [8].

1.13	 RESOURCES WITH THIS TEXT

The Video Contents contains a list of downloadable Master Lecture videos made by the 
author. An index of additional downloadable files is in the Appendices.  These include 
computer programs, sample files for those programs, PDF files of all problem figures for 
use in solving them, two linkage atlases (the Hrones and Nelson fourbar atlas, and the 
Zhang, Norton, Hammond geared fivebar atlas), and digital videos with tutorial informa-
tion on various topics in the book, program use, and views of actual machines in operation 
to show applications of the theory.  There are also Powerpoints of the author’s master 
lectures on most of the topics in the book.  Clickable links to the Master Lectures, videos, 
and other files are also inserted in the e-book version of this text.

Programs

The commercial program Working Model (WM) is included in a “textbook edition” that 
has some limitations (see the Preface for more details).  It will run all the WM files of 
book figures and examples that are included.  Three programs written by the author for 
the design and analysis of linkages and cams are provided:  Dynacam, Linkages, and 
Matrix.  User manuals, sample files, and tutorial videos for some of these programs are 
provided and are accessed from within the programs.

Videos

The videos provided are in four categories:  lectures, tutorials, and snippets on topics in 
the text, tutorials on program use, virtual laboratories, and depictions of actual mecha-
nisms and machines.  

Lectures/Tutorials/Snippets  The lectures and tutorials on topics in the text 
typically provide much more information on the topic than can be presented on the page 
and also provide a “show and tell” advantage.  These are all noted in the sections of the 
text where the topics are addressed.  See the Video Contents for more information.

Program Tutorials  The tutorials on program use give an introduction to the 
programs.  These videos can be viewed from within the programs if the computer has an 
Internet connection.

Virtual Laboratories  There are two virtual laboratory videos provided, one 
on linkages and one on cams.  These show and describe laboratory machines used by the 
author at WPI to introduce students to the measurement and analysis of kinematic and 
dynamic parameters on real machines.  It is instructive to see the differences between theo-
retical predictions of a machine’s behavior and actual measured data.  All the data taken 
in a typical lab session from these machines is provided along with descriptions of the lab 
assignment so that anyone can do a virtual laboratory exercise similar to that done at WPI.
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11Machines in Action  These range from commercially produced videos about a 
company’s products or manufacturing processes to student-produced videos about their 
projects that involved mechanisms.  Most students have not had an opportunity to visit a 
manufacturing plant or see the inner workings of machinery, and the hope is that these 
videos will give some insight into applications of the theories presented in the text.
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Chapter2
KINEMATICS 
FUNDAMENTALS
Chance favors the prepared mind
Pasteur

2.0	 INTRODUCTION  Watch the lecture video for this chapter (49:12)*

This chapter will present definitions of a number of terms and concepts fundamental to the 
synthesis and analysis of mechanisms.  It will also present some very simple but powerful 
analysis tools that are useful in the synthesis of mechanisms.

2.1	 DEGREES OF FREEDOM (DOF) OR MOBILITY  Watch a short video 
(3:53)†

A mechanical system’s mobility (M) can be classified according to the number of de‑
grees of freedom (DOF) that it possesses.  The system’s DOF is equal to the number of 
independent parameters (measurements) that are needed to uniquely define its position in 
space at any instant of time.  Note that DOF is defined with respect to a selected frame of 
reference.  Figure 2‑1 shows a pencil lying on a flat piece of paper with an x, y coordinate 
system added.  If we constrain this pencil to always remain in the plane of the paper, three 
parameters (DOF) are required to completely define the position of the pencil on the pa‑
per, two linear coordinates (x, y) to define the position of any one point on the pencil and 
one angular coordinate (θ) to define the angle of the pencil with respect to the axes.  The 
minimum number of measurements needed to define its position is shown in the figure as 
x, y, and θ.  This system of the pencil in a plane then has three DOF.  Note that the par‑
ticular parameters chosen to define its position are not unique.  Any alternate set of three 
parameters could be used.  There is an infinity of sets of parameters possible, but in this 
case there must be three parameters per set, such as two lengths and an angle, to define 
the system’s position because a rigid body in plane motion has three DOF.

30

 	

†  http://www.designofma‑
chinery.com/DOM/DOF.
mp4

 	

*  http://www.designofma‑
chinery.com/DOM/Kine‑
matics Fundamentals.mp4

http://www.designofmachinery.com/DOM/Kinematics Fundamentals.mp4
http://www.designofmachinery.com/DOM/DOF.mp4
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Now allow the pencil to exist in a three-dimensional world.  Hold it above your 
desktop and move it about.  You now will need six parameters to define its six DOF.  One 
possible set of parameters that could be used is three lengths, (x, y, z), plus three angles 
(θ, φ, ρ). Any rigid body in three‑space has six degrees of freedom.  Try to identify these 
six DOF by moving your pencil or pen with respect to your desktop.

The pencil in these examples represents a rigid body, or link, which for purposes of 
kinematic analysis we will assume to be incapable of deformation.  This is merely a conve‑
nient fiction to allow us to more easily define the gross motions of the body.  We can later 
superpose any deformations due to external or inertial loads onto our kinematic motions 
to obtain a more complete and accurate picture of the body’s behavior.  But remember, we 
are typically facing a blank sheet of paper at the beginning stage of the design process.  We 
cannot determine deformations of a body until we define its size, shape, material proper‑
ties, and loadings.  Thus, at this stage we will assume, for purposes of initial kinematic 
synthesis and analysis, that our kinematic bodies are rigid and massless.

2.2	 TYPES OF MOTION

A rigid body free to move within a reference frame will, in the general case, have com‑
plex motion, which is a simultaneous combination of rotation and translation.  In 
three‑dimensional space, there may be rotation about any axis (any skew axis or one 
of the three principal axes) and also simultaneous translation that can be resolved into 
components along three axes.  In a plane, or two‑dimensional space, complex motion  
becomes a combination of simultaneous rotation about one axis (perpendicular to the 
plane) and also translation resolved into components along two axes in the plane.  For 
simplicity, we will limit our present discussions to the case of planar (2‑D) kinematic 
systems.  We will define these terms as follows for our purposes, in planar motion:

FIGURE 2-1
A rigid body in a plane has three DOF 

X
θ

xy

Y
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Pure rotation
The body possesses one point (center of rotation) that has no motion with respect to the 
“stationary” frame of reference. All other points on the body describe arcs about that 
center.  A reference line drawn on the body through the center changes only its angular 
orientation.

Pure translation
All points on the body describe parallel (curvilinear or rectilinear) paths. A reference line 
drawn on the body changes its linear position but does not change its angular orientation.

Complex motion
A simultaneous combination of rotation and translation.  Any reference line drawn on the 
body will change both its linear position and its angular orientation.  Points on the body 
will travel nonparallel paths, and there will be, at every instant, a center of rotation, which 
will continuously change location.

Translation and rotation represent independent motions of the body. Each can ex‑
ist without the other. If we define a 2‑D coordinate system as shown in Figure 2‑1, the 
x and y terms represent the translation components of motion, and the θ term represents 
the rotation component.

2.3	 LINKS, JOINTS, AND KINEMATIC CHAINS  Watch a short video 
(11:00)*

We will begin our exploration of the kinematics of mechanisms with an investigation of 
the subject of linkage design. Linkages are the basic building blocks of all mechanisms. 
We will show in later chapters that all common forms of mechanisms (cams, gears, belts, 
and chains) are in fact variations on a common theme of linkages.  Linkages are made up 
of links and joints.

A link, as shown in Figure 2‑2, is an (assumed) rigid body that possesses at least two 
nodes that are points for attachment to other links.

Binary link 			  ‑ one with two nodes.

Ternary link			  ‑ one with three nodes.

Quaternary link			 ‑ one with four nodes.

 	

*  http://www.designof‑
machinery.com/DOM/
Links_and_Joints.mp4

Links of di�erent order
FIGURE 2-2

Binary link Ternary link Quaternary link

Nodes

http://www.designofmachinery.com/DOM/Links_and_Joints.mp4
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A joint is a connection between two or more links (at their nodes), which allows some 
motion, or potential motion, between the connected links.  Joints (also called kinematic 
pairs) can be classified in several ways:

	 1	 By the type of contact between the elements, line, point, or surface.

	 2	 By the number of degrees of freedom allowed at the joint.

	 3	 By the type of physical closure of the joint: either force or form closed.

	 4	 By the number of links joined (order of the joint).

Reuleaux[1] coined the term lower pair to describe joints with surface contact (as 
with a pin surrounded by a hole) and the term higher pair to describe joints with point 
or line contact.  However, if there is any clearance between pin and hole (as there must 
be for motion), so‑called surface contact in the pin joint actually becomes line contact, 
as the pin contacts only one “side” of the hole.  Likewise, at a microscopic level, a block 
sliding on a flat surface actually has contact only at discrete points, which are the tops of 
the surfaces’ asperities.  The main practical advantage of lower pairs over higher pairs is 
their better ability to trap lubricant between their enveloping surfaces.  This is especially 
true for the rotating pin joint.  The lubricant is more easily squeezed out of a higher pair, 
nonenveloping joint.  As a result, the pin joint is preferred for low wear and long life, even 
over its lower pair cousin, the prismatic or slider joint.  

Figure 2-3a shows the six possible lower pairs, their degrees of freedom, and their 
one-letter symbols.  The revolute (R) and the prismatic (P) pairs are the only lower pairs 
usable in a planar mechanism.  The screw (H), cylindric (C), spherical (S), and flat (F) 
lower pairs are all combinations of the revolute and/or prismatic pairs and are used in 
spatial (3-D) mechanisms.  The R and P pairs are the basic building blocks of all other 
pairs that are combinations of those two as shown in Table 2-1.

A more useful means to classify joints (pairs) is by the number of degrees of freedom 
that they allow between the two elements joined.  Figure 2‑3 also shows examples of both 
one- and two-freedom joints commonly found in planar mechanisms. Figure 2‑3b shows 
two forms of a planar, one-freedom joint (or pair), namely, a rotating (revolute) pin joint 
(R) and a translating (prismatic) slider joint (P).  These are also referred to as full joints 
(i.e., full = 1 DOF) and are lower pairs. The pin joint allows one rotational DOF, and 
the slider joint allows one translational DOF between the joined links.  These are both 
contained within (and each is a limiting case of) another common, one-freedom joint, the 
screw and nut (Figure 2-3a).  Motion of either the nut or the screw with respect to the 
other results in helical motion.  If the helix angle is made zero, the nut rotates without 
advancing and it becomes the pin joint.  If the helix angle is made 90 degrees, the nut will 
translate along the axis of the screw, and it becomes the slider joint.  

Figure 2‑3c shows examples of two-freedom joints (higher pairs) that simultaneously 
allow two independent, relative motions, namely translation and rotation, between the 
joined links.  Paradoxically, this two-freedom joint is sometimes referred to as a “half 
joint,” with its two freedoms placed in the denominator.  The half joint is also called a 
roll‑slide joint  because it allows both rolling and sliding.  A spherical, or ball-and-socket 
joint, (Figure 2‑3a) is an example of a three-freedom joint, which allows three independent 
angular motions between the two links joined. This joystick or ball joint is typically used 
in a three‑dimensional mechanism, one example being the ball joints in an automotive 
suspension system.

The Six Lower Pairs 

Name
(Symbol)

ContainsDOF

Revolute

TABLE  2-1

(R) 1 R

Cylindric
(C) 1 RP

Spherical
(S) 3 RRR

Planar

Prismatic
(P) 1 P

Helical
(H) 1 RP
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(b)  Full joints—1 DOF (lower pairs)   

(d )   The order of a joint is one less than the number of links joined

(e) Planar pure-roll (R), pure-slide (P), or roll-slide (RP) joint —1- or 2 DOF (higher pair)  

(c ) Roll-slide (half or RP)  joints—2  DOF  (higher pairs)  

Spherical (S) joint—3 DOF

Revolute (R) joint—1 DOF

Prismatic (P) joint—1 DOF

Helical (H) joint—1  DOF

Cylindric (C) joint—2 DOF

Planar (F) joint—3 DOF

(a )  The six lower pairs
 May roll, slide, or roll-slide, depending on friction

Rotating full pin (R) joint (form closed) Translating full slider (P) joint (form closed)

∆θ

∆x

∆x

Link against plane (force closed)

∆θ ∆

First-order pin joint—1 DOF
(two links joined)

L L

∆θ2
ref.

Second-order pin joint—2  DOF
(three links joined)

∆θ3

∆θ2
L

L

L

ref.

Pin in slot (form closed)

∆θ

∆θ

∆x

FIGURE 2 -3
Joints (pairs) of various types

∆x
∆y ∆φ

square X-sectio n

∆x

∆θ

∆θ

∆θ

∆θ

∆ψ
∆φ

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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A joint with more than one freedom may also be a higher pair as shown in Fig‑
ure 2-3c.  Full joints (lower pairs) and half joints (higher pairs) are both used in planar 
(2‑D), and in spatial (3‑D) mechanisms.  Note that if you do not allow the two links in 
Figure 2‑3c connected by a roll-slide joint to slide, perhaps by providing a high friction 
coefficient between them, you can “lock out” the translating (∆x) freedom and make it 
behave as a full joint.  This is then called a pure rolling joint and has rotational freedom 
(∆θ) only.  A common example of this type of joint is your automobile tire rolling against 
the road, as shown in Figure 2‑3e.  In normal use there is pure rolling and no sliding at 
this joint, unless, of course, you encounter an icy road or become too enthusiastic about 
accelerating or cornering.  If you lock your brakes on ice, this joint converts to a pure 
sliding one like the slider block in Figure 2‑3b.  Friction determines the actual number of 
freedoms at this kind of joint.  It can be pure roll, pure slide, or roll‑slide.

To visualize the degree of freedom of a joint in a mechanism, it is helpful to “men‑
tally disconnect” the two links that create the joint from the rest of the mechanism.  You 
can then more easily see how many freedoms the two joined links have with respect to 
one another.

Figure 2‑3c also shows examples of both form-closed and force-closed joints. A 
form-closed joint is kept together or closed by its geometry.  A pin in a hole or a slider 
in a two‑sided slot is form closed. In contrast, a force-closed joint, such as a pin in a 
half‑bearing or a slider on a surface, requires some external force to keep it together or 
closed.  This force could be supplied by gravity, a spring, or any external means. There 
can be substantial differences in the behavior of a mechanism due to the choice of force 
or form closure, as we shall see.  The choice should be carefully considered.  In linkages, 
form closure is usually preferred, and it is easy to accomplish. But for cam‑follower sys‑
tems, force closure is often preferred. This topic will be explored further in later chapters.

Figure 2‑3d shows examples of joints of various orders, where joint order is de‑
fined as the number of links joined minus one.  It takes two links to make a single joint; 
thus the simplest joint combination of two links has joint order one. As additional links 
are placed on the same joint, the joint order is increased on a one-for-one basis. Joint 
order has significance in the proper determination of overall degree of freedom for the  
assembly.  We gave definitions for a mechanism and a machine in Chapter 1.  With the 
kinematic elements of links and joints now defined, we can define those devices more 
carefully based on Reuleaux’s classifications of the kinematic chain, mechanism, and 
machine.[1]

A kinematic chain is defined as: 
An assemblage of links and joints interconnected in a way to provide a controlled output 
motion in response to a supplied input motion.

A mechanism is defined as:
A kinematic chain in which at least one link has been “grounded,” or attached, to the 
frame of reference (which itself may be in motion).

A machine is defined as:
A combination of resistant bodies arranged to compel the mechanical forces of nature to 
do work accompanied by determinate motions.
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By Reuleaux’s* definition[1] a machine is a collection of mechanisms arranged to 
transmit forces and do work.  He viewed all energy- or force-transmitting devices as ma‑
chines that utilize mechanisms as their building blocks to provide the necessary motion 
constraints. 

We will now define a crank as a link that makes a complete revolution and is pivoted 
to ground, a rocker as a link that has oscillatory (back and forth) rotation and is pivoted 
to ground, and a coupler (or connecting rod) as a link that has complex motion and is 
not pivoted to ground.  Ground is defined as any link or links that are fixed (nonmoving) 
with respect to the reference frame.  Note that the reference frame may in fact itself be 
in motion.

2.4	 DRAWING KINEMATIC DIAGRAMS

Analyzing the kinematics of mechanisms requires that we draw clear, simple, schematic 
kinematic diagrams of the links and joints of which they are made. Sometimes it can be 
difficult to identify the kinematic links and joints in a complicated mechanism.  Beginning 
students of this topic often have this difficulty.  This section defines one approach to the 
creation of simplified kinematic diagrams.

Real links can be of any shape, but a “kinematic” link, or link edge, is defined as a 
line between joints that allow relative motion between adjacent links.  Joints can allow 
rotation, translation, or both between the links joined.  The possible joint motions must be 
clear and obvious from the kinematic diagram.  Figure 2-4 shows recommended schematic 
notations for binary, ternary, and higher-order links, and for movable and grounded joints 
of rotational and translational freedoms plus an example of their combination.  Many 
other notations are possible, but whatever notation is used, it is critical that your diagram 
indicate which links or joints are grounded and which can move.  Otherwise nobody will 
be able to interpret your design’s kinematics.  Shading or crosshatching should be used 
to indicate that a link is solid.

Figure 2-5a shows a photograph of a simple mechanism used for weight training 
called a leg press machine.  It has six pin-jointed links labeled L1 through L6 and seven 
pin joints. The moving pivots are labeled A through D; O2, O4 and O6 denote the grounded 
pivots of their respective link numbers.  Even though its links are in parallel planes sepa‑

	
*  Reuleaux created a set of  
220 models of mechanisms 
in the 19th century to dem‑
onstrate machine motions.  
Cornell University acquired 
the collection in 1892 and 
has now put images and 
descriptions of them on the 
web at:  
http://kmoddl.library.
cornell.edu.
The same site also has 
depictions of three other 
collections of machines and 
gear trains.

FIGURE 2-4
Schematic notation for kinematic diagrams

Grounded
 rotating
  joint

Moving
rotating
  joint

Binary link Ternary link Quartenary link

  Moving
translating
   joint

 Grounded
translating
   joint

ExampleMoving
half joint

Grounded
half joint

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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rated by some distance in the z-direction, it can still be analyzed kinematically as if all 
links were in a common plane.  

To use the leg press machine, the user loads some weights on link 6 at top right, sits 
in the seat at lower right, places both feet against the flat surface of link 3 (a coupler) and 
pushes with the legs to lift the weights through the linkage.  The linkage geometry is de‑
signed to give a variable mechanical advantage that matches the human ability to provide 
force over the range of leg motion.  Figure 2-5b shows a kinematic diagram of its basic 
mechanism.  Note that here all the links have been brought to a common plane.  Link 1 is 
the ground.  Links 2, 4, and 6 are rockers.  Links 3 and 5 are couplers.  The input force F 
is applied to link 3.  The “output” resistance weight W acts on link 6.  Note the difference 
between the actual and kinematic contours of links 2 and 6.

The next section discusses techniques for determining the mobility of a mechanism.  
That exercise depends on an accurate count of the number of links and joints in the mecha‑
nism.  Without a proper, clear, and complete kinematic diagram of the mechanism, it will 
be impossible to get the count, and thus the mobility, correct.

2.5	 DETERMINING DEGREE OF FREEDOM OR MOBILITY

The concept of degree of freedom (DOF) is fundamental to both the synthesis and analy‑
sis of mechanisms.  We need to be able to quickly determine the DOF of any collection 
of links and joints that may be suggested as a solution to a problem.  Degree of freedom 
(also called the mobility M) of a system can be defined as: 

Degree of Freedom
the number of inputs that need to be provided in order to create a predictable output; 

also:
the number of independent coordinates required to define its position.
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O6
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L3 L3
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L2 L1
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F

FIGURE 2-5
A mechanism and its kinematic diagram  Photo by the author

(b)  Kinematic diagram(a )  Weight-training mechanism

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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At the outset of the design process, some general definition of the desired output 
motion is usually available.  The number of inputs needed to obtain that output may 
or may not be specified.  Cost is the principal constraint here. Each required input will 
need some type of actuator, either a human operator or a “slave” in the form of a mo‑
tor, solenoid, air cylinder, or other energy conversion device.  (These devices are dis‑
cussed in Section 2.19.)  These multiple-input devices will have to have their actions  
coordinated by a “controller,” which must have some intelligence. This control is now of‑
ten provided by a computer but can also be mechanically programmed into the mechanism 
design.  There is no requirement that a mechanism have only one DOF, although that is 
often desirable for simplicity. Some machines have many DOF.  For example, picture the 
number of control levers or actuating cylinders on a bulldozer or crane.  See Figure 1-1b.

Kinematic chains or mechanisms may be either open or closed.  Figure 2‑6 shows 
both open and closed mechanisms.  A closed mechanism will have no open attachment 
points or nodes and may have one or more degrees of freedom.  An open mechanism of 
more than one link will always have more than one degree of freedom, thus requiring as 
many actuators (motors) as it has DOF.  A common example of an open mechanism is 
an industrial robot.  An open kinematic chain of two binary links and one joint is called a 
dyad.  The sets of links shown in Figure 2‑3b and c are dyads.

Reuleaux limited his definitions to closed kinematic chains and to mechanisms hav‑
ing only one DOF, which he called constrained.[1]  The somewhat broader definitions 
above are perhaps better suited to current-day applications.  A multi-DOF mechanism, 
such as a robot, will be constrained in its motions as long as the necessary number of 
inputs is supplied to control all its DOF.

Degree of Freedom in Planar Mechanisms  Watch a short video (14.29)*

To determine the overall DOF (or mobility) of any mechanism, we must account for the 
number of links and joints, and for the interactions among them.  The DOF of any assem‑
bly of links can be predicted from an investigation of the Gruebler condition.[2]  Any link 
in a plane has 3 DOF.  Therefore, a system of L unconnected links in the same plane will 
have 3L DOF, as shown in Figure 2‑7a where the two unconnected links have a total of 

FIGURE 2-6
Mechanism chains

(a)  Open mechanism chain Closed mechanism chain(b)

 	

*  http://www.designofma‑
chinery.com/DOM/Grubler.
mp4

http://www.designofmachinery.com/DOM/Grubler.mp4
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six DOF.  When these links are connected by a full joint in Figure 2‑7b, ∆y1 and ∆y2 are 
combined as ∆y, and ∆x1 and ∆x2 are combined as ∆x.  This removes two DOF, leaving 
four DOF.  In  Figure 2‑7c the half joint removes only one DOF from the system (because 
a half joint has two DOF), leaving the system of two links connected by a half joint with 
a total of five DOF.  In addition, when any link is grounded or attached to the reference 
frame, all three of its DOF will be removed.  This reasoning leads to Gruebler’s equation: 

3 2 3 (2.1a)M L J G= − −

where:	 M  = degree of freedom or mobility 
L   = number of links
J   = number of joints
G  = number of grounded links

FIGURE 2-7
Joints remove degrees of freedom

(c)  Connected by a roll-slide (half) joint
               DOF = 5

∆x

∆y

∆x∆θ2

∆θ1

(b)  Connected by a full joint
               DOF = 4 ∆x

∆y

∆θ1 ∆θ2

(a)  Two unconnected links
               DOF = 6

∆θ1 ∆θ2

∆x
∆x

∆y ∆y



2

DESIGN OF MACHINERY 6ed      CHAPTER  240

Note that in any real mechanism, even if more than one link of the kinematic chain 
is grounded, the net effect will be to create one larger, higher-order ground link, as there 
can be only one ground plane.  Thus G is always one, and Gruebler’s equation becomes:

3 1 2 (2.1b)M L J( )= − −

The value of J in equations 2.1a and 2.1b must reflect the value of all joints in the 
mechanism.  That is, half joints count as 1/2 because they only remove one DOF.  It is 
less confusing if we use Kutzbach’s modification of Gruebler’s equation in this form:

3 1 2 (2.1c)1 2M L J J( )= − − −

where:	 M  = degree of freedom or mobility 
L   = number of links
J1  = number of 1 DOF (full) joints
J2  = number of 2 DOF (half) joints

The value of J1 and J2 in these equations must still be carefully determined to ac‑
count for all full, half, and multiple joints in any linkage.  Multiple joints count as one 
less than the number of links joined at that joint and add to the “full” (J1)  category.  The 
DOF of any proposed mechanism can be quickly ascertained from this expression before 
investing any time in more detailed design.  It is interesting to note that this equation has 
no information in it about link sizes or shapes, only their quantity.  Figure 2‑8a shows a 
mechanism with one DOF and only full joints in it. 

Figure 2‑8b shows a structure with zero DOF that contains both half and multiple 
joints.  Note the schematic notation used to show the ground link.  The ground link need 
not be drawn in outline as long as all the grounded joints are identified.  Note also the 
joints labeled multiple and half in Figure 2‑8a and b.  As an exercise, compute the DOF 
of these examples with Kutzbach’s equation.

Degree of Freedom (Mobility) in Spatial Mechanisms

The approach used to determine the mobility of a planar mechanism can be easily ex‑
tended to three dimensions.  Each unconnected link in three-space has 6 DOF, and any one 
of the six lower pairs can be used to connect them, as can higher pairs with more freedom.  
A one-freedom joint removes 5 DOF, a two-freedom joint removes 4 DOF, etc.  Grounding 
a link removes 6 DOF.  This leads to the Kutzbach mobility equation for spatial linkages:

6 1 5 4 3 2 (2.2)1 2 3 4 5M L J J J J J( )= − − − − − −

where the subscript refers to the number of freedoms of the joint.  We will limit our study 
to 2-D mechanisms in this text.

2.6	 MECHANISMS AND STRUCTURES

The degree of freedom of an assembly of links completely predicts its character.  There 
are only three possibilities.  If the DOF is positive, it will be a mechanism, and the links 
will have relative motion.  If the DOF is exactly zero, then it will be a structure, and no 
motion is possible.  If the DOF is negative, then it is a preloaded structure, which means 
that no motion is possible and some stresses may also be present at the time of assembly.  
Figure 2‑9 shows examples of these three cases.  One link is grounded in each case.
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(a)  Linkage with full and multiple joints

(b)  Linkage with full, half, and multiple joints
FIGURE 2-8
Linkages containing joints of various types

Note:
There are no
roll-slide
(half) joints
in this
linkage

L  = 8,  J  = 10

DOF  = 1 ω

2

3
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6
7
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Sliding full joint

Multiple joint

Ground  (link 1)

Ground

Ground

Ground

L  = 6,  J  = 7.5

DOF  = 0

4

2 3
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5

Ground

Multiple joint

Half joint
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Ground  (link 1)
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Figure 2‑9a shows four links joined by four full joints which, from the Gruebler equa‑
tion, gives one DOF.  It will move, and only one input is needed to give predictable results. 

Figure 2‑9b shows three links joined by three full joints.  It has zero DOF and is thus 
a structure.  Note that if the link lengths will allow connection,* all three pins can be 
inserted into their respective pairs of link holes (nodes) without straining the structure, 
as a position can always be found to allow assembly.  This is called exact constraint.†

Figure 2‑9c shows two links joined by two full joints. It has a DOF of minus one, 
making it a preloaded structure.  In order to insert the two pins without straining the 
links, the center distances of the holes in both links must be exactly the same.  Practi‑
cally speaking, it is impossible to make two parts exactly the same.  There will always 
be some manufacturing error, even if very small.  Thus you may have to force the second 
pin into place, creating some stress in the links.  The structure will then be preloaded.  
You have probably met a similar situation in a course in applied mechanics in the form 
of an indeterminate beam, one in which there were too many supports or constraints for 
the equations available.  An indeterminate beam also has negative DOF, while a simply 
supported beam has zero DOF.

Both structures and preloaded structures are commonly encountered in engineering.  
In fact the true structure of zero DOF is rare in civil engineering practice.  Most build‑
ings, bridges, and machine frames are preloaded structures, due to the use of welded and 
riveted joints rather than pin joints. Even simple structures like the chair you are sitting 
in are often preloaded.  Since our concern here is with mechanisms, we will concentrate 
on devices with positive DOF only.

2.7	 NUMBER SYNTHESIS  Watch a short video (3:47)**

The term number synthesis has been coined to mean the determination of the number 
and order of links and joints necessary to produce motion of a particular DOF.  Link 
order in this context refers to the number of nodes per link,§ i.e., binary, ternary, qua‑
ternary, etc.  The value of number synthesis is to allow the exhaustive determination of 
all possible combinations of links that will yield any chosen DOF. This then equips the 

	
§  Not to be confused with 
“joint order” as defined 
earlier, which refers to the 
number of DOF that a joint 
possesses.

	

*  If the sum of the lengths 
of any two links is less than 
the length of the third link, 
then their interconnection is 
impossible.
	

†  The concept of exact 
constraint also applies to 
mechanisms with positive 
DOF.  It is possible to pro‑
vide redundant constraints 
to a mechanism (e.g.,  
making its theoretical  
DOF = 0 when 1 is 
desired) yet still have it 
move because of particular 
geometry (see Section 2.8 
Paradoxes).  Non-exact 
constraint should be avoided 
in general as it can lead to 
unexpected mechanical be‑
havior.  For an excellent and 
thorough discussion of this 
issue see Blanding, D. L., 
Exact Constraint: Machine 
Design Using Kinematic 
Principles, ASME Press, 
1999.

(a)  Mechanism—DOF = +1 (b )  Structure—DO F = 0

FIGURE 2-9
Mechanisms, structures, and preloaded structures

(c )  Preloaded structure—DO F = –1

 	

**  http://www.designofma‑
chinery.com/DOM/Num‑
ber_Synthesis.mp4

http://www.designofmachinery.com/DOM/Number_Synthesis.mp4
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designer with a definitive catalog of potential linkages to solve a variety of motion control 
problems.

As an example we will now derive all the possible link combinations for one DOF, 
including sets of up to eight links, and link orders up to and including hexagonal links.  For 
simplicity we will assume that the links will be connected with only single, full rotating 
joints (i.e., a pin connecting two links).  We can later introduce half joints, multiple joints, 
and sliding joints through linkage transformation.  First let’s look at some interesting at‑
tributes of linkages as defined by the above assumption regarding full joints.

Hypothesis:	 If all joints are full joints, an odd number of DOF requires an even number of links 
and vice versa.

Proof:	 Given:  All even integers can be denoted by 2m or by 2n,  and all odd integers can 
be denoted by 2m – 1 or by 2n – 1,  where n  and m are any positive integers.   The 
number of joints must be a positive integer.

Let :  L = number of links,  J = number of  joints, and M = DOF = 2m  (i.e., all even numbers)

Then:   Rewriting Gruebler’s equation 2.1b to solve for J,

3
2

1
2

(2.3a)J L M( )= − −

Try:  Substituting  M = 2m, and  L  =  2n (i.e., both any even number):

3 3
2

(2.3b)J n m= − −

This cannot result in J being a positive integer as required.

Try:   M = 2m – 1 and L  =  2n – 1 (i.e., both any odd number):

3 5
2

(2.3c)J n m= − −

This also cannot result in J being a positive integer as required.

Try:   M = 2m – 1, and  L  =  2n  (i.e., odd-even):

3 2 (2.3d)J n m= − −

This is a positive integer for  m ≥ 1 and n ≥ 2.

Try:  M = 2m and L =  2n  – 1  (i.e., even-odd):

3 3 (2.3e)J n m= − −
This is a positive integer for  m ≥ 1 and n ≥ 2.

So, for our example of one-DOF mechanisms, we can only consider combinations of 
2, 4, 6, 8, . . . links.  Letting the order of the links be represented by:

	 B	 =  number of binary links 
	 T	 =  number of ternary links 
	 Q	=  number of quaternaries 
	 P	 =  number of pentagonals  
	 H	=  number of hexagonals 
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the total number of links in any mechanism will be:
(2.4a)L B T Q P H = + + + + +

Since two link nodes are needed to make one joint:

2
(2.4b)J nodes

=

and

(2.4c)nodes order of link no.of links of that order= ×

then	
2 3 4 5 6

2
(2.4d)J

B T Q P H ( )
=

+ + + + +

Substitute equations 2.4a and 2.4d into Gruebler’s equation 2.1b.

3 1 2 2 3 4 5 6
2

(2.4e)
2 3 3

M B T Q P H B T Q P H

M B Q P H

( )= + + + + − −
+ + + +

= − − − −

Note what is missing from this equation!  The ternary links have dropped out.  The 
DOF is independent of the number of ternary links in the mechanism.  But because each 
ternary link has three nodes, it can only create or remove 3/2 joints.  So we must add or 
subtract ternary links in pairs to maintain an integer number of joints.  The addition or 
subtraction of ternary links in pairs will not affect the DOF of the mechanism.

In order to determine all possible combinations of links for a particular DOF, we must 
combine equations 2.3a and 2.4d:*

3
2

1
2

2 3 4 5 6
2

(2.5)
3 3 2 3 4 5 6

L M B T Q P H

L M B T Q P H

( )− − =
+ + + +

− − = + + + +

Now combine equation 2.5 with equation 2.4a to eliminate B:
3 2 3 4 (2.6)L M T Q P H− − = + + +

We will now solve equations 2.4a and 2.6 simultaneously (by progressive substitu‑
tion) to determine all compatible combinations of links for DOF = 1, up to eight links.  
The strategy will be to start with the smallest number of links, and the highest-order link 
possible with that number, eliminating impossible combinations.

(Note: L must be even for odd DOF.)

Case  1.		 L = 2
4 2 3 4 2 (2.7a)L T Q P H− = + + + =−

This requires a negative number of links, so L = 2 is impossible.

	

*  Karunamoorthy [17] 
defines some useful rules 
for determining the number 
of possible combinations for 
any number of links with a 
given degree of freedom.
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Case  2.	 L = 4
4 2 3 4 0 so: 0

(2.7b)
0 4 4

L T Q P H T Q P H

L B B

− = + + + = = = = =

= + = =

The simplest one-DOF linkage is four binary links—the fourbar linkage.

Case  3.	 L = 6
4 2 3 4 2 so: 0 (2.7c)L T Q P H P H− = + + + = = =

		  T may only be 0, 1, or 2;	 Q may only be 0 or 1

If Q =  0 then T must be 2 and B must be 4: 

4 2 0; 4 2 0 6 (2.7d)B T Q L= = = = + + =

If Q = 1, then T must be 0 and B must be 5:

5 0 1; 5 0 1 6 (2.7e)B T Q L= = = = + + =

There are then two possibilities for L = 6.  Note that one of them is in fact the simpler 
fourbar with two ternaries added as was predicted above.

Case  4.		 L = 8

A tabular approach is needed with this many links:

L – 4  = T +  2Q  + 3P  + 4H =  4

     B +  T + Q + P  + H  =  8

H = 1

Q = 0,  P = 0

B = 7,  T = 0

T + 2Q = 1

B + T + Q =  7

T + 2Q = 4

B + T + Q = 8

T = 0
B = 6

T = 2
B = 5

T = 4
B = 4

T + 2Q + 3P =  4

B + T + Q + P = 8

(2.7f)

H = 0

P = 0 P = 1

Q = 2 Q = 1 Q = 0
T = 1, Q = 0, B = 6
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From this analysis we can see that, for one DOF, there is only one possible four-link 
configuration, two six-link configurations, and five possibilities for eight links using bi‑
nary through hexagonal links.  Table 2‑2  shows the so-called “link sets” for all the pos‑
sible linkages for one DOF up to 8 links and hexagonal order.  

2.8	 PARADOXES

Because the Gruebler criterion pays no attention to link sizes or shapes, it can give mis‑
leading results in the face of unique geometric configurations.  For example, Figure 2‑10a 
shows a structure (DOF = 0) with the ternary links of arbitrary shape.  This link arrange‑
ment is sometimes called the  “E-quintet,” because of its resemblance to a capital E and 
the fact that it has five links, including the ground.*  It is the next simplest structural 
building block to the “delta triplet.”

Figure 2‑10b shows the same E-quintet with the ternary links straight and parallel and 
with equispaced nodes.  The three binaries are also equal in length.  With this very unique 
geometry, you can see that it will move despite Gruebler’s prediction to the contrary.

Figure 2‑10c shows a very common mechanism that also disobeys Gruebler’s crite‑
rion.  The joint between the two wheels can be postulated to allow no slip, provided that 
sufficient friction is available.  If no slip occurs, then this is a one-freedom, or full, joint 
that allows only relative angular motion (∆θ) between the wheels.  With that assumption, 
there are 3 links and 3 full joints, from which Gruebler’s equation predicts zero DOF.  
However, this linkage does move (actual DOF = 1), because the center distance, or length 
of link 1, is exactly equal to the sum of the radii of the two wheels.

There are other examples of paradoxes that disobey the Gruebler criterion due to 
their unique geometry.  The designer needs to be alert to these possible inconsistencies.  
Gogu† has shown that none of the simple mobility equations so far discovered (Gruebler, 
Kutzbach, etc.) are capable of resolving the many paradoxes that exist.  A complete analy‑
sis of the linkage motions (as described in Chapter 4) is necessary to guarantee mobility.

 

*  It is also called an Assur 
chain.

	

†  Gogu, G. (2005), 
“Mobility of Mechanisms: 
A Critical Review.” Mecha‑
nism and Machine Theory 
(40)  pp. 1068-1097.

1-DOF Planar Mechanisms with Revolute Joints and Up to 8 Links

4 4 0 0 0 0

6 4 2 0 0 0

6 5 0 1 0 0

8 7 0 0 0 1

8 4 4 0 0 0

8 5 2 1 0 0

8 6 0 2 0 0

8 6 1 0 1 0

TABLE  2-2

Binary Ternary Quaternary Pentagonal Hexagonal

Link Sets
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ASUS
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2.9	 ISOMERS  Watch a short video (4:15)*

The word isomer is from the Greek and means having equal parts.  Isomers in chemistry 
are compounds that have the same number and type of atoms but which are intercon‑
nected differently and thus have different physical properties.  Figure 2‑11a shows two 
hydrocarbon isomers, n‑butane and isobutane.  Note that each has the same number of 
carbon and hydrogen atoms (C4H10), but they are differently interconnected and have 
different properties.

Linkage isomers are analogous to these chemical compounds in that the links (like 
atoms) have various nodes (electrons) available to connect to other links’ nodes.  The 
assembled linkage is analogous to the chemical compound.  Depending on the particular 
connections of available links, the assembly will have different motion properties.  The 
number of isomers possible from a given collection of links (as in any row of Table 2‑2) 
is far from obvious.  In fact, mathematical prediction of the number of isomers of all link 
combinations has been a long-unsolved problem.  Many researchers have spent much ef‑
fort on this problem with some recent success.  See references [3] through [7] for more in‑

FIGURE 2-10
Gruebler paradoxes—linkages that do not behave as predicted by the Gruebler equation

(a )  The E-quintet with DOF = 0
        —agrees with Gruebler equation

Full joint -
pure rolling
no slip

(b)  The E-quintet with DOF = 1
        —disagrees with Gruebler equation
            due to unique geometry

(c )  Rolling cylinders with DOF = 1
        —disagrees with Gruebler equation
            which predicts DOF = 0

 	

*  http://www.designofma‑
chinery.com/DOM/Isomers.
mp4

http://www.designofmachinery.com/DOM/Isomers.mp4
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formation.  Dhararipragada et al.[6] presents a good historical summary of isomer research 
to 1994.  Table 2-3 shows the number of valid isomers found for one-DOF mechanisms 
with revolute pairs, up to 12 links.

Figure 2‑11b shows all the isomers for the simple cases of one DOF with 4 and 6 
links.  Note that there is only one isomer for the case of 4 links.  An isomer is only unique 
if the interconnections between its types of links are different.  That is, all binary links 
are considered equal, just as all hydrogen atoms are equal in the chemical analog.  Link 
lengths and shapes do not figure into the Gruebler criterion or the condition of isomer‑
ism.  The 6-link case of 4 binaries and 2 ternaries has only two valid isomers.  These are 
known as Watt’s chain and Stephenson’s chain after their discoverers.  Note the different 
interconnections of the ternaries to the binaries in these two examples.  Watt’s chain has 
the two ternaries directly connected, but Stephenson’s chain does not.

There is also a third potential isomer for this case of six links,  shown in Figure 
2‑11c, but it fails the test of distribution of degree of freedom, which requires that the 
overall DOF (here 1) be uniformly distributed throughout the linkage and not concentrat‑
ed in a subchain.  Note that this arrangement (Figure 2‑11c) has a structural subchain of  
DOF = 0 in the triangular formation of the two ternaries and the single binary connecting 
them.  This creates a truss, or delta triplet.  The remaining three binaries in series form 
a fourbar chain (DOF = 1) with the structural subchain of the two ternaries and the single 
binary effectively reduced to a structure that acts like a single link.  Thus this arrangement 
has been reduced to the simpler case of the fourbar linkage despite its six bars.  This is an 
invalid isomer and is rejected. The highest-order link in a linkage cannot have more nodes 
than n/2 where n is the total number of links.  This makes the arrangements in lines 3, 4, 
and 8 of Table 2-2 unable to create a valid linkage, though Grubler predicts it.

Franke’s “Condensed Notation for Structural Synthesis” method can be used to help 
find the isomers of any collection of links that includes some links of higher order than 
binary.  Each higher-order link is shown as a circle with its number of nodes (its valence) 
written in it as shown in Figure 2-11.  These circles are connected with a number of lines 
emanating from each circle equal to its valence.  A number is placed on each line to 
represent the quantity of binary links in that connection.  This gives a “molecular” rep‑
resentation of the linkage and allows exhaustive determination of all the possible binary 
link interconnections among the higher links.  Note the correspondence in Figure 2-11b 
between the linkages and their respective Franke molecules.  The only combinations of 3 
integers (including zero) that add to 4 are: (1, 1, 2), (2, 0, 2), (0, 1, 3), and (0, 0, 4).  The 
first two are, respectively, Stephenson’s and Watt’s linkages; the third is the invalid isomer 
of Figure 2-11c.  The fourth combination is also invalid as it results in a 2-DOF chain of 
5 binaries in series with the 5th “binary” comprised of the two ternaries locked together 
at two nodes in a preloaded structure with a subchain DOF of –1.  Figure 2-11d shows all 
16 valid isomers of the eightbar 1-DOF linkage.

2.10	 LINKAGE TRANSFORMATION

The number synthesis techniques described above give the designer a tool kit of basic 
linkages of particular DOF.  If we now relax the arbitrary constraint that restricted us to 
only revolute joints, we can transform these basic linkages to a wider variety of mecha‑
nisms with even greater usefulness.  There are several transformation techniques or rules 
that we can apply to planar kinematic chains.

Number of Valid Isomers

skniL dilaV
sremosI

168

26

14

10 230

12 6856

TABLE  2-3
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(c )  An invalid sixbar isomer which reduces to the simpler fourbar

(a)  Hydrocarbon isomers n-butane and isobutane

(b)  All valid isomers of the fourbar and sixbar linkages

FIGURE 2-11 Part 1 
Isomers of kinematic chains

C C C
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H

H

HH
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HH

H
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H
C C C CH

H H HH

H

HHHH

Fourbar subchain
concentrates the
1 DOF  of the mechanism

Structural subchain
reduces three links
to a zero DOF
“delta triplet” truss

The only fourbar isomer Watt’s sixbar isomerStephenson’s sixbar isomer

3 3

1
1

2

3 3

2
0

2

molecules

 Franke's
molecule3 3

1
0

3

 Franke's
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	 1	 Revolute joints in any loop can be replaced by prismatic joints with no change in DOF 
of the mechanism, provided that at least two revolute joints remain in the loop.*  

	 2	 Any full joint can be replaced by a half joint, but this will increase the DOF by one.

	 3	 Removal of a link will reduce the DOF by one.

	 4 	 The combination of rules 2 and 3 above will keep the original DOF unchanged.

	 5	 Any ternary or higher-order link can be partially “shrunk” to a lower-order link by 
coalescing nodes. This will create a multiple joint but will not change the DOF of the 
mechanism.

	 6 	 Complete shrinkage of a higher-order link is equivalent to its removal.  A multiple 
joint will be created, and the DOF will be reduced.

Figure 2‑12a† shows a fourbar crank-rocker linkage transformed into the fourbar 
slider-crank by the application of rule #1.  It is still a fourbar linkage.  Link 4 has become 
a sliding block.  Gruebler’s equation is unchanged at one DOF because the slider block 

*  If all revolute joints in a 
fourbar linkage are replaced 
by prismatic joints, the 
result will be a two-DOF 
assembly.  Also, if three 
revolute joints in a fourbar 
loop are replaced with 
prismatic joints, the one 
remaining revolute joint 
will not be able to turn, 
effectively locking the 
two pinned links together 
as one.  This effectively 
reduces the assembly to 
a threebar linkage which 
should have zero DOF.  But 
a delta triplet with three 
prismatic joints has one 
DOF—another Gruebler 
paradox.  

FIGURE 2-11 Part 2

Isomers of kinematic chains ( Source: Klein, A.W., 1917. Kinematics of Machinery, McGraw-Hill, NY. )

(d)  All the valid eightbar 1-DOF isomers

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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(c )  The cam-follower mechanism has an e
ective fourbar equivalent

(a )  Transforming a fourbar crank-rocker to a crank-slider

(b)  Transforming the crank-slider to the Scotch yoke

FIGURE 2-12
Linkage transformation

2 4

Effective link 2
Effective link 3

Effective link 4

2

Cam
Follower

4

ω

Roll-slide
(half) joint

Grashof crank-slider

Rocker
 pivot

Grashof crank-rocker

2
3

4

Effective rocker
pivot is at infinity

2
3 4

Slider block

Effective link 4

Slider 4

Effective link 3Crank 2

Slider 4

Effective link 3Crank 2

∞

ω
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FIGURE 2-13
Link shrinkage

(a )  Partial shrinkage of a higher link
retains original DOF 

(b)  Complete shrinkage of a higher link
reduces DOF by one 

DOF = 1

Shrunk link

1

12

3

4

5

3 5

42

6
1

2
3

4

5
6

1
2

3
4

56

Shrunk link

DOF = 1

DOF = 1 DOF = 0

6

provides a full joint against link 1, as did the pin joint it replaces.  Note that this trans‑
formation from a rocking output link to a slider output link is equivalent to increasing 
the length (radius) of rocker link 4 until its arc motion at the joint between links 3 and 4 
becomes a straight line.  Thus the slider block is equivalent to an infinitely long rocker 
link 4, which is pivoted at infinity along a line perpendicular to the slider axis as shown 
in Figure 2‑12a.

Figure 2‑12b shows a fourbar slider-crank transformed via rule #4 by the substitution 
of a half joint for the coupler.  The first version shown retains the same motion of the slider 
as the original linkage by use of a curved slot in link 4.  The effective coupler is always 
perpendicular to the tangent of the slot and falls on the line of the original coupler.  The 
second version shown has the slot made straight and perpendicular to the slider axis.  The 
effective coupler now is “pivoted” at infinity.  This is called a Scotch yoke and gives exact 
simple harmonic motion of the slider in response to a constant speed input to the crank.

Figure 2‑12c shows a fourbar linkage transformed into a cam‑follower linkage by the 
application of rule #4.  Link 3 has been removed and a half joint substituted for a full joint 
between links 2 and 4.  This still has one DOF, and the cam‑follower is in fact a fourbar 
linkage in another disguise, in which the coupler (link 3) has become an effective link of 
variable length.  We will investigate the fourbar linkage and these variants of it in greater 
detail in later chapters.

Figure 2‑13a shows Stephenson’s sixbar chain from Figure 2‑11b transformed by 
partial shrinkage of a ternary link (rule #5) to create a multiple joint.  It is still a one-DOF 
Stephenson sixbar.  Figure 2‑13b shows Watt’s sixbar chain from Figure 2‑11b with one 
ternary link completely shrunk to create a multiple joint.  This is now a structure with 
DOF = 0.  The two triangular subchains are obvious.  Just as the fourbar chain is the basic 
building block of one-DOF mechanisms, this threebar triangle delta triplet is the basic 
building block of zero-DOF structures (trusses).
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2.11	 INTERMITTENT MOTION

Intermittent motion is a sequence of motions and dwells.  A dwell is a period in which 
the output link remains stationary while the input link continues to move.  There are many 
applications in machinery that require intermittent motion.  The cam-follower variation 
on the fourbar linkage as shown in Figure 2‑12c is often used in these situations.  The 
design of that device for both intermittent and continuous output will be addressed in 
detail in Chapter 8.  Other pure linkage dwell mechanisms are discussed in Chapter 3.

Geneva Mechanism  A common form of intermittent motion device is the Ge‑
neva mechanism shown in Figure 2‑14a.*  This is also a transformed fourbar linkage in 
which the coupler has been replaced by a half joint.  The input crank (link 2) is typically 
motor driven at a constant speed.  The Geneva wheel is fitted with at least three equi‑
spaced, radial slots.  The crank has a pin that enters a radial slot and causes the Geneva 
wheel to turn through a portion of a revolution.  When the pin leaves that slot, the Geneva 
wheel remains stationary until the pin enters the next slot.  The result is intermittent rota‑
tion of the Geneva wheel.

The crank is also fitted with an arc segment, which engages a matching cutout on the 
periphery of the Geneva wheel when the pin is out of the slot.  This keeps the Geneva 
wheel stationary and in the proper location for the next entry of the pin.  The number of 
slots determines the number of “stops” of the mechanism, where stop is synonymous with 
dwell.  A Geneva wheel needs a minimum of three stops to work.  The maximum number 
of stops is limited only by the size of the wheel.

Ratchet and Pawl  Figure 2‑14b* shows a ratchet and pawl mechanism.  The 
arm pivots about the center of the toothed ratchet wheel and is moved back and forth to 
index the wheel.  The driving pawl rotates the ratchet wheel (or ratchet) in the counter‑
clockwise direction and does no work on the return (clockwise) trip.  The locking pawl 
prevents the ratchet from reversing direction while the driving pawl returns.  Both pawls 
are usually spring-loaded against the ratchet.  This mechanism is widely used in devices 
such as “ratchet” wrenches, winches, etc.

Linear Geneva Mechanism  There is also a variation of the Geneva mechanism 
that has linear translational output, as shown in Figure 2‑14c.*  This mechanism is analo‑
gous to an open Scotch yoke device with multiple yokes.  It can be used as an intermittent 
conveyor drive with the slots arranged along the conveyor chain or belt.  It also can be used 
with a reversing motor to get linear, reversing oscillation of a single slotted output slider.

2.12	 INVERSION  Watch the lecture video (3:44)† 

It should now be apparent that there are many possible linkages for any situation.  Even 
with the limitations imposed in the number synthesis example (one DOF, eight links, up 
to hexagonal order), there are eight linkage combinations shown in Table 2‑2, and these 
together yield 19 valid isomers as shown in Table 2-3.  In addition, we can introduce 
another factor, namely mechanism inversion.  An inversion is created by grounding a 
different link in the kinematic chain.  Thus there are as many inversions of a given link‑
age as it has links.

	
*  These figures are pro‑
vided as animated AVI and 
Working Model files.  The 
filename is the same as the 
figure number.

 	

†  http://www.designofma‑
chinery.com/DOM/Inver‑
sion.mp4

http://www.designofmachinery.com/DOM/Inversion.mp4
ASUS
Highlight
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(a )  Four-stop Geneva mechanism (b)  Ratchet and pawl mechanism

FIGURE 2-14
Rotary and linear intermittent motion mechanisms

Geneva wheel

Crank

Arc

2

3

Ratchet wheel

Driving pawl

Locking pawl

Spring

Arm

ωin

ωin

ωout

ωout

See also Figures P3-7 and P4-6 for other examples of linear intermittent motion mechanisms

(c)  Linear intermittent motion "Geneva" mechanism

vout

ωin

Slider

Crank2

3

View as a video View as a video

View as a video

http://www.designofmachinery.com/DOM/geneva.avi http://www.designofmachinery.com/DOM/ratchet.avi

http://www.designofmachinery.com/DOM/linear_geneva.avi

http://www.designofmachinery.com/DOM/geneva.avi
http://www.designofmachinery.com/DOM/ratchet.avi
http://www.designofmachinery.com/DOM/linear_geneva.avi
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The motions resulting from each inversion can be quite different, but some inversions 
of a linkage may yield motions similar to other inversions of the same linkage.  In these 
cases only some of the inversions may have distinctly different motions.  We will denote 
the inversions that have distinctly different motions as distinct inversions.

Figure 2‑15* shows the four inversions of the fourbar slider-crank linkage, all of 
which have distinct motions.  Inversion #1, with link 1 as ground and its slider block in 
pure translation, is the most commonly seen and is used for piston engines and piston 
pumps.  Inversion #2 is obtained by grounding link 2 and gives the Whitworth or 
crank‑shaper quick-return mechanism, in which the slider block has complex motion.  
(Quick-return mechanisms will be investigated further in the Chapter 3.)  Inversion #3 
is obtained by grounding link 3 and gives the slider block pure rotation.  Inversion #4 is 
obtained by grounding the slider link 4 and is used in hand-operated, well pump mecha‑
nisms, in which the handle is link 2 (extended) and link 1 passes down the well pipe to 
mount a piston on its bottom.  (It is upside down in the figure.)

Watt’s sixbar chain has two distinct inversions, and Stephenson’s sixbar has three 
distinct inversions, as shown in Figure 2‑16.†  The pin-jointed fourbar has four distinct 
inversions: the crank-rocker, double-crank, double-rocker, and triple-rocker which are 
shown in Figures 2‑17 and 2‑18.

2.13	 THE GRASHOF CONDITION  Watch a short video (7:21)§

The fourbar linkage has been shown above to be the simplest possible pin-jointed mecha‑
nism for single-degree-of-freedom controlled motion.  It also appears in various disguises 
such as the slider-crank and the cam-follower.  It is in fact the most common and ubiq‑
uitous device used in machinery.  It is also extremely versatile in terms of the types of 
motion that it can generate.

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
	
†  The Watt I is the only 
sixbar that has a floating 
binary link separated from 
ground by two links at each 
node, so it is good for long-
reach applications and as a 
parallel motion generator.  
The Watt II is good for am‑
plifying force or motion and 
is often used for function 
generation.  The Stephenson 
III is often used to improve 
transmission angles by con‑
necting a driven dyad to its 
coupler.  It is also stable due 
to its three fixed pivots (as 
is the Watt II).  The other 
two Stephenson inversions 
are not as often used.
	
§  http://www.designof‑
machinery.com/DOM/
Grashof_Condition.mp4

(a )  Inversion # 1
slider block
translates

FIGURE 2-15
Four distinct inversions of the fourbar slider-crank mechanism (each black link is stationary—all red links move)
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(b )  Inversion # 2
slider block has
complex motion

(c )  Inversion # 3
slider block
rotates

(d )  Inversion # 4
slider block
is stationary

View as a video
http://www.designofmachinery.com/DOM/slider_inversion.avi

http://www.designofmachinery.com/DOM/Grashof_Condition.mp4
http://www.designofmachinery.com/DOM/slider_inversion.avi
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FIGURE 2-16
All distinct inversions of the sixbar linkage

(b)  Stephenson’s sixbar inversion II (c )  Stephenson’s sixbar inversion III(a )  Stephenson’s sixbar inversion I 

(e)  Watt’s sixbar inversion II(d)  Watt’s sixbar inversion I

Simplicity is one mark of good design.  The fewest parts that can do the job will 
usually give the least expensive and most reliable solution.  Thus the fourbar linkage 
should be among the first solutions to motion control problems to be investigated.  The 
Grashof condition[8] is a very simple relationship that predicts the rotation behavior or 
rotatability of a fourbar linkage’s inversions based only on the link lengths.

Then if:

Let: length of shortest link
length of longest link
length of one remaining link
length of other remaining link

(2.8)

S
L
P
Q

S L P Q

=

=

=

=

+ ≤ +

the linkage is Grashof and at least one link will be capable of making a full revolution 
with respect to the ground plane.  This is called a Class I kinematic chain.  If the inequal‑
ity is not true, then the linkage is non‑Grashof and no link will be capable of a complete 
revolution relative to any other link.*†  This is a Class II kinematic chain.

Note that the above statements apply regardless of the order of assembly of the links. 
That is, the determination of the Grashof condition can be made on a set of unassembled 
links.  Whether they are later assembled into a kinematic chain in S, L, P, Q or S, P, L, Q, 
or any other order, will not change the Grashof condition.

View as  
a video

View as a video

	
†  The fourbar slider is a spe‑
cial case.  Because two of its 
links are effectively infinite 
in length (the effective slider 
and the effective ground 
link are parallel and “meet” 
at infinity), the Grashof 
condition for a fourbar slider 
is always true, provided that 
the link lengths are such that 
they can physically connect.  
If so,  S + ∞ is always <= 
P + ∞.  

	

*  According to Hunt[18] 

(p. 84), Waldron proved 
that in a Grashof fourbar 
linkage, no two of the links 
other than the crank can 
rotate more than 180° with 
respect to one another, but 
in a non-Grashof linkage 
(which has no crank) links 
can have more than 180° of 
relative rotation.

http://www.
designofmachinery.
com/DOM/stephen‑

sons_sixbar.avi

http://www.designof‑
machinery.com/DOM/

watts_sixbar.avi

http://www.designofmachinery.com/DOM/stephensons_sixbar.avi
http://www.designofmachinery.com/DOM/stephensons_sixbar.avi
http://www.designofmachinery.com/DOM/watts_sixbar.avi
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*  These figures are pro‑
vided as animated AVI and 
Working Model files.  Its 
filename is the same as the 
figure number.

The motions possible from a fourbar linkage will depend on both the Grashof condi‑
tion and the inversion chosen.   The inversions will be defined with respect to the shortest 
link.  The motions are:

For the Class I case,  S + L  <  P + Q:

Ground either link adjacent to the shortest and you get a crank‑rocker, in which the 
shortest link will fully rotate and the other link pivoted to ground will oscillate.

Ground the shortest link and you will get a double-crank, in which both links pivoted 
to ground make complete revolutions as does the coupler.

Ground the link opposite the shortest and you will get a Grashof double-rocker, in 
which both links pivoted to ground oscillate and only the coupler makes a full revolution.

For the Class II case,  S  +  L  >  P  +  Q:

All inversions will be triple-rockers[9] in which no link can fully rotate.

For the Class III case,  S  +  L  =  P  +  Q:

Referred to as special-case Grashof and also as a Class III kinematic chain, all inver‑
sions will be either double-cranks or crank-rockers but will have “change points” twice 
per revolution of the input crank when the links all become colinear.  At these change 
points the output behavior will become indeterminate.  Hunt[18] calls these  “uncertainty 
configurations.”  At these colinear positions, the linkage behavior is unpredictable as it 
may assume either of two configurations.  Its motion must be limited to avoid reaching the 
change points or an additional, out‑of‑phase link must be provided to guarantee a “carry 
through” of the change points. (See Figure 2-19c.)

Figure 2‑17* shows the four possible inversions of the Grashof case: two crank-rock‑
ers, a double-crank (also called a drag link), and a double-rocker with rotating coupler.  
The two crank-rockers give similar motions and so are not distinct from one another.  Fig‑
ure 2‑18* shows four nondistinct inversions, all triple-rockers, of a non‑Grashof linkage.

Figure 2‑19a and b shows the parallelogram and antiparallelogram configurations 
of the special-case Grashof linkage.  The parallelogram linkage is quite useful as it exact‑
ly duplicates the rotary motion of the driver crank at the driven crank.  One common use 
is to couple the two windshield wiper output rockers across the width of the windshield 
on an automobile.  The coupler of the parallelogram linkage is in curvilinear translation, 
remaining at the same angle while all points on it describe identical circular paths.  It is 
often used for this parallel motion, as in truck tailgate lifts and industrial robots.

The antiparallelogram linkage (also called “butterfly” or “bow-tie”) is also a double-
crank, but the output crank has an angular velocity different from the input crank.  Note 
that the change points allow the linkage to switch unpredictably between the parallelo‑
gram and antiparallelogram forms every 180 degrees unless some additional links are pro‑
vided to carry it through those positions.  This can be achieved by adding an out-of-phase 
companion linkage coupled to the same crank, as shown in Figure 2‑19c.  A common 
application of this double parallelogram linkage was on steam locomotives, used to con‑
nect the drive wheels together.  The change points were handled by providing the duplicate 
linkage, 90 degrees out of phase, on the other side of the locomotive’s axle shaft.  When 
one side was at a change point, the other side would drive it through. 
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(a )  Triple-rocker  #1 (RRR1) (b )  Triple-rocker #2 (RRR2)

FIGURE 2-18
All inversions of the non-Grashof fourbar linkage are triple rockers

(c )  Triple-rocker  #3 (RRR3) (d )  Triple-rocker #4 (RRR4)

View as a video

FIGURE 2-17
All inversions of the Grashof fourbar linkage

(a)  Two nondistinct crank-rocker inversions (GCRR)

# 1 # 2

(b)  Double-crank inversion (GCCC)
(drag link mechanism)

(c)  Double-rocker inversion (GRCR)
(coupler rotates)

# 4

# 3

View as a video
http://www.designof‑

machinery.com/DOM/
grashof_inversion.avi

http://www.designofmachinery.
com/DOM/inversions_non-

grashof.avi

http://www.designofmachinery.com/DOM/inversions_non-grashof.avi
http://www.designofmachinery.com/DOM/grashof_inversion.avi
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The double-parallelogram arrangement shown in Figure 2‑19c is quite useful as it 
gives a translating coupler that remains horizontal in all positions.  The two parallelogram 
stages of the linkage are out of phase so each carries the other through its change points.   
Figure 2‑19d shows the deltoid or kite configuration that is a double-crank in which the 
shorter crank makes two revolutions for each one made by the long crank.  This is also 
called an isoceles linkage or a Galloway mechanism after its discoverer.

There is nothing either bad or good about the Grashof condition.  Linkages of all 
three persuasions are equally useful in their place.  If, for example, your need is for a 
motor-driven windshield wiper linkage, you may want a non‑special-case Grashof crank-
rocker linkage in order to have a rotating link for the motor’s input, plus a special-case 
parallelogram stage to couple the two sides together as described above.  If your need is 
to control the wheel motions of a car over bumps, you may want a non‑Grashof triple-
rocker linkage for short stroke oscillatory motion.  If you want to exactly duplicate some 
input motion at a remote location, you may want a special-case Grashof parallelogram 
linkage, as used in a drafting machine.  In any case, this simply determined condition tells 
volumes about the behavior to be expected from a proposed fourbar linkage design prior 
to any construction of models or prototypes.*

	 

*  See the video  “The 
Grashof Condition”  for a 
more detailed and complete 
exposition of this topic. 
http://www.designofma‑
chinery.com/DOM/The_
Grashof_Condition.mp4

(c )  Double-parallelogram linkage gives parallel
motion (pure curvilinear translation) to coupler
and also carries through the change points

(a )  Parallelogram form

(d )  Deltoid or kite form

(b )  Antiparallelogram form

FIGURE 2-19
Some forms of the special-case Grashof linkage

http://www.designofmachinery.com/DOM/The_Grashof_Condition.mp4
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Classification of the Fourbar Linkage

Barker[10] has developed a classification scheme that allows prediction of the type of mo‑
tion that can be expected from a fourbar linkage based on the values of its link ratios.  A 
linkage’s angular motion characteristics are independent of the absolute values of its link 
lengths.  This allows the link lengths to be normalized by dividing three of them by the 
fourth to create three dimensionless ratios that define its geometry.  

Let the link lengths be designated r1, r2, r3, and r4 (all positive and nonzero), with 
the subscript 1 indicating the ground link, 2 the driving link, 3 the coupler, and 4 the 
remaining (output) link.  The link ratios are then formed by dividing each link length by 
r2 giving: λ1 = r1 / r2, λ3 = r3 / r2, λ4 = r4 / r2.  

Each link will also be given a letter designation based on its type of motion when 
connected to the other links.  If a link can make a full revolution with respect to the other 
links, it is called a crank (C), and if not, a rocker (R).  The motion of the assembled link‑
age based on its Grashof condition and inversion can then be given a letter code such 
as GCRR for a Grashof crank-rocker or GCCC for a Grashof double-crank (drag link) 
mechanism.  The motion designators C and R are always listed in the order of input link, 
coupler, output link.  The prefix G indicates a Grashof linkage, S a special-case Grashof 
(change point), and no prefix a non-Grashof linkage.  

Table 2-4 shows Barker’s 14 types of fourbar linkage based on this naming scheme.  
The first four rows are the Grashof inversions, the next four are the non-Grashof triple-
rockers, and the last six are the special-case Grashof linkages.  He gives unique names to 
each type based on a combination of their Grashof condition and inversion.  The tradi‑
tional names for the same inversions are also shown for comparison and are less specific 
than Barker’s nomenclature.  Note his differentiation between the Grashof crank-rocker 
(subclass -2) and rocker-crank (subclass -4).  To drive a GRRC linkage from the rocker 
requires adding a flywheel to the crank as is done with the internal combustion engine’s 
slider-crank mechanism (which is a GPRC linkage).  See Figure 2-12a.

Barker also defines a solution space whose axes are the link ratios λ1, λ3, λ4 as shown 
in Figure 2-20.  These ratios’ values theoretically extend to infinity, but for any practical 
linkages the ratios can be limited to a reasonable value.  

In order for the four links to be assembled, the longest link must be shorter than the 
sum of the other three links, 

(2.9)L S P Q( )< + +

If L = S + P + Q, then the links can be assembled but will not move, so this condition 
provides a criterion to separate regions of no mobility from regions that allow mobility 
within the solution space.  Applying this criterion in terms of the three link ratios defines 
four planes of zero mobility that provide limits to the solution space.  

= λ + λ + λ
λ = λ + + λ
λ = λ + + λ
λ = + λ + λ

1
1
1 (2.10)

1

1 3 4

3 1 4

4 1 3

1 3 4

Applying the S + L = P + Q Grashof condition (in terms of the link ratios) defines 
three additional planes on which the change-
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TABLE  2-4 Barker’s Complete Classification of Planar Fourbar Mechanisms
Adapted from ref. [10]. s = shortest link, l = longest link, Gxxx = Grashof, RRRx = non-Grashof, Sxx = Special case

Type s + l  vs.
 p + q Inversion Class Barker’s Designation Code Also Known As

1 < L1  = s = ground I-1 Grashof crank-crank-crank GCCC Double-crank

2 < L2 = s = input I-2 Grashof crank-rocker-rocker GCRR Crank-rocker

3 < L3 = s = coupler I-3 Grashof rocker-crank-rocker GRCR Double-rocker

4 < L4 = s = output I-4 Grashof rocker-rocker-crank GRRC Rocker-crank

5 > L1  = l = ground II-1 Class 1 rocker-rocker-rocker RRR1 Triple-rocker

Triple-rocker

Triple-rocker

Triple-rocker

6 > L2 = l = input II-2 Class 2 rocker-rocker-rocker RRR2

7 > L3 = l = coupler II-3 Class 3 rocker-rocker-rocker RRR3

8 > L4 = l = output II-4 Class 4 rocker-rocker-rocker RRR4

9 = L1  = s = ground III-1 Change-point crank-crank-crank SCCC SC* double-crank

10 = L2 = s = input III-2 Change-point crank-rocker-rocker SCRR SC crank-rocker

11 = L3 = s = coupler III-3 Change-point rocker-crank-rocker SRCR SC double-rocker

12 = L4 = s = output III-4 Change-point rocker-rocker-crank SRRC SC rocker-crank

13 = Two equal pairs III-5 Double change point S2X Parallelogram
or deltoid

14 = L1  = L2 = L3 = L4 III-6 Triple change point S3X Square

*  SC = special case

FIGURE 2-20
Barker's solution space for the fourbar linkage  Adapted from reference [10]

λ1

λ4

λ3

1 - 
GCCC2 - 
GCRR

3 - GRCR
4 - GRRC
5 - RRR1
6 - RRR2
7 - RRR3
8 - RRR4

4

5

2

3

8

1

7
6
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+ λ = λ + λ
+ λ = λ + λ
+ λ = λ + λ

1
1 (2.11)
1

1 3 4

3 1 4

4 1 3

The positive octant of this space, bounded by the λ1–λ3, λ1–λ4, λ3–λ4 planes and the 
four zero-mobility planes (equation 2.10), contains eight volumes that are separated by 
the change-point planes (equation 2.11).  Each volume contains mechanisms unique to 
one of the first eight classifications in Table 2-4 .  These eight volumes are in contact with 
one another in the solution space, but to show their shapes, they have been “exploded” 
apart in Figure 2-20.  The remaining six change-point mechanisms of Table 2-4 exist only 
in the change-point planes that are the interfaces between the eight volumes.  For more 
details on this solution space and Barker’s classification system than space permits here, 
see reference [10].

2.14	 LINKAGES OF MORE THAN FOUR BARS

Geared Fivebar Linkages  Watch a short video (1:24)§

We have seen that the simplest one-DOF linkage is the fourbar mechanism.  It is an ex‑
tremely versatile and useful device.  Many quite complex motion control problems can 
be solved with just four links and four pins.  Thus in the interest of simplicity, designers 
should always first try to solve their problems with a fourbar linkage.  However, there will 
be cases when a more complicated solution is necessary.  Adding one link and one joint 
to form a fivebar (Figure 2‑21a) will increase the DOF by one, to two.  By adding a pair 
of gears to tie two links together with a new half joint, the DOF is reduced again to one, 
and the geared fivebar mechanism (GFBM) of Figure 2‑21b* is created. 

The geared fivebar mechanism provides more complex motions than the fourbar 
mechanism at the expense of the added link and gearset as can be seen in Appendix E.  

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.

( b )  Geared fivebar linkage—1 DOF(a )  Fivebar linkage—2 DOF

FIGURE 2-21
Two forms of the fivebar linkage

2

3

5

4

2

3

5

4

	
§  http://www.designofma‑
chinery.com/DOM/Fivebar.
mp4

http://www.designofmachinery.com/DOM/Fivebar.mp4
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The reader may also observe the dynamic behavior of the linkage shown in Figure 2‑21b 
by running the program Linkages provided with this text and opening the data file 
F02‑21b.5br.  See Appendix A for instructions on running the program.  Accept all the 
default values, and animate the linkage.

Sixbar Linkages

We already met Watt’s and Stephenson’s sixbar mechanisms.  See Figure 2‑16.  Watt’s 
sixbar can be thought of as two fourbar linkages connected in series and sharing two links 
in common.  Stephenson’s sixbar can be thought of as two fourbar linkages connected in 
parallel and sharing two links in common.  Many linkages can be designed by the tech‑
nique of combining multiple fourbar chains as basic building blocks into more complex 
assemblages.  Many real design problems will require solutions consisting of more than 
four bars.  Some Watt’s and Stephenson’s linkages are provided as built‑in examples to 
the program Sixbar supplied with this text.  You may run that program to observe these 
linkages dynamically.  Select any example from the menu, accept all default responses, 
and animate the linkages.

Grashof-Type Rotatability Criteria for Higher-Order Linkages

Rotatability is defined as the ability of at least one link in a kinematic chain to make a 
full revolution with respect to the other links and defines the chain as Class I, II, or III.  
Revolvability refers to a specific link in a chain and indicates that it is one of the links 
that can rotate.

Rotatability of Geared Fivebar Linkages  Ting[11] has derived an expres‑
sion for rotatability of the geared fivebar linkage that is similar to the fourbar’s Grashof 
criterion.  Let the link lengths be designated L1 through L5 in order of increasing length,

then if: (2.12)1 2 5 3 4L L L L L+ + < +

the two shortest links can revolve fully with respect to the others and the linkage is des‑
ignated a Class I kinematic chain.  If this inequality is not true, then it is a Class II chain 
and may or may not allow any links to fully rotate depending on the gear ratio and phase 
angle between the gears.  If the inequality of equation 2.12 is replaced with an equal sign, 
the  linkage will be a Class III chain in which the two shortest links can fully revolve but 
it will have change points like the special-case Grashof fourbar.  

Reference [11] describes the conditions under which a Class II geared fivebar linkage 
will and will not be rotatable.  In practical design terms, it makes sense to obey equation 
2.12 in order to guarantee a Grashof condition.  It also makes sense to avoid the Class III 
change-point condition.  Note that if one of the short links (say L2) is made zero, equation 
2.12 reduces to the Grashof formula of equation 2.8.

In addition to the linkage’s rotatability, we would like to know about the kinds of 
motions that are possible from each of the five inversions of a fivebar chain.  Ting[11] 
describes these in detail.  But if we want to apply a gearset between two links of the 
fivebar chain (to reduce its DOF to 1), we really need it to be a double-crank linkage, 
with the gears attached to the two cranks.  A Class I fivebar chain will be a double-crank 
mechanism if the two shortest links are among the set of three links that comprise the 
mechanism’s ground link and the two cranks pivoted to ground.[11]
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Rotatability of N-bar Linkages  Ting et al.[12], [13] have extended rotatabil‑
ity criteria to all single-loop linkages of N-bars connected with revolute joints and have 
developed general theorems for linkage rotatability and the revolvability of individual 
links based on link lengths.  Let the links of an N-bar linkage be denoted by Li (i = 1, 2,  
. . . , N ), with L1 ≤ L2 ≤ . . . ≤ LN.  The links need not be connected in any particular order 
as rotatability criteria are independent of that factor.  

A single-loop, revolute-jointed linkage of N links will have (N – 3) DOF.  The neces‑
sary and sufficient condition for the assemblability of an N-bar linkage is:

(2.13)
1

1
L LN k

k

N

∑≤
=

−

A link K will be a so-called short link if

(2.14a)1
3K k

N{ } =
−

and a so-called long link if

(2.14b)2K k N
N{ } = −

There will be three long links and (N – 3) short links in any linkage of this type.  

A single-loop  N-bar kinematic chain containing only first-order revolute joints will 
be a Class I, Class II, or Class III linkage depending on whether the sum of the lengths 
of its longest link and its (N – 3) shortest links is, respectively, less than, greater than, or 
equal to the sum of the lengths of the remaining two long links:

Class I:

Class II: (2.15)

Class III:

1 2 3 2 1

1 2 3 2 1

1 2 3 2 1

L L L L L L

L L L L L L

L L L L L L

N N N N

N N N N

N N N N







( )
( )
( )

+ + + + < +

+ + + + > +

+ + + + = +

− − −

− − −

− − −

and, for a Class I linkage, there must be one and only one long link between two noninput 
angles.  These conditions are necessary and sufficient to define the rotatability.

The revolvability of any link Li is defined as its ability to rotate fully with respect to 
the other links in the chain and can be determined from:

(2.16)
1,

1
L L Li N k

k k i

N

∑+ ≤
= ≠

−

Also, if Li is a revolvable link, any link that is not longer than Li will also be revolvable.

Additional theorems and corollaries regarding limits on link motions can be found 
in references [12] and [13].  Space does not permit their complete exposition here. Note 
that the rules regarding the behavior of geared fivebar linkages and fourbar linkages (the 
Grashof law) stated above are consistent with, and contained within, these general rotat‑
ability theorems.
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2.15	 SPRINGS AS LINKS

We have so far been dealing only with rigid links.  In many mechanisms and machines, it 
is necessary to counterbalance the static loads applied to the device.  A common example 
is the hood hinge mechanism on your automobile.  Unless you have the (cheap) model 
with the strut that you place in a hole to hold up the hood, it will probably have either a 
fourbar or sixbar linkage connecting the hood to the body on each side.  The hood may be 
the coupler of a non‑Grashof linkage whose two rockers are pivoted to the body.  A spring 
is fitted between two of the links to provide a force to hold the hood in the open position.  
The spring in this case is an additional link of variable length.  As long as it can provide 
the right amount of force, it acts to reduce the DOF of the mechanism to zero, and holds 
the system in static equilibrium.  However, you can force it to again be a one-DOF system 
by overcoming the spring force when you pull the hood shut.  

Another example, which may now be right next to you, is the ubiquitous adjustable 
arm desk lamp, shown in Figure 2‑22.  This device has two springs that counterbalance 
the weight of the links and lamp head.  If well designed and made, it will remain stable 
over a fairly wide range of positions despite variation in the overturning moment due to 
the lamp head’s changing moment arm.  This is accomplished by careful design of the 
geometry of the spring‑link relationships so that, as the spring force changes with increas‑
ing length, its moment arm also changes in a way that continually balances the changing 
moment of the lamp head.  

A linear spring can be characterized by its spring constant, k = F / x, where F is force 
and x is spring displacement.  Doubling its deflection will double the force. Most coil 
springs of the type used in these examples are linear.  

2.16	 COMPLIANT MECHANISMS  Watch a short video (1:17)†

The mechanisms so far described in this chapter all consist of discrete elements in the form 
of rigid links or springs connected by joints of various types.  Compliant mechanisms 
can provide similar motions with fewer parts and fewer (even zero) physical joints.  Com‑
pliance is the opposite of stiffness.  A member or “link” that is compliant is capable of 
significant deflection in response to load.  An ancient example of a compliant mechanism 
is the bow and arrow, in which the bow’s deflection in response to the archer pulling back 
the bowstring stores elastic strain energy in the flexible (compliant) bow, and that energy 
launches the arrow.  

The bow and bowstring comprise two parts, but in its purest form a compliant mecha‑
nism consists of a single link whose shape is carefully designed to provide areas of flex‑
ibility that serve as pseudo joints.  Probably the most commonly available example of a 
simple compliant mechanism is the ubiquitous plastic box made with a “living hinge” as 
shown in Figure 2-23.  This is a dyad or two-link mechanism (box and cover) with a thin 
section of material connecting the two.  Certain thermoplastics, such as polypropylene, 
allow thin sections to be flexed repeatedly without failure.  When the part is removed 
from the mold, and is still warm, the hinge must be flexed once to align the material’s 
molecules.  Once cooled, it can withstand millions of open-close cycles without failure.  
Figure 2-24 shows a prototype of a fourbar linkage toggle switch made in one piece of 
plastic as a compliant mechanism.  It moves between the on and off positions by flexure 

FIGURE 2-22
A spring-balanced
linkage mechanism

View as a video
http://www.designofma‑

chinery.com/DOM/lamp.avi

A box with a “living hinge” 
Public domain image. 
Source: Polyparadigm/Flickr

FIGURE 2-23

† http://www.designofma‑
chinery.com/DOM/Compli‑
ant_Linkages.mp4

http://www.designofmachinery.com/DOM/Compliant_Linkages.mp4
http://www.designofmachinery.com/DOM/lamp.avi
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of the thin hinge sections that serve as pseudo joints between the “links.”  The case study 
discussed in Chapter 1 describes the design of a compliant mechanism that is also shown 
in Figure 6-13).

Figure 2-25a shows a forceps designed as a one-piece compliant mechanism.  Instead 
of the conventional two pieces connected by a pin joint, this forceps has small cross sec‑
tions designed to serve as pseudo joints.  It is injection molded of polypropylene thermo‑
plastic with “living hinges.”   Note that there is a fourbar linkage 1, 2, 3, 4 at the center 
whose “joints” are the compliant sections of small dimension at A, B, C, and D.  The 
compliance of the material in these small sections provides a built-in spring effect to hold 
it open in the rest condition.  The other portions of the device such as the handles and jaws 
are designed with stiffer geometry to minimize their deflections.  When the user closes the 
jaws, the hooks on the handles latch it closed, clamping the gripped item.  Figure 2-25b 
shows a two-piece snap hook that uses the compliance of the spring closure that results 
from either ear of the wire spring being pivoted at different locations A1 and A2.

These examples show some of the advantages of compliant mechanisms over conven‑
tional ones.  In some cases, no assembly operations are needed, as there is only one part.  
The needed spring effect is built in by control of geometry in local areas.  The finished 
part is ready to use as it comes out of the mold.  These features all reduce cost.

Compliant mechanisms have been in use for a long time (e.g., the bow and arrow, fin‑
gernail clipper, paper clips), but found new applications in the late 20th century due in part 
to the availability of new materials and modern manufacturing processes.  Some of their 
advantages over conventional mechanisms are the reduction of number of parts, elimina‑
tion of joint clearances, inherent spring loading, and potential reductions in cost, weight, 
wear, and maintenance compared to conventional mechanisms.  They are, however, more 
difficult to design and analyze because of their relatively large deflections that preclude the 
use of conventional small-deflection theory.  This text will consider only the design and 

( a )  Switch on

FIGURE 2-24
One-piece compliant switch  Courtesy of Professor Larry L. Howell,  Brigham Young University

"link" 1 "link" 1 

( b )  Switch o�

"link" 3 "link" 3 

"link" 2 "link" 2 

"link" 4 "link" 4 
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analysis of noncompliant (i.e., assumed rigid) links and mechanisms with physical joints.  
For information on the design and analysis of compliant mechanisms see reference [16].

2.17	 MICRO ELECTRO-MECHANICAL SYSTEMS (MEMS)*

Recent advances in the manufacture of microcircuitry such as computer chips have led 
to a new form of mechanism known as micro electro-mechanical systems or MEMS.  
These devices have features measured in micrometers, and micromachines range in size 
from a few micrometers to a few millimeters.  They are made from the same silicon 
wafer material that is used for integrated circuits or microchips.  The shape or pattern of 
the desired device (mechanism, gear, etc.) is computer generated at large scale and then 
photographically reduced and projected onto the wafer.  An etching process then removes 
the silicon material where the image either did or did not alter the photosensitive coating 
on the silicon (the process can be set to do either).  What remains is a tiny reproduction 
of the original geometric pattern in silicon.  Figure 2-26a shows silicon microgears made 
by this method.  They are only a few micrometers in diameter. 

Compliant mechanisms are very adaptable to this manufacturing technique.  Figure 
2-26b shows a micromotor that uses the gears of Figure 2-26a and is smaller than a few 
millimeters overall.  The motor drive mechanism is a series of compliant linkages that 
are oscillated by an electrostatic field to drive the crank shown in the enlarged view of 
Figure 2-26b.  Two of these electrostatic actuators operate on the same crank, 90° out of 
phase to carry it through the dead center positions.  This motor is capable of continuous 
speeds of 360 000 rpm and short bursts to a million rpm before overheating from friction 
at that high speed.

Figure 2-27 shows “a compliant bistable mechanism (known as the Young mecha‑
nism) in its two stable positions.  Thermal actuators amplify thermal expansion to snap 

	
*  More information on 
MEMS can be found at:  
http://www.sandia.gov/ and 
http://www.memsnet.org/
mems/
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the device between its two positions.  It can be used as a microswitch or a microrelay.  
Because it is so small, it can be actuated in a few hundred microseconds.”†

Applications for these micro devices are just beginning to be found.  Microsensors 
made with this technology are currently used in automobile airbag assemblies to detect 

FIGURE 2-26
MEMS of etched silicon (a) microgears Courtesy of Sandia National Laboratories  (b) SEM photos of Sandia Labs’ micromotor 
SEM photos courtesy of Professor Cosme Furlong, Worcester Polytechnic Institute 

( a )  Microgears (b)  Micromotor and gear train

compliant electrostatic actuators

motor drive

50 µm

300 µm 

	

†  Professor Larry L. 
Howell (2002), personal 
communication.

   (a)     (b)

Compliant bistable silicon micromechanism in two positions  Courtesy of Professor Larry L. 
Howell, Brigham Young University

FIGURE 2-27
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sudden deceleration and fire the airbag inflator.  MEMS blood pressure monitors that can 
be placed in a blood vessel have been made.  MEMS pressure sensors are being fitted to 
automobile tires to continuously monitor tire pressure.  Many other applications are being 
and will be developed to utilize this technology in the future.

2.18	 PRACTICAL CONSIDERATIONS

There are many factors that need to be considered to create good-quality designs.  Not all 
of them are contained within the applicable theories.  A great deal of art based on experi‑
ence is involved in design as well.  This section attempts to describe a few such practical 
considerations in machine design.

Pin Joints versus Sliders and Half Joints

Proper material selection and good lubrication are the key to long life in any situation, 
such as a joint, where two materials rub together.  Such an interface is called a bearing.  
Assuming the proper materials have been chosen, the choice of joint type can have a 
significant effect on the ability to provide good, clean lubrication over the lifetime of the 
machine.

Revolute (Pin) Joints  The simple revolute or pin joint (Figure 2-28a) is the 
clear winner here for several reasons.  It is relatively easy and inexpensive to design and 
build a good-quality pin joint.  In its pure form—a so-called sleeve or journal bearing—
the geometry of pin-in-hole traps a lubricant film within its annular interface by capillary 
action and promotes a condition called hydrodynamic lubrication in which the parts are 
separated by a thin film of lubricant as shown in Figure 2-29.  Seals can easily be provided 
at the ends of the hole, wrapped around the pin, to prevent loss of the lubricant.  Replace‑
ment lubricant can be introduced through radial holes into the bearing interface, either 
continuously or periodically, without disassembly.  

A convenient form of bearing for linkage pivots is the commercially available spheri‑
cal rod end shown in Figure 2-30.  This has a spherical, sleeve-type bearing that self-
aligns to a shaft that may be out of parallel.  Its body threads onto the link, allowing links 
to be conveniently made from round stock with threaded ends that allow adjustment of 
link length.

Relatively inexpensive ball and roller bearings are commercially available in a large 
variety of sizes for revolute joints as shown in Figure 2-31.  Some of these bearings (prin‑

(b)  Slider joint

(c) Half joint

(a)  Pin joint

∆θ

∆θ

∆y

FIGURE 2 -28
Joints of various types
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cipally ball type) can be obtained prelubricated and with end seals.  Their rolling elements 
provide low-friction operation and good dimensional control.  Note that rolling-element 
bearings actually contain higher-joint interfaces (half joints) at each ball or roller, which is 
potentially a problem as noted below.  However, the ability to trap lubricant within the roll 
cage (by end seals)  combined with the relatively high rolling speed of the balls or rollers 
promotes elastohydrodynamic lubrication and long life.   For more detailed information 
on bearings and lubrication, see reference [15].

For revolute joints pivoted to ground, several commercially available bearing types 
make the packaging easier.  Pillow blocks and flange-mount bearings (Figure 2-32) are 
available fitted with either rolling-element (ball, roller) bearings or sleeve-type journal 
bearings.  The pillow block allows convenient mounting to a surface parallel to the pin 
axis, and flange mounts fasten to surfaces perpendicular to the pin axis.

Prismatic (Slider) Joints  require a carefully machined and straight slot or rod 
(Figure 2‑28b).  These bearings often must be custom made. Though linear ball bearings 
(Figure 2-33) are commercially available, they must be run over hardened and ground 
shafts.  Lubrication is difficult to maintain in any sliding joint.  The lubricant is not geo‑
metrically captured, and it must be resupplied either by running the joint in an oil bath or 
by periodic manual regreasing.  An open slot or shaft tends to accumulate airborne dirt 
particles that can act as a grinding compound when trapped in the lubricant. This will 
accelerate wear. 

( a )  Pillow-block bearing b )  Flange-mount bearing

FIGURE 2-32
Pillow block and flange-mount bearing units.  Courtesy of Emerson Power Transmission, Ithaca, NY. 

Linear ball bushing 
Courtesy of Thomson Indus-
tries, Radford, VA

FIGURE 2-33

(b)  Roller bearing

(a )  Ball bearing

FIGURE 2-31
Ball and roller
bearings for revolute
joints  

Copyright © 2018 Robert L. Norton
All Rights Reserved

FIGURE 2-30 
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Higher (Half) Joints  such as a round pin in a slot (Figure 2‑28c) or 
a cam‑follower joint (Figure 2-12c) suffer even more acutely from the slider’s  
lubrication problems, because they typically have two oppositely curved surfaces in line 
contact, which tend to squeeze any lubricant out of the joint.  This type of joint needs to be 
run in an oil bath for long life.  This requires that the assembly be housed in an expensive, 
oil-tight box with seals on all protruding shafts.

 These joint types are all used extensively in machinery with great success.  As long 
as the proper attention to engineering detail is paid, the design can be successful.  Some 
common examples of all three joint types can be found in an automobile.  The windshield 
wiper mechanism is a pure pin‑jointed linkage.  The pistons in the engine cylinders are 
true sliders and are bathed in engine oil.  The valves in the engine are opened and closed 
by cam‑follower (half) joints that are drowned in engine oil.  You probably change your 
engine oil fairly frequently.  When was the last time you lubricated your windshield wiper 
linkage?  Has this linkage (not the motor) ever failed?

Cantilever or Straddle Mount?

Any joint must be supported against the joint loads.  Two basic approaches are possible as 
shown in Figure 2-34.  A cantilevered joint has the pin (journal) supported only, as a can‑
tilever beam.  This is sometimes necessary as with a crank that must pass over the coupler 
and cannot have anything on the other side of the coupler.  However, a cantilever beam is 
inherently weaker (for the same cross section and load) than a straddle-mounted (simply 
supported) beam.  The straddle mounting can avoid applying a bending moment to the 
links by keeping the forces in the same plane.  The pin will feel a bending moment in both 
cases, but the straddle-mounted pin is in double shear—two cross sections are sharing 
the load.  A cantilevered pin is in single shear. It is good practice to use straddle-mounted 
joints (whether revolute, prismatic, or higher) wherever possible.  If a cantilevered pin 
must be used, then a commercial shoulder screw that has a hardened and ground shank as 
shown in Figure 2-35 can sometimes serve as a pivot pin.

Short Links 

It sometimes happens that the required length of a crank is so short that it is not possible 
to provide suitably sized pins or bearings at each of its pivots.  The solution is to design 
the link as an eccentric crank, as shown in Figure 2‑36.  One pivot pin is enlarged to 
the point that it, in effect, contains the link.  The outside diameter of the circular crank 
becomes the journal for the moving pivot.  The fixed pivot is placed a distance e from the 
center of this circle equal to the required crank length.  The distance e is the crank’s ec‑
centricity (the crank length).  This arrangement has the advantage of a large surface area 
within the bearing to reduce wear, though keeping the large-diameter journal lubricated 
can be difficult.

Bearing Ratio

The need for straight-line motion in machinery requires extensive use of linear translating 
slider joints.  There is a very basic geometrical relationship called bearing ratio, which if 
ignored or violated will invariably lead to problems.

( a )  Cantilever mount
        —single shear

FIGURE 2-34
Cantilever, and
straddle-mounted pin
joints

P

P
( b )  Straddle mount
        —double shear

P

P
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The bearing ratio (BR) of Figure 2-37 is defined as the effective length of the slider 
over the effective diameter of the bearing:  BR = L / D.  For smooth operation this ratio 
should be greater than 1.5, and never less than 1.  The larger it is, the better.  Effective 
length is defined as the distance over which the moving slider contacts the stationary 
guide.  There need not be continuous contact over that distance.  That is, two short collars, 
spaced far apart, are effectively as long as their overall separation plus their own lengths 
and are kinematically equivalent to a long tube.  Effective diameter is the largest distance 
across the stationary guides, in any plane perpendicular to the sliding motion.

If the slider joint is simply a rod in a bushing, as shown in Figure 2‑37a, the effective 
diameter and length are identical to the actual dimensions of the rod diameter and bush‑
ing length.  If the slider is a platform riding on two rods and multiple bushings, as shown 
in Figure 2‑37b, then the effective diameter and length are the overall width and length, 
respectively, of the platform assembly.  It is this case that often leads to poor bearing ratios.

( a )  Eccentric crank-rocker (b )  Eccentric slider-crank

FIGURE 2-36
Eccentric cranks

4
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( a )  Single rod in bushing ( b )  Platform on two rods
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D De�

Le�

FIGURE 2-37
Bearing ratio
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A common example of a device with a poor bearing ratio is a drawer in an inexpen‑
sive piece of furniture.  If the only guides for the drawer’s sliding motion are its sides 
running against the frame, it will have a bearing ratio less than 1, since it is wider than it 
is deep.  You have probably experienced the sticking and jamming that occurs with such 
a drawer.  A better-quality chest of drawers will have a center guide with a large L / D ratio 
under the bottom of the drawer and will slide smoothly.

Commercial Slides

Many companies provide standard linear slides that can be used for slider crank linkages 
and cam-follower systems with translating followers.  These are available with linear ball 
bearings that ride on hardened steel rails giving very low friction.  Some are preloaded to 
eliminate clearance and backlash error.  Others are available with plain bearings.  Figure 
2-38 shows an example of a ball-bearing linear slide with a car riding on a rail.  Mounting 
holes (not shown) are provided for attaching the rail to the ground plane and in the cars 
for attaching the elements to be guided.  Rails can be any length.

Linkages versus Cams

The pin-jointed linkage has all the advantages of revolute joints listed above.  The 
cam‑follower mechanism (Figure 2‑12c) has all the problems associated with the half 
joint listed above.  But both are widely used in machine design, often in the same machine 
and in combination (cams driving linkages).  So why choose one over the other?

The “pure” pin-jointed linkage with good bearings at the joints is a potentially su‑
perior design, all else equal, and it should be the first possibility to be explored in any 
machine design problem.  However, there will be many problems in which the need for 
a straight, sliding motion or the exact dwells of a cam‑follower are required.  Then the 
practical limitations of cam and slider joints will have to be dealt with accordingly. 

Linkages have the disadvantage of relatively large size compared to the output dis‑
placement of the working portion; thus they can be somewhat difficult to package.  Cams 
tend to be compact in size compared to the follower displacement.  Linkages are relatively 
difficult to synthesize, and cams are relatively easy to design (as long as a computer 
program such as Dynacam is available).  But linkages are much easier and cheaper to 
manufacture to high precision than cams.  Dwells are easy to get with cams, and difficult 
with linkages.  Linkages can survive very hostile environments, with poor lubrication, 
whereas cams cannot, unless sealed from environmental contaminants.  Linkages have 
better high-speed dynamic behavior than cams, are less sensitive to manufacturing errors, 
and can handle very high loads, but cams can match specified motions better.

So the answer is far from clear-cut.  It is another design trade-off situation in which 
you must weigh all the factors and make the best compromise.  Because of the potential 
advantages of the pure linkage, it is important to consider a linkage design before choos‑
ing a potentially easier design task but an ultimately more expensive solution.

To see machines full of linkages and cams in operation, view the videos:
http://www.designofmachinery.com/DOM/Bottle_Printing_Machine.mp4

and:  http://www.designofmachinery.com/DOM/Spring_Manufacturing.mp4

Ball bearing linear slide 

FIGURE 2-38

Copyright © 2018 Robert L. Norton
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2.19	 MOTORS AND DRIVERS

Unless manually operated, a mechanism will require some type of driver device to provide 
the input motion and energy.  There are many possibilities.  If the design requires a contin‑
uous rotary input motion, such as for a Grashof linkage, a slider-crank, or a cam‑follower, 
then a motor or engine* is the logical choice.  Motors come in a wide variety of types.  The 
most common energy source for a motor is electricity, but compressed air and pressurized 
hydraulic fluid are also used to power air and hydraulic motors.  Gasoline or diesel engines 
are another possibility.   If the input motion is translation, as is common  in earth-moving 
equipment, then a hydraulic or pneumatic cylinder is usually needed.

Electric Motors

Electric motors are classified both by their function or application and by their electrical 
configuration.[14]  Some functional classifications (described below) are gearmotors, 
servomotors, and stepping motors.  Many different electrical configurations are also 
available, and are shown in Figure 2-39 independent of their functional classifications.  
The main electrical configuration division is between AC and DC motors, though one 
type, the universal motor, is designed to run on either AC or DC.

 AC and DC refer to alternating current and direct current respectively.  AC is 
typically supplied by the power companies and, in the United States, will be alternating 
sinusoidally at 60 hertz (Hz),  at about ±120, ±240, or ±480 volts (V) peak.  Many other 
countries supply AC at 50 Hz.  Single-phase AC provides a single sinusoid varying with 
time, and 3-phase AC provides three sinusoids at 120° phase angles.  DC is constant with 
time, supplied from generators or battery sources and is most often used in  vehicles, such 
as ships, automobiles, aircraft, etc.  Batteries are made in multiples of 1.5 V, with 6, 12, 
and 24 V being the most common.  Electric motors are also classed by their rated power 
as shown in Table 2-5.  Both AC and DC motors are designed to provide continuous rotary 
output.  While they can be stalled momentarily against a load, they cannot tolerate a full-
current, zero-velocity stall for more than a few minutes without overheating.

DC Motors  are made in different electrical configurations, such as  permanent 
magnet (PM), shunt-wound, series-wound, and compound-wound.  The names refer to 
the manner in which the rotating armature coils are electrically connected to the station‑
ary field coils—in parallel (shunt), in series, or in combined series-parallel (compound).  
Permanent magnets replace the field coils in a PM motor.  Each configuration provides 
different torque‑speed characteristics.  The torque‑speed curve of a motor describes how 
it will respond to an applied load and is of great interest to the mechanical designer as it 
predicts how the mechanical-electrical system will behave when the load varies dynami‑
cally with time.  

Permanent Magnet DC Motors  Figure 2-40a shows a torque‑speed curve for 
a permanent magnet (PM) motor.  Note that its torque varies greatly with speed, ranging 
from a maximum (stall) torque at zero speed to zero torque at maximum (no-load) speed.  
This relationship comes from the fact that power = torque x angular velocity.  Since the 
power available from the motor is limited to some finite value, an increase in torque re‑
quires a decrease in angular velocity and vice versa.  Its torque is maximum at stall (zero 
velocity), which is typical of all electric motors.  This is an advantage when starting heavy 
loads: e.g., an electric-motor-powered vehicle needs no clutch, unlike one powered by an 

 

*  The terms motor and 
engine are often used 
interchangeably, but they do 
not mean the same thing.  
Their difference is largely 
semantic, but the “purist” 
reserves the term motor for 
electrical, hydraulic, and 
pneumatic motors and the 
term engine for thermo‑
dynamic devices such 
as external combustion 
(steam, stirling) engines 
and internal combustion 
(gasoline, diesel) engines.  
Thus, a conventional 
automobile is powered by 
a gasoline or diesel engine, 
but its windshield wipers 
and window lifts are run by 
electric motors.  The newest 
hybrid automobiles have 
one or more electric motors 
to drive the wheels plus an 
engine to drive a generator 
to charge the batteries and 
also supply auxiliary power 
directly to the wheels.  
Diesel-electric locomotives 
are hybrids also, using elec‑
tric motors at the wheels 
for direct drive and diesel 
engines running generators 
to supply the electricity.  
Modern commercial ships 
use a similar arrangement 
with diesel engines driving 
generators and electric mo‑
tors turning the propellers.

Motor Power Classes

Class HP

Subfractional < 1 / 20

Fractional 1 / 20–1

Integral > 1

TABLE  2-5
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internal combustion engine that cannot start from stall under load.  An engine’s torque 
increases rather than decreases with increasing angular velocity.

Figure 2-40b shows a family of load lines superposed on the torque‑speed curve of 
a PM motor.  These load lines represent a time-varying load applied to the driven mecha‑
nism.  The problem comes from the fact that as the required load torque increases, the 
motor must reduce speed to supply it.  Thus, the input speed will vary in response to load 
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variations in most motors, regardless of their design.*  If constant speed is required, this 
may be unacceptable.  Other types of DC motors have either more or less speed sensitivity 
to load than the PM motor.  A motor is typically selected based on its torque-speed curve.

Shunt-Wound DC Motors  have a torque speed curve like that shown in Figure 
2-41a. Note the flatter slope around the rated torque point (at 100%) compared to Figure 
2-40.  The shunt-wound motor is less speed-sensitive to load variation in its operating 
range, but stalls very quickly when the load exceeds its maximum overload capacity of 
about 250% of rated torque. Shunt-wound motors are typically used on fans and blowers.

Series-Wound DC Motors  have a torque-speed characteristic like that shown 
in Figure 2-41b.  This type is more speed-sensitive than the shunt or PM configurations.  
However, its starting torque can be as high as 800% of full-load rated torque.  It also does 
not have any theoretical maximum no-load speed, which makes it tend to run away if the 
load is removed.  Actually, friction and windage losses will limit its maximum speed, 
which can be as high as 20,000 to 30,000 revolutions per minute (rpm).  Overspeed de‑
tectors are sometimes fitted to limit its unloaded speed.  Series-wound motors are used in 
sewing machines and portable grinders where their speed variability can be an advantage 
as it can be controlled, to a degree, with voltage variation.  They are also used in heavy-
duty applications such as vehicle traction drives where their high starting torque is an 
advantage.  Also their speed sensitivity (large slope) is advantageous in high-load applica‑
tions as it gives a “soft start” when moving high-inertia loads.  The motor’s tendency to 
slow down when the load is applied cushions the shock that would be felt if a large step 
in torque were suddenly applied to the mechanical elements. 

Compound-Wound DC Motors  have their field and armature coils connected 
in a combination of series and parallel.   As a result their torque-speed characteristic has 
aspects of both the shunt-wound and series-wound motors as shown in Figure 2-41c.  
Their speed sensitivity is greater than a shunt-wound but less than a series-wound motor 
and it will not run away when unloaded.  This feature plus its high starting torque and soft-
start capability make it a good choice for cranes and hoists that experience high inertial 
loads and can suddenly lose the load due to cable failure, creating a potential runaway 
problem if the motor does not have a self-limited no-load speed.   
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Torque-speed curves for three types of DC motor

 

*  The synchronous AC mo‑
tor and the speed-controlled 
DC motor are exceptions.
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Speed-Controlled DC Motors  If precise speed control is needed, as is often 
the case in production machinery, another solution is to use a speed-controlled DC motor 
that operates from a controller that increases and decreases the current to the motor in the 
face of changing load to try to maintain constant speed.  These speed-controlled (typi‑
cally PM) DC motors will run from an AC source since the controller also converts AC to 
DC.  The cost of this solution is high, however.  Another possible solution is to provide a 
flywheel on the input shaft, which will store kinetic energy and help smooth out the speed 
variations introduced by load variations.  Flywheels will be investigated in Chapter 11.

AC Motors  are the least expensive way to get continuous rotary motion, and they 
are available with a variety of torque‑speed curves to suit various load applications.  They 
are limited to a few standard speeds that are a function of the AC line frequency (60 Hz in 
North America, 50 Hz elsewhere).  The synchronous motor speed ns is a function of line 
frequency f and the number of magnetic poles p present in the rotor.  

120 (2.17)n f
ps =

Synchronous motors “lock on” to the AC line frequency and run exactly at synchronous 
speed.  These motors are used for clocks and timers.  Nonsynchronous AC motors have a 
small amount of slip that makes them lag the line frequency by about 3 to 10%.

Table 2-6 shows the synchronous and nonsynchronous speeds for various AC motor-
pole configurations.  The most common AC motors have 4 poles, giving nonsynchronous 
no-load speeds of about 1725 rpm, which reflects slippage from the 60-Hz synchronous 
speed of 1800 rpm. 

Figure 2-42 shows typical torque-speed curves for single-phase (1φ) and 3-phase 
(3φ) AC motors of various designs.  The single-phase shaded pole and permanent split 
capacitor designs have a starting torque lower than their full-load torque.  To boost the 
start torque, the split-phase and capacitor-start designs employ a separate starting circuit 
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Torque-speed curves for single- and three-phase AC motors
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that is cut off by a centrifugal switch as the motor approaches operating speed.  The broken 
curves indicate that the motor has switched from its starting circuit to its running circuit.  
The NEMA* three-phase motor designs B, C, and D in Figure 2-42 differ mainly in their 
starting torque and in speed sensitivity (slope) near the full-load point.

Gearmotors  If different single (as opposed to variable) output speeds than the 
standard ones of Table 2-6 are needed, a gearbox speed reducer can be attached to the 
motor’s output shaft, or a gearmotor can be purchased that has an integral gearbox.  Gear‑
motors are commercially available in a large variety of output speeds and power ratings.  
The kinematics of gearbox design are covered in Chapter 9.  

Servomotors  These are fast-response, closed-loop-controlled motors capable of 
providing a programmed function of acceleration or velocity, providing position control, 
and of holding a fixed position against a load.  Closed loop means that sensors (typically 
shaft encoders) on the motor or the output device being moved feed back information on 
its position and velocity.  Circuitry in the motor controller responds to the fed back infor‑
mation by reducing or increasing (or reversing) the current flow (and/or its frequency) to 
the motor.  Precise positioning of the output device is then possible, as is control of the 
speed and shape of the motor’s response to changes in load or input commands.  These are 
relatively expensive devices† that are commonly used in applications such as moving the 
flight control surfaces in aircraft and guided missiles, in numerically controlled machin‑
ing centers, automated manufacturing machinery, and in controlling robots, for example.  

Servomotors are made in both AC and DC configurations, with the AC type currently 
becoming more popular. These achieve speed control by the controller generating a vari‑
able frequency current that the synchronous AC motor locks onto.  The controller first 
rectifies the AC to DC and then “chops” it into the desired frequency, a common method 
being pulse-width modification.  They have high torque capability and a flat torque-speed 
curve similar to Figure 2-41a.  Also, they will typically provide as much as three times 
their continuous rated torque for short periods such as under intermittent overloads.  Other 
advantages of servomotors include their ability to do programmed “soft starts,” hold any 
speed to a close tolerance in the face of variation in the load torque, and make a rapid 
emergency stop using dynamic braking.  

Stepper Motors  These are brushless permanent magnet, variable reluctance, 
or hybrid-type motors designed to position an output device.  Unlike servomotors, they 
typically run open loop, meaning they receive no feedback as to whether the output device 
has responded as requested.  Thus, they can get out of phase with the desired program.  
They will, however, happily sit energized for an indefinite period, holding the output in 
one position (though they do get hot—100-150°F).  Their internal construction consists 
of a number of magnetic strips arranged around the circumference of both the rotor and 
stator.  When energized, the rotor will move one step, to the next magnet, for each pulse 
received.  Thus, these are intermittent motion devices and do not provide continuous 
rotary motion like other motors.  The number of magnetic strips and controller type deter‑
mine their resolution (typically 200 steps/rev, but a microstepper drive can increase this to 
2000 or more steps/rev).  They are relatively small compared to AC/DC motors and have 
low drive torque capacity but have high holding torque.  They are moderately expensive 
and require special controllers.  

 
*  National Electrical Manu‑
facturers Association.

	
†  Costs of all electronic de‑
vices seem to continuously 
fall as technology advances 
and motor controllers are no 
exception.
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Air and Hydraulic Motors

These have more limited application than electric motors, simply because they require the 
availability of a compressed air or hydraulic source.  Both of these devices are less energy 
efficient than the direct electrical to mechanical conversion of electric motors, because of 
the losses associated with the conversion of the energy first from chemical or electrical 
to fluid pressure and then to mechanical form.  Every energy conversion involves some 
losses.  Air motors find widest application in factories and shops, where high-pressure 
compressed air is available for other reasons.  A common example is the air impact wrench 
used in automotive repair shops.  Although individual air motors and air cylinders are 
relatively inexpensive, these pneumatic systems are quite expensive when the cost of 
all the ancillary equipment is included.  Hydraulic motors are most often found within 
machines or systems such as construction equipment (cranes), aircraft, and ships, where 
high-pressure hydraulic fluid is provided for many purposes.  Hydraulic systems are very 
expensive when the cost of all the ancillary equipment is included.

Air and Hydraulic Cylinders

These are linear actuators (piston in cylinder) that provide a limited stroke, straight-line 
output from a pressurized fluid flow input of either compressed air or hydraulic fluid 
(usually oil).  They are the method of choice if you need a linear motion as the input.  
However, they share the same high cost, low efficiency, and complication factors as listed 
under their air and hydraulic motor equivalents above.

Another problem is that of control.  Most motors, left to their own devices, will tend 
to run at a constant speed.  A linear actuator, when subjected to a constant pressure fluid 
source, typical of most compressors, will respond with more nearly constant accelera‑
tion, which means its velocity will increase linearly with time.  This can result in severe 
impact loads on the driven mechanism when the actuator comes to the end of its stroke at 
maximum velocity.  Servovalve control of the fluid flow, to slow the actuator at the end 
of its stroke, is possible but is quite expensive.

The most common application of fluid power cylinders is in farm and construction 
equipment such as tractors and bulldozers, where open loop (nonservo) hydraulic cylin‑
ders actuate the bucket or blade through linkages.  The cylinder and its piston become two 
of the links (slider and track) in a slider-crank mechanism.  See Figure 1-1b.

Solenoids 

These are electromechanical (AC or DC) linear actuators that share some of the limita‑
tions of air cylinders, and they possess a few more of their own.  They are energy inef‑
ficient, are limited to very short strokes (about 2 to 3 cm), develop a force that varies 
exponentially over the stroke, and deliver high impact loads.  They are, however, inex‑
pensive, reliable, and have very rapid response times.  They cannot handle much power, 
and they are typically used as control or switching devices rather than as devices that do 
large amounts of work on a system.
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A common application of solenoids is in camera shutters, where a small solenoid 
is used to pull the latch and trip the shutter action when you push the button to take the 
picture.  Its nearly instantaneous response is an asset in this application, and very little 
work is being done in tripping a latch.  Another application is in electric door or trunk 
locking systems in automobiles, where the click of their impact can be clearly heard when 
you turn the key (or press the button) to lock or unlock the mechanism.
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2.21	 PROBLEMS†

	 *2‑1	 Find three (or other number as assigned) of the following common devices.  Sketch 
careful kinematic diagrams and find their total degrees of freedom.
a.	 An automobile hood hinge mechanism
b.	 An automobile hatchback lift mechanism
c.	 An electric can opener
d. 	 A folding ironing board
e.	 A folding card table
f.	 A folding beach chair
g.	 A baby swing
h.	 A folding baby walker
i.	 A fancy corkscrew as shown in Figure P2-9
j.	 A windshield wiper mechanism
k.	 A dump truck dump mechanism
l.	 A trash truck dumpster mechanism
m.	 A pickup truck tailgate mechanism
n.	 An automobile jack
o.	 A collapsible auto radio antenna

	 2‑2 	 How many DOF do you have in your wrist and hand combined?  Describe them.

	 *2‑3	 How many DOF do the following joints have?
a.	 Your knee
b.	 Your ankle
c.	 Your shoulder
d.	 Your hip
e.	 Your knuckle

	 *2‑4 	 How many DOF do the following have in their normal environment?
a.	 A submerged submarine		  b. An earth-orbiting satellite
c.	 A surface ship			  d. A motorcycle (road bike)
e.	 A two-button mouse		  f.  A computer joystick

	 *2‑5	 Are the joints in Problem 2‑3 force closed or form closed?

	 *2‑6	 Describe the motion of the following items as pure rotation, pure translation, or com‑
plex planar motion.
a.	 A windmill
b.	 A bicycle (in the vertical plane, not turning)
c.	 A conventional “double-hung” window
d.	 The keys on a computer keyboard
e.	 The hand of a clock
f.	 A hockey puck on the ice
g.	 A “casement” window

	 *2‑7	 Calculate the mobility of the linkages assigned from Figure P2‑1 part 1 and part 2.

	 *2‑8	 Identify the items in Figure P2‑1 as mechanisms, structures, or preloaded structures.

	 2‑9	 Use linkage transformation on the linkage of Figure P2-1a to make it have 1 DOF.

	 2‑10	 Use linkage transformation on the linkage of Figure P2-1d to make it have 2 DOF.

	 2‑11	 Use number synthesis to find all the possible link combinations for 2 DOF, up to 9 
links, to hexagonal order, using only revolute joints.

* Answers in Appendix F
	
†  All problem figures are 
provided as PDF files, 
and some are provided as 
animated AVI and Working 

Topic/Problem Matrix

 2.1 Degrees of Freedom

2-2, 2-3, 2-4
 2.2 Types of Motion

2-6, 2-37
 2.3 Links, Joints and 

Kinematic Chains

2-5, 2-17, 2-38, 2-39, 
2-40, 2-41, 2-53,  
2-54, 2-55, 2-67, 
2-72, 2-73

 2.5 Mobility

2-1, 2-7, 2-21, 2-24, 
2-25, 2-26, 2-28, 
2-44, 2-48 to 2-53, 
2-56 to 2-66, 2-71, 
2-74

 2.6 Mechanisms and 
Structures

2-8, 2-27
 2.7 Number Synthesis

2-11, 2-69, 2-70
 2.9 Isomers

2-12, 2-45, 2-46, 
2-47

 2.10 Linkage Transforma-
tion

2-9, 2-10, 2-13, 2-14, 
2-30, 2-31, 2-34,  
2-35, 2-36

 2.12 Inversion

2-63, 2-68 
 2.13 The Grashof Condi-

tion

2-15, 2-22, 2-23, 
2-29, 2-32, 2-42, 
2-43, 2-75, 2-76

 2.15 Springs as Links

2-18, 2-19
 2.19 Motors and Drivers

2-16, 2-20, 2-33
 

TABLE  P2-0
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	 2‑12	 Find all valid isomers of the eightbar 1-DOF link combinations in Table 2‑2 having:
a.	 Four binary and four ternary links
b.	 Five binaries, two ternaries, and one quaternary link
c.	 Six binaries and two quaternary links

	 2‑13	 Use linkage transformation to create a 1-DOF mechanism with two sliding full joints 
from Stephenson’s sixbar linkage in Figure 2-16a.

	 2‑14	 Use linkage transformation to create a 1-DOF mechanism with one sliding full joint 
and a half joint from Stephenson’s sixbar linkage in Figure 2-16b.

	 *2‑15	 Calculate the Grashof condition of the fourbar mechanisms defined below.  Build card‑
board models of the linkages and describe the motions of each inversion.  Link lengths 
are in inches (or double given numbers for centimeters).

		  a.	 2	 4.5	 7	 9
b.		  2	 3.5	 7	 9
c.		  2	 4.0	 6	 8

	 2‑16	 What type(s) of electric motor would you specify 
a.	 To drive a load with large inertia.
b.	 To minimize variation of speed with load variation.
c.	 To maintain accurate constant speed regardless of load variations.	

 2‑17	 Describe the difference between a cam‑follower (half) joint and a pin joint.

* Answers in Appendix F

FIGURE P2-1  Part 1 
Linkages for Problems 2-7 to 2-10

(d )

( b )(a )

(c )
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View as a video
http://www.designofmachinery.com/DOM/cylindrical_cam.aviFIGURE P2-1  Part 2 

Linkages for Problems 2-7 to 2-8
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	 2‑18	 Examine an automobile hood hinge mechanism of the type described in Section 2.15.  
Sketch it carefully.  Calculate its mobility and Grashof condition.  Make a cardboard 
model.  Analyze it with a free-body diagram.  Describe how it keeps the hood up.  

	 2-19	 Find an adjustable arm desk lamp of the type shown in Figure P2‑2.  Measure it and 
sketch it to scale.  Calculate its mobility and Grashof condition.  Make a cardboard 
model.  Analyze it with a free-body diagram.  Describe how it keeps itself stable.  Are 
there any positions in which it loses stability?  Why?

	 2-20	 The torque-speed curve for a 1/8 hp permanent magnet (PM) DC motor is shown in 
Figure P2-3.  The rated speed for this fractional horsepower motor is 2500 rpm at a 
rated voltage of 130 V.  Determine:
a,	 The rated torque in oz-in (ounce-inches—the U.S. industry standard for fractional 

hp motors)
b.	 The no-load speed
c.	 Plot the power-torque curve and find the maximum power that the motor can deliver.

	 *2-21	 Find the mobility of the mechanisms in Figure P2-4.

	 2-22	 Find the Grashof condition and Barker classifications of the mechanisms in Figure P2-
4a, b, and d. 

	 2-23	 Find the rotatability of each  loop of the mechanisms in Figure P2-4e, f, and g. 

	 *2-24	 Find the mobility of the mechanisms in Figure P2-5. 

	 2-25	 Find the mobility of the ice tongs in Figure P2-6:
a.	 When operating them to grab the ice block.
b.	 When clamped to the ice block but before it is picked up (ice grounded).
c.	 When the person is carrying the ice block with the tongs.

	 *2-26	 Find the mobility of the automotive throttle mechanism in Figure P2-7.

* Answers in Appendix F

Torque T (oz-in)

Sp
ee

d 
N

 (r
pm

)

0
0

4000

50 100 150 200 250 300

3500

3000

2500

2000

1500

1000

500

FIGURE P2-3
Torque-speed characteristic of a 1/8 hp, 2500 rpm, PM DC motor for Problem 2-20

N T= − +10 3000

FIGURE P2-2
Problem 2-19

View as a video
http://www.designofma‑
chinery.com/DOM/lamp.

avi

http://www.designofmachinery.com/DOM/lamp.avi
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FIGURE P2-4
Problems 2-21 to 2-23

View as a video
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	 *2-27	 Sketch a kinematic diagram of the scissors jack shown in Figure P2-8 and determine its 
mobility.  Describe how it works.

	 2-28	 Find the mobility of the corkscrew in Figure P2-9.  

	 2-29	 Figure P2-10 shows Watt’s sun and planet drive that he used in his steam engine.  The 
beam 2 is driven in oscillation by the piston of the engine.  The planet gear is fixed rig‑
idly to link 3 and its center is guided in the fixed track 1.  The output rotation is taken 
from the sun gear 4.  Sketch a kinematic diagram of this mechanism and determine 
its mobility.  Can it be classified by the Barker scheme?  If so, what  Barker class and 
subclass is it?

	 2-30	 Figure P2-11 shows a bicycle handbrake lever assembly.  Sketch a kinematic diagram 

* Answers in Appendix F

FIGURE P2-6
Problem 2-25
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FIGURE P2-5
Problem 2-24   (a) Chebyschev and (b) Sylvester-Kempe straight-line mechanism  Source: Kempe, How to Draw
a Straight Line, Macmillan: London, 1877
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FIGURE P2-7 
Problem 2-26. Source: P. H. Hill and W. P Rule. (1960) Mechanisms: Analysis and Design
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of this device and draw its equivalent linkage.  Determine its mobility.  Hint:  Consider 
the flexible cable to be a link.

	 2-31	 Figure P2-12 shows a bicycle brake caliper assembly.  Sketch a kinematic diagram of 
this device and draw its equivalent linkage.  Determine its mobility under two condi‑
tions:  
a.	 Brake pads not contacting the wheel rim.
b.	 Brake pads contacting the wheel rim.

		  Hint:  Consider the flexible cables to be replaced by forces in this case.

Problem 2-28

FIGURE P2-9

FIGURE P2-10
Problem 2-29  James Watt's sun and planet drive 
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FIGURE P2-8
Problem 2-27

View as a video
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FIGURE P2-11
Problem 2-30   Bicycle hand brake lever assembly
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	 2-32	 Find the mobility, the Grashof condition, and the Barker classification of the mecha‑
nism in Figure P2-13.

	 2-33	 The approximate torque-speed curve and its equation for a 1/4 hp shunt-wound DC mo‑
tor are shown in Figure P2-14.  The rated speed for this fractional horsepower motor is 
10 000 rpm at a rated voltage of 130 V.  Determine:

FIGURE P2-12
Problem 2-31  Bicycle brake caliper assembly
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FIGURE P2-13
Problem 2-32  Crimping tool

a. 	 The rated torque in oz-in (ounce-inches, the U.S. industry standard for fractional hp 
motors)

b.	 The no-load speed
c.	 The operating speed range
d.	 Plot the power-torque curve in the operating range and determine the maximum 

power that the motor can deliver in that range.
	 2-34	 Figure P2-15 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 

weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth within link 5 to cut the part.  Sketch its kinematic diagram, and 
determine its mobility and its type (i.e., is it a fourbar, a Watt sixbar, a Stephenson 
sixbar, an eightbar, or what?).  Use reverse linkage transformation to determine its pure 
revolute-jointed equivalent linkage.
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FIGURE P2-14
Problem 2-33 Torque-speed characteristic of a 1/4 hp, 10 000 rpm DC motor

View as a video
http://www.designofmachinery.com/DOM/crimping_tool.avi

http://www.designofmachinery.com/DOM/crimping_tool.avi
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	 *2-35	 Figure P2-16 shows a manual press used to compact powdered materials.  Sketch its 
kinematic diagram, and determine its mobility and its type  (i.e., is it a fourbar, a Watt 
sixbar, a Stephenson sixbar, an eightbar, or what?).  Use reverse linkage transformation 
to determine its pure revolute-jointed equivalent linkage.

	 2-36	 Sketch the equivalent linkage for the cam and follower mechanism in Figure P2-17 in 
the position shown.  Show that it has the same DOF as the original mechanism.

* Answers in Appendix F
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FIGURE P2-15 
Problem 2-34   Power hacksaw
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View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi

FIGURE P2-16 
Problem 2-35 Powder compacting press Source: P. H. Hill and W. P. Rule. (1960). 
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	 2-37	 Describe the motion of the following rides, commonly found at an amusement park, as 
pure rotation, pure translation, or complex planar motion.
a.	 A Ferris wheel
b.	 A “bumper” car
c.	 A drag racer ride
d.	 A roller coaster whose foundation is laid out in a straight line
e.	 A boat ride through a maze
f.	 A pendulum ride
g.	 A train ride

	 2-38	 For the mechanism in Figure P2-1a, number the links, starting with 1.  (Don’t forget the 
“ground” link.)  Letter the joints alphabetically, starting with point A.
a.	 Using your link numbers, describe each link as binary, ternary, etc.
b.	 Using your joint letters, determine each joint’s order.
c.	 Using your joint letters, determine whether each is a half or full joint.

	 2-39	 Repeat Problem 2-38 for Figure P2-1b.

	 2-40	 Repeat Problem 2-38 for Figure P2-1c.

	 2-41	 Repeat Problem 2-38 for Figure P2-1d.

	 2-42	 Find the mobility, the Grashof condition, and the Barker classification of the oil field 
pump shown in Figure P2-18.

	 2-43	 Find the mobility, the Grashof condition, and the Barker classification of the aircraft 
overhead bin shown in Figure P2-19.  Make a model and investigate its motions.

	 2-44	 Figure P2-20 shows a “Rube Goldberg” mechanism that turns a light switch on when 
a room door is opened and off when the door is closed.  The pivot at O2 goes through 
the wall.  There are two spring-loaded piston-in-cylinder devices in the assembly.  An 
arrangement of ropes and pulleys inside the room (not shown) transfers the door swing 

FIGURE P2-18
Problem 2-42   An oil field pump - dimensions in inches
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into a rotation of link 2.  Door opening rotates link 2 CW, pushing the switch up as 
shown in the figure, and door closing rotates link 2 CCW, pulling the switch down.  
Consider the spring-loaded cylinder at the switch to be effectively a single variable-
length binary link.  Find the mobility of the linkage. 

6.95

9.17

2.79

9.17

9.57

9.17

FIGURE P2-19
Problem 2-43  An aircraft overhead bin mechanism - dimensions in inches

	
†  This mechanism was 
created when the boss 
complained that the light 
was being left on overnight 
too frequently in the shop 
storeroom but refused to 
provide funds to buy an 
electronic solution.  The 
shop technician solved the 
problem mechanically (and 
whimsically) from scrap 
parts.  The boss was later 
promoted, perhaps because 
of his demonstrated mastery 
of budgetary control.  

O2

θin

2

FIGURE P2-20 
Problem 2-44   A "Rube Goldberg" light switch actuating mechanism†  Photo by the author

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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	 2-45	 All the eightbar linkages in Figure 2-11 part 2 have eight possible inversions.  Some of 
these will give motions similar to others.  Those that have distinct motions are called 
distinct inversions.  How many distinct inversions does the linkage in row 4, column 1 
have?

	 2-46	 Repeat Problem 2-45 for the linkage in row 4, column 2.

	 2-47	 Repeat Problem 2-45 for the linkage in row 4, column 3.

	 2-48	 Find the mobility of the mechanism shown in Figure 3-33.

	 2-49	 Find the mobility of the mechanism shown in Figure 3-34. 

	 2-50	 Find the mobility of the mechanism shown in Figure 3-35.

	 2-51	 Find the mobility of the mechanism shown in Figure 3-36.

	 2-52	 Find the mobility of the mechanism shown in Figure 3-37b.

	 2-53	 Repeat Problem 2-38 for Figure P2-1e.

	 2-54	 Repeat Problem 2-38 for Figure P2-1f.

	 2-55	 Repeat Problem 2-38 for Figure P2-1g.

	 2-56	 For the example linkage shown in Figure 2-4 find the number of links and their respec‑
tive link orders, the number of joints and their respective orders, and the mobility of the 
linkage.

	 2-57	 For the linkage shown in Figure 2-5b find the number of joints, their respective orders, 
and mobility for:   
a.  	 The condition of a finite load W in the direction shown and a zero load F    
b.  	 The condition of a finite load W and a finite load F both in the directions shown after 

link 6 is off the stop.
	 2-58	 Figure P2-21a shows a “Nuremberg scissors” mechanism.  Find its mobility.

	 2-59	 Figure P2-21b shows a mechanism.  Find its mobility and classify its isomer type.

	 2-60	 Figure P2-21c shows a straight-line linkage.  Determine its mobility and Grashof con‑
dition.  Scale the links for dimensions.  Does it have a name?

	 *2-61	 Figure P2-21d shows a log transporter.  Draw a kinematic diagram of the mechanism, 
specify the number of links and joints, and then determine its mobility:
a.	 For the transporter wheels locked and no log in the claw. 
b.	 For the transporter wheels locked with it lifting a log. 
c.	 For the transporter moving a log to a destination in a straight line.

	 *2-62	 Figure P2-21e shows a plow mechanism attached to a tractor.  Draw its kinematic 
diagram and find its mobility including the earth as a “link”:  
a.	 When the tractor is stopped and the turnbuckle is fixed. (Hint: Consider the tractor 

and wheel to be one with the earth.)
b.	 When the tractor is stopped and the turnbuckle is being adjusted. (Same hint.)
c.	 When the tractor is moving and the turnbuckle is fixed. (Hint: Add the moving trac‑

tor’s DOF to those found in part a.)
	 2-63	 Figure P2-22 shows a Hart inversor sixbar linkage.  (a)  Is it a Watt or Stephenson link‑

age?  (b)  Determine its inversion, i.e., is it a type I, II, or III?

* Answers in Appendix F
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	 2-64	 Figure P2-23 shows the top view of the partially open doors on one side of an enter‑
tainment center cabinet.  The wooden doors are hinged to each other and one door is 
hinged to the cabinet.  There is also a ternary, metal link attached to the cabinet and 

turnbuckle

3 hydraulic
  cylinders

FIGURE P2-21 
Problems 2-58 to 2-62

( d )  Log transporter ( e)  Tractor-mounted plow mechanism

( c ) Straight-line linkage( b )  Mechanism( a )  Nuremberg linkage

plow

tractor

A B

C

2
4

3

6

5

FIGURE P2-22 
Problem 2-63 Hart
Inversor Straight-Line
Mechanism

door

door

hinge
hinge

cabinet

cylinder

piston
link

FIGURE P2-23
Problem 2-64
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door through pin joints.  A spring-loaded piston-in-cylinder device attaches to the 
ternary link and the cabinet through pin joints.  Draw a kinematic diagram of the door 
system and find the mobility of this mechanism.

	 2-65	 Figure P2-24a shows the seat and seat-back of a reclining chair with the linkage that 
connects them to the chair frame.   Draw its kinematic diagram and determine its mo‑
bility with respect to the frame of the chair.

	 2-66	 Figure P2-24b shows the mechanism used to extend the foot support on a reclining 
chair.   Draw its kinematic diagram and determine its mobility with respect to the frame 
of the chair.

	 2-67	 Figure P2-24b shows the mechanism used to extend the foot support on a reclining 
chair.   Number the links, starting with 1.  (Hint: Don’t forget the “ground” link.)  Letter 
the joints alphabetically, starting with A.
	 a. 	 Using the link numbers, describe each link as binary, ternary, etc.
	 b. 	 Using the joint letters, determine each joint’s order.
	 c. 	 Using the joint letters, determine whether each is a half or full joint.

	 2-68	 Figure P2-25 shows a sixbar linkage.  
	 a.	 Is it a Watt or Stephenson linkage?
	 b.	 Determine its inversion, i.e., is it a type I, II, or III?

	 2-69	 Use number synthesis to find all the possible link combinations for 1-DOF, up to 5 links, to 
quaternary order, using one cylindrical joint and revolute joints for the remainder.

	 2-70	 Use number synthesis to find all the possible link combinations for 3-DOF, up to 8 
links, to quaternary order, using one cylindrical joint and revolute joints for the remain‑
der.

	 2-71	 Figure P2-26 shows a schematic of a single-cup coffee maker.  Calculate the mobility 
of the linkage.

	 2-72	 For the mechanism in Figure P2-26, number the links, starting with 1.  (Hint: Don’t 
forget the “ground” link.)  Letter the joints alphabetically, starting with A.

back

seat

frame

back pivots
to frame

slot in seat rides
on pin in frame

seat pivots
to back

frame

foot rest padhandle

FIGURE P2-24
Problems 2-65 to 2-67

(a ) ( b )

FIGURE P2-25
Problem 2-68
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	 a.	 Using the link numbers, describe each link as binary, ternary, etc.
	 b.	 Using the joint letters, determine each joint’s order.
	 c. 	 Using the joint letters, determine whether each is a half or full joint.

	 2-73	 Figure P2-27 shows a schematic of an exercise machine.  Repeat Problem 2-72 for this 
mechanism. 

	 2-74	 Calculate the mobility of the linkage in Figure P2-27.  

	 2-75	 Calculate the Grashof condition of the fourbar mechanisms defined below.  Build card‑
board models of the linkages and describe the motions of each inversion.  Link lengths 
are in millimeters.                    
		  a.	 80	 140	 280	 360               
		  b.	 80	 160	 240	 320                 
		  c.	 80	 180	 280	 360

FIGURE P2-27
Problems P2-73 and 2-74

�oor

base

top

receiver

FIGURE P2-26
Problems P2-71 and P2-72
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	 2-76	 The drum brake mechanism in Figure P2-4g is a fourbar linkage with an alternate output 
dyad.  The input is link 2 and the outputs are links 4 and 6.  The input fourbar consists 
of links 1, 2, 3, and 4.  The alternate output dyad consists of links 5 and 6.  The cross-
hatched pivot pins at O2, O4, and O6 are attached to the ground link (1).  Determine the 
Grashof condition and Barker Classification of the input fourbar.
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Chapter3
GRAPHICAL LINKAGE 
SYNTHESIS
Genius is 1% inspiration
and 99% perspiration
Thomas A. Edison

3.0	 INTRODUCTION

Most engineering design practice involves a combination of synthesis and analysis.  Most 
engineering courses deal primarily with analysis techniques for various situations.  How-
ever, one cannot analyze anything until it has been synthesized into existence.  Many 
machine design problems require the creation of a device with particular motion charac-
teristics.  Perhaps you need to move a tool from position A to position B in a particular 
time interval.  Perhaps you need to trace out a particular path in space to insert a part 
into an assembly.  The possibilities are endless, but a common denominator is often the 
need for a linkage to generate the desired motions.  So, we will now explore some simple 
synthesis techniques to enable you to create potential linkage design solutions for some 
typical kinematic applications.

3.1	 SYNTHESIS

Qualitative Synthesis  means the creation of potential solutions in the absence of 
a well-defined algorithm that configures or predicts the solution.  Since most real de-
sign problems will have many more unknown variables than you will have equations to 
describe the system’s behavior, you cannot simply solve the equations to get a solution.  
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Nevertheless you must work in this fuzzy context to create a potential solution and to also 
judge its quality.  You can then analyze the proposed solution to determine its viability, 
and iterate between synthesis and analysis, as outlined in the design process, until you 
are satisfied with the result.  Several tools and techniques exist to assist you in this pro-
cess.  The traditional tool is the drafting board, on which you lay out, to scale, multiple 
orthographic views of the design, and investigate its motions by drawing arcs, showing 
multiple positions, and using transparent, movable overlays. Computer-aided drafting 
(CAD) systems can speed this process to some degree, but you will probably find that the 
quickest way to get a sense of the quality of your linkage design is to model it, to scale, in 
cardboard, foam board, or drafting Mylar® and see the motions directly.

Other tools are available in the form of computer programs such as Linkages, Dy‑
nacam, and Matrix (included with this text), some of which do synthesis, but these are 
mainly analysis tools.  They can analyze a trial mechanism solution so rapidly that their 
dynamic graphical output gives almost instantaneous visual feedback on the quality of the 
design.  Commercially available programs such as Solidworks, Pro-Engineer, and Work-
ing Model also allow rapid analysis of a proposed mechanical design.  The process then 
becomes one of qualitative design by successive analysis, which is really an iteration 
between synthesis and analysis.  Very many trial solutions can be examined in a short time 
using these computer-aided engineering (CAE) tools.  We will develop the mathematical 
solutions used in these programs in subsequent chapters in order to provide the proper 
foundation for understanding their operation.  But if you want to try these programs to re-
inforce some of the concepts in these early chapters, you may do so.  Appendix A describes 
these programs, and they each contain a manual for their use.  Reference will be made to 
program features that are germane to topics in each chapter, as they are introduced.  Data 
files for input to these computer programs are also provided as downloads for example 
problems and figures in these chapters.  The data filenames are noted near the figure or 
example.  The student is encouraged to open these sample files in the programs in order to 
observe more dynamic examples than the printed page can provide.  These examples can 
be run by merely accepting the defaults provided for all inputs.

Type Synthesis  refers to the definition of the proper type of mechanism best suited 
to the problem and is a form of qualitative synthesis.*  This is perhaps the most difficult 
task for the student as it requires some experience and knowledge of the various types of 
mechanisms that exist and which also may be feasible from a performance and manufac-
turing standpoint.  As an example, assume that the task is to design a device to track the 
straight-line motion of a part on a conveyor belt and spray it with a chemical coating as 
it passes by. This has to be done at high, constant speed, with good accuracy and repeat-
ability, and it must be reliable.  Moreover, the solution must be inexpensive.  Unless you 
have had the opportunity to see a wide variety of mechanical equipment, you might not be 
aware that this task could conceivably be accomplished by any of the following devices:

- A straight-line linkage
- A cam and follower
- An air cylinder
- A hydraulic cylinder
- A robot
- A solenoid

Each of these solutions, while possible, may not be optimal or even practical.  Greater 
detail needs to be known about the problem to make that judgment, and that detail will 
come from the research phase of the design process.  The straight-line linkage may prove 

	
*  A good discussion of 
type synthesis and an ex-
tensive bibliography on the 
topic can be found in 		
Olson, D. G., et al. (1985). 
“A Systematic Procedure 
for Type Synthesis of 
Mechanisms with Literature 
Review.” Mechanism and 
Machine Theory, 20(4),  
pp. 285-295.
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to be too large and to have undesirable accelerations; the cam and follower will be expen-
sive, though accurate and repeatable.  The air cylinder itself is inexpensive but is noisy and 
unreliable.  The hydraulic cylinder is more expensive, as is the robot. The solenoid, while 
cheap, has high impact loads and high impact velocity.  So, you can see that the choice of 
device type can have a significant effect on the quality of the design.  A poor choice at the 
type synthesis stage can create insoluble problems later on.  The design might have to be 
scrapped after completion, at great expense.  Design is essentially an exercise in trade-
offs.  Each proposed type of solution in this example has good and bad points. Seldom will 
there be a clear-cut, obvious solution to a real engineering design problem.  It will be your 
job as a design engineer to balance these conflicting features and find a solution that gives 
the best trade-off of functionality against cost, reliability, and all other factors of interest.  
Remember, an engineer can do, with one dollar, what any fool can do for ten dollars.  Cost 
is always an important constraint in engineering design.

Quantitative Synthesis, or Analytical Synthesis,  means the generation of 
one or more solutions of a particular type that you know to be suitable to the problem, and 
more importantly, one for which there is a synthesis algorithm defined.  As the name sug-
gests, this type of solution can be quantified, as some set of equations exists that will give 
a numerical answer.  Whether that answer is a good or suitable one is still a matter for the 
judgment of the designer and requires analysis and iteration to optimize the design.  Often 
the available equations are fewer than the number of potential variables, in which case you 
must assume some reasonable values for enough unknowns to reduce the remaining set to 
the number of available equations. Thus some qualitative judgment enters into the synthe-
sis in this case as well.  Except for very simple cases, a CAE tool is needed to do quantita-
tive synthesis.  Examples of such tools are the programs Linkages by R. L. Norton that 
solves the three-position multibar linkage synthesis problem and Lincages,* by Erdman 
and Gustafson.[1], that solves the four-position fourbar linkage synthesis problem.  Program 
Linkages, provided with this text, does both three-position analytical synthesis as defined 
in Chapter 5, and general linkage design by successive analysis.  The fast computation of 
these programs allows one to analyze the performance of many trial mechanism designs 
in a short time and promotes rapid iteration to a better solution.

Dimensional Synthesis  of a linkage is the determination of the proportions 
(lengths) of the links necessary to accomplish the desired motions and can be a form of 
quantitative synthesis if an algorithm is defined for the particular problem, but can also 
be a form of qualitative synthesis if there are more variables than equations.  The latter 
situation is more common for linkages.  (Dimensional synthesis of cams is quantitative.)  
Dimensional synthesis assumes that, through type synthesis, you have already determined 
that a linkage (or a cam) is the most appropriate solution to the problem.  This chapter 
discusses graphical dimensional (position) synthesis of linkages in detail.  Chapter 5 
presents methods of analytical linkage synthesis, and Chapter 8 presents cam synthesis.

3.2	 FUNCTION, PATH, AND MOTION GENERATION

Function Generation  is defined as the correlation of an input motion with an output 
motion in a mechanism.  A function generator is conceptually a “black box” that delivers 
some predictable output in response to a known input.  Historically, before the advent 
of electronic computers, mechanical function generators found wide application in artil-
lery rangefinders and shipboard gun aiming systems, and many other tasks.  They are, in 
fact, mechanical analog computers

 
*  Available from Prof. A. 
Erdman, U. Minn., 111 
Church St. SE, Minneapo-
lis, MN 55455   612-625-
8580
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microcomputers for control systems coupled with the availability of compact servo and 
stepper motors has reduced the demand for these mechanical function generator linkage 
devices.  Many such applications can now be served more economically and efficiently 
with electromechanical devices.*  Moreover, the computer-controlled electromechanical 
function generator is programmable, allowing rapid modification of the function gener-
ated as demands change.  For this reason, while presenting some simple examples in 
this chapter and a general, analytical design method in Chapter 5, we will not emphasize 
mechanical linkage function generators in this text.  Note, however, that the cam-follower 
system, discussed extensively in Chapter 8, is in fact a form of mechanical function gen-
erator, and it is typically capable of higher force and power levels per dollar than electro-
mechanical systems.  

Path Generation  is defined as the control of a point in the plane such that it fol-
lows some prescribed path.  This is typically accomplished with at least four bars, wherein 
a point on the coupler traces the desired path.  Specific examples are presented in the sec-
tion on coupler curves below.  Note that no attempt is made in path generation to control 
the orientation of the link that contains the point of interest.  However, it is common for 
the timing of the arrival of the point at particular locations along the path to be defined.  
This case is called path generation with prescribed timing and is analogous to function 
generation in that a particular output function is specified.  Analytical path and function 
generation will be dealt with in Chapter 5.

Motion Generation  is defined as the control of a line in the plane such that it 
assumes some prescribed set of sequential positions.  Here orientation of the link contain-
ing the line is important.  This is a more general problem than path generation, and in 
fact, path generation is a subset of motion generation.  An example of a motion generation 
problem is the control of the “bucket” on a bulldozer.  The bucket must assume a set of 
positions to dig, pick up, and dump the excavated earth.  Conceptually, the motion of a 
line, painted on the side of the bucket, must be made to assume the desired positions.  A 
linkage is the usual solution.

Planar Mechanisms versus Spatial Mechanisms  The above discussion of 
controlled movement has assumed that the motions desired are planar (2‑D). We live in a 
three-dimensional world, however, and our mechanisms must function in that world.  Spa-
tial mechanisms are 3‑D devices. Their design and analysis are much more complex than 
those of planar mechanisms, which are 2‑D devices.  The study of spatial mechanisms 
is beyond the scope of this introductory text.  Some references for further study are in the 
bibliography to this chapter.  However, the study of planar mechanisms is not as practically 
limiting as it might first appear since many devices in three dimensions are constructed of 
multiple sets of 2‑D devices coupled together.  An example is any folding chair.  It will have 
some sort of linkage in the left side plane that allows folding.  There will be an identical 
linkage on the right side of the chair.  These two XY planar linkages will be connected by 
some structure along the Z direction, which ties the two planar linkages into a 3‑D as-
sembly.  Many real mechanisms are arranged in this way, as duplicate planar linkages, 
displaced in the Z direction in parallel planes and rigidly connected.  When you open the 
hood of a car, take note of the hood hinge mechanism.  It will be duplicated on each side 
of the car.  The hood and the car body tie the two planar linkages together into a 3‑D as-
sembly.  Look and you will see many other such examples of assemblies of planar linkages 
into 3‑D configurations.  So, the 2‑D techniques of synthesis and analysis presented here 
will prove to be of practical value in designing in 3‑D as well.

*   It is worth noting that 
the day is long past when 
a mechanical engineer 
can be content to remain 
ignorant of electronics and 
electromechanics.  Virtual-
ly all modern machines are 
controlled by electronic 
devices.  Mechanical 
engineers must understand 
their operation.
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3.3	 LIMITING CONDITIONS

The manual, graphical, dimensional synthesis techniques presented in this chapter and 
the computerizable, analytical synthesis techniques presented in Chapter 5 are reason-
ably rapid means to obtain a trial solution to a motion control problem.  Once a potential 
solution is found, it must be evaluated for its quality.  There are many criteria that may 
be applied.  In later chapters, we will explore the analysis of these mechanisms in detail.  
However, one does not want to expend a great deal of time analyzing, in great detail, a 
design that can be shown to be inadequate by some simple and quick evaluations.

Toggle Positions  One important test can be applied within the synthesis proce-
dures described below.  You need to check that the linkage can in fact reach all of the speci-
fied design positions without encountering a limit position.  Linkage synthesis procedures 
often only provide that the particular positions specified will be obtained.  They say nothing 
about the linkage’s behavior between those positions.  Figure 3‑1a shows a non-Grashof 
fourbar linkage at its limits of motion called toggle positions.  The toggle positions are 
determined by the colinearity of two of the moving links.  C1D1 and C2D2 (solid lines) are 
the toggle positions reached when driven from link 2.  C3D3 and C4D4 (dashed lines) are 
the toggle positions reached when driven from link 4.  A fourbar triple-rocker mechanism 
will have four, and a Grashof double-rocker two, of these toggle positions in which the 
linkage assumes a triangular configuration. When in a triangular (toggle) position, it will 
not allow further input motion in one direction from one of its rocker links (either of link 
2 from positions C1D1 and C2D2 or link 4 from positions C3D3 and C4D4).  A different 
link will then have to be driven to get it out of toggle.  

Stationary Positions  A Grashof fourbar crank-rocker linkage will also assume 
two stationary positions as shown in Figure 3‑1b, when the shortest link (crank O2C) is 
colinear with the coupler CD (link 3), either extended colinear (O2C2D2) or overlapping 
colinear (O2C1D1).  It cannot be back driven from the rocker O4D (link 4) through these 
colinear positions (which then act as toggles), but when the crank O2C (link 2) is driven, 
it will carry through both stationary positions because it is Grashof.  Note that the station-
ary  positions define the limits of motion of the driven rocker (link 4), at which its angular 
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(a )  Non-Grashof triple-rocker toggle positions (b )  Grashof crank-rocker stationary configurations

FIGURE 3-1
Linkage limit positions
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velocity will go through zero.  Use program Linkages to read the data files F03‑01a.4br 
and F03‑1b.4br and animate these examples.

After synthesizing a double- or triple-rocker solution to a multiposition (motion 
generation) problem, you must check for the presence of toggle positions between your 
design positions.  An easy way to do this is with a model of the linkage.  A CAE tool such 
as Linkages or Working Model will also check for this problem.  It is important to realize 
that a toggle condition is only undesirable if it is preventing your linkage from getting from 
one desired position to the other.  In other circumstances the toggle is very useful.  It can 
provide a self-locking feature when a linkage is moved slightly beyond the toggle position 
and against a fixed stop.  Any attempt to reverse the motion of the linkage then causes it 
merely to jam harder against the stop.  It must be manually pulled “over center,” out of 
toggle, before the linkage will move.  You have encountered many examples of this appli-
cation, as in card table or ironing board leg linkages and also pickup truck or station wagon 
tailgate linkages.  An example of such a toggle linkage is shown in Figure 3‑2.  It happens 
to be a special-case Grashof linkage in the deltoid configuration (see also Figure 2‑17d), 
which provides a locking toggle position when open, and folds on top of itself when closed, 
to save space.  We will analyze the toggle condition in greater detail in a later chapter.

Transmission Angle   Another useful test that can be very quickly applied to a 
linkage design to judge its quality is the measurement of its transmission angle.  This can 
be done analytically, graphically on the drawing board, or via a model for a rough ap-
proximation. (Extend the links beyond the pivot to measure the angle.)  The transmission 
angle µ is shown in Figure 3‑3a and is defined as the angle between the output link and the 
coupler.*  It is usually taken as the absolute value of the acute angle of the pair of angles 
at the intersection of the two links and varies continuously from some minimum to some 
maximum value as the linkage goes through its range of motion.  It is a measure of the 
quality of force and velocity transmission at the joint.  Note in Figure 3-2 that the linkage 
cannot be moved from the open position shown by any force applied to the tailgate, link 
2, since the transmission angle between links 3 and 4 is zero at that position. But a force 

		
*  The transmission angle 
as defined by Alt[2] has 
limited application.  It only 
predicts the quality of force 
or torque transmission if the 
input and output links are 
pivoted to ground.  If the 
output force is taken from a 
floating link (coupler), then 
the transmission angle is of 
no value.  A different index 
of merit called the joint 
force index (JFI) is pre-
sented in Chapter 11 which 
discusses force analysis 
in linkages.  (See Section 
11.12)  The JFI is useful for 
situations in which the out-
put link is floating as well 
as for giving the same kind 
of information when the 
output is taken from a link 
rotating against the ground.  
However, the JFI requires 
that a complete force analy-
sis of the linkage be done, 
whereas the transmission 
angle is determined from 
linkage geometry alone.

FIGURE 3-2
Deltoid toggle linkage used to control truck tailgate motion

Truck tailgate (Link 2)  Truck body (Link 1)

Folded position

Link 4
1.  Release toggle

2.  Lift tailgate

Link 3

To operate:
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applied to link 4 as the input link will move it.  The transmission angle is now between 
links 3 and 2 and is 45 degrees.

Figure 3‑3b shows a torque T2 applied to link 2.  Even before any motion occurs, 
this causes a static, colinear force F3 to b applied by link 3 to link 4 at point D.  Its radial 
and tangential components 34Fr and 34Ft  are resolved parallel and perpendicular to link 4, 
respectively.  Ideally, we would like all of the force F34 to go into producing output torque 
T4 on link 4.  However, only the tangential component creates torque on link 4.  The radial 
component 34Fr provides only tension or compression in link 4.  This radial component 
only increases pivot friction and does not contribute to the output torque.  Therefore, the 
optimum value for the transmission angle is 90°.  When µ is less than 45° the radial com-
ponent will be larger than the tangential component.  Most machine designers try to keep 
the minimum transmission angle above about 40° to promote smooth running and good 
force transmission.  However, if in your particular design there will be little or no external 
force or torque applied to link 4, you may be able to get away with even lower values of 
µ.*  The transmission angle provides one means to judge the quality of a newly synthesized 
linkage.  If it is unsatisfactory, you can iterate through the synthesis procedure to improve 
the design.  We will investigate the transmission angle in greater detail in later chapters.

3.4	 POSITION SYNTHESIS View the lecture video (47:57)†

Position synthesis of a linkage is the determination of the proportions (lengths) of the 
links necessary to accomplish the desired motions.  This section assumes that, through 
type synthesis, you have determined that a linkage is the most appropriate solution to the 
problem.  Many techniques exist to accomplish this task of position synthesis of a four-
bar linkage.  The simplest and quickest methods are graphical. These work well for up to 
three design positions.  Beyond that number, a numerical, analytical synthesis approach 
as described in Chapter 5, using a computer, is usually necessary.

 

*  Alt[2] who defined the 
transmission angle, recom-
mended keeping		
 µmin > 40°.  But it can be 
argued that at higher speeds, 
the momentum of the mov-
ing elements and/or the addi-
tion of a flywheel will carry a 
mechanism through locations 
of poor transmission angle.  
The most common example 
is the back-driven slider-
crank (as used in internal 
combustion engines) which 
has µ = 0 twice per revolu-
tion.  Also, the transmission 
angle is only critical in a 
fourbar linkage when the 
rocker is the output link 
on which the working load 
impinges.  If the working 
load is taken by the coupler 
rather than by the rocker, 
then minimum transmission 
angles less than 40° may be 
viable.  A more definitive 
way to qualify a mecha-
nism’s dynamic function is 
to compute the variation in 
its required driving torque.  
Driving torque and flywheels 
are addressed in Chapter 
11.  A joint force index (JFI) 
can also be calculated.  (See 
footnote on previous page.)

( a )  Linkage transmission angle µ

F34

FIGURE 3-3
Transmission angle in the fourbar linkage

(b)  Static forces at a linkage joint

O2 O4

D

C

µ

2

4

D

C

µ

Link 4
output link

Link 3
coupler

Link 2
driver

O2 O4

T4
T2

= F34  cos µF r

= F34  sin µF t

† http://www.designofmachinery.com/DOM/Position_Synthesis.mp4

http://www.designofmachinery.com/DOM/Position_Synthesis.mp4
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Note that the principles used in these graphical synthesis techniques are simply those 
of euclidean geometry. The rules for bisection of lines and angles, properties of parallel 
and perpendicular lines, and definitions of arcs, etc., are all that is needed to generate these 
linkages.  Compass, protractor, and rule are the only tools needed for graphical linkage 
synthesis.  Refer to any introductory (high school) text on geometry if your geometric 
theorems are rusty.

Two-Position Synthesis

Two-position synthesis subdivides into two categories: rocker output (pure rotation) 
and coupler output (complex motion).  Rocker output is most suitable for situations in 
which a Grashof crank-rocker is desired and is, in fact, a trivial case of function generation 
in which the output function is defined as two discrete angular positions of the rocker.  
Coupler output is more general and is a simple case of motion generation in which two 
positions of a line in the plane are defined as the output.  This solution will frequently 
lead to a triple-rocker.  However, the fourbar triple-rocker can be motor driven by the ad-
dition of a dyad (twobar chain), which makes the final result a Watt sixbar containing a 
Grashof fourbar subchain.  We will now explore the synthesis of each of these types of 
solution for the two-position problem.

✍EXAMPLE 3‑1 

Rocker Output - Two Positions with Angular Displacement.  (Function Generation)

Problem: 	 Design a fourbar Grashof crank-rocker to give 45° of rocker rotation with equal 
time forward and back, from a constant speed motor input. 

Solution: 	 (See Figure 3‑4†.)

	 1	 Draw the output link O4B in both extreme positions, B1 and B2 in any convenient location, such 
that the desired angle of motion θ4 is subtended.

	 2	 Draw the chord B1B2 and extend it in either direction.

	 3	 Select a convenient point O2 on line B1B2 extended.

	 4	 Bisect line segment B1B2 , and draw a circle of that radius about O2.

	 5	 Label the two intersections of the circle and B1B2 extended, A1 and A2.

	 6	 Measure the length of the coupler as A1 to B1 or A2 to B2.

	 7	 Measure ground length 1, crank length 2, and rocker length 4.

	 8	 Find the Grashof condition.  If non-Grashof, redo steps 3 to 8 with O2 farther from O4.

	 9	 Make a model of the linkage and check its function and transmission angles.

	10	 You can input the file F03‑04.4br to program Linkages to see this example come alive.

	
†  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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( a )  Construction method

FIGURE 3-4
Two-position function synthesis with rocker output (non-quick-return)

(b )  Finished linkage

   Link 2

Link 4

   Link 3

Your choice

Link 2

Link 3

   Link 3

Link 1

θ4

O

O4

AA

B1B2

B1B2

O2

O4

A1

A2

Note several things about this synthesis process.  We started with the output end of 
the system, as it was the only aspect defined in the problem statement.  We had to make 
many quite arbitrary decisions and assumptions to proceed because there were many more 
variables than we could have provided “equations” for.  We are frequently forced to make 
“free choices” of “a convenient angle or length.”  These free choices are actually definitions 
of design parameters.  A poor choice will lead to a poor design.  Thus these are qualitative 
synthesis approaches and require an iterative process, even for this simple example.  The 
first solution you reach will probably not be satisfactory, and several attempts (iterations) 
should be expected to be necessary.  As you gain more experience in designing kinematic 

View as a video
http://www.designof-

machinery.com/DOM/
fig3_4.avi

http://www.designofmachinery.com/DOM/fig3_4.avi
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solutions, you will be able to make better choices for these design parameters with fewer 
iterations. The value of making a simple  model of your design cannot be overstressed!  
You will get the most insight into your design’s quality for the least effort by making, ar-
ticulating, and studying the model.  These general observations will hold for most of the 
linkage synthesis examples presented.

✍EXAMPLE 3‑2

Rocker Output - Two Positions with Complex Displacement.  (Motion Generation)

Problem:	 Design a fourbar linkage to move link CD from position C1D1 to C2D2.   

Solution:	 (See Figure 3‑5*.)

	 1	 Draw the link CD in its two desired positions, C1D1 and C2D2, in the plane as shown. 

	 2	 Draw construction lines from point C1 to C2 and from point D1 to D2.

	 3	 Bisect line C1C2 and line D1D2 and extend their perpendicular bisectors to intersect at O4.  
Their intersection is the rotopole. 

	 4	 Select a convenient radius and draw an arc about the rotopole to intersect both lines O4C1 and 
O4C2.  Label the intersections B1 and B2.

	 5	 Do steps 2 to 8 of Example 3‑1 to complete the linkage.

	 6	 Make a model of the linkage and articulate it to check its function and its transmission angles.

Note that Example 3‑2 reduces to the method of Example 3‑1 once the rotopole is 
found.  Thus a link represented by a line in complex motion can be reduced to the simpler 
problem of pure rotation and moved to any two positions in the plane as the rocker on a 
fourbar linkage.  The next example moves the same link through the same two positions 
as the coupler of a fourbar linkage.

✍EXAMPLE 3‑3

Coupler Output - Two Positions with Complex Displacement. (Motion Generation)

Problem:	 Design a fourbar linkage to move the link CD shown from position C1D1 to C2D2 
(with moving pivots at C and D).

Solution:	 (See Figure 3‑6.)

	 1	 Draw the link CD in its two desired positions, C1D1 and C2D2, in the plane as shown. 

	 2	 Draw construction lines from point C1 to C2 and from point D1 to D2.

	 3	 Bisect line C1C2 and line D1D2 and extend the perpendicular bisectors in  convenient direc-
tions.  The rotopole will not be used in this solution.

	 4	 Select any convenient point on each bisector as the fixed pivots O2 and O4, respectively.

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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( a )  Finding the rotopole for Example 3-2

FIGURE 3-5
Two-position motion synthesis with rocker output (non-quick-return)

(b )  Constructing the linkage by
        the method in Example 3-1

A1

C1

O2

O4

C2

D2

D1

Rotopole

Link 3

Link 4

Link 2

Link 1

A2

B1 B2

Link 4

Rotopole

C1

O4

C2

D2

D1

B1
B2

	 5	 Connect O2 with C1 and call it link 2.  Connect O4 with D1 and call it link 4.

	 6	 Line C1D1 is link 3.  Line O2O4 is link 1.

	 7	 Check the Grashof condition, and repeat steps 4 to 7 if unsatisfied.  Note that any Grashof 
condition is potentially acceptable in this case.

	 8	 Construct a model and check its function to be sure it can get from the initial to final position 
without encountering any limit (toggle) positions.

	 9	 Check the transmission angles.

Input file F03‑06.4br to program Linkages to see Example 3‑3.  Note that this example 
had nearly the same problem statement as Example 3‑2, but the solution is quite different.  
Thus a link can also be moved to any two positions in the plane as the coupler of a four-
bar linkage, rather than as the rocker. However, to limit its motions to those two coupler 
positions as extrema, two additional links are necessary.  These additional links can be 
designed by the method shown in Example 3‑4 and Figure 3‑7.  

View as a video
http://www.designof-

machinery.com/DOM/
fig3_5.avi

http://www.designofmachinery.com/DOM/fig3_5.avi
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✍EXAMPLE 3‑4

Adding a Dyad (Twobar Chain) to Control Motion in Example 3‑3.

Problem:	 Design a dyad to control and limit the extremes of motion of the linkage in Ex-
ample 3-3 to its two design positions.

Solution:	 (See Figure 3‑7a.)

	 1	 Select a convenient point on link 2 of the linkage designed in Example 3‑3. Note that it need 
not be on the line O2C1.  Label this point B1. 

	 2	 Draw an arc about center O2 through B1 to intersect the corresponding line O2B2 in the second 
position of link 2.  Label this point B2.  The chord B1B2 provides us with the same problem as 
in Example 3‑1.

	 3	 Do steps 2 to 9 of Example 3‑1 to complete the linkage, except add links 5 and 6 and center O6 
rather than links 2 and 3 and center O2.  Link 6 will be the driver crank.  The fourbar subchain 
of links O6, A1, B1, O2 must be a Grashof crank-rocker.

Note that we have used the approach of Example 3‑1 to add a dyad to serve as a driver 
stage for our existing fourbar.  This results in a sixbar Watt mechanism whose first stage is 
Grashof as shown in Figure 3‑7b.  Thus we can drive this with a motor on link 6.  Note also 
that we can locate the motor center O6 anywhere in the plane by judicious choice of point 
B1 on link 2.  If we had put B1 below center O2, the motor would be to the right of links 
2, 3, and 4 as shown in Figure 3‑7c.  There is an infinity of driver dyads possible that will 
drive any double-rocker assemblage of links.  Input the files F03‑07b.6br and F03‑07c.6br 
to program Linkages to see Example 3‑4 in motion for these two solutions.

( a )  Two-position synthesis

FIGURE 3-6
Two-position motion synthesis with coupler output

(b )  Finished non-Grashof fourbar

Link 2

Link 3

Link 1

Link 4

Link 2

Link 3
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D1
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( a )  Adding a driver dyad to the fourbar chain

FIGURE 3-7
Driving a non-Grashof linkage with a dyad (non-quick-return)

(b )  The completed Watt sixbar linkage with motor at O6

(c )  An alternate location of the driver dyad with motor at O6
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Three-Position Synthesis with Specified Moving Pivots

Three-position synthesis allows the definition of three positions of a line in the plane 
and will create a fourbar linkage configuration to move it to each of those positions.  This 
is a motion generation problem.  The synthesis technique is a logical extension of the 
method used in Example 3‑3 for two-position synthesis with coupler output.  The resulting 
linkage may be of any Grashof condition and will usually require the addition of a dyad 
to control and limit its motion to the positions of interest.  Compass, protractor, and rule 
are the only tools needed in this graphical method.

✍EXAMPLE 3‑5

Coupler Output - 3 Positions with Complex Displacement. (Motion Generation) 

Problem:	 Design a fourbar linkage to move the link CD shown from position C1D1 to C2D2 
and then to position C3D3.  Moving pivots are at C and D.  Find the fixed pivot 
locations.

Solution:	 (See Figure 3‑8.)

	 1	 Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

	 2	 Draw construction lines from point C1 to C2 and from point C2 to C3.

	 3	 Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect.  
Label their intersection O2.

	 4	 Repeat steps 2 and 3 for lines D1D2 and D2D3.  Label the intersection O4.

	 5	 Connect O2 with C1 and call it link 2.  Connect O4 with D1 and call it link 4.

	 6	 Line C1D1 is link 3.  Line O2O4 is link 1.

	 7	 Check the Grashof condition.  Any Grashof condition is potentially acceptable in this case.

	 8	 Construct a model and check its function to be sure it can get from initial to final position 
without encountering any limit (toggle) positions.

	 9	 Construct a driver dyad according to the method in Example 3‑4 using an extension of link 3 
to attach the dyad.

Note that while a solution is usually obtainable for this case, it is possible that you 
may not be able to move the linkage continuously from one position to the next without 
disassembling the links and reassembling them to get them past a limiting position.  That 
will obviously be unsatisfactory.  In the particular solution presented in Figure 3‑8, note 
that links 3 and 4 are in toggle at position one, and links 2 and 3 are in toggle at position 
three.  In this case we will have to drive link 3 with a driver dyad, since any attempt to 
drive either link 2 or link 4 will fail at the toggle positions.  No amount of torque applied 
to link 2 at position C1 will move link 4 away from point D1, and driving link 4 will not 
move link 2 away from position C3.  Input the file F03‑08.4br to program Linkages to 
see Example 3‑5. 
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Three-Position Synthesis with Alternate Moving Pivots

Another potential problem is the possibility of an undesirable location of the fixed pivots 
O2 and O4 with respect to your packaging constraints.  For example, if the fixed pivot for 
a windshield wiper linkage design ends up in the middle of the windshield, you may want 
to redesign it.  Example 3‑6 shows a way to obtain an alternate configuration for the same 
three-position motion as in Example 3-5.  And, the method to be shown in Example 3‑8 
allows you to specify the location of the fixed pivots in advance and then find the locations 
of the moving pivots on link 3  that are compatible with those fixed pivots.

✍EXAMPLE 3‑6

Coupler Output - Three Positions with Complex Displacement - Alternate Attachment Points 
for Moving Pivots.  (Motion Generation) 

Problem:	 Design a fourbar linkage to move the link CD shown from position C1D1 to C2D2 
and then to position C3D3.  Use different moving pivots than CD.  Find the fixed 
pivot locations.

Solution:	 (See Figure 3‑9.)

	 1	 Draw the link CD in its three desired positions C1D1, C2D2, C3D3, in the plane as done in 
Example 3‑5.

	 2	 Define new attachment points E1 and F1 that have a fixed relationship between C1D1 and E1F1 
within the link.  Now use E1F1 to define the three positions of the link.

( a )  Construction method

FIGURE 3-8
Three-position motion synthesis

(b )  Finished non-Grashof fourbar
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( a )  Alternate attachment points

FIGURE 3-9
Three-position synthesis with alternate moving pivots

(b )  Three-position synthesis

( c )  Completed Watt sixbar linkage with motor at O6
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	 3	 Draw construction lines from point E1 to E2 and from point E2 to E3.

	 4	 Bisect line E1E2 and line E2E3 and extend the perpendicular bisectors until they intersect.  
Label the intersection O2.

	 5	 Repeat steps 2 and 3 for lines F1F2 and F2F3.  Label the intersection O4 .

	 6	 Connect O2 with E1 and call it link 2.  Connect O4 with F1 and call it link 4.

	 7	 Line E1F1 is link 3.  Line O2O4 is link 1.

	 8	 Check the Grashof condition.  Note that any Grashof condition is potentially acceptable in this 
case.

	 9	 Construct a model and check its function to be sure it can get from initial to final position 
without encountering any limit (toggle) positions.  If not, change locations of points E and F 
and repeat steps 3 to 9. 

	10	 Construct a driver dyad acting on link 2 according to the method in Example 3‑4.

Note that the shift of the attachment points on link 3 from CD to EF has resulted in 
a shift of the locations of fixed pivots O2 and O4 as well.  Thus they may now be in more 
favorable locations than they were in Example 3‑5.  It is important to understand that any 
two points on link 3, such as E and F, can serve to fully define that link as a rigid body, 
and that there is an infinity of such sets of points to choose from.  While points C and D 
have some particular location in the plane that is defined by the linkage’s function, points 
E and F can be anywhere on link 3, thus creating an infinity of solutions to this problem.

The solution in Figure 3‑9 is different from that of Figure 3‑8 in several respects.  It 
avoids the toggle positions and thus can be driven by a dyad acting on one of the rockers, as 
shown in Figure 3‑9c, and the transmission angles are better.  However, the toggle positions 
of Figure 3‑8 might actually be of value if a self‑locking feature were desired.  Recognize 
that both of these solutions are to the same problem, and the solution in Figure 3‑8 is just a 
special case of that in Figure 3‑9.  Both solutions may be useful.  Line CD moves through 
the same three positions with both designs.  There is an infinity of other solutions to this 
problem waiting to be found as well.  Input the file F03‑09c.6br to program Linkages to 
see Example 3‑6.

Three-Position Synthesis with Specified Fixed Pivots

Even though one can probably find an acceptable solution to the three-position problem 
by the methods described in the two preceding examples, it can be seen that the designer 
will have little direct control over the location of the fixed pivots since they are one of the 
results of the synthesis process.  The fixed pivots need to be located where the ground 
plane of the package exists and is accessible.  It would be preferable if we could define the 
fixed pivot locations, as well as the three positions of the moving link, and then synthesize 
the appropriate attachment points, E and F, to the moving link to satisfy these more re-
alistic constraints.  The principle of inversion can be applied to this problem.  Examples 
3‑5 and 3‑6 showed how to find the required fixed pivots for three chosen positions of the 
moving pivots.  Inverting this problem allows specification of the fixed pivot locations and 
determination of the required moving pivots for those locations.  The first step is to find 
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the three positions of the ground plane that correspond to the three desired coupler posi-
tions.  This is done by inverting the linkage* as shown in Figure 3‑10 and Example 3‑7.

✍EXAMPLE 3‑7

Three-Position Synthesis with Specified Fixed Pivots – Inverting the Three-Position Motion 
Synthesis Problem

Problem:	 Invert a fourbar linkage which moves the link CD shown from position C1D1 to 
C2D2 and then to position C3D3.  Use specified fixed pivots O2 and O4.  

Solution:	 First find the inverted positions of the ground link corresponding to the three cou-
pler positions specified.  (See Figure 3‑10.)

	 1	 Draw the link CD in its three desired positions C1D1, C2D2, C3D3, in the plane, as was done 
in Example 3‑5 and as shown in Figure 3‑10a.

	 2	 Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler 
position C1D1 as shown in Figure 3‑10a.

	 3	 Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the 
sides of triangle C2O2D2 .  This defines the relationship of the fixed pivot O2 to the coupler 
line CD in the second coupler position as shown in Figure 3‑10b.

	 4	 Draw construction arcs from point C2 to O4 and from point D2 to O4 to define the triangle 
C2O4D2.  This defines the relationship of the fixed pivot O4 to the coupler line CD in the second 
coupler position as shown in Figure 3‑10b.

	 5	 Now transfer this relationship back to the first coupler position C1D1 so that the ground plane 
position 2

'
4
'O O  bears the same relationship to C1D1 as O2O4 bore to the second coupler  

position C2D2.  In effect, you are sliding C2 along the dotted line C2-C1 and D2 along  the 
dotted line D2-D1.  By doing this, we have pretended that the ground plane moved from O2O4 
to 2

'
4
'O O instead of the coupler moving from C1D1 to C2D2.  We have inverted the problem.

	 6	 Repeat the process for the third coupler position as shown in Figure 3‑10d and transfer the third 
relative ground link position to the first, or reference, position as shown in Figure 3‑10e.

	 7	 The three inverted positions of the ground plane that correspond to the three desired coupler 
positions are labeled O2O4, 2

'
4
'O O , and 2

''
4
''O O  and have also been renamed E1F1, E2F2, and 

E3F3 as shown in Figure 3‑10f.  These correspond to the three coupler positions shown in 
Figure 3‑10a.  Note that the original three lines C1D1, C2D2, and C3D3 are not now needed for 
the linkage synthesis.

We can use these three new lines E1F1, E2F2, and E3F3 to find the attachment points 
GH (moving pivots) on link 3 that will allow the desired fixed pivots O2 and O4 to be used 
for the three specified output positions.  In effect we will now consider the ground link 
O2O4 to be a coupler moving through the inverse of the original three positions, find the 
“ground pivots” GH needed for that inverted motion, and put them on the real coupler in-
stead.  The inversion process done in Example 3‑7 and Figure 3‑10 has swapped the roles 
of coupler and ground plane.  The remaining task is identical to that done in Example 3‑5 
and Figure 3‑8.  The result of the synthesis then must be reinverted to obtain the solution.

 

*  This method and example 
were supplied by Mr. Hom-
er D. Eckhardt, Consulting 
Engineer, Lincoln, MA.
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( a )  Original coupler three-position
        problem with specified pivots

FIGURE 3-10
Inverting the three-position motion synthesis problem

(b)  Position of the ground plane relative
       to the second coupler position

(c )  Transferring second ground plane position
        to reference  location at first position

( f )  The three inverted positions of the ground plane
       corresponding to the original coupler position
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(d )  Position of the ground plane relative
        to the third coupler position

(e)  Transferring third ground plane position
        to reference  location at first position
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✍EXAMPLE 3‑8

Finding the Moving Pivots for Three Positions and Specified Fixed Pivots

Problem:	 Design a fourbar linkage to move the link CD shown from position C1D1 to C2D2 
and then to position C3D3.  Use specified fixed pivots O2 and O4.  Find the required 
moving pivot locations on the coupler by inversion.

Solution:	 Using the inverted ground link positions E1F1, E2F2, and E3F3 found in Example 
3‑7, find the fixed pivots for that inverted motion, then reinvert the resulting link-
age to create the moving pivots for the three positions of coupler CD that use the 
selected fixed pivots O2 and O4 as shown in Figure 3‑10a (see also Figure 3‑11*).

	 1	 Start with the inverted three positions in the plane as shown in Figures 3‑10f and 3‑11a.  Lines 
E1F1, E2F2, and E3F3 define the three positions of the inverted link to be moved.

	 2	 Draw construction lines from point E1 to E2 and from point E2 to E3.

	 3	 Bisect line E1E2 and line E2E3 and extend the perpendicular bisectors until they intersect.  
Label the intersection G.

	 4	 Repeat steps 2 and 3 for lines F1F2 and F2F3.  Label the intersection H.

	 5	 Connect G with E1 and call it link 2.  Connect H with F1 and call it link 4.   See Figure 3‑11b.

	 6	 In this inverted linkage, line E1F1 is the coupler, link 3.  Line GH is the “ground” link 1.

	 7	 We must now reinvert the linkage to return to the original arrangement.  Line E1F1 is really 
the ground link O2O4, and GH is really the coupler.  Figure 3‑11c shows the reinversion of 
the linkage in which points G and H are now the moving pivots on the coupler and E1F1 has 
resumed its real identity as ground link O2O4.  (See Figure 3‑10e)

	 8	 Figure 3‑11d reintroduces the original line C1D1 in its correct relationship to line O2O4 at the 
initial position as shown in the original problem statement in Figure 3‑10a.  This forms the 
required coupler plane and defines a minimal shape of link 3.

	 9	 The angular motions required to reach the second and third positions of line CD shown in 
Figure 3‑11e are the same as those defined in Figure 3‑11b for the linkage inversion.  The angle 
F1HF2 in Figure 3‑11b is the same as angle H1O4H2 in Figure 3‑11e and F2HF3 is the same as 
angle H2O4H3.    The angular excursions of link 2 retain the same relationship between Figure 
3‑11b and e as well.  The angular motions of links 2 and 4 are the same for both inversions as 
the link excursions are relative to one another. 

	10	 Check the Grashof condition.  Note that any Grashof condition is potentially acceptable in 
this case provided that the linkage has mobility among all three positions.  This solution is a 
non-Grashof linkage.

	11	 Construct a model and check its function to be sure it can get from initial to final position 
without encountering any limit (toggle) positions.  In this case links 3 and 4 reach a toggle 
position between points H1 and H2.  This means that this linkage cannot be driven from link 
2 as it will hang up at that toggle position.  It must be driven from link 4.

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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( a )  Construction to find "fixed" pivots G  and H

FIGURE 3-11
Constructing the linkage for three positions with specified fixed pivots by inversion

(b )  The correct inversion of desired linkage

(c )  Reinvert to obtain the result (d )  Re-place line CD  on link

(e)  The three positions (link 4 driving CCW)
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View as a video
http://www.designof-
machinery.com/DOM/
three_positions.avi

http://www.designofmachinery.com/DOM/three_positions.avi
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By inverting the original problem, we have reduced it to a more tractable form that 
allows a direct solution by the general method of three-position synthesis from Examples 
3‑5 and 3‑6.

Position Synthesis for More Than Three Positions

It should be obvious that the more constraints we impose on these synthesis problems, the 
more complicated the task becomes to find a solution.  When we define more than three 
positions of the output link, the difficulty increases substantially.

Four-Position Synthesis  does not lend itself as well to manual graphical solu-
tions, though Hall[3] does present one approach.  Probably the best approach is that used by 
Sandor and Erdman[4] and others, which is a quantitative synthesis method and requires a 
computer to execute it.  Briefly, a set of simultaneous vector equations is written to repre-
sent the desired four positions of the entire linkage.  These are then solved after some free 
choices of variable values are made by the designer.  The computer program Lincages[1] 
by Erdman and Gustafson and the program Kinsyn[5] by Kaufman, both provide a con-
venient and user-friendly computer graphics-based means to make the necessary design 
choices to solve the four-position problem.  See Chapter 5 for further discussion.

3.5	 QUICK-RETURN MECHANISMS View the lecture video (55:10)†

Many machine design applications have a need for a difference in average velocity be-
tween their “forward” and “return” strokes.  Typically some external work is being done 
by the linkage on the forward stroke, and the return stroke needs to be accomplished as 
rapidly as possible so that a maximum of time will be available for the working stroke.  
Many arrangements of links will provide this feature.  The only problem is to synthesize 
the right one!

Fourbar Quick-Return

The linkage synthesized in Example 3‑1 is perhaps the simplest example of a fourbar 
linkage design problem (see Figure 3‑4, and program Linkages disk file F03‑04.4br).  
It is a crank-rocker that gives two positions of the rocker with equal time for the forward 
stroke and the return stroke.  This is called a non-quick-return linkage, and it is a special 
case of the more general quick-return case.  The reason for its non-quick-return state is 
the positioning of the crank center O2 on the chord B1B2 extended.  This results in equal 
angles of 180 degrees being swept out by the crank as it drives the rocker from one ex-
treme (toggle position) to the other.  If the crank is rotating at constant angular velocity, 
as it will tend to when motor driven, then each 180 degree sweep, forward and back, will 
take the same time interval.  Try this with your model from Example 3‑1 by rotating the 
crank at uniform velocity and observing the rocker motion and velocity.

If the crank center O2 is located off the chord B1B2 extended, as shown in Figure 3‑1b 
and Figure 3‑12, then unequal angles will be swept by the crank between the toggle posi-
tions (defined as colinearity of crank and coupler). Unequal angles will give unequal time, 
when the crank rotates at constant velocity.  These angles are labeled α and β in Figure 
3‑12.  Their ratio α/β is called the time ratio (TR) and defines the degree of quick return 
of the linkage.  Note that the term quick return is arbitrarily used to describe this kind of 

† http://www.designofmachin-
ery.com/DOM/Quick_Return_
Linkages.mp4

http://www.designofmachinery.com/DOM/Quick_Return_Linkages.mp4
ASUS
Highlight
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linkage.  If the crank is rotated in the opposite direction, it will be a quick-forward mecha-
nism.  Given a completed linkage, it is a trivial task to estimate the time ratio by measuring 
or calculating the angles α and β.  It is a more difficult task to design the linkage for a 
chosen time ratio.  Hall[6] provides a graphical method to synthesize a quick-return Grashof 
fourbar.  To do so we need to compute the values of α an β that will give the specified 
time ratio. We can write two equations involving α and β and solve them simultaneously.

=
α
β

α + β = ∴ =
α

− α
360

360
(3.1)TR TR

We also must define a construction angle,

δ = − α = − β180 180 (3.2)

which will be used to synthesize the linkage.

✍EXAMPLE 3‑9

Fourbar Crank-Rocker Quick-Return Linkage for Specified Time Ratio

Problem:	 Redesign Example 3‑1 to provide a time ratio of 1:1.25 with 45° output rocker 
motion.

Solution:	 (See Figure 3‑12.)

	 1	 Draw the output link O4B in both extreme positions, in any convenient location, such that the 
desired angle of motion, θ4, is subtended.

	 2	 Calculate α, β, and δ using equations 3.1 and 3.2. In this example, α = 160°, β = 200°, δ = 20°.

	 3	 Draw a construction line through point B1 at any convenient angle.

	 4	 Draw a construction line through point B2 at angle δ from the first line.

	 5	 Label the intersection of the two construction lines O2.

	 6	 The line O2O4 now defines the ground link.

	 7	 Find lengths of crank and coupler by measuring O2B1 and O2B2 and simultaneously solving:

Coupler + crank = O2B1

Coupler – crank = O2B2

		  or you can construct the crank length by swinging an arc centered at O2 from B1 to cut line 
O2B2 extended.  Label that intersection B1’. The line B2B1’ is twice the crank length.  Bisect 
this line segment to measure crank length O2A1.

	 8	 Calculate the Grashof condition.  If non-Grashof, repeat steps 3 to 8 with O2 farther from O4.

	 9	 Make a model of the linkage and articulate it to check its function.

	10	 Check the transmission angles.
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This method works well for time ratios down to about 1:1.5.  Beyond that value the 
transmission angles become poor, and a more complex linkage is needed.  Input the file 
F03‑12.4br to program Linkages to see Example 3‑9.

Sixbar Quick-Return

Larger time ratios, up to about 1:2, can be obtained by designing a sixbar linkage.  The 
strategy here is to first design a fourbar drag link mechanism that has the desired time 
ratio between its driver crank and its driven or “dragged” crank, and then add a dyad 
(twobar) output stage, driven by the dragged crank. This dyad can be arranged to have 
either a rocker or a translating slider as the output link.  First the drag link fourbar will be 
synthesized; then the dyad will be added.*

✍EXAMPLE 3‑10

Sixbar Drag Link Quick-Return Linkage for Specified Time Ratio.

Problem:	 Provide a time ratio of 1:1.4 with 90° rocker motion.

Solution:	 (See Figure 3‑13.)

	 1	 Calculate α and β using equations 3.1.   For this example, α = 150° and β = 210°.

( a )  Construction of a quick-return
        Grashof crank-rocker

FIGURE 3-12
Quick-return Grashof fourbar crank-rocker linkage 

(b )  The finished linkage in its
        two toggle positions
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	 2	 Draw a line of centers XX at any convenient location.

	 3	 Choose a crank pivot location O2 on line XX. Draw an axis YY perpendicular to XX through 
O2.

	 4	 Draw a circle of convenient radius O2A about center O2.

	 5	 Lay out angle α with vertex at O2, symmetrical about quadrant one.

	 6	 Label points A1 and A2 at the intersections of the lines subtending angle α and the circle of 
radius O2A .

	 7	 Set the compass to a convenient radius AC long enough to cut XX in two places on either side 
of O2 when swung from both A1 and A2.  Label the intersections C1 and C2. 

	 8	 The line O2A1 is the driver crank, link 2, and line A1C1 is the coupler, link 3.

	 9	 The distance C1C2 is twice the driven (dragged) crank length.  Bisect it to find fixed pivot O4.

	10	 The line O2O4 now defines the ground link.  Line O4C1 is the driven crank, link 4.

	11	 Calculate the Grashof condition.  If non-Grashof, repeat steps 7 to 11 using a smaller radius 
in step 7.

	12	 Invert the method of Example 3‑1 to create the output dyad using XX as the chord and O4C1 
as the driving crank.  The points B1 and B2 will lie on line XX and be spaced apart a distance 
2O4C1.  The pivot O6 will lie on the perpendicular bisector of B1B2, at a distance from line XX 
which subtends the specified output rocker angle.

	13	 Check the transmission angles.

This linkage provides a quick return when a constant-speed motor is attached to link 
2.  Link 2 will go through angle α while link 4 (which is dragging the output dyad along) 
goes through the first 180 degrees, from position C1 to C2.  Then, while link 2 completes 
its cycle through β degrees, the output stage will complete another 180 degrees from C2 to 
C1.  Since angle β is greater than α, the forward stroke takes longer.  Note that the chordal 
stroke of the output dyad is twice the crank length O4C1.  This is independent of the angular 
displacement of the output link which can be tailored by moving the pivot O6 closer to or 
farther from the line XX.

The transmission angle at the joint between link 5 and link 6 will be optimized if the 
fixed pivot O6 is placed on the perpendicular bisector of the chord B1B2 as shown in Figure 
3‑13a.  If a translating output is desired, the slider (link 6) will be located on line XX and 
will oscillate between B1 and B2 as shown in Figure 3‑13b.  The arbitrarily chosen size of 
this or any other linkage can be scaled up or down, simply by multiplying all link lengths 
by the same scale factor.  Thus a design made to arbitrary size can be fit to any package.  
Input the file F03‑13a.6br to program Linkages to see Example 3‑10 in action. 

Crank-Shaper Quick Return   A commonly used mechanism capable of large 
time ratios is shown in Figure 3‑14.  It is often used in metal shaper machines to provide 
a slow cutting stroke and a quick-return stroke when the tool is doing no work.  It is the 
inversion #2 of the crank-slider mechanism as was shown in Figure 2‑15b.  It is very easy to 
synthesize this linkage by simply moving the rocker pivot O4 along the vertical centerline 
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( a )  Rocker output sixbar drag link quick-return mechanism

FIGURE 3-13
Synthesizing a sixbar drag link quick-return mechanism

(b )  Slider output sixbar drag link quick-return mechanism
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FIGURE 3-14
Crank-shaper quick-return mechanism
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O2O4 while keeping the two extreme positions of link 4 tangent to the circle of the crank, 
until the desired time ratio (α / β) is achieved.  Note that the angular displacement of link 
4 is then defined as well.  Link 2 is the input and link 6 is the output.  

Depending on the relative lengths of the links, this mechanism is known as a Whit-
worth or crank-shaper mechanism.  If the ground link is the shortest, then it will behave 
as a double-crank linkage, or Whitworth mechanism, with both pivoted links making full 
revolutions as shown in Figure 2-13b.  If the driving crank is the shortest link, then it will 
behave as a crank-rocker linkage, or crank-shaper mechanism, as shown in Figure 3-14.*  
They are the same inversion as the slider block is in complex motion in each case.

3.6	 COUPLER CURVES View the lecture video (59:57)§

A coupler is the most interesting link in any linkage.  It is in complex motion, and thus 
points on the coupler can have path motions of high degree.†  In general, the more links, 
the higher the degree of curve generated, where degree here means the highest power of 
any term in its equation.  A curve (function) can have up to as many intersections (roots) 
with any straight line as the degree of the function.  The fourbar crank-slider has, in 
general, fourth-degree coupler curves; the pin-jointed fourbar, up to sixth degree.††  The 
geared fivebar, the sixbar, and more complicated assemblies all have still higher-degree 
curves.  Wunderlich[7b] derived an expression for the highest degree m possible for a 
coupler curve of a mechanism of n links connected with only revolute joints.

= ⋅ )( −2 3 (3.3)2 1m n

This gives, respectively, degrees of 6, 18, and 54 for the fourbar, sixbar, and eightbar 
linkage coupler curves.  Specific points on their couplers may have degenerate curves of 

	
†  In 1876, Kempe[7a] 
proved his theory that a 
linkage with only revolute 
(pin) and prismatic (slider) 
joints can be found that will 
trace any algebraic curve 
of any order or complex-
ity.  But the linkage for a 
particular curve may be 
excessively complex, may 
be unable to traverse the 
curve without encountering 
limit (toggle) positions, and 
may even need to be disas-
sembled and reassembled 
to reach all points on the 
curve.  See the discussion 
of circuit and branch defects 
in Section 4.12.  Neverthe-
less this theory points to 
the potential for interesting 
motions from the coupler 
curve.  

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.

View as a video

	
††  The algebraic equation 
of the coupler curve is 
sometimes referred to as a 
“tricircular sextic” referring 
respectively to its circularity 
of 3 (it can contain 3 loops) 
and its degree of 6.  See 
Chapter 5 for its equation.

§ http://www.designofma-
chinery.com/DOM/Cou-
pler_Curves.mp4

http://www.designof-
machinery.com/DOM/
quick_return_shaper.avi

http://www.designofmachinery.com/DOM/Coupler_Curves.mp4
http://www.designofmachinery.com/DOM/quick_return_shaper.avi


GRAPHICAL  LINKAGE  SYNTHESIS 125

33

lower degree as, for example, the pin joints between any crank or rocker and the coupler 
that describes second-degree curves (circles).  The parallelogram fourbar linkage has 
degenerate coupler curves, all of which are circles.

All linkages that possess one or more “floating” coupler links will generate coupler 
curves.  It is interesting to note that these will be closed curves even for non-Grashof link-
ages.  The coupler (or any link) can be extended infinitely in the plane.  Figure 3‑15† shows 
a fourbar linkage with its coupler extended to include a large number of points, each of 
which describes a different coupler curve.  Note that these points may be anywhere on the 
coupler, including along line AB.  There is, of course, an infinity of points on the coupler, 
each of which generates a different curve.  

Coupler curves can be used to generate quite useful path motions for machine design 
problems. They are capable of approximating straight lines and large circle arcs with re-
mote centers.  Recognize that the coupler curve is a solution to the path generation problem 
described in Section 3.2.  It is not by itself a solution to the motion generation problem, 
since the attitude or orientation of a line on the coupler is not predicted by the information 
contained in the path.  Nevertheless it is a very useful device, and it can be converted to a 
parallel motion generator by adding two links as described in the next section.  As we shall 
see, approximate straight-line motions, dwell motions, and more complicated symphonies 
of timed motions are available from even the simple fourbar linkage and its infinite variety 
of often surprising coupler curve motions.

Cusps and Crunodes  come in a variety of shapes which can be crudely catego-
rized as shown in Figure 3‑16.  There is an infinite range of variation between these gen-
eralized shapes.  Interesting features of some coupler curves are the cusp and  crunode.  
A cusp is a sharp point on the curve which has the useful property of instantaneous zero 
velocity.  Note that the acceleration at the cusp is not zero. The simplest example of a curve 
with a cusp is the cycloid curve which is generated by a point on the rim of a wheel rotat-
ing on a flat surface.  When the point touches the surface, it has the same (zero) velocity 
as all points on the stationary surface, provided there is pure rolling and no slip between 

FIGURE 3-15
The fourbar coupler extended to include a large number of coupler points

O2 O4
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View a video

FIGURE 3-16 Part 1 

A "Cursory Catalog" of
coupler curve shapes

(a )  Pseudo ellipse

(b )  Kidney bean

(c )  Banana

(e)  Single straight

( f )  Double straight

(d )  Crescent

http://www.designof-
machinery.com/DOM/
coupler_curve_atlas.avi

http://www.designofmachinery.com/DOM/coupler_curve_atlas.avi
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the elements.  Anything attached to a cusp point will come smoothly to a stop along one 
path and then accelerate smoothly away from that point on a different path. The cusp’s 
feature of zero velocity has value in such applications as transporting, stamping, and feed-
ing processes.   A crunode is a double point that occurs where the coupler curve crosses 
itself creating multiple loops.  The two slopes (tangents) at a crunode give the point two 
different velocities, neither of which is zero in contrast to the cusp.  In general, a fourbar 
coupler curve can have up to three real double points,† which may be a combination of 
cusps and crunodes as can be seen in Figure 3-16.

The Hrones and Nelson (H&N) atlas of fourbar coupler curves [8a] is a useful refer-
ence which can provide the designer with a starting point for further design and analysis.  
It contains about 7000 coupler curves and defines the linkage geometry for each of its 
Grashof crank-rocker linkages.  Figure 3‑17a* reproduces a page from this book and the 
entire atlas is reproduced as PDF files in the books downloadable files.  The H&N atlas 
is logically arranged, with all linkages defined by their link ratios, based on a unit length 
crank. The coupler is shown as a matrix of fifty coupler points for each linkage geometry, 
arranged ten to a page.  Thus each linkage geometry occupies five pages.  Each page con-
tains a schematic “key” in the upper right corner which defines the link ratios.

Figure 3‑17b shows a “fleshed out” linkage drawn on top of the H&N atlas page to 
illustrate its relationship to the atlas information.  The double circles in Figure 3‑17a define 
the fixed pivots.  The crank is always of unit length.  The ratios of the other link lengths 
to the crank are given on each page.  The actual link lengths can be scaled up or down to 
suit your package constraints and this will affect the size but not the shape of the coupler 
curve.  Any one of the ten coupler points shown can be used by incorporating it into a 
triangular coupler link.  The location of the chosen coupler point can be scaled from the 
atlas and is defined within the coupler by the position vector R whose constant angle φ is 
measured with respect to the line of centers of the coupler.  The H&N coupler curves are 
shown as dashed lines.  Each dash station represents five degrees of crank rotation.  So, for 
an assumed constant crank velocity, the dash spacing is proportional to path velocity. The 
changes in velocity and the quick-return nature of the coupler path motion can be clearly 
seen from the dash spacing.

One can peruse this linkage atlas resource and find an approximate solution to virtu-
ally any path generation problem.  Then one can take the tentative solution from the atlas 
to a CAE resource such as the Linkages program and further refine the design, based on 
the complete analysis of positions, velocities, and accelerations provided by the program.  
The only data needed for the Linkages program are the four link lengths and the location 
of the chosen coupler point with respect to the line of centers of the coupler link as shown 
in Figure 3-17.  These parameters can be changed within program Linkages to alter and 
refine the design.  Input the file F03‑17b.4br to program Linkages to animate the linkage 
shown in that figure.  Also see the video “Coupler Curves” for more information.

An example of an application of a fourbar linkage to a practical problem is shown in 
Figure 3‑18* which is a movie camera (or projector) film advance mechanism.  Point O2 is 

	
*  These figures are pro-
vided as animated AVI and 
Working Model files.  Its 
filename is the same as the 
figure number.

FIGURE 3-16 Part 2 

A “Cursory Catalog” of
coupler curve shapes

(g)  Teardrop

(h)  Scimitar

(k)  Figure eight

( i )  Umbrella

( l )  Triple loop

Cusp

Cusps

Crunode

Crunode

( j )  Triple cusp

Cusp

Cusp

	
†  Actually, the fourbar coupler curve has 9 double points of which 6 are usually imaginary.  However, Fichter 
and Hunt[8b] point out that some unique configurations of the fourbar linkage (i.e., rhombus parallelograms 
and those close to this configuration) can have up to 6 real double points which they denote as comprising 3 
“proper” and 3 “improper” real double points.  For non-special-case Grashof fourbar linkages with minimum 
transmission angles suitable for engineering applications, only the 3 “proper” double points will appear.

http://www.designofmachinery.com/DOM/Hrones_Atlas_pp_264-323.pdf
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* The Hrones and Nelson 
atlas is long out of print, but 
a reproduction is included 
as downloadable PDF files 
with this book.   A video, 
”Coupler Curves” is also 
provided that describes 
the curve’s properties and 
shows how to extract the 
information from the atlas 
and use it to design a practi-
cal mechanism.

Also, a similar volume to 
the H&N book called the 
Atlas of Linkage Design 
and Analysis Vol. 1: The 
Four Bar Linkage is avail-
able from Saltire Software, 
9725 SW Gemini Drive, 
Beaverton, OR 97005, 
(800) 659-1874.

There is also a web site at 
http://www.cedarville.edu/
cf/engineering/kinematics/
ccapdf/fccca.htm created by 
Prof. Thomas J. Thompson 
of Cedarville College, 
which provides an interac-
tive coupler curve atlas that 
allows the link dimensions 
to be changed and gener-
ates the coupler curves on 
screen.[21]

Program Linkages, 
included with this text, also 
allows rapid investigation 
of coupler curve shapes.  
For any defined linkage 
geometry, the program 
draws the coupler curve.  
By shift-clicking the mouse 
pointer on the coupler point 
and dragging it around, you 
will see the coupler curve 
shape instantly update for 
each new coupler point 
location.  When you release 
the mouse button, the new 
linkage geometry is pre-
served for that curve.  

length = A = 3

FIGURE 3-17*
Selecting a coupler curve and constructing the linkage from the Hrones and Nelson atlas

(a )  A page from the Hrones and Nelson atlas of fourbar coupler curves
Hrones, J. A., and G. L. Nelson  (1951).  Analysis of the Fourbar Linkage 
MIT Technology Press, Cambridge, MA.  Reprinted with permission.

(b )  Creating the linkage from the information in the atlas

R

Link 3

Link 4
length = B = 3.5

Link 2
length  = 1

φ

Link 1
length = C = 2

View as a video
http://www.

designofmachinery.
com/DOM/coupler_

curve_atlas.avi

http://www.cedarville.edu/cf/engineering/kinematics/ccapdf/fccca.htm
http://www.cedarville.edu/cf/engineering/kinematics/ccapdf/fccca.htm
http://www.cedarville.edu/cf/engineering/kinematics/ccapdf/fccca.htm
http://www.designofmachinery.com/DOM/coupler_curve_atlas.avi


DESIGN OF MACHINERY 6ed    CHAPTER  3128

3

	
*  These figures are pro-
vided as animated AVI and 
Working Model files.  Its 
filename is the same as the 
figure number.

View as a video the crank pivot which is motor driven at constant speed.  Point O4 is the rocker pivot, and 
points A and B are the moving pivots.  Points A, B, and C define the coupler where C is the 
coupler point of interest.  A movie is really a series of still pictures, each “frame” of which 
is projected for a small fraction of a second on the screen.  Between each picture, the film 
must be moved very quickly from one frame to the next while the shutter is closed to blank 
the screen. The whole cycle takes only 1/24 of a second. The human eye’s response time 
is too slow to notice the flicker associated with this discontinuous stream of still pictures, 
so it appears to us to be a continuum of changing images.

The linkage shown in Figure 3‑18* is cleverly designed to provide the required mo-
tion.  A hook is cut into the coupler of this fourbar Grashof crank-rocker at point C which 
generates the coupler curve shown.  The hook will enter one of the sprocket holes in the 
film as it passes point F1.  Notice that the direction of motion of the hook at that point 
is nearly perpendicular to the film, so it enters the sprocket hole cleanly.  It then turns 
abruptly downward and follows a crudely approximate straight line as it rapidly pulls the 
film downward to the next frame.  The film is separately guided in a straight track called 
the “gate.”  The shutter (driven by another linkage from the same driveshaft at O2) is closed 
during this interval of film motion, blanking the screen.  At point F2 there is a cusp on the 
coupler curve which causes the hook to decelerate smoothly to zero velocity in the verti-
cal direction, and then as smoothly accelerate up and out of the sprocket hole.  The abrupt 
transition of direction at the cusp allows the hook to back out of the hole without jarring 
the film, which would make the image jump on the screen as the shutter opens.  The rest 
of the coupler curve motion is essentially “wasting time” as it proceeds up the back side, to 
be ready to enter the film again to repeat the process.  Input the file F03‑18.4br to program 
Linkages to animate the linkage shown in that figure.

Some advantages of using this type of device for this application are that it is very 
simple and inexpensive (only four links, one of which is the frame of the camera), is ex-
tremely reliable, has low friction if good bearings are used at the pivots, and can be reliably 
timed with the other events in the overall camera mechanism through common shafting 
from a single motor.  There are a myriad of other examples of fourbar coupler curves used 
in machines and mechanisms of all kinds.

One other example of a very different application is that of the automobile suspen-
sion (Figure 3-19).  Typically, the up and down motions of the car’s wheels are controlled 
by some combination of planar fourbar linkages, arranged in duplicate to provide three-
dimensional control as described in Section 3.2.  Only a few manufacturers currently use 
a true spatial linkage in which the links are not arranged in parallel planes.  In all cases 
the wheel assembly is attached to the coupler of the linkage assembly, and its motion is 
along a set of coupler curves.  The orientation of the wheel is also of concern in this case, 
so this is not strictly a path generation problem.  By designing the linkage to control the 
paths of multiple points on the wheel (tire contact patch, wheel center, etc.—all of which are 
points on the same coupler link extended), motion generation is achieved as the coupler has 
complex motion.  Figure 3‑19a* and b* shows parallel planar fourbar linkages suspending 
the wheels.  The coupler curve of the wheel center is nearly a straight line over the small 
vertical displacement required.  This is desirable as the idea is to keep the tire perpendicular 
to the ground for best traction under all cornering and attitude changes of the car body.  This 
is an application in which a non-Grashof linkage is perfectly acceptable, as full rotation of 
the wheel in this plane might have some undesirable results and surprise the driver.  Limit 
stops are of course provided to prevent such behavior, so even a Grashof linkage could be 

http://www.designof-
machinery.com/DOM/

camera.avi

FIGURE 3-18 
Movie camera film-
advance mechanism.
(Input the file F03-18.4br to
program LINKAGES to 
animate this linkage.
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Copyright © 2018 Robert L. Norton
All Rights Reserved

http://www.designofmachinery.com/DOM/camera.avi
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used.  The springs support the weight of the vehicle and provide a fifth, variable-length 
“force link” that stabilizes the mechanism as was described in Section 2.15.  The function 
of the fourbar linkage is solely to guide and control the wheel motions.  Figure 3‑19c shows 
a true spatial linkage of seven links (including frame and wheel) and nine joints (some of 
which are ball-and-socket joints) used to control the motion of the rear wheel.  These links 
do not move in parallel planes but rather control the three-dimensional motion of the coupler 
which carries the wheel assembly.

Symmetrical-Linkage Coupler Curves View the lecture video (05:48)§ 

When a fourbar linkage’s geometry is such that the coupler and rocker are the same length 
pin-to-pin, all coupler points that lie on a circle centered on the coupler-rocker joint with 
radius equal to the coupler length will generate symmetrical coupler curves. Figure 3-20 
shows such a linkage, its symmetrical coupler curve, and the locus of all points that will 
give symmetrical curves.  Using the notation of that figure, the criterion for coupler curve 
symmetry can be stated as:

View as a video
http://www.designof-

machinery.com/
DOM/suspension.avi

§ http://www.designofma-
chinery.com/DOM/Sym-
metrical_Coupler_Curves.
mp4

FIGURE 3-19
Linkages used in automotive chassis suspensions
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link 1 is the car frame (not shown)
link 7 is the wheel hub
links 2, 3, 4, 5, and 6 connect 1 to 7
(c )  Multilink spatial linkage used
       to control rear wheel motion

(b )  Fourbar linkage used to
       control wheel motion

(a)  Fourbar planar linkages are duplicated in parallel planes,
       displaced in the z direction, behind the links shown 

Copyright © 2018 Robert L. Norton:  All Rights Reserved

http://www.designofmachinery.com/DOM/Symmetrical_Coupler_Curves.mp4
http://www.designofmachinery.com/DOM/suspension.avi
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= = (3.4)4AB O B BP

A linkage for which equation 3.4 is true is referred to as a symmetrical fourbar link-
age.  The axis of symmetry of the coupler curve is the line O4P drawn when the crank O2A 
and the ground link O2O4 are colinear-extended (i.e., θ2 = 180°).  Symmetrical coupler 
curves prove to be quite useful as we shall see in the next several sections.  Some give good 
approximations to circular arcs and others give very good approximations to straight lines 
(over a portion of the coupler curve).

In the general case, nine parameters are needed to define the geometry of a nonsym-
metrical fourbar linkage with one coupler point.*  We can reduce this to five as follows.  
Three parameters can be eliminated by fixing the location and orientation of the ground 
link.  The four link lengths can be reduced to three parameters by normalizing three link 
lengths to the fourth.  The shortest link (the crank, if a Grashof crank-rocker linkage) 
is usually taken as the reference link, and three link ratios are formed as L1 / L2, L3 / L2,  
L4 / L2, where L1 = ground, L2 = crank, L3 = coupler, and L4 = rocker length as shown 
in Figure 3‑20.  Two parameters are needed to locate the coupler point: the distance from 
a convenient reference point on the coupler (either B or A in Figure 3-20) to the coupler 
point P, and the angle that the line BP (or AP) makes with the line of centers of the coupler 
AB (either δ or γ).  Thus, with a defined ground link, five parameters that will define the 
geometry of a nonsymmetrical fourbar linkage (using point B as the reference in link 3 and 
the labels of Figure 3‑20) are:  L1 / L2, L3 / L2, L4 / L2, BP / L2, and γ.  Note that multiplying 

	

*  The nine independent pa-
rameters of a fourbar link-
age are: four link lengths, 
two coordinates of the cou-
pler point with respect to 
the coupler link, and three 
parameters that define the 
location and orientation of 
the fixed link in the global 
coordinate system.

θ2 = 180°

Axis of
symmetry

x
y

Locus of coupler points
for symmetrical curves

Coupler
point P

FIGURE 3-20
A fourbar linkage with a symmetrical coupler curve

O2 O4

L3

L2 L1

L4

A

B

2

3

4

Coupler curve

1 1

γ

BP

δ

δ γ= ° −

AP AB= ( ) δ



GRAPHICAL  LINKAGE  SYNTHESIS 131

33

 
†  Adapted from materi-
als provided by Professor 
Sridhar Kota, University of 
Michigan.

these parameters by a scaling factor will change the size of the linkage and its coupler curve 
but will not change the coupler curve’s shape.

A symmetrical fourbar linkage with a defined ground link needs only three pa-
rameters to define its geometry because three of the five nonsymmetrical parameters are 
now equal per equation 3.4: L3 / L2 = L4 / L2 = BP / L2.  Three possible parameters to de-
fine the geometry of a symmetrical fourbar linkage in combination with equation 3.4 are 
then:  L1 / L2, L3 / L2, and γ.  Having only three parameters to deal with rather than five 
greatly simplifies an analysis of the behavior of the coupler curve shape when the link-
age geometry is varied.  Other relationships for the isosceles-triangle coupler are shown 
in Figure 3-20.  Length AP and angle δ are needed for input of the linkage geometry to 
program Linkages.

Kota[9] did an extensive study of the characteristics of coupler curves of symmetrical 
fourbar linkages and mapped coupler curve shape as a function of the three linkage pa-
rameters defined above.  He defined a three-dimensional design space to map the coupler 
curve shape.  Figure 3-21 shows two orthogonal plane sections taken through this design 
space for particular values of link ratios,† and Figure 3-22 shows a schematic of the design 
space.  Though the two cross sections of Figure 3-21 show only a small fraction of the 
information in the 3‑D design space of Figure 3-22, they nevertheless give a sense of the 
way that variation of the three linkage parameters affects the coupler curve shape.  Used in 
combination with a linkage design tool such as program Linkages, these design charts can 
help guide the designer in choosing suitable values for the linkage parameters to achieve 
a desired path motion.

Geared Fivebar Coupler Curves  (Figure 3-23) are more complex than the 
fourbar variety.  Because there are three additional, independent design variables in a 
geared fivebar compared to the fourbar (an additional link ratio, the gear ratio, and the 
phase angle between the gears), the coupler curves can be of higher degree than those of 
the fourbar.  This means that the curves can be more convoluted, having more cusps and 
crunodes (loops). In fact, if the gear ratio used is noninteger, the input link will have to 
make a number of revolutions equal to the factor necessary to make the ratio an integer 
before the coupler curve pattern will repeat.  The Zhang, Norton, Hammond (ZNH) Atlas of 
Geared FiveBar Mechanisms (GFBM)[10] shows typical coupler curves for these linkages 
limited to symmetrical geometry (e.g.,  link 2 = link 5 and link 3 = link 4) and gear ratios 
of ±1 and ±2.  A page from the ZNH atlas is reproduced in Figure 3‑23.  Additional pages 
are in Appendix E, and the entire atlas is downloadable.  Each page shows the family of 
coupler curves obtained by variation of the phase angle for a particular set of link ratios 
and gear ratio. A key in the upper right corner of each page defines the ratios: α = link 
3 / link 2, β = link 1 / link 2, λ = gear 5 / gear 2.  Symmetry defines links 4 and 5 as noted 
above.  The phase angle φ is noted on the axes drawn at each coupler curve and can be seen 
to have a significant effect on the resulting coupler curve shape.

This reference atlas is intended to be used as a starting point for a geared fivebar 
linkage design.  The link ratios, gear ratio, and phase angle can be input to the program 
Fivebar and then varied to observe the effects on coupler curve shape, velocities, and ac-
celerations.  Asymmetry of links can be introduced, and a coupler point location other than 
the pin joint between links 3 and 4 defined within the Linkages program as well.  Note 
that program Linkages expects the gear ratio to be in the form gear 2 / gear 5 which is the 
inverse of the ratio λ in the ZNH atlas.

http://www.designofmachinery.com/DOM/Geared_Fivebar_Atlas.pdf
http://www.designofmachinery.com/DOM/Geared_Fivebar_Atlas.pdf
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FIGURE 3-21
Coupler curve shapes of symmetrical fourbar linkages  Adapted from reference [9]

(b )  Variation of coupler curve shape with ground link ratio and coupler angle
        for a common link ratio L3 / L2 = L4 / L2 = BP / L2 = 2. 5

(a )  Variation of coupler curve shape with common link ratio and coupler angle
        for a ground link ratio L1  / L2 = 2. 0
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FIGURE 3-22
A three-dimensional map of coupler shapes of symmetrical fourbar linkages[9]  

FIGURE 3-23 
A page from the Zhang-Norton-Hammond atlas of geared fivebar coupler curves
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3.7	 COGNATES View the lecture video (18:12)*

It sometimes happens that a good solution to a linkage synthesis problem will be found 
that satisfies path generation constraints but has the fixed pivots in inappropriate loca-
tions for attachment to the available ground plane or frame.  In such cases, the use of a 
cognate to the linkage may be helpful.  The term cognate was used by Hartenberg and 
Denavit [11] to describe a linkage, of different geometry, which generates the same coupler 
curve.  Samuel Roberts (1875)[23] and Chebyschev (1878) independently discovered the 
theorem which now bears their names:

Roberts‑Chebyschev Theorem 
Three different planar, pin‑jointed fourbar linkages will trace identical coupler curves.

Hartenberg and Denavit[11] presented extensions of this theorem to the crank-slider and 
the sixbar linkages:

Two different planar crank-slider linkages will trace identical coupler curves.†

The coupler-point curve of a planar fourbar linkage is also described by the joint of a dyad 
of an appropriate sixbar linkage.

Figure 3‑24a shows a fourbar linkage for which we want to find the two cognates.  The 
first step is to release the fixed pivots OA and OB.  While holding the coupler stationary, 
rotate links 2 and 4 into colinearity with the line of centers (A1B1) of link 3 as shown in 
Figure 3‑24b.  We can now construct lines parallel to all sides of the links in the original 
linkage to create the Cayley diagram[24] in Figure 3‑24c.  This schematic arrangement 
defines the lengths and shapes of links 5 through 10 which belong to the cognates.  All 
three fourbars share the original coupler point P and will thus generate the same path mo-
tion on their coupler curves.

In order to find the correct location of the fixed pivot OC from the Cayley diagram, 
the ends of links 2 and 4 are returned to the original locations of the fixed pivots OA and 
OB as shown in Figure 3‑25a.  The other links will follow this motion, maintaining the 
parallelogram relationships between links, and fixed pivot OC will then be in its proper 
location on the ground plane.  This configuration is called a Roberts diagram—three 
fourbar linkage cognates which share the same coupler curve.  

The Roberts diagram can be drawn directly from the original linkage without resort 
to the Cayley diagram by noting that the parallelograms which form the other cognates 
are also present in the Roberts diagram and the three couplers are similar triangles.  It is 
also possible to locate fixed pivot OC directly from the original linkage as shown in Figure 
3-25a.  Construct a similar triangle to that of the coupler, placing its base (AB) between 
OA and OB.  Its vertex will be at OC.

The ten-link Roberts configuration (Cayley’s nine plus the ground) can now be articu-
lated up to any toggle positions, and point P will describe the original coupler path which 
is the same for all three cognates.  Point OC will not move when the Roberts linkage is 
articulated, proving that it is a ground pivot.  The cognates can be separated as shown in 
Figure 3‑25b and any one of the three linkages used to generate the same coupler curve.  
Corresponding links in the cognates will have the same angular velocity as the original 
mechanism as defined in Figure 3-25.

	

*  http://www.designofma-
chinery.com/DOM/Cog-
nates_of_Linkages.mp4

	

†  Dijksman and Smals [25] 
state that an inverted crank-
slider linkage does not 
possess any cognates.

http://www.designofmachinery.com/DOM/Cognates_of_Linkages.mp4
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( a )  Original fourbar linkage
        (cognate #1)

FIGURE 3-24
Cayley diagram to find cognates of a fourbar linkage

(b)  Align links 2 and 4  with coupler

( c )  Construct lines parallel to all sides of the original fourbar linkage to create cognates
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View as a video
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http://www.designofmachinery.com/DOM/roberts_diagram-original_fourbar.avi


DESIGN OF MACHINERY 6ed    CHAPTER  3136

3

( a )   Return links 2 and 4  to their fixed pivots OA and OB.
         Point OC will assume its proper location.

FIGURE 3-25
Roberts diagram of three fourbar cognates

(b )  Separate the three cognates.
       Point P has the same path motion in each cognate.  
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Nolle[12] reports on work by Luck[13] (in German) that defines the character of all 
fourbar cognates and their transmission angles.  If the original linkage is a Grashof crank-
rocker, then one cognate will be also, and the other will be a Grashof double-rocker.   The 
minimum transmission angle of the crank-rocker cognate will be the same as that of the 
original crank-rocker.  If the original linkage is a Grashof double-crank (drag link), then 
both cognates will be also and their minimum transmission angles will be the same in pairs 
that are driven from the same fixed pivot.  If the original linkage is a non-Grashof triple-
rocker, then both cognates are also triple-rockers.  

These findings indicate that cognates of Grashof linkages do not offer improved trans-
mission angles over the original linkage. Their main advantages are the different fixed pivot 
location and different velocities and accelerations of other points in the linkage.  While the 
coupler path is the same for all cognates, its velocities and accelerations will not generally 
be the same since each cognate’s overall geometry is different.  

When the coupler point lies on the line of centers of link 3, the Cayley diagram de-
generates to a group of colinear lines.  A different approach is needed to determine the 
geometry of the cognates.  Hartenberg and Denavit[11] give the following set of steps to 
find the cognates in this case.  The notation refers to Figure 3-26.

	 1	 Fixed pivot OC lies on the line of centers OAOB extended and divides it in the same 
ratio as point P divides AB (i.e., OC / OA = PA / AB).

	 2	 Line OAA2 is parallel to A1P and A2P is parallel to OAA1, locating A2.

	 3	 Line OBA3 is parallel to B1P and A3P is parallel to OBB1, locating A3.

	 4	 Joint B2 divides line A2P in the same ratio as point P divides AB.  This defines the first 
cognate OAA2B2OC.

	 5	 Joint B3 divides line A3P in the same ratio as point P divides AB.  This defines the 
second cognate OBA3B3OC.

The three linkages can then be separated and each will independently generate the 
same coupler curve.  The example chosen for Figure 3-26 is unusual in that the two cog-
nates of the original linkage are identical, mirror-image twins.  These are special linkages 
and will be discussed further in the next section.

Program Linkages will automatically calculate the two cognates for any linkage con-
figuration input to it. The velocities and accelerations of each cognate can then be calcu-
lated and compared.  The program also draws the Cayley diagram for the set of cognates.  
Input the file F03‑24.4br to program Linkages to display the Cayley diagram of Figure 
3‑24.  Input the files Cognate1.4br, Cognate2.4br, and Cognate3.4br to animate and 
view the motion of each cognate shown in Figure 3‑25.  Their coupler curves (at least those 
portions that each cognate can reach) will be seen to be identical.

Parallel Motion View the lecture video (21:50)*

It is quite common to want the output link of a mechanism to follow a particular path 
without any rotation of the link as it moves along the path.  Once an appropriate path mo-
tion in the form of a coupler curve and its fourbar linkage have been found, a  cognate of 
that linkage provides a convenient means to replicate the coupler path motion and provide 
curvilinear translation (i.e., no rotation) of a new output link that follows the coupler path.  

 

*  http://www.designofma-
chinery.com/DOM/Paral-
lel_Motion.mp4

http://www.designofmachinery.com/DOM/Parallel_Motion.mp4
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†Another common method 
used to obtain parallel mo-
tion is to duplicate the same 
linkage (i.e., the identical 
cognate), connect them with 
a parallelogram loop, and 
remove two redundant links.  
This results in an eight-link 
mechanism.  See Figure 
P3-7 for an example of such 
a mechanism.  The method 
shown here using a different 
cognate results in a simpler 
linkage, but either approach 
will accomplish the desired 
goal.

This is referred to as parallel motion.  Its design is best described with an example, the 
result of which will be a Watt I sixbar linkage† that incorporates the original fourbar and 
parts of one of its cognates.  The method shown is as described in Soni.[14]

✍EXAMPLE 3‑11

Parallel Motion from a Fourbar Linkage Coupler Curve.

Problem:	 Design a sixbar linkage for parallel motion over a fourbar linkage coupler path.

Solution:	 (See Figure 3‑27.)

	 1	 Figure 3-27a shows the chosen Grashof crank-rocker fourbar linkage and its coupler curve.  
The first step is to create the Roberts diagram and find its cognates as shown in Figure 3‑27b.  
The Roberts linkage can be found directly, without resort to the Cayley diagram, as described 
above.  The fixed center OC is found by drawing a triangle similar to the coupler triangle A1B1P 
with base OAOB. 

	 2	 One of a crank-rocker linkage’s cognates will also be a crank-rocker (here cognate #3) and the 
other is a Grashof double-rocker (here cognate #2).  Discard the double-rocker, keeping the 
links numbered 2, 3, 4, 5, 6, and 7 in Figure 3-27b.  Note that links 2 and 7 are the two cranks, 
and both have the same angular velocity.  The strategy is to coalesce these two cranks on a 
common center (OA) and then combine them into a single link.

	 3	 Draw the line qq parallel to line OAOC and through point OB as shown in Figure 3-27c.

FIGURE 3-26
Finding cognates of a fourbar linkage when its coupler point lies on the line of centers of the coupler
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View as a video
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http://www.designofmachinery.
com/DOM/roberts_diagram_

chebyshev.avi

http://www.designofmachinery.
com/DOM/cognates_coupler_
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http://www.designofmachinery.
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http://www.designofmachinery.com/DOM/roberts_diagram_chebyshev.avi
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FIGURE 3-27
Method to construct a Watt-I sixbar that replicates a coupler path with curvilinear translation (parallel motion)

View as a video

View as a video

View as a video

http://www.designofmachin-
ery.com/DOM/curvilinear_

translation-8bar.avi

http://www.designofmachin-
ery.com/DOM/curvilinear_

translation-6bar.avi

http://www.designofmachinery.com/DOM/
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( a )  Construction of equivalent
       fivebar linkage

Fivebar
linkage

OC

(b )  Resulting geared
       fivebar linkage
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gear

FIGURE 3-28
A geared fivebar linkage cognate of a fourbar linkage

P

2
4

5 6
7 8

3

Fourbar
linkage

A1

A2

B1

B2

OA

OB

B2

76

P

5

8

Gear 5
Gear 8

OA

OB

A2

 
*  Another example of 
a parallel motion sixbar 
linkage is the Chebyschev 
straight-line linkage of Fig-
ure P2-5a.  It is a combina-
tion of two of the cognates 
shown in Figure 3‑26, 
assembled by the method 
described in Example 3-11 
and shown in Figure 3-27.

	 4	 Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and 
qq until the free end of link 7 is at point OA.  The free end of link 5 will then be at point 'OB  
and point P on link 6 will be at P’.

	 5	 Add a new link of length OAOC between P and P’.  This is the new output link 8, and all points 
on it describe the original coupler curve as depicted at points P, P’, and P’’ in Figure 3-27c.  

	 6	 The mechanism in Figure 3-27c has 8 links, 10 revolute joints, and one DOF.  When driven 
by either crank 2 or 7, all points on link 8 will duplicate the coupler curve of point P.  

	 7	 This is an overclosed linkage with redundant links.  Because links 2 and 7 have the same an-
gular velocity, they can be joined into one link as shown in Figure 3-27d.  Then link 5 can be 
removed and link 6 reduced to a binary link supported and constrained as part of the loop 2, 6, 
8, 3.  The resulting mechanism is a Watt-I sixbar (see Figure 2-16.) with the links numbered 
1, 2, 3, 4, 6, and 8.  Link 8 is in curvilinear translation and follows the coupler path of the 
original point P.*

	

Geared Fivebar Cognates of the Fourbar

Chebyschev also discovered that any fourbar coupler curve can be duplicated with a 
geared fivebar mechanism whose gear ratio is plus one, meaning that the gears turn 
with the same speed and direction.  The geared fivebar’s link lengths will be different from 
those of the fourbar but can be determined directly from the fourbar.  Figure 3‑28a shows 
the construction method, as described by Hall[15], to obtain the geared fivebar which will 
give the same coupler curve as a fourbar. The original fourbar is OAA1B1OB (links 1, 2, 3, 
4).  The fivebar is OAA2PB2OB (links 1, 5, 6, 7, 8). The two linkages share only the coupler 
point P and fixed pivots OA and OB.  The fivebar is constructed by simply drawing link 6 
parallel to link 2, link 7 parallel to link 4, link 5 parallel to A1P, and link 8 parallel to B1P.

View as a video View as a video
http://www.designofmachinery.

com/DOM/geared_5bar.avi
http://www.designofmachinery.com/

DOM/geared_5bar-separate.avi

http://www.designofmachinery.com/DOM/geared_5bar.avi
http://www.designofmachinery.com/DOM/geared_5bar-separate.avi
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*  In Watt’s time, straight-
line motion was dubbed 
“parallel motion” though 
we use that term somewhat 
differently now.  James 
Watt is reported to have 
told his son, “Though I am 
not over anxious after fame, 
yet I am more proud of the 
parallel motion than of any 
other mechanical invention 
I have made.”  Quoted in 
Muirhead,  J. P. (1854). 
The Origin and Progress of 
the Mechanical Inventions 
of James Watt, Vol. 3, 
London, p. 89. 
	
†  Note also in Figure 3-29b 
(and in Figure P2-10) that 
the driven dyad (links 7 
and 8 in Figure 3-29b or 3 
and 4 in Figure P2-10) are 
a complicated arrangement 
of sun and planet gears with 
the planet axle in a circular 
track.  These have the same 
effect as the simpler crank 
and connecting rod.  Watt 
was forced to invent the 
sun and planet drive to get 
around James Pickard’s 
1780 patent on the crank-
shaft and connecting rod.

A three-gear set is needed to couple links 5 and 8 with a ratio of plus one (gear 5 and 
gear 8 have the same diameter and have the same direction of rotation, due to the idler 
gear), as shown in Figure 3‑28b.  Link 5 is attached to gear 5, as is link 8 to gear 8.  This 
construction technique may be applied to each of the three fourbar cognates, yielding three 
geared fivebars (which may or may not be Grashof). The three fivebar cognates can actually 
be seen in the Roberts diagram.  Note that in the example shown, a non-Grashof triple-
rocker fourbar yields a Grashof fivebar, which can be motor driven.  This conversion to a 
GFBM linkage could be an advantage when the “right” coupler curve has been found on a 
non-Grashof fourbar linkage, but continuous output through the fourbar’s toggle positions 
is needed.  Thus we can see that there are at least seven linkages which will generate the 
same coupler curve, three fourbars, three GFBMs and one or more sixbars.

Program Linkages calculates the equivalent geared fivebar configuration for any 
fourbar linkage and displays the result.  The file F03‑28a.4br can be opened in Linkages 
to animate the linkage shown in Figure 3-28a.  Then also open the file F03‑28b.5br in 
program Linkages to see the motion of the equivalent geared fivebar linkage.  Note that 
the original fourbar linkage is a triple-rocker, so it cannot reach all portions of the coupler 
curve when driven from one rocker.  But its geared fivebar equivalent linkage can make 
a full revolution and traverses the entire coupler path.  Program Linkages will create the 
equivalent GFBM of any fourbar linkage.

3.8	 STRAIGHT-LINE MECHANISMS View the lecture video (9:21)§

A very common application of coupler curves is the generation of approximate straight 
lines.  Straight-line linkages have been known and used since the time of James Watt in 
the 18th century.  Many kinematicians, such as Watt, Chebyschev, Peaucellier, Kempe, 
Evans, and Hoeken (as well as others) over a century ago, developed or discovered either 
approximate or exact straight-line linkages, and their names are associated with those de-
vices to this day.  Figure 3-29 shows a collection of the better-known ones, most of which 
are also provided as animated files.

The first recorded application of a coupler curve to a motion problem is that of Watt’s 
straight-line linkage, patented in 1784, and shown in Figure 3‑29a.  Watt devised several 
straight-line linkages to guide the long-stroke piston of his steam engine at a time when 
metal-cutting machinery that could create a long, straight guideway did not yet exist.*  
Figure 3-29b shows the Watt linkage used to guide the steam engine piston.†  This triple-
rocker linkage is still used in automobile suspension systems to guide the rear axle up and 
down in a straight line as well as in many other applications.  

Richard Roberts (1789-1864) (not to be confused with Samuel Roberts of the cog-
nates) discovered the Roberts straight-line linkage shown in Figure 3‑29c.  This is a 
triple-rocker.  Other values for AP and BP are possible, but the ones shown give the most 
accurate straight line with a deviation from straight of only 0.04% (0.0004 dec%) of the 
length of link 2 over the range of 49° < θ2 < 69°.   

Chebyschev (1821-1894) also devised many straight-line linkages.  His well-known 
Grashof double-rocker is shown in Figure 3‑29d.**    

§ http://www.designof-
machinery.com/DOM/
Straight_Line_Linkages.
mp4

	

**  View the video http://
www.designofmachinery.
com/DOM/Boot_Tester.
mp4  to see an example 
of an application of the 
Chebyschev linkage.

http://www.designofmachinery.com/DOM/Straight_Line_Linkages.mp4
http://www.designofmachinery.com/DOM/Boot_Tester.mp4
http://www.designofmachinery.com/DOM/Boot_Tester.mp4
http://www.designofmachinery.com/DOM/Boot_Tester.mp4
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*  The link ratios of the Chebyschev straight-line linkage shown have been reported differently by various authors.  The ratios used here are 
those first reported (in English) by Kempe (1877).  But Kennedy (1893) describes the same linkage, reportedly “as Chebyschev demonstrated 
it at the Vienna Exhibition of 1893” as having the link ratios 1, 3.25, 2.5, 3.25.  We will assume the earliest reference by Kempe to be correct 

FIGURE 3-29  Part 1 
Some common and classic approximate straight-line linkages

(a )  A Watt straight-line linkage
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(b )  Watt's linkage as used in his steam engine

(d )  A Chebyschev straight-line linkage*
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( c )  A Roberts straight-line linkage
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View as a video

View as a video

View as a video

View as a video View as a video

http://www.designof-
machinery.com/DOM/

watt.avi

http://www.designof-
machinery.com/
DOM/roberts.avi

http://www.designof-
machinery.com/

DOM/chebyschev.avi

http://www.designof-
machinery.com/DOM/

hoeken.avi

http://www.designofma-
chinery.com/DOM/watts_

engine.avi

http://www.designofmachinery.com/DOM/watt.avi
http://www.designofmachinery.com/DOM/roberts.avi
http://www.designofmachinery.com/DOM/watts_engine.avi
http://www.designofmachinery.com/DOM/chebyschev.avi
http://www.designofmachinery.com/DOM/hoeken.avi
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The Hoeken linkage[16] in Figure 3‑29e is a Grashof crank-rocker, which has a sig-
nificant practical advantage.  In addition, the Hoeken linkage has the feature of very nearly 
constant velocity along the center portion of its straight-line motion.  It is interesting to note 
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( j )  Peaucellier exact straight-line linkage

(h)  Evans approx. straight-line linkage #3
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FIGURE 3-29 Part 2 
Approximate and exact straight-line linkages

View as a video

View as a video

http://www.designof-
machinery.com/DOM/

evans_linkage.avi

http://www.designofmachin-
ery.com/DOM/peaucellier.avi

http://www.designofmachinery.com/DOM/evans_linkage.avi
http://www.designofmachinery.com/DOM/peaucellier.avi
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†  Peaucellier was a French 
army captain and military 
engineer who first proposed 
his “compas compose” or 
compound compass in 1864 
but received no immediate 
recognition therefor.  (He 
later received the  “Prix 
Montyon” from the Institute 
of France.)  The British-
American mathematician 
James Sylvester reported 
on it to the Atheneum 
Club in London in 1874.  
He observed that “The 
perfect parallel motion of 
Peaucellier looks so simple 
and moves so easily that 
people who see it at work 
almost universally express 
astonishment that it waited 
so long to be discovered.”  
A model of the Peaucellier 
linkage was passed around 
the table.  The famous 
physicist Sir William 
Thomson (later Lord Kel-
vin) refused to relinquish 
it, declaring, “No. I have 
not had nearly enough of 
it—it is the most beautiful 

 

*  Hain[17] (1967) cites the 
Hoeken reference[16] (1926) 
for this linkage.  Nolle [18] 
(1974) shows the Hoeken 
mechanism but refers to it 
as a Chebyschev crank-
rocker without noting its 
cognate relationship to the 
Chebyschev double-rocker, 
which he also shows.  It is 
certainly conceivable that 
Chebyschev, as one of the 
creators of the theorem 
of cognate linkages, 
would have discovered the 
“Hoeken” cognate of his 
own double-rocker.  How-
ever, this author has been 
unable to find any mention 
of its genesis in the English 
literature other than the 
ones cited here.

(footnotes cont’d. opp. page)

that the  Hoeken and Chebyschev linkages are cognates of one another.*  The cognates 
shown in Figure 3-26 are the Chebyschev and Hoeken linkages.

Figure 3-29f shows one of Evans’ many straight-line linkages.  It is a triple rocker with 
a range of input link motion of about 27 to 333° between toggle positions.  The portion of 
coupler curve shown is between 150° and 210° and has a very accurate straight line with 
a deviation of only 0.25% (0.0025 dec%) of the crank length.  

Figure 3-29g shows a second Evans straight-line linkage, also a triple rocker with a 
range of input link motion of about –81 to +81°  between toggle positions.  The portion of 
coupler curve shown is between –40 and 40° and has a long but less accurate straight line 
with a deviation of 1.5% (0.015 dec%) of the crank length.  

Figure 3-29h shows a third Evans straight-line linkage.  It is a triple rocker with a 
range of input link motion of about –75 to +75° between toggle positions.  The portion 
of coupler curve shown is all that is reachable between those limits and has two straight 
portions.  The remainder of the coupler curve is a mirror image making a figure eight. 

Some of these straight-line linkages are provided as built‑in examples in program 
Linkages.  AVI and Working Model files of many of them are also.  Artobolevsky[20] 
shows seven Watt, seven Chebyschev, five Roberts, and sixteen Evans straight-line linkages 
in his Vol. I that include the ones shown here.  A quick look in the downloadable Hrones 
and Nelson atlas of coupler curves will reveal a large number of coupler curves with ap-
proximate straight-line segments.  They are quite common.

To generate an exact straight line with only pin joints requires more than four links.  
At least six links and seven pin joints are needed to generate an exact straight line with a 
pure revolute-jointed linkage, i.e., a Watt or Stephenson sixbar.  Figure 3-29i shows the 
Hart inversor exact straight-line sixbar mechanism.  A symmetrical geared fivebar 
mechanism (Figure 2-21), with a gear ratio of –1 and a phase angle of π radians, will also 
generate an exact straight line at the joint between links 3 and 4.  But this linkage is merely 
a transformed Watt sixbar obtained by replacing one binary link with a higher joint in the 
form of a gear pair.  This geared fivebar’s straight-line motion can be seen by opening the 
file Straight.5br in program Linkages, and animating the linkage.

Peaucellier† (1864) discovered an exact straight-line mechanism of eight bars and 
six pins, shown in Figure 3‑29j.‡  Links 5, 6, 7, 8 form a rhombus of convenient size.   Links 
3 and 4 can be any convenient but equal lengths.  When O2O4 exactly equals O2A, point 
C generates an arc of infinite radius, i.e., an exact straight line.  By moving the pivot O2 
left or right from the position shown, changing only the length of link 1, this mechanism 
will generate true circle arcs with radii much larger than the link lengths.  Other exact 
straight-line linkages exist as well.  See Artobolevsky.[20]

Designing Optimum Straight-Line Fourbar Linkages

Given the fact that an exact straight line can be generated with six or more links using only 
revolute joints, why use a fourbar approximate straight-line linkage at all?  One reason 
is the desire for simplicity in machine design.  The pin-jointed fourbar is the simplest 
possible 1-DOF mechanism.  Another reason is that a very good approximation to a true 
straight line can be obtained with just four links, and this is often “good enough” for the 
needs of the machine being designed.  Manufacturing tolerances will, after all, cause 
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any mechanism’s performance to be less than ideal.  As the number of links and joints 
increases, the probability that an exact straight-line mechanism will deliver its theoretical 
performance in practice is obviously reduced.  

There is a real need for straight-line motions in machinery of all kinds, especially 
in automated production machinery.  Many consumer products such as cameras, film, 
toiletries, razors, and bottles are manufactured, decorated, or assembled on sophisticated 
and complicated machines that contain a myriad of linkages and cam-follower systems.  
Traditionally, most of this kind of production equipment has been of the intermittent-
motion variety.  This means that the product is carried through the machine on a linear or 
rotary conveyor that stops for any operation to be done on the product, and then indexes the 
product to the next workstation where it again stops for another operation to be performed.  
The forces, torque, and power required to accelerate and decelerate the large mass of the 
conveyor (which is independent of, and typically larger than, the mass of the product) 
severely limit the speeds at which these machines can be run.  

Economic considerations continually demand higher production rates, requiring 
higher speeds or additional, expensive machines.  This economic pressure has caused 
many manufacturers to redesign their assembly equipment for continuous conveyor mo-
tion.  When the product is in continuous motion in a straight line and at constant velocity, 
every workhead that operates on the product must be articulated to chase the product and 
match both its path and its constant velocity while performing the task.  These factors have 
increased the need for straight-line mechanisms, including ones capable of near-constant 
velocity over the straight-line path.

A (near) perfect straight-line motion is easily obtained with a fourbar crank-slider 
mechanism.  Ball-bushings (Figure 2-33) and ball-slides (Figure 2-38) are available 
commercially at moderate cost and make this a reasonable, low-friction solution to the 
straight-line path guidance problem.  But, the cost and lubrication problems of a properly 
guided crank-slider mechanism are still greater than those of a pin-jointed fourbar linkage.  
Moreover, a crank-slider block has a velocity profile that is nearly sinusoidal (with some 
harmonic content) and is far from having constant velocity over any part of its motion.  
(See Section 3.10 for a modified crank-slider mechanism that has nearly constant slider 
velocity for part of its stroke.)

The Hoeken-type linkage offers an optimum combination of straightness and near 
constant velocity and is a crank-rocker, so it can be motor driven.  Its geometry, dimen-
sions, and coupler path are shown in Figure 3-30.  This is a symmetrical fourbar linkage.  
Since the angle γ of line BP is specified and L3 = L4 = BP, only two link ratios are needed 
to define its geometry, say L1 / L2 and L3 / L2.  If the crank L2 is driven at constant angular 
velocity ω2, the linear velocity Vx along the straight-line portion ∆x of the coupler path will 
be very close to constant over a significant portion of crank rotation ∆β.

A study was done to determine the errors in straightness and constant velocity of the 
Hoeken-type linkage over various fractions ∆β of the crank cycle as a function of the link 
ratios.[19]  The structural error in position (i.e., straightness) εS and the structural error in 
velocity εV are defined using notation from Figure 3-30 as: 

	
‡  This Peaucillier  link-
age figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.

thing I have ever seen in 
my life.”  Source: Strandh, 
S. (1979). A History of the 
Machine. A&W Publishers: 
New York, p. 67.

(continued from opp. page)
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*  See reference [19] for the 
derivation of equations 3.5.
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TABLE  3-1 Link Ratios for Smallest Attainable Errors in Straightness and Velocity for Various Crank-
Angle Ranges of a Hoeken-Type Fourbar Approximate Straight-Line Linkage [19] 
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The structural errors were computed separately for each of nine crank-angle ranges 
∆β from 20° to 180°.  Table 3-1 shows the link ratios that give the smallest possible struc-
tural error in either position or velocity over values of ∆β from 20°  to 180°.  Note that 
one cannot attain optimum straightness and minimum velocity error in the same linkage.  
However, reasonable compromises between the two criteria can be achieved, especially 
for smaller ranges of crank angle.  The errors in both straightness and velocity increase as 
longer portions of the curve are used (larger ∆β).  The use of Table 3-1 to design a straight-
line linkage will be shown with an example.

✍EXAMPLE 3‑12

Designing a Hoeken-Type Straight-Line Linkage

Problem:	 A 100-mm-long straight-line motion is needed over 1/3 of the total cycle (120° of 
crank rotation).  Determine the dimensions of a Hoeken-type linkage that will 

(a)	 Provide minimum deviation from a straight line.  Determine its maximum de-
viation from constant velocity.

(b)	Provide minimum deviation from constant velocity.  Determine its maximum 
deviation from a straight line.

Solution:	 (See Figure 3-30 and Table 3‑1.)

	 1	 Part (a) requires the most accurate straight line.  Enter Table 3-1 at the 6th row which is for a 
crank-angle duration ∆β of the required 120°.  The 4th column shows the minimum possible 
deviation from straight to be 0.01% of the length of the straight-line portion used.  For a 100-
mm length the absolute deviation will then be 0.01 mm (0.0004 in).  The 5th column shows 
that its velocity error will be 14.68% of the average velocity over the 100-mm length.  The 
absolute value of this velocity error of course depends on the speed of the crank.  

	 2	 The linkage dimensions for part (a) are found from the ratios in columns 7, 8, and 9.  The crank 
length required to obtain the 100-mm length of straight line ∆x is:

D



from Table 3-1: 3.238

(a)

3.238
100 mm

3.23
30.88 mm

2

2

x
L

L x

=

= = =

		  The other link lengths are then:
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=

= = =

from Table 3-1: 2.625

(b)
2.625 2.625 30.88 mm 81.07 mm

1

2

1 2

L
L

L L
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=

= = =

from Table 3-1: 3.438

(c)
3.438 3.438 30.88 mm 106.18 mm

3
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3 2

L
L

L L
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		  The complete linkage is then L1 = 81.07, L2 = 30.88, L3 = L4 = BP = 106.18 mm.  The nominal 
velocity Vx of the coupler point at the center of the straight line (θ2 = 180°) can be found from 
the factor in the 6th column which must be multiplied by the crank length L2 and the crank 
angular velocity ω2 in radians per second (rad/sec).

	 3	 Part (b) requires the most accurate velocity.  Again enter Table 3-1 at the 6th row which is for a 
crank angle duration ∆β of the required 120°.  The 10th column shows the minimum possible 
deviation from constant velocity to be 1.885% of the average velocity Vx over the length of the 
straight-line portion used.  The 11th column shows the deviation from straight to be 0.752% 
of the length of the straight-line portion used.  For a 100-mm length the absolute deviation in 
straightness for this optimum constant velocity linkage will then be 0.75 mm (0.030 in). 

	 4	 Link lengths for this mechanism are found in the same way as was done in step 2 except that 
the link ratios 1.825, 2.238, and 2.600 from columns 13, 14, and 15 are used.  The result is   
L1 = 70.19, L2 = 38.46, L3 = L4 = BP = 86.08 mm.  The nominal velocity Vx of the coupler 
point at the center of the straight line (θ2 = 180°) can be found from the factor in the 12th 
column which must be multiplied by the crank length L2 and the crank angular velocity ω2 
in rad/sec.

	 5	 The first solution (step 2) gives an extremely accurate straight line over a significant part of 
the cycle. but its 15% deviation in velocity would probably be unacceptable if that factor were 
considered important.  The second solution (step 3) gives less than 2% deviation from constant 
velocity, which may be viable for a design application.  Its 3/4% deviation from straightness, 
while much greater than the first design, may be acceptable in some situations.

 

3.9	 DWELL MECHANISMS View the lecture video (35:36)*

A common requirement in machine design problems is the need for a dwell in the output 
motion.  A dwell is defined as zero output motion for some nonzero input motion.  In 
other words, the motor keeps going, but the output link stops moving.  Many produc-
tion machines perform a series of operations which involve feeding a part or tool into a 
workspace, and then holding it there (in a dwell) while some task is performed.  Then the 
part must be removed from the workspace, and perhaps held in a second dwell while the 
rest of the machine “catches up” by indexing or performing some other tasks.  Cams and 
followers (Chapter 8) are often used for these tasks because it is trivially easy to create a 
dwell with a cam.  But there is always a trade-off in engineering design, and cams have 
their problems of high cost and wear as described in Section 2.18. 

 It is also possible to obtain dwells with “pure” linkages of only links and pin joints, 
which have the advantage over cams of low cost and high reliability.  Dwell linkages are 
more difficult to design than are cams with dwells.  Linkages will usually yield only an 
approximate dwell but will be much cheaper to make and maintain than cams.  Thus they 
may be worth the effort.

Single-Dwell Linkages

There are two usual approaches to designing single-dwell linkages.  Both result in sixbar 
mechanisms, and both require first finding a fourbar with a suitable coupler curve.  A 
dyad is then added to provide an output link with the desired dwell characteristic.  The 

 

*  http://www.designofma-
chinery.com/DOM/Dwell_
Mechanisms.mp4  

http://www.designofmachinery.com/DOM/Dwell_Mechanisms.mp4
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first approach to be discussed requires the design or definition of a fourbar with a coupler 
curve that contains an approximate circle arc portion, where the “arc” occupies the desired 
portion of the input link (crank) cycle designated as the dwell.  An atlas of coupler curves 
is invaluable for this part of the task.  Symmetrical coupler curves are also well suited to 
this task, and the information in Figure 3-21 can be used to find them.

✍EXAMPLE 3‑13

Single-Dwell Mechanism with Only Revolute Joints

Problem:	 Design a sixbar linkage for 90° rocker motion over 300 crank degrees with dwell 
for the remaining 60°.

Solution:	 (See Figure 3‑31.)

	 1	 Search the H&N atlas for a fourbar linkage with a coupler curve having an approximate (pseu-
do) circle arc portion which occupies 60° of crank motion (12 dashes). The chosen fourbar is 
shown in Figure 3‑31a.

	 2	 Lay out this linkage to scale including the coupler curve and find the approximate center of the 
chosen coupler curve pseudo-arc using graphical geometric techniques.  To do so, draw the 
chord of the arc and construct its perpendicular bisector as shown in Figure 3‑31b. The center 
will lie on this bisector.  Find it by striking arcs with your compass point on the bisector while 
adjusting the radius to get the best fit to the coupler curve.  Label the arc center D.

	 3	 Your compass should now be set to the approximate radius of the coupler arc.  This will be the 
length of link 5 which is to be attached at the coupler point P.

	 4	 Trace the coupler curve with the compass point, while keeping the compass pencil lead on the 
perpendicular bisector, and find the extreme location along the bisector that the compass lead 
will reach.  Label this point E.

	 5	 The line segment DE represents the maximum displacement that a link of length PD, attached 
at P, will reach along the bisector.

	 6	 Construct a perpendicular bisector of the line segment DE, and extend it in a convenient direc-
tion.

	 7	 Locate fixed pivot O6 on the bisector of DE such that lines O6D and O6E subtend the desired 
output angle, in this example, 90°.

	 8	 Draw link 6 from D (or E ) through O6 and extend to any convenient length.  This is the output 
link which will dwell for the specified portion of the crank cycle.

	 9	 Check the transmission angles.

	10	 Make a model of the linkage and articulate it to check its function.

This linkage dwells because, during the time that the coupler point P is traversing the 
pseudo-arc portion of the coupler curve, the other end of link 5, attached to P and the same 
length as the arc radius, is essentially stationary at its other end, which is the arc center.  
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( a )  Chosen fourbar crank-rocker with
         pseudo-arc section for 60° of link 2 rotation

FIGURE 3-31
Design of a sixbar single-dwell mechanism with rocker output or slider output, using a pseudo-arc coupler curve

(b )  Construction of the output-dwell dyad

(c )  Completed sixbar single-dwell linkage
        with rocker output option
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However the dwell at point D will have some “jitter” or oscillation, due to the fact that D 
is only an approximate center of the pseudo-arc on the sixth-degree coupler curve.  When 
point P leaves the arc portion, it will smoothly drive link 5 from point D to point E, which 
will in turn rotate the output link 6 through its arc as shown in Figure 3‑31c.*  Note that 
we can have any angular displacement of link 6 we desire with the same links 2 to 5, as 
they alone completely define the dwell aspect.  Moving pivot O6 left and right along the 
bisector of line DE will change the angular displacement of link 6 but not its timing.  In 
fact, a slider block could be substituted for link 6 as shown in Figure 3‑31d,* and linear 
translation along line DE with the same timing and dwell at D will result.  Input the file 
F03‑31c.6br to program Linkages and animate to see the linkage of Example 3‑13 in 
motion.  The dwell in the motion of link 6 can be clearly seen in the animation, including 
the jitter due to its approximate nature.

Double-Dwell Linkages

It is also possible, using a fourbar coupler curve, to create a double-dwell output mo-
tion. One approach is the same as that used in the single-dwell of Example 3‑13. Now 
a coupler curve is needed which has two approximate circle arcs of the same radius but 
with different centers, both convex or both concave.  A link 5 of length equal to the radius 
of the two arcs will be added such that it and link 6 will remain nearly stationary at the 
center of each of the arcs, while the coupler point traverses the circular parts of its path.  
Significant motion of the output link 6 will occur only when the coupler point is between 
those arc portions.  Higher-order linkages, such as the geared fivebar, can be used to 
create multiple-dwell outputs by a similar technique since they possess coupler curves 
with multiple, approximate circle arcs. See the built-in example double-dwell linkage in 
program Linkages for a demonstration of this approach.

A second approach uses a coupler curve with two approximate straight-line segments 
of appropriate duration.  If a pivoted slider block (link 5) is attached to the coupler at this 
point, and link 6 is allowed to slide in link 5, it only remains to choose a pivot O6 at the 
intersection of the straight-line segments extended.  The result is shown in Figure 3‑32.  
While block 5 is traversing the “straight-line” segments of the curve, it will not impart any 
angular motion to link 6. The approximate nature of the fourbar straight line causes some 
jitter in these dwells also.

✍EXAMPLE 3‑14

Double-Dwell Mechanism.

Problem:	 Design a sixbar linkage for 80° rocker output motion over 20 crank degrees with 
dwell for 160°, return motion over 140° and second dwell for 40°.

Solution:	 (See Figure 3‑32.)

	 1	 Search the H&N atlas for a linkage with a coupler curve having two approximate straight-line 
portions.  One should occupy 160° of crank motion (32 dashes), and the second 40° of crank 
motion (8 dashes). This is a wedge-shaped curve as shown in Figure 3‑32a.

	 2	 Lay out this linkage to scale including the coupler curve and find the intersection of two tangent 
lines colinear with the straight segments.  Label this point O6.

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.
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	 3	 Design link 6 to lie along these straight tangents, pivoted at O6.  Provide a slot in link 6 to 
accommodate slider block 5 as shown in Figure 3‑32b.

	 4	 Connect slider block 5 to the coupler point P on link 3 with a pin joint.  The finished sixbar is 
shown in Figure 3‑32c.

	 5	 Check the transmission angles.

It should be apparent that these linkage dwell mechanisms have some disadvantages.  
Besides being difficult to synthesize, they give only approximate dwells which have some 

FIGURE 3-32
Double-dwell sixbar linkage

(b)  Slider dyad for double-dwell

( a )  Fourbar coupler curve
        with two "straight" segments 2
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( c )   Complete sixbar
         double-dwell linkage

O6

6

2

4

3

A
B

P

5

Dwell position

Dwell
position

O2

O4

View as a video
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†  This topic is addressed in 
depth in Chapter 13.

jitter on them.  Also, they tend to be large for the output motions obtained, so do not 
package well.  The acceleration of the output link can also be very high as in Figure 3‑32, 
when block 5 is near pivot O6.   (Note the large angular displacement of link 6 resulting 
from a small motion of link 5.)   Nevertheless they may be of value in situations where a 
completely stationary dwell is not required, and the low cost and high reliability of a link-
age are important factors.   Program Linkages has both single-dwell and double-dwell 
example linkages built in.

3.10	 OTHER USEFUL LINKAGES

There are many practical machine design problems that can be solved with clever linkage 
design.  One of the best references for these mechanisms is by Hain.[22]  Another use-
ful catalog of linkages is the four volumes of Artobolevsky.[20]  We will present a few 
examples from these that we find useful.  Some are fourbar linkages, others are Watt’s or 
Stephenson’s sixbars, or eightbar linkages.  Artobolevsky provides link ratios, but Hain 
does not.  Hain describes their graphical construction, so the dimensions of his linkages 
shown here are approximate, obtained by scaling his drawings.

Constant Velocity Piston Motion

The fourbar crank-slider linkage is probably the most frequently used linkage in machin-
ery.  Every internal combustion (IC) engine and reciprocating compressor has as many 
of them as it has cylinders.  Manufacturing machinery uses them to obtain straight-line 
motions.  In most cases this simple linkage is completely adequate for the application, 
converting continuous rotary input to oscillating straight-line output.  One limitation is 
lack of control over the slider’s velocity profile when the crank is driven with constant 
angular velocity.  Altering the link ratios (crank vs. coupler) has a second-order effect on 
the shape of the slider’s velocity and acceleration curves† but it will always be fundamen-
tally a sinusoidal motion.  In some cases, a constant or near constant velocity is needed 
on either the forward or backward stroke of the slider.  An example is a piston pump for 
metering fluids whose flow rate needs to be constant during the delivery stroke.  A direct 
solution is to use a cam to drive the piston with a constant velocity motion rather than use 
a crank-slider linkage.  However, Hain[22] provides a pure linkage solution to this problem 
that adds a drag-link fourbar stage to the crank-slider with the drag-link geometry chosen 
to modulate the sinusoidal slider motion to be approximately constant velocity.  

Figure 3-33 shows the result, which is effectively a Watt sixbar.  Constant angular 
velocity is input to link 2 of the drag-link stage.  It causes its “output” link 4 to have a non-
constant angular velocity that repeats each cycle. This varying angular velocity becomes 
the “input” to the crank-slider stage 4-5-6 whose input link is now link 4.  Thus, the drag 
link’s velocity oscillation effectively “corrects” or modulates the slider velocity to be close 
to constant on the forward stroke as plotted in the figure.  The deviation from constant ve-
locity is < 1% over 240° < θ2 < 270° and <= 4% over 190° < θ2 < 316°.  Its velocity on the 
return stroke must therefore vary to a greater degree than in the unmodulated linkage.  This 
is an example of the effect of cascading linkages.  Each stage’s output function becomes 
the input to the next, and the end result is their mathematical combination, analogous to 
adding terms to a series.  See the TKSolver file Dragslider.tkw.
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*  The linkages shown in 
Figures 3‑34 and 3-35 can 
be animated in program 
Linkages by opening the 
files F03-34.6br and F03-
35.6br, respectively.
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FIGURE 3-33
Approximate constant velocity, drag link driven slider-crank sixbar mechanism Adapted from Hain [22]

ω2

In addition to metering fluids, this linkage has application in situations where a part 
must be picked up from a nest on the stationary ground plane and transferred to a conveyor 
that is moving at constant velocity.  The slider has points of zero velocity at each extreme 
of motion, exact straight line motion in both directions, and a long region of approximately 
constant velocity.  Note however, that the Hoeken straight-line linkage of Section 3.8 gives 
a nearly exact straight line with close to constant velocity using only four links and four 
pin joints rather than the six links and slider track needed here.  Hoeken’s linkage is also 
useful for the pick-and-place-at-constant-velocity application.

Large Angular Excursion Rocker Motion*

It is often desired to obtain a rocking motion through a large angle with continuous rotary 
input.  A Grashof fourbar crank-rocker linkage is limited to about 120° of rocker oscil-
lation if the transmission angles are to be kept above 30°.  A rocker oscillation of 180° 
would obviously take the transmission angle to zero and also create a Barker Class III link-
age with change points, an unacceptable solution.  To get a larger oscillation than about 
120° with good transmission angles requires six links.  Hain[22] designed such a linkage 
(shown in Figure 3-34) as a Stephenson III sixbar that gives 180° of rocker motion with 
continuous rotation of the input crank.  It is a non-quick-return linkage in which 180° of 
input crank rotation corresponds to the full oscillation of the output rocker.  

An even larger rocker output of about 212° is obtained from the Watt II sixbar linkage 
shown in Figure 3-35.  This mechanism is used to oscillate the agitator in some washing 
machines.  The motor drives toothed crank 2 through a pinion P.  Crank 2 oscillates rocker 
4 through 102° via coupler 3.  Rocker 4 serves as the input to rocker 6 through coupler 5.  
Rocker 6 is attached to the agitator in the washtub.  The minimum transmission angles are 
36° in stage 1 (links 2-3-4) and 23° in stage 2 (links 4-5-6).

Hain[22] also created a remarkable eightbar linkage that gives ±360° of oscillatory 
rocker motion from continuous unidirectional rotation of the input crank!  This linkage, 
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FIGURE 3-34
Stephenson's III sixbar with 180° oscillation of link 6 when crank 2 revolves fully  Adapted from Hain [22] pp. 448-450

3.259

1.905

DB = 3.274

(a)  Extreme CCW position of link 6 )  Mid position of link 6 (c(b )  Extreme CW position of link 6 

O2

2 ω2

3

5

6
4 O6

O4

A

B

C

D

L4 = 2.125
L3 = AB = 4.248

L2 = 1.556
L6 = 1.542O4O6  = 1.00

∠CDB = 36°CD = 2.158

O22

ω2

3

5

O6

O4

6

4

A

B

C

D X

x x

ω2

O6

O4
View as a video

shown in Figure 3-36, has a minimum transmission angle of 30°.  Slight changes to this 
linkage’s geometry will give more or less than ±360° of output crank oscillation.  

Remote Center Circular Motion

When a rotary motion is needed but the center of that rotation is not available to mount the 
pivot of a crank, a linkage can be used to describe an approximate or exact circular motion 
“in the air” remote from the fixed and moving pivots of the linkage.  Artobolevsky[20] 
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Washing machine agitator mechanism: constant speed motor drives link 2 and agitator is oscillated by link 6 at O6
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(a )  First extreme position, θ2 = 209° (b )  Second extreme position, θ2 = 19°
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FIGURE 3-37 
Circle generating mechanisms Adapted from Artobolevsky [20] ,  Vol. 1 , pp. 450-451
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shows ten such mechanisms, two of which are reproduced in Figure 3‑37.  Figure 3-37a 
shows a Chebyschev fourbar approximate circle-tracing linkage.  When the crank rotates 
CCW, point P traces a circle of the same diameter CW.  Figure 3‑37b shows a Delone 
exact circle-tracing sixbar linkage that contains a pantograph cell (B-C-D-O4) that causes 
point P to mimic the motion of point A, giving an exact 1:1 replication of the circular 
motion of A about O4, but rotating in the opposite direction.  If a link were added between 
OP and P, it would rotate at the same speed but in the opposite direction to link 2. Thus 
this linkage could be substituted for a pair of external gears (gearset) with a 1:1 ratio (see 
Chapter 9 for information on gears).
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3.13	 PROBLEMS†

	 *3‑1	 Define the following examples as path, motion, or function generation cases.
a.	 A telescope aiming (star tracking) mechanism 
b.	 A backhoe bucket control mechanism
c.	 A thermostat adjusting mechanism
d.	 A computer printer head moving mechanism
e.	 An XY plotter pen control mechanism

	 3‑2	 Design a fourbar Grashof crank-rocker for 90° of output rocker motion with no quick 
return. (See Example 3‑1.)  Build a model and determine the toggle positions and the 
minimum transmission angle from the model.

	 *3‑3	 Design a fourbar mechanism to give the two positions shown in Figure P3‑1 of output 
rocker motion with no quick return.  (See Example 3‑2.)  Build a model and determine 
the toggle positions and the minimum transmission angle from the model.

	 3‑4	 Design a fourbar mechanism to give the two positions shown in Figure P3‑1 of coupler 
motion. (See Example 3‑3.)  Build a model and determine the toggle positions and the 
minimum transmission angle from the model.  Add a driver dyad.  (See Example 3‑4.) 

	 *3‑5	 Design a fourbar mechanism to give the three positions of coupler motion with no 
quick return shown in Figure P3‑2. (See also Example 3‑5.)  Ignore the points O2 and 
O4  shown.  Build a model and determine the toggle positions and the minimum trans-
mission angle from the model.  Add a driver dyad.  (See Example 3‑4.) 

	 *3‑6 	 Design a fourbar mechanism to give the three positions shown in Figure P3‑2 using the 
fixed pivots O2 and O4 shown.  Build a model and determine the toggle positions and 
the minimum transmission angle from the model.  Add a driver dyad.  

	 3‑7	 Repeat Problem 3‑2 with a quick-return time ratio of 1:1.4.  (See Example 3‑9.) 

	 *3‑8	 Design a sixbar drag link quick-return linkage for a time ratio of 1:2 and output rocker 
motion of 60°.  

	 3‑9	 Design a crank-shaper quick-return mechanism for a time ratio of 1:3 (see Figure 3‑14). 

	 *3‑10	 Find the two cognates of the linkage in Figure 3‑17.  Draw the Cayley and Roberts 
diagrams.  Check your results with program Linkages.

 

*  Answers in Appendix F.

	
†  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Working 
Model files.  PDF filenames 
are the same as the figure 
number.  Run the file Ani-
mations.html to access and 
run the animations.

FIGURE P3-1
Problems 3-3 to 3-4
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FIGURE P3-2
Problems 3-5 to 3-6
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	 3‑11	 Find the three equivalent geared fivebar linkages for the three fourbar cognates in  
Figure 3‑25a.  Check your results by comparing the coupler curves with program Link‑
ages.

	 3‑12	 Design a sixbar single-dwell linkage for a dwell of 90° of crank motion, with an output 
rocker motion of 45°.  

	 3‑13	 Design a sixbar double-dwell linkage for a dwell of 90° of crank motion, with an output 
rocker motion of 60°, followed by a second dwell of about 60° of crank motion.  

	 3‑14 	 Figure P3-3 shows a treadle-operated grinding wheel driven by a fourbar linkage.  Make 
a model of the linkage to any convenient scale.  Find its minimum transmission angles 
from the model.  Comment on its operation.  Will it work?  If so, explain how it does.

	 3‑15	 Figure P3-4 shows a non-Grashof fourbar linkage that is driven from link O2A.  All 
dimensions are in centimeters (cm).
a.	 Find the transmission angle at the position shown.
b.	 Find the toggle positions in terms of angle AO2O4.
c.	 Find the maximum and minimum transmission angles over its range of motion by graphi-

cal techniques.
d.	 Draw the coupler curve of point P over its range of motion.

	 3-16	 Draw the Roberts diagram for the linkage in Figure P3-4 and find its two cognates.  Are 
they Grashof or non-Grashof?

View as a video

FIGURE P3-3 
Problem 3-14  Treadle-
operated grinding
wheel

F

0.6 m

0.13 m0.75 m

0.9 m

View as a video
http://www.designof-

machinery.com/DOM/
treadle_wheel.avi

http://www.designofma-
chinery.com/DOM/three_

positions_3_35.avi

http://www.designofmachinery.com/DOM/three_positions_3_35.avi
http://www.designofmachinery.com/DOM/treadle_wheel.avi
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Problems 3-15 to 3-18
FIGURE P3-4

forks

1 m

fork lift truck
FIGURE P3-5
Problem 3-19

	 3-17	 Design a Watt I sixbar to give parallel motion that follows the coupler path of point P 
of the linkage in Figure P3-4.

	 3-18	 Add a driver dyad to the solution of Problem 3-17 to drive it over its possible range of 
motion with no quick return.  (The result will be an eightbar linkage.)

	 3-19	 Design a pin-jointed linkage that will guide the forks of the fork lift truck in Figure P3-5 
up and down in an approximate straight line over the range of motion shown.  Arrange 
the fixed pivots so they are close to some part of the existing frame or body of the truck.

	 3-20	 Figure P3-6 shows a “V-link” off-loading mechanism for a paper roll conveyor.  Design 
a pin-jointed linkage to replace the air cylinder driver that will rotate the rocker arm 
and V-link through the 90° motion shown.  Keep the fixed pivots as close to the existing 
frame as possible.  Your fourbar linkage should be Grashof and be in toggle at each 
extreme position of the rocker arm.

	 3-21	 Figure P3-7 shows a walking-beam transport mechanism that uses a fourbar coupler 
curve, replicated with a parallelogram linkage for parallel motion.  Note the dupli-
cate crank and coupler shown ghosted in the right half of the mechanism—they are 
redundant and have been removed from the duplicate fourbar linkage.  Using the same 
fourbar driving stage (links L1, L2, L3, L4 with coupler point P), design a Watt I sixbar 
linkage that will drive link 8 in the same parallel motion using two fewer links.

	 *3-22	 Find the maximum and minimum transmission angles of the fourbar driving stage 
(links L1, L2, L3, L4 ) in Figure P3-7 to graphical accuracy.

	 *3-23	 Figure P3-8 shows a fourbar linkage used in a power loom to drive a comblike reed 
against the thread, “beating it up” into the cloth.  Determine its Grashof condition and 
its minimum and maximum transmission angles to graphical accuracy.

	 3-24	 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-9.

 

*  Answers in Appendix F.
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	 3-25	 Find the equivalent geared fivebar mechanism cognate of the linkage in Figure P3-9.

	 3-26	 Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has 
a rocker output through 45°.

	 3-27	 Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has 
a slider output stroke of 5 crank units.

	 3-28	 Use two of the cognates in Figure 3-26b to design a Watt I sixbar parallel motion mech-
anism that carries a link through the same coupler curve at all points.  Comment on its 
similarities to the original Roberts diagram.

	 3-29	 Find the cognates of the Watt straight-line mechanism in Figure 3-29a.

	 3-30	 Find the cognates of the Roberts straight-line mechanism in Figure 3-29c.

FIGURE P3-7
Problems 3-21 to 3-22  Straight-line walking-beam eightbar transport mechanism
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View as a video
http://www.designofma-
chinery.com/DOM/walk-
ing_beam_eight-bar.avi
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FIGURE P3-8 
Problem 3-23
Loom laybar drive

View as a video
http://www.designof-

machinery.com/DOM/
loom_laybar_drive.avi
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FIGURE P3-6
Problem 3-20
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	 *3-31	 Design a Hoeken straight-line linkage to give minimum error in velocity over 22% of 
the cycle for a 15-cm-long straight-line motion.  Specify all linkage parameters.

	 3-32	 Design a Hoeken straight-line linkage to give minimum error in straightness over 39% 
of the cycle for a 20-cm-long straight-line motion.  Specify all linkage parameters.

	 3-33	 Design a linkage that will give a symmetrical “kidney bean” shaped coupler curve as 
shown in Figure 3-16.  Use the data in Figure 3-21 to determine the required link ratios 
and generate the coupler curve with program Linkages.

	 3-34	 Repeat Problem 3-33 for a “double straight” coupler curve.

	 3-35	 Repeat problem 3-33 for a “scimitar” coupler curve with two distinct cusps.  Show that 
there are (or are not) true cusps on the curve by using program Linkages.  (Hint: Think 
about the definition of a cusp and how you can use the program’s data to show it.)

	 *3-36	 Find the Grashof condition, inversion, any limit positions, and the extreme values of the 
transmission angle (to graphical accuracy) of the linkage in Figure P3-10.

	 3-37	 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-10.

	 3-38	 Find the three geared fivebar cognates of the linkage in Figure P3-10.

 

*  Answers in Appendix F.

B

AP = 1.09

L2 = 0.785

P
L3 = 0.356

L4 = 0.950

A

L1 = 0.544

O2 O4

FIGURE P3-10
Problems 3-36 to 3-38
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FIGURE P3-9
Problems 3-24 to 3-27

View as a video
http://www.designof-
machinery.com/DOM/
cognates_hw_3_24.avi

http://www.designofmachinery.com/DOM/cognates_hw_3_24.avi
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*  Answers in Appendix F.
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FIGURE P3-11
Problems 3-39 to 3-41
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54°

FIGURE P3-12
Problems 3-42 to 3-44

	 *3-39	 Find the Grashof condition, any limit positions, and the extreme values of the transmis-
sion angle (to graphical accuracy) of the linkage in Figure P3-11.

	 3-40	 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-11.

	 3-41	 Find the three geared fivebar cognates of the linkage in Figure P3-11.

	 *3-42	 Find the Grashof condition, any limit positions, and the extreme values of the transmis-
sion angle (to graphical accuracy) of the linkage in Figure P3-12.

	 3-43	 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-12.

	 3-44	 Find the three geared fivebar cognates of the linkage in Figure P3-12.

	 3-45	 Prove that the relationships between the angular velocities of various links in the Rob-
erts diagram as shown in Figure 3-25 are true.

	 3-46	 Design a fourbar linkage to move the object in Figure P3-13 from position 1 to 2 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed making it a sixbar.  All fixed pivots should be on the base.
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FIGURE P3-13 
Problems 3-46 to 3-48

View as a video

	 3-47	 Design a fourbar linkage to move the object in Figure P3-13 from position 2 to 3 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed making it a sixbar.  All fixed pivots should be on the base.

	 3-48	 Design a fourbar linkage to move the object in Figure P3-13 through the three positions 
shown using points A and B for attachment.  Add a driver dyad to limit its motion to the 
range of positions designed, making it a sixbar.  All fixed pivots should be on the base.

	 3-49	 Design a fourbar linkage to move the object in Figure P3-14 from position 1 to 2 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed making it a sixbar.  All fixed pivots should be on the base.

	 3-50	 Design a fourbar linkage to move the object in Figure P3-14 from position 2 to 3 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed making it a sixbar.  All fixed pivots should be on the base.

	 3-51	 Design a fourbar linkage to move the object in Figure P3-14 through the three positions 
shown using points A and B for attachment.  Add a driver dyad to limit its motion to the 
range of positions designed, making it a sixbar.  All fixed pivots should be on the base.

	 3-52	 Design a fourbar linkage to move the object in Figure P3-15 from position 1 to 2 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed, making it a sixbar.  All fixed pivots should be on the base.

	 3-53	 Design a fourbar linkage to move the object in Figure P3-15 from position 2 to 3 using 
points A and B for attachment.  Add a driver dyad to limit its motion to the range of 
positions designed, making it a sixbar.  All fixed pivots should be on the base.

http://www.designofma-
chinery.com/DOM/three_

positions_3_48.avi

http://www.designofmachinery.com/DOM/three_positions_3_48.avi
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Problems 3-49 to 3-51
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Problems 3-52 to 3-54
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FIGURE P3-16
Problems 3-55 to 3-58

	 3-54	 Design a fourbar linkage to move the object in Figure P3-15 through the three positions 
shown using points A and B for attachment.  Add a driver dyad to limit its motion to the 
range of positions designed, making it a sixbar.  All fixed pivots should be on the base.

	 3-55	 Design a fourbar mechanism to move the link shown in Figure P3-16 from position 1 
to position 2.  Ignore the third position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

	 3-56	 Design a fourbar mechanism to move the link shown in Figure P3-16 from position 2 
to position 3.  Ignore the first position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

	 3-57	 Design a fourbar mechanism to give the three positions shown in Figure P3-16.  Ignore 
the fixed pivots O2 and O4 shown.  Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

	 3-58	 Design a fourbar mechanism to give the three positions shown in Figure P3-16 using 
the fixed pivots O2 and O4 shown.  (See Example 3-7.)  Build a model and add a driver 
dyad to limit its motion to the range of positions designed, making it a sixbar.

	 3-59	 Design a fourbar mechanism to move the link shown in Figure P3-17 from position 1 
to position 2.  Ignore the third position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

	 3-60	 Design a fourbar mechanism to move the link shown in Figure P3-17 from position 2 
to position 3.  Ignore the first position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.
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FIGURE P3-17
Problems 3-59 to 3-62

	 3-61	 Design a fourbar mechanism to give the three positions shown in Figure P3-17.  Ignore 
the fixed pivots O2 and O4 shown.  Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

	 3-62	 Design a fourbar mechanism to give the three positions shown in Figure P3-17 using 
the fixed pivots O2 and O4 shown.  (See Example 3-7.)  Build a model and add a driver 
dyad to limit its motion to the range of positions designed, making it a sixbar.

	 3-63	 Design a fourbar mechanism to move the link shown in Figure P3-18 from position 1 
to position 2.  Ignore the third position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

	 3-64	 Design a fourbar mechanism to move the link shown in Figure P3-18 from position 2 
to position 3.  Ignore the first position and the fixed pivots O2 and O4 shown.  Build a 
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

	 3-65	 Design a fourbar mechanism to give the three positions shown in Figure P3-18.  Ignore 
the fixed pivots O2 and O4 shown.  Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

	 3-66	 Design a fourbar mechanism to give the three positions shown in Figure P3-18 using 
the fixed pivots O2 and O4 shown.  (See Example 3-7.)  Build a model and add a driver 
dyad to limit its motion to the range of positions designed, making it a sixbar.

	 3-67	 Design a fourbar Grashof crank-rocker for 120° of output rocker motion with a quick-
return time ratio of 1:1.2.  (See Example 3-9.)
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FIGURE P3-18
Problems 3-63 to 3-66

	 3-68	 Design a fourbar Grashof crank-rocker for 100° of output rocker motion with a quick-
return time ratio of 1:1.5.  (See Example 3-9.)

	 3-69	 Design a fourbar Grashof crank-rocker for 80° of output rocker motion with a quick-
return time ratio of 1:1.33.  (See Example 3-9.)

	 3-70	 Design a sixbar drag link quick-return linkage for a time ratio of 1:4 and output rocker 
motion of 50°.

	 3-71	 Design a crank shaper quick-return mechanism for a time ratio of 1:2.5 (See Figure 
3-14).

	 3-72	 Design a sixbar, single-dwell linkage for a dwell of 70° of crank motion, with an output 
rocker motion of 30° using a symmetrical fourbar linkage having the following pa-
rameters: ground link ratio = 2.0, common link ratio = 2.0, and coupler angle γ = 40°.  
(See Example 3-13.)

	 3-73	 Design a sixbar, single-dwell linkage for a dwell of 100° of crank motion, with an 
output rocker motion of 50° using a symmetrical fourbar linkage having the following 
parameters: ground link ratio = 2.0, common link ratio = 2.5, and coupler angle γ = 
60°.  (See Example 3-13.)
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Problems 3-84 to 3-87

	 3-74	 Design a sixbar, single-dwell linkage for a dwell of 80° of crank motion, with an output 
rocker motion of 45° using a symmetrical fourbar linkage having the following param-
eters: ground link ratio = 2.0, common link ratio = 1.75, and coupler angle γ = 70°.  
(See Example 3-13.)

	 3-75	 Using the method of Example 3-11, show that the sixbar Chebyschev straight-line 
linkage of Figure P2-5 is a combination of the fourbar Chebyschev straight-line link-
age of Figure 3-29d and its Hoeken cognate of Figure 3-29e.  See also Figure 3-26 for 
additional information useful to this solution.  Graphically construct the Chebyschev 
sixbar parallel motion linkage of Figure P2-5a from its two fourbar linkage constituents 
and build a physical or computer model of the result.

	 3-76	 Design a driver dyad to drive link 2 of the Evans straight-line linkage in Figure 3-29f 
from 150° to 210°.  Make a model of the resulting sixbar linkage and trace the coupler 
curve.

	 3-77	 Design a driver dyad to drive link 2 of the Evans straight-line linkage in Figure 3-29g 
from –40° to 40°.  Make a model of the resulting sixbar linkage and trace the coupler 
curve.

	 3-78	 Figure 6 on page ix of the Hrones and Nelson atlas of fourbar coupler curves shows a 
50-point coupler that was used to generate the curves in the atlas. Using the definition 
of the vector R given in Figure 3-17b of the text, determine the 10 possible pairs of 
values of φ and R for the first row of points above the horizontal axis if the grid point 
spacing is one-half the length of the unit crank. 
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*  Answers in Appendix F.

	 *3-79	 The first set of 10 coupler curves on page 1 of the Hrones and Nelson atlas of fourbar 
coupler curves has A = B = C = 1.5.  Model this linkage with program Linkages using 
the coupler point farthest to the left in the row shown on page 1 and plot the resulting 
coupler curve.  Note that you will have to orient link 1 at the proper angle in Linkages 
to get the curve as shown in the atlas.

	 3-80	 Repeat problem 3-79 for the set of coupler curves on page 17 of the Hrones and Nelson 
atlas (see page 32 of the PDF file) which has A = 1.5, B = C = 3.0, using the coupler 
point farthest to the right in the row shown.

	 3-81	 Repeat problem 3-79 for the set of coupler curves on page 21 of the Hrones and Nelson 
atlas (see page 36 of the PDF file) which has A = 1.5, B = C = 3.5, using the second 
coupler point from the right end in the row shown.

	 3-82	 Repeat problem 3-79 for the set of coupler curves on page 34 of the Hrones and Nelson 
atlas (see page 49 of the PDF file) which has A = 2.0, B = 1.5, C = 2.0, using the cou-
pler point farthest to the right in the row shown.

	 3-83	 Repeat problem 3-79 for the set of coupler curves on page 115 of the Hrones and Nel-
son atlas (see page 130 of the PDF file) which has A = 2.5, B = 1.5, C = 2.5, using the 
fifth coupler point from the left end in the row shown.
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	 3-84	 Design a fourbar mechanism to move the link shown in Figure P3-19 from position 1 
to position 2.  Ignore the third position and the fixed pivots O2 and O4 shown.  Build a 
cardboard model that demonstrates the required movement.

	 3-85	 Design a fourbar mechanism to move the link shown in Figure P3-19 from position 2 
to position 3.  Ignore the first position and the fixed pivots O2 and O4 shown.  Build a 
cardboard model that demonstrates the required movement.

	 3-86	 Design a fourbar mechanism to give the three positions shown in Figure P3-19.  Ignore 
the points O2 and O4 shown.  Build a cardboard model that has stops to limit its motion 
to the range of positions designed.

	 3-87	 Design a fourbar mechanism to give the three positions shown in Figure P3-19 using 
the fixed pivots O2 and O4 shown.  See Example 3-7.  Build a cardboard model that has 
stops to limit its motion to the range of positions designed.

	 3-88	 The side view of the upper section of a kitchen-pantry cabinet is shown in Figure 
P3-20.  It has a removable shelf 14 in above the bottom of the section but it is too high 
off the floor to be useful.  Design a fourbar linkage to move the shelf from the position 
shown in the figure to a lower position keeping it horizontal throughout.  The moving 
pivots should be in Region A and the fixed pivots should be in Region B.  Additionally, 
the shelf should not intrude into Region C and it should be stable when in the fully 
raised position.

	 3-89	 Design a fourbar mechanism to give the three positions of coupler motion shown in 
Figure P3-21.  (See also Example 3-5.)  Ignore the points O2 and O4 shown.
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Problems 3-89 and 3-90
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	 3-90	 Design a fourbar mechanism to give the three positions shown in Figure P3-21 using 
the fixed pivots O2 and O4 shown.

	 3-91	 Design a fourbar Grashof crank-rocker for 60 degrees of output rocker motion with a 
quick-return time ratio of 1:1.25.

	 3-92	 Design a crank-shaper quick-return mechanism for a time ratio of 1:4 (Figure 3-14).

	 3-93	 Figure P3-22 shows a non-Grashof fourbar linkage that is driven from link O2A.  All 
dimensions are in inches (in). 
	 (a) Find the transmission angle at the position shown.
	 (b) Find the toggle positions in terms of angle AO2O4.    

	 3-94	 The Peaucellier straight line linkage shown in Figure 3-29(j) will generate true circle 
arcs if the fixed pivot O2 is moved to the left or right with only the length of the ground 
link being changed.  Determine, graphically, the radius of the circular arc traced by 
point P over the range of 0° ≤ q2 ≤ 60°≤ if the links have the following lengths: L1 = 
12, L2 = 10, L3 = L4 = 22, and L5 = L6 = L7 = L8 = 6.5.

	 3-95	 Design a fourbar Grashof crank-rocker for 80 degrees of output rocker motion with a 
quick-return time ratio of 1:1.333.

	 3-96	 Design a sixbar drag link quick-return linkage for a time ratio of 1 : 2.6, and output 
rocker motion of 70 degrees.  (See Example 3-10.)

3.14	 PROJECTS

These larger-scale project statements deliberately lack detail and structure and are loosely defined.  
Thus, they are similar to the kind of “identification of need” problem statement commonly encoun-
tered in engineering practice.  It is left to the student to structure the problem through background 
research and to create a clear goal statement and set of performance specifications before attempt-
ing to design a solution.  This design process is spelled out in Chapter 1 and should be followed in 
all of these examples.  These projects can be done as an exercise in mechanism synthesis alone or 
can be revisited and thoroughly analyzed by the methods presented in later chapters as well.  All 
results should be documented in a professional engineering report.

	 P3‑1	 The tennis coach needs a better tennis ball server for practice.  This device must fire 
a sequence of standard tennis balls from one side of a standard tennis court over the 
net such that they land and bounce within each of the three court areas defined by the 
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court’s white lines.  The order and frequency of a ball’s landing in any one of the three 
court areas must be random.  The device should operate automatically and unattended 
except for the refill of balls.  It should fire 50 balls between reloads.  The timing of 
ball releases should vary.  For simplicity, a motor driven pin-jointed linkage design is 
preferred.

	 P3‑2	 A quadriplegic patient has lost all motion except that of her head.  She can only move a 
small “mouth stick” to effect a switch closure.  She was an avid reader before her injury 
and would like again to be able to read standard hardcover books without the need of a 
person to turn pages for her.  Thus, a reliable, simple, and inexpensive automatic page 
turner is needed.  The book may be placed in the device by an assistant.  It should ac-
commodate as wide a range of book sizes as possible.  Book damage is to be avoided 
and safety of the user is paramount.

	 P3‑3	 Grandma’s off her rocker again! Junior’s run down to the Bingo parlor to fetch her, but 
we’ve got to do something about her rocking chair before she gets back.  She’s been 
complaining that her arthritis makes it too painful to push the rocker.  So, for her 100th 
birthday in 2 weeks, we’re going to surprise her with a new, automated, motorized 
rocking chair.  The only constraints placed on the problem are that the device must be 
safe and must provide interesting and pleasant motions, similar to those of her present 
Boston rocker, to all parts of the occupant’s body.  Since simplicity is the mark of good 
design, a linkage solution with only full pin joints is preferred.

	 P3‑4	 The local amusement park’s business is suffering as a result of the proliferation of 
computer game parlors.  They need a new and more exciting ride which will attract 
new customers.  The only constraints are that it must be safe, provide excitement, and 
not subject the occupants to excessive accelerations or velocities.  Also it must be 
as compact as possible, since space is limited.  Continuous rotary input and full pin 
joints are preferred.

	 P3‑5	 The student section of ASME is sponsoring a spring fling on campus.  They need a 
mechanism for their “Dunk the Professor” booth which will carry the unfortunate 
(untenured) volunteer into and out of the water tub.  The contestants will provide the 
inputs to a multiple-DOF mechanism.  If they know their kinematics, they can provide 
a combination of inputs which will dunk the victim.

	 P3‑6	 The National House of Flapjacks wants to automate its flapjack production.  It needs a 
mechanism that will automatically flip the flapjacks “on the fly” as they travel through 
the griddle on a continuously moving conveyor.  This mechanism must track the con-
stant velocity of the conveyor, pick up a pancake, flip it over, and place it back onto the 
conveyor.

	 P3‑7	 Many varieties and shapes of computer video monitors now exist.  Their long-term use 
leads to eyestrain and body fatigue.  There is a need for an adjustable stand which will 
hold the video monitor and the separate keyboard at any position the user deems com-
fortable.  The computer’s central processor unit (CPU) can be remotely located.  This 
device should be freestanding to allow use with a comfortable chair, couch, or lounge 
of the user’s choice.  It should not require the user to assume the conventional “seated 
at a desk” posture to use the computer.  It must be stable in all positions and safely sup-
port the equipment’s weight.

	 P3‑8	 Most small boat trailers must be submerged in the water to launch or retrieve the boat.  
This greatly reduces the life of the trailer, especially in salt water.  A need exists for a 
trailer that will remain on dry land while it launches or retrieves the boat.  No part of 
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the trailer should get wet.  User safety is of greatest concern, as is protection of the boat 
from damage.

	 P3‑9	 The “Save the Skeet” foundation has requested a more humane skeet launcher be de-
signed.  While they have not yet succeeded in passing legislation to prevent the whole-
sale slaughter of these little devils, they are concerned about the inhumane aspects of 
the large accelerations imparted to the skeet as it is launched into the sky for the sports-
man to shoot it down.  The need is for a skeet launcher that will smoothly accelerate the 
clay pigeon onto its desired trajectory.

	 P3‑10	 The coin-operated “kid bouncer” machines found outside supermarkets typically 
provide a very unimaginative rocking motion to the occupant.  There is a need for a 
superior “bouncer” which will give more interesting motions while remaining safe for 
small children.

	 P3‑11	 Horseback riding is a very expensive hobby or sport.  There is a need for a horseback 
riding simulator to train prospective riders sans the expensive horse.  This device 
should provide similar motions to the occupant as she would feel in the saddle under 
various gaits such as a walk, canter, or gallop.  A more advanced version might contain 
jumping motions as well.  User safety is most important.

	 P3‑12	 The nation is on a fitness craze.  Many exercise machines have been devised.  There is 
still room for improvement to these devices.  They are typically designed for the young, 
strong athlete.  There is also a need for an ergonomically optimum exercise machine for 
the older person who needs gentler exercise. 

	 P3‑13	 A paraplegic patient needs a device to get himself from his wheelchair into the Jacuzzi 
with no assistance.  He has good upper body and arm strength.  Safety is paramount.

	 P3‑14	 The army has requested a mechanical walking device to test army boots for durability.  
It should mimic a person’s walking motion and provide forces similar to an average 
soldier’s foot.

	 P3‑15	 NASA wants a zero-g machine for astronaut training.  It must carry one person and 
provide a negative 1-g acceleration for as long as possible.

	 P3‑16	 The Amusement Machine Co. Inc. wants a portable “whip” ride that will give two or 
four passengers a thrilling but safe ride, and which can be pulled behind a pickup truck 
from one location to another.

	 P3‑17	 The Air Force has requested a pilot training simulator which will give potential pilots 
exposure to g forces similar to those they will experience in dogfight maneuvers.

	 P3‑18	 Cheers needs a better “mechanical bull” simulator for its “yuppie” bar in Boston.  It 
must give a thrilling “bucking bronco” ride but be safe.

	 P3‑19	 Despite the improvements in handicap access, many curbs block wheelchairs from 
public places.  Design an attachment for a conventional wheelchair which will allow it 
to get up over a curb.

	 P3‑20	 A carpenter needs a dumping attachment to fit in her pickup truck so she can dump 
building materials.  She can’t afford to buy a dump truck.

	 P3‑21	 The carpenter in Project P3-20 wants an inexpensive lift gate designed to fit her full-
sized pickup truck in order to lift and lower heavy cargo to the truck bed.
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	 P3‑22	 The carpenter in Project P3-20 is very demanding (and lazy).  She also wants a device 
to lift sheet rock and blueboard into place on ceilings or walls to hold it while she 
screws it on. 

	 P3‑23	 Click and Clack, the tappet brothers, need a better transmission jack for their Good 
News Garage.  This device should position a transmission under a car (on a lift) and 
allow it to be maneuvered into place safely and quickly.

	 P3‑24	 A paraplegic with good upper body strength, who was an avid golfer before his injury, 
wants a mechanism to allow him to stand up in his wheelchair in order to once again 
play golf.  It must not interfere with normal wheelchair use, though it could be removed 
from the chair when he is not golfing.

	 P3‑25	 A wheelchair lift is needed to raise the wheelchair and person 3 ft from the garage 
floor to the level of the first floor of the house.  Safety, reliability, and cost are of major 
concern.

	 P3‑26	 A paraplegic needs a mechanism that can be installed on a full-size 3-door pickup 
truck that will lift the wheelchair into the area behind the driver’s seat.  This person 
has excellent upper body strength and, with the aid of specially installed handles on the 
truck, can get into the cab from the chair.  The truck can be modified as necessary to 
accommodate this task.  For example, attachment points can be added to its structure 
and the back seat of the truck can be removed if necessary.

	 P3‑27	 There is demand for a better baby transport device.  Many such devices are on the mar-
ket.  Some are called carriages, others strollers.  Some are convertible to multiple uses.  
Our marketing survey data so far seems to indicate that the customers want portability 
(i.e., foldability), light weight, one-handed operation, and large wheels.  Some of these 
features are present in existing devices.  We need a better design that more completely 
meets the needs of the customer.  The device must be stable, effective, and safe for the 
baby and the operator.  Full joints are preferred to half joints and simplicity is the mark 
of good design.  A linkage solution with manual input is desired.  

	 P3‑28	 A boat owner has requested that we design a lift mechanism to automatically move a 
1000-lb, 15-ft boat from a cradle on land to the water.  A seawall protects the owner’s 
yard, and the boat cradle sits above the seawall.  The tidal variation is 4 ft and the 
seawall is 3 ft above the high tide mark.  Your mechanism will be attached to land and 
move the boat from its stored position on the cradle to the water and return it to the 
cradle.  The device must be safe and easy to use and not overly expensive.  

	 P3‑29	 The landfills are full!  We’re about to be up to our ears in trash!  The world needs a bet-
ter trash compactor.  It should be simple, inexpensive, quiet, compact, and safe.  It can 
either be manually powered or motorized, but manual operation is preferred to keep the 
cost down.  The device must be stable, effective, and safe for the operator. 

	 P3‑30	 A small contractor needs a mini-dumpster attachment for his pickup truck.  He has 
made several trash containers which are 4 ft x 4 ft x 3.5 ft high.  The empty container 
weighs 150 lb.  He needs a mechanism which he can attach to his fleet of standard, full-
size pickup trucks (Chevrolet, Ford, or Dodge).  This mechanism should be able to pick 
up the full trash container from the ground, lift it over the closed tailgate of the truck, 
dump its contents into the truck bed, and then return it empty to the ground.  He would 
like not to tip his truck over in the process.  The mechanism should store permanently 
on the truck in such a manner as to allow the normal use of the pickup truck at all other 
times.  You may specify any means of attachment of your mechanism to the container 
and to the truck.
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	 P3‑31	 As a feast day approaches, the task of inserting the leaves in the dining room table pres-
ents itself.  Typically, the table leaves are stored in some forgotten location, and when 
found have to be carried to the table and manually placed in it.  Wouldn’t it be better 
if the leaves (leaf) were stored within the table itself and were automatically inserted 
into place when the table was opened?  The only constraints imposed on the problem 
are that the device must be simple to use, preferably using the action of opening the 
table halves as the actuating motion.  That is, as you pull the table open, the stored leaf 
should be carried by the mechanism of your design into its proper place in order to 
extend the dining surface.  Thus, a linkage solution with manual input is desired and 
full joints are preferred to half joints, though either may be used. 

	 P3-32	 Small sailboats often are not “self-bailing,” meaning that they accumulate rainwater 
and can sink at the mooring if not manually bailed (emptied of water) after a rainstorm.  
These boats usually do not have a power source such as a battery aboard.  Design a 
mechanism that can be quickly attached to, detached from, and stored in a 20-foot-long 
daysailer, and that will use wave action (boat rocking) as the input to a bilge pump to 
automatically keep the boat dry and afloat when left at a mooring. 

	 P3-33	 A machine uses several 200 kg servomotors that bolt underneath the machine’s bed-
plate, which is 0.75 m above the floor.  The machine frame has a 400 mm square front 
opening through which the motor can be inserted.  It must be extended 0.5 m hori-
zontally to its installed location.  Design a mechanism to transport the motor from the 
stockroom to the machine, insert it under the machine and raise it 200 mm into posi-
tion.  Your mechanism also should be capable of removing a motor from the machine.

	 P3-34	 A paraplegic client has requested that we design a mechanism to attach to his wheel-
chair that will store his backpack behind his seatback.  This mechanism must also bring 
the backpack around toward the front of the chair so that he can access its contents.  He 
has some use of his upper body and so can do something to cause your mechanism to 
move.  It should safely lock itself in place when stowed behind the seatback.  It should 
not upset the chair’s stabilty or limit its mobility.

	 P3-35	 In an effort to reduce chronic back injury among janitorial staff, our client, Ready Re-
fuse, has requested that we design a mechanism to safely lift an office size rectangular 
trash or recycling container and dump it into a large rolling trash barrel.  The mecha-
nism needs to be motorized to dump the smaller container automatically.  To operate 
the system, the user will roll the large trash barrel up to the rectangular container, which 
is sitting on the floor, and press a button that will cause the mechanism move through 
the required motion and dump the contents of the container into the large barrel.  The 
grip design between your mechanism and the top lip of the rectangular trash container 
is being designed by another team at Widgets Perfected Inc.; assume that it works.  
Your task is to design the motorized mechanism that dumps the container without spill-
ing the contents outside of the large trash barrel. 
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Chapter4
POSITION ANALYSIS
Theory is the distilled essence of practice
Rankine

4.0	 INTRODUCTION View the lecture video (49:48)†

Once a tentative mechanism design has been synthesized, it must then be analyzed.  A 
principal goal of kinematic analysis is to determine the accelerations of all the moving 
parts in the assembly.  Dynamic forces are proportional to acceleration, from Newton’s  
second law.  We need to know the dynamic forces in order to calculate the stresses in the 
components.  The design engineer must ensure that the proposed mechanism or machine 
will not fail under its operating conditions. Thus the stresses in the materials must be 
kept well below allowable levels.  To calculate the stresses, we need to know the static 
and dynamic forces on the parts.  To calculate the dynamic forces, we need to know the 
accelerations.  In order to calculate the accelerations, we must first find the positions of 
all the links or elements in the mechanism for each increment of input motion, and then 
differentiate the position equations versus time to find velocities, and then differentiate 
again to obtain the expressions for acceleration.  For example, in a simple Grashof fourbar 
linkage, we would probably want to calculate the positions, velocities, and accelerations 
of the output links (coupler and rocker) for perhaps every two degrees (180 positions) of 
input crank position for one revolution of the crank.

This can be done by any of several methods.  We could use a graphical approach 
to determine the position, velocity, and acceleration of the output links for all 180 posi‑
tions of interest, or we could derive the general equations of motion for any position, 
differentiate for velocity and acceleration, and then solve these analytical expressions 
for our 180 (or more) crank locations.  A computer will make this latter task much more 
palatable.  If we choose to use the graphical approach to analysis, we will have to do an in‑
dependent graphical solution for each of the positions of interest.  None of the information 
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† http://www.designofma‑
chinery.com/DOM/Posi‑
tion_Analysis.mp4

http://www.designofmachinery.com/DOM/Position_Analysis.mp4
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obtained graphically for the first position will be applicable to the second position or to 
any others.  In contrast, once the analytical solution is derived for a particular mechanism, 
it can be quickly solved (with a computer) for all positions.  If you want information for 
more than 180 positions, it only means you will have to wait longer for the computer to 
generate those data. The derived equations are the same.  So, have another cup of coffee 
while the computer crunches the numbers!  In this chapter, we will present and derive 
analytical solutions to the position analysis problem for various planar mechanisms.  We 
will also discuss graphical solutions which are useful for checking your analytical results.  
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar 
mechanisms.

It is interesting to note that graphical position analysis of linkages is a truly trivial 
exercise, while the algebraic approach to position analysis is much more complicated.  
If you can draw the linkage to scale, you have then solved the position analysis problem 
graphically.  It only remains to measure the link angles on the scale drawing to protractor 
accuracy.  But the converse is true for velocity and especially for acceleration analysis.  
Analytical solutions for these are less complicated to derive than is the analytical position 
solution.  However, graphical velocity and acceleration analysis becomes quite complex 
and difficult.  Moreover, the graphical vector diagrams must be redone de novo (meaning 
literally from new) for each of the linkage positions of interest.  This is a very tedious 
exercise and was the only practical method available in the days B.C. (Before Computer), 
not so long ago.  The proliferation of inexpensive microcomputers in recent years has 
truly revolutionized the practice of engineering.  As a graduate engineer, you will never 
be far from a computer of sufficient power to solve this type of problem and may even 
have one in your pocket.  Thus, in this text we will emphasize analytical solutions which 
are easily solved with a microcomputer.  The computer programs provided with this text 
use the same analytical techniques as derived in the text.

Geez Joe, - now I wish I took that programming course!

Computer Skills
Mandatory

Apply Within

ENGINEERS WANTED
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4.1	 COORDINATE SYSTEMS
Coordinate systems and reference frames exist for the convenience of the engineer who 
defines them.  In the next chapters we will provide our systems with multiple coordinate 
systems as needed, to aid in understanding and solving the problem.  We will denote one 
of these as the global or absolute coordinate system, and the others will be local coordi‑
nate systems within the global framework.  The global system is often taken to be attached 
to Mother Earth, though it could as well be attached to another ground plane such as the 
frame of an automobile.  If our goal is to analyze the motion of a windshield wiper blade, 
we may not care to include the gross motion of the automobile in the analysis.  In that case 
a global coordinate system (GCS—denoted as X,Y) attached to the car would be useful, 
and we could consider it to be an absolute coordinate system.  Even if we use the earth as 
an absolute reference frame, we must realize that it is not stationary either, and as such is 
not very useful as a reference frame for a space probe.  Though we will speak of absolute 
positions, velocities, and accelerations, keep in mind that ultimately, until we discover 
some stationary point in the universe, all motions are really relative.  The term inertial 
reference frame is used to denote a system which itself has no acceleration. All angles 
in this text will be measured according to the right-hand rule.  That is, counterclockwise 
angles, angular velocities, and angular accelerations are positive in sign.

Local coordinate systems are typically attached to a link at some point of interest.  
This might be a pin joint, a center of gravity, or a line of centers of a link.  These local 
coordinate systems may be either rotating or nonrotating as we desire.  If we want to 
measure the angle of a link as it rotates in the global system, we probably will want to 
attach a local nonrotating coordinate system (LNCS—denoted as x, y) to some point on 
the link (say a pin joint).  This nonrotating system will move with its origin on the link 
but remains always parallel to the global system.  If we want to measure some parameters 
within a link, independent of its rotation, then we will want to construct a local rotating  
coordinate system (LRCS—denoted as x’, y’) along some line on the link.  This system 
will both move and rotate with the link in the global system.  Most often we will need to 
have both types of local coordinate systems (LNCS and LRCS) on our moving links to 
do a complete analysis.  Obviously we must define the angles and/or positions of these 
moving, local coordinate systems in the global system at all positions of interest.

4.2	 POSITION AND DISPLACEMENT

Position

The position of a point in the plane can be defined by the use of a position vector as 
shown in Figure 4‑1.  The choice of reference axes is arbitrary and is selected to suit the 
observer.  Figure 4-1a shows a point in the plane defined in a global coordinate system 
and Figure 4-1b shows the same point defined in a local coordinate system with its origin 
coincident with the global system  A two-dimensional vector has two attributes, which 
can be expressed in either polar or cartesian coordinates.  The polar form provides the 
magnitude and the angle of the vector.  The cartesian form provides the X and Y compo‑
nents of the vector.  Each form is directly convertible into the other by*

	
*  Note that a two-argument 
arctangent function must 
be used to obtain angles 
in all four quadrants.  The 
single-argument arctangent 
function found in most 
calculators and computer 
programming languages 
returns angle values in only 
the first and fourth quad‑
rants.  You can calculate 
your own two-argument 
arctangent function very 
easily by testing the sign of 
the  x component of the ar‑
guments and,  if x is minus, 
adding π radians or 180° to 
the result obtained from the 
available single-argument 
arctangent function.  

For example (in Fortran):

FUNCTION Atan2( x, y )
IF x <> 0 THEN Q = y / x
Temp = ATAN(Q)
IF x < 0 THEN 
	 Atan2 = Temp + 3.14159
ELSE
	 Atan2 = Temp
END IF
RETURN
END

The above code assumes 
that the language used has 
a built-in single-argument 
arctangent function called 
ATAN(x) which returns an 
angle between ± π/2 radians 
when given a signed argu‑
ment representing the value 
of the tangent of that angle.
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= +

θ =






the Pythagorean theorem:

and trigonometry: (4.0a)

arctan

2 2R R R

R
R

A X Y

Y

X

Equations 4.0a are shown in global coordinates but could as well be expressed in local 
coordinates.

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one system to co‑
ordinates in another.  If the system’s origins are coincident as shown in Figure 4-1b and 
the required transformation is a rotation, it can be expressed in terms of the original coor‑
dinates and the signed angle δ between the coordinate systems.  If the position of point A 
in Figure 4-1b is expressed in the local xy system as Rx, Ry, and it is desired to transform 
its coordinates to RX, RY in the global XY system, the equations are:

= δ − δ

= δ + δ

cos sin
(4.0b)

sin cos

R R R

R R R
X x y

Y x y

Displacement

Displacement of a point is the change in its position and can be defined as the straight-line 
distance between the initial and final position of a point which has moved in the reference 
frame.  Note that displacement is not necessarily the same as the path length which the 
point may have traveled to get from its initial to final position.  Figure 4‑2a shows a point 
in two positions, A and B.  The curved line depicts the path along which the point traveled. 
The position vector RBA defines the displacement of the point B with respect to point A.  

FIGURE 4-1
A position vector in the plane - expressed in both global and local coordinates

(a )  Global coordinate system XY (b )  Local coordinate system xy
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Figure 4‑2b defines this situation more rigorously and with respect to a reference frame 
XY.  The notation R will be used to denote a position vector.  The vectors RA and RB de‑
fine, respectively, the absolute positions of points A and B with respect to this  global XY 
reference frame.  The vector RBA denotes the difference in position, or the displacement, 
between A and B.  This can be expressed as the position difference equation:

= −R R R (4.1a)BA B A

This expression is read: The position of B with respect to A is equal to the (absolute) 
position of B minus the (absolute) position of A, where absolute means with respect to the 
origin of the global reference frame.  This expression could also be written as:

= −R R R (4.1b)BA BO AO

with the second subscript O denoting the origin of the XY reference frame.  When a 
position vector is rooted at the origin of the reference frame, it is customary to omit the 
second subscript.  It is understood, in its absence, to be the origin.  Also, a vector referred 
to the origin, such as RA, is often called an absolute vector.  This means that it is taken 
with respect to a reference frame which is assumed to be stationary, e.g., the ground.  It 
is important to realize, however, that the ground is usually also in motion in some larger 
frame of reference.  Figure 4‑2c shows a graphical solution to equations 4.1.

FIGURE 4-2
Position di�erence and relative position
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In our example of Figure 4‑2, we have tacitly assumed so far that this point, which is 
first located at A and later at B, is, in fact, the same particle, moving within the reference 
frame. It could be, for example, one automobile moving along the road from A to B.  With 
that assumption, it is conventional to refer to the vector RBA as a position difference.  
There is, however, another situation which leads to the same diagram and equation but 
needs a different name.  Assume now that points A and B in Figure 4‑2b represent not 
the same particle but two independent particles moving in the same reference frame, as 
perhaps two automobiles traveling on the same road.  The vector equations 4.1 and the 
diagram in Figure 4‑2b still are valid, but we now refer to RBA as a relative position, or 
apparent position.   We will use the relative position term here.  A more formal way to 
distinguish between these two cases is as follows:

Case 1:		  One body in two successive positions  => position difference

Case 2: 	 Two bodies simultaneously in separate positions => relative position

This may seem a rather fine point to distinguish, but the distinction will prove useful, 
and the reasons for it more clear, when we analyze velocities and accelerations, especially 
when we encounter (Case 2 type) situations in which the two bodies occupy the same 
position at the same time  but have different motions.

4.3	 TRANSLATION, ROTATION, AND COMPLEX MOTION

So far we have been dealing with a particle, or point, in plane motion.  It is more interest‑
ing to consider the motion of a rigid body, or link, which involves both the position of a 
point on the link and the orientation of a line on the link, sometimes called the POSE of 
the link.  Figure 4‑3a shows a link AB denoted by a position vector RBA.  An axis system 
has been set up at the root of the vector, at point A, for convenience.

Translation

Figure 4‑3b shows link AB moved to a new position A’B’ by translation through the dis‑
placement AA’ or BB’ which are equal, i.e., A A B BR R=′ ′ .

A definition of translation is:
All points on the body have the same displacement.

As a result the link retains its angular orientation.  Note that the translation need not 
be along a straight path.  The curved lines from A to A’ and B to B’ are the curvilinear 
translation path of the link.  There is no rotation of the link if these paths are parallel.  If 
the path happens to be straight, then it will be the special case of rectilinear translation, 
and the path and the displacement will be the same.

Rotation

Figure 4‑3c shows the same link AB moved from its original position at the origin by 
rotation through an angle.  Point A remains at the origin, but B moves through the position 
difference vector  = −′ ′R R RB B B A BA .
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A definition of rotation is:
Different points in the body undergo different displacements and thus there is a displace-
ment difference between any two points chosen.

The link now changes its angular orientation in the reference frame, and all points have 
different displacements.

Complex Motion

The general case of complex motion is the sum of the translation and rotation compo‑
nents.  Figure 4‑3d shows the same link moved through both a translation and a rotation.  
Note  that the order in which these two components are added is immaterial.  The resulting 
complex displacement will be the same whether you first rotate and then translate or vice 
versa.  This is so because the two factors are independent.  The total complex displace‑
ment of point B is defined by the following expression:

(a )

FIGURE 4-3
Translation, rotation, and complex motion

(b )

(c ) (d )
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Total displacement  = translation component + rotation component  
= +′′ ′ ′′ ′R R R (4.1c)B B B B B B

The new absolute position of point B referred to the origin at A is:
= +′′ ′ ′′ ′R R R (4.1d)B A A A B A

Note that the above two formulas are merely applications of the position difference 
equation 4.1a.  See also Section 2.2 for definitions and discussion of rotation, translation, 
and complex motion.  These motion states can be expressed as the following theorems.

Theorems

Euler’s theorem: 
The general displacement of a rigid body with one point fixed is a rotation about some 
axis.  

This applies to pure rotation as defined above and in Section 2.2.  Chasles (1793‑1880) 
provided a corollary to Euler’s theorem now known as: 

Chasles’ theorem:[6] *

Any displacement of a rigid body is equivalent to the sum of a translation of any one point 
on that body and a rotation of the body about an axis through that point.

This describes complex motion as defined above and in Section 2.2.  Note that equation 
4.1c is an expression of Chasles’ theorem.

4.4	 GRAPHICAL POSITION ANALYSIS OF LINKAGES

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely 
define the positions of all the links.  The parameter usually chosen is the angle of the input 
link.  This is shown as θ2 in Figure 4‑4.  We want to find θ3 and θ4.  The link lengths are 
known.  Note that we will consistently number the ground link as 1 and the driver link as 
2 in these examples.

The graphical analysis of this problem is trivial and can be done using only high-
school geometry.  If we draw the linkage carefully to scale with rule, compass, and pro‑
tractor in a particular position (given θ2), then it is only necessary to measure the angles 
of links 3 and 4 with the protractor.  Note that all link angles are measured from a positive 
X axis.  In Figure 4-4, a local xy axis system, parallel to the global XY system, has been 
created at point A to measure θ3.  The accuracy of this graphical solution will be limited 
by our care and drafting ability and by the crudity of the protractor used.  Nevertheless, a 
very rapid approximate solution can be found for any one position.  

Figure 4-5 shows the construction of the graphical position solution.  The four link 
lengths  a, b, c, d and the angle θ2 of the input link are given.  First, the ground link (1) 
and the input link (2) are drawn to a convenient scale such that they intersect at the origin 
O2 of the global XY coordinate system with link 2 placed at the input angle θ2.  Link 1 is 
drawn along the X axis for convenience.  The compass is set to the scaled length of link 3, 
and an arc of that radius is swung about the end of link 2 (point A).  Then the compass is 
set to the scaled length of link 4, and a second arc is swung about the end of link 1 (point 

	

*  Ceccarelli[7] points out 
that Chasles’ theorem 
(Paris, 1830) was put forth 
earlier (Naples, 1763) by 
Mozzi[8] but the latter’s 
work was apparently un‑
known or ignored in the rest 
of Europe, and the theorem 
became associated with 
Chasles’ name.

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight

ASUS
Highlight



4

DESIGN OF MACHINERY 6ed      CHAPTER 4186

O4).  These two arcs will have two intersections at B and B’ that define the two solutions 
to the position problem for a fourbar linkage which can be assembled in two configura‑
tions, called circuits, labeled open and crossed in Figure 4-5.  Circuits in linkages will be 
discussed in a later section.  

The angles of links 3 and 4 can be measured with a protractor.  One circuit has angles 
θ3 and θ4, the other θ3’ and θ4’.  A graphical solution is only valid for the particular value 
of  input angle used.  For each additional position analysis we must completely redraw 
the linkage.  This can become burdensome if we need a complete analysis at every 1- or 
2-degree increment of θ2.  In that case we will be better off to derive an analytical solution 
for θ3 and θ4 that can be solved by computer.  

FIGURE 4-4
Measurement of angles in the fourbar linkage

A

B

X

Y

x

y

2

3

4

O2 O4

θ3

θ4

θ2

GCS

LNCS

FIGURE 4-5
Graphical position solution to the open and crossed configurations of the fourbar linkage
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4.5	 ALGEBRAIC POSITION ANALYSIS OF LINKAGES

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec‑
tions B and B’ and angles of links 3 and 4 can be encoded into an algebraic algorithm. 
The coordinates of point A are found from 

= θ

= θ

cos
(4.2a)

sin

2

2

A a

A a

x

y

The coordinates of point B are found using the equations of circles about A and O4.

( )( )= − + − (4.2b)2 2 2
b B A B Ax x y y

( )= − + (4.2c)2 2 2c B d Bx y

which provide a pair of simultaneous equations in Bx and By.

Subtracting equation 4.2c from 4.2b gives an expression for Bx.

( ) ( ) ( )=
− + −

−
−

−
= −

−2
2

2
2

2
(4.2d)

2 2 2 2
B a b c d

A d
A B
A d

S
A B
A dx

x

y y

x

y y

x

Substituting equation 4.2d into 4.2c gives a quadratic equation in By which has two 
solutions corresponding to those in Figure 4-5.

+ −
−

−






− = 0 (4.2e)2
2

2B S
A B
A d

d cy
y y

x

This can be solved with the familiar expression for the roots of a quadratic equation,

( )

( )

( )

=
− ± −

=
−

+
−

−

= − − =
− + −

−

4
2

(4.2f)
where:

1 =
2

( )
2

2

2

2

2 2
2 2 2 2

B
Q Q PR

P

P
A

A d
Q

A d S
A d

R d S c S a b c d
A d

y

y

x
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x

x

Note that the solutions to this equation set can be real or imaginary.  If the latter, it 
indicates that the links cannot connect at the given input angle or at all.  Once the two 
values of By are found (if real), they can be substituted into equation 4.2d to find their 
corresponding x components.  The link angles for this position can then be found from

θ =
−
−







θ =
−







−

−

tan

(4.2g)

tan

3
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4
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B A
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A two-argument arctangent function must be used to solve equations 4.2g since the angles 
can be in any quadrant.  Equations 4.2 can be encoded in any computer language or 
equation solver, and the value of θ2 varied over the linkage’s usable range to find all cor‑
responding values of the other two link angles.

Vector Loop Representation of Linkages

An alternate approach to linkage position analysis creates a vector loop (or loops) around 
the linkage as first proposed by Raven.[9]  This approach offers some advantages in the 
synthesis of linkages which will be addressed in Chapter 5.  The links are represented as 
position vectors.  Figure 4‑6 shows the same fourbar linkage as in Figure 4-4, but the 
links are now drawn as position vectors that form a vector loop.  This loop closes on itself, 
making the sum of the vectors around the loop zero.  The lengths of the vectors are the 
link lengths, which are known.  The current linkage position is defined by the input angle 
θ2 as it is a one-DOF mechanism.  We want to solve for the unknown angles θ3 and θ4.  
To do so we need a convenient notation to represent the vectors.

Complex Numbers as Vectors

There are many ways to represent vectors.  They may be defined in polar coordinates, 
by their magnitude and angle, or in cartesian coordinates as x and y components.  These 
forms are of course easily convertible from one to the other using equations 4.0a.  The 
position vectors in Figure 4-6 can be represented as any of these expressions:

∠θ θ + θ

θ + θθ

i j

Polar form Cartesian form

@ cos ˆ sin ˆ (4.3a)

cos sin (4.3b)

R r r

r e r j rj

Equation 4.3a uses unit vectors to represent  the x and y vector component direc‑
tions in the cartesian form.  Figure 4‑7 shows the unit vector notation for a position vec‑
tor.  Equation 4.3b uses complex number notation wherein the X direction component 
is called the real portion and the Y direction component is called the imaginary portion.  
This unfortunate term imaginary comes about because of the use of the notation j to 
represent the square root of minus one, which of course cannot be evaluated numerically.  

FIGURE 4-6
Position vector loop for a fourbar linkage
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However, this imaginary number is used in a complex number as an operator, not as 
a value.  Figure 4‑8a shows the complex plane in which the real axis represents the 
X‑directed component of the vector in the plane, and the imaginary axis represents the 
Y‑directed component of the same vector.  So, any term in a complex number which has 
no j operator is an x component, and a j indicates a y component.

Note in Figure 4‑8b that each multiplication of the vector RA by the operator j results 
in a counterclockwise rotation of the vector through 90 degrees.  The vector RB = jRA 
is directed along the positive imaginary or j axis.  The vector RC = j2 RA is directed 
along the negative real axis because j2 = –1 and thus RC = –RA.  In similar fashion,  
RD = j3 RA = –jRA and this component is directed along the negative j axis.

One advantage of using this complex number notation to represent planar vectors 
comes from the Euler identity:

= θ ± θ± θ cos sin (4.4a)e jj

Any two-dimensional vector can be represented by the compact polar notation on the 
left side of equation 4.4a.  There is no easier function to differentiate or integrate, since 
it is its own derivative:

θ
=

θ
θ (4.4b)de

d
je

j
j

We will use this complex number notation for vectors to develop and derive the 
equations for position, velocity, and acceleration of linkages.

The Vector Loop Equation for a Fourbar Linkage

The directions of the position vectors in Figure 4-6 are chosen so as to define their angles 
where we desire them to be measured.  By definition, the angle of a vector is always 
measured at its root, not at its head.  We would like angle θ4 to be measured at the fixed 
pivot O4, so vector R4 is arranged to have its root at that point.  We would like to measure 
angle θ3 at the point where links 2 and 3 join, so vector R3 is rooted there.  A similar logic 
dictates the arrangement of vectors R1 and R2.  Note that the X (real) axis is taken for 
convenience along link 1 and the origin of the global coordinate system is taken at point 

FIGURE 4-7
Unit vector notation for position vectors
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O2,  the root of the input link vector R2.  These choices of vector directions and senses, 
as indicated by their arrowheads, lead to this vector loop equation:

+ − − = 0 (4.5a)2 3 4 1R R R R

An alternate notation for these position vectors is to use the labels of the points at 
the vector tips and roots (in that order) as subscripts.  The second subscript is convention‑
ally omitted if it is the origin of the global coordinate system (point O2):

+ − − =R R R R 0 (4.5b)
4 4A BA BO O

Next, we substitute the complex number notation for each position vector.  To sim‑
plify the notation and minimize the use of subscripts, we will denote the scalar lengths 
of the four links as a, b, c, and d.  These are so labeled in Figure 4‑6.  The equation then 
becomes:

0 (4.5c)2 3 4 1ae be c e dej j j j+ − − =θ θ θ θ

These are three forms of the same vector equation, and as such can be solved for two 
unknowns.  There are four variables in this equation, namely the four link angles.  The 
link lengths are all constant in this particular linkage.  Also, the value of the angle of link 
1 is fixed (at zero) since this is the ground link.  The independent variable is θ2 which we 
will control with a motor or other driver device.  That leaves the angles of link 3 and 4 to 
be found.  We need algebraic expressions which define θ3 and θ4 as functions only of the 
constant link lengths and the one input angle, θ2.  These expressions will be of the form:

( a )  Complex number representation of a position vector

FIGURE 4-8
Complex number representation of vectors in the plane

(b )  Vector rotations in the complex plane
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{ }
{ }

θ = θ

θ = θ

, , , ,
(4.5d)

, , , ,

3 2

4 2

f a b c d

g a b c d

To solve the polar form, vector equation 4.5c, we must substitute the Euler equivalents 
(equation 4.4a) for the e jθ terms, and then separate the resulting cartesian form vector 
equation into two scalar equations which can be solved simultaneously for θ3 and θ4.  
Substituting equation 4.4a into equation 4.5c:

( )( ) ( ) ( )θ + θ + θ + θ − θ + θ − θ + θ =cos sin cos sin cos sin cos sin 0 (4.5e)2 2 3 3 4 4 1 1a j b j c j d j

This equation can now be separated into its real and imaginary parts and each set to zero.

real part (x component):

θ + θ − θ − θ =
θ =

θ + θ − θ − =

cos cos cos cos 0
but: 0, so: (4.6a)

cos cos cos 0

2 3 4 1

1

2 3 4

a b c d w

a b c d

imaginary part (y component):

θ + θ − θ − θ =

θ =

θ + θ − θ =

sin sin sin sin 0

but: 0, and the 's divide out, so: (4.6b)

sin sin sin 0

2 3 4 1

1

2 3 4

ja jb jc jd

j

a b c

The scalar equations 4.6a and 4.6b can now be solved simultaneously for θ3 and 
θ4.  To solve this set of two simultaneous trigonometric equations is straightforward but 
tedious.  Some substitution of trigonometric identities will simplify the expressions.  The 
first step is to rewrite equations 4.6a and 4.6b so as to isolate one of the two unknowns on 
the left side.  We will isolate θ3 and solve for θ4 in this example.

θ = − θ + θ +
θ = − θ + θ

cos cos cos (4.6c)
sin sin sin (4.6d)

3 2 4

3 2 4

b a c d
b a c

Now square both sides of equations 4.6c and 4.6d and add them:

( ) ( ) ( )θ + θ = − θ + θ + − θ + θ +sin cos sin sin cos cos (4.7a)2 2
3

2
3 2 4

2
2 4

2b a c a c d

Note that the quantity in parentheses on the left side is equal to 1, eliminating θ3 from 
the equation, leaving only θ4 which can now be solved for.

( ) ( )= − θ + θ + − θ + θ +sin sin cos cos (4.7b)2
2 4

2
2 4

2b a c a c d

Expand this expression and collect terms. 

( )= + + − θ + θ − θ θ + θ θ2 cos 2 cos 2 sin sin cos cos (4.7c)2 2 2 2
2 4 2 4 2 4b a c d ad cd ac

Divide through by 2ac and rearrange to get:
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θ − θ +
− + +

= θ θ + θ θcos cos
2

sin sin cos cos (4.7d)4 2

2 2 2 2

2 4 2 4
d
a

d
c

a b c d
ac

 To further simplify this expression,  the constants K1, K2, and K3 are defined in terms 
of the constant link lengths in equation 4.7d:

= = =
− + +

θ − θ + = θ θ + θ θ

2
(4.8a)

and:
cos cos cos cos sin sin (4.8b)

1 2 3

2 2 2 2

1 4 2 2 3 2 4 2 4

K d
a

K d
c

K a b c d
ac

K K K

If we substitute the identity ( )θ − θ = θ θ + θ θcos cos cos sin sin2 4 2 4 2 4 , we get the form  
known as Freudenstein’s equation. 

( )θ − θ + = θ − θcos cos cos (4.8c)1 4 2 2 3 2 4K K K

In order to reduce equation 4.8b to a more tractable form for solution, it will be use‑
ful to substitute the half-angle identities which will convert the sin θ4 and cos θ4 terms 
to tan θ4 terms:

θ =

θ





+
θ





θ =
−

θ





+
θ





sin
2tan

2

1 tan
2

; cos
1 tan

2

1 tan
2

(4.9)4

4

2 4
4

2 4

2 4

This results in the following simplified form, where the link lengths and known input 
value (θ2) terms have been collected as constants A, B, and C.

( )

θ





+
θ





+ =

= θ − − θ +
= − θ

= − + θ +

where:

tan
2

tan
2

0

(4.10a)
cos cos

2sin

1 cos

2 4 4

2 1 2 2 3

2

1 2 2 3

A B C

A K K K
B

C K K K

Note that equation 4.10a is quadratic in form, and the solution is:

θ





=
− ± −

θ =
− ± −











tan
2

4
2

(4.10b)

2arctan 4
2

4
2

4

2

1,2

B B AC
A

B B AC
A

Equation 4.10b has two solutions, obtained from the ± conditions on the radical.  
These two solutions, as with any quadratic equation, may be of three types: real and equal, 
real and unequal, complex conjugate.  If the discriminant under the radical is negative, 
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then the solution is complex conjugate, which simply means that the link lengths chosen 
are not capable of connection for the chosen value of the input angle θ2.  This can occur 
either when the link lengths are completely incapable of connection in any position or, in 
a non‑Grashof linkage, when the input angle is beyond a toggle limit position.  There is 
then no real solution for that value of input angle θ2.  Excepting this situation, the solu‑
tion will usually be real and unequal, meaning there are two values of θ4 corresponding 
to any one value of θ2.  These are referred to as the crossed and open configurations of 
the linkage and also as the two circuits of the linkage.*  In the fourbar linkage, the minus 
solution gives θ4 for the open configuration and the positive solution gives θ4 for the 
crossed configuration.

Figure 4-5 shows both crossed and open solutions for a Grashof crank-rocker linkage. 
The terms crossed and open are based on the assumption that the input link 2, for which 
θ2 is defined, is placed in the first quadrant (i.e., 0 < θ2 < π/2).  A Grashof linkage is then 
defined as crossed if the two links adjacent to the shortest link cross one another, and as 
open if they do not cross one another in this position.  Note that the configuration of the 
linkage, either crossed or open, is solely dependent upon the way that the links are as‑
sembled.  You cannot predict, based on link lengths alone, which of the solutions will be 
the desired one.  In other words, you can obtain either solution with the same linkage by 
simply taking apart the pin which connects links 3 and 4 in Figure 4-5, and moving those 
links to the only other positions at which the pin will again connect them.  In so doing, 
you will have switched from one position solution, or circuit, to the other.

The solution for angle θ3 is essentially similar to that for θ4.  Returning to equations 
4.6, we can rearrange them to isolate θ4 on the left side.

θ = θ + θ −
θ = θ + θ

cos cos cos (4.6e)
sin sin sin (4.6f)

4 2 3

4 2 3

c a b d
c a b

Squaring and adding these equations will eliminate θ4.  The resulting equation can be 
solved for θ3 as was done above for θ4, yielding this expression:

θ + θ + = θ θ + θ θcos cos cos cos sin sin (4.11a)1 3 4 2 5 2 3 2 3K K K

The constant K1 is the same as defined in equation 4.8b, and K4 and K5 are:

= =
− − −

2
(4.11b)4 5

2 2 2 2
K d

b
K c d a b

ab

This also reduces to a quadratic form:

( )

θ





+
θ





+ =

= θ − + θ +
= − θ

= + − θ +

where

tan
2

tan
2

0

(4.12)
cos cos

2sin

1 cos

2 3 3

2 1 4 2 5

2

1 4 2 5

D E F

D K K K
E

F K K K

and the solution is:

	
*  See Section 4-13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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θ =
− ± −











2arctan 4
2

(4.13)3

2

1,2

E E DF
D

As with the angle θ4, this also has two solutions, corresponding to the crossed and 
open circuits of the linkage, as shown in Figure 4‑5.

✍EXAMPLE 4‑1

Position Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem:	 Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For θ2 = 40° find all possible values of θ3 and θ4.

Solution:	 (See Figure 4-6 for nomenclature.)

	 1	 Using equation 4.8a, calculate the link ratios K1, K2 and K3.

( )( )

= = =

= = =

=
− + +

=
− + +

=

100
40

2.5

100
80

1.25 ( )

2
40 120 80 100

2 40 80
0.562

1

2

3

2 2 2 2 2 2 2 2

K d
a

K d
c

a

K a b c d
ac

	 2	 Use these link ratios to find the intermediate parameters A, B, and C from equation 4.10a.

( )

( ) ( )
( )

( ) ( )

= θ − − θ + = − − + = −

= − θ = − = −

= − + θ + = − + + =

cos cos cos 40° 2.5 1.25cos 40° 0.562 2.129

2sin 2sin 40° 1.286 ( )

1 cos 2.5 1.25 1 cos 40° 0.562 1.339

2 1 2 2 3

2

1 2 2 3

A K K K

B b

C K K K

	 3	 Use equation 4.10b to find q4 for both the open and crossed configurations.

( )( )
( )

( )( )
( )

θ =
− − −











=
− − − −

−













=

θ =
− + −











=
+ − − −

−













= −

2arctan 4
2

2arctan
1.286 1.286 4 2.129 1.339

2 2.129

57.33°
( )

2arctan 4
2

2arctan
1.286 1.286 4 2.129 1.339

2 2.129

98.01°

4

2 2

4

2 2

B B AC
A

c

B B AC
A

open

crossed

	 4	 Use equation 4.11b to find the ratios K4 and K5.
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4

( )( )

= = =

=
− − −

=
− − −

= −

100
120

0.833

2
80 100 40 120

2 40 120
2.042 ( )

4

5

2 2 2 2 2 2 2 2

K d
b

K c d a b
ab

d

	 5	 Use equation 4.12 to find the intermediate parameters D, E, and F.

( )

( ) ( )
( )

( ) ( )

= θ − + θ + = − + − = −

= − θ = − = −

= + − θ + = + − − =

cos cos cos 40° 2.5 0.833 40° 2.042 3.137

2sin 2sin 40° 1.286 ( )

1 cos 2.5 0.833 1 cos 40° 2.042 0.331

2 1 4 2 5

2

1 4 2 5

D K K K

E e

F K K K

	 6	 Use equation 4.13 to find q3 for both the open and crossed configurations.

( )( )
( )

( )( )
( )

θ =
− − −











=
− − − −

−













=

θ =
− + −











=
+ − − −

−













= −

2arctan 4
2

2arctan
1.286 1.286 4 3.137 0.331

2 3.137

20.30° ( )

2arctan 4
2

2arctan
1.286 1.286 4 3.137 0.331

2 3.137

60.98°

3

2 2

3

2 2

E E DF
D

f

E E DF
D

open

crossed

	 7	 The solution is shown in Figure 4-9.

= 40°

= 57.33°

= 20.30°

= –60.98°

B

3 circuit 1
(open)

θ31

b

A

Y

2

3'

O2 θ2

a

c

1 d

4

4'

B'

O4
X

circuit 2
(crossed)

θ32 θ41

= –98.01°θ42

FIGURE 4-9
Solution to Example 4-1
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4.6	 THE FOURBAR CRANK-SLIDER POSITION SOLUTION

The same vector loop approach as used for the pure pin-jointed fourbar can be applied 
to a linkage containing sliders.  Figure 4‑10 shows an offset fourbar crank-slider linkage, 
inversion #1.  The term offset means that the slider axis extended does not pass through 
the crank pivot.  This is the general case.  (The nonoffset crank-slider linkages shown in 
Figure 2-15 are the special cases.)  This linkage could be represented by only three posi‑
tion vectors, R2, R3, and Rs, but one of them (Rs) will be a vector of varying magnitude 
and angle.  It will be easier to use four vectors, R1, R2, R3, and R4 with R1 arranged paral‑
lel to the axis of sliding and R4 perpendicular.  In effect the pair of vectors R1 and R4 are 
orthogonal components of the position vector Rs from the origin to the slider.

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding.  
The variable-length, constant-direction vector R1 then represents the slider position with 
magnitude d.  The vector R4 is orthogonal to R1 and defines the constant magnitude offset 
of the linkage.  Note that for the special-case, nonoffset version, the vector R4 will be zero 
and R1 = Rs.  The vectors R2 and R3 complete the vector loop.  The coupler’s position 
vector R3 is placed with its root at the slider which then defines its angle θ3 at point B.  
This particular arrangement of position vectors leads to a vector loop equation similar to 
the pin-jointed fourbar example:

− − − =R R R R 0 (4.14a)2 3 4 1

Compare equation 4.14a to equation 4.5a and note that the only difference is the sign 
of R3.  This is due solely to the somewhat arbitrary choice of the sense of the position 
vector R3 in each case.  The angle θ3 must always be measured at the root of vector R3, 
and in this example it will be convenient to have that angle θ3 at the joint labeled B.  Once 
these arbitrary choices are made it is crucial that the resulting algebraic signs be carefully 
observed in the equations, or the results will be completely erroneous.  Letting the vec‑
tor magnitudes (link lengths) be represented by a, b, c, d as shown, we can substitute the 
complex number equivalents for the position vectors.

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be c e dej j j j

slider axis

offset
Rs

θ3

θ2

FIGURE 4-10
Position vector loop for a fourbar crank-slider or slider-crank linkage

O2

A

X

Y

d

b

a
c

x

y

R1

R3

R4

R2
θ4

B
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4

Substitute the Euler equivalents:

( )( )
( ) ( )

θ + θ − θ + θ

− θ + θ − θ + θ =

cos sin cos sin

cos sin cos sin 0 (4.14c)
2 2 3 3

4 4 1 1

a j b j

c j d j

Separate the real and imaginary components:

real part (x component):

θ − θ − θ − θ =
θ = θ − θ − θ − =but:

cos cos cos cos 0
0, so: cos cos cos 0 (4.15a)

2 3 4 1

1 2 3 4

a b c d
a b c d

imaginary part (y component):

θ − θ − θ − θ =

θ =

θ − θ − θ =

sin sin sin sin 0

but: 0, and the ' divide out, so: (4.15b)

sin sin sin 0

2 3 4 1

1

2 3 4

ja jb jc jd

j s

a b c

We want to solve equations 4.15 simultaneously for the two unknowns, link length d 
and link angle θ3.  The independent variable is crank angle θ2.  Link lengths a and b, the 
offset c, and angle θ4 are known.  But note that since we set up the coordinate system to 
be parallel and perpendicular to the axis of the slider block, the angle θ1 is zero and θ4 is 
90°.  Equation 4.15b can be solved for θ3 and the result substituted into equation 4.15a to 
solve for d.  The solution is:

θ =
θ −





= θ − θ

arcsin
sin

(4.16a)

cos cos (4.16b)

3
2

2 3

1

a c
b

d a b

Note that there are again two valid solutions corresponding to the two circuits of the 
linkage.  The arcsine function is multivalued.  Its evaluation will give a value between 
±90° representing only one circuit of the linkage.  The value of d is dependent on the 
calculated value of θ3.  The value of θ3 for the second circuit of the linkage can be found 
from:

θ = −
θ −





+ πarcsin
sin

(4.17)3
2

2

a c
b

✍EXAMPLE 4‑2

Position Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem:	 Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm, L3 = 
b = 120 mm, offset = c = –20 mm. For θ2 = 60° find all possible values of θ3 and 
slider position d.

Solution:	 (See Figure 4-10 for nomenclature.)

	 1	 Using equation 4.16a, calculate the link coupler angle θ3 for the open configuration.
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( ) ( )
θ =

θ −





=
− −





=arcsin

sin
arcsin

40sin 60° 20
120

152.91° ( )3
2a c

b
a

open

	 2	 Using equation 4.16b and the result from step 1, calculate slider position d for open linkage.

( ) ( )= θ − θ = − =cos cos 40cos 60° 120cos 152.91° 126.84 mm ( )2 3d a b b

	 3	 Using equation 4.17, calculate the link coupler angle θ3 for the crossed configuration.

( ) ( )
θ = −

θ −





+ π = −
− −





+ π =arcsin

sin
arcsin

40sin 60° 20
120

27.09° ( )3
2a c

b
c

crossed

	 4	 Using equation 4.16b and the result from step 3, calculate slider position d for crossed linkage.

( ) ( )= θ − θ = − = −cos cos 40cos 60° 120cos 27.09° 86.84 mm ( )2 3d a b d

	 5	 Note that q3 is measured at the slider end of the coupler as shown in Figure 4-11.

4.7	 THE FOURBAR SLIDER-CRANK POSITION SOLUTION

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 
4-10, and the vector loop equation is identical to equation 4.14a.  But now we must solve 
this equation for q2 as a function of slider position d.

 Start with equation 4.14a, make the substitutions of equation 4.14b and the simpli‑
fications of equations 4.15 to get the same simultaneous equation set:

= –20 mm

= –86.84 mm = 126.84 mm

= 152.91°
= 27.09°

= 60°

slider axis

offset

θ2O2

AY

dopen

b
a

θ3crossed B

X

c

b

dcrossed

θ3open

circuit 1
(open)

circuit 2
(crossed)

FIGURE 4-11
Solution to Example 4-2
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θ − θ − θ − =
θ − θ − θ =

θ = ° ∴ θ = θ =

θ − θ − =
θ − θ − =

cos cos cos 0 (4.15a)
sin sin sin 0 (4.15b)

but
90 sin 1, cos 0

so
cos cos 0 (4.18a)
sin sin 0 (4.18b)

2 3 4

2 3 4

4 4 4

2 3

2 3

a b c d
a b c

a b d
a b c

As was done in the fourbar linkage solution, isolate the θ3 terms on one side, square 
both equations, and add them to eliminate θ3.

( )

( )

( )
( )

( ) ( )
( ) ( )

θ = θ −
θ = θ −

θ = θ −

θ = θ −

θ + θ = θ − + θ −

= θ − + θ −

= θ − θ + + θ − θ +

= θ + θ − θ − θ + +

− + + − θ − θ =

cos cos
sin sin

square: cos cos

sin sin

add: sin cos cos sin

cos sin

cos 2 cos sin 2 sin

sin cos 2 cos 2 sin

2 sin 2 cos 0 (4.19)

3 2

3 2

2 2
3 2

2

2 2
3 2

2

2 2
3

2
3 2

2
2

2

2
2

2
2

2

2 2 2
2 2

2 2 2
2 2

2

2 2 2
2

2
2 2 2

2 2

2 2 2 2
2 2

b a d
b a c

b a d

b a c

b a d a c

b a d a c

b a ad d a ac c

b a ad ac c d

a b c d ac ad

To simplify, create some constant parameters:

= − + + = − = −
+ θ + θ =

let , 2 , 2
then sin cos 0 (4.20)

1
2 2 2 2

2 3

1 2 2 3 2

K a b c d K ac K ad
K K K

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa‑
tion 4.9) for sin θ2 and cos θ2 to get the equation in terms of one trigonometric function.

( ) ( )

+

θ

+
θ

















+
−

θ

+
θ

















=

−
θ

+
θ

+ + =

= − = = +
θ

+
θ

+ =

θ =
− ± −











2tan
2

1 tan
2

1 tan
2

1 tan
2

0

simplify tan
2

2 tan
2

0

let , 2 ,

then tan
2

tan
2

0

and 2arctan 4
2

(4.21)

1 2

2

2 2
3

2 2

2 2

1 3
2 2

2
2

1 3

1 3 2 1 3

2 2 2

2

2

1,2

K K K

K K K K K

A K K B K C K K

A B C

B B AC
A

Once θ2 is known for a given value of d, θ3 can be found from either equation 4.18a or 
4.18b.
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Note that there are two solutions to equation 4.21 representing the two branches 
of the linkage on the circuit to which the given value of slider position d applies.*  The 
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or 
bottom dead center (BDC).  These are indeterminate change points between the branches 
at which the mathematics cannot predict which branch the linkage will go to next.  A real 
slider-crank linkage can only make a full revolution of the crank if there is some stored 
energy in the crank to carry it through the dead centers twice per revolution.  This is why 
you must spin a piston engine to start it and why they typically have a flywheel attached to 
the crankshaft to provide the angular momentum needed to pass through TDC and BDC.

✍EXAMPLE 4‑3

Position Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method

Problem:	 Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, L3 = b 
= 120 mm, offset = c = –20 mm. For d = 100 mm, find all possible values of θ2 and 
θ3 on the circuit defined by the given value of d.

Solution:	 (See Figure 4-9 for nomenclature.)

	 1	 Find the TDC and BDC positions of the linkage.

= − = − =

= + = + =

120 40 80 mm
( )

120 40 160 mm
d b a

a
d b a

BDC

TDC

		  The requested position of d = 100 mm is within the range of motion of the slider-crank linkage 
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used.

	 2	 Find the intermediate parameters needed from equations 4.20 and 4.21.

( )
( )( )

( )( )
( )

( )
( )

= − + + − + − + = −

= − = − − =

= − = − = −

= − = − − − =

= = =

= + = − + − = −

= 40 120 20 100 2400

2 2 40 20 1600

2 2 40 100 8000
( )

2400 8000 5600

2 2 1600 3200

2400 8000 10400

1
2 2 2 2 2 2 2 2

2

3

1 3

2

1 3

K a b c d

K ac

K ad
b

A K K

B K

C K K

	 3	 Find the two values of θ2 from equation 4.21.

( )

( )

( )
( )

( )
( )

θ =
− + −











=
− + − −











= °

θ =
− − −











=
− − − −











= − °

− −

− −

2tan 4
2

2tan
3200 3200 4 5600 10400

2 5600
95.798

( )

2 tan 4
2

2tan
3200 3200 4 5600 10400

2 5600
118.418

2
1

2
1

2

2
1

2
1

2

1

2

B B AC
A

c

B B AC
A

	
*  The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter‑
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider-crank 
has two branches on each 
circuit, and the two solu‑
tions obtained from equa‑
tion 4.21 represent the two 
branches on the one circuit 
being analyzed.  In contrast, 
the crank-slider has only 
one branch per circuit 
because when the crank is 
driven, it can make a full 
revolution and there are no 
change points to separate 
branches.  See Section 
4.13 for a more complete 
discussion of circuits and 
branches in linkages.
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4

	 4	 Find the two values of θ3 from either equation 4.16a or 4.17.  Calculate θ3 with both equations 
for one value of θ2 and then use equation 4.16b with that result to determine which of the two 
equations gives the correct value of d to match the circuit of this linkage.  Then use that equa‑
tion with each of the q2 values to get the correct values of θ3 for each branch of this circuit.  
This example needs equation 4.17 for its circuit.

( ) ( )

( ) ( )

θ = −
θ −





+ π = −

° − −





+ π = °

θ =
θ −





+ π =

− ° − −





+ π = °

− −

− −

sin
sin

sin
40sin 95.798 20

120
150.113

( )

cos
sin

cos
40sin 118.418 20

120
187.267

3
1 2 1

3
1 2 1

1
1

2
2

a c
b

d
a c

b

	 5	 The solution is shown in Figure 4-12.

4.8	 AN INVERTED CRANK-SLIDER POSITION SOLUTION

Figure 4‑13a* shows inversion #3 of the common fourbar crank-slider linkage in which the 
sliding joint is between links 3 and 4 at point B.  This is shown as an offset crank-slider 
mechanism.  The slider block has pure rotation with its center offset from the slide axis.  
(Figure 2‑15c, shows the nonoffset version of this linkage in which the vector R4 is zero.)

The global coordinate system is again taken with its origin at input crank pivot O2 and 
the positive X axis along link 1, the ground link.  A local axis system has been placed at 
point B in order to define θ3.  Note that there is a fixed angle γ within link 4 which defines 
the slot angle with respect to that link.

In Figure 4‑13b, the links have been represented as position vectors having senses 
consistent with the coordinate systems that were chosen for convenience in defining the 
link angles.  This particular arrangement of position vectors leads to the same vector loop 
equation as the previous crank-slider example.

	
*  This figure is provided as 
animated AVI and Working 
Model files.  Its filename 
is the same as the figure 
number.

= 100 mm

= 150.11°

= 187.27°= 95.80°

= –118.42°
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FIGURE 4-12
Solution to Example 4-3
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Equations 4.14 and 4.15 apply to this inversion as well.  Note that the absolute posi‑
tion of point B is defined by vector RB which varies in both magnitude and direction as 
the linkage moves.  We choose to represent RB as the vector difference R2 – R3 in order 
to use the actual links as the position vectors in the loop equation.

All slider linkages will have at least one link whose effective length between joints 
will vary as the linkage moves.  In this example the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  Thus the 
value of b will be one of the variables to be solved for in this inversion.  Another variable 
will be θ4, the angle of link 4.  Note however, that we also have an unknown in θ3, the 
angle of link 3.  This is a total of three unknowns.  Equations 4.15 can only be solved for 
two unknowns.  Thus we require another equation to solve the system.  There is a fixed 
relationship between angles θ3 and θ4, shown as γ  in Figure 4‑13, which gives the equa‑
tions for the open and crossed configurations of the linkage, respectively:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Repeating equations 4.15 and renumbering them for the reader’s convenience:

θ − θ − θ − =
θ − θ − θ =

cos cos cos 0 (4.23a)
sin sin sin 0 (4.23b)
2 3 4

2 3 4

a b c d
a b c

These have only two unknowns and can be solved simultaneously for θ4 and b.  Equa‑
tion 4.23b can be solved for link length b and substituted into equation 4.23a.

=
θ − θ

θ

θ −
θ − θ

θ
θ − θ − =

sin sin
sin

(4.24a)

cos
sin sin

sin
cos cos 0 (4.24b)

2 4

3

2
2 4

3
3 4

b
a c

a
a c

c d

( a )
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FIGURE 4-13
Inversion #3 of the slider-crank fourbar linkage
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Substitute equation 4.22, and after some algebraic manipulation, equation 4.24 can 
be reduced to:

( )
( )

θ + θ + =

= θ γ + θ − γ

= − θ γ + θ − γ

= − γ

where
sin cos 0

(4.25)

sin sin cos cos

sin cos cos sin

sin

4 4

2 2

2 2

P Q R

P a a d

Q a a d

R c

Note that the factors P, Q, R are constant for any input value of θ2.  To solve this for 
θ4, it is convenient to substitute the tangent half angle identities (equation 4.9) for the 
sin θ4 and cos θ4 terms.  This will result in a quadratic equation in tan (θ4 / 2) which can 
be solved for the two values of θ4.

θ





+
θ





+
−

θ





+
θ





+ =
2tan

2

1 tan
2

1 tan
2

1 tan
2

0 (4.26a)

4

2 4

2 4

2 4
P Q R

This reduces to:

( ) ( )−
θ





+
θ





+ + =

= − = = +

θ





+
θ





+ =

let

then

tan
2

2 tan
2

0

, 2 ,

tan
2

tan
2

0 (4.26b)

2 4 4

2 4 4

R Q P Q R

S R Q T P U Q R

S T U

and the solution is:

θ =
− ± −











2arctan 4
2

(4.26c)4

2

1,2

T T SU
S

As was the case with the previous examples, this also has a crossed and an open so‑
lution represented by the plus and minus signs on the radical, respectively.  Note that we 
must also calculate the values of link length b for each θ4 by using equation 4.24a.  The 
coupler angle θ3 is found from equations 4.22 for the open or crossed solution.

4.9	 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,* the same approach as shown here for the fourbar linkage can be 
used for any number of links in a closed-loop configuration.   More complicated linkages 
may have multiple loops which will lead to more equations to be solved simultaneously 
and may require an iterative solution.  Alternatively, Wampler[10] presents a new, general, 
noniterative method for the analysis of planar mechanisms containing any number of rigid 
links connected by rotational and/or translational joints.

	
*  Waldron and Sreeniva‑
san[1] report that the 
common solution methods 
for position analysis are not 
general, i.e., are not extend‑
able to n-link mechanisms.  
Conventional position 
analysis methods, such as 
those used here, rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved first, followed 
by a decomposition of the 
remaining links into a series 
of dyads.  Not all mecha‑
nisms contain fourbar loops. 
(One eightbar, 1-DOF 
linkage contains no fourbar 
loops—see the 16th isomer 
at lower right in Figure 
2-11d).  Even if there is a 
fourbar loop, its pivots may 
not be grounded, requiring 
that the linkage be inverted 
to start the solution.  Also, 
if the driving joint is not 
in the fourbar loop, then 
interpolation is needed to 
solve for link positions.  
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The Geared Fivebar Linkage

Another example, which can be reduced to two equations in two unknowns, is the geared 
fivebar linkage or mechanism (GFBM), which was introduced in Section 2.14 and is 
shown in Figure 4‑14a and program Linkages disk file F04-11.5br.  The vector loop for 
this linkage is shown in Figure 4‑14b.  It obviously has one more position vector than the 
fourbar.  Its vector loop equation is:

+ − − − =R R R R R 0 (4.27a)2 3 4 5 1

Note that the vector senses are again chosen to suit the analyst’s desires to have the 
vector angles defined at a convenient end of the respective link.  Equation 4.27b substi‑
tutes the complex polar notation for the position vectors in equation 4‑23a, using a, b, c, 
d, f to represent the scalar lengths of the links as shown in Figure 4-14.  

+ − − − =θ θ θ θ θ 0 (4.27b)2 3 4 5 1ae be c e de f ej j j j j

Note also that this vector loop equation has three unknown variables in it, namely the 
angles of links 3, 4, and 5.  (The angle of link 2 is the input, or independent, variable, and 
link 1 is fixed with constant angle.)  Since a two-dimensional vector equation can only be 
solved for two unknowns, we will need another equation to solve this system.  Because this 
is a geared fivebar linkage, there exists a relationship between the two geared links, here 
links 2 and 5.  Two factors determine how link 5 behaves with respect to link 2, namely, 
the gear ratio λ and the phase angle φ.  The relationship is:

.θ = λθ + φ (4 27c)5 2

This allows us to express θ5 in terms of θ2 in equation 4.27b and reduce the unknowns 
to two by substituting equation 4.27c into equation 4.27b.

+ − − − =φ( )θ θ θ λθ + θ 0 (4.28a)2 3 4 2 1ae be c e de f ej j j j j

Note that the gear ratio λ is the ratio of the diameters of the gears connecting the 
two links (λ = dia2 / dia5 ), and the phase angle φ is the initial angle of link 5 with respect 
to link 2.  When link 2 is at zero degrees, link 5 is at the phase angle φ. Equation 4.27c 
defines the relationship between θ2 and θ5.  Both λ and φ are design parameters selected 
by the design engineer along with the link lengths.  With these parameters defined, the 
only unknowns left in equation 4.28 are θ3 and θ4.

The behavior of the geared fivebar linkage can be modified by changing the link 
lengths, the gear ratio, or the phase angle.  The phase angle can be changed simply by 
lifting the gears out of engagement, rotating one gear with respect to the other, and re‑
engaging them.  Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively, 
their relative angular rotations will be changed also.  It is this fact that results in different 
positions of links 3 and 4 with any change in phase angle.  The coupler curve’s shapes 
will also change with variation in any of these parameters as can be seen in Figure 3-23 
and in Appendix E.  

The procedure for solution of this vector loop equation is the same as that used for 
the fourbar linkage:  
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	 1	 Substitute the Euler equivalent (equation 4.4a) into each term in the vector loop equa‑
tion 4.28a.

( )( ) ( )
( ) ( ) ( )

θ + θ + θ + θ − θ + θ

− λθ + φ + λθ + φ  − θ + θ =

cos sin cos sin cos sin

cos sin cos sin 0 (4.28b)

2 2 3 3 4 4

2 2 1 1

a j b j c j

d j f j

	 2	 Separate the real and imaginary parts of the cartesian form of the vector loop  equa‑
tion.

( )
( )

θ + θ − θ − λθ + φ − θ =

θ + θ − θ − λθ + φ − θ =

cos cos cos cos cos 0 (4.28c)

sin sin sin sin sin 0 (4.28d)
2 3 4 2 1

2 3 4 2 1

a b c d f

a b c d f

	 3	 Rearrange to isolate one unknown (either θ3 or θ4) in each scalar equation.  Note that 
θ1 is zero.

( )
( )

θ = − θ + θ + λθ + φ +

θ = − θ + θ + λθ + φ

cos cos cos cos (4.28e)

sin sin sin sin (4.28f)
3 2 4 2

3 2 4 2

b a c d f

b a c d

	 4	 Square both equations and add them to eliminate one unknown, say θ3.

( )
( )

( ) ( )
( )

= λθ + φ − θ +  θ

+ λθ + φ − θ  θ

+ + + + − θ

− θ − λθ + φ

− θ λθ + φ

2 cos cos cos

2 sin sin sin

2 cos

2 cos cos

2 sin sin

2
2 2 4

2 2 4

2 2 2 2
2

2 2

2 2

b c d a f

c d a

a c d f af

d a f

ad

( a )

FIGURE 4-14
The geared fivebar linkage and its vector loop

(b )
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	 5	 Substitute the tangent half-angle identities (equation 4.9) for the sine and cosine terms 
and manipulate the resulting equation in the same way as was done for the fourbar 
linkage in order to solve for θ4. 

( )
( )

( ) ( ) ( )

= λθ + φ − θ + 

= λθ + φ − θ 

= − + + + − θ

− θ − λθ + φ − θ λθ + φ

= − = = +

θ =
− ± −











2 cos cos

2 sin sin

2 cos

2 cos cos 2 sin sin

, 2 ,

2arctan 4
2

(4.28h)

2 2

2 2

2 2 2 2 2
2

2 2 2 2

4

2

1,2

A c d a f

B c d a

C a b c d f af

d a f ad

D C A E B F A C

E E DF
D

	 6	 Repeat steps 3 to 5 for the other unknown angle θ3.

( )
( )

( ) ( )
( )

= θ − λθ + φ − 

= θ − λθ + φ 

= + − + + − θ

− θ − λθ + φ

− θ λθ + φ

= − = = +

θ =
− ± −











2 cos cos

2 sin sin

2 cos

2 cos cos

2 sin sin

; 2 ;

2arctan 4
2

(4.28i)

2 2

2 2

2 2 2 2 2
2

2 2

2 2

3

2

1,2

G b a d f

H b a d

K a b c d f af

d a f

ad

L K G M H N G K

M M LN
L

Note that these derivation steps are essentially identical to those for the pin-jointed 
fourbar linkage once θ2 is substituted for θ5 using equation 4.27c.

FIGURE 4-15
Watt’s sixbar linkage and vector loop
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Sixbar Linkages

Watt’s Sixbar  is essentially two fourbar linkages in series, as shown in Figure 4-15a, 
and can be analyzed as such.  Two vector loops are drawn as shown in Figure 4-15b.  
These vector loop equations can be solved in succession with the results of the first loop 
applied as input to the second loop.  Note that there is a constant angular relationship 
between vectors R4 and R5 within link 4.  The solution for the fourbar linkage (equations 
4.10 and 4.13, respectively)  is simply applied twice in this case.  Depending on the inver‑
sion of the Watts linkage being analyzed, there may be two four-link loops or one four-link 
and one five-link loop.  (See Figure 2‑16.)  In either case, if the four-link loop is analyzed 
first, there will not be more than two unknown link angles to be found at one time. 

Stephenson’s sixbar  is a more complicated mechanism to analyze.  Two vector 
loops can be drawn, but depending on the inversion being analyzed, either one or both 
loops will have five links* and three unknown angles as shown in Figure 4‑13a and b.  
However, the two loops will have at least one nonground link in common and so a solution 
can be found.  In the other cases an iterative solution such as a Newton-Raphson method 
(see Section 4.14) must be used to find the roots of the equations.  Program Linkages is 
limited to the inversions which allow a closed-form solution, one of which is shown in 
Figure 4‑16, and it does not do the iterative solution.

4.10	 POSITION OF ANY POINT ON A LINKAGE

Once the angles of all the links are found, it is simple and straightforward to define and 
calculate the position of any point on any link for any input position of the linkage.  Figure 
4‑17 shows a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point 
P.  The crank and rocker have also been enlarged to show points S and U which might 
represent the centers of gravity of those links.  We want to develop algebraic expressions 
for the positions of these (or any) points on the links.

To find the position of point S, draw a position vector from the fixed pivot O2 to point 
S.  This vector RSO2 makes an angle δ2 with the vector RAO2.  This angle δ2 is completely 
defined by the geometry of link 2 and is constant.  The position vector for point S is then:

( a )

FIGURE 4-16
Stephenson’s sixbar linkage and vector loops

(b )
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*  Waldron and Sreeniva‑
san[1] report that the 
common solution methods 
for position analysis are not 
general, i.e., are not extend‑
able to n-link mechanisms.  
Conventional position 
analysis methods, such as 
those used here, rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved first, followed 
by a decomposition of the 
remaining links into a series 
of dyads.  Not all mecha‑
nisms contain fourbar loops. 
(One eightbar, 1-DOF 
linkage contains no fourbar 
loops—see the 16th isomer 
at lower right in Figure 
2-11d).  Even if there is a 
fourbar loop, its pivots may 
not be grounded, requiring 
that the linkage be inverted 
to start the solution.  Also, 
if the driving joint is not 
in the fourbar loop, then 
interpolation is needed to 
solve for link positions.  
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( ) ( )= = = θ + δ + θ + δ 
( )θ +δR R cos sin (4.29)2 2 2 22

2 2se s jSO S
j

The position of point U on link 4 is found in the same way, using the angle δ4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ 
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

The position of point P on link 3 can be found from the addition of two position 
vectors RA and RPA.  Vector RA is already defined from our analysis of the link angles 
in equations 4.5.  Vector RPA is the relative position of point P with respect to point A.  
Vector RPA is defined in the same way as RS or RU, using the internal link offset angle δ3 
and the position angle of link 3, θ3.

( ) ( )= = θ + δ + θ + δ 

= +

( )θ +δR

R R R

cos sin (4.31a)

(4.31b)

3 3 3 3
3 3pe p jPA

j

P A PA

Compare equation 4.31b with equations 4.1.  Equation 4.31b is the position difference 
equation.

4.11	 TRANSMISSION ANGLES

The transmission angle was defined in Section 3.3 for a fourbar linkage.  That definition 
is repeated here for your convenience.

The transmission angle µ is shown in Figure 3‑3a and is defined as the angle between the 
output link and the coupler.  It is usually taken as the absolute value of the acute angle of the pair 
of angles at the intersection of the two links and varies continuously from some minimum to some 
maximum value as the linkage goes through its range of motion.  It is a measure of the quality of 
force transmission at the joint.*

	

*  The transmission angle 
has limited application.  It 
only predicts the quality of 
force or torque transmission 
if the input and output links 
are pivoted to ground.  If 
the output force is taken 
from a floating link (cou‑
pler), then the transmission 
angle is of no value.  A dif‑
ferent index of merit called 
the joint force index (JFI) 
is presented in Chapter 11 
which discusses force analy‑
sis in linkages.  (See Section 
11.12.)  The JFI is useful 
for situations in which the 
output link is floating as 
well as giving the same kind 
of information when the 
output is taken from a link 
rotating against the ground.  
However, the JFI requires a 
complete force analysis of 
the linkage be done whereas 
the transmission angle is 
determined from linkage 
geometry alone.

FIGURE 4-17
Positions of points on the links
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We will expand that definition here to represent the angle between any two links in a 
linkage, as a linkage can have many transmission angles. The angle between any output 
link and the coupler which drives it is a transmission angle. Now that we have developed 
the analytic expressions for the angles of all the links in a mechanism, it is easy to define 
the transmission angle algebraically.  It is merely the difference between the angles of the 
two joined links through which we wish to pass some force or velocity.  For our fourbar 
linkage example it will be the difference between θ3 and θ4.  By convention we take the 
absolute value of the difference and force it to be an acute angle.

θ = θ − θ

θ >
π

µ = π − θ µ = θif then
2

else (4.32)

3 4trans

trans trans trans

This computation can be done for any joint in a linkage by using the appropriate link 
angles.

Extreme Values of the Transmission Angle

For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle 
will occur when the crank is colinear with the ground link as shown in Figure 4‑18.  The 
values of the transmission angle in these positions are easily calculated from the law 
of cosines since the linkage is then in a triangular configuration. The sides of the two 
triangles are link 3, link 4, and either the sum or difference of links 1 and 2.  Depending 
on the linkage geometry, the minimum value of the transmission angle µmin will occur 
either when links 1 and 2 are colinear and overlapping as shown in Figure 4‑18a or when 
links 1 and 2 are colinear and nonoverlapping as shown in Figure 4‑18b.  Using notation 
consistent with Section 4.5 and Figure 4‑6 we will label the links:

	 a = link 2,	 b = link 3,	 c = link 4,	 d = link 1

FIGURE 4-18
The minimum transmission angle in the Grashof crank-rocker fourbar linkage occurs in one of two positions
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For the overlapping case (Figure 4-18a) the cosine law gives

( )
µ = γ =

+ − −











arccos
2

(4.33a)1 1

2 2 2b c d a
bc

and for the extended case, the cosine law gives

( )
µ = π − γ = π −

+ − +











arccos
2

(4.33b)2 2

2 2 2b c d a
bc

The minimum transmission angle µmin in a Grashof crank-rocker linkage is then the 
smaller of µ1 and µ2.

For a Grashof double-rocker linkage the transmission angle can vary from 0 to 90 
degrees because the coupler can make a full revolution with respect to the other links.  For 
a non‑Grashof triple-rocker linkage the transmission angle will be zero degrees in the 
toggle positions which occur when the output rocker c and the coupler b are colinear as 
shown in Figure 4‑19a.  In the other toggle positions when input rocker a and coupler b are 
colinear (Figure 4‑19b), the transmission angle can be calculated from the cosine law as:

ν

µ
( )

( )

=

=
+ + −

+













when 0,

arccos
2

(4.34)
2 2 2a b c d

c a b

This is not the smallest value that the transmission angle µ can have in a triple-rocker, 
as that will obviously be zero.  Of course, when analyzing any linkage, the transmission 

( a )  Toggle positions for links  and 

FIGURE 4-19
Non-Grashof triple-rocker linkages in toggle

(b )  Toggle positions for links  and 
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angles can easily be computed and plotted for all positions using equation 4.32.  Program 
Linkages does this.  The student should investigate the variation in transmission angle for 
the example linkages in those programs.  Disk file F04‑15.4br can be opened in program 
Linkages to observe that linkage in motion.

4.12	 TOGGLE POSITIONS

The input link angles which correspond to the toggle positions (stationary configurations) 
of the non‑Grashof triple-rocker can be calculated by the following method, using trigo‑
nometry.  Figure 4‑20 shows a non‑Grashof fourbar linkage in a general position.  A con‑
struction line h has been drawn between points A and O4.  This divides the quadrilateral 
loop into two triangles, O2AO4 and ABO4.  Equation 4.35 uses the cosine law to express 
the transmission angle µ in terms of link lengths and the input link angle θ2.

=

= + − θ

= + − µ

+ − θ = + − µ

µ
+ − −

+ θ

also:
so:

and:

2 cos

2 cos

2 cos 2 cos

cos
2

cos (4.35)

2 2 2
2

2 2 2

2 2
2

2 2

2 2 2 2

2

h a d ad

h b c bc

a d ad b c bc

b c a d
bc

ad
bc

To find the maximum and minimum values of input angle θ2, we can differentiate 
equation 4.35, form the derivative of θ2 with respect to µ, and set it equal to zero.

θ
µ

=
µ

θ
=

sin
sin

0 (4.36)2

2

d
d

bc
ad

The link lengths a, b, c, d are never zero, so this expression can only be zero when 
sin µ is zero.  This will be true when angle µ in Figure 4-20 is either zero or 180°.  This 
is consistent with the definition of toggle given in Section 3.3.  If µ is zero or 180° then 
cos µ will be ±1.  Substituting these two values for cos µ into equation 4.35 will give a 

FIGURE 4-20
Finding the crank angle corresponding to the toggle positions
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solution for the value of θ2 between zero and 180° which corresponds to the toggle posi‑
tion of a triple-rocker linkage when driven from one rocker.

=µ
+ − −

+ θ = ±

θ =
+ − −

±

θ =
+ − −

±








 ≤ θ ≤ π

or:

and:

cos
2

cos 1

cos
2

(4.37)

arccos
2

0

2 2 2 2

2

2

2 2 2 2

2

2 2 2 2

2

b c a d
bc

ad
bc

a d b c
ad

bc
ad

a d b c
ad

bc
adtoggle toggle

One of these ± cases will produce an argument for the arccosine function which lies 
between ±1.  The toggle angle which is in the first or second quadrant can be found from 
this value.  The other toggle angle will then be the negative of the one found, due to the 
mirror symmetry of the two toggle positions about the ground link as shown in Figure 
4‑19.  Program Linkages computes the values of these toggle angles for any non-Grashof 
linkage.

4.13	 CIRCUITS AND BRANCHES IN LINKAGES

In Section 4.5 it was noted that the fourbar linkage position problem has two solutions 
which correspond to the two circuits of the linkage.  This section will explore the topics 
of circuits and branches in linkages in greater detail.  

Chase and Mirth[2] define a circuit in a linkage as “all possible orientations of the 
links that can be realized without disconnecting any of the joints” and a branch as “a 
continuous series of positions of the mechanism on a circuit between two stationary con-
figurations . . .  .  The stationary configurations divide a circuit into a series of branches.”  
A linkage may have one or more circuits each of which may contain one or more branches. 
The number of circuits corresponds to the number of solutions possible from the position 
equations for the linkage.

Circuit defects are fatal to linkage operation, but branch defects are not.  A mecha‑
nism that must change circuits to move from one desired position to the other (referred to 
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly.  
A mechanism that changes branches when moving from one circuit to another (referred to 
as a branch defect) may or may not be usable depending on the designer’s intent.  

The tailgate linkage shown in Figure 3-2 is an example of a linkage with a deliberate 
branch defect in its range of motion (actually at the limit of its range of motion).  The 
toggle position (stationary configuration) that it reaches with the tailgate fully open serves 
to hold it open.  But the user can move it out of this stationary configuration by rotating 
one of the links out of toggle.  Folding chairs and tables often use a similar scheme as do 
fold-down seats in automobiles.  

Another example of a common linkage with a branch defect is the slider-crank link‑
age (crankshaft, connecting rod, and slider driving) used in every piston engine and shown 
in Figure 13-3.  This linkage has two toggle positions (top and bottom dead center) giv‑
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ing it two branches within one revolution of its crank.  It works nevertheless because it is 
carried through these stationary configurations by the angular momentum of the rotating 
crank and its attached flywheel.  One penalty is that the engine must be spun to start it in 
order to build sufficient momentum to carry it through these toggle positions.

The Watt sixbar linkage can have four circuits, and the Stephenson sixbar can have 
either four or six circuits depending on which link is driving.  Eightbar linkages can have 
as many as 16 or 18 circuits, not all of which may be real, however.[2]  

The number of circuits and branches in the fourbar linkage depends on its Grashof 
condition and the inversion used.  A non-Grashof, triple-rocker fourbar linkage has only 
one circuit but has two branches.  All Grashof fourbar linkages have two circuits, but the 
number of branches per circuit differs with the inversion.  The crank-rocker and double-
crank have only one branch within each circuit.  The double-rocker and rocker-crank have 
two branches within each circuit.  Table 4-1 summarizes these relationships.[2]  Table 4-2 
shows the circuits and branches for the two configurations of the fourbar slider linkage.  
Figure 4-21 shows the circuits for the Grashof fourbar linkage and the fourbar slider.

Any solution for the position of a linkage must take into account the number of pos‑
sible circuits that it contains.  A closed-form solution, if available, will contain all the 
circuits.  An iterative solution such as is described in the next section will only yield the 
position data for one circuit, and it may not be the one you expect.

FIGURE 4-21
Circuits of the fourbar linkage
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4 TABLE  4-1
Circuits & Branches
In the Fourbar Linkage

Fourbar
Linkage
  Type

Number
    of
Circuits

Branches
     per
  Circui t

Non-
Grashof
triple-
rocker

1 2

Grashof *
crank-
rocker

2 1

Grashof *
double-
crank

2 1

Grashof *
double-
rocker

2 2

Grashof *
rocker -
crank

2 2

* Valid only for non-special-case
   Grashof linkages

TABLE  4-2
Circuits & Branches
In the Fourbar Slider

Fourbar
 Slider
  Type

Number
    of
Circuits

Branches
     per
  Circui t

Crank-
slider 2 1

Slider-
crank 2 2
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4.14	 NEWTON-RAPHSON SOLUTION METHOD

The solution methods for position analysis shown so far in this chapter are all of “closed 
form,” meaning that they provide the solution with a direct, noniterative approach.*  In 
some situations, particularly with multiloop mechanisms, a closed-form solution may not 
be attainable.  Then an alternative approach is needed, and the Newton-Raphson method 
(sometimes just called Newton’s method) provides one that can solve sets of simultane‑
ous nonlinear equations.  Any iterative solution method requires that one or more guess 
values be provided to start the computation.  It then uses the guess values to obtain a new 
solution that may be closer to the correct one.  This process is repeated until it converges 
to a solution close enough to the correct one for practical purposes.  However, there is no 
guarantee that an iterative method will converge at all.  It may diverge, taking successive 
solutions further from the correct one, especially if the initial guess is not sufficiently 
close to the real solution.  

Though we will need to use the multidimensional (Newton-Raphson) version of 
Newton’s method for these linkage problems, it is easier to understand how the algorithm 
works by first discussing the one-dimensional Newton method for finding the roots of a 
single nonlinear function in one independent variable.  Then we will discuss the multidi‑
mensional Newton-Raphson method.

One-Dimensional Root-Finding (Newton’s Method)

A nonlinear function may have multiple roots, where a root is defined as the intersection 
of the function with any straight line.  Typically the zero axis of the independent variable 
is the straight line for which we desire the roots.  Take, for example, a cubic polynomial 
which will have three roots, with either one or all three being real.

= = − − + +( ) 2 50 60 (4.38)3 2y f x x x x

There is a closed-form solution for the roots of a cubic function† which allows us to 
calculate in advance that the roots of this particular cubic are all real and are x = –7.562, 
–1.177, and 6.740.  

Figure 4-22 shows this function plotted over a range of x.  In Figure 4-22a, an initial 
guess value of x1 = 1.8 is chosen.  Newton’s algorithm evaluates the function for this guess 
value, finding y1.  The value of y1 is compared to a user-selected tolerance (say 0.001) to 
see if it is close enough to zero to call x1 the root.  If not, then the slope (m) of the function 
at x1, y1 is calculated either by using an analytic expression for the derivative of the func‑
tion or by doing a numerical differentiation (less desirable).  The equation of the tangent 
line is then evaluated to find its intercept at x2 which is used as a new guess value.  The 
above process is repeated, finding y2; testing it against the user selected tolerance; and, if 
it is too large, calculating another tangent line whose x intercept is used as a new guess 
value.  This process is repeated until the value of the function yi at the latest xi is close 
enough to zero to satisfy the user.  

The Newton algorithm described above can be expressed algebraically (in pseudo‑
code) as shown in equation 4.39.  The function for which the roots are sought is f(x), and 
its derivative is f ’(x).  The slope m of the tangent line is equal to f ’(x) at the current point 
xi, yi.  

	
†  Viete’s method from “De 
Emendatione” by Francois 
Viete (1615) as described in 
reference [4].

*  Kramer [3] states that  “In 
theory, any nonlinear alge-
braic system of equations can 
be manipulated into the form 
of a single polynomial in one 
unknown.  The roots of this 
polynomial can then be used 
to determine all unknowns in 
the system.  However, if the 
derived polynomial is greater 
than degree four, factoring 
and/or some form of iteration 
are necessary to obtain the 
roots.  In general, systems 
that have more than a fourth 
degree polynomial associated 
with the eliminant of all but 
one variable must be solved 
by iteration.  However, if 
factoring of the polynomial 
into terms of degree four or 
less is possible, all roots may 
be found without iteration.  
Therefore the only truly sym-
bolic solutions are those that 
can be factored into terms of 
fourth degree or less.  This 
is the formal definition of a 
closed form solution.”
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=
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′

= −

=
≤

= =

+

+ +

+ +

step 1 ( )
step 2 IF THEN STOP
step 3 = ( )

step 4

step 5 ( )
step 6 IF THEN STOP

ELSE : : GOTO step 1 (4.39)

1

1 1

+1

1 1

y f x
y tolerance

m f x

x x
y
m

y f x
y tolerance

x x y y

i i

i

i

i i
i

i i

i

i i i i

If the initial guess value is close to a root, this algorithm will converge rapidly to the 
solution.  However, it is quite sensitive to the initial guess value.  Figure 4-22b shows the 
result of a slight change in the initial guess from x1 = 1.8 to x1 = 2.5.  With this slightly 
different guess, it converges to another root.  Note also that if we choose an initial guess 
of x1 = 3.579 which corresponds to a local maximum of this function, the tangent line 
will be horizontal and will not intersect the x axis at all.  The method fails in this situa‑
tion.  Can you suggest a value of x1 that would cause it to converge to the root at x = 6.74?

So this method has its drawbacks.  It may fail to converge.  It may behave chaotically.*  
It is sensitive to the guess value.  It also is incapable of distinguishing between multiple 
circuits in a linkage.  The circuit solution it finds is dependent on the initial guess.  It re‑
quires that the function be differentiable, and the derivative as well as the function must 
be evaluated at every step.  Nevertheless, it is the method of choice for functions whose 
derivatives can be efficiently evaluated and which are continuous in the region of the root.  
Furthermore, it is about the only choice for systems of nonlinear equations.

*Kramer[3] points out that 
“the Newton Raphson al‑
gorithm can exhibit chaotic 
behavior when there are 
multiple solutions to kine‑
matic constraint equations.  
. . . Newton Raphson 
has no mechanism for 
distinguishing between the 
two solutions” (circuits).  
He does an experiment 
with just two links, exactly 
analogous to finding the 
angles of the coupler and 
rocker in the fourbar linkage 
position problem, and finds 
that the initial guess values 
need to be quite close to 
the desired solution (one of 
the two possible circuits) to 
avoid divergence or chaotic 
oscillation between the two 
solutions.

0
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2 4 6 8 10–2–4–6–8–10

0

0
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x

2 4 6 8 10–2–4–6–8–10
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m

m

( a )  A guess of   = 1.8 converges to the root at   = –1.177

FIGURE 4-22
Newton-Raphson method of solution for roots of nonlinear functions

(b )  A guess of   = 2.5 converges to the root at   = –7.562
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Multidimensional Root-Finding (Newton-Raphson Method)

The one-dimensional Newton method is easily extended to multiple, simultaneous, non‑
linear equation sets and is then called the Newton-Raphson method.  First, let’s generalize 
the expression developed for the one-dimensional case in step 4 of equation 4.39.  Refer 
also to Figure 4-22.

D

D

( )= − − = −

= = ′ − =

′ ⋅ = −

+ +

+

or

but: ( ) ( )

substituting: ( ) ( ) (4.40)

1 1

1

x x
y
m

m x x y

y f x m f x x x x

f x x f x

i i
i

i i i

i i i i i

i i

Here a ∆x term is introduced which will approach zero as the solution converges.  The ∆x 
term rather than yi will be tested against a selected tolerance in this case.  Note that this 
form of the equation avoids the division operation which is acceptable in a scalar equation 
but impossible with a matrix equation.

A multidimensional problem will have a set of equations of the form



















= B

( , , , , )
( , , , , )

( , , , , )

(4.41)

1 1 2 3

2 1 2 3

1 2 3

f x x x x
f x x x x

f x x x x

n

n

n n

…

…

� �

…

where the set of equations constitutes a vector, here called B.

Partial derivatives are required to obtain the slope terms

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂























= A (4.42)

1

1

1

2

1

1 2

f
x

f
x

f
x

f
x

f
x

f
x

n

n n n

n

�

� � �

�

which form the Jacobian matrix of the system, here called A.

The error terms are also a vector, here called X.



















= X (4.43)

1

2

x
x

xn



D

D

D

Equation 4.40 then becomes a matrix equation for the multidimensional case.

= −AX B (4.44)

Equation 4.44 can be solved for X either by matrix inversion or by Gaussian elimination.  
The values of the elements of A and B are calculable for any assumed (guess) values of 
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the variables.  A criterion for convergence can be taken as the sum of the error vector X 
at each iteration where the sum approaches zero at a root.  

Let’s set up this Newton-Raphson solution for the fourbar linkage.

Newton-Raphson Solution for the Fourbar Linkage

The vector loop equation of the fourbar linkage, separated into its real and imaginary parts 
(equations 4.6a and 4.6b) provides the set of functions that define the two unknown link 
angles θ3 and θ4.  The link lengths, a, b, c, d, and the input angle θ2 are given.  

= θ + θ − θ − =

= θ + θ − θ =

cos cos cos 0
(4.45a)

sin sin sin 0

1 2 3 4

2 2 3 4

f a b c d

f a b c

=
θ + θ − θ −

θ + θ − θ








B

cos cos cos
sin sin sin

(4.45b)2 3 4

2 3 4

a b c d
a b c

The error vector is:

=
θ
θ









X (4.46)3

4

D

D

=

∂
∂θ

∂
∂θ

∂
∂θ

∂
∂θ



















=
− θ θ

θ − θ








A

sin sin
cos cos

(4.47)

1

3

1

4

2

3

2

4

3 4

3 4

f f

f f
b c
b c

This matrix is known as the Jacobian of the system, and, in addition to its usefulness 
in this solution method, it also tells something about the solvability of the system.  The 
system of equations for position, velocity, and acceleration (in all of which the Jacobian 
appears) can only be solved if the value of the determinant of the Jacobian is nonzero.  

Substituting equations 4.45b, 4.46, and 4.47 into equation 4.44 gives:

− θ θ
θ − θ











θ
θ









 = −

θ + θ − θ −
θ + θ − θ











sin sin
cos cos

cos cos cos
sin sin sin

(4.48)3 4

3 4

3

4

2 3 4

2 3 4

b c
b c

a b c d
a b c

D

D

To solve this matrix equation, guess values will have to be provided for θ3 and θ4 and 
the two equations then solved simultaneously for ∆θ3 and ∆θ4.  For a larger system of 
equations, a matrix reduction algorithm will need to be used.  For this simple system in 
two unknowns, the two equations can be solved by combination and reduction.  The test 
described above which compares the sum of the values of ∆θ3 and ∆θ4 to a selected toler‑
ance must be applied after each iteration to determine if a root has been found.

Equation Solvers

Some commercially available equation solver software packages include the ability to 
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations.  
TKSolver* and Mathcad† are examples.  TKSolver automatically invokes its Newton-

*Universal Technical 
Systems, 1220 Rock St. 
Rockford, IL 61101, USA.  
(800) 435-7887
	
†PTC Inc., 140 Kendrick 
St., Needham, MA 02494 
(781) 370-5000
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Raphson solver when it cannot directly solve the presented equation set, provided that 
enough guess values have been supplied for the unknowns.  These equation solver tools 
are quite convenient in that the user need only supply the equations for the system in “raw” 
form such as equation 4.45a.  It is not necessary to arrange them into the Newton-Raphson 
algorithm as shown in the previous section.  Lacking such a commercial equation solver, 
you will have to write your own computer code to program the solution as described 
above.  Reference [5] is a useful aid in this regard.  The downloads with this text contain 
example TKSolver files for the solution of this fourbar position problem as well as others.
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4.16	 PROBLEMS‡

	 4‑1	 A position vector is defined as having a length equal to your height in inches (or cen‑
timeters).  The tangent of its angle is defined as your weight in pounds (or kilograms) 
divided by your age in years.  Calculate the data for this vector and:
a.	 Draw the position vector to scale on cartesian axes.
b.	 Write an expression for the position vector using unit vector notation.
c.	 Write an expression for the position vector using complex number notation, in both 

polar and cartesian forms.
	 4‑2	 A particle is traveling along an arc of 6.5-in radius.  The arc center is at the origin of 

a coordinate system.  When the particle is at position A, its position vector makes a 
	
‡  All problem figures are provided as PDF files, and some are also provided as animated AVI and Working 
Model files; PDF filenames are the same as the figure number.  Run the file Animations.html to access and run 
the animations.

 - Part 1
Topic/Problem Matrix

 4.2 Position and Dis-
placement  
4-53, 4-57

 4.5 Position Analysis of 
Fourbar Linkages

4-1, 4-2, 4-3, 4-4, 4-5
Graphical 4-6
Analytical 4-7, 4-8, 
4-18d, 4-24, 4-36, 
4-39. 4-42, 4-45, 4-48, 
4-51, 4-58, 4-59

 4.6 Fourbar Crank-Slider 
Position Solution
Graphical 4-9
Analytical 4-10, 
4-18c, 4-18f,  
4-18h, 4-20, 4-63, 
4-66

 4.7 Fourbar Slider-Crank 
Position Solution
Graphical  4-60
Analytical  4-61

 4.8 Inverted Crank-Slider 
Position Solution
Graphical 4-11
Analytical 4-12, 4-48

 4.9 Linkages of More 
than Four Bars
Graphical GFBM 4-16
Analytical GFBM 4-17
Sixbar  4-34, 4-36, 
4-37, 4-39, 4-40, 4-42, 
4-49, 4-51
Eightbar  4-43, 4-45, 
4-62

 4.10 Position of Any Point 
on a Linkage

4-19, 4-22, 4-23, 
4-46, 4-67

 4.11 Transmission Angles

4-13, 4-14, 4-18b,  
4-18e, 4-35, 4-38, 4-41, 
4-44, 4-47, 4-50, 4-54

 4.12 Toggle Positions

4-15, 4-18a, 4-18g,  
4-21, 4-25, 4-26,  
4-27, 4-28, 4-29, 
4-30, 4-52, 4-55, 4-56
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45° angle with the X axis.  At position B, its vector makes a 75° angle with the X axis.  
Draw this system to some convenient scale and:
a.	 Write an expression for the particle’s position vector in position A using complex 

number notation, in both polar and cartesian forms.
b.	 Write an expression for the particle’s position vector in position B using complex 

number notation, in both polar and cartesian forms.
c.	 Write a vector equation for the position difference between points B and A.  Substi‑

tute the complex number notation for the vectors in this equation and solve for the 
position difference numerically.

d.	 Check the result of part c with a graphical method.

Row Link 1 Link 2 Link 3 Link 4 θ2

a 6 2 7 9 30
b 7 9 3 8 85
c 3 1 0 6 8 45
d 8 5 7 6 25
e 8 5 8 6 75
f 5 8 8 9 15
g 6 8 8 9 25
h 20 10 10 10 50
i 4 5 2 5 80
j 20 10 33
k 4 6 10 7 88
l 9 7 10 7 60

m 9 7 11 8 50
n 9 7 11 6 120

TABLE  P4-1 Data for Problems 4-6, 4-7 and 4-13 to 4-15‡

1010

	
‡  These problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Working 
Model files; PDF filenames 
are the same as the figure 
number.  Run the file Ani-
mations.html to access and 
run the animations.

FIGURE P4-1‡

Problems 4-6 to 4-7.  General configuration and terminology for the fourbar linkage

θ31

θ2

A

B

X

Y

x

y

2

3

4

3

4

Open

Crossed

θ32

θ42

θ41

 - Part 2
Topic/Problem Matrix
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	 4‑3	 Repeat problem 4‑2 considering points A and B to represent separate particles, and find 
their relative position.

	 4‑4 	 Repeat Problem 4‑2 with the particle’s path defined as being along the line 	
y = –2x + 10.

	 4‑5	 Repeat Problem 4‑3 with the path of the particle defined as being along the curve 
y = –2x2 – 2x + 10.

	 *4‑6	 The link lengths and the value of θ2 for some fourbar linkages are defined in Table P4‑1.  
The linkage configuration and terminology are shown in Figure P4‑1.  For the rows 
assigned, draw the linkage to scale and graphically find all possible solutions (both open 
and crossed) for angles θ3 and θ4.  Determine the Grashof condition.

	 *†4‑7 	 Repeat Problem 4‑6 except solve by the vector loop method.

	 4‑8	 Expand equation 4.7b and prove that it reduces to equation 4.7c.

	 *4‑9	 The link lengths and the value of θ2 and offset for some fourbar crank-slider linkages 
are defined in Table P4‑2. The linkage configuration and terminology are shown in 
Figure P4‑2.  For the rows assigned, draw the linkage to scale and graphically find all 
possible solutions (both open and crossed) for angle θ3 and slider position d.

* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.

	
‡  These problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Working 
Model files; PDF filenames 
are the same as the figure 
number.  Run the file Ani-
mations.html to access and 
run the animations.

FIGURE P4-2
Problems 4-9, 4-10, 4-60, 4-61  Fourbar slider linkage open configuration and terminology 
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θ4 = 90°
Offset
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Y
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Link 2

Link 3
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y

θ 2

Row Link 2 Link 3 Offset θ2

1.4

2

3

3.5

5

3

7

a

b

c

d

e

g

f

4

6

8

10

20

13

25

1

–3

2

1

–5

0

10

45

60

–30

120

225

100

330

TABLE  P4-2 Data for Problems 4-9 to 4-10 ‡
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* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.

	 *†4‑10	 Repeat Problem 4‑9 except solve by the vector loop method.

	 *4‑11	 The link lengths and the value of θ2 and γ for some inverted fourbar crank-slider link‑
ages are defined in Table P4‑3. The linkage configuration and terminology are shown in 
Figure P4‑3.  For the rows assigned, draw the linkage to scale and graphically find both 
open and crossed solutions for angles θ3 and θ4 and vector RB.

	 *†4‑12	 Repeat Problem 4‑11 except solve by the vector loop method.

	 *†4‑13	 Find the transmission angles of the linkages in the assigned rows in Table P4‑1.

	 *†4‑14	 Find the minimum and maximum values of the transmission angle for all the Grashof 
crank-rocker linkages in Table P4‑1.

	 *†4‑15	 Find the input angles corresponding to the toggle positions of the non‑Grashof linkages 
in Table P4‑1.  (For this problem, ignore the values of θ2 given in the table.)

	 *4‑16	 The link lengths, gear ratio (λ), phase angle (φ), and the value of θ2 for some geared 
fivebar linkages are defined in Table P4‑4.  The linkage configuration and terminology 
are shown in Figure P4‑4.  For the rows assigned, draw the linkage to scale and graphi‑
cally find all possible solutions for angles θ3 and θ4.

	 *†4‑17	 Repeat Problem 4‑16 except solve by the vector loop method.

Row Link 1 Link 2 Link 4 γ θ2

a 3090426

b 8575397

c 4510 63 45

d 256058 3

e 7530248

f 90885 150

TABLE  P4-3 Data for Problems 4-11 to 4-12

FIGURE P4-3
Problems 4-11 to 4-12  Terminology for inversion #3 of the fourbar crank-slider linkage
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	 4-18	 Figure P4-5 shows the mechanisms for the following problems, each of which refers 
to the part of the figure having the same letter.  Reference all calculated angles to the 
global XY axes.
a.	 The angle between the X and x axes is 25°.  Find the angular displacement of link 

4 when link 2 rotates clockwise from the position shown (+37°) to horizontal (0°).  
How does the transmission angle vary and what is its minimum between those two 
positions?  Find the toggle positions of this linkage in terms of the angle of link 2.

b.	 Find and plot the angular position of links 3 and 4 and the transmission angle as a 
function of the angle of link 2 as it rotates through one revolution.

c.	 Find and plot the position of any one piston as a function of the angle of crank 2 
as it rotates through one revolution.  Once one piston’s motion is defined, find the 

FIGURE P4-4
Problems 4-16 to 4-17  Open configuration and geared fivebar linkage terminology 
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7
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TABLE  P4-4 Data for Problems 4-16 to 4-17
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(d )  Walking-beam conveyor (e)  Bellcrank mechanism (f )  O�set slider-crank
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FIGURE P4-5
Mechanisms for Problem 4-18

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

View as a video
http://www.

designofmachin‑
ery.com/DOM/
drum_brake.avi View as a video

http://www.designofmachinery.com/DOM/compression_chamber.avi

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

http://www.designofmachinery.com/DOM/radial_engine.avi
http://www.designofmachinery.com/DOM/drum_brake.avi
http://www.designofmachinery.com/DOM/compression_chamber.avi
http://www.designofmachinery.com/DOM/walking_beam.avi
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motions of the other two pistons and their phase relationship to the first piston.
d.	 Find the total angular displacement of link 3 and the total stroke of the box as link 

2 makes a complete revolution.
e.	 Determine the ratio of angular displacement between links 8 and 2 as a function of 

angular displacement of input crank 2.  Plot the transmission angle at point B for 
one revolution of crank 2.  Comment on the behavior of this linkage.  Can it make 
a full revolution as shown?

f.	 Find and plot the displacement of piston 4 and the angular displacement of link 3 as 
a function of the angular displacement of crank 2.

g.	 Find and plot the angular displacement of link 6 versus the angle of input link 2 as 
it is rotated from the position shown (+30°) to a vertical position (+90°).  Find the 
toggle positions of this linkage in terms of the angle of link 2.

h.	 Find link 4’s maximum displacement vertically downward from the position shown.  
What will the angle of input link 2 be at that position?

	 †4-19	 For one revolution of driving link 2 of the walking-beam indexing and pick-and-place 
mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their 
motion where its tips are above the top of the platen.  Express the stroke as a percent‑
age of the crank length O2A.  What portion of a revolution of link 2 does this stroke 
correspond to?  Also find the total angular displacement of link 6 over one revolution 
of link 2.  The vertical distance from O2 to the top of the platen is 64 mm.  The vertical 
distance from line AD to the top left corner Q of the leftmost pusher finger is 73 mm.  
The horizontal distance from point A to Q is 95 mm.  

	 †4-20	 Figure P4-7 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism.  
The dimensions are shown in the figure.  For one revolution of driving link 2 of the 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.
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FIGURE P4-6
Problem 4-19  Walking-beam indexer with pick-and-place mechanism      

View as a video
http://www.designofmachinery.com/

DOM/pick_and_place.avi

http://www.designofmachinery.com/DOM/pick_and_place.avi
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.

* Answers in Appendix F.

A
5

8.9

56°
4.4 5

9.5

P

B

50° 14°

O2

O4

x

y

Problem 4-21
FIGURE P4-8
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L2 =75 mm

FIGURE P4-7
Problem 4-20   Power hacksaw 

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi

hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the 
sawblade as a function of the angle of link 2.  

	 *†4-21	 For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of 
link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then cal‑
culate and plot the xy coordinates of coupler point P between those limits, referenced to 
the line of centers O2O4.

	 †4-22	 For the walking-beam mechanism of Figure P4-9, calculate and plot the x and y 
components of the position of the coupler point P for one complete revolution of the 
crank O2A.  Hint: Calculate them first with respect to the ground link O2O4 and then 
transform them into the global XY coordinate system (i.e., horizontal and vertical in the 
figure).  Scale the figure for any additional information needed.

B

AP = 3.06

31°

L4 = 2.33

P

L3 = 2.06

L2 = 1.0
A

L1 = 2.22

P’
O2

O4 O6

6

5

7

8

1

ω2

FIGURE P4-9
Problem 4-22  Straight-line walking-beam eightbar transport mechanism

View as a video
http://www.designofma‑
chinery.com/DOM/walk‑
ing_beam_eight-bar.avi

http://www.designofmachinery.com/DOM/power_hacksaw.avi
http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
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	 *†4-23	 For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3 
and 4 and the path coordinates of point P with respect to the angle of the input crank 
O2A for one revolution.

	 †4-24	 For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3 
and 4 with respect to the angle of the input crank O2A for one revolution.

	 *†4-25	 For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P with respect to the angle of the input crank O2A over its possible range of mo‑
tion referenced to the line of centers O2O4.

	 *†4-26	 For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O2A over its 
possible range of motion referenced to the line of centers O2O4.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.

* Answers in Appendix F.
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Problem 4-23
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Problem 4-25
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FIGURE P4-11
Problem 4-24

View as a video
http://www.designof‑

machinery.com/DOM/
loom_laybar_drive.avi

http://www.designofmachinery.com/DOM/loom_laybar_drive.avi
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, your solution 
can be checked with the 
program Linkages.

* Answers in Appendix F.

	 †4-27	 For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle 
of link O4B referenced to the line of centers O4O2 when driven from link O4B.  Then 
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O4B over its 
possible range of motion referenced to the line of centers O4O2.

	 †4-28	 For the rocker-crank linkage in Figure P4-14, find the maximum angular displace‑
ment possible for the treadle link (to which force F is applied).  Determine the toggle 
positions.  How does this work?  Explain why the grinding wheel is able to fully rotate 
despite the presence of toggle positions when driven from the treadle.  How would you 
get it started if it were in a toggle position?

	 *†4-29	 For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle 
of link O2A referenced to the line of centers O2O4 when driven from link O2A.  Then 
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of 
point P between those limits, with respect to the angle of the input crank O2A over its 
possible range of motion referenced to the line of centers O2O4.

	 *†4-30	 For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle 
of link O4B referenced to the line of centers O4O2 when driven from link O4B.  Then 
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of 
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FIGURE P4-13
Problems 4-26 to 4-27
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Problems 4-29 to 4-30
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FIGURE P4-14
Problem 4-28

View as a video
http://www.designof‑

machinery.com/DOM/
treadle_wheel.avi

http://www.designofmachinery.com/DOM/treadle_wheel.avi
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.  In 
most cases, the  solution 
can be checked with the 
program Linkages.

point P between those limits, with respect to the angle of the input crank O4B over its 
possible range of motion referenced to the line of centers O4O2.

	 *†4-31	 Write a computer program (or use an equation solver such as Mathcad, Matlab, or 
TKSolver) to find the roots of y = 9x2 + 50x – 40.  Hint: Plot the function to determine 
good guess values.

	 †4-32	 Write a computer program (or use an equation solver such as Mathcad, Matlab, or 
TKSolver) to find the roots of y = –x3 – 4x2 + 80x – 40.  Hint: Plot the function to 
determine good guess values.

	 †4-33	 Figure 4-22 plots the cubic function from equation 4.38.  Write a computer program 
(or use an equation solver such as Mathcad, Matlab, or TKSolver to solve the matrix 
equation) to investigate the behavior of the Newton-Raphson algorithm as the initial 
guess value is varied from x = 1.8 to 2.5 in steps of 0.1.  Determine the guess value at 
which the convergence switches roots.  Explain this root-switching phenomenon based 
on your observations from this exercise.  

	 †4-34	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular position of link 4 and the position of slider 6 
in Figure 3-33 as a function of the angle of input link 2.  

	 †4-35	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the transmission angles at points B and C of the linkage 
in Figure 3-33 as a function of the angle of input link 2.

	 †4-36	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29f.  (Use Linkages to check your result.)

	 †4-37	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of 
the angle of input link 2.  

	 †4-38	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage 
in Figure 3-34 as a function of the angle of input link 2.

	 †4-39	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29g.  (Use Linkages to check your result.)

	 †4-40	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of 
the angle of input link 2.  

	 †4-41	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, D, and E of the linkage 
in Figure 3-35 as a function of the angle of input link 2.

	 4-42	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage 
shown in Figure 3-29h.  (Use Linkages to check your result.)

	 †4-43	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of 
the angle of input link 2.  

* Answers in Appendix F.
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†  Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
Linkages.  

	 †4-44	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the 
linkage in Figure 3-36 as a function of the angle of input link 2.

	 †4-45	 Model the linkage shown in Figure 3-37a in Linkages.  Export the coupler curve coor‑
dinates to Excel and calculate the error function versus a true circle.

	 †4-46	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the 
angle of input link 2.  Also plot the variation (error) in the path of point P versus that of 
point A, i.e., how close to a perfect circle is point P’s path.

	 †4-47	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at point B of the linkage in Figure 
3-37a as a function of the angle of input link 2.

	 †4-48	 Figure 3-29f shows Evan’s approximate straight-line linkage #1.  Determine the range 
of motion of link 2 for which point P varies no more than 0.0025 from the straight 
line x = 1.690 in a coordinate system with origin at O2 and its x axis rotated 60° from 
O2O4.

	 †4-49	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the 
angle of input link 2.  

	 †4-50	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage 
in Figure 3-37b as a function of the angle of input link 2.

	 †4-51	 Figure 3-29g shows Evan’s approximate straight-line linkage #2.  Determine the range 
of motion of link 2 for which point P varies no more than 0.005 from the straight line x 
= –0.500 in a coordinate system with origin at O2 and its x axis rotated 30° from O2O4.

	 4-52	 For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive 
X axis when links 2 and 3 are in toggle positions?

	 4-53	 The coordinates of the point P1 on link 4 in Figure P4-16 are (114.68, 33.19) with re‑
spect to the xy coordinate system when link 2 is in the position shown.  When link 2 is in 
another position, the coordinates of P2 with respect to the xy system are (100.41, 43.78).  
Calculate the coordinates of P1 and P2 in the XY system for the two positions of link 2.  
What is the salient feature of the coordinates of P1 and P2 in the XY system?

	 †4-54	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular position of link 4 with respect to the XY 
coordinate frame and the transmission angle at point B of the linkage in Figure P4-16 
as a function of the angle of link 2 with respect to the XY frame.

	 4-55	 For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the 
position shown, which is at –26° with respect to the local xy coordinate system.  What 
angles do link 3 and link 4 rotate through for that excursion of link 2?

	 †4-56	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the position of the coupler point P of the linkage in Figure 
P4-17 with respect to the XY coordinate system as a function of the angle of link 2 with 
respect to the XY system.  The position of the coupler point P on link 3 with respect to 
point A is: p = 15.00, δ3 = 0°.
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†  Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
Linkages.  

	 4-57	 For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coor‑
dinate system if its coordinates in the xy system are (12.816, 10.234).

	 †4-58	 The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle.  
Derive analytical expressions for the positions of points A, B, and a point C on link 3 
midway between A and B as a function of θ3 and the length AB of link 3.  Use a vector 
loop equation.  (Hint:  Place the global origin off the mechanism, preferably below 
and to the left and use a total of 5 vectors.)  Code your solution in an equation solver 
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X
y

x

16.948
9.174

2.79

9.573
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4

3

PBA

O4

12.971

FIGURE P4-17
Problems 4-55 to 4-57  An aircraft overhead bin mechanism—dimensions in inches

FIGURE P4-16
Problems 4-52  to 4-54  An oil field pump—dimensions in inches
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such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one 
revolution of link 3.

	 †4-59	 Figure P4-19 shows a mechanism commonly used as a cabinet door hinge.  Write a 
computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to 
calculate and plot the angular position of link 6 in Figure P4-19 as a function of the 
angle of input link 2.  O2O4 = AB = BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  
O4C = AE = 2.60.  Hint:  Because the linkage geometry is simple and symmetrical, the 
analysis can be done with simple trigonometry.

	 4-60	 The link lengths, offset, and value of d for some fourbar slider-crank linkages are 
defined in Table P4-5.  The linkage configuration and terminology are shown in Figure 
P4-2.  For the rows assigned, draw the linkage to scale and graphically find all possible 
solutions (both open and crossed) for angles q2 and q3.

	 4-61	 Repeat Problem 4-60 except solve by the vector loop method.

	 4-62	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to calculate and plot the path of point P in Figure 3-29j as a function of the 
angle of input link 2 over the range 90° ≤q2 ≤270° for the following link lengths: L1 
= 12, L2 = 10, L3 = L4 = 22, and L5 = L6 = L7 = L8 = 6.5.  Hint: To make the analysis 
convenient, use the mirror image of the figure putting O4 to the right of O2 on the posi‑
tive x-axis.

	 4-63	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to calculate and plot the position of the slider in Figure P4-2 as a function of the 
crank angle using the data in row a of Table P4-2 for the link lengths and offset.  Check 
your solution by comparing it to a graphical solution at the value given for q2.

	 4-64	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to find the roots of y = 8x2 – 64x – 178.  Hint:  Plot the function to determine 
good guess values.

	 4-65	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK 
Solver to find the roots of y = x3 – 9x2 – 8.  Hint:  Plot the function to determine good 
guess values.

	
†  Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than an 
overnight problem.  In most 
cases, the solution can be 
checked with the program 
Linkages.  

Row Link 2 Link 3 Offset d

1.4

2

3

3.5

5

3

7

a

b

c

d

e

g
f

4

6

8

10

20

13

25

1

–3

2

1

–5

0

10

2.5

5

8

–8

15

–12

25

TABLE  P4-5 Data for Problems 4-60 to 4-61 ‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder on the book’s website
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	 4-66	 Figure P4-20 shows a cut-away view of a mechanism that opens and closes a remote 
valve by means of a long rod (valve stem) that moves up and down.  The handle has 
two round bosses (eccentrics) whose centers are offset from the pivot by 6 mm.  The 
eccentrics are connected to the valve stem by a coupler consisting of two identical links 
whose pivot holes have a center distance of 46 mm.  It is an inline crank-slider mecha‑
nism.  For the 180-degree-motion of the handle from closed to fully open, find and plot 
the stroke of the valve stem as a function of the angle of the handle.

	 4-67	 For the linkage in Figure 3-32a, calculate and plot the angular displacement of links 3 
and 4 and the path coordinates of point P with respect to the angle of the input crank 
O2A for one revolution.  The link lengths and coupler point data are: L1 = 3.72, L2 = 
1.00, L3 = 1.94, L4 = 3.72, p = 3.06, and d3 = −20°.ᵒ

valve stem

coupler

handleeccentric

housing

open

close

FIGURE P4-20
Problem 4-66

A

A
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Section B-B
Section A-A



	 Chapter5
ANALYTICAL LINKAGE  
SYNTHESIS
Imagination is more important than knowledge
Albert Einstein

5.0	 INTRODUCTION View the lecture video (48:17)†

With the fundamentals of position analysis established, we can now use these techniques 
to synthesize linkages for specified output positions analytically.  The synthesis tech-
niques presented in Chapter 3 were strictly graphical and somewhat intuitive.  The analyt-
ical synthesis procedure is algebraic rather than graphical and is less intuitive.  However, 
its algebraic nature makes it quite suitable for computerization.  These analytical synthesis 
methods were originated by Sandor[1] and further developed by his students Erdman,[2] 
Kaufman,[3] and Loerch et al.[4], [5]  

5.1	 TYPES OF KINEMATIC SYNTHESIS

Erdman and Sandor[6] define three types of kinematic synthesis, function, path, and 
motion generation, which were discussed in Section 3.2.  Brief definitions are repeated 
here for your convenience.

Function Generation  is defined as the correlation of an input function with an 
output function in a mechanism.  Typically, a double-rocker or crank-rocker is the result, 
with pure rotation input and pure rotation output.  A slider-crank linkage can be a function 
generator as well, driven from either end, i.e., rotation in and translation out or vice versa.

Path Generation  is defined as the control of a point in the plane such that it fol-
lows some prescribed path.  This is typically accomplished with a fourbar crank-rocker or 
double-rocker, wherein a point on the coupler traces the desired output path.  No attempt 
is made in path generation to control the orientation of the link which contains the point of 

233

These problems are suited 
Mathcad, 

 or TKSolver equa-

† http://www.designofma-
chinery.com/DOM/Analyti-
cal_Linkage_Synthesis.mp4

http://www.designofmachinery.com/DOM/Analytical_Linkage_Synthesis.mp4
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interest.  The coupler curve is made to pass through a set of desired output points.  How-
ever, it is common for the timing of the arrival of the coupler point at particular locations 
along the path to be defined.  This case is called path generation with prescribed timing 
and is analogous to function generation in that a particular output function is specified.

Motion Generation  is defined as the control of a line in the plane such that it 
assumes some sequential set of prescribed positions.  Here orientation of the link con-
taining the line is important.  This is typically accomplished with a fourbar crank-rocker 
or double-rocker, wherein a point on the coupler traces the desired output path and the 
linkage also controls the angle of the coupler link containing the output line of interest.

5.2	 TWO-POSITION SYNTHESIS FOR ROCKER OUTPUT

Example 3-1 showed a simple graphical technique for synthesis of a non-quick-return, 
Grashof fourbar linkage to drive a rocker through an angle.  This technique was employed 
in later examples (e.g., 3-2, 3-4, 3-6) to construct a driver dyad to move a synthesized 
fourbar linkage through its desired range of motion, thus creating a Watt sixbar linkage.  
The rocker excursion cannot exceed 180° theoretically but should be limited to about 
120° practically, which will give minimum transmission angles of 30°.  The same dyad 
synthesis procedure can be done analytically and will prove to be of value in combination 
with the other synthesis techniques presented in this chapter.

Figure 5-0 shows the same problem as Figure 3-4 with generic annotation suitable for 
analytical determination of link lengths for the driver dyad.  Link 4 (which might represent 
the input link to the next stage of the resulting Watt sixbar) is here the output link to be 
driven by a dyad consisting of links 2 and 3, whose lengths, along with that of the ground 
link 1 and its pivot location O2, are to be determined.  The pivot location O4 (defined in 
any convenient coordinate system XY), the initial angle θ4, and the excursion angle β are 
given.  The procedure is as follows:*

First choose a suitable location on link 4 to attach link 3, here labeled B1 and B2 in 
its extreme locations.  This defines R4, the length of link 4. These points can be defined 
in the chosen coordinate system as:

( ) ( )

( ) ( )

= + θ = + θ

= + θ + β = + θ + β

cos sin
(5.0a)

cos sin

1 4 4 4 1 4 4 4

2 4 4 4 2 4 4 4

B O R B O R

B O R B O R

x x y y

x x y y

The vector M is the position difference between vectors RB2 and RB1

= −M R R (5.0b)
2 1B B

The parametric equation for line L can be written as:

( ) = + −∞ ≤ ≤ ∞L R M (5.0c)
1

u u uB

We want the resulting linkage to be a Class 1 Grashof crank rocker.  We can achieve 
this by placing the crank pivot O2 suitably far from B1 along line L.  Let M = |M|. It will be 
a Class 2 (non-Grashof) linkage when B1O2 < M, become Class 3 (Grashof with change 
points) when B1O2 = M, be Class 1 when B1O2 > M, and will again approach Class 3 
when B1O2 >> M.  A reasonable range for B1O2 seems to be two to three times M.

	

*  This procedure was 
provided by Prof. Pierre 
Larochelle of South Dakota 
School of Mines.
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= ± < <R R MLet: 2 3 (5.0d)
2 1

K KO B

As shown in Example 3-1, the length of the crank must be half the length of vector M:

( )= = βM0.5 sin / 2 (5.0e)2 4R R

where β is in radians. Link 3 can be found by subtracting R2 from the magnitude of RB1– 
RO2 and link 1 is found by subtracting RO2 from RO4.

= − − = −R R R R; (5.0f)3 2 11 2 4 2
R R RB O O O

This algorithm will result in a Grashof crank rocker mechanism that drives the rocker 
through the specified angle with no quick return.
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FIGURE 5-0
Analytical two-position synthesis with rocker output (non-quick-return)
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5.3	 PRECISION POINTS

The points, or positions, prescribed for successive locations of the output (coupler or 
rocker) link in the plane are generally referred to as precision points or precision posi-
tions.  The number of precision points which can be synthesized is limited by the number 
of equations available for solution.  The fourbar linkage can be synthesized by closed-form 
methods for up to five precision points for motion or path generation with prescribed tim-
ing (coupler output) and up to seven points for function generation (rocker output).  Syn-
thesis for two or three precision points is relatively straightforward, and each of these cases 
can be reduced to a system of linear simultaneous equations easily solved on a calculator.  
The four or more position synthesis problems involve the solution of nonlinear, simul-
taneous equation systems, and so are more complicated to solve, requiring a computer.

Note that these analytical synthesis procedures provide a solution which will be able 
to “be at” the specified precision points, but no guarantee is provided regarding the link-
age’s behavior between those precision points.  It is possible that the resulting linkage will 
be incapable of moving from one precision point to another due to the presence of a toggle 
position or other constraint.  This situation is actually no different than that of the graphi-
cal synthesis cases in Chapter 3, wherein there was also the possibility of a toggle position 
between design points.  In fact, these analytical synthesis methods are just an alternate 
way to solve the same multiposition synthesis problems.  One should still build a simple 
cardboard model of the synthesized linkage to observe its behavior and check for the pres-
ence of problems, even if the synthesis was performed by an esoteric analytical method.

5.4	 TWO-POSITION MOTION GENERATION BY ANALYTICAL  
SYNTHESIS 

Figure 5‑1 shows a fourbar linkage in one position with a coupler point located at a 
first precision position P1.  It also indicates a second precision position (point P2) to be 
achieved by the rotation of the input rocker, link 2, through an as yet unspecified angle β2.  
Note also that the angle of the coupler link 3 at each of the precision positions is defined 
by the angles of the position vectors Z1 and Z2.  The angle φ corresponds to the angle 
θ3 of link 3 in its first position.  This angle is unknown at the start of the synthesis and 
will be found.  The angle α2 represents the angular change of link 3 from position one to 
position two.  This angle is defined in the problem statement.

It is important to realize that the linkage as shown in the figure is schematic.  Its 
dimensions are unknown at the outset and are to be found by this synthesis technique.  
Thus, for example, the length of the position vector Z1 as shown is not indicative of the 
final length of that edge of link 3, nor are the lengths (W, Z, U, V ) or angles (θ, φ, σ, ψ ) 
of any of the links as shown predictive of the final result.

The problem statement is:
Design a fourbar linkage which will move a line on its coupler link such that a point P 

on that line will be first at P1 and later at P2 and will also rotate the line through an angle 
α2 between those two precision positions.  Find the lengths and angles of the four links 
and the coupler link dimensions A1P1 and B1P1 as shown in Figure 5‑1.
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The two-position analytical motion synthesis procedure is as follows:
Define the two desired precision positions in the plane with respect to an arbitrarily 

chosen global coordinate system XY using position vectors R1 and R2 as shown in Figure 
5‑1a.  The change in angle α2 of vector Z is the rotation required of the coupler link.  Note 
that the position difference vector P21 defines the displacement of the output motion of 
point P and is defined as:

= −P R R (5.1)21 2 1

X

jYjY

X

α2
φ
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δ2 δ2
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R2 R1
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( a )  Two positions

FIGURE 5-1
Two-position analytical synthesis

(b )  Schematic linkage made of
        two dyads,  WZ  and US .
        Left-hand dyad shown
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The dyad W1Z1 defines the left half of the linkage.  The dyad U1S1 defines the right 
half of the linkage.  Note that Z1 and S1 are both embedded in the rigid coupler (link 3), 
and both of these vectors will undergo the same rotation through angle α2 from position 
1 to position 2.  The pin-to-pin length and angle of link 3 (vector V1) is defined in terms 
of vectors Z1 and S1.

= −V Z S (5.2a)1 1 1

The ground link 1 is also definable in terms of the two dyads.

= + −G W V U (5.2b)1 1 1 1

Thus if we can define the two dyads W1, Z1, and U1, S1, we will have defined a link-
age that meets the problem specifications.

We will first solve for the left side of the linkage (vectors W1 and Z1) and later use the 
same procedure to solve for the right side (vectors U1 and S1).  To solve for W1 and Z1, 
we need only write a vector loop equation around the loop which includes both positions 
P1 and P2 for the left-side dyad.  We will go clockwise around the loop, starting with W2.

+ − − − =W Z P Z W 0 (5.3)2 2 21 1 1

Now substitute the complex number equivalents for the vectors.

+ − − − =( ) ( )θ+β φ+α δ φ θ 0 (5.4)21
2 2 2we ze p e ze wej j j j j

The sums of angles in the exponents can be rewritten as products of terms.

+ − − − =θ β φ α δ φ θ 0 (5.5a)212 2 2we e ze e p e ze wej j j j j j j

Simplifying and rearranging:

( ) ( )− + − =θ β φ α δ1 1 (5.5b)212 2 2we e ze e p ej j j j j

Note that the lengths of vectors W1 and W2 are the same magnitude w because they 
represent the same rigid link in two different positions.  The same can be said about vec-
tors Z1 and Z2 whose common magnitude is z.

Equations 5.5 are vector equations, each of which contains two scalar equations and 
so can be solved for two unknowns.  The two scalar equations can be revealed by substi-
tuting Euler’s identity (equation 4.4a) and separating the real and imaginary terms as was 
done in Section 4.5.

real part:

( )
( )

[ ] [ ]
[ ] [ ]

θ β − − θ β

+ φ α − − φ α = δ

cos cos 1 sin sin

cos cos 1 sin sin cos (5.6a)
2 2

2 2 21 2

w w

z z p

imaginary part (with complex operator j divided out):

( )
( )

[ ] [ ]
[ ] [ ]

θ β − + θ β

+ φ α − + φ α = δ

sin cos 1 cos sin

sin cos 1 cos sin sin (5.6b)
2 2

2 2 21 2

w w

z z p
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There are eight variables in these two equations: w, θ, β2, z, φ, α2, p21, and δ2.  We 
can only solve for two.  Three of the eight are defined in the problem statement, namely 
α2, p21, and δ2.  Of the remaining five,  w, θ, β2, z, φ, we are forced to choose three as 
“free choices” (assumed values) in order to solve for the other two.

One strategy is to assume values for the three angles, θ, β2, φ, on the premise that we 
may want to specify the orientation θ, φ of the two link vectors W1 and Z1 to suit packag-
ing constraints, and also specify the angular excursion β2 of link 2 to suit some driving 
constraint.  This choice also has the advantage of leading to a set of equations that are 
linear in the unknowns and are thus easy to solve.  For this solution, the equations can 
be simplified by setting the assumed and specified terms to be equal to some constants.

In equation 5.6a, let:
( )
( )

= θ β − − θ β

= φ α − − φ α

= δ

cos cos 1 sin sin

cos cos 1 sin sin (5.7a)

cos

2 2

2 2

21 2

A

B

C p

and in equation 5.6b let:
( )
( )

= θ β − + θ β

= φ α − + φ α

= δ

sin cos 1 cos sin

sin cos 1 cos sin (5.7b)

sin

2 2

2 2

21 2

D

E

F p

then:
+ =
+ = (5.7c)

Aw Bz C
Dw Ez F

and solving simultaneously,

=
−
−

=
−
−

; (5.7d)w CE BF
AE BD

z AF CD
AE BD

A second strategy is to assume a length z and angle φ for vector Z1 and the angular 
excursion β2 of link 2 and then solve for the vector W1.  This is a commonly used ap-
proach.  Note that the terms in square brackets in each of equations 5.6 are respectively 
the x and y components of the vectors W1 and Z1.

.
= θ = φ

( )
= θ = φ

cos ; cos
5 8a

sin ; sin

1 1

1 1

W w Z z

W w Z z

x x

y y

Substituting in equation 5.6,

( )
( )

( )
( )

β − − β

+ α − − α = δ

β − + β
+ α − + α = δ

cos 1 sin

cos 1 sin cos
(5.8b)

cos 1 sin
cos 1 sin sin

1 2 1 2

1 2 1 2 21 2

1 2 1 2

1 2 1 2 21 2

W W

Z Z p

W W
Z Z p

x y

x y

y x

y x
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Z1x and Z1y are known from equation 5.8a with z and φ assumed as free choices.  To 
further simplify the expression, combine other known terms as:

β − = β = α −

= α = δ = δ

=cos 1; sin ; cos 1
(5.8c)

sin ; cos ; sin

2 2 2

2 21 2 21 2

A B C

D E p F p

substituting,

− + − =

+ + + =
(5.8d)

1 1 1 1

1 1 1 1

AW BW CZ DZ E

AW BW CZ DZ F

x y x y

y x y x

and the solution is:

( ) ( )

( ) ( )
=

− + + + − − +

−

=
− − + + − −

−

2
(5.8e)

2

1
1 1 1 1

1
1 1 1 1

W
A CZ DZ E B CZ DZ F

A

W
A CZ DZ F B CZ DZ E

A

x

x y y x

y

y x x y

Either of these strategies results in the definition of a left dyad W1Z1 and its pivot 
locations which will provide the motion generation specified.

We must repeat the process for the right-hand dyad, U1S1.  Figure 5‑2 highlights the 
two positions U1S1 and U2S2 of the right dyad.  Vector U1 is initially at angle σ and moves 
through angle γ2 from position 1 to 2.  Vector S1 is initially at angle ψ.  Note that the rota-
tion of vector S from S1 to S2 is through the same angle α2 as vector Z, since they are in 
the same link.  A vector loop equation similar to equation 5.3 can be written for this dyad.

+ − − − =U S P S U 0 (5.9a)2 2 21 1 1

Rewrite in complex variable form and collect terms.

( ) ( )− + − =σ γ ψ α δ1 1 (5.9b)212 2 2ue e se e p ej j j j j

When this is expanded and the proper angles substituted, the x and y component 
equations become:

real part:
( )

( )
σ γ − − σ γ

+ ψ α − − ψ α = δ

cos cos 1 sin sin

cos cos 1 sin sin cos (5.10a)
2 2

2 2 21 2

u u

s s p

imaginary part (with complex operator j divided out):

( )
( )

σ γ − + σ γ

+ ψ α − + ψ α = δ

sin cos 1 cos sin

sin cos 1 cos sin sin (5.10b)
2 2

2 2 21 2

u u

s s p

Compare equations 5.10 to equations 5.6.
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The same first strategy can be applied to equations 5.10 as was used for equations 5.6 
to solve for the magnitudes of vectors U and S, assuming values for angles σ, ψ, and γ2.  
The quantities p21, δ2, and α2 are defined from the problem statement as before.

In equation 5.10a let:
( )
( )

= σ γ − − σ γ

= ψ α − − ψ α

= δ

cos cos 1 sin sin

cos cos 1 sin sin (5.11a)

cos

2 2

2 2

21 2

A

B

C p
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FIGURE 5-2
Right-side dyad shown in two positions
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and in equation 5.10b let:
( )
( )

= σ γ − + σ γ

= ψ α − + ψ α

= δ

sin cos 1 cos sin

sin cos 1 cos sin (5.11b)

sin

2 2

2 2

21 2

D

E

F p

then:
+ =
+ = (5.11c)

Au Bs C
Du Es F

and solving simultaneously,

=
−
−

=
−
−

; (5.11d)u CE BF
AE BD

s AF CD
AE BD

If the second strategy is used, assuming angle γ2 and the magnitude and direction of 
vector S1 (which will define link 3), the result will be:

.

= σ = ψ

= σ = ψ ( )

cos ; cos

sin ; sin 5 12a
1 1

1 1

U u S s

U u S s
x x

y y

Substitute in equation 5.10:

( )
( )

( )
( )

γ − − γ

+ α − − α = δ

γ − + γ

+ α − + α = δ

cos 1 sin

cos 1 sin cos
(5.12b)

cos 1 sin

cos 1 sin sin

1 2 1 2

1 2 1 2 21 2

1 2 1 2

1 2 1 2 21 2

U U

S S p

U U

S S p

x y

x y

y x

y x

γ − = γ = α −

= α = δ = δ

Let: =cos 1; sin ; cos 1
(5.12c)

sin ; cos ; sin

2 2 2

2 21 2 21 2

A B C

D E p F p

Substitute in equation 5.12b,

− + − =

+ + + =
(5.12d)

1 1 1 1

1 1 1 1

AU BU CS DS E

AU BU CS DS F

x y x y

y x y x

and the solution is:

( ) ( )

( ) ( )
=

− + + + − − +

−

=
− − + + − −

−

2
(5.12e)

2

1
1 1 1 1

1
1 1 1 1

U
A CS DS E B CS DS F

A

U
A CS DS F B CS DS E

A

x

x y y x

y

y x x y

Note that there are infinities of possible solutions to this problem because we may 
choose any set of values for the three free choices of variables in this two-position case.  
Technically there is an infinity of solutions for each free choice.  Three choices then give 
infinity cubed solutions!  But since infinity is defined as a number larger than the largest 
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number you can think of, infinity cubed is not any more impressively large than just plain 
infinity.  While not strictly correct mathematically, we will, for simplicity, refer to all of 
these cases as having “an infinity of solutions,” regardless of the power to which infinity 
may be raised as a result of the derivation.  There are plenty of solutions to pick from, 
at any rate.  Unfortunately, not all will work.  Some will have circuit, branch, or order 
(CBO) defects such as toggle positions between the precision points.  Others will have 
poor transmission angles or poor pivot locations or overlarge links.  Design judgment is 
still most important in selecting the assumed values for your free choices.  Despite their 
name, you must pay for those “free choices” later.  Make a model!

5.5	 COMPARISON OF ANALYTICAL AND GRAPHICAL  
TWO-POSITION SYNTHESIS

Note that in the graphical solution to this two-position synthesis problem (in Example 
3-3 and Figure 3-6), we also had to make three free choices to solve the problem.  The 
identical two-position synthesis problem from Figure 3-6 is reproduced in Figure 5‑3.  The 
approach taken in Example 3-3 used the two points A and B (as labeled in Figure 5-3)* 
as the attachments for the moving pivots.  Figure 5‑3a shows the graphical construction 
used to find the fixed pivots O2 and O4.  For the analytical solution we will use those 
points A and B as the joints of the two dyads WZ and US.  These dyads meet at point P, 
which is the precision point.  The relative position vector P21 defines the displacement of 
the precision point.

Note that in the graphical solution, we implicitly defined the left dyad vector Z by 
locating attachment points A and B on link 3 as shown in Figure 5‑3a.  This defined the 
two variables, z and φ.  We also implicitly chose the value of w by selecting an arbitrary 
location for pivot O2 on the perpendicular bisector.  When that third choice was made, the 
remaining two unknowns, angles β2 and θ, were solved for graphically at the same time, 
because the geometric construction was in fact a graphical “computation” for the solution 
of the simultaneous equations 5.8a.  

The graphical and analytical methods represent two alternate solutions to the same 
problem.  All of these problems can be solved both analytically and graphically.  One 
method can provide a good check for the other.  We will now solve this problem analytically 
and correlate the results with the graphical solution from Chapter 3.

✍EXAMPLE  5‑1

Two-Position Analytical Motion Synthesis.

Problem:	 Design a fourbar linkage to move the link APB shown from position A1P1B1 to 
A2P2.B2.

Solution:	 (See Figure 5‑3.)

	 1	 Draw the link APB in its two desired positions, A1P1B1 and A2P2B2, to scale in the plane as 
shown. 

	
* In Figure 3-6, these same 
points were labeled C and 
D.
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	 2	 Measure or calculate the values of the magnitude and angle of vector P21, namely, p21 and δ2.  
In this example they are:

	 p21 = 2.416;	 δ2 = 165.2°

	 3	 Measure or calculate the value of the change in angle, α2, of vector Z from position 1 to posi-
tion 2.  In this example it is:

α2 = 43.3°

	 4	 The three values in steps 2 and 3 are the only ones defined in the problem statement.  We must 
assume three additional “free choices” to solve the problem.  Method two (see equations 5.8) 
chooses the length z and angle φ of vector Z and β2, the change in angle of vector W.  In order 
to obtain the same solution as the graphical method produced in Figure 5‑3a (from the infinities 
of solutions available), we will choose those values consistent with the graphical solution.

z = 1.298;		  φ = 26.5°;		 β2 = 38.4°

	 5	 Substitute these six values in equations 5.8 and obtain:

	 w = 2.467		  θ = 71.6°

	 6	 Compare these to the graphical solution;

w = 2.48	  θ = 71°

θ

φ

ψ

σ

δ2

α2

β2

γ2

( a )  Graphical synthesis (b )  Analytical synthesis

Link 2

Link 3

Link 1 (G)

Link 4

P21

S1

S2

W1W2

U1

U2V2 V1

Z2
Z1

B1

B2

P2

P1

A1

A2

O2

O4

O2

O4

B2

A2

P2

P1

A1

B1

FIGURE 5-3
Two-position motion synthesis with coupler output
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		  which is a reasonable match given graphical accuracy. This vector W1 is link 2 of the fourbar.

	 7	 Repeat the procedure for the link-4 side of the linkage.  The free choices will now be:

s = 1.035;		  ψ = 104.1°;	 γ2 = 85.6°

	 8	 Substitute these three values along with the original three values from steps 2 and 3 in equa-
tions 5.12 and obtain:

u = 1.486	 σ = 15.4°

	 9	 Compare these to the graphical solution:

u = 1.53		  σ = 14°

		  These are a reasonable match for graphical accuracy. Vector U1 is link 4 of the fourbar.

	10	 Line A1B1 is link 3 and can be found from equation 5.2a.  Line O2O4 is link 1 and can be found 
from equation 5.2b.

	11	 Check the Grashof condition, and repeat steps 4 to 7 if unsatisfied.  Note that any Grashof 
condition is potentially acceptable in this case.

	12	 Construct a model in CAD or cardboard and check its function to be sure it can get from initial 
to final position without encountering any limit (toggle) positions.

	13	 Check transmission angles.

Open the file E05‑01.4br in program Linkages to see Example 5‑1.

5.6	 SIMULTANEOUS EQUATION SOLUTION

These methods of analytical synthesis lead to sets of linear simultaneous equations.  The 
two-position synthesis problem results in two simultaneous equations which can be solved 
by direct substitution.  The three-position synthesis problem will lead to a system of four 
simultaneous linear equations and will require a more complicated method of solution.  
A convenient approach to the solution of sets of linear simultaneous equations is to put 
them in a standard matrix form and use a numerical matrix solver to obtain the answers.  
Matrix solvers are built into most engineering and scientific pocket calculators.  Some 
spreadsheet packages and equation solvers will also do a matrix solution.

As an example, consider the following set of simultaneous equations:

− − +
+ +
+ −

=
=
=

−2

3

1
6
2

(5.13a)
1 2 3

1 2 3

1 2 3

x x x
x x x
x x x

A system this small can be solved longhand by the elimination method, but we will 
put it in matrix form to show the general approach which will work regardless of the 
number of equations.  The equations 5.13a can be written as the product of two matrices 
set equal to a third matrix.
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− −

−

















×



















=
−















2 1 1
1 1 1
3 1 1

1
6
2

(5.13b)
1

2

3

x
x
x

We will refer to these matrices as A, B, and C,

[ ] [ ] [ ]× =A B C (5.13c)

where A is the matrix of coefficients of the unknowns, B is a column vector of the unknown 
terms, and C is a column vector of the constant terms.  When matrix A is multiplied by 
B, the result will be the same as the left sides of equation 5.13a.  See any text on linear 
algebra such as reference [7] for a discussion of the procedure for matrix multiplication.

If equation 5.13c were a scalar equation,

= (5.14a)ab c  

rather than a vector (matrix) equation, it would be very easy to solve it for the unknown 
b when a and c are known.  We would simply divide c by a to find b.

= (5.14b)b c
a

Unfortunately, division is not defined for matrices, so another approach must be used. 
Note that we could also express the division in equation 5.14b as:

= − (5.14c)1b a c

If the equations to be solved are linearly independent, then we can find the inverse 
of matrix A and multiply it by matrix C to find B.  The inverse of a matrix is defined as 
that matrix which when multiplied by the original matrix yields the identity matrix.  The 
identity matrix is a square matrix with ones on the main diagonal and zeros everywhere 
else.  The inverse of a matrix is denoted by adding a superscript of negative one to the 
symbol for the original matrix.

[ ] [ ] [ ]× = =
















−A A I1
1 0 0
0 1 0
0 0 1

(5.15)

Not all matrices will possess an inverse.  The determinant of the matrix must be 
nonzero for an inverse to exist.  The class of problems dealt with here will yield matrices 
which have inverses provided that all data are correctly calculated for input to the matrix 
and represent a real physical system.  The calculation of the terms of the inverse for a 
matrix is a complicated numerical process which requires a computer or preprogrammed 
pocket calculator to invert any matrix of significant size.  A Gauss-Jordan-elimination 
numerical method is usually used to find an inverse.  For our simple example in equation 
5.13 the inverse of matrix A is found to be:

− −

−

















= − −












−
2 1 1
1 1 1
3 1 1

1.0 0.0 1.0
2.0 0.5 1.5
1.

(5.16)

1
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If the inverse of matrix A can be found, we can solve equations 5.13 for the unknowns 
B by multiplying both sides of the equation by the inverse of A.  Note that unlike scalar 
multiplication, matrix multiplication is not commutative; i.e., A x B is not equal to B x 
A.  We will premultiply each side of the equation by the inverse.

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

× × = ×

× =

= ×

− −

−

−

A A B A C

A A I

B A C

but:

so:
(5.17)

1 1

1

1

The product of A and its inverse on the left side of the equation is equal to the identity 
matrix I.  Multiplying by the identity matrix is equivalent, in scalar terms, to multiplying 
by one, so it has no effect on the result.  Thus the unknowns can be found by premultiply-
ing the inverse of the coefficient matrix A times the matrix of constant terms C.

This method of solution works no matter how many equations are present as long 
as the inverse of A can be found and enough computer memory and/or time is available 
to do the computation.  Note that it is not actually necessary to find the inverse of matrix 
A to solve the set of equations.  The Gauss-Jordan algorithm which finds the inverse can 
also be used to directly solve for the unknowns B by assembling the A and C matrices 
into an augmented matrix of n rows and n + 1 columns.  The added column is the C 
vector.  This approach requires fewer calculations, so it is faster and more accurate.  The 
augmented matrix for this example is:

− − −

−

















2 1 1 1
1 1 1 6
3 1 1 2

(5.18a)

The Gauss-Jordan algorithm manipulates this augmented matrix until it is in the form 
shown below, in which the left, square portion has been reduced to the identity matrix 
and the rightmost column contains the values of the column vector of unknowns.  In this 
case the results are x1 = 1, x2 = 2, and x3 = 3 which are the correct solution to the original 
equations 5.13.

















1 0 0 1
0 1 0 2
0 0 1 3

(5.18b)

The program Matrix, supplied with this text, solves these problems with this Gauss-
Jordan elimination method and operates on the augmented matrix without actually finding 
the inverse of A in explicit form.   See Appendix A for instructions on running program 
Matrix.  For a review of matrix algebra see reference [7].

5.7	 THREE-POSITION MOTION GENERATION BY ANALYTICAL 
SYNTHESIS 

The same approach of defining two dyads, one at each end of the fourbar linkage, as used 
for two-position motion synthesis can be extended to three, four, and five positions in the 
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plane.  The three-position motion synthesis problem will now be addressed.  Figure 5‑4 
shows a fourbar linkage in one general position with a coupler point located at its first 
precision position P1.  Second and third precision positions (points P2 and P3) are also 
shown.  These are to be achieved by the rotation of the input rocker, link 2, through as yet 
unspecified angles β2 and β3.  Note also that the angles of the coupler link 3 at each of the 
precision positions are defined by the angles of the position vectors Z1, Z2, and Z3.  The 
linkage shown in the figure is schematic.  Its dimensions are unknown at the outset and 
are to be found by this synthesis technique.  Thus, for example, the length of the position 
vector Z1 as shown is not indicative of the final length of that edge of link 3 nor are the 
lengths or angles of any of the links shown predictive of the final result.

The problem statement is:
Design a fourbar linkage which will move a line on its coupler link such that a point 

P on that line will be first at P1, later at P2, and still later at P3, and also will rotate the 
line through an angle α2 between the first two precision positions and through an angle 
α3 between the first and third precision positions. Find the lengths and angles of the four 
links and the coupler link dimensions A1P1 and B1P1 as shown in Figure 5‑4.

The three-position analytical motion synthesis procedure is as follows:
For convenience, we will place the global coordinate system XY at the first precision 

point P1.  We define the other two desired precision positions in the plane with respect 
to this global system as shown in Figure 5-4.  The position difference vectors P21, drawn 
from P1 to P2, and P31, drawn from P1 to P3, have angles δ2 and δ3, respectively.  The 
position difference vectors P21 and P31 define the displacements of the output motion of 
point P from point 1 to 2 and from 1 to 3, respectively.

The dyad W1Z1 defines the left half of the linkage.  The dyad U1S1 defines the right 
half of the linkage.  Vectors Z1 and S1 are both embedded in the rigid coupler (link 3), and 
both will undergo the same rotations, through angle α2 from position 1 to position 2 and 
through angle α3 from position 1 to position 3.  The pin-to-pin length and angle of link 
3 (vector V1) are defined in terms of vectors Z1 and S1 as in equation 5.2a.  The ground 
link is defined by equation 5.2b as before.

As we did in the two-position case, we will first solve for the left side of the linkage 
(vectors W1 and Z1) and later use the same procedure to solve for the right side (vectors 
U1 and S1).  To solve for W1 and Z1 we need to now write two vector loop equations, 
one around the loop which includes positions P1 and P2 and the second one around the 
loop which includes positions P1 and P3 (see Figure 5‑4).  We will go clockwise around 
the first loop for motion from position 1 to 2, starting with W2, and then write the second 
loop equation for motion from position 1 to 3 starting with W3.

+ − − − =

+ − − − =

W Z P Z W

W Z P Z W

0
(5.19)

0

2 2 21 1 1

3 3 31 1 1

Substituting the complex number equivalents for the vectors.

+ − − − =

+ − − − =( ) ( )

( ) ( )θ+β φ+α δ φ θ

θ+β φ+α δ φ θ

0
(5.20)

0

21

31

2 2 2

3 3 3

we ze p e ze we

we ze p e ze we

j j j j j

j j j j j
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Rewriting the sums of angles in the exponents as products of terms.
+ − − − =

+ − − − =

θ β φ α δ φ θ

θ β φ α δ φ θ

0
(5.21a)

0

21

31

2 2 2

3 3 3

we e ze e p e ze we

we e ze e p e ze we

j j j j j j j

j j j j j j j

Simplifying and rearranging:

( ) ( )
( ) ( )− + − =

− + − =

θ β φ α δ

θ β φ α δ

1 1
(5.21b)

1 1

21

31

2 2 2

3 3 3

we e ze e p e

we e ze e p e

j j j j j

j j j j j

3

2

4

1

X

Yj

P21

P31

P2

P1

P3

S1
S2

S3

B1B2

B3A1
A2

A3

Z2

Z1

Z3

W2

W1

W3

U1U2

U3

G1

O2

O4

V1

δ2

δ3

σ

ψ

φ

θ

α2

α3

α2

β2

β3

α3

γ2

γ3

FIGURE 5-4
Three-position analytical synthesis
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The magnitude w of vectors W1, W2, and W3 is the same in all three positions be-
cause it represents the same line in a rigid link.  The same can be said about vectors Z1, 
Z2, and Z3 whose common magnitude is z.

Equations 5.21 are a set of two vector equations, each of which contains two scalar 
equations.  This set of four equations can be solved for four unknowns.  The scalar equa-
tions can be revealed by substituting Euler’s identity (equation 4.4a) and separating the 
real and imaginary terms as was done in the two-position example above.

real part:

( )
( )

( )
( )

θ β − − θ β

+ φ α − − φ α = δ

θ β − − θ β

+ φ α − − φ α = δ

cos cos 1 sin sin

cos cos 1 sin sin cos (5.22a)

cos cos 1 sin sin

cos cos 1 sin sin cos (5.22b)

2 2

2 2 21 2

3 3

3 3 31 3

w w

z z p

w w

z z p

imaginary part (with complex operator j divided out):

( )
( )

( )
( )

θ β − + θ β

+ φ α − + φ α = δ

θ β − + θ β

+ φ α − + φ α = δ3

sin cos 1 cos sin

sin cos 1 cos sin sin (5.22c)

sin cos 1 cos sin

sin cos 1 cos sin sin (5.22d)

2 2

2 2 21 2

3 3

3 3 31

w w

z z p

w w

z z p

There are twelve variables in these four equations 5.22:  w, θ, β2, β3, z, φ, α2, α3, 
p21, p31, δ2, and δ3.  We can solve for only four.  Six of them are defined in the problem 
statement, namely α2, α3, p21, p31, δ2, and δ3.  Of the remaining six, w, θ, β2, β3, z, φ, 
we must choose two as free choices (assumed values) in order to solve for the other 
four.  One strategy is to assume values for the two angles, β2 and β3, on the premise that 
we may want to specify the angular excursions of link 2 to suit some driving constraint.  
(This choice also has the benefit of leading to a set of linear equations for simultaneous 
solution.)

This leaves the magnitudes and angles of vectors W and Z to be found (w, θ, z, φ).  
To simplify the solution, we can substitute the following relationships to obtain the x and 
y components of the two unknown vectors W and Z, rather than their polar coordinates.

.
= θ = φ

( )
= θ = φ

cos ; cos
5 23

sin ; sin

1 1

1 1

W w Z z

W w Z z

x x

y y

Substituting equations 5.23 into 5.22 we obtain:

( )
( )

( )
( )

β − − β

+ α − − α = δ

β − − β

+ α − − α = δ

cos 1 sin

cos 1 sin cos (5.24a)

cos 1 sin

cos 1 sin cos (5.24b)

1 2 1 2

1 2 1 2 21 2

1 3 1 3

1 3 1 3 31 3

W W

Z Z p

W W

Z Z p

x y

x y

x y

x y
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( )
( )

( )
( )

β − + β

+ α − + α = δ

β − + β

+ α − + α = δ

cos 1 sin

cos 1 sin sin (5.24c)

cos 1 sin

cos 1 sin sin (5.24d)

1 2 1 2

1 2 1 2 21 2

1 3 1 3

1 3 1 3 31 3

W W

Z Z p

W W

Z Z p

y x

y x

y x

y x

These are four equations in the four unknowns W1x, W1y, Z1x, and Z1y.   By setting 
the coefficients which contain the assumed and specified terms equal to some constants, 
we can simplify the notation and obtain the following solutions.

α

β − = β = α −
= α = δ = β −

= β = α − =
= δ = δ = δ

A=cos 1; sin ; cos 1
sin ; cos ; cos 1

(5.25)
sin ; cos 1; sin

cos ; sin ; sin

2 2 2

2 21 2 3

3 3 3

31 3 21 2 31 3

B C
D E p F

G H K
L p M p N p

Substituting equations 5.25 in 5.24 to simplify:

− + − =

− + − =

+ + + =

+ + + =

(5.26a)

(5.26b)

(5.26c)

(5.26d)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

AW BW CZ DZ E

FW GW HZ KZ L

BW AW DZ CZ M

GW FW KZ HZ N

x y x y

x y x y

x y x y

x y x y

This system can be put into standard matrix form:

− −
− −



















×























=



















(5.27)

1

1

1

1

A B C D
F G H K
B A D C
G F K H

W

W

Z

Z

E
L
M
N

x

y

x

y

This is the general form of equation 5.13c.  The vector of unknowns B can be solved 
for by premultiplying the inverse of the coefficient matrix A by the constant vector C 
or by forming the augmented matrix as in equation 5.18.  For any numerical problem, 
the inverse of a 4 x 4 matrix can be found with many pocket calculators.  The computer 
program Matrix, supplied with this text, will also solve the augmented matrix equation.

Equations 5.25 and 5.26 solve the three-position synthesis problem for the left-hand 
side of the linkage using any pair of assumed values for β2 and β3.  We must repeat the 
above process for the right-hand side of the linkage to find vectors U and S.  Figure 5‑4 
also shows the three positions of the US dyad, and the angles σ, γ2, γ3, ψ, α2, and α3, 
which define those vector rotations for all three positions. The solution derivation for the 
right-side dyad, US, is identical to that just done for the left dyad WZ.  The angles and 
vector labels are the only difference.  The vector loop equations are:

+ − − − =

+ − − − =

U S P S U

U S P S U

0
(5.28)

0

2 2 21 1 1

3 3 31 1 1
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Substituting, simplifying, and rearranging,

( ) ( )
( ) ( )− + − =

− + − =

σ γ ψ α δ

σ γ ψ α δ

1 1
(5.29)

1 1

21

31

2 2 2

3 3 3

ue e se e p e

ue e se e p e

j j j j j

j j j j j

The solution requires that two free choices be made.  We will assume values for the 
angles γ2 and γ3.  Note that α2 and α3 are the same as for dyad WZ.  We will, in effect, 
solve for angles σ and ψ by finding the x and y components of the vectors U and S.  The 
solution is:

γ − = γ = α −
= α = δ = γ −

= γ = α − = α
= δ = δ = δ

A=cos 1; sin ; cos 1
sin ; cos ; cos 1

(5.30)
sin ; cos 1; sin

cos ; sin ; sin

2 2 2

2 21 2 3

3 3 3

31 3 21 2 31 3

B C
D E p F

G H K
L p M p N p

− + − =

− + − =

+ + + =

+ + + =

(5.31a)

(5.31b)

(5.31c)

(5.31d)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

AU BU CS DS E

FU GU HS KS L

BU AU DS CS M

GU FU KS HS N

x y x y

x y x y

x y x y

x y x y

Equations 5.31 can be solved using the approach of equations 5.27 and 5.18, by 
changing W to U and Z to S and using the definitions of the constants given in equation 
5.30 in equation 5.27.

It should be apparent that there are infinities of solutions to this three-position syn-
thesis problem as well.  An inappropriate selection of the two free choices could lead to 
a solution which has circuit, branch, or order problems in moving among all specified 
positions.  Thus we must check the function of the solution synthesized by this or any 
other method.  A simple model is the quickest check.

5.8	 COMPARISON OF ANALYTICAL AND GRAPHICAL  
THREE-POSITION SYNTHESIS

Figure 5‑5 shows the same three-position synthesis problem as was done graphically in 
Example 3-6.  Compare this figure to Figure 3-9.  The labeling has been changed to be 
consistent with the notation in this chapter. The points P1, P2, and P3 correspond to the 
three points labeled D in the earlier figure.  Points A1, A2, and A3 correspond to points E; 
points B1, B2, and B3 correspond to points F.  The line AP becomes the Z vector.  Point P 
is the coupler point which will go through the specified precision points, P1, P2, and P3.  
Points A and B are the attachment points for the rockers (links 2 and 4, respectively) on the 
coupler (link 3).  We wish to solve for the coordinates of vectors W, Z, U, and S, which 
define not only the lengths of those links but also the locations of the fixed pivots O2 and 
O4 in the plane and the lengths of links 3 and 1.  Link 1 is defined as vector G in Figure 
5‑4 and can be found from equation 5.2b.  Link 3 is vector V found from equation 5.2a.
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Four free choices must be made to constrain the problem to a particular solution out 
of the infinities of solutions available.  In this case the values of link angles β2, β3, γ2, 
and γ3 have been chosen to be the same values as those which were found in the graphical 
solution to Example 3-6 in order to obtain the same solution as a check and comparison.  
Recall that in doing the graphical three-position synthesis solution to this same problem 
we in fact also had to make four free choices.  These were the x,y coordinates of the mov-
ing pivot locations E and F in Figure 3-9 which correspond in concept to our four free 
choices of link angles here.

Example 3-5 also shows a graphical solution to this same problem resulting from 
the free choice of the x,y coordinates of points C and D on the coupler for the moving 
pivots (see Figure 3-8 and Example 3-5).  We found some problems with toggle positions 
in that solution and redid it using points E and F as moving pivots in Example 3-6 and 
Figure 3-9.  In effect the graphical three-position synthesis solution presented in Chapter 
3 is directly analogous to the analytical solution presented here.  For this analytical ap-
proach we choose to select the link angles β2, β3, γ2, and γ3 rather than the moving pivot 
locations E and F in order to force the resulting equations to be linear in the unknowns.  
The graphical solution done in the earlier examples is actually a solution of simultaneous 
nonlinear equations.

✍EXAMPLE  5‑2

Three-Position Analytical Motion Synthesis.

Problem:	 Design a fourbar linkage to move the link APB shown from position A1P1B1 to 
A2P2B2 and then to position A3P3B3.

Solution:	 (See Figure 5‑5.)

	 1	 Draw the link APB in its three desired positions, A1P1B1, A2P2B2, and A3P3B3 to scale in the 
plane as shown in the figure.

	 2	 The three positions are then defined with respect to a global origin positioned at the first preci-
sion point P1.  The given data are the magnitudes and angles of the position difference vectors 
between precision points:

		  p21 =  2.798	  δ2 = –31.19°	  p31 = 3.919	 δ3 = –16.34°

	 3	 The angle changes of the coupler between precision points are:

					     α2 = –45°			   α3 = 9.3°

	 4	 The free choices assumed for the link angles are:

		  β2 = 342.3°	  β3 = 324.8°	  γ2 = 30.9°	 γ3 = 80.6°

		  These defined variables and the free choices are also listed on the figure.

	 5	 Once the free choices of link angles are made, the terms for the matrices of equation 5.27 can 
be defined by solving equation 5.25 for the first dyad of the linkage and equation 5.30 for the 
second dyad of the linkage.  For this example they evaluate to:
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  Vectors

δ2δ3

σ

γ2

γ3

α3

α2

β2

β3

θ

δ2

δ3

α2

α3

β2

β3

γ2

γ3

Defined Variables

Assumed Variables

To be found:

= –31.19°

= 2.798P21

= 3.919P31

= –16.34°

= – 45.0°

=   9.3°

=   342.3°

=   324.8°

=     30.9°

=     80.6°

W1 Z1 S1 U1

2

W2
W1

W3

O

O4

jY

4
U1

U2
U3

3
3

P21

B1

B2

A3

B3

S2

S3

P2

P3

Z2
Z3

P31

X

3

A1

A2

S1

P1

Z1

FIGURE 5-5
Data needed for three-position analytical synthesis
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		  First dyad (WZ):

		  A = –0.0473	  B = –0.3040	 C = –0.2929	 D = –0.7071

		  E = 2.3936	  F = –0.1829	 G = –0.5764	 H = –0.0131

		  K = 0.1616	  L = 3.7607	 M = –1.4490	 N = –1.1026

		  Second dyad (US):

		  A = –0.1419	  B = 0.5135	 C = –0.2929	 D = –0.7071

		  E = 2.3936	  F = –0.8367	 G = 0.9866	 H = –0.0131

		  K = 0.1616	  L = 3.7607	 M = –1.4490	 N = –1.1026

	 6	 Program Matrix is used to solve this matrix equation once with the values from equation 5.25 
inserted to get the coordinates of vectors W and Z, and a second time with values from equa-
tion 5.31 in the matrix to get the coordinates of vectors U and S.  The calculated coordinates 
of the link vectors from equations 5.25 to 5.31 are:

		  Wx = 0.055	  Wy = 6.832	  Zx = 1.179	 Zy = 0.940

		  Link 2 = w = 6.832

		  Ux = –2.628	  Uy = –1.825	  Sx = –0.109	 Sy = 1.487

		  Link 4 = u = 3.2

	 7	 Equation 5.2a is used to find link 3.

Vx = Zx – Sx = 1.179 – (–0.109) = 1.288

Vy = Zy – Sy = 0.940 – 1.487 = – 0.547

Link 3 = v = 1.399

	 8	 The ground link is found from equation 5.2b

Gx = Wx + Vx  – Ux = 0.055 + 1.288 – (–2.628) = 3.971

Gy = Wy + Vy  – Uy = 6.832 – 0.547 – (–1.825) = 8.110

Link 1 = g = 9.03

	 9	 The appropriate vector components are added together to get the locations of fixed pivots O2 
and O4 with respect to the global origin at precision point P1.  See Figures 5‑4 and 5‑5.

O2x = –Zx – Wx = –1.179 – 0.055 = –1.234

 O2y = –Zy – Wy = – 0.940 – 6.832 = –7.772

     O4x = –Sx – Ux = –(–0.109) – (–2.628) = 2.737

  O4y = –Sy – Uy = – 1.487 – (–1.825) = 0.338
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Table 5-1 shows the linkage parameters as synthesized by this method.  These agree 
with the solution found in Example 3-6 within its graphical accuracy.  Open the files E05-
02a.mtr and E05-02b.mtr in program Matrix to compute these results.

This problem can also be solved with program Linkages using the same method as 
derived in Section 5.7.  Though the derivation was done in terms of the polar coordinates 
of the position difference vectors P21 and P31, it was considered more convenient to sup-
ply the cartesian coordinates of these vectors to program Linkages.  (It is generally more 
accurate to measure x,y coordinates from a sketch of the desired positions than to measure 
angles with a protractor.)  Thus the program requests the rectangular coordinates of P21 
and P31.  For this example they are:

		  p21x =  2.394	  p21y = –1.449	  p31x =  3.761	 p31y = –1.103

The angles α2 and α3 must be measured from the diagram and supplied, in degrees.  
These six items constitute the set of “givens.”  Note that these data are all relative infor-
mation relating the second and third positions to the first.  No information about their 
absolute locations is needed.  The global reference system can be taken to be anywhere 
in the plane.  We took it to be at the first precision point position P1 for convenience.  The 
free choices β2 and β3 for the first dyad and γ2, γ3 for the second dyad must also be input 
to program Linkages as they also were to program Matrix.

Program Linkages then solves the matrix equation 5.27 once with the values from 
equation 5.25 inserted to get the coordinates of vectors W and Z, and a second time with 
values from equation 5.31 in the matrix to get the coordinates of vectors U and S.  Equa-
tions 5.2 are then solved to find links 1 and 3, and the appropriate vector components 
are added together to get the locations of fixed pivots O2 and O4.  The link lengths are 
returned to the main part of program Linkages so that other linkage parameters can be 
calculated and the linkage animated.

Note that there are two ways to assemble any fourbar linkage, open and crossed (see 
Figure 4-5), and this analytical synthesis technique gives no information on which mode 

Link Number
Length Calculated (in) Length from Fig. 3-9 (in)

Analytical Solution Graphical Solution

Start Alpha2  =  0 rad/sec2

Start Omega2  =  1 rad/sec
Start Theta2  = 29  degrees
Final Theta2  = 11  degrees
Delta Theta2  = –9  degrees

Open/Crossed  = CROSSED CROSSED
Coupler Pt.  = 1.51 @ 61.31 degrees 1.5  @ 61 degrees

4 3.20 3.2
3 1.40 1.5
2 6.83 6.7
1 9.03 8.9

TABLE  5-1 Results of Analytical Synthesis for Example 5-2
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of assembly is necessary to get the desired solution.  Thus you may have to try both modes 
of assembly in program Linkages to find the correct one after determining the proper 
link lengths with this method.  

The finished linkage is the same as the one in Figure 3-9c that shows a driver dyad 
added to move links 2, 3, and 4 through the three precision points.  You may open the 
file E05-02.4br in program Linkages to see the motions of the analytically synthesized 
fourbar solution.  The linkage will move through the three positions defined in the problem 
statement.  The file F03-09c.6br may also be opened in program Linkages to see the full 
motion of the finished sixbar linkage.

5.9	 SYNTHESIS FOR A SPECIFIED FIXED PIVOT LOCATION

In Example 3-8 we used graphical synthesis techniques and inversion to create a fourbar 
linkage for three-position motion generation with specified fixed pivot locations.  This 
is a commonly encountered problem as the available locations for fixed pivots in most 
machines are quite limited.  Loerch et al.[4] show how we can use these analytical 
synthesis techniques to find a linkage with specified fixed pivots and three output positions 
for motion generation.  In effect we will now take as our four free choices the x and y 
coordinates of the two fixed pivots instead of the angles of the links.  This approach will 
lead to a set of nonlinear equations containing transcendental functions of the unknown 
angles.

Figure 5‑6 shows the WZ dyad in three positions.  Because we want to relate the 
fixed pivots of vectors W and U to our precision points, we will place the origin of our 
global axis system at precision point P1.  A position vector R1 can then be drawn from 
the root of vector W1 to the global origin at P1, R2 to P2, and R3 to P3.  The vector –R1 
defines the location of the fixed pivot in the plane with respect to the global origin at P1.

We will subsequently have to repeat this procedure for three positions of vector U at 
the right end of the linkage as we did with the three-position solution in Section 5.8.  The 
procedure is presented here in detail only for the left end of the linkage (vectors W, Z).  
It is left to the reader to substitute U for W and S for Z in equations 5.32 to generate the 
solution for the right side.

We can write the vector loop equation for each precision position:

+ =
+ =
+ =

W Z R
W Z R
W Z R

(5.32a)
1 1 1

2 2 2

3 3 3

Substitute the complex number equivalents for the vectors Wi and Zi:

+ =

+ =

+ =( ) ( )

( ) ( )

θ φ

θ+β φ+α

θ+β φ+α

R

R

R

(5.32b)

1

2

3

2 2

3 3

we ze

we ze

we ze

j j

j j

j j
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Expand:

+ =

+ =

+ =

θ φ

θ β φ α

θ β φ α

R

R

R

(5.32c)
1

2

3

2 2

3 3

we ze

we e ze e

we e ze e

j j

j j j j

j j j j

Note that:

= =θ φW Z; (5.32d)we zej j

X

Yjδ2

δ3

α2

β2

α3

β3

σ

ψ

θ

ζ2

ζ3

ζ1

O2

W2

G1

2

W3

P21
P1

S1

B1

P2

R3

A1

A2

A3

W1

Z3

R2Z2

Z1

U1

V1

P31

P3

3

4

R1

FIGURE 5-6
Three-position synthesis of a linkage with specified fixed pivot locations

O4
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+ =

+ =

+ =

β α

β α

W Z R

W Z R

W Z R

and:
(5.32e)

1

2

3

2 2

3 3

e e

e e

j j

j j

Previously, we chose β2 and β3 and solved for the vectors W and Z.  Now we wish 
to, in effect, specify the x, y components of the fixed pivot O2 (–R1x, –R1y ) as our two 
free choices.  This leaves β2 and β3 to be solved for.  These angles are contained in tran-
scendental expressions in the equations.  Note that, if we assumed values for β2 and β3 as 
before, there could only be a solution for W and Z if the determinant of the augmented 
matrix of coefficients of equations 5.32e were equal to zero.



















=β α

β α

R

R

R

1 1

0 (5.33a)
1

2

3

2 2

3 3

e e

e e

j j

j j

Expand this determinant about the first column which contains the present unknowns 
β2 and β3:

( ) ( ) ( )− + − + − =α α β α β αR R R R R R 0 (5.33b)3 2 1 3 2 12 3 2 3 3 2e e e e e ej j j j j j

To simplify, let:
= −

= −

= −

α α

α

α

R R

R R

R R

(5.33c)
3 2

1 3

2 1

2 3

3

2

A e e

B e

C e

j j

j

j

then:
+ + =β β 0 (5.33d)2 3A Be Cej j

Equation 5.33d expresses the summation of vectors around a closed loop.  Angles 
β2 and β3 are contained within transcendental expressions making their solution cum-
bersome.  The procedure is similar to that used for the analysis of the fourbar linkage in 
Section 4.5.  Substitute the complex number equivalents for all vectors in equation 5.33d.  
Expand using the Euler identity (equation 4.4a).  Separate real and imaginary terms to 
get two simultaneous equations in the two unknowns β2 and β3.  Square these expressions 
and add them to eliminate one unknown.  Simplify the resulting mess and substitute the 
tangent half angle identities to get rid of the mixture of sines and cosines.  It will ultimately 
reduce to a quadratic equation in the tangent of half the angle sought, here β3.  β2 can then 
be found by back substituting β3 in the original equations.  The results are:*

( )
( )

β =
± + −

+













β =
− β + β +
− β + β +













2arctan

(5.34a)

arctan
sin cos
sin cos

3
2 1

2
2
2

3
2

1 3

2
3 3 2 3 4

5 3 3 3 6

K K K K
K K

A A A
A A A

	

 *  Note that a two-argument 
arctangent function must be 
used to obtain the proper 
quadrants for angles β2 and 
β3.  Also, the minus signs in 
numerator and denominator 
of the equation for β2 look 
like they could be canceled, 
but should not be.  They 
are needed to determine the 
correct quadrant of β2 in the 
two-argument arctangent 
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= +
= +

=
− − − −

where:
(5.34b)

2

1 2 4 3 6

2 3 4 5 6

3
1
2

2
2

3
2

4
2

6
2

K A A A A
K A A A A

K
A A A A A

= − − = −
= − − = +
= − = −

and: ;
; (5.34c)

;

1 3
2

4
2

2 3 6 4 5

3 4 6 3 5 4 2 3 1 4

5 4 5 3 6 6 1 3 2 4

A C C A C C C C
A C C C C A C C C C
A C C C C A C C C C

α

( ) ( )
( ) ( )
( )

( )
( )

( )

= α + ζ − α + ζ

= + ζ − α + ζ

= α + ζ − ζ

= − α + ζ + ζ

= α + ζ − ζ

= − α + ζ + ζ

cos cos

sin sin

cos cos

sin sin (5.34d)

cos cos

sin sin

1 3 2 3 2 3 2

2 3 2 3 2 3 2

3 1 3 1 3 3

4 1 3 1 3 3

5 1 2 1 2 2

6 1 2 1 2 2

C R R

C R R

C R R

C R R

C R R

C R R

The ten variables in these equations are: α2, α3, β2, β3, ζ1, ζ2, ζ3, R1, R2, and R3.  
The constants C1 to C6 are defined in terms of the eight known variables, R1, R2, R3, ζ1, 
ζ2, and ζ3 (which are the magnitudes and angles of position vectors R1, R2, and R3) and 
the angles α2 and α3 that define the change in angle of the coupler.  See Figure 5‑6 for 
depictions of these variables.

Note in equation 5.34a that there are two solutions for each angle (just as there were 
to the position analysis of the fourbar linkage in Section 4.5 and Figure 4-5).  One solution 
in this case will be a trivial one wherein β2 = α2 and β3 = α3.  The nontrivial solution is 
the one desired.

This procedure is then repeated, solving equations 5.34 for the right-hand end of the 
linkage using the desired location of fixed pivot O4 to calculate the necessary angles γ2 
and γ3 for link 4.

We have now reduced the problem to that of three-position synthesis without speci-
fied pivots as described in Section 5.7 and Example 5‑2.  In effect we have found the 
particular values of β2, β3, γ2, and γ3 which correspond to the solution that uses the 
desired fixed pivots.  The remaining task is to solve for the values of Wx, Wy, Zx, Zy using 
equations 5.25 through 5.31.

✍EXAMPLE 5‑3

Three-Position Analytical Synthesis with Specified Fixed Pivots.

Problem:	 Design a fourbar linkage to move the line AP shown from position A1P1 to A2P2 
and then to position A3P3 using fixed pivots O2 and O4 in the locations specified.

Solution:	 (See Figure 5‑7.)

	 1	 Draw the link AP in its three desired positions, A1P1, A2P2, and A3P3 to scale in the plane as 
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shown in Figure 5‑7.  The three positions are defined with respect to a global origin positioned 
at the first precision point P1.  The given data are specified in parts 2 to 4 below.

	 2	 The position difference vectors between precision points are:

		  P21x = –0.244	  P21y = 0.013	  P31x = –0.542	 P31y = 0.029

	 3	 The angle changes of the coupler between precision points are:

					     α2 = –11.34°	  α3 = –22.19°

( a )  Input data

FIGURE 5-7
Three-position synthesis example for specified fixed pivots

(b )  Synthesized linkage

A1

O2 O4

A2
A3

11.34°

0.033 0.029 0.013 – 0.244

  – 0.542

  – 1.712

  0.288

0.033

X

Y

X

Y

W Z S

U

22.19°

A1

A2

A3

P2 P1P3

P2 P1P3

O2 O4
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	 4	 The assumed free choices are the desired fixed pivot locations.

		  O2x = –1.712	  O2y = 0.033	  O4x = 0.288	 O4y = 0.033

	 5	 Solve equations 5.34 twice, once using the O2 pivot location coordinates and again using the 
O4 pivot location coordinates.

		  For pivot O2:

				    C1 = –0.205	 C2 = 0.3390	 C3 = 0.4028

				    C4 = 0.6731	 C5 = 0.2041	 C6 = 0.3490

				    A1 = –0.6152	 A2 = 0.0032	 A3 = –0.3171

				    A4 = –0.0017	 A5 = –0.0032	 A6 = –0.3108

				    K1 = 0.0986	 K2 = 0.0015	 K3 = 0.0907

		  The values found for the link angles to match this choice of fixed pivot location O2 are:

					     β2 = 11.96°	  β3 = 23.96°

		  For pivot O4:

				    C1 = –0.3144	 C2 = –0.0231	 C3 = 0.5508

				    C4 = –0.0822	 C5 = 0.2431	 C6 = – 0.0443

				    A1 = –0.3102	 A2 = –0.0044	 A3 = –0.1376

				    A4 = 0.0131	 A5 = 0.0044	 A6 = –0.1751

				    K1 = 0.0240	 K2 = –0.0026	 K3 = 0.0232

		  The values found for the link angles to match this choice of fixed pivot location O4 are:

					     γ2 = 2.78°	 γ3 = 9.96°

	 6	 At this stage, the problem has been reduced to the same one as in the previous section; i.e., 
find the linkage given the free choices of the above angles β2, β3, γ2, γ3, using equations 5.25 
through 5.31.  The data needed for the remaining calculations are those given in steps 2, 3, and 
5 of this example, namely: 

		  for dyad 1:

			   P21x	 P21y 	 P31x 	 P31y 	 a2 	 a3 	 b2	 b3

		  for dyad 2:

			   P21x	 P21y 	 P31x 	 P31y 	 a2 	 a3 	 g2	 g3

		  See Example 5-2 and Section 5.7 for the procedure.  A matrix solving calculator, Mathcad, 
TKSolver, Matlab, program Matrix, or program Linkages will solve this and compute the 
coordinates of the link vectors:

		  Wx = 0.866	  Wy = 0.500	  Zx = 0.846	 Zy = –0.533

		  Ux = –0.253	  Uy = 0.973	  Sx = –0.035	 Sy = –1.006
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	 7	 The link lengths are computed as was done in Example 5-2 and are shown in Table 5‑2.

This example can be opened in program Linkages from the file E05-03.4br and animated.

5.10	 CENTER-POINT AND CIRCLE-POINT CIRCLES

It would be quite convenient if we could find the loci of all possible solutions to the three-
position synthesis problem, as we would then have an overview of the potential locations 
of the ends of the vectors W, Z, U, and S.  Loerch et al.[5] show that by holding one of 
the free choices (say β2) at an arbitrary value and then solving equations 5.25 and 5.26 
while iterating the other free choice (β3) through all possible values from 0 to 2π, a circle 
will be generated.  This circle is the locus of all possible locations of the root of vector 
W (for the particular value of β2 used).  The root of the vector W is the location of the 
fixed pivot or center O2.  Thus, this circle is called a center-point circle.  The vector N in 
Figure 5‑8 defines points on the center-point circle with respect to the global coordinate 
system which is placed at precision point P1 for convenience.

If the same thing is done for vector Z, holding α2 constant at some arbitrary value and 
iterating α3 from 0 to 2π, another circle will be generated.  This circle is the locus of all 
possible locations of the root of vector Z for the chosen value of α2.  Because the root of 
vector Z is joined to the tip of vector W and W’s tip describes a circle about pivot O2 in 
the finished linkage, this locus is called the circle-point circle.  Vector (–Z) defines points 
on the circle-point circle with respect to the global coordinate system.

The x,y components of vectors W and Z are defined by equations 5.25 and 5.26.  Ne-
gating the x,y components of Z will give the coordinates of points on the circle-point circle 
for any assumed value of α2 as angle α3 is iterated from 0 to 2π.  The x,y components of 
N = –Z – W define points on the O2 center-point circle for any assumed value of β2 as β3 
is iterated through 0 to 2π.  Vector W is calculated using angles β2 and β3, and vector Z 
using angles α2 and α3, both from equations 5.25 and 5.26.

For the right-hand dyad, there will also be separate center-point circles and circle-
point circles.  The x,y components of M = –S – U define points on the O4 center-point 
circle for any assumed value of γ2 as γ3 is iterated through 0 to 2π.  (See Figure 5‑8 and 
also Figure 5‑4.)  Negating the x,y components of S will give the coordinates of points 
on the circle-point circle for any assumed value of α2 as α3 is iterated through 0 to 2π.  
Vector U is calculated using angles γ2 and γ3, and vector S using angles α2 and α3, both 
from equations 5.30 and 5.31.

Note that there is still an infinity of solutions because we are choosing the value of 
one angle arbitrarily.  Thus there will be an infinite number of sets of center-point and 
circle-point circles.  A computer program can be of help in choosing a linkage design 
which has pivots in convenient locations.  Program Linkages, provided with this text, 
will calculate the solutions to the analytical synthesis equations derived in this section, 
for user-selected values of all the free choices needed for three-position synthesis, both 
with and without specification of fixed pivot locations.  Information about the computer 
program Linkages is in Appendix A.

Figure 5‑9 shows the circle-point and center-point circles for the Chebyschev straight-
line linkage for choices of β2 = 26°, α2 = 97.41°, α3 = 158.18° for the left dyad and γ  = 

Coupler Pt. =1.0 in
                    @ –60.73°

Circuit = Open
Start Theta2 = 30°

Final Theta2 = 54°

Delta Theta2 = 12°

Link 1 = 2.00 in
Link 2 = 1.00 in
Link 3 = 1.00 in
Link 4 = 1.01  in

TABLE  5-2
Example 5-3 Results
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36°, α2 = 97.41°, α3 = 158.18° for the right dyad.  In this example the two larger circles 
are the center-point circles which define the loci of possible fixed pivot locations O2 and 
O4.  The smaller two circles define the loci of possible moving pivot locations I23 and I34.  
Note that the coordinate system has its origin at the reference precision point, in this case 
P1, from which we measured all parameters used in the analysis.  These circles define the 
pivot loci of all possible linkages which will reach the three precision points P1, P2, and 
P3 that were specified for particular choices of angles β2, γ2, and α2.  An example linkage 
is drawn on the diagram to illustrate one possible solution.  

ψ

δ2

δ3

σ

θ

α2

α3

β2

β3

FIGURE 5-8
Definition of vectors to define center-point and circle-point circles
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5.11	 FOUR- AND FIVE-POSITION ANALYTICAL SYNTHESIS

The same techniques derived above for two- and three-position synthesis can be extended 
to four and five positions by writing more vector loop equations, one for each precision 
point.  To facilitate this, we will now put the vector loop equations in a more general form, 
applicable to any number of precision positions.  Figure 5‑4 will still serve to illustrate 
the notation for the general solution.  The angles α2, α3, β2, β3, γ2, and γ3 will now be 
designated as αk, βk, and γk, k = 2 to n, where k represents the precision position and n 
= 2, 3, 4, or 5 represents the total number of positions to be solved for.  The vector loop 
general equation set then becomes:

+ − − − = =W Z P Z W 0, 2 to (5.35a)1 1 1 k nk k k

which, after substituting the complex number forms and simplifying, becomes:

( ) ( )− + − = =θ β φ α δ1 1 , 2 to (5.35b)1we e ze e p e k nj j j j
k

jk k k

This can be put in a more compact form by substituting vector notation for those 
terms to which it applies, let:

= = =θ φ δW Z P; ; (5.35c)1 1we ze p ej j
k k

j k

then:

( ) ( )− + − = =β α δW Z P1 1 , 2 to (5.35d)1e e e k nj j
k

jk k k

FIGURE 5-9
Circle-point and center-point circles and a linkage that reaches the precision points
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Equation 5.35d is called the standard form equation by Erdman and Sandor.[6]   By 
substituting the values of αk, βk, and δk, in equation 5.35d for all the precision positions 
desired, the requisite set of simultaneous equations can be written for the left dyad of the 
linkage.  The standard form equation applies to the right-hand dyad US as well, with ap-
propriate changes to variable names as required.

( ) ( )− + − = =β α δU S P1 1 , 2 to (5.35e)1e e e k nj j
k

jk k k

The number of resulting equations, variables, and free choices for each value of n 
is shown in Table 5‑3 (after Erdman and Sandor).  They provide solutions for the four- 
and five-position problems in reference [6].  The circle-point and center-point circles of 
the three-position problem become cubic curves, called Burmester curves, in the four-
position problem.  Erdman and Gustafson’s commercially available computer program 
Lincages[8] solves the four-position problem in an interactive way, allowing users to 
select center and circle pivot locations on their Burmester curve loci, which are drawn on 
the graphics screen of the computer.

5.12	 ANALYTICAL SYNTHESIS OF A PATH GENERATOR  
WITH PRESCRIBED TIMING

The approach derived above for motion generation synthesis is also applicable to the case 
of path generation with prescribed timing.  In path generation, the precision points are 
to be reached, but the angle of a line on the coupler is not of concern.  Instead, the timing 
at which the coupler reaches the precision point is specified in terms of input rocker angle 
β2.  In the three-position motion generation problem we specified the angles α2 and α3 
of vector Z in order to control the angle of the coupler.  Here we instead want to specify 
angles β2 and β3 of the input rocker, to define the timing.  Before, the free choices were 
β2 and β3.  Now they will be α2 and α3.  In either case, all four angles are either specified 
or assumed as free choices and the solution is identical.  Figure 5‑4 and equations 5.25, 
5.26, 5.30, and 5.31 apply to this case as well.  This case can be extended to as many as 
five precision points as shown in Table 5‑3.

3 ∞3

∞2

∞1

1220 085

1964 16

2643 12

322 8

Finite

( n ) Variables Equations Variables Choices Solutions
 Positions Scalar Scalar Prescribed Free Available

No. of No. of No. of No. of No. of No. of

TABLE  5-3 Number of Variables and Free Choices for Analytical Precision-
Point Motion and Timed Path Synthesis. [6]
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5.13	 ANALYTICAL SYNTHESIS OF A FOURBAR FUNCTION  
GENERATOR

A similar process to that used for the synthesis of path generation with prescribed timing 
can be applied to the problem of function generation.  In this case we do not care about 
motion of the coupler at all.  In a fourbar function generator, the coupler exists only to 
couple the input link to the output link.  Figure 5‑10 shows a fourbar linkage in three 
positions.  Note that the coupler, link 3,  is merely a line from point A to point P.  Point P 
can be thought of as a coupler point which happens to coincide with the pin joint between 
links 3 and 4.  As such it will have simple arc motion, pivoting about O4, rather than, for 
example, the higher-order path motion of the coupler point P1 in Figure 5‑4.

Our function generator uses link 2 as the input link and takes the output from link 
4.  The “function” generated is the relationship between the angles of link 2 and link 
4 for the specified three-position positions, P1, P2, and P3.  These are located in the plane 
with respect to an arbitrary global coordinate system by position vectors R1, R2, and R3.  
The function is:

( )γ = β = ≤, 1, 2, , ; 7 (5.36)f k n nk k 

α2
δ2

β2

α3

δ3

θ

σ

φ

β3

γ2

γ3

R1
R3 R2

FIGURE 5-10
Analytical synthesis of a fourbar function generator
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This is not a continuous function.  The relationship holds only for the discrete 
points (k) specified.

To synthesize the lengths of the links needed to satisfy equation 5.36, we will write 
vector loop equations around the linkage in pairs of positions, as was done for the previ-
ous examples.  However, we now wish to include both link 2 and link 4 in the loop, since 
link 4 is the output.  See Figure 5‑10.

+ − + − − =

+ − + − − =

W Z U U Z W

W Z U U Z W

0
(5.37a)

0

2 2 2 1 1 1

3 3 3 1 1 1

rearranging:
+ − − = −

+ − − = −

W Z Z W U U

W Z Z W U U
(5.37b)

2 2 1 1 2 1

3 3 1 1 3 1

but,
= −

= −

P U U

P U U
(5.37c)

21 2 1

31 3 1

substituting:
+ − − =

+ − − =

W Z Z W P

W Z Z W P
(5.37d)

2 2 1 1 21

3 3 1 1 31

+ − − =

+ − − =( ) ( )

( ) ( )θ+β φ+α φ θ δ

θ+β φ+α φ θ δ
(5.37e)

21

31

2 2 2

3 3 3

we ze ze we p e

we ze ze we p e

j j j j j

j j j j j

Note that equations 5.37d and 5.37e are identical to equations 5.19 and 5.20 derived 
for the three-position motion generation case and can also be put into Erdman’s standard 
form[6] of equation 5.35 for the n-position case.  The twelve variables in equation 5.37e 
are the same as those in equation 5.20: w, θ, β2, β3, z, φ, α2, α3, p21, p31, δ2, and δ3.

For the three-position function generation case the solution procedure then can be 
the same as that described by equations 5.20 through 5.27 for the motion synthesis prob-
lem.  In other words, the solution equations are the same for all three types of kinematic 
synthesis, function generation, motion generation, and path generation with prescribed 
timing.  This is why Erdman and Sandor called equation 5.35 the standard form equa-
tion.  To develop the data for the function generation solution, expand equation 5.37b:

+ − − = −

+ − − = −( ) ( ) ( )

( ) ( ) ( )θ+β φ+α φ θ σ + γ σ

θ+β φ+α φ θ σ + γ σ
(5.37f)

2 2 2

3 3 3

we ze ze we ue ue

we ze ze we ue ue

j j j j j j

j j j j j j

There are also twelve variables in equation 5.37f: w, θ, z, φ, α2, α3, β2, β3, u, σ, γ2, 
and γ3.  We can solve for any four.  Four angles, β2, β3, γ2, and γ3 are specified from the 
function to be generated in equation 5.36.  This leaves four free choices.  In the function 
generation problem it is often convenient to define the length of the output rocker, u, and 
its initial angle σ to suit the package constraints.  Thus, selecting the components u and σ 
of vector U1 can provide two convenient free choices of the four required.
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With u, σ, γ2, and γ3 known, U2 and U3 can be found.  Vectors P21 and P31 can then 
be found from equation 5.37c.  Six of the unknowns in equation 5.37e are then defined, 
namely, β2, β3, p21, p31, δ2, and δ3.  Of the remaining six (w, θ, z, φ, α2, α3), we must as-
sume values for two more as free choices in order to solve for the remaining four.  We will 
assume values (free choices) for the two angles α2 and α3 (as was done for path generation 
with prescribed timing) and solve equations 5.37e for the components of W and Z (w, 
θ, z, φ).  We have now reduced the problem to that of Section 5.7 and Example 5‑2.  See 
equations 5.20 through 5.27 for the solution.

Having chosen vector U1 (u, σ) as a free choice in this case, we only have to solve 
for one dyad, WZ.  Though we arbitrarily choose the length of vector U1, the resulting 
function generator linkage can be scaled up or down to suit packaging constraints without 
affecting the input/output relation defined in equation 5.36, because it is a function of 
angles only.  This fact is not true for the motion or path generation cases, as scaling them 
will change the absolute coordinates of the path or motion output precision points which 
were specified in the problem statement.

Table 5‑4 shows the relationships between number of positions, variables, free choic-
es, and solutions for the function generation case.  Note that up to seven angular output 
positions can be solved for with this method.

5.14	 OTHER LINKAGE SYNTHESIS METHODS

Many other techniques for the synthesis of linkages to provide a prescribed motion have 
been created or discovered in recent years.  Most of these approaches are somewhat 
involved and many are mathematically complicated.  Only a few allow a closed-form 
solution; most require an iterative numerical solution.  Most address the path synthesis 
problem with or without concern for prescribed timing.  As Erdman and Sandor point out, 
the path, motion, and function generation problems are closely related.[6]  

Space does not permit a complete exposition of even one of these approaches in 
this text.  We choose instead to present brief synopses of a number of synthesis methods 
along with complete references to their full descriptions in the engineering and scientific 

3 1 2 4 4 4 ∞4

4 1 6 6 7 3 ∞3

5 20 8 10 2 ∞2

6 24 1 0 1 3 1 ∞1

7 28 1 2 16 0 Finite

2 8 2 1 5 ∞5

( n ) Variables Equations Variables Choices Solutions
 Positions Scalar Scalar Prescribed Free Available

No. of No. of No. of No. of No. of No. of

TABLE  5-4 Number of Variables and Free Choices for Function Generation
Synthesis.[6]
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literature.  The reader interested in a detailed account of any method listed may consult 
the referenced papers which can be obtained through any university library or large public 
library.  Also, some of the authors of these methods may make copies of their computer 
code available to interested parties.  

Table 5-5 summarizes some of the existing fourbar linkage synthesis methods and 
for each one lists the method type, the maximum number of positions synthesized, the 
approach, special features, and a bibliographic reference (see the end of this chapter for 
the complete reference).  The list in Table 5-5 is not exhaustive; other methods than these 
also exist.  

The listed methods are divided into three types labeled precision, equation, and 
optimized (first column of Table 5-5).  The type labeled precision (from precision point) 
refers to a method, such as the ones described in previous sections of this chapter, that 
attempts to find a solution that will pass exactly through the desired (precision) points 
but may deviate from the desired path between these points.  Precision point methods are 
limited to matching a number of points equal to the number of independently adjustable 
parameters that define the mechanism.  For a fourbar linkage, this is nine.*  (Higher-order 
linkages with more links and joints will have a larger number of possible precision points.) 

For up to 5 precision points in the fourbar linkage, the equations can be solved in 
closed form without iteration.  (The four-point solution is used as a tool to solve for 5 
positions in closed form, but for 6 points or more the nonlinear equations are difficult to 
handle.)  For 6 to 9 precision points an iterative method is needed to solve the equation 
set.  There can be problems of nonconvergence, or convergence to singular or imaginary 
solutions, when iterating nonlinear equations.  Regardless of the number of points solved 
for, the solution found may be unusable due to circuit, branch, or order (CBO) defects. 
A circuit defect means that the linkage must be disassembled and reassembled to reach 
some positions, and a branch defect means that a toggle position is encountered between 
successive positions (see Section 4.13).  An order defect means that the points are all 
reachable on the same branch but are encountered in the wrong order.  

The type labeled equation in Table 5-5 refers to methods that solve the tricircular, 
trinodal sextic coupler curve to find a linkage that will generate an entire coupler curve 
that closely approximates a set of desired points on the curve.

The type labeled optimized in Table 5-5 refers to an iterative optimization procedure 
that attempts to minimize an objective function that can be defined in many ways, such 
as the least-squares deviation between the calculated and desired coupler point positions, 
for example.  The calculated points are found by solving a set of equations that define 
the behavior of the linkage geometry, using assumed initial values for the linkage param-
eters.  A set of inequality constraints that limit the range of variation of parameters such 
as link length ratios, Grashof condition, or transmission angle may also be included in 
the calculation.  New values of linkage parameters are generated with each iteration step 
according to the particular optimization scheme used.  The closest achievable fit between 
the calculated solution points and the desired points is sought, defined as minimization 
of the chosen objective function.  None of the desired points will be exactly matched by 
these methods, but for most engineering tasks this is an acceptable result.  

Optimization methods allow larger numbers of points to be specified than do the 
precision methods, limited only by available computer time and numerical roundoff er-

	

*  The nine independent 
parameters of a fourbar link-
age are: four link lengths, 
two coordinates of the 
coupler point with respect to 
the coupler link, and three 
parameters that define the 
location and orientation of 
the fixed link in the global 
coordinate system.
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ror.  Table 5-5 shows a variety of optimization schemes ranging from the mundane (least 
squares) to the esoteric (fuzzy logic, genetic algorithms).  All require a computer-pro-
grammed solution.  Most can be run on current desktop computers in reasonably short 
times.  Each different optimization approach has advantages and disadvantages in respect 
to convergence, accuracy, reliability, complexity, speed, and computational burden.  Con-
vergence often depends on a good choice of initial assumptions (guess values) for the 

Type References

1, 2, 4, 5, 6, 8, 10

14, 15, 16, 17

19, 20

12, 13, 18

21

22

24

9

26, 27

28

29

33

34

35

36, 37

25
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30, 31, 32

39
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Special Features

Linear equations
extendable to
five positions

Specified fixed pivots,
specified moving pivots

Extendable to
Watt I sixbar

Exhaustive solution

Iterative solution

Builds on Blechschmidt

Specified fixed pivots,
control force and torque

Prescribed timing,
rapid convergence

Relaxes precision
requirements

Extends Kramer's SPS

Builds on Kramer

Avoids branch problems,
rapid convergence

FEA* approach

Whole curve synthesis

Whole curve synthesis

Path or function
generation

Uses displacement
matrix

Kinematics and dynamic
forces and torques

Automatic generation
CBO defect-free

Approach

Loop equations —
closed form

Loop equations —
continuation

Closed form  5 pt.—
iterative to 7 pt.

Loop equations —
Newton-Raphson

Coupler curve eqn.

Coupler curve eqn.

Loop equations —
least squares

Least squares on
linear equations

Selective precision
synthesis (SPS)

SPS + fuzzy logic

Quasi-precision pos.

Loop equations —
least squares

Energy method

Genetic algorithm

Fourier descriptors

Loop equations —
various criteria

Loop equations —
Newton-Raphson
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dynamic criteria

Loop equations —
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Max Pos.
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5

7

9
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N

N

N

N

N

N

N

N

N

N

5

3 or 4

2, 3, or 4

Precision

Precision

Precision

Precision

Equation

Equation

Optimized

Optimized

Optimized

Optimized

Optimized

Optimized

Optimized

Optimized

Optimized

Optimized

Precision

Optimized

Optimized
38Vasiliu (1998)Whole curve synthesisNeural networkNOptimized

40Liu (1999)All solutions—no initial
guess required

Approximate —
continuation

NOptimized

TABLE  5-5 Some Methods for the Analytic Synthesis of Linkages

* Finite Element Analysis
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linkage parameters.  Some methods, if they converge at all, do so to a local minimum (only 
one of many possible solutions), and it may not be the best one for the task.  

Precision Point Methods

Table 5-5 shows several precision point synthesis methods.  Some of these are based on 
original work by Freudenstein and Sandor.[10]  Sandor[1] and Erdman[2], [6] developed 
this approach into the “standard form” which is described in detail in this chapter.  This 
method yields closed-form solutions for 2, 3, and 4 precision positions and is extendable 
to 5 positions.  It suffers from the possible circuit, branch, and order (CBO) defects com-
mon to all precision point methods.  

The method of Suh and Radcliffe[11] is quite similar to that of Freudenstein and  
others[1], [2], [6], [10] but leads to a set of simultaneous nonlinear equations which are 
solved for up to 5 positions using the Newton-Raphson numerical method (see Section 
4.14).  This approach adds to the usual CBO problems the possibilities of nonconver-
gence, or convergence to singular or imaginary solutions.

Recent developments in the mathematical theory of polynomials have created new 
methods of solution called continuation methods (also called homotopy methods) 
which do not suffer from the same convergence problems as other methods and can 
also determine all the solutions of the equations starting from any set of assumed val-
ues. [12], [13]  Continuation methods are a general solution to this class of problem and are 
reliable and fast enough to allow multiple designs to be investigated in a reasonable time 
(typically measured in CPU hours on a powerful computer).  

Several researchers have developed solutions for the 5- to 9-precision point problem 
using this technique.  Morgan and Wampler[14] solved the  fourbar linkage 5-point prob-
lem with specified fixed pivots completely and found a maximum of 36 real solutions.  
Subbian and Flugrad[15] used specified moving pivots for the 5-point problem, extended 
the 5-point method to sixbar linkages,[16] and also synthesized eightbar and geared fivebar 
mechanisms for 6 and 7 precision points using continuation methods.[17]  

Only the continuation method has yet been able to completely solve the fourbar link-
age 9-precision-point problem and yield all its possible solutions.  Wampler, Morgan, 
and Sommese[18] used a combination of analytical equation reduction and numerical 
continuation methods to exhaustively compute all possible nondegenerate, generic solu-
tions to the 9-point problem.*  They proved that there is a maximum of 4326 distinct, 
nondegenerate linkages (occurring in 1442 sets of cognate triples) that will potentially 
solve a generic 9-precision-point fourbar problem.  Their method does not eliminate 
physically impossible (complex link) linkages or those with CBO defects.  These still have 
to be removed by examination of the various solutions.  They also solved four examples 
and found the maximum number of linkages with real link lengths that generated these 
particular 9-point paths to be 21, 45, 64, and 120 cognate triples.  Computation times 
ranged from 69 to 321 CPU minutes on an IBM 3090 for these four examples.  

Tylaska and Kazerounian[19], [20] took a different approach and devised a method 
that synthesizes a fourbar linkage for up to 7 precision points and also synthesized a Watt 
I sixbar linkage for up to six body guidance (motion specification) positions with control 
over locations of some ground and moving pivots.  Their method yields the entire set of 

	
*  The authors report that 
this calculation took 332 
CPU hours on an IBM 3081 
computer.
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solutions for any set of design data and is an improvement over iterative methods that are 
sensitive to initial guesses.  It is less computationally intensive than continuation methods.

Coupler Curve Equation Methods

Blechschmidt and Uicker[21] and Ananthasuresh and Kota[22] used the algebraic coupler 
curve equation rather than a vector loop approach to calculate the coupler point path.  The 
equation of the coupler curve is a tricircular, trinodal sextic of 15 terms.  Beyer[41] gives 
one form of the coupler curve equation as:*

( ) ( )
( ) ( )

( )

( )
( )

( )

− +



 + + − − + − γ + γ





+ + − − + + −



 + +

− + + −



 − + − γ − γ



 =

2 cos sin

(5.38)

4 sin cos 0

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

a x k y x y b r ab x y kx ky

x y b r x k y a R b x y

x k y a R a b x y kx ky

Nolle[23] states that:
The coupler curve equation itself is very complex and as far as is known in the study of me-
chanics (or for that matter elsewhere) no other mathematical result has been found having 
algebraic characteristics matching those of the coupler curve.

Its solution is quite involved and requires iteration.  Blechschmidt and Uicker’s ap-
proach[21] chose coordinates for 10 points on the desired curve.  Ananthasuresh and 
Kota[22] used 15 points with some trial and error required in their selection.  The ad-
vantage of these coupler curve equation approaches is that they define the entire curve 
which can be plotted and examined for suitability and defects prior to calculating the link 
dimensions, which requires significant additional computing time.

Optimization Methods

The methods listed as optimized in Table 5-5 are a diverse group and some have little 
in common except the goal of finding a linkage that will generate a desired path.  All al-
low a theoretically unlimited number of design points to be specified, but making N too 
large will increase the computation time and may not improve the result.  One inherent 
limitation of optimization methods is that they may converge to a local minimum near the 
starting conditions.  The result may not be as good as other minima located elsewhere in 
the N-space of the variables.  Finding the global optimum is possible but more difficult 
and time consuming.

Perhaps the earliest application (1966) of optimization techniques to this fourbar 
linkage path synthesis problem is that of Fox and Willmert[24] in which they minimized 
the area between the desired and calculated curves subject to a number of equality and 
inequality constraints.  They controlled link lengths to be positive and less than some 
maximum, controlled for Grashof condition, limited forces and torques, and restricted 
the locations of the fixed pivots.  They used Powell’s method to find the minimum of the 
objective function.  

Youssef et al.[25], used sum of squares, sum of absolute values, or area error criteria 
to minimize the objective function.  They accommodated path and function generation for 

	
*  Beyer’s linkage geometry 
notation is different than 
that used in this book.  
Beyer’s labeling for the 
equation, as shown by 
Hall,[42] is:
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single-loop (fourbar) or multiloop linkages with both pin and slider joints.  They allowed 
constraints to be imposed on the allowable ranges of link lengths and angles, any of which 
also may be held constant during the iteration.  An example of an optimization done with 
this method for 19 evenly spaced points around a desired fourbar coupler path is shown 
in Figure 5-11[25]  Another example of this method is the 10-bar crank-slider linkage in 
Figure 5-12[25] which also shows the desired and actual coupler curve generated by point 
P for 24 points corresponding to equal increments of input crank angle.

Nolle and Hunt[9] derived analytical expressions that lead to a set of ten linear simul-
taneous nonhomogeneous equations whose solution gives values for all the independent 
variables.  They used a least squares approach to the optimization and also allowed speci-
fied timing of the input crank to each position on the coupler.  Because their equations are 
linear, convergence is rapid requiring only about one second per iteration.  

Kramer and Sandor[26], [27] described a variant on the precision point technique 
which they call selective precision synthesis (SPS).  It relaxes the requirement that the 
curve pass exactly through the precision points by defining “accuracy neighborhoods” 
around each point.  The size of these tolerance zones can be different for each point, and 
more than nine points can be used.  They point out that exact correspondence to a set of 
points is often not necessary in engineering applications and even if achieved theoretically 
would be compromised by manufacturing tolerances.  

The SPS approach is suitable to any linkage constructible from dyads or triads and 
so can accommodate sixbar and geared fivebar linkages as well as fourbars.  Fourbar 
function, motion, or path generation (with prescribed timing) can all be synthesized, 
using the standard form approach which considers all three forms equivalent in terms of 
equation formulation.  Spatial mechanisms can also be accommodated.  The solutions 
are stable and less sensitive to small changes in the data than precision point methods.  
Krishnamurthi et al.[28] extended the SPS approach by using fuzzy set theory which gives 
a mechanism path as close to the specified points as is possible for a given start point,  but 
it is sensitive to start point selection and may find a local, rather than the global optimum.

Mirth[29] provided a variation on Kramer’s SPS technique called quasi-precision 
position synthesis which uses three precision positions and N quasi positions which are 
defined as tolerance zones.  This approach retains the computational advantages of the 
Burmester (precision point) approach while also allowing the specification of a larger 
number of points to improve and refine the design.

Conte et al.[30] and Kakatsios and Tricamo[31], [32] described methods to satisfy a 
small number of precision points and simultaneously optimize the linkage’s dynamic 
characteristics.  The link lengths are controlled to reasonable size, the Grashof condition 
is constrained, and the input torque, dynamic bearing and reaction forces, and shaking 
moments are simultaneously minimized.

Many of the optimization methods listed above use some form of inequality con-
straints to limit the allowable values of design parameters such as link lengths and trans-
mission angles.  These constraints often cause problems that lead to nonconvergence, or 
to CBO defects.  Angeles et al.[33] described an unconstrained nonlinear least-squares-
method that avoids these problems.  Continuation methods are employed, and good con-
vergence is claimed with no branch defects.

(a)  Coupler curve

(b)  Synthesized
        linkage

FIGURE 5-11
Linkage synthesized 
to generate a desired
coupler curve by an
optimization method
Reproduced from
“Optimal Kinematic
Synthesis of Planar Linkage
Mechanisms” [25] with the
kind permission of
Professional Engineering
Publishing, Bury  St.
Edmunds, UK.
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Aviles et al.[34] proposed a novel approach to the linkage synthesis problem that uses 
the elastic energy that would be stored in the links if they were allowed to deform elasti-
cally such that the coupler point reaches the desired location.  The objective function is 
defined as the minimum energy condition in the set of deformed links which of course 
will occur when their rigid body positions most closely approach the desired path.  This is 
essentially a finite element method approach that considers each link to be a bar element.  
Newton’s method is used for the iteration and, in this case, converges to a minimum even 
when the initial guess is far from a solution.

Fang[35] described an unusual approach to linkage synthesis using genetic algo-
rithms.  Genetic algorithms emulate the way that living organisms adapt to nature.  Ini-
tially, a population of random “organisms” is generated that represents the system to be 
optimized.  This takes the form of a bit string, analogous to a cell’s chromosomes, which 
is called the first generation.  Two operations are performed on a given population, called 
crossover and mutation.  Crossover combines part of the “genetic code” of a “father” 
organism with part of the code of a “mother” organism.  Mutation changes values of 
the genetic code at random points in the bit string.  An objective function is created that 

actual curve
desired curve

( a )  Path of point  P

FIGURE 5-12
Example of synthesis of a 10 link mechanism to generate a coupler path  
Reproduced from Youssef et al. (1975), "Optimal Kinematic Synthesis of Planar Linkage Mechanisms" [25]

with the kind permission of Professional Engineering Publishing, Bury  St. Edmunds, UK.

(b )  Synthesized linkage
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expresses the “fitness” of the organism for the desired task.  Each successive generation 
is produced by selecting the organisms that best fit the task.  The population “evolves” 
through generations until a termination criterion is met based on the objective function.

Some advantages of this approach are that it searches from population to population 
rather than point to point, and this makes it less likely to be trapped at local optima.  The 
population also preserves a number of valid solutions rather than converging to only one.  
The disadvantage is long computation times due to the large number of objective function 
evaluations required.  Nevertheless it is more efficient than random walk or exhaustive 
search algorithms.  All other optimization approaches listed here deal only with dimen-
sional synthesis, but genetic algorithms can also deal with type synthesis.  

Ullah and Kota[36], [37] separated the linkage synthesis problem into two steps.  The 
first step seeks an acceptable match for the shape of the desired curve without regard to 
the size, orientation, or location of the curve in space.  Once a curve of suitable shape 
and its associated linkage are found, the result can be translated, rotated, and scaled as 
desired.  This approach simplifies the optimization task compared to the algorithms that 
seek a structural optimization that includes size, orientation, and location of the coupler 
curve all at once in the objective function.  Fourier descriptors are used to characterize the 
shape of the curve as is done in many pattern matching applications such as for automated 
robotic assembly tasks.  A stochastic global optimization algorithm is used which avoids 
unwanted convergence to suboptimal local minima.

Vasiliu and Yannou[38] also focus solely on the shape of the desired path, approximat-
ing it with five terms of a Fourier series.   They use an artificial neural network approach 
to synthesize a linkage to generate the approximate curve shape.  A neural network is a 
graph of input neurons that represent the shape of the path and output neurons that repre-
sent the dimensional parameters of the linkage.  The network is “taught” to properly relate 
the output to the input with various algorithms.  Learning time was 30 hours for 14 000 
iterations for their example, so this method is computer intensive. The matching of their 
resulting linkage curve shape to the desired curve is less accurate than that of the method 
shown in Figures 5-11 and 5-12.

Bawab et al.[39] described an approach that will automatically (within the software 
program) synthesize a fourbar linkage for two, three, or four positions using Burmester 
theory and eliminate all solutions having CBO defects.  Limits on link length ratios and 
transmission angle are specified, and the objective function is based on these criteria with 
weighting factors applied.  Regions in the plane within which the fixed or moving pivots 
must be located may also be specified.

Liu and Yang[40] proposed a method for finding all solutions to the approximate 
synthesis problem for function generation, rigid body guidance, and path generation with 
timing, using a combination of continuation methods and optimization.  Their approach 
does not require an initial guess, and all possible solutions can be obtained with relatively 
short computational times.
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‡  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated AVI and Work-
ing Model files.  PDF file 
names are the same as the 
figure number.  Run the file 
Animations.html to access 
and run the animations.

5.16	 PROBLEMS‡

Note that all three-position synthesis problems below may be done using a matrix solving 
calculator, equation solver such as Mathcad, Matlab, or TKSolver, program Matrix, or 
program Linkages.  Two-position synthesis problems can be done with a four-function 
calculator.

	 5‑1	 Redo Problem 3-3 using the analytical methods of this chapter.

	 5‑2	 Redo Problem 3-4 using the analytical methods of this chapter.

	 5‑3	 Redo Problem 3-5 using the analytical methods of this chapter.

	 5‑4	 Redo Problem 3-6 using the analytical methods of this chapter.

	 5‑5	 See Project P3-8.  Define three positions of the boat and analytically synthesize a link-
age to move through them.

	 5‑6	 See Project P3-30.  Define three positions of the dumpster and analytically synthesize a 
linkage to move through them.  The fixed pivots must be located on the existing truck.

	 5‑7	 See Project P3-7.  Define three positions of the computer monitor and analytically syn-
thesize a linkage to move through them.  The fixed pivots must be located on the floor 
or wall.

	 *†5‑8	 Design a linkage to carry the body in Figure P5-1 through the two positions P1 and P2 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint: Try the free choice values z = 1.075, φ = 204.4°, β2 = –27°; s = 
1.24, ψ = 74°, γ2 = –40°.

	 †5‑9	 Design a linkage to carry the body in Figure P5-1 through the two positions P2 and P3 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint: First try a rough graphical solution to create realistic values for 
free choices.

	 †5‑10	 Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2, 
and P3 at the angles shown in the figure.  Use analytical synthesis without regard for 
the fixed pivots shown.  Hint: Try the free choice values β2 = 30°, β3 = 60°; γ2 = –10°, 
γ3 = 25°.

	 *†5‑11	 Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2, 
and P3 at the angles shown in the figure.  Use analytical synthesis and design it for the 
fixed pivots shown.  

	 †5‑12	 Design a linkage to carry the body in Figure P5-2 through the two positions P1 and P2 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint: Try the free choice values z = 2, φ = 150°, β2 = 30°; s = 3,  ψ = 
–50°, γ2 = 40°.

	 †5‑13	 Design a linkage to carry the body in Figure P5-2 through the two positions P2 and P3 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint: First try a rough graphical solution to create realistic values for 
free choices.

	 †5‑14 	 Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2, 
and P3 at the angles shown in the figure. Use analytical synthesis without regard for the 
fixed pivots shown.

	

* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 

Topic/Problem Matrix

 5.2 Two-Position Rocker 
Synthesis

5-51, 5-52, 5-53
 5.4 Two-Position Motion 

Generation

5-1, 5-2, 5-8, 5-9,   
5-12, 5-13,  5-16, 
5-17, 5-21,  5-22,  
5-23, 5-54, 5-55,  
5-56, 5-59, 5-60

 5.7 Three-Position Mo-
tion Generation

5-3, 5-10, 5-14, 5-18, 
5-24, 5-25, 5-27,  
5-28, 5-31, 5-32,  
5-34, 5-37, 5-38, 
5-39, 5-41, 5-42,  
5-44, 5-45, 5-57,5-
61, 5-64

 5.9 Synthesis for A 
Specified Fixed Pivot 
Location

5-4, 5-5, 5-6, 5-7,  
5-11, 5-15, 5-19,  
5-26, 5-29, 5-30,  
5-33, 5-35, 5-36, 
5-40, 5-43, 5-46, 
5-62, 5-65

 5.10 Center-Point and 
Circle-Point Circles

5-20, 5-47, 5-48,  
5-49, 5-50, 5-58, 
5-63

 

TABLE  P5-0
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FIGURE P5-2
Data for Problems 5-12 to 5-15
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FIGURE P5-1
Data for Problems 5-8 to 5-11
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* Answers in Appendix F.
	 *†5‑15	 Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2, 

and P3 at the angles shown in the figure.  Use analytical synthesis and design it for the 
fixed pivots shown.

	 †5‑16	 Design a linkage to carry the body in Figure P5-3 through the two positions P1 and P2 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.

	 †5‑17	 Design a linkage to carry the body in Figure P5-3 through the two positions P2 and P3 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.

	 †5‑18	 Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2, 
and P3 at the angles shown in the figure.  Use analytical synthesis without regard for 
the fixed pivots shown.

	 *†5‑19	 Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2, 
and P3 at the angles shown in the figure. Use analytical synthesis and design it for the 
fixed pivots shown.

	 †5‑20	 Write a program to generate and plot the circle-point and center-point circles for Prob-
lem 5-19 using an equation solver or any programming language.

FIGURE P5-3
Data for Problems 5-16 to 5-20

O2 O4
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P1

P3
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Y

111.8°
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191.1°
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0.212

1.788

1.994

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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	 †5‑21	 Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 2 without 
regard for the fixed pivot locations shown.  Use points A and B for your attachment 
points.  Determine the range of the transmission angle.  The fixed pivots should be on 
the base. 

	 †5‑22	 Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 3 without 
regard for the fixed pivots shown.  Use points A and B for your attachment points.  
Determine the range of the transmission angle.  The fixed pivots should be on the base. 

	 †5‑23	 Design a fourbar linkage to carry the box in Figure P5-4 from position 2 to 3 without 
regard for the fixed pivots shown.  Use points A and B for your attachment points.  
Determine the range of the transmission angle.  The fixed pivots should be on the base. 

	 †5‑24	 Design a fourbar linkage to carry the box in Figure P5-4 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Determine 
the range of the transmission angle.  Use any points on the object as your attachment 
points.  The fixed pivots should be on the base. 

	 †5‑25	 Design a fourbar linkage to carry the box in Figure P5-4 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Use points A 
and B for your attachment points.  Determine the range of the transmission angle.  

	 *†5‑26	 Design a fourbar linkage to carry the box in Figure P5-4 through the three positions 
shown in their numbered order using the fixed pivots shown.  Determine the range of 
the transmission angle.  

	

* Answers in Appendix F.
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FIGURE P5-4
Data for Problems 5-21 to 5-26

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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	 †5-27	 Design a fourbar linkage to carry the object in Figure P5-5 through the three posi-
tions shown in their numbered order without regard for the fixed pivots shown.  Use 
any points on the object as attachment points.  The fixed pivots should be on the base.  
Determine the range of the transmission angle.  

	 †5-28	 Design a fourbar linkage to carry the object in Figure P5-5 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Use points A 
and B for your attachment points.  Determine the range of the transmission angle.  

	 †5-29	 Design a fourbar linkage to carry the object in Figure P5-5 through the three positions 
shown in their numbered order using the fixed pivots shown.  Determine the range of 
the transmission angle.  

	 †5-30	 To the linkage solution from Problem 5-29, add a driver dyad with a crank to control 
the motion of your fourbar so that it cannot move beyond positions one and three.  

	 †5-31	 Design a fourbar linkage to carry the object in Figure P5-6 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Use points A 
and B for your attachment points.  Determine the range of the transmission angle.  

	 †5-32	 Design a fourbar linkage to carry the object in Figure P5-6 through the three posi-
tions shown in their numbered order without regard for the fixed pivots shown.  Use 
any points on the object as attachment points.  The fixed pivots should be on the base.  
Determine the range of the transmission angle.  

A1
P1

P2

A2

B1

A3

B3

P3

88°

0°

27°
B2

base

all dimensions in mm
y

x

1400
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182

291
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421

184

1080

740

60

750

120

1500
2900

FIGURE P5-5
Data for Problems 5-27 to 5-30

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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* Answers in Appendix F.
	 *†5-33	 Design a fourbar linkage to carry the object in Figure P5-6 through the three positions 

shown in their numbered order using the fixed pivots shown.  Determine the range of 
the transmission angle.  

	 †5-34	 Design a fourbar linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3 
without regard to the fixed pivots shown.  The bolt is fed into the gripper in the z direc-
tion (into the paper).  The gripper grabs the bolt, and your linkage moves it to position 
3 to be inserted into the hole.  A second degree of freedom within the gripper assembly 
(not shown) pushes the bolt into the hole.  Extend the gripper assembly as necessary 
to include the moving pivots.  The fixed pivots should be on the base.  Hint:  Try guess 
values of β2 = 70°, β3 = 140°, γ2 = –5°, γ3 = –49°.

	 *†5-35	 Design a fourbar linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3 
using the fixed pivot locations shown.  Extend the gripper assembly as necessary to 
include the moving pivots.  See Problem 5-34 for more information.

	 5-36	 To the linkage solution from Problem 5-35, add a driver dyad with a crank to control 
the motion of your fourbar so that it cannot move beyond positions one and three.  

	 5-37	 Figure P5-8 shows an off-loading mechanism for paper rolls.  The V-link is rotated 
through 90° by an air-driven fourbar slider-crank linkage.  Design a pin-jointed fourbar 
linkage to replace the existing off-loading station and perform essentially the same 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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FIGURE P5-6
Data for Problems 5-31 to 5-33

View as a video
http://www.designofma-

chinery.com/DOM/three_
positions_3_54.avi

http://www.designofmachinery.com/DOM/three_positions_3_54.avi
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function.  Choose three positions of the roll including its two end positions and synthe-
size a substitute mechanism.  Use a link similar to the existing V-link as one of your 
links.  Add a driver dyad to limit its motion to the range desired.

111.5
151.8

183.2

99

111.3

x

all dimensions in mm
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y

13

240 77

200
400
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P2

P3

P1
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gripper

bolt

272.3°

workpiece

FIGURE P5-7
Data for Problems 5-34  to 5-36
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FIGURE P5-8
Problem 5-37
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	 †5-38	 Design a fourbar linkage to carry the object in Figure P5-9 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Use points C 
and D for your attachment points.  Determine the range of the transmission angle.  

	 †5-39	 Design a fourbar linkage to carry the object in Figure P5-9 through the three positions 
shown in their numbered order without regard for the fixed pivots shown.  Use any 
points on the object as attachment points.  Determine the range of the transmission 
angle.  

	 †5-40	 Design a fourbar linkage to carry the object in Figure P5-9 through the three positions 
shown in their numbered order using the fixed pivots shown.  Determine the range of 
the transmission angle.  

	 †5-41	 Repeat Problem 5-38 using the data shown in Figure P5-10 instead.

	 †5-42	 Repeat Problem 5-39 using the data shown in Figure P5-10 instead.

	 †5-43	 Repeat Problem 5-40 using the data shown in Figure P5-10 instead.

	 †5-44	 Repeat Problem 5-38 using the data shown in Figure P5-11 instead.

	 †5-45	 Repeat Problem 5-39 using the data shown in Figure P5-11 instead.

	 †5-46	 Repeat Problem 5-40 using the data shown in Figure P5-11 instead.

	 †5-47	 Write a program to generate and plot the circle-point and center-point circles for Prob-
lem 5-40 using an equation solver or any programming language.

	 †5-48	 Repeat Problem 5-47 using the data from Problem 5-43 instead.

	 †5-49	 Repeat Problem 5-47 using the data from Problem 5-46 instead.

O2 O4

C1
C2

D2D1

C3 D3

7.600 4.500

4.500 4.355

2.497

5.100

2.900

3.744

3.000

1.900

1.134

1.000

FIGURE P5-9
Data for problems 5-38 to 5-40 and 5-47

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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1.200
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FIGURE P5-10
Data for problems 5-41 to 5-43 and 5-48
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FIGURE P5-11
Data for problems 5-44 to 5-46 and 5-49
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	 †5-50	 In Example 5-2 the precision points and rotation angles are specified while the input 
and output rotation angles β and γ are free choices.  Using the choices given for β2 and 
γ2, determine the radii and center coordinates of the center-point circles for O2 and O4.  
Plot those circles (or portions of them) and show that the choices of β3 and γ3 give a 
solution that falls on the center-point circles.  You can get some verification of your 
circle calculations by using program Linkages.

	 5-51	 Design a driver dyad to move link 2 of Example 5-1 from position 1 to position 2 and 
return.

	 5-52	 Design a driver dyad to move link 2 of Example 5-2 from position 1 to position 3 and 
return.

	 5-53	 Design a driver dyad to move link 2 of Example 5-3 from position 1 to position 3 and 
return.

	 5-54	 Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 2 using 
points C and D for your attachment points.  The fixed pivots should be within the indi-
cated area.

24º

1.705

19.544

21.000

13.871

12.387 typ.

13.000

3.299

0.3732.994

area for fixed pivots

D3

D2

D1C1

C2

C3

FIGURE P5-12
Problems 5-54 to 5-57

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs. In 
most cases, your solution 
can be checked with pro-
gram Linkages.
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	 5-55	 Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 3 using 
points C and D for your attachment points.  The fixed pivots should be within the indi-
cated area.

	 5-56	 Design a fourbar linkage to carry the object in Figure P5-12 from position 2 to 3 using 
points C and D for your attachment points.  The fixed pivots should be within the indi-
cated area.

	 5-57	 Design a fourbar linkage to carry the object in Figure P5-12 through the three positions 
shown in their numbered order using points C and D for your attachment points.  The 
fixed pivots should be within the indicated area.

	 5-58	 Write a program to generate and plot the center-point and circle point circles for Prob-
lem 5-11 using an equation solver or any program language.

	 5-59	 Design a linkage to carry the body in Figure P5-13 through the two positions P1 and P2 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint: Try the free choice values z = 50, ϕ = 20°, β2 = 30°, s = 75, ψ = 
120°, γ2 = 20°.

	 5-60	 Design a linkage to carry the body in Figure P5-13 through the two positions P2 and P3 
at the angles shown in the figure.  Use analytical synthesis without regard for the fixed 
pivots shown.  Hint:  First try a rough graphical solution to create realistic values for 
free choices.

100.0

15.0

100.0

35.0

125.0

72.139

8.302P1

P2

P3

X

Y

O2 O4

60°

90°

0°

FIGURE P5-13
Problems 5-59 through 5-62
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80.143

9.377

70.623

127.270°

170.179°

246.461°

P2(35.196, –0.128)

X

Y

O2 O4

P1(0, 0) P3(55.113, 0.048)

FIGURE P5-14
Problems 5-64 through 5-65

	 5-61	 Design a linkage to carry the body in Figure P5-13 through the three positions P1, P2 
and P3 at the angles shown in the figure.  Use analytical synthesis without regard for 
the fixed pivots shown.

	 5-62	 Design a linkage to carry the body in Figure P5-13 through the three positions P1, P2 
and P3 at the angles shown in the figure.  Use analytical synthesis and design it for the 
fixed pivots shown.

	 5-63	 In Example 5-3 the precision points and rotation angles are specified while the posi-
tions of O2 and O4 are free choices.  Using the values given for β2 and γ2, determine the 
radii and center coordinates of the center-point circles for O2 and O4.  Plot those circles 
and show that the values of β3 and γ3 give a solution that falls on the center-point 
circles.

	 5-64	 Design a linkage to carry the body in Figure P5-14 through the three positions P1, P2 
and P3 at the angles shown in the figure.  Use analytical synthesis without regard for 
the fixed pivots shown.

	 5-65	 Design a linkage to carry the body in Figure P5-14 through the three positions P1, P2 
and P3 at the angles shown in the figure.  Use analytical synthesis and design it for the 
fixed pivots shown.



Chapter6
VELOCITY ANALYSIS
The faster I go, the behinder I get
Anon. Penn. Dutch

6.0	 INTRODUCTION View the lecture video (28:44)†

Once a position analysis is done, the next step is to determine the velocities of all links and 
points of interest in the mechanism.  We need to know the velocities in our mechanism or 
machine, both to calculate the stored kinetic energy from 22mV  and also as a step on the 
way to the determination of the link’s accelerations that are needed for the dynamic force 
calculations.  Many methods and approaches exist to find velocities in mechanisms.  We 
will examine only a few of these methods here.  We will first develop manual graphical 
methods, which are often useful as a check on the more complete and accurate analytical 
solution.  We will also investigate the properties of the instant center of velocity which 
can shed much light on a mechanism’s velocity behavior with very little effort.  Finally, 
we will derive the analytical solution for the fourbar and inverted crank-slider as examples 
of the general vector loop equation solution to velocity analysis problems.  From these 
calculations we will be able to establish some indices of merit to judge our designs while 
they are still on the drawing board (or in the computer).

6.1	 DEFINITION OF VELOCITY

Velocity is defined as the rate of change of position with respect to time.  Position (R) is a 
vector quantity and so is velocity.  Velocity can be angular or linear.  Angular velocity 
will be denoted as ω and linear velocity as V.

; (6.1)d
dt

d
dt

V R=ω
θ

=

Figure 6‑1 shows a link PA in pure rotation, pivoted at point A in the xy plane.  Its 
position is defined by the position vector RPA.  We are interested in the velocity of point 

† http://www.designofma-
chinery.com/DOM/Veloc-
ity_Analysis_with_ICs.mp4

http://www.designofmachinery.com/DOM/Velocity_Analysis_with_ICs.mp4
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P when the link is subjected to an angular velocity ω.  If we represent the position vector 
RPA as a complex number in polar form,

(6.2)pePA
jR = θ

where p is the scalar length of the vector.  We can easily differentiate it to obtain:

(6.3)
d

dt
p je d

dt
p jePA

PA j jV
R

= =
θ

= ωθ θ

Compare the right side of equation 6.3 to the right side of equation 6.2.  Note that as 
a result of the differentiation, the velocity expression has been multiplied by the (constant) 
complex operator j. This causes a rotation of this velocity vector through 90 degrees with 
respect to the original position vector. (See also Figure 4‑8b.)  This 90-degree rotation is 
positive, or counterclockwise.  However, the velocity expression is also multiplied by ω, 
which may be either positive or negative.  As a result, the velocity vector will be rotated 
90 degrees from the angle θ of the position vector in a direction dictated by the sign of 
ω.  This is just mathematical verification of what you already knew, namely that velocity 
is always in a direction perpendicular to the radius of rotation and is tangent to the path 
of motion as shown in Figure 6‑1.

Substituting the Euler identity (equation 4.4a) into equation 6.3 gives us the real and 
imaginary (or x and y) components of the velocity vector.

cos sin sin cos (6.4)p j j p jPAV ( ) ( )= ω θ + θ = ω − θ + θ

Note that the sine and cosine terms have swapped positions between the real and 
imaginary terms, due to multiplying by the j coefficient.  This is evidence of the 90-degree 
rotation of the velocity vector versus the position vector.  The former x component has 
become the y component, and the former y component has become a minus x component.  
Study Figure 4‑8b to review why this is so.

The velocity VPA in Figure 6‑1 can be referred to as an absolute velocity since it 
is referenced to A, which is the origin of the global coordinate axes in that system.  As 
such, we could have referred to it as VP, with the absence of the second subscript imply-

y

x

FIGURE 6-1
A link in pure rotation
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ing reference to the global coordinate system.  Figure 6‑2a shows a different and slightly 
more complicated system in which the pivot A is no longer stationary.  It has a known 
linear velocity VA as part of the translating carriage, link 3.  If ω is unchanged, the velocity 
of point P versus A will be the same as before, but VPA can no longer be considered an 
absolute velocity.  It is now a velocity difference and must carry the second subscript as 
VPA.  The absolute velocity VP must now be found from the velocity difference equation 
whose graphical solution is shown in Figure 6‑2b:

rearranging:
(6.5a)

(6.5b)

PA P A

P A PA

V V V

V V V

= −

= +

Note the similarity of equations 6.5 to the position difference equation 4.1.

Figure 6‑3 shows two independent bodies P and A, which could be two automobiles, 
moving in the same plane.  If their independent velocities VP and VA are known, their 
relative velocity VPA can be found from equations 6.5 arranged algebraically as:

(6.6)PA P AV V V= −

The graphical solution to this equation is shown in Figure 6‑3b.  Note that it is similar 
to Figure 6‑2b except for a different vector being the resultant.

As we did for position analysis, we give these two cases different names despite the 
fact that the same equation applies.  Repeating the definition from Section 4.2, modified 
to refer to velocity:
	 Case 1: 		 Two points in the same body  =>  velocity difference
	 Case 2:  	 Two points in different bodies  =>  relative velocity

We will find use for this semantic distinction when we analyze both linkage velocities and 
the velocity of slip later in this chapter.

( a )
FIGURE 6-2
Velocity di�erence
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6.2	 GRAPHICAL VELOCITY ANALYSIS

Before programmable calculators and computers became universally available to engi-
neers, graphical methods were the only practical way to solve these velocity analysis  
problems.  With some practice and with proper tools such as a drafting machine or CAD 
package, one can fairly rapidly solve for the velocities of particular points in a mechanism 
for any one input position by drawing vector diagrams.  However, it is a tedious process if 
velocities for many positions of the mechanism are to be found, because each new position 
requires a completely new set of vector diagrams be drawn.  Very little of the work done 
to solve for the velocities at position 1 carries over to position 2, etc.  Nevertheless, this 
method still has more than historical value as it can provide a quick check on the results 
from a computer program solution.  Such a check needs only be done for a few positions 
to prove the validity of the program.  Also, graphical solutions provide the beginning 
student some visual feedback on the solution that can help develop an understanding of 
the underlying principles.  It is principally for this last reason that graphical solutions are 
included in this text even in this “age of the computer.”

To solve any velocity analysis problem graphically, we need only two equations, 6.5 
and 6.7 (which is merely the scalar form of equation 6.3):

(6.7)v rV = = ω

Note that the scalar equation 6.7 defines only the magnitude (v) of the velocity of 
any point on a body that is in pure rotation.  In a graphical Case 1 analysis, the direc-
tion of the vector due to the rotation component must be understood from equation 6.3 
to be perpendicular to the radius of rotation.  Thus, if the center of rotation is known, the 
direction of the velocity component due to that rotation is known and its sense will be 
consistent with the angular velocity ω of the body.

(a )

FIGURE 6-3
Relative velocity

(b )
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Figure 6‑4 shows a fourbar linkage in a particular position.  We wish to solve for the 
angular velocities of links 3 and 4 (ω3, ω4) and the linear velocities of points A, B, and 
C (VA, VB, VC).  Point C represents any general point of interest.  Perhaps C is a coupler 
point.  The solution method is valid for any point on any link.  To solve this problem, we 
need to know the lengths of all the links, the angular positions of all the links, and the 
instantaneous input velocity of any one driving link or driving point.  Assuming we have 
designed this linkage, we will know or can measure the link lengths.  We must also first 
do a complete position analysis to find the link angles θ3 and θ4 given the input link’s 
position θ2.  This can be done by any of the methods in Chapter 4.  In general we must 
solve these problems in stages, first for link positions, then for velocities, and finally for 
accelerations. For the following example, we will assume that a complete position analysis 
has been done and that the input is to link 2 with known θ2 and ω2 for this one “freeze 
frame” position of the moving linkage.

ω
θ2

ωω
θ2

θ3

θ4

δ3

ω

FIGURE 6-4
Graphical solution for velocities in a pin-jointed linkage

(b)  Velocity diagram for points A and B
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( d )  Linkage showing velocities of points A, B,  and  C
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✍EXAMPLE 6-1

Graphical Velocity Analysis for One Position of Linkage.

Problem:	 Given θ2, θ3, θ4, ω2, find ω3, ω4, VA, VB, VC by graphical methods.

Solution:	 (See Figure 6‑4.)

	 1	 Start at the end of the linkage about which you have the most information.  Calculate the 
magnitude of the velocity of point A using scalar equation 6.7.

( )2 2v AO aa ( )= ω

	 2	 Draw the velocity vector VA with its length equal to its magnitude vA at some convenient scale 
with its root at point A and its direction perpendicular to the radius AO2.  Its sense is the same 
as that of ω2 as shown in Figure 6‑4a.

	 3	 Move next to a point about which you have some information.  Note that the direction of the 
velocity of point B is predictable since it is pivoting in pure rotation about point O4.  Draw the 
construction line pp through point B perpendicular to BO4, to represent the direction of VB as 
shown in Figure 6‑4a.

	 4	 Write the velocity difference vector equation 6.5 for point B versus point A.

( )bB A BAV V V= +

		  We will use point A as the reference point to find VB because A is in the same link as B and 
we have already solved for VA.  Any two-dimensional vector equation can be solved for two 
unknowns.  Each term has two parameters, namely magnitude and direction.  There are then 
potentially six unknowns in this equation, two per term.  We must know four of them to solve 
it.  We know both magnitude and direction of VA and the direction of VB.  We need to know 
one more parameter.

	 5	 The term VBA represents the velocity of B with respect to A.  If we assume that the link BA is 
rigid, then there can be no component of VBA that is directed along the line BA, because point 
B cannot move toward or away from point A without shrinking or stretching the rigid link!  
Therefore, the direction of VBA must be perpendicular to the line BA.  Draw construction line 
qq through point B and perpendicular to BA to represent the direction of VBA, as shown in 
Figure 6‑4a.

	 6	 Now the vector equation can be solved graphically by drawing a vector diagram as shown in 
Figure 6‑4b.  Either drafting tools or a CAD package is needed for this step.  Draw velocity 
vector VA carefully to some scale, maintaining its direction.  (It is drawn twice its size in the 
figure.)  The equation in step 4 says to add VBA to VA, so draw a line parallel to line qq across 
the tip of VA.  The resultant, or left side of the equation, must close the vector diagram, from 
the tail of the first vector drawn (VA) to the tip of the last, so draw a line parallel to pp across 
the tail of VA.  The intersection of these lines parallel to pp and qq defines the lengths of VB 
and VBA.  The senses of the vectors are determined from reference to the equation.  VA was 
added to VBA, so they must be arranged tip to tail.  VB is the resultant, so it must be from the 
tail of the first to the tip of the last.  The resultant vectors are shown in Figure 6‑4b and d.
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	 7	 The angular velocities of links 3 and 4 can be calculated from equation 6.7:

( )and4
4

3ω = ω =
v

BO
v
BA

cB BA

		  Note that the velocity difference term VBA represents the rotational component of velocity of 
link 3 due to ω3.  This must be true if point B cannot move toward or away from point A.  The 
only velocity difference they can have, one to the other, is due to rotation of the line connecting 
them.  You may think of point B on the line BA rotating about point A as a center, or point A 
on the line AB rotating about B as a center.  The rotational velocity ω of any body is a “free 
vector” that has no particular point of application to the body.  It exists everywhere on the body.

	 8	 Finally we can solve for VC, again using equation 6.5. We select any point in link 3 for which 
we know the absolute velocity to use as the reference, such as point A.

( )dC A CAV V V= +

		  In this case, we can calculate the magnitude of VCA from equation 6.7 as we have already found 
ω3,

( )3v c ec a = ω

		  Since both VA and VCA are known, the vector diagram can be directly drawn as shown in Figure 
6‑4c. VC  is the resultant that closes the vector diagram.  Figure 6‑4d shows the calculated veloc-
ity vectors on the linkage diagram.  Note that the velocity difference vector VCA is perpendicular 
to line CA (along line rr) for the same reasons as discussed in step 7 above.

The above example contains some interesting and significant principles that deserve 
further emphasis.  Equation 6.5a is repeated here for discussion.

(6.5a)P A PAV V V= +

This equation represents the absolute velocity VP of some general point P referenced to the 
origin of the global coordinate system.  The right side defines it as the sum of the absolute 
velocity VA of some other reference point A in the same system and the velocity difference 
(or relative velocity) VPA of point P versus point A.  This equation could also be written:

Velocity = translation component + rotation component

These are the same two components of motion defined by Chasles’ theorem, and 
introduced for displacement in Section 4.3.  Chasles’ theorem holds for velocity as well.  
These two components of motion, translation and rotation, are independent of one another. 
If either is zero in a particular example, the complex motion will reduce to one of the 
special cases of pure translation or pure rotation.  When both are present, the total velocity 
is merely their vector sum.

Let us review what was done in Example 6‑1 in order to extract the general strategy 
for solution of this class of problem.  We started at the input side of the mechanism, as 
that is where the driving angular velocity is defined.  We first looked for a point (A) for 
which the motion was pure rotation so that one of the terms in equation 6.5 would be zero.  
(We could as easily have looked for a point in pure translation to bootstrap the solution.)  
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We then solved for the absolute velocity of that point (VA) using equations 6.5 and 6.7.  
(Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation 
component in equation 6.5 written for a new point (B).  Note that we needed to choose a 
second point (B) that was in the same rigid body as the reference point (A) which we had 
already solved and about which we could predict some aspect of the new point’s (B’s) 
velocity.  In this example, we knew the direction of the velocity VB.  In general this condi-
tion will be satisfied by any point on a link that is jointed to ground (as is link 4).  In this 
example, we could not have solved for point C until we solved for B, because point C is on 
a floating link for which point we do not yet know the velocity direction.  (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the 
rotation component of velocity is directed perpendicular to the line connecting the two 
points in the link (B and A in the example).  You will always know the direction of the 
rotation component in equation 6.5 if it represents a velocity difference (Case 1) 
situation.  If the rotation component relates two points in the same rigid body, then that 
velocity difference component is always perpendicular to the line connecting those two 
points (see Figure 6‑2).  This will be true regardless of the two points selected.  But, this 
is not true in a Case 2 situation (see Figure 6‑3).  (Steps 5 and 6)

Once we found the absolute velocity (VB) of a second point on the same link (Case 
1),  we could solve for the angular velocity of that link.  (Note that points A and B are both 
on link 3 and the velocity of point O4 is zero.)  Once the angular velocities of all the links 
were known, we could solve for the linear velocity of any point (such as C) in any link 
using equation 6.5.  To do so, we had to understand the concept of angular velocity as a 
free vector, meaning that it exists everywhere on the link at any given instant.  It has no 
particular center. It has an infinity of potential centers.  The link simply has an angular 
velocity, just as does a frisbee thrown and spun across the lawn.

All points on a frisbee, if spinning while flying, obey equation 6.5.  Left to its own 
devices, the frisbee will spin about its center of gravity (CG), which is close to the center 
of its circular shape.  But if you are an expert frisbee player (and have rather pointed 
fingers), you can imagine catching that flying frisbee between your two index fingers in 
some off-center location (not at the CG), such that the frisbee continues to spin about your 
fingertips.  In this somewhat far-fetched example of championship frisbee play, you will 
have taken the translation component of the frisbee’s motion to zero, but its independent 
rotation component will still be present.  Moreover, it will now be spinning about a dif-
ferent center (your fingers) than it was in flight (its CG).  Thus this free vector of angular 
velocity (ω) is happy to attach itself to any point on the body.  The body still has the same 
ω, regardless of the assumed center of rotation.  It is this property that allows us to solve 
equation 6.5 for literally any point on a rigid body in complex motion referenced to any 
other point on that body.  (Steps 7 and 8)

6.3	 INSTANT CENTERS OF VELOCITY View a tutorial video (28:55)†

The definition of an instant center of velocity is a point, common to two bodies in plane 
motion, which point has the same instantaneous velocity in each body.  Instant centers 
are sometimes also called centros or poles.  Since it takes two bodies or links to create an 

† http://www.designofma-
chinery.com/DOM/Instant_
Centers_Tutorial.mp4

http://www.designofmachinery.com/DOM/Instant_Centers_Tutorial.mp4
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† Note that this graph is not 
a plot of points on an x, y 
coordinate system.  Rather 
it is a linear graph from the 
fascinating branch of math-
ematics called graph theory, 
which is itself a branch of 
topology.  Linear graphs 
are often used to depict 
interrelationships between 
various phenomena.  They 
have many applications in 
kinematics especially as a 
way to classify linkages and 
to find isomers.

	
‡  Discovered independently 
by Aronhold in Germany, 
in 1872, and by Kennedy 
in England, in 1886.  Ken-
nedy[3] states in his preface, 
“The theorem of the three 
virtual (instant) centers … 
was first given, I believe, 
by Aronhold, although its 
previous publication was 
unknown to me until some 
years after I had given it in 
my lectures.”  It tends to be 
attributed to Kennedy in the 
English-speaking world and 
to Aronhold in the German-
speaking world.

instant center (IC), we can easily predict the quantity of instant centers to expect from any 
collection of links.  The combination formula for n things taken r at a time is:

1 2 1
!

(6.8a)C
n n n n r

r
( )( ) ( )

=
− − − +

For our case r = 2 and it reduces to:

1
2

(6.8b)C
n n( )

=
−

From equation 6.8b we can see that a fourbar linkage has 6 instant centers, a sixbar has 
15, and an eightbar has 28.

Figure 6‑5 shows a fourbar linkage in an arbitrary position.  It also shows a linear 
graph† that is useful for keeping track of which ICs have been found.  This particular 
graph can be created by drawing a circle on which we mark off as many points as there 
are links in our assembly.  We will then draw a line between the dots representing the link 
pairs each time we find an instant center.  The resulting linear graph is the set of lines con-
necting the dots.  It does not include the circle that was used only to place the dots.  This 
graph is actually a geometric solution to equation 6.8b, since connecting all the points in 
pairs gives all the possible combinations of points taken two at a time.

Some ICs can be found by inspection, using only the definition of the instant center.  
Note in Figure 6‑5a that the four pin joints each satisfy the definition.  They clearly must 
have the same velocity in both links at all times.  These have been labeled I1,2, I2,3, I3,4, 
and I1,4.  The order of the subscripts is immaterial. Instant center I2,1 is the same as I1,2.  
These pin-joint ICs are sometimes called “permanent” instant centers as they remain in 
the same location for all positions of the linkage.  In general, instant centers will move to 
new locations as the linkage changes position, thus the adjective instant.  In this fourbar 
example there are two more ICs to be found.  It will help to use the Aronhold-Kennedy 
theorem,‡ also called Kennedy’s rule,[3] to locate them.

Kennedy’s rule: 
Any three bodies in plane motion will have exactly three instant centers, and they will lie 
on the same straight line.

The first part of this rule is just a restatement of equation 6.8b for n = 3.  It is the second 
clause in this rule that is most useful.  Note that this rule does not require that the three 
bodies be connected in any way.  We can use this rule, in conjunction with the linear graph, 
to find the remaining ICs that are not obvious from inspection.  Figure 6.5b shows the 
construction necessary to find instant center I1,3.  Figure 6-5c shows the construction nec-
essary to find instant center I2,4.  The following example describes the procedure in detail.

✍EXAMPLE 6‑2 

Finding All Instant Centers for a Fourbar Linkage.

Problem:	 Given a fourbar linkage in one position, find all ICs by graphical methods.
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Solution:	 (See Figure 6‑5 and the video Instant Centers and Centrodes.)

	 1	 Draw a circle with all links numbered around the circumference as shown in Figure 6‑5a.

	 2	 Locate as many ICs as possible by inspection.  All pin joints will be permanent ICs.  Connect 
the link numbers on the circle to create a linear graph and record those ICs found, as shown in 
Figure 6‑5a.

	 3	 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers.  Identify two triangles on the graph that each 
contain the dotted line and whose other two sides are solid lines representing ICs already found. 

ω
θ2

( a )

FIGURE 6-5
Locating instant centers in the pin-jointed linkage

(b )

(c )
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On the graph in Figure 6‑5b, link numbers 1 and 3 have been connected with a dotted line.  
This line forms one triangle with sides  13, 34, 14 and another with sides  13, 23, 12.  These 
triangles define trios of ICs that obey Kennedy’s rule.  Thus ICs 13, 34, and 14 must lie on 
the same straight line.  Also ICs 13, 23 and 12 will lie on a different straight line.

	 4	 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6‑5b, a line has been drawn through I1,2 and  
I2,3 and extended.  I1,3 must lie on this line.  Another line has been drawn through I1,4 and I3,4 
and extended to intersect the first line.  By Kennedy’s  rule, instant center  I1,3 must also lie on 
this line, so their intersection is I1,3.

	 5	 Connect link numbers 2 and 4 with a dotted line on the linear graph as shown in Figure 6‑5c.  
This line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14.  These 
sides represent trios of ICs that obey Kennedy’s rule.  Thus ICs 24, 23, and 34 must lie on the 
same straight line.  Also ICs 24, 12, and 14 lie on a different straight line.

	 6	 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6‑5c, a line has been drawn through I1,2 and 
I1,4 and extended.  I2,4 must lie on this line.  Another line has been drawn through I2,3 and I3,4 
and extended to intersect the first line.  By Kennedy’s  rule, instant center I2,4 must also lie on 
this line, so their intersection is I2,4.

	 7	 If there were more links, this procedure would be repeated until all ICs were found.

The presence of slider joints makes finding the instant centers a little more subtle as 
is shown in the next example.  Figure 6‑6a shows a fourbar crank-slider linkage.  Note 
that there are only three pin joints in this linkage.  All pin joints are permanent instant 
centers.  But the joint between links 1 and 4 is a rectilinear, sliding full joint.  A sliding 
joint is kinematically equivalent to an infinitely long link, “pivoted” at infinity.  Figure 
6‑6b shows a nearly equivalent pin-jointed version of the crank-slider in which link 4 is a 
very long rocker.  Point B now swings through a shallow arc that is nearly a straight line.  
It is clear in Figure 6‑6b that, in this linkage, I1,4 is at pivot O4.  Now imagine increasing 
the length of this long, link 4 rocker even more.  In the limit, link 4 approaches infinite 
length, the pivot O4 approaches infinity along the line that was originally the long rocker, 
and the arc motion of point B approaches a straight line.  Thus, a slider joint will have its 
instant center at infinity along a line perpendicular to the direction of sliding as shown 
in Figure 6‑6a. 

✍EXAMPLE 6‑3

Finding All Instant Centers for a Crank-Slider Linkage.

Problem:	 Given a crank-slider linkage in one position, find all ICs by graphical methods.

Solution:	 (See Figure 6‑7, and the video Instant Centers and Centrodes.)

	 1	 Draw a circle with all links numbered around the circumference as shown in Figure 6‑7a.

	 2	 Locate all ICs possible by inspection.  All pin joints will be permanent ICs.  The slider joint’s 
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instant center will be at infinity along a line perpendicular to the axis of sliding.  Connect the 
link numbers on the circle to create a linear graph and record those ICs found, as shown in 
Figure 6‑7a.

	 3	 Identify a link combination on the linear graph for which the IC has not been found, and draw 
a dotted line connecting those two link numbers.  Identify two triangles on the graph that each 
contain the dotted line and whose other two sides are solid lines representing ICs already found. 
In the graph on Figure 6‑7b, link numbers 1 and 3 have been connected with a dotted line.  This 
line forms one triangle with sides 13, 34, 14 and another with sides  13, 23, 12.  These sides 
represent trios of ICs that obey Kennedy’s rule.  Thus ICs 13, 34, and 14 must lie on the same 
straight line.  Also ICs 13, 23, and 12 lie on a different straight line.

	 4	 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6‑7b, a line has been drawn from I1,2 through 
I2,3 and extended.  I1,3 must lie on this line.  Another line has been drawn from I1,4 (at infinity) 
through I3,4 and extended to intersect the first line.  By Kennedy’s rule, instant center I1,3 must 
also lie on this line, so their intersection is I1,3.

	 5	 Connect link numbers 2 and 4 with a dotted line on the graph as shown in Figure 6‑7c.  This 
line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14.  These sides 
also represent trios of ICs that obey Kennedy’s rule.  Thus ICs 24, 23, and 34 must lie on the 
same straight line.  Also ICs 24, 12, and 14 lie on a different straight line.

	 6	 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  Repeat for the other trio.  In Figure 6‑7c, a line has been drawn from I1,2 to intersect 
I1,4, and extended.  Note  that the only way to “intersect” I1,4 at infinity is to draw a line parallel 
to the line I3,4 I1,4 since all parallel lines intersect at infinity.  Instant center I2,4 must lie on this 

( a )  Crank-slider linkage

FIGURE 6-6
A rectilinear slider's instant center is at infinity

(b )  Crank-rocker linkage
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parallel line.  Another line has been drawn through I2,3 and I3,4 and extended to intersect the 
first line.  By Kennedy’s rule, instant center I2,4 must also lie on this line, so their intersection 
is I2,4.

	 7	 If there were more links, this procedure would be repeated until all ICs were found.
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FIGURE 6-7
Locating instant centers in the slider-crank linkage
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The procedure in this slider example is identical to that used in the pin-jointed fourbar, 
except that it is complicated by the presence of instant centers located at infinity.

In Section 2.10 and Figure 2‑12c we showed that a cam-follower mechanism is really 
a fourbar linkage in disguise.  As such it will also possess instant centers.  The presence of 
the half joint in this, or any linkage, makes the location of the instant centers a little more 
complicated.  We have to recognize that the instant center between any two links will be 
along a line that is perpendicular to the relative velocity vector between the links at the 
half joint, as shown in the following example.  Figure 6‑8 shows the same cam-follower 
mechanism as in Figure 2-12c.  The effective links 2, 3, and 4 are also shown.

✍EXAMPLE 6‑4

Finding All Instant Centers for a Cam-Follower Mechanism.

Problem:	 Given a cam and follower in one position, find all ICs by graphical methods.

Solution:	 (See Figure 6‑8.)

	 1	 Draw a circle with all links numbered around the circumference as shown in Figure 6‑8b.  In 
this case there are only three links and thus only three ICs to be found as shown by equation 
6.8.  Note that the links are numbered 1, 2, and 4.  The missing link 3 is the variable-length 
effective coupler.

	 2	 Locate all ICs possible by inspection.  All pin joints will be permanent ICs. The two fixed 
pivots I1,2 and I1,4 are the only pin joints here.  Connect the link numbers on the circle to create 
a linear graph and record those ICs found, as shown in Figure 6‑8b.  The only link combination 
on the linear graph for which the IC has not been found is I2,4, so draw a dotted line connecting 
those two link numbers.

	 3	 Kennedy’s rule says that all three ICs must lie on the same straight line; thus the remaining 
instant center I2,4 must lie on the line I1,2 I1,4 extended.  Unfortunately in this example, we 
have too few links to find a second line on which I2,4 must lie. 

	 4	 On the linkage diagram draw a line through the two known ICs that form a trio with the un-
known IC.  In Figure 6‑8c, a line has been drawn from I1,2 through I1,4  and extended.  This 
is, of course, link 1.  By Kennedy’s rule, I2,4 must lie on this line.

	 5	 Looking at Figure 6‑8c that shows the effective links of the equivalent fourbar linkage for 
this position, we can extend effective link 3 until it intersects link 1 extended.  Just as in the 
“pure” fourbar linkage, instant center 2,4 lies on the intersection of links 1 and 3 extended (see 
Example 6‑2). 

	 6	 Figure 6‑8d shows that it is not necessary to construct the effective fourbar linkage to find I2,4.  
Note that the common tangent to links 2 and 4 at their contact point (the half joint) has been 
drawn.  This line is also called the axis of slip because it is the line along which all relative 
(slip) velocity will occur between the two links.  Thus the velocity of link 4 versus 2, V42, is 
directed along the axis of slip.  Instant center I2,4 must therefore lie along a line perpendicular 
to the common tangent, called the common normal.  Note that this line is the same as the 
effective link 3 line in Figure 6‑8c.
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6.4	 VELOCITY ANALYSIS WITH INSTANT CENTERS

Once the ICs have been found, they can be used to do a very rapid graphical velocity 
analysis of the linkage.  Note that, depending on the particular position of the linkage 
being analyzed, some of the ICs may be very far removed from the links.  For example, 
if links 2 and 4 are nearly parallel, their extended lines will intersect at a point far away 
and not be practically available for velocity analysis.  Figure 6‑9 shows the same linkage 
as Figure 6‑5 with I1,3 located and labeled.  From the definition of the instant center, both 
links sharing the instant center will have identical velocity at that point.  Instant center I1,3 
involves the coupler (link 3), which is in complex motion, and the ground link 1, which is 
stationary.  All points on link 1 have zero velocity in the global coordinate system, which 
is embedded in link 1.  Therefore, I1,3 must have zero velocity at this instant.  If I1,3 has 
zero velocity, then it can be considered to be an instantaneous “fixed pivot” about which 
link 3 is in pure rotation with respect to link 1.  A moment later, I1,3 will move to a new 
location and link 3 will be “pivoting” about a new instant center.

( a )  The cam and follower

V42

FIGURE 6-8
Locating instant centers in the cam-follower mechanism

(b)  The linkage graph (c )  The instantaneously equivalent "e�ective linkage"

(d )  Finding I2,4 without using the e�ective linkage
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The velocity of point A is shown on Figure 6‑9.  The magnitude of VA can be com-
puted from equation 6.7.  Its direction and sense can be determined by inspection as was 
done in Example 6‑1.  Note that point A is also instant center I2,3.  It has the same velocity 
as part of link 2 and as part of link 3.  Since link 3 is effectively pivoting about I1,3 at this 
instant, the angular velocity ω3 can be found by rearranging equation 6.7:

(6.9a)3
1,3

v
AI

A

( )ω =

Once w3 is known, the magnitude of VB can also be found from equation 6.7:

(6.9b)1,3 3v BIB ( )= ω

Once VB is known, w4 can also be found from equation 6.7:

(6.9c)4
4

v
BO

B

( )ω =

Finally, the magnitude of VC (or the velocity of any other point on the coupler) can be 
found from equation 6.7:

(6.9d)1,3 3v CIC ( )= ω

Note that equations 6.7 and 6.9 provide only the scalar magnitude of these velocity 
vectors.  We have to determine their direction from the information in the scale diagram 
(Figure 6‑9).  Since we know the location of I1,3, which is an instantaneous “fixed” pivot 
for link 3, all of that link’s absolute velocity vectors for this instant will be perpendicular 

θ2
ω2

ω3

ω4

FIGURE 6-9
Velocity analysis using instant centers
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to their radii from I1,3 to the point in question.  VB and VC can be seen to be perpen-
dicular to their radii from I1,3.  Note that VB is also perpendicular to the radius from O4 
because B is also pivoting about that point as part of link 4.

A rapid graphical solution to equations 6.9 is shown in the figure.  Arcs centered at 
I1,3 are swung from points B and C to intersect line AI1,3.  The magnitudes of velocities 
VB’ and VC ’ are found from the vectors drawn perpendicular to that line at the intersec-
tions of the arcs and line AI1,3.  The lengths of the vectors are defined by the line from the 
tip of VA to the instant center I1,3.  These vectors can then be slid along their arcs back 
to points B and C, maintaining their tangency to the arcs.

Thus, we have in only a few steps found all the same velocities that were found using 
the more tedious method of Example 6-1.  The instant center method is a quick graphical 
method to analyze velocities, but it will only work if the instant centers are in reachable 
locations for the particular linkage position analyzed.  However, the graphical method 
using the velocity difference equation shown in Example 6‑1 will always work, regardless 
of linkage position.

Angular Velocity Ratio
The angular velocity ratio mV is defined as the output angular velocity divided by the 
input angular velocity.  For a fourbar mechanism this is expressed as:

(6.10)4

2
mV =

ω
ω

We can derive this ratio for any linkage by constructing a pair of effective links 
as shown in Figure 6‑10a.  The definition of effective link pairs is two lines, mutually 
parallel, drawn through the fixed pivots and intersecting the coupler extended.  These are 
shown as O2A ’ and O4B ’ in Figure 6‑10a.  Note that there is an infinity of possible effec-
tive link pairs.  They must be parallel to one another but may make any angle with link 3.  
In the figure they are shown perpendicular to link 3 for convenience in the derivation to 
follow.  The angle between links 2 and 3 is shown as ν.  The transmission angle between 
links 3 and 4 is µ.  We will now derive an expression for the angular velocity ratio using 
these effective links, the actual link lengths, and angles ν and µ.

From geometry:

sin sin (6.11a)2 2 4 4O A O A B O BΟ( ) ( )′ = ν ′ = µ

From equation 6.7

(6.11b)2 2V O AA ( )= ′ ω′

The component of velocity VA’ lies along the link AB.  Just as with a two-force mem-
ber in which a force applied at one end transmits only its component that lies along the 
link to the other end, this velocity component can be transmitted along the link to point 
B.  This is sometimes called the principle of transmissibility.  We can then equate these 
components at either end of the link.

(6.11c)V VA B=′ ′
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	 Then:
(6.11d)2 2 4 4O A O B′ω = ′ω

	 rearranging:

(6.11e)4

2

2

4

O A
O B

ω
ω

=
′
′

	 and substituting:
sin
sin

(6.11f )4
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=
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E�ective links and the angular velocity ratio
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Note in equation 6.11f that as angle ν goes through zero, the angular velocity ratio 
will be zero regardless of the values of ω2 or the link lengths, and thus ω4 will be zero.  
When angle ν is zero, links 2 and 3 will be colinear and thus be in their toggle positions.  
We learned in Section 3.3 that the limiting positions of link 4 are defined by these toggle 
conditions.  We should expect that the velocity of link 4 will be zero when it has come 
to the end of its travel.  An even more interesting situation obtains if we allow angle µ 
to go to zero.  Equation 6.11f shows that ω4 will go to infinity when µ = 0, regardless 
of the values of ω2 or the link lengths.  We clearly cannot allow µ to reach zero.  In fact, 
we learned in Section 3.3 that we should keep this transmission angle µ above about 40 
degrees to maintain good quality of motion and force transmission.*

Figure 6‑10b shows the same linkage as in Figure 6‑10a, but the effective links have 
now been drawn so that they are not only parallel but are also colinear, and thus lie on top 
of one another.  Both intersect the extended coupler at the same point, which is instant 
center I2,4.  So, A’ and B’ of Figure 6‑10a are now coincident at I2,4.  This allows us to 
write an equation for the angular velocity ratio in terms of the distances from the fixed 
pivots to instant center I2,4.

(6.11g)4

2

2 2,4

4 2,4
m

O I
O IV =

ω
ω

=

Thus, the instant center I2,4 can be used to determine the angular velocity ratio.

Mechanical Advantage

The power P in a mechanical system can be defined as the dot or scalar product of the 
force vector F and the velocity vector V at any point:

(6.12a)P F V F Vx x y yF V= ⋅ = +

For a rotating system, power P becomes the product of torque T and angular velocity ω 
that, in two dimensions, have the same (z) direction:

(6.12b)P T= ω

The power flows through a passive system and:

(6.12c)P P lossesin out= +

Mechanical efficiency can be defined as:

(6.12d)
P
P
out

in
ε =

Linkage systems can be very efficient if they are well made with low friction bearings 
on all pivots.  Losses are often less than 10%.  For simplicity in the following analysis we 
will assume that the losses are zero (i.e., a conservative system).  Then, letting Tin and 
ωin represent input torque and angular velocity, and Tout and ωout represent output torque 
and angular velocity,

	
*  This limitation on 
transmission angle is only 
critical if the output load 
is applied to a link that 
is pivoted to ground (i.e., 
to link 4 in the case of a 
fourbar linkage).  If the load 
is applied to a floating link 
(e.g., a coupler), then other 
measures of the quality of 
force transmission than the 
transmission angle are more 
appropriate, as discussed in 
Chapter 11, Section 11.12, 
where the joint force index 
is defined.



DESIGN OF MACHINERY 6ed      CHAPTER  6310

6

(6.12e)
P T

P T

in in in

out out out

= ω

= ω

and:

(6.12f )

P P
T T

T
T

out in

out out in in

out

in

in

out

=
ω = ω

=
ω

ω

Note that the torque ratio (mT = Tout /Tin) is the inverse of the angular velocity ratio.

Mechanical advantage (mA) can be defined as:

(6.13a)m
F
FA
out

in
=

Assuming that the input and output forces are applied at some radii rin and rout, perpen-
dicular to their respective force vectors, 

(6.13b)

F
T
r

F
T
r

out
out

out

in
in

in

=

=

substituting equations 6.13b in 6.13a gives an expression in terms of torque.

(6.13c)m
T
T

r
rA

out

in

in

out
=













Substituting equation 6.12f in 6.13c gives

(6.13d)m
r
rA

in

out

in

out
=

ω
ω













and substituting equation 6.11f gives

sin
sin

(6.13e)4

2
m

O B
O A

r
rA

in

out
=

µ
ν













See Figure 6‑11 and compare equation 6.13e to equation 6.11f and its discussion un-
der angular velocity ratio.  Equation 6.13e shows that for any choice of rin and rout, the 
mechanical advantage responds to changes in angles ν and µ in opposite fashion to that of 
the angular velocity ratio.  If the transmission angle µ goes to zero (which we don’t want it 
to do), the mechanical advantage also goes to zero regardless of the amount of input force 
or torque applied.  But, when angle ν goes to zero (which it can and does, twice per cycle 
in a Grashof linkage), the mechanical advantage becomes infinite!  This is the principle 
of a rock-crusher mechanism as shown in Figure 6‑11.  A quite moderate force applied to 
link 2 can generate a huge force on link 4 to crush the rock.  Of course, we cannot expect 
to achieve the theoretical output of infinite force or torque magnitude, as the strengths of 
the links and joints will limit the maximum forces and torques obtainable.  Another com-
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mon example of a linkage that takes advantage of this theoretically infinite mechanical 
advantage at the toggle position is a ViseGrip locking pliers (see Figure P6-21).

These two ratios, angular velocity ratio and mechanical advantage, provide use-
ful, dimensionless indices of merit by which we can judge the relative quality of various 
linkage designs that may be proposed as solutions.

Using Instant Centers in Linkage Design

In addition to providing a quick numerical velocity analysis, instant center analysis more 
importantly gives the designer a remarkable overview of the linkage’s global behavior.  
It is quite difficult to mentally visualize the complex motion of a “floating” coupler link 
even in a simple fourbar linkage, unless you build a model or run a computer simulation.  
Because this complex coupler motion in fact reduces to an instantaneous pure rotation 
about the instant center I1,3, finding that center allows the designer to visualize the motion 
of the coupler as a pure rotation.  One can literally see the motion and the directions of 
velocities of any points of interest by relating them to the instant center.  It is only neces-
sary to draw the linkage in a few positions of interest, showing the instant center locations 
for each position.

Figure 6‑12 shows a practical example of how this visual, qualitative analysis tech-
nique could be applied to the design of an automobile rear suspension system.  Most 
automobile suspension mechanisms are either fourbar linkages or fourbar crank-sliders, 
with the wheel assembly carried on the coupler (as was also shown in Figure 3-19).  Fig-
ure 6‑12a shows a rear suspension design from a domestic car of 1970s vintage that was 
later redesigned because of a disturbing tendency to “bump steer,” i.e., turn the rear axle 
when hitting a bump on one side of the car.  The figure is a view looking from the center 
of the car outward, showing the fourbar linkage that controls the up and down motion of 
one side of the rear axle and one wheel.  Links 2 and 4 are pivoted to the frame of the car 
which is link 1.  The wheel and axle assembly is rigidly attached to the coupler, link 3.  
Thus the wheel assembly has complex motion in the vertical plane.  Ideally, one would 
like the wheel to move up and down in a straight vertical line when hitting a bum  Figure 
6‑12b shows the motion of the wheel and the new instant center (I1,3) location for the 
situation when one wheel has hit a bum  The velocity vector for the center of the wheel in 
each position is drawn perpendicular to its radius from I1,3.  You can see that the wheel 
center has a significant horizontal component of motion as it moves up over the bump.  

Tout = Fout rout

FIGURE 6-11
"Rock-crusher" toggle mechanism

O2
O4

2

3
4

ν —> 0

rock

Fout
Fin

rin

rout
Tin = Fin rin
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This horizontal component causes the wheel center on that side of the car to move forward 
while it moves upward, thus turning the axle (about a vertical axis) and steering the car 
with the rear wheels in the same way that you steer a toy wagon.  Viewing the path of 
the instant center over some range of motion gives a clear picture of the behavior of the 
coupler link.  The undesirable behavior of this suspension linkage system could have been 
predicted from this simple instant center analysis before ever building the mechanism.

Another practical example of the effective use of instant centers in linkage design is 
shown in Figure 6‑13, which is an optical adjusting mechanism used to position a mirror 
and allow a small amount of rotational adjustment.[1]  A more detailed account of this 
design case study[2] is provided in Chapter 1.  The designer, K. Towfigh, recognized that 
I1,3 at point E is an instantaneous “fixed pivot” and will allow very small pure rotations 
about that point with very small translational error.  He then designed a one-piece, plastic 
fourbar linkage whose “pin joints” are thin webs of plastic that flex to allow slight rota-

( a )

FIGURE 6-12
“Bump steer” due to shift in instant center location

(b )

O2

O4I1,3

V
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4
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Frame

V
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4
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Frame

Shift in x

I1,3

O2

O4

View as a video
http://www.designofmachinery.com/

DOM/bump_steer.mp4

http://www.designofmachinery.com/DOM/bump_steer.mp4
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*  See also Section 2.16  
for more information on 
compliant mechanisms.

tion.  This is termed a compliant linkage,* one that uses elastic deformations of the links 
as hinges instead of pin joints.  He then placed the mirror on the coupler at I1,3.  Even the 
fixed link 1 is the same piece as the “movable links” and has a small set screw to provide 
the adjustment.  A simple and elegant design.

6.5	 CENTRODES View a tutorial video (21:01)†

Figure 6‑14 illustrates the fact that the successive positions of an instant center (or centro) 
form a path of their own.  This path, or locus, of the instant center is called the centrode.  
Since there are two links needed to create an instant center, there will be two centrodes 
associated with any one instant center.  These are formed by projecting the path of the 
instant center first on one link and then on the other.  Figure 6‑14a shows the locus of 
instant center I1,3 as projected onto link 1.  Because link 1 is stationary, or fixed, this is 
called the fixed centrode.  By temporarily inverting the mechanism and fixing link 3 as 
the ground link, as shown in Figure 6‑14b, we can move link 1 as the coupler and project 
the locus of I1,3 onto link 3.  In the original linkage, link 3 was the moving coupler, so this 
is called the moving centrode.  Figure 6‑14c shows the original linkage with both fixed 
and moving centrodes superposed.

The definition of the instant center says that both links have the same velocity at that 
point, at that instant.  Link 1 has zero velocity everywhere, as does the fixed centrode.  
So, as the linkage moves, the moving centrode must roll against the fixed centrode with-
out slipping.  If you cut the fixed and moving centrodes out of metal, as shown in Figure 
6‑14d, and roll the moving centrode (which is link 3) against the fixed centrode (which is 
link 1), the complex motion of link 3 will be identical to that of the original linkage.  All 
of the coupler curves of points on link 3 will have the same path shapes as in the original 
linkage.  We now have, in effect, a “linkless” fourbar linkage, really one composed of two 
bodies that have these centrode shapes rolling against one another.  Links 2 and 4 have 

An optical adjustment compliant linkage Reproduced from reference [2] with permission

FIGURE 6-13

† http://www.designofma-
chinery.com/DOM/Cen-
trodes.mp4

http://www.designofmachinery.com/DOM/Centrodes.mp4
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been eliminated.  Note that the example shown in Figure 6‑14 is a non-Grashof fourbar.  
The lengths of its centrodes are limited by the double-rocker toggle positions.

( a )  The fixed centrode

FIGURE 6-14
Open-loop fixed and moving centrodes (or polodes) of a fourbar linkage

(b)  The moving centrode

(c )  The centrodes in contact (d )  Roll the moving centrode against the
        fixed centrode to produce the same
        coupler motion as the original linkage
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All instant centers of a linkage will have centrodes.*  If the links are directly con-
nected by a joint, such as I2,3, I3,4, I1,2, and I1,4, their fixed and moving centrodes will 
degenerate to a point at that location on each link.  The most interesting centrodes are 
those involving links not directly connected to one another such as I1,3 and I2,4.  If we look 
at the double-crank linkage in Figure 6‑15a in which links 2 and 4 both revolve fully, we 
see that the centrodes of I1,3 form closed curves.  The motion of link 3 with respect to link 
1 could be duplicated by causing these two centrodes to roll against one another without 
slipping.  Note that there are two loops to the moving centrode.  Both must roll on the 
single-loop fixed centrode to complete the motion of the equivalent double-crank linkage.

We have so far dealt largely with the instant center I1,3.  Instant center I2,4 involves 
two links that are each in pure rotation and not directly connected to one another. If we 
use a special-case Grashof linkage with the links crossed (sometimes called an antiparal-
lelogram linkage), the centrodes of I2,4 become ellipses as shown in Figure 6‑15b.  To 
guarantee no slip, it will probably be necessary to put meshing teeth on each centrode.  
We then will have a pair of elliptical, noncircular gears, or gearset, which gives the same 
output motion as the original double-crank linkage and will have the same variations in 
the angular velocity ratio and mechanical advantage as the linkage had.  Thus we can see 
that gearsets are also just fourbar linkages in disguise.  Noncircular gears find much use 
in machinery, such as printing presses, where rollers must be speeded and slowed with 
some pattern during each cycle or revolution.  More complicated shapes of noncircular 
gears are analogous to cams and followers in that the equivalent fourbar linkage must 

	

*  Since instant centers are 
called poles as well as cen-
tros, centrodes are some-
times also called polodes.  
We will use the centro and 
centrode nomenclature in 
this text.

( a )  Closed-loop centrodes of I 1,3
       for a Grashof double-crank linkage

FIGURE 6-15
Closed-loop fixed and moving centrodes

(b )  Ellipsoidal centrodes of I 2,4
        for a special-case Grashof
        anti-parallelogram linkage
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View as a video

View as a video

http://www.designofmachinery.
com/DOM/centrodes_ellipsoid.avi

http://www.designofma-
chinery.com/DOM/cen-
trodes_in_contact.avi

http://www.designofmachinery.com/DOM/centrodes_ellipsoid.avi
http://www.designofmachinery.com/DOM/centrodes_in_contact.avi
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have variable-length links.  Circular gears are just a special case of noncircular gears 
that give a constant angular velocity ratio and are widely used in all machines.  Gears 
and gearsets will be dealt with in greater detail in Chapter 9.

In general, centrodes of crank-rockers and double- or triple-rockers will be open 
curves with asymptotes.  Centrodes of double-crank linkages will be closed curves.  Pro-
gram Linkages will calculate and draw the fixed and moving centrodes for any linkage 
input to it.  Open the files F06‑14.4br, F06‑15a.4br, and F06‑15b.4br in program Link-
ages to see the centrodes of these linkages drawn as the linkages rotate.

A “Linkless” Linkage 

A common example of a mechanism made of centrodes is shown in Figure 6‑16a.  You 
have probably rocked in a Boston or Hitchcock rocking chair and experienced the soothing 
motions that it delivers to your body.  You may have also rocked in a platform rocker as 
shown in Figure 6‑16b and noticed that its motion did not feel as soothing.  

There are good kinematic reasons for the difference.  The platform rocker has a fixed 
pin joint between the seat and the base (floor).  Thus all parts of your body are in pure 
rotation along concentric arcs.  You are in effect riding on the rocker of a linkage. 

 The Boston rocker has a shaped (curved) base, or “runners,” which rolls against the 
floor.  These runners are usually not circular arcs.  They have a higher-order curve contour. 
They are, in fact, moving centrodes.  The floor is the fixed centrode.  When one is rolled 
against the other, the chair and its occupant experience coupler curve motion.  Every part 
of your body travels along a different sixth-order coupler curve that provides smooth ac-
celerations and velocities and feels better than the cruder second-order (circular) motion 
of the platform rocker.   Our ancestors, who carved these rocking chairs, probably had 
never heard of fourbar linkages and centrodes, but they knew intuitively how to create 
comfortable motions.

Cusps

Another example of a centrode that you probably use frequently is the path of the tire on 
your car or bicycle.  As your tire rolls against the road without slipping, the road becomes 
a fixed centrode, and the circumference of the tire is the moving centrode.  The tire is, in 
effect, the coupler of a linkless fourbar linkage.  All points on the contact surface of the 
tire move along cycloidal coupler curves and pass through a cusp of zero velocity when 
they reach the fixed centrode at the road surface as shown in Figure 6‑17a.  All other points 
on the tire and wheel assembly travel along coupler curves that do not have cusps.  This 
last fact is a clue to a means to identify coupler points that will have cusps in their coupler 
curve.  If a coupler point is chosen to be on the moving centrode at one extreme of its path 
motion (i.e., at one of the positions of I1,3), then it will have a cusp in its coupler curve.  
Figure 6‑17b shows a coupler curve of such a point, drawn with program Linkages.  The 
right end of the coupler path touches the moving centrode and as a result has a cusp at 
that point.  So, if you desire a cusp in your coupler motion, many are available.  Simply 
choose a coupler point on the moving centrode of link 3.  Open the file F06-17b.4br in 
program Linkages to animate that linkage with its coupler curve or centrodes.  Note in 
Figure 6‑14 that choosing any location of instant center I1,3 on the coupler as the coupler 
point will provide a cusp at that point.

( a )  Boston rocker

FIGURE 6-16
Some rocking chairs
use centrodes of a 
fourbar linkage

(b)  Platform rocker

Coupler
 motion

Moving
centrode

Fixed
centrode

  Arc
motion

Spring

Pivot
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6.6	 VELOCITY OF SLIP

When there is a sliding joint between two links and neither one is the ground link, the 
velocity analysis is more complicated.  Figure 6‑18 shows an inversion of the fourbar 
crank-slider mechanism in which the sliding joint is floating, i.e., not grounded.  To solve 
for the velocity at the sliding joint A, we have to recognize that there is more than one 
point A at that joint.  There is a point A as part of link 2 (A2), a point A as part of link 3 
(A3), and a point A as part of link 4 (A4).  This is a Case 2 situation in which we have at 
least two points belonging to different links but occupying the same location at a given 
instant.  Thus, the relative velocity equation 6.6 will apply.   We can usually solve for 
the velocity of at least one of these points directly from the known input information us-
ing equation 6.7. It and equation 6.6 are all that is needed to solve for everything else. In 

( a )  Cycloidal motion of a circular, moving centrode rolling on a straight, fixed centrode

FIGURE 6-17
Examples of centrodes

(b )  Coupler curve cusps exist only on the moving centrode

No slip
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View as a video
http://www.designofmachinery.

com/DOM/cycloid.avi

http://www.designofmachinery.com/DOM/cycloid.avi
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this example, link 2 is the driver, and θ2 and ω2 are given for the “freeze frame” position 
shown.  We wish to solve for ω4, the angular velocity of link 4, and also for the velocity 
of slip at the joint labeled A.

In Figure 6‑18 the axis of slip is shown to be tangent to the slider motion and is the 
line along which all sliding occurs between links 3 and 4.  The axis of transmission is 
defined to be perpendicular to the axis of slip and pass through the slider joint at A.  This 
axis of transmission is the only line along which we can transmit motion or force across 
the slider joint, except for friction.  We will assume friction to be negligible in this exam-
ple.  Any force or velocity vector applied to point A can be resolved into two components 
along these two axes that provide a translating and rotating, local coordinate system for 
analysis at the joint.  The component along the axis of transmission will do useful work 
at the joint.  But, the component along the axis of slip does no work, except friction work.

✍EXAMPLE 6‑5

Graphical Velocity Analysis at a Sliding Joint.

Problem:	 Given θ2, θ3, θ4, ω2, find ω3, ω4, VA, by graphical methods.

Solution:	 (See Figure 6‑18.)

	 1	 Start at the end of the linkage for which you have the most information.  Calculate the magni-
tude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7.

( )2 22
v AO aA ( )= ω

FIGURE 6-18
Ve locity of slip and velocity of transmission (note that the applied ω is negative as shown)
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	 2	 Draw the velocity vector VA2 with its length equal to its magnitude vA2 at some convenient 
scale and with its root at point A and its direction perpendicular to the radius AO2.  Its sense is 
the same as that of ω2 as is shown in Figure 6‑18.

	 3	 Draw the axis of slip and axis of transmission through point A.

	 4	 Project VA2 onto the axis of slip and onto the axis of transmission to create the components 
VA2slip and Vtrans of VA2 on the axes of slip and transmission, respectively.  Note that the 
transmission component is shared by all true velocity vectors at this point, as it is the only 
component that can transmit across the joint.

	 5	 Note  that link 3 is pin-jointed to link 2, so VA3 = VA2.

	 6	 Note that the direction of the velocity of point VA4 is predictable since all points on link 4 are 
pivoting in pure rotation about point O4.  Draw the line pp through point A and perpendicular 
to the effective link 4, AO4.  Line pp is the direction of velocity VA4.

	 7	 Construct the true magnitude of velocity vector VA4 by extending the projection of the trans-
mission component Vtrans until it intersects line p

	 8	 Project VA4 onto the axis of slip to create the slip component VA4slip.

	 9	 Write the relative velocity vector equation 6.6 for the slip components of point A2 versus point 
A4.

( )
42 4 2

V V V bslip A Aslip slip
= −

	

10	 The angular velocities of links 3 and 4 are identical because they share the slider joint and must 
rotate together.  They can be calculated from equation 6.7:  

( )4 3
4

4
V
AO

cAω = ω =

Instant center analysis also can be used to solve sliding-joint velocity problems.

✍EXAMPLE 6‑6

Graphical Velocity Analysis of a Cam and Follower.

Problem:	 Given θ2, ω2, find ω3, by graphical methods.

Solution:	 (See Figure 6‑19.)

	 1	 Construct the effective radius of the cam R2 eff at the instantaneous point of contact with the 
follower for this position (point A in the figure).  Its length is distance O2A.  Calculate the 
magnitude of the velocity of point A as part of link 2 (A2) using scalar equation 6.7.

( )2 22
v AO aA ( )= ω
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	 2	 Draw the velocity vector VA2 with its length equal to its magnitude vA2 at some convenient 
scale and with its root at point A and its direction perpendicular to the radius O2A.  Its sense 
is the same as that of ω2 as is shown in Figure 6‑19. 

	 3	 Construct the axis of slip (common tangent to cam and follower) and its normal, the axis of 
transmission, as shown in Figure 6‑19.

	 4	 Project VA2 onto the axis of transmission to create the component Vtrans.  Note that the trans-
mission component is shared by all true velocity vectors at this point, as it is the only com-
ponent that can transmit across the joint.

	 5	 Project VA2 onto the axis of slip to create the slip component VA2slip.

	 6	 Note that the direction of the velocity of point VA3 is predictable since all points on link 3  are 
pivoting in pure rotation about point O3.  Construct the effective radius of the follower R3 eff 
at the instantaneous point of contact with the follower for this position (point A in the figure).  
Its length is distance O3A. 

	 7	 Construct a line in the direction of VA3  perpendicular to R3 eff.  Construct the true magnitude 
of velocity vector VA3 by extending the projection of the transmission component Vtrans until 
it intersects the line of VA3.

	 8	 Project VA3 onto the axis of slip to create the slip component VA3slip.

	 9	 The total slip velocity at A is the vector difference between the two slip components.  Write 
the relative velocity vector equation 6.6 for the slip components of point A3 versus A2.

( )
32 3 2

V V V bslip A Aslip slip
= −

	10	 The angular velocity of link 3 can be calculated from equation 6.7:

VA2

R3eff

FIGURE 6-19
Graphical velocity analysis of a cam and follower
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( )3
3

3
V

AO
cAω =

The above examples show how mechanisms with sliding or half joints can be solved 
graphically for velocities at one position.  In the next section, we will develop the general 
solution using algebraic equations to solve similar problems.

6.7	 ANALYTICAL SOLUTIONS FOR VELOCITY ANALYSIS  
View the lecture video (46:41)†

The Fourbar Pin-Jointed Linkage

The vector-loop position equations for the fourbar pin-jointed linkage were derived in 
Section 4.5.  The linkage was shown in Figure 4-6 and is shown again in Figure 6‑20 
on which we also show an input angular velocity ω2 applied to link 2.  This ω2 can be 
a time-varying input velocity.  The vector loop equation is shown in equations 4.5a and 
4.5c, repeated here for your convenience.

+ − − = 0 (4.5a)2 3 4 1R R R R

As before, we substitute the complex number notation for the vectors, denoting their 
scalar lengths as a, b, c, d as shown in Figure 6‑20a.

0 (4.5c)2 3 4 1ae be c e dej j j j+ − − =θ θ θ θ

To get an expression for velocity, differentiate equation 4.5c with respect to time.

0 (6.14a)2 3 42 3 4jae
d
dt

jbe
d
dt

jc e
d
dt

j j jθ
+

θ
−

θ
=θ θ θ

But,

; ; (6.14b)2
2

3
3

4
4

d
dt

d
dt

d
dt

θ
= ω

θ
= ω

θ
= ω

and:
0 (6.14c)2 3 42 3 4ja e jb e jc ej j jω + ω − ω =θ θ θ

Note that the θ1 term has dropped out because that angle is a constant, and thus its 
derivative is zero.  Note also that equation 6.14 is, in fact, the relative velocity or velocity 
difference equation.

0 (6.15a)

where:

(6.15b)
2

3

4

2

3

4

ja e

jb e

jc e

A BA B

A
j

BA
j

B
j

V V V

V

V

V

+ − =

= ω

= ω

= ω

θ

θ

θ

Compare equations 6.15 to equations 6.3, 6.5, and 6.6.  This equation is solved graph-
ically in the vector diagram of Figure 6‑20b.  Note the transmission angle m drawn between 

† http://www.designofma-
chinery.com/DOM/Veloc-
ity_Analysis_with_Vectors.
mp4

http://www.designofmachinery.com/DOM/Velocity_Analysis_with_Vectors.mp4


DESIGN OF MACHINERY 6ed      CHAPTER  6322

6

links 3 and 4 and also between VB and VBA.  This shows an alternate way to define the 
transmission angle using the velocity vectors at point B.

We now need to solve equation 6.14 for ω3 and ω4, knowing the input velocity ω2, the 
link lengths, and all link angles.  Thus the position analysis derived in Section 4.5 must 
be done first to determine the link angles before this velocity analysis can be completed.  
We wish to solve equation 6.14 to get expressions in this form:

, , , , , , , , , , , , , , (6.16)3 2 3 4 2 4 2 3 4 2f a b c d g a b c d( ) ( )ω = θ θ θ ω ω = θ θ θ ω

The strategy of solution will be the same as was done for the position analysis.  First, 
substitute the Euler identity from equation 4.4a in each term of equation 6.14c:

cos sin cos sin

cos sin 0 (6.17a)
2 2 2 3 3 3

4 4 4

ja j jb j

jc j

( )( )
( )

ω θ + θ + ω θ + θ

− ω θ + θ =

Multiply through by the operator j:

cos sin cos sin

cos sin 0 (6.17b)

2 2
2

2 3 3
2

3

4 4
2

4

a j j b j j

c j j

( ) ( )
( )

ω θ + θ + ω θ + θ

− ω θ + θ =

The cosine terms have become the imaginary, or y-directed terms, and because j2 = –1, 
the sine terms have become real or x-directed.

sin cos sin cos

sin cos 0 (6.17c)
2 2 2 3 3 3

4 4 4

a j b j

c j

( )( )
( )

ω − θ + θ + ω − θ + θ

− ω − θ + θ =

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

ω2

θ2

θ3

θ4

ω3

ω4

µ

µ

( a )

R1

R3
R4

R2

FIGURE 6-20
Position vector loop for a fourbar linkage showing velocity vectors for a negative (cw) ω2
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real part (x component):

sin sin sin 0 (6.17d)2 2 3 3 4 4a b c− ω θ − ω θ + ω θ =

imaginary part (y component):

cos cos cos 0 (6.17e)2 2 3 3 4 4a b cω θ + ω θ − ω θ =

Note that the j’s have canceled in equation 6.17e.  We can solve these two equations, 
6.17d and 6.17e, simultaneously by direct substitution to get:

sin
sin

(6.18a)3
2 4 2

3 4

a
b ( )

( )
ω =

ω θ − θ
θ − θ

sin
sin

(6.18b)4
2 2 3

4 3

a
c

( )
( )ω =

ω θ − θ
θ − θ

Once we have solved for ω3 and ω4, we can then solve for the linear velocities by 
substituting the Euler identity into equations 6.15,

cos sin sin cos (6.19a)

cos sin sin cos (6.19b)

cos sin sin cos (6.19c)

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

ja j a j

jb j b j

jc j c j

A

BA

B

V

V

V

( ) ( )
( ) ( )

( ) ( )

= ω θ + θ = ω − θ + θ

= ω θ + θ = ω − θ + θ

= ω θ + θ = ω − θ + θ

where the real and imaginary terms are the x and y components, respectively.  Equations 
6.18 and 6.19 provide a complete solution for the angular velocities of the links and the 
linear velocities of the joints in the pin-jointed fourbar linkage.  Note that there are also 
two solutions to this velocity problem, corresponding to the open and crossed circuits of 
the linkage.  They are found by the substitution of the open or crossed circuit values of θ3 
and θ4 obtained from equations 4.10 and 4.12-4.13 into equations 6.18 and 6.19.  Figure 
6‑20a shows the open circuit.

✍EXAMPLE 6-7

Velocity Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem:	 Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For θ2 = 40° and ω2 = 25 rad/sec find the 
values of ω3 and ω4, VA, VBA, and VB for the open circuit of the linkage.  Use the 
angles found for the same linkage and position in Example 4-1. 

Solution:	 (See Figure 6-20 for nomenclature.)

	 1	 Example 4-1 found the link angles for the open circuit of this linkage to be θ3 = 20.298° and 
θ4 = 57.325°.

	 2	 Use these angles and equations 6.18 to find ω3 and ω4 for the open circuit.
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sin
sin

40 25
120

sin 57.325 40
sin 20.298 57.325

4.121 rad/sec

( )
sin
sin

40 25
80

sin 40 20.298
sin 57.325 20.298

6.998 rad/sec

3
2 4 2

3 4

4
2 2 3

4 3

a
b

a
a

c

( )
( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

ω =
ω θ − θ

θ − θ
=

° − °
° − °

= −

ω =
ω θ − θ

θ − θ
=

° − °
° − °

=

	 3	 Use the angular velocities and equations 6.19 to find the linear velocities of points A and B.

sin cos

40 25 sin 40 cos 40 642.79 766.04
642.79; 766.04; 1000 mm/sec; 130 ( )

2 2 2a j

j j
b

A

A A A Ax y mag ang

V

V V V V

( )
( )( )

= ω − θ + θ

= − ° + ° = − +
= − = = = °

sin cos

120 4.121 sin20.298 20.298 171.55 463.80
171.55; 463.80; 494.51 mm/sec; 69.70 ( )

3 3 3b j

j j
c

BA

BA BA BA BAx y mag ang

V

V V V V

( )
( )( )

= ω − θ + θ

= − − ° + ° = −
= = − = = − °

c j

j j
d

B

B B B Bx y mag ang

sin cos

80 6.998 sin57.325 cos57.325 471.242 302.243
471.242; 302.243; 559.84 mm/sec; 147.33 ( )

4 4 4( )
( )( )

= ω − θ + θ

= − + = − +
= − = = = °

V

V V V V

	 4	 As an exercise, repeat the above process to find the velocities for the crossed circuit of the 
linkage.

The Fourbar Crank-Slider

The position equations for the fourbar offset crank-slider linkage (inversion #1) were 
derived in Section 4.6.  The linkage was shown in Figure 4-10 and is shown again in 
Figure 6‑21a on which we also show an input angular velocity ω2 applied to link 2.  This 
ω2 can be a time-varying input velocity.  The vector loop equation 4.14 is repeated here 
for your convenience.

− − − =R R R R 0 (4.14a)2 3 4 1

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be c e dej j j j

Differentiate equation 4.14b with respect to time noting that a, b, c, θ1, and θ4 are 
constant but the length of link d varies with time in this inversion.

 0 (6.20a)2 32 3ja e jb e dj jω − ω − =θ θ

The term d  is the linear velocity of the slider block.  Equation 6.20a is the velocity 
difference equation 6.5 and can be written in that form.
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or:
but:
then:

0

(6.20b)

A AB B

A B AB

AB BA

B A BA

V V V
V V V

V V
V V V

− − =
= +
= −
= +

Equation 6.20 is identical in form to equations 6.5 and 6.15a. Note that because we 
arranged the position vector R3 in Figure 4-10 and Figure 6‑21 with its root at point B, 
directed from B to A, its derivative represents the velocity difference of point A with re-
spect to point B, the opposite of that in the previous fourbar example.  Compare this also 
to equation 6.15b noting that its vector R3 is directed from A to B.  Figure 6‑21b shows 
the vector diagram of the graphical solution to equation 6.20b.

Substitute the Euler equivalent, equation 4.4a, in equation 6.20a,

cos sin cos sin 0 (6.21a)2 2 2 3 3 3ja j jb j d( )( )ω θ + θ − ω θ + θ − =

simplify,
sin cos sin cos 0 (6.21b)2 2 2 3 3 3a j b j d( )( )ω − θ + θ − ω − θ + θ − =

and separate into real and imaginary components.

real part (x component):

sin sin 0 (6.21c)2 2 3 3a b d− ω θ + ω θ − =

imaginary part (y component):

cos cos 0 (6.21d)2 2 3 3a bω θ − ω θ =

	
*  Note the transmission an-
gle m in Figure 6-21a drawn 
between link 3 and effective 
link 4 as previously defined.  
It is also shown drawn be-
tween vectors VB and VBA 
in Figure 6-21b, indicating 
an alternate way to define 
the transmission angle as 
the acute angle between 
the absolute velocity and 
velocity difference vectors 
at a point such as B.  This 
approach does not require 
construction of the slider’s 
effective link 4 to determine 
the transmission angle.

θ2 θ4

ω3

θ3

ω2

µ

µ

effective
link 4

to ∞
(a )

Rs

R1

R3

R4

R2

FIGURE 6-21*
Position vector loop for a fourbar crank-slider linkage showing velocity vectors for a negative (CW ) ω2

(b )

O2

VA

VB

VBA

A

X

Y

d

b

a
c

x

y

4B

–

+

VA

VB

VBA
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These are two simultaneous equations in the two unknowns, d  and ω3.  Equation 
6.21d can be solved for ω3 and substituted into 6.21c to find d .

cos
cos

(6.22a)3
2

3
2

a
b

ω =
θ
θ

ω

 sin sin (6.22b)2 2 3 3d a b= − ω θ + ω θ

The absolute velocity of point A and the velocity difference of point A versus point 
B are found from equation 6.20:

sin cos (6.23a)

sin cos (6.23b)

(6.23c)

2 2 2

3 3 3

a j

b j
A

AB

BA AB

V

V

V V
( )
( )= ω − θ + θ

= ω − θ + θ

= −

✍EXAMPLE 6-8

Velocity Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem:	 Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm,  
L3 = b = 120 mm, offset = c = –20 mm. For q2 = 60° and ω2 = –30 rad/sec, find 
w3 and linear velocities of points A and B for the open circuit.  Use the angles and 
positions found for the same linkage and its link 2 position in Example 4-2. 

Solution:	 (See Figure 6-21, for nomenclature.)

	 1	 Example 4-2 found angle q3 = 152.91° and slider position d = 126.84 mm for the open circuit.

	 2	 Using equation 6.22a and the data from step 1, calculate the coupler angular velocity w3.

cos
cos

40
120

cos60
cos152.91

30 5.616 rad/sec ( )3
2

3
2

a
b

a( )ω =
θ
θ

ω =
°

°
− =

	 3	 Using equation 6.22b and the data from steps 1 and 2, calculate the slider velocity d .

 sin sin 40 30 sin60 120 5.616 sin152.91 1346 mm/sec ( )2 2 3 3d a b b( ) ( )= − ω θ + ω θ = − − ° + ° =

	 4	 Using equation 6.23 and the result from step 2, calculate the linear velocities VA and VBA.

sin cos 40 30 sin60 cos60 1039.23 600

1039.23; 600; 1200 mm/sec; 30 ( )
2 2 2a j j j

c
A

A A A Ax y mag ang

V

V V V V
( ) ( )( )= ω − θ + θ = − − ° + ° = −

= = − = = − °

sin cos

120 5.616 sin152.91 cos152.91 306.86 600
306.86 600

306.86; 600; 673.92 mm/sec; 62.91 ( )

3 3 3b j

j j
j

d

AB

AB

BA AB

BA BA BA BAx y mag ang

V

V
V V

V V V V

( )
( )( )

= ω − θ + θ

= − ° + ° = − −
= − = +
= = = = °
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The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion, piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 6-21 
and the vector loop equation is identical to that of the crank-slider (equation 4.14a).  The 
derivation for q2 as a function of slider position d was done in Section 4-7.  Now we want 
to solve for w2 as a function of slider velocity d  and the known link lengths and angles.

We can start with equations 6.21c and d, which also apply to this linkage:
sin sin 0 (6.21c)

cos cos 0 (6.21d)
2 2 3 3

2 2 3 3

a b d
a b

− ω θ + ω θ − =
ω θ − ω θ =

Solve equation 6.21d for w3 in terms of w2.

cos
cos

(6.24a)3
2 2

3

a
b

ω =
ω θ

θ

Substitute equation 6.24a for w3 in equation 6.21c and solve for w2.

 cos
cos sin sin cos

(6.24b)2
3

2 3 2 3

d
a( )ω =

θ
θ θ − θ θ

The circuit of the linkage depends on the value of d chosen and the angular velocities will 
be for the circuit represented by the values of q2 and q3 used from equation 4.21.*

✍EXAMPLE 6-9

Velocity Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method.

Problem:	 Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, 
L3 = b = 120 mm, offset = c = –20 mm. For d = 100 mm and d  = 1200 mm/sec, 
find w2 and w3 for both branches of one circuit of the linkage.  Use the angles found 
for the same linkage in Example 4-3. 

Solution:	 (See Figure 6-21 for nomenclature.)

	 1	 Example 4-3 found angles q21 = 95.798°, q31 = 150.113° for branch 1 and q22 = –118.418°, 
q32 = 187.267° for branch 2 of this linkage.

	 2	 Using equation 6.24b and the data from step 1, calculate the crank angular velocity w21.

 cos

cos sin sin cos

1200cos150.113
40 cos95.798 sin150.113 sin95.798 cos150.113

32.023 rad/sec ( )

2
3

2 3 2 3
1

1

1 1 1 1

d

a

a

( )
( )

ω =
θ

θ θ − θ θ

=
°

° ° − ° °
= −

	
*  The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider crank 
has two branches on each 
circuit and the two solutions 
obtained from equation 4.21 
represent the two branches 
on the one circuit being 
analyzed.  In contrast, the 
crank-slider has only one 
branch per circuit because 
when the crank is driven, it 
can make a full revolution 
and there are no change 
points to separate branches.  
See Section 4.13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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	 3	 Using equation 6.24a and data from steps 1 and 2, calculate coupler angular velocity w31.

cos
cos

40 32.023 cos95.798
120cos150.113

1.244 rad/sec ( )3
2 2

3
1

1 1

1

a
b

b
( )

ω =
ω θ

θ
=

− °
°

= −

	 4	 Example 4-3 found q22 = –118.418° and q32 = 187.267°  for branch 2 of this linkage.

	 5	 Using equation 6.24b and the data from step 2, calculate the crank angular velocity w22.

 cos

cos sin sin cos

1200cos 187.267
40 cos 118.418 sin 187.267 sin 118.418 cos 187.267

36.639 rad/sec ( )

2
3

2 3 2 3
2

2

2 2 2 2

d

a

c

( )
( )

( ) ( ) ( ) ( )

ω =
θ

θ θ − θ θ

=
°

− ° ° − − ° ° 
=

	 6	 Using equation 6.24a and the data from steps 3 and 4, calculate coupler angular velocity w32.

cos
cos

40 36.639 cos 118.418
120cos 187.267

5.859 rad/sec ( )3
2 2

3
2

2 2

2

a
b

d
( ) ( )

( )ω =
ω θ

θ
=

− °
°

=

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.8.  The linkage was shown in Figure 4-13 and is shown again in Figure 6‑22 on 
which we also show an input angular velocity ω2 applied to link 2.  This ω2 can vary with 
time.  The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  To get an 
expression for velocity, differentiate equation 4.14b with respect to time noting that a, c, 
d, and θ1 are constant and b varies with time.

 0 (6.25a)2 3 42 3 3 4ja e jb e be jc ej j j jω − ω − − ω =θ θ θ θ

The value of db/dt will be one of the variables to be solved for in this case and is 
the b  term in the equation.  Another variable will be ω4, the angular velocity of link 4.  
Note, however, that we also have an unknown in ω3, the angular velocity of link 3.  There 
is a total of three unknowns.  Equation 6.25a can only be solved for two unknowns.  Thus 
we require another equation to solve the system.  There is a fixed relationship between 
angles θ3 and θ4, shown as γ  in Figure 6‑22 and defined in equation 4.22, repeated here:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Differentiate it with respect to time to obtain:

(6.25b)3 4ω = ω

We wish to solve equation 6.25a to get expressions in this form:
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

, , , , , , ,
(6.26)

, , , , , , ,

3 4 2 3 4 2

2 3 4 2

f a b c d

db
dt

b g a b c d

( )

( )

ω = ω = θ θ θ ω

= = θ θ θ ω

Substitution of the Euler identity (equation 4.4a) into equation 6.25a yields:



cos sin cos sin

cos sin cos sin 0 (6.27a)
2 2 2 3 3 3

3 3 4 4 4

ja j jb j

b j jc j

( )
( )

( )
( )

ω θ + θ − ω θ + θ

− θ + θ − ω θ + θ =

Multiply by the operator j and substitute ω4 for ω3 from equation 6.25b:



sin cos sin cos

cos sin sin cos 0 (6.27b)
2 2 2 4 3 3

3 3 4 4 4

a j b j

b j c j

( )
( )

( )
( )

ω − θ + θ − ω − θ + θ

− θ + θ − ω − θ + θ =

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

real part (x component):

sin sin cos sin 0 (6.28a)2 2 4 3 3 4 4a b b c− ω θ + ω θ − θ + ω θ =

imaginary part (y component):

cos cos sin cos 0 (6.28b)2 2 4 3 3 4 4a b b cω θ − ω θ − θ − ω θ =

Collect terms and rearrange equations 6.28 to isolate one unknown on the left side.





cos sin sin sin (6.29a)

sin cos cos cos (6.29b)
3 2 2 4 3 4

3 2 2 4 3 4

b a b c

b a b c

( )
( )

θ = − ω θ + ω θ + θ

θ = ω θ − ω θ + θ

ω2

θ3
θ4

γ

θ 2

ω4

ω3

�b

R1

R3
R4

R2

FIGURE 6-22
Velocity analysis of inversion #3 of the slider-crank fourbar linkage

O2 O4

VA VB4

a

b

c

d

A

X

Y

x

y

B axis of slip
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Either equation can be solved for b  and the result substituted in the other.  Solving 
equation 6.29a:



sin sin sin
cos

(6.30a)2 2 4 3 4

3
b

a b c( )
=

− ω θ + ω θ + θ
θ

Substitute in equation 6.29b and simplify:

cos
cos

(6.30b)4
2 2 3

4 3

a
b c

( )
( )ω =

ω θ − θ
+ θ − θ

Equation 6.30a provides the velocity of slip at point B.  Equation 6.30b gives the 
angular velocity of link 4.  Note that we can substitute 4 3=− γ θ − θ  from equation 4.18 
(for an open linkage) into equation 6.30b to further simplify it.  Note that cos(–γ) = cos(γ).

cos
cos

(6.30c)4
2 2 3a
b c

( )
ω =

ω θ − θ
+ γ

The velocity of slip from equation 6.30a is always directed along the axis of slip as 
shown in Figure 6‑22.  There is also a component orthogonal to the axis of slip called 
the velocity of transmission.  This lies along the axis of transmission which is the only 
line along which any useful work can be transmitted across the sliding joint.  All energy 
associated with motion along the slip axis is converted to heat and lost.

The absolute linear velocity of point A is found from equation 6.23a.  We can find 
the absolute velocity of point B on link 4 since ω4 is now known.  From equation 6.15b:

sin cos (6.31a)4 4 4 44
4jc e c jB

jV ( )= ω = ω − θ + θθ

The velocity of transmission is the component of Vb4 normal to the axis of slip.  The 
absolute velocity of point B on link 3 is found from equation 6.5 as

(6.31b)
3 4 34 4 34B B B B slipV V V V V= + = +

6.8	 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE

The position loop equation for the geared fivebar mechanism was derived in Section 4.9 
and is repeated here.  See Figure P6-4 for notation.

+ − − − =θ θ θ θ θ 0 (4.27b)2 3 4 5 1ae be c e de f ej j j j j

Differentiate this with respect to time to get an expression for velocity.

0 (6.32a)2 3 4 52 3 4 5a je b je c je d jej j j jω + ω − ω − ω =θ θ θ θ

Substitute the Euler equivalents:

cos sin cos sin

cos sin cos sin 0 (6.32b)
2 2 2 3 3 3

4 4 4 5 5 5

a j j b j j

c j j d j j

ω ω

ω ω

( )
( )

( )
( )

θ + θ + θ + θ

− θ + θ − θ + θ =
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Note that the angle θ5 is defined in terms of θ2, the gear ratio λ, and the phase angle φ.
.θ = λθ + φ (4 27c)5 2

Differentiate with respect to time:

(6.32c)5 2ω = λω

Since a complete position analysis must be done before a velocity analysis, we will 
assume that the values of θ5 and ω5 have been found and will leave these equations in 
terms of θ5 and ω5.

Separating the real and imaginary terms in equation 6.32b:

real: sin sin sin sin 0 (6.32d)2 2 3 3 4 4 5 5a b c d− ω θ − ω θ + ω θ + ω θ =

imaginary: cos cos cos cos 0 (6.32e)2 2 3 3 4 4 5 5a b c dω θ + ω θ − ω θ − ω θ =

The only two unknowns are ω3 and ω4.  Either equation 6.32d or 6.32e can be solved 
for one unknown and the result substituted in the other.  The solution for ω3 is:

2sin sin sin

cos 2 cos
(6.33a)3

4 2 2 4 5 4 5

3 4 3

a d

b

( )
( )
( )

ω = −
θ ω θ − θ + ω θ − θ 

θ − θ − θ 

The angular velocity ω4 can be found from equation 6.32d using ω3.
sin sin sin

sin
(6.33b)4

2 2 3 3 5 5

4

a b d
c

ω =
ω θ + ω θ − ω θ

θ

With all link angles and angular velocities known, the linear velocities of the pin 
joints can be found from:

sin cos (6.33c)

sin cos (6.33d)

sin cos (6.33e)

(6.33f)

2 2 2

3 3 3

5 5 5

a j

b j

d j

A

BA

C

B A BA

V

V

V

V V V

( )
( )

( )= ω − θ + θ

= ω − θ + θ

= ω − θ + θ

= +

6.9	 VELOCITY OF ANY POINT ON A LINKAGE

Once the angular velocities of all the links are found, it is easy to define and calculate 
the velocity of any point on any link for any input position of the linkage.  Figure 6‑23 
shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point   The 
crank and rocker have also been enlarged to show points S and U which might represent 
the centers of gravity of those links.  We want to develop algebraic expressions for the 
velocities of these (or any) points on the links.

To find the velocity of point S, draw the position vector from the fixed pivot O2 to 
point S.  This vector, RSO2 makes an angle δ2 with the vector RAO2.  The angle δ2 is 
completely defined by the geometry of link 2 and is constant.  The position vector for 
point S is then:

( ) ( )= = = θ + δ + θ + δ 
( )θ +δR R cos sin (4.29)2 2 2 22

2 2se s jSO S
j
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Differentiate this position vector to find the velocity of that point.

sin cos (6.34)2 2 2 2 2 2
2 2jse s jS

jV ω ω ( ) ( )= = − θ + δ + θ + δ 
( )θ +δ

The position of point U on link 4 is found in the same way, using the angle δ4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ 
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

Differentiate this position vector to find the velocity of that point.

sin cos (6.35)4 4 4 4 4 4
4 4jue u jU

jV ( ) ( )= ω = ω − θ + δ + θ + δ 
( )θ +δ

The velocity of point P on link 3 can be found from the addition of two velocity vec-
tors, such as VA and VPA.  VA is already defined from our analysis of the link velocities.  
VPA is the velocity difference of point P with respect to point A.  Point A is chosen as the 
reference point because angle θ3 is defined in a LNCS and  angle δ3 is defined in a LRCS 
whose origins are both at A.  Position vector RPA is defined in the same way as RS or RU 
using the internal link offset angle δ3 and the angle of link 3, θ3.  This was done in equa-
tions 4.31 (repeated here).

( ) ( )= = θ + δ + θ + δ 

= +

( )θ +δR

R R R

cos sin (4.31a)

(4.31b)

3 3 3 3
3 3pe p jPA

j

P A PA

Differentiate equations 4.31 to find the velocity of point P.

sin cos (6.36a)

(6.36b)

3 3 3 3 3 3
3 3jpe p jPA

j

P A PA

V

V V V

( ) ( )= ω = ω − θ + δ + θ + δ 

= +

( )θ +δ

θ2

θ3

θ4

ω2

δ2

δ3

ω3

ω4

δ4

VA VB

VS

VPA
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B

Y

x

y

1

S

2

P

U

3

4

p

s
u

X
O2 O4

VU

VP VA
VPA

VP

( a )

Finding the velocities of points on the links

(b )

FIGURE 6-23
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Please compare equations 6.36 with equations 6.5 and 6.15.  It is, again, the velocity 
difference equation.

Note that if, for example, you wished to derive an equation for the velocity of a 
coupler point P on the crank-slider linkage as set up in Figure 6-21, or the inverted crank-
slider of Figure 6-22, both of which have the vector for link 3 defined with its root at point 
B rather than at point A, you might want to use point B as the reference point rather than 
point A, making equation 6.36b become:

(6.36c)
3 3P B PBV V V= +

Angle θ3 would then be defined in a LNCS at point B, and δ3 in a LRCS at point B.

6.10	 REFERENCES
	 1	 Towfigh, K. (1969). “The Fourbar Linkage as an Adjustment Mechanism.” Proc. of Applied 

Mechanism Conference, Tulsa, OK, pp. 27-1 to 27-4.

	 2	 Wood, G. A. (1977). “Educating for Creativity in Engineering.” Proc. of ASEE 85th Annual Con-
ference, University of North Dakota, pp. 1-13.

	 3	 Kennedy, A. B. W. (1893). Mechanics of Machinery. Macmillan, London, pp. vii, 73.

6.11	 PROBLEMS‡

	 6‑1	 Use the relative velocity equation and solve graphically or analytically.
a.	 A ship is steaming due north at 20 knots (nautical miles per hour).  A submarine is 

laying in wait 1/2 mile due west of the ship.  The sub fires a torpedo on a course of 
85 degrees.  The torpedo travels at a constant speed of 30 knots.  Will it strike the 
ship?  If not, by how many nautical miles will it miss?  

b.	 A plane is flying due south at 500 mph at 35,000 ft altitude, straight and level.  A 
second plane is initially 40 miles due east of the first plane, also at 35,000 feet al-
titude, flying straight and level and traveling at 550 mph.  Determine the compass 
angle at which the second plane would be on a collision course with the first.  How 
long will it take for the second plane to catch the first? 

	 6‑2	 A point is at a 6.5 in radius on a body in pure rotation with ω = 100 rad/sec.  The rota-
tion center is at the origin of a coordinate system.  When the point is at position A, its 
position vector makes a 45° angle with the X axis.  At position B, its position vector 
makes a 75° angle with the X axis.  Draw this system to some convenient scale and:
a.	 Write an expression for the particle’s velocity vector in position A using complex 

number notation, in both polar and cartesian forms.
b.	 Write an expression for the particle’s velocity vector in position B using complex 

number notation, in both polar and cartesian forms.
c.	 Write a vector equation for the velocity difference between points B and A.  Substi-

tute the complex number notation for the vectors in this equation and solve for the 
position difference numerically.

d.	 Check the result of part c with a graphical method.
	 6‑3	 Repeat Problem 6‑2 considering points A and B to be on separate bodies rotating about 

the origin with ω’s of –50 (A) and +75 rad/sec (B).  Find their relative velocity.

	 *6‑4	 A general fourbar linkage configuration and its notation are shown in Figure P6-1.  The 
link lengths, coupler point location, and the values of θ2 and ω2 for the same fourbar 

	
‡  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files.  PDF filenames are the 
same as the figure number.  
Run the file Animations.
html to access and run the 
animations.
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linkages as used for position analysis in Chapter 4 are redefined in Table P6‑1, which is 
basically the same as Table P4‑1. For the row(s) assigned, draw the linkage to scale and 
find the velocities of the pin joints A and B and of instant centers I1,3 and I2,4 using a 
graphical method.  Then calculate ω3 and ω4 and find the velocity of point P.

	 *†6‑5	 Repeat Problem 6‑4 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

	 *6‑6	 The general linkage configuration and terminology for an offset fourbar crank-slider 
linkage are shown in Figure P6‑2.  The link lengths and the values of θ2 and ω2  are 
defined in Table P6‑2.  For the row(s) assigned, draw the linkage to scale and find the 
velocities of the pin joints A and B and the velocity of slip at the sliding joint using a 
graphical method.

	 *†6‑7	 Repeat Problem 6‑6 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

θ3

θ2

θ4

δ3

FIGURE P6-1
Configuration and terminology for the pin-jointed fourbar linkage of Problems 6-4 to 6-5

A

B

X

Y

x

y

2

3

4

RPA P

ω2

O2 O4
1

Row Link 1 Link 2 Link 3 Link 4 θ2 ω2 Rpa δ3

a 6 2 7 9 30 10 6 30
b 7 9 3 8 85 –12 9 25
c 3 10 6 8 45 –15 10 80
d 8 5 7 6 25 24 5 45
e 8 5 8 6 75 –50 9 300
f 5 8 8 9 15 –45 10 120
g 6 8 8 9 25 100 4 300
h 20 10 10 10 50 –65 6 20
i 4 5 2 5 80 25 9 80
j 20 10 5 1 0 33 25 1 0
k 4 6 10 7 88 –80 10 330
l 9 7 10 7 60 –90 5 180

m 9 7 11 8 50 75 10 90
n 9 7 11 6 120 15 15 60

TABLE  P6-1 Data for Problems 6-4 to 6-5 ‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

Topic/Problem Matrix

 6.1 Definition of Velocity

6-1, 6-2, 6-3
 6.2 Graphical Velocity 

Analysis
Pin-Jointed Fourbar
6-17a, 6-24, 6-28,  
6-36, 6-39, 6-84a,  
6-87a, 6-94
Fourbar Crank-Slider
6-16a, 6-32, 6-43§

Fourbar Slider-Crank
6-110, 6-111
Other Fourbar
6-18a, 6-98§

Geared Fivebar
6-10
Sixbar
6-70a, 6-73a, 6-76a, 
6-99
Eightbar  6-103§

 6.3 Instant Centers of 
Velocity

6-12, 6-13, 6-14,  
6-15, 6-68, 6-72,  
6-75, 6-78, 6-83,  
6-86, 6-88, 6-97, 
6-102, 6-104, 6-105

 6.4 Velocity Analysis with 
Instant Centers

6-4, 6-16b, 6-17b,  
6-18b, 6-25, 6-29,  
6-33, 6-40, 6-70b,  
6-73b, 6-76b, 6-84b,  
6-87b, 6-92, 6-95,  
6-100
Mech. Advantage
6-21a, 6-21b, 6-22a,  
6-22b, 6-58

 6.5 Centrodes

6-23, 6-63, 6-69,  
6-89

 6.6 Velocity of Slip

6-6, 6-8, 6-19, 6-20, 
6-61, 6-64, 6-65, 
6-66, 6-91, 6-106 to 
6-109, 6-112, 6-113

 
§May be solved using 
either the velocity 
difference or instant 
center graphical 
method.

TABLE  P6-0 Part 1
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	 *6‑8	 The general linkage configuration and terminology for an inverted fourbar crank-slider 
linkage are shown in Figure P6‑3.  The link lengths and the values of θ2, ω2, and γ  are 
defined in Table P6‑3. For the row(s) assigned, draw the linkage to scale and find the ve-
locities of points A and B and velocity of slip at the sliding joint using a graphical method.

	 *†6‑9	 Repeat Problem 6‑8 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

	 *6‑10	 The general linkage configuration and terminology for a geared fivebar linkage are 
shown in Figure P6‑4.  The link lengths, gear ratio (λ), phase angle (φ), and the values 
of θ2 and ω2 are defined in Table P6‑4.   For the row(s) assigned, draw the linkage to 
scale and find ω3 and ω4 using a graphical method.

	*†6‑11	 Repeat Problem 6‑10 using an analytical method.  Draw the linkage to scale and label it 
before setting up the equations.

	 6‑12	 Find all the instant centers of the linkages shown in Figure P6‑5.

	 6‑13	 Find all the instant centers of the linkages shown in Figure P6‑6.

	 6‑14	 Find all the instant centers of the linkages shown in Figure P6-7.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

θ3

ω2
θ4 = 90°θ2

�d

FIGURE P6-2
Configuration and terminology for Problems 6-6, 6-7, 6-110, 6-111

O2

Offset

A

B

X

Y

Slider position   d

Link 2

Link 3
x

y

4

Row Link 2 Link 3 Offset θ2 ω2

a 1.4 4 1 45 10
b 2 6 –3 60 –12
c 3 8 2 –30 –15
d 3.5 10 1 120 24
e 5 20 –5 225 –50
f 3 1 3 0 100 –45
g 7 25 1 0 330 100

TABLE  P6-2 Data for Problems 6-6 to 6-7‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

Topic/Problem Matrix

 6.7 Analytic Solutions for 
Velocity Analysis

6-90
Pin-Jointed Fourbar
6-26, 6-27, 6-30, 
6-31, 6-37, 6-38, 
6-41, 6-42, 6-48,  
6-62
Fourbar Crank-Slider
6-7, 6-34, 6-35, 6-44, 
6-45, 6-52, 6-60
Fourbar Inverted 
Crank-Slider
6-9
Sixbar
6-70c, 6-71, 6-73c,  
6-74, 6-76c, 6-77,  
6-93, 6-101
Eightbar
6-79
Mechanical Advantage
6-55a, 6-55b, 6-57a,  
6-57b, 6-59a, 6-59b,  
6-67

 6.8 Velocity Analysis of 
Geared Fivebar

6-11
 6.9 Velocity of Any Point 

on a Linkage

6-5, 6-16c, 6-17c,  
6-18c, 6-46, 6-47,  
6-49, 6-50, 6-51, 
6-53, 6-54, 6-56, 
6-80, 6-81, 6-82, 
6-84c, 6-85,  
6-87c, 6-96

 

TABLE  P6-0 Part 2
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	 6‑15	 Find all the instant centers of the linkages shown in Figure P6‑8.

	 *6‑16	 The linkage in Figure P6‑5a has O2A = 0.8, AB = 1.93, AC = 1.33, and offset = 0.38 in.  
The crank angle in the position shown is 34.3° and angle BAC = 38.6°.  Find ω3, VA, 
VB, and VC for the position shown for ω2 = 15 rad/sec in the direction shown:
 a.	 Using the velocity difference graphical method.
 b.	 Using the instant center graphical method.
†c.	 Using an analytical method.

	 6‑17	 The linkage in Figure P6‑5c has I12A = 0.75, AB = 1.5, and AC = 1.2 in.  The effective 
crank angle in the position shown is 77° and angle BAC = 30°.  Find ω3, ω4, VA, VB, 
and VC for the position shown for ω2 = 15 rad/sec in direction shown:
 a.	 Using the velocity difference graphical method.
 b.	 Using the instant center graphical method.
†c.	 Using an analytical method.  (Hint: Create an effective linkage for the position 

shown and analyze as a pin-jointed fourbar.)
	 6‑18	 The linkage in Figure P6‑5f has AB = 1.8 and AC = 1.44 in.  The angle of AB in the posi-

tion shown is 128° and angle BAC = 49°.  The slider at B is at an angle of 59°.  Find ω3,  
VB, and VC for the position shown for VA = 10 in/sec in the direction shown:
 a.	 Using the velocity difference graphical method.
 b.	 Using the instant center graphical method.
†c.	 Using an analytical method.

	
* Answers in Appendix F.

θ3
θ4

γ

ω2 θ2

FIGURE P6-3
Configuration and terminology for Problems 6-8 to 6-9

RB

O2 O4

3

4

1

A

X

Y

x

y

B

2

Row Link 1 Link 2 Link 4 γ θ2 ω2

a 6 2 4 90 30 10
b 7 9 3 75 85 –15
c 3 1 0 6 45 45 24
d 8 5 3 60 25 –50
e 8 4 2 30 75 –45
f 5 8 8 90 150 100

TABLE  P6-3 Data for Problems 6-8 to 6-9
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	 6‑19	 The cam-follower in Figure P6‑5d has O2A = 0.853 in.  Find V4, Vtrans, and Vslip for 
the position shown with ω2 = 20 rad/sec in the direction shown.

	 6‑20	 The cam-follower in Figure P6‑5e has O2A = 0.980 in and O3A = 1.344 in.  Find ω3, 
Vtrans, and Vslip for the position shown for ω2 = 10 rad/sec in the direction shown.

	 6‑21	 The linkage in Figure P6‑6b has L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1,  
L5 = 23.1 mm.  θ2 is 68.3° in the xy coordinate system, which is at –23.3° in the XY co-
ordinate system.   The X component of O2C is 59.2 mm.  For the position shown, find 
the velocity ratio VI5,6 / VI2,3 and the mechanical advantage from link 2 to link 6:
a.	 Using the velocity difference graphical method.
b.	 Using the instant center graphical method.

	 6‑22	 Repeat Problem 6‑21 for the mechanism in Figure P6‑6d, which has the dimensions:  
L2 = 15, L3 = 40.9, L5 = 44.7 mm.  θ2 is 24.2° in the XY coordinate system.

P

X

Y

x

y

x

y

A

B

C

O5O2

3 4

1

2 5

r2 r5

Phase angle  = –

Gear ratio

θ3

θ2

θ4

θ5

ω2

λ __r2

r5
= ±

φ 2λθ5θ

FIGURE P6-4
Configuration and terminology for Problems 6-10 and 6-11

Row Link 1 Link 2 Link 3 Link 4 Link 5 λ φ ω2 θ2

a 6 1 7 9 4 6010302.0
b 6 5 7 8 4 –2.5 60 –12 30
c 3 5 7 8 4 –0.5 0 –15 45
d 4 5 7 8 –1.0 120 24 75
e 5 9 11 8 8 3.2 –50 –50 –39
f 10 2 7 5 3 1.5 30 –45 120
g 15 7 9 11 4 2.5 –90 100 75
h 12 8 7 9 4 –2.0 60 –65 55
i 9 7 8 9 –4.04

4

120 25 100

TABLE  P6-4 Data for Problems 6-10 to 6-11
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FIGURE P6-5
Ve locity analysis and instant center problems.  Problems 6-12 and 6-16 to 6-20
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Problems 6-13, 6-21, and 6-22
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	 †6-23	 Generate and draw the fixed and moving centrodes of links 1 and 3 for the linkage in 
Figure P6-7a.

	 6-24	 The linkage in Figure P6-8a has link 1 at –25° and O2A at 37° in the global XY coor-
dinate system.  Find ω4, VA, and VB in the global coordinate system for the position 
shown if ω2 = 15 rad/sec CW.  Use the velocity difference graphical method.  (Print the 
figure from its PDF file and draw on it.)

	 6-25	 The linkage in Figure P6-8a has link 1 at –25° and O2A at 37° in the global XY coor-
dinate system.  Find ω4, VA, and VB in the global coordinate system for the position 
shown if ω2 = 15 rad/sec CW.  Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

	 †6-26	 The linkage in Figure P6-8a has θ2 = 62° in the local x’y’ coordinate system.  The 
angle between the X and x axes is 25°.  Find ω4, VA, and VB in the local coordinate 
system for the position shown if ω2 = 15 rad/sec CW.  Use an analytical method.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

1

4

3

2

1 1

4

3

2

1

4

3

2

1

1

4

3
2

1

3

2

1

432

1

43
2

1

2 3
4

1

4
3

2

FIGURE P6-7 
Problems 6-14 and 6-23.

(a ) ( b ) ( c )

(d ) ( e ) ( f )

( g ) ( h ) ( i )



DESIGN OF MACHINERY 6ed      CHAPTER  6340

6

	 †6-27	 For the linkage in Figure P6-8a, write a computer program or use an equation solver to 
find and plot ω4, VA, and VB in the local coordinate system for the maximum range of 
motion that this linkage allows if ω2 = 15 rad/sec CW.  

	 6-28	 The linkage in Figure P6-8b has link 1 at –36° and link 2 at 57° in the global XY co-
ordinate system.  Find ω4, VA, and VB in the global coordinate system for the position 
shown if ω2 = 20 rad/sec CCW.  Use the velocity difference graphical method.  (Print 
the figure from its PDF file and draw on it.)

	 6-29	 The linkage in Figure P6-8b has link 1 at –36° and link 2 at 57° in the global XY co-
ordinate system.  Find ω4, VA, and VB in the global coordinate system for the position 
shown if ω2 = 20 rad/sec CCW.  Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

	 †6-30	 The linkage in Figure P6-8b has link 1 at –36° and link 2 at 57° in the global XY co-
ordinate system.  Find ω4, VA, and VB in the global coordinate system for the position 
shown if ω2 = 20 rad/sec CCW.  Use an analytical method.

	 †6-31	 The linkage in Figure P6-8b has link 1 at –36° in the global XY coordinate system.  
Write a computer program or use an equation solver to find and plot ω4, VA, and VB in 
the local coordinate system for the maximum range of motion that this linkage allows if 
ω2  = 20 rad/sec CCW.  

	 6-32	 The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coor-
dinate system.  Find VA and VB in the global coordinate system for the position shown 
if ω2 = 25 rad/sec CW.  Use the velocity difference graphical method.  (Print the figure 
from its PDF file and draw on it.)

	 6-33	 The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coor-
dinate system.  Find VA and VB in the global coordinate system for the position shown 
if ω2 = 25 rad/sec CW.  Use the instant center graphical method.  (Print the figure from 
its PDF file and draw on it.)

	 †6-34	 The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coordi-
nate system.  Find VA and VB in the global coordinate system for the position shown if 
ω2 = 25 rad/sec CW.   Use an analytical method.

	 †6-35	 For the offset crank-slider linkage in Figure P6-8f , write a computer program or use 
an equation solver to find and plot VA and VB in the global coordinate system for the 
maximum range of motion that this linkage allows if ω2 = 25 rad/sec CW.  

	 6-36	 The linkage in Figure P6-8d has link 2 at 58° in the global XY coordinate system.  Find 
VA, VB, and Vbox in the global coordinate system for the position shown if ω2 = 30 
rad/sec CW.  Use the velocity difference graphical method.  (Make a copy of the figure 
from its PDF file and draw on it.)

	 †6-37	 The linkage in Figure P6-8d has link 2 at 58° in the global XY coordinate system.  Find 
VA, VB, and Vbox in the global coordinate system for the position shown if ω2 = 30 rad/
sec CW.  Use an analytical method.

	 †6-38	 For the linkage in Figure P6-8d, write a computer program or use an equation solver to 
find and plot VA, VB, and Vbox  in the global coordinate system for the maximum range 
of motion that this linkage allows if ω2 = 30 rad/sec CW.  

	 6-39	 The linkage in Figure P6-8g has the local xy axis at –119° and O2A at 29° in the global 
XY coordinate system.  Find ω4, VA, and VB in the global coordinate system for the 
position shown if ω2 = 15 rad/sec CW.  Use the velocity difference graphical method.  

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Problems 6-15 and 6-24 to 6-45
FIGURE P6-8 

(c )  Radial compressor(b )  Fourbar linkage(a )  Fourbar linkage

(g )  Drum brake mechanism (h )  Symmetrical mechanism

(d )  W alking-beam conveyor (e )  Bellcrank mechanism (f )   O set slider-crank

View as a video
http://www.

designofmachin-
ery.com/DOM/
drum_brake.avi

View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

View as a video
http://www.designofmachinery.com/DOM/compression_chamber.avi
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	 6-40	 The linkage in Figure P6-8g has the local xy axis at –119° and O2A at 29° in the global 
XY coordinate system.  Find ω4, VA, and VB in the global coordinate system for the po-
sition shown if ω2 = 15 rad/sec CW.  Use the instant center graphical method.  (Make a 
copy of the figure from its PDF file and draw on it.)

	 †6-41	 The linkage in Figure P6-8g has the local xy axis at –119° and O2A at 29° in the global 
XY coordinate system.  Find ω4, VA, and VB in the global coordinate system for the 
position shown if ω2 = 15 rad/sec CW.  Use an analytical method.

	 †6-42	 The linkage in Figure P6-8g has the local xy axis at –119° in the global XY coordinate 
system.  Write a computer program or use an equation solver to find and plot ω4, VA, 
and VB in the local coordinate system for the maximum range of motion that this link-
age allows if ω2 = 15 rad/sec CW.  

	 6-43	 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.  
Find the piston velocities V6, V7, V8 with the crank at –53° using a graphical method if 
ω2 = 15 rad/sec CW.  (Make a copy of the figure from its PDF file and draw on it.)

	 †6-44	 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.  
Find the piston velocities V6, V7, V8 with the crank at –53°  using an analytical method 
if  ω2 = 15 rad/sec CW.  

	 †6-45	 The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.   
Write a program or use an equation solver to find and plot the piston velocities V6, V7, 
V8 for one revolution of the crank  if  ω2 = 15 rad/sec CW.

	 6-46	 Figure P6-9 shows a linkage in one position.  Find the instantaneous velocities of points 
A, B, and P if link O2A is rotating CW at 40 rad/sec.

	 *†6-47	 Figure P6-10 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity 
of the coupler point P at 2° increments of crank angle for ω2 = 100 rpm.  Check your 
result with program Linkages.

	 *†6-48	 Figure P6-11 shows a linkage that operates at 500 crank rpm.  Write a computer program 
or use an equation solver to calculate and plot the magnitude and direction of the velocity 
of point B at 2° increments of crank angle.  Check the result with program Linkages.

	 *†6-49	 Figure P6-12 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
* Answers in Appendix F.

Problem 6-46
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Problem 6-47  A fourbar linkage with a double straight-line coupler curve
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

the coupler point P at 2° increments of crank angle for ω2 = 20 rpm over the maximum 
range of motion possible.  Check your result with program Linkages.

	 †6-50	 Figure P6-13 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 
the coupler point P at 2° increments of crank angle for ω2 = 80 rpm over the maximum 
range of motion possible.  Check your result with program Linkages.

	 *†6-51	 Figure P6-14 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the velocity of 
the coupler point P at 2° increments of crank angle for ω2 = 80 rpm over the maximum 
range of motion possible.  Check your result with program Linkages.

	 †6-52	 Figure P6-15 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism 
with the dimensions shown in the figure.  Draw an equivalent linkage diagram; then 
calculate and plot the velocity of the sawblade with respect to the piece being cut over 
one revolution of the crank at 50 rpm.

	
* Answers in Appendix F.
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P6-14
Problem 6-51

°54°

	 †6-53	 Figure P6-16 shows a walking-beam indexing and pick-and-place mechanism that can 
be analyzed as two fourbar linkages driven by a common crank.  The link lengths are 
given in the figure.  The phase angle between the two crankpins on links 4 and 5 is 
given.  The product cylinders being pushed have 60-mm diameters.  The point of con-
tact between the left vertical finger and the leftmost cylinder in the position shown is 58 
mm at 80° versus the left end of the parallelogram's coupler (point D).  Calculate and 
plot the absolute velocities of points E and P and the relative velocity between points E 
and P for one revolution of gear 2.

	 †6-54	 Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder.  In 
the position shown, AO2 = 1.1 m at 178° and O4A is 0.3 m at 226°.  O2O4 = 0.93 m 
at 163°.  The V-links are rigidly attached to O4A.  The air cylinder is retracted at a 
constant velocity of 0.2 m/sec.  Draw a kinematic diagram of the mechanism, write the 
necessary equations, and calculate and plot the angular velocity of the paper roll and 
the linear velocity of its center as it rotates through 90° CCW from the position shown.
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4 5 23 5
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1 1
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L3 =170 mm
L2 =75 mm

FIGURE P6-15 
Problem 6-52   Power hacksaw

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi
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	 †6-55	 Figure P6-18 shows a powder compaction mechanism.  
a.	 Calculate its mechanical advantage for the position shown.
b.	 Calculate and plot its mechanical advantage as a function of the angle of link AC as 

it rotates from 15 to 60°.
	 †6-56	 Figure P6-19 shows a walking-beam mechanism.  Calculate and plot the velocity Vout 

for one revolution of the input crank 2 rotating at 100 rpm.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Problem 6-53   Walking-beam indexer with pick-and-place mechanism
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	 †6-57	 Figure P6-20 shows a crimping tool.  
a.	 Calculate its mechanical advantage for the position shown.
b.	 Calculate and plot its mechanical advantage as a function of the angle of link AB as 

it rotates from 60 to 45°.
	 †6-58	 Figure P6-21 shows a locking pliers.  Calculate its mechanical advantage for the posi-

tion shown.  Scale the diagram for any needed dimensions.

	 †6-59	 Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamp-
ing it at D.  O2A = 70, O2C = 138, AB = 35, O4B = 34, O4D = 82, and O2O4 = 48 mm.  
At the position shown, link 2 is at 104°.  Toggle occurs when link 2 reaches 90°.  
a.	 Calculate its mechanical advantage for the position shown.
b.	 Calculate and plot its mechanical advantage as a function of the angle of link AB as 

link 2 rotates from 120 to 90°.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P6-18 
Problem 6-55  Adapted from P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design
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FIGURE P6-20

Problem 6-57  
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	 †6-60	 Figure P6-23 shows a surface grinder.  The workpiece is oscillated under the spin-
ning 90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm 
crank, a 157-mm connecting rod, and a 40-mm offset.  The crank turns at 120 rpm, and 
the grinding wheel turns at 3450 rpm.  Calculate and plot the velocity of the grinding 
wheel contact point relative to the workpiece over one revolution of the crank.

	 6-61	 Figure P6‑24 shows an inverted crank-slider mechanism.  Link 2 is 2.5 in long.  The 
distance O4A is 4.1 in and O2O4 is 3.9 in.  Find ω2, ω3, ω4, VA4, Vtrans, and Vslip for 
the position shown with VA2 = 20 in/sec in the direction shown.  

	 *†6-62	 Figure P6-25 shows a drag link mechanism with dimensions.  Write the necessary 
equations, and solve them to calculate the angular velocity of link 4 for an input of ω2 
= 1 rad/sec.  Comment on uses for this mechanism.

	 †6-63	 Figure P6-25 shows a drag link mechanism with dimensions. Write the necessary equa-
tions, and solve them to calculate and plot the centrodes of instant center I2,4.

	
* Answers in Appendix F.
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* Answers in Appendix F.

	 6-64	 Figure P6-26 shows a mechanism with dimensions. Use a graphical method to calculate 
the velocities of points A, B, and C and the velocity of slip for the position shown.  ω2 
= 20 rad/sec.

	 *6-65	 Figure P6-27 shows a cam and follower.  Distance O2A = 1.89 in and O3B = 1.645 in.  
Find the velocities of points A and B, the velocity of transmission, velocity of slip, and 
ω3 if ω2 = 50 rad/sec.  Use a graphical method.

	 6-66	 Figure P6-28 shows a quick-return mechanism with dimensions.  Use a graphical 
method to calculate the velocities of points A, B, and C and the velocity of slip for the 
position shown.  ω2 = 10 rad/sec.

FIGURE P6-24 
Problem 6-61

O2

O4

VA2

2

4

3

A

ω2

FIGURE P6-23
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	 †6-67	 Figure P6-29 shows a drum pedal mechanism.  O2A = 100 mm at 162° and rotates to 
171° at A’.  O2O4 = 56 mm, AB = 28 mm, AP = 124 mm, and O4B = 64 mm.  The 
distance from O4 to Fin is 48 mm.  Find and plot the mechanical advantage and the 
velocity ratio of the linkage over its range of motion.  If the input velocity Vin is a 
constant magnitude of 3 m/sec and Fin is constant at 50 N, find the output velocity and 
output force over the range of motion and the power in.

	 6-68	 Figure 3-33 shows a sixbar slider-crank linkage.  Find all its instant centers in the posi-
tion shown.

	 †6-69	 Calculate and plot the centrodes of instant center I24 of the linkage in Figure 3-33 so 
that a pair of noncircular gears can be made to replace the driver dyad 23.

	 6-70	 Find the velocity of the slider in Figure 3-33 for the position shown if θ2 = 110° with 
respect to the global X axis assuming ω2 = 1 rad/sec CW:
a.	 Using a graphical method.  
b.	 Using the method of instant centers.
c.	 Using an analytical method.†

	 †6-71	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular velocity of link 4 and the linear velocity of 
slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle of 
input link 2 for a constant ω2 = 1 rad/sec CW.  Plot Vc both as a function of θ2 and 
separately as a function of slider position as shown in the figure.  Find the percent 
deviation from constant velocity over 240° < θ2 < 270° and over 190° < θ2 < 315°.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P6-28 
Problems 6-66, 6-108, 6-109
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	 6-72	 Figure 3-34 shows Stephenson’s sixbar mechanism.  Find all its instant centers in the 
position shown:
a.	 In part (a) of the figure.
b.	 In part (b) of the figure.
c.	 In part (c) of the figure.

	 6-73	 Find the angular velocity of link 6 of the linkage in Figure 3-34b for the position shown 
(θ6 = 90° with respect to the x axis) assuming ω2 = 10 rad/sec CW:
a.	 Using a graphical method.
b.	 Using the method of instant centers.
c.	 Using an analytical method.†

	 †6-74	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 
3-34 as a function of θ2 for a constant ω2 = 1 rad/sec CW.  

	 6-75	 Figure 3-35 shows a Watt II sixbar mechanism.  Find all its instant centers in the posi-
tion shown:
a.	 In part (a) of the figure.
b.	 In part (b) of the figure.

	 6-76	 Find the angular velocity of link 6 of the linkage in Figure 3-35 with θ2 = 90° assum-
ing ω2 = 10 rad/sec CCW:
a.	 Using a graphical method (use a compass and straightedge to draw the the linkage 

with link 2 at 90°).
b.	 Using the method of instant centers (use a compass and straightedge to draw the the 

linkage with link 2 at 90°).
c.	 Using an analytical method.†

	 †6-77	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 
3-35 as a function of θ2 for a constant ω2 = 1 rad/sec CCW.  

	 6-78	 Figure 3-36 shows an eightbar mechanism.  Find all its instant centers in the position 
shown in part (a) of the figure.

	 †6-79	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 8 in the linkage of Figure 3-36 
as a function of θ2 for a constant ω2 = 1 rad/sec CCW.  

	 †6-80	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver 
to calculate and plot magnitude and direction of the velocity of point P in Figure 3-37a as a 
function of θ2.  Also calculate and plot the velocity of point P versus point A.

	 †6-81	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate the percent error of the deviation from a perfect circle for the path of 
point P in Figure 3-37a.

	 †6-82	 Repeat Problem 6-80 for the linkage in Figure 3-37b.

	 6-83	 Find all instant centers of the linkage in Figure P6-30 in the position shown.

	 6-84	 Find the angular velocities of links 3 and 4 and the linear velocities of points A, B and 
P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown.  
Assume that θ2 = 45° in the XY coordinate system and ω2 = 10 rad/sec.  The coor-
dinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate 
system:

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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a.	 Using a graphical method.
b.	 Using the method of instant centers.
c.	 Using an analytical method.†

	 §6-85	 Using the data from Problem 6-84, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of 
the absolute velocity of point P1 in Figure P6-30 as a function of θ2.

	 6-86	 Find all instant centers of the linkage in Figure P6-31 in the position shown.

	
§  Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than 
an overnight problem.  In 
most cases, the solution can 
be checked with program 
Linkages.  

O2

Y

X
y

x

16.948
9.174

2.79

9.573

2

4

3

PBA

O4

12.971

FIGURE P6-31
Problems 6-86 and 6-87 An aircraft overhead bin mechanism—dimensions in inches
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	 6-87	 Find the angular velocities of links 3 and 4, and the linear velocity of point P in the XY 
coordinate system for the linkage in Figure P6-31 in the position shown.  Assume that 
θ2 = –94.121° in the XY coordinate system and ω2 = 1 rad/sec.  The position of the 
coupler point P on link 3 with respect to point A is: p = 15.00, δ3 = 0°:
a.	 Using a graphical method.
b.	 Using the method of instant centers.
c.	 Using an analytical method.†

	 6-88	 Figure P6-32 shows a fourbar double slider known as an elliptical trammel.  Find all its 
instant centers in the position shown.

	 6-89	 The elliptical trammel in Figure P6-32 must be driven by rotating link 3 in a full circle.  
Points on line AB describe ellipses.  Find and draw (manually or with a computer) the fixed 
and moving centrodes of instant center I13.  (Hint:  These are called the Cardan circles.)

	 6-90	 Derive analytical expressions for the velocities of points A and B in Figure P6-32 as a 
function of θ3 , ω3,  and the length AB of link 3.  Use a vector loop equation.

	 6-91	 The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.  
Find ω6 and VD in the global coordinate system for the position shown if ω2 = 10 rad/
sec CCW.  Use the velocity difference graphical method.  (Print the figure from its PDF 
file and draw on it.)

	 6-92	 The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.  
Find ω6 and VD in the global coordinate system for the position shown if ω2 = 10 rad/
sec CCW.  Use the instant center graphical method.  (Print the figure from its PDF file 
and draw on it.)

	 6-93	 The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.  
Find ω6 and VD in the global coordinate system for the position shown if ω2 = 10 rad/
sec CCW.  Use an analytical method.

	 6-94	 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find ω3, VA, VB, and VP if ω2 = 15 rad/sec CW. Use the velocity 
difference graphical method.  (Print the figure’s PDF file and draw on it.)

	 6-95	 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find ω3, VA, VB, and VP if ω2 = 15 rad/sec CW. Use the instant 
center graphical method.  (Print the figure from its PDF file and draw on it.)

	 6-96	 The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are 
parallel to each other.  Find ω3, VA, VB, and VP if ω2 = 15 rad/sec CW. Use an analytical 
method.

	 6-97	 The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 
and 5.  Find instant centers I1,3 and I1,4.

	 6-98	 The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 
and 5.  Find VB, VP3, and VP4 if the crossheads are each moving toward the origin of 
the XY coordinate system with a speed of 20 in/sec.  Use a graphical method of your 
choice. (Print the figure from its PDF file and draw on it.)

	 6-99	 The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find VA in the position shown if the veloc-
ity of the slider is 20 in/sec downward. Use the velocity difference graphical method.  
(Print the figure from its PDF file and draw on it.)
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	 6-100	 The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find VA in the position shown if the velocity 
of the slider is 20 in/sec downward. Use the instant center graphical method.  (Print the 
figure from its PDF file and draw on it.)

	 6-101	 For the linkage of Figure P6-33e, write a computer program or use an equation solver 
to find and plot VD in the global coordinate system for one revolution of link 2 if ω2 = 
10 rad/sec CW.

	 6-102	 For the linkage of Figure P6-33f, locate and identify all instant centers.

	 6-103	 The linkage of Figure P6-33f has link 2 at 130° in the global XY coordinate system.  
Find VD in the global coordinate system for the position shown if  ω2 = 15 rad/sec CW.  
Use any graphical method. (Print the figure from its PDF file and draw on it.)

	 6-104	 For the linkage of Figure P6-34, locate and identify all instant centers.  O2O4 = AB = 
BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  O4C = AE = 2.60.

	 6-105	 For the linkage of Figure P6-34, show that I1,6 is stationary for all positions of the link-
age.  O2O4 = AB = BC = DE = 1.  O2A = O4B = BE = CD = 1.75.  O4C = AE = 2.60.

	 6-106	 Figure P6-26 shows a mechanism with dimensions.   Use a graphical method to deter-
mine the velocities of points A and B, and the velocity of slip for the position shown if 
ω2 = 24 rad/sec CW.  Ignore links 5 and 6.

	 6-107	 Repeat Problem 6-106 using an analytical method.

	 6-108	 Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical 
method to determine the velocities of points A and B and the velocity of slip for the 
position shown if ω2 = 16 rad/sec CCW.  Ignore links 5 and 6.

	 6-109	 Repeat Problem 6-108 using an analytical method.

	 6-110	 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P6-2.  The link lengths and the values of d and d  are 
defined in Table P6-5.  For the row(s) assigned, find the velocity of the pin joint A and 
the angular velocity of the crank using a graphical method.

	 6-111	 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P6-2.  The link lengths and the values of d and d  are 
defined in Table P6-5.  For the rows assigned, find the velocity of pin joint A and the 
angular velocity of the crank using the analytic method.  Draw the linkage to scale and 
label it before setting up the equations.

O2

O4

2

3

4

5
6

A

B

C

D

E

FIGURE P6-34
Problems 6-104, 6-105

Row Link 2 Link 3 Offset d

a 1.4 2.514 10
b –3 562 –12
c –158283
d 3.5 10 1 24–8
e –501520 –55
f –120133 –45
g 25257 10 100

TABLE  P6-5 Data for Problems 6-110 to 6-111‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

�d
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	 6-112	 Figure P6-7b shows an inversion of the fourbar crank-slider.   Use a graphical method 
to calculate the velocity of the moving joint, the velocity of slip, and the angular veloc-
ity of link 4 for the position shown.  L1 = 10.0 in, L2 = 8.0 in, and θ2 =–140 in the LCS 
determined by O2 and O4.  ω2 = 5 rad/sec.

	 6-113	 Figure P6-7b shows an inversion of the fourbar crank-slider.   Use an analytical method 
to calculate and plot the angular velocity of link 4 as a function of the crank angle over 
its full 360° of motion.  Use the dimensions given in Problem 6-112.  ω2 = 5 rad/sec.
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Chapter7
ACCELERATION ANALYSIS
Take it to warp five, Mr. Sulu
Captain Kirk

7.0	 INTRODUCTION View the lecture video (41:39)†

Once a velocity analysis is done, the next step is to determine the accelerations of all links 
and points of interest in the mechanism or machine.  We need to know the accelerations 
to calculate the dynamic forces from F = ma.  The dynamic forces will contribute to the 
stresses in the links and other components.  Many methods and approaches exist to find 
accelerations in mechanisms.  We will examine only a few of these methods here.  We 
will first develop a manual graphical method, which is often useful as a check on the more 
complete and accurate analytical solution.  Then we will derive the analytical solution for 
accelerations in the fourbar and inverted crank-slider linkages as examples of the general 
vector loop equation solution to acceleration analysis problems.

7.1	 DEFINITION OF ACCELERATION

Acceleration is defined as the rate of change of velocity with respect to time.  Velocity 
(V, ω) is a vector quantity and so is acceleration.  Accelerations can be angular or linear.  
Angular acceleration will be denoted as α and linear acceleration as A.

α =
ω

=; (7.1)d
dt

d
dt

A V

Figure 7‑1 shows a link PA in pure rotation, pivoted at point A in the xy plane.  We 
are interested in the acceleration of point P when the link is subjected to an angular ve-
locity ω and an angular acceleration α, which need not have the same sense.  The link’s 
position is defined by the position vector R, and the velocity of point P is VPA.  These 
vectors were defined in equations 6.2 and 6.3 which are repeated here for convenience.  
(See also Figure 6-1.)

357

† http://www.designofma-
chinery.com/DOM/Accel-
eration_Analysis.mp4

http://www.designofmachinery.com/DOM/Acceleration_Analysis.mp4
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(6.2)pePA
jR = θ

(6.3)
d

dt
p je d

dt
p jePA

PA j jV
R

= =
θ

= ωθ θ

where p is the scalar length of the vector RPA.  We can easily differentiate equation 6.3 to 
obtain an expression for the acceleration of point P:

( )
= =

ω

=
ω

+ ω
θ





= α − ω

= +

θ

θ θ

θ θ

(7.2)

2

d
dt

d p je

dt

j p e d
dt

je d
dt

p je p e

PA
PA

j

PA
j j

PA
j j

PA PA
t

PA
n

A
V

A

A

A A A

Note that there are two functions of time in equation 6.3, θ and ω.  Thus there are 
two terms in the expression for acceleration, the tangential component of acceleration  
involving α and the normal (or centripetal) component A

nA  involving ω2.  As a result 
of the differentiation, the tangential component is multiplied by the (constant) complex 
operator j.  This causes a rotation of this acceleration vector through 90° with respect to 
the original position vector.  (See also Figure 4‑8b.)  This 90° rotation is nominally posi-
tive, or counterclockwise (ccw).  However, the tangential component is also multiplied 
by α, which may be either positive or negative.  As a result, the tangential component of 
acceleration will be rotated 90° from the angle θ of the position vector in a direction 
dictated by the sign of α.  This is just mathematical verification of what you already 
knew, namely that tangential acceleration is always in a direction perpendicular to the 
radius of rotation and is thus tangent to the path of motion as shown in Figure 7‑1.  The 
normal, or centripetal, acceleration component is multiplied by j2, or –1.  This directs the 
centripetal component at 180° to the angle θ of the original  position vector, i.e., toward 
the center (centripetal means toward the center).  The total acceleration APA of point P 
is the vector sum of the tangential A

tA  and normal A
nA  components as shown in Figure 

7‑1 and equation 7.2.

FIGURE 7-1
Acceleration of a link in pure rotation with a positive (CCW)  α2 and a negative (CW)  ω2

A

P

X

θ

2

1

Y

AP

VP

AP
t

AP
n

− ω2

+ α2
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Substituting the Euler identity (equation 4.4a) into equations 7.2 gives us the real and 
imaginary (or x and y) components of the acceleration vector.

( ) ( )= α − θ + θ − ω θ + θsin cos cos sin (7.3)2p j p jPAA

The acceleration APA in Figure 7‑1 can be referred to as an absolute acceleration 
since it is referenced to A, which is the origin of the global coordinate axes in that system.  
As such, we could have referred to it as AP, with the absence of the second subscript 
implying reference to the global coordinate system.

Figure 7‑2a shows a different and slightly more complicated system in which the 
pivot A is no longer stationary.  It has a known linear acceleration AA as part of the trans-
lating carriage, link 3.  If α is unchanged, the acceleration of point P versus A will be the 
same as before, but APA can no longer be considered an absolute acceleration.  It is now 
an acceleration difference and must carry the second subscript as APA.  The absolute 
acceleration AP must now be found from the acceleration difference equation whose 
graphical solution is shown in Figure 7‑2b:

( ) ( ) ( )
= +

+ = + + +
(7.4)

P A PA

P
t

P
n

A
t

A
n

PA
t

PA
n

A A A

A A A A A A

Note the similarity of equations 7.4 to the velocity difference equation (equation 
6.5).  Note also that the solution for AP in equation 7.4 can be found by adding either the 
resultant vector APA or its normal and tangential components PA

nA  and PA
tA  to  the vector 

AA in Figure 7‑2b.  The vector AA has a zero normal component in this example because 
link 3 is in pure translation.

Figure 7‑3 shows two independent bodies P and A, which could be two automobiles, 
moving in the same plane.  Auto #1 is turning and accelerating into the path of auto #2, 
that is decelerating to avoid a crash.  If their independent accelerations AP and AA are 
known, their relative acceleration APA can be found from equation 7.4 arranged alge-
braically as:

FIGURE 7-2
Acceleration di�erence in a system with a positive (CCW) α2 and a negative (CW) ω

VP

( a ) ( b )

P

A

Y

X
O

3

2

1

θ

− ω2

+ α2

APA

AP
t

AP
n

AP

AA

AP APA

AA

AP
tAP

n
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= − (7.5)PA P AA A A

The graphical solution to this equation is shown in Figure 7‑3b.

As we did for velocity analysis, we give these two cases different names despite the 
fact that the same equation applies.  Repeating the definition from Section 6.1, modified 
to refer to acceleration:

Case 1:	 Two points in the same body => acceleration difference

Case 2:	 Two points in different bodies => relative acceleration

7.2	 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 apply as well 
to graphical acceleration analysis.  Historically, graphical methods were the only practical 
way to solve these acceleration analysis problems.  With some practice, and with proper 
tools such as a drafting machine, drafting instruments, or a CAD package, one can fairly 
rapidly solve for the accelerations of particular points in a mechanism for any one input 
position by drawing vector diagrams.  However, if accelerations for many positions of the 
mechanism are to be found, each new position requires a completely new set of vector 
diagrams be drawn.  Very little of the work done to solve for the accelerations at position 1 
carries over to position 2, etc.  This is an even more tedious process than that for graphical 
velocity analysis because there are more components to draw. Nevertheless, this method 
still has more than historical value as it can provide a quick check on the results from a 
computer program solution.  Such a check only needs to be done for a few positions to 
prove the validity of the program.

To solve any acceleration analysis problem graphically, we need only three equations, 
equation 7.4 and equations 7.6 (which are merely the scalar magnitudes of the terms in 
equation 7.2):

(7.6)
2

A r

A r

t t

n n

A

A

= = α

= = ω

FIGURE 7-3
Relative acceleration

(a ) ( b )
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Note that the scalar equations 7.6 define only the magnitudes (At, An) of the compo-
nents of acceleration of any point in rotation.  In a Case 1 graphical  analysis, the direc-
tions of the vectors due to the centripetal and tangential components of the acceleration 
difference must be understood from equation 7.2 to be perpendicular to and along the 
radius of rotation, respectively.  Thus, if the center of rotation is known or assumed, the 
directions of the acceleration difference components due to that rotation are known and 
their senses will be consistent with the angular velocity ω and angular acceleration α of 
the body.

Figure 7‑4 shows a fourbar linkage in one particular position.  We wish to solve for 
the angular accelerations of links 3 and 4 (α3, α4) and the linear accelerations of points A, 
B, and C (AA, AB, AC).  Point C represents any general point of interest such as a coupler 
point.  The solution method is valid for any point on any link.  To solve this problem, we 
need to know the lengths of all the links, the angular positions of all the links, the angu-
lar velocities of all the links, and the instantaneous input acceleration of any one driving 
link or driving point.  Assuming that we have designed this linkage, we will know or can 
measure the link lengths.  We must also first do a complete position and velocity analysis 
to find the link angles θ3 and θ4 and angular velocities ω3 and ω4 given the input link’s 
position θ2, input angular velocity ω2, and input acceleration α2.  This can be done by any 
of the methods in Chapters 4 and 6.  In general we must solve these problems in stages, 
first for link positions, then for velocities, and finally for accelerations.  For the following 
example, we will assume that a complete position and velocity analysis has been done and 
that the input is to link 2 with known θ2, ω2, and α2 for this one “freeze-frame” position 
of the moving linkage.

-EXAMPLE 7‑1

Graphical Acceleration Analysis for One Position of a Fourbar Linkage.

Problem:	 Given θ2, θ3, θ4, ω2, ω3, ω4, α2, find α3, α4, AA, AB, AP by graphical methods.

Solution:	 (See Figure 7‑4.)

	 1	 Start at the end of the linkage about which you have the most information.  Calculate the mag-
nitudes of the centripetal and tangential components of acceleration of point A using scalar 
equations 7.6.

( ) ( )= ω = α; ( )2 2
2

2 2A AO A AO aA
n

A
t

	 2	 On the linkage diagram, Figure 7‑4a, draw the acceleration component vectors  A
nA   and A

tA  
with their lengths equal to their magnitudes at some convenient scale.  Place their roots at point 
A with their directions respectively along and perpendicular to the radius AO2.  The sense of  

A
tA is defined by that of α2 (according to the right-hand rule), and the sense of  A

nA  is the op-
posite of that of the position vector RA as shown in Figure 7‑4a.

	 3	 Move next to a point about which you have some information, such as B on link 4.  Note that 
the directions of the tangential and normal components of acceleration of point B are predict-
able since this link is in pure rotation about point O4.  Draw the construction line pp through 
point B perpendicular to BO4, to represent the direction of  B

tA  as shown in Figure 7‑4a.
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	 4	 Write the acceleration difference vector equation 7.4 for point B versus point A.

= + ( )bB A BAA A A

		  Substitute the normal and tangential components  for each term:

( ) ( ) ( )+ = + + + ( )cB
t

B
n

A
t

A
n

BA
t

BA
nA A A A A A

		  We will use point A as the reference point to find AB because A is in the same link as B and we 
have already solved for A

tA  and A
nA .  Any two-dimensional vector equation can be solved 

for two unknowns.  Each term has two parameters, namely magnitude and direction.  There are 
then potentially twelve unknowns in this equation, two per term.  We must know ten of them 
to solve it.  We know both the magnitudes and directions of  A

tA and  A
nA  and the directions 

of B
tA  and B

nA  that are along line pp and line BO4, respectively.  We can also calculate the 

( a )  Vector construction

FIGURE 7-4

(b )  Vector polygon ( 2X size )

( c )  Vector polygon (2X size) (d )  Resultant vectors

O2 O4

θ3

AA

AC

Graphical solution for acceleration in a pin-jointed linkage with a negative (CW ) α2 and a positive (CCW ) ω2
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magnitude of B
nA  from equation 7.6 since we know ω4.  This provides seven known values.  

We need to know three more parameters to solve the equation.

	 5	 The term ABA represents the acceleration difference of B with respect to A.  This has two 
components.  The normal component BA

nA  is directed along the line BA because we are us-
ing point A as the reference center of rotation for the free vector ω3, and its magnitude can be 
calculated from equation 7.6.  The direction of BA

tA must then be perpendicular to the line BA.  
Draw construction line qq through point B and perpendicular to BA to represent the direction 
of BA

tA  as shown in Figure 7‑4a.  The calculated magnitude and direction of component BA
nA   

and the known direction of BA
tA provide the needed additional three parameters.

	 6	 Now the vector equation can be solved graphically by drawing a vector diagram as shown in 
Figure 7‑4b. Either drafting tools or a CAD package is necessary for this step.  The strategy 
is to first draw all vectors for which we know both magnitude and direction, being careful to 
arrange their senses according to equation 7.4.

			   First draw acceleration vectors ( A
tA ) and ( A

nA ) tip to tail, carefully to some scale, main-
taining their directions.  (They are drawn twice size in the figure.)  Note that the sum of these 
two components is the vector AA.  The equation in step 4 says to add ABA to AA. We know 

BA
nA , so we can draw that component at the end of AA.  We also know B

nA , but this component 
is on the left side of equation 7.4, so we must subtract it.  Draw the negative (opposite sense) 
of B

nA  at the end of BA
nA .

			   This exhausts our supply of components for which we know both magnitude and direc-
tion.  Our two remaining knowns are the directions of B

tA  and BA
tA  that lie along the lines pp 

and qq, respectively.  Draw a line parallel to line qq across the tip of the vector representing 
minus B

nA .  The resultant, or left side of the equation, must close the vector diagram, from the 
tail of the first vector drawn (AA) to the tip of the last, so draw a line parallel to pp across the 
tail of AA.  The intersection of these lines parallel to pp and qq defines the lengths of B

tA  and 
BA
tA .  The senses of these vectors are determined from reference to equation 7.4.  Vector AA 

was added to ABA, so their components must be arranged tip to tail.  Vector AB is the resultant, 
so its component B

tA  must be from the tail of the first to the tip of the last.  The resultant vec-
tors are shown in Figure 7‑4b and d.

	 7	 The angular accelerations of links 3 and 4 can be calculated from equation 7.6:

α = α = ( )4
4

3
A

BO
A
BA

dB
t

BA
t

		  Note that the acceleration difference term BA
tA  represents the rotational component of ac-

celeration of link 3 due to α3.  The rotational acceleration α of any body is a “free vector” 
which has no particular point of application to the body.  It exists everywhere on the body.

	 8	 Finally we can solve for AC using equation 7.4 again. We select any point in link 3 for which 
we know the absolute velocity to use as the reference, such as point A.

= + ( )eC A CAA A A

		  In this case, we can calculate the magnitude of CA
tA from equation 7.6 as we have already found 

α3, 

= α ( )3A c fCA
t
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		  The magnitude of the component CA
nA can be found from equation 7.6 using ω3.

= ω ( )3
2A c gCA

n

		  Since both AA and ACA are known, the vector diagram can be directly drawn as shown in 
Figure 7‑4c.  Vector AC is the resultant that closes the vector diagram.  Figure 7‑4d shows the 
calculated acceleration vectors on the linkage diagram.

The above example contains some interesting and significant principles that deserve 
further emphasis.  Equations 7.4 are repeated here for discussion.

( ) ( ) ( )
= +

+ = + + +
(7.4)

P A PA

P
t

P
n

A
t

A
n

PA
t

PA
n

A A A

A A A A A A

These equations represent the absolute acceleration of some general point P referenced 
to the origin of the global coordinate system.  The right side defines it as the sum of the 
absolute acceleration of some other reference point A in the same system and the accelera-
tion difference (or relative acceleration) of point P versus point A.  These terms are then 
further broken down into their normal (centripetal) and tangential components that have 
definitions as shown in equation 7.2.

Let us review what was done in Example 7‑1 in order to extract the general strategy 
for solution of this class of problem.  We started at the input side of the mechanism, as that 
is where the driving angular acceleration α2 was defined.  We first looked for a point (A) 
for which the motion was pure rotation.  We then solved for the absolute acceleration of 
that point (AA) using equations 7.4 and 7.6 by breaking AA into its normal and tangential 
components.  (Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation 
component in equation 7.4 written for a new point (B).  Note that we needed to choose 
a second point (B) in the same rigid body as the reference point (A) that we had already 
solved, and about which we could predict some aspect of the new point’s (B’s) accelera-
tion components.  In this example, we knew the direction of the component B

tA , though 
we did not yet know its magnitude.  We could also calculate both magnitude and direction 
of the centripetal component, B

nA , since we knew ω4 and the link length.  In general this 
situation will obtain for any point on a link that is jointed to ground (as is link 4).  In this 
example, we could not have solved for point C until we solved for B, because point C is 
on a floating link for which we do not yet know the angular acceleration or absolute ac-
celeration direction.  (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the 
tangential component of the acceleration difference  BA

tA  is always directed perpendicu-
lar to the line connecting the two related points in the link (B and A in the example).  In 
addition, you will always know the magnitude and direction of the centripetal accelera-
tion components in equation 7.4 if it represents an acceleration difference (Case 1) 
situation.  If the two points are in the same rigid body, then that acceleration difference 
centripetal component has a magnitude of rω2 and is always directed along the line con-
necting the two points, pointing toward the reference point as the center (see Figure 7‑2).  
These observations will be true regardless of the two points selected.  But, note this is not 
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true in a Case 2 situation as shown in Figure 7‑3a where the normal component of accel-
eration of auto #2 is not directed along the line connecting points A and P.  (Steps 5 and 6)

Once we found the absolute acceleration of point B (AB), we could solve for α4, the 
angular acceleration of link 4 using the tangential component of AB in equation (d).  Be-
cause points A and B are both on link 3, we could also determine the angular acceleration 
of link 3 using the tangential component of the acceleration difference ABA between points 
B and A, in equation (d).  Once the angular accelerations of all the links were known, 
we could then solve for the linear acceleration of any point (such as C) in any link using 
equation 7.4.  To do so, we had to understand the concept of angular acceleration as a free 
vector, which means that it exists everywhere on the link at any given instant.  It has no 
particular center.  It has an infinity of potential centers.  The link simply has an angular 
acceleration.  It is this property that allows us to solve equation 7.4 for literally any point 
on a rigid body in complex motion referenced to any other point on that body.  (Steps 
7 and 8)

7.3	 ANALYTICAL SOLUTIONS FOR ACCELERATION ANALYSIS

The Fourbar Pin-Jointed Linkage

The position equations for the fourbar pin-jointed linkage were derived in Section 4.5.  
The linkage was shown in Figure 4-6 and is shown again in Figure 7‑5a on which we also 
show an input angular acceleration α2 applied to link 2.  This input angular acceleration 
α2 may vary with time.  The vector loop equation was shown in equations 4.5a and c, 
repeated here for your convenience.

+ − − = 0 (4.5a)2 3 4 1R R R R

As before, we substitute the complex number notation for the vectors, denoting their 
scalar lengths as a, b, c, d as shown in Figure 7‑5.

0 (4.5c)2 3 4 1ae be c e dej j j j+ − − =θ θ θ θ

In Section 6.7, we differentiated equation 4.5c versus time to get an expression for 
velocity which is repeated here.

0 (6.14c)2 3 42 3 4ja e jb e jc ej j jω + ω − ω =θ θ θ

We will now differentiate equation 6.14c versus time to obtain an expression for ac-
celerations in the linkage.  Each term in equation 6.14c contains two functions of time, θ 
and ω.  Differentiating with the chain rule in this example will result in two terms in the 
acceleration expression for each term in the velocity equation.

( )( ) ( )ω + α + ω + α − ω + α =θ θ θ θ θ θ 0 (7.7a)2
2
2

2
2

3
2

3
2

4
2

42 2 3 3 4 4j a e ja e j b e jb e j c e jc ej j j j j j

Simplifying and grouping terms:

( )( ) ( )α − ω + α − ω − α − ω =θ θ θ θ θ θ 0 (7.7b)2 2
2

3 3
2

4 4
22 2 3 3 4 4a je a e b je b e c je c ej j j j j j
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Compare the terms grouped in parentheses with equations 7.2.  Equation 7.7 contains 
the tangential and normal components of the accelerations of points A and B and of the 
acceleration difference of B to A.  Note that these are the same relationships that we used 
to solve this problem graphically in Section 7.2.  Equation 7.7 is, in fact, the acceleration 
difference equation 7.4 which, with the labels used here, is:

+ − = 0 (7.8a)A BA BA A A

( )
( ) ( )
( )
( ) ( )

= + = α − ω

= + = α − ω

= + = α − ω

θ θ

θ θ

θ θ

where:

(7.8b)

2 2
2

3 3
2

4 4
2

2 2

3 3

4 4

a je a e

b je b e

c je c e

A A
t

A
n j j

BA BA
t

BA
n j j

B B
t

B
n j j

A A A

A A A

A A A

The vector diagram in Figure 7‑5b shows these components and is a graphical solu-
tion to equation 7.8a.  The vector components are also shown acting at their respective 
points on Figure 7‑5a.

We now need to solve equation 7.7 for α3 and α4, knowing the input angular ac-
celeration α2, the link lengths, all link angles, and angular velocities.  Thus, the position 
analysis derived in Section 4.5 and the velocity analysis from Section 6.7 must be done 
first to determine the link angles and angular velocities before this acceleration analysis 
can be completed.  We wish to solve equations 7.8 to get expressions in this form:

( )
( )

α = θ θ θ ω ω ω α

α = θ θ θ ω ω ω α

, , , , , , , , , , (7.9a)

, , , , , , , , , , (7.9b)
3 2 3 4 2 3 4 2

4 2 3 4 2 3 4 2

f a b c d

g a b c d

The strategy of solution will be the same as was done for the position and velocity 
analysis.  First, substitute the Euler identity from equation 4.4a in each term of equation 7.7:

Y

X

x

y

O2AA
n

α2

ω2
R1

R2

O4

AA
t

A

d

a

R3

R4

θ4

ABA
n

AB
nAB

t
B

α3

ω3

ω4

α4

ABA
t

θ2

θ3
b

c

ABA

–AA

AB

AA
n

ABA
n

ABA
t

AB
n

AB
t

AA
t

( a ) ( b )
FIGURE 7-5
Position vector loop for a fourbar linkage showing acceleration vectors
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( ) ( )
( ) ( )

( ) ( )

α θ + θ − ω θ + θ





+ α θ + θ − ω θ + θ





− α θ + θ − ω θ + θ



 =

cos sin cos sin

cos sin cos sin (7.10a)

cos sin cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

a j j a j

b j j b j

c j j c j

Multiply by the operator j and rearrange:

( ) ( )
( ) ( )

( ) ( )

α − θ + θ − ω θ + θ





+ α − θ + θ − ω θ + θ





− α − θ + θ − ω θ + θ



 =

sin cos cos sin

sin cos cos sin (7.10b)

sin cos cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

a j a j

b j b j

c j c j

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

real part (x component):

− α θ − ω θ − α θ − ω θ + α θ + ω θ =sin cos sin cos sin cos 0 (7.11a)2 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c c

imaginary part ( y component):

α θ − ω θ + α θ − ω θ − α θ + ω θ =cos sin cos sin cos sin 0 (7.11b)2 2 2
2

2 3 3 3
2

3 4 4 4
2

4a a b b c c

Note that the j’s have canceled in equation 7.11b.  We can solve equations 7.11a and 
7.11b simultaneously to get:

α =
−
−

α =
−
−

(7.12a)

(7.12b)

3

4

CD AF
AE BD
CE BF
AE BD

where:
= θ
= θ

= α θ + ω θ + ω θ − ω θ
= θ
= θ

= α θ − ω θ − ω θ + ω θ

sin
sin

sin cos cos cos
cos (7.12c)
cos

cos sin sin sin

4

3

2 2 2
2

2 3
2

3 4
2

4

4

3

2 2 2
2

2 3
2

3 4
2

4

A c
B b

C a a b c
D c
E b

F a a b c

Once we have solved for α3 and α4, we can then solve for the linear accelerations by 
substituting the Euler identity into equations 7.8b,

( ) ( )

( ) ( )

( ) ( )

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

= α − θ + θ − ω θ + θ
= − α θ − ω θ = α θ − ω θ

sin cos cos sin
sin cos cos sin (7.13a)

sin cos cos sin
sin cos cos sin (7.13b)

sin cos cos sin
sin cos cos sin

2 2 2 2
2

2 2

2 2 2
2

2 2 2 2
2

2

3 3 3 3
2

3 3

3 3 3
2

3 3 3 3
2

3

4 4 4 4
2

4 4

4 4 4
2

4 4 4 4
2

a j a j
a a a a

b j b j
b b b b

c j c j
c c c c

A

A A

BA

BA BA

B

B B

x y

x y

x y

A
A A

A
A A

A
A A
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where the real and imaginary terms are the x and y components, respectively.  Equations 
7.12 and 7.13 provide a complete solution for the angular accelerations of the links and 
the linear accelerations of the joints in the pin-jointed fourbar linkage.

✍EXAMPLE 7-2

Acceleration Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem:	 Given a fourbar linkage with the link lengths L1 = d = 100 mm, L2 = a = 40 mm,  
L3 = b = 120 mm, L4 = c = 80 mm. For q2 = 40°, w2 = 25 rad/sec, and a2 = 15 
rad/sec2 find the values of a3 and a4, AA, ABA, and AB for the open circuit of the 
linkage.  Use the angles and angular velocities found for the same linkage and 
position in Example 6-7. 

Solution:	 (See Figure 7-5 for nomenclature.)

	 1	 Example 4-1 found the link angles for the open circuit of this linkage in this position to be  
q3 = 20.298° and q4 = 57.325°.  Example 6-7 found the angular velocities at this position to 
be w3 = –4.121 and w4 = 6.998 rad/sec.

	 2	 Use these angles, angular velocities, and equations 7.12 to find a3 and a4 for the open circuit.  
First find the parameters in equation 7.12c.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= θ = ° =
= θ = ° =

= α θ + ω θ + ω θ − ω θ

= ° + ° + − ° − °
=
= θ = ° =
= θ = ° =

= α θ − ω θ − ω θ + ω θ

= ° − ° − − ° + °
= −

sin 80sin57.325 67.340
sin 120sin20.298 41.628

sin cos cos cos

40 15 sin 40 40 25 cos 40 120 4.121 cos20.298 80 6.998 cos57.325
19332.98

cos 80cos57.325 43.190 ( )
cos 120cos20.298 112.548

cos sin sin sin

40 15 cos 40 40 25 sin 40 120 4.121 sin20.298 80 6.998 sin57.325
13 019.25

4

3

2 2 2
2

2 3
2

3 4
2

4
2 2 2

4

3

2 2 2
2

2 3
2

3 4
2

4
2 2 2

A c
B b

C a a b c

D c a
E b

F a a b c

	 3	 Then find a3 and a4 with equations 7.12a and b.

( )

( )

( )
( ) ( )

( )
( ) ( )

α =
−
−

=
− −

−
=

α =
−
−

=
− −

−
=

19332.98 43.190 67.340 13 019.25
67.340 112.548 41.628 43.190

296.089 rad/sec ( )

19332.98 112.548 41.628 13 019.25
67.340 112.548 41.628 43.190

470.134 rad/sec ( )

3
2

4
2

CD AF
AE BD

b

CE BF
AE BD

c

	 4	 Use equations 7.13 to find the linear accelerations of points A and B.

( ) ( )
( ) ( )

= − α θ − ω θ = − ° − ° = −

= α θ − ω θ = ° − ° = −

sin cos 40 15 sin 40 40 25 cos 40 19.537 m/sec
( )

cos sin 40 15 cos 40 40 25 sin 40 15.617 m/sec

2 2 2
2

2
2 2

2 2 2
2

2
2 2

a a
d

a a

A

A

x

y

A

A
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( ) ( )

( ) ( )

= − α θ − ω θ
= − ° − − ° = −

= α θ − ω θ

= ° − − ° =

sin cos
120 269.089 sin20.298 120 4.121 cos20.298 14 237 m/sec

( )
cos sin

120 269.089 cos20.298 120 4.121 sin20.298 32.617 m/sec

3 3 3
2

3
2 2

3 3 3
2

3
2 2

b b

e
b b

BA

BA

x

y

A

A

( ) ( )

( ) ( )

= − α θ − ω θ
= − ° − ° = −

= α θ − ω θ

= ° − ° =

sin cos
80 470.134 sin57.325 80 6.998 cos57.325 33.774 m/sec

( )
cos sin

80 470.134 cos57.325 80 6.998 sin57.325 17.007 m/sec

4 4 4
2

4
2 2

4 4 4
2

4
2 2

c c

f
c c

B

B

x

y

A

A

	

The Fourbar Crank-Slider

The first inversion of the offset crank-slider has its slider block sliding against the ground 
plane as shown in Figure 7‑6a.  Its accelerations can be solved for in similar manner as 
was done for the pin-jointed fourbar.

The position equations for the fourbar offset crank-slider linkage (inversion #1) were 
derived in Section 4.6.  The linkage was shown in Figures 4-9 and 6‑21 and is shown 
again in Figure 7‑6a on which we also show an input angular acceleration α2 applied to 
link 2.  This α2 can be a time-varying input acceleration.  The vector loop equations 4.14 
are repeated here for your convenience.

− − − =R R R R 0 (4.14a)2 3 4 1

− − − =θ θ θ θ 0 (4.14b)2 3 4 1ae be c e dej j j j

R1

R3

R4

R2

FIGURE 7-6
Position vector loop for a fourbar crank-slider linkage showing acceleration vectors

O2

ω2θ2

θ3

θ4α2

α3
ω3

(a ) ( b )

AA

ABA
t

ABA
nAA

t

AA
n

AB

A

X

Y

d

b

a
c

x

y

4B

AB

ABA
t

ABA
n AA

t
AA

n

AA
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In Section 6.7 we differentiated equation 4.14b with respect to time noting that a, b, c, 
θ1, and θ4 are constant but the length of link d varies with time in this inversion.

 0 (6.20a)2 32 3ja e jb e dj jω − ω − =θ θ

The term d  is the linear velocity of the slider block.  Equation 6.20a is the velocity 
difference equation.

We now will differentiate equation 6.20a with respect to time to get an expression for 
acceleration in this inversion of the crank-slider mechanism.

α α( )( )+ ω − + ω − =θ θ θ θ
 0 (7.14a)2

2
2
2

3
2

3
22 2 3 3ja e j a e jb e j b e dj j j j

Simplifying:

( )( )α − ω − α − ω − =θ θ θ θ
 0 (7.14b)2 2

2
3 3

22 2 3 3a je a e b je b e dj j j j

Note that equation 7.14 is again the acceleration difference equation:

− − =
= −
= +

0
(7.15a)

A AB B

BA AB

B A BA

A A A
A A

A A A

( )
( ) ( )
( )

= + = α − ω

= + = α − ω

= =

θ θ

θ θ



(7.15b)

2 2
2

3 3
2

2 2

3 3

a je a e

b je b e

d

A A
t

A
n j j

BA BA
t

BA
n j j

B B
t

A A A

A A A

A A

In this mechanism, link 4 is in pure translation and so has zero ω4 and zero α4.  The 
acceleration of link 4 has only a “tangential” component of acceleration along its path.

The two unknowns in the vector equation 7.14 are the angular acceleration of link 
3, α3, and the linear acceleration of link 4, d .  To solve for them, substitute the Euler 
identity,

( ) ( )
( ) ( )α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ − =
sin cos cos sin

sin cos cos sin 0 (7.16a)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

a j a j

b j b j d

and separate the real (x) and imaginary (y) components:

real part (x component):

− α θ − ω θ + α θ + ω θ − =sin cos sin cos 0 (7.16b)2 2 2
2

2 3 3 3
2

3a a b b d

imaginary part (y component):

α θ − ω θ − α θ + ω θ =cos sin cos sin 0 (7.16c)2 2 2
2

2 3 3 3
2

3a a b b

Equation 7.16c can be solved directly for α3 and the result substituted in equation 
7.16b to find d .
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α =
α θ − ω θ + ω θ

θ

= − α θ − ω θ + α θ + ω θ

cos sin sin
cos

(7.16d)

sin cos sin cos (7.16e)

3
2 2 2

2
2 3

2
3

3

2 2 2
2

2 3 3 3
2

3

a a b
b

d a a b b

The other linear accelerations can be found from equation 7.15b and are shown in 
the vector diagram of Figure 7‑6b.

✍EXAMPLE 7-3

Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method.

Problem:	 Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm,  
L3 = b = 120 mm, offset = c = –20 mm. For q2 = 60°, w2 = –30 rad/sec, and a2 = 
20 rad/sec2, find a3 and linear acceleration of the slider for the open circuit.  Use 
the angles, positions, and angular velocities found for the same linkage in Examples 
4-2 and 6-8. 

Solution:	 (See Figure 7-6 for nomenclature.)

	 1	 Example 4-2 found angle q3 = 152.91° and slider position d = 126.84 mm for the open circuit. 
Example 6-8 found the the coupler angular velocity w3 to be 5.616 rad/sec.

	 2	 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration a3.

α
α

( ) ( ) ( )

=
θ − ω θ + ω θ

θ

=
° − − ° + °

°
=

cos sin sin
cos

40 20 cos60 40 30 sin60 120 5.616 sin152.91
120cos152.91

271.94 rad/sec ( )

3
2 2 2

2
2 3

2
3

3
2 2

2

a a b
b

a

	 3	 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration d .

α α

( ) ( ) ( ) ( )
= − θ − ω θ + θ + ω θ

= − ° − − ° + ° + °

= −

 sin cos sin cos

40 20 sin60 40 30 cos60 120 271.94 sin152.91 120 5.616 cos152.91

7.203 m/sec ( )

2 2 2
2

2 3 3 3
2

3
2 2

2

d a a b b

b

The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven. 
This is a very commonly used linkage configuration.  Every internal-combustion, piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 7-6 
and the vector loop equation is identical to that of the crank-slider (equation 4.14a).  The 
derivation for q2 and w2 as a function of slider position d and slider velocity d were done, 
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respectively, in Sections 4-7 and 6-7.  Now we want to solve for a2 and a3 as a function of 
slider acceleration d  and the known lengths, angles, and angular velocities of the links.

We can start with equations 7.16b and c, which also apply to this linkage:

− α θ − ω θ + α θ + ω θ − =

α θ − ω θ − α θ + ω θ =

sin cos sin cos 0 (7.16b)

cos sin cos sin 0 (7.16c)
2 2 2

2
2 3 3 3

2
3

2 2 2
2

2 3 3 3
2

3

a a b b d

a a b b

Solve equation 7.16c for a3 in terms of a2.

α =
α θ − ω θ + ω θ

θ
cos sin sin

cos
(7.17a)3

2 2 2
2

2 3
2

3

3

a a b
b

Substitute equation 7.17a for a3 in equation 7.16b and solve for a2.

( )
( )α =

ω θ θ + θ θ − ω + θ
θ θ − θ θ

cos cos sin sin cos
cos sin sin cos

(7.17b)2
2
2

2 3 2 3 3
2

3

2 3 2 3

a b d
a

The circuit of the linkage depends on the value of d chosen and the angular accelerations 
will be for the branch represented by the values of q2 and q3 used from equation 4.21.*

✍EXAMPLE 7-4

Acceleration Analysis of a Fourbar Slider-Crank Linkage with a Vector Loop Method.

Problem:	 Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm, 
L3 = b = 120 mm, offset = c = –20 mm. For d = 100 mm and d  = 900 mm/sec2, 
find a2 and a3 for both branches of one circuit of the linkage.  Use the angles and 
angular velocities found for the same linkage in Example 4-3 and Example 6-9, 
respectively. 

Solution:	 (See Figure 7-6 for nomenclature.)

	 1	 Example 4-3 found angles q21 = 95.80°, q31 = 150.11° for branch 1 of this linkage.  Example 
6-9 found the the angular velocities to be w21 = –32.023 and w31 = –1.244 rad/sec for branch 1.

	 2	 Using equation 7.17b and the data from step 1, calculate the crank angular acceleration a21.

( )
( )

( )
( )

( ) ( )

α =
ω θ θ + θ θ − ω + θ

θ θ − θ θ

α =

α =

− ° ° + ° ° − − + °

° ° − ° °

cos cos sin sin cos

cos sin sin cos

706.753 rad/sec ( )

40 32.023 cos95.80 cos150.11 sin 95.80 sin150.11 120 1.244 900cos150.11

40 cos95.80 sin150.11 sin 95.80 cos150.11

2
2
2

2 3 2 3 3
2

3

2 3 2 3

2

2
2

1
1 1 1 1 1 1 1

1 1 1 1

1

2 2

1

a b d

a

a

	 3	 Using equation 7.17a and the data from steps 1 and 2, calculate the coupler angular accelera-
tion a31.

	
*  The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider-crank 
has two branches on each 
circuit and the two solutions 
obtained from equation 4.21 
represent the two branches 
on the one circuit being 
analyzed.  In contrast, the 
crank-slider has only one 
branch per circuit because 
when the crank is driven, it 
can make a full revolution 
and there are no change 
points to separate branches.  
See Section 4.13 for a 
more complete discussion 
of circuits and branches in 
linkages.
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( ) ( )( )

α =
α θ − ω θ + ω θ

θ

α =
− ° − − ° + − °

°

α =

cos sin sin
cos

40 706.753 cos95.80 40 32.023 sin95.80 120 1.244 sin150.11
120cos150.11

418.804 rad/sec ( )

3
2 2 2

2
2 3

2
3

3

3

2 2

3
2

1
1 1 1 1 1

1

1

1

a a b
b

b

	 4	 Example 4-3 found angles q22 = –118.42°, q32 = 187.27° for branch 2 of this linkage.  Example 
6-9 found the the angular velocities to be w22 = 36.64 and w32 = 5.86 rad/sec for branch 2.  
Using equation 7.17b and the data from step 3, calculate the crank angular acceleration a22 
for branch 2.

( )
( )

[ ]
( )( ) ( )

( ) ( )

α =
ω θ θ + θ θ − ω + θ

θ θ − θ θ

α =

α = −

− ° ° + − ° ° − + °

− ° ° − − ° °

cos cos sin sin cos

cos sin sin cos

809.801 rad/sec ( )

40 36.64 cos 118.42 cos187.27 sin 118.42 sin187.27 120 5.86 900cos187.27

40 cos 118.42 sin187.27 sin 118.42 cos187.27

2
2
2

2 3 2 3 3
2

3

2 3 2 3

2

2
2

2
2 2 2 2 2 2 2

2 2 2 2

2

2 2

2

a b d

a

c

	 5	 Using equation 7.17a and the data from steps 3 and 4, calculate the coupler angular accelera-
tion a32.

( ) ( )( )

α =
α θ − ω θ + ω θ

θ

α =
− − ° − − ° + °

°

α = −

cos sin sin
cos

40 809.801 cos 118.42 40 36.64 sin 118.42 120 5.859 sin187.27
120cos187.27

521.852 rad/sec ( )

3
2 2 2

2
2 3

2
3

3

3

2 2

3
2

2
2 2 2 2 2

2

2

2

a a b
b

d

Coriolis Acceleration

The examples used for acceleration analysis above have involved only pin-jointed link-
ages or the inversion of the crank-slider in which the slider block has no rotation.  When 
a sliding joint is present on a rotating link, an additional component of acceleration will 
be present, called the Coriolis component, after its discoverer.  Figure 7‑7a shows a 
simple, two-link system consisting of a link with a radial slot and a slider block free to 
slip within that slot.

The instantaneous location of the block is defined by a position vector (RP) refer-
enced to the global origin at the link center.  This vector is both rotating and changing 
length as the system moves.  As shown this is a two-degree-of-freedom system.  The two 
inputs to the system are the angular acceleration (α) of the link and the relative linear slip 
velocity (VPslip) of the block versus the disk.  The angular velocity ω is a result of the time 
history of the angular acceleration.  The situation shown, with a counterclockwise α and 
a clockwise ω, implies that earlier in time the link had been accelerated up to a clockwise 
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angular velocity and is now being slowed down.  The transmission component of veloc-
ity (VPtrans) is a result of the ω of the link acting at the radius RP whose magnitude is p.

We show the situation in Figure 7‑7 at one instant of time.  However, the equations to 
be derived will be valid for all time.  We want to determine the acceleration at the center 
of the block (P) under this combined motion of rotation and sliding.  To do so, we first 
write the expression for the position vector RP that locates point P.

= θ (7.18a)2peP
jR

Note that there are two functions of time in equation 7.17, p and θ.  When we 
differentiate versus time, we get two terms in the velocity expression:

= ω +θ θ
 (7.18b)2 2 2p je peP

j jV

These are the transmission component and the slip component of velocity.

= + (7.18c)P P Ptrans slip
V V V

The pω term is the transmission component and is directed at 90 degrees to the axis 
of slip that, in this example, is coincident with the  position vector RP.  The p  term is the 
slip component and is directed along the axis of slip in the same direction as the position 
vector in this example.  Their vector sum is VP as shown in Figure 7‑7a.

To get an expression for acceleration, we must differentiate equation 7.18 versus 
time.  Note that the transmission component has three functions of time in it, p, ω, and θ.  
The chain rule will yield three terms for this one term.  The slip component of velocity 
contains two functions of time, p and θ, yielding two terms in the derivative for a total of 
five terms, two of which turn out to be the same.

( ) ( )= α + ω + ω + ω +θ θ θ θ θ
   (7.19a)2 2

2 2
2 22 2 2 2 2p je p j e p je p je peP

j j j j jA

FIGURE 7-7
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α2
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VPslip

( a ) (b ) ( c )
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2
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The Coriolis component of acceleration shown in a system with a positive (CCW) α  and a negative (CW) ω

+

–

AP
n

AP
t

VPtrans

O2

APslip
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APcoriolis

APslip
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n
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t
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Simplifying and collecting terms:

= α − ω + ω +θ θ θ θ
 2 (7.19b)2 2

2
22 2 2 2p je p e p je peP

j j j jA

These terms represent the following components:

= + + + (7.19c)
tangential normal coriolis slipP P P P PA A A A A

Note that the Coriolis term has appeared in the acceleration expression as a result of 
the differentiation simply because the length of the vector p is a function of time.  The 
Coriolis component magnitude is twice the product of the velocity of slip (equation 7.18) 
and the angular velocity of the link containing the slider slot.  Its direction is rotated 90 
degrees from that of the original position vector RP either clockwise or counterclockwise 
depending on the sense of ω.*  (Note that we chose to align the position vector RP with 
the axis of slip in Figure 7-7 which can always be done regardless of the location of the 
center of rotation—also see Figure 7‑6 where R1 is aligned with the axis of slip.)  All 
four components from equations 7.19 are shown acting on point P in Figure 7‑7b.  The 
total acceleration AP is the vector sum of the four terms as shown in Figure 7‑7c.   Note 
that the normal acceleration term in equation 7.19b is negative in sign, so it becomes a 
subtraction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is 
a velocity of slip associated with any member that also has an angular velocity.  In 
the absence of either of those two factors the Coriolis component will be zero.  You 
have probably experienced Coriolis acceleration if you have ever ridden on a carousel or 
merry-go-round.  If you attempted to walk radially from the outside to the inside (or vice 
versa) while the carousel was turning, you were thrown sideways by the inertial force 
due to the Coriolis acceleration.  You were the slider block in Figure 7‑7, and your slip 
velocity combined with the rotation of the carousel created the Coriolis component.  As 
you walked from a large radius to a smaller one, your tangential velocity had to change 
to match that of the new location of your foot on the spinning carousel.  Any change in 
velocity requires an acceleration to accomplish.  It was the “ghost of Coriolis” that pushed 
you sideways on that carousel.

Another example of the Coriolis component is its effect on weather systems.  Large 
objects that exist in the earth’s lower atmosphere, such as hurricanes, span enough area 
to be subject to significantly different velocities at their northern and southern extremi-
ties.  The atmosphere turns with the earth.  The earth’s surface tangential velocity due to 
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the 
equator.  The winds of a storm system are attracted toward the low pressure at its center.  
These winds have a slip velocity with respect to the surface, which in combination with 
the earth’s ω creates a Coriolis component of acceleration on the moving air masses.  
This Coriolis acceleration causes the inrushing air to rotate about the center, or “eye” of 
the storm system.  This rotation will be counterclockwise in the northern hemisphere and 
clockwise in the southern hemisphere.  The movement of the entire storm system from 
south to north also creates a Coriolis component that will tend to deviate the storm’s track 
eastward, though this effect is often overridden by the forces due to other large air masses 
such as high-pressure systems that can deflect a storm.  These complicated factors make 
it difficult to predict a large storm’s true track.

 
*  This approach works in 
the 2-D case.  Coriolis ac-
celeration is the cross prod-
uct of 2ω and the velocity 
of slip.  The cross product 
operation will define its 
magnitude, direction, and 
sense in the 3‑D case.
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Note that in the analytical solution presented here, the Coriolis component will be 
accounted for automatically as long as the differentiations are correctly done.  However, 
when doing a graphical acceleration analysis, one must be on the alert to recognize the 
presence of this component, calculate it, and include it in the vector diagrams when its 
two constituents Vslip and ω are both nonzero.

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.7.  The linkage was shown in Figures 4-10 and 6‑22 and is shown again in Figure 
7‑8a on which we also show an input angular acceleration α2 applied to link 2.  This α2 
can vary with time.  The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and B, 
designated as b, will change as it passes through the slider block on link 4.  In Section 6.7 
we got an expression for velocity by differentiating equation 4.14b with respect to time, 
noting that a, c, d, and θ1 are constant and b, θ3, and θ4 vary with time.

 0 (6.25a)2 3 42 3 3 4ja e jb e be jc ej j j jω − ω − − ω =θ θ θ θ

Differentiating this with respect to time will give an expression for accelerations in this 
inversion of the crank-slider mechanism.

( )
( )

( )
( )

α + ω − α + ω + ω

− + ω − α + ω =

θ θ θ θ θ

θ θ θ θ



  0 (7.20a)

2
2

2
2

3
2

3
2

3

3 4
2

4
2

2 2 3 3 3

3 3 4 4

ja e j a e jb e j b e jb e

be jb e jc e j c e

j j j j j

j j j j

R3
R4

R1

R2

FIGURE 7-8

O2 O4

ω2

θ3
θ4

α2

α3

ω3

ω4

( a ) ( b )

AABcoriolis
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t
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n

Acceleration analysis of a fourbar crank-slider-inversion #3 driven with positive (CCW ) α2 and negative (CW ) ω2
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Simplifying and collecting terms:

( )( )
( )

α − ω − α − ω + ω +

− α − ω =

θ θ θ θ θ θ

θ θ

 2

0 (7.20b)

2 2
2

3 3
2

3

4 4
2

2 2 3 3 3 3

4 4

a je a e b je b e b je be

c je c e

j j j j j j

j j

Equation 7.20 is in fact the acceleration difference equation (equation 7.4) and can 
be written in that notation as shown in equations 7.21.

− − =
= −
= +

but:
and:

0
(7.21a)

A AB B

BA AB

B A BA

A A A
A A

A A A

= +

= + + +

= +

(7.21b)
tangential normal

tangential normal coriolis slip

tangential normal

A A A

AB AB AB AB AB

B B B

A A A

A A A A A

A A A

= α = − ω

= α = − ω

= α = − ω

= ω =

θ θ

θ θ

θ θ

θ θ
 

(7.21c)

2

2 2
2

4 4
2

3 3
2

3

tangential
2

normal
2

tangential
4

normal
4

tangential
3

normal
3

coriolis
3

slip
3

a je a e

c je c e

b je b e

b je be

A
j

A
j

B
j

B
j

AB
j

AB
j

AB
j

AB
j

A A

A A

A A

A A

Because this sliding link also has an angular velocity, there will be a nonzero Coriolis 
component of acceleration at point B which is the 2 b  term in equation 7.20.  Since a 
complete velocity analysis was done before doing this acceleration analysis, the Coriolis 
component can be readily calculated at this point, knowing both ω and Vslip from the 
velocity analysis.

The b  term in equations 7.20b and 7.21c is the slip component of acceleration.  This 
is one of the variables to be solved for in this acceleration analysis.  Another variable to 
be solved for is α4, the angular acceleration of link 4.  Note, however, that we also have 
an unknown in α3, the angular acceleration of link 3.  This is a total of three unknowns.  
Equation 7.20 can only be solved for two unknowns.  Thus we require another equation 
to solve the system.  There is a fixed relationship between angles θ3 and θ4, shown as γ in 
Figure 7‑8 and defined in equation 4.22, repeated here:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Differentiate it twice with respect to time to obtain:

ω = ω α = α; (7.22)3 4 3 4

We wish to solve equation 7.20 to get expressions in this form:

( )
( )

α = α = θ θ θ ω ω ω α

= = θ θ θ ω ω ω α



 

, , , , , , , , , , , (7.23a)

, , , , , , , , , , , (7.23b)

3 4 2 3 4 2 3 4 2

2

2 2 3 4 2 3 4 2

f a b b c d

d b
dt

b g a b b c d
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Substitution of the Euler identity (equation 4.4a) into equation 7.20 yields:

( ) ( )
( ) ( )

( ) ( )

( ) ( )

α θ + θ − ω θ + θ

− α θ + θ + ω θ + θ

− ω θ + θ − θ + θ

− α θ + θ + ω θ + θ =

 

cos sin cos sin

cos sin cos sin

2 cos sin cos sin (7.24a)

cos sin cos sin 0

2 2 2 2
2

2 2

3 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j j a j

b j j b j

b j j b j

c j j c j

Multiply by the operator j and substitute α4 for α3 from equation 7.22:

( ) ( )
( ) ( )

( ) ( )

( ) ( )

α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ

− ω − θ + θ − θ + θ

− α − θ + θ + ω θ + θ =

 

sin cos cos sin

sin cos cos sin

2 sin cos cos sin (7.24b)

sin cos cos sin 0

2 2 2 2
2

2 2

4 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j a j

b j b j

b j b j

c j c j
 

We can now separate this vector equation 7.24b into its two components by collecting 
all real and all imaginary terms separately:

real part (x component):

− α θ − ω θ + α θ + ω θ

+ ω θ − θ + α θ + ω θ = 

sin cos sin cos

2 sin cos sin cos 0 (7.25a)
2 2 2

2
2 4 3 3

2
3

3 3 3 4 4 4
2

4

a a b b

b b c c

imaginary part (y component):

α θ − ω θ − α θ + ω θ

− ω θ − θ − α θ + ω θ = 

cos sin cos sin

2 cos sin cos sin 0 (7.25b)
2 2 2

2
2 4 3 3

2
3

3 3 3 4 4 4
2

4

a a b b

b b c c

Note that the j’s have canceled in equation 7.25b. We can solve equations 7.25  
simultaneously for the two unknowns, α4 and b .  The solution is:

( ) ( ) ( )
( )α =

α θ − θ + ω θ − θ



 + ω θ − θ − ω

+ θ − θ

cos sin sin 2

cos
(7.26a)4

2 3 2 2
2

3 2 4
2

4 3 3

3 4

a c b

b c

( ) ( )
( ) ( )

( )

( ) ( )ω θ − θ + θ − θ  + α θ − θ − θ − θ 

+ ω θ − θ − ω + + θ − θ

















+ θ − θ




= –

cos cos sin sin

2 sin 2 cos

cos
(7.26b)

2
2

3 2 4 2 2 2 3 4 2

4 4 3 4
2 2 2

4 3

3 4
b

a b c a b c

bc b c bc

b c

Equation 7.26a provides the angular acceleration of link 4.  Equation 7.26b pro-
vides the acceleration of slip at point B.  Once these variables are solved for, the linear 
accelerations at points A and B in the linkage of Figure 7‑8 can be found by substituting 
the Euler identity into equations 7.21.
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( ) ( )
( ) ( )

( ) ( )

( ) ( )

= α − θ + θ − ω θ + θ

= α θ − θ + ω θ + θ

+ ω θ − θ − θ + θ

= − α θ − θ − ω θ + θ

 

sin cos cos sin (7.27a)

sin cos cos sin

2 sin cos cos sin (7.27b)

sin cos cos sin (7.27c)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

3 3 3 3 3

4 4 4 4
2

4 4

a j a j

b j b j

b j b j

c j c j

A

BA

B

A

A

A

These components of these vectors are shown in Figure 7‑8b.

7.4	 ACCELERATION ANALYSIS OF THE GEARED FIVEBAR  
LINKAGE

The velocity equation for the geared fivebar mechanism was derived in Section 6.8 and is 
repeated here.  See Figure P7-4 for notation.

0 (6.32a)2 3 4 52 3 4 5a je b je c je d jej j j jω + ω − ω − ω =θ θ θ θ

Differentiate this with respect to time to get an expression for acceleration.

( )
( )

( )
( )

α − ω + α − ω

− α − ω − α − ω =

θ θ θ θ

θ θ θ θ 0 (7.28a)

2 2
2

3 3
2

4 4
2

5 5
2

2 2 3 3

4 4 5 5

a je a e b je b e

c je c e d je d e

j j j j

j j j j

Substitute the Euler equivalents:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

α − θ + θ − ω θ + θ

+ α − θ + θ − ω θ + θ

− α − θ + θ + ω θ + θ

− α − θ + θ + ω θ + θ =

sin cos cos sin

sin cos cos sin

sin cos cos sin

sin cos cos sin 0 (7.28b)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

4 4 4 4
2

4 4

5 5 5 5
2

5 5

a j a j

b j b j

c j c j

d j d j

Note that the angle θ5 is defined in terms of θ2, the gear ratio λ, and the phase angle φ.  
This relationship and its derivatives are:

; ( . )θ = λθ + φ ω = λω α = λα 7 28c5 2 5 2; 5 2

Since a complete position and velocity analysis must be done before an acceleration 
analysis, we will assume that the values of θ5 and ω5 have been found and will leave these 
equations in terms of θ5, ω5, and α5.

Separating the real and imaginary terms in equation 7.28b:

real:

− α θ − ω θ − α θ − ω θ

+ α θ + ω θ + α θ + ω θ =

sin cos sin cos

sin cos sin cos 0 (7.28d)
2 2 2

2
2 3 3 3

2
3

4 4 4
2

4 5 5 5
2

5

a a b b

c c d d
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imaginary:

α θ − ω θ + α θ − ω θ

− α θ + ω θ − α θ + ω θ =

cos sin cos sin

cos sin cos sin 0 (7.28e)
2 2 2

2
2 3 3 3

2
3

4 4 4
2

4 5 5 5
2

5

a a b b

c c d d

The only two unknowns are α3 and α4.  Either equation 7.28d or 7.28e can be solved 
for one unknown and the result substituted in the other.  The solution for α3 is:

( ) ( )
( )

( )

( ) ( )

α =

− α θ − θ − ω θ − θ

− ω θ − θ + ω θ − θ

+ α θ − θ + ω



















θ − θ

sin cos

cos cos

sin

sin
(7.29a)3

2 2 4 2
2

2 4

3
2

3 4 5
2

5 4

5 5 4 4
2

3 4

a a

b d

d c

b

and angular acceleration α4 is:

α

ω

ω ω

α ω

( ) ( )
( ) ( )

( )
( )=

α θ − θ + θ − θ

− θ − θ − θ − θ

+ θ − θ +



















θ − θ

sin cos

cos cos

sin

sin
(7.29b)4

2 2 3 2
2

2 3

4
2

3 4 5
2

3 5

5 3 5 3
2

4 3

a a

c d

d b

c

With all link angles, angular velocities, and angular accelerations known, the linear 
accelerations for the pin joints can be found from:

( ) ( )
( ) ( )

( ) ( )= α − θ + θ − ω θ + θ

= α − θ + θ − ω θ + θ

= α − θ + θ − ω θ + θ

= +

sin cos cos sin (7.29c)

sin cos cos sin (7.29d)

sin cos cos sin (7.29e)

(7.29f)

2 2 2 2
2

2 2

3 3 3 3
2

3 3

5 5 5 5
2

5 5

a j a j

b j b j

c j c j

A

BA

C

B A BA

A

A

A

A A A

7.5	 ACCELERATION OF ANY POINT ON A LINKAGE

Once the angular accelerations of all the links are found, it is easy to define and calculate 
the acceleration of any point on any link for any input position of the linkage.  Figure 
7‑9 shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point 
P.  The crank and rocker have also been enlarged to show points S and U which might 
represent the centers of gravity of those links.  We want to develop algebraic expressions 
for the accelerations of these (or any) points on the links.

To find the acceleration of point S, draw the position vector from the fixed pivot O2 
to point S.  This vector RSO2 makes an angle δ2 with the vector RAO2.  This angle δ2 is 
completely defined by the geometry of link 2 and is constant.  The position vector for 
point S is then:

( ) ( )= = = θ + δ + θ + δ 
( )θ +δR R cos sin (4.29)2 2 2 22

2 2se s jSO S
j
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We differentiated this position vector in Section 6.9 to find the velocity of that point.  
The equation is repeated here for your convenience.

sin cos (6.34)2 2 2 2 2 2
2 2jse s jS

jV ω ω ( ) ( )= = − θ + δ + θ + δ 
( )θ +δ

We can differentiate again versus time to find the acceleration of point S.

A

sin cos (7.30)

cos sin

2 2
2

2 2 2 2 2

2
2

2 2 2 2

2 2 2 2s je s e

s j

s j

S
j j

( ) ( )
( ) ( )

= α − ω

= α − θ + δ + θ + δ 

− ω θ + δ + θ + δ 

( ) ( )θ +δ θ +δ

The position of point U on link 4 is found in the same way, using the angle δ4 which 
is a constant angular offset within the link.  The expression is:

( ) ( )= = θ + δ + θ + δ 
( )θ +δR cos sin (4.30)4 4 4 44

4 4ue u jUO
j

We differentiated this position vector in Section 6.9 to find the velocity of that point.  
The equation is repeated here for your convenience.

sin cos (6.35)4 4 4 4 4 4
4 4jue u jU

jV ( ) ( )= ω = ω − θ + δ + θ + δ 
( )θ +δ

We can differentiate again versus time to find the acceleration of point U.

( ) ( )
( ) ( )

= α − ω

= α − θ + δ + θ + δ 

− ω θ + δ + θ + δ 

( ) ( )θ +δ θ +δ

sin cos (7.31)

cos sin

4 4
2

4 4 4 4 4

4
2

4 4 4 4

4 4 4 4u je u e

u j

u j

U
j jA

FIGURE 7-9
Finding the acceleration of any point on any link
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The acceleration of point P on link 3 can be found from the addition of two accelera-
tion vectors, such as AA and APA.  Vector AA is already defined from our analysis of the 
link accelerations.  APA is the acceleration difference of point P with respect to point A.  
Point A is chosen as the reference point because angle θ3 is defined at a local coordinate 
system whose origin is at A.  Position vector RPA is defined in the same way as RU or RS, 
using the internal link offset angle δ3 and the angle of link 3, θ3.  We previously analyzed 
this position vector and differentiated it in Section 6.9 to find the velocity difference of 
that point with respect to point A.  Those equations are repeated here for your convenience.

( ) ( )

( ) ( )

= = θ + δ + θ + δ 
= +

= ω = ω − θ + δ + θ + δ 
= +

( )

( )

θ +δ

θ +δ

cos sin (4.31a)

(4.31b)

sin cos (6.36a)

(6.36b)

3 3 3 3

3 3 3 3 3 3

3 3

3 3

pe p j

jpe p j

PA
j

P A PA

PA
j

P A PA

R

R R R

V

V V V

We can differentiate equation 6.36 again versus time to find APA, the acceleration of 
point P versus A.  This vector can then be added to the vector AA already found to define 
the absolute acceleration AP of point P.

= + (7.32a)P A PAA A A

where:
ω

( ) ( )
( ) ( )

= α −

= α − θ + δ + θ + δ 

− ω θ + δ + θ + δ 

( ) ( )θ +δ θ +δ

sin cos (7.32b)

cos sin

3 3
2

3 3 3 3 3

3
2

3 3 3 3

3 3 3 3p je p e

p j

p j

PA
j jA

Compare equation 7.32 with equation 7.4.  It is again the acceleration difference 
equation.  Note that this equation applies to any point on any link at any position for 
which the positions and velocities are defined.  It is a general solution for any rigid body.*

7.6	 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes, 
but is very sensitive to acceleration.  Riding in an automobile, in the daylight, one can 
see the scenery passing by and have a sense of motion.  But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long 
as the flight is smooth.  What we will sense in this situation is any change in velocity due 
to atmospheric turbulence, takeoffs, or landings.  The semicircular canals in the inner ear 
are sensitive accelerometers that report to us on any accelerations that we experience.  You 
have no doubt also experienced the sensation of acceleration when riding in an elevator 
and starting, stopping, or turning in an automobile.  Accelerations produce dynamic forces 
on physical systems, as expressed in Newton’s second law, F=ma.  Force is proportional 
to acceleration, for a constant mass.  The dynamic forces produced within the human body 
in response to acceleration can be harmful if excessive. The human body is, after all, not 
rigid.  It is a loosely coupled bag of water and tissue, most of which is quite internally 
mobile.  Accelerations in the headward or footward directions will tend to either starve or 
flood the brain with blood as this liquid responds to Newton’s law and effectively moves 

	

*  The video Fourbar 
Linkage Virtual Labora-
tory shows the measured 
acceleration of the coupler 
point on an actual link-
age mechanism and also 
discusses the reasons for 
differences between the 
measured values and those 
calculated with equation 
7.32.  The measured data 
are also provided.
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within the body in a direction opposite to the imposed acceleration as it lags the motion 
of the skeleton.  Lack of blood supply to the brain causes blackout; excess blood supply 
causes redout.  Either results in death if sustained for a long enough period.

A great deal of research has been done, largely by the military and NASA, to de-
termine the limits of human tolerance to sustained accelerations in various directions.  
Figure 7‑10 shows data developed from such tests.[1]  The units of linear acceleration 
were defined in Table 1-4 as in/sec2, ft/sec2, or m/sec2.  Another common unit for accel-
eration is the g, defined as the acceleration due to gravity, which on earth at sea level is 
approximately 386 in/sec2, 32.2 ft/sec2, or 9.8 m/sec2.    The g is a very convenient unit 
to use for accelerations involving the human as we live in a 1g environment.  Our weight, 
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity or 
mg.  Thus an imposed acceleration of 1g above the baseline of our gravity, or 2g’s, will 
be felt as a doubling of our weight.  At 6g’s we would feel six times as heavy as normal 
and would have great difficulty even moving our arms against that acceleration.  Figure 
7‑10 shows that the body’s tolerance of acceleration is a function of its direction versus 
the body, its magnitude, and its duration.  Note also that the data used for this chart were 
developed from tests on young, healthy military personnel in prime physical condition.  
The general population, children and elderly in particular, should not be expected to be 
able to withstand such high levels of acceleration.  Since much machinery is designed for 
human use, these acceleration tolerance data should be of great interest and value to the 
machine designer.  Several references dealing with these human factors data are provided 
in the bibliography to Chapter 1.

FIGURE 7-10
Human tolerance of acceleration

– Gz

Footward

Headward

+ Gz

Backward

– Gx

0.02 min
Tolerance time

0.1
0.5

1 min

5
10
20

Tolerance time

Average levels of linear acceleration, in dif ferent directions that can be tolerated on a voluntary basis for specified periods .
Each curve shows the average G load that can be tolerated for the time indicated.  The data points obtained were actually
those on the axes;  the lines as such are extrapolated from the data points to form the concentric figures.

 (Source: Adapted from reference [1], Fig. 17-17, p. 505, reprinted with permission)
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4

8

12

16

4

8

4 4 8 12 1 6 2081216202428



DESIGN OF MACHINERY 6ed     CHAPTER  7384

7

Another useful benchmark when designing machinery for human occupation is to 
attempt to relate the magnitudes of accelerations that you commonly experience to the 
calculated values for your potential design.  Table 7‑1 lists some approximate levels of 
acceleration, in g’s, that humans can experience in everyday life.  Your own experience 
of these will help you develop a “feel” for the values of acceleration that you encounter 
in designing machinery intended for human occupation.

Acceleration levels in machinery that does not carry humans is limited only by con-
siderations of the stresses in its parts.  These stresses are often generated in large part by 
the dynamic forces due to accelerations.  The range of acceleration values in such machin-
ery is so wide that it is not possible to comprehensively define any design guidelines for 
acceptable or unacceptable levels of acceleration.  If the moving mass is small, then very 
large numerical values of acceleration are reasonable.  If the mass is large, the dynamic 
stresses that the materials can sustain may limit the allowable accelerations to low values.  
Unfortunately, the designer usually does not know how much acceleration is too much in 
a design until completing it to the point of calculating stresses in the parts.  This usually 
requires a fairly complete and detailed design.  If the stresses turn out to be too high and 
are due to dynamic forces, then the only recourse is to iterate back through the design 
process and reduce the accelerations and/or masses in the design.  This is one reason that 
the design process is a circular and not a linear one.

As one point of reference, the acceleration of the piston in a small, four-cylinder 
economy car engine (about 1.5-L displacement) at idle speed is about 40g’s.  At highway 
speeds the piston acceleration can be as high as 700g’s.  At the engine’s top speed of 6000 
rpm the peak piston acceleration is 2000g’s!  As long as you’re not riding on the piston, 
this is acceptable.  These engines last a long time in spite of the high accelerations their 
components experience.  One key factor is the choice of proper part geometry and use 
of low-mass, high-strength, high-stiffness materials for the moving parts to minimize 
dynamic forces at high acceleration and enable the parts to tolerate the applied stresses.

Acceleration Levels Commonly Encountered in Human ActivitiesTABLE 7-1

Gentle acceleration in an automobile

Commercial jet aircraft on takeo


NASA space shuttle on takeo


     +0.1 g

+0.3 g

Hard acceleration in an automobile     +0.5 g

Panic stop in an automobile      –0.7 g

Fast cornering in a sports car (e.g., BMW, Corvette, Porsche, Ferrari)  +0.9 g to +1.0g

Formula 1 race car       +2.0 g, –4.0 g

Roller coasters (various)      ±3.5 to ±6.5 g*

+4.0 g

Top fuel dragster with drogue chute (>300 mph in 1/4 mile)   ±4.5 g

Military jet fighter (e.g., F-15, F-16, F-22, F-35—note: pilot wears a G-suit)  ±9.0 g
 
*Some U.S. state laws currently limit roller coaster accelerations to a maximum of 5.0 to 5.4 g.
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7.7	 JERK

No, not you!  The time derivative of acceleration is called jerk, pulse, or shock.  The 
name is apt, as it conjures the proper image of this phenomenon.  Jerk is the time rate of 
change of acceleration.  Force is proportional to acceleration.  Rapidly changing accelera-
tion means a rapidly changing force.  Rapidly changing forces tend to “jerk” the object 
about!  You have probably experienced this phenomenon when riding in an automobile.  
If the driver is inclined to “jackrabbit” starts and accelerates violently away from the 
traffic light, you will suffer from large jerk because your acceleration will go from zero 
to a large value quite suddenly.  But, when Jeeves, the chauffeur, is driving the Rolls, he 
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame is 
entirely unaware of the change.

Controlling and minimizing jerk in machine design is often of interest, especially if 
low vibration is desired.  Large magnitudes of jerk will tend to excite the natural frequen-
cies of vibration of the machine or structure to which it is attached and cause increased 
vibration and noise levels.  Jerk control is of greater interest in the design of cams than of 
linkages, and we will investigate it in greater detail in Chapter 8 on cam design.

The procedure for calculating the jerk in a linkage is a straightforward extension of 
the methods shown for acceleration analysis.  Let angular jerk be represented by:

ϕ α= d
dt

(7.33a)

and linear jerk by:

J A (7.33b)d
dt

=

To solve for jerk in a fourbar linkage, for example, the vector loop equation for ac-
celeration (equation 7.7) is differentiated versus time.  Refer to Figure 7‑5 for notation.

− − + +

−

a je a e a j e a je

b

j j j jω ω α α ω ϕ

ω

θ θ θ θ
2
3

2 2 2 2
2

2

3
3

2 2 2 22

jje b e b j e b je

c je

j j j j

j

θ θ θ θ

θ

ω α α ω ϕ

ω

3 3 3 32 3 3 3 3
2

3

4
3

− + +

+ 44 4 4 42 04 4 4 4
2

4+ − − =c e c j e c jej j jω α α ω ϕθ θ θ (7.34a)

Collect terms and simplify:

− − +

− −

a je a e a je

b je b

j j j

j

ω ω α ϕ

ω ω α

θ θ θ

θ
2
3

2 2 2

3
3
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3

3
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θ θ

θ θ θ

ϕ
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4 4 4

3

4
3

4 4 43 0

+

+ + − = (77.34b)

Substitute the Euler identity and separate into x and y components:

real part (x component):
a a a

b b

ω θ ω α θ ϕ θ

ω θ ω α
2
3

2 2 2 2 2 2

3
3

3 3 3

3

3

sin cos sin

sin

− −

+ − ccos sin

sin cos sin

θ ϕ θ

ω θ ω α θ ϕ θ
3 3 3

4
3

4 4 4 4 4 43

−

− + + =

b

c c c 00 (7.35a)
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imaginary part (y component):
− − +

− −

a a a

b b

ω θ ω α θ ϕ θ

ω θ ω α
2
3

2 2 2 2 2 2

3
3

3 3

3

3

cos sin cos

cos 33 3 3 3

4
3

4 4 4 4 4 43

sin cos

cos sin cos

θ ϕ θ

ω θ ω α θ ϕ θ

+

+ + −

b

c c c == 0 (7.35b)

These can be solved simultaneously for ϕ3 and ϕ4, which are the only unknowns.  
The driving angular jerk, ϕ2, if nonzero, must be known in order to solve the system.  All 
the other factors in equations 7.35 are defined or have been calculated from the position, 
velocity, and acceleration analyses.  To simplify these expressions we will set the known 
terms to temporary constants.

In equation 7.35a, let:

A a D b G c
B a

= = =
=

ω θ ω θ ω α θ
ω α θ
2
3

2 3
3

3 4 4 4

2 2

3
3

sin sin cos
cos 22 3 3 3 4

2 2 4
3

3E b H c

C a F c

= =

= =

ω α θ θ

ϕ θ ω

cos sin

sin s

(7.36a)

iin sinθ θ4 3K b=

Equation 7.35a then reduces to:

ϕ
ϕ

3
4=

− − + − − + +A B C D E F G H
K

(7.36b)

Note that equation 7.36b defines angle ϕ3 in terms of angle ϕ4.  We will now simplify 
equation 7.35b and substitute equation 7.36b into it.

In equation 7.35b, let:

L a P b S c
M a Q

= = =
=

ω θ ω θ ω θ
ω α θ
2
3

2 3
3

3 4
3

4

2 2 23
cos cos cos

sin == =
= =

3 33 3 3 4 4 4

2 2

b T c
N a R b

ω α θ ω α θ
ϕ θ

sin sin
cos c

(7.37a)
oos cosθ θ3 4U c=

Equation 7.35b then reduces to:

R U L M N P Q S Tϕ ϕ3 4 0− − − + − − + + = (7.37b)

Substituting equation 7.36b in equation 7.35b:

R
A B C D E F G H

K
U L M N P Q S T

− − + − − + +





− − − + − − + + =
ϕ

ϕ4
4 0 (7..38)

The solution is:

ϕ4 = − − − − + − − + − − + + +
−

KN KL KM KP KQ AR BR CR DR ER FR GR KS KT
KU HHR

( . )7 39

The result from equation 7.39 can be substituted into equation 7.36b to find ϕ3.  Once 
the angular jerk values are found, the linear jerk at the pin joints can be found from:

J

J
A

j j j

BA
j

a je a e a je

b je

= − − +

= −

ω ω α ϕ

ω

θ θ θ

θ
2
3

2 2 2

3
3
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3

3

−− +

= − −

3

3
3 3 3

4
3

4 4

3 3

4

b e b je

c je c

j j

B
j

ω α ϕ

ω ω α

θ θ

θ

(7.40)

J ee c jej jθ θϕ4 4
4+

Topic/Problem Matrix

 7.1 Definition of Acceler-
ation

7-1, 7-2, 7-10, 7-56
 7.2 Graphical Accelera-

tion Analysis

Pin-Jointed Fourbar
7-3, 7-14a, 7-21,  
7-24, 7-30, 7-33,  
7-70a, 7-72a, 7-77
Fourbar Crank-Slider
7-5, 7-13a, 7-27, 7-36, 
7-89, 7-91
Fourbar Slider-Crank 
7-93
Other Fourbar  7-15a
Fivebar  7-79
Sixbar
7-52, 7-53, 7-61a, 
7-63a, 7-65a, 7-75,  
7-82
Eightbar  7-86

 7.3 Analytic Solutions for 
Acceleration Analysis

Pin-Jointed Fourbar
7-22, 7-23, 7-25,  
7-26, 7-34, 7-35,  
7-41, 7-46, 7-51,  
7-70b, 7-71, 7-72b
Fourbar Crank-Slider
7-6, 7-28, 7-29, 7-37, 
7-38, 7-45, 7-50, 
7-58, 7-90, 7-92
Fourbar Slider-Crank 
7-94
Coriolis Acceleration  
7-12, 7-20
Fourbar Inverted 
Crank-Slider
7-7, 7-8, 7-16, 7-59
Other Fourbar
7-15b, 7-74
Fivebar  7-80, 7-81
Sixbar
7-17, 7-18, 7-19,  
7-48, 7-54, 7-61b,  
7-62, 7-63b, 7-64,  
7-65b, 7-66, 7-76, 
7-83, 7-84, 7-85
Eightbar  7-67

 

TABLE  P7-0 Part 1
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The same approach as used in Section 7.5 to find the acceleration of any point on any 
link can be used to find the linear jerk at any point.

= + (7.41)P A PAJ J J

The jerk difference equation 7.41 can be applied to any point on any link if we let P 
represent any arbitrary point on any link and A represent any reference point on the same 
link for which we know the value of the jerk vector.  Note that if you substitute equations 
7.40 into 7.41, you will get equation 7.34.

7.8	 LINKAGES OF N BARS

The same analysis techniques presented here for position, velocity, acceleration, and jerk, 
using the fourbar and fivebar linkage as the examples, can be extended to more complex 
assemblies of links.  Multiple vector loop equations can be written around a linkage of 
arbitrary complexity.  The resulting vector equations can be differentiated and solved 
simultaneously for the variables of interest.  In some cases, the solution will require 
simultaneous solution of a set of nonlinear equations.  A root-finding algorithm such as 
the Newton-Raphson method will be needed to solve these more complicated cases.  A 
computer is necessary.  An equation solver software package such as TKSolver or Mathcad 
that will do an iterative root-finding solution will be a useful aid to the solution of any of 
these analysis problems, including the examples shown here.

7.9	 REFERENCE
	 1	 Sanders, M. S., and E. J. McCormick. (1987).  Human Factors in Engineering and Design, 6th 

ed., McGraw-Hill Co., New York. p. 505.

7.10	 PROBLEMS§

	 7‑1	 A point at a 6.5-in radius is on a body that is in pure rotation with ω = 100 rad/sec and 
a constant α = –500 rad/sec2 at point A.  The rotation center is at the origin of a coordi-
nate system.  When the point is at position A, its position vector makes a 45° angle with 
the X axis.  It takes 0.01 sec to reach point B.  Draw this system to some convenient 
scale, calculate the θ and ω of position B, and:
a.	 Write an expression for the particle’s acceleration vector in position A using complex 

number notation, in both polar and cartesian forms.
b.	 Write an expression for the particle’s acceleration vector in position B using complex 

number notation, in both polar and cartesian forms.
c.	 Write a vector equation for the acceleration difference between points B and A.  

Substitute the complex number notation for the vectors in this equation and solve 
for the acceleration difference numerically.

d.	 Check the result of part c with a graphical method.
	 7‑2	 In problem 7‑1 let A and B represent points on separate, rotating bodies both having the 

given ω and α at t = 0,  θA = 45°, and θB = 120°.  Find their relative acceleration. 

	 *7‑3	 The link lengths, coupler point location, and the values of θ2, ω2, and α2 for the same 
fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are 
redefined in Table P7-1, which is basically the same as Table P6‑1.  The general link-

	
§  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files.  PDF filenames are the 
same as the figure number.  
Run the file Animations.
html to access and run the 
animations.

	
* Answers in Appendix F.

Topic/Problem Matrix

 7.5 Acceleration of Any 
Point on a Linkage

Pin-Jointed Fourbar
7-4, 7-13b, 7-14b, 
7-31, 7-32, 7-39, 
7-40, 7-42, 7-43, 
7-44, 7-49, 7-55, 
7-68, 7-70b, 7-71, 
7-72b, 7-73, 7-78
Other Fourbar
7-15b, 7-47
Geared Fivebar
7-9, 7-60
Sixbar
7-69, 7-87, 7-88

 7.7 Jerk

7-11, 7-57
 

TABLE  P7-0 Part 2
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age configuration and terminology are shown in Figure P7‑1.  For the row(s) assigned, 
draw the linkage to scale and graphically find the accelerations of points A and B.  Then 
calculate α3 and α4 and the acceleration of point P.

	 *†7‑4	 Repeat Problem 7‑3, solving by the analytical vector loop method of Section 7.3.

	 *7‑5	 The link lengths and offset and the values of θ2, ω2, and α2 for some noninverted, 
offset fourbar crank-slider linkages are defined in Table P7-2. The general linkage con-
figuration and terminology are shown in Figure P7‑2.  For the row(s) assigned, draw 
the linkage to scale and graphically find the accelerations of the pin joints A and B and 
the acceleration of slip at the sliding joint.

	 *†7‑6	 Repeat Problem 7‑5 using an analytical method.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-1
Configuration and terminology for Problems 7-3, 7-4, and 7-11

A

B

X

Y

x

y

2

3

4

RPA P

ω2

O2 O4
1

θ3

θ2

θ4

δ3

α2

Row Link 1 Link 2 Link 3 Link 4 θ2 ω2 α2 Rpa δ3

30
25
80
45

300
120
300

20
80

0
330
180
90
60

6
9

10
5
9

10
4
6
9
1

10
5

10
15

0
5

–10
– 4
10
50
18
25

– 25
– 40

30
20
– 5

– 65

10
– 12
– 15

24
– 50
– 45
100

– 65
25
25

– 80
– 90

75
15

30
85
45
25
75
15
25
50
80
33
88
60
50

120

9
8
8
6
6
9
9

10
5

10
7
7
8
6

7
3
6
7
8
8
8

10
2
5

10
10
11
11

2
9

10
5
5
8
8

10
5

10
6
7
7
7

6
7
3
8
8
5
6

20
4

20
4
9
9
9

a
b
c
d
e
f
g
h
i
j
k
l

m
n

TABLE  P7-1 Data for Problems 7-3, 7-4, and 7-11‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.
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	 *†7‑7	 The link lengths and the values of θ2, ω2, and γ for some inverted fourbar crank-slider 
linkages are defined in Table P7‑3. The general linkage configuration and terminology 
are shown in Figure P7‑3.  For the row(s) assigned, find accelerations of the pin joints 
A and the acceleration of slip at the sliding joint.   Solve by the analytical vector loop 
method of Section 7.3 for the open configuration of the linkage.

	 *†7‑8	 Repeat Problem 7‑7 for the crossed configuration of the linkage.

	 *7‑9	 The link lengths, gear ratio (λ), phase angle (φ), and the values of θ2, ω2, and α2 for 
some geared fivebar linkages are defined in Table P7‑4.  The general linkage configura-
tion and terminology are shown in Figure P7‑4.  For the row(s) assigned, find α3 and 
α4 and the linear acceleration of point P.

	 †7‑10	 An automobile driver took a curve too fast.  The car spun out of control about its center 
of gravity (CG) and slid off the road in a northeasterly direction.  The friction of the 
skidding tires provided a 0.25 g linear deceleration.  The car rotated at 100 rpm.  When 
the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest.
a.	 What was the acceleration experienced by the child seated on the middle of the rear 

seat, 2 ft behind the car’s CG, just prior to impact?
b.	 What force did the 100-lb child exert on her seatbelt harness as a result of the 

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-2
Configuration and terminology for Problems 7-5 to 7-6, 7-58, and 7-93 to 7-94

O2

θ3

θ4 = 90°
Offset

A

B

X

Y

2θ

Slider position   d,

Link 2

Link 3
x

y

ω2

α2

d, d
. ..

Row Link 2 Link 3 Offset θ2 ω2 α2

a
b
c
d
e
f
g

1.4
2
3
3.5
5
3
7

4
6
8

10
20
13

25

1
–3

2
1

–5
0

10

45
60

– 30
120
225
100
330

10
– 12
– 15

24
– 50
– 45
100

0
5

–10
– 4
10
50
18

TABLE  P7-2 Data for Problems 7-5 to 7-6 and 7-58‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.
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acceleration, just prior to impact?
c.	 Assuming a constant deceleration during the  0.1 sec of impact, what was the mag-

nitude of the average deceleration felt by the passengers in that interval?
	 †7‑11	 For the row(s) assigned in Table P7‑1, find the angular jerk of links 3 and 4 and the 

linear jerk of the pin joint between links 3 and 4 (point B).  Assume an angular jerk of 
zero on link 2.  The linkage configuration and terminology are shown in Figure P7‑1.

	 *†7‑12	 You are riding on a carousel that is rotating at a constant 12 rpm.  It has an inside 
radius of 4 ft and an outside radius of 12 ft.  You begin to run from the inside to the 
outside along a radius.  Your peak velocity with respect to the carousel is 4 mph and 
occurs at a radius of 8 ft.  What are your maximum Coriolis acceleration magnitude 
and its direction with respect to the carousel?

	 7-13	 The linkage in Figure P7‑5a has O2A = 0.8, AB = 1.93, AC = 1.33, and  
offset = 0.38 in.  The crank angle in the position shown is 34.3° and angle BAC = 
38.6°.  Find α3, AA, AB, and AC for the position shown for ω2 = 15 rad/sec and α2 = 10 
rad/sec2 in directions shown:
  a.	 Using the acceleration difference graphical method.
†b.	 Using an analytical method.

	 7-14	 The linkage in Figure P7‑5b has I12A = 0.75, AB = 1.5, and AC = 1.2 in.  The effective 
crank angle in the position shown is 77° and angle BAC = 30°.  Find α , A , A , and 

θ3
θ4

γ

ω2 θ2

α2

FIGURE P7-3
Configuration and terminology for Problems 7-7 to 7-8 and 7-59

RB

O2 O4

3

4

1

A

X

Y

x

y

B

2

Row Link 1 Link 2 Link 4 γ θ2 ω2 α 2

a
b
c
d
e
f

6
7
3
8
8
5

2
9

10
5
4
8

4
3
6
3
2
8

90
75
45
60
30
90

30
85
45
25
75

150

10
–15
24

–50
–45
100

–25
–40

30
20
–5

–65

TABLE  P7-3 Data for Problems 7-7 to 7-8 and 7-59

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

AC for the position shown for ω2 = 15 rad/sec and α2 = 10 rad/sec2 in the directions 
shown:
 a.	 Using the acceleration difference graphical method.
†b.	 Using an analytical method.  (Hint: Create an effective linkage for the position 

shown and analyze it as a pin-jointed fourbar.)
	 7‑15	 The linkage in Figure P7‑5c has AB = 1.8 and AC = 1.44 in.  The angle of AB in the 

position shown is 128° and angle BAC = 49°.  The slider at B is at an angle of 59°.  
Find α3, AB, and AC for the position shown for VA = 10 in/sec and AA = 15 in/sec2 in 
the directions shown:
 a.	 Using the acceleration difference graphical method.
†b.	 Using an analytical method.

	 †7-16	 The linkage in Figure P7‑6a has O2A = 5.6, AB = 9.5, O4C = 9.5, L1 = 38.8 mm.  θ2 is 
135° in the xy coordinate system.  Write the vector loop equations; differentiate them, 
and do a complete position, velocity, and acceleration analysis of the linkage.  Assume 
ω2 = 10 rad/sec and α2 = 20 rad/sec2.  

θ3

θ2

θ4

θ5
ω2

λ __r2

r5
= ±

φ 2λθ5θ

α2

FIGURE P7-4
Configuration and terminology for Problems 7-9 and 7-60

P

X

Y

x

y

x

y

A

B

C

O5O2

3 4

1

2 5

r2 r5

Phase angle:  = –

Gear ratio:

δ3

30
25
80
45

300
120
300

20
80

Rpa

6
9

10
5
9

10
4
6
9

α2

0
5

– 10
– 4
10
50
18
25

– 25

ω2

10
– 12
– 15

24
– 50
– 45
100

– 65
25

θ2

60
30
45
75

– 39
120
75
55

100

φ

30
60

0
120

– 50
30

– 90
60

120

λ

2.0
– 2.5
– 0.5
– 1.0

3.2
1.5
2.5

– 2.5
– 4.0

Link 5

4
4
4
4
8
3
4
4
4

Link 4

9
8
8
8
8
5
11
9
9

Link 3

7
7
7
7
11
7
9
7
8

Link 2

1
5
5
5
9
2
7
8
7

Link 1

6
6
3
4
5

10
15
12
9

Row

a
b
c
d
e
f
g
h
i

TABLE  P7-4 Data for Problem 7-9 and 7-60



DESIGN OF MACHINERY 6ed     CHAPTER  7392

7

	 †7-17	 Repeat Problem 7-16 for the linkage shown in Figure P7-6b which has the dimensions:  
L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1, L5 = 23.1 mm.  θ2 is 68.3° in the xy coordi-
nate system, which is at –23.3° in the XY coordinate system.   The X component of O2C 
is 59.2 mm.  

	 †7-18	 Repeat Problem 7-16 for the linkage shown in Figure P7-6c which has the dimensions: 
O2A = 11.7, O2C = 20, L3 = 25, L5 = 25.9 mm.  Point B is offset 3.7 mm from the x1 
axis and point D is offset 24.7 mm from the x2 axis.  θ2 is at 13.3° in the x2y2 coordi-
nate system.

	 †7-19	 Repeat Problem 7-16 for the linkage shown in Figure P7-6d which has the dimensions: 
L2 = 15, L3 = 40.9, L5 = 44.7 mm.  θ2 is 24.2° in the XY coordinate system.

( a ) (b )
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Problems 7-16 to 7-19
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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	 †7-20	 Figure P7-7 shows a sixbar linkage with O2B = 1, BD = 1.5, DC = 3.5, DO6 = 3, and 
h = 1.3 in.  Find the angular acceleration of link 6 if ω2 is a constant 1 rad/sec.

	 *7-21	 The linkage in Figure P7-8a has link 1 at –25° and link 2 at 37° in the global XY co-
ordinate system.  Find α4, AA, and AB in the global coordinate system for the position 
shown if ω2 = 15 rad/sec CW and α2 = 25 rad/sec2 ccw.  Use the acceleration differ-
ence graphical method.  (Print the figure from its PDF file and draw on it.)

	 †7-22	 The linkage in Figure P7-8a has link 1 at –25° and link 2 at 37° in the global XY co-
ordinate system.  Find α4, AA, and AB in the global coordinate system for the position 
shown if ω2 = 15 rad/sec CW and α2 = 25 rad/sec2 ccw.  Use an analytical method.

	 †7-23	 At t = 0, the non-Grashof linkage in Figure P7-8a has link 1 at –25° and link 2 at 37° 
in the global XY coordinate system and ω2 = 0.  Write a computer program or use an 
equation solver to find and plot ω4, α4, VA, AA, VB, and AB in the local coordinate 
system for the maximum range of motion that this linkage allows if α2 = 15 rad/sec 
CW constant.  

	 *7-24	 The linkage in Figure P7-8b has link 1 at –36° and link 2 at 57° in the global XY co-
ordinate system.  Find α4, AA, and AB in the global coordinate system for the position 
shown if ω2 = 20 rad/sec ccw, constant.  Use the acceleration difference graphical 
method.  (Print the figure from its PDF file and draw on it.)

	 †7-25	 The linkage in Figure P7-8b has link 1 at –36° and link 2 at 57° in the global XY co-
ordinate system.  Find α4, AA, and AB in the global coordinate system for the position 
shown if ω2 = 20 rad/sec ccw, constant.  Use an analytical method.

	 †7-26	 For the linkage in Figure P7-8b, write a computer program or use an equation solver to 
find and plot α4, AA, and AB in the local coordinate system for the maximum range of 
motion that this linkage allows if ω2 = 20 rad/sec ccw, constant.  

	 7-27	 The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coor-
dinate system.  Find AA and AB in the global coordinate system for the position shown 
if ω2 = 25 rad/sec CW, constant.  Use the acceleration difference graphical method.  
(Print the figure from its PDF file and draw on it.)

	 *†7-28	 The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coordi-
nate system.  Find AA and AB in the global coordinate system for the position shown if 
ω2 = 25 rad/sec CW, constant.  Use an analytical method.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
*  Answers in Appendix F.

FIGURE P7-7
Problem 7-20
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† 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	

* Answers in Appendix F.
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	 †7-29	 For the offset crank-slider linkage in Figure P7-8f, write a computer program or use 
an equation solver to find and plot AA and AB in the global coordinate system for the 
maximum range of motion that this linkage allows if ω2 = 25 rad/sec CW, constant.  

	 7-30	 The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system.  Find 
AA, AB, and Abox (the acceleration of the box) in the global coordinate system for the po-
sition shown if ω2 = 30 rad/sec CW, constant.  Use the acceleration difference graphical 
method.  (Print the figure from its PDF file and draw on it.)

	 †7-31	 The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system.  Find 
AA, AB, and Abox (the acceleration of the box) in the global coordinate system for the 
position shown if ω2 = 30 rad/sec CW, constant.  Use an analytical method.

	 †7-32	 For the linkage in Figure P7-8d, write a computer program or use an equation solver 
to find and plot AA, AB, and Abox (the acceleration of the box) in the global coordinate 
system for the maximum range of motion that this linkage allows if ω2 = 30 rad/sec 
CW, constant.  

	 7-33	 The linkage in Figure P7-8g has the local xy axis at –119° and O2A at 29° in the global 
XY coordinate system.  Find α4, AA, and AB in the global coordinate system for the 
position shown if ω2 = 15 rad/sec CW, constant.  Use the acceleration difference 
graphical method.  (Print the figure from its PDF file and draw on it.)

	 †7-34	 The linkage in Figure P7-8g has the local xy axis at –119° and O2A at 29° in the global 
XY coordinate system.  Find α4, AA, and AB in the global coordinate system for the 
position shown if ω2 = 15 rad/sec CW and α2 = 10 rad/sec ccw, constant.  Use an 
analytical method.

	 †7-35	 At t = 0, the non-Grashof linkage in Figure P7-8g has the local xy axis at –119° and 
O2A at 29° in the global XY coordinate system and ω2 = 0.  Write a computer program 
or use an equation solver to find and plot ω4, α4, VA, AA, VB, and AB in the local coor-
dinate system for the maximum range of motion that this linkage allows if α2 = 15 rad/
sec ccw, constant.  

	 7-36	 The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 
120°.  Find the piston accelerations A6, A7, A8 with the crank at –53° using a graphical 
method if ω2 = 15 rad/sec CW, constant.  (Print the figure’s PDF file and draw on it.)

	 †7-37	 The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 120°.  
Find the piston accelerations A6, A7, A8 with the crank at –53° using an analytical 
method if ω2 = 15 rad/sec CW, constant.

	 †7-38	 For the 3-cylinder radial compressor in Figure P7-8f, write a program or use an equa-
tion solver to find and plot the piston accelerations A6, A7, A8 for one revolution of the 
crank.

	 *†7-39	 Figure P7-9 shows a linkage in one position.  Find the instantaneous accelerations of 
points A, B, and P if link O2A is rotating CW at 40 rad/sec.

	 *†7-40	 Figure P7-10 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the acceleration 
of the coupler point P at 2° increments of crank angle for ω2 = 100 rpm.  Check your 
result with program Linkages.

	 *†7-41	 Figure P7-11 shows a linkage that operates at 500 crank rpm.  Write a computer 
program or use an equation solver to calculate and plot the magnitude and direction 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	

* Answers in Appendix F.

Problem 7-39
FIGURE P7-9
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of the acceleration of point B at 2° increments of crank angle.  Check your result with 
program Linkages.

	 *†7-42	 Figure P7-12 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2° increments of crank angle for ω2 = 20 rpm over the 
maximum range of motion possible.  Check your result with program Linkages.

	 †7-43	 Figure P7-13 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the acceleration 
of the coupler point P at 2° increments of crank angle for ω2 = 80 rpm over the maxi-
mum range of motion possible.  Check your result with program Linkages.

	 *†7-44	 Figure P7-14 shows a linkage and its coupler curve.  Write a computer program or use 
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2° increments of crank angle for ω2 = 80 rpm over the 
maximum range of motion possible.  Check your result with program Linkages.

	 †7-45	 Figure P7-15 shows a power hacksaw, used to cut metal.  Link 5 pivots at O5 and its 
weight forces the sawblade against the workpiece while the linkage moves the blade 
(link 4) back and forth on link 5 to cut the part.  It is an offset crank-slider mechanism 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
*  Answers in Appendix F.
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

with the dimensions shown in the figure.  Draw an equivalent linkage diagram, and 
then calculate and plot the acceleration of the sawblade with respect to the piece being 
cut over one revolution of the crank at 50 rpm.

	 †7-46	 Figure P7-16 shows a walking-beam indexing and pick-and-place mechanism that can be 
analyzed as two fourbar linkages driven by a common crank.  The link lengths are given 
in the figure.  The phase angle between the two crankpins on links 4 and 5 is indicated.  
The product cylinders being pushed have 60-mm diameters.  The point of contact between 
the left vertical finger and the leftmost cylinder in the position shown is 58 mm at 80° 
versus the left end of the parallelogram's coupler (point D).  Calculate and plot the relative 
acceleration between points E and P for one revolution of gear 2.

	 †7-47	 Figure P7-17 shows a paper roll off-loading mechanism driven by an air cylinder.  In 
the position shown  O4A is 0.3 m at 226° and O2O4 = 0.93 m at 163.2°.  The V-links 
are rigidly attached to O4A.  The paper roll center is 0.707 m from O4 at –181° with 
respect to O4A.  The air cylinder is retracted at a constant acceleration of 0.1 m/sec2.  
Draw a kinematic diagram of the mechanism, write the necessary equations, and calcu-
late and plot the angular acceleration of the paper roll and the linear acceleration of its 
center as it rotates through 90° ccw from the position shown.
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	 †7-48	 Figure P7-18 shows a mechanism and its dimensions.  Find the accelerations of points 

A, B, and C for the position shown if ω2 = 40 rad/min and α2 = –1500 rad/min2 as 
shown.

	 †7-49	 Figure P7-19 shows a walking-beam mechanism.  Calculate and plot the acceleration 
Aout for one revolution of the input crank 2 rotating at 100 rpm.

	 †7-50	 Figure P7-20 shows a surface grinder.  The workpiece is oscillated under the spinning 
90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm crank, 
a 157-mm connecting rod, and a 40-mm offset.  The crank turns at 30 rpm, and the 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P7-15 
Problem 7-45   Power hacksaw

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi
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Problem 7-46   Walking-beam indexer with pick-and-place mechanism

View as a video
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FIGURE P7-18
Problem 7-48 
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

grinding wheel turns at 3450 rpm.  Calculate and plot the acceleration of the grinding 
wheel contact point relative to the workpiece over one revolution of the crank.

	 †7-51	 Figure P7-21 shows a drag link mechanism with dimensions.  Write the necessary 
equations and solve them to calculate the angular acceleration of link 4 for an input of 
ω2 = 1 rad/sec.  Comment on uses for this mechanism.

	 7-52	 Figure P7-22 shows a mechanism with dimensions.  Use a graphical method to calculate 
the accelerations of points A, B, and C for the position shown.  ω2 = 20 rad/sec.

	 7-53	 Figure P7-23 shows a quick-return mechanism with dimensions.  Use a graphical 
method to calculate the accelerations of points A, B, and C for the position shown.  ω2 
= 10 rad/sec.

	 †7-54	 Figure P7-23 shows a quick-return mechanism with dimensions.  Use an analytical 
method to calculate the accelerations of points A, B, and C for one revolution of the 
input link.  ω2 = 10 rad/sec.

FIGURE P7-20
Problem 7-50  A surface grinder
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View as a video
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FIGURE P7-19
Problem 7-49  Straight-line walking-beam eightbar transport mechanism
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FIGURE P7-21
Problem 7-51 

	
*  Answers in Appendix F.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-22 
Problems 7-52 and 7-89 to 7-90
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	 †7-55	 Figure P7-24 shows a drum-pedal mechanism.  O2A = 100 mm at 162° and rotates to 
171° at A’.  O2O4 = 56 mm, AB = 28 mm, AP = 124 mm, and O4B = 64 mm.  The 
distance from O4 to Fin is 48 mm.  If the input velocity Vin is a constant magnitude of 3 
m/sec, find the output acceleration over the range of motion.

	 *†7-56	 A tractor-trailer tipped over while negotiating an on-ramp to the New York Thruway.  
The road has a 50-ft radius at that point and tilts 3° toward the outside of the curve.  
The 45-ft-long by 8-ft-wide by 8.5-ft-high trailer box (13 ft from ground to top) was 
loaded with 44 415 lb of paper rolls in two rows by two layers as shown in Figure 
P7‑25.  The rolls are 40 in diameter by 38 in long, and weigh about 900 lb each.  They 
are wedged against backward rolling but not against sideward sliding.  The empty 

FIGURE P7-24
Problem 7-55
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View as a video
http://www.designofma-

chinery.com/DOM/drum_
pedal.avi

http://www.designofmachinery.com/DOM/drum_pedal.avi


DESIGN OF MACHINERY 6ed     CHAPTER  7402

7

trailer weighed 14 000 lb.  The driver claims that he was traveling at less than 15 mph 
and that the load of paper shifted inside the trailer, struck the trailer sidewall, and tipped 
the truck.  The paper company that loaded the truck claims the load was properly stowed 
and would not shift at that speed.  Independent tests of the coefficient of friction between 
similar paper rolls and a similar trailer floor give a value of 0.43 ± 0.08.  The composite 
center of gravity of the loaded trailer is estimated to be 7.5 ft above the road.  Determine 
the truck speed that would cause the truck to just begin to tip and the speed at which the 
rolls will just begin to slide sideways.  What do you think caused the accident?

FIGURE P7-23 
Problems 7-53 to 7-54 and 7-91 to 7-92
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	 †7-57	 Figure P7-26 shows a V-belt drive.  The sheaves have pitch diameters of 150 and 300 
mm, respectively.  The smaller sheave is driven at a constant 1750 rpm.  For a cross-
sectional differential element of the belt, write the equations of its acceleration for one 
complete trip around both sheaves including its travel between the sheaves.  Compute 
and plot the acceleration of the differential element versus time for one circuit around 
the belt path.  What does your analysis tell about the dynamic behavior of the belt?  
Relate your findings to your personal observation of a belt of this type in operation.  
(Look in your school’s machine shop or under the hood of an automobile—but mind 
your fingers!)

	 †7-58	 Write a program using an equation solver or any computer language to solve for the 
displacements, velocities, and accelerations in an offset crank-slider linkage as shown 
in Figure P7-2.  Plot the variation in all links’ angular and all pins’ linear positions, 
velocities, and accelerations with a constant angular velocity input to the crank over 
one revolution for both open and crossed configurations of the linkage.  To test the pro-
gram, use data from row a of Table P7-2.  Check your results with program Linkages.

	 †7-59	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in an inverted crank-
slider linkage as shown in Figure P7-3.  Plot the variation in all links’ angular and all 
pins’ linear positions, velocities, and accelerations with a constant angular velocity 
input to the crank over one revolution for both open and crossed configurations of the 
linkage.  To test the program, use data from row e of Table P7-3 except for the value of 
α2 which will be set to zero for this exercise.

	 †7-60	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in a geared fivebar 
linkage as shown in Figure P7-4.  Plot the variation in all links’ angular and all pins’ 
linear positions, velocities, and accelerations with a constant angular velocity input to 
the crank over one revolution for both open and crossed configurations of the link-
age.  To test the program, use data from row a of Table P7-4 .  Check your results with 
program Linkages.

	 7-61	 Find the acceleration of the slider in Figure 3-33 for the position shown if θ2 = 110° 
with respect to the global X axis assuming a constant ω2 = 1 rad/sec CW:
a.	 Using a graphical method.	 †b.      Using an analytical method.

	 †7-62	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 4 and the linear acceleration 
of slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle 
of input link 2 for a constant ω2 = 1 rad/sec CW.  Plot Ac both as a function of θ2 and 
separately as a function of slider position as shown in the figure.  

	 7-63	 Find the angular acceleration of link 6 of the linkage in Figure 3-34 part (b) for the position 
shown (θ6 = 90° with respect to the x axis) assuming constant ω2 = 10 rad/sec CW:
a.	 Using a graphical method.	 †b.      Using an analytical method.

	 †7-64	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of 
Figure 3-34 as a function of θ2 for a constant ω2 = 1 rad/sec CW.  

	 7-65	 Use a compass and straightedge (ruler) to draw the linkage in Figure 3-35 with link 2 
at 90° and find the angular acceleration of link 6 of the linkage assuming constant ω2 = 
10 rad/sec ccw when θ2 = 90°: 
a.	 Using a graphical method.	 †b.     Using an analytical method.

FIGURE P7-26 
Problem 7-57
V-belt drive  Courtesy of 
T.B. Wood’s Sons Co., 
Chambersburg, PA 
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	 †7-66	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of 
Figure 3-35 as a function of θ2 for a constant ω2 = 1 rad/sec ccw. 

	 †7-67	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 8 in the linkage of Figure 
3-36 as a function of θ2 for a constant ω2 = 1 rad/sec ccw.  

	 †7-68	 Write a computer program or use an equation solver such as Mathcad, Matlab, or 
TKSolver to calculate and plot magnitude and direction of the acceleration of point P 
in Figure 3-37a as a function of θ2.  Also calculate and plot the acceleration of point P 
versus point A.

	 †7-69	 Repeat Problem 7-68 for the linkage in Figure 3-37b.

	 7-70	 Find the angular accelerations of links 3 and 4 and the linear accelerations of points A, 
B, and P1 in the XY coordinate system for the linkage in Figure P7-27 in the position 
shown.  Assume that θ2 = 45° in the XY coordinate system and ω2 = 10 rad/sec, con-
stant.  The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the 
xy coordinate system:
a.	 Using a graphical method.	 †b.     Using an analytical method.

	 †7-71	 Using the data from Problem 7-70, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of 
the absolute acceleration of point P1 in Figure P7-27 as a function of θ2.

	 7-72	 Find the angular accelerations of links 3 and 4, and the linear acceleration of point P in the 
XY coordinate system for the linkage in Figure P7-28 in the position shown.  Assume that 
θ2 = –94.121° in the XY coordinate system, ω2 = 1 rad/sec, and α2 = 10 rad/sec2.  The 
position of the coupler point P on link 3 with respect to point A is: p = 15.00, δ3 = 0°:
a.	 Using a graphical method.	 †b      Using an analytical method.

	 †7-73	 For the linkage in Figure P7-28, write a computer program or use an equation solver 
such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity and 
acceleration of links 2 and 4, and the magnitude and direction of the velocity and ac-
celeration of point P as a function of θ2 through its possible range of motion starting at 
the position shown.  The position of the coupler point P on link 3 with respect to point 
A is: p = 15.00, δ3 = 0°.  Assume that, @ t = 0, θ2 = –94.121° in the XY coordinate 
system, ω2 = 0, and α2 = 10 rad/sec2, constant.  

	 7-74	 Derive analytical expressions for the accelerations of points A and B in Figure P7-29 
as a function of θ3 , ω3, α3, and the length AB of link 3.  Use a vector loop equation.  
Code them in an equation solver or a programming language and plot them.

	 7-75	 The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.  
Find α6 and AD in the global coordinate system for the position shown if ω2 = 10 rad/
sec ccw and α2 = 50 rad/sec2 CW.  Use the acceleration difference graphical method.  
(Print the figure from its PDF file and draw on it.)

	 *7-76	 The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.  
Find α6 and AD in the global coordinate system for the position shown if ω2 = 10 rad/
sec ccw and α2 = 50 rad/sec2 CW.  Use an analytical method.

	 7-77	 The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4 
are parallel to each other.  Find α4, AA, AB, and AP if ω2 = 15 rad/sec CW and α2 = 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
*  Answers in Appendix F.
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*  Answers in Appendix F.

100 rad/ sec2 CW. Use the acceleration difference graphical method.  (Print the figure 
from its PDF file and draw on it.)

	 *7-78	 The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4 
are parallel to each other.  Find α4, AA, AB, and AP if ω2 = 15 rad/sec CW and α2 = 
100 rad/sec2 CW. Use an analytical method.

O2

Y

X
y

x

16.948
9.174

2.79

9.573

2

4

3

PBA

O4

12.971

FIGURE P7-28
Problems 7-72 and 7-73 An aircraft overhead bin mechanism—dimensions in inches

FIGURE P7-27
Problems 7-70 to 7-71  An oil field pump—dimensions in inches
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76 14
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51.26
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4

View as a video
http://www.designof-

machinery.com/DOM/
oil_pump.avi

2

3 4

ω3

A

B

FIGURE P7-29
Elliptical trammel 
Problem 7-74

View as a video
http://www.designof-

machinery.com/DOM/
elliptic_trammel.avi

http://www.designofmachinery.com/DOM/oil_pump.avi
http://www.designofmachinery.com/DOM/elliptic_trammel.avi
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	 7-79	 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of the 
XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2.  Use 
the acceleration difference method. (Print the figure from its PDF file and draw on it.)

	 †7-80	 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of 
the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2.  
Use an analytical method.

	 †§7-81	 The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2 
and 5.  At t = 0, crosshead 2 is at rest at the origin of the global XY coordinate system 
and crosshead 5 is at rest at (70, 0).  Write a computer program to find and plot AP3 and 
AP4 for the first 5 sec of motion if A2 = 0.5 in/sec2 upward and A5 = 0.5 in/sec2 to the 
left.

	 7-82	 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find α2 and AA in the position shown if the 
velocity of the slider is constant at 20 in/sec downward.  Use the acceleration difference 
graphical method.  Print the figure’s PDF file and draw on it.

	 †7-83	 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis.  Find α2 and AA in the position shown if the 
velocity of the slider is constant at 20 in/sec downward.  Use an analytical method.

	 †7-84	 The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis 
and link 2 aligned with the global X axis at t = 0.  Write a computer program or use an 
equation solver to find and plot AD as a function of θ2 over the possible range of mo-
tion of link 2 in the global XY coordinate system.

	 †§7-85	 For the linkage of Figure P7-30e, write a computer program or use an equation solver 
to find and plot AD in the global coordinate system for one revolution of link 2 if ω2 is 
constant at 10 rad/sec CW.

	 7-86	 The linkage of Figure P7-30f has link 2 at 130° in the global XY coordinate system.  
Find AD in the global coordinate system for the position shown if ω2 = 15 rad/sec CW 
and α2 = 50 rad/sec2 CW.  Use the acceleration difference graphical method.  (Print the 
figure from its PDF file and draw on it.)

	 *7-87	 Figure 3-14 shows a crank-shaper quick-return mechanism with the dimensions: L2 = 
4.80 in, L4 = 24.00 in, L5 = 19.50 in.  The distance from link 4’s pivot (O4) to link 2’s 
pivot (O2) is 16.50 in.  The vertical distance from O2 to point C on link 6 is 6.465 in.  
Use a graphical method to find the acceleration of point C on link 6 when the linkage is 
near the rightmost position shown with θ2 = 45° measured from an axis running from 
an origin at O2 through O4.  Assume that link 2 has a constant angular velocity of 2 
rad/sec CW.

	 §7-88	 Use the data in Problem 7-87 and an analytical method to calculate and plot the accel-
eration of point C on link 6 of that mechanism for one revolution of input crank 2.

	 7-89	 Figure P7-22 shows a mechanism with dimensions.  Use a graphical method to deter-
mine the acceleration of points A and B for the position shown for ω2 = 24 rad/s CW.  
Ignore links 5 and 6.  

	
§  Note that these can be 
long problems to solve and 
may be more appropriate for 
a project assignment than 
an overnight problem.  In 
most cases, the solution can 
be checked with program 
Linkages.  

	
*  Answers in Appendix F.

	
†  These problems are 
suited to solution using 
Mathcad, Matlab, or 
TKSolver equation solver 
programs.
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( a )  Sixbar linkage (b )  Fourbar linkage

(c )  Dual crosshead mechanism (d )  Sixbar linkage

( f )  Eightbar mechanism(e)  Drag link slider-crank

FIGURE P7-30
Problems 7-75 to 7-86
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	 7-90	 Figure P7-22 shows a mechanism with dimensions.   Use an analytical method to cal-
culate the accelerations of points A and B for the position shown for ω2 = 24 rad/s CW.  
Ignore links 5 and 6.  

	 7-91	 Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical 
method to determine the accelerations of points A and B for the position shown for ω2 
= 16 rad/s CCW.  Ignore links 5 and 6.  

	 7-92	 Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical 
method to calculate the accelerations of points A and B for the position shown for ω2 = 
16 rad/s CCW.  Ignore links 5 and 6.  

	 7-93	 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P7-2.  The link lengths and the values of d, d , and d  are 
defined in Table P7-5.  For the row(s) assigned, find the acceleration of the pin joint A 
and the angular acceleration of the crank using a graphical method.

	 7-94	 The general linkage configuration and terminology for an offset fourbar slider-crank 
linkage are shown in Figure P7-2.  The link lengths and the values of d, d , and d  are 
defined in Table P7-5.  For the rows assigned, find the acceleration of pin joint A and 
the angular acceleration of the crank using the analytic method.  Draw the linkage to 
scale and label it before setting up the equations.

7.11	 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

	 L7-1	 View the video Fourbar Linkage Virtual Laboratory.  Open the file Virtual Fourbar 
Linkage Lab 7-1.doc and follow the instructions as directed by your professor.

Row Link 2 Link 3 Offset d

a 1.4 4 1 2.5 10
b 2 6 –3 5 –12
c 3 8 2 8 –15
d 3.5 10 1 –8 24
e 5 20 –5 15 –50
f 3 1 3 0 –12 –45
g 7 25 1 0 25 100

0
5

–10
–4
10
50
18

TABLE  P7-5 Data for Problems 7-93 to 7-94‡

‡  Drawings of these linkages are in the PDF Problem Workbook folder.

�d ��d

† http://www.designofma-
chinery.com/DOM/Four-
bar_Machine_Virtual_labo-
ratory.mp4

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip

http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip


8

Chapter8
CAM DESIGN
It is much easier to design than to perform
Samuel Johnson

8.0	 INTRODUCTION View the lecture video (50:42)†

Cam-follower systems are frequently used in all kinds of machines.  The valves in your 
automobile engine are opened by cams.  Machines used in the manufacture of many con-
sumer goods are full of cams.*  Compared to linkages, cams are easier to design to give 
a specific output function, but they are much more difficult and expensive to make than a 
linkage.  Cams are a form of degenerate fourbar linkage in which the coupler link has been 
replaced by a half joint as shown in Figure 8‑1.  This topic was discussed in Section 2.10 
on linkage transformation (see also Figure 2‑12).  For any one instantaneous position of 
cam and follower, we can substitute an effective linkage that will, for that instantaneous 
position, have the same motion as the original.  In effect, the cam-follower is a fourbar 
linkage with variable-length (effective) links.  It is this conceptual difference that makes 
the cam-follower such a versatile and useful function generator.  We can specify virtually 
any output function we desire and quite likely create a curved surface on the cam to gener-
ate that function in the motion of the follower.  We are not limited to fixed-length links as 
we were in linkage synthesis.  The cam-follower is an extremely useful mechanical device, 
without which the machine designer’s tasks would be more difficult to accomplish.  But, 
as with everything else in engineering, there are trade-offs. These will be discussed in later 
sections.  A list of the variables used in this chapter is provided in Table 8-1.

This chapter will present the proper approach to designing a cam-follower system, 
and in the process also present some less than proper designs as examples of the prob-
lems that inexperienced cam designers often get into.  Theoretical considerations of the 
mathematical functions commonly used for cam curves will be discussed.  Methods for 
the derivation of custom polynomial functions, to suit any set of boundary conditions, 
will be presented.  The task of sizing the cam with considerations of pressure angle and 
radius of curvature will be addressed, and manufacturing processes and their limitations 
discussed.  The computer program Dynacam will be used throughout the chapter as a tool 

	

*  View the video http://
www.designofmachinery.
com/DOM/Pick_and_
Place_Mechanism.mp4 to 
see an example of a cam 
driven mechanism from an 
actual production machine.

† http://www.designof-
machinery.com/DOM/
Cam_Design_I.mp4

http://www.designofmachinery.com/DOM/Cam_Design_I.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
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to present and illustrate design concepts and solutions.  Information about this program 
is in Appendix A.  

8.1	 CAM TERMINOLOGY

Cam-follower systems can be classified in several ways:  by type of follower motion, either 
translating or rotating (oscillating);  by type of cam, radial, cylindrical, three-dimension-
al;  by type of joint closure, either force- or form-closed;  by type of follower, curved or 
flat, rolling or sliding;  by type of motion constraints, critical extreme position (CEP), 
critical path motion (CPM);  by type of motion program, rise-fall (RF), rise-fall-dwell 
(RFD), rise-dwell-fall-dwell (RDFD).  We will now discuss each of these classification 
schemes in greater detail.

Type of Follower Motion

Figure 8‑1a shows a system with an oscillating, or rotating, follower.  Figure 8‑1b shows 
a translating follower.  These are analogous to the crank-rocker fourbar and the crank-

 Notation Used in This Chapter
t = time, seconds

θ = camshaft angle, degrees or radians (rad)

ω = camshaft angular velocity, rad/sec

β = total angle of any segment, rise, fall, or dwell, degrees or rad

h = total lift (rise or fall) of any one segment, length units

s or S = follower displacement, length units

v = ds/dθ = follower velocity, length/rad

V = dS/dt = follower velocity, length/sec

a = dv/dθ = follower acceleration, length/rad2

A = dV/dt = follower acceleration, length/sec2

j = da/dθ = follower jerk, length/rad3

J = dA/dt = follower jerk, length/sec3

s v a j refers to the group of diagrams, length units versus radians 

S V A J refers to the group of diagrams, length units versus time 

Rb = base circle radius, length units

Rp = prime circle radius, length units

Rf = roller follower radius, length units

ε = eccentricity of cam-follower, length units

φ = pressure angle, degrees or radians

ρ = radius of curvature of cam surface, length units

ρpitch = radius of curvature of pitch curve, length units

ρmin = minimum radius of curvature of pitch curve or cam surface, length units
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slider fourbar linkages, respectively.  An effective fourbar linkage can be substituted for 
the cam-follower system for any instantaneous position.  The lengths of the effective links 
are determined by the instantaneous locations of the centers of curvature of cam and fol-
lower as shown in Figure 8-1.  The velocities and accelerations of the cam-follower system 
can be found by analyzing the behavior of the effective linkage for any position.  A proof 
of this can be found in reference [1].  Of course, the effective links change length as the 
cam-follower moves, giving it an advantage over a pure linkage as this allows greater 
flexibility in meeting the desired motion constraints.

The choice between these two forms of the cam-follower is usually dictated by the 
type of output motion desired.  If true rectilinear translation is required, then the translat-
ing follower is dictated.  If pure rotation output is needed, then the oscillator is the obvious 
choice.  There are advantages to each of these approaches, separate from their motion 
characteristics, depending on the type of follower chosen.  These will be discussed in a 
later section.

ω

ω

ω

ω

ω ω

2
4

Spring

Half joint

Follower

Cam

2
4

Effective link 3

Effective link 4

Effective link 2

Cam
Half joint

Follower

Spring

Effective link 1

Effective link 2

Instantaneous center
      of cam curvature

VfollowerVfollower

( a )  An oscillating cam-follower has an e�ective pin-jointed fourbar equivalent

FIGURE 8-1
E�ective linkages in the cam-follower mechanism

(b)  A translating cam-follower has an e�ective fourbar slider-crank equivalent

I1,4 @ ∞

Effective link 3

Effective link 4
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Type of Joint Closure

Force and form closure were discussed in Section 2.3 on the subject of joints and have 
the same meaning here.  Force closure, as shown in Figure 8‑1, requires an external 
force be applied to the joint in order to keep the two links, cam and follower, physically 
in contact.  This force is usually provided by a spring.  This force, defined as positive in a 
direction that closes the joint, cannot be allowed to become negative.  If it does, the links 
have lost contact because a force-closed joint can only push, not pull.  Form closure, as 
shown in Figure 8‑2, closes the joint by geometry.  No external force is required.  There 
are really two cam surfaces in this arrangement, one surface on each side of the follower.  
Each surface pushes, in its turn, to drive the follower in both directions.

Figure 8‑2a and b shows track or groove cams that capture a single follower in the 
groove and both push and pull on the follower.  Figure 8‑2c shows another variety of form-

Conjugate 2

Conjugate 1

ωcam

2 4

Half joint

Cam

Track or groove

Follower

Vfollower

ωcam ωcam

FollowerHalf joint

Track or groove

Cam

ω4
2

4

Follower

FIGURE 8-2
Form-closed cam-follower systems

(c )  Conjugate cams on common shaft

( (a )  Form-closed cam with translating follower b)  Form-closed cam with oscillating follower
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closed cam-follower arrangement, called conjugate cams.  There are two cams fixed on 
a common shaft that are mathematical conjugates of one another.  Two roller followers, 
attached to a common arm, are each pushed in opposite directions by the conjugate cams.  
When form-closed cams are used in automobile or motorcycle engine valve trains, they 
are called desmodromic* cams.  There are advantages and disadvantages to both force- 
and form-closed arrangements that are discussed in Section 8-7.

Type of Follower

Follower, in this context, refers only to that part of the follower link that contacts the 
cam.  Figure 8‑3 shows three common arrangements, flat-faced, mushroom (curved), and 
roller.  The roller follower has the advantage of lower (rolling) friction than the sliding 
contact of the other two but can be more expensive.  Flat-faced followers can package 
smaller than roller followers for some cam designs and are often favored for that reason 
as well as cost for automotive valve trains.  Roller followers are most frequently used 
in production machinery where their ease of replacement and availability from bearing 
manufacturers’ stock in any quantities are advantages.  Grooved or track cams require 
roller followers.  Roller followers are essentially ball or roller bearings with customized 
mounting details.  Figure 8‑5a shows two common types of commercial roller followers.  
Flat-faced or mushroom followers are usually custom-designed and manufactured for 
each application.  For high-volume applications such as automobile engines, the quantities 
are high enough to warrant a custom-designed follower.

Type of Cam

The direction of the follower’s motion relative to the axis of rotation of the cam determines 
whether it is a radial or axial cam.  All cams shown in Figures 8‑1 to 8‑3 are radial cams 

	

*  More information on 
desmodromic cam-follower 
mechanisms can be found 
at http://members.chello.
nl/~wgj.jansen/ where a 
number of models of their 
commercial implementa-
tions can be viewed in 
operation as movies.

Follower
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( ( (a )  Roller follower b)  Mushroom follower c)  Flat-faced follower

Spring

Cam

Follower

Spring

Cam Cam

Follower

ωcam ωcam ωcam

Vfollower Vfollower Vfollower

FIGURE 8-3
Three common types of cam followers

http://members.chello.nl/~wgj.jansen/
http://members.chello.nl/~wgj.jansen/
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because the follower motion is generally in a radial direction.  Open radial cams are also 
called plate cams.

Figure 8‑4 shows an axial cam whose follower moves parallel to the axis of cam rota-
tion.  This arrangement is also called a face cam if open (force-closed) and a cylindrical 
or barrel cam if grooved or ribbed (form-closed).

Figure 8‑5b shows a selection of cams of various types.*  Clockwise from the lower 
left, they are: an open (force-closed) axial or face cam; an axial grooved (track) cam 
(form-closed) with external gear; an open radial, or plate cam (force-closed); a ribbed 
axial cam (form-closed); an axial grooved (barrel) cam.

Three-dimensional cams (Figure 8-5c) are a combination of radial and axial cams.    
The input rotation of the cam drives a follower train having both radial and axial motion.  
The follower motion has two coupled degrees of freedom.  

Type of Motion Constraints

There are two general categories of motion constraint, critical extreme position (CEP;  
also called endpoint specification) and critical path motion (CPM).  Critical extreme 
position refers to the case in which the design specifications define the start and finish 
positions of the follower (i.e., extreme positions) but do not specify any constraints on 
the path motion between the extreme positions.  This case is discussed in Sections 8.3 
and 8.4 and is the easier of the two to design as the designer has great freedom to choose 
the cam functions that control the motion between extremes.  Critical path motion is 
a more constrained problem than CEP because the path motion and/or one or more of 
its derivatives are defined over all or part of the interval of motion.  This is analogous to 
function generation in the linkage design case except that with a cam we can achieve a 
continuous output function for the follower.  Section 8.5 discusses this CPM case.  It may 
only be possible to create an approximation of the specified function and still maintain 
suitable dynamic behavior.

View a video
http://www.designof-

machinery.com/DOM/
cylindrical_cam.avi

	

*  View the video http://
www.designofmachinery.
com/DOM/Spring_Manu-
facturing.mp4 to see an 
example of spring manufac-
turing machinery that uses 
many cams.

FIGURE 8-4
Axial, cylindrical, or barrel cam with form-closed, translating follower

Follower assemblyHalf jointRoller

Cam

ωcam

Vfollower

Copyright © 2018 Robert L. Norton:  All Rights Reserved

http://www.designofmachinery.com/DOM/cylindrical_cam.avi
http://www.designofmachinery.com/DOM/Spring_Manufacturing.mp4
http://www.designofmachinery.com/DOM/Spring_Manufacturing.mp4
http://www.designofmachinery.com/DOM/Spring_Manufacturing.mp4
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Type of Motion Program

The motion programs rise-fall (RF), rise-fall-dwell (RFD), and rise-dwell-fall-dwell 
(RDFD) all refer mainly to the CEP case of motion constraint and in effect define how 
many dwells are present in the full cycle of motion, none (RF), one (RFD), or more than 
one (RDFD).  Dwells, defined as no output motion for a specified period of input motion, 

(a )  Commercial roller followers

FIGURE 8-5
Cams and roller followers

(b )  Commercial cams and a motorcycle camshaft 

Courtesy of McGill Manufacturing Co.
           South Bend, IN

(c )  Three-dimensional cams

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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are an important feature of cam-follower systems because it is very easy to create exact 
dwells in these mechanisms.  The cam-follower is the design type of choice whenever a 
dwell is required.  We saw in Section 3.9 how to design dwell linkages and found that at 
best we could obtain only an approximate dwell.  The resulting single- or double-dwell 
linkages tend to be quite large for their output motion and are somewhat difficult to 
design.  (See program Linkages for some built-in examples of these dwell linkages.)  
Cam-follower systems tend to be more compact than linkages for the same output motion.

If your need is for a rise-fall (RF) CEP motion, with no dwell, then you should really 
be considering a crank-rocker linkage rather than a cam-follower to obtain all the link-
age’s advantages over cams of reliability, ease of construction, and lower cost that were 
discussed in Section 2.18.  If your needs for compactness outweigh those considerations, 
then the choice of a cam-follower in the RF case may be justified.  Also, if you have a 
CPM design specification, and the motion or its derivatives are defined over the interval, 
then a cam-follower system is the logical choice in the RF case.

The rise-fall-dwell (RFD) and rise-dwell-fall-dwell (RDFD) cases are obvious 
choices for cam-followers for the reasons discussed above.  However, each of these two 
cases has its own set of constraints on the behavior of the cam functions at the interfaces 
between the segments that control the rise, the fall, and the dwells.  In general, we must 
match the boundary conditions (BCs) of the functions and their derivatives at all inter-
faces between the segments of the cam.  This topic will be thoroughly discussed in the 
following sections.

8.2	 S V A J  DIAGRAMS

The first task faced by the cam designer is to select the mathematical functions to be used 
to define the motion of the follower.  The easiest approach to this process is to “linear-
ize” the cam, i.e., “unwrap it” from its circular shape and consider it as a function plotted 
on cartesian axes.  We plot the displacement function s, its first derivative velocity v, 
its second derivative acceleration a, and its third derivative jerk j, all on aligned axes as 
a function of camshaft angle θ as shown in Figure 8‑6.  Note that we can consider the 
independent variable in these plots to be either time t or shaft angle θ, as we know the 
constant angular velocity ω of the camshaft and can easily convert from angle to time and 
vice versa.

θ = ω (8.1)t

Figure 8‑6a shows the specifications for a four-dwell cam that has eight segments, 
rdfdrdfdrdfd.  Figure 8‑6b shows the s v a j curves for the whole cam over 360 degrees 
of camshaft rotation.  A cam design begins with a definition of the required cam functions 
and their s v a j diagrams.  Functions for the nondwell cam segments should be chosen 
based on their velocity, acceleration, and jerk characteristics and the relationships at the 
interfaces between adjacent segments including the dwells.  These function characteristics 
can be conveniently and quickly investigated with program Dynacam which generated 
the data and plots shown in Figure 8-6.
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8.3	 DOUBLE-DWELL CAM DESIGN—CHOOSING S V A J  

FUNCTIONS

Many cam design applications require multiple dwells.  The double-dwell case is quite 
common.  Perhaps a double-dwell cam is driving a part feeding station on a production 
machine that makes toothpaste.  This hypothetical cam’s follower is fed an empty tooth-
paste tube (during the low dwell), then moves the empty tube into a loading station (during 
the rise), holds the tube absolutely still in a critical extreme position (CEP) while tooth-
paste is squirted into the open bottom of the tube (during the high dwell), and then retracts 
the filled tube back to the starting (zero) position and holds it in this other critical extreme 
position.  At this point, another mechanism (during the low dwell) picks the tube up and 
carries it to the next operation, which might be to seal the bottom of the tube.  A similar 
cam could be used to feed, align, and retract the tube at the bottom-sealing station as well.

Cam specifications such as this are often depicted on a timing diagram as shown in 
Figure 8-7 which is a graphical representation of the specified events in the machine cycle.  
A machine’s cycle is defined as one revolution of its master driveshaft.  In a complicated 
machine, such as our toothpaste maker, there will be a timing diagram for each subas-
sembly in the machine.  The time relationships among all subassemblies are defined by 
their timing diagrams which are all drawn on a common time axis.  Obviously all these 
operations must be kept in precise synchrony and time phase for the machine to work.

This simple example in Figure 8‑7 is a critical extreme position (CEP) case, because 
nothing is specified about the functions to be used to get from the low dwell position 
(one extreme) to the high dwell position (other extreme).  The designer is free to choose 
any function that will do the job.  Note that these specifications contain only information 
about the displacement function.  The higher derivatives are not specifically constrained 
in this example.  We will now use this problem to investigate several different ways to 
meet the specifications.

FIGURE 8-6
Cycloidal, modified sine, modified trapezoid, and simple harmonic motion functions on a four-dwell cam

Segment        Function           Start           End            Delta
 Number          Used               Angle         Angle          Angle

Cycloid rise
Dwell
ModSine fall
Dwell
ModTrap rise
Dwell
SimpHarm fall
Dwell

1
2
3
4
5
6
7
8

  60
  90
150
180
240
270
330
360

60
30
60
30
60
30
60
30

    0
  60
  90
150
180
240
270
330

s

v

a

j

cycloid mod sine mod trap simp harm

0 90 180 270 360

∞

∞

Segment: 1 2 3 4 5 6 7 8

Function:

( a )  Cam program specifications

(b )  Plots of cam-follower's s v a j diagrams    
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✍EXAMPLE 8-1 

Naive Cam Design—A Bad Cam.

Problem:	 Consider the following cam design CEP specification:

dwell	 at zero displacement for 90 degrees (low dwell)
rise	 1 in (25 mm) in 90 degrees
dwell	 at 1 in (25 mm) for 90 degrees (high dwell)
fall		 1 in (25 mm) in 90 degrees
cam ω	 2π rad/sec = 1 rev/sec

Solution:

	 1	 The naive or inexperienced cam designer might proceed with a design as shown in Figure 8‑8a. 
Taking the given specifications literally, it is tempting to merely “connect the dots” on the tim-
ing diagram to create the displacement (s) diagram.  (After all, when we wrap this s diagram 
around a circle to create the actual cam, it will look quite smooth despite the sharp corners on 
the s diagram.)  The mistake our beginning designer is making here is to ignore the effect on 
the higher derivatives of the displacement function that results from this simplistic approach.

	 2	 Figure 8‑8b, c, and d shows the problem.  Note that we have to treat each segment of the cam 
(rise, fall, dwell) as a separate entity in developing mathematical functions for the cam.  Tak-
ing the rise segment (#2) first, the displacement function in Figure 8‑8a during this portion is 
a straight line, or first-degree polynomial.  The general equation for a straight line is:

= + (8.2)y mx b

		  where m is the slope of the line and b is the y intercept.  Substituting variables appropriate to 
this example in equation 8.2, angle θ replaces the independent variable x, and the displacement 
s replaces the dependent variable y.  By definition, the constant slope m of the displacement is 
the velocity constant Kv.

	 3	 For the rise segment, the y intercept b is zero because the low dwell position typically is taken 
as zero displacement by convention.  Equation 8.2 then becomes:

= θ (8.3)s Kv

FIGURE 8-7
Cam timing diagram

1

0

Motion
mm or in

Low
dwell

High
dwell

Rise Fall

1.00.25 0.50 0.750 Time sec
90 180 270 3600 Cam angle θ   deg

t
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	 4	 Differentiating with respect to θ gives a function for velocity during the rise.

= = constant (8.4)v Kv

	 5	 Differentiating again with respect to θ gives a function for acceleration during the rise.

= 0 (8.5)a

This seems too good to be true (and it is).  Zero acceleration means zero dynamic 
force.  This cam appears to have no dynamic forces or stresses in it!

Figure 8‑8 shows what is really happening here.  If we return to the displacement 
function and graphically differentiate it twice, we will observe that, from the definition of 
the derivative as the instantaneous slope of the function, the acceleration is in fact zero 
during the interval.  But, at the boundaries of the interval, where rise meets low dwell on 
one side and high dwell on the other, note that the velocity function is multivalued.  There 
are discontinuities at these boundaries.  The effect of these discontinuities is to create a 
portion of the velocity curve that has infinite slope and zero duration.  This results in the 
infinite spikes of acceleration shown at those points.  

FIGURE 8-8
The s v a j diagrams of a "bad" cam design   

h

0

s

v

0

90 180 270 3600

a

0

j

0

∞ ∞

∞∞

Low
dwell

High
dwellRise Fall

 degθ

 degθ

 degθ

 degθ

∞

( a )

(b )

( c )

(d )

∞

∞ ∞

∞

∞ ∞

∞
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These spikes are more properly called Dirac delta functions.  Infinite acceleration 
cannot really be obtained, as it requires infinite force.  Clearly the dynamic forces will be 
very large at these boundaries and will create high stresses and rapid wear.   In fact, if this 
cam were built and run at any significant speeds, the sharp corners on the displacement 
diagram that are creating these theoretical infinite accelerations would be quickly worn 
to a smoother contour by the unsustainable stresses generated in the materials.  This is an 
unacceptable design.

The unacceptability of this design is reinforced by the jerk diagram which shows 
theoretical values of ±infinity at the discontinuities (the doublet function).  The prob-
lem has been engendered by an inappropriate choice of displacement function.  In fact, 
the cam designer should not be as concerned with the displacement function as with its 
higher derivatives.

The Fundamental Law of Cam Design

Any cam designed for operation at other than very low speeds must be designed with the 
following constraints:

The cam function must be continuous through the first and second derivatives of displace-
ment across the entire interval (360 degrees).

Corollary:
The jerk function must be finite across the entire interval (360 degrees).

In any but the simplest of cams, the cam motion program cannot be defined by a 
single mathematical expression, but rather must be defined by several separate functions, 
each of which defines the follower behavior over one segment, or piece, of the cam.  These 
expressions are sometimes called piecewise functions.  These functions must have third-
order continuity (the function plus two derivatives) at all boundaries.  The displace-
ment, velocity, and acceleration functions must have no discontinuities in them.*

If any discontinuities exist in the acceleration function, then there will be infinite 
spikes, or Dirac delta functions, appearing in the derivative of acceleration, jerk.  Thus the 
corollary merely restates the fundamental law of cam design.  Our naive designer failed 
to recognize that by starting with a low-degree (linear) polynomial as the displacement 
function, discontinuities would appear in the upper derivatives.

Polynomial functions are one of the best choices for cams as we shall shortly see, 
but they do have one fault that can lead to trouble in this application.  Each time they 
are differentiated, they reduce by one degree.  Eventually, after enough differentiations, 
polynomials degenerate to zero degree (a constant value) as the velocity function in Figure 
8‑8b shows.  Thus, by starting with a first-degree polynomial as a displacement function, 
it was inevitable that discontinuities would soon appear in its derivatives.  

In order to obey the fundamental law of cam design, one must start with at least a 
fifth-degree polynomial (quintic) as the displacement function for a double-dwell cam.  
This will degenerate to a cubic function in the acceleration.  The parabolic jerk function 
will have discontinuities, and the (unnamed) derivative of jerk will have infinite spikes in 
it.  This is acceptable, as the jerk is still finite.

	

*  This rule is stated by 
Neklutin[2] but is disputed 
by some other authors.[3],[4]  
Nevertheless, this author 
believes that it is a good 
(and simple) rule to follow 
in order to get accept-
able dynamic results with 
high-speed cams.  There 
are clear simulation data 
and experimental evidence 
that smooth jerk functions 
reduce residual vibrations in 
cam-follower systems.[10]
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Simple Harmonic Motion (SHM)

Our naive cam designer recognized his mistake in choosing a straight-line function for the 
displacement.  He also remembered a family of functions he had met in a calculus course 
that have the property of remaining continuous throughout any number of differentiations. 
These are the harmonic functions.  On repeated differentiation, sine becomes cosine, 
which becomes negative sine, which becomes negative cosine, etc., ad infinitum.  One 
never runs out of derivatives with the harmonic family of curves.  In fact, differentiation 
of a harmonic function really only amounts to a 90° phase shift of the function.  It is as 
though, when you differentiated it, you cut out, with a scissors, a different portion of the 
same continuous sine wave function, which is defined from minus infinity to plus infinity.  
The equations of simple harmonic motion (SHM) for a rise motion are:

β

β β

− π
θ















π
π

θ





π
β

π
θ
β







π
β

π
θ
β







=
2

1 cos (8.6a)

=
2

sin (8.6b)

=
2

cos (8.6c)

=–
2

sin (8.6d)

2

2

3

3

s h

v h

a h

j h

where h is the total rise, or lift, θ is the camshaft angle, and β is the total angle of the rise 
interval.

We have here introduced a notation to simplify the expressions.  The independent 
variable in our cam functions is θ, the camshaft angle.  The period of any one segment is 
defined as the angle β.  Its value can, of course, be different for each segment.  We normal-
ize the independent variable θ by dividing it by the period of the segment β.  Both θ and 
β are measured in radians (or both in degrees).  The value of θ/β will then vary from 0 
to 1 over any segment. It is a dimensionless ratio.  Equations 8.6 define simple harmonic 
motion and its derivatives for this rise segment in terms of θ/β.

This family of harmonic functions appears, at first glance, to be well suited to the 
cam design problem of Figure 8-7.  If we define the displacement function to be one of 
the harmonic functions, we should not “run out of derivatives” before reaching the ac-
celeration function.

✍EXAMPLE 8-2 

Sophomoric* Cam Design—Simple Harmonic Motion—Still a Bad Cam.

Problem:	 Consider the same cam design CEP specification as in Example 8-1:

dwell	 at zero displacement for 90 degrees (low dwell)
rise	 1 in (25 mm) in 90 degrees
dwell	 at 1 in (25 mm) for 90 degrees (high dwell)
fall		 1 in (25 mm) in 90 degrees
cam ω	 2π rad/sec = 1 rev/sec

*  Sophomoric, from 
sophomore, def.  wise fool, 
from the Greek, sophos = 
wisdom, moros = fool.
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Solution:

	 1	 Figure 8‑9 shows a full-rise simple harmonic function* applied to the rise segment of our cam 
design problem.  

	 2	 Note that the velocity function is continuous, as it matches the zero velocity of the dwells at 
each end.  The peak value is 6.28 in/sec (160 mm/sec) at the midpoint of the rise.

	 3	 The acceleration function, however, is not continuous.  It is a half-period cosine curve and has 
nonzero values at start and finish that are ±78.8 in/sec2 (2.0 m/sec2).  

	 4	 Unfortunately, the dwell functions, which adjoin this rise on each side, have zero acceleration 
as can be seen in Figure 8‑6.  Thus there are discontinuities in the acceleration at each end 
of the interval that uses this simple harmonic displacement function.  

	 5	 This violates the fundamental law of cam design and creates infinite spikes of jerk at the ends 
of this fall interval.  This is also an unacceptable design.

What went wrong?  While it is true that harmonic functions are differentiable ad 
infinitum, we are not dealing here with single harmonic functions.  Our cam function 
over the entire interval is a piecewise function (Figure 8‑6) made up of several segments, 
some of which may be dwell portions or other functions.  A dwell will always have zero 
velocity and zero acceleration.  Thus we must match the dwells’ zero values at the ends 
of those derivatives of any nondwell segments that adjoin them.  The simple harmonic 
displacement function, when used with dwells, does not satisfy the fundamental law of 
cam design.  Its second derivative, acceleration, is nonzero at its ends and thus does not 
match the dwells required in this example.  

The only case in which the simple harmonic displacement function will satisfy the 
fundamental law is the non-quick-return RF case, i.e., rise in 180° and fall in 180° with 
no dwells.  Then the cam profile, if run against a flat-faced follower, becomes an eccentric 
as shown in Figure 8‑10.  As a single continuous (not piecewise) function, its derivatives 
are continuous also.  Figure 8‑11 shows the displacement (in inches) and acceleration 
functions (in g’s) of an eccentric cam as actually measured on the follower.  The noise, 
or “ripple,” on the acceleration curve is due to small, unavoidable, manufacturing errors.  
Manufacturing limitations will be discussed in a later section.

Cycloidal Displacement View the lecture video (51:17)†

The two bad examples of cam design described above should lead the cam designer to the 
conclusion that consideration only of the displacement function when designing a cam 
is erroneous.  The better approach is to start with consideration of the higher derivatives, 
especially acceleration.  The acceleration function, and to a lesser extent the jerk function, 
should be the principal concern of the designer.  In some cases, especially when the mass 
of the follower train is large, or when there is a specification on velocity, that function 
must be carefully designed as well.

*   Though this is actually 
a half-period cosine wave, 
we will call it a full-rise (or 
full-fall) simple harmonic 
function to differentiate 
it from the half-rise (and 
half-fall) simple harmonic 
function which is actually a 
quarter-period cosine.

0 β

s

v

a

j

cam angle θ

FIGURE 8-9
Simple harmonic
motion with dwells
has discontinuous
acceleration.

† http://www.designof-
machinery.com/DOM/
Cam_Design_II.mp4

http://www.designofmachinery.com/DOM/Cam_Design_II.mp4
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*  If a roller follower is 
used instead of a flat-faced 
follower, then the trace of 
the roller follower center 
will still be a true eccentric, 
but the cam surface will not.  
This is due to the lead-lag 
error of the contact point of 
the roller with the cam sur-
face.  When going “uphill,” 
the contact point leads the 
follower center and when 
going “downhill,” it lags 
the center.  This distorts the 
cam surface shape from that 
of a true eccentric circle.  
However, the motion of 
the follower will be simple 
harmonic motion as defined 
in Figure 8-10 regardless of 
follower type.

With this in mind, we will redesign the cam for the same example specifications as 
above.  This time we will start with the acceleration function.  The harmonic family of 
functions still has advantages that make them attractive for these applications.  Figure 8‑12 
shows a full-period sinusoid applied as the acceleration function.  It meets the constraint 
of zero magnitude at each end to match the dwell segments that adjoin it.  The equation 
for a sine wave is:

= π
θ
β







sin 2 (8.7)a C

We have again normalized the independent variable θ by dividing it by the period of 
the segment β with both θ and β measured in radians.  The value of θ/β ranges from 0 to 
1 over any segment and is a dimensionless ratio.  Since we want a full-cycle sine wave, 
we must multiply the argument by 2π.  The argument of the sine function will then vary 
between 0 and 2π regardless of the value of β.  The constant C defines the amplitude of 
the sine wave.

Integrate to obtain velocity,

∫∫

=
θ

= π
θ
β







= π
θ
β







θ

= −
β

π
π

θ
β







+

sin 2

sin 2 (8.8)

2
cos 2 1

a dv
d

C

dv C d

v C k

ω

a cos ω t

r

a

FIGURE 8-10
A flat-faced follower
on an eccentric cam
has simple harmonic
motion.*

FIGURE 8-11
Displacement and acceleration as measured on the follower of an eccentric cam

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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where k1 is the constant of integration.  To evaluate k1, substitute the boundary condi-
tion v = 0 at θ = 0, since we must match the zero velocity of the dwell at that point.  The 
constant of integration is then:

=
β

π

=
β

π
− π

θ
β

















and:
2

(8.9)

2
1 cos 2

1k C

v C

Note that substituting the boundary values at the other end of the interval, v = 0, θ = β, 
will give the same result for k1.  Integrate again to obtain displacement:

∫ ∫
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2 4
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2

2 2
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d

C
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To evaluate k2, substitute the boundary condition s = 0 at θ = 0, since we must match 
the zero displacement of the dwell at that point.  To evaluate the amplitude constant C, 
substitute the boundary condition s = h at θ = β, where h is the maximum follower rise 
(or lift) required over the interval and is a constant for any one cam specification.

=

= π
β

0 (8.11)
2

2

2

k

C h

Substituting the value of the constant C in equation 8.7 for acceleration gives:

= π
β

π
θ
β





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2 sin 2 (8.12a)2a h

Differentiating with respect to θ gives the expression for jerk.

= π
β

π
θ
β





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4 cos 2 (8.12b)2
3j h

Substituting the values of the constants C and k1 in equation 8.9 for velocity gives:

=
β

− π
θ
β





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







1 cos 2 (8.12c)v h

This velocity function is the sum of a negative cosine term and a constant term.  The 
coefficient of the cosine term is equal to the constant term.  This results in a velocity curve 
that starts and ends at zero and reaches a maximum magnitude at β/2 as can be seen in 
Figure 8‑12.  Substituting the values of the constants C, k1, and k2 in equation 8.10 for 
displacement gives:
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=
θ
β
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
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Note that this displacement expression is the sum of a straight line of slope h and a nega-
tive sine wave.  The sine wave is, in effect, “wrapped around” the straight line as can be 
seen in Figure 8‑12.  Equation 8.12d is the expression for a cycloid.  This cam function is 
referred to either as cycloidal displacement or sinusoidal acceleration.

In the form presented, with θ (in radians) as the independent variable, the units of 
equation 8.12d are length, of equation 8.12c length/rad, of equation 8.12a length/rad2, 
and of equation 8.12b length/rad3.  To convert these equations to a time base, multiply 
velocity v by the camshaft angular velocity ω (in rad/sec), multiply acceleration a by ω2, 
and jerk j by ω3.

✍EXAMPLE 8-3 

Junior Cam Design—Cycloidal Displacement—An Acceptable Cam.

Problem:	 Consider the same cam design CEP specification as in Examples 8-1 and 8-2:

dwell	 at zero displacement for 90 degrees (low dwell)
rise	 1 in (25 mm) in 90 degrees
dwell	 at 1 in (25 mm) for 90 degrees (high dwell)
fall		 1 in (25 mm) in 90 degrees
cam ω	 2π rad/sec = 1 rev/sec

Solution:

	 1	 The cycloidal displacement function is an acceptable one for this double-dwell cam specifica-
tion.  Its derivatives are continuous through the acceleration function as seen in Figure 8‑12.  
The peak acceleration is 100.4 in/sec2 (2.55 m/sec2).

	 2	 The jerk curve in Figure 8‑12 is discontinuous at its boundaries but is of finite magnitude, and 
this is acceptable.  Its peak value is 2523 in/sec3 (64 m/sec3).

	 3	 The velocity is smooth and matches the zeros of the dwell at each end.  Its peak value is 8 in/
sec (0.2 m/sec).

	 4	 The only drawback to this function is that it has relatively large magnitudes of peak accelera-
tion and peak velocity compared to some other possible functions for the double-dwell case.

The reader may open the file E08‑03.cam in program Dynacam to investigate this 
example in more detail.

Combined Functions

Dynamic force is proportional to acceleration.  We generally would like to minimize 
dynamic forces, and thus should be looking to minimize the magnitude of the accelera-
tion function as well as to keep it continuous.  Kinetic energy is proportional to velocity 

0 β
cam angle θ

FIGURE 8-12
Sinusoidal
acceleration gives
cycloidal
displacement.

s

v

a

j
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8 squared.  We also would like to minimize stored kinetic energy, especially with large mass 
follower trains, and so are concerned with the magnitude of the velocity function as well.

Constant Acceleration  If we wish to minimize the peak value of the magni-
tude of the acceleration function for a given problem, the function that would best satisfy 
this constraint is the square wave as shown in Figure 8‑13.  This function is also called 
constant acceleration.  The square wave has the property of minimum peak value for a 
given area in a given interval.  However, this function is not continuous.  It has discontinui-
ties at the beginning, middle, and end of the interval, so, by itself, this is unacceptable 
as a cam acceleration function.

Trapezoidal Acceleration  The square wave’s discontinuities can be removed 
by simply “knocking the corners off” the square wave function and creating the trapezoi-
dal acceleration function shown in Figure 8‑14a.  The area lost from the “knocked off 
corners” must be replaced by increasing the peak magnitude above that of the original 
square wave in order to maintain the required specifications on lift and duration.  But, this 
increase in peak magnitude is small, and the theoretical maximum acceleration can be 
significantly less than the theoretical peak value of the sinusoidal acceleration (cycloidal 
displacement) function.  One disadvantage of this trapezoidal function is its discontinu-
ous jerk function, as shown in Figure 8‑14b.  Ragged jerk functions such as this tend to 
excite vibratory behavior in the follower train due to their high harmonic content.  The 
cycloidal’s sinusoidal acceleration has a relatively smoother cosine jerk function with only 
two discontinuities in the interval and is preferable to the trapezoid’s square waves of jerk. 
But the cycloidal’s theoretical peak acceleration will be larger, which is not desirable.  So, 
trade-offs must be made in selecting the cam functions.

Modified Trapezoidal Acceleration  An improvement can be made to the 
trapezoidal acceleration function by substituting pieces of sine waves for the sloped sides 

FIGURE 8-13
Constant acceleration gives infinite jerk.
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*  Developed by C. N. 
Neklutin of Universal 
Match Corp.  See ref. [2].

of the trapezoids as shown in Figure 8‑15.  This function is called the modified trapezoi-
dal acceleration curve.*  This function is a marriage of the sine acceleration and constant 
acceleration curves.  Conceptually, a full period sine wave is cut into fourths and “pasted 
into” the square wave to provide a smooth transition from the zeros at the endpoints to 
the maximum and minimum peak values, and to make the transition from maximum to 
minimum in the center of the interval.  The portions of the total segment period (β) used 
for the sinusoidal parts of the function can be varied.  The most common arrangement 
is to cut the square wave at β/8, 3β/8, 5β/8, and 7β/8 to insert the pieces of sine wave as 
shown in Figure 8‑15.  

The modified trapezoidal function defined above is one of many combined functions 
created for cams by piecing together various functions, while being careful to match the 
values of the s, v, and a curves at all the interfaces between the joined functions.  It has the 
advantage of relatively low theoretical peak acceleration, and reasonably rapid, smooth 
transitions at the beginning and end of the interval.   The modified trapezoidal cam func-
tion has been a popular and often used program for double-dwell cams.  

Modified Sinusoidal Acceleration†  The sine acceleration curve (cycloidal 
displacement) has the advantage of smoothness (less ragged jerk curve) compared to 
the modified trapezoid but has higher theoretical peak acceleration.  By combining two 
harmonic (sinusoid) curves of different frequencies, we can retain some of the smooth-
ness characteristics of the cycloid and also reduce the peak acceleration compared to the 
cycloid.  As an added bonus we will find that the peak velocity is also lower than in either 
the cycloidal or modified trapezoid.  Figure 8‑16 shows how the modified sine accelera-
tion curve is made up of pieces of two sinusoid functions, one of higher frequency than 
the other.  The first and last quarters of the high-frequency (short period, β/2) sine curve 

	

† Developed by E. H. 
Schmidt of DuPont.

FIGURE 8-14
Trapezoidal acceleration gives finite jerk.
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( a )  Take a sine wave

FIGURE 8-15
Creating the modified trapezoidal acceleration function
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are used for the first and last eighths of the combined function.  The center half of the 
low-frequency (long period, 3β/2) sine wave is used to fill in the center three-fourths of 
the combined curve.  Obviously, the magnitudes of the two curves and their derivatives 
must be matched at their interfaces in order to avoid discontinuities.  

The SCCA Family of Double-Dwell Functions

SCCA stands for Sine-Constant-Cosine-Acceleration and refers to a family of accelera-
tion functions that includes constant acceleration, simple harmonic, modified trapezoid, 
modified sine, and cycloidal curves.[11]  These very different looking curves can all be 
defined by the same equation with only a change of numeric parameters.  In like fashion, 
the equations for displacement, velocity, and jerk for all these SCCA functions differ only 
by their parametric values.

To reveal this similitude, it is first necessary to normalize the variables in the equa-
tions.  We have already normalized the independent variable, cam angle θ, dividing it by 
the interval period β.  We will further simplify the notation by defining

=
θ
β

(8.13a)x

The normalized variable x then runs from 0 to 1 over any interval.  The normalized fol-
lower displacement is

= (8.13b)y s
h

where s is the instantaneous follower displacement and h is the total lift. The normalized 
variable y then runs from 0 to 1 over any follower displacement.  

The general shapes of the s v a j functions of the SCCA family are shown in Figure 
8-17.  The interval β is divided into five zones, numbered 1 through 5.  Zones 0 and 6 rep-
resent the dwells on either side of the rise (or fall).  The widths of zones 1 to 5 are defined 
in terms of β and one of three parameters, b, c, d.  The values of these three parameters 
define the shape of the curve and define its identity within the family of functions.  The 
normalized velocity, acceleration, and jerk are denoted, respectively, as:

′ = ′′ = ′′′ = (8.14)
2

2

3

3y dy
dx

y d y
dx

y d y
dx

In zone 0, all functions are zero.  The expressions for the functions within each other 
zone of Figure 8-17 are as follows:
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FIGURE 8-16
Creating the modified sine acceleration function
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The coefficient Ca is a dimensionless peak acceleration factor.  It can be evaluated from 
the fact that, at the end of the rise in zone 5 when x = 1, the expression for displacement 
(equation 8.19a) must have y = 1 to match the dwell in zone 6.  Setting the right side of 
equation 8.19a equal to 1 gives:

( )( ) ( )
=

π

π − − − π π − + π

4

8 2 2
(8.21a)

2

2 2 2 2
C

b d b
a

We can also define dimensionless peak factors (coefficients) for velocity (Cv) and jerk 
(Cj) in terms of Ca.  The velocity is a maximum at x = 0.5.  Thus Cv will equal the right 
side of equation 8.17b when x = 0.5.
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=
+
π

+
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b d c

v a

The jerk is a maximum at x = 0.  Setting the right side of equation 8.15d to zero gives:

=
π

≠ 0 (8.21c)C C
b

bj a

Table 8-2 shows the values of b, c, d and the resulting factors Cv, Ca, and Cj for the 
five standard members of the SCCA family.  There is an infinity of related functions with 
values of these parameters between those shown.  Figure 8-18 shows these five members 
of the “acceleration family” superposed with their design parameters noted.  Note that all 
the functions shown in Figure 8-18 were generated with the same set of equations (8.15 
through 8.21) with only changes to the values of the parameters b, c, and d.  A TKSolver 
file (SCCA.tk) that is provided calculates and plots any of the SCCA family of normalized 
functions, along with their coefficients Cv, Ca, and Cj, in response to the input of values 
for b, c, and d.  Note also that there is an infinity of family members as b, c, and d can take 
on any set of values that add to 1.

FIGURE 8-18
Comparison of five acceleration functions in the SCCA family

Acceleration

θ
β

Cycloidal (b = 0.5, c = 0, d = 0.5)

Modified sine
(b = 0.25, c = 0, d = 0.75)

0

Ca = 6.28
Ca = 5.53 Ca = 4.89

Ca = 4.93Modified trapezoid
(b = 0.25, c = 0.5, d = 0.25)

Simple harmonic
(b = 0, c = 0, d = 1)

Ca = 4.00

Constant acceleration
(b = 0, c = 1, d = 0)

     1.00
      0.50
      0.00
      0.00
      0.00

0.00
0.25
1.00
0.75
0.50

Constant acceleration      0.00
Modified trapezoid      0.25
Simple harmonic      0.00
Modified sine       0.25
Cycloidal displacement       0.50

    2.0000
    2.0000
    1.5708
    1.7596
    2.0000

    4.0000
    4.8881
    4.9348
    5.5280
    6.2832

infinite
61.426
infinite
69.466
39.478

Function b c d Cv Ca Cj

TABLE  8-2 Parameters and Coe�cients for the SCCA Family of Functions
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To apply the SCCA functions to an actual cam design problem only requires that 
they be multiplied or divided by factors appropriate to the particular problem, namely the 
actual rise h, the actual duration β (rad), and the cam velocity ω (rad/sec).

= =

=
β

′ = ω

=
β

′′ = ω

=
β

′′′ = ω

length length

length/rad length/sec

(8.22)

length/rad length/sec

length/rad length/sec

2
2 2 2
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FIGURE 8-19
Comparison of five acceptable double-dwell cam acceleration functions
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Comparison of five double-dwell cam jerk functions
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Figure 8‑19 shows a comparison of the shapes and relative magnitudes of five accept-
able cam acceleration programs including the cycloidal, modified trapezoid, and modified 
sine acceleration curves.*  The cycloidal curve has a theoretical peak acceleration that 
is approximately 1.3 times that of the modified trapezoid’s peak value for the same cam 
specification.  The peak value of acceleration for the modified sine is between those of 
the cycloidal and modified trapezoids.  Table 8‑3 lists the peak values of acceleration, 
velocity, and jerk for these functions in terms of the total rise h and period β.  

Figure 8‑20 compares the jerk curves for the same functions.  The modified sine jerk 
is somewhat less ragged than the modified trapezoid jerk but not as smooth as that of the 
cycloid, which is a full-period cosine.  Figure 8‑21 compares their velocity curves.  The 
peak velocities of the cycloidal and modified trapezoid functions are the same, so each 
will store the same peak kinetic energy in the follower train.  The peak velocity of the 
modified sine is the lowest of the five functions shown.  This is the principal advantage 

	

*  The 3-4-5 and 4-5-6-7 
polynomial functions also 
shown in the figure will be 
discussed in a later section.

Function Max. Veloc. Max. Accel. Max. Jerk Comments

Constant accel. 2.000 h/ β 4.000 h/ β2 Infinite ∞  jerk—not acceptable
Harmonic disp. 1.571 h/ β 4.945 h/ β2 Infinite ∞  jerk—not acceptable
Trapezoid accel. 2.000 h/ β 5.300 h/ β2 44 h/ β3 Not as good as mod. trap.

Mod. trap. accel. 2.000 h/ β 4.888 h/ β2 61 h/ β3 Low accel. but rough jerk

Mod. sine accel. 1.760 h/ β 5.528 h/ β2 69 h/ β3 Low  veloc., good accel.

3-4-5 poly. disp. 1.875 h/ β 5.777 h/ β2 60 h/ β3 Good compromise

Cycloidal disp. 2.000 h/ β 6.283 h/ β2 40 h/ β3 Smooth accel. and jerk

4-5-6-7 poly. disp. 2.188 h/ β 7.526 h/ β2 52 h/ β3 Smooth jerk, high accel.

TABLE  8-3 Factors for Peak Velocity and Acceleration of Some Cam Functions

FIGURE 8-21
Comparison of five double-dwell cam velocity functions

Velocity
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of the modified sine acceleration curve and the reason it is often chosen for applications 
in which the follower mass or moment of inertia is very large.

An example of such an application is shown in Figure 8‑22 which is an indexing 
table drive used for automated assembly lines.  The round indexing table is mounted on a 
vertical spindle and driven as part of the rotary follower train by a form-closed barrel cam 
that moves it through some angular displacement, and then holds the table still in a dwell 

FIGURE 8-22
Six-stop rotary indexer.  Table carries tooling to make a product during the dwells.   
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(called a “stop”) while an assembly operation is performed on the workpiece carried on 
the table.  These indexers may have three or more stops, each corresponding to an index 
position.  The table is solid steel and may be several feet in diameter; thus its mass moment 
of inertia is large.  To minimize the stored kinetic energy, which must be dissipated each 
time the table is brought to a stop, the manufacturers often use the modified sine program 
on these multidwell cams, because of its lower peak velocity.

Let us again try to improve the double-dwell cam example using the SCCA combined 
functions of modified trapezoid and modified sine acceleration.

✍EXAMPLE 8-4 

Senior Cam Design—Combined Functions—Better Cams.

Problem:	 Consider the same cam design CEP specification as in Examples 8-1 to 8-3:

dwell	 at zero displacement for 90 degrees (low dwell)
rise	 1 in (25 mm) in 90 degrees
dwell	 at 1 in (25 mm) for 90 degrees (high dwell)
fall		 1 in (25 mm) in 90 degrees
cam ω	 2π rad/sec = 1 rev/sec

Solution:

	 1	 The modified trapezoidal function is an acceptable one for this double-dwell cam specification. 
Its derivatives are continuous through the acceleration function as shown in Figure 8‑19.  The 
peak acceleration is 78.1 in/sec2 (1.98 m/sec2).

	 2	 The modified trapezoidal jerk curve in Figure 8‑20 is discontinuous at its boundaries but has 
finite magnitude of 3925 in/sec3 (100 m/sec3), and this is acceptable.

	 3	 The modified trapezoidal velocity in Figure 8‑21 is smooth and matches the zeros of the dwell 
at each end.  Its peak magnitude is 8 in/sec (0.2 m/sec).

	 4	 The advantage of this modified trapezoidal function is that it has smaller theoretical peak ac-
celeration than the cycloidal but its peak velocity is identical to that of the cycloidal.

	 5	 The modified sinusoid function is also an acceptable one for this double-dwell cam specifica-
tion.  Its derivatives are also continuous through the acceleration function as shown in Figure 
8‑19.  Its peak acceleration is 88.3 in/sec2 (2.24 m/sec2).

	 6	 The modified sine jerk curve in Figure 8‑20 is discontinuous at its boundaries but is of finite 
magnitude and is larger in magnitude at 4439 in/sec3 (113 m/sec3) but smoother than that of 
the modified trapezoid.

	 7	 The modified sine velocity (Figure 8‑21) is smooth, matches the zeros of the dwell at each 
end, and is lower in peak magnitude than either the cycloidal or modified trapezoidal at 7 in/
sec (0.178 m/sec).  This is an advantage for high-mass follower systems as it reduces stored 
kinetic energy.  This, coupled with a peak acceleration lower than the cycloidal (but higher 
than the modified trapezoidal), is its chief advantage.
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Figure 8‑23 shows the displacement curves for these three cam programs.  (Open 

the file E08-04.cam in program Dynacam to plot these also.)  Note how little difference 
there is between the displacement curves despite the large differences in their acceleration 
waveforms in Figure 8‑19.  This is evidence of the smoothing effect of the integration pro-
cess.  Differentiating any two functions will exaggerate their differences.  Integration tends 
to mask their differences.  It is nearly impossible to recognize these very differently behav-
ing cam functions by looking only at their displacement curves.  This is further evidence 
of the folly of our earlier naive approach to cam design that dealt exclusively with the 
displacement function.   The cam designer must be concerned with the higher derivatives 
of displacement.  The displacement function is primarily of value to the manufacturer of 
the cam who needs its coordinate information in order to cut the cam.

Fall Functions  We have used only the rise portion of the cam for these ex-
amples.  The fall is handled similarly.  The rise functions presented here are applicable 
to the fall with slight modification.  To convert rise equations to fall equations, it is only 
necessary to subtract the rise displacement function s from the maximum lift h and to 
negate the higher derivatives, v, a, and j.

Polynomial Functions

The class of polynomial functions is one of the more versatile types that can be used 
for cam design.  They are not limited to single- or double-dwell applications and can be 
tailored to many design specifications.   The general form of a polynomial function is:

= + + + + + + + + (8.23)0 1 2
2

3
3

4
4

5
5

6
6s C C x C x C x C x C x C x C xn

n

where s is the follower displacement; x is the independent variable, which in our case 
will be replaced by either θ/β or time t.  The constant coefficients Cn are the unknowns to 

FIGURE 8-23
Comparison of three SCCA double-dwell cam displacement functions
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be determined in our development of the particular polynomial equation to suit a design 
specification.  The degree of a polynomial is defined as the highest power present in any 
term.  Note that a polynomial of degree n will have n + 1 terms because there is an x0 or 
constant term with coefficient C0, as well as coefficients through and including Cn.

We structure a polynomial cam design problem by deciding how many boundary 
conditions (BCs) we want to specify on the s v a j diagrams.  The number of BCs then 
determines the degree of the resulting polynomial.  We can write an independent equa-
tion for each BC by substituting it into equation 8.16 or one of its derivatives.  We will 
then have a system of linear equations that can be solved for the unknown coefficients C0, 
. . ., Cn.  If k represents the number of chosen boundary conditions, there will be k equa-
tions in k unknowns C0, . . ., Cn and the degree of the polynomial will be n = k – 1.  The 
order of the n-degree polynomial is equal to the number of terms, k.

Double-Dwell Applications of Polynomials

The 3-4-5 Polynomial  Reconsider the double-dwell problem of the previous three 
examples and solve it with polynomial functions.  Many different polynomial solutions are 
possible.  We will start with the simplest one possible for the double-dwell case.

✍EXAMPLE 8-5 

The 3-4-5 Polynomial for the Double-Dwell Case.

Problem:	 Consider the same cam design CEP specification as in Examples 8-1 to 8-4:

dwell	 at zero displacement for 90 degrees (low dwell)
rise	 1 in (25 mm) in 90 degrees
dwell	 at 1 in (25 mm) for 90 degrees (high dwell)
fall		 1 in (25 mm) in 90 degrees
cam ω	 2π rad/sec = 1 rev/sec

Solution:

	 1	 To satisfy the fundamental law of cam design the values of the rise (and fall) functions at their 
boundaries with the dwells must match with no discontinuities in, at a minimum, s, v, and a.

	 2	 Figure 8‑24 shows the axes for the s v a j diagrams on which the known data have been drawn.  
The dwells are the only fully defined segments at this stage.  The requirement for continuity 
through the acceleration defines a minimum of six boundary conditions for the rise segment 
and six more for the fall in this problem.  They are shown as filled circles on the plots.  For 
generality, we will let the specified total rise be represented by the variable h.  The minimum 
set of required BCs for this example is then:

		  for the rise:

θ = = = =

θ = β = = =

when 0; then 0, 0, 0
( )

when ; then , 0, 01

s v a
a

s h v a

		  for the fall:
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θ = = = =

θ = β = = =

when 0; then , 0, 0
( )

when ; then 0, 0, 02

s h v a
b

s v a

	 3	 We will use the rise for an example solution. (The fall is a similar derivation.) We have six 
BCs on the rise.  This requires six terms in the equation.  The highest term will be fifth degree. 
We will use the normalized angle θ/β as our independent variable, as before.  Because our 
boundary conditions involve velocity and acceleration as well as displacement, we need to 
differentiate equation 8.23 versus θ to obtain expressions into which we can substitute those 
BCs.  Rewriting equation 8.23 to fit these constraints and differentiating twice, we get:

= +
θ
β







+
θ
β







+
θ
β







+
θ
β







+
θ
β







( )0 1 2

2

3

3

4

4

5

5

s C C C C C C c

=
β

+
θ
β







+
θ
β







+
θ
β







+
θ
β



















1 2 3 4 5 ( )1 2 3

2

4

3

5

4

v C C C C C d

=
β

+
θ
β







+
θ
β







+
θ
β



















1 2 6 12 20 ( )2 2 3 4

2

5

3

a C C C C e

	 4	 Substitute the boundary conditions θ = 0,  s = 0 into equation (c):

= + + +
=

0 0 0
0 ( )

0

0

C
C f

	 5	 Substitute θ = 0, v = 0 into equation (d):

( )=
β

+ + +

=

0 1 0 0

0 ( )

1

1

C

C g

	 6	 Substitute θ = 0, a = 0  into equation (e):

( )=
β

+ + +

=

0 1 0 0

0 ( )

2 2

2

C

C h

	 7	 Substitute θ = β, s = h into equation (c):

= + + ( )3 4 5h C C C i

	 8	 Substitute θ = β, v = 0 into equation (d):

( )=
β

+ +0 1 3 4 5 ( )3 4 5C C C j

	 9	 Substitute θ = β, a = 0  into equation (e):

( )=
β

+ +0 1 6 12 20 ( )2 3 4 5C C C k
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	10	 Three of our unknowns are found to be zero, leaving three unknowns to be solved for, C3, C4, 
C5.  Equations  (i),  (j), and  (k) can be solved simultaneously to get:

= = − =10 ; 15 ; 6 ( )3 4 5C h C h C h l

	11	 The equation for this cam design’s displacement is then:

=
θ
β







−
θ
β







+
θ
β



















10 15 6 (8.24)
3 4 5

s h

	12	 The expressions for velocity and acceleration can be obtained by substituting the values of C3, 
C4, and C5 into equations 8.18b and c.  This function is referred to as the 3‑4‑5 polynomial, 
after its exponents.  Open the file E08‑07.cam in program Dynacam to investigate this ex-
ample in more detail.

Figure 8‑25 shows the resulting s v a j diagrams for a 3-4-5 polynomial rise func-
tion.  Note that the acceleration is continuous but the jerk is not, because we did not place 
any constraints on the boundary values of the jerk function.  It is also interesting to note 
that the acceleration waveform looks very similar to the sinusoidal acceleration of the 
cycloidal function in Figure 8‑12.  Figure 8‑19 shows the relative peak accelerations of 
this 3-4-5 polynomial compared to four other functions with the same h and β.  Table 8‑3 
lists factors for the maximum velocity, acceleration, and jerk of these functions. 

FIGURE 8-24
Minimum boundary conditions for the double-dwell case

(a )

(b )

( c )

(d )

h

0

s

v

0

90 180 270 3600

a

0

j

0

Low
dwell

High
dwellRise Fall

 degθ

 degθ

 degθ

 degθβ20 0β1

β20 0β1

β20 0β1

s

v

a

j

0 β
cam angle θ

FIGURE 8-25
3-4-5 polynomial rise.
Its acceleration is very
similar to the sinusoid
of cycloidal motion
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The 4-5-6-7 Polynomial  We left the jerk unconstrained in the previous example. 
We will now redesign the cam for the same specifications but will also constrain the jerk 
function to be zero at both ends of the rise.  It will then match the dwells in the jerk func-
tion with no discontinuities.  This gives eight boundary conditions and yields a seventh-
degree polynomial.  The  solution procedure to find the eight unknown coefficients is 
identical to that used in the previous example.  Write the polynomial with the appropriate 
number of terms.  Differentiate it to get expressions for all orders of boundary conditions.  
Substitute the boundary conditions and solve the resulting set of simultaneous equations.*  
This problem reduces to four equations in four unknowns, as the coefficients C0, C1, C2, 
and C3 turn out to be zero.  For this set of boundary conditions the displacement equation 
for the rise is:

=
θ
β







−
θ
β







+
θ
β







−
θ
β



















35 84 70 20 (8.25)
4 5 6 7

s h

This is known as the 4-5-6-7 polynomial, after its exponents.  Figure 8‑26 shows 
the s v a j diagrams for this function.  Compare these functions to the 3-4-5 polynomial 
functions shown in Figure 8‑25.  Note that the acceleration of the 4-5-6-7 starts off slowly, 
with zero slope (as we demanded with our zero jerk BC), and as a result goes to a larger 
peak value of acceleration in order to replace the missing area in the leading edge.

This 4-5-6-7 polynomial function has the advantage of smoother jerk for better vibra-
tion control, compared to the 3-4-5 polynomial, the cycloidal, and all other functions so 
far discussed, but it pays a price in the form of higher peak theoretical acceleration than 
all those functions.  See also Table 8‑3.

Summary  The previous two sections have attempted to present an approach to the 
selection of appropriate double-dwell cam functions, using the common rise-dwell-fall-
dwell cam as the example, and to point out some of the pitfalls awaiting the cam designer.  
The particular functions described are only a few of the ones that have been developed for 
this double-dwell case over many years, by many designers, but they are probably the most 
used and most popular among cam designers.  Most of them are also included in program 
Dynacam.  There are many trade-offs to be considered in selecting a cam program for 
any application, some of which have already been mentioned, such as function continuity, 
peak values of velocity and acceleration, and smoothness of jerk.  There are many other 
trade-offs still to be discussed in later sections of this chapter, involving the sizing and 
the manufacturability of the cam.

8.4	 SINGLE-DWELL CAM DESIGN—CHOOSING S V A J  
FUNCTIONS

Many applications in machinery require a single-dwell cam program, rise-fall-dwell 
(RFD).  Perhaps a single-dwell cam is needed to lift and lower a roller that carries a mov-
ing paper web on a production machine that makes envelopes.  This cam’s follower lifts 
the paper up to one critical extreme position at the right time to contact a roller that applies 
a layer of glue to the envelope flap.  Without dwelling in the up position, it immediately re-
tracts the web back to the starting (zero) position and holds it in this other critical extreme 
position (low dwell) while the rest of the envelope passes by.  It repeats the cycle for the 

	

*  Any matrix solving cal-
culator, equation solver such 
as Matlab, Mathcad, or 
TKSolver,  or programs Ma-
trix  and Dynacam (sup-
plied with this text) will do 
the simultaneous equation 
solution for you.  Programs 
Matrix and Dynacam are 
discussed in Appendix A.  
You need only to supply the 
desired boundary conditions 
to Dynacam and the coef-
ficients will be computed. 
The reader is encouraged to 
do so and examine the ex-
ample problems presented 
here with the Dynacam 
program.  

s

v

a

j

0 β
cam angle θ

FIGURE 8-26
4-5-6-7 polynomial rise
whose jerk is piecewise
continuous with the
dwells
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next envelope as it comes by.  Another common example of a single-dwell application is 
the cam that opens the valves in your automobile engine.  This lifts the valve open on the 
rise, immediately closes it on the fall, and then keeps the valve closed in a dwell while the 
compression and combustion take place.

If we attempt to use the same type of cam programs as were defined for the double-
dwell case for a single-dwell application, we will achieve a solution that may work but 
is not optimal.  We will nevertheless do so here as an example in order to point out the 
problems that result.  Then we will redesign the cam to eliminate those problems.

✍EXAMPLE 8-6 

Using Cycloidal Motion for a Symmetrical Rise-Fall Single-Dwell Case.

Problem:	 Consider the following single-dwell cam specification:

rise	 1 in (25 mm) in 90 degrees
fall	 1 in (25 mm) in 90 degrees
dwell	 at zero displacement for 180 degrees (low dwell)
cam ω	 15 rad/sec

Solution:

	 1	 Figure 8‑27 shows a cycloidal displacement rise and separate cycloidal displacement fall ap-
plied to this single-dwell example.  Note that the displacement (s) diagram looks acceptable in 
that it moves the follower from the low to the high position and back in the required intervals.

	 2	 The velocity (v) also looks acceptable in shape in that it takes the follower from zero velocity 
at the low dwell to a peak value of 19.1 in/sec (0.49 m/sec) to zero again at the maximum 
displacement, where the glue is applied.

	 3	 Figure 8‑27 also shows the acceleration function for this solution.  Its maximum absolute value 
is about 573 in/sec2.

FIGURE 8-27
Cycloidal motion (or any double-dwell program) is a poor choice for the single-dwell case.

s

v

a

j

0 90 180 270 360

– 573  in/sec2

cycloidal rise cycloidal fall dwell

+ 573  in/sec2
Unnecessary return
to zero acceleration

Unnecessary
discontinuity in jerk
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	 4	 The problem is that this acceleration curve has an unnecessary return to zero at the end of the 
rise.  It is unnecessary because the acceleration during the first part of the fall is also negative.  
It would be better to keep it in the negative region at the end of the rise.

	 5	 This unnecessary oscillation to zero in the acceleration causes the jerk to have more abrupt 
changes and discontinuities.  The only real justification for taking the acceleration to zero is the 
need to change its sign (as is the case halfway through the rise or fall) or to match an adjacent 
segment that has zero acceleration.

The reader may open the file E08‑06.cam in program Dynacam to investigate this 
example in more detail.

For the single-dwell case we would like a function for the rise that does not return its 
acceleration to zero at the end of the interval.  The function for the fall should begin with 
the same nonzero acceleration value as ended the rise and then be zero at its terminus to 
match the dwell.  One function that meets those criteria is the double harmonic which 
gets its name from its two cosine terms, one of which is a half-period harmonic and the 
other a full-period wave.  The equations for the double harmonic functions are:

for the rise:

β

= − π
θ
β















 − − π

θ
β


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















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


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β


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
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













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


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
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cos cos 2 (8.26a)
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for the fall:
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Note that these double harmonic functions should never be used for the double-dwell 
case because their acceleration is nonzero at one end of the interval.
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✍EXAMPLE 8-7

Double Harmonic Motion for Symmetrical Rise-Fall Single-Dwell Case.

Problem: 	 Consider the same single-dwell cam specification as in Example 8-5:

rise	 1 in (25 mm) in 90 degrees
fall	 1 in (25 mm) in 90 degrees
dwell	 at zero displacement for 180 degrees (low dwell)
cam ω	 15 rad/sec

Solution:

	 1	 Figure 8‑28 shows a double harmonic rise and a double harmonic fall.  The peak velocity is 
19.5 in/sec (0.50 m/sec) which is similar to that of the cycloidal solution of Example 8-6.

	 2	 Note that the acceleration of this double harmonic function does not return to zero at the end 
of the rise.  This makes it more suitable for a single-dwell case in that respect.

	 3	 The double harmonic jerk function peaks at 36 931 in/sec3 (938 m/sec3) and is quite smooth 
compared to the cycloidal solution.

	 4	 Unfortunately, the peak negative acceleration is 900 in/sec2, nearly twice that of the cycloidal 
solution.  This is a smoother function but will develop higher dynamic forces.  Open the file 
E08-07.cam in program Dynacam to see this example in greater detail.

	 5	 Another limitation of this function is that it may only be used for the case of an equal time 
(symmetrical) rise and fall.  If the rise and fall times are different, the acceleration will be 
discontinuous at the juncture of rise and fall, violating the fundamental law of cam design.
	

FIGURE 8-28
Double harmonic motion can be used for the single-dwell case if rise and fall durations are equal.

Dwell

0 90 180 270 360

  Double
Harmonic
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  Double
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Neither of the solutions in Examples 8-6 and 8-7 is optimal.  We will now apply 
polynomial functions and redesign it to both improve its smoothness and reduce its peak 
acceleration.

Single-Dwell Applications of Polynomials

To solve the problem of Example 8-7 with a polynomial, we must decide on a suitable 
set of boundary conditions.  But first, we must decide how many segments to divide the 
cam cycle into. The problem statement seems to imply three segments, a rise, a fall, and 
a dwell.  We could use those three segments to create the functions as we did in the two 
previous examples, but a better approach is to use only two segments, one for the rise-fall 
combined and one for the dwell.  As a general rule we would like to minimize the number 
of segments in our polynomial cam functions.  Any dwell requires its own segment.  So, 
the minimum number possible in this case is two segments.

Another rule of thumb is that we would like to minimize the number of boundary 
conditions specified because the degree of the polynomial is tied to the number of BCs.  
As the degree of the function increases, so will the number of its inflection points and 
its number of minima and maxima.  The polynomial derivation process will guarantee 
that the function will pass through all specified BCs but says nothing about the function’s 
behavior between the BCs.  A high-degree function may have undesirable oscillations 
between its BCs.

With these assumptions we can select a set of boundary conditions for a trial solution. 
First we will restate the problem to reflect our two-segment configuration.

✍EXAMPLE 8-8 

Designing a Polynomial for the Symmetrical Rise-Fall Single-Dwell Case.

Problem:	 Redefine the CEP specification from Examples 8-5 and 8-6.

rise-fall	 1 in (25.4 mm) in 90° and fall 1 in (25.4 mm) in 90° over 180°
dwell	 at zero displacement for 180° (low dwell) 
cam ω	 15 rad/sec

Solution:

	 1	 Figure 8‑29 shows the minimum set of seven BCs for this symmetrical problem, which will 
give a sixth-degree polynomial.  The dwell on either side of the combined rise-fall segment 
has zero values of s, v, a, and j.  The fundamental law of cam design requires that we match 
these zero values, through the acceleration function, at each end of the rise-fall segment.  

	 2	 These then account for six BCs;  s, v, a = 0 at each end of the rise-fall segment.  

	 3	 We also must specify a value of displacement at the 1-in peak of the rise that occurs at θ = 90°.  
This is the seventh BC.  Note that due to symmetry, it is not necessary to specify the velocity 
to be zero at the peak.  It will be anyway.

	 4	 Figure 8‑29 also shows the coefficients of the displacement polynomial that result from the 
simultaneous solution of the equations for the chosen BCs.  For generality we have substituted 
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the variable h for the specified 1-in rise.  The function turns out to be a 3‑4‑5‑6 polynomial 
whose equation is:

=
θ
β





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Figure 8‑30 shows the s v a j diagrams for this solution with its maximum values 
noted.  Compare these acceleration and s v a j curves to the double harmonic and cycloi-
dal solutions to the same problem in Figures 8‑27 and 8‑28.  Note that this sixth-degree 
polynomial function is as smooth as the double harmonic functions (Figure 8-28) and does 
not unnecessarily return the acceleration to zero at the top of the rise as does the cycloidal 
(Figure 8-27).  The polynomial has a peak acceleration of 547 in/sec2, which is less than 
that of either the cycloidal or double harmonic solution.  This 3‑4‑5‑6 polynomial is a 

FIGURE 8-29
Boundary conditions and coe�cients for a single-dwell polynomial application
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FIGURE 8-30
3-4-5-6 polynomial function for two-segment symmetrical rise-fall, single-dwell cam
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superior solution to either of those presented for the symmetrical rise-fall case and is an 
example of how polynomial functions can be easily tailored to particular design specifi-
cations.  The reader may open the file E08‑08.cam in program Dynacam to investigate 
this example in greater detail.

Effect of Asymmetry on the Rise-Fall Polynomial Solution

The examples so far presented in this section all had equal time for rise and fall, referred 
to as a symmetrical rise-fall curve.  What will happen if we need an asymmetric program 
and attempt to use a single polynomial as was done in the previous example?

✍EXAMPLE 8-9

Designing a Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case.

Problem:	 Redefine the specification from Example 8-8 as:

rise-fall	 rise 1 in (25.4 mm) in 45° and fall 1 in (25.4 mm) in 135° over 180°
dwell	 at zero displacement for 180° (low dwell)
cam ω	 15 rad/sec

Solution:

	 1	 Figure 8-31  shows the minimum set of seven BCs for this problem that will give a sixth-degree 
polynomial.  The dwell on either side of the combined rise-fall segment has zero values for 
S, V, A, and J.  The fundamental law of cam design requires that we match these zero values, 
through the acceleration function, at each end of the rise-fall segment.  

	 2	 The endpoints account for six BCs;  S = V = A = 0 at each end of the rise-fall segment.  

	 3	 We also must specify a value of displacement at the 1-in peak of the rise that occurs at θ = 45°.  
This is the seventh BC.  

	 4	 Simultaneous solution of this equation set gives a 3‑4‑5‑6 polynomial whose equation is:
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		  For generality we have substituted the variable h for the specified 1-in rise.  

	 5	 Figure 8-31 shows the S V A J diagrams for this solution with its maximum values noted.  Ob-
serve that the derived sixth-degree polynomial has obeyed the stated boundary conditions and 
does in fact pass through a displacement of 1 unit at 45°.  But note also that it overshoots that 
point and reaches a height of 2.37 units at its peak.  The acceleration peak is also 2.37 times 
that of the symmetrical case of Example 8-8.  Without any additional boundary conditions 
applied, the function seeks symmetry.  Note that the zero velocity point is still at 90° when we 
would like it to be at 45°.  We can try to force the velocity to zero with an additional boundary 
condition of V = 0 when θ = 45°.

	 6	 Figure 8-32 shows the S V A J diagrams for a seventh-degree polynomial having 8 BCs, S = V =  
A = 0 at θ = 0°,  S = V = A = 0 at θ =180°, S = 1, V = 0 at θ = 45°.  Note that the resulting 



CAM DESIGN 449

8

elsewhere.  It now plunges to a  negative displacement of –3.934, and the peak acceleration 
is much larger.  This points out an inherent problem in polynomial functions, namely that 
their behavior between boundary conditions is not controllable and may create undesirable 
deviations in the follower motion.  This problem is exacerbated as the degree of the function 
increases since it then has more roots and inflection points, thus allowing more oscillations 
between the boundary conditions.

	 7	 Open the files Ex_08-09a and b in program Dynacam to see this example in greater detail.

FIGURE 8-31
Unacceptable polynomial for a two-segment asymmetrical rise-fall, single-dwell cam
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7 boundary
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FIGURE 8-32
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In this case, the rule of thumb to minimize the number of segments is in conflict with 
the rule of thumb to minimize the degree of the polynomial.  One alternative solution 
to this asymmetrical problem is to use three segments, one for the rise, one for the fall, 
and one for the dwell.   Adding segments will reduce the order of the functions and bring 
them under control.

✍EXAMPLE 8-10

Designing a Three-Segment Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case 
Using Minimum Boundary Conditions.

Problem:	 Redefine the specification from Example 8-9 as:

rise	 1 in (25.4 mm) in 45° 
fall	 1 in (25.4 mm) in 135° 
dwell	 at zero displacement for 180° (low dwell) 
cam ω	 15 rad/sec

Solution:

	 1	 The first attempt at this solution specifies 5 BCs;  S = V = A = 0 at the start of the rise (to 
match the dwell), S = 1 and V = 0 at the end of the rise.  Note that the rise segment BCs leave 
the acceleration at its end unspecified, but the fall segment BCs must include the value of the 
acceleration at the end of the rise that results from the calculation of  its acceleration.  Thus, 
the fall requires one more BC than the rise.

	 2	 This results in the following fourth degree equation for the rise segment:

=
θ
β







−
θ
β



















4 3 ( )
3 4

s h a

	 3	 Evaluating the acceleration at the end of rise gives –4377.11 in/sec2.  This value becomes a 
BC for the fall segment.  The set of 6 BCs for the fall is then:  S = 1, V = 0, A = –4377.11 at 
the start of the fall (to match the rise) and S = V = A = 0  at the end of the fall to match the 
dwell.  The fifth-degree equation for the fall is then:

= −
θ
β







+
θ
β







−
θ
β







+
θ
β



















1 54 152 147 48 ( )
2 3 4 5

s h b

	 4	 Figure 8-33 shows the S V A J diagrams for this solution with its extreme values noted.  Ob-
serve that this polynomial on the fall also has a problem—the displacement still goes negative.

	 5	 The trick in this case (and in general) is to first calculate the segment with the smaller accel-
eration (here the second segment) because of  its larger duration angle β.  Then use its smaller 
acceleration value as a boundary condition on the first segment.  The 5 BCs for segment 2 are 
then  S = 1 and V = 0 at the start of the fall and S = V = A = 0 at the end of the fall (to match 
the dwell).  These give the following fourth-degree polynomial for the fall.
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= −
θ
β







+
θ
β







−
θ
β



















1 6 8 3 ( )
2 3 4

s h c

	 6	 Evaluating the acceleration at the start of the fall gives –486.4 in/sec2.  This value becomes a 
BC for the rise segment.  The set of 6 BCs for the rise is then: S = V = A = 0  at the start of 
the rise to match the dwells, and S = 1, V = 0, A = –486.4 at the end of the rise (to match the 
fall).  The fifth-degree equation for the rise is then:

=
θ
β







−
θ
β







+
θ
β



















9.333 13.667 5.333 ( )
3 4 5

s h d

	 7	 The resulting cam design is shown in Figure 8-34.  The displacement is now under control and 
the peak acceleration is much less than the previous design at about 2024 in/sec2.

	 8	 The design of Figure 8-34 is acceptable (though not optimum)* for this example.  Open the 
files Ex_08-10a and b in program Dynacam to see this example in greater detail.

8.5	 CRITICAL PATH MOTION  (CPM)

Probably the most common application of critical path motion (CPM) specifications in 
production machinery design is the need for constant velocity motion.  There are two 

FIGURE 8-33
Uacceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam
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5 boundary
   conditions
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6 boundary
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 in/sec2–4377
seg 2 only

 in

	

*  An  optimum solution to 
this  generic problem can be 
found in reference [5].
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general types of automated production machinery in common use, intermittent motion 
assembly machines and continuous motion assembly machines.

Intermittent motion assembly machines carry the manufactured goods from work-
station to workstation, stopping the workpiece or subassembly at each station while an-
other operation is performed upon it.  The throughput speed of this type of automated 
production machine is typically limited by the dynamic forces that are due to accelerations 
and decelerations of the mass of the moving parts of the machine and its workpieces.  The 
workpiece motion may be either in a straight line as on a conveyor or in a circle as on a 
rotary table as shown in Figure 8-22.

Continuous motion assembly machines never allow the workpiece to stop and 
thus are capable of higher throughput speeds.  All operations are performed on a moving 
target.  Any tools that operate on the product have to “chase” the moving assembly line 
to do their job.  Since the assembly line (often a conveyor belt or chain, or a rotary table) 
is moving at some constant velocity, there is a need for mechanisms to provide constant 
velocity motion, matched exactly to the conveyor, in order to carry the tools alongside 
for a long enough time to do their job.  These cam driven “chaser” mechanisms must 
then return the tool quickly to its start position in time to meet the next part or subas-
sembly on the conveyor (quick-return).  There is a motivation in manufacturing to convert 
from intermittent motion machines to continuous motion in order to increase production 
rates.  Thus there is some demand for this type of constant velocity mechanism.  Though 
we met some linkages in Chapter 6 that give approximate constant velocity output, the 
cam-follower system is well suited to this problem, allowing theoretically exact constant 
follower velocity, and the polynomial cam function is particularly adaptable to the task.

FIGURE 8-34
Acceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam
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Polynomials Used for Critical Path Motion

✍EXAMPLE 8-11

Designing a Polynomial for Constant Velocity Critical Path Motion.

Problem:	 Consider the following statement of a critical path motion (CPM) problem:

Accelerate	 the follower from zero to 10 in/sec
Maintain	 a constant velocity of 10 in/sec for 0.5 sec
Decelerate	 the follower to zero velocity
Return 	 the follower to start position
Cycle time 	 exactly 1 sec

Solution:

	 1	 This unstructured problem statement is typical of real design problems as was discussed in 
Chapter 1.  No information is given as to the means to be used to accelerate or decelerate the 
follower or even as to the portions of the available time to be used for those tasks.  A little 
reflection will cause the engineer to recognize that the specification on total cycle time in effect 
defines the camshaft velocity to be its reciprocal or one revolution per second.  Converted to 
appropriate units, this is an angular velocity of 2π rad/sec.

	 2	 The constant velocity portion uses half of the total period of 1 sec in this example.  The de-
signer must next decide how much of the remaining 0.5 sec to devote to each other phase of 
the required motion.

	 3	 The problem statement seems to imply that four segments are needed.  Note that the designer 
has to somewhat arbitrarily select the lengths of the individual segments (except the constant 
velocity one).  Some iteration may be required to optimize the result.  Program Dynacam 
makes the iteration process quick and easy, however.

	 4	 Assuming four segments, the timing diagram in Figure 8‑35 shows an acceleration phase, a con-
stant velocity phase, a deceleration phase, and a return phase, labeled as segments 1 through 4.

FIGURE 8-35
Constant velocity cam timing diagram

0

Constant velocity Return

5 in 10 in/sec

1 2 3 4

Motion Accelerate Decelerate

30 210 240 3600 cam angle θ  deg

1.000.08 0.58 0.670 time t  sec
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	 5	 The segment angles (β’s) are assumed, for a first approximation, to be 30° for segment 1, 180° 
for segment 2, 30° for segment 3, and 120° for segment 4 as shown in Figure 8‑36.  These 
angles may need to be adjusted in later iterations, except for segment 2 which is rigidly con-
strained in the specifications.

	 6	 Figure 8‑36 shows a tentative set of boundary conditions for the s v a j diagram.  The solid 
circles indicate a set of boundary conditions that will constrain the continuous function to these 
specifications.  These are for segment 1:

θ = ° = =

θ = ° = =

when 0 ; 0, 0,
( )

when 30 ; , 10, 0

s v none
a

none v a

	 7	 Note that the displacement at θ = 30° is left unspecified.  The resulting polynomial function 
will provide us with the values of displacement at that point, which can then be used as a 

FIGURE 8-36
A possible set of boundary conditions for the four-segment constant velocity solution
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cam angle (deg)
FIGURE 8-37
Segment one for the four-segment solution to the constant velocity problem (Example 8-11)

S

V

A

J

0  30

0.556 in

10 in/sec

239.9 in/sec2

boundary condition for the next segment, in order to make the overall functions continuous 
as required.  The acceleration at θ = 30° must be zero in order to match that of the constant 
velocity segment 2.  The acceleration at θ = 0 is left unspecified.  The resulting value will be 
used later to match the end of the last segment’s acceleration.

	 8	 Putting these four BCs for segment 1 into program Dynacam yields a cubic function whose  
s v a j plots are shown in Figure 8‑37.  Its equation is:

=
θ
β







−
θ
β







0.83376 0.27792 (8.27a)
2 3

s

		  The maximum displacement occurs at θ = 30°.  This will be used as one BC for segment 2.   
The entire set for segment 2 is:

θ = ° = =

θ = °

when 30 ; 0.556, 10
( )

when 210 ; ,

s v
b

none none

	 9	 Note that in the derivations and in the Dynacam program each segment’s local angles run 
from zero to the β for that segment.  Thus, segment 2’s local angles are 0° to 180°, which cor-
respond to 30° to 210° globally in this example.  We have left the displacement, velocity, and 
acceleration at the end of segment 2 unspecified.  They will be determined by the computation.

	10	 Since this is a constant velocity segment, its integral, the displacement function, must be a 
polynomial of degree one, i.e., a straight line.  If we specify more than two BCs we will get 
a function of higher degree than one that will pass through the specified endpoints but may 
also oscillate between them and deviate from the desired constant velocity.  Thus we can only 
provide two BCs, a slope and an intercept, as defined in equation 8.2.  But, we must provide at 
least one displacement boundary condition in order to compute the coefficient C0 from equa-
tion 8.23.  Specifying the two BCs at only one end of the interval is perfectly acceptable.  The 
equation for segment 2 is:
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=
θ
β







+5 0.556 (8.27b)s

	11	 Figure 8‑38 shows the displacement and velocity plots of segment 2.  The acceleration and 
jerk are both zero.  The resulting displacement at θ = 210° is 5.556.

	12	 The displacement at the end of segment 2 is now known from its equation.  The four boundary 
conditions for segment 3 are then:

θ = ° = = =

θ = ° =

when 210 ; 5.556, 10, 0
( )

when 240 ; , 0,

s v a
c

none v none

	13	 This generates a cubic displacement function for segment 3 as in Figure 8‑39.  Its equation is:

= −
θ
β







+
θ
β







+0.27792 0.83376 5.556 (8.27c)
3

s

	14	 The boundary conditions for the last segment 4 are now defined, as they must match those of 
the end of segment 3 and the beginning of segment 1.  The displacement at the end of segment 
3 is found from the computation in Dynacam to be s = 6.112 at θ = 240° and the acceleration 
at that point is –239.9.  We left the acceleration at the beginning of segment 1 unspecified.  
From the second derivative of the equation for displacement in that segment we find that the 
acceleration is 239.9 at θ = 0°.  The BCs for segment 4 are then:

θ = ° = = = −

θ = ° = = =

when 240 ; 6.112, 0, 239.9
( )

when 360 ; 0, 0, 239.9

s v a
d

s v a

	15	 The equation for segment 4 is then:

= −
θ
β





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+
θ
β







−
θ
β


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
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−
θ
β







+9.9894 24.9735 7.7548 13.3413 6.112 (8.27d)
5 4 3 2

s

cam angle (deg)
FIGURE 8-38
Segment two for the four-segment solution to the constant velocity problem (Example 8-11)
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	16	 Figure 8‑39 shows the  s v a j plots for the complete cam.  It obeys the fundamental law of 
cam design because the piecewise functions are continuous through the acceleration.  The 
maximum value of acceleration is 257 in/sec2.  The maximum negative velocity is –29.4 in/
sec.  We now have four piecewise-continuous functions, equations 8.27, which will meet the 
performance specifications for this problem.

The reader may open the file E08-11.cam in program Dynacam to investigate this ex-
ample in greater detail.

While this design is acceptable, it can be improved.  One useful strategy in design-
ing polynomial cams is to minimize the number of segments, provided that this does not 
result in functions of such high degree that they misbehave between boundary conditions.  
Another strategy is to always start with the segment for which you have the most informa-
tion.  In this example, the constant velocity portion is the most constrained and must be a 
separate segment, just as a dwell must be a separate segment.  The rest of the cam motion 
exists only to return the follower to the constant velocity segment for the next cycle.  If we 
start by designing the constant velocity segment, it may be possible to complete the cam 
with only one additional segment.  We will now redesign this cam, to the same specifica-
tions but with only two segments as shown in Figure 8‑40.  

✍EXAMPLE 8-12

Designing an Optimum Polynomial for Constant Velocity Critical Path Motion.

Problem:	 Redefine the problem statement of Example 8-11 to have only two segments.

Maintain		  a constant velocity of 10 in/sec for 0.5 sec
Decelerate	 and accelerate follower to constant velocity
Cycle time	 exactly 1 sec

Solution:	 See Figures 8-40 and 8-41.

cam angle (deg)
FIGURE 8-39
Four-segment solution to the constant velocity problem of Example 8-11
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	 1	 The BCs for the first, constant velocity, segment will be similar to our previous solution except 
for the global values of its angles and the fact that we will start at zero displacement rather than 
at 0.556 in.  They are:

θ = ° = =

θ = °

when 0 ; 0, 10
( )

when 180 ; ,

s v
a

none none

	 2	 The displacement and velocity plots for this segment are identical to those in Figure 8‑38 
except that the displacement starts at zero.  The equation for segment 1 is:

=
θ
β







5 (8.28a)s

	 3	 The program calculates the displacement at the end of segment 1 to be 5.00 in.  This defines 
that BC for segment 2.   The set of BCs for segment 2 is then:

θ = ° = = =

θ = ° = = =

when 180 ; 5.00, 10, 0
( )

when 360 ; 0, 10, 0

s v a
b

s v a

		  The equation for segment 2 is:

= −
θ
β







+
θ
β







−
θ
β







+
θ
β







+60 150 100 5 5 (8.28b)
5 4 3 1

s

FIGURE 8-40
Boundary conditions for the two-segment constant velocity solution
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	 4	 The s v a j diagrams for this design are shown in Figure 8‑41.  Note that they are much 
smoother than the four-segment design.  The maximum acceleration in this example is now 
230 in/sec2, and the maximum negative velocity is –27.5 in/sec. These are both less than in 
the previous design of Example 8-11.  

	 5	 The fact that our displacement in this design contains negative values as shown in the s diagram 
of Figure 8-41 is of no concern.  This is due to our starting with the beginning of the constant 
velocity portion as zero displacement.  The follower has to go to a negative position in order 
to have distance to accelerate up to speed again.  We will simply shift the displacement coordi-
nates by that negative amount to make the cam.  To do this, simply calculate the displacement 
coordinates for the cam.  Note the value of the largest negative displacement.  Add this value 
to the displacement boundary conditions for all segments and recalculate the cam functions 
with Dynacam.  (Do not change the BCs for the higher derivatives.)  The finished cam’s 
displacement profile will be shifted up such that its minimum value will now be zero.

So, not only do we now have a smoother cam but the dynamic forces and stored 
kinetic energy are both lower.  Note that we did not have to make any assumptions about 
the portions of the available nonconstant velocity time to be devoted to speeding up or 
slowing down.  This all happened automatically from our choice of only two segments and 
the specification of the minimum set of necessary boundary conditions.  This is clearly a 
superior design to the previous attempt and is in fact an optimal polynomial solution to 
the given specifications.  The reader is encouraged to open the file E08‑12.cam in program 
Dynacam to investigate this example in more detail.

Summary  These sections have presented polynomial functions as the most ver-
satile approach (of those shown here) to virtually any cam design problem.  It is only 
since the development and general availability of computers that polynomial functions 
have become practical to use, as the computation to solve the simultaneous equations is 
often beyond hand calculation abilities.  With the availability of a design aid to solve the 
equations such as program Dynacam, polynomials have become a practical and prefer-

cam angle (deg)
FIGURE 8-41
Two-segment solution to the constant velocity problem of Example 8-12

S

V

A

J

0 90 180 270 360

10 in/sec

5.484 in

230 in/sec2–27.5 in/sec

–230 in/sec2

–0.484 in



DESIGN OF MACHINERY 6ed      CHAPTER 8460

8

able way to solve many, but not all, cam design problems.  Spline functions, of which 
polynomials are a subset, offer even more flexibility in meeting boundary constraints and 
other cam performance criteria.  Space does not permit a detailed exposition of spline 
functions as applied to cam systems here.  See reference [6] for more information.

8.6	 SIZING THE CAM—PRESSURE ANGLE AND RADIUS OF  
CURVATURE View the lecture video (48:55)†

Once the s v a j functions have been defined, the next step is to size the cam.  There are two 
major factors that affect cam size, the pressure angle and the radius of curvature.  Both 
of these involve either the base circle radius  on the cam (Rb) when using flat-faced fol-
lowers, or the prime circle radius  on the cam (Rp) when using roller or curved followers.

The base circle’s and prime circle’s centers are at the center of rotation of the cam.  
The base circle is defined as the smallest circle that can be drawn tangent to the physical 
cam surface as shown in Figure 8‑42.  All radial cams will have a base circle, regardless 
of the follower type used.

The prime circle is only applicable to cams with roller followers or radiused (mush-
room) followers and is measured to the center of the follower.   The prime circle is de-
fined as the smallest circle that can be drawn tangent to the locus of the centerline of the 
follower as shown in Figure 8‑42.  The locus of the centerline of the follower is called the 
pitch curve.  Cams with roller followers are in fact defined for manufacture with respect 
to the pitch curve rather than with respect to the cam’s physical surface.  Cams with flat-
faced followers must be defined for manufacture with respect to their physical surface, as 
there is no pitch curve.

Rb

ωcam

Prime circle

Base circle

Pitch curve
Cam surface

Rp

Roller follower

Rf

FIGURE 8-42
Base circle Rb, prime circle Rp, and pitch curve of a radial cam with roller follower

† http://www.designof-
machinery.com/DOM/
Cam_Design_III.mp4

http://www.designofmachinery.com/DOM/Cam_Design_III.mp4
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The process of creating the physical cam from the s diagram can be visualized con-
ceptually by imagining the s diagram to be cut out of a flexible material such as rubber.  
The x axis of the s diagram represents the circumference of a circle, which could be either 
the base circle, or the prime circle, around which we will “wrap” our “rubber” s diagram.  
We are free to choose the initial length of our s diagram’s x axis, though the height of the 
displacement curve is fixed by the cam displacement function we have chosen.  In effect 
we will choose the base or prime circle radius as a design parameter and stretch the length 
of the s diagram’s axis to fit the circumference of the chosen circle.

We will present equations for pressure angle and radius of curvature only for radial 
cams with translating followers here.  For related information on oscillating followers and 
axial (barrel) cams, see Chapter 7 of reference [5].

Pressure Angle—Translating Roller Followers

The pressure angle is defined as shown in Figure 8‑43.  It is the complement of the 
transmission angle that was defined for linkages in previous chapters and has a similar 
meaning with respect to cam-follower operation.  By convention, the pressure angle is 
used for cams, rather than the transmission angle.  Force can only be transmitted from 
cam to follower or vice versa along the axis of transmission which is perpendicular to 
the axis of slip, or common tangent.

Pressure Angle  The pressure angle φ is the angle between the direction of 
motion (velocity) of the follower and the direction of the axis of transmission.*  When 
φ = 0, all the transmitted force goes into motion of the follower and none into slip veloc-
ity.  When φ becomes 90° there will be no motion of the follower.  As a rule of thumb, we 
would like the pressure angle to be between zero and about 30° for translating followers 
to avoid excessive side load on the sliding follower.  If the follower is oscillating on a 
pivoted arm, a pressure angle up to about 35° is acceptable.  Values of φ greater than this 
can increase the follower sliding or pivot friction to undesirable levels and may tend to 
jam a translating follower in its guides.

Eccentricity  Figure 8‑44 shows the geometry of a cam and translating roller 
follower in an arbitrary position.  This shows the general case in that the axis of motion 
of the follower does not intersect the center of the cam.  There is an eccentricity ε defined 
as the perpendicular distance between the follower’s axis of motion and the center of the 
cam.  Often this eccentricity ε will be zero, making it an aligned follower, which is the 
special case.

In Figure 8-44, the axis of transmission is extended to intersect effective link 1, which 
is the ground link.  (See Section 8.0 and Figure 8‑1 for a discussion of effective links in 
cam systems.)  This intersection is instant center I2,4 (labeled B) which, by definition, has 
the same velocity in link 2 (the cam) and in link 4 (the follower).  Because link 4 is in 
pure translation, all points on it have identical velocities Vfollower, which are equal to the 
velocity of I2,4 in link 2.  We can write an expression for the velocity of I2,4 in terms of 
cam angular velocity and the radius b from cam center to I2,4,

= ω =  (8.29)
2,4

V b SI

	

*  Dresner and Buffington[7] 
point out that this definition 
is only valid for single-
degree-of-freedom systems.  
For multi-input systems, a 
more complicated definition 
and calculation of pressure 
angle (or transmission 
angle) are needed. 
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where s or S is the instantaneous displacement of the follower from the S diagram and S
is its time derivative in units of length/sec.  (Note that capital V, A, J denote time-based 
variables and v, a, j are functions of cam angle—length/rad, length/rad2, length/rad3.)

But

and

so
then (8.30)

S dS
dt

dS
dt

d
d

dS
d

d
dt

dS
d

v

b v
b v

=

θ
θ

=
θ

θ
=

θ
ω = ω

ω = ω
=

This is an interesting relationship which says that the distance b to the instant center 
I2,4 is equal to the velocity of the follower v in units of length per radian as derived in 
previous sections.  We have reduced this expression to pure geometry, independent of the 
angular velocity ω of the cam.

FIGURE 8-43
Cam pressure angle
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Note that we can express the distance b in terms of the prime circle radius Rp and the 
eccentricity ε, by the construction shown in Figure 8-44.  Swing the arc of radius Rp until 
it intersects the axis of motion of the follower at point D.  This defines the length of line 
d from effective link 1 to this intersection.  This is constant for any chosen prime circle 
radius Rp.  Points A, C, and I2,4 form a right triangle whose upper angle is the pressure 
angle φ and whose vertical leg is (s + d), where s is the instantaneous displacement of the 
follower.  From this triangle:

( )

( )

= − ε = + φ

= + φ + ε
and

tan
(8.31a)

tan

c b s d

b s d

Then from equation 8.30,

( )= + φ + εtan (8.31b)v s d

to I1,4 @ ∞
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FIGURE 8-44
Geometry for the derivation of the equation for pressure angle
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and from triangle CDO2,

= − ε (8.31c)2 2d RP

Substituting equation 8.31c into equation 8.31b and solving for φ give an expression 
for pressure angle in terms of displacement s, velocity v, eccentricity ε,  and the prime 
circle radius Rp.

φ =
− ε

+ − ε
arctan (8.31d)

2 2

v

s RP

The velocity v in this expression is in units of length/rad, and all other quantities are 
in compatible length units.  We have typically defined s and v by this stage of the cam 
design process and wish to manipulate Rp and ε to get an acceptable maximum pressure 
angle φ.  As Rp is increased, φ will be reduced.  The only constraints against large values 
of Rp are the practical ones of package size and cost.  Often there will be some upper limit 
on the size of the cam-follower package dictated by its surroundings.  There will always 
be a cost constraint and bigger = heavier = more expensive.

Choosing a Prime Circle Radius

Both Rp and ε are within a transcendental expression in equation 8.31d, so they cannot 
be conveniently solved for directly.  The simplest approach is to assume a trial value for 
Rp and an initial eccentricity of zero, and use program Dynacam, your own program, or 
an equation solver such as Matlab, TKSolver or Mathcad to quickly calculate the values 
of φ for the entire cam, and then adjust Rp and repeat the calculation until an acceptable 
arrangement is found.  Figure 8‑45 shows the calculated pressure angles for a four-dwell 
cam.  Note the similarity in shape to the velocity functions for the same cam in Figure 
8‑6, as that term is dominant in equation 8.31d.

cam angle (deg)
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FIGURE 8-45
Pressure angle functions are similar in shape to velocity functions.
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Using Eccentricity  If a suitably small cam cannot be obtained with acceptable 
pressure angle, then eccentricity can be introduced to change the pressure angle.  Using 
eccentricity to control the pressure angle has its limitations.  For a positive ω, a positive 
value of eccentricity will decrease the pressure angle on the rise but will increase it on 
the fall.  Negative eccentricity does the reverse.  

This is of little value with a form-closed (groove or track) cam, as it is driving the 
follower in both directions.  For a force-closed cam with spring return, you can sometimes 
afford to have a larger pressure angle on the fall than on the rise because the stored energy 
in the spring is attempting to speed up the camshaft on the fall, whereas the cam is stor-
ing that energy in the spring on the rise.  The limit of this technique can be the degree 
of overspeed attained with a larger pressure angle on the fall.  The resulting variations in 
cam angular velocity may be unacceptable.  

The most value gained from adding eccentricity to a follower comes in situations 
where the cam program is asymmetrical and significant differences exist (with no eccen-
tricity) between maximum pressure angles on rise and fall.  Introducing eccentricity can 
balance the pressure angles in this situation and create a smoother running cam.

If adjustments to Rp or ε do not yield acceptable pressure angles, the only recourse 
is to return to an earlier stage in the design process and redefine the problem.  Less lift 
or more time to rise or fall will reduce the causes of the large pressure angle.  Design is, 
after all, an iterative process.

Overturning Moment—Translating Flat-Faced Follower

Figure 8‑46 shows a translating, flat-faced follower running against a radial cam.  The 
pressure angle can be seen to be zero for all positions of cam and follower.  This seems 
to be giving us something for nothing, which can’t be true.  As the contact point moves 
left and right, the point of application of the force between cam and follower moves with 
it.  There is an overturning moment on the follower associated with this off-center force 
which tends to jam the follower in its guides, just as did too large a pressure angle in the 
roller follower case.  In this case, we would like to keep the cam as small as possible in 
order to minimize the moment arm of the force.  Eccentricity will affect the average value 
of the moment, but the peak-to-peak variation of the moment about that average is unaf-
fected by eccentricity.  Considerations of too-large pressure angle do not limit the size of 
this cam, but other factors do.  The minimum radius of curvature (see below) of the cam 
surface must be kept large enough to avoid undercutting.  This is true regardless of the 
type of follower used.

Radius of Curvature—Translating Roller Follower

The radius of curvature is a mathematical property of a function.  Its value and use is 
not limited to cams but has great significance in their design.  The concept is simple.  No 
matter how complicated a curve’s shape may be, nor how high the degree of the describ-
ing function, it will have an instantaneous radius of curvature at every point on the curve.  
These radii of curvature will have instantaneous centers (which may be at infinity), and 
the radius of curvature of any function is itself a function that can be computed and plot-
ted.  For example, the radius of curvature of a straight line is infinity everywhere; that of 
a circle is a constant value.  A parabola has a constantly changing radius of curvature that 



DESIGN OF MACHINERY 6ed      CHAPTER 8466

8

approaches infinity.  A cubic curve will have radii of curvature that are sometimes posi-
tive (convex) and sometimes negative (concave).  The higher the degree of a function, in 
general, the more potential variety in its radius of curvature.

Cam contours are usually functions of high degree.  When they are wrapped around 
their base or prime circles, they may have portions that are concave, convex, or flat.  
Infinitesimally short flats of infinite radius will occur at all inflection points on the cam 
surface where it changes from concave to convex or vice versa.

The radius of curvature of the finished cam is of concern regardless of the follower 
type, but the concerns are different for different followers.  Figure 8‑47 shows an obvious 
(and exaggerated) problem with a roller follower whose own (constant) radius of curvature 
Rf is too large to follow the locally smaller concave (negative) radius –ρ on the cam.  (Note 
that, normally, one would not use that large a roller compared to the cam.)

A more subtle problem occurs when the roller follower radius Rf is larger than the 
smallest positive (convex) local radius +ρ on the cam.  This problem is called undercut-
ting and is depicted in Figure 8‑48.  Recall that for a roller follower cam, the cam contour 
is actually defined as the locus of the center of the roller follower, or the pitch curve.  The 
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Fspring
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FIGURE 8-46
Overturning moment on a flat-faced follower
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machinist is given these x,y coordinate data (on computer tape or disk) and also told the 
radius of the follower Rf.  The machinist will then cut the cam with a cutter of the same 
effective radius as the follower, following the pitch curve coordinates with the center of 
the cutter.

Figure 8‑48a shows the situation in which the follower (cutter) radius Rf is at one 
point exactly equal to the minimum convex radius of curvature of the cam (+ρmin).  The 
cutter creates a perfect sharp point, or cusp, on the cam surface.  This cam will not run 
very well at speed!  Figure 8‑48b shows the situation in which the follower (cutter) radius 
is greater than the minimum convex radius of curvature of the cam.  The cutter now un-
dercuts or removes material needed for cam contours in different locations and also creates 
a sharp point or cusp on the cam surface.  This cam no longer has the same displacement 
function you so carefully designed.

The rule of thumb is to keep the absolute value of the minimum radius of curvature 
ρmin of the cam pitch curve preferably at least 2 to 3 times as large as the radius of the 
roller follower Rf .

ρ >> (8.32)min Rf

A derivation for radius of curvature can be found in any calculus text.  For our case of 
a roller follower, we can write the equation for the radius of curvature of the pitch curve 
of the cam as:

( )
( ) ( )

ρ =
+ +





+ + − +2
(8.33)

2 2
3 2

2 2

R s v

R s v a R s
pitch

P

P P

In this expression, s, v, and a are the displacement, velocity, and acceleration of the 
cam program as defined in a previous section.  Their units are length, length/rad, and 
length/rad2, respectively.  Rp is the prime circle radius.  Do not confuse this prime circle 
radius Rp with the radius of curvature, ρpitch.  Rp is a constant value which you choose 
as a design parameter and ρpitch is the constantly changing radius of curvature that results 
from your design choices.

FIGURE 8-47
The result of using a roller follower larger than the one for which the cam was designed
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Vfollower
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Also do not confuse Rp, the prime circle radius, with Rf, the radius of the roller fol-
lower.  See Figure 8‑43 for definitions.  You can choose the value of Rf to suit the prob-
lem, so you might think that it is simple to satisfy equation 8.32 by just selecting a roller 
follower with a small value of Rf.  Unfortunately it is more complicated than that, as a 
small roller follower may not be strong enough to withstand the dynamic forces from the 
cam.  The radius of the pin on which the roller follower pivots is substantially smaller than 
Rf because of the space needed for roller or ball bearings within the follower.  Dynamic 
forces will be addressed in later chapters where we will revisit this problem.

We can solve equation 8.33 for ρpitch since we know s, v, and a for all values of θ 
and can choose a trial Rp.  If the pressure angle has already been calculated, the Rp found 
for its acceptable values should be used to calculate ρpitch as well.  If a suitable follower 
radius cannot be found which satisfies equation 8.32 for the minimum values of ρpitch 
calculated from equation 8.33, then further iteration will be needed, possibly including a 
redefinition of the cam specifications.

Program Dynacam calculates ρpitch for all values of θ for a user supplied prime 
circle radius Rp.  Figure 8‑49 shows ρpitch for the four-dwell cam of Figure 8-6.  Note that 
this cam has both positive and negative radii of curvature.  The large values of radius of 
curvature are truncated at arbitrary levels on the plot as they are heading to infinity at the 
inflection points between convex and concave portions.  Note that the radii of curvature 

( a )  Radius of curvature of pitch curve
        equals the radius of the roller follower

FIGURE 8-48
Small positive radius of curvature can cause undercutting.

(b )  Radius of curvature of pitch curve is
       less than the radius of the roller follower

Follower

Pitch curve

Cam surface

Cusp due to
undercutting

Missing material and
cusp due to undercutting

Follower
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go out to positive infinity and return from negative infinity or vice versa at these inflection 
points (perhaps after a round trip through the universe?).

Once an acceptable prime circle radius and roller follower radius are determined 
based on pressure angle and radius of curvature considerations, the cam can be drawn 
in finished form and subsequently manufactured.  Figure 8‑50 shows the profile of the 
four-dwell cam from Figure 8-6.  The cam surface contour is swept out by the envelope 
of follower positions just as the cutter will create the cam in metal.  The sidebar shows the 
parameters for the design, which is an acceptable one.  The ρmin is 1.7 times Rf and the 
pressure angles are less than 30°.  The contours on the cam surface appear smooth, with 
no sharp corners.  Figure 8‑51 shows the same cam with only one change.  The radius 
of follower Rf has been made the same as the minimum radius of curvature, ρmin.  The 
sharp corners or cusps in several places indicate that undercutting has occurred.  This has 
now become an unacceptable cam, simply because of a roller follower that is too large.

The coordinates for the cam contour, measured to the locus of the center of the roller 
follower, or the pitch curve as shown in Figure 8‑50, are defined by the following expres-
sions, referenced to the center of rotation of the cam.  See Figure 8‑44 for nomenclature.  
The subtraction of the cam input angle θ from 2π is necessary because the relative motion 
of the follower versus the cam is opposite to that of the cam versus the follower.  In other 
words, to define the contour of the centerline of the follower’s path around a stationary 
cam, we must move the follower (and also the cutter to make the cam) in the opposite 
direction of cam rotation.

( )

( )

( )

= λ + + ε

= λ + + ε

λ = π − θ −
ε
+







where:

cos

sin (8.34)

2 arctan
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FIGURE 8-49
Radius of curvature of a four-dwell cam
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Radius of Curvature—Translating Flat-Faced Follower

The situation with a flat-faced follower is different from that of a roller follower.  A nega-
tive radius of curvature on the cam cannot be accommodated with a flat-faced follower. 
The flat follower obviously cannot follow a concave cam.  Undercutting will occur when 
the radius of curvature becomes negative if a cam with that condition is made.  

Figure 8‑52 shows a cam and translating flat-faced follower in an arbitrary position.  
The origin of the global XY coordinate system is placed at the cam’s center of rotation, 
and the X axis is defined parallel to the common tangent, which is the surface of the flat 

FIGURE 8-50
Radial plate cam profile is generated by the locus of the roller follower (or cutter)
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FIGURE 8-51
Cusps formed by undercutting due to radius of follower R  ≥ cam radius of curvature ρ
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RA
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FIGURE 8-52
Geometry for derivation of radius of curvature and cam contour with flat-faced follower
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follower.  The vector r is attached to the cam, rotates with it, and serves as the reference 
line to which the cam angle θ is measured from the X axis.  The point of contact A is 
defined by the position vector RA.  The instantaneous center of curvature is at C and the 
radius of curvature is ρ.  Rb is the radius of the base circle and s is the displacement of the 
follower for angle θ.  The eccentricity is ε.

We can define the location of contact point A from two vector loops (in complex 
notation).

( )

( )

= + +

= + ρ

+ ρ = + +

( )

( )

θ+α

θ+α

and

so:

(8.35a)

x j R s

ce j

ce j x j R s

A b

A
j

j
b

R

R

Substitute the Euler equivalent (equation 4.4a) in equation 8.35a and separate the real 
and imaginary parts.

real:
( )θ + α =cos (8.35b)c x
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imaginary:
( )θ + α + ρ = +sin (8.35c)c R sb

The center of curvature C is stationary on the cam, meaning that the magnitudes of 
c and ρ, and angle α do not change for small changes in cam angle θ.  (These values are 
not constant but are at stationary values.  Their first derivatives with respect to θ are zero, 
but their higher derivatives are not zero.)

Differentiating equation 8.35a with respect to θ  then gives:

=
θ

+
θ

( )θ+α (8.36)jce dx
d

j ds
d

j

Substitute the Euler equivalent (equation 4.4a) in equation 8.36 and separate the real 
and imaginary parts.

real:

( )− θ + α =
θ

sin (8.37)c dx
d

imaginary:

( )θ + α =
θ

=cos (8.38)c ds
d

v

Inspection of equations 8.35b and 8.36 shows that:

= (8.39)x v

This is an interesting relationship that says the x position of the contact point between 
cam and follower is equal to the velocity of the follower in length/rad.  This means that the 
v diagram gives a direct measure of the necessary minimum face width of the flat follower.

> − (8.40)max minfacewidth v v

If the velocity function is asymmetric, then a minimum-width follower will have to 
be asymmetric also, in order not to fall off the cam.

Differentiating equation 8.39 with respect to θ gives:

θ
=

θ
= (8.41)dx

d
dv
d

a

Equations 8.35c and 8.37 can be solved simultaneously and equation 8.41 substituted 
in the result to yield:

ρ = + + (8.42a)R s ab

and the minimum value of radius of curvature is

( )ρ = + + (8.42b)min minR s ab
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Base Circle   Note that equations 8.42 define the radius of curvature in terms of 
the base circle radius and the displacement and acceleration functions from the s v a j 
diagrams only.  Because ρ cannot be allowed to become negative with a flat-faced fol-
lower, we can formulate a relationship from equation 8.42b that will predict the minimum 
base circle radius Rb needed to avoid undercutting.  The only factor on the right side of 
equations 8.42 that can be negative is the acceleration, a.  We have defined s to be always 
positive, as is Rb.  Therefore, the worst case for undercutting will occur when a is near its 
largest negative value, amin, whose value we know from the a diagram.  The minimum 
base circle radius can then be defined as:

( )> ρ − + (8.43)min minmin
R s ab

Because the value of amin is negative and it is also negated in equation 8.43, it domi-
nates the expression.  To use this relationship, we must choose some minimum radius 
of curvature ρmin for the cam surface as a design parameter.  Since the hertzian contact 
stresses at the contact point are a function of local radius of curvature, that criterion can 
be used to select ρmin.  That topic is beyond the scope of this text and will not be further 
explored here.  See reference [1] for further information on contact stresses. 

Cam Contour  For a flat-faced follower cam, the coordinates of the physical cam sur-
face must be provided to the machinist as there is no pitch curve to work to.  Figure 8‑52 
shows two orthogonal vectors, r and q, which define the cartesian coordinates of contact 
point A between cam and follower with respect to a rotating axis coordinate system em-
bedded in the cam.  Vector r is the rotating “x” axis of this embedded coordinate system.  
Angle ψ defines the position of vector RA in this system.  Two vector loop equations can 
be written and equated to define the coordinates of all points on the cam surface as a 
function of cam angle θ.

( )

( )

= + +

= +

+ = + +

θ
θ+ π





θ
θ+ π





and

so:

(8.44)

2

2

x j R s

re qe

re qe x j R s

A b

A
j

j

j
j

b

R

R

Divide both sides by ejθ:

( )+ = + +− θ − θ (8.45)r jq xe j R s ej
b

j

Separate into real and imaginary components and substitute v for x from equation 8.39:

real (x component):

( )= + θ + θsin cos (8.46a)r R s vb

imaginary (y component):

( )= + θ − θcos sin (8.46b)q R s vb
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Equations 8.46 can be used to machine the cam for a flat-faced follower.  These x, y com-
ponents are in the rotating coordinate system that is embedded in the cam.

Note that none of the equations developed above for this case involve the eccentric-
ity, ε.  It is only a factor in cam size when a roller follower is used.  It does not affect the 
geometry of a flat follower cam.

Figure 8‑53 shows the result of trying to use a flat-faced follower on a cam whose 
theoretical path of follower point P has negative radius of curvature due to a base circle 
radius that is too small.  If the follower tracked the path of P as is required to create the 
motion function defined in the s diagram, the cam surface would actually be as developed 
by the envelope of straight lines shown.  But, these loci of the follower face are cutting 
into cam contours that are needed for other cam angles.  The line running through the 
forest of follower loci is the path of point P needed for this design.  The undercutting can 
be clearly seen as the crescent-shaped missing pieces at four places between the path of P 
and the follower face loci.  Note that if the follower were zero width (at point P), it would 
work kinematically, but the stress at the knife edge would be infinite.

Summary  The task of sizing a cam is an excellent example of the need for and value 
of iteration in design.  Rapid recalculation of the relevant equations with a tool such as 
program Dynacam makes it possible to quickly and painlessly arrive at an acceptable 
solution while balancing the often conflicting requirements of pressure angle and radius 
of curvature constraints.  In any cam, either the pressure angle or radius of curvature 
considerations will dictate the minimum size of the cam.  Both factors must be checked.  
The choice of follower type, either roller or flat-faced, makes a big difference in the cam 
geometry.  Cam programs that generate negative radii of curvature are unsuited to the 
flat-faced type of follower unless very large base circles are used to force ρ to be positive 
everywhere.

FIGURE 8-53
Undercutting due to negative radius of curvature used with flat-faced follower
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8.7	 PRACTICAL DESIGN CONSIDERATIONS

The cam designer is often faced with many confusing decisions, especially at an early 
stage of the design process.  Many early decisions, often made somewhat arbitrarily and 
without much thought, can have significant and costly consequences later in the design.  
The following is a discussion of some of the trade-offs involved with such decisions in the 
hope that it will provide the cam designer with some guidance in making these decisions.

Translating or Oscillating Follower?

There are many cases, especially early in a design, when either translating or rotating 
motion could be accommodated as output from the cam, though in other situations, the 
follower motion and geometry is dictated to the designer. If some design freedom is al-
lowed, and straight-line motion is specified, the designer should consider the possibility 
of using an approximate straight-line motion, which is often adequate and can be obtained 
from a large-radius rocker follower.  The rocker or oscillating follower has advantages 
over the translating follower when a roller is used.  A round-cross-section translating fol-
lower slide is free to rotate about its axis of translation and needs to have some antirota-
tion guiding provided (such as a keyway or second slide) to prevent z axis misalignment 
of the roller follower with the cam.  Many commercial, nonrotating slide assemblies are 
now available, often fitted with ball bearings, and these provide a good way to deal with 
this issue.  However, an oscillating follower arm will keep the roller follower aligned in 
the same plane as the cam with no guiding other than its own pivot.  

Also, the pivot friction in an oscillating follower typically has a small moment arm 
compared to the moment of the force from the cam on the follower arm.  But, the friction 
force on a translating follower has a one-to-one geometric relationship with the cam force. 
This can have a larger parasitic effect on the system.

Translating flat-faced followers are often deliberately arranged with their axis slightly 
out of the plane of the cam in order to create a rotation about their own axis due to the 
frictional moment resulting from the offset.  The flat follower will then precess around 
its own axis and distribute the wear over its entire face surface.  This is common practice 
with automotive valve cams that use flat-faced followers or “tappets.”

Force- or Form-Closed?

A form-closed (track or groove) cam or conjugate cams are more expensive to make than 
a force-closed (open) cam simply because there are two surfaces to machine and grind.  
Also, heat treating will often distort the track of a form-closed cam, narrowing or widen-
ing it such that the roller follower will not fit properly.   This virtually requires post heat-
treat grinding for track cams in order to resize the slot.  An open (force-closed) cam will 
also distort on heat-treating, but can still be usable without grinding.

Follower Jump  The principal advantage of a form-closed (track) or conjugate-
pair cam is that it does not need a return spring, and thus can be run at higher speeds than 
a force-closed cam whose spring and follower mass will go into resonance at some speed, 
causing potentially destructive follower jump.  This phenomenon will be investigated in 
Chapter 15 on cam dynamics.  High-speed automobile and motorcycle racing engines of-
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ten use form-closed (desmodromic)* valve cam trains to allow higher engine rpm without 
incurring valve “float,” or follower jump.

Crossover Shock  Though the lack of a return spring can be an advantage, it 
comes, as usual, with a trade-off.  In a form-closed (track) cam there will be crossover 
shock each time the acceleration changes sign.  Crossover shock describes the impact 
force that occurs when the follower suddenly jumps from one side of the track to the 
other as the dynamic force (ma) reverses sign.  There is no flexible spring in this system 
to absorb the force reversal as in the force-closed case.  The high impact forces at cross-
over cause noise, high stresses, and local wear.  Also, the roller follower has to reverse 
direction at each crossover, which causes sliding and accelerates follower wear.  Studies 
have shown that roller followers running against a well-lubricated open radial cam have 
slip rates of less than 1%.[9]

Radial or Axial Cam?

This choice is largely dictated by the overall geometry of the machine for which the cam is 
being designed.  If the follower must move parallel to the camshaft axis, then an axial cam 
is dictated.  If there is no such constraint, a radial cam is probably a better choice simply 
because it is a less complicated, thus less expensive, cam to manufacture.

Roller or Flat-Faced Follower?

The roller follower is a better choice from a cam design standpoint simply because it 
accepts negative radius of curvature on the cam.  This allows more variety in the cam 
program.  Also, for any production quantity, the roller follower has the advantage of be-
ing available from several manufacturers in any quantity from one to a million.  For low 
quantities it is not usually economical to design and build your own custom follower.  In 
addition, replacement roller followers can be obtained from suppliers on short notice when 
repairs are needed.  Also, they are not particularly expensive even in small quantities.

Perhaps the largest users of flat-faced followers are automobile engine makers.  Their 
quantities are high enough to allow any custom design they desire.  It can be made or 
purchased economically in large quantity and can be less expensive than a roller follower 
in that case.  Also with engine valve cams, a flat follower can save space over a roller.  
Nevertheless, many manufacturers have switched to roller followers in automobile engine 
valve trains to reduce friction and improve fuel economy.  Most new automotive internal 
combustion engines designed in the United States in recent years have used roller follow-
ers for those reasons.  Diesel engines have long used roller followers (tappets) as have 
racers who “hop-up” engines for high performance.

Cams used in automated production line machinery use stock roller followers almost 
exclusively.  The ability to quickly change a worn follower for a new one taken from the 
stockroom without losing much production time on the “line” is a strong argument in 
this environment.  Roller followers come in several varieties (see Figure 8‑5a).  They are 
based on roller or ball bearings.  Plain bearing versions are also available for low-noise 
requirements.  The outer surface, which rolls against the cam, can be either cylindrical or 
spherical in shape.  The “crown” on the spherical follower is slight, but it guarantees that 

	

*  More information on 
desmodromic cam-follower 
mechanisms can be found 
at http://members.chello.
nl/~wgj.jansen/ where a 
number of models of their 
commercial implementa-
tions can be viewed in 
operation as movies.

http://members.chello.nl/~wgj.jansen/
http://members.chello.nl/~wgj.jansen/
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the follower will ride near the center of a flat cam even with some inaccuracy of alignment 
of the axes of rotation of cam and follower.  If a cylindrical follower is chosen and care 
is not taken to align the axes of cam and roller follower, or if it deflects under load, the 
follower will ride on one edge and wear rapidly.

Commercial roller followers are typically made of high carbon alloy steel such as 
AISI 52100 and hardened to Rockwell HRC 60–62.  The 52100 alloy is well suited to 
thin sections that must be heat-treated to a uniform hardness.  Because the roller makes 
many revolutions for each cam rotation, its wear rate will typically be higher than that of 
the cam.  Chrome plating the follower can markedly improve its life.  Chrome is harder 
than steel at about HRC 70.  Steel cams are typically hardened to a range of HRC 50–55.

To Dwell or Not to Dwell?

The need for a dwell is usually clear from the problem specifications.  If the follower must 
be held stationary for any time, then a dwell is required.  Some cam designers tend to 
insert dwells in situations where they are not specifically needed for follower stasis, in a 
mistaken belief that this is preferable to providing a rise-return motion when that is what 
is really needed.  If the designer is attempting to use a double-dwell program in what really 
needs only to be a single-dwell case, with the motivation to “let the vibrations settle out” 
by providing a “short dwell” at the end of the motion, he or she is misguided.  Instead, 
the designer probably should be using a different cam program, perhaps a polynomial or 
a B-spline tailored to the specifications.  Taking the follower acceleration to zero, whether 
for an instant or for a “short dwell,” is generally undesirable unless absolutely required for 
machine function.  (See Examples 8‑6 , 8‑7, and 8‑8.)  A dwell should be used only when 
the follower is required to be stationary for some measurable time.  Moreover, if you do 
not need any dwell at all, consider using a linkage instead.  They are a lot easier and less 
expensive to manufacture.

To Grind or Not to Grind?

Some production machinery cams are used as-milled, and not ground.  Automotive valve 
cams are ground.  The reasons are largely due to cost and quantity considerations as well 
as the high speeds of automotive cams.  There is no question that a ground cam is superior 
to a milled cam, but a hard-machined* cam can perform nearly as well as a well-ground 
cam. The question in each case is whether the grinding advantage gained is worth the 
cost.  In small quantities, as are typical of production machinery, grinding about doubles 
the cost of a cam.  The advantages in terms of smoothness and quietness of operation, 
and of wear, are not in the same ratio as the cost difference.[9, 10]  Automotive cams are 
made in large quantity, run at very high speed, and are expected to last for a very long time 
with minimal maintenance.  This is a very challenging specification.  It is a great credit 
to the engineering of these cams that they very seldom fail in 150 000 miles or more of 
operation.  These cams are made on specialized equipment which keeps the cost of their 
grinding to a minimum.

Industrial production machine cams also see very long lives, often 10 to 20 years, 
running into billions of cycles at typical machine speeds.  Unlike the typical automotive 
application, industrial cams often run around the clock, 7 days a week, 50+ weeks a year.

	

* “Hard machining” is a 
relatively recent addition 
to the machinist’s toolbox.  
Modern boron-nitride 
cutting tools are able to 
machine pre-hardened steel 
at up to about HRC 50 hard-
ness.  This allows the cam 
blank to be pre-hardened 
and then machined (rather 
than ground) to final con-
tour in a CNC machining 
center.  This technique has 
allowed cam manufactur-
ers to reduce the cost of 
finished cams significantly.  
Instead of machining the 
cam blank from soft steel, 
then hardening it, followed 
by a grinding operation to 
generate the final contour 
and remove the distor-
tion from hardening, they 
can now directly machine 
the hardened blank and 
get finishes close to those 
from grinding.  This has 
greatly reduced the cost 
and tunaround time for cam 
manufacturing.  Cams that 
formerly took multiple days 
to manufacture are now 
made in hours from a stock 
of pre-hardened cam blanks.
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To Lubricate or Not to Lubricate?

Cams like lots of lubrication.  Automotive cams are literally drowned in a flow of filtered 
and sometimes cooled engine oil.  Many production machine cams run immersed in an oil 
bath.  These are reasonably happy cams.  Others are not so fortunate.  Cams that operate 
in close proximity to the product on an assembly machine in which oil would cause con-
tamination of the product (food products, personal products) often are run dry.  Camera 
mechanisms, which are full of linkages and cams, are often run dry.  Lubricant would 
eventually find its way to the film or sensors.

Unless there is some good reason to eschew lubrication, a cam and follower should 
be provided with a generous supply of clean lubricant, preferably a hypoid-type oil con-
taining additives for boundary lubrication conditions.  The geometry of a cam-follower 
joint (half-joint) is among the worst possible from a lubrication standpoint.  Unlike a 
journal bearing, which tends to trap a film of lubricant within the annulus of the joint, 
the half-joint is continually trying to squeeze the lubricant out of itself.  This can result 
in a boundary, or mixed boundary / elasto-hydrodynamic lubrication state in which some 
metal-to-metal contact will occur.  Lubricant must be continually resupplied to the joint.   
Another purpose of the liquid lubricant is to remove the heat of friction from the joint.  If 
run dry, significantly higher material temperatures will result, with accelerated wear and 
possible early failure.
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8.9	 PROBLEMS‡

Programs Dynacam and Matrix may be used to solve these problems or to check your 
solution where appropriate.

	 *8-1	 Figure P8-1 shows the cam and follower from Problem 6-65.  Using graphical methods, 
find and sketch the equivalent fourbar linkage for this position of the cam and follower.

	 *8-2	 Figure P8-1 shows the cam and follower from Problem 6-65.  Using graphical methods, 
find the pressure angle at the position shown.

	 8-3	 Figure P8-2 shows a cam and follower.  Using graphical methods, find and sketch the 
equivalent fourbar linkage for this position of the cam and follower.

	 *8-4	 Figure P8-2 shows a cam and follower.  Using graphical methods, find the pressure 
angle at the position shown.

	 8-5	 Figure P8-3 shows a cam and follower.  Using graphical methods, find and sketch the 
equivalent fourbar linkage for this position of the cam and follower.

	 *8-6	 Figure P8-3 shows a cam and follower.  Using graphical methods, find the pressure 
angle at the position shown.

	 ‡8‑7	 Design a double-dwell cam to move a follower from 0 to 2.5” in 60°, dwell for 120°, 
fall 2.5" in 30°, and dwell for the remainder.  The total cycle must take 4 sec.  Choose 
suitable functions for rise and fall to minimize accelerations.  Plot the s v a j diagrams.  

	 ‡8‑8	 Design a double-dwell cam to move a follower from 0 to 1.5” in 45°, dwell for 150°, 
fall 1.5” in 90°, and dwell for the remainder.  The total cycle must take 6 sec.  Choose 
suitable functions for rise and fall to minimize velocities.  Plot the s v a j diagrams.  

	 ‡8‑9	 Design a single-dwell cam to move a follower from 0 to 2” in 60°, fall 2” in 90°, and 
dwell for the remainder.  The total cycle must take 2 sec.  Choose suitable functions for 
rise and fall to minimize accelerations.  Plot the s v a j diagrams.

	 ‡8‑10	 Design a three-dwell cam to move a follower from 0 to 2.5” in 40°, dwell for 100°, fall 
1.5” in 90°, dwell for 20°, fall 1” in 30°, and dwell for the remainder.  The total cycle 
must take 10 sec.  Choose suitable functions for rise and fall to minimize velocities.  
Plot the s v a j diagrams.  

	
‡  Problem figures are pro-
vided as downloadable PDF 
files with same names as the FIGURE P8-1

Problems 8-1 to 8-2  

A B
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Problems 8-5 to 8-6
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*  Answers in Appendix F.
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	 ‡8‑11	 Design a four-dwell cam to move a follower from 0 to 2.5” in 40°, dwell for 100°, fall 
1.5” in 90°, dwell for 20°, fall 0.5” in 30°, dwell for 40°, fall 0.5” in 30°, and dwell for 
the remainder.  The total cycle must take 15 sec.  Choose suitable functions for rise and 
fall to minimize accelerations.  Plot the s v a j diagrams. 

	 ‡8‑12	 Size the cam from Problem 8‑7 for a 1” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

	 ‡8‑13	 Size the cam from Problem 8‑8 for a 1.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

	 ‡8‑14	 Size the cam from Problem 8‑9 for a 0.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

	 ‡8‑15	 Size the cam from Problem 8‑10 for a 2” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

	 ‡8‑16	 Size the cam from Problem 8‑11 for a 0.5” radius roller follower considering pressure 
angle and radius of curvature.  Use eccentricity only if necessary to balance those func-
tions. Plot both those functions.  Draw the cam profile.  Repeat for a flat-faced follower.  
Which would you use?

	 ‡8‑17	 A high friction, high inertia load is to be driven.  We wish to keep peak velocity low.  
Combine segments of polynomial displacements with a constant velocity segment on 
both rise and fall to reduce the maximum velocity below that obtainable with a full 
period modified sine acceleration alone (i.e., one with no constant velocity portion).  
Rise 1” in 90°, dwell for 60°, fall in 50°, dwell for remainder.  Compare the two designs 
and comment.  Use an ω of one for comparison.

	 ‡8‑18	 A constant velocity of 0.4 in/sec is to be matched for 1.5 sec.  The follower must return 
to your choice of start point and dwell for 2 sec.  Total cycle is 6 sec.  Design a cam for 
a follower radius of 0.75” and a maximum pressure angle of 30° absolute value.

	 ‡8‑19	 A constant velocity of 0.25 in/sec must be matched for 3 sec.  Then the follower must 
return to your choice of start point and dwell for 3 sec.  The total cycle time is 12 sec.  
Design a cam for a follower radius of 1.25” and a maximum pressure angle of 35° abso-
lute value.

	 ‡8‑20	 A constant velocity of 2 in/sec must be matched for 1 sec.  Then the follower must 
return to your choice of start point.  The total cycle time is 2.75 sec.  Design a cam for 
a follower radius of 0.5” and a maximum pressure angle of 25° absolute value.

	 †8-21	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a modified trapezoidal acceleration cam function for any specified values 
of lift and duration.  Test it using a lift of 20 mm over 60° at 1 rad/sec.

	 †8-22	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a modified sine acceleration cam function for any specified values of lift 

	
‡  These problems are suited 
to solution using program 
Dynacam.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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	 †8-23	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a cycloidal displacement cam function for any specified values of lift and 
duration.  Test it using a lift of 20 mm over 60° at 1 rad/sec.

	 †8-24	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a 3-4-5 polynomial displacement cam function for any specified values of 
lift and duration.  Test it using a lift of 20 mm over 60° at 1 rad/sec.

	 †8-25	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a 4-5-6-7 polynomial displacement cam function for any specified values 
of lift and duration.  Test it using a lift of 20 mm over 60° at 1 rad/sec.

	 †8-26	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for a simple harmonic displacement cam function for any specified values of 
lift and duration.  Test it using a lift of 20 mm over 60° at 1 rad/sec.

	 †8-27	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a modified trapezoidal acceleration cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20°.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

	 †8-28	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a modified sine acceleration cam function for any 
specified values of lift, duration, eccentricity, and prime circle radius.  Test it using a 
lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20°.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

	 †8-29	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a cycloidal displacement cam function for any speci-
fied values of lift, duration, eccentricity, and prime circle radius.  Test it using a lift of 
20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to obtain 
a maximum pressure angle of 20°.  What is the minimum diameter of roller follower 
needed to avoid undercutting with these data?

	 †8-30	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a 3-4-5 polynomial displacement cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20°.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

	 †8-31	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a 4-5-6-7 polynomial displacement cam function for 
any specified values of lift, duration, eccentricity, and prime circle radius.  Test it using 
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to 
obtain a maximum pressure angle of 20°.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

	 †8-32	 Write a computer program or use an equation solver to calculate and plot the pressure 
angle and radius of curvature for a simple harmonic displacement cam function for any 
specified values of lift, duration, eccentricity, and prime circle radius.  Test it using a 
lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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‡  These problems are suited 
to solution using program 
Dynacam.

obtain a maximum pressure angle of 20°.  What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

	 8-33	 Derive equation 8.25 for the 4-5-6-7 polynomial function.

	 8-34	 Derive an expression for the pressure angle of a barrel cam with zero eccentricity.

	 ‡8-35	 Design a radial plate cam to move a translating roller follower through 30 mm in 30°, 
dwell for 100°, fall 10 mm in 10°, dwell for 20°, fall 20 mm in 20°, and dwell for the 
remainder.  Camshaft ω = 200 rpm.  Minimize the follower’s peak velocity and deter-
mine the minimum prime circle radius that will give a maximum 25° pressure angle.  
Determine the minimum radii of curvature on the pitch curve.

	 ‡8-36	 Repeat Problem 8-35, but minimize the follower’s peak acceleration instead.

	 ‡8-37	 Repeat Problem 8-35, but minimize the follower’s peak jerk instead.

	 ‡8-38	 Design a radial plate cam to lift a translating roller follower through 10 mm in 65°, 
return to 0 in 65° and dwell for the remainder.  Camshaft ω = 3500 rpm.  Minimize 
the cam size while not exceeding a 25° pressure angle.  What size roller follower is 
needed?

	 ‡8-39	 Design a cam-driven quick-return mechanism for a 3:1 time ratio.  The translating 
roller follower should move forward and back 50 mm and dwell in the back position for 
80°.  It should take one-third the time to return as to move forward.  Camshaft  
ω = 100 rpm.  Minimize the package size while maintaining a 25° maximum pressure 
angle.  Draw a sketch of your design and provide s v a j, φ, and ρ diagrams.

	 ‡8-40	 Design a cam-follower system to drive a linear translating piston at constant veloc-
ity for 200° through a stroke of 100 mm at 60 rpm.  Minimize the package size while 
maintaining a 25° maximum pressure angle.  Draw a sketch of your design and provide 
s v a j, φ, and ρ diagrams.

	 ‡8-41	 Design a cam-follower system to rise 20 mm in 80°, fall 10 mm in 100°, dwell at 10 
mm for 100°, fall 10 mm in 50°, and dwell at 0 for 30°.  Total cycle time is 4 sec.  
Avoid unnecessary returns to zero acceleration.  Minimize the package size and maxi-
mize the roller follower diameter while maintaining a 25° maximum pressure angle.  
Draw a sketch of your design and provide s v a j, φ, and ρ diagrams.

	 ‡8-42	 Design a single-dwell cam to move a follower from 0 to 35 mm in 75°, fall 35 mm in 
120°, and dwell for the remainder.  The total cycle time is 3 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

	 ‡8-43	 Design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec then 
return to its starting position with a total cycle time of 3 sec.

	 ‡8-44	 Design a double-dwell cam to move a follower from 0 to 50 mm in 75°, dwell for 75°, 
fall 50 mm in 75°, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
modified trapezoidal function for rise and fall and plot the s v a j diagrams.

	 ‡8-45	 Design a double-dwell cam to move a follower from 0 to 50 mm in 75°, dwell for 75°, 
fall 50 mm in 75°, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
modified sinusoidal function for rise and fall and plot the s v a j diagrams.

	 ‡8-46	 Design a double-dwell cam to move a follower from 0 to 50 mm in 75°, dwell for 75°, 
fall 50 mm in 75°, and dwell for the remainder.  The total cycle must take 5 sec.  Use a 
4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.
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‡  These problems are suited 
to solution using program 
Dynacam.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	 ‡8-47	 Design a single-dwell cam to move a follower from 0 to 65 mm in 90°, fall 65 mm in 
180°, and dwell for the remainder.  The total cycle time is 2 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

	 ‡8-48	 Design a cam to move a follower at a constant velocity of 200 mm/sec for 3 sec then 
return to its starting position with a total cycle time of 6 sec.

	 ‡8-49	 Size the cam from Problem 8-42 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

	 ‡8-50	 Size the cam from Problem 8-44 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

	 ‡8-51	 Size the cam from Problem 8-45 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

	 ‡8-52	 Size the cam from Problem 8-46 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

	 ‡8-53	 Design a single-dwell cam to move a follower from 0 to 50 mm in 100°, fall 50 mm in 
120°, and dwell for the remainder.  The total cycle time is 1 sec.  Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

	 ‡8-54	 Design a cam to move a follower at a constant velocity of 300 mm/sec for 2 sec then 
return to its starting position with a total cycle time of 4 sec.

	 †8-55	 Write a computer program or use an equation solver to calculate and plot the s v a j 
diagrams for the family of SCCA cam functions for any specified values of lift and 
duration.  It should allow changing values of the parameters b, c, d, and Ca to plot any 
member of the family.  Test all functions with 100 mm rise in 100°, dwell 80°, fall in 
120°, dwell for remainder. Shaft turns at 1 rad/sec.

	 †8-56	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-42 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 45 mm and e = 10 mm.

	 †8-57	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-43 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 100 mm and e = –15 mm.

	 †8-58	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-46 
for any given prime circle radius and follower eccentricity.  Test it using Rp = 75 mm 
and e = 20 mm.

	 ‡ 8-59	 Design a cam to move a follower from 20.5 to 15 mm in 60°, fall an additional 15 mm 
in 90°, rise 20.5 mm in 110°, and dwell for the remainder.  Use polynomial functions 
for the rise and falls.  Some of the boundary conditions are given in Table P8-1; howev-
er, in order to make the polynomials piecewise continuous, other boundary conditions 
will have to be determined.   The shaft speed is 250 rpm.   Plot the s v a j diagrams.

	 ‡ 8-60	 Design a cam to move a follower from 32 to 12 mm in 60°, fall an additional 12 mm in 
50°, dwell 35°, rise 12 mm in 45°, rise an additional 20 mm in 65°, and dwell for the 
remainder.  Use polynomial functions for the rises and falls.  Velocity and acceleration 
are zero at the beginning and end of each event and jerk is zero at q = 0°, 110°, 145°, 
and 255°.  The shaft speed is 37.5 rpm.   Plot the s v a j diagrams.
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
‡  These problems are suited 
to solution using program 
Dynacam.

	 ‡ 8-61	 Design a single-dwell cam to move a follower from 0 to 0.6” in 0.8 sec, fall 0.6” in 1.2 
sec and dwell for the remainder of the cycle.  The total cycle must take 4 sec.  Choose 
suitable programs for rise and fall to minimize velocities.  Plot the s v a j diagrams.

	 ‡ 8-62	 Size the cam from Problem 8-61 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

	 ‡ 8-63	 Design a cam to move a follower at a constant velocity of 4 in/sec for 2 sec then return 
to its starting position with a total cycle time of 4 sec.

	 ‡ 8-64	 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a modified trapezoidal function for rise and fall and plot the s v a j diagrams.

	 ‡ 8-65	 Size the cam from Problem 8-64 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

	 ‡ 8-66	 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a modified sinusoidal function for rise and fall and plot the s v a j diagrams.

	 ‡ 8-67	 Size the cam from Problem 8-66 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

	 ‡ 8-68	 Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec, 
fall 2” in 4/3 sec and dwell for the remainder of the cycle.  The total cycle must take 6 
sec.  Use a 4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.

	 ‡ 8-69	 Size the cam from Problem 8-68 for a flat-faced follower considering follower face 
width and radius of curvature.  Plot the radius of curvature and draw the cam profile.

	 ‡ 8-70	 Design a double-dwell cam to move a follower from 0 to 1.5” in 1 sec, dwell for 2 
sec, fall 1.5” in 1 sec and dwell for the remainder of the cycle.  The total cycle must 
take 8 sec.  Use a cycloidal displacement function for rise and fall and plot the s v a j 
diagrams.

	 †8-71	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-61 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 1.500 in and ε = 0.250 in.

Event

First fall (60°)

Beginning

Ending

Second fall (90°)

Beginning

Ending

Rise (110°)

Beginning

Ending

S

20.5

15.0

15.0

0.0

0.0

20.5

V

0

0

0

0

0

0

A

0

0

0

A1

0

match A1

J

0

0

0

0

TABLE  P8-1 Data for Problem 8-59
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	 †8-72	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the cam of Problem 8-63 for any given prime 
circle radius and follower eccentricity.  Test it using Rp = 5.000 in and ε = –1.250 in.

	 †8-73	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-68 
for any given prime circle radius and follower eccentricity.  Test it using Rp = 3 in and 
ε = 0.750 in.

	 †8-74	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
draw the cam profile for the cam of Problem 8-61 with a translating flat-faced follower 
for any given base circle radius.  Test it using Rb = 1.500 in.

	 †8-75	 Write a computer program or use an equation solver such as Mathcad or TKSolver to 
draw the cam profile for the cam of Problem 8-63 with a translating flat-faced follower 
for any given base circle radius.  Test it using Rb = 2.000 in.

8.10	 VIRTUAL LABORATORY View the video (21:28)†  View the lab handout§

	 L8-1	 View the video Cam Machine Virtual Laboratory that is downloadable.  Open the file 
Virtual Cam Machine Lab.doc and follow the instructions as directed by your professor.

8.11	 PROJECTS

These larger-scale project statements deliberately lack detail and structure and are loose-
ly defined.  Thus, they are similar to the kind of “identification of need” or problem state-
ment commonly encountered in engineering practice.  It is left to the student to structure 
the problem through background research and to create a clear goal statement and set of 
task specifications before attempting to design a solution.  This design process is spelled 
out in Chapter 1 and should be followed in all of these examples.  Document all results 
in a professional engineering report.  (See Section 1.9 and the Chap. 1 bibliography for 
information on report writing.)

	 ‡P8-1	 A timing diagram for a halogen headlight filament insertion device is shown in Figure 
P8-4.  Four points are specified.  Point A is the start of rise.  At B the grippers close 
to grab the filament from its holder.  The filament enters its socket at C and is fully 
inserted at D.  The high dwell from D to E holds the filament stationary while it is 
soldered in place.   The follower returns to its start position from E to F.  From F to A 
the follower is stationary while the next bulb is indexed into position.  It is desirable 
to have low to zero velocity at point B where the grippers close on the fragile filament.  
The velocity at C should not be so high as to “bend the filament in the breeze.”  Design 
and size a complete cam-follower system to do this job.

	 ‡P8-2	 A cam-driven pump to simulate human aortic pressure is needed to serve as a consis-
tent, repeatable pseudo-human input to a hospital’s operating room computer monitor-
ing equipment, in order to test it daily.  Figure P8-5 shows a typical aortic pressure 
curve and a pump pressure-volume characteristic.  Design a cam to drive the piston and 
give as close an approximation to the aortic pressure curve shown as can be obtained 
without violating the fundamental law of cam design.  Simulate the dicrotic notch as 
best you can.

	
‡  These problems are suited 
to solution using program 
Dynacam.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

† http://www.designofma-
chinery.com/DOM/Cam_
machine_virtual_laboratory.
mp4

§ http://www.designof-
machinery.com/DOM/
Cam_Virtual_Lab.zip

http://www.designofmachinery.com/DOM/Cam_machine_virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Cam_Virtual_Lab.zip
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	 ‡P8-3	 A fluorescent light bulb production machine moves 5500 lamps per hour through a 
550°C oven on a chain conveyor which is in constant motion.  The lamps are on 2-in 
centerlines.  The bulbs must be sprayed internally with a tin oxide coating as they leave 
the oven, still hot.  This requires a cam-driven device to track the bulbs at constant 
velocity for the 0.5 sec required to spray them.  The spray guns will fit on a 6 x 10 in 
table.  The spray creates hydrochloric acid, so all exposed parts must be resistant to that 
environment.  The spray head transport device will be driven from the conveyor chain 
by a shaft having a 28-tooth sprocket in mesh with the chain.  Design a complete spray 
gun transport assembly to these specifications.

	 ‡P8-4	 A 30-ft-tall drop tower is being used to study the shape of water droplets as they fall 
through air.  A camera is to be carried by a cam-operated linkage which will track 
the droplet’s motion from the 8-ft to the 10-ft point in its fall (measured from release 

	
‡  These problems are suited 
to solution using program 
Dynacam.

FIGURE P8-4
Data for cam design Project P8-1

A
B
C
D
E
F

0
2
3
3.5
3.5
0

120
140
150
180
300
360

Cam angle, ° Point s

Displacement Table 

A
B

C
D E

FF

0 120 360180

s

Timing Diagram

θ

FIGURE P8-5
Data for cam design Project P8-2

(a ) (b )

( c )

0

40

80

120

0 T = 0.83 sec
Time

Human Aortic Pressure 

Blood
pressure
mmHg

0

40

80

120

0

Pump
pressure
mmHg 40 mmHg/in3

Dicrotic notch

Stroke volume  in3

System Pressure–Volume Function

Pressure outlet

Saline

Accumulator

Cam

Follower
Spring

Pump body

Piston
air
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‡  These problems are suited 
to solution using program 
Dynacam.

point at the top of the tower).  The drops are released every 1/2 sec.  Every drop is to 
be filmed.  Design a cam and linkage which will track these droplets, matching their 
velocities and accelerations in the 1-ft filming window.

	 ‡P8-5	 A device is needed to accelerate a 3000-lb vehicle into a barrier with constant velocity, 
to test its 5 mph bumpers.  The vehicle will start at rest, move forward, and have con-
stant velocity for the last part of its motion before striking the barrier with the specified 
velocity.  Design a cam-follower system to do this.  The vehicle will leave contact with 
your follower just prior to the crash.

	 ‡P8-6	 Figure P8-6 shows a timing diagram for a machine cam to drive a translating roller 
follower.  Design suitable functions for all motions and size the cam for acceptable 
pressure angles and roller follower diameter.  Note points of required zero velocity at 
particular displacements.  Cam speed is 30 rpm.  Hint: Segment 8 should be solved 
with polynomial functions, the fewer the better.

	 ‡P8-7	 An athletic footwear manufacturer wants a device to test rubber heels for their ability 
to withstand millions of cycles of force similar to that which a walking human’s foot 
applies to the ground.  Figure P8-7 shows a typical walker’s force-time function and 
a pressure-volume curve for a piston-accumulator.  Design a cam-follower system to 
drive the piston in a way that will create a force-time function on the heel similar to the 
one shown.  Choose suitable piston diameters at each end.

	 ‡P8-8	 Design an engine exhaust-valve cam with 10-mm lift over 132 camshaft deg.  The rest 
of the cycle is a dwell.  The valve-open duration is measured between cam-follower 
displacements of 0.5 mm above the dwell position, where valve clearance is taken up 
and the valve begins to move as shown in Figure P8-8.  Engine crankshaft speed ranges 
from 1000 to 10 000 rpm. The cam should take up the clearance with minimal impact, 
then continue to lift to 10-mm at 66° as rapidly as possible, close to the 0.5 mm point 
by 132° and then return it to zero at a controlled velocity.  See Figure 8-3a.  Select a 
spring from the Appendix to prevent valve float (follower jump) assuming an effective 
follower train mass of 200 grams.  The camshaft turns at half the crank speed.

	 ‡P8-9	 Design a cam-driven peanut-butter (PB) pump for a 600/min cookie assembly line.  
The cookies are spaced at 40-mm centers on a constant-velocity conveyor.  A square, 
1-mm thick patch containing 0.4 cc of peanut butter is applied to the cookie as it 
passes by a nozzle.  Entrained air in the PB makes it compressible.  Figure P8-5 shows 
a similar setup with a cam driving a follower attached to a piston pump.  The peanut 

V = 0

V = 0
V = 0

0 30 50 60 11

12
5

13
0

16
1

16
6 17

8.
5

19
1

22
0

32
7

33
7

36
0

1 2 4 5 7 8 9
10

1
63

FIGURE P8-6
Timing diagram for Project P8-6.  Displacements in mm  (not to scale)

12.1
14.7

7.9
4.0
1.1
0.5
0.0
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butter flows from the “pressure outlet.”  The accumulator represents entrained air in 
the PB.   If pumped at constant rate with a piston pump, there is a lag at the start as 
the entrained air is compressed.  Once compressed, it flows uniformly when the piston 
moves at constant velocity.  At the end of the stroke, the stored energy in the entrained 
air causes “peanut-butter drool,” making a messy cookie.  To get a sharp-edged start to 
the “patch” of peanut butter, we need an extra “kick” at the beginning of the pump-
ing cycle to wind up the “air spring,” followed by a period of constant velocity motion 
to lay down a uniform thickness of PB.  At the end of the patch, we need a “sniff” to 
rapidly retract the piston slightly and prevent drool.  The piston then returns to the start 
point  at constant velocity to refill the pump and repeat the cycle. The velocity of the 
“kick” should be about 3 times the steady-state velocity and of as short a duration as 
practical.  The velocity of the “sniff” is optimal at about –4 times the steady-state veloc-

0 ? 360??

0.5

10

fall

dwell

 Valve
Motion
 (mm)

Camshaft Angle (deg)

rise

66 66

FIGURE P8-8
Timing diagram for Project P8-8—exhaust-valve cam.  Determine suitable values for ? from problem statement.

FIGURE P8-7
Data for cam design Project P8-7
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‡  These problems are suited 
to solution using program 
Dynacam.

ity with as short a duration as practical.  Figure P8-9 shows the displacement timing 
diagram.  Size the piston and design the piston-driver cam for good dynamic operation 
with reasonable accelerations and size it in a reasonable package.  Select a return spring 
for a moving follower mass of 0.5 kg.

	‡P8-10	 Figure P8-10 shows timing diagrams for 3 cams used in a production machine.  Design 
suitable SVAJ functions to run at 250 rpm with 10-kg effective mass on each fol-
lower.  Size the cams for suitable pressure angles and radii of curvature using a 20-mm 
diameter roller follower.  Select a suitable spring for each follower from the Appendix, 
specify its preload and sketch the assembly, showing all three cams on a common cam-
shaft driving the three follower trains along the X axis.

0 90

Motion
 (mm)

Camshaft Angle (deg)

55°

20°

180 270 360

140° 283°

10° 160° 355°

160° 210° 320°
0

0

0

10

40

20

Cam 1

Cam 2

Cam 3

FIGURE P8-10
Timing diagram for Project P8-10

0 e 360fd

a

c
b

pumping fillingsn
iffki
ck

Piston
Motion

Camshaft Angle

FIGURE P8-9
Timing diagram for Project P8-9—peanut butter pump.  Determine suitable values for a–f from problem statement 
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Chapter9
GEAR TRAINS
Cycle and epicycle,
orb in orb
John Milton, Paradise Lost

9.0	 INTRODUCTION View the lecture video (54:45)†

The earliest known reference to gear trains is in a treatise by Hero of Alexandria (c. 100 
B.C.).  Gear trains are widely used in all kinds of mechanisms and machines, from can 
openers to aircraft carriers.  Whenever a change in the speed or torque of a rotating device 
is needed, a gear train or one of its cousins, the belt or chain drive mechanism, will usually 
be used.  This chapter will explore the theory of gear tooth action and the design of these 
ubiquitous devices for motion control.  The calculations involved are trivial compared to 
those for cams or linkages.  The shape of gear teeth has become quite standardized for 
good kinematic reasons that we will explore.

Gears of various sizes and styles are readily available from many manufacturers.  
Assembled gearboxes for particular ratios are also stock items.  The kinematic design of 
gear trains is principally involved with the selection of appropriate ratios and gear diam‑
eters.  A complete gear train design will necessarily involve considerations of strength of 
materials and the complicated stress states to which gear teeth are subjected.  This text 
will not deal with the stress analysis aspects of gear design.  There are many texts that do.  
Some are listed in the bibliography at the end of this chapter.  This chapter will discuss 
the kinematics of gear tooth theory, gear types, and the kinematic design of gearsets and 
gear trains of simple, compound, reverted, and epicyclic types.  Chain and belt drives 
will also be discussed.  Examples of the use of these devices will be presented as well.

490

† http://www.designof‑
machinery.com/DOM/
Gear_Design.mp4

http://www.designofmachinery.com/DOM/Gear_Design.mp4
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  Answers in Appendix F.

9.1	 ROLLING CYLINDERS

The simplest means of transferring rotary motion from one shaft to another is a pair of 
rolling cylinders.  They may be an external set of rolling cylinders as shown in Figure 
9‑1a or an internal set as in Figure 9‑1b.  Provided that sufficient friction is available at 
the rolling interface, this mechanism will work quite well.  There will be no slip between 
the cylinders until the maximum available frictional force at the joint is exceeded by the 
demands of torque transfer.

A variation on this mechanism is what causes your car or bicycle to move along 
the road.  Your tire is one rolling cylinder and the road the other (very large radius) one.  
Friction is all that prevents slip between the two, and it works well unless the friction coef‑
ficient is reduced by the presence of ice or other slippery substances.  In fact, some early 
automobiles had rolling cylinder drives inside the transmission, as do some present-day 
snowblowers and garden tractors that use a rubber-coated wheel rolling against a steel 
disk to transmit power from the engine to the wheels.

A variant on the rolling cylinder drive is the flat or vee belt as shown in Figure 9‑2.  
This mechanism also transfers power through friction and is capable of quite large power 
levels, provided enough belt cross section is provided.  Friction belts are used in a wide 
variety of applications from small sewing machines to the alternator drive on your car, to 
multihorsepower generators and pumps.  Whenever absolute phasing is not required and 
power levels are moderate, a friction belt drive may be the best choice.  They are relatively 
quiet running, require no lubrication, and are inexpensive compared to gears and chain 
drives.  A constant velocity transmission (CVT) as used in a number of automobiles is also 
a vee belt and pulley device in which the pulleys are adjusted in width to change the ratio.  
As one pulley widens, the other narrows to change the relative radii of the belt within their 
respective vees. The belt circumference, of course, remains the same.

Both rolling cylinders and belt (or chain) drives have effective linkage equivalents 
as shown in Figure 9‑3.  These effective linkages are valid only for one instantaneous 
position but nevertheless show that these devices are just another variation of the fourbar 
linkage in disguise.

FIGURE 9-2
A two-groove vee belt drive  Courtesy of T. B. Wood's Sons Co., Chambersburg, PA

FIGURE 9-1
Rolling cylinders

(a ) External set

(b ) Internal set

View as a video
http://www.designof‑

machinery.com/DOM/
gear.avi

View as a video
http://www.designof‑

machinery.com/DOM/
internal_gear.avi

http://www.designofmachinery.com/DOM/gear.avi
http://www.designofmachinery.com/DOM/internal_gear.avi
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The principal drawbacks to the rolling cylinder drive (or smooth belt) mechanism are 
its relatively low torque capability and the possibility of slip.  Some drives require absolute 
phasing of the input and output shafts for timing purposes.  A common example is the 
valve train drive in an automobile engine.  The valve cams must be kept in phase with 
the piston motion or the engine will not run properly.  A smooth belt or rolling cylinder 
drive from crankshaft to camshaft would not guarantee correct phasing.  In this case some 
means of preventing slip is needed.

This usually means adding some meshing teeth to the rolling cylinders.  They then 
become gears as shown in Figure 9‑4 and are together called a gearset.  When two gears 
are placed in mesh to form a gearset such as this one, it is conventional to refer to the 
smaller of the two gears as the pinion and to the other as the gear.

9.2	 THE FUNDAMENTAL LAW OF GEARING

Conceptually, teeth of any shape will prevent gross slip.  Old water-powered mills and 
windmills used wooden gears whose teeth were merely round wooden pegs stuck into the 
rims of the cylinders.  Even ignoring the crudity of construction of these early examples 
of gearsets, there was no possibility of smooth velocity transmission because the geometry 
of the tooth “pegs” violated the fundamental law of gearing which, if followed, provides 
that the angular velocity ratio between the gears of a gearset remains constant throughout 
the mesh.  A more complete and formal definition of this law is given below.  The angular 
velocity ratio (mV) referred to in this law is the same one that we derived for the fourbar 
linkage in Section 6.4 and equation 6.10.  It is equal to the ratio of the radius of the input 
gear to that of the output gear.

=
ω
ω

= ± = ±

ω
ω

= ± = ±

(9.1a)

= (9.1b)
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( a )  Gear train
FIGURE 9-3
Gear and belt trains each have an equivalent fourbar linkage for any instantaneous position.

(b )  Belt train
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Gear

FIGURE 9-4
An external gearset

Pinion

Gear

View as a video
http://www.designof‑

machinery.com/DOM/
gear.avi

http://www.designofmachinery.com/DOM/gear.avi


GEAR  TRAINS 493

9

The torque ratio (mT) was shown earlier to be the reciprocal of the velocity ratio 
(mV); thus a gearset is essentially a device to exchange torque for velocity or vice versa.  
Since there are no applied forces as in a linkage, but only applied torques on the gears, 
the mechanical advantage mA of a gearset is equal to its torque ratio mT.  The most com‑
mon application is to reduce velocity and increase torque to drive heavy loads as in your 
automobile transmission.  Other applications require an increase in velocity, for which a 
reduction in torque must be accepted.  In either case, it is usually desirable to maintain 
a constant ratio between the gears as they rotate.  Any variation in ratio will show up as 
oscillation in the output velocity and torque even if the input is constant with time.

The radii in equations 9.1 are those of the rolling cylinders to which we are adding 
the teeth.  The positive or negative sign accounts for internal or external cylinder sets 
as defined in Figure 9‑1.  An external set reverses the direction of rotation between the 
cylinders and requires the negative sign.  An internal gearset or a belt or chain drive will 
have the same direction of rotation on input and output shafts and require the positive sign 
in equations 9.1.  The surfaces of the rolling cylinders will become the pitch circles, and 
their diameters the pitch diameters of the gears.  The contact point between the cylinders 
lies on the line of centers as shown in Figure 9‑3a, and this point is called the pitch point.

In order for the fundamental law of gearing to be true, the gear tooth contours on 
mating teeth must be conjugates of one another.  There is an infinite number of possible 
conjugate pairs that could be used, but only a few curves have seen practical application 
as gear teeth.  The cycloid still is used as a tooth form in watches and clocks, but most 
other gears use the involute curve for their shape.

The Involute Tooth Form

The involute is a curve that can be generated by unwrapping a taut string from a cylinder 
(called the evolute) as shown in Figure 9‑5.  Note the following about this involute curve:

The string is always tangent to the cylinder.

The center of curvature of the involute is always at the point of tangency of the string 
with the cylinder.

A tangent to the involute is then always normal to the string, the length of which is the 
instantaneous radius of curvature of the involute curve.

Figure 9‑6 shows two involutes on separate cylinders in contact or “in mesh.”  These 
represent gear teeth.  The cylinders from which the strings are unwrapped are called the 
base circles of the respective gears.  Note that the base circles are necessarily smaller than 
the pitch circles, which are at the radii of the original rolling cylinders, rp and rg.  The gear 
tooth must project both below and above the rolling cylinder surface (pitch circle) and the 
involute only exists outside of the base circle.  The amount of tooth that sticks out above 
the pitch circle is the addendum, shown as ap and ag for pinion and gear, respectively.  
These are equal for standard, full-depth gear teeth.

The geometry at this tooth-tooth interface is similar to that of a cam-follower joint 
as was defined in Figure 8-44.  There is a common tangent to both curves at the contact 
point, and a common normal, perpendicular to the common tangent.  Note that the 
common normal is, in fact, the “strings” of both involutes, which are colinear.  Thus the 

View as a video

FIGURE 9-5
Development of the
involute of a circle

"String"
tangent to
base circle
and normal
to involute

Involute curve

Base circle
or evolute

http://www.designof‑
machinery.com/DOM/

involute.avi

http://www.designofmachinery.com/DOM/involute.avi
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common normal, which is also the axis of transmission, always passes through the pitch 
point regardless of where in the mesh the two teeth are contacting.  

Figure 9‑7 shows a pair of involute tooth forms in two positions, just beginning con‑
tact and about to leave contact.  The common normals of both these contact points still 
pass through the same pitch point.  It is this property of the involute that causes it to obey 
the fundamental law of gearing.  The ratio of the driving gear radius to the driven gear 
radius remains constant as the teeth move into and out of mesh.

From this observation of the behavior of the involute we can restate the fundamental 
law of gearing in a more kinematically formal way as: the common normal of the tooth 
profiles, at all contact points within the mesh, must always pass through a fixed point on 
the line of centers, called the pitch point.  The gearset’s velocity ratio will then be a con‑
stant defined by the ratio of the respective radii of the gears to the pitch point.

The points of beginning and leaving contact define the mesh of the pinion and gear.  
The distance along the line of action between these points within the mesh is called the 
length of action, Z, defined by the intersections of the respective addendum circles with 
the line of action, as shown in Figure 9-7.  Variables are defined in Figures 9-6 and 9-7.

( ) ( ) ( ) ( )= + − φ + + − φ − φcos cos sin (9.2)
2 2 2 2

Z r a r r a r Cp p p g g g

The distance along the pitch circle within the mesh is the arc of action, and the angles 
subtended by these points and the line of centers are the angle of approach and angle 
of recess.  These are shown only on the gear in Figure 9-7 for clarity, but similar angles 

FIGURE 9-6
Contact geometry and pressure angle of involute gear teeth

Pitch radius of gear  rg

Pitch radius
of pinion  rp

Velocity at pitch point

Pitch circles

Axis of transmission or line of action
(common normal) is tangent to
both base circles

Pitch point

Addendum of pinion  ap

Base circle of gear

Common tangent

Pressure angle rotated in direction of driven gear

gearω

Driven (CCW)

pinionω
Driving (CW)

Base circle of pinion

φ

Addendum of gear ag

φ

φ

OG OP
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exist for the pinion.  The arc of action on both pinion and gear pitch circles must be the 
same length for zero slip between the theoretical rolling cylinders.

Pressure Angle

The pressure angle in a gearset is similar to that of the cam and follower and is defined 
as the angle between the axis of transmission or line of action (common normal) and the 
direction of velocity at the pitch point as shown in Figures 9-6 and 9‑7.  Pressure angles of 
gearsets are standardized at a few values by the gear manufacturers.  These are defined at 
the nominal center distance for the gearset as cut.  The standard values are 14.5°, 20°, and 
25° with 20° being the most commonly used and 14.5° now being considered obsolete.  
Any custom pressure angle can be made, but its expense over the available stock gears 
with standard pressure angles would be hard to justify.  Special cutters would have to be 
made.  Gears to be run together must be cut to the same nominal pressure angle.

Changing Center Distance

When involute teeth (or any teeth) have been cut into a cylinder, with respect to a particu‑
lar base circle, to create a single gear, we do not yet have a pitch circle.  The pitch circle 
only comes into being when we mate this gear with another to create a pair of gears, or 
gearset.  There will be some range of center-to-center distances over which we can achieve 
a mesh between the gears.  There will also be an ideal center distance (CD) that will give 
us the nominal pitch diameters for which the gears were designed.  However, limitations 
of manufacturing processes give a low probability that we will be able to exactly achieve 

Arc of action Beginning contact

FIGURE 9-7
Pitch point, pitch circles, pressure angle, length of action, arc of action, and angles of approach and recess during
the meshing of a gear and pinion

Pitch point
Pitch circles

Axis of transmission
(common normal)

Leaving contact
Length of action Z

Center distance  C

Pressure angle rotated in direction of driven gear

φ

Addendum circles

gearω

Driven (CCW)

pinionω

Driving (CW)

Angle of recess

Angle of approach
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this ideal center distance in every case.  More likely, there will be some error in the center 
distance, even if small.

What will happen to the adherence to the fundamental law of gearing if there is error 
in the location of the gear centers?  If the gear tooth form is not an involute, then an error 
in center distance will violate the fundamental law, and there will be variation, or “ripple,” 
in the output velocity.  The output angular velocity will not be constant for a constant input 
velocity.  However, with an involute tooth form, center distance errors do not affect the 
velocity ratio.  This is the principal advantage of the involute over all other possible tooth 
forms and the reason why it is nearly universally used for gear teeth.  Figure 9‑8 shows 
what happens when the center distance is varied on an involute gearset.  Note that the 
common normal still goes through a pitch point, common to all contact points within the 
mesh.  But the pressure angle is affected by the change in center distance.

Figure 9‑8 also shows the pressure angles for two different center distances.  As the 
center distance increases, so will the pressure angle and vice versa.  This is one result of a 
change, or error, in center distance when using involute teeth.  Note that the fundamental 
law of gearing still holds in the modified center distance case.  The common normal is 

( a )  Correct center distance

FIGURE 9-8
Changing center distance of involute gears changes the pressure angle and pitch diameters

(b )  Increased center distance

New, larger
pitch radius
of pinion

New, larger
pitch radius
of gear

New
pressure
angle

Base circle
is unchanged

New pitch
circles

New pitch point

Base circle
is unchanged

Shift in center distance

Velocity at
pitch point

Pitch
radius of
pinion

Pitch
radius
of gear

Pressure
angle

Pitch point
shifts position

Line of action (common normal)
is tangent to both base circles

φ  = 23 °
φ  = 20 °
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still tangent to the two base circles and still goes through the pitch point.  The pitch point 
has moved, but in proportion to the move of the center distance and the gear radii.  The 
velocity ratio is unchanged despite the shift in center distance.  In fact, the velocity ratio 
of involute gears is fixed by the ratio of the base circle diameters, which are unchanging 
once the gear is cut.

Backlash

Another factor affected by changing center distance is backlash.  Increasing the CD will 
increase the backlash and vice versa.  Backlash is defined as the clearance between mat-
ing teeth measured at the pitch circle.  Manufacturing tolerances preclude a zero clear‑
ance, as all teeth cannot be exactly the same dimensions, and all must mesh.  So, there 
must be some small difference between the tooth thickness and the space width (see Figure 
9‑9).  As long as the gearset is run with a nonreversing torque, backlash should not be a 
problem.  But, whenever torque changes sign, the teeth will move from contact on one 
side to the other.  The backlash gap will be traversed, and the teeth will impact with no‑
ticeable noise.  This is the same phenomenon as crossover shock in the form-closed cam.  
As well as increasing stresses and wear, backlash can cause undesirable positional error 
in some applications.  If the center distance is set exactly to match the theoretical value 
for the gearset, the tooth-to-tooth composite backlash tolerance is in the range of 0.0001 
to 0.0007 inches for precision gears.  The increase in angular backlash as a function of 
error in center distance is approximately

( )θ =
φ

π
43 200 tan minutes of arc (9.3)C

dB D

where φ = pressure angle, ∆C = error in center distance, and d = pitch diameter of the 
gear on the shaft where the backlash is measured.

In servomechanisms, where motors are driving, for example, the control surfaces 
on an aircraft, backlash can cause potentially destructive “hunting” in which the control 
system tries in vain to correct positional errors due to backlash “slop” in the mechanical 
drive system.  Such applications need antibacklash gears which are really two gears 
back to back on the same shaft that can be rotated slightly at assembly with respect to one 
another, and then fixed so as to take up the backlash.  In less critical applications, such as 
the propeller drive on a boat, backlash on reversal will not even be noticed.

The American Gear Manufacturers Association (AGMA) defines standards for gear 
design and manufacture.  They define a spectrum of quality numbers and tolerances rang‑
ing from the lowest (3) to the highest precision (16).  Obviously the cost of a gear will be 
a function of this quality index.

9.3	 GEAR TOOTH NOMENCLATURE

Figure 9‑9 shows two teeth of a gear with the standard nomenclature defined.  Pitch circle 
and base circle have been defined above.  The tooth height is defined by the addendum 
(added on) and the dedendum (subtracted from) that are referenced to the nominal pitch 
circle.  The dedendum is slightly larger than the addendum to provide a small amount of 
clearance between the tip of one mating tooth (addendum circle) and the bottom of the 
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tooth space of the other (dedendum circle).  The tooth thickness is measured at the pitch 
circle, and the tooth space width is slightly larger than the tooth thickness.  The difference 
between these two dimensions is the backlash.  The face width of the tooth is measured 
along the axis of the gear.  The circular pitch is the arc length along the pitch circle cir‑
cumference measured from a point on one tooth to the same point on the next.  The circular 
pitch defines the tooth size.  The other tooth dimensions are standardized based on that 
dimension as shown in Table 9‑1.  The definition of circular pitch pc is:

=
π (9.4a)p d
Nc

where d = pitch diameter and N = number of teeth.   The tooth pitch can also be measured 
along the base circle circumference and then is called the base pitch pb.

= φcos (9.4b)p pb c

The units of pc are inches or millimeters.  A more convenient and common way to 
define tooth size is to relate it to the diameter of the pitch circle rather than its circumfer‑
ence.  The diametral pitch pd is:

= (9.4c)p N
dd

The units of pd are reciprocal inches, or number of teeth per inch.  This measure is only 
used in U.S. specification gears.  Combining equations 9.4a and 9.4c gives the following 
relationship between circular pitch and diametral pitch.

=
π (9.4d)p
pd

c

FIGURE 9-9
Gear tooth nomenclature

Space
width

  Tooth
thickness
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 circle Clearance

Face width

Face

Flank

Bottom land

Pitch circle

Circular pitch  pc

Base pitch  pb

Base circle

Top land



GEAR  TRAINS 499

9

The SI system, used for metric gears, defines a parameter called the module, which 
is the reciprocal of diametral pitch with pitch diameter measured in millimeters.

= (9.4e)m d
N

The units of the module are millimeters.  Unfortunately, metric gears are not inter‑
changeable with U.S. gears, despite both being involute tooth forms, as their standards for 
tooth sizes are different.  In the United States, gear tooth sizes are specified by diametral 
pitch, elsewhere by module.  The conversion from one standard to the other is

=
25.4 (9.4f)m
pd

where m is in mm and pd is in inches.

The velocity ratio mV and the torque ratio mT of the gearset can be put into a more 
convenient form by substituting equation 9.4c into equations 9.1, noting that the diametral 
pitch of meshing gears must be the same.

= ± = ± (9.5a)m
d
d

N
NV

in

out

in

out

= ± = ± (9.5b)m
d
d

N
NT

out

in

out

in

Thus the velocity ratio and torque ratio can be computed from the number of teeth on the 
meshing gears, which are integers.  Note that a minus sign implies an external gearset and 
a positive sign an internal gearset as shown in Figure 9‑1.  The gear ratio mG is always > 1 
and can be expressed in terms of either the velocity ratio or torque ratio depending on 
which is larger than 1.  Thus mG expresses the gear train’s overall ratio independent of 
change in direction of rotation or of the direction of power flow through the train when 
operated as either a speed reducer or a speed increaser.

Parameter

Pressure angle  φ

Addendum  a

Dedendum  b

Working depth

Whole depth

Circular tooth thickness

Fillet radius—basic rack

Minimum basic clearance

Minimum width of top land

Clearance (shaved or ground teeth)

20° or 25°

1.000 / pd

1.250 / pd

2.000 / pd

2.250 / pd

1.571 / pd

0.300 / pd

0.250 / pd

0.250 / pd

0.350 / pd

Fine Pitch  (pd  ≥20 )

20°

1.000 / pd

1.250 / pd

2.000 / pd

2.200 / pd +  0.002 in

1.571 / pd

Not standardized

0.200 / pd +  0.002 in

Not standardized

0.350 / pd +  0.002 in

Coarse Pitch  (  < 20 )pd

TABLE  9-1 AGMA Full-Depth Gear Tooth Specifications
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= = ≥or , for 1 (9.5c)m m m m mG V G T G

Standard Gear Teeth  Standard, full-depth gear teeth have equal addenda on 
pinion and gear, with the dedendum being slightly larger for clearance.  The standard tooth 
dimensions are defined in terms of the diametral pitch.  Table 9‑1 shows the definitions 
of dimensions of standard, full-depth gear teeth as defined by the AGMA, and Figure 
9-10 shows their shapes for three standard pressure angles.  Figure 9-11 shows the actual 
sizes of 20° pressure angle, standard, full-depth teeth from pd = 4 to 80.  Note the inverse 
relationship between pd and tooth size.  While there are no theoretical restrictions on the 
possible values of diametral pitch, a set of standard values is defined based on available 
gear cutting tools.  These standard tooth sizes are shown in Table 9-2 in terms of diametral 
pitch and in Table 9-3 in terms of metric module.  

9.4	 INTERFERENCE AND UNDERCUTTING

The involute tooth form is only defined outside of the base circle.  In some cases, the 
dedendum will be large enough to extend below the base circle.  If so, then the portion 
of tooth below the base circle will not be an involute and will interfere with the tip of 
the tooth on the mating gear, which is an involute.  If the gear is cut with a standard gear 
shaper or a “hob,” the cutting tool will also interfere with the portion of tooth below the 
base circle and will cut away the interfering material.  This results in an undercut tooth as 
shown in Figure 9‑12.  This undercutting weakens the tooth by removing material at its 
root.  The maximum moment and maximum shear from the tooth loaded as a cantilever 
beam both occur in this region.  Severe undercutting will promote early tooth failure.

Interference (and undercutting caused by manufacturing tools) can be prevented sim‑
ply by avoiding gears with too few teeth.  If a gear has a large number of teeth, they will 
be small compared to its diameter.  As the number of teeth is reduced for a fixed diameter 
gear, the teeth must become larger.  At some point, the dedendum will exceed the radial 
distance between the base circle and the pitch circle, and interference will occur.  

Table 9-4a shows the minimum number of pinion teeth that can mesh with a rack 
without interference as a function of pressure angle.  Gears with this few teeth can be 
generated without undercutting only by a pinion cutter or by milling.  Gears that are cut 
with a hob, which has the same action as a rack with respect to the gear being cut, must 
have more teeth to avoid undercutting the involute tooth form during manufacture.  The 
minimum number of teeth that can be cut by a hob without undercutting as a function of 
pressure angle is shown in Table 9-4b.  Table 9-5a shows the maximum number of 20-de‑
gree pressure angle full-depth gear teeth that can mesh with a given number of pinion teeth 
without interference and Table 9-5b shows the same information for 25-degree pressure 
angle full-depth gear teeth.  Note that the pinion tooth numbers in this table are all fewer 
than the minimum number of teeth that can be generated by a hob.  As the mating gear 
gets smaller, the pinion can have fewer teeth and still avoid interference.

Unequal-Addendum Tooth Forms

In order to avoid interference and undercutting on small pinions, the tooth form can be 
changed from the standard, full-depth shapes of Figure 9-10 that have equal addenda on 
both pinion and gear to an involute shape with a longer addendum on the pinion and a 

( a )    φ = 14.5°

FIGURE 9-10
AGMA full-depth tooth
profiles for three
pressure angles

(b )    φ = 20°

( c )    φ = 25°

Pitch circle

Base circle

Pitch circle

Base circle

Pitch circle

Base circle



GEAR  TRAINS 501

9FIGURE 9-11
Actual tooth sizes for various diametral pitches  Courtesy of Barber-Colman Co., Loves Park, IL

Base circle of pinion

FIGURE 9-12
Interference and undercutting of teeth below the base circle

Pinion

Gear

Pitch circles

Tooth below base circle
is not an involute

Interference

Undercutting

Base circle of gear

 Coarse
(pd < 20)

TABLE  9-2
Standard Diametral
Pitches

    Fine
(pd ≥ 20)

3

4

5

6

8

1

1.25

1.5

1.75

2

2.5

10

12

14

16

18

20

24

32

48

64

72

80

96

120
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shorter one on the gear called profile-shifted gears.  The AGMA defines addendum mod‑
ification coefficients, x1 and x2, which always sum to zero, being equal in magnitude and 
opposite in sign.  The positive coefficient x1 is applied to increase the pinion addendum, 
and the negative x2 decreases the gear addendum by the same amount.  The total tooth 
depth remains the same.  This shifts the pinion dedendum circle outside its base circle 
and eliminates that noninvolute portion of pinion tooth below the base circle.  The stan‑
dard coefficients are ±0.25 and ±0.50, which add or subtract 25% or 50% of the standard 
addendum.  The limit of this approach occurs when the pinion tooth becomes pointed.  

There are secondary benefits to this technique.  The pinion tooth becomes thicker at 
its base and thus stronger.  The gear tooth is correspondingly weakened, but since a full-
depth gear tooth is stronger than a full-depth pinion tooth, this shift brings them closer to 
equal strength.  A disadvantage of unequal-addendum tooth forms is an increase in sliding 
velocity at the tooth tip.  The percent sliding between the teeth is greater than with equal 
addendum teeth which increases tooth-surface stresses.  Friction losses in the gear mesh 
are also increased by higher sliding velocities.   Figure 9‑13 shows the contours of profile-
shifted involute teeth.  Compare these to standard tooth shapes in Figure 9-10.

9.5	 CONTACT RATIO

The contact ratio mp defines the average number of teeth in contact at any one time as:

= (9.6a)m Z
pp

b

where Z is the length of action from equation 9.2 and pb is the base pitch from equation 9.4b. 
Substituting equations 9.4b and 9.4d into 9.6a defines mp in terms of pd:

=
π φcos

(9.6b)m
p Z

p
d

The contact ratio mp can also be expressed as a function only of pressure angle f, 
number of pinion teeth, Np, and the gear ratio mG. 

( )























=

+ − φ + + − φ − + φ

π φ

2
1

2
cos

2
1

2
cos

2
1 sin

cos
(9.6c)

2 2 2 2

m

N N m N m N N
m

p

p p G p G p p
G

If the contact ratio is 1, then one tooth is leaving contact just as the next is beginning 
contact.  This is undesirable because slight errors in the tooth spacing will cause oscilla‑
tions in the velocity, vibration, and noise.  In addition, the load will be applied at the tip of 
the tooth, creating the largest possible bending moment.  At larger contact ratios than 1, 
there is the possibility of load sharing among the teeth.  For contact ratios between 1 and 2, 
which are common for spur gears, there will still be times during the mesh when one pair 
of teeth will be taking the entire load.  However, these will occur toward the center of the 
mesh region where the load is applied at a lower position on the tooth, rather than at its tip.  
This point is called the highest point of single-tooth contact (HPSTC).  The minimum 
acceptable contact ratio for smooth operation is 1.2.  A minimum contact ratio of 1.4 is 
preferred and larger is better.  Most spur gearsets will have contact ratios between 1.4 and 2. 

84.67

63.50

50.80

31.75

25.40

20.32

16.93

12.70

8.47

6.35

5.08

4.23

3.18

2.54

2.12

1.59

1.27

1.02

0.3

0.4

0.5

0.8

1

1.25

1.5

2

3

4

5

6

8

10

12

16

20

25

Metric
Module

(mm)

Equivalent
(in-1 )pd

TABLE  9-3
Standard Metric
Modules

Pressure
Angle
(deg)

Minimum
Number
of Teeth

14.5

20

25

32

18

12

TABLE  9-4a
Minimum Number of
Pinion Teeth

 To Avoid Interference
Between a Full-Depth
Pinion and a Full-Depth
Rack
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✍EXAMPLE 9‑1

Determining Gear Tooth and Gear Mesh Parameters.

Problem: 	 Find the gear ratio, circular pitch, base pitch, pitch diameters, pitch radii, center 
distance, addendum, dedendum, whole depth, clearance, outside diameters, and 
contact ratio of a gearset with the given parameters.  If the center distance is in‑
creased 2% what is the new pressure angle and increase in backlash?

Given:	 A 6 pd, 20° pressure angle, 19-tooth pinion is meshed with a 37-tooth gear.  

Assume:	 The tooth forms are standard AGMA full-depth involute profiles.

Solution:

	 1	 The gear ratio is found from the tooth numbers on pinion and gear using equations 9.5a and 
9.5c.

= = =
37
19

1.947 ( )m
N
N

aG
g

p

	 2	 The circular pitch can be found either from equation 9.4a or 9.4d.

=
π

=
π

=
6

0.524 in ( )p
p

bc
d

	 3	 The base pitch measured on the base circle is (from equation 9.4b):

( )= φ = ° =cos 0.524cos 20 0.492 in ( )p p cb c

	 4	 The pitch diameters and pitch radii of pinion and gear are found from equation 9.4c.

Pressure
Angle
(deg)

Minimum
Number
of Teeth

14.5

20

25

37

21

14

TABLE  9-4b
Minimum Number of
Pinion Teeth

 To Avoid Undercutting
When Cut With a Hob

17

16

15

14

13

1309

101

45

26

16

TABLE  9-5a
Maximum Number
of Gear Teeth

 To Avoid Interference
Between a 20° Full-Depth 
Pinion and Full-Depth
Gears of Various Sizes 

Number
of Pinion

Teeth

Maximum
Gear
Teeth

11

10

9

Maximum
Gear
Teeth

249

32

13

TABLE  9-5b
Maximum Number
of Gear Teeth
To Avoid Interference 
Between a 25° Full-Depth 
Pinion and Full-Depth
Gears of Various Sizes 

Number
of Pinion

Teeth

FIGURE 9-13
Profile-shifted teeth with long and short addenda to avoid interference and undercutting

Base circle
of pinion

Base circle
of gear

Pitch circles

Long addendum
on pinion

Short addendum
on gear

Pinion

Gear



9

DESIGN OF MACHINERY 6ed      CHAPTER  9504

= = = = =
19
6

3.167 in,
2

1.583 in ( )d
N
p

r
d

dp
p

d
p

p

= = = = =
37
6

6.167 in,
2

3.083 in ( )d
N
p

r
d

eg
g

d
g

g

	 5	 The nominal center distance C is the sum of the pitch radii:

= + = 4.667 in ( )C r r fp g

	 6	 The addendum and dedendum are found from the equations in Table 9-1:

= = =
1.0 0.167 in, = 1.25 0.208 in ( )a
p

b
p

g
d d

	 7	 The whole depth ht is the sum of the addendum and dedendum.

= + = + =0.167 0.208 0.375 in ( )h a b ht

	 8	 The clearance is the difference between dedendum and addendum.

= − = − =0.208 0.167 0.042 in ( )c b a i

	 9	 The outside diameter of each gear is the pitch diameter plus two addenda:

= + = = + =2 3.500 in, 2 6.500 in ( )D d a D d a jo p o gp g

	10	 The contact ratio is found from equations 9.2 and 9.6a.

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

= + − φ + + − φ − φ

= + − °

+ + − ° − ° =

= = =

cos cos sin

1.583 0.167 1.583cos20

3.083 0.167 3.083cos20 4.667sin20 0.798 in

0.798
0.492

1.62 ( )

2 2 2 2

2 2

2 2

Z r a r r a r C

m Z
p

k

p p p g g g

p
b

	11	 If the center distance is increased from the nominal value due to assembly errors or other fac‑
tors, the effective pitch radii will change by the same percentage.  The gears’ base radii will 
remain the same.  The new pressure angle can be found from the changed geometry.  For a 2% 
increase in center distance (1.02x):

φ =








 =

φ







 =

°





= °− − −cos
1.02

cos
cos

1.02
cos cos20

1.02
22.89 ( )1 base circle 1 1

r

r
r

r
lnew

p

p

p

p

	12	 The change in backlash as measured at the pinion is found from equation 9.3.

( ) ( )( ) ( )
( )θ =

φ
π

°
π

43 200 tan =43 200 0.02 4.667
tan 22.89

3.167
=171 minutes of arc ( )C

d
mB D
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9.6	 GEAR TYPES

Gears are made in many configurations for particular applications.  This section describes 
some of the more common types.

Spur, Helical, and Herringbone Gears

Spur Gears  are ones in which the teeth are parallel to the axis of the gear.  This is 
the simplest and least expensive form of gear to make.  Spur gears can only be meshed if 
their axes are parallel.  Figure 9‑14 shows a spur gear.

Helical Gears  are ones in which the teeth are at a helix angle ψ with respect to 
the axis of the gear as shown in Figure 9‑15a.  Figure 9‑16 shows a pair of opposite-hand* 
helical gears in mesh.  Their axes are parallel.  Two crossed helical gears of the same 
hand can be meshed with their axes at an angle as shown in Figure 9‑17.  The helix angles 
can be designed to accommodate any skew angle between the nonintersecting shafts.

Helical gears are more expensive than spur gears but offer some advantages.  They 
run quieter than spur gears because of the smoother and more gradual contact between 
their angled surfaces as the teeth come into mesh.  Spur gear teeth mesh along their entire 
face width at once.  The sudden impact of tooth on tooth causes vibrations that are heard 
as a “whine” which is characteristic of spur gears but is absent with helical gears.  Also, 
for the same gear diameter and diametral pitch, a helical gear is stronger due to the slightly 
thicker tooth form in a plane perpendicular to the axis of rotation.

Herringbone Gears  are formed by joining two helical gears of identical pitch 
and diameter but of opposite hand on the same shaft.  These two sets of teeth are often 
cut on the same gear blank.  The advantage compared to a helical gear is the internal 
cancellation of its axial thrust loads since each “hand” half of the herringbone gear has an 
oppositely directed thrust load.  Thus no thrust bearings are needed other than to locate the 
shaft axially.  This type of gear is much more expensive than a helical gear and tends to 
be used in large, high-power applications such as ship drives, where the frictional losses 
from axial loads would be prohibitive.  A herringbone gear is shown in Figure 9‑15b.  Its 
face view is the same as the helical gear’s.

Efficiency  The general definition of efficiency is output power/input power ex‑
pressed as a percentage.  A spur gearset can be 98 to 99% efficient.  The helical gearset is 

	

*  Helical gears are either 
right- or left-handed.  Note 
that the gear of Figure 9‑15a 
is left-handed because, if 
either face of the gear were 
placed on a horizontal sur‑
face, its teeth would slope 
up to the left.

FIGURE 9-14
A spur gear
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

FIGURE 9-15
A helical gear and a herringbone gear

(a )  Helical gear

ψ

Helix
angle

( b )  Herringbone gear
FIGURE 9-16
Parallel axis helical
gears
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

View as a video
http://www.designof‑

machinery.com/DOM/
helical_parallel.avi

http://www.designofmachinery.com/DOM/helical_parallel.avi
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less efficient than the spur gearset due to sliding friction along the helix angle.  They also 
present a reaction force along the axis of the gear, which the spur gear does not.  Thus heli‑
cal gearsets must have thrust bearings as well as radial bearings on their shafts to prevent 
them from pulling apart along the axis.  Some friction losses occur in the thrust bearings 
as well.  A parallel helical gearset will be about 96 to 98% efficient, and a crossed helical 
set only 50 to 90% efficient.  The parallel helical set (opposite hand but same helix angle) 
has line contact between the teeth and can handle high loads at high speeds.  The crossed 
helical set has point contact and a large sliding component that limit its application to 
light load situations.

If the gearsets have to be shifted in and out of mesh while in motion, spur gears are 
a better choice than helical, as the helix angle interferes with the axial shifting motion.  
(Herringbone gears of course cannot be axially disengaged.)  Truck transmissions often 
use spur gears for this reason, whereas automobile (standard) transmissions use helical, 
constant mesh gears for quiet running and have a synchromesh mechanism to allow shift‑
ing.  These transmission applications will be described in a later section.

Worms and Worm Gears

If the helix angle is increased sufficiently, the result will be a worm, which has only one 
tooth wrapped continuously around its circumference a number of times, analogous to 
a screw thread.  This worm can be meshed with a special worm gear (or worm wheel), 
whose axis is perpendicular to that of the worm as shown in Figure 9‑18.  Because the 
driving worm typically has only one tooth, the ratio of the gearset is equal to one over the 
number of teeth on the worm gear (see equations 9.5).  These teeth are not involutes over 
their entire face, which means that the center distance must be maintained accurately to 
guarantee conjugate action.  

Worms and wheels are made and replaced as matched sets.  These worm gearsets 
have the advantage of very high gear ratios in a small package and can carry very high 
loads especially in their single or double enveloping forms.  Single enveloping means that 
the worm gear teeth are wrapped around the worm.  Double enveloping sets also wrap the 
worm around the gear, resulting in an hourglass-shaped worm.  Both of these techniques 
increase the surface area of contact between worm and wheel, increasing load carrying 
capacity and also cost.  One trade-off in any wormset is very high sliding and thrust loads 
that make the wormset rather inefficient at 40 to 85% efficiency.

Perhaps the major advantage of the wormset is that it can be designed to be impos‑
sible to backdrive.  A spur or helical gearset can be driven from either shaft, as a veloc‑
ity step-up or step-down device.  While this may be desirable in many cases, if the load 
being driven must be held in place after the power is shut off, the spur or helical gearset 
will not do.  They will “backdrive.”  This makes them unsuitable for such applications as 
a jack to raise a car unless a brake is added to the design to hold the load.  The wormset, 
on the other hand, can only be driven from the worm.  The friction can be large enough 
to prevent it being backdriven from the worm wheel.  Thus it can be used without a brake 
in load-holding applications such as jacks and hoists.

FIGURE 9-17
Crossed axis helical
gears
Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof‑

machinery.com/DOM/
helical_crossed.avi

FIGURE 9-18
A worm and worm
gear (or worm wheel)
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

View as a video
http://www.designof‑

machinery.com/DOM/
worm_gear_set.avi

http://www.designofmachinery.com/DOM/helical_crossed.avi
http://www.designofmachinery.com/DOM/worm_gear_set.avi
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Rack and Pinion

If the diameter of the base circle of a gear is increased without limit, the base circle will 
become a straight line.  If the “string” wrapped around this base circle to generate the 
involute were still in place after the base circle’s enlargement to an infinite radius, the 
string would be pivoted at infinity and would generate an involute that is a straight line.  
This linear gear is called a rack.  Its teeth are trapezoids, yet are true involutes.  This fact 
makes it easy to create a cutting tool to generate involute teeth on circular gears, by ac‑
curately machining a rack and hardening it to cut teeth in other gears.  Rotating the gear 
blank with respect to the rack cutter while moving the cutter axially back and forth across 
the gear blank will shape, or develop, a true involute tooth on the circular gear.

Figure 9‑19 shows a rack and pinion.  The most common application of this device 
is in rotary to linear motion conversion or vice versa.  It can be backdriven, so it requires 
a brake if used to hold a load.  An example of its use is in rack-and-pinion steering in 
automobiles.  The pinion is attached to the bottom end of the steering column and turns 
with the steering wheel.  The rack meshes with the pinion and is free to move left and 
right in response to your angular input at the steering wheel.  The rack is also one link 
in a multibar linkage that converts the linear translation of the rack to the proper amount 
of angular motion of a rocker link attached to the front wheel assembly to steer the car.

Bevel and Hypoid Gears

Bevel Gears  For right-angle drives, crossed helical gears or a wormset can be used.  
For any angle between the shafts, including 90°, bevel gears may be the solution.  Just as 
spur gears are based on rolling cylinders, bevel gears are based on rolling cones as shown 
in Figure 9‑20.  The angle between the axes of the cones and the included angles of the 
cones can be any compatible values as long as the apices of the cones intersect.  If they 
did not intersect, there would be a mismatch of velocity at the interface.  The apex of each 
cone has zero radius, thus zero velocity.  All other points on the cone surface will have 
nonzero velocity.  The velocity ratio of the bevel gears is defined by equation 9.1a using 
the pitch diameters at any common point of intersection of cone diameters.

Spiral Bevel Gears  If the teeth are parallel to the axis of the gear, it will be a 
straight bevel gear as shown in Figure 9‑21.  If the teeth are angled with respect to the 
axis, it will be a spiral bevel gear (Figure 9‑22), analogous to a helical gear.  The cone 
axes and apices must intersect in both cases.  The advantages and disadvantages of straight 

FIGURE 9-19
A rack and pinion Photo courtesy of Martin Sprocket and Gear Co., Austin, TX

Pitch
 line

Addendum

Dedendum

φ Pressure angle

Standard full-depth involute rack

View as a video
http://www.designof‑

machinery.com/DOM/
rack_and_pinion.avi

http://www.designofmachinery.com/DOM/rack_and_pinion.avi
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bevel and spiral bevel gears are similar to those of the spur gear and helical gear, respec‑
tively, regarding strength, quietness, and cost.   Bevel gear teeth are not involutes but are 
based on an “octoid” tooth curve.  They must be replaced in pairs (gearsets) as they are 
not universally interchangeable, and their center distances must be accurately maintained.

Hypoid Gears  If the axes between the gears are nonparallel and also nonintersect‑
ing,  bevel gears cannot be used.  Hypoid gears will accommodate this geometry.  Hypoid 
gears are based on rolling hyperboloids of revolution as shown in Figure 9‑23.  (The term 
hypoid is a contraction of hyperboloid.)  The tooth form is not an involute.  These hypoid 
gears are used in the final drive of front-engine, rear-wheel-drive automobiles, in order to 
lower the axis of the driveshaft below the center of the rear axle to reduce the “driveshaft 
hump” in the back seat.

Noncircular Gears

Noncircular gears are based on the rolling centrodes of a Grashof double-crank fourbar 
linkage.  Centrodes are the loci of the instant center I24 of the linkage and were described 
in Section 6.5.  Figure 6-15b shows a pair of centrodes that could be used for noncircular 
gears.  Teeth would be added to their circumferences in the same way that we add teeth 
to rolling cylinders for circular gears.  The teeth then act to guarantee no slip.  Figure 
9-24 shows a pair of noncircular gears based on a different set of centrodes than those of 
Figure 6-15b. (The gears of Figure 9-24 really do make complete revolutions in mesh!)  
Of course, the velocity ratio of noncircular gears is not constant.  That is their purpose, 
to provide a time-varying output function in response to a constant velocity input.  Their 
instantaneous velocity ratio is defined by equation 6.11f.  These devices are used in a va‑
riety of rotating machinery such as printing presses where variation in the angular velocity 
of rollers is required on a cyclical basis.

( a )  Incorrect arrangement

FIGURE 9-20
Bevel gears are based on rolling cones.

(b )  Correct arrangements

Velocity
mismatch

Pitch dia.

Apices must
be coincident

Pitch dia.

γ

FIGURE 9-21
Straight bevel gears
Courtesy of Martin
Sprocket and Gear,
Arlington, TX

FIGURE 9-22
Spiral bevel gears
Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof‑

machinery.com/DOM/
bevel_gears.avi

http://www.designofmachinery.com/DOM/bevel_gears.avi
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Belt and Chain Drives

Vee Belts  A vee belt drive is shown in Figure 9‑2.  Vee belts are made of elastomers 
(synthetic rubber) reinforced with synthetic or metallic cords for strength.  The pulleys, 
or sheaves, have a matching vee groove that helps to grip the belt as belt tension jams the 
belt into the vee.  Vee belts have a transmission efficiency of 95 to 98% when first installed. 
This will decrease to about 93% as the belt wears and slippage increases.  Because of slip, 
the velocity ratio is neither exact nor constant.  Flat belts running on flat and crowned 
pulleys are still used in some applications as well.  As discussed above, slip is possible 
with untoothed belts and phasing cannot be guaranteed.

Synchronous (Timing) Belts  The synchronous belt solves the phasing prob‑
lem by preventing slip while retaining some of the advantages of vee belts and can cost 
less than gears or chains.  Figure 9‑25a shows a synchronous (or toothed) belt and its 
special gearlike pulleys or sheaves.  These belts are made of a rubberlike material but 
are reinforced with steel or synthetic cords for higher strength and have molded-in teeth 
that fit in the grooves of the pulleys for positive drive.  They are capable of fairly high 
torque and power transmission levels and are frequently used to drive automotive engine 
camshafts as shown in Figure 9‑25b.  They are more expensive than conventional vee 
belts and are noisier, but run cooler and last longer.  Their transmission efficiency is 98% 
and stays at that level with use.  Manufacturers’ catalogs provide detailed information on 
sizing both vee and synchronous belts for various applications.  See Bibliography.

Chain Drives  are often used for applications where positive drive (phasing) is 
needed and large torque requirements or high temperature levels preclude the use of tim‑
ing belts.  When the input and output shafts are far apart, a chain drive may be the most 

View as a video
http://www.designof‑

machinery.com/DOM/
Noncircular_Gears.mp4

FIGURE 9-24 
Noncircular gears

Copyright © 2018 Robert L. Norton
All Rights Reserved

( a )  Rolling hyperboloids of revolution  

FIGURE 9-23
Hypoid gears are based on hyperboloids of revolution.

(b )  Automotive hypoid final drive gears
       Courtesy of General Motors Co., Detroit, MI

Nonintersecting
    skew axes 

Input driveshaft

Wheel axle
output shaft

http://www.designofmachinery.com/DOM/Noncircular_Gears.mp4
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economical choice.  Conveyor systems often use chain drives to carry the work along 
the assembly line.  Steel chain can be run through many (but not all) hostile chemical or 
temperature environments.  Many types and styles of chain have been designed for vari‑
ous applications ranging from the common roller chain (Figure 9‑26a) as used on your 
bicycle or motorcycle, to more expensive inverted tooth or “silent chain” designs (Figure 
9‑26b) used for camshaft drives in expensive automobile engines.  Figure 9‑27 shows a 
typical sprocket for a roller chain.  Note that the sprocket teeth are not the same shape as 
gear teeth and are not involutes.  The sprocket tooth shape is dictated by the need to match 
the contour of the portion of chain that nestles in the grooves.  In this case the roller chain 
has cylindrical pins that engage the sprocket.

One unique limitation of chain drive is something called “chordal action.”  The links 
of the chain form a set of chords when wrapped around the circumference of the sprocket.  

( a )  Standard synchronous belt
       Courtesy of T. B. Wood's Sons Co.,
        Chambersburg, PA 

FIGURE 9-25
Toothed synchronous belts and sprockets

(b )  Engine valve camshaft drive
       Courtesy of Chevrolet Division,

        General Motors Co., Detroit, MI

FIGURE 9-26
Chain types for power transmission  From Phelan, R. M. (1970). Fundamentals of Mechanical Design, 3rd ed., McGraw-Hill. NY.

(b )  Inverted-tooth or silent chain(a )  Roller chain
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As these links enter and leave the sprocket, they impart a “jerky” motion to the driven 
shaft that causes some variation, or ripple, on the output velocity.  Chain drives do not 
exactly obey the fundamental law of gearing.  If very accurate, constant output velocity 
is required, a chain drive may not be the best choice.

Vibration in Belts and Chains  You may have noticed when watching the 
operation of, for example, a vee belt such as your car engine’s fan belt, that the belt span 
between pulleys vibrates laterally, even when the belt’s linear velocity is constant.  If you 
consider the acceleration of a belt particle as it travels around the belt path, you will realize 
that its acceleration is theoretically zero while traversing the unsupported spans between 
sheaves at constant velocity; but when it enters the wrap of a sheave, it suddenly acquires 
a nonzero centripetal acceleration that remains essentially constant in magnitude while the 
belt particle is on the sheave.  Thus the acceleration of a belt particle has sudden jumps 
from zero to some constant magnitude or vice versa, four times per traverse for a simple 
two-sheave system such as that of Figure 9-2, and more if there are multiple sheaves.  This 
provides theoretically infinite pulses of jerk to the belt particles at these transitions, and 
this excites the lateral natural frequencies of the belt’s unsupported span between sheaves.  
The result is lateral vibration of the belt span that creates dynamic variation in belt tension 
and noise.  If you watch the fan belt on a running engine, you will notice that it is flapping 
between the sheaves.  This is due to the infinite jerk pulse as the belt leaves the sheave. 

9.7	 SIMPLE GEAR TRAINS View the lecture video (37:54)†

A  gear train is any collection of two or more meshing gears.  A simple gear train is one 
in which each shaft carries only one gear, the most basic, two-gear example of which is 
shown in Figure 9‑4.  The velocity ratio mv (sometimes called train ratio) of this gearset is 
found by expanding equation 9.5a.  Figure 9‑28 shows a simple gear train with five gears 
in series.  The expression for this simple train’s velocity ratio is:
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which is the same as equation 9.5a for a single gearset.

Each gearset potentially contributes to the overall train ratio, but in any case of a 
simple (series) train, the numerical effects of all gears except the first and last cancel out.  
The train ratio of a simple train is always just the ratio of the first gear over the last.  Only 
the sign of the overall ratio is affected by the intermediate gears which are called idlers 
because typically no power is taken from their shafts.  If all gears in the train are external 
and there is an even number of gears in the train, the output direction will be opposite that 
of the input.  If there is an odd number of external gears in the train, the output will be in 
the same direction as the input.  Thus a single, external idler gear of any diameter can be 
used to change the direction of the output gear without affecting its velocity.

A single gearset of spur, helical, or bevel gears is usually limited to a ratio of about 
10:1 simply because the gearset will become very large, expensive, and hard to package 
above that ratio if the pinion is kept above the minimum numbers of teeth shown in Table 

FIGURE 9-27
A roller chain sprocket
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

† http://www.designof‑
machinery.com/DOM/
Gear_Trains.mp4

http://www.designofmachinery.com/DOM/Gear_Trains.mp4
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9‑4a or b.  If the need is to get a larger train ratio than can be obtained with a single gearset, 
it is clear from equations 9.6 that the simple train will be of no help.

It is common practice to insert a single idler gear to change direction, but more than 
one idler is superfluous.  There is little justification for designing a gear train as is shown 
in Figure 9‑28.  If the need is to connect two shafts that are far apart, a simple train of 
many gears could be used but will be more expensive than a chain or belt drive for the 
same application.  Most gears are not cheap.

9.8	 COMPOUND GEAR TRAINS

To get a train ratio of greater than about 10:1 with spur, helical, or bevel gears (or any 
combination thereof), it is necessary to compound the train (unless an epicyclic train 
is used—see Section 9.9).  A compound train is one in which at least one shaft carries 
more than one gear.  This will be a parallel or series-parallel arrangement, rather than 
the pure series connections of the simple gear train.  Figure 9‑29 shows a compound train 
of four gears, two of which, gears 3 and 4, are fixed on the same shaft and thus have the 
same angular velocity.

The train ratio is now:

= −
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This can be generalized for any number of gears in the train as:

= ±
product of number of teeth on driver gears
product of number of teeth on driven gears

(9.8b)mV

Note that these intermediate ratios do not cancel and the overall train ratio is the 
product of the ratios of parallel gearsets. Thus a larger ratio can be obtained in a compound 
gear train despite the approximately 10:1 limitation on individual gearset ratios.  The plus 
or minus sign in equation 9.8b depends on the number and type of meshes in the train, 
whether external or internal.  Writing the expression in the form of equation 9.8a and 
carefully noting the sign of each mesh ratio in the expression will result in the correct 
algebraic sign for the overall train ratio.

Design of Compound Trains

If one is presented with a completed design of a compound gear train such as that in  
Figure 9‑29, it is a trivial task to apply equation 9.8 and determine the train ratio.  It is not 
so simple to do the inverse, namely, design a compound train for a specified train ratio.

✍EXAMPLE 9‑2

Compound Gear Train Design.

Problem: 	 Design a compound train for an exact train ratio of 180:1.  Find a combination of 
gears that will give that ratio.

FIGURE 9-28
A simple gear train
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Solution:

	 1	 The first step is to determine how many stages, or gearsets, are necessary.  Simplicity is the 
mark of good design, so try the smallest possibility first.  Take the square root of 180, which 
is 13.416.  So, two stages each of that ratio will give approximately 180:1.  However, this is 
larger than our design limit of 10:1 for each stage, so try three stages.  The cube root of 180 is 
5.646, well within 10, so three stages will do.

	 2	 If we can find some integer ratio of gear teeth that will yield 5.646:1, we can simply use three 
of them to design our gearbox.  Using a lower limit of 12 teeth for the pinion and trying several 
possibilities we get the gearsets shown in Table 9‑6 as possibilities.

	 3	 The number of gear teeth obviously must be an integer.  The closest to an integer in Table 9‑6 
is the 79.05 result.  Thus a 79:14 gearset comes closest to the desired ratio.  Applying this 
ratio to all three stages will yield a train ratio of (79/14)3 = 179.68:1, which is within 0.2% of 
180:1.  This may be an acceptable solution provided that the gearbox is not being used in a 
timing application.  If the purpose of this gearbox is to step down the motor speed for a crane 
hoist, for example, an approximate ratio will be adequate.

	 4	 Many gearboxes are used in production machinery to drive camshafts or linkages from a master 
driveshaft and must have the exact ratio needed or else the driven device will eventually get out 
of phase with the rest of the machine.  If that were the case in this example, then the solution 
found in step 3 would not be good enough.  We will need to redesign it for exactly 180:1.  Since 
our overall train ratio is an integer, it will be simplest to look for integer gearset ratios.  Thus 
we need three integer factors of 180.  The first solution above gives us a reasonable starting 
point in the cube root of 180, which is 5.646.  If we round this up (or down) to an integer, we 
may be able to find a suitable combination.

FIGURE 9-29
A compound gear train
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TABLE  9-6
Example 9-2
Possible Gearsets for 180:1
Three-Stage Compound
Train
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	 5	 Two compounded stages of 6:1 together give 36:1.  Dividing 180 by 36 gives 5.  Thus the stages 
shown in Table 9‑7 provide one possible exact solution.

This solution, shown in Figure 9‑30, meets our design criteria.  It has the correct, exact 
ratio; the stages are all less than 10:1; and no pinion has less than 14 teeth, which avoids 
undercutting if 25° pressure angle gears are used (Table 9-4b).

Design of Reverted Compound Trains

In the preceding example the input and output shaft locations are in different locations.  
This may well be acceptable or even desirable in some cases, depending on other packag‑
ing constraints in the overall machine design.  Such a gearbox, whose input and output 
shafts are not coincident, is called a nonreverted compound train.  In some cases, such 
as automobile transmissions, it is desirable or even necessary to have the output shaft con-
centric with the input shaft.  This is referred to as “reverting the train” or “bringing it back 
onto itself.”  The design of a reverted compound train is more complicated because of 
the additional constraint that the center distances of the stages must be equal.  Referring to 
Figure 9-31, this constraint can be expressed in terms of their pitch radii, pitch diameters, 
or numbers of teeth (provided that all gears have the same diametral pitch).

FIGURE 9-30
Three-stage compound gear train for  train ratio mV = 1:180  (gear ratio mG = 180:1)
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Example 9-2
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+ = + (9.9a)2 3 4 5r r r r

+ = +or (9.9b)2 3 4 5d d d d

If pd is the same for all gears, equation 9.4c can be substituted in equation 9.9b and the 
diametral pitch terms will cancel giving

+ = + (9.9c)2 3 4 5N N N N

✍EXAMPLE 9‑3

Reverted Gear Train Design.

Problem: 	 Design a reverted compound train for an exact train ratio of 18:1.

Solution:

	 1	 Though it is not at all necessary to have integer gearset ratios in a compound train (only integer 
tooth numbers), if the train ratio is an integer, it is easier to design with integer ratio gearsets.

	 2	 The square root of 18 is 4.2426, well within our 10:1 limitation.  So two stages will suffice in 
this gearbox.

	 3	 If we could form two identical stages, each with a ratio equal to the square root of the overall 
train ratio, the train would be reverted by default.  Table 9‑8 shows that there are no reasonable 
combinations of tooth ratios that will give the exact square root needed.  Moreover, this square 
root is not a rational number, so we cannot get an exact solution by this approach.

FIGURE 9-31
A reverted compound gear train
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TABLE  9-8
Example 9-3
Possible Gearsets for 18:1
Two-Stage Reverted
Compound Train 

View as a video
http://www.designof‑

machinery.com/DOM/
gear_train.avi

http://www.designofmachinery.com/DOM/gear_train.avi
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	 4	 Instead, let’s factor the train ratio.  All numbers in the factors 9 x 2 and 6 x 3 are less than 10, 
so they are acceptable on that basis.  It is probably better to have the ratios of the two stages 
closer in value to one another for packaging reasons, so the 6 x 3  choice will be tried.

	 5	 Figure 9‑31 shows a two-stage reverted train.  Note that, unlike the nonreverted train in Figure 
9‑29, the input and output shafts are now in-line and cantilevered; thus each must have double 
bearings on one end for moment support and a good bearing ratio as was defined in Section 
2.18.

	 6	 Equation 9.8 states the relationship for its compound train ratio.  In addition, we have the 
constraint that the center distances of the stages must be equal.  Use equation 9.9c and set it 
equal to an arbitrary constant K to be determined.

+ = + = ( )2 3 4 5N N N N K a

	 7	 We wish to solve equations 9.8 and 9.9c simultaneously.  We can separate the terms in equation 
9.8 and set them each equal to one of the stage ratios chosen for this design.
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	 8	 Separating the terms in equation (a):
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N N K d
N N K e

	 9	 Substituting equation (b) in (d) and equation (c) in (e) yields:

+ = =
+ = =

6 7 ( )
3 4 ( )

2 2 2

4 4 4

N N K N f
N N K N g

	10	 To make equations (f) and (g) compatible, K must be set to at least the lowest common multiple 
of 7 and 4, which is 28.  This yields values of N2 = 4 teeth and N4 = 7 teeth.

	11	 Since a four-tooth gear will have unacceptable undercutting, we need to increase our value of 
K sufficiently to make the smallest pinion large enough.

	12	 A new value of K = 28 x 4 = 112 will increase the four-tooth gear to a 16-tooth gear, which is 
acceptable for a 25° pressure angle (Table 9-4b).  With this assumption of K =112, equations 
(b), (c), ( f ), and (g)  can be solved simultaneously to give:

= =

= =

16 96
( )

28 84

2 3

4 5

N N
h

N N

		  which is a viable solution for this reverted train.

The same procedure outlined here can be applied to the design of reverted trains involving 
several stages such as the helical gearbox in Figure 9-32.
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An Algorithm for the Design of Compound Gear Trains

The examples of compound gear train design presented above used integer train ratios.  If 
the required train ratio is noninteger, it is more difficult to find a combination of integer 
tooth numbers that will give the exact train ratio.  Sometimes an irrational gear ratio may 
be needed for such tasks as conversion of English to metric measure within a machine tool 
gear train or when π is a factor in the ratio.  Then the closest approximation to the desired 
irrational train ratio that can be contained in a reasonable package is needed.

DilPare[1] and Selfridge and Riddle[2] have devised algorithms to solve this problem.  
Both require a computer for their solution.  The Selfridge and Riddle approach will be 
described here.  It is applicable to two- or three-stage compound trains.  A low limit Nmin 
and a high limit Nmax on the acceptable number of teeth for any gear must be specified.  
An error tolerance ε expressed as a percentage of the desired train ratio R (made always 
> 1) is also selected.  For a two-stage compound train the ratio will be as shown in equa‑
tion 9.5c expanded according to equation 9.8b with the signs neglected for this analysis.

= = (9.10a)3 5

2 4
R m

N N
N NG

The range of acceptable ratios is determined by the choice of error tolerance ε.
= − ε

= + ε
(9.10b)

R R

R R

low

high

≤ ≤ (9.10c)3 5

2 4
R

N N
N N

Rlow high

Then, since the tooth numbers must be integers:

FIGURE 9-32
A commercial, three-stage reverted compound gearbox
Courtesy of Boston Gear Division of IMO Industries, Quincy, MA
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( )≤ (9.10d)3 5 2 4N N INT N N Rhigh

( )=Let: (9.10e)2 4P INT N N Rhigh

Also from equation 9.10c,

( )≥ (9.10f)3 5 2 4N N INT N N Rlow

( )= +Let: 1 (9.10g)2 4Q INT N N Rlow

rounding up to the next integer.

A search is done on all values of a temporary parameter K defined as Q ≤ K ≤ P to 
see if a usable product pair can be found.  Because of multiplicative symmetry, the largest 
value of N3 that need be considered is 

≤ (9.11a)3N P

=Let: (9.11b)N Pp

The smallest value of N3 that need be considered occurs when K is at its smallest 
value Q and N5 takes its largest value Nhigh.  (N3 is also constrained by Nlow.)

≥ (9.11c)3N Q
Nhigh

=
+ −







Let:

1
(9.11d)N INT

Q N
Nm

high

high

which also rounds up to the next integer.

The search finds those values of N3 that meet Nm ≤ N3 ≤ Np and N5 = K / N3.  The 
computer code for this algorithm is shown in Table 9-9.  The complete program Com-
pound.tk is downloadable with this book, encoded for use with the TKSolver program.  
The code can be easily rewritten for other equation solvers or compilers.

This algorithm is extendable to three-stage compound gear trains, and the two-stage 
version can be modified to force reversion of the train by adding a center distance calcula‑
tion for each gearset and a comparison to a selected tolerance on center distance.  These 
files are downloadable as Triple.tk and Revert.tk, respectively.  These programs each 
generate a table of all solutions that meet the stated error criteria within the tooth limits 
specified.  

✍EXAMPLE 9‑4

Compound Gear Train Design to Approximate an Irrational Ratio.

Problem: 	 Find a pair of gearsets which when compounded will give a train ratio of  
3.14159:1 with an error of < 0.0005%.  Limit gears to tooth numbers between 15 
and 100.  Also determine the tooth numbers for the smallest error possible if the 
two gearsets must be reverted.
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eps = eps1
counter = 0

redo:
S = 1
R_high = Ratio + eps
R_low  = Ratio  - eps
Nh3 = INT( Nmax^2 / R_high )
Nh4 = INT( Nmax / SQRT ( R_high))
For pinion1 = Nmin to Nh4

Nhh = MIN ( Nmax, INT (Nh3 / pinion1))
For pinion2 = pinion1 to Nhh

Q = INT( pinion1 * pinion2 * R_low) + 1
P =  INT( pinion1 * pinion2 * R_high)

IF ( P < Q ) THEN GOTO np2
Nm = MAX ( Nmin, INT ( (Q + Nmax - 1) / Nmax ))
Np = SQRT(P)
For K = Q to P

For gear1 = Nm to Np
IF (MOD( K, gear1 ) <> 0 ) Then GOTO ng1
gear2 = K / gear1
error = ( Ratio - K / ( pinion1 * pinion2) )

IF error > eps THEN GOTO ng1

pin1[S] = pinion1
pin2[S] = pinion2
gear1[S] = gear1
gear2[S] = gear2
error[S] = ABS(error)
ratio1[S] = gear1 / pinion1
ratio2[S] = gear2 / pinion2
ratio[S] =  ratio1[S]  * ratio2[S]
S = S + 1

ng1: Next gear1
Next K

np2: Next pinion2
Next pinion1

IF (Length (pin1) = 0 ) Then GOTO again ELSE Return
again:

eps = eps * 2
counter = counter + 1
GOTO redo

" Ratio is the desired gear train ratio and must be > 1.  Nmin is the minimum number of teeth acceptable on any pinion.
" Nmax is the maximum number of teeth acceptable on any gear.  eps1 is initial estimate of the error tolerance on Ratio.
" eps is the tolerance used in the computation, initialized to eps1 but modified (doubled) until solutions are found.
" counter indicates how many times the initial tolerance was doubled.  Note that a large initial value on eps1 will cause long
" computation times whereas a too-small value (that gives no solutions) will quickly be increased and lead to a faster solution.
" pinion1, pinion2, gear1, and gear2 are tooth numbers for solution.

" initialize the array pointer
" initialize tolerance bands around ratio
" initialize tolerance bands around ratio
" intermediate value for computation
" intermediate value for computation
" loop for first pinion

" loop for 2nd pinion
" intermediate value for computation
" intermediate value for computation

" loop for first gear
" not a match - skip to next gear1
" find second gear tooth number
" find error in ratio

" is out of bounds - skip to next gear1

" increment array pointer

" have a solution

" initialize error bound
" initialize counter

" intermediate value for computation

" double eps value and try again

"check to see if is within current tolerance

" else load solution into arrays

" test to see if any solution occurred with current eps value

" reentry point for additional tries at solution

" skip to next pinion2 if true
" intermediate value for computation
" intermediate value for computation
" loop for parameter K

TABLE  9-9 Algorithm for Design of Two-Stage Compound Gear Trains
From Author’s downloadable TKSolver file Compound.tk.  Based on Reference [2]  
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Solution:

	 1	 Input data to the algorithm are R = 3.141 59, Nlow = 15, Nhigh = 100, initial ε = 3.141 59 E-5.

	 2	 The TKSolver file Compound.tk (see Table 9-9) was used to generate the nonreverted solu‑
tions shown in Table 9-10.

	 3	 The best nonreverted solution (7th row in Table 9-10) has an error in ratio of 7.849 9 E-06 
(0.000 249 87%) giving a ratio of 3.141 582 with gearsets of 29:88 and 85:88 teeth.

	 4	 The TKSolver file Revert.tk was used to generate the reverted solutions shown in Table 9-11.

	 5	 The best reverted solution has an error in ratio of –9.619 8 E-04 (–0.030 62%) giving a ratio 
of 3.142 562 with gearsets of 22:39 and 22:39 teeth.  

	 6	 Note that imposing the additional constraint of reversion has reduced the number of possible 
solutions effectively to one (the two solutions in Table 9-11 differ by a factor of 2 in tooth 
numbers but have the same error) and the error is much greater than that of even the worst of 
the 11 nonreverted solutions in Table 9-10.

9.9	 EPICYCLIC OR PLANETARY GEAR TRAINS

The conventional gear trains described in the previous sections are all one-degree-of-
freedom (DOF) devices.  Another class of gear train has wide application, the epicyclic or 

	

*  Note that this gear train 
combination gives an ap‑
proximation for π that is 
exact to 4 decimal places.  
But, this example asks 
for an approximation to 5 
decimal places within a tol‑
erance of 5 ten-thousandths 
of one percent.  This ratio 
is off by one thousandth 
of a percent of the desired 
5-place value.
	

†  This is the closest pos‑
sible approximation to 
a 5-place value for π in 
a nonreverted gear train 
within the given limitations 
on gear sizes.

44 78 1.773 44 78 1.773 3.142 562 -9.619 8 E-04

22 39 1.773 22 39 1.773 3.142 562 -9.619 8 E-04

TABLE  9-11 Reverted Gearsets and Errors in Ratio for Example 9-4

N2 N3 N4 N5Ratio1 Ratio 2 mV Error

43 77 1.791 57 100 1.754 3.141 575 1.513 3 E-05
43 85 1.977 56 89 1.589 3.141 611 2.129 6 E-05
41 75 1.829 46 79 1.717 3.141 569 2.054 1 E-05
33 68 2.061 61 93 1.525 3.141 580 1.026 8 E-05
29 88 3.034 85 88 1.035 3.141 582† 7.849 9 E-06
28 85 3.036 86 89 1.035 3.141 611 2.129 6 E-05
25 51 2.040 50 77 1.540 3.141 600* 1.000 0 E-05
23 75 3.261 82 79 0.963 3.141 569 2.054 1 E-05
22 62 2.818 61 68 1.115 3.141 580 1.026 8 E-05
17 60 3.529 91 81 0.890 3.141 564 2.568 2 E-05
17 54 3.176 91 90 0.989 3.141 564 2.568 2 E-05

TABLE  9-10 Nonreverted Gearsets and Errors in Ratio for Example 9-4

N2 N3 N4 N5Ratio1 Ratio2 mV Error
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planetary train.  This is a two-DOF device.  Two inputs are needed to obtain a predict‑
able output.  In some cases, such as the automotive differential, one input is provided (the 
driveshaft) and two frictionally coupled outputs are obtained (the two driving wheels).  
In other applications such as automatic transmissions, aircraft engine to propeller reduc‑
tions, and in-hub bicycle transmissions, two inputs are provided (one usually being a zero 
velocity, i.e., a fixed gear), and one controlled output results.

Figure 9-33a shows a conventional, one-DOF gearset in which link 1 is immobilized 
as the ground link.  Figure 9-33b shows the same gearset with link 1 now free to rotate as 
an arm that connects the two gears.  Now only the joint O2 is grounded and the system 
DOF = 2.  This has become an epicyclic train with a sun gear and a planet gear orbiting 
around the sun, held in orbit by the arm.  Two inputs are required.  Typically, the arm 
and the sun gear will each be driven in some direction at some velocity.  In many cases, 
one of these inputs will be zero velocity, i.e., a brake applied to either the arm or the sun 
gear.  Note that a zero velocity input to the arm merely makes a conventional train out of 
the epicyclic train as shown in Figure 9-33a.  Thus the conventional gear train is simply 
a special case of the more complex epicyclic train, in which its arm is held stationary.

In this simple example of an epicyclic train, the only gear left to take an output from, 
after putting inputs to sun and arm, is the planet.  It is a bit difficult to get a usable output 
from this orbiting gear as its pivot is moving.  A more useful configuration is shown in 
Figure 9-34 to which a ring gear has been added.  This ring gear meshes with the planet 
and pivots at O2, so it can be easily tapped as the output member.  Most planetary trains 
will be arranged with ring gears to bring the planetary motion back to a grounded pivot.  
Note how the sun gear, ring gear, and arm are all brought out as concentric hollow shafts 
so that each can be accessed to tap its angular velocity and torque as either an input or 
an output.

Epicyclic trains come in many varieties.  Levai[3] cataloged 12 possible types of basic 
epicyclic trains as shown in Figure 9-35.  These basic trains can be connected together to 
create a larger number of trains having more degrees of freedom.  This is done in automo‑
tive automatic transmissions as described in a later section.

( a )  Conventional gearset

FIGURE 9-33
Conventional gearsets are special cases of planetary or epicyclic gearsets

(b )  Planetary or epicyclic gearset
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While it is relatively easy to visualize the power flow through a conventional gear 
train and observe the directions of motion for its member gears, it is very difficult to 
determine the behavior of a planetary train by observation.  We must do the necessary 
calculations to determine its behavior and may be surprised at the often counterintuitive 

FIGURE 9-34
Planetary gearset with ring gear used as output

4

2

3

Output

Sun

1

Planet

Input #2
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80t

20t

40t

sunω
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Planet
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FIGURE 9-35
Levai's 12 possible epicyclic trains [3]
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View as a video
http://www.designof‑

machinery.com/DOM/
planetary_3d.avi

View a video
http://www.designof‑

machinery.com/DOM/
compound_epicycloi‑

dal_gear_train.avi

http://www.designofmachinery.com/DOM/planetary_3d.avi
http://www.designofmachinery.com/DOM/compound_epicycloidal_gear_train.avi
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results.  Since the gears are rotating with respect to the arm and the arm itself has motion, 
we have a velocity difference problem here that requires equation 6.5b be applied to this 
problem.  Rewriting the velocity difference equation 6.5b in terms of angular velocities 
specific to this system, we get:

ω = ω + ω (9.12)/gear arm gear arm

Equations 9.12 and 9.5a are all that is needed to solve for the velocities in an epicyclic 
train, provided that the tooth numbers and two input conditions are known.

The Tabular Method

One approach to the analysis of velocities in an epicyclic train is to create a table which 
represents equation 9.12 for each gear in the train.

✍EXAMPLE 9‑5

Epicyclic Gear Train Analysis by the Tabular Method.

Problem: 	 Consider the train in Figure 9-34, with the tooth numbers and initial conditions:

Sun gear		  N2 = 40-tooth external gear
Planet gear		  N3 = 20-tooth external gear
Ring gear		  N4 = 80-tooth internal gear
Input to arm		 200 rpm clockwise
Input to sun		  100 rpm clockwise

	 We wish to find the absolute output angular velocity of the ring gear.

Solution:

	 1	 The solution table is set up with a column for each term in equation 9.12 and a row for each 
gear in the train.  It will be most convenient if we can arrange the table so that meshing gears 
occupy adjacent rows.  The table for this method, prior to data entry, is shown in Figure 9-36.

	 2	 Note that the gear ratios are shown straddling the rows of gears to which they apply.  The gear 
ratio column is placed next to the column containing the velocity differences ωgear/arm because 
the gear ratios only apply to the velocity difference.  The gear ratios cannot be directly applied 
to the absolute velocities in the ωgear column.

FIGURE 9-36
Table for the solution of planetary gear trains

Gear # Gear
ratio

ω armgearω gear/armω= +

1 2 3
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	 3	 The solution strategy is simple but is fraught with opportunities for careless errors.  Note that 
we are solving a vector equation with scalar algebra and the signs of the terms denote the sense 
of the ω vectors which are all directed along the Z axis.  Great care must be taken to get the 
signs of the input velocities and of the gear ratios correct in the table, or the answer will be 
wrong.  Some gear ratios may be negative if they involve external gearsets, and others will be 
positive if they involve an internal gear.  We have both types in this example.

	 4	 The first step is to enter the known data as shown in Figure 9-37 which in this case are the 
arm velocity (in all rows) and the absolute velocity of gear 2 in column 1.  The gear ratios can 
also be calculated and placed in their respective locations.  Note that these ratios should be 
calculated for each gearset in a consistent manner, following the power flow through the train.  
That is, starting at gear 2 as the driver, it drives gear 3 directly.  This makes its ratio –N2/N3, 
or input over output, not the reciprocal.  This ratio is negative because the gearset is external.  
Gear 3 in turn drives gear 4 so its ratio is +N3/N4.  This is a positive ratio because of the in-
ternal gear.

	 5	 Once any one row has two entries, the value for its remaining column can be calculated from 
equation 9.12, which is shown in the top row of Figures 9-37 and 9-38.  Once any one value in 
the velocity difference column (column 3) is found, the gear ratios can be applied to calculate 
all other values in that column.  Finally, the remaining rows can be calculated from equation 
9.12 to yield the absolute velocities of all gears in column 1.  These computations are shown in 
Figure 9-38 which completes the solution.

	 6	 The overall train value for this example can be calculated from the table and is from arm to 
ring gear  +1.25:1 and from sun gear to ring gear +2.5:1.

FIGURE 9-37
Given data for planetary gear train from Example 9-5 placed in solution table
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FIGURE 9-38
Solution for planetary gear train from Example 9-5
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In this example, the arm velocity was given.  If it is to be found as the output, then it must 
be entered in the table as an unknown, x, and the equations solved for that unknown.

Ferguson’s Paradox  Epicyclic trains have several advantages over conventional 
trains including higher train ratios in smaller packages, reversion by default, and simul‑
taneous, concentric, bidirectional outputs available from a single unidirectional input.  
These features make planetary trains popular as automatic transmissions in automobiles 
and trucks, etc.

The so-called Ferguson paradox of Figure 9-39 illustrates all these features of the 
planetary train.  It is a compound epicyclic train with one 20-tooth planet gear (gear 5) 
carried on the arm and meshing simultaneously with three sun gears.  These sun gears 
have 100 teeth (gear 2), 99 teeth (gear 3), and 101 teeth (gear 4), respectively.  The center 
distances between all sun gears and the planet are the same despite the slightly different 
pitch diameters of each sun gear.  This is possible because of the properties of the involute 
tooth form as described in Section 9.2.  Each sun gear will run smoothly with the planet 
gear. Each gearset will merely have a slightly different pressure angle.

✍EXAMPLE 9‑6

Analyzing Ferguson’s Paradox by the Tabular Method.

Problem: 	 Consider Ferguson’s paradox train in Figure 9-39, which has the following tooth 
numbers and initial conditions:

Sun gear  # 2		 N2 = 100-tooth external gear
Sun gear  # 3	 N3 = 99-tooth external gear
Sun gear  # 4		 N4 = 101-tooth external gear
Planet gear		  N5 = 20-tooth external gear
Input to sun  # 2	 0 rpm
Input to arm		 100 rpm counterclockwise

FIGURE 9-39
Ferguson's paradox compound planetary gear train

2 3 4

5
Planet 20t

Arm

Sun # 4 - 101t

Sun # 3 - 99t

Sun # 2 - 100t
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BearingBearing
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	 Sun gear 2 is fixed to the frame, thus providing one input (zero velocity) to the 
system.  The arm is driven at 100 rpm counterclockwise as the second input.  Find 
the angular velocities of the two outputs that are available from this compound 
train, one from gear 3 and one from gear 4, both of which are free to rotate on the 
main shaft.  

Solution:

	 1	 The tabular solution for this train is set up in Figure 9-40 which shows the given data.  Note 
that the row for gear 5 is repeated for clarity in applying the gear ratio between gears 5 and 4.

	 2	 The known input values of velocity are the arm angular velocity and the zero absolute velocity 
of gear 2.

	 3	 The gear ratios in this case are all negative because of the external gear sets, and their values 
reflect the direction of power flow from gear 2 to 5, then 5 to 3, and 5 to 4 in the second branch.

	 4	 Figure 9-41 shows the calculated values added to the table.  Note that for a counterclockwise 
100 rpm input to the arm, we get a counterclockwise 1 rpm output from gear 4 and a clockwise 
1 rpm output from gear 3, simultaneously.

This result accounts for the use of the word paradox to describe this train.  Not only 
do we get a much larger ratio (100:1) than we could from a conventional train with gears 
of 100 and 20 teeth, but we have our choice of output directions!

Automotive automatic transmissions use compound planetary trains, which are al‑
ways in mesh, and which give different ratio forward speeds, plus reverse, by simply 
engaging and disengaging brakes on different members of the train.  The brake provides 
zero velocity input to one train member.  The other input is from the engine.  The output 
is thus modified by the application of these internal brakes in the transmission according 
to the selection of the operator (Park, Reverse, Neutral, Drive, etc.). An example of a 
modern, eight-speed automatic transmission is shown in Figure 9-45.

FIGURE 9-40
Given data for Ferguson's paradox planetary gear train from Example 9-6
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The Formula Method

It is not necessary to tabulate the solution to an epicyclic train.  The velocity difference 
formula can be solved directly for the train ratio.  We can rearrange equation 9.12 to solve 
for the velocity difference term.  Then, let ωF represent the angular velocity of the first 
gear in the train (chosen at either end), and ωL represent the angular velocity of the last 
gear in the train (at the other end).

For the first gear in the system:
ω = ω − ω (9.13a)/F arm F arm

For the last gear in the system:
ω = ω − ω (9.13b)/L arm L arm

Dividing the last by the first:
ω
ω

=
ω − ω
ω − ω

= (9.13c)/

/
RL arm

F arm

L arm

F arm

This gives an expression for the fundamental train value R which defines a velocity 
ratio for the train with the arm held stationary.  The leftmost side of equation 9.13c in‑
volves only the velocity difference terms that are relative to the arm.  This fraction is equal 
to the ratio of the products of tooth numbers of the gears from first to last in the train as 
defined in equation 9.8b which can be substituted for the leftmost side of equation 9.13c.

= ± =
ω − ω
ω − ω

product of number of teeth on driver gears
product of number of teeth on driven gears

(9.14)R L arm

F arm

This equation can be solved for any one of the variables on the right side provided 
that the other two are defined as the two inputs to this two-DOF train.  Either the veloci‑
ties of the arm plus one gear must be known or the velocities of two gears, the first and 
last, as so designated, must be known.  Another limitation of this method is that both the 
first and last gears chosen must be pivoted to ground (not orbiting), and there must be a 
path of meshes connecting them, which may include orbiting planet gears.  Let us use this 
method to again solve the Ferguson paradox of Example 9-6. 

FIGURE 9-41
Solution to Ferguson's paradox planetary gear train from Example 9-6
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✍EXAMPLE 9‑7

Analyzing Ferguson’s Paradox by the Formula Method.

Problem: 	 Consider the same Ferguson paradox train as in Example 9‑6 which has the follow‑
ing tooth numbers and initial conditions (see Figure 9‑37):

Sun gear #2	  N2 = 100-tooth external gear
Sun gear #3	  N3 = 99-tooth external gear
Sun gear #4	  N4 = 101-tooth external gear
Planet gear		  N5 = 20-tooth external gear
Input to sun #2	 0 rpm
Input to arm		 100 rpm counterclockwise

	 Sun gear 2 is fixed to the frame, providing one input (zero velocity) to the system.  
The arm is driven at 100 rpm CCW as the second input.  Find the angular velocities 
of the two outputs that are available from this compound train, one from gear 3 and 
one from gear 4, both of which are free to rotate on the main shaft.  

Solution:

	 1	 We will have to apply equation 9.14 twice, once for each output gear.  Taking gear 3 as the last 
gear in the train with gear 2 as the first, we have:

ω

= = =

= + ω = ω =

100 99 20
( )

100 0 ?

2 3 5N N N
a

arm F L

	 2	 Substituting in equation 9.14 we get:

−






−






=
ω − ω
ω − ω

−





−





=
ω −

−
ω = −

100
20

20
99

100
0 100

( )

1.01

2

5

5

3

3

3

N
N

N
N

b

L arm

F arm

	 3	 Now taking gear 4 as the last gear in the train with gear 2 as the first, we have:

ω

= = =

= + ω = ω =

100 101 20
( )

100 0 ?

2 4 5N N N
c

arm F L

	 4	 Substituting in equation 9.14, we get:

−






−






=
ω − ω
ω − ω

−





−





=
ω −

−
ω = +

100
20

20
101

100
0 100

( )

0.99

2

5

5

4

4

4

N
N

N
N

d

L arm

F arm

These are the same results as were obtained with the tabular method.
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9.10	 EFFICIENCY OF GEAR TRAINS

The general definition of efficiency is output power/input power.  It is expressed as a frac‑
tion (decimal %) or as a percentage.  The efficiency of a conventional gear train (simple or 
compound) is very high.  The power loss per gearset is only about 1 to 2% depending on 
such factors as tooth finish and lubrication.  A gearset’s basic efficiency is termed E0.  An 
external gearset will have an E0 of about 0.98 or better and an external-internal gearset 
about 0.99 or better.  When multiple gearsets are used in a conventional simple or com‑
pound train, the overall efficiency of the train will be the product of the efficiencies of all 
its stages.  For example, a two-stage train with both gearset efficiencies of E0 = 0.98 will 
have an overall efficiency of η = 0.982 = 0.96.

Epicyclic trains, if properly designed, can have even higher overall efficiencies than 
conventional trains.  But, if the epicyclic train is poorly designed, its efficiency can be so 
low that it will generate excessive heat and may even be unable to operate at all.  This 
strange result can come about if the orbiting elements (planets) in the train have high losses 
that absorb a large amount of “circulating power” within the train.  It is possible for this 
circulating power to be much larger than the throughput power for which the train was 
designed, resulting in excessive heating or stalling.  The computation of the overall ef‑
ficiency of an epicyclic train is much more complicated than the simple multiplication in‑
dicated above that works for conventional trains.  Molian[4] presents a concise derivation.

To calculate the overall efficiency η of an epicyclic train, we need to define a basic 
ratio ρ which is related to the fundamental train value R defined in equation 9.13c:

≥ ρ = ρ =if 1, then else 1 (9.15)R R R

This constrains ρ to represent a speed increase rather than a decrease regardless of which 
way the gear train is intended to operate.

For the purpose of calculating torque and power in an epicyclic gear train, we can con‑
sider it to be a “black box” with three concentric shafts as shown in Figure 9-42.  These 
shafts are labeled 1, 2, and arm and connect to either “end” of the gear train and to its 
arm, respectively.  Two of these shafts can serve as inputs and the third as output in any 
combination.  The details of the gear train’s internal configuration are not needed if we 
know its basic ratio ρ and the basic efficiency E0 of its gearsets.  All the analysis is done 
relative to the arm of the train since the internal power flow and losses are only affected 
by rotation of shafts 1 and 2 with respect to the arm, not by rotation of the entire unit.  
We also model it as having a single planet gear for the purpose of determining E0 on the 
assumption that the power and the losses are equally divided among all gears actually in 
the train.  Counterclockwise torques and angular velocities are considered positive.  Power 
is the product of torque and angular velocity, so a positive power is an input (torque and 
velocity in same direction) and negative power is an output.

If the gear train is running at constant speed or is changing speed too slowly to sig‑
nificantly affect its internal kinetic energy, then we can assume static equilibrium and the 
torques will sum to zero.

+ + = 0 (9.16)1 2T T Tarm

The sum of power in and out must also be zero, but the direction of power flow affects the 
computation. If the power flows from shaft 1 to shaft 2,  then:

FIGURE 9-42
Generic epicyclic

ωarm

1 2

arm

Gearbox

Tarm

ω2
T2

ω1
T1



9

DESIGN OF MACHINERY 6ed      CHAPTER  9530

( ) ( )ω − ω + ω − ω = 0 (9.17a)0 1 1 2 2E T Tarm arm

If the power flows from shaft 2 to shaft 1,  then:

( ) ( )ω − ω + ω − ω = 0 (9.17b)1 1 0 2 2T E Tarm arm

If the power flows from shaft 1 to 2, equations 9.16 and 9.17a are solved simultaneously 
to obtain the system torques.  If the power flows in the other direction, then equations 9.16 
and 9.17b are used instead.  Substitution of equation 9.13c in combination with equation 
9.15 introduces the basic ratio ρ and after simultaneous solution yields:

=
ρ −

= −
ρ

ρ −

power flow from 1 to 2
1

(9.18a)

1
(9.18b)

1
0

2
0

0

T
T
E

T
E T
E

arm

arm

=
ρ −

= −
ρ
ρ −

power flow from 2 to 1 (9.19a)

(9.19b)

1
0

0

2
0

T
E T

E

T
T

E

arm

arm

Once the torques are found, the input and output power can be calculated using the 
known input and output velocities (from a kinematic analysis as described above) and the 
efficiency then determined from output power/input power.  

There are eight possible cases depending on which shaft is fixed, which shaft is 
input, and whether the basic ratio ρ is positive or negative.  These cases are shown in 
Table 9-12[4] which includes expressions for the train efficiency as well as for the torques.  
Note that the torque on one shaft is always known from the load required to be driven or 
the power available from the driver, and this is needed to calculate the other two torques.

✍EXAMPLE 9‑8

Determining the Efficiency of an Epicyclic Gear Train.*

Problem: 	 Find the overall efficiency of the epicyclic train shown in Figure 9-43.  The basic ef‑
ficiency E0 is 0.9928 and the gear tooth numbers are: NA= 82t, NB = 84t, NC = 86t, 
ND = 82t, NE = 82t, and NF = 84t.  Gear A (shaft 2) is fixed to the frame, providing 
a zero velocity input.  The arm is driven as the second input.  

Solution:

	 1	 Find the basic ratio ρ for the gear train using equations 9.14 and 9.15.  Note that gears B and 
C have the same velocity as do gears D and E, so their ratios are 1 and thus are omitted.

( )( )
( )( )ρ = = = ≅

84 82 84
82 86 82

1764
1763

1.000567 ( )
N N N
N N N

aF D B

E C A

	 2	 The combination of ρ > 1, shaft 2 fixed and input to the arm corresponds to Case 2 in Table 
9-12, giving an efficiency of:

*  This example is adapted 
from reference [5].
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( ) ( )
η =

ρ −
ρ −

=
−

−
= =

1 0.9928 1.000567 1
1.000567 0.9928

0.073 7.3% ( )0

0

E
E

b

	 3	 This is a very low efficiency which makes this gearbox essentially useless.  About 93% of the 
input power is being circulated within the gear train and wasted as heat.  

Case

1

2

3

4

5

6

7

8

Fixed
Shaft

2

2

1

1

2

2

1

1

Input
Shaft

1

arm

2

arm

1

arm

2

arm

Train
Ratio

1− ρ

1
1− ρ

ρ
ρ
−1

ρ
ρ−1

1− ρ

1
1− ρ

ρ
ρ
−1

ρ
ρ−1

Efficiency  (η)

ρ
ρ
E0 1

1
−

−

E
E

0

0

1ρ
ρ

−( )
−

ρ
ρ

E
E

0

0

1
1

−
−( )

ρ
ρ

−
−

1
0E

ρ
ρ
E0 1

1
−

−

E
E

0

0

1ρ
ρ

−( )
−

ρ
ρ
−
−
E0
1

E
E

0

0

1
1

ρ
ρ

−( )
−

ρ

> +1

> +1

> +1

> +1

≤ –1

≤ –1

≤ –1

≤ –1

Tarm

Tarm

ρ−





E
E

T0

0
1

Tarm

−
−





ρ
ρ
E

T0
2

Tarm

ρ−





E

E
T0

0
1

Tarm

−
−





ρ
ρ
E

E
T0

0
2

1

T2

ρ
ρ

E T
E
arm0

01−

−ρ
T
E

1

0

−
−

ρ
ρ
E T
E

arm0

0 1

T2

ρ
ρ

E T
E
arm0

01−

−ρ
T
E

1

0

−
−

ρ
ρ

T
E

arm

0

T2

T1

−
−
T

E
arm

1 0ρ

T1

T
E

arm
ρ 0 1−

−
E

T0
2ρ

−
−
T

E
arm

1 0ρ

T1

E T
E
arm0

0ρ−

−
T
E
2

0ρ

TABLE  9-12 Torques and E�ciencies in an Epicyclic Train [4]

C

DE

F B

A

ωout

ω2 = 0

2
1

ωin

arm

FIGURE 9-43
Epicyclic Train for Example 9-8

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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The above example points out a problem with epicyclic gear trains that have basic 
ratios near unity.  They have low efficiency and are useless for transmission of power.  
Large speed ratios with high efficiency can only be obtained with trains having large 
basic ratios.[5]

9.11	 TRANSMISSIONS View the lecture video (41:06)†

Compound Reverted Gear Trains  are commonly used in manual (nonautomatic) 
automotive transmissions to provide user-selectable ratios between the engine and the 
drive wheels for torque multiplication (mechanical advantage).  Modern gearboxes usually 
have from four to seven forward speeds and one reverse.  Most transmissions of this type 
use helical gears for quiet operation.  These gears are not moved into and out of engage‑
ment when shifting from one speed to another except for reverse.  Rather, the desired ratio 
gears are selectively locked to the output shaft by synchromesh mechanisms as in Figure 
9-44 which shows a four-speed, manually shifted, synchromesh automotive transmission. 

The input shaft is at top left.  The input gear is always in mesh with the leftmost gear 
on the countershaft at the bottom.  This countershaft has several gears integral with it, each 
of which meshes with a different output gear that is freewheeling on the output shaft.  The 
output shaft is concentric with the input shaft, making this a reverted train, but the input 
and output shafts only connect through the gears on the countershaft except in “top gear” 
(fourth speed), for which the input and output shafts are directly coupled together with a 
synchromesh clutch for a 1:1 ratio.

The synchromesh clutches are beside each gear on the output shaft and are partially 
hidden by the shifting collars that move them left and right in response to the driver’s hand 

FIGURE 9-44
Four-speed manual synchromesh automobile transmission   Source: Crouse, W. H. (1980). Automotive Mechanics, 8th ed., 
McGraw-Hill, New York, NY, p. 480.  Reprinted with permission.

† http://www.designofma‑
chinery.com/DOM/Gear_
Transmissions.mp4

View Top Gear
http://www.designof‑

machinery.com/DOM/
manual_transmission_

high_gear.avi

View Low Gear

http://www.designof‑
machinery.com/DOM/
manual_transmission_

reverse.avi

View Reverse

http://www.designof‑
machinery.com/DOM/
manual_transmission_

low_gear.avi

http://www.designofmachinery.com/DOM/Gear_Transmissions.mp4
http://www.designofmachinery.com/DOM/manual_transmission_high_gear.avi
http://www.designofmachinery.com/DOM/manual_transmission_low_gear.avi
http://www.designofmachinery.com/DOM/manual_transmission_reverse.avi
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on the shift lever.  These clutches act to lock one gear to the output shaft at a time to pro‑
vide a power path from input to output of a particular ratio.  The arrows on the figure show 
the power path for third-speed forward, which is engaged.  Reverse gear, on the lower 
right, engages an idler gear which is physically shifted into and out of mesh at standstill.

Planetary or Epicyclic Trains  are commonly used in automatic-shifting au‑
tomotive transmissions as shown in Figure 9‑45.  The input shaft, which couples to the 
engine’s crankshaft, is one input to the multi-DOF transmission that consists of several 
stages of epicyclic trains.  Automatic transmissions can have any number of ratios.  Au‑
tomotive examples historically have had from one (early) to ten (current) forward speeds.  
Truck and bus automatic transmissions may have more. 

Several epicyclic gearsets can be seen near the center of the eight-speed transmis‑
sion in Figure 9‑45.  They are controlled by hydraulically operated multidisk clutches 
and brakes within the transmission that impart zero velocity (second) inputs to various 
elements of the train to create one of eight forward velocity ratios plus reverse in this 
particular example.  The clutches force zero relative velocity between the two elements 
engaged, and the brakes force zero absolute velocity on the element.  Since all gears are 
in constant mesh, the transmission can be shifted under load by switching the internal 
brakes and clutches on and off.  They are controlled by a combination of inputs that in‑
clude driver selection (PRND), road speed, throttle position, engine load and speed, and 
other factors that are automatically monitored and computer controlled.  Some modern 
transmission controllers use artificial intelligence techniques to learn and adapt to the 
operator’s style of driving by automatically resetting the shift points for gentle or aggres‑
sive performance based on driving habits.  Some allow manual control of shift points.

 At the left side of Figure 9-45 is a turbine-like fluid coupling between engine and 
transmission, called a torque converter, a cutaway of which is shown in Figure 9‑46.  
This device allows sufficient slip in the coupling fluid to let the engine idle with the trans‑
mission engaged and the vehicle’s wheels stopped.  The engine-driven impeller blades, 

impeller
statorturbine

lock-up clutch
clutches

 and brakes
planetary

 trains

FIGURE 9-45 
ZF eight-speed automatic transmission Photo: Stefan Krause, License: FAL  
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running in oil, transmit torque by pumping oil past a set of stationary stator blades and 
against the turbine blades attached to the transmission input shaft.  The stator blades, 
which do not move, serve to redirect the flow of oil exiting the impeller blades to a more 
favorable angle relative to the turbine blades.  This redirection of flow is responsible for 
the torque multiplication that gives the device its name, torque converter.  Without the 
stator blades, it is just a fluid coupling that will transmit, but not multiply, the torque.  In a 
torque converter, the maximum torque increase of about 2x occurs at stall when the trans‑
mission’s turbine is stopped and the engine-driven impeller is turning, creating maximum 
slip between the two.  This torque boost aids in accelerating the vehicle from rest when its 
inertia must be overcome.  The torque multiplication decreases to one at zero slip between 
impeller and turbine.  However, the device cannot reach a zero slip condition on its own.  
It will always operate with a few percent of slip.  This wastes energy in steady-state op‑
eration, as when the vehicle is traveling at constant speed on level ground.  To conserve 
this energy, most torque converters are now equipped with an electromechanical lockup 
clutch that engages above about 30 mph in top gear and locks the stator to the impeller, 
making the transmission efficiency then close to 100%.  When speed drops below a set 
speed, or when the transmission downshifts, the clutch is disengaged, allowing the torque 
converter to again perform its function.     

FIGURE 9-46 
Cutaways of torque converters  Photo courtesy of Mannesmann Sachs AG 

oil

oil

oil

oil

oil

oil

oil

oil

input side output sideimpellerstatorturbineimpeller
attached to
 flywheel

engine
crankshaft

stator

one-way
clutch
between
stator and
transmission
case

transmission
input shaft

transmission
 case

flywheel

oil flow

turbine attached
 to transmission

input shaft

pilot bearing

(a)   Schematic cross-section (b )  Torque converter
Copyright © 2018 Robert L. Norton:  All Rights Reserved
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Figure 9-47a shows a schematic of a four-speed automatic transmission.  Its three 
epicyclic stages, two clutches (C1, C2), and three band brakes (B1, B2, B3) are depicted.  
Figure 9-47b shows an activation table of the brake-clutch combinations for each speed 
ratio of this transmission.[6]

An historically interesting example of an epicyclic train used in a manually shifted 
gearbox is the Ford Model T transmission shown and described in Figure 9-48.  Over 
9 million were produced from 1909 to 1927, before the invention of the synchromesh 
mechanism shown in Figure 9-44.  Conventional (compound-reverted) transmissions as 
used in most other automobiles of that era (and into the 1930s) were unaffectionately 
known as “crashboxes,” the name being descriptive of the noise made when shifting un‑
synchronized gears into and out of mesh while in motion.  Henry Ford had a better idea, that 
he copied from F.W. Lanchester.*  Ford’s Model T planetary gears were in constant mesh.  
The two forward speeds and one reverse were achieved by engaging/disengaging a clutch 
and band brakes in various combinations via foot pedals.  These provided second inputs to 
the epicyclic train which, like Ferguson’s paradox, gave bidirectional outputs, all without 
any “crashing” of gear teeth.  This Lanchester/Model T transmission is the precursor to all 
modern automatic transmissions which replace the T’s foot pedals with automated hydraulic 
operation of the clutches and brakes.

Continuously Variable Transmission (CVT)  A transmission that has no 
gears, the CVT uses two sheaves or pulleys that adjust their axial widths simultaneously 
in opposite directions to change the ratio of the belt drive that runs in the sheaves.  This 
concept was invented by Daimler in 1896 and was used on some very early automobiles 
as the final drive and transmission combined.  It is finding renewed application in the 21st 
century in the quest for higher-efficiency vehicle drives.  Figure 9-49 shows a commercial 
automobile CVT that uses a steel, segmented “belt” of vee cross section that runs on ad‑
justable width sheaves.  To change the transmission ratio, one sheave’s width is opened 
and the other closed in concert such that the effective pitch radii deliver the desired ratio.  
It thus has an infinity of possible ratios, varying continuously between two limits.  The 
ratio is adjustable while running under load.  The CVT shown is designed and computer 
controlled to keep the vehicle’s engine running at essentially constant speed at an rpm 
that delivers the best fuel economy, regardless of vehicle speed.  Similar designs of CVTs 
that use conventional rubber vee belts have long been used in low-power machinery such 
as snow blowers and lawn tractors. 

	
*  Frederick W. Lanchester, 
a major automotive pioneer, 
invented the compound epi‑
cyclic manual transmission 
and patented it in England 
in 1898, well before Ford 
made the Model T (from 
1909 to 1927).  Ford made 
money by the millions and 
Lanchester died poor.  As a 
side note, contemporary re‑
ports claim that Henry Ford 
was never able to master the 
double-clutching required to 
properly shift a “crashbox 
transmission” of the period.  
This factoid is claimed 
to be the reason he chose 
Lanchester’s constant mesh, 
planetary transmission for 
his Model T.  Ransom E. 
Olds had also used this 
transmission in his Curved-
Dash Olds well before Ford 

Range

First
Second
Third
Fourth
Reverse

C1 C2 B1 B2 B3
x
x
x
x x

x
x

x

x x

Clutch/Brake Activation 

( a )  Schematic of 4-speed automatic transmission

FIGURE 9-47
Schematic of automatic transmission from Figure 9-45  Adapted from reference [6]

(b )  Clutch / brake activation table
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9.12	 DIFFERENTIALS

A differential is a device that allows a difference in velocity (and displacement) between 
two elements.  This requires a 2-DOF mechanism such as an epicyclic gear train.  Perhaps 
the most common application of differentials is in the final drive mechanisms of wheeled 
land vehicles as shown in Figure P9-3.  When a four-wheeled vehicle turns, the wheels 
on the outside of the turn must travel farther than the inside wheels due to their different 
turning radii as shown in Figure 9-50.  Without a differential mechanism between the 
inner and outer driving wheels, the tires must slip on the road surface for the vehicle to 

FIGURE 9-48 
Ford Model T epicyclic transmission

The input from the engine is to arm 2.
Gear 6 is rigidly attached to the output
shaft which drives the wheels.  Gears 3,
4, and 5 rotate at the same speed.

There are two forward speeds.  Low
(1:2.75) is selected by engaging band
brake B2 to lock gear 7 to the frame.
Clutch C is disengaged.

High (1:1) is selected by engaging
clutch C which locks the input shaft
directly to the output shaft.

Reverse (1:-4) is obtained by engaging
brake band B1 to lock gear 8 to the
frame.  Clutch C is disengaged.

3
4

5

2

6
7

8
B1 B2 B3

input
shaft

output
shaft

N3 = 27
N4 = 33
N5 = 24
N6 = 27
N7 = 21
N8 = 30

B1 B2 B3

clutch C

brake bandsplanets

sun gears

gear teeth

gear-train brakes car brake

6
8

7

key

arm

input shaft

6

8 6

7

Copyright © 2018 Robert L. Norton:  All Rights Reserved

input shaft

output shaft

variable-width sheave

steel, segmented "vee" belt

variable-width sheave

FIGURE 9-49 
Continuously Variable Transmission (CVT)  Courtesy of ZF Getriebe GmbH, Saabruken, Germany
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*  Non-full-time 4WD is 
common in trucks and 
differs from AWD in that it 
lacks the center differential, 
making it usable only when 
the road is slippery.  Any 
required differences in  
rotational velocity between 
rear and front driven wheels 
is then accommodated by 
tire slip.  On dry pave‑
ment, a non-full-time 4WD 
vehicle will not handle 
well and can be dangerous. 
Unlike vehicles with AWD, 
which is always engaged, 
non-full-time 4WD vehicles 
normally operate in 2WD 
and require driver action to 
obtain 4WD.   Manufactur‑
ers caution against shifting 
these vehicles into 4WD 
unless traction is poor.   

turn.  If the tires have good traction, a nondifferentiated drive train will attempt to go in 
a straight line at all times and will fight the driver in turns.  In a “full-time” four-wheel 
-drive* (4WD) vehicle (sometimes called “all wheel drive” or AWD) an additional differ‑
ential is needed between the front and rear wheels to allow the wheel velocities at each end 
of the vehicle to vary in proportion to the traction developed at either end of the vehicle 
under slippery conditions.  Figure 9-51 shows an AWD automotive chassis with its three 
differentials.  In this example, the center differential is packaged with the transmission 
and front differential but effectively is in the driveshaft between the front and rear wheels 
as shown in Figure 9-50.  Differentials are made with various gear types.  For rear axle 
applications, a bevel gear epicyclic is commonly used as shown in Figure 9-52a and in 
Figure P9-3.  For center and front differentials, helical or spur gear arrangements are often 
used as in Figure 9‑52b and c.  

An epicyclic train used as a differential has one input and two outputs.  Taking the 
rear differential in an automobile as an example, its input is from the driveshaft and its 
outputs are to the right and left wheels.  The two outputs are coupled through the road via 
the traction (friction) forces between tires and pavement.  The relative velocity between 
each wheel can vary from zero when both tires have equal traction and the car is not 
turning, to twice the epicyclic train’s input speed when one wheel is on ice and the other 
has traction.  Front or rear differentials split the torque equally between their two wheel 
outputs.  Since power is the product of torque and angular velocity, and power out can‑
not exceed power in, the power is split between the wheels according to their velocities.  
When traveling straight ahead (both wheels having traction), half the power goes to each 
wheel.  As the car turns, the faster wheel gets more power and the slower one less.  When 
one wheel loses traction (as on ice), it gets all the power (50% torque x 200% speed), and 
the wheel with traction gets zero power (50% torque x 0% speed).  This is why 4WD or 
AWD is needed in slippery conditions.  In AWD, the center differential splits the torque 
between front and rear in some proportion.  If one end of the car loses traction, the other 
may still be able to control it provided it still has traction.

FIGURE 9-50
Turning behavior of a four-wheel vehicle  Source: Courtesy of Tochigi Fuji Sangyo, Japan
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Limited Slip Differentials  Because of their behavior when one wheel loses 
traction, various differential designs have been created to limit the slip between the two 
outputs under those conditions.  These are called limited slip differentials and typically 
provide some type of friction device between the two output gears to transmit some torque 
but still allow slip for turning.  Some use a fluid coupling between the gears, and others 
use spring-loaded friction disks or cones as can be seen in Figure 9-52a.  Some use an 
electrically controlled clutch within the epicyclic train to lock it up on demand for off-
road applications as shown in Figure 9-52b.  The TORSEN® (from TORque SENsing) 
differential of Figure 9-53, invented by V. Gleasman, uses wormsets whose resistance to 
backdriving provides torque coupling between the outputs.  The lead angle of the worm 
determines the percent of torque transmitted across the differential.  These differentials are 
used in many AWD vehicles including the Army’s High Mobility Multipurpose Wheeled 
Vehicle (HMMWV) known as the “Humvee” or “Hummer.” 

9.13	 REFERENCES
	 1	 DilPare, A. L. (1970). “A Computer Algorithm to Design Compound Gear Trains for Arbitrary 

Ratio.” J. of Eng. for Industry, 93B(1), pp. 196-200.

	 2	 Selfridge, R. G., and D. L. Riddle. (1978). “Design Algorithms for Compound Gear Train 
Ratios.” ASME Paper: 78-DET-62.

	 3	 Levai, Z. (1968). “Structure and Analysis of Planetary Gear Trains.” Journal of Mechanisms, 3,  
pp. 131-148.

	 4	 Molian, S. (1982). Mechanism Design: An Introductory Text.  Cambridge University Press: Cam‑
bridge, p. 148.

FIGURE 9-51
An all-wheel-drive (AWD) chassis and drive train  Source: Courtesy of Tochigi Fuji Sangyo, Japan

FIGURE 9-52
Di�erentials
Courtesy of Tochigi Fuji
Sangyo, Japan

(a )

(b )

( c )

View a Video Free 
Spinning

http://www.designof‑
machinery.com/DOM/
differential_normal.avi

View a Video 
Locked

http://www.designof‑
machinery.com/DOM/
differential_locked.avi

http://www.designofmachinery.com/DOM/differential_normal.avi
http://www.designofmachinery.com/DOM/differential_locked.avi
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WA-204.

	 6	 Pennestri, E., et al. (1993). “A Catalog of Automotive Transmissions with Kinematic and Power 
Flow Analyses.” Proc. of 3rd Applied Mechanisms and Robotics Conference, Cincinnati, p. 57-1.

9.14	 BIBLIOGRAPHY

Useful websites for information on gear, belt, or chain drives

http://www.howstuffworks.com/gears.htm

http://www.efunda.com/DesignStandards/gears/gears_introduction.cfm

http://www.gates.com/index.cfm

http://www.bostongear.com/

http://www.martinsprocket.com/

9.15	 PROBLEMS‡

	 *†9‑1	 A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 5.  
Calculate the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and 
clearance.

	 †9‑2	 A 40-tooth, 10 pd gear has AGMA standard full-depth involute teeth.  Calculate pitch 
diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

	 †9‑3	 A 30-tooth, 12 pd gear has AGMA standard full-depth involute teeth.  Calculate the 
pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

	 9‑4	 Using any available string, some tape, a pencil, and a drinking glass or tin can, generate 
and draw an involute curve on a piece of paper.  With your protractor, show that all 
normals to the curve are tangent to the base circle.

( a )  TORSEN® Type 1 di�erential (b ) TORSEN® Type 2 di�erential
FIGURE 9-53
TORSEN® limited-slip di�erentials    Source: Courtesy of JTEKT Torsen Inc., Rochester, NY 

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

	
‡  Problem figures are pro‑
vided as downloadable PDF 
files with same names as the 
figure number.  

http://www.howstuffworks.com/gears.htm
http://www.efunda.com/DesignStandards/gears/gears_introduction.cfm
http://www.gates.com/index.cfm
http://www.bostongear.com/
http://www.martinsprocket.com/
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	 *9‑5	 A spur gearset must have pitch diameters of 2.5 and 8 in.  What is the largest standard 
tooth size, in terms of diametral pitch pd, that can be used without having any interference 
or undercutting?  Find the number of teeth on the hob-cut gear and pinion for this pd:
a.	 For a 20° pressure angle.
b.	 For a 25° pressure angle.  (Note that diametral pitch need not be an integer.)

	 *†9‑6	 Design a simple, spur gear train for a ratio of –7:1 and diametral pitch of 10.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

	 *†9‑7	 Design a simple, spur gear train for a ratio of +6:1 and diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

	 †9‑8	 Design a simple, spur gear train for a ratio of –7:1 and diametral pitch of 8.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

	 †9‑9	 Design a simple, spur gear train for a ratio of +6.5:1 and diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Calculate the contact ratio.

	 *†9‑10	 Design a compound, spur gear train for a ratio of –80:1 and diametral pitch of 12.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑11	 Design a compound, spur gear train for a ratio of 50:1 and diametral pitch of 8.  Specify 
pitch diameters and numbers of teeth.  Sketch the train to scale.

	 *†9‑12	 Design a compound, spur gear train for a ratio of 120:1 and diametral pitch of 5.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑13	 Design a compound, spur gear train for a ratio of –250:1 and diametral pitch of 9.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 *†9‑14	 Design a compound, reverted, spur gear train for a ratio of  28:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑15	 Design a compound, reverted, spur gear train for a ratio of 40:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 *†9‑16	 Design a compound, reverted, spur gear train for a ratio of 65:1 and diametral pitch of 
8.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑17	 Design a compound, reverted, spur gear train for a ratio of 7:1 and diametral pitch of 4.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑18	 Design a compound, reverted, spur gear train for a ratio of 12:1 and diametral pitch of 
6.  Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 *†9‑19	 Design a compound, reverted, spur gear transmission that will give two shiftable ratios 
of +3:1 forward and –4.5:1 reverse with diametral pitch of 6.  Specify pitch diameters 
and numbers of teeth.  Sketch the train to scale.  

	 †9‑20	 Design a compound, reverted, spur gear transmission that will give two shiftable ratios 
of +5:1 forward and –3.5:1 reverse with diametral pitch of 6.  Specify pitch diameters 
and numbers of teeth.  Sketch the train to scale.	

* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

	

Note:  All problem figures are provided as PDF files, and some are also provided as animated Working Model 
files.  PDF filenames are the same as the figure number.  

Table P9-0 Part 1 ‡
Topic/Problem Matrix

 9.2 Fundamental Law of 
Gearing

9-4, 9-46, 9-47, 9-49, 
9-50, 9-51, 9-66,  
9-67, 9-68

 9.3 Gear Tooth Nomen-
clature

9-1, 9-2, 9-3, 9-48,  
9-53, 9-54, 9-69, 
9-70, 9-74

 9.4 Interference and 
Undercutting

9-5, 9-55, 9-56, 9-57, 
9-58, 9-75

 9.5 Contact Ratio

9-59, 9-60. 9-72, 
9-76

 9.6 Gear Types

9-23, 9-24, 9-61, 
9-62

 9.7 Simple Gear Trains

9-6, 9-7, 9-8, 9-9, 
9-73, 9-77

 9.8 Compound Gear 
Trains

9-10, 9-11, 9-12,  
9-13, 9-14, 9-15,  
9-16, 9-17, 9-18,  
9-29, 9-30, 9-31, 
9-32, 9-33, 9-71, 
9-78

 9.9 Epicyclic or Planetary 
Gear Trains

9-25, 9-26, 9-27,  
9-28, 9-36, 9-38,  
9-39, 9-41, 9-42, 
9-43, 9-79

 9.10 
Trains

9-35, 9-37, 9-40,  
9-63, 9-64, 9-65, 
9-80, 9-81
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* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

	 *†9‑21	 Design a compound, reverted, spur gear transmission that will give three shiftable ra‑
tios of +6:1, +3.5:1 forward, and –4:1 reverse with diametral pitch of 8.  Specify pitch 
diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑22	 Design a compound, reverted, spur gear transmission that will give three shiftable 
ratios of +4.5:1, +2.5:1 forward, and –3.5:1 reverse with diametral pitch of 5.  Specify 
pitch diameters and numbers of teeth.  Sketch the train to scale.

	 †9‑23	 Design the rolling cones for a –3:1 ratio and a 60° included angle between the shafts.  
Sketch the train to scale.

	 †9‑24	 Design the rolling cones for a –4.5:1 ratio and a 40° included angle between the shafts.  
Sketch the train to scale.

	 *†9‑25	 Figure P9‑1 shows a compound planetary gear train (not to scale).  Table P9‑1 gives 
data for gear numbers of teeth and input velocities.  For the row(s) assigned, find the 
variable represented by a question mark.

	 *†9‑26	 Figure P9‑2 shows a compound planetary gear train (not to scale).  Table P9‑2 gives 
data for gear numbers of teeth and input velocities.  For the row(s) assigned, find the 
variable represented by a question mark.

FIGURE P9-1
Planetary gearset for Problem 9-25 and 9-81
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1
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6
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4
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f
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25
25
25
25
25
25

45
45
45
45
45
45

50
50
50
30
30
30

200
200
200
160
160
160

?
30
50

?
50
50

20
?
0

40
?
0

– 50
– 90

?
– 50
– 75

?

Row 2 6 arm

TABLE  P9-1 Data for Problem 9-25 and 9-81
N6N5N4N3N2 ω ω ω

Table P9-0 Part 2
Topic/Problem Matrix

 9.11 Transmissions

9-19, 9-20, 9-21,  
9-22, 9-34, 9-44
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FIGURE P9-2
Compound planetary gear train for Problem 9-26
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35

?
30
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?
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20
?
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40
?
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– 50
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TABLE  P9-2 Data for Problem 9-26
N6N5N4N3N2 ω ω ω

	 *†9‑27	 Figure P9‑3 shows a planetary gear train used in an automotive rear-end differential 
(not to scale).  The car has wheels with a 16-in rolling radius and is moving forward 
in a straight line at 55 mph.  The engine is turning 2500 rpm.  The transmission is in 
direct drive (1:1) with the driveshaft.  
a.  	 What are the rear wheels’ rpm and the gear ratio between ring and pinion?
b. 	 As the car hits a patch of ice, the right wheel speeds up to 800 rpm.  What is the 

speed of the left wheel?  Hint: The average of both wheels’ rpm is a constant.
c.	 Calculate the fundamental train value of the epicyclic stage.

	 †9‑28	 Design a speed-reducing planetary gearbox to be used to lift a 5-ton load 50 ft with a 
motor that develops 20 lb-ft of torque at its operating speed of 1750 rpm.  The available 
winch drum has no more than a 16-in diameter when full of its steel cable.  The speed 
reducer should be no larger in diameter than the winch drum.  Gears of no more than 
about 75 teeth are desired, and diametral pitch needs to be no smaller than 6 to stand 

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.
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the stresses.  Make multiview sketches of your design and show all calculations.  How 
long will it take to raise the load with your design?

	 *†9-29	 Determine all possible two-stage compound gear combinations that will give an ap‑
proximation to the Naperian base 2.71828.  Limit tooth numbers to between 18 and 80.  
Determine the arrangement that gives the smallest error.

	 †9-30	 Determine all possible two-stage compound gear combinations that will give an ap‑
proximation to 2π.  Limit tooth numbers to between 15 and 90.  Determine the arrange‑
ment that gives the smallest error.

	 †9-31	 Determine all possible two-stage compound gear combinations that will give an 
approximation to π/2.  Limit tooth numbers to between 20 and 100.  Determine the ar‑
rangement that gives the smallest error.

	 †9-32	 Determine all possible two-stage compound gear combinations that will give an ap‑
proximation to 3π/2.  Limit tooth numbers to between 20 and 100.  Determine the 
arrangement that gives the smallest error.

	 †9-33	 Figure P9-4a shows a reverted clock train.  Design it using 25° nominal pressure 
angle gears of 24 pd having between 12 and 150 teeth.  Determine the tooth numbers 
and nominal center distance.  If the center distance has a manufacturing tolerance of 
± 0.006 in, what will the pressure angle and backlash at the minute hand be at each 
extreme of the tolerance?

	 †9-34	 Figure P9-4b shows a three-speed shiftable transmission.  Shaft F, with the cluster of 
gears E, G, and H, is capable of sliding left and right to engage and disengage the three 
gearsets in turn.  Design the three reverted stages to give output speeds at shaft F of 
150, 350, and 550 rpm for an input speed of 450 rpm to shaft D.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

FIGURE P9-3
Automotive di�erential planetary gear train for Problem 9-27

Left axle

Right axle

Ring gear (3)

Pinion (2)

Driveshaft

Sun gear (6)

Planet gear (5)

Planet gear (7)

Sun gear (4)

Planet carrier or arm (on ring gear)
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	 *†9-35	 Figure P9-5a shows a compound epicyclic train used to drive a winch drum. Gear A is 
driven at 18 rpm CW and gear D is fixed to ground.  Tooth numbers are in the figure.  
Find speed and direction of the drum.  What is train efficiency for gearsets E0 = 0.97?

	 †9-36	 Figure P9-5b shows a compound epicyclic train with its tooth numbers.  The arm is 
driven CCW at 20 rpm.  Gear A is driven CW at 40 rpm.  Find speed of ring gear D.  

	 *†9-37	 Figure P9-6a shows an epicyclic train with its tooth numbers.  The arm is driven CCW 
at 50 rpm and gear A on shaft 1 is fixed to ground.  Find speed of gear D on shaft 2.  
What is the efficiency of this train if the basic gearsets have E0 = 0.96?

FIGURE P9-4
Problems 9-33 to 9-34  Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission     

( a ) ( b )

FIGURE P9-5

Problems 9-35 to 9-36 

(a ) ( b )

Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.
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	 †9-38	 Figure P9-6b shows a differential with its tooth numbers.  Gear A is driven CCW at 10 
rpm and gear B is driven CW at 24 rpm.   Find the speed of gear D.  

	 *†9-39	 Figure P9-7a shows a gear train containing both compound-reverted and epicyclic 
stages.  Tooth numbers are in the figure.  The motor is driven CW at 1500 rpm.  Find 
the speeds of shafts 1 and 2.  

	 †9-40	 Figure P9-7b shows an epicyclic train used to drive a winch drum.  The arm is driven at 
250 rpm CCW and gear A, on shaft 2, is fixed to ground.  Find speed and direction of 
the drum on shaft 1.  What is train efficiency if the basic gearsets have E0 = 0.98?

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

FIGURE P9-6
Problems 9-37 to 9-38 

(a ) ( b )

Source:  P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

FIGURE P9-7
Problems 9-39 to 9-40  

(a ) (b )

Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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	 *†9-41	 Figure P9-8 shows an epicyclic train with its tooth numbers. Gear 2 is driven at 600 
rpm CW and gear D is fixed to ground.  Find speed and direction of gears 1 and 3.  

	 †9-42	 Figure P9-9 shows a compound epicyclic train. Shaft 1 is driven at 300 rpm CCW and 
gear A is fixed to ground.  The tooth numbers are indicated in the figure.  Determine the 
speed and direction of shaft 2.  

	 *†9-43	 Figure P9-10 shows a compound epicyclic train. Shaft 1 is driven at 60 rpm.  Tooth 
numbers are in the figure.  Find speed and direction of gears G and M.  

	 †9-44	 Calculate the ratios in the Model T transmission shown in Figure 9-48 and prove that 
the values shown in the figure’s sidebar are correct.

	 †9-45	 Do Problem 7-57.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

FIGURE P9-8
Problem 9-41 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

FIGURE P9-9
Problem 9-42  Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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	 9-46	 Figure P9-11 shows an involute generated from a base circle of radius rb.  Point A is 
simultaneously on the base circle and the involute.  Point B is any point on the involute 
curve and point C is on the base circle where a line drawn from point B is tangent to 
the base circle.  Point O is the center of the base circle.  The angle φB (angle BOC) 
is known as the involute pressure angle corresponding to point B (not to be confused 
with the pressure angle of two gears in mesh, which is defined in Figure 9-6).  The 
angle AOB is known as the involute of φB and is often designated as inv φB.  Using the 
definition of the involute tooth form and Figure 9-5, derive an equation for inv φB as a 
function of φB alone.

	 9-47	 Using data and definitions from Problem 9-46, show that when point B is at the pitch 
circle the involute pressure angle is equal to the pressure angle of two gears in mesh.

	 9-48	 Using data and definitions from Problem 9-46, and with point B at the pitch circle 
where the involute pressure angle φB is equal to the pressure angle φ of two gears in 
mesh, derive equation 9.4b.

	 9-49	 Using Figures 9-6 and 9-7, derive equation 9.2, which is used to calculate the length of 
action of a pair of meshing gears.

	 †9-50	 Backlash of 0.03 mm measured on the pitch circle of a 40-mm-diameter pinion in mesh 
with a 100-mm-diameter gear is desired.  If the gears are standard, full-depth, with 25° 
pressure angles, by how much should the center distance be increased?

	 †9-51	 Backlash of 0.0012 in measured on the pitch circle of a 2.000-in-diameter pinion in 
mesh with a 5.000-in-diameter gear is desired.  If the gears are standard, full-depth, 
with 25° pressure angles, by how much should the center distance be increased?

	 †9-52	 A 22-tooth gear has standard full-depth involute teeth with a module of 6.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

FIGURE P9-10
Problem 9-43 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

A
B

C

involute
curve

base
circle

O

FIGURE P9-11
Problem 9-46

rb
φB
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.

	 †9-53	 A 40-tooth gear has standard full-depth involute teeth with a module of 3.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

	 †9-54	 A 30-tooth gear has standard full-depth involute teeth with a module of 2.  Calculate 
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance 
using the AGMA specifications in Table 9-1 substituting m for 1/pd.

	 †9-55	 Determine the minimum number of teeth on a pinion with a 20° pressure angle for the 
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference: 
1:1, 2:1, 3:1, 4:1, 5:1.

	 †9-56	 Determine the minimum number of teeth on a pinion with a 25° pressure angle for the 
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference: 
1:1, 2:1, 3:1, 4:1, 5:1.

	 †9-57	 A pinion with a 3.000-in pitch diameter is to mesh with a rack.  What is the largest 
standard tooth size, in terms of diametral pitch, that can be used without having any 
interference?	 a.  For a 20° pressure angle	     b.  For a 25° pressure angle

	 †9-58	 A pinion with a 75-mm pitch diameter is to mesh with a rack.  What is the largest 
standard tooth size, in terms of metric module, that can be used without having any 
interference?	 a.  For a 20° pressure angle	     b.  For a 25° pressure angle

	 †9-59	 In order to have a smooth-running gearset it is desired to have a contact ratio of at least 
1.5.  If the gears have a pressure angle of 25° and gear ratio of 4, what is the minimum 
number of teeth on the pinion that will yield the required minimum contact ratio?

	 †9-60	 In order to have a smooth-running gearset it is desired to have a contact ratio of at least 
1.5.  If the gears have a pressure angle of 25° and a 20-tooth pinion, what is the mini‑
mum gear ratio that will yield the required minimum contact ratio?

	 †9-61	 Calculate and plot the train ratio of a noncircular gearset, as a function of input angle, 
that is based on the centrodes of Figure 6-15b.  The link length ratios are  
L1/L2 = 1.60, L3/L2 = 1.60, and L4/L2 = 1.00.

	 †9-62	 Repeat problem 9-61 for a fourbar linkage with link ratios of L1/L2 = 1.80,  
L3/L2 = 1.80, and L4/L2 = 1.00.

	 †9-63	 Figure 9-35b (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 50, 25, 35, and 90 for gears 2, 3, 4, and 5, respectively.  The arm is 
driven at 180 rpm CW and gear 5 is fixed to ground.  Determine the speed and direc‑
tion of gear 2.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

	 †9-64	 Figure 9-35h (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 80, 20, 25, and 85 for gears 2, 3, 4, and 5, respectively.  Gear 2 is 
driven at 200 rpm CCW.  Determine the speed and direction of the arm if gear 5 is fixed 
to ground.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

	 †9-65	 Figure 9-35i (repeated here) shows (schematically) a compound epicyclic train.  The 
tooth numbers are 24, 18, 20, and 90 for gears 2, 3, 4, and 5, respectively.  The arm is 
driven at 100 rpm CCW and gear 2 is fixed to ground.  Determine the speed and direc‑
tion of gear 5.  What is the efficiency of this train if the basic gearsets have E0 = 0.98?

	 9-66	 Using Figure 9-8, derive an equation for the operating pressure angle of two gears 
in mesh as a function of their base circle radii, the standard center distance, and the 
change in center distance.
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	 *†9-67	 A pinion and gear in mesh have base circle radii of 1.8126 and 3.6252 in, respectively.  
If they were cut with a standard pressure angle of 25˚, determine their operating pres‑
sure angle if the standard center distance is increased by 0.062 in.

	 †9-68	 A pinion and gear in mesh have base circle radii of 1.35946 and 2.26577 in, respectively.  
If they have a standard center distance of 4.000 in, determine the standard pressure angle 
and the operating pressure angle if the standard center distance is increased by 0.050 in.

	 *†9-69	 A 25-tooth pinion meshes with a 60-tooth gear.  They have a diametral pitch of 4, a 
pressure angle of 20˚, and AGMA full-depth involute profiles.  Find the gear ratio, cir‑
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, outside diameters. and contact ratio of the gearset.

	 †9-70	 A 15-tooth pinion meshes with a 45-tooth gear.  They have a diametral pitch of 5, a 
pressure angle of 25˚, and AGMA full-depth involute profiles.  Find the gear ratio, cir‑
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, outside diameters.     and contact ratio of the gearset.

	 *†9-71	 Design a compound, spur gear train that will reduce the speed of a 900-rpm synchronous 
AC motor to exactly 72 revolutions per hour with the output rotating in the same direction 
as the motor.  Use gears with a pressure angle of 25° and minimize the package size.

	 †9-72	 A gearset with a contact ratio of at least 1.5 is desired.  If the gears have standard 
AGMA full-depth teeth with a pressure angle of 25°, and the pinion has 21 teeth, what 
is the minimum gear ratio that will give the required minimum contact ratio?

	 †9-73	 Provide a preliminary design (pitch diameters and numbers of teeth) for a gear set with 
a gear ratio of mG = 4, a diametral pitch pd = 8, and a contact ratio of at least 1.5.

	 9-74	 A 22-tooth pinion meshes with a 55-tooth gear.  They have a diametral pitch of 8, a 
pressure angle of 20°, and AGMA full-depth involute profiles.  Find the gear ratio, cir‑
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum, 
whole depth, clearance, and outside diameters.

FIGURE 9-35
Levai's 12 possible epicyclic trains [3]
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* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa‑
tion solver programs.
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	 9-75	 A 16-tooth pinion meshes with a 48-tooth gear.  They have a diametral pitch of 10, a 
pressure angle of 25°, and AGMA full-depth involute profiles that have been modified 
to have unequal addendum tooth forms of ±0.50.  Find the pitch diameters, addendum, 
dedendum, whole depth, dedendum diameters, base diameters, and outside diameters.

	 9-76	 Design a gearset that has standard, full-depth teeth, a gear ratio of 5 and a contact ratio 
of at least 1.6 minimizing the space occupied by the pinion and gear.  Determine the 
diametral pitch and the outside diameters of the pinion and gear if a course diametral 
pitch is required.

	 9-77	 Provide a preliminary design (pitch diameters and numbers of teeth) for a gearset that 
will have a gear ratio of mG = 6, a diametral pitch pd = 5, and a contact ratio of at least 
1.75.

	 9-78	 Design a compound, spur gear train for a ratio of –180:1 and diametral pitch of 10.  
Specify pitch diameters and numbers of teeth.  Sketch the train to scale.

	 9-79	 Figures 9-35b and 9-35i show (schematically) two epicyclic trains, each with an arm, 
a ring gear, and three external gears.  If the arm (1) is the input, the ring gear (5) is the 
output, and gear 2 is stationary, find the velocity ratios for these two configurations 
given the following tooth numbers: 18, 27, 24, and 60 for gears 2, 3, 4, and 5, respec‑
tively.

	 9-80	 Determine the overall efficiencies of the epicyclic trains given in Problem 9-79 if they 
each have basic efficiencies of E0 = 0.98.

	 9-81	 Figure P9-1 shows a compound planetary gear train (not to scale).  Table P9-1 gives 
data for gear numbers of teeth.  For the row(s) assigned (ignoring the velocity data), 
find the overall efficiency of the train if E0 = 0.980, the arm is the input, the sun is the 
output, and the ring gear is stationary.

End 
of

Part I



The entire world of machinery ... 
is inspired by the play of organs 
of reproduction.  The designer 
animates artificial objects by 
simulating the movements of 
animals engaged in propagating 
the species.  Our machines are 
Romeos of steel and Juliets of 
cast iron.

J. Cohen. (1966). Human Robots 
in Myth and Science, Allen & 
Unwin, London, p. 67.

DYNAMICS OF  
MACHINERY

PARTII



10



10

Chapter10
DYNAMICS FUNDAMENTALS
He has half the deed done
who has made a beginning
Horace, 65-8 B.C.

10.0	 INTRODUCTION Watch the lecture video for this chapter (52:01)*

Part I of this text has dealt with the kinematics of mechanisms while temporarily ignor-
ing the forces present in those mechanisms.  This second part will address the problem of 
determining the forces present in moving mechanisms and machinery.  This topic is called 
kinetics or dynamic force analysis.  We will start with a brief review of some fundamen-
tals needed for dynamic analysis.  It is assumed that the reader has had an introductory 
course in dynamics.  If that topic is rusty, one can review it by referring to reference [1] 
or to any other text on the subject.

10.1	 NEWTON’S LAWS OF MOTION Watch a short video (4:00)†

Dynamic force analysis involves the application of Newton’s three laws of motion which 
are:

	 1	 A body at rest tends to remain at rest and a body in motion at constant velocity will 
tend to maintain that velocity unless acted upon by an external force.

	 2	 The time rate of change of momentum of a body is equal to the magnitude of the ap-
plied force and acts in the direction of the force.

 	

†  http://www.designofmachin-
ery.com/DOM/Newtons_Laws.
mp4

 	

*  http://www.designofma-
chinery.com/DOM/Dynam-
ics_Fundamentals.mp4

http://www.designofmachinery.com/DOM/Dynamics_Fundamentals.mp4
http://www.designofmachinery.com/DOM/Newtons_Laws.mp4
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	 3	 For every action force there is an equal and opposite reaction force. 

The second law is expressed in terms of rate of change of momentum, M = mv, where 
m is mass and v is velocity.  Mass m is assumed to be constant in this analysis.  The time 
rate of change of mv is ma, where a is the acceleration of the mass center. 

= (10.1)mF a

F is the resultant of all forces on the system acting at the mass center. 

We can differentiate between two subclasses of dynamics problems depending upon 
which quantities are known and which are to be found.  The “forward dynamics problem 
is the one in which we know everything about the external loads (forces and/or torques) 
being exerted on the system, and we wish to determine the accelerations, velocities, and 
displacements which result from the application of those forces and torques.  This subclass 
is typical of the problems you probably encountered in an introductory dynamics course, 
such as determining the acceleration of a block sliding down a plane, acted upon by grav-
ity.  Given F and m, solve for a.

The second subclass of dynamics problem, called the inverse dynamics problem, 
is one in which we know the (desired) accelerations, velocities, and displacements to 
be imposed upon our system and wish to solve for the magnitudes and directions of the 
forces and torques which are necessary to provide the desired motions and which result 
from them.  This inverse dynamics case is sometimes also called kinetostatics.  Given a 
and m, solve for F.

Whichever subclass of problem is addressed, it is important to realize that they are 
both dynamics problems.  Each merely solves F = ma for a different variable.  To do so, 
we must first review some fundamental geometric and mass properties which are needed 
for the calculations.

10.2	 DYNAMIC MODELS

It is often convenient in dynamic analysis to create a simplified model of a complicated 
part.  These models are sometimes considered to be a collection of point masses con-
nected by massless rods.  For a model of a rigid body to be dynamically equivalent to 
the original body, three things must be true:

	 1	 The mass of the model must equal that of the original body.

	 2	 The center of gravity must be in the same location as that of the original body.

	 3	 The mass moment of inertia must equal that of the original body.

10.3	 MASS Watch a short video (10:06)†

Mass is not weight!  Mass is an invariant property of a rigid body.  The weight of the 
same body varies depending on the gravitational system in which it sits.  See Section 1.10  
for a discussion of the use of proper mass units in various measuring systems.  We will 

 	

†  http://www.designofma-
chinery.com/DOM/Mass.
mp4

http://www.designofmachinery.com/DOM/Mass.mp4


10

DYNAMICS  FUNDAMENTALS 555

assume the mass of our parts to be constant with time.  For most earthbound machines, 
this is reasonable.  The rate at which an automobile loses mass due to fuel consumption, 
for example, is slow enough to be ignored when calculating dynamic forces over short 
time spans.  However, this would not be a safe assumption for a vehicle such as the Space 
Shuttle, whose mass changes rapidly and drastically during lift-off.

When designing machinery, we must first do a complete kinematic analysis of our 
design, as described in Part I of this text, in order to obtain information about the accel-
erations of the moving parts.   We next want to use Newton’s second law to calculate the 
dynamic forces.  But to do so we need to know the masses of all the moving parts that have 
these known accelerations.   These parts do not exist yet!  As with any design problem, 
we lack sufficient information at this stage of the design to accurately determine the best 
sizes and shapes of the parts.  We must estimate the masses of the links and other parts 
of the design in order to make a first pass at the calculation. We will then have to iterate 
to better and better solutions as we generate more information.   See Section 1.5 on the 
design process to review the use of iteration in design.

A first estimate of your parts’ masses can be obtained by assuming some reasonable 
shapes and sizes for all the parts and choosing appropriate materials.  Then calculate the 
volume of each part and multiply its volume by the material’s mass density (not weight 
density) to obtain a first approximation of its mass.  These mass values can then be used 
in Newton’s equation.  The densities of some common engineering materials can be found 
in Appendix B.

How will we know whether our chosen sizes and shapes of links are even acceptable, 
let alone optimal?  Unfortunately, we will not know until we have carried the computations 
all the way through a complete stress and deflection analysis of the parts.  It is often the 
case, especially with long, thin elements such as shafts or slender links, that the deflections 
of the parts under their dynamic loads will limit the design even at low stress levels.  In 
some cases the stresses will be excessive. 

We will probably discover that the parts fail under the dynamic forces.  Then we 
will have to go back to our original assumptions about the shapes, sizes, and materials of 
these parts; redesign them; and repeat the force, stress, and deflection analyses.  Design 
is, unavoidably, an iterative process.

The topic of stress and deflection analysis is beyond the scope of this text and will not 
be further discussed here.  (See reference 2.).  It is mentioned only to put our discussion 
of dynamic force analysis into context.  We are analyzing these dynamic forces primarily 
to provide the information needed to do the stress and deflection analyses on our parts!  It 
is also worth noting that, unlike a static force situation in which a failed design might be 
fixed by adding more mass to the part to strengthen it, to do so in a dynamic force situation 
can have a deleterious effect.  More mass with the same acceleration will generate even 
higher forces and thus higher stresses!  The machine designer often needs to remove mass 
(in the right places) from parts in order to reduce the stresses and deflections due to F = 
ma.  Thus the designer needs to have a good understanding of both material properties and 
stress and deflection analysis to properly shape and size parts for minimum mass while 
maximizing the strength and stiffness needed to withstand the dynamic forces. 
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10.4	 MASS MOMENT AND CENTER OF GRAVITY Watch a video (4:33)†

When the mass of an object is distributed over some dimensions, it will possess a mo-
ment with respect to any axis of choice.  Figure 10‑1 shows a mass of general shape in an 
xyz axis system.  A differential element of mass is also shown.  The mass moment (first 
moment of mass) of the differential element is equal to the product of its mass and its 
distance from the axis of interest.  With respect to the x, y, and z axes, these are:

= (10.2a)dM x dmx

= (10.2b)dM y dmy

= (10.2c)dM z dmz

To obtain the mass moments of the body, we integrate each of these expressions.

∫= (10.3a)M x dmx

∫= (10.3b)M y dmy

∫= (10.3c)M z dmz

If the mass moment with respect to a particular axis is numerically zero, then that axis 
passes through the center of mass (CM) of the object, which for earthbound systems is 
coincident with its center of gravity (CG).   By definition the summation of first moments 
about all axes through the center of gravity is zero.  We will need to locate the CG of all 
moving bodies in our designs because the linear acceleration component of each body is 
calculated acting at that point.  

FIGURE 10-1
A generalized mass element in a 3-D coordinate system

X

Y

Z

dm

x

y

z

 	

†  http://www.designofma-
chinery.com/DOM/Mo-
ments_of_Mass.mp4

http://www.designofmachinery.com/DOM/Moments_of_Mass.mp4
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It is often convenient to model a complicated shape as several interconnected simple 
shapes whose individual geometries allow easy computation of their masses and the loca-
tions of their local CGs.  The global CG can then be found from the summation of the first 
moments of these simple shapes set equal to zero.  Appendix C contains formulas for the 
volumes and locations of centers of gravity of some common shapes.

Figure 10‑2 shows a simple model of a mallet broken into two cylindrical parts, the 
handle and the head, which have masses mh and md, respectively.  The individual centers 
of gravity of the two parts are at ld and lh/2, respectively, with respect to the axis ZZ.  We 
want to find the location of the composite center of gravity of the mallet with respect to 
ZZ.  Summing the first moments of the individual components about ZZ and setting them 
equal to the moment of the entire mass about ZZ:

∑ ( )= + = +
2

(10.3d)M m
l

m l m m dZZ h
h

d d h d

This equation can be solved for the distance d along the X axis, which, in this sym-
metrical example, is the only dimension of the composite CG not discernible by inspec-
tion.  The y and z components of the composite CG are both zero.

=
+

+
2 (10.3e)d

m
l

m l

m m

h
h

d d

h d

FIGURE 10-2
Dynamic models, composite center of gravity, and radius of gyration of a mallet

(a )  Centers of gravity (b )  Radius of gyration k

mh md+
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10.5	 MASS MOMENT OF INERTIA  (SECOND MOMENT OF MASS)

Newton’s law applies to systems in rotation as well as to those in translation.  The rota-
tional form of Newton’s second law is:

α= (10.4)IT

where T is resultant torque about the mass center, α is angular acceleration, and I is mass 
moment of inertia about an axis through the mass center.

Mass moment of inertia is referred to some axis of rotation, usually one through 
the CG.  Refer again to Figure 10‑1 that shows a mass of general shape and an XYZ axis 
system.  A differential element of mass is also shown.  The mass moment of inertia of 
the differential element is equal to the product of its mass and the square of its distance 
from the axis of interest.  With respect to the X, Y, and Z axes they are:

= = +

= = +

= = +

( ) (10.5a)

( ) (10.5b)

( ) (10.5c)

2 2 2

2 2 2

2 2 2

dI r dm y z dm

dI r dm x z dm

dI r dm x y dm

x x

y y

z z

The exponent of 2 on the radius term gives this property its other name of second 
moment of mass.  To obtain the mass moments of inertia of the entire body, we integrate 
each of these expressions.

∫
∫
∫

= +

= +

= +

( ) (10.6a)

( ) (10.6b)

( ) (10.6c)

2 2

2 2

2 2

I y z dm

I x z dm

I x y dm

x

y

z

While it is fairly intuitive to appreciate the physical significance of the first moment 
of mass, it is more difficult to do the same for the second moment, or moment of inertia.

Consider equation 10.4.  It says that torque is proportional to angular acceleration, 
and the constant of proportionality is this moment of inertia, I.  Picture a common hammer 
or mallet as depicted in Figure 10‑2.  The head, made of steel, has large mass compared 
to the light wooden handle.  When gripped properly, at the end of the handle, the radius 
to the mass of the head is large.  Its contribution to the total I of the mallet is proportional 
to the square of the radius from the axis of rotation (your wrist at axis ZZ) to the head.  
Thus it takes considerably more torque to swing (and thus angularly accelerate) the mallet 
when it is held properly than if held near the head.  As a child you probably chose to hold 
a hammer close to its head because you lacked the strength to provide the larger torque 
it needed when held properly.  You also found it ineffective in driving nails when held 
close to the head because you were unable to store very much kinetic energy in it.  In a 
translating system kinetic energy is:

=
1
2

(10.7a)2KE mv

and in a rotating system kinetic energy is:

= ω
1
2

(10.7b)2KE I
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Thus the kinetic energy stored in the mallet is also proportional to its moment of 
inertia I and to ω2.  So, you can see that holding the mallet close to its head reduces the I 
and lowers the energy available for driving the nail.

Moment of inertia then is one indicator of the ability of the body to store rotational 
kinetic energy and is also an indicator of the amount of torque that will be needed to ro-
tationally accelerate the body.  Unless you are designing a device intended for the storage 
and transfer of large amounts of energy (punch press, drop hammer, rock crusher, etc.), 
you will probably be trying to minimize the moments of inertia of your rotating parts. Just 
as mass is a measure of resistance to linear acceleration, moment of inertia is a measure of 
resistance to angular acceleration.  A large I will require a large driving torque and thus a 
larger and more powerful motor to obtain the same acceleration.  Later we will see how to 
make moment of inertia work for us in rotating machinery by using flywheels with large 
I.  The units of moment of inertia can be determined by doing a unit balance on either 
equation 10.4 or equation 10.7 and are shown in Table 1‑4.  In the ips system they are 
lb-in-sec2 or blob-in2.  In the SI system, they are N-m-s2 or kg-m2.

10.6	 PARALLEL AXIS THEOREM (TRANSFER THEOREM) 
Watch a short video (2:15)†

The moment of inertia of a body with respect to any axis (ZZ) can be expressed as the sum 
of its moment of inertia about an axis (GG) parallel to ZZ through its CG and the product 
of the mass and the square of the perpendicular distance between those parallel axes.

= + (10.8)2I I mdZZ GG

where ZZ and GG are parallel axes, GG goes through the CG of the body or assembly, 
m is the mass of the body or assembly, and d is the perpendicular distance between the 
parallel axes.  This property is most useful when computing the moment of inertia of a 
complex shape which has been broken into a collection of simple shapes as shown in 
Figure 10‑2a, which represents a simplistic model of a mallet.  The mallet is broken into 
two cylindrical parts, the handle and the head, which have masses mh and md, and radii rh 
and rd, respectively.  The expressions for the mass moments of inertia of a cylinder with 
respect to axes through its CG can be found in Appendix C and are for the handle about 
its CG axis HH:

( )
=

+3

12
(10.9a)

2 2

I
m r l

HH
h h h

and for the head about its CG axis DD:

( )
=

+3

12
(10.9b)

2 2

I
m r h

DD
d d d

Using the parallel axis theorem to transfer the moment of inertia to the axis ZZ at the end 
of the handle:

= + 

















+ +



2

(10.9c)
2

2I I m
l

I m lZZ HH h
h

DD d d

 	

†  http://www.designofma-
chinery.com/DOM/Trans-
fer_Theorem.mp4

http://www.designofmachinery.com/DOM/Transfer Theorem.mp4
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10.7	 DETERMINING MASS MOMENT OF INERTIA

There are several ways to determine the mass moment of inertia of a part.  If the part is 
in the process of being designed, then an analytical method is needed.  If the part exists, 
then either an analytical or experimental method can be used.

Analytical Methods

While it is possible to integrate equations 10.6 numerically for a part of any arbitrary 
shape, the work involved to do this by hand is usually prohibitively tedious and time 
consuming.  If a part of complicated shape can be broken down into subparts that have 
simple geometry such as cylinders, rectangular prisms, spheres, etc., as was done with 
the mallet of Figure 10-2, then the mass moments of inertia of each subpart about its own 
CG can be calculated.   These values must each be referred to the desired axis of rotation 
using the transfer theorem (equation 10.8) then summed to obtain an approximate value 
of the complete part’s moment of inertia about the desired axis.  Formulas for the mass 
moments of inertia of some simple geometric solids are shown in Appendix C.

If a CAD solids modeling package is used to design the part’s geometry, then the 
task of determining all its mass properties is greatly simplified.  Most CAD packages 
will calculate the mass and mass moments of inertia of a solid 3-D part about any set of 
selected axes to good accuracy.  This is, by far, the preferred method and is only one of the 
many advantages of using a solids modeling CAD package for mechanical design work.  

Experimental Methods

If the part has been designed and built, its mass moment of inertia can be determined 
approximately by a simple experiment.  This requires that the part be swung about any 
axis (other than one that passes through its CG) parallel to that about which the moment 
is sought and its period of pendular oscillation measured.  Figure 10-3a shows a part (a 
connecting rod) suspended on a knife-edge pivot at ZZ and rotated through a small angle 
θ as shown in Figure 10-3b.  Its weight force W acts at its CG and has a component W sin θ 
perpendicular to the radius r from the pivot to the CG.  From equation 10.4:

α= (10.10a)IZZ ZZT

substituting equivalent expressions for TZZ and α:

( )− θ =
θsin (10.10b)

2

2W r I d
dt

ZZ

where the negative sign is used because the torque is in the opposite direction to angle θ.

For small values of θ, sin θ = θ, approximately, so:

− θ =
θ

θ
= − θ (10.10c)

2

2

2

2

W r I d
dt

d
dt

W r
I

ZZ

ZZ

FIGURE 10-3
Measuring moment of
inertia Photo by the author
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(b )
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Equation 10.10c is a second-order differential equation with constant coefficients that 
has the well-known solution:

θ =








 +









sin cos (10.10d)C Wr

I
t D Wr

I
t

ZZ ZZ

The constants of integration C and D can be found from the initial conditions defined at 
the instant the part is released and allowed to swing. 

= θ = θ ω =
θ

= = = θ

θ = θ










at: 0, , 0; then: 0,

and: cos (10.10e)

max max

max

t d
dt

C D

Wr
I

t
ZZ

Equation 10.10e defines the part’s motion as a cosine wave that completes a full cycle of 
period τ sec when

τ = π2 (10.10f)Wr
IZZ

The weight of the part is easily measured.  The CG location can be found by balanc-
ing the part on a knife edge or suspending it from two different locations, either approach 
giving the distance r.  The period of oscillation τ can be measured with a stopwatch, pref-
erably over a number of cycles to reduce experimental error.  With these data, equation 
10.10f can be solved for the mass moment of inertia IZZ about the pivot ZZ as:

=
τ
π





2

(10.10g)
2

I WrZZ

and the moment of inertia IGG about the CG can then be found using the transfer theorem 
(equation 10.8).

= +

=
τ
π







−
2

(10.10h)

2

2
2

I I mr

I Wr W
g

r

ZZ GG

GG

10.8	 RADIUS OF GYRATION Watch a short video (1:21)†

The radius of gyration of a body is defined as the radius at which the entire mass of the 
body could be concentrated such that the resulting model will have the same moment 
of inertia as the original body.  The mass of this model must be the same as that of the 
original body.  Let IZZ represent the mass moment of inertia about ZZ from equation 10.9c 
and m the mass of the original body.  From the parallel axis theorem, a concentrated mass 
m at a radius k will have a moment of inertia:

= (10.11a)2I mkZZ

Since we want IZZ to be equal to the original moment of inertia, the required radius 
of gyration at which we will concentrate the mass m is then:

 	

†  http://www.designofma-
chinery.com/DOM/Radius_
of_Gyration.mp4

http://www.designofmachinery.com/DOM/Radius_of_Gyration.mp4
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= (10.11b)k
I
m
ZZ

Note that this property of the radius of gyration allows the construction of an even 
simpler dynamic model of the system in which all the system mass is concentrated in a 
“point mass” at the end of a massless rod of length k.  Figure 10‑2b shows such a model 
of the mallet in Figure 10‑2a.  

By comparing equation 10.11a with equation 10.8, it can be seen that the radius of 
gyration k will always be larger than the radius to the composite CG of the original body.

+ = = ∴ > (10.11c)2 2I md I mk k dGG ZZ

Appendix C contains formulas for the moments of inertia and radii of gyration of 
some common shapes.

10.9	 MODELING ROTATING LINKS Watch a short video (2:11)†

Many mechanisms contain links that oscillate in pure rotation.  As a first approximation, 
it is possible to model these links as lumped masses in translation.  The error in so doing 
will be acceptably small if the angular rotation of the link is small.  Then the difference 
between the length of the arc over a small angle and its chord is small.

The goal is to model the distributed mass of the rotating link as a lumped, point mass 
placed at the point of attachment to its adjacent link, connected to its pivot by a rigid but 
massless rod.  Figure 10-4 shows a link, rotating about an axis ZZ, and its lumped dynamic 
model.  The mass of the lump placed at the link radius r must have the same moment 
of inertia about the pivot ZZ as the original link.  The mass moment of inertia IZZ of the 
original link must be known or estimated.  The mass moment of inertia of a point mass 
at a radius is found from the transfer theorem.  Since a point mass, by definition, has no 

G

G

Z

FIGURE 10-4
Modeling a rotating link as a translating mass
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†  http://www.designofma-
chinery.com/DOM/Rotat-
ing_Links.mp4

http://www.designofmachinery.com/DOM/Rotating_Links.mp4
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dimension, its moment of inertia IGG about its center of mass is zero and equation 10.8 
reduces to

= (10.12a)2I mrZZ

The effective mass meff to be placed at the radius r is then

= (10.12b)2m
I
r

eff
ZZ

For small angles of rotation, the rotating link can then be modeled as a mass meff in pure 
rectilinear translation for inclusion in a model such as that shown in Figure 10-11.

10.10	 CENTER OF PERCUSSION Watch a short video (6:59)†

The center of percussion is a point on a body which, when struck with a force, will have 
associated with it another point called the center of rotation at which there will be a 
zero reaction force.  You have probably experienced the result of “missing the center of 
percussion” when you hit a baseball or softball with the wrong spot on the bat.  The “right 
place on the bat” to hit the ball is the center of percussion associated with the point where 
your hands grip the bat (the center of rotation).  Hitting the ball at other than the center 
of percussion results in a stinging force being delivered to your hands.  Hit the right spot 
and you feel no force (or pain).  The center of percussion is sometimes called the “sweet 
spot” on a bat, tennis racquet, or golf club.  In the case of our mallet example, a center of 
percussion at the head corresponds to a center of rotation near the end of the handle, and 
the handle is usually contoured to encourage gripping it there.

The explanation of this phenomenon is quite simple.  To make the example two-
dimensional and eliminate the effects of friction, consider a hockey stick of mass m lying 
on the ice as shown in Figure 10-5a.  Strike a sharp blow at point P with a force F per-
pendicular to the stick axis.  The stick will begin to travel across the ice in complex planar 
motion, both rotating and translating.  Its complex motion at any instant can be considered 
as the superposition of two components: pure translation of its center of gravity G in the 
direction of F and pure rotation about that point G.  Set up an embedded coordinate system 
centered at G with the X axis along the stick in its initial position as shown.  The translat-
ing component of acceleration of the CG resulting from the force F is (from Newton’s law)

= (10.13a)A F
mGy

and the angular acceleration is:

α = (10.13b)T
IGG

where IGG is its mass moment of inertia about the line GG through the CG (out of the 
page along the Z axis).  But torque is also:

= (10.13c)T F lP

where lp is the distance along the X axis from point G to point P so:

 	

†  http://www.designofma-
chinery.com/DOMCen-
ter_of_Percussion.mp4

http://www.designofmachinery.com/DOM/Center_of_Percussion.mp4
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α = (10.13d)
F l
I

P

GG

The total linear acceleration at any point along the stick will be the sum of the linear 
acceleration AGy of the CG and the tangential component (rα) of the angular acceleration 
as shown in Figure 10-5b.

= + α

= +






(10.14)

A A r

F
m

x
F l
I

ytotal G

P

GG

y

where x is the distance to any point along the stick.  Equation 10.14 can be set equal to 
zero and solved for the value of x for which the rα component exactly cancels the AGycom-
ponent.  This will be the center of rotation at which there is no translating acceleration, 
and thus no linear dynamic force.  The solution for x when Aytotal = 0 is:

= − (10.15a)x
I
ml

GG

P

and substituting equation 10.11b:

FIGURE 10-5
Center of percussion and center of rotation

(a )  Force

(b )  Acceleration

F

P

CG

X

Y

X

Y

R

x

Center of percussion P

Center of rotation R
net acceleration = 0

= r αAt

GA y

pl
G

G

Hockey stick on ice
      mass = m

Z
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= − (10.15b)
2

x k
lP

where the radius of gyration k is calculated with respect to the line GG through the CG.

Note that this relationship between the center of percussion and the center of rota-
tion involves only geometry and mass properties.  The magnitude of the applied force is 
irrelevant, but its location lp completely determines x.  Thus there is not just one center 
of percussion on a body.  Rather there will be pairs of points.  For every point (center of 
percussion) at which a force is applied there will be a corresponding center of rotation 
at which the reaction force felt will be zero.  This center of rotation need not fall within 
the physical length of the body, however.  Consider the value of x predicted by equation 
10.15b if you strike the body at its CG.

10.11	 LUMPED PARAMETER DYNAMIC MODELS Watch a short video 
(19:40)†

Figure 10-6a shows a simple plate or disk cam driving a spring-loaded, roller follower.  
This is a force-closed system which depends on the spring force to keep the cam and 
follower in contact at all times.  Figure 10-6b shows a lumped parameter model of this 
system in which all the mass which moves with the follower train is lumped together as 
m, all the springiness in the system is lumped within the spring constant k, and all the 
damping or resistance to movement is lumped together as a damper with coefficient c.  
The sources of mass which contribute to m are fairly obvious.  The mass of the follower 
stem, the roller, its pivot pin, and any other hardware attached to the moving assembly all 
add together to create m.  Figure 10-6c shows the free-body diagram of the system acted 
upon by the cam force Fc, the spring force Fs, and the damping force Fd.  There will of 
course also be the effects of mass times acceleration on the system.

FIGURE 10-6
One-DOF lumped parameter model of a cam-follower system 

( (a )  Physical system b)  Lumped model ( c )  Free-body diagram

Follower

Roller

Spring

Cam

k c

m m
 x , x , x

. ..

 x , x , x
. ..

 x , x , x
. ..

sF

cF (t)

dF

cF (t)

2ω

 	

†  http://www.designof-
machinery.com/DOM/
Lumped_Models.mp4

http://www.designofmachinery.com/DOM/Lumped_Models.mp4
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Spring Constant

We have been assuming all links and parts to be rigid bodies in order to do the kinematic 
analyses, but to do a more accurate force analysis, we need to recognize that these bodies 
are not truly rigid.  The springiness in the system is assumed to be linear, thus describ-
able by a spring constant k.  A spring constant is defined as the force per unit deflection. 

= (10.16)k
F
x
s

The total spring constant k of the system is a combination of the spring constants of 
the actual coil spring, plus the spring constants of all other parts which are deflected by 
the forces.  The roller, its pin, and the follower stem are all springs themselves as they 
are made of elastic materials.  The spring constant for any part can be obtained from the 
equation for its deflection under the applied loading.  Any deflection equation relates force 
to displacement and can be algebraically rearranged to express a spring constant.  An 
individual part may have more than one k if it is loaded in several modes as, for example, 
a camshaft with a spring constant in bending and also one in torsion.  We will discuss 
the procedures for combining these various spring constants in the system together into 
a combined, effective spring constant k in the next section.  For now let us just assume 
that we can so combine them for our analysis and create an overall k for our lumped 
parameter model. 

Damping

The friction, more generally called damping, is the most difficult parameter of the three to 
model.  It needs to be a combination of all the damping effects in the system.  These may 
be of many forms.  Coulomb friction results from two dry or lubricated surfaces rubbing 
together.  The contact surfaces between cam and follower and between the follower and its 
sliding joint can experience coulomb friction.  It is generally considered to be independent 
of velocity magnitude but has a different, larger value when the velocity is zero (static fric-
tion force Fst or stiction) than when there is relative motion between the parts (dynamic 
friction Fd).  Figure 10-7a shows a plot of coulomb friction force versus relative velocity 
v at the contact surfaces.  Note that friction always opposes motion, so the friction force 
abruptly changes sign at v = 0.  The stiction Fst shows up as a larger spike at zero v than the 
dynamic friction value Fd.  Thus, this is a nonlinear friction function.  It is multivalued at 
zero.  In fact, at zero velocity, the friction force can be any value between –Fst and +Fst.  
It will be whatever force is needed to balance the system forces and create equilibrium.  
When the applied force exceeds Fst, motion begins and the friction force suddenly drops 
to Fd.  This nonlinear damping creates difficulties in our simple model since we want to 
describe our system with linear differential equations having known solutions.  

Other sources of damping may be present besides coulomb friction.  Viscous damp-
ing results from the shearing of a fluid (lubricant) in the gap between the moving parts 
and is considered to be a linear function of relative velocity as shown in Figure 10-7b.  
Quadratic damping results from the movement of an object through a fluid medium 
as with an automobile pushing through the air or a boat through the water.  This factor 
is a fairly negligible contributor to a cam-follower’s overall damping unless the speeds 
are very high or the fluid medium is very dense.  Quadratic damping is a function of the 
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square of the relative velocity as shown in Figure 10-7c.  The relationship of the dynamic 
damping force Fd as a function of relative velocity for all these cases can be expressed as:

= − (10.17a)1F cv vd
r

where c is the constant damping coefficient, v is the relative velocity, and r is a constant 
which defines the type of damping.

For coulomb damping, r = 0 and:
= ± (10.17b)F cd

For viscous damping, r = 1 and:
= (10.17c)F cvd

For quadratic damping, r = 2 and:

= ± (10.17d)2F cvd

FIGURE 10-7
Modeling damping

(a )  Coulomb damping (b)  Viscous damping (c )  Quadratic damping

v v v

C

v v v

Sum

Sum

Stiction

range

range

dF dF dF

dF dF dF

stF

( d )  Combined damping (e )  Sum of  a, b, and c ( f )  Linear approximation
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If we combine these three forms of damping, their sum will look like Figure 10-
7d and e.  This is obviously a nonlinear function.  But we can approximate it over a 
reasonably small range of velocity as a linear function with a slope c which is then a 
pseudo-viscous damping coefficient.  This is shown in Figure 10-7f.  While not an exact 
method to account for the true damping, this approach has been found to be acceptably 
accurate for a first approximation during the design process.  The damping in these kinds 
of mechanical systems can vary quite widely from one design to the next due to different 
geometries, pressure or transmission angles, types of bearings, lubricants or their absence, 
etc.  It is very difficult to accurately predict the level of damping  (i.e., the value of c) in 
advance of the construction and testing of a prototype, which is the best way to determine 
the damping coefficient.  If similar devices have been built and tested, their history can 
provide a good prediction.  For the purpose of our dynamic modeling, we will assume 
pseudo-viscous damping and some value for c.  

10.12	 EQUIVALENT SYSTEMS

More complex systems than that shown in Figure 10-6 will have multiple masses, springs, 
and sources of damping connected together as shown in Figure 10-11.  These models can 
be analyzed by writing dynamic equations for each subsystem and then solving the set of 
differential equations simultaneously.  This allows a multi-degree-of-freedom analysis, 
with one-DOF for each subsystem included in the analysis.  Koster[3] found in his exten-
sive study of vibrations in cam mechanisms that a five-DOF model which included the 
effects of both torsional and bending deflection of the camshaft, backlash (see Section 
9.2) in the driving gears, squeeze effects of the lubricant, nonlinear coulomb damping, 
and motor speed variation gave a very good prediction of the actual, measured follower 
response.  But he also found that a single-DOF model as shown in Figure 10-6 gave a 
reasonable simulation of the same system.  We can then take the simpler approach and 
lump all the subsystems of Figure 10-11 together into a single-DOF equivalent system as 
shown in Figure 10-6.  The combining of the various springs, dampers, and masses must 
be done carefully to properly approximate their dynamic interactions with each other.

There are only two types of variables active in any dynamic system. These are given 
the general names of through variable and across variable.  These names are descriptive 
of their actions within the system.  A through variable passes through the system.  An 
across variable exists across the system.  The power in the system is the product of the 
through and across variables.  Table 10‑1 lists the through and across variables for various 
types of dynamic systems.

We commonly speak of the voltage across a circuit and the current flowing through 
it.  We also can speak of the velocity across a mechanical “circuit” or system and the 

System Type Through Variable Across Variable Power Units

Electrical Current (  i  Voltage ( e  )) ei  = watts

Mechanical Force ( F  Velocity ( v  )) Fv  = (in-lb)/sec

Fluid Flow ( Q  Pressure ( P  )) PQ  = (in-lb)/sec

TABLE  10-1 Through and Across Variables in Dynamic Systems
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force which flows through it.  Just as we can connect electrical elements such as resistors, 
capacitors, and inductors together in series or parallel or a combination of both to make 
an electrical circuit, we can connect their mechanical analogs, dampers, springs, and 
masses together in series, parallel, or a combination thereof to make a mechanical system.  
Table 10‑2 shows the analogs between three types of physical systems.  The fundamental 
relationships between through and across variables in electrical, mechanical, and fluid 
systems are shown in Table 10‑3. 

Recognizing a series or parallel connection between elements in an electrical circuit 
is fairly straightforward, as their interconnections are easily seen.  Determining how me-
chanical elements in a system are interconnected is more difficult as their interconnec-
tions are sometimes hard to see.  The test for series or parallel connection is best done by 
examining the forces and velocities (or the integral of velocity, displacement) that exist in 
the particular elements.  If two elements have the same force passing through them, they 
are in series.  If two elements have the same velocity or displacement, they are in parallel.

Combining Dampers

Dampers in Series  Figure 10-8a shows three dampers in series.  The force passing 
through each damper is the same, and their individual displacements and velocities are 
different.

( )

( )

( )

( )

= − = − =

= − = − =

= − + − + = + +

    

    

     

or:

combining:

; ;

1 1 2 2 2 3 3 3

1
1 2

2
2 3

3
3

1 2 2 3 3
1 2

F c x x c x x c x

F
c

x x F
c

x x F
c

x

x x x x x x F
c

F
c

F
ctotal

F

c3c 1 2c

 x
.

2F1F 3F

F

c 3

c 1

2c

3x
.

2x
.

1x
.

FIGURE 10-8
Dampers in series and
in parallel

(a )  Series

(b )  Parallel

Capacitor (C )

Mass (m )

Accumulator (C f )

Energy Storage

Inductor ( L)

Spring (k )

Fluid inductor ( Lf )

Energy Storage

Resistor (R )

Damper ( c )

Fluid resistor (Rf )

Energy Dissipator

Electrical

Mechanical

Fluid

System Type

TABLE  10-2 Physical Analogs in Dynamic Systems

System Type Resistance Capacitance Inductance

Electrical

Mechanical

Fluid

TABLE  10-3 Relationships Between Variables in Dynamic Systems

i
R

e i C de
dt

i
L

e dt

F cv F m dv
dt

F k v dt

Q
R

P Q C
f

= = =

= = =

= =

∫
∫

1 1

1
ff

f

dP
dt

Q
L

P dt= ∫1
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= = + +






= + +

=
+ +

then: 1 1 1 1

1 1 1 1

1
1 1 1 (10.18a)

1 2 3

1 2 3

1 2 3

x F
c

F
c c c

c c c c

c

c c c

total
eff

eff

eff

The reciprocal of the effective damping of the dampers in series is the sum of the recip-
rocals of their individual damping coefficients.

Dampers in Parallel  Figure 10-8b shows three dampers in parallel.  The force 
passing through each damper is different, and their displacements and velocities are all 
the same.

( )

= + +
= + +

= + +

=

= + +

  





(10.18b)

1 2 3

1 2 3

1 2 3

1 2 3

F F F F
F c x c x c x

F c c c x

F c x

c c c c

eff

eff

The effective damping of the three is the sum of their individual damping coefficients.

Combining Springs

Springs are the mechanical analog of electrical inductors.  Figure 10-9a shows three 
springs in series.  The force passing through each spring is the same, and their individual 
displacements are different.  A force F applied to the system will create a total deflec-
tion which is the sum of the individual deflections.  The spring force is defined from the 
relationship in equation 10.16:

 

( )( )

=

= − + − +
where:

(10.19a)1 2 2 3 3

F k x

x x x x x x

eff total

total

( )( )− = − = = (10.19b)1 2
1

2 3
2

3
3

x x F
k

x x F
k

x F
k

Substituting, we find that the reciprocal of the effective k of springs in series is the 
sum of the reciprocals of their individual spring constants.

= + +

=
+ +

(10.19c)
1

1 1 1

1 2 3

1 2 3

F
k

F
k

F
k

F
k

k

k k k

eff

eff

k3k 1 2k

1F 2F 3F

k 3

k 1

2k

3x

2x

1x

 x

FIGURE 10-9
Springs in series and
in parallel

(a )  Series

(b )  Parallel
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Figure 10-9b shows three springs in parallel.  The force passing through each spring 
is different, and their displacements are all the same.  The total force is the sum of the 
individual forces.

= + + (10.20a)1 2 3F F F Ftotal

Substituting equation 10.19b we find that the effective k of springs in parallel is the 
sum of the individual spring constants.

= + +

= + +
(10.20b)

1 2 3

1 2 3

k x k x k x k x

k k k k

eff

eff

Combining Masses

Masses are the mechanical analog of electrical capacitors.  The inertial forces associated 
with all moving masses are referenced to the ground plane of the system because the ac-
celeration in F = ma is absolute.  Thus all masses are connected in parallel and combine 
in the same way as do capacitors in parallel with one terminal connected to a common 
ground.

= + + (10.21)1 2 3m m m meff

Lever and Gear Ratios Watch a short video (05:16)†

Whenever an element is separated from the point of application of a force or from an-
other element by a lever ratio or gear ratio, its effective value will be modified by that 
ratio.  Figure 10-10a shows a spring at one end (A) and a mass at the other end (B) of a 
lever.  We wish to model this system as a single-DOF lumped parameter system.  There 
are two possibilities in this case.   We can either transfer an equivalent mass meff to point 
A and attach it to the existing spring k, as shown in Figure 10-10b, or we can transfer an 
equivalent spring keff to point B and attach it to the existing mass m as shown in Figure 
10-10c.  In either case, for the lumped model to be equivalent to the original system, it 
must have the same energy in it.  

First find the effective mass that must be placed at point A to eliminate the lever.  
Equating the kinetic energies in the masses at points A and B:

=
1
2

1
2

(10.22a)2 2m v m vB B eff A

The velocities at each end of the lever can be related by the lever ratio:

= 





= 





= 





substituting:

(10.22b)

2
2

2

2

v a
b

v

m v m a
b

v

m b
a

m

A B

B B eff B

eff B

 	

†  http://www.designof-
machinery.com/DOM/
Lever_Ratios.mp4

http://www.designofmachinery.com/DOM/Lever_Ratios.mp4
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FIGURE 10-10
Lever or gear ratios a�ect the equivalent system

(a )  Physical system

(b)  Equivalent mass at point  A (c )  Equivalent spring at point  B

(d )  Physical system (e)  Equivalent damper at point  B
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The effective mass varies from the original mass by the square of the lever ratio.  Note 
that if the lever were instead a pair of gears of radii a and b, the result would be the same.

Now find the effective spring that would have to be placed at B to eliminate the lever.  
Equating the potential energies in the springs at points A and B:

=
1
2

1
2

(10.23a)2 2k x k xA A eff B

The deflection at B is related to the deflection at A by the lever ratio:

= 





= 





= 





substituting:

(10.23b)

2
2

2

2

x b
a

x

k x k b
a

x

k a
b

k

B A

A A eff A

eff A

The effective k varies from the original k by the square of the lever ratio.  If the lever 
were instead a pair of gears of radii a and b, the result would be the same.  So, gear or lever 
ratios can have a large effect on the lumped parameters’ values in the simplified model.

Damping coefficients are also affected by the lever ratio.  Figure 10-10d shows a damp-
er and a mass at opposite ends of a lever.  If the damper at A is to be replaced by a damper 
at B, then the two dampers must produce the same moment about the pivot, thus:

= (10.23c)F a F bd dA B

Substitute the product of the damping coefficient and velocity for force:

( )( ) =  (10.23d)c x a c x bA A B Beff

The velocities at points A and B in Figure 10-10d can be related from kinematics:

ω = =

=

 

  (10.23e)

x
a

x
b

x x a
b

A B

A B

Substituting in equation 10.23d we get an expression for the effective damping coefficient 
at B resulting from a damper at A.

( )





=

= 





 

(10.23f)
2

c x a
b

a c x b

c c a
b

A B B B

B A

eff

eff

As before, the square of the lever ratio determines the effective damping.  The equivalent 
system is shown in Figure 10-10e.
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✍EXAMPLE 10‑1 Watch a Short Video (06:45)†

Creating a Single-DOF Equivalent System Model of a Multielement Dynamic System. 

Given:	 An automotive valve cam with translating flat follower, long pushrod, rocker arm, 
valve, and valve spring is shown in Figure 10-11a.

Problem:	 Create a suitable, approximate, single-DOF, lumped parameter model of the sys-
tem.  Define its effective mass, spring constant, and damping in terms of the indi-
vidual elements’ parameters.

Solution:

	 1	 Break the system into individual elements as shown in Figure 10-11b.  Each significant moving 
part is assigned a lumped mass element which has a connection to ground through a damper.  
There is also elasticity and damping within the individual elements, shown as connecting 
springs and dampers.  The rocker arm is modeled as two lumped masses at its ends, connected 
with a rigid, massless rod for the crank and conrod of the slider-crank linkage.  (See also Sec-
tion 13.4.)  The breakdown shown represents a six-DOF model as there are six independent 
displacement coordinates, x1 through x6.

	 2	 Define the individual spring constants of each element which represents the elasticity of a 
lumped mass from the elastic deflection formula for the particular part.  For example, the 
pushrod is loaded in compression, so its relevant deflection formula and its k are:

= = =and ( )x Fl
AE

k F
x

AE
l

apr

		  where A is the cross-sectional area of the pushrod, l is its length, and E is Young’s modulus 
for the material.  The k of the tappet element will have the same expression.  The expression 
for the k of a helical coil compression spring, as used for the valve spring, can be found in any 
spring design manual or machine design text and is:

=
8

( )
4

3k d G
D N

bsp

		  where d is the wire diameter, D is the mean coil diameter, N is the number of coils, and G is 
the modulus of rupture of the material.  

		  The rocker arm also acts as a spring, as it is a beam in bending.  It can be modeled as a double 
cantilever beam with its deflection on each side of the pivot considered separately.  These 
spring effects are shown in the model as if they were compression springs, but that is just 
schematic.  They really represent the bending deflection of the rocker arms.  From the deflec-
tion formula for a cantilever beam with concentrated load:

= =
3

and 3 ( )
3

3x Fl
EI

k EI
l

cra

		  where I is the cross-sectional second moment of area of the beam, l is its length, and E is 
Young’s modulus for the material.  The spring constants of any other elements in a system 
can be obtained in similar fashion from their deflection formulas.

	 3	 The dampers shown connected to ground represent the friction or viscous damping at the 

 	

†  http://www.designofma-
chinery.com/DOM/Model-
ing_Systems.mp4

http://www.designofmachinery.com/DOM/Modeling_Systems.mp4
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represent the internal damping in the parts, which typically is quite small.  These values 
either will have to be estimated from experience or measured in prototype assemblies.  

	 4	 The rocker arm provides a lever ratio which must be taken into account.  The strategy will 
be to combine all elements on each side of the lever separately into two lumped parameter 
models as shown in Figure 10-11c, and then transfer one of those across the lever pivot to 
create one, single-DOF model as shown in Figure 10-11d.

FIGURE 10-11
Lumped parameter models of an overhead valve engine cam-follower system

(a )  Physical model

( c )  One- DOF model with lever arm (d )  One-DOF lumped model   
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	 5	 The next step is to determine the types of connections, either series or parallel, between 
the elements.  The masses are all in parallel as they each communicate their inertial force 
directly to ground and have independent displacements.  On the left and right sides, 
respectively, the effective masses are:  

= + + = + ( )m m m m m m m dL tp pr ra R rb v

		  Note that mv includes about one-third of the spring’s mass to account for that portion of the 
spring that is moving.  The two springs shown representing the bending deflection of the 
camshaft split the force between them, so they are in parallel and thus add directly. 

= + ( )
1 2

k k k ecs cs cs

		  Note that, for completeness, the torsional deflection of the camshaft should also be included 
but is omitted in this example to reduce complexity.  The combined camshaft spring rate and 
all the other springs shown on the left side are in series as they each have independent deflec-
tions and the same force passes through them all.  On the right side, the spring of the rocker 
arm is in series with that of the left side, but the physical valve spring is in parallel with the 
effective spring of the follower-train elements as it has a separate path from the effective mass 
at the valve to ground.  (The follower-train elements all communicate back to ground through 
the cam pivots.)  The effective spring rates of the follower-train elements for each side of the 
rocker arm are then:

=
+ + +

=
1

1 1 1 1 ( )k

k k k k

k k fL

cs tp pr ra

R rb

		  The dampers are in a combination of series and parallel.  The dampers ccs1 and ccs2 supporting 
the camshaft represent the friction in the two camshaft bearings and are in parallel. 

= + ( )
1 2

c c c gcs cs cs  

		  The ones representing internal damping are in series with one another and with the combined 
shaft damping.*

=
+ + +

=
1

1 1 1 1 ( )c

c c c c

c c hin

tp pr ra cs

in rbL R

	  	 where cinL is all internal damping on the left side and cinR is all internal damping on the right 
side of the rocker arm pivot.  The combined internal damping cinL goes to ground through crg 
and the combined internal damping cinR goes to ground through the valve spring cs.  These two 
combinations are then in parallel with all the other dampers that go to ground.  The combined 
dampings for each side of the system are then: 

= + + = + ( )c c c c c c c iL tg rg in R vg inL R

	 6	 The system can now be reduced to a single-DOF model with masses and springs lumped on 
either end of the rocker arm as shown in Figure 10-11c.  We will bring the elements at point 
B across to point A.  Note that we have reversed the sign convention across the pivot so that 
positive motion on one side results also in positive motion on the other.  The damper, mass, 
and spring constant are affected by the square of the lever ratio as shown in equations 10.22 
and 10.23. 

	

*  This analysis assumes 
that the internal damping 
values (c’s) of the elements 
are very small and vary 
approximately proportion-
ally to the stiffness (k’s) of 
the respective elements to 
which they apply.  Because 
damping is typically small 
in these systems, its effect 
on the equivalent spring 
rate is small, but the 
reverse is not true since 
high stiffness will affect 
damping levels.  A very 
stiff element will deflect 
less under a given load than 
a less stiff one.  If damping 
is proportional to velocity 
across the element, then a 
small deflection will have 
small velocity.  Even if 
the damping coefficient 
of that element is large, it 
will have little effect on the 
system due to the element’s 
relatively high stiffness.  
A more accurate way to 
estimate damping must take 
the interaction between the 
k’s and c’s into account.  
For n springs k1, k2, . . . , kn 
in series, placed in parallel 
with n dampers c1, c2, . . 
. , cn in series, the effective 
damping can be shown 
to be:

∑=
=

2
1

c k
c
k

eff eff
i

ii

n

As a practical matter, 
however, it is usually quite 
difficult to determine the 
values of the individual 
damping elements that are 
needed to do a calculation 
such as shown above and in 
equation (h).  
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= + 





= + 





= + 





( )

2

2

2

m m b
a

m

k k b
a

k j

c c b
a

c

eff L R

eff L R

eff L R

		  These are shown in Figure 10-11d on the final, one-DOF lumped model of the system.  It shows 
all the elasticity of the follower-train elements lumped into the effective spring keff and the 
damping as ceff.  The cam’s displacement input s(t) acts against a massless but rigid shoe.  The 
valve spring and the valve’s damping against ground provide forces that keep the joint between 
cam and follower closed.  If the cam and follower separate, the system changes dynamically 
from that shown. 

Note that this one-DOF model provides only an approximation of this complex sys-
tem’s behavior.  Even though it may be an oversimplification, it is nevertheless still useful 
as a first approximation and serves in this context as an example of the general method 
involved in modelling dynamic systems.  A more complex model with multiple degrees 
of freedom will provide a better approximation of the dynamic system’s behavior.

10.13	 SOLUTION METHODS

Dynamic force analysis can be done by any of several methods.  Two will be discussed 
here, superposition and linear simultaneous equation solution.  Both methods require 
that the system be linear.

These dynamic force problems typically have a large number of unknowns and thus 
have multiple equations to solve.  The method of superposition attacks the problem by 
solving for parts of the solution and then adding (superposing) the partial results together 
to get the complete result.  For example, if there are two loads applied to the system, we 
solve independently for the effects of each load, and then add the results.  In effect we 
solve an N-variable system by doing sequential calculations on parts of the problem.  It 
can be thought of as a “serial processing” approach.

Another method writes all the relevant equations for the entire system as a set of lin-
ear simultaneous equations.  These equations can then be solved simultaneously to obtain 
the results.  This can be thought of as analogous to a “parallel processing” approach.  A 
convenient approach to the solution of sets of simultaneous equations is to put them in 
a standard matrix form and use a numerical matrix solver to obtain the answers.  Matrix 
solvers are built into most engineering and scientific pocket calculators.  Some spread-
sheet packages and equation solvers will also do a matrix solution.  A brief introduction 
to matrix solution of simultaneous equations was presented in Section 5.6.  Appendix 
A  describes the use of the computer program Matrix.  This program allows the rapid 
calculation of the solution to systems of up to 16 simultaneous equations.  Please refer to 
the sections in Chapter 5 to review these calculation procedures.  Reference [4] provides 
an introduction to matrix algebra.
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We will use both superposition and simultaneous equation solution to solve various 
dynamic force analysis problems in the remaining chapters.  Both have their place, and 
one can serve as a check on the results from the other.  So it is useful to be familiar with 
more than one approach.  Historically, superposition was the only practical method for 
systems involving large numbers of equations until computers became available to solve 
large sets of simultaneous equations.  Now the simultaneous equation solution method 
is more popular.

10.14	 THE PRINCIPLE OF D’ALEMBERT Watch a short video (03:37)*

Newton’s second law (equations 10.1 and 10.4) is all that is needed to solve any dynamic 
force system by the newtonian method.  Jean le Rond d’Alembert (1717-1783), a French 
mathematician, rearranged Newton’s equations to create a “quasi-static” situation from a 
dynamic one.  D’Alembert’s versions of equations 10.1 and 10.4 are:

∑
∑

− =

− α =

0
(10.24)

0

m

I

F a

T

All d’Alembert did was to move the terms from the right side to the left, changing 
their algebraic signs in the process as required.  These are obviously still the same equa-
tions as 10.1 and 10.4, algebraically rearranged.  The motivation for this algebraic ma-
nipulation was to make the system look like a statics problem in which, for equilibrium, 
all forces and torques must sum to zero.  Thus, this is sometimes called a quasi-static 
problem when expressed in this form.  The premise is that by placing an “inertia force” 
equal to –ma and an “inertia torque” equal to –Iα on our free-body diagrams, the system 
will then be in a state of  “dynamic equilibrium” and can be solved by the familiar methods 
of statics.  These inertia forces and torques are equal in magnitude, opposite in sense, and 
along the same line of action as ma and Iα.  This was a useful and popular approach which 
made the solution of dynamic force analysis problems somewhat easier when graphical 
vector solutions were the methods of choice.

With the availability of calculators and computers that can solve the simultaneous 
equations for these problems, there is now little motivation to labor through the compli-
cated tedium of a graphical force analysis.  It is for this reason that graphical force analysis 
methods are not presented in this text.  However, d’Alembert’s concept of “inertia forces 
and torques” still has, at a minimum, historical value and, in many instances, can prove 
useful in understanding what is going on in a dynamic system.  Moreover, the concept of 
inertia force has entered the popular lexicon and is often used in a lay context when dis-
cussing motion.  Thus we present a simple example of its use here and will use it again in 
our discussion of dynamic force analysis later in this text where it helps us to understand 
some topics such as balancing and superposition.

Centrifugal Force Watch a short video (01:31)†

The popular term centrifugal force, used by laypersons everywhere to explain why a 
mass on a rope keeps the rope taut when swung in a circle, is in fact a d’Alembert inertial 
force.  Figure 10-12a shows such a mass, being rotated at the end of a flexible but inex-

 	

*  http://www.designofma-
chinery.com/DOM/DAlem-
bert.mp4

 	

*  http://www.designofma-
chinery.com/DOM/Cen-
trifugal_Force.mp4

http://www.designofmachinery.com/DOM/DAlembert.mp4
http://www.designofmachinery.com/DOM/Centrifugal_Force.mp4
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tensible cord at a constant angular velocity ω and constant radius r.  Figure 10-12b shows 
“pure” free-body diagrams of both members in this system, the ground link (1) and the 
rotating link (2).  The only real force acting on link 2 is the force of link 1 on 2, F12.  Since 
angular acceleration is zero in this example, the acceleration acting on the link is only the 
rω2 component, which is a centripetal acceleration, i.e., directed toward the center.  The 
force at the pin from Newton’s equation 10.1 is then:

= ω (10.25a)12
2F mr

Note that this force is directed toward the center, so it is a centripetal not a centrifugal 
(away from center) force.  The force F21 which link 2 exerts on link 1 can be found from 
Newton’s third law and is obviously equal and opposite to F12.  

= − (10.25b)21 12F F

Thus it is the reaction force on link 1 which is centrifugal, not the force on link 2.  
Of course, it is this reaction force that your hand (link 1) feels, and this gives rise to the 
popular conception of something pulling centrifugally on the rotating weight.  Now let us 
look at this through d’Alembert’s eyes.  Figure 10-12c shows another set of free-body dia-
grams done according to the principle of d’Alembert.  Here we show a negative ma inertia 
force applied to the mass on link 2.  The force at the pin from d’Alembert’s equation is:

− ω =

= ω

0

(10.25c)
12

2

12
2

F mr

F mr

Not surprisingly, the result is the same as equation 10.25a, as it must be.  The only 
difference is that the free-body diagram shows an inertia force applied to the rotating mass 
on link 2.  This is the centrifugal force of popular repute which takes the credit (or blame) 
for keeping the cord taut.

FIGURE 10-12
Centripetal and centrifugal forces

(a ) ( b ) ( c )

m

m m

ω

— ma

r

2

1 1 1

2 2

a = r ω2

12F

21F

12F

21F
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Clearly, any problem can be solved for the right answer no matter how we may 
algebraically rearrange the correct equations.  So, if it helps our understanding to think 
in terms of these inertia forces being applied to a dynamic system, we will do so.  When 
dealing with the topic of balancing, this approach does, in fact, help to visualize the effects 
of the balance masses on the system.

10.15	 ENERGY METHODS—VIRTUAL WORK

The newtonian methods of dynamic force analysis of Section 10.1 have the advantage of 
providing complete information about all interior forces at pin joints as well as about the 
external forces and torques on the system.  One consequence of this fact is the relative 
complexity of their application which requires the simultaneous solution of large systems 
of equations.  Other methods are available for the solution of these problems which are 
easier to implement but give less information.  Energy methods of solution are of this 
type.  Only the external, work-producing, forces and torques are found by these methods.  
The internal joint forces are not computed.  One chief value of the energy approach is its 
use as a quick check on the correctness of the newtonian solution for input torque.  Usu-
ally we are forced to use the more complete newtonian solution in order to obtain force 
information at pin joints so that pins and links can be analyzed for failure due to stress.

The law of conservation of energy states that energy can be neither created nor de-
stroyed, only converted from one form to another.  Most machines are designed specifi-
cally to convert energy from one form to another in some controlled fashion.  Depending 
on the efficiency of the machine, some portion of the input energy will be converted to 
heat which cannot be completely recaptured.  But large quantities of energy will typically 
be stored temporarily within the machine in both potential and kinetic form.  It is not 
uncommon for the magnitude of this internally stored energy, on an instantaneous basis, 
to far exceed the magnitude of any useful external work being done by the machine.

Work is defined as the dot product of force and displacement.  It can be positive, 
negative, or zero and is a scalar quantity.

= ⋅ (10.26a)W F R

Since the forces at the pin joints between the links have no relative displacement as-
sociated with them, they do no work on the system, and thus will not appear in the work 
equation.  The work done by the system plus losses is equal to the energy delivered to 
the system.

= + (10.26b)E W losses

Pin-jointed linkages with low-friction bearings at the pivots can have high efficien-
cies, above 95%. Thus it is not unreasonable, for a first approximation in designing such a 
mechanism, to assume the losses to be zero.  Power is the time rate of change of energy:

= (10.26c)P dE
dt

Since we are assuming the machine member bodies to be rigid, only a change of 
position of the CGs of the members will alter the stored potential energy in the system.  
The gravitational forces of the members in moderate- to high-speed machinery often tend 
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to be dwarfed by the dynamic forces from the accelerating masses.  For these reasons we 
will ignore the weights and the gravitational potential energy and consider only the kinetic 
energy in the system for this analysis.  The time rate of change of the kinetic energy stored 
within the system for linear and angular motion, respectively, is then:







= ⋅

1
2 (10.27a)

2d m

dt
m

v
a v

and:

⋅⋅
ω





= α ω

1
2 (10.27b)

2d I

dt
I

These are, of course, expressions for power in the system, equivalent to:

= ⋅ (10.27c)P F v

and:

= ⋅ ω (10.27d)P T

The rate of change of energy in the system at any instant must balance between that 
which is externally supplied and that which is stored within the system (neglecting losses). 
Equations 10.27a and b represent change in the energy stored in the system, and equa-
tions 10.27c and d represent change in energy passing into or out of the system.  In the 
absence of losses, these two must be equal in order to conserve energy.  We can express 
this relationship as a summation of all the delta energies (or power) due to each moving 
element (or link) in the system.

∑ ∑ ∑ ∑⋅ + ⋅ ω = ⋅ + α ⋅ ω
= = = =

(10.28a)
2 2 2 2

m Ik
k

n

k k
k

n

k k k
k

n

k k
k

n

k kF v T a v

The subscript k represents each of the n links or moving elements in the system, 
starting with link 2 because link 1 is the stationary ground link.  Note that all the angular 
and linear velocities and accelerations in this equation must have been calculated, for all 
positions of the mechanism of interest, from a prior kinematic analysis.  Likewise, the 
masses and mass moments of inertia of all moving links must be known.

If we use the principle of d’Alembert to rearrange this equation, we can more easily 
“name” the terms for discussion purposes.

∑ ∑ ∑ ∑⋅ + ⋅ ω − ⋅ − α ⋅ ω =
= = = =

0 (10.28b)
2 2 2 2

m Ik
k

n

k k
k

n

k k k
k

n

k k
k

n

k kF v T a v

The first two terms in equation 10.28b represent, respectively, the change in energy 
due to all external forces and all external torques applied to the system.  These would 
include any forces or torques from other mechanisms which impinge upon any of these 
links and also includes the driving torque.   The second two terms represent, respectively, 
the change in energy due to all inertia forces and all inertia torques present in the sys-
tem.  These last two terms define the change in stored kinetic energy in the system at each 
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(or driving force) to be supplied by the mechanism’s motor or actuator.  This driving 
torque (or force) is then the only variable which can be solved for with this approach.  The 
internal joint forces are not present in the equation as they do no net work on the system.

Equation 10.28b is sometimes called the virtual work equation, which is something 
of a misnomer, as it is in fact a power equation as can be seen from its units.  When this 
analysis approach is applied to a statics problem, there is no motion.  The term virtual 
work comes from the concept of each force causing an infinitesimal, or virtual, displace-
ment of the static system element to which it is applied over an infinitesimal delta time.  
The dot product of the force and the virtual displacement is the virtual work.  In the limit, 
this becomes the instantaneous power in the system.  We will present an example of the 
use of this method of virtual work in the next chapter along with examples of the newto-
nian solution applied to linkages in motion.
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10.17	 PROBLEMS‡

	 *†10‑1	 The mallet shown in Figure 10‑2 has the following specifications:  The steel head has 
a 1.25-in diameter and is 3.5 in tall; the wood handle is 1.5-in diameter and 10 in long 
and necks down to 3/4 in wide where it enters the head.  Find the location of its com-
posite CG, and its moment of inertia and radius of gyration about axis ZZ.  Assume the 
wood has a density equal to 0.9 times that of water.

	 *†10‑2	 Repeat Problem 10-1 using a wooden mallet head of 2.5-in diameter.  Assume the 
wood has a density equal to 0.85 times that of water.

	 †10‑3	 Calculate the location of the composite CG, the mass moment of inertia and the radius 
of gyration with respect to the specified axis, for whichever of the following commonly 
available items that are assigned.  (Note these are not short problems.)
a.	 A good-quality writing pen, about the pivot point at which you grip it to write.  (How 

does placing the cap on the upper end of the pen affect these parameters when you 
write?)

b.	 Two table knives, one metal and one plastic, about the pivot axis when held for cut-
ting.  Compare the calculated results and comment on what they tell you about the 
dynamic usability of the two knives (ignore sharpness considerations).

c.	 A ball-peen hammer (available in any university machine shop), about the center of 
rotation (after you calculate its location for the proper center of percussion).

d.	 A baseball bat (see the coach) about the center of rotation (after you calculate its 
location for the proper center of percussion).

e.	 A cylindrical coffee mug, about the handle hole.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
‡  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files.  PDF filenames are the 
same as the figure number.  
Run the file Animations.
html to access and run the 
animations.

Topic/Problem Matrix

 10.5 Mass Moment of 
Inertia

10-5, 10-27, 10-34
 10.7 Determining Mass 

Moment of Inertia

10-28, 10-29, 10-37 
to 10-40, 10-43

 10.8 Radius of Gyration

10-1, 10-2, 10-3
 10.10 Center of Percussion

10-26, 10-32, 10-33, 
10-35

 10.12 Equivalent Systems
Combining Springs
10-6, 10-7, 10-8
Combining Dampers
10-9, 10-10, 10-11
Lever & Gear Ratios
10-12, 10-13, 10-14, 
10-20, 10-21, 10-22, 
10-23, 10-24, 10-25, 
10-31
1-DOF Models
10-15, 10-16, 10-30

 10.13 Solution Methods

10-4, 10-41, 10-42
 10.15 Energy Methods

10-17, 10-18, 10-19, 
10-36, 10-44

 

TABLE  P10-0
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* Answers in Appendix F.
	
†  These problems are 
suited to solution using 
Mathcad, Matlab, or 
TKSolver equation solver 
programs.

	 *†10‑4	 Set up these equations in matrix form.  Use program Matrix, Mathcad,  Matlab, or a 
calculator which has matrix math capability to solve them.

	 a.	 – 5x	 – 2y 	 +12z	 – w  	 =  – 9

	 x	 +3y	 – 2z	 +4w	 =   10

	 – x 	 – y 	 +z		  =  – 7

	 3x 	 – 3y	 +7z	 +9w	 =  – 6

b.	 3x	 – 5y 	 +17z 	 – 5w	 =  – 5

	 – 2x	 +9y	 – 14z 	 +6w	 =  22

	 – x	 – y		  – 2w	 =  13

	 4x	 – 7y	 +8z 	 +4w	 = – 9
	 †10-5	 Figure P10-1 shows a bracket made of steel.  

a.	 Find the location of its centroid referred to point B.
b.	 Find its mass moment of inertia Ixx about the X axis through point B.
c.	 Find its mass moment of inertia Iyy about the Y axis through point B.

	 *†10‑6	 Two springs are connected in series.  One has a k of 34 and the other a k of 3.4.  Cal-
culate their effective spring constant.  Which spring dominates?  Repeat with the two 
springs in parallel.  Which spring dominates?  (Use any unit system.)

	 †10‑7	 Repeat Problem 10‑6 with k1 = 125 and k2  = 25.  (Use any unit system.)

	 †10‑8	 Repeat Problem 10‑6 with k1 = 125 and k2 = 115.  (Use any unit system.)

	 *†10‑9	 Two dampers are connected in series.  One has a damping factor c1 = 12.5 and the 
other, c2 = 1.2.  Calculate their effective damping constant.  Which damper dominates?  
Repeat with the two dampers in parallel.  Which damper dominates?  (Use any units.)

	†10‑10	 Repeat Problem 10‑9 with c1 = 12.5 and c2 = 2.5.  (Use any unit system.)

	†10-11	 Repeat Problem 10‑9 with c1 = 12.5 and c2 = 10.  (Use any unit system.)

32R

26 D
64

38

19
50

13

13 R

10 D  Typ. 2 Pl.
70

90°

70

FIGURE P10-1
Problem 10-5

B
B
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Y

Z

all dimensions in mm

Y



10

DESIGN OF MACHINERY 6ed      CHAPTER  10584

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	*†10‑12	 A mass of m = 2.75 and a spring with k = 48 are attached to one end of a lever at a 
radius of 5.  Calculate the effective mass and effective spring constant at a radius of 10 
on the same lever.  (Use any unit system.)

	†10‑13	 A mass of m = 1.5 and a spring with k = 24 are attached to one end of a lever at a 
radius of 3.  Calculate the effective mass and effective spring constant at a radius of 10 
on the same lever.  (Use any unit system.)

	*†10‑14	 A mass of m = 6.5 and a spring with k = 25 are attached to one end of a lever at a 
radius of 15.  Calculate the effective mass and effective spring constant at a radius of 5 
on the same lever.  (Use any unit system.)

	†10‑15	 Refer to Figure 10-11 and Example 10‑1.  The dimensions for the valve train are (in ips 
unit system): Tappet is a solid cylinder 0.75 diameter by 1.25 long.  Pushrod is a hol-
low tube with 0.375 outside diameter by 0.25 inside diameter by 12 long.  Rocker arm 
has an average cross section of 1 wide by 1.5 high.  Length a = 2, b = 3.  Camshaft is 
1 diameter by 3 between bearing supports, cam in center. Valve spring k = 200.  All 
parts are steel.  Find the effective spring constant and effective mass of a single-DOF 
equivalent system placed on the cam side of the rocker arm.

	†10-16	 Figure P10-2 shows a cam-follower system.  The dimensions of the solid, rectangular 
2 x 2.5 in cross-section aluminum arm are given.  The cutout for the 2-in dia by 1.5-in 
wide steel roller follower is 3 in long.  Find the arm’s mass, center of gravity loca-
tion, and mass moment of inertia about both its CG and the arm pivot.  Create a linear, 
one-DOF lumped mass model of the dynamic system referenced to the cam-follower.  
Ignore damping.

	†10-17	 The cam in Figure P10-2 is a pure eccentric with eccentricity = 0.5 in and turns at 500 
rpm.  The spring has a rate of 123 lb/in and a preload of 173 lb.  Use the method of 
virtual work to find the torque required to rotate the cam through one revolution.  Use 
the data from the solution to Problem 10-16.

	†10-18	 The cam in Figure P10-3 is a pure eccentric with eccentricity = 20 mm and turns at 
200 rpm.  The mass of the follower is 1 kg.  The spring has a rate of 10 N/m and a 
preload of 0.2 N.  Use the method of virtual work to find the torque required to rotate 
the cam through one revolution.  

61210
2

2.5

all dimensions
in inches

Section A-A

A

A

Arm

Cam

Oil

1

FIGURE P10-2
Problems 10-16, 10-17, 10-21, 10-26, and 10-29

ω

a cos ωt

r

a

FIGURE P10-3
Problems 10-18 to 10-19



10

DYNAMICS  FUNDAMENTALS 585

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	†10-19	 Repeat Problem 10-18 using a cam with a 20-mm, symmetric, double harmonic rise in 
180° and double harmonic fall in 180°.  See Chapter 8 for cam formulas.

	*†10-20	 A 3000-lb automobile has a final drive ratio of 1:3 and transmission gear ratios of 1:4, 
1:3, 1:2, and 1:1 in first through fourth speeds, respectively.  What is the effective mass 
of the vehicle as felt at the engine flywheel in each gear?

	*†10-21	 Determine the effective spring constant and effective preload of the spring in Figure 
P10-2 as reflected back to the cam-follower.  See Problem 10-17 for additional data.

	†10-22	 What is the effective inertia of a load applied at the drum of Figure P9-5a as reflected 
back to gear A?  

	†10-23	 What is the effective inertia of a load W applied at the drum of Figure P9-7b as re-
flected back to the arm?

	†10-24	 Refer to Figure 10-10.  Given a = 100 mm, b = 150 mm, kA = 2000 N/m, and mB = 2 
kg, find the equivalent mass at point A and the equivalent spring at point B.

	*†10-25	 Repeat Problem 10-24 with a = 50 mm, b = 150 mm, kA = 1000 N/m, and mB = 3 kg.

	*†10-26	 For the cam-follower arm in Figure P10-2, determine a new location for its fixed pivot 
that will have zero reaction force when the cam applies its force to the follower.

	†10-27	 Figure P10-4 shows a fourbar mechanism.  The crank is 1.00 in wide by 0.5 in thick.  
The coupler and rocker are both 0.75 in wide by 0.5 in thick.  All links are made from 
steel.  The ends of the links have a full radius equal to one half of the link width.  The 
pivot pins all have a diameter of 0.25 in.  Find the moment of inertia of the crank and the 
rocker about their fixed pivots and the moment of inertia of the coupler about its CG.

	†10-28	 The rocker in Figure 10-11a has the following dimensions: a = 50.8 mm, b = 76.2 mm.  
Its total weight is 10.1 N and, when supported on knife-edges at A and B, the weights at 
the supports were found to be 4.3 N and 5.8 N, respectively.  The rocker was supported 
at its pivot point with a low-friction ball bearing and the period of oscillation was found 
to be 0.75 sec.  What is the approximate moment of inertia of the rocker with respect to 
its pivot axis?

	†10-29	 The arm in Problem 10-16 and Figure P10-2 has been redesigned such that the 
cross-section is no longer uniform and the material changed from aluminum to steel.  
However, the dimensions shown in the figure remain unchanged.  The new arm has a 
total weight of 15.3 lb and, when supported on knife-edges at points 9.5 in to the left of 
the pivot and 17.5 in to the right of the pivot, the weights at the supports were found to 
be 7.1 lb and 8.2 lb, respectively. The arm was supported at its pivot point with a low-
friction ball bearing and the period of oscillation was found to be 2.0 sec.  What is the 
approximate moment of inertia of the arm with respect to its pivot axis?

	†10-30	 Figure P10-5 shows a cam-follower system that drives slider 6 through an external out-
put arm 3.  Arms 2 and 3 are both rigidly attached to the 0.75-in-dia shaft X-X, which 
rotates in bearings that are supported by the housing.  The pin-to-pin dimensions of the 
links are shown.  The cross-sections of arms 2, 3, and 5 are solid, rectangular 1.5 x  0.75 
in steel.  The ends of these links have a full radius equal to one-half of the link width.  
Link 4 is 1-in-dia x 0.125 wall round steel tubing.  Link 6 is a 2-in-dia x 6-in-long solid 
steel cylinder.  Find the effective mass and effective spring constant of the follower train 
referenced to the cam-follower roller if the spring at A has a rate of 150 lb/in.

	†10-31	 The spring in Figure P10-5 has a rate of 150 lb/in with a preload of 60 lb.  Determine 
the effective spring constant and preload of the spring as reflected back to the cam-

reed

rocker
7.187"crank

   2"

ground
 9.625"

ωin coupler
 8.375"

FIGURE P10-4
Problem 10-27



10

DESIGN OF MACHINERY 6ed      CHAPTER  10586

	†10-32	 A company wants to manufacture chimes that are made from hollow tubes of various 
lengths.  Regardless of length they will be hung from a hole that is 25 mm from one 
end of the tube.  Develop an equation that will give the distance from this hole to the 
point where the chime should be struck such that there will be zero reaction force at 
the hole where the chime is hung.  The distance should be a function of the length (L), 
outside diameter (OD), and inside diameter (ID) of the chime  as well as the distance 
from the end to the hanging hole (25 mm) only.  Solve your equation for the following 
dimensions: L = 300 mm, OD = 35 mm, ID = 30 mm.

	†10-33	 What is the amount by which the roller arm of Problem 10-30 must be extended on the 
opposite side of the pivot axis O2 in order to make the pivot axis a center of rotation if 
the point where the cam-follower is mounted is a center of percussion? 

*	†10-34	 Figure P7-30d shows a sixbar mechanism with link lengths given in centimeters.  The 
crank (2) is 30 mm wide by 10 mm thick.  The couplers (3 and 5) are both 24 mm wide 
by 8 mm thick.  The rocker (4) is 40 mm wide by 12 mm thick.  All links are made from 
steel.  The ends of the links have a full radius equal to one-half of the link width.  The 
pivot pins all have a diameter of 8 mm.  Find the moment of inertia of the crank and 
rocker about their fixed pivots and the moment of inertia of the couplers about their CGs.

*	†10-35	 A certain baseball bat has a mass of 1 kg and a mass moment of inertia about its CG of 
0.08 kg-m2.  Its CG is located 630 mm from the end closest to the grip.  If the center of 
a batter’s grip is located 75 mm from the same end of the bat, at what point on the bat 
(measured from the end closest to the grip) should the batter hit the ball to produce no 
reaction at the grip?

	†10-36	 The cam of Example 8-8 drives an aligned translating roller follower.  The effective mass 
of the follower and the mechanism that it actuates is 0.45 kg.  The follower spring has a 
rate of 8 N/m with a preload at zero displacement of 0.3 N.  Use the method of virtual 
work to find and plot the torque required to rotate the cam through one rise-fall segment.

	 10-37	 Figure P10-6a shows a typical binary link with full-radius ends.  Figure P10-6b shows a 
full-radius end and gives moments of inertia about its CG and about an axis through the 

B

C

Note that arms 2 and 3
are keyed to shaft X-X
at pivot O2

O5

output
  arm ωf

A
4

5

A

cam

oil

ωf

arm

roller

ωcam2

3

O2
O5B = 10
O5C = 8

pin-to-pin

L4 = 22
L3 = 16
L2 = 8 in

Section A-A

output
  arm

bearing cam

roller

arm

oil

A

X X

6

6 in

3

2

FIGURE P10-5
Problems 10-30 to 10-31 and 10-33

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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center point of the radius R.  Table P10-1 gives data for the length L between holes of 
diameter d; the end radius R; the thickness t; and the material of the link.  For the row(s) 
assigned, find the moment of inertia of the link about one fixed pivot and about its CG.

	 †10-38	 Using the definition of the binary link in Problem 10-37, write a computer program or 
use an equation solver to calculate the moment of inertia of the link about either of its 
fixed pivots and about its CG.  Use the data in row a of Table P10-1 to test your program.

	 10-39	 Figure P10-7a shows a simplified ternary link (the vertices would normally be rounded).  
Table P10-1 gives data for the length L of the base of the link; the angle d between the 
base and one side; the distance p along that side; the diameter d of the three holes; the 
thickness t; and the material of the link.  Figure P10-7b shows a (right) triangular plate 
and gives the moment of inertia about its CG.  Break the ternary link of (a) into two right 
triangles and for the row(s) assigned, find the moment of inertia of the link about its CG 
by using the parallel axis theorem to combine the two triangles.  As a first approximation, 
ignore the holes.

	†10-40	 Using the definition of the ternary link in Problem 10-39, write a computer program or 
use an equation solver to calculate the moment of inertia of the link in (a) about its CG.  
Use the data in row a of Table P10-1 to test your program.  Include the effect of the holes 
in your calculation.

	 10-41	 Set up the six equations below in matrix form and solve them using program MATRIX, 
Mathcad, Matlab, or a calculator that has matrix math capability.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P10-6
Problems 10-37 and 10-38

(a ) (b )

x

y

x
Z

Z

G

G

R

CG

x

y

z
L

t

R (typ.)

CG

x R= 4
3π

I mRGG ≅ 0 31987 2.

I mRZZ = 0 5 2.

For part ( b )

Row L d δ

a
b
c
d
e
f

R t p Material

TABLE  P10-1 Data for Problems 10-37 to 10-40       Lengths in mm, angles in deg.

225
50
175
75

187
138

13
10
15
12
18
12

8
6

10
8

12
12

12
12
15
8

12
10

185
37

125
50

150
75

20
45
60
50
30
70

Steel
Steel
Aluminum
Titanium
Aluminum
Steel
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+ =
+ = −

− + + = −
− + = −

− + =
+ + =

0.15
13.5

3 1.3 2.5 0.50
44.7

0.2 2.1
5.2 7.3 8.6 137

x z
y u

x z u w
z v

u v
z u v

	 10-42	 Set up the nine equations below in matrix form and solve them using program MATRIX, 
Mathcad, Matlab, or a calculator that has matrix math capability.

+ =
+ = −

− + + = −
− + = −

− + = −
− + + + =

− + = −
− + = −

− + + + =

0.5
7.5

3 1.3 2.5 16.0
119.5
12.9

8.2 3.7 2.9 10.3 298
18.9
9.7

8.2 3.7 2.9 10.3 101

x z
y u

x z u t
z v

u w
z u v w

v r
w s

v w r s
	 10-43	 Figure P10-8 shows a fourbar mechanism with link lengths given in inches.  The crank 

(2) is 0.750 in wide by 0.125 in thick.  The coupler (3) is 0.875 in wide by 0.188 in thick.  
The rocker (4) is 0.750 in wide by 0.250 in thick.  All links are made from aluminum.  
The ends of the links have a full radius equal to one half of the link width.  The pivot pins 
all have a diameter of 0.188 in.  Find the moment of inertia of the crank and rocker about 
their fixed pivots and the moment of inertia of the coupler about its CG.

	 10-44	 The cam of Example 8-9 drives an aligned (non-offset) translating roller follower.  The 
effective mass of the follower and the mechanism that it actuates is 0.6 0 kg.  The follower 
spring has a rate of 6 N/m with a preload at zero displacement of 0.4 N.  Use the method 
of virtual work to find and plot the torque required to rotate the cam through one rise-fall 
segment.

1.5d
all sides

L

p

d typ.

δ

xCG, yCG x

y

b

h

b
3

h
3

x

y

t

zz

I mh

I mb

I m b h

xx

yy

zz

=

=

= +( )

2

2

2 2

18

18

18

FIGURE P10-7
Problems 10-39 and 10-40

(a ) (b )

O2

O4

2

3
4

B

A

L4 = 2.75L3 = 3.26
L2 = 2.75L1 = 4.43

AP = 1.63

FIGURE P10-8
Problem 10-43
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Chapter11
DYNAMIC FORCE ANALYSIS
Don’t force it!
Use a bigger hammer
Anonymous

11.0	 INTRODUCTION Watch the first lecture video for this chapter (27:28)*

When kinematic synthesis and analysis have been used to define a geometry and set of 
motions for a particular design task, it is logical and convenient to then use a kinetostatic, 
or inverse dynamics, solution to determine the forces and torques in the system.  We will 
take that approach in this chapter and concentrate on solving for the forces and torques that 
result from, and are required to drive, our kinematic system in such a way as to provide 
the designed accelerations.  Numerical examples are presented throughout this chapter.  
These examples are also downloadable as disk files for input to either program Matrix 
or Linkages.  These programs are described in Appendix A.  The reader is encouraged 
to open the referenced files in these programs and investigate the examples in more detail.  
The file names are noted in the discussion of each example.

11.1	 NEWTONIAN SOLUTION METHOD

Dynamic force analysis can be done by any of several methods.  The one which gives the 
most information about forces internal to the mechanism requires only the use of Newton’s 
law as defined in equations 10.1 and 10.4.  These can be written as a summation of all 
forces and torques in the system.  

 	

*  http://www.designofma-
chinery.com/DOM/Dynam-
ic_Force_Analysis.mp4

http://www.designofmachinery.com/DOM/Dynamic_Force_Analysis.mp4
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∑ ∑= = α (11.1a)m IGF a T

It is also convenient to separately sum force components in X and Y directions, with 
the coordinate system chosen for convenience.  The torques in our two-dimensional sys-
tem are all in the Z direction.  This lets us break the two vector equations into three scalar 
equations:

∑ ∑ ∑= = = α (11.1b)F ma F ma T Ix x y y G

These three equations must be written for each moving body in the system which will 
lead to a set of linear simultaneous equations for any system.  The set of simultaneous 
equations can most conveniently be solved by a matrix method as was shown in Chapter 
5.  These equations do not account for the gravitational force (weight) on a link.  If the 
kinematic accelerations are large compared to gravity, which is often the case, then the 
weight forces can be ignored in the dynamic analysis.  If the machine members are very 
massive or moving slowly with small kinematic accelerations, or both, the weight of the 
members may need to be included in the analysis.  The weight can be treated as an external 
force acting on the CG of the member at a constant angle.

11.2	 SINGLE LINK IN PURE ROTATION Watch a short video (15:30)†

As a simple example of this solution procedure, consider the single link in pure rotation 
shown in Figure 11‑1a.  In any of these kinetostatic dynamic force analysis problems, the 
kinematics of the problem must first be fully defined.  That is, the angular accelerations 
of all rotating members and the linear accelerations of the CGs of all moving members 
must be found for all positions of interest.  The mass of each member and the mass mo-
ment of inertia IG with respect to each member’s CG must also be known.  In addition 
there may be external forces or torques applied to any member of the system.  These are 
all shown in the figure.

While this analysis can be approached in many ways, it is useful for the sake of 
consistency to adopt a particular arrangement of coordinate systems and stick with it.  
We present such an approach here which, if carefully followed, will tend to minimize 
the chances of error.  The reader may wish to develop his or her own approach once the 
principles are understood.  The underlying mathematics is invariant, and one can choose 
coordinate systems for convenience.  The vectors which are acting on the dynamic sys-
tem in any loading situation are the same at a particular time regardless of how we may 
decide to resolve them into components for the sake of computation.  The solution result 
will be the same.

We will first set up a nonrotating, local coordinate system on each moving member, 
located at its CG.  (In this simple example we have only one moving member.)  All exter-
nally applied forces, whether due to other connected members or to other systems must 
then have their points of application located in this local coordinate system.  Figure 11‑1b 
shows a free-body diagram of the moving link 2.  The pin joint at O2  on link 2 has a force 
F12 due to the mating link 1,  the x and y components of which are F12x and F12y.  These 
subscripts are read “force of link 1 on 2” in the x or y direction.  This subscript notation 
scheme will be used consistently to indicate which of the “action-reaction” pair of forces 
at each joint is being solved for. 

 	

†  http://www.designofma-
chinery.com/DOM/Single_
Link_in_Rotation.mp4

http://www.designofmachinery.com/DOM/Single_Link_in_Rotation.mp4
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There is also an externally applied force FP shown at point P, with components FPx 
and FPy.  The points of application of these forces are defined by position vectors R12 and 
RP, respectively.  These position vectors are defined with respect to the local coordinate 
system at the CG of the member.  We will need to resolve them into x and y components.  
There will have to be a source torque available on the link to drive it at the kinematically 
defined accelerations.  This is one of the unknowns to be solved for.  The source torque is 
the torque delivered from the ground to the driver link 2 and so is labeled T12.  The other 
two unknowns in this example are the force components at the pin joint F12x and F12y.

We have three unknowns and three equations, so the system can be solved.  Equations 
11.1 can now be written for the moving link 2.  Any applied forces or torques whose di-
rections are known must retain the proper signs on their components.  We will assume all 
unknown forces and torques to be positive.  Their true signs will “come out in the wash.”

∑
∑ ( ) ( )

= + =

= + × + × = α
(11.2)

12 2

12 12 12

m

I

P G

P P G

F F F a

T T R F R F

The force equation can be broken into its two components.  The torque equation 
contains two cross product terms which represent  torques due to the forces applied at a 
distance from the CG.  When these cross products are expanded, the system of equations 
becomes:

( ) ( )

+ =

+ =

+ − + − = α

(11.3)
12 2

12 2

12 12 12 12 12

F F m a

F F m a

T R F R F R F R F I

P G

P G

P P P P G

x x x

y y y

x y y x x y y x

ω
α θ

FIGURE 11-1
Dynamic force analysis of a single link in pure rotation

(a )  Kinematic diagram (b)  Force (free-body) diagrams
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Note:  x, y is a local, nonrotating coordinate system (LNCS), attached to the link
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This can be put in matrix form with the coefficients of the unknown variables forming 
the A matrix, the unknown variables the B vector, and the constant terms the C vector 
and then solved for B.

−  ( )

[ ] [ ] [ ]× =

−



















×



















=

−

−

α −























1 0 0
0 1 0

1
(11.4)

12 12

12

12

12

2

2
R R

F

F

T

m a F

m a F

I R F R F

G P

G P

G P P P P
y x

x

y

x x

y y

x y y x

A B C

Note that the A matrix contains all the geometric information and the C matrix 
contains all the dynamic information about the system.  The B matrix contains all the 
unknown forces and torques.  We will now present a numerical example to reinforce your 
understanding of this method.

✍EXAMPLE 11‑1

Dynamic Force Analysis of a Single Link in Pure Rotation.  (See Figure 11‑1)

Given: 	 The 10-in-long link shown weighs 4 lb.  Its CG is on the line of centers at the 5‑in 
point.  Its mass moment of inertia about its CG is 0.08 lb-in-sec2.  Its kinematic 
data are:

θ ω α

°

deg rad/sec rad/sec in/sec

30 20 15 2001 @ 208
2 2 2

2 2
2

aG

	 An external force of 40 lb at 0° is applied at point P.

Find:	 The force F12 at pin joint O2 and the driving torque T12 needed to maintain motion 
with the given acceleration for this instantaneous position of the link.

Solution:

	 1	 Convert the given weight to proper mass units, in this case blobs:

= == 4 lb
386 in/sec

0.0104 blob ( )2mass weight
g

a

	 2	 Set up a local coordinate system at the CG of the link and draw all applicable vectors acting 
on the system as shown in the figure.  Draw a free-body diagram as shown.

	 3	 Calculate the x and y components of the position vectors R12 and RP in this coordinate system:

= ∠ ° = − = −

= ∠ ° = + = +

5 in @ 210 ; 4.33, 2.50
( )

5 in @ 30 ; 4.33, 2.50

12 12 12R R
b

R RP P P

x y

x y

R

R

	 4	 Calculate the x and y components of the acceleration of the CG in this coordinate system:
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= ∠ ° = − = −2001@ 208 ; 1766.78, 939.41 ( )a a cG G Gx y
a

	 5	 Calculate the x and y components of the external force at P in this coordinate system:

= ∠ ° = =40 @ 0 ; 40, 0 ( )F F dP P Px y
F

	 6	 Substitute these given and calculated values into the matrix equation 11.4:

−  .. { }

( )( )
( )( )

( )( ) ( )( ) ( )( )−




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

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

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

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

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

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
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





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

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
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


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
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



=
−

−
















1 0 0
0 1 0

2.50 4.33 1

0.01 1766.78 40

0.01 939.41 0

0 08 15 4.33 0 2.5 40

( )

1 0 0
0 1 0

2.50 4.33 1

57.67
9.39

101.2

12

12

12

12

12

12

F

F

T

e

F

F

T

x

y

x

y

	 7	 Solve this system either by inverting matrix A and premultiplying that inverse times matrix C 
using a pocket calculator with matrix capability; using Mathcad or Matlab; or by putting the 
values for matrices A and C into program Matrix downloadable with this text.

		  Program Matrix gives the following solution:

= − = − =57.67 lb, 9.39 lb, 204.72 lb-in ( )12 12 12F F T f
x y

		  Converting the force to polar coordinates:

= ∠ °58.43 @ 189.25 ( )12 gF

Open the disk file E11‑01.mtr in program Matrix to exercise this example.

11.3	 FORCE ANALYSIS OF A THREEBAR CRANK-SLIDE LINKAGE

When there is more than one link in the assembly, the solution simply requires that the 
three equations 11.1b be written for each link and then solved simultaneously.  Figure 
11‑2a shows a threebar crank-slide linkage.  This linkage has been simplified from the 
fourbar crank-slider (see Figure 11‑4) by replacing the kinematically redundant slider 
block (link 4) with a half joint as shown.  This linkage transformation reduces the number 
of links to three with no change in degree of freedom (see Section 2.10).  Only links 2 
and 3 are moving.  Link 1 is ground.  Thus we should expect to have six equations in six 
unknowns (three per moving link).

Figure 11‑2b shows the linkage “exploded” into its three separate links, drawn as 
free bodies.  A kinematic analysis must have been done in advance of this dynamic force 
analysis in order to determine, for each moving link, its angular acceleration and the linear 
acceleration of its CG.  For the kinematic analysis, only the link lengths from pin to pin 
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were required.  For a dynamic analysis the mass (m) of each link, the location of its CG, 
and its mass moment of inertia (IG ) about that CG are also needed.  

The CG of each link is initially defined by a position vector rooted at one pin joint 
whose angle is measured with respect to the line of centers of the link in the local, rotat-
ing coordinate system (LRCS) x’, y’.  This is the most convenient way to establish the CG 
location since the link line of centers is the kinematic definition of the link.  However, 
we will need to define the link’s dynamic parameters and force locations with respect to 
a local, nonrotating coordinate system (LNCS) x, y located at its CG and which is always 
parallel to the global coordinate system (GCS) XY.  The position vector locations of all at-
tachment points of other links and points of application of external forces must be defined 
with respect to the link’s LNCS.  Note that these kinematic and applied force data must 
be available for all positions of the linkage for which a force analysis is desired.  In the 

FIGURE 11-2
Dynamic force analysis of a crank-slide linkage

(a )  Linkage and dimensions (b )  Free-body diagrams
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following discussion and examples, only one linkage position will be addressed.  The pro-
cess is identical for each succeeding position and only the calculations must be repeated.  
Obviously, a computer will be a valuable aid in accomplishing the task.

Link 2 in Figure 11‑2b shows forces acting on it at each pin joint, designated F12 and 
F32.  By convention their subscripts denote the force that the adjoining link is exerting 
on the link being analyzed; that is, F12 is the force of 1 on 2 and F32 is the force of 3 on 
2.  Obviously there is also an equal and opposite force at each of these pins which would 
be designated as F21 and F23, respectively.  The choice of which of the members of these 
pairs of forces to be solved for is arbitrary.  As long as proper bookkeeping is done, their 
identities will be maintained.

When we move to link 3, we maintain the same convention of showing forces acting 
on the link in its free-body diagram.  Thus at instant center I23 we show F23 acting on 
link 3.  However, because we showed force F32 acting at the same point on link 2, this 
introduces an additional unknown to the problem for which we need an additional equa-
tion.  The equation is available from Newton’s third law:

= − (11.5)23 32F F

Thus we are free to substitute the negative reaction force for any action force at any 
joint.  This has been done on link 3 in the figure in order to reduce the unknown forces 
at that joint to one, namely F32.  The same procedure is followed at each joint with one 
of the action-reaction forces arbitrarily chosen to be solved for and its negative reaction 
applied to the mating link.

The naming convention used for the position vectors (Rap) which locate the pin joints 
with respect to the CG  in the link’s nonrotating local coordinate system is as follows.  
The first subscript (a) denotes the adjoining link to which the position vector points.  The 
second subscript ( p) denotes the parent link to which the position vector belongs.  Thus 
in the case of link 2 in Figure 11‑2b, vector R12 locates the attachment point of link 1 
to link 2, and R32 the attachment point of link 3 to link 2.  Note that in some cases these 
subscripts will match those of the pin forces shown acting at those points, but where the 
negative reaction force has been substituted as described above, the subscript order of the 
force and its position vector will not agree.  This can lead to confusion and must be care-
fully watched for typographical errors when setting up the problem.

Any external forces acting on the links are located in similar fashion with a position 
vector to a point on the line of application of the force.  This point is given the same letter 
subscript as that of the external force.  Link 3 in the figure shows such an external force 
FP acting on it at point P.  The position vector RP locates that point with respect to the 
CG.  It is important to note that the CG of each link is consistently taken as the point of 
reference for all forces acting on that link.  Left to its own devices, an unconstrained body 
in complex motion will spin about its own CG; thus we analyze its linear acceleration at 
that point and apply the angular acceleration about the CG as a center.

Equations 11.1 are now written for each moving link.  For link 2, with the cross 
products expanded:

( ) ( )

+ =

+ =

+ − + − = α

(11.6a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32

2

2

2

F F m a

F F m a

T R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x
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For link 3, with the cross products expanded, note the substitution of the reaction 
force – F32 for F23:

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.6b)
13 32 3

13 32 3

13 13 13 13 23 32 23 32 3

3

3

3

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

Note also that T12, the source torque, only appears in the equation for link 2 as that is 
the driver crank to which the motor is attached.  Link 3 has no externally applied torque 
but does have an external force FP which might be due to whatever link 3 is pushing on 
to do its external work.

There are seven unknowns present in these six equations, F12x, F12y, F32x, F32y, F13x, 
F13y, and T12.  But, F13y is due only to friction at the joint between link 3 and link 1.  We 
can write a relation for the friction force f at that interface such as f = ±µN, where ±µ is 
a known coefficient of coulomb friction.  The friction force always opposes motion.  The 
kinematic analysis will provide the velocity of the link at the sliding joint.  The direction 
of f will always be the opposite of this velocity.  Note that µ is a nonlinear function which 
has a discontinuity at zero velocity; thus at the linkage positions where velocity is zero, the 
inclusion of µ in these linear equations is not valid.  (See Figure 10-7a.)  In this example, 
the normal force N is equal to F13x and the friction force f is equal to F13y.  For linkage 
positions with nonzero velocity, we can eliminate F13y by substituting into equation 11.6b,

( )= − µ (11.6c)13 31 13F SGN V F
y x

where m is negated and multiplied by the sign of the velocity at that point.  The absolute 
value on F13x is needed to prevent reversal of F13y with the sign of F13x.  Friction doesn’t 
care which side of the pin B is being forced against the slot by F13x.

We are then left with six unknowns in equations 11.6 and can solve them simultane-
ously.  We also rearrange equations 11.6a and 11.6b to put all known terms on the right 
side.

( )
( )

+ =

+ =

+ − + − = α

− = −

− µ − = −

−µ − − + = α − +

(11.6d)

12 32 2

12 32 2

12 12 12 12 12 32 32 32 32 2

13 32 3

31 13 32 3

13 13 13 23 32 23 32 3

2

2

2

3

3

3

F F m a

F F m a

T R F R F R F R F I

F F m a F

SGN V F F m a F

R R F R F R F I R F R F

G

G

G

G P

G P

G P P P P

x x x

y y y

x y y x x y y x

x x x x

x y y y

x y x x y y x x y y x

Putting these six equations in matrix form, we get:
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( )

























































































− −

−
− −µ

− µ −

× =
α

−

−

α − +

(11.7)

1 0 1 0 0 0
0 1 0 1 0 0

0 1

0 0 1 0 1 0
0 0 0 1 ( ) 0

0 0 0

31

12 12 32 32

23 23 13 13

12

12

32

32

13

12

2

2

2

3

3

3

2

2

2

3

3

3

R R R R

SGN V

R R R R

F

F

F

F

F

T

m a

m a

I

m a F

m a F

I R F R F

G

G

G

G P

G P

G P P P P

y x y x

y x x y

x

y

x

y

x

x

y

x x

y y

x y y x

This system can be solved by using program Matrix or any other matrix solving calcula-
tor.  As an example of this solution consider the following linkage data.

✍EXAMPLE 11-2

Dynamic Force Analysis of a Threebar Crank-Slide Linkage with Half Joint.  (See Figure 11‑2.)

Given:	 The 5-in long crank (link 2) shown weighs 2 lb.  Its CG is at 3 in and 30° from 
the line of centers.  Its mass moment of inertia about its CG is 0.05 lb-in-sec2.  Its 
acceleration is defined in its LNCS, x,y.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

60 30 –10 2700.17 @ –89.4
2 2 2

2 2
2

aG

	 The coupler (link 3) is 15 in long and weighs 4 lb.  Its CG is at 9 in and 45° from 
the line of centers.  Its mass moment of inertia about its CG is 0.10 lb-in-sec2.  Its 
acceleration is defined in its LNCS, x,y.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

99.59 –8.78 –136.16 3453.35 @ 254.4
3 3 3

2 2
3

aG

	 The sliding joint on link 3 has a velocity of 96.95 in/sec in the +Y direction.

	 There is an external force of 50 lb at – 45°, applied at point P which is located at 
2.7 in and 101° from the CG of link 3, measured in the link’s embedded, rotating 
coordinate system or LRCS x’, y’ (origin at A and x axis from A to B).  The coef-
ficient of friction µ is 0.2.

Find:	 The forces F12, F32, F13 at the joints and the driving torque T12 needed to maintain 
motion with the given acceleration for this instantaneous position of the link.

Solution:

	 1	 Convert the given weights to proper mass units, in this case blobs:

= == 2 lb
386 in/sec

0.0052 blob ( )2 2mass weight
g

alink
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= == 4 lb
386 in/sec

0.0104 blob ( )
3 2mass weight

g
b

link

	 2	 Set up a local, nonrotating xy coordinate system (LNCS) at the CG of each link, and draw all 
applicable position and force vectors acting within or on that system as shown in Figure 11‑2.  
Draw a free-body diagram of each moving link as shown.

	 3	 Calculate the x and y components of the position vectors R12, R32, R23, R13, and RP in the 
LNCS coordinate system:

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = − = −

3.00 @ 270.0 ; 0.000, 3.0

2.83 @ 28.0 ; 2.500, 1.333

9.00 @ 324.5 ; 7.329, 5.224 ( )

10.72 @ 63.14 ; 4.843, 9.563

2.70 @ 201.0 ; 2.521, 0.968

12 12 12

32 32 32

23 23 23

13 13 13

R R

R R

R R c

R R

R RP P P

x y

x y

x y

x y

x y

R

R

R

R

R

		  These position vector angles are measured with respect to the LNCS which is always parallel 
to the global coordinate system (GCS), making the angles the same in both systems.

	 4	 Calculate the x and y components of the acceleration of the CGs of all moving links in the 
global coordinate system:

= ∠ − ° = = −

= ∠ ° = − = −

2700.17 @ 89.4 ; 28.28, 2700
( )

3453.35 @ 254.4 ; 930.82, 3325.54
2 2 2

3 3 3

a a
d

a a

G G G

G G G

x y

x y

a

a

	 5	 Calculate the x and y components of the external force at P in the global coordinate system:

= ∠ − ° = = −50@ 45 ; 35.36, 35.36 ( )F F eP P Px y
F

	 6	 Substitute these given and calculated values into the matrix equation 11.7.

..

..

( ) ( )

( )( )
( )( )

( )( )
( )( )

( )( ) ( )
( )( ) ( )( ) ( )( )

−
−

− −
− − − 



























×































=

−

−

− −

− − −

− − − + −



























=

−
−

−

−

























1 0 1 0 0 0
0 1 0 1 0 0
3 0 1.333 2.5 0 1
0 0 1 0 1 0
0 0 0 1 0.2 0
0 0 5.224 7.329 0.2 4.843 9.563 0

( )
0.005 28.28

0.005 2700

0 05 10

0.01 930.82 35.36

0.01 3325.54 35.36

0 1 –136.16 2.521 35.36 0.968 35.36

0.141
13.500

0.500
44.668

2.105
136.987

12

12

32

32

13

12

F

F

F

F

F

T
f

x

y

x

y

x
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	 7	 Solve this system either by inverting matrix A and premultiplying that inverse times matrix 
C using a pocket calculator with matrix capability; using Mathcad or Matlab; or by inputting 
the values for matrices A and C to program Matrix downloadable with this text which gives 
the following solution:































=

−
−

−
−

























39.232
10.336
39.373

3.164
5.295

177.590

( )

12

12

32

32

13

12

F

F

F

F

F

T

g

x

y

x

y

x

		  Converting the forces to polar coordinates:

= ∠ °
= ∠ − °
= ∠ °

40.57 lb @ 194.76
39.50 lb @ 4.60 ( )

5.40 lb @ 191.31

12

32

13

h
F
F
F

Open the disk file E11‑02.mtr in program Matrix to exercise this example.

11.4	 FORCE ANALYSIS OF A FOURBAR LINKAGE Watch a video (12:19)†

Figure 11‑3a shows a fourbar linkage.  All dimensions of link lengths, link positions, loca-
tions of the links’ CGs, linear accelerations of those CGs, and link angular accelerations 
and velocities have been previously determined from a kinematic analysis.  We now wish 
to find the forces acting at all the pin joints of the linkage for one or more positions.  The 
procedure is exactly the same as that used in the previous two examples.  This linkage 
has three moving links.  Equation 11.1 provides three equations for any link or rigid body 
in motion.  We should expect to have nine equations in nine unknowns for this problem.

Figure 11‑3b shows the free-body diagrams for all links, with all forces shown.  Note 
that an external force FP is shown acting on link 3 at point P.  Also an external torque T4 
is shown acting on link 4.  These external loads are due to some other mechanism (device, 
person, thing, etc.) pushing or twisting against the motion of the linkage.  Any link can 
have any number of external loads and torques acting on it.  Only one external torque 
and one external force are shown here to serve as examples of how they are handled in 
the computation.  (Note that a more complicated force system, if present, could also be 
reduced to the combination of a single force and torque on each link.)

To solve for the pin forces, it is necessary that these applied external forces and 
torques be defined for all positions of interest.  We will solve for one member of the pair 
of action-reaction forces at each joint, and also for the driving torque T12 needed to be 
supplied at link 2 in order to maintain the kinematic state as defined.  The force subscript 
convention is the same as that defined in the previous example.  For example, F12 is the 
force of 1 on 2 and F32 is the force of 3 on 2.  The equal and opposite forces at each of 

 	

†  http://www.designofma-
chinery.com/DOM/Four-
bar_Force_Analysis.mp4

http://www.designofmachinery.com/DOM/Fourbar_Force_Analysis.mp4
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FIGURE 11-3
Dynamic force analysis of a fourbar linkage.  (See also Figure P11-2)

(a )  The linkage and dimensions

(b )  Free-body diagrams
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these pins are designated F21 and F23, respectively.  All the unknown forces in the figure 
are shown at arbitrary angles and lengths as their true values are still to be determined.

The linkage kinematic parameters are defined with respect to a global XY system 
(GCS) whose origin is at the driver pivot O2 and whose X axis goes through link 4’s fixed 
pivot O4.  The mass (m) of each link, the location of its CG, and its mass moment of inertia 
(IG) about that CG are also needed.  The CG of each link is initially defined within each 
link with respect to a local moving and rotating axis system (LRCS) embedded in the 
link because the CG is an unchanging physical property of the link. The origin of this x’, 
y’ axis system is at one pin joint and the x’ axis is the line of centers of the link.  The CG 
position within the link is defined by a position vector in this LRCS.  The instantaneous 
location of the CG can easily be determined for each dynamic link position by adding the 
angle of the internal CG position vector to the current GCS angle of the link.

We need to define each link’s dynamic parameters and force locations with respect 
to a local, moving, but nonrotating axis system (LNCS) x,y located at its CG as shown on 
each free-body diagram in Figure 11‑3b.  The position vector locations of all attachment 
points of other links and points of application of external forces must be defined with 
respect to this LNCS axis system.  These kinematic and applied force data differ for each 
position of the linkage.  In the following discussion and examples, only one linkage posi-
tion will be addressed.  The process is identical for each succeeding position.

Equations 11.1 are written for each moving link.  For link 2, the result is identical to 
that done for the crank-slider example in equation 11.6a.

( ) ( )

+ =

+ =

+ − + − = α

(11.8a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32 2

2

2

2

F F m a

F F m a

T R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

For link 3, with substitution of the reaction force –F32 for F23, the result is similar to 
equation 11.6b with some subscript changes to reflect the presence of link 4.

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.8b)
43 32 3

43 32 3

43 43 43 43 23 32 23 32 3

3

3

3

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

For link 4, substituting the reaction force –F43 for F34, a similar set of equations 11.1 
can be written:

( ) ( )

− =

− =

− − − + = α

(11.8c)
14 43 4

14 43 4

14 14 14 14 34 43 34 43 4 4

4

4

4

F F m a

F F m a

R F R F R F R F T I

G

G

G

x x x

y y y

x y y x x y y x

Note that T12, the source torque, only appears in the equation for link 2, the motor-
driven crank.  Link 3, in this example, has no externally applied torque (though it could 
have) but does have an external force FP.  Link 4, in this example, has no external force 
acting on it (though it could have) but does have an external torque T4.  (The driving link 
2 could also have an externally applied force on it though it usually does not.)  There are 
nine unknowns present in these nine equations, F12x, F12y, F32x, F32y, F43x, F43y, F14x, 
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F14y, and T12, so we can solve them simultaneously.  We rearrange terms in equations 
11.8 to put all known constant terms on the right side and then put them in matrix form.























































































































− −

−
−

− −

−
−

− −

× =

α

−

−

α − +

α −

(11.9)

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0

0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0

12 12 32 32

23 23 43 43

34 34 14 14

12

12

32

32

43

43

14

14

12

2

2

2

3

3

3

4

4

4 4

2

2

2

3

3

3

4

4

4

R R R R

R R R R

R R R R

F

F

F

F

F

F

F

F

T

m a

m a

I

m a F

m a F

I R F R F

m a

m a

I T

G

G

G

G P

G P

G P P P P

G

G

G

y x y x

y x y x

y x y x

x

y

x

y

x

y

x

y

x

y

x x

y y

x y y x

x

y

This system can be solved by using program Matrix or any matrix solving calcula-
tor.  As an example of this solution consider the following linkage data.

✍EXAMPLE 11‑3 

Dynamic Force Analysis of a Fourbar Linkage.  (See Figure 11‑3)

Given: 	 The 5-in-long crank (link 2) shown weighs 1.5 lb.  Its CG is at 3 in @ +30° from 
the line of centers (LRCS).  Its mass moment of inertia about its CG is 0.4 lb-in-
sec2.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

60 25 –40 1878.84 @ 273.66
2 2 2

2 2
2

aG

	 The coupler (link 3) is 15 in long and weighs 7.7 lb.  Its CG is at 9 in @ 45° off the 
line of centers (LRCS).  Its mass moment of inertia about its CG is 1.5 lb-in-sec2.  
Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

20.92 –5.87 120.9 3646.1 @ 226.5
3 3 3

2 2
3

aG

	 The ground link is 19 in long.  The rocker (link 4) is 10 in long and weighs 5.8 lb.  
Its CG is at 5 in @ 0° on the line of centers (LRCS).  Its mass moment of inertia 
about its CG is 0.8 lb-in-sec2.  There is an external torque on link 4 of 120 lb-in 
(GCS).  An external force of 80 lb @ 330° acts on link 3 in the GCS, applied at 
point P at 3 in @ 100° from the CG of link 3 (LRCS).  The kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

104.41 7.93 276.29 1416.8 @ 207.2
4 4 4

2 2
4

aG
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Find:	 Forces F12, F32, F43, and F14 at the joints and the driving torque T12 needed to main-
tain motion with the given acceleration for this instantaneous position of the link.

Solution:

	 1	 Convert the given weight to proper mass units, in this case blobs:

= == 1.5 lb
386 in/sec

0.004 blob ( )2 2mass weight
g

alink

= == 7.7 lb
386 in/sec

0.020 blob ( )3 2mass weight
g

blink

= == 5.8 lb
386 in/sec

0.015 blob ( )4 2mass weight
g

clink

	 2	 Set up an LNCS xy coordinate system at the CG of each link, and draw all applicable vectors 
acting on that system as shown in the figure.  Draw a free-body diagram of each moving link.

	 3	 Calculate the x and y components of the position vectors R12, R32, R23, R43, R34, R14, and RP 
in the link’s LNCS.  R43, R34, and R14 will have to be calculated from the given link geometry 
data using the law of cosines and law of sines.  Note that the current value of link 3’s position 
angle (θ3) in the GCS must be added to the angles of all position vectors before creating their 
x,y components in the LNCS if their angles were originally measured with respect to the link’s 
embedded, local rotating coordinate system (LRCS).

= ∠ ° = = −

= ∠ ° = =

= ∠ ° = − = −

= ∠ − ° = = −

= ∠ ° = − =

= ∠ ° = = −

= ∠ ° = − =

3.00 @ 270.00 ; 0.000, 3

2.83 @ 28.00 ; 2.500, 1.333

9.00 @ 245.92 ; 3.672, 8.217

10.72 @ 15.46 ; 10.332, 2.858 ( )

5.00 @ 104.41 ; 1.244, 4.843

5.00 @ 284.41 ; 1.244, 4.843

3.00 @ 120.92 ; 1.542, 2.574

12 12 12

32 32 32

23 23 23

43 43 43

34 34 34

14 14 14

R R

R R

R R

R R d

R R

R R

R RP P P

x y

x y

x y

x y

x y

x y

x y

R

R

R

R

R

R

R

	 4	 Calculate the x and y components of the acceleration of the CGs of all moving links in the 
global coordinate system (GCS):

= ∠ ° = = −

= ∠ ° = − = −

= ∠ ° = − = −

a a

a a e

a a

G G G

G G G

G G G

x y

x y

x y

1878.84 @ 273.66 ; 119.94, 1875.01

3646.10 @ 226.51 ; 2509.35, 2645.23 ( )

1416.80 @ 207.24 ; 1259.67, 648.50

2 2 2

3 3 3

4 4 4

a

a

a

	 5	 Calculate the x and y components of the external force at P in the GCS:

= ∠ ° = = −80 @ 330 ; 69.28, 40.00 ( )3 3 3F F fP P Px y
F

	 6	 Substitute these given and calculated values into the matrix equation 11.9.

F14y, and T12, so we can solve them simultaneously.  We rearrange terms in equations 
11.8 to put all known constant terms on the right side and then put them in matrix form.























































































































− −

−
−

− −

−
−

− −

× =

α

−

−

α − +

α −

(11.9)

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0

0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0

12 12 32 32

23 23 43 43

34 34 14 14

12

12

32

32

43

43

14

14

12

2

2

2

3

3

3

4

4

4 4

2

2

2

3

3

3

4

4

4

R R R R

R R R R

R R R R

F

F

F

F

F

F

F

F

T

m a

m a

I

m a F

m a F

I R F R F

m a

m a

I T

G

G

G

G P

G P

G P P P P

G

G

G

y x y x

y x y x

y x y x

x

y

x

y

x

y

x

y

x

y

x x

y y

x y y x

x

y

This system can be solved by using program Matrix or any matrix solving calcula-
tor.  As an example of this solution consider the following linkage data.

✍EXAMPLE 11‑3 

Dynamic Force Analysis of a Fourbar Linkage.  (See Figure 11‑3)

Given: 	 The 5-in-long crank (link 2) shown weighs 1.5 lb.  Its CG is at 3 in @ +30° from 
the line of centers (LRCS).  Its mass moment of inertia about its CG is 0.4 lb-in-
sec2.  Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

60 25 –40 1878.84 @ 273.66
2 2 2

2 2
2

aG

	 The coupler (link 3) is 15 in long and weighs 7.7 lb.  Its CG is at 9 in @ 45° off the 
line of centers (LRCS).  Its mass moment of inertia about its CG is 1.5 lb-in-sec2.  
Its kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

20.92 –5.87 120.9 3646.1 @ 226.5
3 3 3

2 2
3

aG

	 The ground link is 19 in long.  The rocker (link 4) is 10 in long and weighs 5.8 lb.  
Its CG is at 5 in @ 0° on the line of centers (LRCS).  Its mass moment of inertia 
about its CG is 0.8 lb-in-sec2.  There is an external torque on link 4 of 120 lb-in 
(GCS).  An external force of 80 lb @ 330° acts on link 3 in the GCS, applied at 
point P at 3 in @ 100° from the CG of link 3 (LRCS).  The kinematic data are:

θ ω α

°

deg rad/sec rad/sec in/sec

104.41 7.93 276.29 1416.8 @ 207.2
4 4 4

2 2
4

aG
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[ ]

( )( )
( )( )

( )( )
( )( ) ( )

( )( ) ( )
( )( ) ( )( ) ( )( )

( )( )
( )( )

( )( ) ( )















































































































































..

−
−

−
−

−
−

× =

−

−

− −

− − −

− − − −

−

−

−

=

−
−

−
−

−
−

( )

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
3 0 1.330 2.5 0 0 0 0 1
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 8.217 3.673 2.861 10.339 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 4.843 1.244 4.843 1.244 0

0.004 119.94

0.004 1875.01

0 4 40

0.02 2509.35 69.28

0.02 2645.23 40

1.5 120.9 1.542 40 2.574 69.28

0.015 1259.67

0.015 648.50

0.8 276.29 120

0.480
7.500

16.000
119.465

12.908
298.003

18.896
9.727

101.031

12

12

32

32

43

43

14

14

12

g

F

F

F

F

F

F

F

F

T

x

y

x

y

x

y

x

y

	 7	 Solve this system either by inverting matrix A and premultiplying that inverse times  matrix C 
using a pocket calculator with matrix capability, or by inputting the values for matrices A and 
C to program Matrix downloadable with this text, which gives the following solution:











































=

−
−

−

−

































117.65
107.84
118.13
100.34

1.34
87.43
20.23
77.71

243.23

( )

12

12

32

32

43

43

14

14

12

F

F

F

F

F

F

F

F

T

h

x

y

x

y

x

y

x

y

		  Converting the forces to polar coordinates:
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= ∠ °

= ∠ °

= ∠ °

= ∠ °

159.60 lb @ 222.52

154.99 lb @ 40.35

87.44 lb @ 90.88 ( )

80.30 lb @ 104.59

12

32

43

14

i

F

F

F

F

	 8	 The pin-force magnitudes in (i) are needed to size the pivot pins and links against failure and 
to select pivot bearings that will last for the required life of the assembly.  The driving torque 
T12 defined in (h) is needed to select a motor or other device capable of supplying the power 
to drive the system.  See Section 2.19 for a brief discussion of motor selection.  Issues of stress 
calculation and failure prevention are beyond the scope of this text, but note that those calcula-
tions cannot be done until a good estimate of the dynamic forces and torques on the system has 
been made by methods such as those shown in this example.

This solves the linkage for one position.  A new set of values can be put into the A and 
C matrices for each position of interest at which a force analysis is needed.   Open the disk 
file E11‑03.mtr in program Matrix to exercise this example.  The disk file E11‑03.4br 
can also be opened in program Linkages and will run the linkage through a series of 
positions starting with the stated parameters as initial conditions.  The linkage will slow 
to a stop and then run in reverse due to the negative acceleration.  The matrix for equation 
(g) can be seen within Linkages using Dynamics/Solve/Show Matrix.

It is worth noting some general observations about this method at this point.  The so-
lution is done using cartesian coordinates of all forces and position vectors.  Before being 
placed in the matrices, these vector components must be defined in the global coordinate 
system (GCS) or in nonrotating, local coordinate systems, parallel to the global coordinate 
system, with their origins at the links’ CGs (LNCS).  Some of the linkage parameters are 
normally expressed in such coordinate systems, but others are not, and so must be trans-
formed to the proper coordinate system.  The kinematic data should all be computed in the 
global system or in parallel, nonrotating, local systems placed at the CGs of individual 
links.  Any external forces on the links must also be defined in the global system.

However, the position vectors that define intralink locations, such as the pin joints 
versus the CG, or which locate points of application of external forces versus the CG are 
defined in local, rotating coordinate systems embedded in the links (LRCS).  Thus these 
position vectors must be redefined in a nonrotating, parallel system before being used in 
the matrix.  An example of this is vector Rp, which was initially defined as 3 in at 100° in 
link 3’s embedded, rotating coordinate system.  Note in Example 11-3 that its cartesian 
coordinates for use in the equations were calculated after adding the current value of θ3 
to its angle.  This redefined Rp as 3 in at 120.92° in the nonrotating local system.  The 
same was done for position vectors R12, R32, R23, R43, R34, and R14.  In each case the 
intralink angle of these vectors (which is independent of linkage position) was added to 
the current link angle to obtain its position in the xy system at the link’s CG.  The proper 
definition of these position vector components is critical to the solution, and it is very easy 
to make errors in defining them.

To further confuse things, even though the position vector Rp is initially measured 
in the link’s embedded, rotating  coordinate system, the force Fp, which it locates, is not.  
The force Fp is not part of the link, as is Rp, but rather is part of the external world, so it 
is defined in the global system.
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11.5	 FORCE ANALYSIS OF A FOURBAR CRANK-SLIDER LINKAGE

The approach taken for the pin-jointed fourbar is equally valid for a fourbar crank-slider 
linkage.  The principal difference will be that the slider block will have no angular ac-
celeration.  Figure 11‑4 shows a fourbar crank-slider with an external force on the slider 
block, link 4.  This is representative of the mechanism used extensively in piston pumps 
and internal combustion engines.  We wish to determine the forces at the joints and the 
driving torque needed on the crank to provide the specified accelerations.  A kinematic 
analysis must have previously been done in order to determine all position, velocity, and 
acceleration information for the positions being analyzed.  Equations 11.1 are written for 
each link.  For link 2:

( ) ( )

+ =

+ =

+ − + − = α

(11.10a)
12 32 2

12 32 2

12 12 12 12 12 32 32 32 32 2

2

2

2

F F m a

F F m a

T R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

This is identical to equation 11.8a for the “pure” fourbar linkage.   For link 3:

( ) ( )

− =

− =

− − − = α

(11.10b)
43 32 3

43 32 3

43 43 43 43 23 32 23 32 3

3

3

3

F F m a

F F m a

R F R F R F R F I

G

G

G

x x x

y y y

x y y x x y y x

This is similar to equation 11.8b, lacking only the terms involving Fp since there is no 
external force shown acting on link 3 of our example crank-slider.  For link 4:

( ) ( ) ( )

− + =

− + =

− − − + − = α

(11.10c)
14 43 4

14 43 4

14 14 14 14 34 43 34 43 4

4

4

4

F F F m a

F F F m a

R F R F R F R F R F R F I

P G

P G

P P P P G

x x x x

y y y y

x y y x x y y x x y y x

These contain the external force Fp shown acting on link 4.

For the inversion of the crank-slider shown, the slider block, or piston, is in pure 
translation against the stationary ground plane; thus it can have no angular acceleration or 
angular velocity.  Also, the position vectors in the torque equation (equation 11.10c) are 
all zero as the force Fp acts at the CG.  Thus the torque equation for link 4 (third expres-
sion in equation 11.10c) is zero for this inversion of the crank-slider linkage.  Its linear 
acceleration also has no y component. 

α = =0, 0 (11.10d)4 4
aG y

The only x directed force that can exist at the interface between links 4 and 1 is fric-
tion.  Assuming coulomb friction, the x component can be expressed in terms of the y 
component of force at this interface.  We can write a relation for the friction force f at 
that interface such as f = ±µN, where ±µ is a known coefficient of friction.  The plus and 
minus signs on the coefficient of friction are to recognize the fact that the friction force 
always opposes motion.  The kinematic analysis will provide the velocity of the link at 
the sliding joint.  The sign on µ will always be the opposite of the sign of this velocity.
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( )= − µ (11.10e)14 14F SGN d F
x y



The SGN function returns the sign of its argument.  The absolute value on F14y is needed 
to prevent reversal of F14x with the sign of F14y.  Friction doesn’t care which side of the 
piston is being forced against the cylinder by F14y.

Substituting equations 11.10d and 11.10e into the reduced equation 11.10c yields:

( )−µ − + =

− + =
(11.10f)

0
14 43 4

14 43

4
SGN d F F F m a

F F F
P G

P

y x x x

y y y



This last substitution has reduced the unknowns to eight, F12x, F12y, F32x, F32y, 
F43x,F43y, F14y, and T12; thus we need only eight equations.  We can now use the eight 
equations in 11.10a, b, and f to assemble the matrices for solution.

F14

12F

32R

R12

23R

43R
CG3

F

= B

3Ga

43

3
1B

AY

X

F
2

1 O

Slider position ��d�d

2 4

P

A

y’

3
x’

32F

CG2

x

y

x’T12

2

2

2
a G

A

2O

y’

21F =

=

1 1

Y

X
4

aG

=

CG414F

4

B

F32

F43

– F12

23F

41F
34

2O
PF

d

F

ω
α

FIGURE 11-4
Dynamic force analysis of the fourbar slider-crank linkage

(a)  Linkage

x

y

x

y

(b)  Free-body diagrams

–

–
–
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( )

− −

−
−

− −

− −µ

−



































×







































=

α

α

−

−







































1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 0 1

0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1 0

(11.10g)

12 12 32 32

23 23 43 43

12

12

32

32

43

43

14

12

2

2

2

3

3

3

4

2

2

2

3

3

3

4

R R R R

R R R R

SGN d

F

F

F

F

F

F

F

T

m a

m a

I

m a

m a

I

m a F

F

G

G

G

G

G

G

G P

P

y x y x

y x y x

x

y

x

y

x

y

y

x

y

x

y

x x

y



Solution of this matrix equation 11.10g plus equation 11.10e will yield complete dynamic 
force information for the fourbar crank-slider linkage.

11.6	 FORCE ANALYSIS OF THE INVERTED CRANK-SLIDER

Another inversion of the fourbar crank-slider was also analyzed kinematically in Part I.  
It is shown in Figure 11‑5.  Link 4 does have an angular acceleration in this inversion.  
In fact, it must have the same angle, angular velocity, and angular acceleration as link 
3 because they are rotationally coupled by the sliding joint.  We wish to determine the 
forces at all pin joints and at the sliding joint as well as the driving torque needed to create 
the desired accelerations.  Each link’s joints are located by position vectors referenced to 
nonrotating local xy coordinate systems at each link’s CG as before.  The sliding joint is 
located by the position vector R43 to the center of the slider, point B.  The instantaneous 
position of point B was determined from the kinematic analysis as length b referenced to 
instant center I23 (point A).  See Sections 4.8, 6.7, and 7.3 to review the position, velocity, 
and acceleration analysis of this mechanism.  Recall that this mechanism has a nonzero 
Coriolis component of acceleration.  The force between link 3 and link 4 within the slid-
ing joint is distributed along the unspecified length of the slider block.  For this analysis 
the distributed force can be modeled as a force concentrated at point B within the sliding 
joint.  We will neglect friction in this example.
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(a)  Linkage

(b)  Free-body diagrams of links
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θ
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α
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FIGURE 11-5
Dynamic forces in the inverted slider-crank fourbar linkage
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The equations for links 2 and 3 are identical to those for the noninverted crank-slider 
(equations 11.10a and b).  The equations for link 4 are the same as equations 11.10c  
except for the absence of the terms involving Fp since no external force is shown acting 
on link 4 in this example.  The slider joint can only transmit force from link 3 to link 4 
or vice versa along a line perpendicular to the axis of slip. This line is called the axis of 
transmission.  In order to guarantee that the force F34 or F43 is always perpendicular to 
the axis of slip, we can write the following relation:

⋅ =ˆ 0 (11.11a)u F43

which expands to:
+ = 0 (11.11b)43 43u F u Fx yx y

The dot product of two vectors will be zero when the vectors are mutually perpen-
dicular.  The unit vector û is in the direction of link 3 which is defined from the kinematic 
analysis as θ3.

= θ = θcos , sin (11.11c)3 3u ux y

Equation 11.11b provides a tenth equation, but we have only nine unknowns, F12x, 
F12y, F32x, F32y, F43x, F43y, F14x, F14y, and T12, so one of our equations is redundant.  
Since we must include equation 11.11, we will combine the torque equations for links 3 
and 4 rewritten here in vector form and without the external force Fp.

( ) ( )
( )( )

× − × = α = α

× − × = α
(11.12a)

43 43 23 32 3 4

14 14 34 43 4

3 3

4

I I

I

G G

G

R F R F

R F R F

Note that the angular acceleration of link 3 is the same as that of link 4 in this linkage. 
Adding these equations gives:

( )( ) ( ) ( )( )× − × + × − × = + α (11.12b)43 43 23 32 14 14 34 43 43 4
I IG GR F R F R F R F

Expanding and collecting terms:

( )( )
( )

− + − −

+ + − = + α (11.12c)

43 34 43 34 43 43 23 32

23 32 14 14 14 14 43 4

R R F R R F R F

R F R F R F I I

x y

G G

x y y x x y

y x x y y x

Equations 11.10a, 11.11b, 11.12c, and the four force equations from equations 11.10b 
and 11.10c (excluding the external force FP) give us nine equations in the nine unknowns 
which we can put in matrix form for solution.
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( ) ( )

( )

− −

−
−

− − − −

−
−





































×











































=

α

+ α











































1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0

0 0 0

0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0

0

(11.13)
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11.7	 FORCE ANALYSIS—LINKAGES WITH MORE THAN FOUR BARS

This matrix method of force analysis can easily be extended to more complex assemblages 
of links.  The equations for each link are of the same form.  We can create a more general 
notation for equations 11.1 to apply them to any assembly of n pin-connected links.  Let 
j represent any link in the assembly.  Let i = j – 1 be the previous link in the chain and 
k = j + 1 be the next link in the chain; then, using the vector form of equations 11.1:

∑
∑ ∑( )( ) ( )

+ + =

× + × + + × = α

(11.14a)

(11.14b)

m

I

ij jk ext j G

ij ij jk jk j ext ext G j

j j

j j j

F F F a

R F R F T R F

where:
= = − = + ≠ = =

= − = −and
2, 3, , ; 1; 1, ; if , 1

; (11.14c)
j n i j k j j n j n k

ji ij kj jkF F F F


The sum of forces vector equation 11.14a can be broken into its two x and y compo-
nent equations and then applied, along with the sum of torques equation 11.14b, to each 
of the links in the chain to create the set of simultaneous equations for solution.  Any link 
may have external forces and/or external torques applied to it.  All will have pin forces.  
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Since the nth link in a closed chain connects to the first link, the value of k for the nth link 
is set to 1.  In order to reduce the number of variables to a tractable quantity, substitute 
the negative reaction forces from equation 11.14c where necessary as was done in the 
examples in this chapter.  When sliding joints are present, it will be necessary to add 
constraints on the allowable directions of forces at those joints as was done in the inverted 
crank-slider derivation above.

11.8	 SHAKING FORCE AND SHAKING MOMENT

It is usually of interest to know the net effect of the dynamic forces as felt on the ground 
plane as this can set up vibrations in the structure that supports the machine.  For our 
simple examples of three- and fourbar linkages, there are only two points at which the dy-
namic forces can be delivered to link 1, the ground plane.  More complicated mechanisms 
will have more joints with the ground plane.  The forces delivered by the moving links 
to the ground at the fixed pivots O2 and O4 are designated F21 and F41 by our subscript 
convention as defined in Section 11.1.  Since we chose to solve for F12 and F14 in our 
solutions, we simply negate those forces to obtain their equal and opposite counterparts 
(see also equation 11.5).

= − = − (11.15a)21 12 41 14F F F F

The sum of all the forces acting on the ground plane is called the shaking force (Fs) 
as shown in Figure 11-6.*  In these simple examples it is equal to:

= + (11.15b)21 41sF F F

The reaction moment felt by the ground plane is called the shaking moment (Ms) 
as shown in Figure 11-7.*  This is the negative of the source torque (T21 = –T12) plus the 
cross products of the ground-pin forces and their distances from the reference point.  The 
shaking moment about the crank pivot O2 is:

	

*  The Linkages files 
(F11‑06.4br & F11‑07.4br) 
that generated the plots in 
Figures 11-6 and 11-7 may 
be downloaded and opened 
in that program to see more 
details on the linkage’s 
dynamics.
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Ext. Torque 3 = – 20 lb-in
Ext. Torque 4  =  25 lb-in

Ext. Force 4 acts at  5 in @  90° vs. CG of Link 4
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FIGURE 11-6
Linkage data and polar plot of shaking force for an unbalanced crank-rocker fourbar linkage from program LINKAGES
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( )= + × (11.15c)21 1 41sM T R F

The shaking force will tend to move the ground plane back and forth, and the shaking 
moment will tend to rock the ground plane about the driveline axis.  Both will cause vibra-
tions.  We are usually looking to minimize the effects of the shaking force and shaking 
moment on the frame.  This can sometimes be done by balancing, sometimes by the ad-
dition of a flywheel to the system, and sometimes by shock mounting the frame to isolate 
the vibrations from the rest of the assembly.  Most often we will use a combination of all 
three approaches.  We will investigate some of these techniques in Chapter 12.

11.9	 PROGRAM LINKAGES Second lecture video for this chapter (34:51)*

The matrix methods introduced in the preceding sections all provide force and torque infor-
mation for one position of the linkage assembly as defined by its kinematic and geometric 
parameters.  To do a complete force analysis for multiple positions of a machine requires 
that these computations be repeated with new input data for each position.  A computer 
program is the obvious way to accomplish this.  The program Linkages computes the ki-
nematic parameters for those linkages over changes in time or driver (crank) angle plus the 
forces and torques concomitant with the linkage kinematics and link geometry.  Examples 
of its output are shown in Figures 11‑6 and 11-7.  Please refer to Appendix A for more 
information about this and other programs.  

11.10	 TORQUE ANALYSIS BY AN ENERGY METHOD Watch a video (10:53)†

In Section 10.15 the method of virtual work was presented.  We will now use that ap-
proach to solve the linkage from Example 11‑3 as a check on its solution by the newtonian 
method used in that example.  The kinematic data given in Example 11‑3 did not include 
information on the angular velocities of all the links, the linear velocities of the centers of 

Linkage data and shaking moment curve for an unbalanced crank-rocker fourbar linkage from program LINKAGES 
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Ext. Torque 4  =  25 lb-in

Ext. Force 4 acts at  5 in @  90° vs. CG of Link 4
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Coupler pt. = 3 in @ 45°
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FIGURE 11-7

 	

*  http://www.designofma-
chinery.com/DOM/Virtual_
Work_and_Flywheels.mp4

 	

†  http://www.designofma-
chinery.com/DOM/Vir-
tual_Work.mp4

http://www.designofmachinery.com/DOM/Virtual_Work_and_Flywheels.mp4
http://www.designofmachinery.com/DOM/Virtual_Work.mp4
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gravities of the links, and the linear velocity of the point P of application of the external 
force on link 3.  Velocity data were not needed for the newtonian solution but are needed 
for the virtual work approach and are detailed below.  Equation 10.28a is repeated here 
and renumbered.

∑ ∑ ∑ ∑⋅ + ⋅ω = ⋅ + α ⋅ ω
= = = =

(11.16a)
2 2 2 2

m Ik
k

n

k k
k

n

k k k
k

n

k k
k

n

k kF v T a v

Expanding the summations, still in vector form:

( )
( )

( )

( )⋅ + ⋅ + ⋅ ω + ⋅ ω + ⋅ ω

= ⋅ + ⋅ + ⋅

+ α ⋅ ω + α ⋅ ω + α ⋅ ω

(11.16b)

12 2 3 3 4 4

2 3 4

2 2 3 3 4 4

3 3 4 4

2 2 3 3 4 4

2 3 4

m m m

I I I

P P P P

G G G G G G

G G G

F v F v T T T

a v a v a v

Expanding the dot products to create a scalar equation:

( )

( )+



 + +



 + ω + ω + ω

= +



 + +





+ +



 + α ω + α ω + α ω

(11.16c)

12 2 3 3 4 4

2 3

4 2 2 3 3 4 4

3 3 3 3 4 4 4 4

2 2 2 2 3 3 3 3

4 4 4 4 2 3 4

F V F V F V F V T T T

m a V a V m a V a V

m a V a V I I I

P P P P P P P P

G G G G G G G G

G G G G G G G

x x y y x x y y

x x y y x x y y

x x y y

✍EXAMPLE 11‑4 

Analysis of a Fourbar Linkage by the Method of Virtual Work.  (See Figure 11‑3.)

Given:  	 The 5-in-long crank (link 2) shown weighs 1.5 lb.  Its CG is at 3 in at +30° from 
the line of centers.  Its mass moment of inertia about its CG is 0.4 lb-in-sec2.  Its 
kinematic data are:

ω αθ

°

deg rad/sec rad/sec in/sec

60 25 –40 75 @ 180
2 2 2

2
2

VG

	 The coupler (link 3) is 15 in long and weighs 7.7 lb.  Its CG is at 9 in at 45° off 
the line of centers.  Its mass moment of inertia about its CG is 1.5 lb-in-sec2.  Its 
kinematic data are:

ω αθ

°

deg rad/sec rad/sec in/sec

20.92 –5.87 120.9 72.66 @ 145.7
3 3 3

2
3

VG

	 There is an external force on link 3 of 80 lb at 330°, applied at point P which is 
located 3 in @ 100° from the CG of link 3.  The linear velocity of that point is 67.2 
in/sec at 131.94°.

	 The rocker (link 4) is 10-in long and weighs 5.8 lb.  Its CG is at 5 in at 0° off the line 
of centers.  Its mass moment of inertia about its CG is 0.8 lb-in-sec2.   Its data are: 

ω αθ

°

deg rad/sec rad/sec in/sec

104.41 7.93 276.29 39.66 @ 194.41
4 4 4

2
4

VG
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	 There is an external torque on link 4 of 120 lb-in.  The ground link is 19-in long.

Find:	 The driving torque T12 needed to maintain motion with the given acceleration for 
this instantaneous position of the link.

Solution:

	 1	 The torque, angular velocity, and angular acceleration vectors in this two-dimensional problem 
are all directed along the Z axis, so their dot products each have only one term.  Note that in 
this particular example there is no force FP4 and no torque T3. 

	 2	 The cartesian coordinates of the acceleration data were calculated in Example 11‑3.  

= ∠ ° = = −

= ∠ ° = − = −

= ∠ ° = − = −

1878.84 @ 273.66 ; 119.94, 1875.01

3646.10 @ 226.51 ; 2509.35, 2645.23 ( )

1416.80 @ 207.24 ; 1259.67, 648.50

2 2 2

3 3 3

4 4 4

a a

a a a

a a

G G G

G G G

G G G

x y

x y

x y

a

a

a

	 3	 The x and y components of the external force at P in the global coordinate system were also 
calculated in Example 11‑3:

= ∠ ° = = −80 @ 330 ; 69.28, 40.00 ( )
3 3 3

F F bP P Px y
F

	 4	 Converting the velocity data for this example to cartesian coordinates:

= ∠ ° = − =

= ∠ ° = − =

= ∠ ° = − = −

= ∠ ° = − =

75.00 @ 180.00 ; 75.00, 0

72.66 @ 145.70 ; 60.02, 40.95

39.66 @ 194.41 ; 38.41, 9.87 ( )

67.20 @ 131.94 ; 44.91, 49.99

2 2 2

3 3 3

4 4 4

3 3 3

V V

V V

V V c

V V

G G G

G G G

G G G

P P P

x y

x y

x y

x y

V

V

V

V

	 5	 Substituting the example data into equation 11.16c:

[ ]( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )( )

− + −  + + + + 

= − + − 

+ − − + − 

+ − − + − − 

+ − + − + 

69.28 44.91 40 49.99 0 25 0 120 7.93

1.5
386

119.94 75 1875.01 0

7.7
386

2509.35 60.02 2645.23 40.95 ( )

5.8
386

1259.67 38.41 648.50 9.87

0.4 40 25 1.5 120.9 5.87 0.8 276.29 7.93

12T

d

	 6	 The only unknown in this equation is the input torque T12 which calculates to:

= 243.2 ˆ ( )12 eT k

		  which is the same as the answer obtained in Example 11-3.
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This method of virtual work is useful if a quick answer is needed for the input torque, but 
it does not give any information about the joint forces.

11.11	 CONTROLLING INPUT TORQUE—FLYWHEELS Watch a video (24:07)†

The typically large variation in accelerations within a mechanism can cause significant 
oscillations in the torque required to drive it at a constant or near constant speed. The 
peak torques needed may be so high as to require an overly large motor to deliver them.  
However, the average torque over the cycle, due mainly to losses and external work done, 
may often be much smaller than the peak torque.  We would like to provide some means 
to smooth out these oscillations in torque during the cycle.  This will allow us to size the 
motor to deliver the average torque rather than the peak torque.  One convenient and rela-
tively inexpensive means to this end is the addition of a flywheel to the system.

Torque Variation  Figure 11‑8 shows the variation in the input torque for a 
crank-rocker fourbar linkage over one full revolution of the drive crank.  It is running 
at a constant angular velocity of 50 rad/sec.  The torque varies a great deal within one 
cycle of the mechanism, going from a positive peak of 341.7 lb-in to a negative peak of  
–166.4 lb-in.  The average value of this torque over the cycle is only 70.2 lb-in,  being 
due to the external work done plus losses.  This linkage has only a 12-lb external force 
applied to link 3 at the CG and a 25 lb-in external torque applied to link 4.  These small 
external loads cannot account for the large variation in input torque required to maintain 
constant crank speed.  What then is the explanation?  The large variations in torque are 
evidence of the kinetic energy that is stored in the links as they move.  We can think of the 
positive pulses of torque as representing energy delivered by the driver (motor) and stored 
temporarily in the moving links, and the negative pulses of torque as energy attempting 
to return from the links to the driver.  Unfortunately most motors are designed to deliver 
energy but not to take it back.  Thus the “returned energy” has no place to go.

Average value

FIGURE 11-8
Input torque curve for an unbalanced crank-rocker fourbar linkage

0

Unbalanced  Input Torque      lb-in
342

  – 342
0 90 180 270 360

70

 	

†  http://www.designofma-
chinery.com/DOM/Fly-
wheels.mp4

http://www.designofmachinery.com/DOM/Flywheels.mp4
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Figure 11‑9 shows the speed-torque characteristic of a permanent magnet (PM) DC 
electric motor.  Other types of motors will have differently shaped functions that relate 
motor speed to torque as shown in Figures 2-41 and 2-42, but all drivers (sources) will 
have some such characteristic curve.  As the torque demands on the motor change, the 
motor’s speed must also change according to its inherent characteristic.  This means that 
the torque curve being demanded in Figure 11‑8 will be very difficult for a standard motor 
to deliver without drastic changes in its speed.

The computation of the torque curve in Figure 11-8 was made on the assumption 
that the crank (thus the motor) speed was a constant value.  All the kinematic data used in 
the force and torque calculation were generated on that basis.  With the torque variation 
shown we would have to use a large-horsepower motor to provide the power required to 
reach that peak torque at the design speed:

= ×

= × = =341.7 lb-in 50 rad
sec

17 085 in-lb
sec

2.59 hp

Power torque angular velocity

Peak power

The power needed to supply the average torque is much smaller.

= × = =70.2 lb-in 50 rad
sec

3510 in-lb
sec

0.53 hpAverage power

It would be extremely inefficient to specify a motor based on the peak demand of the 
system, as most of the time it will be underutilized.  We need something in the system 
which is capable of storing kinetic energy.  One such kinetic energy storage device is 
called a flywheel.

Flywheel Energy  Figure 11‑10 shows a flywheel, designed as a flat circular 
disk, attached to a motor shaft which might also be the driveshaft for the crank of our link-
age.  The motor supplies a torque magnitude TM which we would like to be as constant as 
possible, i.e., to be equal to the average torque Tavg.  The load (our linkage), on the other 
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FIGURE 11-9
DC permanent magnet (PM) electric motor's typical speed-torque characteristic
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side of the flywheel, demands a torque TL which is time varying as shown in Figure 11‑8.  
The kinetic energy in a rotating system is:

= ω
1
2

(11.17)2E I

where I is the moment of inertia of all rotating mass on the shaft.  This includes the I of 
the motor rotor and of the linkage crank plus that of the flywheel.  We want to determine 
how much I we need to add in the form of a flywheel to reduce the speed variation of the 
shaft to an acceptable level.  We begin by writing Newton’s law for the free-body diagram 
in Figure 11‑10.

∑ = α

− = α
=

− = α

T I

T T I
T T

T T I

L M

M avg

L avg

but we want:

so: (11.18a)

( )

α =
ω

=
ω θ

θ






= ω
ω
θ

− = ω
ω
θ

− θ = ω ω

d
dt

d
dt

d
d

d
d

T T I d
d

T T d I d

L avg

L avg

substituting:

gives:

(11.18b)

and integrating:

FIGURE 11-10
Flywheel on a driveshaft
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∫ ∫

∫ ( )

( )

( )

− θ = ω ω

− θ = ω − ω

ω

ω

θ ω

θ ω

θ ω

θ ω

(11.18c)
1
2

@

@

@

@ 2 2

max
T T d I d

T T d I

L avg

L avg max min

min

max

min

min

max

The left side of this expression represents the change in energy E between the maxi-
mum and minimum shaft ω’s and is equal to the area under the torque-time diagram* 
(Figures 11‑8, and 11‑11) between those extreme values of ω.  The right side of equation 
11.18c is the change in energy stored in the flywheel.  The only way we can extract energy 
from the flywheel is to slow it down as shown in equation 11.17.  Adding energy will speed 
it up.  Thus it is impossible to obtain exactly constant shaft velocity in the face of chang-
ing energy demands by the load.  The best we can do is to minimize the speed variation 
(ωmax – ωmin) by providing a flywheel with sufficiently large I.

✍EXAMPLE 11-5

Determining the Energy Variation in a Torque-Time Function.

Given:	 An input torque-time function which varies over its cycle.  Figure 11‑11 shows the 
input torque curve from Figure 11‑8.  The torque is varying during the 360° cycle 
about its average value.  

Find:	 The total energy variation over one cycle.

Solution:

*   There is often confu-
sion between torque and 
energy because they appear 
to have the same units of 
lb-in (in-lb) or N-m  (m-N).  
This leads some students 
to think that they are the 
same quantity, but they are 
not.  Torque ≠ energy.  The 
integral of torque with 
respect to angle, measured 
in radians, is equal to 
energy.  This integral has 
the units of in-lb-rad.  The 
radian term is usually omit-
ted since it is in fact unity.   
Power in a rotating system 
is equal to torque x angular 
velocity (measured in rad/
sec), and the power units 
are then (in-lb-rad)/sec.  
When power is integrated 
versus time to get energy, 
the resulting units are in-lb-
rad, the same as the integral 
of torque versus angle.  The 
radians are again usually 
dropped, contributing to the 
confusion.

FIGURE 11-11
Integrating the pulses above and below the average value in the input torque function

341.7
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B
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Area
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Order            Neg Area          Pos Area
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TABLE  11-1 Integrating the Torque Function 

	 1	 Calculate the average value of the torque-time function over one cycle, which in this case is 
70.2 lb-in.  (Note that in some cases the average value may be zero.)

	 2	  Note that the integration on the left side of equation 11.18c is done with respect to the average 
line of the torque function, not with respect to the θ axis.  (From the definition of the average, 
the sum of positive area above an average line is equal to the sum of negative area below that 
line.)  The integration limits in equation 11.18 are from the shaft angle θ at which the shaft ω 
is a minimum to the shaft angle θ at which ω is a maximum.  

	 3	 The minimum ω will occur after the maximum positive energy has been delivered from the 
motor to the load, i.e., at a point (θ) where the summation of positive energy (area) in the torque 
pulses is at its largest positive value.  

	 4	 The maximum ω will occur after the maximum negative energy has been returned to the load, 
i.e., at a point (θ) where the summation of energy (area) in the torque pulses is at its largest 
negative value.  

	 5	 To find these locations in θ corresponding to the maximum and minimum ω’s and thus find the 
amount of energy needed to be stored in the flywheel, we need to numerically integrate each 
pulse of this function from crossover to crossover with the average line.  The crossover points 
in Figure 11‑11 have been labeled A, B, C, and D.  (Program Linkages does this integration 
for you numerically, using a trapezoidal rule.)

	 6	 The Linkages program prints the table of areas shown in Figure 11‑11.  The positive and 
negative pulses are separately integrated as described above.  Reference to the plot of the 
torque function will indicate whether a positive or negative pulse is the first encountered in a 
particular case.  The first pulse in this example is a positive one.

	 7	 The remaining task is to accumulate these pulse areas beginning at an arbitrary crossover 
(in this case point A) and proceeding pulse by pulse across the cycle.  Table 11‑1 shows this 
process and the result.

	 8	 Note in Table 11‑1 that the minimum shaft speed occurs after the largest accumulated positive 
energy pulse (+200.73 in-lb) has been delivered from the driveshaft to the system.  Delivery 
of energy slows the motor down.  Maximum shaft speed occurs after the largest accumulated 
negative energy pulse (–60.32 in-lb) has been returned from the system by the driveshaft.  This 
return of stored energy will speed up the motor.  The total energy variation is the algebraic 
difference between these two extreme values, which in this example is –261.05 in-lb.  This 

( ) ( )

+
−
+

−

+
−
+

+

ω
ω

ω − ω

= − − + = −

to
to
to
to

200.73
261.05
153.88

92.02

200.73
60.32
93.56

1.54

@
@

Total Energy = @ @

60.32 200.73 261.05 in-lb

= E E

A B
B C
C D
D A

B
C

E E

min

max

max min

From Area Accum. Sum =
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negative energy coming out of the system needs to be absorbed by the flywheel and then re-
turned to the system during each cycle to smooth the variations in shaft speed.

Sizing the Flywheel  We now must determine how large a flywheel is needed to 
absorb this energy with an acceptable change in speed.  The change in shaft speed during 
a cycle is called its fluctuation (Fl) and is equal to:

= ω − ω (11.19a)Fl max min

We can normalize this to a dimensionless ratio by dividing it by the average shaft 
speed.  This ratio is called the coefficient of fluctuation (k).

=
ω − ω

ω
(11.19b)max mink

avg

This coefficient of fluctuation is a design parameter to be chosen by the designer.  It 
typically is set to a value between 0.01 and 0.05, which corresponds to a 1 to 5% fluctua-
tion in shaft speed.  The smaller this chosen value, the larger the flywheel will have to be.  
This presents a design trade-off.  A larger flywheel will add more cost and weight to the 
system, which factors have to be weighed against the smoothness of operation desired. 

We found the required change in energy E by integrating the torque curve 

∫ ( )− θ =
θ ω

θ ω
(11.20a)

@

@
T T d EL avg

min

max

and can now set it equal to the right side of equation 11.18c:

( )= ω − ω
1
2

(11.20b)2 2E I max min

Factoring this expression:

( )( )= ω + ω ω − ω
1
2

(11.20c)E I max min max min

If the torque-time function were a pure harmonic, then its average value could be 
expressed exactly as:

ω =
ω + ω

2
(11.21)avg

max min

Our torque functions will seldom be pure harmonics, but the error introduced by us-
ing this expression as an approximation of the average is acceptably small.  We can now 
substitute equations 11.19b and 11.21 into equation 11.20c to get an expression for the 
mass moment of inertia Is of the system flywheel needed.

2( )( )= ω ω

=
ω

1
2

(11.22)2

E I k

I E
k

s avg avg

s
avg



11

DESIGN OF MACHINERY 6ed      CHAPTER  11622

Equation 11.22 can be used to design the physical flywheel by choosing a desired 
coefficient of fluctuation k, and using the value of E from the numerical integration of the 
torque curve (see Table 11‑1) and the average shaft ω to compute the needed system Is.  
The physical flywheel’s mass moment of inertia If is then set equal to the required system 
Is.  But if the moments of inertia of the other rotating elements on the same driveshaft 
(such as the motor) are known, the physical flywheel’s required If can be reduced by those 
amounts.

The most efficient flywheel design in terms of maximizing If for minimum material 
used is one in which the mass is concentrated in its rim and its hub is supported on spokes, 
like a carriage wheel.  This puts the majority of the mass at the largest radius possible and 
minimizes the weight for a given If.  Even if a flat, solid circular disk flywheel design is 
chosen, either for simplicity of manufacture or to obtain a flat surface for other functions 
(such as an automobile clutch), the design should be done with an eye to reducing weight 
and thus cost.  Since in general I = mr2, a thin disk of large diameter will need fewer 
pounds of material to obtain a given I than will a thicker disk of smaller diameter.  Dense 
materials such as cast iron and steel are the obvious choices for a flywheel.  Aluminum 
is seldom used. Though many metals (lead, gold, silver, platinum) are more dense than 
iron and steel, one can seldom get the accounting department’s approval to use them in 
a flywheel.

Figure 11‑12 shows the change in the input torque T12 for the linkage in Figure 11‑8 
after the addition of a flywheel sized to provide a coefficient of fluctuation of 0.05.  The 
oscillation in torque about the unchanged average value is now 5%, much less than what 
it was without the flywheel.  A much smaller-horsepower motor can now be used because 
the flywheel is available to absorb the energy returned from the linkage during its cycle.  

11.12	 A LINKAGE FORCE TRANSMISSION INDEX

The transmission angle was introduced in Chapter 2 and used in subsequent chapters as 
an index of merit to predict the kinematic behavior of a linkage.  A too-small transmission 
angle predicts problems with motion and force transmission in a fourbar linkage.  Unfortu-
nately, the transmission angle has limited application.  It is only useful for fourbar linkages 

Average value
is unchanged

FIGURE 11-12
Input torque curve for the linkage in Figure 11-8 after smoothing with a flywheel

0

Flywheel-Smoothed Input Torque    lb-in

87.3

0 90 180 270 360

 k  =  0.05

70.2
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and then only when the input and output torques are applied to links that are pivoted to 
ground (i.e., the crank and rocker).  When external forces are applied to the coupler link, 
the transmission angle tells nothing about the linkage’s behavior.

Holte and Chase[1] define a joint-force index (JFI) which is useful as an indicator of 
any linkage’s ability to smoothly transmit energy regardless of where the loads are applied 
on the linkage.  It is applicable to higher-order linkages as well as to the fourbar linkage.  
The JFI at any instantaneous position is defined as the ratio of the maximum static force 
in any joint of the mechanism to the applied external load.  If the external load is a force, 
then it is:

=JFI for all pairs , (11.23a)MAX
F

F
i jij

ext

If the external load is a torque, then it is:

=JFI for all pairs , (11.23b)MAX
F

T
i jij

ext

where, in both cases, Fij is the force in the linkage joint connecting links i and j.  

The Fij are calculated from a static force analysis of the linkage.  Dynamic forces 
can be much greater than static forces if speeds are high.  However, if this static force 
transmission index indicates a problem in the absence of any dynamic forces, then the 
situation will obviously be worse at speed.  The largest joint force at each position is used 
rather than a composite or average value on the assumption that high friction in any one 
joint is sufficient to hamper linkage performance regardless of the forces at other joints.

Equation 11.23a is dimensionless and so can be used to compare linkages of different 
design and geometry.  Equation 11.23b has dimensions of reciprocal length, so caution 
must be exercised when comparing designs when the external load is a torque.  Then the 
units used in any comparison must be the same, and the compared linkages should be 
similar in size.

Equations 11.23 apply to any one instantaneous position of the linkage.  As with the 
transmission angle, this index must be evaluated for all positions of the linkage over its 
expected range of motion and the largest value of that set found.  The peak force may move 
from pin to pin as the linkage rotates.  If the external loads vary with linkage position, 
they can be accounted for in the calculation.  

Holte and Chase suggest that the JFI be kept below a value of about 2 for linkages 
whose output is a force.  Larger values may be tolerable especially if the joints are de-
signed with good bearings that are able to handle the higher loads.  

There are some linkage positions in which the JFI can become infinite or indetermi-
nate as when the linkage reaches an immovable position, defined as the input link or input 
joint being inactive.  This is equivalent to a stationary configuration as described in earlier 
chapters provided that the input joint is inactive in the particular stationary configura-
tion.  These positions need to be identified and avoided in any event, independent of the 
determination of any index of merit.  In some cases the mechanism may be immovable 
but still capable of supporting a load.  See reference [1] for more detailed information on 
these special cases.
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11.13	 PRACTICAL CONSIDERATIONS

This chapter has presented some approaches to the computation of dynamic forces in 
moving machinery.  The newtonian approach gives the most information and is neces-
sary in order to obtain the forces at all pin joints so that stress analyses of the members 
can be done.  Its application is really quite straightforward, requiring only the creation of 
correct free-body diagrams for each member and the application of the two simple vector 
equations which express Newton’s second law to each free body.  Once these equations 
are expanded for each member in the system and placed in standard matrix form, their 
solution (with a computer) is a trivial task.

The real work in designing these mechanisms comes in the determination of the 
shapes and sizes of the members.  In addition to the kinematic data, the force computation 
requires only the masses, CG locations, and mass moments of inertia versus those CGs for 
its completion.  These three geometric parameters completely characterize the member for 
dynamic modeling purposes.  Even if the link shapes and materials are completely defined 
at the outset of the force analysis process (as with the redesign of an existing system), it 
is a tedious exercise to calculate the dynamic properties of complicated shapes.  Current 
solids modeling CAD systems make this step easy by computing these parameters auto-
matically for any part designed within them.

If, however, you are starting from scratch with your design, the blank-paper syndrome 
will inevitably rear its ugly head.  A first approximation of link shapes and selection of 
materials must be made in order to create the dynamic parameters needed for a “first pass” 
force analysis.  A stress analysis of those parts, based on the calculated dynamic forces, 
will invariably find problems that require changes to the part shapes, thus requiring recal-
culation of the dynamic properties and recomputation of the dynamic forces and stresses.  
This process will have to be repeated in circular fashion (iteration—see Chapter 1) until 
an acceptable design is reached.  The advantage of using a computer to do these repetitive 
calculations is obvious and cannot be overstressed.  An equation solver program such as 
Mathcad, Matlab, or TKSolver will be a useful aid in this process by reducing the amount 
of computer programming necessary.

Students with no design experience are often not sure how to approach this process 
of designing parts for dynamic applications.  The following suggestions are offered to get 
you started.  As you gain experience, you will develop your own approach.

It is often useful to create complex shapes from a combination of simple shapes, at 
least for first approximation dynamic models.  For example, a link could be considered to 
be made up of a hollow cylinder at each pivot end, connected by a rectangular prism along 
the line of centers.  It is easy to calculate the dynamic parameters for each of these simple 
shapes  and then combine them.  The steps would be as follows (repeated for each link):

	 1	 Calculate the volume, mass, CG location, and mass moments of inertia with respect 
to the local CG of each separate part of your built-up link.  In our example link these 
parts would be the two hollow cylinders and the rectangular prism.

	 2	 Find the location of the composite CG of the assembly of the parts into the link by 
the method shown in Section 10.4 and equations 10.3.  See also Figure 10‑2.

	 3	 Use the parallel axis theorem (equation 10.8) to transfer the mass moments of inertia 
of each part to the common, composite CG for the link.  Then add the individual, 

Topic/Problem Matrix

 11.4 Force Analysis of a 
Fourbar
Instantaneous
11-8, 11-9, 11-10,  
11-11, 11-12, 11-20
Continuous
11-13, 11-15, 11-21, 
11-26, 11-29, 11-32, 
11-35, 11-38

 11.5 Force Analysis of a 
Crank-Slider or Slid-
er-Crank

11-16, 11-17, 11-18, 
11-45

 11.7 Linkages with More 
Than Four Bars

11-1, 11-2
 11.8 Shaking Forces and 

Torques

11-3, 11-5, 11-47 to 
11-51

 11.10 Torque Analysis by 
Energy Methods

11-4, 11-6, 11-22,  
11-23, 11-24, 11-25, 
11-27, 11-28, 11-30, 
11-31, 11-33, 11-34,  
11-36, 11-37, 11-39, 
11-46

 11.11 Flywheels    11-7,  
11-19, 11-40 to 
11-44

 11.12 Linkage Force Trans-
mission Index

11-14, 11-52
 

TABLE  P11-0
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*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.

	
§  All problem figures 
are downloadable as PDF 
files, and some are also 
downloadable as animated 
Working Model files.  PDF 
filenames are the same as 
the figure number.  Run the 
file Animations.html to ac-
cess and run the animations.

transferred I’s of the parts to get the total I of the link about its composite CG.  See 
Section 10.6.

Steps 1 to 3 will create the link geometry data for each link needed for the dynamic 
force analysis as derived in this chapter.

	 4	 Do the dynamic force analysis.

	 5	 Do a dynamic stress and deflection analysis of all parts.

	 6	 Redesign the parts and repeat steps 1 to 5 until a satisfactory result is achieved.

Remember that lighter (lower-mass) links will have smaller inertial forces on them 
and thus could have lower stresses despite their smaller cross sections.  Also, smaller mass 
moments of inertia of the links can reduce the driving torque requirements, especially at 
higher speeds.  But be cautious about the dynamic deflections of thin, light links becom-
ing too large.  We are assuming rigid bodies in these analyses.  That assumption will not 
be valid if the links are too flexible.  Always check the deflections as well as the stresses 
in your designs.

11.14	 REFERENCE
	 1	 Holte, J. E., and T. R. Chase. (1994). “A Force Transmission Index for Planar Link-

age Mechanisms.” Proc. of 23rd Biennial Mechanisms Conference, Minneapolis, MN, 
p. 377.

11.15	 PROBLEMS§

	 11‑1	 Draw free-body diagrams of the links in the geared fivebar linkage shown in Figure 
4‑11 and write the dynamic equations to solve for all forces plus the driving torque.  
Assemble the symbolic equations in matrix form for solution.

	 11‑2	 Draw free-body diagrams of the links in the sixbar linkage shown in Figure 4‑12 and 
write the dynamic equations to solve for all forces plus the driving torque.  Assemble 
the symbolic equations in matrix form for solution.

	*†‡11‑3	 Table P11‑1 shows kinematic and geometric data for several crank-slider linkages of 
the type and orientation shown in Figure P11‑1.   The point locations are defined as 
described in the text.  For the row(s) in the table assigned, use the matrix method of 
Section 11.5 and program Matrix, Mathcad, Matlab, TKSolver, or a matrix solving 
calculator to solve for forces and torques at the position shown.  Also compute the 
shaking force and shaking torque.  Consider the coefficient of friction µ between slider 
and ground to be zero.  You may check your solution by opening the solution files (lo-
cated in the downloadable Solutions folder) named P11‑03x (where x is the row letter) 
in program Linkages. 

	 *†11‑4  	 Repeat Problem 11‑3 using the method of virtual work to solve for the input torque on 
link 2.  Additional data for corresponding rows are given in Table P11‑2.

	 *†11‑5	 Table P11‑3 shows kinematic and geometric data for several pin-jointed fourbar link-
ages of the type and orientation shown in Figure P11‑2.  All have θ1 = 0. The point 
locations are defined as described in the text.  For the row(s) in the table assigned, use 
the matrix method of Section 11.4 and program Matrix or a matrix solving calculator 
to solve for forces and torques at the position shown.  You may check your solution by 



11

DESIGN OF MACHINERY 6ed      CHAPTER  11626

offset

0
1

–1
1

0
2

–2

link 2

4
3
5
6
2

10
7

link 3

12
10
15

20
8

35
25

Row

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Row

Row

a
b
c
d
e
f
g

166.40
177.13
195.17
199.86
169.82
169.03
186.78

θ3

– 2.40
34.33

–134.76
– 29.74

113.12
3.29

– 172.20

α3

203.96
225.06

1200.84
301.50
312.75
192.09

3600.50

mag

a g 2

213.69
231.27
37.85

230.71
–17.29
23.66
90.95

ang

a g 2

371.08
589.43

2088.04
511.74

976.79
302.50

8052.35

mag

a g3

200.84
200.05

43.43
74.52

–58.13
–29.93
134.66

ang

a g3

357.17
711.97

929.12
23.97

849.76
301.92

4909.27

mag

a g4

180
180

0
180

0
0

180

ang

a g4

0.10
0.20
0.05
0.12
0.30
0.24
0.45

I 2

0.2
0.4
0.1
0.3
0.8
0.6
0.9

I 3

2
1
3
3
0.5
6
4

mag

Rg 2

0
20

– 40
120
30
45

– 45

ang
δ 2

5
4
9

12
3

15
10

mag

Rg 3

0
– 30

50
60
75

135
225

δ3
ang

0
10
32
15
6

25
9

mag
FP3

0
45

270
180

– 60
270
120

δFP3
ang

0
4
0
2
2
0
5

mag

RP3

0
30

0
60
75
0

45

δRP
ang

20
– 35
– 65
– 12

40
– 75
– 90

T3

45
30

260
– 75
135
120

– 45

θ2 ω2

10
15

20
–10
25

5
30

20
– 5
15

– 10
25

– 20
– 15

α 2

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m 2

0.020
0.100
0.020
0.150
0.004
0.300
0.200

m 3

0.060
0.200
0.030
0.050
0.014
0.050
0.100

m 4

TABLE  P11-1 Data for Problem 11-3  (See Figure P11-1 for Nomenclature)
Lengths in inches, angles in degrees, mass in blobs, angular velocity in rad/sec

Forces in lb, linear accelerations in in/sec 2

Angular acceleration in rad/sec2, moments of Inertia in blob-in2, torque in lb-in

Part 1

Part 2

Part 3

Row

a
b
c
d
e
f
g

152.09
153.35
– 8.23
191.01

204.87
210.72

53.19

VP3
  ang

60.89

35.24
26.69
89.61
70.63
61.36

208.60

VP3
  mag

180
180

0
180
180
180

0

Vg4
  ang

35.14
24.45
93.77
63.57
29.01
38.46
166.14

Vg4
  mag

152.09
140.14
–8.23
191.15
211.93
210.72

61.31

Vg3
  ang

35.24
40.35
89.61
69.10
56.02
60.89
211.46

Vg3
  mag

135
140
310
315

255
255

0

Vg2
 ang

20.0
15.0

60.0
30.0
12.5

30.0
120.0

Vg2
 mag

– 2.43
– 3.90

1.20
0.83
4.49
0.73

–5.98

ω 3

TABLE  P11-2 Data for Problem 11-4
See also Table P11-1.  Unit system is the same as in that table.
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Sketches of the linkages in Table P11-1
FIGURE P11-1
Linkage geometry, notation, and free-body diagrams for problems 11-3 to 11-4
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Generic linkage and free-body diagrams

Sketches of the linkages in Table P11-3
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FIGURE P11-2
Linkage geometry, notation, and free-body diagrams for Problems 11-5 to 11-7
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a
b
c
d
e
f
g

Row

a
b
c
d
e
f
g

Row
Rg 4
ang

Rg 4
mag

Rg 3
ang

Rg 3
mag

Rg 2
ang

Rg 2
mag

2
1
3
3
0.5
6
4

m 2

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m 3

0.02
0.10
0.02
0.15
0.04
0.30
0.20

m 4

0.10
0.20
0.05
0.07
0.09
0.25
0.12

I 2

0.10
0.20
0.05
0.12
0.30
0.24
0.45

I 3

0.20
0.40
0.10
0.30
0.80
0.60
0.90

I4

0.50
0.40
0.13
0.15
0.30
0.92
0.54

T3

– 15
12

– 10
0

25
0
0

T4

25
0

20
30
40

– 25
0

3.56
– 7.66

14.13
– 3.17

5.61
21.40
16.53

ω 4

– 5.62
– 10.31

16.60
3.90
1.06

18.55
4.10

ω 3ω2

20
10
20
20
20
20
20

801.00
100.12

1200.84
1200.87
200.39

2403.00
1601.12

ag 2
mag

ag 2
ang

ag 3
mag

θ2

45
30

260
– 75
135
120
100

θ3

24.97
90.15

128.70
91.82
34.02

348.08
4.42

θ4

99.30
106.60
151.03
124.44
122.71
19.01
61.90

α3

75.29
140.96
78.78

– 214.84
71.54

– 101.63
– 17.38

α4

244.43
161.75
53.37

– 251.82
– 14.19

– 150.86
–168.99

a
b
c
d
e
f
g

Row

TABLE  P11-3 Data for Problems 11-5 and 11-7  (See Figure P11-2 for Nomenclature)
Lengths in inches, angles in degrees, angular acceleration in rad/sec 2

Angular velocity in rad/sec, mass in blobs, moment of Inertia in blob-in2, torque in lb-in

Lengths in inches, angles in degrees,  linear accelerations in in/sec 2

Part 4

Row

a
b
c
d
e
f
g

link 2

4
3
5
6
2

17
7

link 3

12
10
15
19
8

35
25

link 4

8
12
14
16
7

23
10

link 1

15
6
2

10
9
4

19

α2

20
– 5
15

– 10
25

– 20
– 15

30
40

0
– 30
– 40

25
45

4
6
7
6
2

10
4

0
– 30

50
60
75

135
225

5
4
9

12
3

15
10

0
20

– 40
120
30
45

– 45

222.14
232.86

37.85
226.43
341.42
347.86
237.15

Part 1

Part 2

Part 3

1691.49
985.27
3120.71

4543.06
749.97

12 064.20
2562.10

Linear accelerations in in/sec 2, forces in lb, lengths in inches, angles in degrees

ag 3
ang

208.24
194.75
22.45
81.15

295.98
310.22
–77.22

δFP3
δRP3

δFP4
δRP4

0
0
0
0
0
0
0

Rp 4
mag

– 30
– 55

45
270
60

0
20

ang

40
15
75
20
16
23
32

Fp 4
magang

Fp 3
mag angang

Rp 3
mag

ag 4
mag

ag 4
ang

222.27
256.52
316.06

2.15
286.97
242.25
–41.35

8
12
14
16
7

23
10

0
45

0
180

– 60
0

120

0
10
0

15
6
0
9

0
30

0
45

0
0

– 60

0
4
0
2
9
0

12

979.02
1032.32
1446.58
1510.34

69.07
4820.72
1284.55
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opening the solution files named P11‑05x (where x is the row letter) in program Link-
ages.  

	 *†11‑6 	 Repeat Problem 11‑5 using the method of virtual work to solve for the input torque on 
link 2.  Additional data for corresponding rows are given in Table P11‑4.

	 *‡11‑7	 For the row(s) assigned in Table P11‑3 (a-f), input the associated disk file to program 
Linkages, calculate the linkage parameters for crank angles from zero to 360° by 5° 
increments with α2 = 0, and design a steel disk flywheel to smooth the input torque 
using a coefficient of fluctuation of 0.05.  Minimize the flywheel weight.

	 ‡11-8	 Figure P11-3 shows a fourbar linkage and its dimensions.  The steel crank and rocker 
have uniform cross sections 1 in wide by 0.5 in thick.  The aluminum coupler is 0.75 in 
thick.  In the instantaneous position shown, the crank O2A has ω = 40 rad/sec and α = 
–20 rad/sec2.  There is a horizontal force at P of F = 50 lb.  Find all pin forces and the 
torque needed to drive the crank at this instant.

	 ‡11-9	 Figure P11-4a shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  In the instantaneous position shown, the crank O2A has ω = 
10 rad/sec and α = 5 rad/sec2.  There is a vertical force at P of F = 100 N.  Find all pin 
forces and the torque needed to drive the crank at this instant.

Problem 11-8
FIGURE P11-3

F

Dimensions in inches

56°
5

8.9

4.4 5

9.5

P

A B

50°

O2 O4

x

y
B

AP = 0.97

L2 = 0.72

P

L3 = 0.68
L4 = 0.85

L1 = 1.82
O2 O4

AAP = 3.06 L4 = 2.33

L3 = 2.06

L2 = 1.0

L1 = 2.22

FIGURE P11-4
Problems 11-9 to 11-10

O2 O4

–31°
A

B

P

( a )

F

60°

54°

( b )

F

30°

Vg4 ang

219.30
56.60

241.03
4.44

172.71
134.01

196.90

Vg4  mag

14.23
45.94
98.91
19.03
11.22

213.98
66.10

Vg3 ang

145.19
14.74

299.70
353.80
223.13
211.39

205.52

Vg3  mag

54.44
21.46

191.94
94.36
42.89

618.05
118.29

Vg2  ang

135.00
140.00

–50.00
135.00

255.00
255.00
145.00

Vg2 mag

40.00
10.00
60.00
60.00
10.00

120.00
80.00

Row

a
b
c
d
e
f
g

–160.80
29.68

–118.97
26.38

–155.86
116.52
164.33

VP4 ang

41.39
130.51

296.73
67.86
48.41

692.08
217.15

VP4mag

145.19
40.04

–60.30
–3.13

–140.37
–148.61
–152.36

VP3 ang

54.44
122.10
191.94
152.51
37.01

618.03
154.85

VP3mag

TABLE  P11-4 Data for Problem 11-6

	
*  Answers in Appendix F.
	
†  These problems are 
suited to solution using 
Mathcad, Matlab, or 
TKSolver equation solver 
programs.
	
‡  These problems are 
suited to solution using 
program Linkages.
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*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.

	‡11-10	 Figure P11-4b shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  In the instantaneous position shown, the crank O2A has  
ω = 15 rad/sec and α = –10 rad/sec2.  The horizontal force applied at point P is F = 500 
N.  Find all pin forces and the torque needed to drive the crank at this instant.

	‡11-11	 Figure P11-5a shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections of 50 mm wide by 25 mm thick.  In the 
instantaneous position shown, the crank O2A has ω = 15 rad/sec and α = –10 rad/sec2.  
There is a vertical force at P of F = 500 N.  Find all pin forces and the torque needed to 
drive the crank at this instant.

	*†‡11-12	 Figure P11-5b shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections of 60-mm diameter.  In the instanta-
neous position shown, the crank O2A has ω = –10 rad/sec and α = 10 rad/sec2.  There 
is a horizontal force at P of F = 500 N.  Find all pin forces and the torque needed to 
drive the crank at this instant.

	*†‡11-13	 Figure P11-6 shows a water-jet loom laybar drive mechanism driven by a pair of 
Grashof crank-rocker fourbar linkages.  The crank rotates at 500 rpm.  The laybar is 
carried between the coupler-rocker joints of the two linkages at their respective instant 
centers I3,4.  The combined weight of the reed and laybar is 29 lb.  A 540-lb beat-up 
force from the cloth is applied to the reed as shown.  The steel links have a 2 x 1-in 
uniform cross section.  Find the forces on the pins for one revolution of the crank.  Find 
the torque-time function required to drive the system.

	*†11-14	 Figure P11-7 shows a crimping tool.  Find the force Fhand needed to generate a 2000-lb 
Fcrimp.  Find the pin forces.  What is this linkage’s joint force transmission index (JFI) 
in this position?

	†11-15	 Figure P11-8 shows a walking-beam conveyor mechanism that operates at slow speed 
(25 rpm).  The boxes being pushed each weigh 50 lb.  Determine the pin forces in the 
linkage and the torque required to drive the mechanism through one revolution.  Ne-
glect the masses of the links.

	†11-16	 Figure P11-9 shows a surface grinder table crank-slider drive that operates at 120 rpm.  
The crank radius is 22 mm, the coupler is 157 mm, and its offset is 40 mm.  The mass 
of table and workpiece combined is 50 kg.  Find the pin forces, slider side loads, and 
driving torque over one revolution. Neglect the mass of the crank and connecting rod.

B

AP = 1.09

L2 = 0.785

P
L3 = 0.356

L4 = 0.950

A

L1 = 0.544 O2 O4

96°

B

AP = 1.33

L2 = 0.86

P

L3 = 1.85

L4 = 0.86

A

L1 = 2.22
O2 O4

FIGURE P11-5
Problems 11-11 to 11-12

(a ) ( b )

F F

–36°
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FIGURE P11-6
Problem 11-13 - Fourbar linkage for laybar drive, showing forces and accelerations

incoming
threads
(warp)

ωin
laybar

reed

clothcrank

coupler

rocker

4-bar linkage

( a )  Warp, weave, laybar, reed, and
        laybar drive for a water-jet loom

water-jet orifice
"shot" thread
   (weave)

540 lb

500 rpm
beat-up force

4169
in/sec2

7834
in/sec2

accelerations

laybar

reed

laybar

rocker
7.187

coupler
 8.375

crank
   2

ωin

inertia
force

beat-up
forcereed

r = 3.75

inertia
force

@ –43°

ground
 9.625

( c )  Acceleration on laybar and force on reed

(b )  Linkage, laybar, reed, and dimensions

Copyright © 2018 Robert L. Norton:  All Rights Reserved

View as a video
http://www.designof-

machinery.com/DOM/
loom_laybar_drive.avi

FIGURE P11-7

Problem 11-14  

Fhand

Fhand 4.26

AB = 0.80, BC = 1.23, CD = 1.55, AD = 2.4
D

Fcrim
49°

32

1 A B
C

4
p

1.0

http://www.designofmachinery.com/DOM/loom_laybar_drive.avi
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FIGURE P11-8
Problem 11-15

26°

B

AP = 3.06

31°

L4 = 2.33

P

L3 = 2.06

L2 = 1.0
A

L1 = 2.22

P'
O2

O4 O6

6

5

7

8

1

ω2 B'

A'

O2'

FIGURE P11-9
Problem 11-16

O2

2
3

4

offset
A

B

5

workpiece

grinding wheel

table

ω2

ω5

	†11-17	 Figure P11-10 shows a crank-slider power hacksaw that operates at 50 rpm.  The bal-
anced crank is 75 mm; the uniform cross section coupler is 170 mm long, weighs 2 kg, 
and its offset is 45 mm.  Link 4 weighs 15 kg.  Find the pin forces, slider side loads, 
and driving torque over one revolution for a cutting force of 250 N in the forward direc-
tion and 50 N during the return stroke.

	†11-18	 Figure P11-11 shows a crank-slider paper roll off-loading station.  The paper rolls have 
a 0.9-m OD and 0.22-m ID, are 3.23 m long, and have a density of 984 kg/m3.  The 
forks that support the roll are 1.2 m long.  The motion is slow so inertial loading can be 
neglected.  Find the force required of the air cylinder to rotate the roll through 90°.

	†11-19	 Derive an expression for the relationship between flywheel mass and the dimensionless 
parameter radius/thickness (r/t) for a solid disk flywheel of moment of inertia I.  Plot 
this function for an arbitrary value of I and determine the optimum r/t ratio to minimize 
flywheel weight for that I.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
View as a video

View as a video
http://www.designofmachinery.com/

DOM/surface_grinder.avi

http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
http://www.designofmachinery.com/DOM/surface_grinder.avi
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	 11-20	 Figure P11-12 shows an oil field pump mechanism.  The head of the rocker arm is 
shaped such that the lower end of a flexible cable attached to it will always be directly 
over the well head regardless of the position of the rocker arm 4.  The pump rod, which 
connects to the pump in the well casing, is connected to the lower end of the cable.  
The force in the pump rod on the up stroke is 2970 lb and the force on the down stroke 
is 2300 lb.  Link 2 weighs 598.3 lb and has a mass moment of inertia of 11.8 lb-in-sec2 
(blob-in2); both include the counterweight.  Its CG is on the link centerline, 13.2 in 
from O2.  Link 3 weighs 108 lb and its CG is on the link centerline, 40 in from A.  It 
has a mass moment of inertia of 150 lb-in-sec2 (blob-in2).  Link 4 weighs 2706 lb and 
has a mass moment of inertia of 10 700 lb-in-sec2 (blob-in2); both include the coun-
terweight.  Its CG is on the link centerline where shown.  The crank turns at a constant 

1 m

FIGURE P11-11
Problem 11-18

V-links (4)

air cylinder (2)

rocker arm (4)

rod (3)

paper
rolling
machine

off-loading station

AB

O2 O5

ω2

Vblade 2

3

4
5 23 5

4

workpiece

1 1

ω5

cut stroke 45 mm

L3 =170 mm
L2 =75 mm

FIGURE P11-10
Problem 11-17 Power hacksaw  

15 kg

2 kg

View as a video
http://www.designofmachinery.com/DOM/power_hacksaw.avi

http://www.designofmachinery.com/DOM/power_hacksaw.avi
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speed of 4 rpm CCW.  At the instant shown in the figure the crank angle is at 45° with 
respect to the global coordinate system.  Find all pin forces and the torque needed to 
drive the crank for the position shown.  Include gravity forces because the links are 
heavy and the speed is low.

	†11-21	 Use the information in Problem 11-20 to find and plot all pin forces and the torque 
needed to drive the crank for one revolution of the crank.

	†11-22	 Use the information in Problem 11-20 to find the torque needed to drive the crank for 
the position shown using the method of virtual work.

	†11-23	 Use the information in Problem 11-20 to find and plot the torque needed to drive the 
crank for one revolution of the crank using the method of virtual work.

	†11-24	 In Figure P11-13, links 2 and 4 each weigh 2 lb and there are 2 of each (another set 
behind).  Their CGs are at their midpoints.  Link 3 weighs 10 lb.  The mass moments of 
inertia of links 2, 3, and 4 are 0.071, 0.430, and 0.077 lb-in-sec2 (blob-in2), respectively.  
Find the torque needed to begin a slow CCW rotation of link 2 from the position shown 
using the method of virtual work.  Include gravity forces because the links are heavy 
and the speed is low.

	†*11-25	 The linkage in Figure P11-14 has L1 = 9.5, L2 = 5.0, L3 = 7.4, L4 = 8.0, and AP = 8.9 
in.  The steel crank and rocker have uniform cross sections 1 in wide by 0.5 in thick.  
The aluminum coupler is 0.75 in thick.  In the instantaneous position shown, the crank 
O2A has ω = 40 rad/sec and α = –20 rad/sec2.  There is a horizontal force at P of  
F = 50 lb.  Find the torque needed to drive the crank at the position shown using the 
method of virtual work.

	 11-26	 For the linkage defined in Problem 11-25 use program Linkages to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 40 rad/sec for 
one revolution of the crank. 

	
*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P11-12
Problems 11-20 to 11-23   An oil field pump - dimensions in inches

76 14

47.5

12

80

A

B

2

3

4

47.5

counterweight

counter-
 weight

P

B–CG4 = 32.00
P–CG4 = 124.44
O4–CG4 = 79.22

O4

x 51.26
head end

CG4

36.9°

14.03°

156.6°

O2

ω2

y

Y

X

well head

cable

pump rod

View as a video
http://www.designof-

machinery.com/DOM/
oil_pump.avi

http://www.designofmachinery.com/DOM/oil_pump.avi
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	†11-27	 For the linkage defined in Problem 11-25 find and plot the torque needed to drive the 
crank at a constant speed of 40 rad/sec for one revolution of the crank using the method 
of virtual work. 

	†11-28	 The linkage in Figure P11-15 has L1 = 2.22, L2 = 1.0, L3 = 2.06, L4 = 2.33, and  
AP = 3.06 m. The steel crank and rocker have uniform cross sections of 50 mm wide 
by 25 mm thick.  The aluminum coupler is 25 mm thick.  In the instantaneous position 
shown, the crank O2A has ω = 10 rad/sec and α = 5 rad/sec2.  There is a vertical force 
at P of F = 100 N.  Find the torque needed to drive the crank at the position shown us-
ing the method of virtual work.

	 11-29	 For the linkage defined in Problem 11-28 use program Linkages to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for 
one revolution of the crank.

	†11-30	 For the linkage defined in Problem 11-28 find and plot the torque needed to drive the 
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method 
of virtual work.

	†11-31	 The linkage in Figure P11-16 has L1 = 1.82, L2 = 0.72, L3 = 1.43, L4 = 1.60, and  
AP = 0.97 m. The steel crank and rocker have uniform cross sections 50 mm wide by 
25 mm thick.  The aluminum coupler is 25 mm thick.  In the instantaneous position 
shown, the crank O2A has ω = 15 rad/sec and α = –10 rad/sec2.  There is a horizon-
tal force at P of F = 200 N.  Find the torque needed to drive the crank at the position 
shown using the method of virtual work.

	 11-32	 For the linkage defined in Problem 11-31 use program Linkages to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for 
one revolution of the crank using the method of virtual work.  

O2

Y

X
y

x

16.948
9.174

2.79

9.573

2

4

3

PBA

O4

12.97
7.09

23.76°

26°

FIGURE P11-13
Problem 11-24   An aircraft overhead bin mechanism - dimensions in inches

56°

P
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B

50°

O2 O4
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3
4

1

Problems 11-25 to 11-27
FIGURE P11-14

F

P

A

B

O2 O4

F

–31°
2

3

4

1
60°

Problems 11-28 to 11-30
FIGURE P11-15

P

A

B

O2 O4

F

2

3 4

30°
1

54°

Problems 11-31 to 11-33
FIGURE P11-16
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or, TKSolver equa-
tion solver programs.

	
*  Answers in Appendix F.

	†11-33	 For the linkage defined in Problem 11-31 find and plot the torque needed to drive the 
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method 
of virtual work.  

	†11-34	 The linkage in Figure P11-17 has L1 = 1.0, L2 = 0.356, L3 = 0.785, L4 = 0.95, and 
 AP = 1.09 m. The steel crank, coupler, and rocker have uniform cross sections of 50 
mm wide by 25 mm thick.  In the instantaneous position shown, the crank O2A has  
ω = 15 rad/sec and α = –10 rad/sec2.  The vertical force at P is F = 500 N.   
Find the torque needed to drive the crank at the position shown using the method of 
virtual work.

	 11-35	 For the linkage defined in Problem 11-34 use program Linkages to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 15 rad/sec for 
one revolution of the crank using the method of virtual work.  

	†11-36	 For the linkage defined in Problem 11-34 find and plot the torque needed to drive the 
crank at a constant speed of 15 rad/sec for one revolution of the crank using the method 
of virtual work.  

	†11-37	 The linkage in Figure P11-18 has L1 = 2.22, L2 = 0.86, L3 = 1.85, L4 = 1.86, and  
AP = 1.33 m. The steel crank, coupler, and rocker have uniform cross sections of 50-
mm diameter.  In the instantaneous position shown, the crank O2A has ω = –10 rad/
sec and α = 10 rad/sec2.  There is a horizontal force at P of F = 300 N.  Find the torque 
needed to drive the crank at the position shown using the method of virtual work.

	 11-38	 For the linkage defined in Problem 11-37 use program Linkages to find and plot all 
pin forces and the torque needed to drive the crank at a constant speed of 10 rad/sec for 
one revolution of the crank. 

	†11-39	 For the linkage defined in Problem 11-37 find and plot the torque needed to drive the 
crank at a constant speed of 10 rad/sec for one revolution of the crank using the method 
of virtual work. 

	†*11-40	 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11‑26 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

	†11-41	 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11‑29 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

	†11-42	 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11‑32 
using a coefficient of fluctuation of 0.07 while minimizing flywheel weight.

	†11-43	 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11‑35 
using a coefficient of fluctuation of 0.05 while minimizing flywheel weight.

	†11-44	 Design a steel disk flywheel to smooth the input torque for the crank of Problem 11‑38 
using a coefficient of fluctuation of 0.06 while minimizing flywheel weight.

	 11-45	 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type 
and orientation shown in Figure 11-4.   For the row(s) in the table assigned, solve for 
the three pin forces and the torque available at the crank for the position shown.

	 11-46	 Table P11-5 gives kinematic and geometric data for a crank-slider linkage of the type 
and orientation shown in Figure 11-4.  For the row(s) assigned in the table, solve for 
the torque available at the crank using the method of virtual work for the position 
shown, assuming no friction losses.

P

A

B

O2 O4

F

2

3

4

96°

1

Problems 11-34 to 11-36
FIGURE P11-17

O2 O4

–36°

2

3

4

1
A

B

Problems 11-37 to 11-39
FIGURE P11-18

PF
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	 11-47	 For the linkage in Problem 11-25 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 40 rad/sec.

	 11-48	 For the linkage in Problem 11-28 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 10 rad/sec.

	 11-49	 For the linkage in Problem 11-31 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 15 rad/sec.

	 11-50	 For the linkage in Problem 11-34 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of 15 rad/sec.

	 11-51	 For the linkage in Problem 11-37 find and plot the shaking force and torque for one 
revolution of the crank when it is driven at a constant speed of −10 rad/sec.

	 11-52	 Determine the joint-force index (JFI) for the linkage in Problem 11-9.

11.16	 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

L11-1		  View the downloadable video Fourbar Linkage Virtual Laboratory.  Open the file 
Virtual Fourbar Linkage Lab 11-1.doc and follow the instructions as directed by your 
professor.  For this lab it is suggested that you analyze only the data for the unbalanced 
conditions of the linkage.

link 2

4
3
5
6
2

10

7

link 3

12
10
15

20
8

35

25

Row

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Row

0.10
0.20
0.05
0.12
0.30
0.24
0.45

IG2

0.2
0.4
0.1
0.3
0.8
0.6
0.9

IG3

1.3

1.0
1.7
2.0
0.7
3.3
2.3

R12

0.002
0.050
0.010
0.006
0.001
0.150
0.080

m2

0.020
0.100
0.020
0.150
0.004
0.300
0.200

m3

0.060
0.200
0.030
0.050
0.014
0.050
0.100

m4

14
8

12
18
8

35

25

d

400
375
390
700
225

–900

–935

d
.

–22 760
67 350
36 400
45 430

3 010
69 750

209 900

d
..

R23

3.0

2.5
3.8
5.0
2.0
8.8
6.2

µ

0.15

0.00
0.10
0.18
0.08
0.12
0.14

60

45
75
90
30

150
110

FP
mag

FP
ang

180

180
180
180
180
180
180

force (lbf, deg), mass (blobs), moments of Inertia (blob-in2)

TABLE  P11-5 Data for Problems 11-45 to 11-46  (See Figure 11-4 for Nomenclature)
Lengths (inches), velocity (in/sec), acceleration (in/sec2)Part 1

Part 2

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip

† http://www.designofma-
chinery.com/DOM/Four-
bar_Machine_Virtual_labo-
ratory.mp4

http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip
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11.17	 PROJECTS

The following problem statement applies to all the projects listed.
These larger-scale project statements deliberately lack detail and structure and are loosely defined.  
Thus, they are similar to the kind of “identification of need” or problem statement commonly 
encountered in engineering practice.  It is left to the student to structure the problem through 
background research and to create a clear goal statement and set of performance specifications 
before attempting to design a solution.  This design process is spelled out in Chapter 1 and should 
be followed in all of these examples.  All results should be documented in a professional engineering 
report.  See the Bibliography in Chapter 1 for references on report writing.

	 Some of these project problems are based on the kinematic design projects in Chapter 3.  Those 
kinematic devices can now be designed more realistically with consideration of the dynamic forces 
that they generate.  The strategy in most of the following project problems is to keep the dynamic 
pin forces and thus the shaking forces to a minimum and also keep the input torque-time curve as 
smooth as possible to minimize power requirements.  All these problems can be solved with a pin-
jointed fourbar linkage.  This fact will allow you to use program Linkages to do the kinematic and 
dynamic computations on a large number and variety of designs in a short time. There are infinities 
of viable solutions to these problems. Iterate to find the best one!  All links must be designed in 
detail as to their geometry (mass, moment of inertia, etc.).  An equation solver such as Mathcad, 
Matlab, or TKSolver will be useful here.  Determine all pin forces, shaking force, shaking torque, 
and input horsepower required for your designs.

	 P11‑1	 The tennis coach needs a better tennis ball server for practice.  This device must fire 
a sequence of standard tennis balls from one side of a standard tennis court over the 
net such that they land and bounce within each of the three court areas defined by the 
court’s  white lines.  The order and frequency of a ball’s landing in any one of the three 
court areas must be random.  The device should operate automatically  and unattended 
except for the refill of balls.  It should be capable of firing 50 balls between reloads.   
The timing of ball releases should vary.  For simplicity, a motor-driven pin-jointed link-
age design is preferred.  This project asks you to design such a device to be mounted 
upon a tripod stand of 5‑foot height.  Design it, and the stand, for stability against tip-
over due to the shaking forces and shaking torques which should also be minimized in 
the design of your linkage.  Minimize the input torque.

	 P11‑2	 The “Save the Skeet” foundation has requested a more humane skeet launcher be de-
signed.  While they have not yet succeeded in passing legislation to prevent the whole-
sale slaughter of these little devils, they are concerned about the inhumane aspects 
of the large accelerations imparted to the skeet as it is launched into the sky for the 
sportsperson to shoot down.   The need is for a skeet launcher that will smoothly accel-
erate the clay pigeon onto its desired trajectory.  Design a skeet launcher to be mounted 
upon a child’s “little red wagon.”  Control your design parameters so as to minimize the 
shaking forces and torques so that the wagon will remain as nearly stationary as pos-
sible during the launch of the clay pigeon.  

	 P11‑3	 The coin-operated “kid bouncer” machines found outside supermarkets  typically 
provide a very unimaginative rocking motion to the occupant.  There is a need for a 
superior “bouncer” which will give more interesting motions while remaining safe for 
small children.  Design it for mounting in the bed of a pickup truck.  Keep the shaking 
forces to a minimum and the input torque-time curve as smooth as possible.  

	 P11‑4	 NASA wants a zero-g machine for astronaut training to carry one person and provide a 
negative 1-g acceleration for as long as possible.  Design this device and mount it to the 
ground plane so as to minimize dynamic forces and driving torque.
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	 P11‑5	 The Amusement Machine Co. Inc. wants a portable “whip” ride which will give two or 
four passengers a thrilling but safe ride and which can be trailed behind a pickup truck 
from one location to another.  Design this device and its mounting hardware to the 
truck bed minimizing the dynamic forces and driving torque.

	 P11‑6	 The Air Force has requested a pilot training simulator that will give potential pilots 
exposure to g forces similar to those they will experience in dogfight maneuvers.  De-
sign this device and mount it to the ground plane so as to minimize dynamic forces and 
driving torque.

	 P11‑7	 Cheers needs a better “mechanical bull” simulator for their “yuppie” bar in Boston.  It 
must give a thrilling “bucking bronco” ride but be safe.  Design this device and mount 
it to the ground plane so as to minimize dynamic forces and driving torque.

	 P11‑8	 Gargantuan Motors Inc. is designing a new light military transport vehicle.  Their cur-
rent windshield wiper linkage mechanism develops such high shaking forces when run 
at its highest speed that the engines are falling out!  Design a superior windshield wiper 
mechanism to sweep the 20-lb armored wiper blade through a 90° arc while minimiz-
ing both input torque and shaking forces.  The wind load on the blade, perpendicular to 
the windshield, is 50 lb.  The coefficient of friction of the wiper blade on glass is 0.9.

	 P11-9	 The Army’s latest helicopter gunship is to be fitted with the Gatling gun, which fires 
50-mm-diameter, 2-cm-long spent uranium slugs at a rate of 10 rounds per second.  
The reaction (recoil) force may upset the helicopter’s stability.  A mechanism is needed 
that can be mounted to the frame of the helicopter and which will provide a synchro-
nous shaking force, 180° out of phase with the recoil force pulses, to counteract the 
recoil of the gun.  Design such a linkage and minimize its torque and power drawn 
from the aircraft’s engine.  Total weight of your device should also be minimized.

	P11-10	 Steel pilings are universally used as foundations for large buildings.  These are often 
driven into the ground by hammer blows from a “pile driver.”  In certain soils (sandy, 
muddy) the piles can be “shaken” into the ground by attaching a “vibratory driver” that 
imparts a vertical, dynamic shaking force at or near the natural frequency of the pile-
earth system.  The pile can literally be made to “fall into the ground” under optimal 
conditions.  Design a fourbar linkage-based pile shaker mechanism which, when its 
ground link is firmly attached to the top of a piling (supported from a crane hook), will 
impart a dynamic shaking force that is predominantly directed along the piling’s long, 
vertical axis.  Operating speed should be in the vicinity of the natural frequency of the 
pile-earth system.

	P11-11	 Paint can shaker mechanisms are common in paint stores.  While they do a good job 
of mixing the paint, they are also noisy and transmit their vibrations to the shelves and 
counters.  A better design of the paint can shaker is possible using a balanced fourbar 
linkage.  Design such a portable device to sit on the floor (not bolted down) and mini-
mize the shaking forces and vibrations while still effectively mixing the paint.

	P11-12	 Convertible automobiles are once again popular.  While offering the pleasure of 
open-air motoring, they offer little protection to the occupants in a rollover accident.  
Permanent roll bars are ugly and detract from the open feeling of a true convertible.  
An automatically deployable roll bar mechanism is needed that will be out of sight 
until needed.  In the event that sensors in the vehicle detect an imminent rollover, the 
mechanism should deploy within 250 ms.  Design a collapsible/deployable roll bar 
mechanism to retrofit to the convertible of your choice.
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	P11-13	 Design a superior hand-held sanding/polishing machine.  Many such devices exist on 
the market.  Some have a simple pure-rotation motion which creates an undesireable 
pattern of rotary scratches on the affected surface.  Others have an ineffective random 
vibration motion of very small amplitude.  Still others have more complicated mo-
tions.  What is desired in this product is a more sophisticated motion pattern which will 
provide a superior finish.  It is also desireable that this new machine provide smoother 
and quieter operation than any non-rotary devices now on the market.  Most current 
non-rotary polishing machines deliver significant vibratory forces to the user’s hands.  
The new design should minimize the effects of vibratory forces as felt by the user.  In 
addition, it should require the smallest possible input torque (and thus power) from its 
electric motor.

	P11-14	 NASA has requested the design of a Spacecraft Compatible Ambulatory Machine, or 
SCAM.  Proposed interplanetary travel in this century will require that the astronaut 
crews spend years in micro-gravity.  Research on extended micro-gravity exposure has 
shown that the lack of gravity-bound exercise results in significant bone-density loss 
in astronauts who spend long periods in space.  It is believed that the key to preventing 
this debilitating condition is to provide the astronauts with an artificial-gravity exercise 
environment.  NASA desires the design and analysis of a machine that can be installed 
on an interplanetary spacecraft that will, when activated, provide realistic earth-bound 
levels of walking and/or jogging forces to the feet and legs of the astronaut.  They envi-
sion a compact machine into which the astronaut can be placed and secured, and which, 
when run, will cause realistic (physiologic) forces and motions to be imparted to the 
feet and legs of the victim astronaut that simulate walking and/or running on Earth in a 
1-g environment.

	P11-15	 The Autoroll Co. makes bottle-printing machines.  These use a silk-screen process to 
apply label information to oval bottles in an automatic assembly machine.  A Video 
is downloadable for viewing that shows one of their machines in operation.  A new 
machine is being designed.  A mechanism is needed that will move the squeegee (also 
called a knife) in an approximate straight line across the top of the silk screen while 
the oval bottle is rolled against the underside of the screen.  It is also preferred that the 
velocity of the knife be as uniform as possible during the print stroke.  The useable 
print stroke is a maximum of 6 inches long.  The knife is 5 inches wide, 1 inch high and 
can flex up to 0.1 inches in the vertical direction.  Its spring constant is 20 lb/in.  It only 
needs to wipe in one direction.  There is an effective coefficient of friction between 
knife and screen of about 1.5.  The desired production rate is 80 bottles per minute.  
The bottle-motion mechanism is not a part of this project..   

http://www.designofmachinery.com/DOM/Bottle_Printing_Machine.mp4
http://www.designofmachinery.com/DOM/Bottle_Printing_Machine.mp4
http://www.designofmachinery.com/DOM/Bottle_Printing_Machine.mp4
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Chapter12
BALANCING
 Moderation is best,
 and to avoid all extremes
 Plutarch

12.0	 INTRODUCTION Watch the lecture video for this chapter (48:09)*

Any link or member that is in pure rotation can, theoretically, be perfectly balanced to 
eliminate all shaking forces and shaking moments.  It is accepted design practice to bal-
ance all rotating members in a machine unless shaking forces are desired (as in a vibrating 
shaker mechanism, for example).  A rotating member can be balanced either statically or 
dynamically.  Static balance is a subset of dynamic balance.  To achieve complete bal-
ance requires that dynamic balancing be done.  In some cases, static balancing can be an 
acceptable substitute for dynamic balancing and is generally easier to do.

Rotating parts can, and generally should, be designed to be inherently balanced by 
their geometry.  However, the vagaries of production tolerances guarantee that there will 
still be some small unbalance in each part.  Thus a balancing procedure will have to be 
applied to each part after manufacture.  The amount and location of any imbalance can 
be measured quite accurately and compensated for by adding or removing material in 
the correct locations.

In this chapter we will investigate the mathematics of determining and designing a 
state of static and dynamic balance in rotating elements and also in mechanisms having 
complex motion, such as the fourbar linkage.  The methods and equipment used to mea-
sure and correct imbalance in manufactured assemblies will also be discussed.  It is quite 

642

 	

*  http://www.designofma-
chinery.com/DOM/Balanc-
ing.mp4

http://www.designofmachinery.com/DOM/Balancing.mp4
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convenient to use the method of d’Alembert (see Section 10.14) when discussing rotating 
imbalance, applying inertia forces to the rotating elements, so we will do that.

12.1	 STATIC BALANCE Watch a short video (09:58)†

Despite its name, static balance does apply to things in motion.  The unbalanced forces of 
concern are due to the accelerations of masses in the system.  The requirement for static 
balance is simply that the sum of all forces on the moving system (including d’Alembert 
inertial forces) must be zero.

∑ − = 0 (12.1)mF a

This is simply a restatement of Newton’s law as discussed in Section 10.14.

Another name for static balance is single-plane balance, which means that the 
masses which are generating the inertia forces are in, or nearly in, the same plane.  It is 
essentially a two-dimensional problem.  Some examples of common devices which meet 
this criterion, and thus can successfully be statically balanced, are a single gear or pulley 
on a shaft, a bicycle or motorcycle tire and wheel, a thin flywheel, an airplane propeller, 
an individual turbine blade-wheel (but not the entire turbine).  The common denominator 
among these devices is that they are all short in the axial direction compared to the radial 
direction, and thus can be considered to exist in a single plane.  An automobile tire and 
wheel is only marginally suited to static balancing as it is reasonably thick in the axial di-
rection compared to its diameter.  Despite this fact, auto tires are sometimes statically bal-
anced.  More often they are dynamically balanced and will be discussed under that topic.

Figure 12‑1a shows a link in the shape of a vee which is part of a linkage.  We want to 
statically balance it.  We can model this link dynamically as two point masses m1 and m2 
concentrated at the local CGs of each “leg” of the link as shown in Figure 12‑1b.  These 
point masses each have a mass equal to that of the “leg” they replace and are supported on 
massless rods at the position (R1 or R2) of that leg’s CG.  We can solve for the required 
amount and location of a third “balance mass” mb to be added to the system at some loca-
tion Rb in order to satisfy equation 12.1.

Assume that the system is rotating at some constant angular velocity ω.  The accel-
erations of the masses will then be strictly centripetal (toward the center), and the inertia 
forces will be centrifugal (away from the center) as shown in Figure 12-1.  Since the 
system is rotating, the figure shows a “freeze-frame” image of it.  The position at which 
we “stop the action” for the purpose of drawing the picture and doing the calculations is 
both arbitrary and irrelevant to the computation.  We will set up a coordinate system with 
its origin at the center of rotation and resolve the inertial forces into components in that 
system.  Writing vector equation 12.1 for this system, we get:

− ω − ω − ω = 0 (12.2a)1
2

2
2 2m m mb bR R R1 2

Note that the only forces acting on this system are the inertia forces.  For balancing, it 
does not matter what external forces may be acting on the system.  External forces cannot 
be balanced by making any changes to the system’s internal geometry.  Note that the ω2 
terms cancel.  For balancing, it also does not matter how fast the system is rotating, only 

 	

†  http://www.designof-
machinery.com/DOM/
Static_Balance.mp4

http://www.designofmachinery.com/DOM/Static_Balance.mp4
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that it is rotating.  (The ω will determine the magnitudes of these forces, but we are going 
to force their sum to be zero anyway.)

Dividing out the ω2 and rearranging, we get:

= − − (12.2b)1 2m m mb bR R R1 2

Breaking into x and y components:

( )
( )= − +

= − +
(12.2c)

1 1 2 2

1 1 2 2

m R m R m R

m R m R m R

b b

b b

x x x

y y y

The terms on the right sides are known.  We can readily solve for the mRx and mRy 
products needed to balance the system.  It will be convenient to convert the results to 
polar coordinates.

( )
( )

θ =

=
− +

− +

arctan

(12.2d)

arctan
1 1 2 2

1 1 2 2

m R

m R

m R m R

m R m R

b
b b

b b

y

x

y y

x x

( )

( )( )

= +

= +

= +

= +

= +

(12.2e)

2 2

2 2

2 2 2

2 2 2 2

2 2

R R R

m R m R R

m R R

m R m R

m R m R

b b b

b b b b b

b b b

b b b b

b b b b

x y

x y

x y

x y

x y

The angle at which the balance mass must be placed (with respect to our arbitrarily 
oriented freeze-frame coordinate system) is θb, found from equation 12.2d.  Note that the 
signs of the numerator and denominator of equation 12.2d must be individually main-
tained and a two-argument arctangent computed in order to obtain θb in the correct quad-
rant.  Most calculators and computers will give an arctangent result only between ±90°.

The mbRb product is found from equation 12.2e.  There is now an infinity of solutions 
available.  We can either select a value for mb and solve for the necessary radius Rb at 
which it should be placed, or choose a desired radius and solve for the mass that must be 
placed there.  Packaging constraints may dictate the maximum radius possible in some 
cases.  The balance mass is confined to the “single plane” of the unbalanced masses.

Once a combination of mb and Rb is chosen, it remains to design the physical counter-
weight.  The chosen radius Rb is the distance from the pivot to the CG of whatever shape 
we create for the counterweight mass.  Our simple dynamic model, used to calculate the 
mR product, assumed a point mass and a massless rod.  These ideal devices do not exist.  
A possible shape for this counterweight is shown in Figure 12‑1c.  Its mass must be mb, 
distributed so as to place its CG at radius Rb at angle θ .
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✍EXAMPLE 12‑1

Static Balancing.

Given:	 The system shown in Figure 12‑1 has the following data:

= = ∠ °
= = ∠ °

ω =

1.2 kg 1.135 m @ 113.4
1.8 kg 0.822 m @ 48.8

40 rad/sec

1 1

2 2

m R
m R

Find: 	 The mass-radius product and its angular location needed to statically balance the 
system.

Solution:

	 1	 Resolve the position vectors into xy components in the arbitrary coordinate system associated 
with the freeze-frame position of the linkage chosen for analysis.

= ∠ ° = − =

= ∠ ° = + =

1.135 @ 113.4 ; 0.451, 1.042
( )

0.822 @ 48.8 ; 0.541, 0.618

1 1 1

2 2 2

R R R
a

R R R

x y

x y

	 2	 Solve equations 12.2c.

2R1m1 ω

2R2m2 ω

2Rbmb ω

2

1

b

Y

X

Y

R 1

2R

R b

Moving global
mass center -
unbalanced

Stationary global
mass center - balanced

X

Y

Shaped
counterweight

X

m2

m1

m1

m2

m1

m2

mbmb

ωω ω
θ

θ

θ

FIGURE 12-1
Static balancing a link in pure rotation

( (a )  Unbalanced link b)  Dynamic model ( c )  Statically balanced link
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= ( )( ) ( )( )

( )( ) ( )( )

= − − − − = −

= − − = − − = −

− 1.2 0.451 1.8 0.541 0.433
( )

1.2 1.042 1.8 0.618 2.363

1 1 2 2

1 1 2 2

m R m R m R
b

m R m R m R

b b

b b

x x x

y y y

	 3	 Solve equations 12.2d and 12.2e.

( ) ( )

θ =
−
−

= °

= − + − =

arctan 2.363
0.433

259.6
( )

0.433 2.363 2.402 kg-m2 2
c

m R

b

b b

	 4	 This mass-radius product of 2.402 kg-m can be obtained with a variety of shapes appended to 
the assembly.  Figure 12‑1c shows a particular shape whose CG is at a radius of Rb  = 0.806 m 
at the required angle of 259.6°.  The mass required for this counterweight design is then:

= =
2.402 kg-m

0.806 m
2.980 kg ( )m db

		  at a chosen CG radius of:

= 0.806 m ( )R eb

Many other shapes are possible.  As long as they provide the required mass-radius 
product at the required angle, the system will be statically balanced.  Note that the value 
of ω was not needed in the calculation.

12.2	 DYNAMIC BALANCE Watch a short video (09:42)†

Dynamic balance is sometimes called two-plane balance.  It requires that two criteria 
be met.  The sum of the forces must be zero (static balance) plus the sum of the moments* 
must also be zero.

∑

∑

=

=

0

(12.3)

0

F

M

These moments act in planes that include the axis of rotation of the assembly such as 
planes XZ and YZ in Figure 12‑2.  The moment’s vector direction, or axis, is perpendicular 
to the assembly’s axis of rotation.

Any rotating object or assembly which is relatively long in the axial direction com-
pared to the radial direction requires dynamic balancing for complete balance.  It is pos-
sible for an object to be statically balanced but not be dynamically balanced.  Consider the 
assembly in Figure 12‑2.  Two equal masses are at identical radii, 180° apart rotationally, 
but separated along the shaft length.  A summation of –ma forces due to their rotation will 
be always zero.  However, in the side view, their inertia forces form a couple which rotates 
with the masses about the shaft.  This rocking couple causes a moment on the ground 
plane, alternately lifting and dropping the left and right ends of the shaft.

*  We will use the term 
moment in this text to refer 
to “turning forces” whose 
vectors are perpendicular to 
an axis of rotation or “long 
axis” of an assembly, and 
the term torque to refer to 
“turning forces” whose vec-
tors are parallel to an axis of 
rotation.

 	

†  http://www.designof-
machinery.com/DOM/Dy-
namic_Balance.mp4

http://www.designofmachinery.com/DOM/Dynamic_Balance.mp4
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Some examples of devices which require dynamic balancing are rollers, crankshafts, 
camshafts, axles, clusters of multiple gears, motor rotors, turbines, and propeller shafts.  
The common denominator among these devices is that their mass may be unevenly dis-
tributed both rotationally around their axis and longitudinally along their axis.

To correct dynamic imbalance requires either adding or removing the right amount 
of mass at the proper angular locations in two correction planes separated by some dis-
tance along the shaft.  This will create the necessary counterforces to statically balance 
the system and also provide a countercouple to cancel the unbalanced moment.  When an 
automobile tire and wheel is dynamically balanced, the two correction planes are the inner 
and outer edges of the wheel rim.  Correction weights are added at the proper locations in 
each of these correction planes based on a measurement of the dynamic forces generated 
by the unbalanced, spinning wheel.

It is always good practice to first statically balance all individual components that 
go into an assembly, if possible.  This will reduce the amount of dynamic imbalance that 
must be corrected in the final assembly and also reduce the bending moment on the shaft.  
A common example of this situation is the aircraft turbine which consists of a number 
of circular turbine wheels arranged along a shaft.  Since these spin at high speed, the in-
ertia forces due to any imbalance can be very large.  The individual wheels are statically 
balanced before being assembled to the shaft.  The final assembly is then dynamically 
balanced.

Some devices do not lend themselves to this approach.  An electric motor rotor is 
essentially a spool of copper wire wrapped in a complex pattern around the shaft.  The 
mass of the wire is not uniformly distributed either rotationally or longitudinally, so it will 
not be balanced.  It is not possible to modify the windings’ local mass distribution after 

FIGURE 12-2
Balanced forces—unbalanced moment

X

Y

Z

Y

2R1m1 ω

2R2m2 ω 2R2m2 ω

2R1m1 ω

m2

m1

R2
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m2

= m2m1

=R1 R2
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the fact without compromising electrical integrity.  Thus the entire rotor imbalance must 
be countered in the two correction planes after assembly.

Consider the system of three lumped masses arranged around and along the shaft in 
Figure 12‑3.  Assume that, for some reason, they cannot be individually statically balanced 
within their own planes.  We then create two correction planes labeled A and B.  In this 
design example, the unbalanced masses m1, m2, m3 and their radii R1, R2, R3 are known 
along with their angular locations θ1, θ2, and θ3.  We want to dynamically balance the 
system.  A three-dimensional coordinate system is applied with the axis of rotation in 
the Z direction.  Note that the system has again been stopped in an arbitrary freeze-frame 
position.  Angular acceleration is assumed to be zero.  The summation of forces is:

− ω − ω − ω − ω − ω = 0 (12.4a)1 1
2

2 2
2

3 3
2 2 2m m m m mA A B BR R R R R

Dividing out the ω2 and rearranging we get:

+ = − − − (12.4b)1 2 3 3m m m m mA A B BR R R R R1 2

Breaking into x and y components:

+ = − − −

+ = − − −
(12.4c)

1 1 2 2 3 3

1 1 2 2 3 3

m R m R m R m R m R

m R m R m R m R m R

A A B B

A A B B

x x x x x

y y y y y

Equations 12.4c have four unknowns in the form of the mR products at plane A and 
the mR products at plane B.  To solve, we need the sum of the moments equation which we 
can take about a point in one of the correction planes such as point O.  The moment arm 
z distances of each force measured from plane A are labeled l1, l2, l3, lB in the figure; thus

( ) ( ) ( ) ( )ω = − ω − ω − ω (12.4d)2
1 1

2
1 2 2

2
2 3 3

2
3m l m l m l m lB B BR R R R

Dividing out the ω2, breaking into x and y components, and rearranging:

The moment in the XZ plane (i.e., about the Y axis) is:

( ) ( ) ( )
=

− − −
(12.4e)

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l

lB B
B

x
x x x

The moment in the YZ plane (i.e., about the X axis) is:

( ) ( ) ( )
=

− − −
(12.4f)

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l

lB B
B

y

y y y

These can be solved for the mR products in x and y directions for correction plane 
B which can then be substituted into equation 12.4c to find the values needed in plane 
A.  Equations 12.2d and 12.2e can then be applied to each correction plane to find the 
angles at which the balance masses must be placed and the mR products needed in each 
plane.  The physical counterweights can then be designed consistent with the constraints 
outlined in Section 12.1 on static balance.  Note that the radii RA and RB do not have to 
have the same value.
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✍EXAMPLE 12‑2

Dynamic Balancing.

Given:	 The system shown in Figure 12‑3 has the following data:  

= = ∠ °
= = ∠ °
= = ∠ °

1.2 kg 1.135 m @ 113.4
1.8 kg 0.822 m @ 48.8
2.4 kg 1.04 m @ 251.4

1 1

2 2

3 3

m R
m R
m R

	 The z distances in meters from plane A are:  

= = = =0.854, 1.701, 2.396, 3.0971 2 3l l l lB

Find: 	 The mass-radius products and their angular locations needed to dynamically bal-
ance the system using the correction planes A and B.

Solution:

	 1	 Resolve the position vectors into xy components in the arbitrary coordinate system associated 
with the freeze-frame position of the linkage chosen for analysis.

= ∠ ° = − = +

= ∠ ° = + = +

= ∠ ° = − = −

1.135 @ 113.4 ; 0.451, 1.042

0.822 @ 48.8 ; 0.541, 0.618 ( )

1.040 @ 251.4 ; 0.332, 0.986

1 1 1

2 2 2

3 3 3

R R R

R R R a

R R R

x y

x y

x y

R

2

2RBmB

2RAmA

2R1m1

2R2m2

X Z

O

Y

Y

A B

Correction planes

3

1l

Bl

2l

3lR3m3

m3

m2

m1

R2

R1

m1

m2

m3

ω

ω

ω

ω

ω
ω

FIGURE 12-3
Two-plane dynamic balancing

mA

mB
BR

RA
mA

mB
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	 2	 Solve equation 12.4e for summation of moments about point O.

( ) ( ) ( )

( )( ) ( )( ) ( )( )

=
− − −

− − − − −
==

( )
1.2 0.451 0.854 1.8 0.541 1.701 2.4 0.332 2.396

3.097
0.230

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l

l
b

B B
B

x
x x x

( ) ( ) ( )

( )( ) ( )( ) ( )( )

=
− − −

=
− − − −

=

( )
1.2 1.042 0.854 1.8 0.618 1.701 2.4 0.986 2.396

3.097
0.874

1 1 1 2 2 2 3 3 3
m R

m R l m R l m R l

l
c

B B
B

y

y y y

	 3	 Solve equations 12.2d and 12.2e for the mass radius product in plane B.

( ) ( )

θ = °

= + =

=arctan 0.874
0.230

75.27
( )

0.230 0.874 0.904 kg-m2 2
d

m R

B

B B

	 4	 Solve equations 12.4c for forces in x and y directions.

( ) ( ) ( )
( ) ( ) ( )

− − − − − − =

− − − − − = −

−

−

=

=

= − − −

= − − −

( )
1.2 0.451 1.8 0.541 2.4 0.332 0.230 0.134

1.2 1.042 1.8 0.618 2.4 0.986 0.874 0.870

1 1 2 2 3 3

1 1 2 2 3 3

m R m R m R m R m R

m R m R m R m R m R
e

m R

m R

A A B B

A A B B

A A

A A

x x x x x

y y y y y

x

y

	 5	 Solve equations 12.2d and 12.2e for the mass-radius product in plane A.

( ) ( )

θ =
−

= − °

= + − =

arctan 0.870
0.134

81.25
( )

0.134 0.870 0.880 kg-m2 2
f

m R

A

A A

	 6	 These mass-radius products can be obtained with a variety of shapes appended to the assembly 
in planes A and B.  Many shapes are possible.  As long as they provide the required mass-radius 
products at the required angles in each correction plane, the system will be dynamically bal-
anced.

So, when the design is still on the drawing board, these simple analysis techniques 
can be used to determine the necessary sizes and locations of balance masses for any 
assembly in pure rotation for which the mass distribution is defined.  This two-plane 
balance method can be used to dynamically balance any system in pure rotation, and all 
such systems should be balanced unless the purpose of the device is to create shaking 
forces or moments.
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12.3	 BALANCING LINKAGES Watch a short video (26:55)†

Many methods have been devised to balance linkages.  Some achieve a complete balance 
of one dynamic factor, such as shaking force, at the expense of other factors such as shak-
ing moment or driving torque.  Others seek an optimum arrangement that collectively 
minimizes (but does not zero) shaking forces, moments, and torques for a best com-
promise.  Lowen and Berkof [1] and Lowen, Tepper, and Berkof [2] give comprehensive 
reviews of the literature on this subject up to 1983.  Additional work has been done on 
the problem since that time, some of which is noted in the references at the end of this 
chapter.  Kochev[15] presents a general theory for complete shaking moment balancing 
and a critical review of known methods.

Complete balance of any mechanism can be obtained by creating a second “mir-
ror image” mechanism connected to it so as to cancel all dynamic forces and moments.  
Certain configurations of multicylinder internal combustion engines do this.  The pistons 
and cranks of some cylinders cancel the inertial effects of others.  We will explore these 
engine mechanisms in Chapter 14.  However, this approach is expensive and is only justi-
fied if the added mechanism serves some second purpose such as increasing power, as in 
the case of additional cylinders in an engine.  Adding a “dummy” mechanism whose only 
purpose is to cancel dynamic effects is seldom economically justifiable.  

Most practical linkage balancing schemes seek to minimize or eliminate one or more 
of the dynamic effects (forces, moments, torques) by redistributing the mass of the ex-
isting links.  This typically involves adding counterweights and/or changing the shapes 
of links to relocate their CGs.  More elaborate schemes add geared counterweights to 
some links in addition to redistributing their mass.  As with any design endeavor, there 
are trade-offs.  For example, elimination of shaking forces usually increases the shaking 
moment and driving torque.  We can only present a few approaches to this problem in the 
space available.  The reader is directed to the literature for information on other methods.

Complete Force Balance of Linkages

The rotating links (cranks, rockers) of a linkage can be individually statically balanced 
by the rotating balance methods described in Section 12.1.  The effects of the couplers, 
which are in complex motion, are more difficult to compensate for.  Note that the process 
of statically balancing a rotating link, in effect, forces its mass center (CG) to be at its 
fixed pivot and thus stationary.  In other words the condition of static balance can also 
be defined as one of making the mass center stationary.  A coupler has no fixed pivot, 
and thus its mass center is, in general, always in motion.

Any mechanism, no matter how complex, will have, for every instantaneous position, 
a single, overall,  global mass center located at some particular point.  We can calculate 
its location knowing only the link masses and the locations of the CGs of the individual 
links at that instant.  The global mass center normally will change position as the linkage 
moves.  If we can somehow force this global mass center to be stationary, we will have a 
state of static balance for the overall linkage.

The Berkof-Lowen method of linearly independent vectors[3] provides a means to 
calculate the magnitude and location of counterweights to be placed on the rotating links 
which will make the global mass center stationary for all positions of the linkage.  Place-

 	

†  http://www.designofma-
chinery.com/DOM/Link-
age_Balancing.mp4

http://www.designofmachinery.com/DOM/Linkage_Balancing.mp4


12

DESIGN OF MACHINERY 6ed      CHAPTER  12652

ment of the proper balance masses on the links will cause the dynamic forces on the fixed 
pivots to always be equal and opposite, i.e., a couple,  thus creating static balance (ΣF = 0 
but ΣM ≠ 0) in the moving linkage.  

This method works for any n-link planar linkage having a combination of revolute 
(pin) and prismatic (slider) joints, provided that there exists a path to the ground from 
every link which only contains revolute joints.[4]  In other words, if all possible paths from 
any one link to the ground contain sliding joints, then the method fails.  Any linkage of n 
links that meets the above criterion can be balanced by the addition of n/2 balance weights, 
each on a different link.[4]  We will apply the method from reference [3] to a fourbar 
linkage.  Unfortunately, doing so will increase the total mass of the original linkage by a 
factor of 2 to 3 for fourbar linkages and substantially more for  complex mechanisms.[15]

Figure 12‑4 shows a fourbar linkage with its overall global mass center located by 
the position vector Rt.  The individual CGs of the links are located in the global system 
by position vectors R2, R3, and R4 (magnitudes R2, R3, R4), rooted at its origin, the crank 
pivot O2.  The link lengths are defined by position vectors labeled L1, L2, L3, L4 (mag-
nitudes l1, l2, l3, l4), and the local position vectors which locate the CGs within each link 
are B2, B3, B4 (magnitudes b2, b3, b4).  The angles of the vectors B2, B3, B4 are φ2, φ3, φ4 
measured internal to the links with respect to the links’ lines of centers L2, L3, L4.  The 
instantaneous link angles which locate L2, L3, L4 in the global system are θ2, θ3, θ4.  The 
total mass of the system is simply the sum of the individual link masses:

= + + (12.5a)2 3 4m m m mt

The total mass moment about the origin must be equal to the sum of the mass moments 
due to the individual links:

∑ = = + + (12.5b)2 2 3 3 4 42
M m m m mO t tR R R R

The position of the global mass center is then:

=
+ +

(12.5c)2 2 3 3 4 4m m m
mt

t
R

R R R

and from the linkage geometry:

= =

= + = +

= + = +

( )

( )

( )

θ + φ θ φ

θ θ + φ θ θ φ

θ θ + φ θ θ φ4 4

(12.5d)

2 2 2

3 2 3 2 3

4 1 4 1 4

2 2 2 2

2 3 3 2 3 3

1 4 1 4

b e b e e

l e b e l e b e e

l e b e l e b e e

j j j

j j j j j

j j j j j

R

R

R

We can solve for the location of the global mass center for any link position for which 
we know the link angles θ2, θ3, θ4.  We want to make this position vector Rt be a constant.  
The first step is to substitute equations 12.5d into 12.5b,

( )( ) ( )= + + + +θ φ θ θ φ θ θ φ4 (12.5e)2 2 3 2 3 4 1 42 2 2 3 3 1 4m m b e e m l e b e e m l e b e et t
j j j j j j j jR

and rearrange to group the constant terms as coefficients of the time-dependent terms:

( )( ) ( ) ( )= + + + +θ φ θ φ θ φ θ4 (12.5f)4 1 2 2 3 2 3 3 4 41 2 2 3 3 4m m l e m b e m l e m b e e m b e et t
j j j j j j jR
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Note that the terms in parentheses are all constant with time.  The only time-dependent 
terms are the ones containing θ2, θ3, and θ4.

We can also write the vector loop equation for the linkage,

+ − − =θ θ θ θ 0 (12.6a)2 3 4 12 3 4 1l e l e l e l ej j j j

and solve it for one of the unit vectors that define a link direction, say link 3:

=
− +θ

θ θ θ
(12.6b)1 2 4

3

3
1 2 4

e
l e l e l e

l
j

j j j

Substitute this into equation 12.5f to eliminate the θ3 term and rearrange:

( )( ) ( )
( ) ( )

= + + − +

+ +

φ θ φ θ θ θ

φ θ θ4

1

(12.7a)

2 2 3 2
3

3 3 1 2 4

4 4 4 1

2 2 3 1 2 4

4 1

m m b e m l e
l

m b e l e l e l e

m b e e m l e

t t
j j j j j j

j j j

R

and collect terms:

= + −






+ +






+ +

φ φ θ φ φ θ

θ φ θ

4

(12.7b)

2 2 3 2 3 3
2

3
4 4 3 3

4

3

4 1 3 3
1

3

2 3 2 3 4

1 3 1

m m b e m l m b
l
l

e e m b e m b
l
l

e e

m l e m b
l
l

e e

t t
j j j j j j

j j j

R

This expression gives us the tool to force Rt to be a constant and make the linkage 
mass center stationary.  For that to be so, the terms in parentheses which multiply the only 
two time-dependent variables, θ2 and θ4, must be forced to be zero.  (The fixed link angle 
θ1 is a constant.)  Thus the requirement for linkage force balance is:

B

θ

φ
ω

φ θ

θ

φ 4

2

3

4

2

2B2R =

CG2

2L

Y

y

A

3L

CG3

3

2O

x

1L
2

4R

Rt

Global mass center

CG4
CGt

4B

X

O4

3B
R3

4L

FIGURE 12-4
Static (force) balancing a fourbar linkage
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+ − =

+ =

φ φ

φ φ4

0

(12.8a)

0

2 2 3 2 3 3
2

3

4 4 3 3
4

3

2 3

3

m b e m l m b
l
l

e

m b e m b
l
l

e

j j

j j

Rearrange to isolate one link’s terms (say link 3) on one side of each of these equations:

= −






= −

φ φ

φ φ4

(12.8b)

2 2 3 3
2

3
2

4 4 3 3
4

3

2 3

3

m b e m b
l
l

e l

m b e m b
l
l

e

j j

j j

We now have two equations involving three links.  The parameters for any one link 
can be assumed and the other two solved for.  A linkage is typically first designed to sat-
isfy the required motion and packaging constraints before this force-balancing procedure 
is attempted.  In that event, the link geometry and masses are already defined, at least 
in a preliminary way.  A useful strategy is to leave the link 3 mass and CG location as 
originally designed and calculate the necessary masses and CG locations of links 2 and 4 
to satisfy these conditions for balanced forces.  Links 2 and 4 are in pure rotation, so it is 
straightforward to add counterweights to them in order to move their CGs to the necessary 
locations.  With this approach, the right sides of equations 12.8b are reducible to numbers 
for a designed linkage.  We want to solve for the mass radius products m2b2 and m4b4 and 
also for  the angular locations of the CGs within the links.  Note that the angles φ2 and φ4 
in equations 12.8 are measured with respect to the lines of centers of their respective links.

Equations 12.8b are vector equations.  Substitute the Euler identity (equation 4.4a) 
to separate into real and imaginary components, and solve for the x and y components of 
the mass-radius products.

( )

( )

= φ −






= φ






cos

(12.8c)

sin

2 2 3 3
2

3
3 2

2 2 3 3
2

3
3

m b m b
l
l

l

m b m b
l
l

x

y

( )

( )

= − φ

= − φ

cos

(12.8d)

sin

4 4 3 3
4

3
3

4 4 3 3
4

3
3

m b m b
l
l

m b m b
l
l

x

y

These components of the mR product needed to force balance the linkage represent 
the entire amount needed.  If links 2 and 4 are already designed with some individual 
unbalance (the CG not at pivot), then the existing mR product of the unbalanced link must 
be subtracted from that found in equations 12.8c and 12.8d in order to determine the size 
and location of additional counterweights to be added to those links.  As we did with the 
balance of rotating links, any combination of mass and radius that gives the desired prod-
uct is acceptable.  Use equations 12.2d and 12.2e to convert the cartesian mR products in 
equations 12.8c and 12.8d  to polar coordinates in order  to find the magnitude and angle 
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of the counterweight’s mR vector.  Note that the angle of the mR vector for each link will 
be referenced to that link’s line of centers.  Design the shape of the physical counter-
weights to be put on the links as discussed in Section 12.1.  

12.4	 EFFECT OF BALANCING ON SHAKING AND PIN FORCES 

Figure 12-5 shows a fourbar linkage* to which balance masses have been added in accord 
with equations 12.8.  Note the counterweights placed on links 2 and 4 at the calculated 
locations for complete force balance.  Figure 12-6a shows a polar plot of the shaking 
forces of this linkage without the balance masses.  The maximum is 462 lb at 15°.  Figure 
12-6b shows the shaking forces after the balance masses are added.  The shaking forces 
are reduced to essentially zero.  The small residual forces seen in Figure 12-6b are due to 
computational round-off errors—the method gives theoretically exact results.  

	

*  Open the disk file 
F12‑05.4br in program 
Linkages to see more 
details on this linkage and 
its balancing.

ω2 =  50 rad/sec
0 to 360
by 5 deg

L1 =  19 in
L2 =   5
L3 =  15
L4 =  10
Cplrpt = 13
@ 63°

FIGURE 12-5
A balanced fourbar linkage showing balance masses applied to links 2 and 4 

FIGURE 12-6
Polar plot of unbalanced shaking forces on ground plane of the fourbar linkage of Figure 12-5

(a )  Shaking force with linkage unbalanced (b )  Shaking force with linkage balanced

lb447

– 447

447– 447
X

Y
lb0.01

– 0.01

0.01– 0.01
X

Y
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The pin forces at the crank and rocker pivots have not disappeared as a result of add-
ing the balance masses, however.  Figures 12-7a and 12-7b, respectively, show the forces 
on crank and rocker pivots after balancing.  These forces are now equal and opposite.  
After balancing, the pattern of forces at pivot O2 is the mirror image of the pattern at pivot 
O4.  The net shaking force is the vector sum of these two sets of forces for each time step 
(Section 11.8).  The equal and opposite pairs of forces acting at the ground pivots at each 
time step create a time-varying shaking couple that rocks the ground plane.  These pin 
forces can be larger due to the balance weights and if so will increase the shaking couple 
compared to its former value in the unbalanced linkage—one trade-off for reducing the 
shaking forces to zero.  The stresses in the links and pins may also increase as a result of 
force balancing.  

12.5	 EFFECT OF BALANCING ON INPUT TORQUE 

Individually balancing a link which is in pure rotation by the addition of a counterweight 
will have the side effect of increasing its mass moment of inertia.  The “flywheel effect” 
of the link is increased by this increase in its moment of inertia.  Thus the torque needed 
to accelerate that link will be greater.  The input torque will be unaffected by any change 
in the I of the input crank when it is run at constant angular velocity.  But, any rockers 
in the mechanism will have angular accelerations even when the crank does not.  Thus, 
individually balancing the rockers will tend to increase the required input torque even at 
constant input crank velocity.

Adding counterweights to the rotating links, necessary to force balance the entire 
linkage, both increases the links’ mass moments of inertia and also (individually) unbal-
ances those rotating links in order to gain the global balance.  Then the CGs of the rotating 
links will not be at their fixed pivots.  Any angular acceleration of these links will add 
to the torque loading on the linkage.  Balancing an entire linkage by this method then 

FIGURE 12-7
Polar plots of forces F21 and F41 acting on the ground plane of the force-balanced fourbar linkage of Figure 12-5

(b )  Rocker pivot force F41

lb770

– 770

770– 770
X

Y

(a )  Crank pivot force F21

lb770

– 770

770– 770
X

Y
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can have the side effect of increasing the variation in the required input torque.  A larger 
flywheel may be needed on a balanced linkage in order to achieve the same coefficient of 
fluctuation as the unbalanced version of the linkage.

Figure 12‑8 shows the input torque curve for the unbalanced linkage and for the same 
linkage after complete force balancing has been done.  The peak value of the required 
input torque has increased as a result of force balancing.  

Note, however, that the degree of increase in the input torque due to force balancing 
is dependent upon the choice of radii at which the balance masses are placed.  The extra 
mass moment of inertia that the balance mass adds to a link is proportional to the square 
of the radius to the CG of the balance mass.  The force balance algorithm only computes 
the required mass-radius product.  Placing the balance mass at as small a radius as pos-
sible will minimize the increase in input torque.  Weiss and Fenton[5] have shown that a 
circular counterweight placed tangent to the link’s pivot center (Figure 12‑9) is a good 
compromise between added weight and increased moment of inertia.  To reduce the torque 
penalty further, one could also choose to do less than a complete force balance and accept 
some shaking force in trade.  

12.6	 BALANCING THE SHAKING MOMENT IN LINKAGES

The shaking moment Ms about the crank pivot O2 in a force-balanced linkage is the sum 
of the reaction torque T21 and the shaking couple (ignoring any externally applied loads)[6]*

( )= + × (12.9)21 1 41sM T R F

where T21 is the negative of the driving torque T12, R1 is the position vector from O2 to 
O4 (i.e., link 1), and F41 is the force of the rocker on the ground plane.  In a general link-
age, the magnitude of the shaking moment can be reduced but cannot be eliminated by 
means of mass redistribution within its links.  Complete balancing of the shaking moment 
requires the addition of supplementary links and/or rotating counterweights.[7]

*  Note that this statement 
is only true if the linkage is 
force-balanced which makes 
the moment of the shaking 
couple a free vector.  Other-
wise it is referenced to the 
chosen global coordinate 
system.  See reference [6] 
for complete derivations 
of  the shaking moment for 
both force-balanced and 
unbalanced linkages.

0

–1200

1600

1200

800

400

–400

–800

FIGURE 12-8
Unbalanced and balanced input torque curves for the fourbar linkage of Figure 12-5

Torque  lb-in

0 90 180 270 360

Average after balancing

Peak = 1542 after balancing
Peak = 1215 before balancing

Average before balancing

Crank angle  θ  deg

Before balancing
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Many techniques have been developed that use optimization methods to find a link-
age-mass configuration that will minimize the shaking moment alone or in combina-
tion with minimizing shaking force and/or input torque.  Hockey[8], [9] shows that the 
fluctuation in kinetic energy and input torque of a mechanism may be reduced by proper 
distribution of mass within its links and that this approach is more weight efficient than 
adding a flywheel to the input shaft.  Berkof [10] also describes a method to minimize the 
input torque by internal mass rearrangement.  Lee and Cheng [11] and Qi and Pennestri [12] 
show methods to optimally balance the combined shaking force, shaking moment, and 
input torque in high-speed linkages by mass redistribution and addition of counterweights. 
Porter et al.[13] suggest using a genetic algorithm to optimize the same set of parameters.  
Bagci [14] describes several approaches to balancing shaking forces and shaking moments 
in the fourbar slider-crank linkage.  Kochev[15] provides a general theory for complete 
force and moment balance.  Esat and Bahai [16] describe a theory for complete force and 
moment balance that requires rotating counterweights on the coupler.  Arakelian and 
Smith[17] derive a method for the complete force and moment balance of Watt’s and 
Stephenson’s sixbar linkages.  Most of these methods require significant computing re-
sources, and space does not permit a complete discussion of them all here.  The reader is 
directed to the references for more information.

Berkof’s method for complete moment balancing of the fourbar linkage [7] is simple 
and useful even though it is limited to “inline” linkages, i.e., those whose link CGs lie on 
their respective link centerlines as shown in Figure 12-9.  This is not an overly restric-
tive constraint since many practical linkages are made with straight links.  Even if a link 
must have a shape that deviates from its line of centers, its CG can still be placed on that 
line by adding mass to the link in the proper location, increased mass being the trade-off.  

For complete moment balancing by Berkof’s method, in addition to being an inline 
linkage, the coupler must be reconfigured to become a physical pendulum* such that it is 
dynamically equivalent to a lumped mass model as shown in Figure 12-10.  The coupler 
is shown in Figure 12-10a as a uniform rectangular bar of mass m, length a, and width 
h and in Figure 12‑10b as a “dogbone.”  These are only two of many possibilities.  We 

*  This method of moment 
balancing is “recognized 
as a superior technique and 
recommended when ap-
plicable.”[15]

FIGURE 12-9
An inline fourbar
linkage [6], [7]

[5]

with optimally
located circular
counterweights. 

( a )  Rectangular coupler link

FIGURE 12-10
Making the coupler link a physical pendulum

(b)  Dogbone coupler link
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want the lumped masses to be at the pivot pins, connected by a “massless” rod.  Then the 
coupler’s lumped masses will be in pure rotation either as part of the crank or as part of 
the rocker.  This can be accomplished by adding mass as indicated by dimension e at the 
coupler ends.† 

The three requirements for dynamic equivalence were stated in Section 10.2 and are 
equal mass, same CG location, and same mass moment of inertia.  The first and second 
of these are easily satisfied by placing ml = m/2 at each pin.  The third requirement can be 
stated in terms of radius of gyration k instead of moment of inertia using equation 10.11b.

= (12.10)k I
m

Taking each lump separately as if the massless rod were split at the CG into two rods 
each of length b, the moment of inertia Il of each lump will be

= =

= =and
2

2 (12.11a)

2

2 2

I I m b

I m b mb

l l

l

= = =then
2

(12.11b)
2

k mb
m

b a

For the link configuration in Figure 12-10a, this will be satisfied if the link dimen-
sions have the following dimensionless ratio (assuming constant link thickness).

= 





− −
1
2

3 1
2

(12.12)
2e

h
a
h

a
h

where e defines the length of the material that must be added at each end to satisfy equa-
tion 12.11b.

For the link configuration in Figure 12-10b, the length e of the added material of 
width h needed to make it a physical pendulum can be found from







+ 
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

+
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
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

+ π −

where:

0

(12.13)
8

12 24

24 26

2 13 12 10

3 2

3

A e
h

B e
h

C e
h

D

A

B a
c

C a
c

D a
c

a
c

The second step is to force-balance the linkage with its modified coupler using the method 
of Section 12.3 and define the required counterweights on links 2 and 4.  With the shaking 
forces eliminated, the shaking moment is a free vector, as is the input torque.

†  Note that this arrange-
ment also makes each pin 
joint the center of percus-
sion for the other pin as 
the center of rotation.  This 
means that a force applied 
at either pin will have a zero 
reaction force at the other 
pin, effectively decoupling 
them dynamically.  See Sec-
tion 10.10 and also Figure 
13-10 for further discussion 
of this effect.
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Then as the third step, the shaking moment can be counteracted by adding geared 
inertia counterweights to links 2 and 4 as shown in Figure 12-11.  These must turn in the 
opposite direction to the links, so they require a gear ratio of –1.  Such an inertia coun-
terweight can balance any planar moment that is proportional to an angular acceleration 
and does not introduce any net inertia forces to upset the force balance of the linkage.  
Trade-offs include increased input torque and  larger pin forces resulting from the torque 
required to accelerate the additional rotational inertia. There can also be large loads on the 
gear teeth and impact when torque reversals take up the gearsets’ backlash, causing noise.

The shaking moment of an inline fourbar linkage is derived in reference [6] as

∑

( )
( )
( )

= α

= − + +

= − + −

= − + +

=

where:

(12.14)
2

4

2 2 2
2

2
2

2 2

3 3 3
2

3
2

3 3

4 4 4
2

4
2

4 4

A

A m k r a r

A m k r a r

A m k r a r

s i i
i

M

αi is the angular acceleration of link i.  The other variables are defined in Figure 12-11.

Adding the effects of the two inertia counterweights gives

∑= α + α + α
=

(12.15)
2

4

2 2 4 4A I Is i i
i

M

The shaking moment can be forced to zero if

( )

= −
= −

= = −or
(12.16)

0,

2 2

4 4

3 3
2

3 3 3

I A
I A

A k r a r

This leads to a set of five design equations that must be satisfied for complete force 
and moment balancing of an inline fourbar linkage.*

=

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2
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2

4
2
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Equations 12.17a and 12.17b are the force-balance criteria of equation 12.8 written 
for the inline linkage case.  Equation 12.17c defines the coupler as a physical pendulum.  

	
*  These components of 
the mR product needed to 
force-balance the linkage 
represent the entire amount 
needed.  If links 2 and 4 are 
already designed with some 
individual unbalance (i.e., 
the CG not at pivot), then 
the existing mR product of 
the unbalanced link must be 
subtracted from that found 
in equations 12.17a and 
12.17b in order to determine 
the size and location of 
additional counterweights to 
be added to those links.  
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Equations 12.17d and 12.17e define the mass moments of inertia required for the two in-
ertia counterweights.  Note that if the linkage is run at constant angular velocity, α2 will 
be zero in equation 12.14 and the inertia counterweight on link 2 can be omitted.

12.7	 MEASURING AND CORRECTING IMBALANCE Watch a video 
(02:43)†

While we can do a great deal to ensure balance when designing a machine, variations 
and tolerances in manufacturing will preclude even a well-balanced design from being 
in perfect balance when built.  Thus there is need for a means to measure and correct the 
imbalance in rotating systems.  Perhaps the best example assembly to discuss is that of 
the automobile tire and wheel, with which most readers will be familiar.  Certainly the 
design of this device promotes balance, as it is essentially cylindrical and symmetrical.  
If manufactured to be perfectly uniform in geometry and homogeneous in material, it 
should be in perfect balance as is.  But typically it is not.  The wheel (or rim) is more 
likely to be close to balanced, as manufactured, than is the tire.  The wheel is made of a 
homogeneous metal and has fairly uniform geometry and cross section.  The tire, however, 
is a composite of synthetic rubber elastomer and fabric cord or metal wire.  The whole is 
compressed in a mold and steam-cured at high temperature.  The resulting material varies 
in density and distribution, and its geometry is often distorted in the process of removal 
from the mold and cooling.

Static Balancing   After the tire is assembled to the wheel, the assembly must be 
balanced to reduce vibration at high speeds.  The simplest approach is to statically balance 
it, though it is not really an ideal candidate for this approach as it is thick axially compared 
to its diameter.  To do so it is typically suspended in a horizontal plane on a cone through 
its center hole.  A bubble level is attached to the wheel, and weights are placed at positions 

FIGURE 12-11
Completely force and moment balanced inline fourbar linkage with physical pendulum
coupler and inertia counterweights on rotating links (ctrwt = counterweight) 
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a 4
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Inertia ctrwt
(flywheel)
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Inertia ctrwt
(flywheel)
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I 4

m3 k 3
m 4 k 4
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†  http://www.designof-
machinery.com/DOM/
Field_Balancing.mp4

http://www.designofmachinery.com/DOM/Field_Balancing.mp4
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around the rim of the wheel until it sits level.  These weights are then attached to the rim 
at those points.  This is a single-plane balance and thus can only cancel the unbalanced 
forces.  It has no effect on any unbalanced moments due to uneven distribution of mass 
along the axis of rotation.  It also is not very accurate.

Dynamic Balancing  The better approach is to dynamically balance it.  This re-
quires a dynamic balancing machine be used.  Figure 12‑12 shows a schematic of such a 
device used for balancing wheels and tires or any other rotating assembly.  The assembly 
to be balanced is mounted temporarily on an axle, called a mandrel, which is supported 
in bearings within the balancer.  These two bearings are each mounted on a suspension 
which contains a transducer that measures dynamic force.  A common type of force trans-
ducer contains a piezoelectric crystal which delivers a voltage proportional to the force 
applied.  This voltage is amplified electronically and delivered to circuitry or software 
which can compute its peak magnitude and the phase angle of that peak with respect to 
some time reference signal.  The reference signal is supplied by a shaft encoder on the 
mandrel which provides a short duration electrical pulse once per revolution in exactly 
the same angular location.  This encoder pulse triggers the computer to begin processing 
the force signal.  The encoder may also provide some large number of additional pulses 
equispaced around the shaft circumference (often 1024).  These are used to trigger the 
recording of each data sample from the transducers in exactly the same location around 
the shaft and to provide a measure of shaft velocity via an electronic counter.

The assembly to be balanced is then “spun up” to some angular velocity, usually with 
a friction drive contacting its circumference.  The drive torque is then removed and the 
drive motor stopped, allowing the assembly to “freewheel.”  (This is to avoid measuring 
any forces due to imbalances in the drive system.)  The measuring sequence is begun, 
and the dynamic forces at each bearing are measured simultaneously and their waveforms 
stored.  Many cycles can be measured and averaged to improve the quality of the measure-

FIGURE 12-12
A dynamic wheel balancer

F F

Force transducers

Tire Mandrel
Correction planes

A B

Drive
motor

Bearing

Shaft encoder
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ment.  Because forces are being measured at two locations displaced along the axis, both 
summation of moment and summation of force data are computed.  

The force signals are sent to a built-in computer for processing and computation of 
the needed balance masses and locations.  The data needed from the measurements are 
the magnitudes of the peak forces and the angular locations of those peaks with respect 
to the shaft encoder’s reference angle (which corresponds to a known point on the wheel).  
The axial locations of the wheel rim’s inside and outside edges (the correction planes) 
with respect to the balance machine’s transducer locations are provided to the machine’s 
computer by operator measurement.  From these data the net unbalanced force and net 
unbalanced moment can be calculated since the distance between the measured bearing 
forces is known.  The mass-radius products needed in the correction planes on each side 
of the wheel can then be calculated from equations 12.3 in terms of the mR product of the 
balance weights.  The correction radius is that of the wheel rim.  The balance masses and 
angular locations are calculated for each correction plane to put the system in dynamic 
balance.  Weights having the needed mass are clipped onto the inside and outside wheel 
rims (which are the correction planes in this case), at the proper angular locations.  The 
result is a fairly accurately dynamically balanced tire and wheel.
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12.9	 PROBLEMS

	 *†12‑1	 A system of two coplanar arms on a common shaft, as shown in Figure 12‑1, is to be 
designed.  For the row(s) assigned in Table P12‑1, find the shaking force of the linkage 
when run unbalanced at 10 rad/sec and design a counterweight to statically balance the 
system.  Work in any consistent units system you prefer.

	 †12‑2	 The minute hand on Big Ben weighs 40 lb and is 10 ft long.  Its CG is 4 ft from the piv-
ot.  Calculate the mR product and angular location needed to statically balance this link 
and design a physical counterweight, positioned close to the center.  Select material and 
design the detailed shape of the counterweight which is of 2-in uniform thickness in the 
Z direction.

	 †12‑3	 A “V for victory” advertising sign is being designed to be oscillated about the apex of 
the V, on a billboard, as the rocker of a fourbar linkage.  The angle between the legs of 
the V is 20°.  Each leg is 8 ft long and 1.5 ft wide.  Material is 0.25-in-thick aluminum.  
Design the V link for static balance.

	 †12‑4 	 A three-bladed ceiling fan has 1.5-ft by 0.25-ft equispaced rectangular blades that 
nominally weigh 2 lb each.  Manufacturing tolerances will cause the blade weight 
to vary up to plus or minus 5%.  The mounting accuracy of the blades will vary the 
location of the CG versus the spin axis by plus or minus 10% of the blades’ diameters.  
Calculate the weight of the largest steel counterweight needed at a 2-in radius to stati-
cally balance the worst-case blade assembly if the minimum blade radius is 6 in.

	 *†12‑5	 A system of three noncoplanar weights is arranged on a shaft generally as shown in 
Figure 12‑3.  For the dimensions from the row(s) assigned in Table P12‑2, find the 
shaking forces and shaking moment when run unbalanced  at 100 rpm and specify the 
mR product and angle of the counterweights in correction planes A and B needed to 
dynamically balance the system.  The correction planes are 20 units apart.  Work in any 
consistent units system you prefer.

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

Row

a

b

c

d

e

m 1

0.20

2.00

3.50

5.20

0.96

m 2

0.40

4.36

2.64

8.60

3.25

R1

1.25 @ 30°

3.00 @ 45°

2.65 @ 100°

7.25 @ 150°

5.50 @ –30°

R2

2.25 @ 120°

9.00 @ 320°

5.20 @ –60°

6.25 @ 220°

3.55 @ 120°

TABLE  P12-1 Data for Problem 12-1

Topic/Problem Matrix

 12.1 Static Balance

12-1, 12-2, 12-3,  
12-4, 12-37, 12-41

 12.2 Dynamic Balance

12-5, 12-13, 12-14, 
12-15, 12-16, 12-17, 
12-18, 12-19, 12-38, 
12-39

 12.3 Balancing Linkages

12-8a, 12-12, 12-27, 
12-29, 12-31, 12-33, 
12-35, 12-40

 12.5
Input Torque
E�ect of Balancing on

12-8b, 12-9, 12-10, 
12-11, 12-42

 12.6 Balancing Shaking 
Moment in Linkages

12-20, 12-21, 12-22, 
12-23, 12-28, 12-30, 
12-32, 12-34, 12-36

 12.7 Measuring and Cor-
recting Imbalance

12-6, 12-7, 12-24,  
12-25, 12-26, 12-43

 

TABLE  P12-0
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	 *†12‑6	 A wheel and tire assembly has been run at 100 rpm on a dynamic balancing machine 
as shown in Figure 12‑10.  The force measured at the left bearing had a peak of 5 lb 
at a phase angle of 45° with respect to the zero reference angle on the tire.  The force 
measured at the right bearing had a peak of 2 lb at a phase angle of –120° with respect 
to the reference zero on the tire.  The center distance between the two bearings on the 
machine is 10 in.  The left edge of the wheel rim is 4 in from the centerline of the clos-
est bearing.  The wheel is 7 in wide at the rim.  Calculate the size and location, with 
respect to the tire’s zero reference angle, of balance weights needed on each side of the 
rim to dynamically balance the tire assembly.  The wheel rim diameter is 15 in.

	 *†12‑7	 Repeat Problem 12‑6 for measured forces of 6 lb at a phase angle of –60° with respect 
to the reference zero on the tire, measured at the left bearing, and 4 lb at a phase angle 
of 150° with respect to the reference zero on the tire, measured at the right bearing.  
The wheel diameter is 16 in.

	*†‡12‑8	 Table P11-3 shows geometric and kinematic data of some fourbar linkages.

a.	 For the row(s) from Table P11-3 assigned in this problem, calculate the size and 
angular locations of the counterbalance mass-radius products needed on links 2 
and 4 to completely force-balance the linkage by the method of Berkof and Lowen.  
Check your manual calculation with program Linkages.

b.	 Calculate the input torque for the linkage both with and without the added balance 
weights and compare the results.  Use program Linkages.

	 *†12-9	 Link 2 in Figure P12-1 rotates at 500 rpm.  The links are steel with cross sections of  
1 x 2 in.  Half of the 29-lb weight of the laybar and reed is supported by the linkage at 
point B.  Design counterweights to force-balance the linkage and determine its change 
in peak torque versus the unbalanced condition.  See Problem 11-13 for more informa-
tion on the overall mechanism.

	†‡12-10	 Figure P12-2a shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  The crank O2A rotates at a constant speed of ω = 40 rad/sec.  
Design counterweights to force-balance the linkage and determine its change in peak 
torque versus the unbalanced condition.

	†‡12-11	 Figure P12-2b shows a fourbar linkage and its dimensions in meters.  The steel crank 
and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The aluminum 
coupler is 25 mm thick.  The crank O2A rotates at a constant speed of ω = 50 rad/sec.  
Design counterweights to force-balance the linkage and determine its change in peak 
torque versus the unbalanced condition.

reed

rocker
7.187"

crank
   2"

ground
 9.625"

ω2

coupler
 8.375"A

B

@ –43°

FIGURE P12-1
Problem 12-9

O2

O4

e 0.96 3.25 0.92 1 3 18 5.50 @ 30° 3.55 @ 120° 2.65 @ 100°

d 5.20 8.60 4.77 7 1 2 1 6 7.25 @ 150° 6.25 @ 220° 9.00 @ 320°

c 3.50 2.64 8.75 4 9 11 2.65 @ 100° 5.20 @ – 60° 1.25 @ 30°

b 2.00 4.36 3.56 5 7 16 3.00 @ 45° 9.00 @ 320° 6.25 @ 220°

a 0.20 0.40 1.24 2 8 17 1.25 @ 30° 2.25 @ 120° 5.50 @ – 30°

Row R3R2R1l 3l 2l 1m 3m 2m 1

TABLE  P12-2 Data for Problem 12-5

	
*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.
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	†12-12	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the mass-radius products that will force-balance any fourbar linkage 
for which the geometry and mass properties are known.

	†12-13	 Figure P12-3 shows a system with two weights on a rotating shaft.  W1 = 15 lb @ 0° at 
a 6-in radius and W2 = 20 lb @ 270° at a 5-in radius.  Determine the magnitudes and 
angles of the balance weights needed to dynamically balance the system.  The balance 
weight in plane 3 is placed at a radius of 5 in and in plane 4 of 8 in.

	*†12-14	 Figure P12-4 shows a system with two weights on a rotating shaft.  W1 = 20 lb @ 45° 
at a 6-in radius and W2 = 15 lb @ 300° at a 4-in radius.  Determine the radii and angles 
of the balance weights needed to dynamically balance the system.  The balance weight 
in plane 3 weighs 20 lb and in plane 4 weighs 40 lb. 

	†12-15	 Figure P12-5 shows a system with two weights on a rotating shaft.  W1 = 10 lb @ 90° 
at a 3-in radius and W2 = 15 lb @ 240° at a 3-in radius.  Determine the magnitudes and 
angles of the balance weights needed to dynamically balance the system.  The balance 
weights in planes 3 and 4 are placed at a 3-in radius.

	*†12-16	 Figure P12-6 shows a system with three weights on a rotating shaft.  W1 = 6 lb @ 
120° at a 5-in radius, W2 = 12 lb @ 240° at a 4-in radius, and W3 = 9 lb @ 300° at a 

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.

FIGURE P12-2
Problems 12-10  to 12-11

(a ) ( b )
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L4 = 2.33

L3 = 2.06

L2 = 1.0
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FIGURE P12-3
Problem 12-13
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FIGURE P12-4
Problem 12-14
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*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.

8-in radius.  Determine the magnitudes and angles of the balance weights needed to 
dynamically balance the system.  The balance weights in planes 4 and 5 are placed at a 
4-in radius.

	†12-17	 Figure P12-7 shows a system with three weights on a rotating shaft.  W2 = 10 lb @ 
90° at a 3-in radius, W3 = 10 lb @ 180° at a 4-in radius, and W4 = 8 lb @ 315° at a 
4-in radius.  Determine the magnitudes and angles of the balance weights needed to 
dynamically balance the system.  The balance weight in plane 1 is placed at a radius of 
4 in and in plane 5 of 3 in.

	*†12-18	 The 400-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing 
machine at 100 rpm and shows an unbalanced force of F1 = 0.291 N @  
θ1 = 45° in the xy plane at 1 and F4 = 0.514 N @ θ4 = 210° in the xy plane at 4.  
Determine the angular locations and required diameters of 25-mm-deep holes drilled 
radially inward from the surface in planes 2 and 3 to dynamically balance the system.

	†12-19	 The 500-mm-dia steel roller in Figure P12-8 has been tested on a dynamic balancing 
machine at 100 rpm and shows an unbalanced force of F1 = 0.23 N @ θ1 = 30° in the 
xy plane at 1 and F4 = 0.62 N @ θ4 = 135° in the x-y plane at 4.  Determine the angu-
lar locations and required diameters of 25-mm-deep holes drilled radially inward from 
the surface in planes 2 and 3 to dynamically balance the system.

	†‡12-20	 The linkage in Figure P12-9a has rectangular steel links of 20 x 10 mm cross section 
similar to that shown in Figure 12-10a.  Design the necessary balance weights and 
other features necessary to completely eliminate the shaking force and shaking mo-
ment.  State all assumptions.

	†‡12-21	 Repeat Problem 12-20 using links configured as in Figure 12-10b with the same cross 
section but having “dogbone” end diameters of 50 mm.

	†‡12-22	 The linkage in Figure P12-9b has rectangular steel links of 20 x 10 mm cross section 
similar to that shown in Figure 12-10a.  Design the necessary balance weights and 
other features necessary to completely eliminate the shaking force and shaking mo-
ment.  State all assumptions.

	†‡12-23	 Repeat Problem 12-22 using steel links configured as in Figure 12-10b with a 20 x 10 
mm cross section and having “dogbone” end diameters of 50 mm.

	†12-24	 The device in Figure P12-10 is used to balance fan blade/hub assemblies running at 
600 rpm. The center distance between the two bearings on the machine is 250 mm.  
The left edge of the fan hub (plane A) is 100 mm from the centerline of the closest 
bearing (at F2).  The hub is 75 mm wide along its axis and has a diameter of 200 mm 
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problem solutions 
can be checked with pro-
gram Linkages.

along the surfaces where balancing weights are fastened.  The peak magnitude of force 
F1 is 0.5 N at a phase angle of 30° with respect to the rotating x’ axis.  Force F2 had a 
peak of 0.2 N at a phase angle of –130°.  Calculate the magnitudes and locations with 
respect to the  x’ axis of balance weights placed in planes A and B of the hub to dynami-
cally balance the fan assembly.

	†12-25	 Repeat Problem 12-24 using the following data. The hub is 55 mm wide and has a di-
ameter of 150 mm along the surfaces where balancing weights are fastened. The force 
F1 measured at the left bearing had a peak of 1.5 N at a phase angle of 60° with respect 
to the rotating x’ axis. The force F2 measured at the right bearing had a peak of 2.0 N at 
a phase angle of –180° with respect to the rotating x’ axis.

	†12-26	 Repeat Problem 12-24 using the following data. The hub is 125 mm wide and has a 
diameter of 250 mm along the surfaces where balancing weights are fastened. The 
force F1 measured at the left bearing had a peak of 1.1 N at a phase angle of 120° with 
respect to the rotating x’ axis. The force F2 measured at the right bearing had a peak of 
1.8 N at a phase angle of –93° with respect to the rotating x’ axis.

	†‡12-27	 Figure P12-11 shows a fourbar linkage.  L1 = 160, L2 = 58, L3 = 108, and L4 = 110 
mm.  All links are 4‑mm-thick by 20-mm-wide steel. The square ends of link 3 extend 
10 mm beyond the pivots.  The other links’ ends have 10-mm radii about the hole.  
Design counterweights to force-balance the linkage using the Berkof-Lowen method.

	†‡12-28	 Use the data of Problem 12-27 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

	†‡12-29	 The linkage in Figure P12-11 has link lengths L1 = 3.26, L2 = 2.75, L3 = 3.26, L4 = 
2.95 in.  All links are 0.5-in-wide x 0.2-in-thick steel.  The square ends of link 3 extend  
0.25 in beyond the pivots.  Links 2 and 4 have rounded ends that have a radius of 
0.25 in.  Design counterweights to force-balance the linkage using the Berkof-Lowen 
method.

	†‡12-30	 Use the data of Problem 12-29 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

	†‡12-31	 The linkage in Figure P12-11 has link lengths L1 = 8.88, L2 = 3.44, L3 = 7.40, L4 = 
5.44 in.   All links have a uniform 0.5-in-wide x 0.2-in-thick cross section and are made 
from aluminum.  Link 3 has squared ends that extend 0.25 in from the pivot point cen-
ters.  Links 2 and 4 have rounded ends that have a radius of 0.25 in.  Design counter-
weights to force-balance the linkage using the method of Berkof and Lowen.

	†‡12-32	 Use the data of Problem 12-31 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

	†‡12-33	 The linkage in Figure P12-12 has L1 = 9.5, L2 = 5.0, L3 = 7.4, L4 = 8.0, and AP = 
8.9 in.  Links 2 and 4 are rectangular steel with a 1-in wide x 0.12-in thick cross sec-
tion and 0.5-in-radius ends.  The coupler is 0.25-in-thick aluminum with 0.5-in radii 
at points A, B, and P.  Design counterweights to force-balance the linkage using the 
Berkof-Lowen method.

	†‡12-34	 Use the data of Problem 12-33, changing link 3 to be steel with the same cross-section 
dimensions as links 2 and 4, to design the necessary balance weights and other features 

FIGURE P12-11
Problems 12-27 to 12-31
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necessary to completely eliminate the shaking force and shaking moment the linkage 
exerts on the ground link.

	†‡12-35	 Figure P12-13 shows a fourbar linkage and its dimensions in inches.  All links are 
0.08-in-thick steel and have a uniform cross section 0.26 in wide x 0.12 in thick.  Links 
2 and 4 have rounded ends with a 0.13-in radius.  Link 3 has squared ends that extend 
0.13 in from the pivot point centers.  Design counterweights to force-balance the link-
age using the method of Berkof and Lowen.

	†‡12-36	 Use the data of Problem 12-35 to design the necessary balance weights and other fea-
tures to completely eliminate the shaking force and shaking moment the linkage exerts 
on the ground link.

	†12-37	 A manufacturing company makes 5-blade ceiling fans.  Before assembling the fan 
blades onto the hub, the blades are weighed and the location of the CG is determined as 
a distance from the center of rotation and an angular offset from the geometric center of 
the blade.  At final assembly a technician is provided with the weight and CG data for 
the 5 blades.  Write a computer program or use an equation solver such as Mathcad or 
TKSolver to calculate the required weight and angular position of a balance weight that 
is attached to the hub at a radius of 2.5 in.  Use the geometric center of blade one as a 
reference axis.  Test your program with the data given in Table P12-3.

	†*12-38	 The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine 
at 1800 rpm and shows unbalanced forces of F1 = 2.43 lb @ θ1 = 34.5° in the xy plane 
at 1 and F4 = 5.67 lb @ θ4 = 198° in the xy plane at 4.  Balance weights consist of 
cylindrical disks whose center of rotation is a drilled hole located at a distance e from 
the center of the disk.  The net weight of each disk is 0.50 lb and the disks are located 
on planes 2 and 3.  Determine the angular locations of the line through the drilled hole 
and the center of the disk with respect to the x axis and the eccentric distances e to 
dynamically balance the system.

	†12-39	 The motor rotor shown in Figure P12-14 has been tested on a dynamic balance machine 
at 1450 rpm and shows unbalanced forces of F1 = 4.82 lb @ θ1 = 163° in the xy plane 
at 1 and F4 = 7.86 lb @ θ4 = 67.8° in the xy plane at 4.  Balance weights consist of 
cylindrical disks whose center of rotation is a drilled hole located at a distance e from 
the center of the disk.  The net weight of each disk is 0.375 lb and the disks are located 
on planes 2 and 3.  Determine the angular locations of the line through the drilled hole 
and the center of the disk with respect to the x axis and the eccentric distances e to 
dynamically balance the system.

2

4

L4 = 6.48
L3 = 4.88
L2 = 5.52
L1 = 2.72

3

ω2

FIGURE P12-13
Problem 12-35 to 12-36
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FIGURE P12-14
Problems 12-38 and 12-39

i δi (°)ri (in)Wi (lb)

1.50 12.01 –0.25

1.54 11.95 0.25

5 1.49 12.04 –0.50
4 1.55 12.03 –1.00
3
2 1.48 11.97 0.75
1

TABLE  P12-3
Data for Problem
12-37

A C (in)B (lb)

0.48

0.51

0.47
0.49

0.51
24.2

23.9

24.1
24.0

24.4

5
4
3
2
1

TABLE  P12-5
Data for Problem
12-41

	
*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited to solution using program Linkages.
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	*12-40	 Table P12-4 gives the geometry and kinematic data for several fourbar linkages similar 
to that shown in Figure P12-11.  For the row(s) assigned in Table P12-4, design 
counterweights of the type shown in Figure P12-15 for links 2 and 4 to completely 
force-balance the linkage by the method of Berkof and Lowen.  The square ends of link 
3 extend a distance e from the hole center.  The other links’ ends are full round with 
a radius r about the hole center.  All pin holes have the same diameter d, and all links 
have the same width, 2r, and thickness t.  The hole-to-hole link lengths are L1, L2, L3, 
and L4.   The counterweight will be integrally machined with the link and will have the 
same thickness as the link.

	 12-41	 An engineering student bought a five-blade ceiling fan for her bedroom.  After reading 
the assembly instructions she realized that a small balance weight furnished with the 
fan might be needed to keep the fan from vibrating.  She measured the weight and 
found the position of the CG of each blade and she measured the hub and found it to 
have a diameter of 8 in.  Her blade measurements are reproduced in Table P12-5, where 
column A is the blade number, column B is blade weight, and column C is the distance 
from a blade’s base to its CG.  Where did she fasten the 2-ounce balance weight?

	 12-42	 Figure P12-16 shows a fourbar linkage and its dimensions in meters.  The steel crank, 
coupler, and rocker have uniform cross sections 50 mm wide by 25 mm thick.  The 
crank O2A rotates at a constant speed of  ω = 40 rad/sec.  Design counterweights to 
force balance the linkage and determine its change in peak torque versus the unbal-
anced condition.  The peak torque before balancing is 3.12 kNm.

	 12-43	 Repeat Problem 12-6 for measured forces of 2.5 lb at a phase angle of 40° with respect 
to the reference zero on the tire, measured at the left bearing, and 1.8 lb at a phase 
angle of −130° with respect to the reference zero on the tire, measured at the right 
bearing.  The wheel diameter is 14 in.

12.10	 VIRTUAL LABORATORY View the video (35:38)†      View the lab §

L12-1		  View the downloadable video Fourbar Linkage Virtual Laboratory.  Open the file 
Virtual Fourbar Linkage Lab 12-1.doc and follow the instructions as directed by your 
professor.  For this lab it is suggested that you compare the data for the balanced and 
unbalanced conditions of the linkage. 

	
*  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
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Row

a
b
c
d
e
f

Material

TABLE  P12-4 Data for Problem 12-40       Lengths in mm.

L2

100
75

125
150
50
175

r

13
12
15

20
15
25

d

6
6
8

10
8

12

t

4
4
6
3
6
5

e

13
15
15

20
16
30

Steel
Steel
Aluminum
Titanium
Aluminum
Steel

L3

300
250
375
475
200
625

L4

200
300
350
400
175

250

L1

375
150
50

250
225
475

§ http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip

† http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4

http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip
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Chapter13
ENGINE DYNAMICS
I have always thought that the substitution of the 
internal combustion machine for the horse marked 
a very gloomy milestone in the progress of mankind.
Winston S. Churchill

13.0	 INTRODUCTION Watch a Video on Engine Kinematics (48:17)*

The previous chapters have introduced analysis techniques for the determination of dy-
namic forces, moments, and torques in machinery.  Shaking forces, moments, and their 
balancing have also been discussed.  We will now attempt to integrate all these dynamic 
considerations into the design of a common device, the slider-crank linkage as used in 
the internal combustion engine.†  This deceptively simple mechanism will be found to be 
actually quite complex in terms of the dynamic considerations necessary to its design for 
high-speed operation.  Thus it will serve as an excellent example of the application of the 
dynamics concepts just presented.  We will not address the thermodynamic aspects of the 
internal combustion engine beyond defining the combustion forces which are necessary 
to drive the device.  Many other texts, such as those listed in the bibliography at the end 
of this chapter, deal with the very complex thermodynamic and fluid dynamic aspects 
of this ubiquitous device.  We will concentrate only on its kinematics and mechanical 
dynamics aspects.  It is not our intention to make an “engine designer” of the student 
so much as to apply dynamic principles to a realistic  design problem of general interest 
and also to convey the complexity and fascination involved in the design of an apparently 
simple dynamic device.

Some students may have had the opportunity to disassemble and service an internal 
combustion engine, but many have never done so.  Thus we will begin with very funda-
mental descriptions of engine design and operation.  The program Linkages, supplied 
with this text, is designed to reinforce and amplify the concepts presented.  It will perform 
all the tedious computations necessary to provide the student with dynamic information 

672

†  Basic information on the 
operation of engines with 
animations can be found at:  
http://www.Howstuffworks.
com/engine.htm 

 	

*  http://www.designof-
machinery.com/DOM/En-
gine_Kinematics.mp4

http://www.designofmachinery.com/DOM/Engine_Kinematics.mp4
http://www.Howstuffworks.com/engine.htm
http://www.Howstuffworks.com/engine.htm
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for design choices and trade-offs.  The student is encouraged to use this program concur-
rent with a reading of the text.  Many examples and illustrations within the text will be 
generated with this program and reference will frequently be made to it.  A user manual 
for program Linkages is within the program.  Use it to gain familiarity with the program’s 
operation.  Examples used in Chapters 13 and 14 that deal with engine dynamics are 
built into the Engine routine of program Linkages for student observation and exercise.  
They can be found on a dropdown menu in that program.  Other example engine files for 
program Linkages are downloadable.

*

	

*  Carburetors have been 
replaced by fuel injection 
systems on automotive and 
other engines that are re-
quired to meet increasingly 
stringent exhaust emission 
control regulations in the 
United States and other 
countries.  Fuel injection 
gives better control over 
the fuel-air mixture than a 
carburetor.

FIGURE 13-1
Cutaway cross section of a vee-eight engine
Source: Adapted from a drawing by Lane Thomas, Western Carolina University, Dept. of Industrial Education, with permission  
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13.1	 ENGINE DESIGN

Figure 13‑1 shows a detailed cross section of an internal combustion engine.  The basic 
mechanism consists of a crank, a connecting rod (coupler), and piston (slider).  Since 
this figure depicts a multicylinder vee-eight engine configuration, there are four cranks 
arranged on a crankshaft, and eight sets of connecting rods and pistons, four in the left 
bank of cylinders and four in the right bank.  Only two piston-connecting rod assemblies 
are visible in this view, both on a common crank pin.  The others are behind those shown.  
Figure 13‑2 shows finite-element models of a piston, connecting rod, and crankshaft for 
a four-cylinder inline engine.  The most usual arrangement is an inline engine with cyl-
inders all in a common plane.  Three-, four-, five-, and six-cylinder inline engines are in 
production the world over.  Vee engines in four-, six-, eight-, ten-, and twelve-cylinder 
versions are also in production, with vee six and vee eight being the most popular vee 
configurations.  The geometric arrangements of the crankshaft and cylinders have a sig-
nificant effect on the dynamic condition of the engine.  We will explore these effects of 
multicylinder arrangements in the next chapter.  At this stage we wish to deal only with 
the design of a single-cylinder engine.  After optimizing the geometry and dynamic 
condition of one cylinder, we will be ready to assemble combinations of cylinders into 
multicylinder configurations.

A schematic of the basic one-cylinder slider-crank mechanism and the terminology 
for its principal parts are shown in Figure 13‑3.  Note that it is “backdriven” compared to 

FIGURE 13-2
Finite-element models of an engine piston (a), connecting rod ( b), and crankshaft (c )  Source: General Motors Co.

(a )

(b )

( c )
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the linkages we have been analyzing in previous chapters.  That is, the explosion of the 
combustible mixture in the cylinder drives the piston to the left in Figure 13‑3 or down 
in Figure 13-4, turning the crank.  The crank torque that results is ultimately delivered 
to the drive wheels of the vehicle through a transmission (see Section 9.11), to propel 
the car, motorcycle, or other device.  The same slider-crank mechanism can also be used 
“forward-driven,” by motor-driving the crank and taking the output energy from the piston 
end.  It is then called a piston pump and is used to compress air and pump well water, 
gasoline, and other liquids.

In the internal combustion engine of Figure 13‑3, it should be fairly obvious that at 
most we can only expect energy to be delivered from the exploding gases to the crank dur-
ing the power stroke of the cycle.  The piston must return from bottom dead center (BDC) 
to top dead center (TDC) on its own momentum before it can receive another push from 
the next explosion.  In fact, some rotational kinetic energy must be stored in the crankshaft 
merely to carry it through the TDC and BDC points as the moment arm for the gas force 
at those points is zero.  This is why an internal combustion engine must be “spun up” with 
a hand crank, pull rope, or starter motor to get it running.

There are two common combustion cycles in use in internal combustion engines, the 
Clerk  two-stroke cycle and the Otto four-stroke cycle, named after their nineteenth 
century inventors.  The four-stroke cycle is most common in automobile, truck, and sta-
tionary gasoline engines.  The two-stroke cycle is used in motorcycles, outboard motors, 
chain saws, and other applications where its better power-to-weight ratio outweighs its 
drawbacks of higher pollution levels and poor fuel economy compared to the four-stroke.  

Four-Stroke Cycle  The Otto four-stroke cycle is shown in Figure 13‑4.  It 
takes four full strokes of the piston to complete one Otto cycle.  A piston stroke is defined 
as its travel from TDC to BDC or the reverse.  Thus there are two strokes per 360° crank 
revolution, and it takes 720° of crankshaft rotation to complete one four-stroke cycle.  This 
engine requires at least two valves per cylinder, one for intake and one for exhaust.  For 
discussion, we can start the cycle at any point as it repeats every two crank revolutions.  

FIGURE 13-3
(b ) Mahle Inc., Morristown, NJ
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Figure 13‑4a shows the intake stroke which starts with the piston at TDC.  A mixture of 
fuel and air is drawn into the cylinder from the induction system (the fuel injectors, or the 
carburetor and intake manifold in Figure 13‑1), as the piston descends to BDC, increasing 
the volume of the cylinder and creating a slight negative pressure.  

During the compression stroke in Figure 13‑4b, all valves are closed and the gas is 
compressed as the piston travels from BDC to TDC.  Slightly before TDC, a spark is ig-
nited to explode the compressed gas.  The pressure from this explosion builds very quickly 

FIGURE 13-4
The Otto four-stroke combustion cycle

(( a )  Intake stroke b)  Compression stroke (c )  Power stroke (d )  Exhaust stroke

(e)  The gas pressure curve

Pg

0 180 360 540 720
TDC TDCBDC BDC TDC

Ignition
point

Atmospheric
pressure

deg



ENGINE  DYNAMICS 677

13
*  Research and develop-
ment is underway to clean 
up the emissions of the two-
stroke engine by using fuel 
injection and compressed 
air scavenging of the cylin-
ders.  These efforts may yet 
bring this potentially more 
powerful engine design into 
compliance with air quality 
specifications.

and pushes the piston down from TDC to BDC during the power stroke shown in Figure 
13‑4c.  The exhaust valve is opened and the piston’s exhaust stroke from BDC to TDC 
(Figure 13‑4d) pushes the spent gases out of the cylinder into the exhaust manifold (see 
also Figure 13‑1) and thence to the catalytic converter for cleaning before being dumped 
out the tailpipe.  The cycle is then ready to repeat with another intake stroke.  The valves 
are opened and closed at the right times in the cycle by a camshaft which is driven in 
synchrony with the crankshaft by gears, chain, or toothed belt drive.  (See Figure 9-25.)  
Figure 13‑4e shows the gas pressure curve for one cycle.  With a one-cylinder Otto cycle 
engine, power is delivered to the crankshaft, at most, 25% of the time as there is only 1 
power stroke per 2 revolutions.

Two-Stroke Cycle  The Clerk two-stroke cycle is shown in Figure 13‑5.  This 
engine does not need any valves, though to increase its efficiency, it is sometimes provided 
with a passive (pressure differential operated) one at the intake port.  It does not have a 
camshaft or valve train or cam drive gears to add weight and bulk to the engine.  As its 
name implies, it requires only two strokes, or 360°, to complete its cycle.  There is a pas-
sageway, called a transfer port, between the combustion chamber above the piston and 
the crankcase below.  There is also an exhaust port in the side of the cylinder.  The piston 
acts to sequentially block or expose these ports as it moves up and down.  The crankcase 
is sealed and mounts the carburetor on it, serving also as the intake manifold.  

Starting at TDC (Figure 13-5a), the two-stroke cycle proceeds as follows:  The spark 
plug ignites the fuel-air charge, compressed in the previous revolution.  The expansion of 
the burning gases drives the piston down, delivering torque to the crankshaft.  Partway 
down, the piston uncovers the exhaust port, allowing the burned (and also some unburned) 
gases to begin to escape to the exhaust system.  

As the piston descends (Figure 13-5b), it compresses the charge of fuel-air mixture in 
the sealed crankcase.  The piston blocks the intake port, preventing blowback through the 
carburetor.  As the piston clears the transfer port in the cylinder wall, its downward motion 
pushes the new fuel-air charge up through the transfer port to the combustion chamber.  
The momentum of the exhaust gases leaving the chamber on the other side helps pull in 
the new charge as well.  

The piston passes BDC (Figure 13-5c) and starts up, pushing out the remaining ex-
haust gases.  The exhaust port is closed by the piston as it ascends, allowing compression 
of the new charge.  As the piston approaches TDC, it exposes the intake port (Figure 13-
5d), sucking a new charge of air and fuel into the expanded crankcase from the carburetor.  
Slightly before TDC, the spark is ignited and the cycle repeats as the piston passes TDC.  

Clearly, this Clerk cycle is not as efficient as the Otto cycle in which each event is 
more cleanly separated from the others.  Here there is much mixing of the various phases 
of the cycle.  Unburned hydrocarbons are exhausted in larger quantities.  This accounts 
for the poor fuel economy and dirty emissions of the Clerk engine.*  It is nevertheless 
popular in applications where low weight is paramount.

Lubrication is also more difficult in the two-stroke engine than in the four-stroke as 
the crankcase is not available as an oil sump.  Thus the lubricating oil must be mixed with 
the fuel. This further increases the emissions problem compared to the Otto cycle engine 
which burns raw gasoline and pumps its lubricating oil separately throughout the engine.
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FIGURE 13-5
The Clerk two-stroke combustion cycle
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Diesel Cycle  The diesel cycle can be either two-stroke or four-stroke.  It is a 
compression-ignition cycle.  No spark is needed to ignite the air-fuel mixture.  The air 
is compressed in the cylinder by a factor of about 14 to 15 or more (versus 8 to 10 in the 
spark engine), and a low volatility fuel is injected into the cylinder just before TDC.  The 
heat of compression causes the explosion.  Diesel engines are larger and heavier than 
spark ignition engines for the same power output because the higher pressures and forces 
at which they operate require stronger, heavier parts.  Two-stroke cycle diesel engines are 
quite common.  Diesel fuel is a better lubricant than gasoline.

Gas Force  In all the engines discussed here, the usable output torque is created 
from the explosive gas pressure generated within the cylinder either once or twice per 
two revolutions of the crank, depending on the cycle used.   The magnitude and shape of 
this explosion pressure curve will vary with the engine design, stroke cycle, fuel used, 
speed of operation, and other factors related to the thermodynamics of the system.  For 
our purpose of analyzing the mechanical dynamics of the system, we need to keep the gas 
pressure function consistent while we vary other design parameters in order to compare 
the results of our mechanical design changes.  For this purpose, program Linkages has 
been provided with a built-in gas pressure curve whose peak value is about 600 psi and 
whose shape is similar to the curve from a real engine.  Figure 13‑6 shows the gas force 
curve that results from the built-in gas pressure function in program Linkages applied 
to a piston of particular area, for both two- and four-stroke engines.  Changes in piston 
area will obviously affect the gas force magnitude for this consistent pressure function, 
but no changes in engine design parameters input to this program will change its built-in 
gas pressure curve.  To see this gas force curve, run program Linkages and select any 
one of the example engines from the pulldown menu. Then calculate and plot Gas Force.

13.2	 SLIDER-CRANK KINEMATICS

In Chapters 4, 6, 7, and 11 we developed general equations for the exact solution of the 
positions, velocities, accelerations, and forces in the pin-jointed fourbar linkage, and also 
for two inversions of the slider-crank linkage, using vector equations.  We could again 
apply that method to the analysis of the “standard” slider-crank linkage, used in the major-
ity of internal combustion engines, as shown in Figure 13‑7.  Note that its slider motion 
has been aligned with the X axis.  This is a “nonoffset” slider-crank, because the slider 
axis extended passes through the crank pivot.  It also has its slider block translating against 
the stationary ground plane; thus there will be no Coriolis component of acceleration (see 
Section 7.3).

The simple geometry of this particular inversion of the slider-crank mechanism al-
lows a very straightforward approach to the exact analysis of its slider’s position, velocity, 
and acceleration, using only plane trigonometry and scalar equations.  Because of this 
method’s simplicity and to present an alternative solution approach we will analyze this 
device again.

Let the crank radius be r and the conrod length be l.  The angle of the crank is θ, 
and the angle that the conrod makes with the X axis is φ.  For any constant crank angular 
velocity ω, the crank angle θ = ωt.  The instantaneous piston position is x.  Two right 
triangles rqs and lqu are constructed.  Then from geometry: 
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Equation 13.1d is an exact expression for the piston position x as a function of r, l, 
and ωt.  This can be differentiated versus time to obtain exact expressions for the velocity 
and acceleration of the piston.  For a steady-state analysis we will assume ω to be constant.
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FIGURE 13-6
Gas force functions in the two-stroke and four-stroke cycle engines

(a )  Otto four-stroke cycle (b )  Clerk two-stroke cycle
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FIGURE 13-7
Fourbar slider-crank linkage position and gas force analysis  (See Figure 13-12 for the inertia force analysis.)

(a )  The linkage geometry

(b )  Free-body diagrams
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Equations 13.1 can easily be solved with a computer for all values of ω t needed.  
But, it is rather difficult to look at equation 13.1f and visualize the effects of changes in 
the design parameters r and l on the acceleration.  It would be useful if we could derive 
a simpler expression, even if approximate, that would allow us to more easily predict the 
results of design decisions involving these variables.  To do so, we will use the binomial 
theorem to expand the radical in equation 13.1d for piston position to put the equations for 
position, velocity, and acceleration in simpler, approximate forms which will shed some 
light on the dynamic behavior of the mechanism.  

The general form of the binomial theorem is:

( ) ( ) ( )( )
+ = + +

−
+

− −
+− − −1
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The radical in equation 13.1d is:
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where, for the binomial expansion:
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Each nonconstant term contains the crank-conrod ratio r/l to some power.  Applying 
some engineering common sense to the depiction of the slider-crank in Figure 13‑7a, we 
can see that if r/l were greater than 1 the crank could not make a complete revolution.  In 
fact if r/l even gets close to 1, the piston will hit the fixed pivot O2 before the crank com-
pletes its revolution.  If r/l is as large as 1/2, the transmission angle (π/2 – φ) will be too 
small (see Sections 3.3 and 4.11) and the linkage will not run well.  A practical upper limit 
on the value of r/l is about 1/3.  Most slider-crank linkages will have this crank-conrod 
ratio somewhere between 1/3 and 1/5 for smooth operation.  If we substitute this practicl 
upper limit of r/l = 1/3 into equation 13.2e, we get:
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Clearly we can drop all terms after the second with very small error.  Substituting this 
approximate expression for the radical in equation 13.1d gives an approximate expression 
for piston displacement with only a fraction of one percent error.
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Substitute the trigonometric identity:
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and simplify:
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Differentiate for velocity of the piston (with constant ω):
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Differentiate again for acceleration (with constant ω):
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The process of binomial expansion has, in this particular case, led us to Fourier series 
approximations of the exact expressions for the piston displacement, velocity, and acceler-
ation.  Fourier* showed that any periodic function can be approximated by a series of sine 
and cosine terms of integer multiples of the independent variable.  Recall that we dropped 
the fourth, sixth, and subsequent power terms from the binomial expansion, which would 
have provided cos 4ωt, cos 6ωt, etc., terms in this expression.  These multiple-angle 
functions are referred to as the harmonics of the fundamental cos ωt term.  The cos ωt 
term repeats once per crank revolution and is called the fundamental frequency or the 
primary component.  The second harmonic, cos 2ωt, repeats twice per crank revolution 
and is called the secondary component.  The higher harmonics were dropped when we 
truncated the series.  The constant term in the displacement function is the DC compo-
nent or average value.  The complete function is the sum of its harmonics.  The Fourier 
series form of the expressions for displacement and its derivatives lets us see the relative 
contributions of the various harmonic components of the functions.  This approach will 
prove to be quite valuable when we attempt to dynamically balance an engine design.

Program Linkages calculates the position, velocity, and acceleration of the piston 
according to equations 13.3c, d, and e.  Figure 13‑8a, b, and c shows these functions for 
this example engine in the program as plotted for constant crank ω over two full revolu-
tions.  The acceleration curve shows the effects of the second harmonic term most clearly 
because that term’s coefficient is larger than its correspondent in either of the other two 
functions.  The fundamental (–cos ωt) term gives a pure harmonic function with a period 
of 360°.  This fundamental term dominates the function as it has the largest coefficient 
in equation 13.3e.  The flat top and slight dip in the positive peak acceleration of Figure 

	

*   Baron Jean Baptiste 
Joseph Fourier (1768-1830) 
published the description 
of the mathematical series 
which bears his name in 
The Analytic Theory of 
Heat in 1822.  The Fourier 
series is widely used in 
harmonic analysis of all 
types of physical systems.  
Its general form is:
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13‑8c are caused by the cos 2ωt second harmonic adding or subtracting from the funda-
mental.  Note the very high value of peak acceleration of the piston even at the midrange 
engine speed of 3400 rpm.  It is 747 g’s!  At 6000 rpm this increases to nearly 1300 g’s.*  
This is a moderately sized engine, of 3-in (76 mm) bore and 3.54-in (89 mm) stroke, with 
25-in3 (400-cc) displacement per cylinder (a 1.6-L 4-cylinder engine).

	
*  If you think that number 
is high, consider the typical 
Nascar pushrod V-8 that 
turns up to 9600 rpm and 
Formula 1, V-12, and V-8 
racing engines that red-line 
at over 19 000 rpm.  As 
an exercise, calculate their 
peak accelerations assum-
ing the same dimensions as 
our example engine.

FIGURE 13-8
Position, velocity, and acceleration functions for a single-cylinder engine

(a )

(b )

( c )
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Superposition  We will now analyze the dynamic behavior of the single-cylinder 
engine based on the approximate kinematic model developed in this section.  Since we 
have several sources of dynamic excitation to deal with, we will use the method of super-
position to separately analyze them and then combine their effects.  We will first consider 
the forces and torques which are due to the presence of the explosive gas forces in the 
cylinder, which drive the engine.  Then we will analyze the inertia forces and torques 
that result from the high-speed motion of the elements.  The total force and torque state 
of the machine at any instant will be the sum of these components.  Finally we will look 
at the shaking forces and torques on the ground plane and the pin forces within the 
linkage that result from the combination of applied and dynamic forces on the system.

13.3	 GAS FORCE AND GAS TORQUE

The gas force is due to the gas pressure from the exploding fuel-air mixture imping-
ing on the top of the piston surface as shown in Figure 13‑3.  Let Fg = gas force,  
Pg = gas pressure, Ap = area of piston, and B = bore of cylinder, which is also equal to 
the piston diameter.  Then:

= − =
π

= −
π

ˆ;
4

(13.4)
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g g p p
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The negative sign is due to the choice of engine orientation in the coordinate system 
of Figure 13‑3.  The gas pressure Pg in this expression is a function of crank angle ωt 
and is defined by the thermodynamics of the engine.  A typical gas pressure  curve for a 
four-stroke engine is shown in Figure 13‑4.  The gas force curve shape is identical to that 
of the gas pressure curve as they differ only by a constant multiplier, the piston area Ap.  
Figure 13‑6 shows the approximation of the gas force curve used in program Linkages 
for both four- and two-stroke engines.

The gas torque in Figure 13-9 is due to the gas force acting at a moment arm about 
the crank center O2 in Figure 13‑7.  This moment arm varies from zero to a maximum 
as the crank rotates.  The distributed gas force over the piston surface has been resolved 
to a single force acting through the mass center of link 4 in the free-body diagrams of 
Figure 13‑7b.  The concurrent force system at point B is resolved in the vector diagram 
showing that:

= φ

= − − φ

tan ˆ (13.5a)

ˆ tan ˆ (13.5b)
14

34

F

F F

g g

g g g

F j

F i j

From the free-body diagrams in Figure 13‑7 we can see that:
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The driving torque Tg21 at link 2 due to the gas force can be found from the cross 
product of the position vector to point A and the force at point A.

= × (13.6a)
21 32g A gT R F

This expression can be expanded and will involve the crank length r and the angles 
θ and φ as well as the gas force Fg. Note from the free-body diagram for link 1 that we 
can also express the torque in terms of the forces Fg14 or Fg41, which act always perpen-
dicular to the motion of the slider (neglecting friction), and the distance x, which is their 
instantaneous moment arm about O2.  The reaction torque Tg12 due to the gas force trying 
to rock the ground plane is:

= ⋅ ˆ (13.6b)
12 41

F xg gT k

If you have ever abruptly opened the throttle of a running automobile engine while 
working on it, you probably noticed the engine move to the side as it rocked in its mounts 
from the reaction torque.  The driving torque Tg21 is the negative of this reaction torque.

= −

= − ⋅ ˆ (13.6c)
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and:

so: ˆ (13.6d)
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Equation 13.6d gives us an expression for gas torque which involves the displace-
ment of the piston x for which we have already derived equation 13.3a.  Substituting 
equation 13.3a for x and the magnitude of equation 13.5a for Fg14, we get:
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Equation 13.6e contains the conrod angle φ as well as the independent variable, crank 
angle ωt.  We would like to have an expression which involves only ωt.  We can substitute 
an expression for tan φ generated from the geometry of Figure 13‑7a.
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FIGURE 13-9
Gas torque functions in the two-stroke and four-stroke cycle engines

(a )  Otto four-stroke cycle (b )  Clerk two-stroke cycle
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Substitute equation 13.1c for cos φ:
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The radical in the denominator can be expanded using the binomial theorem as was 
done in equations 13.2, and the first two terms retained for a good approximation to the 
exact expression,
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Substitute this into equation 13.6e for the gas torque:
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Expand this expression and neglect any terms containing the conrod crank ratio r/l 
raised to any power greater than one since these will have very small coefficients as was 
seen in equation 13.2f.  This results in a simpler, but even more approximate expression 
for the gas torque:

= ω + ω





sin 1 cos (13.8b)
21
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Note that the exact value of this gas torque can always be calculated from equations 
13.1d, 13.5a, and 13.6d in combination, or from the expansion of equation 13.6a, if you 
require a more accurate answer.  For design purposes the approximate equation 13.8b 
will usually be adequate.  Program Linkages calculates the gas torque using equation 
13.8b and its built-in gas pressure curve to generate the gas force function.  Plots of the 
gas torque for two- and four-stroke cycles are shown in Figure 13‑9.  Note the similarity 
in shape to that of the gas force curve in Figure 13‑6.  Note also that the two-stroke has 
theoretically twice the power available as the four-stroke, all other factors being equal, 
because there are twice as many torque pulses per unit time.  The poorer efficiency of the 
two-stroke significantly reduces this theoretical advantage, however.

13.4	 EQUIVALENT MASSES Watch a Video on Engine Dynamics (53:17)*

To do a complete dynamic force analysis on any mechanism, we need to know the geo-
metric properties (mass, center of gravity, mass moment of inertia) of the moving links 

 	

*  http://www.designof-
machinery.com/DOM/En-
gine_Dynamics.mp4
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is easy to do if the link already is designed in detail and its dimensions are known.  When 
designing the mechanism from scratch, we typically do not yet know that level of detail 
about the links’ geometries.  But we must nevertheless make some estimate of their geo-
metric parameters in order to begin the iteration process which will eventually converge 
on a detailed design.

In the case of this slider-crank mechanism, the crank is in pure rotation and the 
piston is in pure translation. By assuming some reasonable geometries and materials, 
we can make approximations of their dynamic parameters.  Their kinematic motions are 
easily determined.  We have already derived expressions for the piston motion in equa-
tions 13.3.  Further, if we balance the rotating crank, as described and recommended in 
the previous chapter, then the CG of the crank will be motionless at its center O2 and will 
not contribute to the dynamic forces.  We will do this in a later section.

The conrod is in complex motion.  To do an exact dynamic analysis as was derived 
in Section 11.5, we need to determine the linear acceleration of its CG for all positions.  
At the outset of the design, the conrod’s CG location is not accurately defined.  To “boot-
strap” the design, we need a simplified model of this connecting rod which we can later 
refine, as more dynamic information is generated about our engine design.  The require-
ments for a dynamically equivalent model were stated in Section 10.2 and are repeated 
here as Table 13‑1 for your convenience.

If we could model our still-to-be-designed conrod as two, lumped, point masses, 
concentrated one at the crank pin (point A in Figure 13‑7), and one at the wrist pin (point 
B in Figure 13‑7), we would at least know what the motions of these lumps are.  The lump 
at A would be in pure rotation as part of the crank, and the lump at point B would be in 
pure translation as part of the piston.  These lumped, point masses have no dimension and 
are assumed to be connected with a magical, massless but rigid rod.* 

Dynamically Equivalent Model  Figure 13‑10a shows a typical conrod.  Fig-
ure 13‑10b shows a generic two-mass model of the conrod.  One mass mt is located at 
distance lt from the CG of the original rod, and the second mass mp at distance lp from 
the CG.  The mass of the original part is m3, and its moment of inertia about its CG is IG3.  
Expressing the three requirements for dynamic equivalence from Table 13‑1 mathemati-
cally in terms of these variables, we get:

+ =

=

+ =

(13.9a)

(13.9b)

(13.9c)

3

2 2
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m m m

m l m l

m l m l I
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There are four unknowns in these three equations, mp, lp, mt, lt, which means we 
must choose a value for any one variable to solve the system.  Let us choose the distance 

	

*   These lumped mass 
models have to be made 
with very special materials.  
Unobtainium 206 has the 
property of infinite mass 
density, thus occupies no 
space and can be used for 
“point masses.”  Unobtaini-
um 208 has infinite stiffness 
and zero mass and thus can 
be used for rigid but “mass-
less rods.”

Requirements for Dynamic Equivalence

 1 The mass of the model must equal that of the original body.

 2 The center of gravity must be in the same location as that of the original body.

 3 The mass moment of inertia must equal that of the original body.
 

TABLE  13-1
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lt  equal to the distance to the wrist pin, lb, as shown in Figure 13‑10c. This will put one 
mass at a desired location.  Solving equations 13.9a and 13.9b simultaneously with that 
substitution gives expressions for the two lumped masses:
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+

(13.9d)
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Substituting equation 13.9d into 13.9c gives a relation between lp and lb:
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3
2

3

3

3

3

m
l

l l
l m

l
l l

l I m l l

l
I

m l

b

p b
p

p

p b
b G p b

p
G

b

Please refer to Section 10.10 and equation 10.13 that define the center of percussion 
and its geometric relationship to a corresponding center of rotation.  Equation 13.9e is 
the same as equation 11.13 (except for sign which is due to an arbitrary choice of the 
link’s orientation in the coordinate system).  The distance lp is the location of the center 
of percussion corresponding to a center of rotation at lb.  Thus our second mass mp must 
be placed at the link’s center of percussion P (using point B as its center of rotation) to 
obtain exact dynamic equivalence.  The masses must be as defined in equation 13.9d.

The geometry of the typical conrod, as shown in Figures 13‑2 and 13‑10a, is large 
at the crank pin end (A) and small at the wrist pin end (B).  This puts the CG close to the 
“big end.”  The center of percussion P will be even closer to the big end than is the CG.  
For this reason, we can place the second lumped mass, which belongs at P,  at point A 
with relatively small error in our dynamic model’s accuracy.  This approximate model is 
adequate for our initial design calculations.  Once a viable design geometry is established, 
we will have to do a complete and exact force analysis with the methods of Chapter 11 
before considering the design complete.

Making this substitution of distance la for lp and renaming the lumped masses at those 
distances m3a and m3b, to reflect both their identity with link 3 and with points A and B, 
we rewrite equations 13.9d.

l l

m m
l

l l

p a

a
b

a b

=

=
+

Let

then: (13.10a)3 3

m m
l

l lb
a

a b
=

+
and: (13.10b)3 3

These define the amounts of the total conrod mass to be placed at each end, to ap-
proximately dynamically model that link.  Figure 13‑10d shows this dynamic model.  In 
the absence of any data on the shape of the conrod at the outset of a design, preliminary 
dynamic force information can be obtained by using the rule of thumb of placing two-
thirds of the conrod’s mass at the crank pin and one-third at the wrist pin.
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Statically Equivalent Model  We can create a similar lumped mass model of 
the crank.  Even though we intend to balance the crank before we are done, for generality 
we will initially model it unbalanced as shown in Figure 13‑11.  Its CG is located at some 
distance rG2 from the pivot, O2, on the line to the crank pin, A.  We would like to model 
it as a lumped mass at A on a massless rod pivoted at O2.  If our principal concern is with 
a steady-state analysis, then the crank velocity ω will be held constant.  An absence of 
angular acceleration on the crank allows a statically equivalent model to be used because 
the equation T = Iα will be zero regardless of the value of I.  A statically equivalent 
model needs only to have equivalent mass and equivalent first moments as shown in Table 
13‑2.  The moments of inertia need not match.  We model it as two lumped masses, one at 
point A and one at the fixed pivot O2.  Writing the two requirements for static equivalence 
from Table 13‑2:

= +

=

=

(13.11)
2 2 2

2 2

2 2

2

2

2

m m m

m r m r

m m
r
r

a O

a G

a
G

FIGURE 13-10
Lumped mass dynamic models of a connecting rod

(a )  Original connecting rod

(b )  Generic two-mass model

( c )  Exact dynamic model

(d )  Approximate model
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The lumped mass m2a can be placed at point A to represent the unbalanced crank.  
The second lumped mass, at the fixed pivot O2, is not necessary to any calculations as 
that point is stationary.

These simplifications lead to the lumped parameter model of the slider-crank linkage 
shown in Figure 13‑12.  The crank pin, point A, has two masses concentrated at it, the 
equivalent mass of the crank m2a and the portion of conrod m3a.  Their sum is mA.  At the 
wrist pin, point B, two masses are also concentrated, the piston mass m4 and the remaining 
portion of the conrod mass m3b.  Their sum is mB.  This model has masses which are either 
in pure rotation (mA) or in pure translation (mB), so it is very easy to dynamically analyze.

= +

= +
(13.12)

2 3

3 4

m m m

m m m

A a a

B b

Value of Models  The value of constructing simple, lumped mass models of com-
plex systems increases with the complexity of the system being designed.  It makes little 
sense to spend large amounts of time doing sophisticated, detailed analyses of designs 
which are so ill-defined at the outset that their conceptual viability is as yet unproven.  It 
is better to get a reasonably approximate and rapid answer that tells you the concept needs 
to be rethought than to spend a greater amount of time reaching the same conclusion to 
more decimal places.

13.5	 INERTIA AND SHAKING FORCES 

The simplified, lumped mass model of Figure 13‑12 can be used to develop expressions 
for the forces and torques due to the accelerations of the masses in the system.  The 
method of d’Alembert is of value in visualizing the effects of these moving masses on the 
system and on the ground plane.  Accordingly, the free-body diagrams of Figure 13‑12b 
show the d’Alembert inertia forces acting on the masses at points A and B.  Friction is 
again ignored.  The acceleration for point B is given in equation 13.3e.  The acceleration 
of point A in pure rotation is obtained by differentiating the position vector RA twice, as-
suming a constant crankshaft ω, which gives:

= ω + ω

= − ω ω − ω ω

cos ˆ sin ˆ
(13.13)

cos ˆ sin ˆ2 2

r t r t

r t r t

A

A

R i j

a i j

The total inertia force Fi is the sum of the centrifugal (inertia) force at point A and 
the inertia force at point B.

= − − (13.14a)m mi A A B BF a a

FIGURE 13-11
Statically equivalent
lumped mass model of
a crank

A

r
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r

m2

CG2

m2 2O

2
rG

2O

2O

m2aRequirements for Static Equivalence

 1 The mass of the model must equal that of the original body.

 2 The center of gravity must be in the same location as that of the original body.
 

TABLE  13-2
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FIGURE 13-12
Lumped mass dynamic model of the slider-crank—arrows show vector direction and sense, labels show magnitude

(a )  Dynamic model

(b )  Free-body diagrams
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Breaking it into x and y components:

( )
( )

= − − ω ω −

= − − ω ω

cos (13.14b)

sin (13.14c)

2

2

F m r t m x

F m r t

i x A B

i y A



Note that only the x component is affected by the acceleration of the piston.  Substi-
tuting equation 13.3e into equation 13.14b:

( )
( )

≅ − − ω ω − − ω ω + ω















= − − ω ω

2cos cos cos2

(13.14d)
sin

2

2

F m r t m r t r
l

t

F m r t

i x A B

i y A

Notice that the x-directed inertia forces have primary components at crank frequency 
and secondary (second harmonic) forces at twice crank frequency.  There are also small-
magnitude, higher, even harmonics which we truncated in the binomial expansion of the 
piston displacement function.  The force due to the rotating mass at point A has only a 
primary component.

The shaking force was defined in Section 11.8 to be the sum of all forces acting on 
the ground plane.  From the free-body diagram for link 1 in Figure 13-12:

∑

∑

( )
( )

≅ − ω ω − ω ω + ω















= − ω ω + −

2cos cos cos2

(13.14e)
sin

2

2
41 41

F m r t m r t r
l

t

F m r t F F

s x A B

s y A i i

Note that the side force of the piston on the cylinder wall Fi41 is cancelled by an equal 
and opposite force Fi14 passed through the connecting rod and crankshaft to the main pin 
at O2. These two forces create a couple that provides the shaking torque.  The shaking 
force Fs is equal to the negative of the inertia force.

= − (13.14f)s iF F

Note that the gas force from equation 13.4 does not contribute to the shaking force.  
Only inertia forces and external forces are felt as shaking forces.  The gas force is an in-
ternal force which is cancelled within the mechanism.  It acts equally and oppositely on 
both the piston top and the cylinder head as shown in Figure 13-7.

Program Linkages calculates the shaking force at constant ω for any combination 
of linkage parameters input to it.  Figure 13‑13 shows the shaking force plot for the same 
unbalanced built-in example engine as shown in the acceleration plot (Figure 13‑8c).  
The linkage orientation is the same as in Figure 13‑12 with the x axis horizontal.  The x 
component is larger than the y component due to the high acceleration of the piston.  The 
forces are seen to be quite large despite this being a relatively small (0.4 liter per cylinder) 
engine running at moderate speed (3400 rpm).  We will soon investigate techniques to 
reduce or eliminate this shaking force from the engine.  It is an undesirable feature which 
creates noise and vibration.
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13.6	 INERTIA AND SHAKING TORQUES

The inertia torque results from the action of the inertia forces at a moment arm.  The 
inertia force at point A in Figure 13‑12 has two components, radial and tangential.  The 
radial component has no moment arm.  The tangential component has a moment arm 
of crank radius r.  If the crank ω is constant, the mass at A will not contribute to inertia 
torque.  The inertia force at B has a nonzero component perpendicular to the cylinder wall 
except when the piston is at TDC or BDC.   As we did for the gas torque, we can express 
the inertia torque in terms of the couple  –Fi41, Fi41 whose forces act always perpendicular 
to the motion of the slider (neglecting friction), and the distance x, which is their instan-
taneous moment arm (see Figure 13-12).  The inertia torque is:

( ) ( )= ⋅ = − ⋅ˆ ˆ (13.15a)
21 41 14

F x F xi i iT k k

Substituting for Fi14 (see Figure 13-12b) and for x (see equation 13.3a), we get:

( )= − − φ − + ω + ω

















tan
4

cos
4

cos2 ˆ (13.15b)
2

21
m x l r

l
r t r

l
ti BT k� ��

We previously developed expressions for x  (equation 13.3e) and tan φ  (equation 
13.7d) which can now be substituted.
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FIGURE 13-13
Shaking force in an unbalanced slider-crank linkage
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Expanding this and then dropping all terms with coefficients containing r/l to powers 
higher than one gives the following approximate equation for inertia torque with constant 
shaft ω:

= − ω ω + ω + ω





sin
2

cos 3
2

cos2 ˆ (13.15d)2 2
21

m r t r
l

t r
l

ti BT k

This contains products of sine and cosine terms.  Putting it entirely in terms of har-
monics will be instructive, so substitute the identities:

ω ω = ω − ω
ω ω = ω

2sin cos2 sin3 sin
2sin cos sin2

t t t t
t t t

= ω ω − ω − ω





to get: 1
2 2

sin sin2 3
2

sin3 ˆ (13.15e)2 2
21

m r r
l

t t r
l

ti BT k

This shows that the inertia torque has a third harmonic term as well as a first and 
second.  The second harmonic is the dominant term as it has the largest coefficient be-
cause r/l is always less than 2/3.   

The shaking torque is equal to the inertia torque.

= (13.15f )
21s iT T

Program Linkages calculates the inertia torque from equation 13.15e.  Figure 13‑14 
shows a plot of the inertia torque for this built-in example engine.  Note the dominance of 
the second harmonic.  The ideal magnitude for the inertia torque is zero, as it is parasitic.  Its 
average value is always zero, so it contributes nothing to the net driving torque.  It merely 
creates large positive and negative oscillations in the total torque which increase vibration 
and roughness.  We will soon investigate means to reduce or eliminate this inertia and 
shaking torque in our engine designs.   It is possible to cancel their effects by proper ar-
rangement of the cylinders in a multicylinder engine, as will be explored in the next chapter.

FIGURE 13-14
Inertia torque in the slider-crank linkage
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FIGURE 13-15
The total torque function's shape and magnitude vary with crankshaft speed
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13.7	 TOTAL ENGINE TORQUE

The total engine torque is the sum of the gas torque and the inertia torque.

= + (13.16)total g iT T T

The gas torque is less sensitive to engine speed than is the inertia torque, which is a 
function of ω2.  So the relative contributions of these two components to the total torque 
will vary with engine speed.  Figure 13‑15a shows the total torque for this example en-
gine plotted by program Linkages for an idle speed of 800 rpm.  Compare this to the gas 
torque plot of the same engine in Figure 13‑9a.  The inertia torque component is negligible 
at this slow speed compared to the gas torque component.  Figure 13‑15c shows the same 
engine run at 6000 rpm.  Compare this to the plot of inertia torque in Figure 13‑14.  The 
inertia torque component is dominating at this high speed.  At the midrange speed of 3400 
rpm (Figure 13‑15b), a mix of both components is seen.

13.8	 FLYWHEELS Watch a Video on Balancing and Pin Forces (42:38)*

We saw in Section 11.11 that large oscillations in the torque-time function can be signifi-
cantly reduced by the addition of a flywheel to the system.  The single-cylinder engine is 
a prime candidate for the use of a flywheel.  The intermittent nature of its power strokes 
makes one mandatory as it will store the kinetic energy needed to carry the piston through 
the Otto cycle’s exhaust, intake, and compression strokes during which work must be done 
on the system.  Even the two-stroke engine needs a flywheel to drive the piston up on the 
compression stroke.

The procedure for designing an engine flywheel is identical to that described in 
Section 11.11 for the fourbar linkage.  The total torque function for one revolution of 
the crank is integrated, pulse by pulse, with respect to its average value.  These integrals 
represent energy fluctuations in the system.  The maximum change in energy under the 
torque curve during one cycle is the amount needed to be stored in the flywheel. Equation 
11.20c expresses this relationship.  Program Linkages does the numerical integration of 
the total torque function and presents a table similar to the one shown in Figure 11-11.  
These data and the designer’s choice of a coefficient of fluctuation k (see equation 11.19b) 
are all that is needed to solve equations 11.20 and 11.21 for the required moment of inertia 
of the flywheel.

The calculation must be done at some average crank ω.  Since the typical engine 
operates over a wide range of speeds, some thought needs to be given to the most appro-
priate speed to use in the flywheel calculation.  The flywheel’s stored kinetic energy is 
proportional to ω2 (see equation 11.17).  Thus at high speeds a flywheel can have a small 
moment of inertia and still be effective.  The slowest operating speed will require the 
largest flywheel and should be the one used in the computation of required flywheel size.

Program Linkages plots the flywheel-smoothed total torque for a user-supplied coef-
ficient of fluctuation k.  Figure 13‑16 shows the smoothed torque functions for k = 0.05 
corresponding to the unsmoothed ones in Figure 13‑15.  Note that the smoothed curves 
shown for each engine speed are what would result with the flywheel size necessary to 
obtain that coefficient of fluctuation at that speed.  In other words, the flywheel applied to 
the 800-rpm engine is much larger than the one on the 6000-rpm engine, in these plots.  

 	

*  http://www.designofma-
chinery.com/DOM/Engine_
Balancing_and_Pin_Forces.
mp4
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FIGURE 13-16
The total torque function's shape and magnitude vary with crankshaft speed
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Compare corresponding rows (speeds) between Figures 13‑15 and 13‑16 to see the effect 
of the addition of a flywheel.  But do not directly compare parts a, b, and c within Figure 
13‑16 as to the amount of smoothing since the flywheel sizes used are different at each 
operating speed.

An engine flywheel is usually designed as a flat disk, bolted to one end of the crank-
shaft.  One flywheel face is typically used for the clutch to run against.  The clutch is a 
friction device which allows disconnection of the engine from the drive train (the wheels 
of a vehicle) when no output is desired.  The engine can then remain running at idle speed 
with the vehicle or output device stopped.  When the clutch is engaged, all engine torque 
is transmitted through it, by friction, to the output shaft.

13.9	 PIN FORCES IN THE SINGLE-CYLINDER ENGINE Watch a Short 
Video on Pin Forces (20:03)*

In addition to calculating the overall effects on the ground plane of the dynamic forces 
present in the engine, we also need to know the magnitudes of the forces at the pin joints.  
These forces will dictate the design of the pins and the bearings at the joints.  Though 
we were able to lump the mass due to both conrod and piston, or conrod and crank, at 
points A and B for an overall analysis of the linkage’s effects on the ground plane, we 
cannot do so for the pin force calculations.  This is because the pins feel the effect of the 
conrod pulling on one “side” and the piston (or crank) pulling on the other “side” of the 
pin as shown in Figure 13‑17.  Thus we must separate the effects of the masses of the 
links joined by the pins.

We will calculate the effect of each component due to the various masses and the gas 
force and then superpose them to obtain the complete pin force at each joint.  We need a 
bookkeeping system to keep track of all these components.  We have already used some 
subscripts for these forces, so we will retain them and add others.  The resultant bearing 
loads have the following components:

	 1	 The gas force components, with the subscript g, as in Fg.

	 2	 The inertia force due to the piston mass, with subscript ip, as in Fip.

FIGURE 13-17
Forces on a pivot pin

Connecting rod Piston

4

3

Wrist pin

F F

m 4

m 3b

Wrist pin

 	

*  http://www.designof-
machinery.com/DOM/
Pin_Forces.mp4

http://www.designofmachinery.com/DOM/Pin_Forces.mp4
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	 3	 The inertia force due to the mass of the conrod at the wrist pin, with subscript iw, as 
in Fiw.

	 4	 The inertia force due to the mass of the conrod at the crank pin, with subscript ic, as 
in Fic.

	 5	 The inertia force due to the mass of the crank at the crank pin, with subscript ir, as 
in Fir.

The link number designations will be added to each subscript in the same manner as 
before, indicating the link from which the force is coming as the first number and the link 
being analyzed as the second.  (See Section 11.2 for further discussion of this notation.)

Figure 13‑18 shows the free-body diagrams for the inertia force FipB due only to the 
acceleration of the mass of the piston, m4.  Those components are:

= −

= − φ = φ

= − − = − φ

= − = − + φ

= − =

ˆ (13.17a)

tan ˆ tan ˆ (13.17b)
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Figure 13‑19 shows the free-body diagrams for the forces due only to the acceleration 
of the mass of the conrod located at the wrist pin, m3b.  Those components are:

= −

= = φ = − φ

= − = φ

= − − = − φ

= − =
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Figure 13‑20a shows the free-body diagrams for the forces due only to the accelera-
tion of the mass of the conrod located at the crank pin, m3a.  That component is:

= − = = − (13.19a)312 21
mic ic ic a AF F F a

Substitute equation 13.13 for aA:

( )= − = ω ω + ωcos ˆ sin ˆ (13.19b)3
2

21 12
m r t tic ic aF F i j

Figure 13‑20b shows the free-body diagrams for the forces due only to the accelera-
tion of the lumped mass of the crank  at the crank pin, m2a.  These affect only the main 
pin at O2.  That component is:

( )
= − = = −

= ω ω + ωcos ˆ sin ˆ (13.19c)

2

2
2

12 21

21

m

m r t t

ir ir ir a A

ir a

F F F a

F i j

The gas force components were shown in Figure 13‑7 and defined in equations 13.5.
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We can now sum the components of the forces at each pin joint. For the sidewall force 
F41 of the piston against the cylinder wall:

( )

= + +

= − φ − φ − φ

= − + +  φ

tan ˆ tan ˆ tan ˆ (13.20)

tan ˆ
4 3

4 3

41 41 41 41

F m a m a

m m a F

g ip iw

g B b B

b B g

F F F F

j j j

j

The total force F34 on the wrist pin is:

( ) ( ) ( )
( ) ( )

= + +

= − − φ + − φ + − φ

= − + − + +  φ

ˆ tan ˆ ˆ tan ˆ tan ˆ (13.21)

ˆ tan ˆ

34

4 4 3
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34 34 34

F F m a m a m a

F m a F m m a

g ip iw

g g B B b B

g B g b B

F F F F

i j i j j

i j

The total force F32 on the crank pin is:

φφ

ω ω
α

FIGURE 13-18
Free-body diagrams for forces due to the piston mass
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FIGURE 13-19
Free-body diagrams for forces due to the conrod mass concentrated at the wrist pin
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FIGURE 13-20
Free-body diagrams for forces due to masses at the crank pin

( (a )  Conrod mass at crank pin b )  Crank mass at crank pin
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The total force F21 on the main journal is:

( )= + = + ω ω + ωcos ˆ sin ˆ (13.23)21 32 32 2
2

21
m r t tir aF F F F i j

Note that, unlike the inertia force in equation 13.14, which was unaffected by the 
gas force, these pin forces are a function of the gas force as well as of the inertia forces.  
Engines with larger piston diameters will experience greater pin forces as a result of the 
explosion pressure acting on their larger piston area.

Program Linkages calculates the pin forces on all joints using equations 13.20 to 
13.23.  Figure 13‑21 shows the wrist-pin force on the same unbalanced engine example as 
shown in previous figures, for three engine speeds.  The “bow tie” loop is the inertia force 
and the “teardrop” loop is the gas force portion of the force curve.  An interesting trade-
off occurs between the gas force components and the inertia force components of the pin 
forces.  At a low speed of 800 rpm (Figure 13‑21a), the gas force dominates as the inertia 
forces are negligible at small ω.  The peak wrist-pin force is then about 4200 lb.  At high 
speed (6000 rpm), the inertia components dominate and the peak force is about 4500 lb 
(Figure 13‑21c).  But at a midrange speed (3400 rpm), the inertia force cancels some of 
the gas force and the peak force is only about 3200 lb (Figure 13‑21b).  These plots show 
that the pin forces can be quite large even in a moderately sized (0.4 liter/cylinder) engine.  
The pins, links, and bearings all have to be designed to withstand hundreds of millions of 
cycles of these reversing forces without failure.

Figure 13-22 shows further evidence of the interaction of the gas forces and inertia 
forces on the crank pin and the wrist pin.  Figures 13-22a and 13-22c show the variation in 
the magnitude of the inertia force component on the crank pin and wrist pin, respectively, 
over one full revolution of the crank as the engine speed is increased from idle to redline.  
Figures 13‑22b and 13‑22d show the variation in the total force on the same respective 
pins with both the inertia and gas force components included.  These two plots show only 
the first 90° of crank revolution where the gas force in a four-stroke cylinder occurs.  Note 
that the gas force and inertia force components counteract one another resulting in one 
particular speed where the total pin force is a minimum during the power stroke.  This is 
the same phenomenon as seen in Figure 13-21.

Figure 13-23 shows the forces on the main pin and crank pin at three engine speeds 
for the same unbalanced single-cylinder engine example as in previous figures.  These 
forces are plotted as hodographs in a local rotating coordinate system (LRCS) x’y’ embed-
ded in the crankshaft.  Figure 13-23a shows that at 800 rpm (idle speed) the crank pin and 
main pin forces are essentially equal and opposite because the inertia force components 
are so small in comparison to the gas force components, which dominate at low speed.  
Only half the circumference of either pin sees any force.  At 3400 rpm (Figure 13-23b), 
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Unbalanced

Unbalanced

Unbalanced

FIGURE 13-21
Forces on the wrist pin of the single-cylinder engine at various speeds

Wrist-pin Force   lb 3221

– 3221

3221– 3221
X

Y

Wrist-pin Force   lb 4178

– 4178

4178– 4178
X

Y

Wrist-pin Force   lb 4488

– 4488

4488– 4488
X

Y

(a )  800 rpm

(b)  3400 rpm

(c )  6000 rpm

m3a    =   0.0134 bl

1 Cylinder
4 Stroke Cycl e

RPM   =   3400

= 3.54Stroke
= 0.85B/S
= 3.50L/R

m2a    =   0.0150 bl

= 3.00 inBore

m4      =   0.0050 bl
m3b    =   0.0066 bl

Pmax  =   600 psi



ENGINE  DYNAMICS 705

13

the inertia force effects are evident and the angular portions of the main pin and crank 
pin that see any force are now only 39° and 72°, respectively.  The effects of the gas force 
create asymmetry of the force hodographs about the x’ axis.  The differences between the 
main pin and crank pin forces are due to the different mass terms in their equations (e.g., 
compare equations 13.22 and 13.23).

In Figure 13-23c the engine is at redline (6000 rpm) and the inertia force components 
are now dominant, raising the peak force levels and making the hodographs nearly sym-
metrical about the x’ axis.  The angular portions of main pin and crank pin that see any 
force are now reduced to 30° and 54°, respectively.  This force distribution causes crank 
pins to wear only on a portion of their circumference.  As shown in the next section, crank 
balancing affects the force distribution on the main pins.  

Note that the numerical values of force and torque in the figures of this chapter are 
unique to the arbitrary choice of engine parameters used for their example engine and 
should not be extrapolated to any other engine design.  Also, the gas force function used in 
program Linkages to generate the figures is both approximate and invariant with engine 
speed, unlike in a real engine.  Use the equations of this chapter to calculate forces and 
torques using mass, geometry, and gas force data appropriate to your particular engine 
design.

13.10	 BALANCING THE SINGLE-CYLINDER ENGINE Watch a Short Video 
on Engine Balancing (21:46)*

The derivations and figures in the preceding sections have shown that significant forces 
are developed both on the pivot pins and on the ground plane due to the gas forces and 
the inertia and shaking forces.  Balancing will not have any effect on the gas forces, which 
are internal, but it can have a dramatic effect on the inertia and shaking forces.  The main 
pin force can be reduced, but the crank-pin and wrist-pin forces will be unaffected by any 
crankshaft balancing done.  Figure 13‑13 shows the unbalanced shaking force as felt on 
the ground plane of our 0.4-liter single-cylinder example engine from program Linkages.  
It is about 9700 lb even at the moderate speed of 3400 rpm.  At 6000 rpm it increases to 
over 30 000 lb.  The methods of Chapter 12 can be applied to this mechanism to balance 
the members in pure rotation and reduce these large shaking forces.

Figure 13‑24a shows the dynamic model of our slider-crank with the conrod mass 
lumped at both crank pin A and wrist pin B.  We can consider this single-cylinder engine 
to be a single-plane device, thus suitable for static balancing (see Section 13.1).  It is 
straightforward to statically balance the crank.  We need a balance mass at some radius, 
180° from the lumped mass at point A whose mr product is equal to the product of the 
mass at A and its radius r.  Applying equation 12.2 to this simple problem, we get:

= − (13.24)m mbal bal A AR R

Any combination of mass and radius that gives this product, placed at 180° from point 
A, will balance the crank.  For simplicity of example, we will use a balance radius equal 
to r.  Then a mass equal to mA placed at A’ will exactly balance the rotating masses.  The 
CG of the crank will then be at the fixed pivot O2 as shown in Figure 13‑24a.  In a real 
crankshaft, actually placing the counterweight CG at this large a radius will not work. FIGURE 13-22

Pin force variation
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Copyright © 2018 Robert L. Norton
All Rights Reserved

 	

*  http://www.designofmachinery.com/DOM/Balancing_One_Cylinder.mp4

http://www.designofmachinery.com/DOM/Balancing_One_Cylinder.mp4
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The balance mass has to be kept close to the centerline to clear the piston at BDC.  Figure 
13‑2c shows the shape of typical crankshaft counterweights.

Figure 13‑25a shows the shaking force from the same engine as in Figure 13‑13 after 
the crank has been exactly balanced in this manner.  The Y component of the shaking force 
has been reduced to zero and the X component to 3343 lb at 3400 rpm.  This is a factor 
of three reduction over the unbalanced engine.  Note that the only source of Y-directed 
inertia force is the rotating mass at point A of Figure 13-24 (see equations 13.14).  What 
remains after balancing the rotating mass is the force due to the acceleration of the piston 
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FIGURE 13-23
Hodographs of dynamic forces on main pin and crank pin of an unbalanced, one-cylinder, four-stroke engine
running at various speeds

(a )  800 rpm

(b )  3400 rpm

(c )  6000 rpm

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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FIGURE 13-24
Balancing and overbalancing the single-cylinder engine

(a )  Crank exactly balanced

(b )  Crank overbalanced
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and conrod masses at point B of Figure 13-24 which are in linear translation along the X 
axis, as shown by the inertia force –mBaB at point B in that figure.
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To completely eliminate this reciprocating unbalanced shaking force would require 
the introduction of another reciprocating mass, which oscillates 180° out of phase with the 
piston.  Adding a second piston and cylinder, properly arranged, can accomplish this. One 
of the principal advantages of multicylinder engines is their ability to reduce or eliminate 
the shaking forces.  We will investigate this in the next chapter.

In the single-cylinder engine, there is no way to completely eliminate the recipro-
cating unbalance with a single, rotating counterweight, but we can reduce the shaking 
force still further.  Figure 13‑24b shows an additional amount of mass mP added to the 
counterweight at point A’.  (Note that the crank’s CG has now moved away from the fixed 
pivot.)  This extra balance mass creates an additional inertia force (–mPrω2) as is shown, 
broken into X and Y components, in the figure.  The Y component is not opposed by any 
other inertia forces present, but the X component will always be opposite to the recipro-
cating inertia force at point B.    Thus this extra mass, mP, which overbalances the crank, 
will reduce the X-directed shaking force at the expense of adding back some Y-directed 
shaking force.  This is a useful trade-off as the direction of the shaking force is usually 
of less concern than is its magnitude.  Shaking forces create vibrations in the supporting 
structure which are transmitted through it and modified by it.  As an example, it is unlikely 
that you could define the direction of a motorcycle engine’s shaking forces by feeling their 
resultant vibrations in the handlebars.  But you will detect an increase in the magnitude of 
the shaking forces from the larger amplitude of vibration they cause in the cycle frame.

The correct amount of additional “overbalance” mass needed to minimize the peak 
shaking force, regardless of its direction, will vary with the particular engine design.  It 
will usually be between one-half and two-thirds of the reciprocating mass at point B 
(piston plus conrod at wrist pin), if placed at the crank radius r.  Of course, once this 
mass-radius product is determined, it can be achieved with any combination of mass and 
radius.  Figure 13‑25b shows the minimum shaking force achieved for this engine with 
the addition of 65.5% of the mass at B acting at radius r.  The shaking force has now been 

FIGURE 13-25
E�ects of balancing and overbalancing on the shaking force in the slider-crank linkage

(a )  Crank exactly balanced (b )  Crank overbalanced
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reduced to 1684 lb at 3400 rpm, which is 17% of its original unbalanced value of 9710 
lb.  The benefits of balancing, and of overbalancing in the case of the single-cylinder 
engine, should now be obvious.

Effect of Crankshaft Balancing on Pin Forces

Of the pin forces, only the main pin force is affected by the addition of balance mass to the 
crankshaft.  This is because its equation (13.23) is the only one of the pin-force equations 
(13.20 to 13.23) that contains the mass of the crank.  Table 13-3 shows the magnitudes 
of the shaking forces (in GCS) and main pin forces (in LCRS) for the single-cylinder 
example engine of Figure 13‑23 at three engine speeds and under three conditions of 
balance: unbalanced, exactly balanced with a counterweight mass equal to the total mass 
mA at the crank pin (Figure 13‑25a), and overbalanced with the mass needed to minimize 
the single-cylinder shaking force (Figure 13‑25b).  Note that both balancing and overbal-
ancing reduce the main pin force, though to a lesser degree than they reduce the shaking 
force in some cases.  At idle speed the gas force far exceeds the inertia force and, since 
balancing can only affect the latter, the reduction in main pin force is less at idle speed 
than at higher engine speeds.  The main pin forces in the overbalanced case most closely 
track the shaking forces at the redline speed where inertia force dominates gas force.  Note 
that overbalancing the crank reduces the main pin force below that of the exact balancing 
case at all speeds.*  

Figure 13-26 shows the effect of balancing and overbalancing on the main pin force 
magnitude and its distribution.  Not only is the peak unbalanced main pin force (Figure 
13-26a) nearly 3 times the magnitude of the exactly balanced case (Figure 13-26b) but the 
forces in the unbalanced case are concentrated over a small portion of the pin circumfer-
ence.  (See also Figure 13-23.)   The exactly balanced crankshaft has its main pin force 
distributed over more than half its circumference and the overbalanced crankshaft puts the 
force completely around the pin circumference as shown in Figure 13-26c.   

13.11	 DESIGN TRADE-OFFS AND RATIOS

In the design of any system or device, no matter how simple, there will always be conflict-
ing demands, requirements, or desires which must be traded off to achieve the best design 
compromise.  This single-cylinder engine is no exception.  There are two dimensionless 
design ratios which can be used to characterize an engine’s dynamic behavior in a general 
way.  The first is the crank/conrod ratio r/l, introduced in Section 13.2, or its inverse, the 
conrod/crank ratio l/r.  The second is the bore/stroke ratio B/S.

	

Unbalanced

TABLE  13-3 Effect of Crank Balance Mass on Shaking Force and Mainpin Force

Balance Mode
Peak Shaking Force Mag. (lb) Peak Mainpin Force Mag. (lb)

Idle Midrange Redline

Exact  balance

Overbalanced

Idle Midrange Redline

538

185

33

9710

3343

1684

30 239

10 412

5246

3481

4095

3675

9710

3343

2868

30 239

10 412

5886

FIGURE 13-26
Force on main pin at
3400 rpm with di
erent
crank balance states,
shown at  same scale
in local rotating
coordinates (LRCS)

(b )  Exact balance

3343 lb

( c )  Overbalanced

2868 lb

main pin

(a )  Unbalanced

9710 lb

Copyright © 2018 Robert L. Norton
All Rights Reserved
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Conrod/Crank Ratio

The crank/conrod ratio r/l appears in all the equations for acceleration, forces, and torques. 
In general, the smaller the r/l ratio, the smoother will be the acceleration function and thus 
all other factors which it influences.  Program Linkages uses the inverse of this ratio as 
an input parameter.  The conrod/crank ratio l/r must be greater than about two to obtain 
acceptable transmission angles in the slider-crank linkage.  The ideal value for l / r from a 
kinematic standpoint would be infinity as that would result in the piston acceleration func-
tion being a pure harmonic.  The second and all subsequent harmonic terms in equations 
13.3 would be zero in this event, and the peak value of acceleration would be a minimum.  
However, an engine this tall would not package very well, and package considerations of-
ten dictate the maximum value of the l/r ratio.  Most engines will have an l/r ratio between 
three and five which values give acceptable smoothness in a reasonably short engine.   

Bore/Stroke Ratio

The bore B of the cylinder is essentially equal to the diameter of the piston. (There is 
a small clearance.)  The stroke S is defined as the distance travelled by the piston from 
TDC to BDC and is twice the crank radius, S = 2r.  The bore appears in the equation for 
gas force (equation 13.4) and thus also affects gas torque.  The crank radius appears in 
every equation.  An engine with a B/S ratio of 1 is referred to as a “square” engine.  If 
B/S is larger than 1, it is “oversquare”; if less, “undersquare.”  The designer’s choice of 
this ratio can have a significant effect on the dynamic behavior of the engine.  Assuming 
that the displacement, or stroke volume V, of the engine has been chosen and is to remain 
constant, this displacement can be achieved with an infinity of combinations of bore and 
stroke ranging from a “pancake” piston with tiny stroke to a “pencil” piston with very 
long stroke.

=
π

4
(13.25)

2
V B S

There is a classic design trade-off here between B and S for a constant stroke volume 
V.  A large bore and small stroke will result in high gas forces which will affect pin forces 
adversely.  A large stroke and small bore will result in high inertia forces which will affect 
pin forces (as well as other forces and torques) adversely.  So there should be an optimum 
value for the B/S ratio in each case, which will minimize these adverse effects.  Most 
production engines have B/S ratios in the range of about 0.75 to 1.5.

It is left as an exercise for the reader to investigate the effects of variation in the B/S 
and l/r ratios on forces and torques in the system.  Program Linkages will demonstrate 
the effects of changes made independently to each of these ratios, while all other design 
parameters are held constant.  The reader is encouraged to experiment with the program 
to gain insight into the role of these ratios in the dynamic performance of the engine.

Materials

There will always be a strength/weight trade-off.  The forces in this device can be quite 
high, due both to the explosion and to the inertia of the moving elements.  We would like 
to keep the masses of the parts as low as possible as the accelerations are typically very 
high, as seen in Figure 13‑8c.  But the parts must be strong enough to withstand the forces, 

	

*  (From previous page)  
Overbalancing a 4-cylinder 
inline engine that uses 
eight balance masses (two 
per cylinder split on either 
side of each crank throw) 
with 100% of mARA plus 
50% of mBRA per cylinder 
will minimize its main 
bearing forces.  If four 
crankshaft counterbalance 
weights are used (one per 
cylinder on one side of each 
crank throw in a particular 
arrangement), then the 
optimum balance condition 
to minimize main bearing 
forces is 67% of mARA plus 
33% of mBRA per cylinder. 
(Source: Chrysler Corp.).
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so materials with good strength-to-weight ratios are needed.  Pistons are usually made 
of an aluminum alloy, either cast or forged.   Conrods are most often cast ductile iron or 
forged steel, except in very small engines (lawn mower, chain saw, motorcycle) where 
they may be aluminum alloy.  Some high-performance engines (e.g. Acura NSX) have 
titanium connecting rods.  Crankshafts are usually forged steel or cast ductile iron, and 
wrist pins are of hardened steel tubing or rod.  Plain bearings of a special soft, nonferrous 
metal alloy called babbitt are usually used.  In the four-stroke engine these are pressure 
lubricated with oil pumped through drilled passageways in the block, crankshaft, and 
connecting rods.  In the two-stroke engine, the fuel carries the lubricant to these parts.  
Engine blocks are cast iron or cast aluminum alloy.  The chrome-plated steel piston rings 
seal and wear well against gray cast iron cylinders.  Most aluminum blocks are fitted with 
cast iron liners around the cylinder bores.  Some are unlined and made of a high-silicon 
aluminum alloy which is specially cooled after casting to precipitate the hard silicon in 
the cylinder walls for wear resistance.
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13.13	 PROBLEMS‡

	 *†13‑1	 A slider-crank linkage has r = 3 and l = 12,  ω = 200 rad/sec at time t = 0.  Its initial 
crank angle is zero.  Calculate the piston acceleration at t = 1 sec.  Use two methods, 
the exact solution and the approximate Fourier series solution, and compare the results.

	 †13‑2	 Repeat Problem 13‑1 for r = 4 and l = 15 and t = 0.9 sec.

	 *†13‑3	 A slider-crank linkage has r = 3 and l = 12, and a piston bore B = 2.  The peak gas 
pressure in the cylinder occurs at a crank angle of 10° and is 1000 pressure units.  Cal-
culate the gas force and gas torque at this position. 

	 †13‑4	 A slider-crank linkage has r = 4 and l = 15, and a piston bore B = 3.  The peak gas 
pressure in the cylinder occurs at a crank angle of 5° and is 600 pressure units.  Calcu-
late the gas force and gas torque at this position.

	 *†13‑5	 Repeat Problem 13‑3 using the exact method of calculation of gas torque and compare its 
result to that obtained by the approximate equation 13.8b.  What is the % error?

	 †13‑6	 Repeat Problem 13‑4 using the exact method of calculation of gas torque and compare its 
result to that obtained by the approximate equation 13.8b.  What is the % error?

	 *†13‑7	 A connecting rod of length l = 12 has a mass m3 = 0.020.§  Its mass moment of inertia 
is 0.620.  Its CG is located at 0.4l from the crank pin, point A.  

a.	 Calculate an exact dynamic model using two lumped masses, one at the wrist pin, 
point B, and one at whatever other point is required.  Define the lumped masses and 
their locations.

b.	 Calculate an approximate dynamic model using two lumped masses, one at the wrist 

	
* Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

	
‡  All problem figures are 
provided as PDF files, and 
some are also provided as 
animated Working Model 
files; all are downloadable.  
PDF filenames are the same 
as the figure number. 

Topic/Problem Matrix

 13.2 Slider-Crank Kinemat-
ics

13-1, 13-2, 13-34,  
13-35, 13-36, 13-37, 
13-59

 13.3 Gas Force and Gas 
Torque

13-3, 13-4, 13-5,  
13-6, 13-38, 13-39, 
13-40, 13-41, 13-42, 
13-60

 13.4 Equivalent Masses

13-7, 13-8, 13-9,  
13-10, 13-43, 13-44, 
13-45, 13-46, 13-61

 13.6 Inertia and Shaking 
Torques

13-11, 13-12, 13-13, 
13-14, 13-47, 13-48, 
13-49, 13-50, 13-62

 13.9 Pin Forces

13-15, 13-16, 13-17, 
13-18, 13-23, 13-24, 
13-25, 13-26, 13-27, 
13-28, 13-33, 13-51, 
13-52, 13-53, 13-54, 
13-63

 13.10 Balancing the Sin-
gle-Cylinder Engine

13-19, 13-20, 13-21, 
13-22, 13-29, 13-30, 
13-31, 13-32, 13-55, 
13-56, 13-57, 13-58, 
13-64

 

TABLE  P13-0

	
§ Note that, unless otherwise stated, all masses are expressed in lb-sec2

inertia in bl-in2.
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pin, point B, and one at the crank pin, point A.  Define the lumped masses and their 
locations.

c.	 Calculate the error in the mass moment of inertia of the approximate model as a 
percentage of the original mass moment of inertia.

	 †13‑8	 Repeat Problem 13‑7 for these data: l = 15, mass m3 = 0.025,§ mass moment of inertia 
is 1.020.  Its CG is located at 0.25l from the crank pin, point A.  

	 *†13‑9	 A crank of length r = 3.5 has a mass m2 = 0.060.§  Its mass moment of inertia about its 
pivot is 0.300.  Its CG is at 0.30r from the main pin, O2.  Calculate a statically equiva-
lent two-lumped mass dynamic model with the lumps placed at the main pin and crank 
pin.  What is the percent error in the model’s moment of inertia about the crank pivot?

	†13‑10	 Repeat Problem 13‑9 for a crank length r = 4, a mass m2 = 0.050,§  a mass moment of 
inertia about its pivot of 0.400.  Its CG is located at 0.40r from the main pin, point O2.  

	*†13‑11	 Combine the data from Problems 13‑7 and 13‑9.  Run the linkage at a constant 2000 
rpm.  Calculate the inertia force and inertia torque at ωt = 45°.  Piston mass = 0.012.§

	†13‑12	 Combine the data from Problems 13‑7 and 13‑10.  Run the linkage at a constant 3000 
rpm.  Calculate the inertia force and inertia torque at ωt = 30°.  Piston mass = 0.019.§

	†13‑13	 Combine the data from Problems 13‑8 and 13‑9.  Run the linkage at a constant 2500 
rpm.  Calculate the inertia force and inertia torque at ωt = 24°.  Piston mass = 0.023.§

	*†13‑14	 Combine the data from Problems 13‑8 and 13‑10.  Run the linkage at a constant 4000 
rpm.  Calculate the inertia force and inertia torque at ωt = 18°.  Piston mass =  0.015.§

	†13‑15	 Combine the data from Problems 13‑7 and 13‑9.  Run the linkage at a constant 2000 
rpm.  Calculate the pin forces at ωt = 45°.  Piston mass = 0.022.§  Fg = 300. 

	†13‑16	 Combine the data from Problems 13‑7 and 13‑10.  Run the linkage at a constant 3000 
rpm.  Calculate the pin forces at ωt = 30°.  Piston mass = 0.019.§  Fg = 600.

	†13‑17	 Combine the data from Problems 13‑8 and 13‑9.  Run the linkage at a constant 2500 
rpm.  Calculate the pin forces at ωt = 24°.  Piston mass = 0.032.§  Fg = 900.

	†13‑18	 Combine the data from Problems 13‑8 and 13‑10.  Run the linkage at a constant 4000 
rpm.  Calculate the pin forces at ωt = 18°.  Piston mass =  0.014.§  Fg = 1200.

	*†‡13‑19	 Using the data from Problem 13‑11:

a.	 Exactly balance the crank and recalculate the inertia force.  
b.	 Overbalance the crank with approximately two-thirds of the mass at the wrist pin 

placed at radius –r on the crank and recalculate the inertia force.  
c.	 Compare these results to those for the unbalanced crank.

	†‡13‑20	 Repeat Problem 13‑19 using the data from Problem 13‑12.

	†‡13‑21	 Repeat Problem 13‑19 using the data from Problem 13‑13.

	†‡13‑22	 Repeat Problem 13‑19 using the data from Problem 13‑14.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.
	
§ Note that, unless oth-
erwise stated, all masses 
are expressed in lb-sec2/
in or blobs (bl) and mass 
moments of inertia in bl-in2.

	
* Answers in Appendix F.
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	†13‑23	 Combine the necessary equations to develop expressions that show how each of these 
dynamic parameters varies as a function of the crank/conrod ratio alone:

a.  Piston acceleration	 b.  Inertia force
c.  Inertia torque		  d.  Pin forces
Plot the functions.  Check your conclusions with program Linkages.

	  Hint: Consider all other parameters to be temporarily constant.  Set the crank angle to some value 
such that the gas force is nonzero.

	†13‑24	 Combine the necessary equations to develop expressions that show how each of these 
dynamic parameters varies as a function of the bore/stroke ratio alone:

a.  Gas force	 b.  Gas torque	 c.  Inertia force
d.  Inertia torque	 e.  Pin forces

		  Plot the functions.  Check your conclusions with program Linkages.

		  Hint: Consider all other parameters to be temporarily constant.  Set the crank angle to some value 
such that the gas force is nonzero.

	†13‑25	 Develop an expression to determine the optimum bore/stroke ratio to minimize the 
wrist-pin force.  Plot the function.

	†‡13‑26	 Use program Linkages, your own computer program, or an equation solver to calcu-
late the maximum value and the polar-plot shape of the force on the main pin of a 1-in3 
displacement, single-cylinder engine with bore = 1.12838 in for the following situa-
tions:

a.	 Piston, conrod, and crank masses = 0
b.	 Piston mass = 1 blob, conrod and crank masses = 0
c.	 Conrod mass = 1 blob, piston and crank masses = 0
d.	 Crank mass = 1 blob, conrod and piston masses = 0

		  Place the CG of the crank at 0.5r and the conrod at 0.33l.  Compare and explain the 
differences in the main pin force under these different conditions with reference to the 
governing equations.

	†13‑27	 Repeat Problem 13‑26 for the crank pin.

	†13‑28	 Repeat Problem 13‑26 for the wrist pin.

	†‡13‑29	 Use program Linkages, your own computer program, or an equation solver to calcu-
late the maximum value and the polar-plot shape of the force on the main pin of a 1-in3 
single-cylinder engine with bore = 1.12838 in for the following situations:
a.	 Engine unbalanced.
b.	 Crank exactly balanced against mass at crank pin.
c.	 Crank optimally overbalanced against masses at crank pin and wrist pin.

		  Piston, conrod, and crank masses = 1.  Place the CG of the crank at 0.5r and the 
conrod at 0.33l.  Compare and explain the differences in the main pin force under these 
conditions with reference to the governing equations.

	†‡13‑30	 Repeat Problem 13‑29 for the crankpin force.

	†‡13‑31	 Repeat Problem 13‑29 for the wrist pin force.

	†‡13‑32	 Repeat Problem 13‑29 for the shaking force.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
§ Note that, unless oth-
erwise stated, all masses 
are expressed in lb-sec2/
in or blobs (bl) and mass 
moments of inertia in bl-in2.

	†13-33	 Figure P13-1 shows a single-cylinder air compressor stopped at top dead center (TDC).  
There is a static pressure P = 100 psi trapped in the 3-in-bore cylinder.  The entire as-
sembly weighs 30 lb.  Draw the necessary free-body diagrams to determine the forces 
at points A, B, C, and the supports R1 and R2, which are symmetrically located about 
the piston centerline.  Assume that the piston remains stationary.

	†13-34	 Calculate and plot the position, velocity, and acceleration of a slider-crank linkage 
with r = 3, l = 12, and ω = 200 rad/sec over one cycle using the exact solution and the 
approximate Fourier series solution.  Also, calculate and plot the percent difference 
between the exact and approximate solutions for acceleration.

	†13-35	 Repeat Problem 13-34 for r = 3, l = 15, and ω = 100 rad/sec.

	†13-36	 A slider-crank linkage has r = 3, l = 9.  It has an angular velocity of 100 rad/sec at time 
t = 0.  Its initial crank angle is zero.  Calculate the piston acceleration at t = 0.01 sec.  
Compare the exact solution to the approximate Fourier series solution.

	†13-37	 Repeat Problem 13-36 with r = 3, l = 15, and t = 0.02.

	†13-38	 The following equation is an approximation of the gas force over 180° of crank angle.

{ }
( )( )

( ) ( )
=

ω β π  ≤ ω ≤ β

+ π ω − β π − β  β < ω ≤ π







sin 2 , 0

1 cos 2,
max

max

F
F t t

F t t
g

g

g

		  Using this equation with β = 15° and Fgmax = 1200 lb, calculate and plot the approxi-
mate gas torque for r = 4 in and l = 12 in.  What is the total energy delivered by the gas 
force over the 180° of motion?  What is the average power delivered if the crank rotates 
at a constant speed of 1500 rpm?

	†13-39	 A slider-crank linkage has r = 3.75, l = 11 and a piston bore of B = 2.5.  The peak 
gas pressure in the cylinder occurs at a crank angle of 12° and is 1150 pressure units.  
Calculate the gas force and gas torque at this position.

	†13-40	 Repeat Problem 13-39 using the exact method of calculation of the gas torque and com-
pare the result to that obtained by the approximate expression in equation 13.8b.  What 
is the percent error?

	†13-41	 A slider-crank linkage has r = 4.12, l = 14.5 and a piston bore of B = 2.25.  The peak 
gas pressure in the cylinder occurs at a crank angle of 9° and is 1325 pressure units.  
Calculate the gas force and gas torque at this position.

	†13-42	 Repeat Problem 13-41 using the exact method of calculation of the gas torque and com-
pare the result to that obtained by the approximate expression in equation 13.8b.  What 
is the percent error?

	†13-43	 A slider-crank linkage has crank m2 = 0.045,§ crank rG2 = 0.4r, conrod m3 = 0.12,§ and 
piston m4 = 0.15.  Determine the approximately dynamically equivalent two-mass lumped 
parameter model for this linkage with the masses placed at the crank and wrist pins.

	†13-44	 If the conrod in Problem 13-43 has l = 12.5, IG3 = 0.15§ and its CG is located 4.5 units 
from point A; calculate the sizes of two dynamically equivalent masses and the location 
of one if the other is placed at point B (see Figure 13-10).

	†13-45	 A slider-crank linkage has crank m2 = 0.060,§ crank rG2 = 0.38r, conrod m3 = 0.18, and 
piston m4 = 0.16.  Determine the approximately dynamically equivalent two-mass lumped 
parameter model for this linkage with the masses placed at the crank and wrist pins.

FIGURE P13-1
Problem 13-33

P

A

B

C

R1 R2
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Linkages.
	
§ Note that, unless oth-
erwise stated, all masses 
are expressed in lb-sec2/
in or blobs (bl) and mass 
moments of inertia in bl-in2.

	†13-46	 If the conrod in Problem 13-45 has l = 10.4, IG3 = 0.12§ and its CG is located 4.16 
units from point A; calculate the sizes of two dynamically equivalent masses and the 
location of one if the other is placed at point B (see Figure 13-10).

	†13-47	 A slider-crank linkage has r = 3.13, l = 12.5, crank m2 = 0.045,§ crank rG2 = 0.4r, 
conrod m3 = 0.12, conrod rG3 = 0.36l, and piston m4 = 0.15.  Crank ω = 1800 rpm.  
Calculate the inertia force and inertia torque for a crank position of ωt = 30°.

	†13-48	 A slider-crank linkage has r = 2.6, l = 10.4, crank m2 = 0.060,§ crank rG2 = 0.38r, 
conrod m3 = 0.18, conrod rG3 = 0.4l, and piston m4 = 0.16.  Crank ω = 1850 rpm.  
Calculate the inertia force and inertia torque for a crank position of ωt = 20°.

	†13-49	 A slider-crank linkage has r = 2.6, l = 10.4, crank m2 = 0.045,§ crank rG2 = 0.4r, 
conrod m3 = 0.12, conrod rG3 = 0.36l, and piston m4 = 0.15.  Crank ω = 2000 rpm.  
Calculate the inertia force and inertia torque for a crank position of ωt = 25°.

	†13-50	 A slider-crank linkage has r = 3.13, l = 12.5, crank m2 = 0.060,§ crank rG2 = 0.38r, 
conrod m3 = 0.18, conrod rG3 = 0.4l, and piston m4 = 0.15.  Crank ω = 1500 rpm.  
Calculate the inertia force and inertia torque for a crank position of ωt = 22°.

	†13-51	 A slider-crank linkage has r = 3.13, l = 12.5, crank m2 = 0.045,§ crank rG2 = 0.4r, 
conrod m3 = 0.12, conrod rG3 = 0.36l, and piston m4 = 0.15.  Crank ω = 1800 rpm.  
Calculate the pin forces for a crank position of ωt = 30° and a gas force of Fg = 450.

	†13-52	 A slider-crank linkage has r = 2.6, l = 10.4, crank m2 = 0.060,§ crank rG2 = 0.38r, 
conrod m3 = 0.18, conrod rG3 = 0.4l, and piston m4 = 0.16.  Crank ω = 1850 rpm.  
Calculate the pin forces for a crank position of ωt = 20° and a gas force of Fg = 600.

	†13-53	 A slider-crank linkage has r = 2.6, l = 10.4, crank m2 = 0.045,§ crank rG2 = 0.4r, 
conrod m3 = 0.12, conrod rG3 = 0.36l, and piston m4 = 0.15.  Crank ω = 2000 rpm.  
Calculate the pin forces for a crank position of ωt = 25° and a gas force of Fg = 350.

	†13-54	 A slider-crank linkage has r = 3.13, l = 12.5, crank m2 = 0.060,§ crank rG2 = 0.38r, 
conrod m3 = 0.18, conrod rG3 = 0.4l, and piston m4 = 0.15.  Crank ω = 1500 rpm.  
Calculate the pin forces for a crank position of ωt = 22° and a gas force of Fg = 550.

	†‡13-55	 Using the data from Problem 13-47:
a.	 Exactly balance the crank and recalculate the inertia force.
b.	 Overbalance the crank with approximately two-thirds of the mass at the wrist pin 

placed at radius –r on the crank and recalculate the inertia force.
c.	 Compare these results to those for the unbalanced crank.

	†‡13-56	 Using the data from Problem 13-48:
a.	 Exactly balance the crank and recalculate the inertia force.
b.	 Overbalance the crank with approximately two-thirds of the mass at the wrist pin 

placed at radius –r on the crank and recalculate the inertia force.
c.	 Compare these results to those for the unbalanced crank.

	†‡13-57	 Using the data from Problem 13-49:
a.	 Exactly balance the crank and recalculate the inertia force.
b.	 Overbalance the crank with approximately two-thirds of the mass at the wrist pin 

placed at radius –r on the crank and recalculate the inertia force.
c.	 Compare these results to those for the unbalanced crank.
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	†‡13-58	 Using the data from Problem 13-50:
a.	 Exactly balance the crank and recalculate the inertia force.
b.	 Overbalance the crank with approximately two-thirds of the mass at the wrist pin 

placed at radius –r on the crank and recalculate the inertia force.  Compare these 
results to those for the unbalanced crank.

	†‡13-59	 The footnote to the description of Figure 13-8c gives the maximum engine RPM for 
Nascar pushrod V-8 and Formula 1 V-12 and V-8 racing engines as 9600 and 19 000 
RPM, respectively.  Using the engine dimensions given in Figure 13-8, determine the 
peak accelerations in g’s produced by engine speeds of 9600 and 19 000 RPM.

	†‡13-60	 Repeat Problem 13-38 with β = 10° and Fgmax = 1500 lb using the engine dimensions 
and RPM given in Figure 13-8.

	†‡13-61	 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate the approximately equivalent masses mA and mB for a crank-conrod-
piston assembly.  Test your program with the following data: m2 = 0.045 blob, m3 = 
0.025 blob, m4 = 0.035 blob, r = 2 in, rG2 = 0.8 in, la = 2.8 in, and l = 7 in.

	†‡13-62	 Use the data from Problem 13-61 to calculate and plot the approximate inertia torque 
for one revolution of the crank with a crank speed of 1500 rpm.

	†‡13-63	 Using the gas force equation from Problem 13-38 with β = 15°, Fgmax = 600 lb, and the 
data from Problems 13-61 and 13-62, calculate and plot the total force on the wrist pin 
as the crank rotates from 0 to 180°.

	†‡13-64	 Use the data from Problem 13-62 to calculate and plot the main pin force for one revo-
lution of the crank when it is a) exactly balanced and b) overbalanced with 60% of the 
mass mB placed at −r on the crank.

13.14	 PROJECTS

These are loosely structured design problems intended for solution using program Linkages.  All 
involve the design of a single-cylinder engine and differ only in the specific data for the engine.  
The general problem statement is:

Design a single-cylinder engine for a specified displacement and stroke cycle.  Optimize the conrod/
crank ratio and bore/stroke ratio to minimize shaking forces, shaking torque, and pin forces, also 
considering package size.  Design your link shapes and calculate realistic dynamic parameters 
(mass, CG location, moment of inertia) for those links using the methods shown in Chapter 10 and 
Section 11.13.  Dynamically model the links as described in this chapter.  Balance or overbalance 
the linkage as needed to achieve these results.  Overall smoothness of total torque is desired.  Design 
and size a minimum weight flywheel by the method of Section 11.11 to smooth the total torque.  Write 
an engineering report on your design.

	 P13-1	 Two-stroke cycle with a displacement of 0.125 liter.  
	 P13-2	 Four-stroke cycle with a displacement of 0.125 liter.  
	 P13-3	 Two-stroke cycle with a displacement of 0.25 liter.  
	 P13-4	 Four-stroke cycle with a displacement of 0.25 liter.  
	 P13-5	 Two-stroke cycle with a displacement of 0.50 liter.  
	 P13-6	 Four-stroke cycle with a displacement of 0.50 liter.  
	 P13-7	 Two-stroke cycle with a displacement of 0.75 liter.  
	 P13-8	 Four-stroke cycle with a displacement of 0.75 liter.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems and proj-
ects are suited to solution 
using program Linkages.
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Chapter14
MULTICYLINDER ENGINES
Look long on an engine,
it is sweet to the eyes
Macknight Black

14.0	 INTRODUCTION Watch a Video on Multicylinder Engines (44:25)*

The previous chapter discussed the design of the slider-crank mechanism as used in the 
single-cylinder internal combustion engine and piston pumps.  We will now extend the 
design to multicylinder configurations.  Some of the problems with shaking forces and 
torques can be alleviated by proper combination of multiple slider-crank linkages on 
a common crankshaft.  Program Linkages, included with this text, will calculate the 
equations derived in this chapter and allow the student to exercise many variations of an 
engine design in a short time.  Some examples are provided as disk files to be read into 
the program.  These are noted in the text.  The student is encouraged to investigate these 
examples with program Linkages in order to develop an understanding of and insight 
to the subtleties of this topic.  A user manual for program Linkages is provided in the 
program and context-sensitive help is available within the program.  See Appendix A for 
more information on using the programs that come with the book. 

As with the single-cylinder case, we will not address the thermodynamic aspects of 
the internal combustion engine beyond the definition of the combustion forces necessary 
to drive the device presented in the previous chapter.  We will concentrate on the engine’s 
kinematic and mechanical dynamics aspects.  It is not our intention to make an “engine 
designer” of the reader so much as to apply dynamic principles to a realistic design prob-
lem of general interest and also to convey the complexity and fascination involved in the 
design of a more complicated dynamic device than the single-cylinder engine.

 	

*  http://www.designofma-
chinery.com/DOM/Multi-
cylinder_Engines.mp4

http://www.designofmachinery.com/DOM/Multicylinder_Engines.mp4
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FIGURE 14-2
Cutaway view of a four-stroke, VW-Audi four-cylinder inline engine   

Copyright © 2018 Robert L. Norton:  All Rights Reserved

four crankpins
0-180-180-0

four crankpins
0-90-270-180

six crankpins
0-240-120-120-240-0

six crankpins
0-60-240-300-120-180

FIGURE 14-1
Various multicylinder engine configurations

(b )  Vee six

(d )  Vee eight

(a )  Opposed four

(c )  Inline six

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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14.1	 MULTICYLINDER ENGINE DESIGNS

Multicylinder engines are designed in a wide variety of configurations from the simple 
inline arrangement to vee, opposed, and radial  arrangements some of which are shown in 
Figure 14‑1.  These arrangements may use any of the stroke cycles discussed in Chapter 
13: Clerk, Otto, or diesel.  

Inline Engines  The most common and simplest arrangement is an inline engine 
with its cylinders all in a common plane as shown in Figure 14‑2.  Two-,* three-,* four‑, 
five-, and six-cylinder inline engines are in common use.  Each cylinder will have its indi-
vidual slider-crank mechanism consisting of a crank, conrod, and piston.  The cranks are 
formed together in a common crankshaft as shown in Figure 14‑3.  Each cylinder’s crank 
on the crankshaft is referred to as a crank throw.  These crank throws will be arranged 
with some phase angle relationship one to the other, in order to stagger the motions of the 
pistons in time.  It should be apparent from the discussion of shaking forces and balancing 
in the previous chapter that we would like to have pistons moving in opposite directions 
to one another at the same time in order to cancel the reciprocating inertial forces.  The 
optimum phase angle relationships between the crank throws will differ depending on 
the number of cylinders and the stroke cycle of the engine.  There will usually be one 
or a small number of viable crank throw arrangements for a given engine configuration 
to accomplish this goal.  The engine in Figure 14‑2 is a four-stroke cycle, four-cylinder, 
VW-Audi inline engine with overhead camshaft.  Figure 14-3 shows the crankshaft, con-
necting rods, and pistons for an inline, four-cylinder engine. 

	

*  Used mainly in motor-
cycles and boats.

FIGURE 14-3
Crankshaft from an inline four-cylinder engine with pistons, connecting rods, and flywheel
Illustration copyright Eaglemoss Publications/Car Care Magazine.  Reprinted with permission.
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FIGURE 14-4
Cross section of a BMW 5-liter V-12 engine and its power and torque curves  Courtesy of BMW of North America Inc.

FIGURE 14-5 
Cutaway view of a WWII vintage, 28-cylinder, Wasp Major radial engine  

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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Vee Engines  in two-,* four-,* six-, eight-, ten-,† and twelve-cylinder‡ versions 
are produced, with vee-six and vee-eight being the most common configurations.  Figure 
14‑4 shows a cutaway of  a 60° vee-six engine.  Vee engines can be thought of as two 
inline engines grafted together onto a common crankshaft.  The two “inline” portions, or 
banks, are arranged with some vee angle between them.  Figure 14‑1d shows a vee-eight 
engine.  Its crank throws are at 0, 90, 270, and 180° respectively.  A vee-eight’s vee angle 
is 90°.  The geometric arrangements of the crankshaft (phase angles) and cylinders (vee 
angle) have a significant effect on the dynamic condition of the engine.  We will soon 
explore these relationships in detail.

Opposed Engines  are essentially vee engines with a vee angle of 180°.  The pis-
tons in each bank are on opposite sides of the crankshaft as shown in Figure 14‑6.  This 
arrangement promotes cancellation of inertial forces and is popular in aircraft engines.§  
It has also been used in some automobile and motorcycle applications.||

Radial Engines  have their cylinders arranged radially around the crankshaft in 
nearly a common plane.  These were common on World War II vintage aircraft as they 
allowed large displacements, and thus high power, in a compact form whose shape was 
well suited to that of an airplane.  Typically air-cooled, the cylinder arrangement allowed 
good exposure of all cylinders to the airstream.  Large versions had multiple rows of ra-
dial cylinders, rotationally staggered to allow cooling air to reach the back rows.  The gas 
turbine jet engine has rendered these radial aircraft engines obsolete.  Figure 14-5 shows 
a cutaway view of a 28-cylinder radial engine.

Rotary Engines  (Figure 14-7) were an interesting variant on the aircraft radial 
engine and were used in World War I airplanes.∆  Although they were similar in appear-
ance and cylinder arrangement to the radial engine, the anomaly was that the crankshaft 
was the stationary ground plane.  The propeller was attached to the crankcase (engine 
block), which rotated around the stationary crankshaft!  It is a kinematic inversion of the 
slider-crank. (See Figure 2‑15b.)  One advantage is that the piston mass centers can be 
in pure rotation and so do not impart any vibration to the airframe.  All seven connecting 
rods and pistons are in the same plane.  One connecting rod (the “mother” rod) pivots 
on the crank pin and carries six “daughter” rods on it, as in the radial engine.  At least it 
didn’t need a flywheel.

	
*  Mainly in motorcycles,  
and boats.
	
†  Honda, Chrysler, Ford, 
Porsche.
	
‡  BMW, Jaguar, Mercedes.
	

§  Continental six-cylinder 
aircraft engine.
	
||  Original VW “Beetle” 
four cylinder, Subaru four 
and six, Honda motorcycle 
four and six, Ferrari twelve, 
Porsche six, the ill-fated 
Corvair six, and the short-
lived Tucker (Continental) 
six, among others.
	
∆  Lubrication in the rotary 
engine was a problem.  So-
called “loss lubrication” 
was used, meaning that the 
lubricant (castor oil) passed 
through the engine and out 
the exhaust.  This somewhat 
limited the time that the pi-
lot in his open cockpit could 
endure inhaling the exhaust.  
The white silk scarf popular 
with these pilots was not 
used for warmth, but rather 
was placed over mouth and 
nose to reduce the ingestion 
of castor oil which is a 
laxative.

FIGURE 14-6
Chevrolet Corvair horizontally opposed six-cylinder engine

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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Many other configurations of engines have been tried over the century of develop-
ment of this ubiquitous device.  The bibliography at the end of this chapter contains 
several references which describe other engine designs, the usual, unusual, and exotic.  
We will begin our detailed exploration of multicylinder engine design with the simplest 
configuration, the inline engine, and then progress to the vee and opposed versions.

14.2	 THE CRANK PHASE DIAGRAM

Fundamental to the design of any multicylinder engine (or piston pump) is the arrange-
ment of crank throws on the crankshaft.  We will use the four-cylinder inline engine as 
an example.  Many choices are possible for the crank phase angles in the four-cylinder 
engine.  We will start, for example, with the one that seems most obvious from a com-
monsense standpoint.  There are 360° in any crankshaft.  We have four cylinders, so an 
arrangement of 0, 90, 180, and 270° seems appropriate.  The delta phase angle ∆φ be-
tween throws is then 90°.  In general, for maximum cancellation of inertia forces, which 
have a period of one revolution, the optimum delta phase angle will be:
				  

φ =
°360 (14.1)

ninertiaD

where n is the number of cylinders.

We must establish some convention for the measurement of these phase angles which 
will be:  

	 1	 The first (front) cylinder will be number 1 and its phase angle will always be zero.  It 
is the reference cylinder for all others.

stationary crankshaft

propeller hub

FIGURE 14-7
The Gnome rotary engine (circa 1915).  Note the multiple connecting rods on the single stationary crank pin.[1 ]

ωcylinders

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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	 2	 The phase angles of all other cylinders will be measured with respect to the crank 
throw for cylinder 1.

	 3	 Phase angles are measured internal to the crankshaft, that is, with respect to a rotating 
coordinate system embedded in the first crank throw.

	 4	 Cylinders will be numbered consecutively from front to back of the engine.

The phase angles are defined in a crank phase diagram as shown in Figure 14‑8 for a 
four-cylinder, inline engine.  Figure 14‑8a shows the crankshaft with the throws numbered 
clockwise around the axis.  The shaft is rotating counterclockwise.  The pistons are oscil-
lating horizontally in this diagram, along the x axis.  Cylinder 1 is shown with its piston 
at top dead center (TDC).  Taking that position as the starting point for the abscissas (thus 
time zero) in Figure 14‑8b, we plot the velocity of each piston for two revolutions of the 
crank (to accommodate one complete four-stroke cycle).  Piston 2 arrives at TDC 90° after 
piston 1 has left.  Thus we say that cylinder 2 lags cylinder 1 by 90 degrees.  By conven-
tion a lagging event is defined as having a negative phase angle, shown by the clockwise 
numbering of the crank throws.  The velocity plots clearly show that each cylinder arrives 
at TDC (zero velocity) 90° later than the one before it.  Negative velocity on the plots in 
Figure 14‑8b indicates piston motion to the left (downstroke) in Figure 14‑8a; positive 
velocity indicates motion to the right (up stroke).

For the discussion in this chapter we will assume counterclockwise rotation of all 
crankshafts, and all phase angles will thus be negative.  We will, however, omit the nega-
tive signs on the listings of phase angles with the understanding that they follow this 
convention.

Figure 14‑8 shows the timing of events in the cycle and is a necessary and useful 
aid in defining our crankshaft design.  However, it is not necessary to go to the trouble of 
drawing the correct sinusoidal shapes of the velocity plots to obtain the needed informa-
tion.  All that is needed is a schematic indication of the relative positions within the cycle 
of the ups and downs of the various cylinders.  This same information is conveyed by 
the simplified crank phase diagram shown in Figure 14‑9.  Here the piston motions are 
represented by rectangular blocks with a negative block arbitrarily used to denote a piston 
downstroke and a positive one a piston upstroke.  It is strictly schematic.  The positive and 
negative values of the blocks imply nothing more than that stated.  Such a schematic crank 
phase diagram can (and should) be drawn for any proposed arrangement of crankshaft 
phase angles.  To draw it, simply shift each cylinder’s blocks to the right by its phase angle 
with respect to the first cylinder.

14.3	 SHAKING FORCES IN INLINE ENGINES

We want to determine the overall shaking force which results from our chosen crankshaft 
phase angle arrangement.  The individual cylinders will each contribute to the total shak-
ing force.  We can superpose their effects, taking their phase shifts into account.  Equation 
13.14e defined the shaking force for one cylinder with the crankshaft rotating at constant 
ω.

a

m r t m r t
r
l

t m r tA B A= ω ω + ω ω + ω













 + ω ω




For =0:

cos cos cos2 ˆ sin ˆ (14.2a)2 2 2F i js 
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FIGURE 14-8
Crank phase angles and the phase diagram

(b )  The crank phase diagram

(a )  Crankshaft phase angles
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This expression is for an unbalanced crank.  In multicylinder engines each crank throw 
on the crankshaft is at least counterweighted to eliminate the shaking force effects of the 
combined mass mA of crank and conrod assumed concentrated at the crank pin.  (See Sec-
tion 13.10 and equation 13.24.)  The need for overbalancing is less if the crankshaft phase 
angles are arranged to cancel the effects of the reciprocating masses at the wrist pins.  
This inherent balance is possible in inline engines of three or more cylinders, but not in 
some two-cylinder inline engines.  Sometimes the crank throws in an inherently balanced 
multicylinder engine are also overbalanced in order to reduce the main pin bearing forces 
as was described in Section 13.10.*

If we provide balance masses with an mr product equal to mArA on each crank throw 
as shown in Figure 14‑3, the terms in equation 14.2a which include mA will be eliminated, 
reducing it to:

= ω ω + ω





cos cos2 ˆ (14.2b)2m r t r
l

tBF is 

Recall that these are approximate expressions that exclude all harmonics above the second 
and also assume that each crank throw is exactly balanced, not under- or overbalanced.

	
*  A 90° vee-eight engine 
typically has approximately 
mB/2 of overbalance mass 
added per crank throw to 
reduce the main pin bearing 
forces.  

FIGURE 14-9
The schematic crank phase diagram
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We will assume that all cylinders in the engine are of equal displacement and that all 
pistons and all conrods are interchangeable.  This is desirable both for dynamic balance 
and for lower production costs.  If we let the crank angle ωt represent the instantaneous 
position of the reference crank throw for cylinder 1, the corresponding positions of the 
other cranks can be defined by their phase angles as shown in Figure 14‑8.  The total 
shaking force for a multicylinder inline engine is then:*

∑ ( ) ( )= ω ω − φ + ω − φ



=

cos cos2 ˆ (14.2c)2

1

m r t r
l

tB i i
i

n
F is 

where n = number of cylinders and φ1 = 0.  Substitute the identity:

∑ ∑

∑ ∑

− = +

= ω

ω φ + ω φ

+ ω φ + ω φ
































ι
= =

= =

and factor to:
cos( ) cos cos sin sin

cos cos sin sin

cos2 cos2 sin2 sin2

ˆ (14.2d)2 1 1

1 1

a b a b a b

m r

t t

r
l

t t
B

i
i

n

i

n

i
i

n

i
i

n
F is 

The ideal value for the shaking force is zero.  This expression can only be zero for all 
values of ωt if:

∑ ∑

∑ ∑

φ = φ =

φ = φ =

= =

= =

cos 0 sin 0 (14.3a)

cos2 0 sin2 0 (14.3b)

1 1

1 1

i
i

n

i
i

n

i
i

n

i
i

n

Thus, there are some combinations of phase angles φi which will cause cancellation 
of the shaking force through the second harmonic.  If we wish to cancel higher harmonics, 
we could reintroduce those harmonics’ terms that were truncated from the Fourier series 
representation and find that the fourth and sixth harmonics will be cancelled if:

∑ ∑

∑ ∑

φ = φ =

φ = φ =

= =

= =

cos 4 0 sin 4 0 (14.3c)

cos6 0 sin6 0 (14.3d)

1 1

1 1

i
i

n

i
i

n

i
i

n

i
i

n

Equations 14.3 provide us with a convenient predictor of the shaking force behavior 
of any proposed inline engine design.  Program Linkages calculates equations 14.3a 
and 14.3b and displays a table of their values.  Note that both the sine and cosine sum-
mations of any multiple of the phase angles must be zero for that harmonic of the 
shaking force to be zero.  The calculation for our example of a four-cylinder engine with 
phase angles of φ1 = 0, φ2 = 90, φ3 = 180, φ4 = 270° in Table 14‑1 shows that the shaking 
forces are zero for the first, second, and sixth harmonics and nonzero for the fourth.  So, 
our commonsense choice in this instance has proven a good one as far as shaking forces 

	
*  The effect of overbalanc-
ing the crank throws is not 
included in equations 14.2c 
and 14.2d as shown.  The 
crankshaft is assumed to be 
exactly balanced here.  See 
Appendix G for the com-
plete equations that include 
the effects of crank overbal-
ance.  Program Linkages 
uses the equations from 
Appendix G to account for 
the effects of overbalancing 
in multicylinder engines.
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are concerned.  As was shown in equation 13.2f, the coefficients of the fourth and sixth 
harmonic terms are minuscule, so their contributions, if any, can be ignored.  The primary 
component is of most concern, because of its potential magnitude.  The secondary (second 
harmonic) term is less critical than the primary as it is multiplied by r/l which is generally 
less than 1/3.  An unbalanced secondary harmonic of shaking force is undesirable but 
can be lived with, especially if the engine is of small displacement (less than about 1/2 
liter per cylinder).

To see more details on the results of this 0, 90, 180, 270° inline four-cylinder en-
gine configuration, run program Linkages, select the configuration from the Example 
pulldown menu, and then Plot  the shaking force.  See Appendix A for more detailed 
information on program Linkages.

14.4	 INERTIA TORQUE IN INLINE ENGINES

The inertia torque for a single-cylinder engine was defined in Section 13.6 and equation 
13.15e.  We are concerned with reducing this inertia torque, preferably to zero, because it 
combines with the gas torque to form the total torque.  (See Section 13.7.)  Inertia torque 
adds nothing to the net driving torque as its average value is always zero, but it does create 
large oscillations in the total torque which detracts from its smoothness.  Inertia torque 
oscillations can be masked to a degree with the addition of a sufficient flywheel to the 
system, or their external, net effect can be cancelled by the proper choice of phase angles.  
However, the torque oscillations, even if hidden from the outside observer, or made to sum 
to zero, are still present within the crankshaft and can lead to torsional fatigue failure if 
the part is not properly designed.  (See also Figure 14‑23.)  The approximate one-cylinder 
inertia torque equation for three harmonics is:

= ω ω − ω − ω





1
2 2

sin sin2 3
2

sin3 ˆ (14.4a)21
2 2m r r

l
t t r

l
ti BT k

Summing for all cylinders and including their phase angles:

∑ ∑

∑ ∑

∑ ∑

∑ ∑

φ φ

φ φ

φ φ

φ φ

= =

= =

= =

= =

Primary forces: sin =0 cos =0

Secondary forces: sin2 =0 cos2 =0

Fourth harmonic forces: sin4 =0 cos 4 =4

Sixth harmonic forces : sin6 =0 cos6 =0

1 1

1 1

1 1

1 1

i
i

n

i
i
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i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

TABLE  14-1 Force Balance State of a 4-Cylinder Inline Engine with a 0, 90, 180,
270  Crankshaft
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∑ ( ) ( ) ( )= ω ω − φ − ω − φ − ω − φ



=

1
2 2

sin sin2 3
2

sin3 ˆ (14.4b)21
2 2

1

m r r
l

t t r
l

ti B i i i
i

n
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Substitute the identity:
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This can only be zero for all values of ωt if:

∑ ∑

∑ ∑

∑ ∑

φ = φ =

φ = φ =

φ = φ =

= =

= =

= =

sin 0 cos 0 (14.5a)

sin2 0 cos2 0 (14.5b)

sin3 0 cos3 0 (14.5c)
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Equations 14.5 provide us with a convenient predictor of the inertia torque behavior 
of any proposed inline engine design.  Calculation for our example of a four-cylinder 
engine with phase angles of φ1 = 0, φ2 = 90, φ3 = 180, φ4 = 270° shows that the inertia 
torque components are zero for the first, second, and third harmonics.  So, our current 
example is a good one for inertia torques as well.

14.5	 SHAKING MOMENT IN INLINE ENGINES

We were able to consider the single-cylinder engine to be a single-plane, or two-dimen-
sional, device and thus could statically balance it.  The multicylinder engine is three-
dimensional.  Its multiple cylinders are distributed along the axis of the crankshaft.  Even 
though we may have cancellation of the shaking forces, there may still be unbalanced 
moments in the plane of the engine block.  We need to apply the criteria for dynamic 
balance.  (See Section 12.2 and equation 12.3.)  Figure 14‑10 shows a schematic of 
an inline four-cylinder engine with crank phase angles of φ1 = 0, φ2 = 90, φ3 = 180,  
φ4 = 270°.  The spacing between the cylinders is normally uniform.  We can sum mo-
ments in the plane of the cylinders about any convenient point such as L at the centerline 
of the first cylinder:
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∑ ∑=
=

ˆ (14.6a)
1

M zL i
i

n

i
F js

where Fsi is the shaking force and zi is the moment arm of the ith cylinder.*  Substituting 
equation 14.2d for Fsi:
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This expression can only be zero for all values of ωt if:
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These will guarantee no shaking moments through the second harmonic.  We can 
extend this to higher harmonics as we did for the shaking force.

∑ ∑

∑ ∑

φ = φ =
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cos 4 0 sin 4 0 (14.7c)

cos6 0 sin6 0 (14.7d)
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n

	
*  The effect of overbalanc-
ing the crank throws is not 
included in equation 14.6b 
as shown.  The crankshaft is 
assumed to be exactly bal-
anced here.  See Appendix 
G for the complete equa-
tions that include the effects 
of crank overbalance.  
Program Linkages uses the 
equations from Appendix G 
to account for the effects of 
overbalancing in multicylin-
der engines.

L R

FIGURE 14-10
Moment arms of the shaking moment
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Note that both the sine and cosine summations of any multiple of the phase angles 
must be zero for that harmonic of the shaking moment to be zero.  The calculation for 
our example of a four-cylinder engine with phase angles of φ1 = 0, φ2 = 90, φ3 = 180, 
φ4 = 270°, and an assumed cylinder spacing of one length unit (z2 = 1, z3 = 2, z3 = 4) in 
Table 14‑2, shows that the shaking moments are not zero for any of these harmonics.  So, 
our choice of phase angles, which is a good one for shaking forces and torques, fails the 
test for zero shaking moments.  The coefficients of the fourth and sixth harmonic terms 
in the moment equations are minuscule, so they will be ignored.  The secondary (second 
harmonic) term is less critical than the primary as it is multiplied by r/l which is generally 
less than 1/3.  An unbalanced secondary harmonic of shaking moment is undesirable but 
can be tolerated, especially if the engine is of small displacement (less than about 1/2 liter 
per cylinder).  The primary component is of greatest concern, because of its magnitude.  If 
we wish to use this crankshaft configuration, we will need to apply a balancing technique 
to the engine as described in a later section to at least eliminate the primary moment.  A 
large shaking moment is undesirable as it will cause the engine to pitch forward and back 
(like a bucking bronco) as the moment oscillates from positive to negative in the plane of 
the cylinders.  Do not confuse this shaking moment with the shaking torque which acts to 
roll the engine back and forth about the Z axis of the crankshaft.

Figure 14‑11 shows the primary and secondary components of the shaking moment 
for this example engine for two revolutions of the crank.  Each is a pure harmonic of zero 
average value.  The total moment is the sum of these two components.  This engine con-
figuration is a built-in example in program Linkages.  See Appendix A for information 
about the program.

14.6	 EVEN FIRING Watch a Video on Even Firing (47:29)*

The inertial forces, torques, and moments are only one set of criteria which need to be 
considered in the design of multicylinder engines.  Gas force and gas torque consider-
ations are equally important.  In general, it is desirable to create a firing pattern among 
the cylinders that is evenly spaced in time.  If the cylinders fire unevenly, vibrations will 
be created which may be unacceptable.  Smoothness of the power pulses is desired.  The 
power pulses depend on the stroke cycle.  If the engine is a two-stroke, there will be one 
power pulse per revolution in each of its n cylinders.  The optimum delta phase angle 
between the cylinders’ crank throws for evenly spaced power pulses will then be:

φ =
°

 
360 (14.8a)

ntwostrokeD

TABLE  14-2 Moment Balance State of a 4-Cylinder, Inline Engine with a 0, 90,
180, 270° Crankshaft, and z1  = 0,  z2 = 1,  z3 = 2,  z4 = 3

Primary moments: sin = 2 =
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i i
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φ φ− −

= =
∑ ∑

1 1
2cos

eecondary moments: sin2 =0 = 2z zi i
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∑ −

1 1
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∑

 	

*  http://www.designof-
machinery.com/DOM/
Even_Firing.mp4

http://www.designofmachinery.com/DOM/Even_Firing.mp4
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For a four-stroke engine there will be one power pulse in each cylinder every two 
revolutions.  The optimum delta phase angle of the crank throws for evenly spaced power 
pulses will then be:

φ =
°

 
720 (14.8b)

nfour strokeD

Compare equations 14.8a and 14.8b to equation 14.1 which defined the optimum 
delta phase angle for cancellation of inertia forces.  A two-stroke engine can have both 
even firing and inertia balance, but a four-stroke engine has a conflict between these two 
criteria.  Thus some design trade-offs will be necessary to obtain the best compromise 
between these factors in the four-stroke case.

Two-Stroke Cycle Engine

To determine the firing pattern of an engine design, we must return to the crank 
phase diagram.  Figure 14‑12 reproduces Figure 14‑9 and adds new information to 
it.  It shows the power pulses for a two-stroke cycle, four-cylinder engine with the  
φi = 0, 90, 180, 270° phase angle crank configuration.  Note that each cylinder’s negative 
block in Figure 14-12 is shifted to the right by its phase angle with respect to reference 
cylinder 1.  In this schematic representation, only the negative blocks on the diagram are 
available for power pulses as they represent the downstroke of the piston.  By convention, 
cylinder 1 fires first, so its negative block at 0° is labeled Power.  The other cylinders

 may be fired in any order, but their power pulses should be as evenly spaced as possible 
across the interval.  

The available power pulse spacings are dictated by the crank phase angles.  There 
may be more than one firing order which will give even firing, especially with large num-
bers of cylinders.  In this simple example the firing order 1, 2, 3, 4 will work as it will 
provide successive power pulses every 90° across the interval.  The power stroke angles 
ψi are the angles in the cycle at which the cylinders fire.  They are defined by the crank-

FIGURE 14-11
Primary and secondary moments in the 0, 90, 180, 270° crankshaft four-cylinder engine
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shaft phase angles and the choice of firing order in combination, and in this example are  
ψi = 0, 90, 180, and 270°.  In general, ψi are not equal to φi.  Their correspondence with 
the phase angles in this example results from choosing the consecutive firing order 1, 2, 
3, 4.  

For a two-stroke engine, the power stroke angles ψi must be between 0 and 360°.  
We always want them to be evenly spaced in that interval with a delta power stroke angle 
defined by equation 14.8c.  For our four-cylinder, two-stroke engine, ideal power stroke 
angles are then ψi = 0, 90, 180, 270°, which we have achieved in this example. 

We define the delta power stroke angle differently for each stroke cycle.  For the 
two-stroke engine:

ψ =
°

 
360 (14.8c)

ntwostrokeD

For the four-stroke engine:

ψ =
°

 
720 (14.8d)

nfour strokeD

FIGURE 14-12
Two-stroke inline four-cylinder engine crank phase diagram with φi = 0, 90, 180, 270°
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The gas torque for a one-cylinder engine was defined in equation 13.8b.  The com-
bined gas torque for all cylinders must sum the contributions of n cylinders, each phase-
shifted by its power stroke angle ψi:

∑ ( ) ( )= ω − ψ + ω − ψ











=

sin 1 cos ˆ (14.9)21
1

F r t r
l

tg g i i
i

n
T k

Figure 14‑13 shows the gas torque, inertia torque, and shaking force for this two-
stroke four-cylinder engine plotted from program Linkages.  The shaking moment com-
ponents are shown in Figure 14‑11.  Except for the unbalanced shaking moments, this 
design is otherwise acceptable.  The inertia force and inertia torque are both zero which is 
ideal.  The gas torque consists of uniformly shaped and spaced pulses across the interval, 
four per revolution.  Note that program Linkages plots two full revolutions to accom-
modate the four-stroke case; thus eight power pulses are seen.  Open the file F14‑13.eng 
in the program to exercise this example.

Four-Stroke Cycle Engine

Figure 14‑14 shows a crank phase diagram for the same crankshaft design as in Figure 
14‑12 except that it is designed as a four-stroke cycle engine.  There is now only one power 
stroke every 720° for each cylinder.  The second negative block for each cylinder must 
be used for the intake stroke.  Cylinder 1 is again fired first.  An evenly spaced pattern of 
power pulses among the other cylinders is again desired but is now not possible with this 
crankshaft.  Whether the firing order is 1, 3, 4, 2 or 1, 2, 4, 3 or 1, 4, 2, 3, or any other 
chosen, there will be both gaps and overlaps in the power pulses.  The first firing order 
listed, 1, 3, 4, 2, has been chosen for this example.  This results in the set of power stroke 
angles  ψi = 0, 180, 270, 450°.  These power stroke angles define the points in the 720° 
cycle where each cylinder fires.  Thus for a four-stroke engine, the power stroke angles 
ψi must be between 0 and 720°.  We would like them to be evenly spaced in that interval 
with a delta angle defined by equation 14.8d.  For our four-cylinder, four-stroke engine, 
the ideal power stroke angles would then be ψi = 0, 180, 360, 540°.  We clearly have not 
achieved them in this example.  Figure 14‑15 shows the resulting gas torque.  Open the 
file F14‑15.eng in program Linkages to exercise this example.

The uneven firing in Figure 14‑15 is obvious.  This uneven gas torque will be per-
ceived by the operator of any vehicle containing this engine as rough running and vibra-
tion, especially at idle speed.  At higher engine speeds the flywheel will tend to mask 
this roughness, but flywheels are ineffective at low speeds.  It is this fact that causes most 
engine designers to favor even firing over elimination of inertia effects in their selection 
of crankshaft phase angles.  The inertia force, torque, and moment are all functions of 
engine speed squared.  But, as engine speed increases the magnitude of these factors, the 
same speed is also increasing the flywheel’s ability to mask their effects.  Not so with 
gas-torque roughness due to uneven firing.  It is bad at all speeds and the flywheel won’t 
hide it at low speed.

We therefore must reject this crankshaft design for our four-stroke, four-cylinder 
engine.  Equation 14.8b indicates that we need a delta phase angle ∆φi = 180° in our 
crankshaft to obtain even firing.  We need four crank throws, and all crank phase angles 
must be less than 360°.  So, we must repeat some angles if we use a delta phase angle of 
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FIGURE 14-13
Torque and shaking force in the two-stroke four-cylinder inline engine
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FIGURE 14-14
Four-stroke inline four-cylinder engine crank phase diagram with φi = 0, 90, 180, 270°  
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FIGURE 14-15
Uneven firing four-stroke, four-cylinder inline engine with a 0, 90, 180, 270° crankshaft 
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180°.  One possibility is φi = 0, 180, 0, 180° for the four crank throws.*  The crank phase 
diagram for this design is shown in Figure 14‑16.  The power strokes can now be evenly 
spaced over 720°.  A firing order of 1, 4, 3, 2 has been chosen which gives the desired 
sequence of power stroke angles, ψi = 0, 180, 360, 540°.  (Note that a firing order of 
1, 2, 3, 4 would also work with this engine.)†  

The inertial balance condition of this design must now be checked with equations 
14.3, 14.5, and 14.7  These show that the primary inertia force is zero, but the primary 
moment, secondary force, secondary moment, and inertia torque are all nonzero as shown 
in Table 14‑3.  So, this even-firing design has compromised the very good state of inertia 
balance of the previous design in order to achieve even firing.  The inertia torque varia-
tions can be masked by a flywheel.  The secondary forces and moments are relatively 
small in a small engine and can be tolerated. The nonzero primary moment is a problem 
which needs to be addressed.  To see the results of this engine configuration, run program 
Linkages and select it from the Example pulldown menu.  Then plot the results.  See 
Appendix A for more detailed instructions on the use of program Linkages.

We shall soon discuss ways to counter an unbalanced moment with the addition of 
balance shafts, but there is a more direct approach available in this example.  Figure 14‑17 

†  Note the pattern of ac-
ceptable firing orders (FO).  
Write two revolutions’ 
worth of any acceptable FO, 
as in 1, 4, 3, 2, 1, 4, 3, 2.  
Any set of four successive 
numbers in this sequence, 
either forward or backward, 
is an acceptable FO.  If 
we require the first to be 
cylinder 1, then the only 
other possibility here is the 
backward set  1, 2, 3, 4.

*    Note that 0, 180, 360, 
540°, modulo 360 is the 
same as 0, 180, 0, 180.

FIGURE 14-16
Even firing four-stroke, four-cylinder engine crank phase diagram with φi = 0, 180, 0, 180°  
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shows that the shaking moment is due to the action of the individual cylinders’ inertial 
forces acting at moment arms about some center.  If we consider that center to be point C 

∑ ∑

∑ ∑

∑ ∑

∑ ∑
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TABLE  14-3 Force and Moment Balance State of a 4-Cylinder, Inline Engine
with a 0, 180, 0, 180 Crankshaft, and  z1  = 0,  z2 = 1,  z3 = 2,  z4 = 3

FIGURE 14-17
Mirror-symmetric crankshafts cancel primary moments.

( (a )  Nonsymmetric 0, 180, 0, 180° crankshaft b )  Symmetric 0, 180, 180, 0° crankshaft
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in the middle of the engine, it should be apparent that any primary force-balanced crank-
shaft design which is mirror-symmetric about a transverse plane through point C would 
also have balanced primary moments as long as all cylinder spacings were uniform and 
all inertial forces equal.  Figure 14‑17a shows the 0, 180, 0, 180° crankshaft which is not 
mirror-symmetric.  The couple Fs1 ∆z due to cylinder pairs 1, 2 has the same magnitude 
and sense as the couple Fs3 ∆z  due to cylinders 3 and 4, so they add.  Figure 14‑17b 
shows the 0, 180, 180, 0° crankshaft which is mirror-symmetric.  The couple Fs1∆z  due 
to cylinder pairs 1, 2 has the same magnitude but opposite sense to the couple Fs3 ∆z  
due to cylinders 3, 4, so they cancel.  We can then achieve both even firing and balanced 
primary moments by changing the sequence of crank throw phase angles to φi = 0, 180, 
180, 0° which is mirror-symmetric.

The crank phase diagram for this design is shown in Figure 14‑18.  The power strokes 
can still be evenly spaced over 720°.  A firing order of 1, 3, 4, 2 has been chosen which 
gives the same desired sequence of power stroke angles, ψi = 0, 180, 360, 540°.  (Note 
that a firing order of 1, 2, 4, 3 would also work with this engine.)*   Equations 14.3, 14.5, 
and 14.7 and Table 14‑4  show that the primary inertia force and primary moment are both 
now zero, but the secondary force, secondary moment, and inertia torque are still nonzero. 

*  In inline engines, and 
within any one bank of a 
vee engine, a nonconsecu-
tive firing order (i.e., not 1, 
2, 3, 4) is usually preferred 
so that adjacent cylinders  
do not fire sequentially.  
This allows the intake 
manifold more time to 
recharge locally between in-
take strokes and the exhaust 
manifold to scavenge more 
efficiently.  

FIGURE 14-18
Even firing four-stroke, four-cylinder engine crank phase diagram with a mirror-symmetric
0, 180, 180, 0° crankshaft

1

2

3

4

Phase
angle

0

–180

0

–180

0 180 360 540 720
Crank  angle

Cyl.

Strokes

Power

Power

TDC

TDC

TDC

TDC

Intake

Exhaust Compress

Power

TDCTDC

Intake

Compress Exhaust

Intake

CompressExhaust

Power

TDC TDC

ExhaustCompress

Intake



MULTICYLINDER  ENGINES 739

14

This φi = 0, 180, 180, 0° crankshaft is considered the best design trade-off and is the 
one universally used in these four-cylinder inline, four-stroke production engines.  Figures 
14‑2 and 14-3 show such a four-cylinder design.  Inertia balance is sacrificed to gain even 
firing for the reasons cited before.  Figure 14‑19 shows the gas torque, inertia torque, and 
total torque for this design.  Figure 14‑20 shows the secondary shaking moment, second-
ary shaking force component, and a polar plot of the total shaking force for this design.  
Note that Figures 14-20b and 14-20c are just different views of the same parameter.  The 
polar plot of the shaking force in Figure 14-20c is a view of the shaking force looking 
at the end of the crankshaft axis with the piston motion horizontal.  The cartesian plot 
in Figure 14-20b shows the same force on a time axis.  Since the primary component is 
zero, this total force is due only to the secondary component.  We will soon discuss ways 
to eliminate these secondary forces and moments.

To see the results of this engine configuration, run program Linkages and select it 
from the Examples pulldown menu.  Then Plot or Print the results.  See Appendix A for 
more detailed instructions on the use of the program.

14.7	 VEE ENGINES Watch a Video on Vee Engines (48:25)*

The same design principles which apply to inline engines also apply to vee and opposed 
configurations.  Even firing takes precedence over inertia balance and mirror symmetry 
of the crankshaft balances primary moments.  In general, a vee engine will have similar 
inertia balance to that of the inline engines from which it is constructed.  A vee-six is 
essentially two three-cylinder inline engines on a common crankshaft, a vee-eight is two 
four-cylinder inlines, etc.  The larger number of cylinders allows more power pulses to be 
spaced out over the cycle for a smoother (and larger average) gas torque.  The existence 
of a vee angle ν between the two inline engines introduces an additional phase shift of the 
inertial and gas events which is analogous to, but independent of, the phase angle effects.  
This vee angle is the designer’s choice, but there are good and poor choices.  The same 
criteria of even firing and inertia balance apply to its selection.
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TABLE  14-4 Force and Moment Balance State of a 4-Cylinder, Inline Engine
with a 0, 180, 180, 0° Crankshaft, and z1  = 0,  z2 = 1,  z3 = 2,  z4 = 3

 	

*  http://www.designofma-
chinery.com/DOM/Vee_En-
gines.mp4

http://www.designofmachinery.com/DOM/Vee_Engines.mp4
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FIGURE 14-19
Torque in the four-stroke, four-cylinder inline engine with a 0, 180, 180, 0° crankshaft   
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FIGURE 14-20
Shaking forces and moments in the four-stroke, four-cylinder 0, 180, 180, 0° engine  
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The vee angle ν = 2γ is defined as shown in Figure 14‑21.  Each bank is offset by its 
bank angle γ referenced to the central X axis of the engine.  The crank angle ωt is mea-
sured from the X axis.  Cylinder 1 in the right bank is the reference cylinder.  Events in 
each bank will now be phase-shifted by its bank angle as well as by the crankshaft phase 
angles.  These two phase shifts will superpose.  Taking any one cylinder in either bank as 
an example, let its instantaneous crank angle be represented by:

θ = ω − φ (14.10a)t i

Consider first a two-cylinder vee engine with one cylinder in each bank and with both 
sharing a common crank throw.  The shaking force for a single cylinder in the direction 
of piston motion û  with θ measured from the piston axis is:

= ω θ + θ





cos cos2 ˆ (14.10b)2m r r
lBF us 

The total shaking force is the vector sum of the contributions from each bank.

= + (14.10c)
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We now want to refer the crank angle to the central X axis.  The shaking forces for 
the right (R) and left (L) banks, in the planes of the respective cylinder banks, can then 
be expressed as:

( ) ( )

( ) ( )

= ω θ + γ + θ + γ





= ω θ − γ + θ − γ
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(14.10d)
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
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Note that the bank angle γ is added to or subtracted from the crank angle for each 
cylinder bank to reference it to the central X axis.  The forces are still directed along the 
planes of the cylinder banks.  Substitute the identities:

θ + γ = θ γ − θ γ

θ − γ = θ γ + θ γ

cos( ) cos cos sin sin
(14.10e)

cos( ) cos cos sin sin

to get:
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Now, to account for the possibility of multiple cylinders, phase-shifted within each 
bank, substitute equation 14.10a for θ and replace the sums of angle terms with products 
from the identities:

ω − φ = ω φ + ω φ

ω − φ = ω φ − ω φ

cos( ) cos cos sin sin
(14.10g)

sin( ) sin cos cos sin

t t t

t t t

i i i

i i i

After much manipulation, the expressions for the contributions from right and left 
banks reduce to:

for the right bank:
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and for the left bank:
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The summations in equations 14.10h and 14.10i give a set of sufficient criteria for 
zero shaking force through the second harmonic for each bank, similar to those for the 
inline engine in equations 14.3.  We can resolve the shaking forces for each bank into 
components along and normal to the central X axis of the vee engine:*
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Equations 14.10j provide additional opportunities for cancellation of shaking forces 
beyond the choice of phase angles; e.g., even with nonzero values of FsL and FsR, if γ is 
90°, then the x component of the shaking force will be zero.  Also, if FsL = FsR, then the y 
component of the shaking force will be zero for any γ.  This situation obtains for the case 
of a horizontally opposed engine (see Section 14.8).  With some vee or opposed engines 
it is possible to get cancellation of shaking force components even when the summations 
in equation 14.10 are not all zero.

The shaking moment equations are easily formed from the shaking force equations 
by multiplying each term in the summations by the moment arm as was done in equa-
tions 14.6.  The moments exist within each bank, and their vectors will be orthogonal 
to the respective cylinder planes.  For the right bank we define a moment unit vector n̂
perpendicular to the r̂ -Z plane in Figure 14‑21.  For the left bank we define a moment 
unit vector m̂  perpendicular to the l̂ -Z plane in Figure 14‑21.
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*  The effect of overbalanc-
ing the crank throws is not 
included in equation 14.10j 
as shown.  The crankshaft is 
assumed to be exactly bal-
anced here.  See Appendix 
G for the complete equa-
tions that include the effects 
of crank overbalance.  
Program Linkages uses the 
equations from Appendix G 
to account for the effects of 
overbalancing in multicylin-
der engines.
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The summations in equations 14.11a and 14.11b provide a set of sufficient criteria 
for zero shaking moment through the second harmonic for each bank, similar to those 
found for the inline engine in equations 14.7.  Resolving the shaking moments for each 
bank into components along and normal to the central X axis of the vee engine gives:*
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Equation 14.11c allows possible cancellation of shaking moment components for some 
vee or opposed configurations even when the summations in equations 14.11a and 14.11b 
are not all zero; e.g., if γ is 90°, then the y component of the shaking moment is zero.

The inertia torques from the right and left banks of a vee engine are:
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*  The effect of overbalanc-
ing the crank throws is not 
included in equation  14.11c 
as shown.  The crankshaft is 
assumed to be exactly bal-
anced here.  See Appendix 
G for the complete equa-
tions that include the effects 
of crank overbalance.  
Program Linkages uses the 
equations from Appendix G 
to account for the effects of 
overbalancing in multicylin-
der engines.
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Add the contributions from each bank for the total.  For zero inertia torque through the 
third harmonic in a vee engine it is sufficient (but not necessary) that:
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Note that when equations 14.12a and 14.12b are added, particular combinations of φi and 
γ may cancel the inertia torque even when some terms of equation 14.12c are nonzero.

The gas torque is:
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where the left bank has a bank angle γk = + γ  and the right bank a bank angle γk = – γ.  

It is possible to design a vee engine that has as many crank throws as cylinders, but, 
for several reasons, this is not always done.  The principal advantage of a vee engine over 
an inline of the same number of cylinders is its more compact size and greater stiffness.  
It can be about half the length of a comparable inline engine (at the expense of greater 
width), provided that the crankshaft is designed to accommodate two conrods per crank 
throw.  The most common arrangement is to put the conrods side-by-side on a longer 
crankpin as shown in Figure 14‑22a.  Cylinders in opposite banks then share a crank 
throw, and one bank of cylinders is shifted along the crankshaft axis by the thickness of a 
conrod.  A better balance condition is obtained by putting both conrods in the same plane 
using a fork-and-blade arangement as in Figure 14-22b.   In either case, the shorter, wider 
cylinder block and the shorter crankshaft are much stiffer in both torsion and bending than 
are those for an inline engine with the same number of cylinders.  Figure 14‑23 shows 
computer simulations of several bending and one torsional mode of vibration for a four 
throw crankshaft.  The deflections are greatly exaggerated.  The necessarily contorted 
shape of a crankshaft makes it difficult to control these deflections by design.  If excessive 
in magnitude, they can lead to structural failure.

As an example we will now design the crankshaft for a four-stroke cycle, vee-eight 
engine.  We could put two φi = 0, 180, 180, 0° four-cylinder engines together on one such 
crankshaft and have the same balance conditions as the four-stroke, four-cylinder engine 
designed in the previous section (primaries balanced, secondaries unbalanced).  However, 
the motivation for choosing that crankshaft for the four-cylinder engine was the need to 
space the four available power pulses evenly across the cycle.  Equation 14.8b then dic-
tated a 180° delta phase angle ∆φi for that engine.  Now we have eight cylinders available, 
and equation 14.8b defines a delta phase angle of 90° for optimum power pulse spacing.  
This means we could use the φi = 0, 90, 180, 270° crankshaft designed for the two-stroke 
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four-cylinder engine shown in Figure 14-12 and take advantage of its better inertia bal-
ance condition as well as achieve even firing in the four-stroke eight-cylinder vee engine.

The φi = 0, 90, 180, 270° four-cylinder crankshaft has all inertia factors equal to zero 
except for the primary and secondary moments.  We learned that arranging the crank 
throws with mirror symmetry about the midplane would balance the primary moment.  
Some thought and/or sketches will reveal that it is not possible to obtain this mirror sym-
metry with any four-throw, 90° delta phase angle crankshaft arrangement.  However, just 
as rearranging the order of the crank throws from φi = 0, 180, 0, 180° to φi = 0, 180, 180, 
0° had an effect on the shaking moments, rearranging this crankshaft’s throw order will 
as well.  A crankshaft of φi = 0, 90, 270, 180° has all inertia factors equal to zero except 
for the primary moment.  The secondary moment is now gone.*  This is an advantage 
worth taking.  We will use this crankshaft for the vee-eight and deal with the primary 
moment later.

Figure 14‑24a shows the crank phase diagram for the right bank of a vee-eight engine 
with a φi = 0, 90, 270, 180° crankshaft.  Figure 14‑24b shows the crank phase diagram for 
the second (left) bank which is identical to that of the right bank (as it must be since they 
share crank throws), but it is shifted to the right by the vee angle 2γ.  Note that in Figure 
14‑21, the two pistons are driven by conrods on a common crank throw with positive ω, 
and the piston in the right bank will reach TDC before the one in the left bank.  Thus as 
we show it, the left bank’s piston motions lag those of the right bank.  Lagging events 
occur later in time, so we must shift the second (left) bank rightward by the vee angle on 
the crank phase diagram.  

	
*  The explanation for this 
is quite simple.  Equation 
14.7b shows that second 
moments are a function of 
twice the phase angles and 
the cylinder moment arms.  
If you double the values of 
the original 0, 90, 180, 270° 
phase angle sequence and 
modulo them with 360, you 
get 0, 180, 0, 180° which 
is not mirror-symmetric.  
Doubling the new phase 
angle sequence of 0, 90, 
270, 180°, modulo 360, 
gives 0, 180, 180, 0° which 
is mirror-symmetric.  It 
is this symmetry of the 
doubled phase angles that 
causes cancellation of the 
second harmonic of the 
shaking moment.

FIGURE 14-22 
Two connecting rods on a common crank throw (a) side-by-side, (b) fork-and-blade  

Crank throw Main pin

1 2
ConrodsConrod

      1
Conrod
      2

Crank pin

(a)

(b)

  Public domain
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We would like to shift the second bank of cylinders such that its power pulses are 
evenly spaced among those of the first bank.  A little thought (and reference to equation 
14.8b) should reveal that, in this example, each four-cylinder bank has potentially 720/4 
= 180° between power pulses.  Our chosen crank throws are spaced at 90° increments.  A 
90° vee angle (bank angle γ = 45°) will be optimum in this case as the phase angles and 
bank angles will add to create an effective spacing of 180°.  Every vee-engine design of 
four or more cylinders will have one or more optimum vee angles that will give approxi-
mately even firing with any particular set of crank phase angles.

Several firing orders are possible with this many cylinders.  Vee engines are often 
arranged to fire cylinders in opposite banks successively to balance the fluid flow demands 
in the intake manifold.  Our cylinders are numbered from front to back, first down the right 

FIGURE 14-23
Bending and torsional modes of vibration in a four-throw crankshaft

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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FIGURE 14-24
Four-stroke vee-eight crank phase diagram with 0, 90, 270, 180° crankshaft phase angles 
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bank and then down the left bank.  The firing order shown in Figure 14‑24b is 1, 5, 4, 3, 
7, 2, 6, 8 and results in power stroke angles ψi  = 0, 90, 180, 270, 360, 450, 540, 630°.  
This will clearly give even firing with a power pulse every 90°.

Figure 14‑25 shows the total torque for this engine design, which in this case is equal 
to the gas torque because the inertia torque is zero.  Table 14‑5 and Figure 14‑26 show the 
only significant unbalanced inertial component in this engine to be the primary moment, 
which is quite large.  The fourth harmonic terms have negligible coefficients in the Fourier 
series, and we have truncated them from the equations.  We will address the balancing of 
this primary moment in a later section of this chapter.

Any vee-cylinder configuration may have one or more desirable vee angles which will 
give both even firing and acceptable inertia balance.  However, vee engines of fewer than 

FIGURE 14-25
Total torque in the 90° vee-eight engine with 0, 90, 270, 180° crankshaft phase angles  
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TABLE  14-5 Force and Moment Balance State of an 8-Cylinder, Vee Engine
with a 0, 90, 270, 180 ° Crankshaft, and z1  = 0,  z2 = 1,  z3 = 2,  z4 = 3
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* As in the BMW R-series 
motorcycles.

twelve cylinders will not be completely balanced by means of their crankshaft configura-
tion.  The desirable vee angles will typically be an integer multiple (including one) or 
submultiple of the optimum delta phase angle as defined in equations 14.8 for that engine.  
Ninety degrees is the optimum vee angle (2γ) for an eight-cylinder vee engine.  To see 
the results for this vee-eight engine configuration, run program Linkages and select the 
vee-eight from the Examples pulldown menu.  See Appendix A for instructions on the 
use of the program.

14.8	 OPPOSED ENGINE CONFIGURATIONS

An opposed engine is essentially a vee engine with a 180° vee angle.  The advantage, 
particularly with a small number of cylinders such as two or four, is the relatively good 
balance condition possible.  A four-stroke opposed (boxer) twin* with 0, 180° crank has 
even firing plus primary and secondary force balance, though all harmonics of its moment 
are nonzero.  A four-stroke, opposed four-cylinder engine (flat four) with a 0, 180, 180, 
0°, four-throw crank is even firing and has primary force and moment balance.  Unlike 
its inline-four cousin with the same crankshaft, it also has secondary force balance from 
equation 14.10j.  A four-stroke opposed six with a six-throw, 0, 120, 240, 60, 180, 300° 
crank has even firing and the same good balance condition as the inline six.  Program 
Linkages will calculate the parameters for opposed as well as vee and inline configura-
tions.

14.9	 BALANCING MULTICYLINDER ENGINES Watch a Video on  
Balancing Multicylinder Engines (31:12)§

With a sufficient number (m) of cylinders, properly arranged in banks of n cylinders in 
a multibank engine,† an engine can be inherently balanced.  In a two-stroke engine with 
its crank throws arranged for even firing, all harmonics of shaking force will be balanced 
except those whose harmonic number is a multiple of n.  In a four-stroke inline engine 

†  For an inline engine, 
m = n.

FIGURE 14-26
Unbalanced primary moment in the 90° vee-eight engine with a  0, 90, 270, 180° crankshaft  
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chinery.com/DOM/Balanc-
ing_Multicylinders.mp4

http://www.designofmachinery.com/DOM/Balancing_Multicylinders.mp4
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with its crank throws arranged for even firing, all harmonics of shaking force will be bal-
anced except those whose harmonic number is a multiple of n/2.  Primary shaking mo-
ment components will be balanced if the crankshaft is mirror-symmetric about the central 
transverse plane.  A four-stroke inline configuration then requires at least six cylinders to 
be inherently balanced through the second harmonic.  We have seen that an inline four 
with a 0, 180, 180, 0° crankshaft has nonzero secondary forces and moments as well as 
nonzero inertia torque.  The inline six with a mirror-symmetric crank of φi = 0, 240, 120, 
120, 240, 0° will have zero shaking forces and moments through the second harmonic, 
though the inertia torque’s third harmonic will still be present.  To see the results of this 
six-cylinder inline engine configuration, run program Linkages and select the inline six 
from the Examples pulldown menu.

A Vee-Twelve  is then the smallest vee engine with an inherent state of near 
perfect balance, as it is two inline sixes on a common crankshaft.  We have seen that vee 
engines generally take on the balance characteristics of the inline banks from which they 
are made.  Equations 14.10a to 14.10i and 14.11a and 14.11b introduced no new criteria 
for balance in the vee engine over those already defined in equations 14.3 and 14.5 for 
shaking force and moment balance in the inline engine except for the possible cancella-
tion available from the value of bank angle g in equations 14.10j and 14.11c.*  Open the 
file bmwV12.eng in program Linkages to see the results for a vee-twelve engine.  The 
common vee-eight engine with crankshaft phase angles of φi = 0, 90, 270, 180° has an 
unbalanced primary moment as does the inline four from which it is made.  It is an ex-
ample in program Linkages.

Unbalanced Inertia Torques  can be smoothed with a flywheel as was shown 
in Section 13.8 for the single-cylinder engine.  Note that even an engine having zero iner-
tial torque may require a flywheel to smooth its variations in gas torque.  The total torque 
function should be used to determine the energy variations to be absorbed by a flywheel 
as it contains both gas torque and inertia torque (if any).  The method of Section 11.11 
also applies to calculation of the flywheel size needed in an engine, based on its varia-
tion in the total torque function.  Program Linkages will compute the areas under the 
total torque pulses needed for the calculation.  See the referenced sections for the proper 
flywheel design procedure. 

Unbalanced Shaking Forces and Shaking Moments  can be cancelled by 
the addition of one or more rotating balance shafts within the engine.  To cancel the 
primary components usually requires two balance shafts rotating at crank speed, one of 
which can be the crankshaft itself.  To cancel the secondary components usually requires 
at least two balance shafts rotating at twice crank speed, gear or chain driven from the 
crankshaft.  Figure 14‑27a shows a pair of counterrotating shafts which are fitted with 
eccentric masses arranged 180° out of phase.†  As shown, the unbalanced centrifugal 
forces from the equal, unbalanced masses will add to give a shaking force component in 
the vertical direction of twice the unbalanced force from each mass, while their horizontal 
components will exactly cancel.  Pairs of counterrotating eccentrics can be arranged to 
provide a harmonically varying force in any one plane.  The harmonic frequency will be 
determined by the rotational speed of the shafts.

If we arrange two pairs of eccentrics, with one pair displaced some distance along 
the shaft from the other, and also rotated 180° around the shaft from the first, as shown 

	

†  This  is called a Lanches-
ter balancer after its English 
inventor who developed 
it prior to World War I (c. 
1913).  It is still used in 
various kinds of machinery 
as well as in engines to 
cancel inertia forces.

	

*  The angle g is most ef-
fective when set to 90° for 
an opposed engine with 2g 
= 180° since its cosine is 
zero, which cancels some 
components of the shaking 
force and moment.
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in Figure 14‑27b, we will get a harmonically varying couple in one plane.  There will 
be cancellation of the forces in one direction and summation in an orthogonal direction.

Thus to cancel the shaking moment in any plane, we can arrange a pair of shafts, each 
containing two eccentric masses displaced along those shafts, 180° out of phase, and gear 
the shafts together to rotate in opposite directions at any multiple of crankshaft speed.  To 
cancel the shaking force as well, it is only necessary to provide sufficient additional unbal-
anced mass in one of the pairs of eccentric masses to generate a shaking force opposite to 
that of the engine, over and above that needed to generate the forces of the couple. 

In an inline or opposed engine, the unbalanced forces and moments are all confined 
to the single plane of the cylinders as they are due entirely to the reciprocating masses 
assumed concentrated at the wrist pin.  (We are assuming that all crank throws are exactly 
balanced rotationally to cancel the effects of mass at the crank pin.)  In a vee engine, how-
ever, the shaking forces and moments have both x and y components as shown in equations 
14.10 and 14.11 and in Figure 14‑21.  The shaking effects of each bank’s pistons are acting 
within the plane of that bank’s cylinders, and the bank angle γ is used to resolve them into 
x and y components using equations 14.10j and 14.11c.  

FIGURE 14-27
Counterrotating eccentric masses can balance forces and moments.
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Vee-Twin  Primary force balance is possible in a 4-stroke vee-twin of any vee an-
gle ν if two crank pins are used.  If φ1 = 0, the phase angle of the second pin φ2 must be:[2]

φ = ° − ν180 2 (14.14a)2

For even firing, the relationship must be:

φ = ° − ν360 (14.14b)2

where ν is the vee angle as defined in Figure 14-21.  The only value of ν that satisfies 
both criteria is 180° (opposed cylinders).  All other vee-twin angles can have either even 
firing or primary balance, but not both.*

Figure 14-28 shows the two-dimensional shaking force present in a two-cylinder 90° 
vee, single-crank-pin engine, which satisfies equation 14.14a with φ1 = φ2 = 0, coalesc-
ing its “two crank pins” into one for this vee angle.  The inertia force of each piston is 
confined to the reciprocating plane (bank) of that piston, but the vee angle between the 
cylinder banks creates the pattern shown when the primary and secondary components 
of each piston force are added vectorially.  The shaking force of the 90° vee, single-crank 
pin twin has a rotating primary component of constant magnitude that can be cancelled 
with overbalanced counterweights on the crankshaft.  However, its second harmonic is 
planar (in the YZ plane).  To cancel it requires a pair of twice-speed balance shafts as 
shown in Figure 14‑27a.

Vee Eight  The 90° vee-eight engine with a 0, 90, 270, 180° crankshaft, which 
has only an unbalanced primary moment, presents a special case.  The 90° angle between 
the banks results in equal horizontal and vertical components of the primary shaking 
moment that reduces it to a couple of constant magnitude rotating about the crank axis at 
crankshaft speed in the same direction as the crank as shown in Figure 14‑29.  With this 
vee-eight engine, the primary moment can be balanced by merely adding two eccentric 
counterweights of proper size and opposite orientation to the crankshaft.  No independent, 

	

*  Vee-twins for motor-
cycles have been made in a 
variety of vee angles: 45°, 
48°, 50°, 52°, 60°, 75°, 80°, 
90°, 180°, and possibly oth-
ers.  All but the 180° boxer 
twin have unbalanced sec-
ondary force and most have 
unbalanced primary force.  
Some have been fitted with 
balance shafts to reduce 
shaking.  Many are also 
uneven firing, giving them 
a distinctive exhaust sound.  
The Harley Davidson 
single-crankpin, 45° vee-
twin is one example whose 
sound (which the company 
unsuccessfully tried to pat-
ent) has been described as 
“potato-potato.”

FIGURE 14-28
Shaking force in a 90° vee-twin engine (looking end-on to the crankshaft axis) 

Total Shaking Force   lb Balanced with
0.0418 bl at
1.554 Radius @
180 degrees

2783

– 2783

2783– 2783
X

Y

Phase Angles:
0     0
Power Strokes:
0   450

90 deg Vee, 2-Cylinder
4-Stroke Cycl e

RPM    =   3400
mB      =   0.0116 bl
mA      =   0.0418 bl

= 3.20 inBore
= 3.1 1Stroke
= 1 .03B/S
= 3.50L/R
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second balance shaft is needed in the 90° vee-eight engine with this crankshaft.  The 180° 
out-of-phase counterweights are typically placed near the ends of the crankshaft to obtain 
the largest moment arm possible and thus reduce their size. 

Vee-Six  engines with a 3-throw, 2-conrod-per-throw, 0, 240, 120° crankshaft have 
unbalanced primary and secondary moments as does the three-cylinder inline from which 
they are made and are not even firing.  A 3-throw, 2-conrod-per-throw vee six needs a 
120° vee angle for inherent balance.  To reduce engine width, vee-sixes are most often 
made with a 60° vee angle which gives even firing with a 6-throw 0, 240, 120, 60, 300, 
180° crank.  This engine has unbalanced primary and secondary moments, each being a 
constant-magnitude rotating vector like that of the vee-eight shown in Figure 14-29.  The 
primary component can be completely balanced by adding counterweights to the crank-
shaft as done in the 90° vee-eight.  Some manufacturers also add a single balance shaft in 
the valley of the-vee six, driven by gears at twice crankshaft speed to cancel the circular, 
constant-magnitude secondary shaking moment.  Some vee-sixes use 90° vee angles to 
allow assembly on the same production line as 90° vee eights, but 3-throw 90° vee-sixes 
will run roughly due to uneven firing unless the crankshaft is redesigned to shift (or splay) 
the two conrods on each pin by 30°.  This results in a 4-main bearing, 6-throw 0, 240, 120, 
30, 270, 150° crankshaft that gives even firing but has nonconstant-magnitude primary 
and secondary shaking moments.    

Calculation of the magnitude and location of the eccentric balance masses needed 
to cancel any shaking forces or moments is a straightforward exercise in static balanc-
ing (for forces) and two-plane dynamic balancing (for moments) as discussed in Sec-
tions 12.1 and 12.2, respectively.  The unbalanced forces and moments for the particular 
engine configuration are calculated from the appropriate equations in this chapter.  Two 
correction planes must be selected along the length of the balance shafts/crankshaft be-
ing designed.  The magnitude and angular locations of the balance masses can then be 
calculated by the methods described in the noted sections of Chapter 12.

FIGURE 14-29
Primary moment in the 90° vee-eight engine (looking end-on to the crankshaft axis) 

Primary Moment    lb-in Balanced with
.0418 bl mass at
1.27 Radius @
180 Degrees

5921

– 5921

5921– 5921
X

Y

Phase Angles:
0 90 270 180 0 90 270 180
Power Strokes:
0 90 180 270 360 450 540 630

90 deg Vee 8 Cylinder
4 Stroke Cycle

RPM    =   3400
mB      =   0.0116 bl
mA      =   0.0418 bl

= 2.50 inBore
= 2.55Stroke
= 0.98B/S
= 3.50L/R
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Secondary Harmonic Balancing of the Four-Cylinder Inline Engine

The four-cylinder inline engine with a 0, 180, 180, 0° crankshaft is one of the most widely 
used engines in the automobile industry.  As described in a previous section, this engine 
suffers from unbalanced secondary force, moment, and torque.  If the displacement of 
the engine is less than about 2.0 liters, then the magnitudes of the secondary forces may 
be small enough to be ignored, especially if the engine mounts provide good vibration 
isolation of the engine from the passenger compartment.  Above that displacement, objec-
tionable noise, vibration, and harshness (NVH) may be heard and felt by the passengers 
at certain engine speeds where the frequency of the engine’s second harmonic coincides 
with one of the natural frequencies of the body structure.  Then some balancing is needed 
in the engine to avoid customer dissatisfaction.

Equation 14.2d defines the inline engine shaking force.  Applying the relevant factors 
from Table 14-4 for this engine to the second harmonic term gives

= ω ω
4 cos2 ˆ (14.15)2

2
m r r

l
tBF is 

The shaking torque for an inline engine is given by equation 14.4c in combination 
with equation 13.15f.  Taking only the second harmonic term and applying the relevant 
factors from Table 14-4 for this engine give

= ω ω2 sin2 ˆ (14.16)2 2
2

m r tBT ks 

The principle of the Lanchester balancer, shown in Figure 14-27a, can be used to 
counteract the secondary forces by driving its two counterrotating balance shafts at twice 
crankshaft speed with chains and/or gears.  Figure 14-30 shows such an arrangement as 
applied to a Mitsubishi 2.6-liter, four-cylinder engine.* 

H. Nakamura [3] improved on Lanchester’s 1913 design by arranging the balance 
shafts within the engine so as to cancel the second harmonic of the inertia torque as well as 
the secondary inertia force.  But, his arrangement does not affect the unbalanced second-
ary shaking moment.  In fact, it is designed to impart zero net moment about a transverse 
axis to either balance shaft in order to minimize bending moments on the shafts, and so 
reduce bearing loads and friction losses.  This feature is the subject and principal claim 
of Nakamura’s patent on this design. [4]  

Figure 14-31a shows a schematic of a conventional Lanchester balancer arranged 
with the two counterrotating balance shafts with their centers in a single horizontal plane 
transverse to the vertical plane of piston motion.†  

The balance force from the two balance shafts combined is

= − ω ω8 cos2 ˆ (14.17)2m r tbal bal balF i

where mbal and rbal are the mass and radius, respectively, of one balance weight.

Figure 14-31b shows Nakamura’s arrangement of the balance shafts with one situ-
ated above the other in separate horizontal planes.  The vertical offset x1 – x2 between 
the shafts, in combination with the oppositely directed but equal-magnitude horizontal 
components of the counterweights’ centrifugal forces, creates a time-varying couple about 
the crankshaft axis defined as: 

( )= − ω − ω4 sin22
1 2m r x x tbal bal balT 

	
*  Also used by Chrysler 
and Porsche (in the 244) un-
der license from Mitsubishi.

†  The arrangement shown 
in Figure 14-31a is only 
schematic of Lanchester’s 
original design in which 
the crankshaft drove the  
balance shafts through 
right-angled helical gears 
with the balance shaft axes 
parallel to the y axis of Fig-
ure 14‑31, i.e., transverse to, 
rather than parallel to, the 
crankshaft axis as shown 
here.  See reference [4] for 
drawings of his original 
design.
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where x and y refer to the coordinates of the shaft centers referenced to the crankshaft 
center, and the subscripts 1 and 2 refer, respectively, to the balance shaft turning in direc-
tions the same as and opposite to that of the crankshaft.

The vertical components of the balance weights’ centrifugal forces still add to provide 
force balance as in equation 14.17.  The torque in equation 14.18 will have opposite sense 
to the shaking torque if the upper shaft turns in the same direction as, and the lower shaft 
turns in the opposite direction to that of the crankshaft.  

FIGURE 14-30

Balance shafts used to eliminate the secondary unbalance in the four-cylinder inline engine

flywheel
crankshaft

lower balance shaft

upper balance shaft
1:2 chain drive

sprockets

reverse gears
secondary bearing

eccentric weight

eccentric weight
main shaft bearing

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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FIGURE 14-31
Two types of secondary balancer mechanisms for the four-cylinder inline engine

(a )  Lanchester balancer (b )  Nakamura balancer
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Copyright © 2018 Robert L. Norton:  All Rights Reserved
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For force balance, equations 14.15 and 14.17 must sum to zero,

ω ω − ω ω =

=or

4 cos2 8 cos2 0

2
(14.19)

2 2m r r
l

t m r t

m r r
l

m r

B bal bal

bal bal B

which defines the mass-radius product needed for the balance mechanism.

For torque balance, equations 14.16 and 14.18 must sum to zero.

( ) ( )ω ω − ω − ω − + ω =2 sin2 4 sin2 cos2 0 (14.20a)2 2 2
1 2 1 2m r t m r x x t y y tB bal bal

Substitute equation 14.19 in 14.20a.

( ) ( )ω − − ω − + ω =2 sin2 4
2

sin2 cos2 0 (14.20b)2
1 2 1 2m r t r

l
m r x x t y y tB B

For this equation to be zero for all ωt, 
= −

− =
(14.20c)

2 1

1 2

y y

x x l

So, if the balance shafts are arranged symmetrically with respect to the piston plane 
at any convenient locations y1 and –y1, and the distance x1 – x2 is made equal to the length 
of the connecting rod l, then the second harmonic of the inertia torque will be completely 
cancelled.  Since the second harmonic is the only nonzero component of inertia torque 
in this engine as can be seen in Figure 14-20b, it will now be completely balanced for 
shaking force and shaking torque (but not shaking moment).

There is also significant oscillation of the gas torque in a four-cylinder engine as 
shown in Figure 14-20a.  The gas torque is 180° out of phase with the inertia torque as can 
be seen in Figure 14-20b and so provides some natural cancellation as shown in the total 
torque curve of Figure 14-20c.  The magnitude of the gas torque varies with engine load 
and so cannot itself be cancelled with any particular balance shaft geometry for all condi-
tions.  However, one engine speed and load condition can be selected as representative of 
the majority of typical driving conditions, and the balance system geometry altered to give 
an optimum reduction of total engine torque under those conditions.  Nakamura estimates 
that gas torque magnitude is about 30% of the inertia torque under typical driving condi-
tions and so suggests a value of x1 – x2 = 0.7l for the best overall reduction of total torque 
oscillation in this engine.  Note that the average value of the driving torque is not affected 
by balancing because the average torque of any rotating balance system is always zero.

A Perfectly Balanced Two-Cylinder Engine

Frederick Lanchester, in 1897, devised an extremely clever horizontally opposed engine 
arrangement[5] of Figure 14-32 that, with only two cylinders, completely cancelled all 
harmonics of inertia forces and moments.  He recognized that the lateral motion of the 
connecting rods was a contributor and so provided two counterrotating crankshafts, driven 
by a total of six connecting rods, three per crank pin, with two upper rods straddling one 
lower rod for Z axis symmetry.  The crank counterweights exactly balance the cranks.  
The colinear opposed pistons exactly balance one another’s linear accelerations and the 
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scissors action of the multiple conrods exactly cancels all higher harmonics of motion.  
Clearly the work of genius.  The genesis of his later (c. 1913) harmonic balancer of Figure 
14-31a can also be seen here.
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      at mid-stroke
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      and left nearing BDC
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      and right descending

FIGURE 14-32
Perfectly balanced Lanchester two-cylinder, horizontally opposed engine (1897)  Public Domain
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*  More information on 
this engine design can be 
found in program Link-
ages where it is one of the 
examples.

	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.

14.12	 PROBLEMS

	 14‑1	 Draw a crank phase diagram for a three-cylinder inline engine with a 0, 120, 240° 
crankshaft and determine all possible firing orders and select the best arrangement to 
give even firing for each stroke cycle for:
a.	 Four-stroke cycle		  b.      Two-stroke cycle

	 14‑2	 Repeat Problem 14‑1 for an inline four-cylinder engine with 0, 90, 270, 180° crank.

	 14‑3	 Repeat Problem 14‑1 for a 45° vee, four-cylinder engine with 0, 90, 270, 180° crank.

	 14‑4	 Repeat Problem 14‑1 for a 45° vee, two-cylinder engine with 0, 90° crank.

	 14‑5	 Repeat Problem 14‑1 for a 90° vee, two-cylinder engine with 0, 180° crank.

	 14‑6	 Repeat Problem 14‑1 for a 180° opposed, two-cylinder engine with a 0, 180° crank.

	 14‑7	 Repeat Problem 14‑1 for a 180° opposed, four-cylinder engine with 0, 180, 180, 0° crank.

	 †14‑8	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑1.

	 †14‑9	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑2.

	†14‑10	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑3.

	†14‑11	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑4.

	†14‑12	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑5.

	†14‑13	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑6.

	†14‑14	 Calculate the shaking force, torque, and moment balance conditions through the second 
harmonic for the engine design in Problem 14‑7.

	 14-15	 Derive expressions, in general terms, for the magnitude and angle with respect to the 
first crank throw of the mass-radius products needed on the crankshaft to balance the 
shaking moment in a 90° vee-eight engine with a  0, 90, 270, 180° crankshaft. 

	 14-16	 Repeat Problem 14-15 for a 90° vee-six with a 0, 240, 120° crankshaft. 

	 14-17	 Repeat Problem 14-15 for a 90° vee-four with a 0, 180° crankshaft. 

	†14-18	 Design a pair of Nakamura balance shafts to cancel the shaking force and reduce torque 
oscillations in the engine shown in Figure 14-19.*

	 14-19	 Using program Linkages, data in Table P14-1, and the crank phase diagram from 
Problem 14-1, determine the maximum force magnitudes on main pin, crank pin, wrist 
pin, and piston for a 2-stroke engine with even firing.  Overbalance the crank, if neces-
sary, to bring the shaking force down to at least half the unbalanced value.

	 14-20	 Using program Linkages, data in Table P14-1, and the crank phase diagram from 
Problem 14-2, determine the maximum force magnitudes on main pin, crank pin, wrist 
pin, and piston for a 4-stroke engine with even firing.  Overbalance the crank, if neces-
sary, to bring the shaking force down to at least half of the unbalanced value.

Topic/Problem Matrix

 14.5 Shaking Moment in 
Inline Engines

14-8, 14-9
 14.6 Even Firing

14-1, 14-2, 14-3,  
14-4, 14-5, 14-6,  
14-7, 14-19, 14-20

 14.7 Vee Engine Configu-
rations

14-10, 14-11, 14-12, 
14-20, 14-21

 14.8 Opposed Engine 
Configurations

14-13, 14-14
 14.9 Balancing Multicylin-

der Engines

14-15, 14-16, 14-17, 
14-18, 14-23, 14-24

 

TABLE  P14-0
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*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or, TKSolver equa-
tion solver programs.

	 14-21	 Using program Linkages, data in Table P14-1, and the crank phase diagram from 
Problem 14-3, determine the maximum force magnitudes on main pin, crank pin, wrist 
pin, and piston for a 4-stroke engine with even firing.  Overbalance the crank, if neces-
sary, to bring the shaking force down to at least half of the unbalanced value.

	 14-22	 Using program Linkages, data in Table P14-1, and the crank phase diagram from 
Problem 14-4, determine the maximum force magnitudes on main pin, crank pin, wrist 
pin, and piston for a 2-stroke engine with even firing.  Overbalance the crank, if neces-
sary, to bring the shaking force down to at least half of the unbalanced value.

	†*14-23	 A four-cylinder inline engine with a 0, 180, 180, 0° crankshaft has a stroke of S = 3.50 
in, a conrod length to crank radius ratio of L/R = 3.75, and an effective wrist pin mass 
of mB = 0.0215 blob.  Design a pair of Nakamura balance shafts to cancel the shaking 
force and reduce the oscillations in the engine.

	†14-24	 Repeat problem 14-23 with S = 2.750 in, L/R = 3.00, and mB = 0.0125 blob.

14.13	 PROJECTS

These are loosely structured design problems intended for solution using program Linkages.  All 
involve the design of one or more multicylinder engines and differ mainly in the specific data for 
the engine.  The general problem statement is: 
Design a multicylinder engine for a specified displacement and stroke cycle.  Optimize the conrod/crank 
ratio and bore/stroke ratio to minimize shaking forces, shaking torque, and pin forces, also considering 
package size.  Design your link shapes and calculate realistic dynamic parameters (mass, CG location, 
moment of inertia) for those links using the methods of Chapters 10-13.  Dynamically model the links as 
described in those chapters.   Balance or overbalance the linkage as needed to achieve the desired results. 
Choose crankshaft phase angles (and vee angles, if appropriate) to optimize the inertial balance of the 
engine.  Choose a firing order and determine the power stroke angles to optimize even firing.  Trade off 
inertia balance if necessary to achieve even firing.  Design and size a minimum-weight flywheel by the 
method of Chapter 11 to smooth total torque.  Write an engineering report on your design and analysis.

	 P14‑1	 Two-stroke cycle inline twin with a displacement of 1 liter.

	 P14‑2	 Four-stroke cycle inline twin with a displacement of 1 liter.

	 P14‑3	 Two-stroke cycle vee-twin with a displacement of 1 liter.

	 P14‑4	 Four-stroke cyclevee-twin with a displacement of 1 liter.

	 P14‑5	 Two-stroke cycle opposed twin with a displacement of 1 liter.

	 P14‑6	 Four-stroke cycle opposed twin with a displacement of 1 liter.

	 P14‑7	 Two-stroke cycle vee-four with a displacement of 2 liters.

	 P14‑8	 Four-stroke cycle vee-four with a displacement of 2 liters.

	 P14‑9	 Two-stroke cycle opposed four with a displacement of 2 liters.

	P14‑10	 Four-stroke cycle opposed four with a displacement of 2 liters.

	P14-11	 Two-stroke inline five-cylinder with a displacement of 2.5 liters.

	P14-12	 Four-stroke inline five-cylinder with a displacement of 2.5 liters.

	P14-13	 Two-stroke cycle vee-six with a displacement of 3 liters.

Data for Problems 14-19 
to 14-22

Displacement

Friction coe�

Flywheel coe�

 10.0

Bore 1.87

L/R ratio 3.00

rG2 / r 0.40

rG3 / l 0.36

Main pin dia 2.00

Crank pin dia 1.50

Idle rpm 600

Redline rpm 4000

Piston mass 0.015

Conrod mass 0.012

Crank mass 0.045

Pgmax 5500

0.02

0.10

TABLE  P14-1
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*  A W engine has three 
banks of four cylinders or 
four banks of three cylin-
ders on a common crank-
shaft.  The VW-Audi W-12, 
as used in some Bentley 
models, is two VR15, 15° 
vee sixes grafted together 
on a common crankshaft.

	P14-14	 Four-stroke cycle vee-six with a displacement of 3 liters.

	P14-15	 Two-stroke cycle opposed six with a displacement of 3 liters.

	P14-16	 Four-stroke cycle opposed six with a displacement of 3 liters.

	P14-17	 Two-stroke inline seven-cylinder with a displacement of 3.5 liters.

	P14-18	 Four-stroke inline seven-cylinder with a displacement of 3.5 liters.

	P14-19	 Two-stroke inline eight-cylinder with a displacement of 4 liters.

	P14-20	 Four-stroke inline eight-cylinder with a displacement of 4 liters.

	P14-21	 Two-stroke vee ten-cylinder with a displacement of 5 liters.

	P14-22	 Four-stroke vee ten-cylinder with a displacement of 5 liters.

	P14-23	 Four-stroke W-6 comprised of three banks of two with a displacement of 5 liters.* 

	P14-24	 Four-stroke W-9 comprised of three banks of three with a displacement of 5 liters.*

	P14-25	 Four-stroke W-12 comprised of three banks of four with a displacement of 5 liters.* 

P14-26 	 Four-stroke W-12 comprised of four banks of three with a displacement of 5 liters.*

	P14-27	 Design a family of vee engines, all with same pistons, connecting rods, and strokes.  
Crankshafts can each be different.  Four configurations are needed: vee-four, vee-six, 
vee-eight, and vee-ten with the same single-cylinder displacement of 0.5 liters.  Op-
timize the single-cylinder configuration from which the multicylinder engines will be 
constructed for bore/stroke ratio and conrod/crank ratio.  Then assemble this cylinder 
design into the above configurations.  Find the best compromise of vee angle to provide 
a good mix of balance and even firing in all engines.

	P14-28	 Repeat Project P14-27 for a family of three-bank W engines: W-3, W-6, W-9, and W-12.  
The interbank angles must be the same for all models.  See the built-in example W-12 
engine in program Linkages for more information on this unusual W configuration.

	P14-29	 In recent years some automobile manufacturers have made unusual vee configurations 
such as the VW-Audi VR15 which is a 15° vee-six.  Obtain detailed information on this 
engine design and then analyze it with program Linkages.  Write a report that explains 
why the manufacturer chose this unusual arrangement and justify your conclusions 
with sound engineering analysis.

	P14-30	 Design an inline six- and an inline five-cylinder engine of the same displacement, say 
2.5 liters.  Analyze their dynamics with program Linkages.  Write an engineering 
report to explain why such manufacturers as Audi, Volvo, and Acura have chosen a 
five-cylinder inline over a six-cylinder of comparable torque and power output.

	P14-31	 Ferrari has produced vee-twelve engines in both 60° vee and horizontally opposed 
configurations.  Design 3-liter versions of each and compare their dynamics.  Write a 
report that explains why the manufacturer chose these arrangements and justify your 
conclusions with sound engineering analysis.

	P14-32	 Design and compare a 3-liter 90° vee-six, 60° vee-six, inline six, and 180° opposed six, 
examples of which are all in volume production.  Explain their advantages and disad-
vantages and justify your conclusions with sound engineering analysis.
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Chapter15
CAM DYNAMICS
The universe is full of magical things
patiently waiting for our wits to grow sharper
Eden Phillpots

15.0	 INTRODUCTION Watch a Video on Cam Dynamics (48:29)*

Chapter 8 presented the kinematics of cams and followers and methods for their design.  
We will now extend the study of cam-follower systems to include considerations of the 
dynamic forces and torques developed.  While the discussion in this chapter is limited to 
examples of cams and followers, the principles and approaches presented are applicable 
to most dynamic systems.  The cam-follower system can be considered a useful and con-
venient example for the presentation of topics such as creating lumped parameter dynamic 
models and defining equivalent systems as described in Chapter 10.  These techniques as 
well as the discussion of natural frequencies, effects of damping, and analogies between 
physical systems will be found useful in the analysis of all dynamic systems regardless 
of type.

In Chapter 10 we discussed the two approaches to dynamic analysis, commonly 
called the forward and the inverse dynamics problems.  The forward problem assumes that 
all the forces acting on the system are known and seeks to solve for the resulting displace-
ments, velocities, and accelerations.  The inverse problem is, as its name says, the inverse 
of the other.  The displacements, velocities, and accelerations are known, and we solve 
for the dynamic forces that result.  In this chapter we will explore the application of both 
methods to cam-follower dynamics.  Section 15.1 explores the forward solution.  Section 
15.3 will present the inverse solution.  Both are instructive in this application of a force-
closed (spring-loaded) cam-follower system and will each be discussed in this chapter.  

 	

*  http://www.designof-
machinery.com/DOM/
Cam_Dynamics.mp4

http://www.designofmachinery.com/DOM/Cam_Dynamics.mp4
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15.1	 DYNAMIC FORCE ANALYSIS OF THE FORCE-CLOSED CAM-
FOLLOWER

Figure 15-1a shows a simple plate or disk cam driving a spring-loaded, roller follower.  
This is a force-closed system which depends on the spring force to keep the cam and 
follower in contact at all times.  Figure 15-1b shows a lumped parameter model of this 
system in which all the mass which moves with the follower train is lumped together as 
m, all the springiness in the system is lumped within the spring constant k, and all the 
damping or resistance to movement is lumped together as a damper with coefficient c.  
The sources of mass which contribute to m are fairly obvious.  The masses of the follower 
stem, the roller, its pivot pin, and any other hardware attached to the moving assembly all 
add together to create m.  Figure 15-1c shows the free-body diagram of the system acted 
upon by the cam force Fc, the spring force Fs, and the damping force Fd.  There will of 
course also be the effects of mass times acceleration on the system.

Undamped Response

Figure 15‑2 shows an even simpler lumped parameter model of the same system as in 
Figure 15‑1 but which omits the damping altogether.  This is referred to as a conservative 
model since it conserves energy with no losses.  This is not a realistic or safe assumption 
in this case but will serve a purpose in the path to a better model which will include the 
damping.  The free-body diagram for this mass-spring model is shown in Figure 15‑2c.  
We can write Newton’s equation for this one-DOF system:

TABLE  15-1 Notation Used in This Chapter

ω
ω

=
=
=

θ
ω

ω

ζ

=
=
=

=
=
=
=
=
=
=
=
=
= =
= =
=

damping coefficient
critical damping coefficient
spring constant
force of cam on follower
force of spring on follower
force of damper on follower
mass of moving elements
time in seconds
torque on camshaft
camshaft angle, in degrees or radians
camshaft angular velocity, rad/sec
damped circular natural frequency, rad/sec
forcing frequency, rad/sec
undamped circular natural frequency, rad/sec
follower displacement, length units

follower velocity, length/sec
follower acceleration, length/sec

damping ratio

2

c
c
k

F
F
F
m

t
T

x
x v
x a

c

c
s
d

c

d
f

n




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





∑
( )

( )

= =

− =

=

+ =
:

From equation 10.16:

then
(15.1a)

F ma mx

F t F mx

F k x

mx k x F t

c s

s

c

FIGURE 15-1
One-DOF lumped parameter model of a cam-follower system including damping 

(a )  Physical system b)  Lumped model ( c )  Free-body diagram
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FIGURE 15-2
One-DOF lumped parameter model of a cam-follower system without damping 

( (a )  Physical system b)  Lumped model (c )  Free-body diagram
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This is a second-order ordinary differential equation (ODE) with constant coeffi-
cients.  The complete solution will consist of the sum of two parts, the transient (homo-
geneous) and the steady state (particular).  The homogeneous ODE is





+ =

= −

0
(15.1b)

mx k x

x k
m

x

which has the well-known solution

= ω + ωcos sin (15.1c)x A t B t

where A and B are the constants of integration to be determined by the initial conditions.  
To check the solution, differentiate it twice, assuming constant ω, and substitute in the 
homogeneous ODE.

=

( ) ( )−ω ω + ω = − ω + ω

ω = ω

This is a solution provided that:

cos sin cos sin

(15.1d)

2

2

A t B t k
m

A t B t

k
m

k
mn

The quantity ωn (rad/sec) is called the circular natural frequency of the system and 
is the frequency at which the system wants to vibrate if left to its own devices.  This rep-
resents the undamped natural frequency since we ignored damping.  The damped natural 
frequency will be slightly lower than this value.  Note that ωn is a function only of the 
physical parameters of the system m and k; thus it is completely determined and unchang-
ing with time once the system is built.  By creating a one-DOF model of the system, we 
have limited ourselves to one natural frequency which is an “average” natural frequency 
usually close to the lowest, or fundamental, frequency.  

Any real physical system will also have higher natural frequencies which in general 
will not be integer multiples of the fundamental.  In order to find them we need to create 
a multi-degree-of-freedom model of the system.  The fundamental tone at which a bell 
rings when struck is its natural frequency defined by this expression.  The bell also has 
overtones which are its other, higher, natural frequencies.  The fundamental frequency 
tends to dominate the transient response of the system.[1]

The circular natural frequency ωn (rad/sec) can be converted to cycles per second 
(hertz) by noting that there are 2π radians per revolution and one revolution per cycle:

=
π

ω
1

2
hertz (15.1e)fn n

The constants of integration, A and B in equation 15.1c, depend on the initial condi-
tions.  A general case can be stated as

	 When t = 0, 	 let x = x0  and  v = v0, 	 where x0 and v0 are constants 

which gives a general solution to the homogeneous ODE 15.1b of:

= ω +
ω

ωcos sin (15.1f)0
0x x t

v
tn

n
n
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Equation 15.1f can be put into polar form by computing the magnitude and phase angle:

X x
v v

x

x X t

n n

n( )

= +
ω







φ =
ω







= ω − φ

arctan

then:

cos (15.1g)

0 0
2 0

2
0

0

0

Note that this is a pure harmonic function whose amplitude X0 and phase angle φ are 
a function of the initial conditions and the natural frequency of the system.  It will oscil-
late forever in response to a single, transitory input if there is truly no damping present.

Damped Response

If we now reintroduce the damping of the model in Figure 15‑1b and draw the free-body 
diagram as shown in Figure 15‑1c, the summation of forces becomes:

( ) − − = (15.2a)F t F F mxc d s

Substituting equations 10.16 and 10.17c:

  ( )+ + = (15.2b)mx c x k x F tc

Homogeneous Solution  We again separate this differential equation into its 
homogeneous and particular components.  The homogeneous part is:

 + + = 0 (15.2c)x c
m

x k
m

x

The solution to this ODE is of the form:

= (15.2d)x Rest

where R and s are constants.  Differentiating versus time:





=

=

+ + =

+ +





=

and substituting in equation 15.2c:

0

0 (15.2e)

2

2

2

x Rse

x Rs e

Rs e c
m

Rse k
m

Re

s c
m

s k
m

Re

st

st

st st st

st

For this solution to be valid either R or the expression in parentheses must be zero 
as est is never zero.  If R were zero, then the assumed solution, in equation 15.2d, would 
also be zero and thus not be a solution.  Therefore, the quadratic equation in parentheses 
must be zero.

+ +





= 0 (15.2f )2s c
m

s k
m
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This is called the characteristic equation of the ODE and its solution is:

=
− ± 





−

= − + 





−

= − − 





−

which has the two roots:

4

2

2 2
(15.2g)

2 2

2

1

2

2

2

s

c
m

c
m

k
m

s c
m

c
m

k
m

s c
m

c
m

k
m

These two roots of the characteristic equation provide two independent terms of the 
homogeneous solution:

= + ≠for (15.2h)1 2 1 21 2x R e R e s ss t s t

If s1 = s2, then another form of solution is needed.  The quantity s1 will equal s2 when:







− = =

= = ω =

or:

and:
2

0
2

2 2 (15.2i)

2c
m

k
m

c
m

k
m

c m k
m

m cn c

This particular value of c is called the critical damping and is labeled cc.  The system 
will behave in a unique way when critically damped, and the solution must be of the form: 

= + = = −for
2

(15.2j)1 2 1 21 2x R e R te s s c
m

s t s t

It will be useful to define a dimensionless ratio called the damping ratio ζ which is 
the actual damping divided by the critical damping.

ζ =

ζ =
ω

(15.3a)

2

c
c

c
m

c

n

and then:

ζω =
2

(15.3b)c
mn

The damped natural frequency ωd is slightly less than the undamped natural frequency 
ωn and is:

ω = − 



2

(15.3c)
2k

m
c
md
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We can substitute equations 15.1d and 15.3b into equations 15.2g to get an expression 
for the characteristic equation in terms of dimensionless ratios:

( )
( )= −ω ζ ± ω ζ − ω

= ω −ζ ± ζ −

(15.4a)

1

1,2
2 2

1,2
2

s

s

n n n

n

This shows that the system response is determined by the damping ratio ζ which dictates 
the value of the discriminant.  There are three possible cases:

ζ >
ζ =
ζ <

C 1: 1 Roots real and unequal
C 2: 1 Roots real and equal (15.4b)
C 3: 1 Roots complex conjugate

ASE

ASE

ASE

Let’s consider the response of each of these cases separately.

Case 1: ζ > 1	 overdamped

The solution is of the form in equation 15.2h and is:

= +
−ζ + ζ −



 ω −ζ − ζ −



 ω

(15.5a)1
1

2
12 2

x R e R e
t tn n

Note that since ζ > 1, both exponents will be negative making x the sum of two decaying 
exponentials as shown in Figure 15‑3.  This is the transient response of the system to a 
disturbance and dies out after a time.  There is no oscillation in the output motion.  An 
example of an overdamped system which you have probably encountered is the tone arm 
on a good-quality record turntable with a “cueing” feature.  The tone arm can be lifted up, 
then released, and it will slowly “float” down to the record.  This is achieved by putting 
a large amount of damping in the system, at the arm pivot.  The arm’s motion follows an 
exponential decay curve such as in Figure 15‑3.

Case 2:  ζ = 1	 critically damped

The solution is of the form in equation 15.2j and is:

( )= + = +−ω −ω −ω (15.5b)1 2 1 2x R e R te R R t et t tn n n

This is the product of a linear function of time and a decaying exponential function 
and can take several forms depending on the values of the constants of integration, R1 and 
R2, which in turn depend on initial conditions.  A typical transient response might look 
like Figure 15‑4.  This is the transient response of the system to a disturbance, which re-
sponse dies out after a time. There is fast response but no oscillation in the output motion.  
An example of a critically damped system is the suspension system of  a new sports car 
in which the damping is usually made close to critical in order to provide crisp handling 
response without either oscillating or being slow to respond.  A critically damped system 
will, when disturbed, return to its original position within one bounce.  It may overshoot 
but will not oscillate and will not be sluggish.

x

x

x

(a )  Term 1 

(b )  Term 2 

(c )  Total response

t

t

t

.x0

x0

1

=

+

FIGURE 15-3
Transient response of
an overdamped
system
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Case 3:  ζ < 1	 underdamped

The solution is of the form in equation 15.2h and s1, s2 are complex conjugate.  Equa-
tion 15.4a can be rewritten in a more convenient form as:

( )= ω −ζ ± − ζ = −1 1 (15.5c)1,2
2s j jn

Substituting in equation 15.2h:

= +

=

=














+














= +














−ζ + −ζ



 ω −ζ − −ζ



 ω

+

−ζω −ζ



 ω −ζω − −ζ



 ω

−ζω −ζ



 ω − −ζ



 ω

and noting that:

factor:

(15.5d)

1
1

2
1

1
1

2
1

1
1

2
1

2 2

2 2

2 2

x R e R e

y y y

x R e e R e e

x e R e R e

j t j t

a b a b

t j t t j t

t j t j t

n n

n
n

n
n

n
n n

Substitute the Euler identity from equation 4.4a:

( ) ( )
( ) ( )

( ) ( )( ) ( )

=
− ζ ω + − ζ ω





+ − ζ ω − − ζ ω























= + − ζ ω + − − ζ ω













−ζω

−ζω

and simplify:

cos 1 sin 1

cos 1 sin 1

(15.5e)

cos 1 sin 1

1
2 2

2
2 2

1 2
2

1 2
2

x e
R t j t

R t j t

x e R R t R R j t

t
n n

n n

t
n n

n

n

Note that R1 and R2 are just constants yet to be determined from the initial conditions, 
so their sum and difference can be denoted as some other constants:

( ) ( )= − ζ ω + − ζ ω













−ζω cos 1 sin 1 (15.5f)2 2x e A t B tt
n n

n

We can put this in polar form by defining the magnitude and phase angle as:

= + φ = arctan (15.5g)0
2 2X A B B

A

then:

( )= − ζ ω − φ





−ζω cos 1 (15.5h)0
2x X e tt

n
n

This is the product of a harmonic function of time and a decaying  exponential function 
where X0 and φ

x

x

x

( a )  Term 1

(b )  Term 2 

(c )  Total response
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1
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X

FIGURE 15-4
Transient response of
a critically damped
system
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Figure 15‑5 shows the transient response for this underdamped case.  The response 
overshoots and oscillates before finally settling down to its final position.  Note that if 
the damping ratio ζ is zero, equation 15.5g reduces to equation 15.1g which is a pure 
harmonic.  

An example of an underdamped system is a diving board which continues to oscillate 
after the diver has jumped off, finally settling back to zero position.  Many real systems 
in machinery are underdamped, including the typical cam-follower system.  This often 
leads to vibration problems.  It is not usually a good solution simply to add damping to 
the system as this causes heating and is very energy inefficient.  It is better to design the 
system to avoid the vibration problems.  

Particular Solution  Unlike the homogeneous solution which is always the 
same regardless of the input, the particular solution to equation 15.2b will depend on 
the forcing function Fc(t) which is applied to the cam-follower from the cam.  In general 
the output displacement x of the follower will be a function of similar shape to the input 
function but will lag the input function by some phase angle.  It is quite reasonable to use 
a sinusoidal function as an example since any periodic function can be represented as a 
Fourier series of sine and cosine terms of different frequencies (see equations 13.2, 13.3, 
and their footnote).  

Assume the forcing function to be:

( ) = ωsin (15.6a)0F t F tc f

where F0 is the amplitude of the force and ωf is its circular frequency.  Note that ωf is 
unrelated to ωn or ωd and may be any value.  The system equation then becomes:

 + + = ωsin (15.6b)0mx c x k x F tf

The solution must be of harmonic form to match this forcing function, and we can 
try the same form of solution as used for the homogeneous solution.

=

ψ
ω =

( )( ) = ω − ψ

where:
amplitude

= phase angle between applied force and displacement
angular velocity of forcing function

sin (15.6c)

X

x t X t

f

f

f f f

The factors Xf and ψ are not constants of integration here. They are constants deter-
mined by the physical characteristics of the system and the forcing function’s frequency 
and magnitude.  They have nothing to do with the initial conditions.  To find their values, 
differentiate the assumed solution twice, substitute in the ODE, and get:

( )

( )

( )
=

− ω + ω

ψ =
ω

− ω

















(15.6d)

arctan
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( a )  Term 1 
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(c )  Total response
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FIGURE 15-5
Transient response of
an underdamped
system
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Substitute equations 15.1d, 15.2i, and 15.3a and put in dimensionless form:

=

−
ω
ω



















+ ζ
ω
ω







ψ =
ζ

ω
ω

−
ω
ω



























1

1 2

(15.6e)

arctan
2

1

0 2 2 2

2

X
F k

f

f

n

f

n

f

n

f

n

The ratio ωf / ωn is called the frequency ratio.  Dividing Xf by the static deflection F0 / k 
creates the amplitude ratio which defines the relative dynamic displacement compared 
to the static.

Complete Response  The complete solution to our system differential equation 
for a sinusoidal forcing function is the sum of the homogeneous and particular solutions:

( ) ( )= − ζ ω − φ





+ ω − ψ−ζω cos 1 sin (15.7)0
2x X e t X tt

n f f
n

The homogeneous term represents the transient response of the system which will die 
out in time but is reintroduced any time the system is again disturbed.  The particular 
term represents the forced response or steady-state response to a sinusoidal forcing 
function which will continue as long as the forcing function is present.

Note that the solution to this equation, shown in equations 15.5 and 15.6, depends 
only on two ratios, the damping ratio ζ which relates the actual damping relative to the 
critical damping, and the frequency ratio ωf / ωn which relates the forcing frequency to 
the natural frequency of the system.  Koster[1] found that a typical value for the damping 
ratio in cam-follower systems is ζ = 0.06,  so they are underdamped and can resonate if 
operated at frequency ratios close to 1.  

The initial conditions for the specific problem are applied to equation 15.7 to deter-
mine the values of X0 and φ.  Note that these constants of integration are contained within 
the homogeneous part of the solution.

15.2	 RESONANCE

The natural frequency (and its overtones) are of great interest to the designer as they define 
the frequencies at which the system will resonate.  The single-DOF lumped parameter 
systems shown in Figures 15‑1 and 15‑2 are the simplest possible to describe a dynamic 
system, yet they contain all the basic dynamic elements.  Masses and springs are energy 
storage elements.  A mass stores kinetic energy, and a spring stores potential energy.  The 
damper is a dissipative element.  It uses energy and converts it to heat.  Thus all the losses 
in the model of Figure 15‑1 occur through the damper.  
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These are “pure” idealized elements which possess only their own characteristics.  
That is, the spring has no damping and the damper no springiness, etc.  Any system that 
contains more than one energy storage device such as a mass and a spring will possess at 
least one natural frequency.  If we excite the system at its natural frequency, we will set 
up the condition called resonance in which the energy stored in the system’s elements will 
oscillate from one element to the other at that frequency.  The result can be violent oscil-
lations in the displacements of the movable elements in the system as the energy moves 
from potential to kinetic form and vice versa.  

Figures 15‑6a and b show the amplitude and phase angle, respectively, of the dis-
placement response X of the system to a sinusoidal input forcing function at various 
frequencies ωf.  The forcing frequency ωf is the angular velocity of the cam.   These plots 
normalize the forcing frequency as a frequency ratio ωf / ωn.  The amplitude X is normal-
ized by dividing the dynamic deflection x  by the static deflection F0 / k that the same 
force amplitude would create on the system.  Thus at a frequency of zero, the output is 

φ

ζ = 0.1
ζ = 0

nω
ωf

nω
ωf

nω
ωf

FIGURE 15-6
Amplitude ratio and phase angle of system response
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one, equal to the static deflection of the spring at the amplitude of the input force.  As the 
forcing frequency increases toward the natural frequency ωn, the amplitude of the out-
put motion, for zero damping, increases rapidly and becomes theoretically infinite when  
ωf  = ωn.  Beyond this point the amplitude decreases rapidly and asymptotically toward 
zero at high frequency ratios.  

The effects of damping ratio ζ can best be seen in Figure 15-6c, which shows a 3-D 
plot of forced vibration amplitude as a function of both frequency ratio ωf / ωn and damp-
ing ratio ζ.  The addition of damping reduces the amplitude of vibration at the natural 
frequency, but very large damping ratios are needed to keep the output amplitude less than 
or equal to the input amplitude.  About 50 to 60% of critical damping will eliminate the 
resonance peak.  Unfortunately, most cam-follower systems have damping ratios of less 
than about 10% of critical.  At those damping levels, the response at resonance is about 
five times the static response.  This will create unsustainable stresses in most systems if 
allowed to occur.

It is obvious that we must avoid driving this system at or near its natural frequency.  
One result of operation of an underdamped cam-follower system near ωn can be follower 
jump.  The system of follower mass and spring can oscillate violently at its natural fre-
quency and leave contact with the cam.  When it does reestablish contact, it may do so 
with severe impact loads that can quickly fail the materials.  

The designer has a degree of control over resonance in that the system’s mass m and 
stiffness k can be tailored to move its natural frequency away from any required operat-
ing frequencies.  A common rule of thumb is to design the system to have a fundamental 
natural frequency ωn at least ten times the highest forcing frequency expected in service, 
thus keeping all operation well below the resonance point.  This is often difficult to achieve 
in mechanical systems.  One tries to achieve the largest ratio ωn / ωf  possible nevertheless.  
It is important to adhere to the fundamental law of cam design and use cam programs with 
finite jerk in order to minimize vibrations in the follower system.  

Some thought and observation of equation 15.1d will show that we would 
like our system members to be both light (low m) and stiff (high k) to get high 
values for ωn.  Unfortunately, the lightest materials are seldom also the stiff-
est.  Aluminum is one-third the weight of steel but is also about one-third as stiff.   
Titanium is about half the weight of steel but also about half as stiff.  Some of the exotic 
composite materials such as carbon fiber/epoxy offer better stiffness-to-weight ratios but 
their cost is high and processing is difficult.  Another job for Unobtainium 208!  

Note in Figure 15‑6 that the amplitude of vibration at large frequency ratios ap-
proaches zero.  So, if the system can be brought up to speed through the resonance point 
without damage and then kept operating at a large frequency ratio, the vibration will be 
minimal.  An example of systems designed to be run this way are large devices that must 
run at higher speed such as electrical power generators.  Their large mass creates a lower 
natural frequency than their required operating speeds.  They are “run up” as quickly as 
possible through the resonance region to avoid damage from their vibrations and “run 
down” quickly through resonance when stopping them.  They also have the advantage 
of long duty cycles of constant-speed operation in the safe frequency region between 
infrequent starts and stops.
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15.3	 KINETOSTATIC FORCE ANALYSIS OF THE FORCE-CLOSED 
CAM-FOLLOWER

The previous sections introduced forward dynamic analysis and the solution to the sys-
tem differential equation of motion (equation 15.2b).  The applied force Fc(t) is presumed 
to be known, and the system equation is solved for the resulting displacement x from 
which its derivatives can also be determined.  The inverse dynamics, or kinetostatics, 
approach provides a quick way to determine how much spring force is needed to keep the 
follower in contact with the cam at a chosen design speed.  The displacement and its de-
rivatives are defined from the kinematic design of the cam based on an assumed constant 
angular velocity ω of the cam.  Equation 15.2b can be solved algebraically for the force 
Fc(t) in a spring-loaded cam-follower system provided that values for mass m, spring 
constant k, preload Fpl, and damping factor c are known in addition to the displacement, 
velocity, and acceleration functions. 

Figure 15-1a shows a simple plate or disk cam driving a spring-loaded, roller fol-
lower.  This is a force-closed system which depends on the spring force to keep the cam 
and follower in contact at all times.  Figure 15-1b shows a lumped parameter model of 
this system in which all the mass that moves with the follower train is lumped together 
as m, all the springiness in the system is lumped within the spring constant k, and all the 
damping or resistance to movement is lumped together as a damper with coefficient c.  

The designer has a large degree of control over the system spring constant keff  as it 
tends to be dominated by the ks of the physical return spring.  The elasticities of the fol-
lower parts also contribute to the overall system keff but are usually much stiffer than the 
physical spring.  If the follower stiffness is in series with the return spring, as it often is, 
equations 10.19 show that the softest spring in series will dominate the effective spring 
constant.  Thus the return spring will virtually determine the overall k unless some parts 
of the follower train have similarly low stiffness.  

The designer will choose or design the return spring and thus can specify both its k 
and the amount of preload deflection x0 to be introduced at assembly.  Preload of a spring 
occurs when it is compressed (or extended if an extension spring) from its free length to 
its initial assembled length.  This is a necessary and desirable situation as we want some 
residual force on the follower even when the cam is at its lowest displacement.  This will 
help maintain good contact between the cam and follower at all times.  This spring preload 
Fpl = kx0 adds a constant term to equation 15.2b which becomes:

 

  ( )
( )

( )

= + + +

= + + +

(15.8a)
or:

(15.8b)0

F t mx c x k x F

F t mx c x k x x

c pl

c

The value of m is determined from the effective mass of the system as lumped in the 
single-DOF model of Figure 15‑1.  The value of c for most cam-follower systems can be 
estimated for a first approximation to be about 0.05 to 0.10 of the critical damping cc as 
defined in equation 15.2i.  Koster[1] found that a typical value for the damping ratio in 
cam-follower systems is ζ = 0.06.

Calculating the damping c based on an assumed value of ζ requires specifying a value 
for the overall system k and for its effective mass.  The choice of k will affect both the 
natural frequency of the system for a given mass and the available force to keep the joint 
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closed.  Some iteration will probably be needed to find a good compromise.  A selection 
of data for commercially available helical coil springs is provided in Appendix D.  Note in 
equations 15.8 that the terms involving acceleration and velocity can be either positive or 
negative.  The terms involving the spring parameters k and Fpl are the only ones that are 
always positive.  So, to keep the overall function always positive requires that the spring 
force terms be large enough to counteract any negative values in the other terms.  Typi-
cally, the acceleration is larger numerically than the velocity, so the negative acceleration 
usually is the principal cause of a negative force Fc.

The principal concern in this analysis is to keep the cam force always positive in sign 
as its direction is defined in Figure 15‑1.  The cam force is shown as positive in that figure. 
In a force-closed system the cam can only push on the follower.  It cannot pull.  The fol-
lower spring is responsible for providing the force needed to keep the joint closed during 
the negative acceleration portions of the follower motion.   The damping force also can 
contribute, but the spring must supply the bulk of the force to maintain contact between 
the cam and follower.  If the force Fc goes negative at any time in the cycle, the follower 
and cam will part company, a condition called follower jump.  When they meet again, it 
will be with large and potentially damaging impact forces.  The follower jump, if any, will 
occur near the point of maximum negative acceleration.  Thus we must select the spring 
constant and preload to guarantee a positive force at all points in the cycle.  In automotive 
engine valve cam applications, follower jump is also called valve float, because the valve 
(follower) “floats” above the cam, also periodically impacting the cam surface.  This will 
occur if the cam rpm is increased to the point that the larger negative acceleration makes 
the follower force negative. The “redline” maximum engine rpm often indicated on its 
tachometer is to warn of impending valve float above that speed which will damage the 
cam and follower.

Program Dynacam allows the iteration of equations 15.8 to be done quickly for any 
cam whose kinematics have been defined in that program.  The program’s Dynamics 
button will solve equations 15.8 for all values of camshaft angle, using the displacement, 
velocity, and acceleration functions previously calculated for that cam design in the pro-
gram.  The program requires values for the effective system mass m, effective spring 
constant k, preload Fpl, and the assumed value of the damping ratio ζ.  These values need 
to be determined for the model by the designer using the methods described in Sections 
10.11 and 10.12.  The calculated force at the cam-follower interface can then be plotted or 
its values printed in tabular form.  The system’s natural frequency is also reported when 
the tabular force data are printed.  

✍EXAMPLE 15‑1

Kinetostatic Force Analysis of a Force-Closed (Spring-Loaded) Cam-Follower System.

Given:	 A translating roller follower as shown in Figure 15‑1 is driven by a force-closed 
radial plate cam which has the following program:

Segment 1:	 Rise 1 inch in 50° with modified sine acceleration
Segment 2:	 Dwell for 40°  
Segment 3:	 Fall 1 inch in 50° with cycloidal displacement
Segment 4:	 Dwell for 40°  
Segment 5:	 Rise 1 inch in 50° with 3-4-5 polynomial displacement
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Segment 6:	 Dwell for 40°  
Segment 7:	 Fall 1 inch in 50° with 4-5-6-7 polynomial displacement
Segment 8:	 Dwell for 40°  
Camshaft angular velocity is 18.85 rad/sec.  
Follower effective mass is 0.0738 in-lb-sec2 (blob).  
Damping is 15% of critical (ζ = 0.15).  

Problem:	 Find the spring constant and spring preload to maintain contact between the cam 
and follower and calculate the dynamic force function for the cam.  Find the system 
natural frequency with the selected spring.  Keep the pressure angle under 30°.

Solution:	   

	 1	 Calculate the kinematic data (follower displacement, velocity, acceleration, and jerk) for the 
specified cam functions.  The acceleration for this cam is shown in Figure 15-7 and has a 
maximum value of 3504 in/sec2.  See Chapter 8 to review this procedure.

	 2	 Calculate the pressure angle and radius of curvature for trial values of prime circle radius, and 
size the cam to control these values.  Figure 15-8 shows the pressure angle function and Figure 
15-9 the radii of curvature for this cam with a prime circle radius of 4 in and zero eccentricity.  
The maximum pressure angle is 29.2° and the minimum radius of curvature is 1.7 in.  Figure 
8‑50 shows the finished cam profile.  See Chapter 8 to review these calculations.

	 3	 With the kinematics of the cam defined, we can address its dynamics.  To solve equations 15.8 
for cam force, we must assume values for the spring constant k and the preload Fpl.  The value 
of c can be calculated from equation 15.3a using the given mass m, the damping factor ζ, and 
assumed k.  The kinematic parameters are known.  

	 4	 Program Dynacam does this computation for you.  The dynamic force that results from an 
assumed k of 150 lb/in and a preload of 75 lb is shown in Figure 15‑10a.  The damping coef-

FIGURE 15-7
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( a )  Cam program specifications
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S V A J diagrams for Examples 15-1 and 15-2
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ficient c = 0.998.  Note that the force dips below the zero axis in two places during negative 
acceleration.  These are locations of follower jump.  The follower has left the cam during the 
fall because the spring does not have enough available force to keep the follower in contact 
with the rapidly falling cam.  Open the file E15-01.cam in Dynacam and provide the specified  
k and Fpl to see this example.  Another iteration is needed to improve the design.

	 5	 Figure 15‑10b shows the dynamic force for the same cam with a spring constant of k = 200 lb/

FIGURE 15-8
Pressure angle plot for Examples 15-1 and 15-2
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FIGURE 15-9
Radius of curvature of a four-dwell cam for Examples 15-1 and 15-2
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in and a preload of 150 lb.  The damping coefficient c = 1.153.  This additional force has lifted 
the function up sufficiently to keep it positive everywhere.  There is no follower jump in this 
case.  The maximum force during the cycle is 400.4 lb.  A margin of safety has been provided 
by keeping the minimum force comfortably above the zero line at 36.9 lb.  Run example #5 in 
the program and provide the specified spring constant and preload values to see this example. 

	 6	 The undamped and damped fundamental natural frequencies can be calculated for the system 
from equations 15.1d and 15.3c, respectively, and are:

		  ωn = 52.06 rad/sec;	 ωd = 51.98 rad/sec
	

FIGURE 15-10
Dynamic forces in a force-closed cam-follower system
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15.4	 KINETOSTATIC FORCE ANALYSIS OF THE FORM-CLOSED 
CAM-FOLLOWER

Section 8.1 described two types of joint closure used in cam-follower systems, force clo-
sure and form closure.  Force closure uses an open joint and requires a spring or other 
force source to maintain contact between the elements.  Form closure provides a geomet-
ric constraint at the joint such as the cam groove shown in Figure 15‑11a or the conjugate 
cams of Figure 15‑11b.  No spring is needed to keep the follower in contact with these 
cams.  The follower will run against one side or the other of the groove or conjugate pair 
as necessary to provide both positive and negative forces.  Since there is no spring in this 
system, its dynamic force equation 15.8 simplifies to:

 ( ) = + (15.9)F t mx c xc

Note that there is now only one energy storage element in the system (the mass), so, 
theoretically, resonance is not possible.  There is no natural frequency for it to resonate 
at.  This is the chief advantage of a form-closed system over a force-closed one.  Follower 
jump will not occur, short of complete failure of the parts, no matter how fast the system 
is run.  This arrangement is sometimes used in high-performance or racing engine valve 
trains to allow higher redline engine speeds without valve float.  In engine valve trains, a 
form-closed cam-follower valve train is called a desmodromic system.

As with any design, there are trade-offs.  While the form-closed system typically 
allows higher operating speeds than a comparable force-closed system, it is not free of 
all vibration problems.  Even though there is no physical return spring in the system, 
the follower train, the camshaft, and all other parts still have their own spring constants 
which abruptly shift from one side of the cam groove to the other.  There cannot be zero 
clearance between the roller follower and the groove and still have it operate.  Even if the 
clearance is very small, there will still be an opportunity for the follower to develop some 
velocity in its short trip across the groove, and it will impact the other side.  Track cams 
of the type shown in Figure 15‑11a typically fail at the points where the acceleration re-
verses sign, due to many cycles of crossover shock.  Note also that the roller follower has 
to reverse direction every time it crosses over to the other side of the groove.  This causes 
significant follower slip and high wear on the follower compared to an open, force-closed 
cam where the follower will have less than 1% slip.

Because there are two cam surfaces to machine and because the cam track, or groove, 
must be cut and ground to high precision to control the clearance, form-closed cams tend 
to be more expensive to manufacture than force-closed cams.  Track cams usually must 
be ground after heat treatment to correct the distortion of the groove resulting from the 
high temperatures.  Grinding significantly increases cost.  Many force-closed cams are not 
ground after heat treatment and are used as-milled.  Though the conjugate cam approach 
avoids the groove tolerance and heat treat distortion problems, there are still two matched 
cam surfaces to be made per cam.  Thus, the desmodromic cam’s dynamic advantages 
come at a significant cost premium.

We will now repeat the cam design of Example 15-1, modified for desmodromic 
operation.  This is simple to do with program Dynacam by setting the spring constant 
and preload values to zero, which assumes that the follower train is a rigid body.  A more 
accurate result can be obtained by calculating and using the effective spring constant of 
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the combination of parts in the follower train, once their geometries and materials are 
defined.  The dynamic forces will now be negative as well as positive, but a form-closed 
cam can both push and pull.

✍EXAMPLE 15‑2

Dynamic Force Analysis of a Form-Closed (Desmodromic) Cam-Follower System.

Given:	 A translating roller follower as shown in Figure 15‑11a is driven by a form-closed 
radial plate cam which has the following program:

Segment 1:	 Rise 1 inch in 50° with modified sine acceleration
Segment 2:	 Dwell for 40°
Segment 3:	 Fall 1 inch in 50° with cycloidal displacement
Segment 4:	 Dwell for 40°  
Segment 5:	 Rise 1 inch in 50° with 3-4-5 polynomial displacement
Segment 6:	 Dwell for 40°
Segment 7:	 Fall 1 inch in 50° with 4-5-6-7 polynomial displacement
Segment 8:	 Dwell for 40°
Camshaft angular velocity is 18.85 rad/sec.
Follower effective mass is 0.0738 in-lb-sec2 (blob).
Damping is 15% of critical (ζ = 0.15).

Problem:	 Compute the dynamic force function for the cam.  Keep the pressure angle < 30°.

FIGURE 15-11

( a )  Form-closed cam with translating follower
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Solution:	

 1	 Calculate the kinematic data (follower displacement, velocity, acceleration, and jerk) for the 
specified cam functions.  The acceleration for this cam is shown in Figure 15-7 and has a 
maximum value of 3504 in/sec2.  See Chapter 8 to review this procedure.

	 2	 Calculate radius of curvature and pressure angle for trial values of prime circle radius, and size 
the cam to control these values.  Figure 15-8 shows the pressure angle function and Figure 
15-9 the radii of curvature for this cam with a prime circle radius of 4 in and zero eccentricity.  
The maximum pressure angle is 29.2° and the minimum radius of curvature is 1.7 in.  Figure 
8‑50 shows the finished cam profile.  See Chapter 8 to review these calculations.

	 3	 With the kinematics of the cam defined, we can address its dynamics.  To solve equation 15.9 
for the cam force, we assume zero values for the spring constant k and the preload Fpl.  The 
value of c is assumed to be the same as in Example 15-1, i.e., 1.153.  The kinematic parameters 
are known.  

	 4	 Program Dynacam does this computation for you.  The dynamic force that results is shown 
in Figure 15‑12.  Note that the force is now more nearly symmetric about the axis and its peak 
absolute value is 289 lb.  Crossover shock will occur each time the follower force changes sign. 
Open the file E15-02.cam in Dynacam to see this example.  

Compare the dynamic force plots for the force-closed system (Figure 15‑10b, and the 
form-closed system (Figure 15‑12).  The absolute peak force magnitude on either side of 
the track in the form-closed cam is less than that on the spring-loaded one.  This shows 
the penalty that the spring imposes on the system in order to keep the joint closed.  Thus, 
either side of the cam groove will experience lower stresses than will the open cam, except 
for the areas of crossover shock.

FIGURE 15-12
Dynamic force in a form-closed cam-follower system
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15.5	 KINETOSTATIC CAMSHAFT TORQUE

The kinetostatic analysis assumes that the camshaft will operate at some constant speed 
ω.  As we saw in the case of the fourbar linkage in Chapter 11 and with the slider-crank 
mechanism in Chapter 13, the input torque must vary over the cycle if the shaft velocity 
remains constant.  The torque is calculated from the power relationship, ignoring losses.

( )
ω =

=
ω

=
φ

ω

Power in = Power out

cos
(15.10)

T F V

T
F V F V

c f

c
f c

where Tc is camshaft torque, ω is camshaft angular velocity, Fc is force between the cam 
and follower along the common normal, and Ff is the component of Fc in the direction of 
follower velocity V as defined by the pressure angle f.

Once the cam force Fc has been calculated from either equation 15.8 or 15.9, Tc is 
easily found since V, f, and ω are known for all values of cam angle q.  Figure 15‑13a 
shows the camshaft input torque needed to drive the force-closed cam designed in Exam-
ple 15‑1.  Figure 15‑13b shows the camshaft input torque needed to drive the form-closed 
cam designed in Example 15‑2.  Note that the torque required to drive the force-closed 
(spring-loaded) system is significantly higher than that needed to drive the form-closed 
(track) cam.  The spring force is also extracting a penalty here as energy must be stored 
in the spring during the rise portions which will tend to slow the camshaft.  This stored 
energy is then returned to the camshaft during the fall portions, tending to speed it up.  
The spring loading causes larger oscillations in the torque.

A flywheel can be sized and fitted to the camshaft to smooth these variations in torque 
just as was done for the fourbar linkage in Section 11.11.  See that section for the design 
procedure.  Program Dynacam integrates the camshaft torque function pulse by pulse and 
prints those areas to the screen.  These energy data can be used to calculate the required 
flywheel size for any selected coefficient of fluctuation. 

One useful way to compare alternate cam designs is to look at the torque function as 
well as at the dynamic force.  A smaller torque variation will require a smaller motor and/
or flywheel and will run more smoothly.   Three different designs for a single-dwell cam 
were explored in Chapter 8.  (See Examples 8-6, 8-7, and 8-8.)  All had the same lift and 
duration but used different cam functions.  One was a double harmonic, one cycloidal, 
and one a sixth-degree polynomial.  On the basis of their kinematic results, principally 
acceleration magnitude, we found that the polynomial design was superior.  We will now 
revisit this cam as an example and compare its dynamic force and torque using the same 
three cam functions.

✍EXAMPLE 15‑3

Compare Dynamic Torques and Forces Among Three Alternate Designs of the Same Cam.

Given:	 A translating roller follower as shown in Figure 15‑1 is driven by a force-closed 
radial plate cam which has the following program:
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Design 1
Segment 1:	 Rise 1 inch in 90°  double harmonic displacement
Segment 2:	 Fall 1 inch in 90°  double harmonic displacement
Segment 3:	 Dwell for 180°  
Design 2
Segment 1:	 Rise 1 inch in 90°  cycloidal displacement
Segment 2:	 Fall 1 inch in 90°  cycloidal displacement
Segment 3:	 Dwell for 180°  
Design 3
Segment 1:	 Rise 1 inch in 90° and fall 1 inch in 90° with polynomial displace-

ment. (A single polynomial can create both rise and fall.)
Segment 2:	 Dwell for 180°  

FIGURE 15-13
Input torque in force- and form-closed cam-follower systems

(a )  Force-closed
        (spring-loaded)
        cam-follower
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Camshaft angular velocity is 15 rad/sec.  Follower effective mass is 0.0738 in-lb-
sec2 (or blob).  Damping is 15% of critical (ζ = 0.15).  

Find:	 The dynamic force and torque functions for the cam.  Compare their peak magni-
tudes for the same prime circle radius.

Solution:	 Note that these are the same kinematic cam designs as are shown in Figures 8‑27, 
8‑28, and 8‑30.

	 1	 Calculate the kinematic data (follower displacement, velocity, acceleration, and jerk) for each 
of the specified cam designs.  See Chapter 8 to review this procedure.

	 2	 Calculate the radius of curvature and pressure angle for trial values of prime circle radius, and 
size the cam to control these values.  A prime circle radius of 3 in gives acceptable pressure 
angles and radii of curvature.  See Chapter 8 to review these calculations.

	 3	 With the kinematics of the cam defined, we can address its dynamics.  To solve equation 15.1a 
for the cam force, we will assume a value of 50 lb/in for the spring constant k and adjust the 
preload Fpl for each design to obtain a minimum dynamic force of about 10 lb.  For design 1 
this requires a spring preload of 28 lb; for design 2, 15 lb; and for design 3, 10 lb.  

	 4	 The value of damping c is calculated from equation 15.2i.  The kinematic parameters x, v, and 
a are known from the prior analysis.

	 5	 Program Dynacam will do these computations for you.  The dynamic forces that result from 
each design are shown in Figure 15‑14 and the torques in Figure 15‑15.  Note that the force is 
largest for design 1 at 82-lb peak and least for design 3 at 53-lb peak.  The same ranking holds 
for the torques which range from 96 lb-in for design 1 to 52 lb-in for design 3.  These represent 
reductions of 35% and 46% in the dynamic loading due to a change in the kinematic design.  
Not surprisingly, the sixth-degree polynomial design which had the lowest acceleration also 
has the lowest forces and torques and is the clear winner.  Open the files E08‑06.cam, E08-07.
cam, and E08-08.cam in program Dynacam to see these results.

15.6	 MEASURING DYNAMIC FORCES AND ACCELERATIONS

As described in previous sections, cam-follower systems tend to be underdamped.  This 
allows significant oscillations and vibrations to occur in the follower train.  Dynamic 
forces and accelerations can be measured fairly easily in operating machinery.  Compact, 
piezoelectric force and acceleration transducers are available that have frequency response 
ranges in the high thousands of hertz.  Strain gages provide strain measurements that are 
proportional to force and have bandwidths of a kilohertz or better.  

Figure 15‑16 shows acceleration and force curves as measured on the follower train 
of a single overhead camshaft (SOHC) valve train in a 1.8-liter four-cylinder inline en-
gine.[2]  The nonfiring engine was driven by an electric motor on a dynamometer.  The 
camshaft is turning at 500, 2000, and 3000 rpm (1000, 4000, and 6000 crankshaft rpm), 
respectively, in the three plots of Figure 15-16a, b, and c.  Acceleration was measured with 
a piezoelectric accelerometer attached to the head of one intake valve, and the force was 
calculated from the output of strain gages placed on the rocker arm for that intake valve.  
The theoretical follower acceleration curve (as designed) is superposed on the measured 
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FIGURE 15-14
Dynamic forces in three di�erent designs of a single-dwell cam
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FIGURE 15-15
Dynamic input torque in three di�erent designs of a single-dwell cam
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FIGURE 15-16
Valve acceleration and rocker arm force in a single-overhead-cam valve train

(a )  500 rpm

(b )  2000 rpm

(c )  3000 rpm

Copyright © 2018 Robert L. Norton:  All Rights Reserved
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acceleration curve.  All acceleration measurements are converted to units of mm/deg2 
(i.e., normalized to camshaft speed) to allow comparison with one another and with the 
theoretical acceleration curve.

At 500 camshaft rpm, the measured acceleration closely matches the theoretical ac-
celeration curve with some minor oscillations due to spring vibration.  At 2000 camshaft 
rpm, significant oscillation in the measured acceleration is seen during the first positive 
and in the negative acceleration phase.  This is due to the valve spring vibrating at its 
natural frequency in response to excitation by the cam. This is called “spring surge” and is 
a significant factor in valve spring fatigue failure.  At 3000 camshaft rpm, the spring surge 
is still present but is less prominent as a percentage of total acceleration.  The frequency 
content of the cam’s forcing function passed through the first natural frequency of the 
valve spring at about 2000 camshaft rpm, causing the spring to resonate.  The same effects 
can be seen in the rocker arm force.  Everything in a machine tends to sympathetically 
vibrate at its own natural frequency when excited by any input forcing function.  Sensitive 
transducers such as accelerometers will pick up these vibrations as they are transmitted 
through the structure.

15.7	 PRACTICAL CONSIDERATIONS

Koster[1] proposes some general rules for the design of cam-follower systems for high-
speed operation based on his extensive dynamic modeling and experimentation.  

To minimize the positional error and residual acceleration:

	 1	 Keep the total lift of the follower to a minimum.

	 2	 If possible, arrange the follower spring to preload all pivots in a consistent direction 
to control backlash in the joints.

	 3	 Keep the duration of rises and falls as long as possible.

	 4	 Keep follower train mass low and follower train stiffness high to increase natural 
frequency.

	 5	 Any lever ratios present will change the effective stiffness of the system by the square 
of the ratio.  Try to keep lever ratios close to 1.

	 6	 Make the camshaft as stiff as possible both in torsion and in bending. This is per-
haps the most important factor in controlling follower vibration.

	 7	 Reduce pressure angle by increasing the cam pitch circle diameter.

	 8	 Use low backlash or antibacklash gears in the camshaft drive train.
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15.10	 PROBLEMS

Program Dynacam may be used to solve these problems where applicable.  Where units 
are unspecified, work in any consistent units system you wish.  Appendix D contains some 
pages from a catalog of commercially available helical coil springs to aid in designing 
realistic solutions to these problems.   Other spring information can be found on the Web.

	*†‡15‑1	 Design a double-dwell cam to move a 2-in-dia roller follower of mass = 2.2 bl from 0 
to 2.5 inches in 60° with modified sine acceleration, dwell for 120°, fall 2.5 inches in 
30° with cycloidal motion, and dwell for the remainder.  The total cycle must take 4 
sec.  Size a return spring and specify its preload to maintain contact between the cam 
and follower.  Calculate and plot the dynamic force and torque.  Assume damping of 
0.2 times critical.  Repeat for a form-closed cam.  Compare the dynamic force, torque, 
and natural frequency for the form-closed design and the force-closed design.

	*†‡15‑2	 Design a double-dwell cam to move a 2-in-dia roller follower of mass = 1.4 bl from 
0 to 1.5 inches in 45° with 3-4-5 polynomial motion, dwell for 150°, fall 1.5 inches in 
90° with 4-5-6-7 polynomial motion, and dwell for the remainder.  The total cycle must 
take 6 sec.  Size a return spring and specify its preload to maintain contact between the 
cam and follower.  Calculate and plot the dynamic force and torque.  Assume damp-
ing of 0.1 times critical.  Repeat for a form-closed cam.  Compare the dynamic force, 

	
*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Dynacam.

Topic/Problem Matrix

 15.1 Dynamic Force Analy-
sis and Resonance

15-6, 15-25, 15-27, 
15-28, 15-29

 15.3 Kinetostatic Force 
Analysis

15-7, 15-8, 15-9,  
15-10, 15-11, 15-12,  
15-13, 15-14,15-18, 
15-19, 15-20, 
15-21,15-22,15-23, 
15-24, 15-30

 15.5 Camshaft Torque

15-1, 15-2, 15-3, 
15-4, 15-5, 15-15,  
15-16, 15-17, 15-31, 
15-32

 

TABLE  P15-0
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	*†‡15‑3	 Design a single-dwell cam to move a 2-in-dia roller follower of mass = 3.2 bl from 0 to 
2 inches in 60°, fall 2 inches in 90°, and dwell for the remainder.  The total cycle must 
take 5 sec.  Use a seventh-degree polynomial.  Size a return spring and specify its pre-
load to maintain contact between the cam and follower.  Calculate and plot the dynamic 
force and torque.  Assume damping of 0.15 times critical.  Repeat for a form-closed 
cam.  Compare the dynamic force, torque, and natural frequency for the form-closed 
design and the force-closed design.

	*†‡15‑4	 Design a three-dwell cam to move a 2-in-dia roller follower of mass = 0.4 bl from 0 to 
2.5 inches in 40°, dwell for 100°, fall 1.5 inches in 90°, dwell for 20°, fall 1 inch in 30°, 
and dwell for the remainder.  The total cycle must take 10 sec.  Choose suitable pro-
grams for the rise and fall to minimize dynamic forces and torques.  Size a return spring 
and specify its preload to maintain contact between the cam and follower.  Calculate 
and plot the dynamic force and torque.  Assume damping of 0.12 times critical.  Repeat 
for a form-closed cam. Compare the dynamic force, torque, and natural frequency for 
the form-closed design and the force-closed design.

	*†‡15‑5	 Design a four-dwell cam to move a 2-in-dia, 1.25 bl mass roller follower from 0 to 2.5 
inches in 40°, dwell for 100°, fall 1.5 inches in 90°, dwell for 20°, fall 0.5 inch in 30°, 
dwell for 40°, fall 0.5 inch in 30°, and dwell for the remainder.  The total cycle is 15 
sec.  Choose suitable programs for the rise and fall to minimize dynamic forces and 
torques.  Size a return spring and specify its preload to maintain contact between the 
cam and follower.  Calculate and plot the dynamic force and torque.  Assume damp-
ing of 0.18 times critical.  Repeat for a form-closed cam. Compare the dynamic force, 
torque, and natural frequency for the form-closed design and the force-closed design.

	*†‡15‑6	 A mass-spring damper system as shown in Figure 15‑1b has the values shown in Table 
P15-1.  Find the undamped and damped natural frequencies and the value of critical 
damping for the system(s) assigned.

	 †15-7	 Figure P15-1 shows a cam-follower system.  The dimensions of the solid, rectangular 
2 x 2.5 in cross-section aluminum arm are given.  The cutout for the 2-in-diameter, 
1.5-in-wide steel roller follower is 3 in long.  Find the arm’s mass, center of gravity 
location, and mass moment of inertia about both its CG and the arm pivot.  Create a 
linear, one-DOF lumped mass model of the dynamic system referenced to the cam-
follower and calculate the cam-follower force for one revolution.  The cam is a pure 
eccentric with eccentricity = 0.5 in and turns at 500 rpm.  The spring has a rate of 123 
lb/in and a preload of 173 lb.  Ignore damping.

	 †‡15-8	 Repeat Problem 15-7 for a double-dwell cam to move the roller follower from 0 to 2.5 
inches in 60° with modified sine acceleration, dwell for 120°, fall 2.5 inches in 30° 
with cycloidal motion, and dwell for the remainder.  Cam speed is 100 rpm.  Choose a 
suitable spring rate and preload to maintain follower contact.  Select a spring from Ap-
pendix D.  Assume a damping ratio of 0.10.  

	 †‡15-9	 Repeat Problem 15-7 for a double-dwell cam to move the roller follower from 0 to 
1.5 inches in 45° with 3-4-5 polynomial motion, dwell for 150°, fall 1.5 inches in 90° 
with 4-5-6-7 polynomial motion, and dwell for the remainder.  Cam speed is 250 rpm.  
Choose a suitable spring rate and preload to maintain follower contact.  Select a spring 
from Appendix D.  Assume a damping ratio of 0.15.  

	†‡15-10	 Repeat Problem 15-7 for a single-dwell cam to move the follower from 0 to 2 inches in 
60°, fall 2 inches in 90°, and dwell for the remainder.  Use a seventh-degree polynomial.  
Cam speed is 250 rpm.  Choose a suitable spring rate and preload to maintain follower 
contact.  Select a spring from Appendix D.  Assume a damping ratio of 0.15.  

	
*  Answers in Appendix F.
	
†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Dynacam.

a
b
c
d
e
f

m

1.2
2.1

30.0
4.5
2.8

12.0

k

14
46

2
25
75
50

c

1.1
2.4
0.9
3.0
7.0

14.0

TABLE  P15-1
Problem 15-6
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Dynacam.

	†‡15-11	 Repeat Problem 15-7 for a double-dwell cam to move the roller follower from 0 to 2 
inches in 45° with cycloidal motion, dwell for 150°, fall 2 inches in 90° with modified 
sine motion, and dwell for the remainder.  Cam speed is 200 rpm.  Choose a suitable 
spring rate and preload to maintain follower contact.  Select a spring from Appendix D.  
Assume a damping ratio of 0.15.  

	†‡15-12	 The cam in Figure P15-2 is a pure eccentric with eccentricity e = 20 mm and turns at 
200 rpm.  Follower mass = 1 kg.  The spring has a rate of 10 N/m and a preload of 0.2 
N.  Find the follower force over one revolution.  Assume a damping ratio of 0.10.  If 
there is follower jump, redefine the spring rate and preload to eliminate it.

	†‡15-13	 Repeat Problem 15-12 using a cam with a 20-mm symmetric double harmonic rise and 
fall (180° rise and 180° fall).  See Chapter 8 for cam formulas.

	†‡15-14	 Repeat Problem 15-12 using a cam with a 20-mm 3-4-5-6 polynomial rise and fall 
(180° rise and 180° fall).  See Chapter 8 for cam formulas.

	†‡15‑15	 Design a double-dwell cam to move a 50-mm-dia roller follower of mass = 2 kg from 
0 to 45 mm in 60° with modified sine acceleration, dwell for 120°, fall 45 mm in 90° 
with 3-4-5 polynomial motion, and dwell for the remainder.  The total cycle must take 
1 sec.  Size a return spring and specify its preload to maintain contact between the cam 
and follower.  Select a spring from Appendix D.  Calculate and plot the dynamic force 
and torque.  Assume damping of 0.25 times critical.  Repeat for a form-closed cam.  
Compare the dynamic force, torque, and natural frequency for the form-closed design 
and the force-closed design.

	†‡15‑16	 Design a single-dwell cam using polynomials to move a 50-mm-dia roller follower of 
mass = 10 kg from 0 to 25 mm in 60°, fall 25 mm in 90°, and dwell for the remainder.  
The total cycle must take 2 sec.  Size a return spring and specify its preload to maintain 
contact between the cam and follower.  Select a spring from Appendix D.  Calculate 
and plot the dynamic force and torque.  Assume damping of 0.15 times critical.  Repeat 
for a form-closed cam.  Compare the dynamic force, torque, and natural frequency for 
the form-closed design and the force-closed design.

	†‡15‑17	 Design a four-dwell cam to move a 50-mm-dia roller follower of mass = 3 kg from 0 
to 40 mm in 40°, dwell for 100°

61210
2

2.5

all dimensions
in inches

Section A-A

A

A

Arm

Cam

Oil

1

FIGURE P15-1
Problems 15-7 to 15-11 and 15-27

ω

r

FIGURE P15-2
Problems 15-12 to 15-14,
15-26, 15-28 to 15-32

s = e cos ωt

e
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Dynacam.

dwell for 40°, fall 10 mm in 30°, and dwell for the remainder.  The total cycle must take 
10 sec.  Choose suitable programs for the rise and fall to minimize dynamic forces and 
torques.  Size a return spring and specify its preload to maintain contact between the 
cam and follower.  Calculate and plot the dynamic force and torque.  Assume damp-
ing of 0.25 times critical.  Repeat for a form-closed cam. Compare the dynamic force, 
torque, and natural frequency for the form-closed design and the force-closed design.

	†‡15-18	 Design a cam to drive an automotive valve train whose effective mass is 0.2 kg. ζ = 
0.3.  Valve stroke is 12 mm.  Roller follower is 10 mm diameter.  The open-close event 
occupies 160° of camshaft revolution; dwell for remainder.  Use one or two polynomi-
als for the rise-fall event.  Select a spring constant and preload to avoid jump to 3500 
rpm.  Fast opening and closing and maximum open time are desired.

	†‡15-19	 Figure P15-3 shows a cam-follower system that drives slider 6 through an external 
output arm 3.  Arms 2 and 3 are both rigidly attached to the 0.75-in-dia shaft X-X, 
which rotates in bearings that are supported by the housing.  The pin-to-pin dimensions 
of the links are shown.  The cross sections of arms 2, 3, and 5 are solid, rectangular 1.5 
x  0.75 in steel.  The ends of these links have a full radius equal to one-half of the link 
width.  Link 4 is 1-in-dia x 0.125 wall round steel tubing.  Link 6 is a 2-in-dia x 6-in-
long solid steel cylinder.  Find the effective mass and effective spring constant of the 
follower train referenced to the cam-follower roller if the spring at A has a rate of 150 
lb/in with a preload of 60 lb. Then determine and plot the kinetostatic follower force 
and camshaft torque over one cycle if the cam provides a 3-4-5 polynomial double-
dwell angular motion to roller arm 2 with a rise of 10° in 90 camshaft degrees, dwell 
for 90°, fall 10° in 90°, and dwell for the remainder.  The camshaft turns 100 rpm.

	†‡15-20	 Repeat problem 15-19 for a cam that provides a double-dwell cycloidal displacement 
rather than a 3-4-5 polynomial displacement.

	†‡15-21	 A single-dwell cam-follower system similar to that shown in Figure 15-1a provides 
a two-segment polynomial for a rise of 35 mm in 75°, a fall of 35 mm in 120°, and a 
dwell for the remainder of the cycle. Using equations 15.8 and 15.10, calculate and plot 
the dynamic force and torque for one cycle if the roller follower train weighs 2.34 N, 

B
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FIGURE P15-3
Problem 15-19 to 15-20
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†  These problems are suited 
to solution using Mathcad, 
Matlab, or TKSolver equa-
tion solver programs.
	
‡  These problems are suited 
to solution using program 
Dynacam.

the system has a damping ratio of ζ = 0.06, and the spring has a rate of 1.5 N/mm with 
a preload of 10 N.  The cam turns at 20 rpm.

	†‡15-22	 A single-dwell cam-follower system similar to that shown in Figure 15-1a provides 
a two-segment polynomial for a rise of 35 mm in 75°, a fall of 35 mm in 120°, and a 
dwell for the remainder of the cycle. Using equations 15.8, size a return spring and 
specify its preload to maintain contact between the cam and follower.  Then calculate 
and plot the dynamic force for one cycle if the roller follower train weighs 3.55 N, the 
system has a damping ratio of ζ = 0.06, and the cam turns at 100 rpm.

	†‡15-23	 A single-dwell cam-follower system similar to that shown in Figure 15-1a provides a 
constant velocity to the follower of 100 mm/sec for 2 sec then returns to its starting 
position with a total cycle time of 3 sec. Using equations 15.8 and 15.10, calculate and 
plot the dynamic force and torque for one cycle if the roller follower train weighs 4.5 N, 
the system has a damping ratio of ζ = 0.06, and the spring has a rate of 2.5 N/mm with 
a preload of 50 N.

	†‡15-24	 A single-dwell cam-follower system similar to that shown in Figure 15-1a provides a 
constant velocity to the follower of 100 mm/sec for 2 sec then returns to its starting 
position with a total cycle time of 3 sec. Using equations 15.8, size a return spring and 
specify its preload to maintain contact between the cam and follower.  Then calculate 
and plot the dynamic force for one cycle of the roller. 

	†15-25	 As stated in Section 15.2, “A common rule of thumb is to design the (cam-follower) 
system to have a fundamental frequency ωn at least ten times the highest forcing fre-
quency expected in service...”  Since this is not always possible, calculate and plot the 
amplitude ratio resulting from 5 ≤ ωωn/ωωf ≤ 10 for damping ratios of 0, 0.02, 0.04, 
0.06, 0.08, and 0.10.

	†15-26	 A cam-follower system similar to that shown in Figure P15-2 has a lumped mass of 0.1 
kg, lumped stiffness of 0.10 N/mm, and a damping coefficient of 0.40 kg/s.  If the forc-
ing frequency is 50 rpm, determine the resulting amplitude ratio.

	†15-27	 A cam-follower system similar to that shown in Figure P15-1 has a lumped mass of 2.5 
kg, lumped stiffness of 4 N/mm, and a damping coefficient of 12.0 kg/s.  If the forcing 
frequency is 80 rpm, determine the resulting amplitude ratio.

	†15-28	 Calculate and plot the amplitude ratio of the cam-follower system of Problem 15-26 for 
a forcing frequency ranging from 0 to 600 rpm.

	†15-29	 Calculate and plot the phase angle between the applied force and the displacement of 
the cam-follower system of Problem 15-26 for a forcing frequency ranging from 0 to 
600 rpm.

	†15-30	 The cam in Figure P15-2 is a pure eccentric with eccentricity e = 1 in and turns at 200 
rpm.  The mass of the follower is 0.01 blobs and the damping ratio is 0.10.  Select a 
spring from Appendix D and a preload such that there is no follower jump.  The spring 
must fit in a 5/8-in hole.  Hint: start the iteration with a spring rate of 1 lb/in and a 
preload of 1 lb.

	†15-31	 Calculate and plot the camshaft torque on the cam-follower system of Problem 15-30 for 
one revolution of the cam.  Use a spring with stiffness of 2 lb/in and a preload of 2 lb.

	†15-32	 Calculate and plot the camshaft torque on the cam-follower system of Problem 15-26 
for one revolution of the cam, which has an offset of e = 25 mm.  Use a spring with a 
stiffness of 0.35 N/mm and a preload of 10 N.

15.11 VIRTUAL  
LABORATORY

View the downloadable 
video Cam_machine_
virtual_laboratory.mp4

View the video (21:28)

  Open the file Cam_Vir-
tual_Lab.zip and follow 
the instructions as di-
rected by your professor.  
Focus on the dynamic 
force measurements.

View the lab handout

http://www.designofmachinery.com/DOM/Cam_machine_virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Cam_Virtual_Lab.zip


Chapter16
CAM- AND SERVO-DRIVEN 
MECHANISMS
A professor must have a theory just as a dog must have fleas

H. L. Mencken

16.0	 INTRODUCTION

A servomechanism uses feedback to control the system’s output, such as its position and 
velocity.  A desired control signal is applied to the motor and a transducer measures the 
output and feeds back information on its actual position.  Any difference between the 
control signal and the fed-back output is an error that is amplified and used to force the 
system in a direction to reduce or eliminate the error.  This is an application of control 
theory.  An example is the cruise-control system in an automobile which takes as input 
a set speed and feeds back the vehicle’s actual speed.  Any difference is used to adjust 
throttle position until the error is brought as close to zero as possible.

Servomotors were introduced briefly in Chapter 2.  They now are being used fre-
quently in modern machinery, in part because they have become less costly than in the 
past. They offer many advantages over conventional motors because they can provide 
constant speed against dynamic variations in load torque due to their closed-loop opera-
tion.  An encoder is built into or attached to the motor that provides a large number of 
equispaced pulses per revolution.  This train of pulses is fed back to the computer-driven 
motor controller, which varies the current to the motor to maintain constant speed or pro-
vide any programmed variation in speed.  The motor can also be made to hold an angular 
position against a load, thus creating a dwell on the output motion of any mechanism 

16
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driven by the motor. Many motion functions can be programmed into the controller to 
accelerate the motor to a set speed and decelerate it to a different speed or to zero.  It can 
be made to follow any motion function, similar to a cam-driven follower.

Cams were discussed in Chapter 8 and are used in all kinds of machinery, most often 
to drive a linkage mechanism.  A function generator was defined in Chapter 3 as the 
correlation of an output motion with an input motion in a mechanism.  The cam-follower 
mechanism was also noted to be a flexible and useful function generator.  A servomotor 
can generate any output motion that can be programmed into it and that can be dynami-
cally achieved within the limits of the motor’s torque capability.  So, we can now add the 
servomotor to linkage and cam-follower mechanisms as a potential means for function 
generation.  More importantly, the combination of a servomotor and a linkage can create 
an even more useful device for the solution of some motion generation problems.  In fact, 
in many cases cam-driven-linkage mechanisms are being replaced by servomotor-driven 
linkages in machinery.

16.1	 SERVOMOTORS

Both electric and hydraulic servomotors are widely available.  We will limit this discus-
sion to electric servomotors, both rotary and linear.  The first electric servomotors were 
direct current (DC) and used an analog tachometer to provide velocity feedback.  This 
allows the motor to run at close to constant speed in the face of dynamically varying torque 
loads.  As the motor slows down or speeds up under changing load, the tachometer signal 
that is being fed back to the controller provides a measurement of the actual velocity.  The 
difference between the command or setpoint velocity and the actual velocity constitutes 
an error.  The current to the motor is automatically and continuously adjusted to minimize 
the error between the setpoint velocity and actual velocity.  

Modern servomotors come in many varieties, among them DC servomotors based on 
conventional DC motor designs, alternating current (AC) servomotors based on induction 
motors, and the so-called brushless servomotor, which uses a synchronous AC motor that 
locks onto the frequency of the AC supplied.  For this, the mains’ AC is rectified to DC in 
the brushless motor’s controller then inverted back to AC at different frequencies as dic-
tated by feedback from the digital encoder on the motor.  The frequency of the amplified 
current sent to the motor is varied by the digital motor controller and amplified to control 
motor speed.  Because the motor’s angular position is fed back to the motor controller, this 
type of servomotor can be made to move to a specified angular location, hold that position, 
and return to zero, all with controlled velocity and acceleration.  The train of pulses from 
the position encoder or resolver is differentiated to obtain information on motor angular 
velocity in addition to angular position information.  The velocity feedback controls motor 
speed.  A block diagram of this system is shown in Figure 16-1.

Linear servomotors are essentially a rotary motor that has been “unwrapped” into a 
straight line.  They are made as both moving coil and moving magnet types. A moving 
coil linear motor has a coil moving within an assembly of powerful magnets arranged to 
form a “track.”  There is an air gap between coil and magnets.  An applied DC voltage 
causes the coil to move with constant force.  A moving magnet type swaps the roles of 
coil and magnets with a magnet being pulled through the coil by its magnetic field.  With 
either type, reversing polarity reverses motion and position feedback is provided by a 

FIGURE 16-1
Typical servomotor 
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linear optical or inductive encoder along the track.  Linear servomotors, also called linear 
actuators, are capable of very high force, high speed, and high accelerations.  Most linear 
servomotors require that the moving element be guided in bearings to maintain the air gap 
between the elements.  Modern “Maglev” high speed trains* work on the same principle 
with the linear motor extending the length of the track and the magnetic flux doing double 
duty by lifting (levitating) the mass of the train off the track to reduce friction to the very 
low levels of an air bearing.

16.2	 SERVO MOTION CONTROL

We will not address the control of servos beyond the mathematics of their motion control 
functions.  The topic of programming and controlling servos lies well beyond the scope 
of this text and many books exist that cover this topic in detail.  Some are noted in the 
bibliography of this chapter.  

Servo Motion Functions

The same rules surrounding dynamic motion described for cam-follower systems in Chap-
ter 8 also apply to servo motion.  Newton’s second law is universal and applies regardless 
of the means used to provide the motion.  Thus the fundamental law of cam design defined 
in Chapter 8 can be restated and applied to servomotor motions as:
The servomechanism function must be piecewise continuous through the first and second derivatives 
of displacement across the entire interval (360 degrees or one cycle).

Corollary:
The jerk function must be finite across the entire interval (360 degrees or one cycle).

We will call this the fundamental law of servomechanism design.

The same set of acceptable functions defined for cams in Chapter 8 can be used 
for servo motions, and the ones listed as unacceptable in Chapter 8 should be avoided.  
Unfortunately, some suppliers of servo controllers provide these dynamically inferior 
functions as choices in their servo programming software.  One of the largest suppliers 
(manufacturer A) offers only two types of acceleration functions in its basic controller, one 
of which, called trapezoidal velocity, is the same as the constant acceleration (parabolic 
displacement) function shown in Figure 8-13.  This function has infinite jerk at its ends 
because the acceleration rises instantly from zero to its maximum value and for that reason 
is rejected as a usable motion function since it violates the fundamental law.  The other 
offering from this supplier is called an “S-curve.”

S-curves  This term is used by most servo controller manufacturers but is defined 
differently depending on the manufacturer.  The name comes from the fact that any dis-
placement function between two dwells resembles a laid-down letter S as can be seen in 
Figure 8-23. The same manufacturer A mentioned above defines its S-curve as having 
constant jerk, linear acceleration, parabolic velocity, and cubic displacement.  While this 
function does not “break the fundamental law,” it is a poor choice dynamically when 
compared to other possible functions.  In fact, their S-curve is actually a trapezoidal ac-
celeration function as shown in Figure 8-14.  

*  Japan Railways operates 
Maglev (short for Mag-
netic Levitation) vehicles 
at speeds up to 350 mph on 
their 20-kilometer guideway 
in Yamanashi Prefecture.   
http://www.21stcentury
sciencetech.com/articles/
Summer03/maglev2.html
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A second major manufacturer B of servo controllers that offers many good choices of 
functions also has an S-curve but defines it to be sine acceleration or cycloidal displace-
ment, a dynamically superior motion when used between dwells.  So the designer needs 
to be careful when selecting both the controller and the functions offered within that 
controller’s software.  Table 16-1 shows the servo functions offered by manufacturer A, 
and Table 16-2 shows a subset of those offered by manufacturer B. Both tables show the 
manufacturer’s name for the function, the standard cam design name for the same func-
tion, and references a figure and equation(s) for that function as defined elsewhere in this 
text.  Each function’s compliance with the fundamental law is also noted and comments 
on the function are provided.

16.3	 CAM-DRIVEN LINKAGES

Chapter 8 showed how to design cams to obtain suitable s, v, a, j motions and Chapter 15 
showed how to determine dynamic forces and torques in simple cam-follower systems.  
Both of these chapters were limited to systems using a single translating link as the fol-
lower.  This is sufficient to explore the basics of cam design, but the fact is that most real 
cam-follower systems have the cam driving one link of a multibar linkage, referred to as 
a cam-driven linkage.  There are a number of advantages to this arrangement.  The cam 
provides a controlled set of s, v, a, j functions to the input link, and the linkage geometry 
modifies that motion, perhaps to deliver the motion to a location remote from the cam as 
shown in Figures 10-11 and 16-2.  The linkage can be of any suitable configuration but 
the most common cam-driven combinations are a fourbar triple-rocker linkage, a fourbar 

S-curve Trapezoidal  acceleration 8-14 Yes Marginally acceptable choice

Trapezoidal velocity Constant acceleration 8-13 No Not an acceptable choice

Manufacturer’s Term Cam Function Term Figure Eqns. Fund. Law Comments

TABLE  16-1 Servo Motion Functions O�ered by Manufacturer A 

Modified trapezoidal Modified trapezoidal 8-15 8-15a–8-21a Yes High vibration

Triple harmonic Fourier-3 function Yes Low harmonic content

Match to adjacent  segments
Constant velocity Constant velocity 8-8 No Match to adjacent  segments

Cubic spline Cubic spline Yes Discontinuous jerk
Quadratic spline Quadratic spline No Discontinuous acceleration
Polynomial Polynomial 8-25, 8-26 8-24, 8-25 Yes Depends on boundary conds.
Sine-constant-cosine SCCA 8-17 8-15a–8-21a Yes Depends on  b, c, d values
Modified sine Modified sine 8-16 8-15a–8-21a Yes Low peak velocity, low vibration

Cycloidal (their S-curve) Cycloidal 8-12 8.7–8.12 Yes Very smooth, lowest vibration

Simple harmonic Simple harmonic motion 8-9 8-15a–8-21a No Not an acceptable choice
Constant acceleration Constant acceleration 8-13 No Not an acceptable choice

Constant position Dwell Yes

Manufacturer’s Term Cam Function Term Figure Eqns. Fund. Law Comments

TABLE  16-2 Some of the Servo Motion Functions O�ered by Manufacturer B 
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slider with either the crank or the slider driven by the cam, or a Watt II sixbar with either 
a rocker or slider output link.  

Depending on the particular linkage geometry, it may only slightly modify the s, v, a, j 
functions as input by the cam, or it could radically alter them.  The designer can choose to 
define the s, v, a, j motion at the cam roller follower and let the linkage geometry modify 
those functions at the linkage output link (end effector).  Or, the designer can choose to 
apply the desired s, v, a, j motion to the end effector and recalculate the cam shape to 
account for the linkage’s distortion of the motion.  In the latter case, the cam will have a 
different function cut into its shape.

The pushrod overhead valve mechanism of Figure 16-2a is an example of the first 
type mentioned above, which only slightly modifies the cam function’s shape.  Even if the 
rocker has unequal-length arms, the motion of the valve will be essentially the same shape 
in s, v, a, j as that of the tappet because the tappet motion is parallel to the valve motion 
and the rocker’s midposition is orthogonal to both motions, giving transmission angles 
of 90° at midstroke.  Any ratio in the rocker arms will serve to amplify the magnitudes of 
s, v, a, j but will essentially preserve their shapes with small distortion.*  The overhead 
camshaft mechanism of Figure 16-2b has a significant geometric change between the cam-
roller motion and valve motion due to the differences in angle between the vectors of valve 
displacement and roller displacement.  In this case, the designer applied the desired s, v, 
a, j functions to the valve-stem end of the rocker and calculated what the corresponding 
functions needed to be at the cam to get that result given the linkage geometry.  The cam 
was then contoured to generate the modified displacement function that gave the proper 
kinematic motion at the valve.

FIGURE 16-2
Cam-driven linkages

tappet

pushrod

rocker

cam

valve
spring

valve

2 cams

2 rocker arms

 2 valves

(b)  Overhead-camshaft valve train(a ) Overhead-valve train

	

* But, remember that any 
ratio between the cam fol-
lower and the end effector 
will modify the effective 
mass and spring rate by the 
square of that ratio.
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In either case the task becomes that of combining the kinematics of the chosen s, v, 
a, j functions, applied at the desired end of the mechanism, with the kinematics of the 
linkage to obtain the motion of the other end.  All the mathematical tools we need for this 
task have been developed in previous chapters of this book.  All that remains is to apply 
them, which we will now do with some examples.

✍EXAMPLE 16‑1

Cam-Driven Fourbar Slider With Motion Functions Applied to the Input Link

Given:	 A cam-driven fourbar crank-slider with the geometry shown in Figure 16-3 is 
driven by a cam with a constant velocity motion program similar to that developed 
in Example 8-12 and Figure 8-42. The slider is the end effector and must chase a 
constant velocity conveyor for at least 6 in at 10 in/sec with minimal velocity error 
and return to the start position to repeat the cycle.*  The motion functions are ap-
plied to the cam-follower arm.  The linkage was designed in a CAD system, which 
determined the geometry of Figure 16-3 and that 30° of crank rotation gives 6.435 
in of constant velocity motion at 1 Hz.

Problem:	 Compare the displacement and velocity functions applied to the cam follower (link 
2) and the resulting functions at the end effector of the linkage (link 4).  

Solution:	   

	 1	 The equations for the position of the crank-slider linkage were developed in Section 4.6, its 
velocity in Section 6.7, and acceleration in Section 7.3 and are repeated here for your conve-
nience.

θ =
θ −





= θ − θ

arcsin
sin

(4.16a)

cos cos (4.16b)

3
2

2 3

1

a c
b

d a b



ω =
θ
θ

ω

= − ω θ + ω θ

cos
cos

(6.22a)

sin sin (6.22b)

3
2

3
2

2 2 3 3

a
b

d a b



α =
α θ − ω θ + ω θ

θ

= − α θ − ω θ + α θ + ω θ

cos sin sin
cos

(7.16d)

sin cos sin cos (7.16e)

3
2 2 2

2
2 3

2
3

3

2 2 2
2

2 3 3 3
2

3

a a b
b

d a a b b

		  The terminology used in the equations is shown in Figure 16-3.

	 2	 The cam program has two segments: 220° of constant velocity at 49.066 05°/s for 30° of 
follower arm (crank) motion, and a fifth-degree polynomial return motion over 140°.  Total 
angular displacement of the crank is 33.2° in segment 2.   

	 3	 The boundary conditions for the polynomial in segment 1 are shown in Table 16-3.  
The boundary conditions for the polynomial in segment 2 are shown in Table 16-4.  
The normalized displacement equations for the cam functions as derived with program 
Dynacam with x = θ/β are as follows:†

*  The reader might reason-
ably wonder why anyone 
would bother to add the 
complexity of a linkage 
to the system when the 
same output motion could 
be obtained from a cam 
directly driving a translating 
follower.  One reason would 
be that it was not possible to 
mount and  power the cam 
adjacent to the end effec-
tor.  Another might be that 
the stroke would require a 
large cam to get acceptable 
pressure angles.  One can 
multiply the stroke of the 
cam follower by adding a 
linkage.

†  See Chap 8 for an 
explanation of normalized 
variables.
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		  Segment 1:

( ) ( )

( )

=

=
ω
β

=
π

=

=
ω
β

30.00 deg

30 2
3.8397

30 49.066 deg/ sec (16.1)

0 deg/ sec
2

2
2

S x

V

A

		  Segment 2:

( )
( )

= − + − + +

=
ω
β

− + − +

=
ω
β

− + −

294.546 736.364 490.909 19.091 30.00 deg

1472.73 2495.46 1472.73 19.091 deg/ sec (16.2)

5890.91 7486.38 2945.46 deg/ sec

5 4 3

4 3 2

2

2
3 2 2

S x x x x

V x x x

A x x x

	 4	 These S, V, A equations are the driving functions for the input crank of the linkage where  
w = 2p rad/sec for a 1-Hz cycle, and b is the angular duration of the motion in radians—3.8397 
rad for segment 1 and 2.4435 rad for segment 2.   

	 5	 The equations for the kinematic behavior of the linkage from step 1 must be solved at a set of 
discrete points (e.g., every degree of the cam cycle) to determine the behavior of the slider d.  
Equation 16.1 applies to the first 220° (constant velocity) and equation 16.2 to the last 140°.

	 6	 This is obviously a job for a computer and one was used to solve these equations.  A good 
approach is to use an equation solver such as Matlab, Mathcad, or TKSolver.  Plots of the 
polynomial motions from program Dynacam are shown in Figure 16-4.  

FIGURE 16-3
Cam-driven slider-crank linkage

ω2θ2 θ3α2
α3ω3

X

Y

y

x

ωcam

d

offset c = 0

a

r

cam

b

a = 12
b = 36
c = 0
r = 8

2
3

4

θ2min = 46.95°
= 80.16°θ2max

∆θ = 33.20°
6

11

∆d = 6.767

linear dimensions in inches

Rprime = 6

TABLE  16-3
Boundary
Conditions

When θ = 0: 
s = 0°,
v = 49.066 05 °/sec

Example 16-1, Segment 1 

TABLE  16-4
Boundary
Conditions

When θ = 0:
s = 30.000 05°,
v = 49.066 05 °/sec,
a = 0

When θ = 140°
s = 0 °,
v = 49.066 05 °/sec
a = 0

Example 16-1, Segment 2 



16

DESIGN OF MACHINERY 6ed      CHAPTER  16802

	 7	 Figure 16-5a shows the displacement of the follower arm and the slider superposed and nor-
malized to percent for comparison.   The nonlinear behavior of the linkage distorts the entire 
function.  Figure 16-5b shows the normalized velocities of follower arm and slider superposed. 
Note that the follower arm has constant angular velocity during the first segment but the slider 
does not have constant linear velocity. 

 	8	 Figure 16-6 shows the percent error between the crank arm and slider in both displacement 
and velocity.  The differences in this example are not extreme, mainly because the crank only 
rotates through 30° during the constant velocity motion.  The larger the angle of crank rotation, 
the larger the distortion in the output functions.  

 	9	 If the magnitude of the deviation from constant velocity is small enough to still allow proper 
function, then this solution will be adequate as is.  If the error is not tolerable, then the solu-
tion is to apply the desired motion function to the slider and calculate the linkage’s deviation 
in reverse to redefine the cam function to correct it.  The next example will do this.

	

cam angle (deg)

S

V

A

0 220 360

constant velocity 5th deg polynomial

33.2°

30°/sec

30°

1872°/sec2–187.5°/sec

–1872°/sec2

FIGURE 16-4
S, V, A functions as applied to cam-follower arm in Example 16-1
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FIGURE 16-5
Normalized input and output displacement and velocity for Example 16-1
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✍EXAMPLE 16‑2

Cam-Driven Fourbar Slider With Motion Functions Applied to the Output Link

Given:	 A cam-driven fourbar crank-slider with the geometry shown in Figure 16-3 is 
driven by a cam with a constant velocity motion program similar to that developed 
in Example 8-12 and Figure 8-42. The slider is the end effector and must chase a 
constant velocity conveyor for at least 6 inches at 10 in/sec with minimal velocity 
error and then return to the start position to repeat the cycle.  The motion functions 
are applied to the slider and converted to modified functions to be applied to the 
cam-follower arm with a modified contour cam running at 1 Hz.

Problem:	 Compare the displacement, velocity, and acceleration functions between the cam 
follower (link 2) and the end effector of the linkage (link 4) and compare the cam 
profile for this solution to that of Example 16-1.

Solution:	

 1	 The linkage geometry is the same as shown in Figure 16-3.    

	 2	 The equations that define the motion of the slider-crank when driven at the slider rather than at 
the crank take on a different form than those shown in Example 16-1.  The vector loop equa-
tion for both cases is the same, so equations 4.14a, b, c, and 4.15a, b apply to both cases.  The 
derivation starts with the above noted equations for either mode of operation.   The simultane-
ous solution of equations 14.15a, b for the crank-driven mode is done by simple substitution as 
shown in equations 4-16a, b.  However, solving for the slider-driven mode with slider position 
d as the input is more complex because both variables now sought, θ2 and θ3, are contained 
in transcendental expressions in both equations 4.15a and 4.14b.  This requires the derivation 
done in equations 4.18 to 4.21 to find θ2 and θ3 as functions of slider position d.

  	3	 The derivation for crank velocity is done in equations 6.24 and for crank acceleration in equa-
tions 7.17. The results of these derivations for θ2, w2, and a2, as a function of slider position 
d, velocity d , acceleration d , and linkage geometry a, b, c (shown in Figure 16-3) are used 
in the following steps.
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FIGURE 16-6
Normalized error in displacement and velocity for Example 16-1
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	 4	 The angular velocities ω2 and ω3 as a function of slider velocity and link geometry are:



( )ω =
θ

θ θ − θ θ

ω =
ω θ

θ

cos
cos sin sin cos

(16.4)
cos

cos

2
3

2 3 2 3

3
2 2

3

d
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a
b

	 5	 The angular accelerations α2 and α3 as a function of slider acceleration and link geometry are:



α

α
α

( )
( )=

ω − ω θ − θ − θ
θ − θ

=
θ − ω θ + ω θ

θ

cos cos
sin
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2
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2 3
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3

b a d
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a a b
b

	 6	 The cam program has two segments: 220°  of constant velocity at 10 in/s over 30° of follower 
arm (crank) motion, and a fifth-degree polynomial return motion over 140°.  Total displace-
ment is 6.767 in.  

	 7	 The boundary conditions for the polynomial in segment 1 are shown in Table 16-5.  The bound-
ary conditions for the polynomial in segment 2 are shown in Table 16-6.  The s, v, a functions 
as derived with program Dynacam are:

		  Segment 1:

( ) ( )
=

=
ω
β

=
π

=

=

6.114 in

6.114 2
3.8397

6.114 10 in/sec (16.6)
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60.029 150.073 100.049 3.891 6.114 in

300.145 600.292 300.147 3.891 in/sec (16.7)

1200.58 1800.88 600.294 in/sec

5 4 3

4 3 2

2

2
3 2 2

S x x x x

V x x x

A x x x

TABLE  16-5
Boundary
Conditions

When θ = 0:
S = 0,
V = 6.114 in/sec

Example 16-2, Segment 1

TABLE  16-6
Boundary
Conditions

When θ = 0:
s = 6.114 210 in,
v = 10 in/sec,
a = 0

When θ = 140°
s = 0,
v = 10 in/sec,
a = 0

Example 16-2, Segment 2
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	 8	 Equation 16.6 applies to the first 220° and equation 16.7 to the last 140°.  The normalized 
variable x = θ/β runs from 0 to 1.  The S, V, A diagrams for these polynomial motions as ap-
plied to the slider are shown in Figure 16-7.  Note that the displacement is now in length units 
rather than degrees as was the case in the previous example (Figure 16-4).

	 9	 The equations for the kinematic behavior of the linkage from equations 16.3 through 16.5 must 
be solved at a set of discrete points (e.g., every degree of the cam cycle) using the functions of 
equations 16.7 and 16.8 as input to the slider to determine the behavior of the crank arm.  The 
crank arm displacement is then used to calculate the required cam profile. 

	10	 This is obviously a job for a computer and one was used to solve these equations.  A good ap-
proach is to use an equation solver such as Matlab, Mathcad, or TkSolver. The problem can be 
solved numerically using discrete representations of the motion functions calculated at every 
degree or fraction thereof.

	11	 Figure 16-8a shows the displacement of the slider and the crank arm superposed and normal-
ized to percent for comparison.   The nonlinear behavior of the linkage distorts the entire 
function.  Figure 16-8b shows the normalized velocities of follower arm and slider superposed. 
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FIGURE 16-7
S,V,A functions as applied to slider in Example 16-2
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FIGURE 16-8
Normalized input and output displacement and velocity for Example 16-2
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Note that the slider has constant linear velocity during the first segment but the crank arm does 
not have constant angular velocity. 

12	 Figure 16-9 shows the percent difference between the crank arm and slider in both displace-
ment and velocity.  The distorted crank arm functions serve to correct the error introduced by 
linkage geometry and give the designed motions at the slider.  

	13	 Figure 16-10 shows the difference in radius to the roller center for the cam of Example 16-1 and 
that of Example 16-2.  The first has the desired functions applied to its follower.  The second 
has the functions applied to the slider with the cam profile recalculated to remove the linkage 
geometry error.  The largest radial difference between the cams is nearly 0.2 in.

Whatever the linkage configuration, the exercise outlined in the above two examples 
will apply.  The cam-motion functions and the equations that define the linkage motion 
transfer function must be combined, working from input to output, or vice versa, depend-
ing on whether you want to apply the theoretical cam functions to the input or output ends 
of the mechanism.

16.4	 SERVO-DRIVEN LINKAGES

Applications that have traditionally used cam-driven linkages for pick-and-place opera-
tions, conveyor chasing motions, and other assembly tasks are increasingly using linkage 
mechanisms directly driven by a servomotor through a gear reducer.   The pros and cons 
of this approach versus the traditional cam-driven linkage are addressed in a later section 
of this chapter.  

If the need is simply to move the end effector of the linkage from a start position 
(perhaps in a dwell) to a final position and hold it there in dwell before returning, then 
appropriate mathematical functions from the collection of acceptable double-dwell cam-
follower functions can be applied directly to the servo axis.  This situation is analogous 
to the critical extreme position (CEP) cam design case described in Chapter 8 where the 
path motion between the end positions is not critical.  Nevertheless, when selecting mo-
tion functions to drive the servo axis, be sure to observe the fundamental law of servo-
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FIGURE 16-9
Di�erence in displacement and velocity between slider and cam follower in Example 16-2
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mechanism design described in an earlier section of this chapter.  The distortion of motion 
between the endpoints introduced by the linkage may not be detrimental to function in the 
CEP case except to the degree that it increases accelerations on the members.  Links must 
be designed to withstand dynamic loads from their accelerations and motors selected to 
provide the needed torque.  Most mechanical failures of this type of mechanism occur dur-
ing acceleration when starting or stopping, especially during an emergency stop when the 
servomotors must dynamically brake the system to a stop in one or a few machine cycles.

In cases where critical intermediate positions or velocities are specified between the 
endpoints, distortion of the motion functions can be a problem.  This is analogous to the 
critical path motion (CPM) case described for cam mechanisms in Chapter 8.  Also, if 
the input link driven by the servomotor (i.e., the crank of a crank-slider, fourbar, or sixbar 
mechanism) needs to rotate through a significant angle, it will give greater distortion than 
was the case in the two previous examples.  In such cases, it can become critical to modify 
the servomotor’s control function to account for the linkage geometry’s distortion and 
create the desired precision motion at the linkage end effector.  The best way to illustrate 
this process is with an example.

✍EXAMPLE 16‑3

Slider-Crank Linkage Driven by a Servomotor to Perform a Forming Operation

Given:	 A slider-crank linkage mechanism (Figure 16-11) has been designed to provide the 
geometry for a suitable motion of a die in a forming press.  The required motion 
begins from a dwell and moves the slider through a 2-in stroke ending at TDC with 
crank angle θ2 = 0.  The die needs to be brought to zero velocity for an instant at 
1.588-in stroke then advanced into the material.  It is then pulled back to dwell at 
1.400 in before returning to zero.  The slider motion timing diagram is shown in 
Figure 16-11.  Rather than design a custom cam to provide the motion and dwells 
to the linkage crank, it is desired to use a servomotor directly driving the input link 
of the crank-slider mechanism through a gearbox to obtain the necessary motions 
and dwells.  Machine speed is 120 cycles per min or 2 Hz.

Find:	 The motion function needed to program a servomotor to drive a crank-slider linkage 
that provides the required linkage output motion program as defined at the slider.
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Di�erence in cam profile radius with functions applied to cam follower versus end e�ector
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Timing angle (deg)
0 60 360180
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1Segment # 2 4 5 63

s = 1.588
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s = 2.0

s = 1.4

0

FIGURE 16-12
Timing diagram for slider in Example 16-3

TABLE  16-7
Boundary
Conditions

When θ = 0°:
s = 0, v = 0, a = 0

When θ = 35°:
s = 1.588, v = 0

When θ = 60°
s = 2, v = 0, a = 0

Example 16-3, Segment 1  

FIGURE 16-13
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FIGURE 16-11
Servomotor-driven slider-crank linkage
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Assume:	 The position and velocity accuracy required at intermediate points in the stroke 
requires that the motion function be applied to the slider and mathematically trans-
formed to a function at the servo axis that accounts for linkage geometry.

Solution:	  

	 1	 The functions chosen to provide the motions defined in Figure 16-12 are:

Segment 1:  Polynomial over 60° with the boundary conditions of Table 16-7.
Segment 2:  Dwell at 2 in for 20°.
Segment 3:  Cycloidal fall to 1.4 in over 20°.
Segment 4:  Dwell at 1.4 in for 20°.
Segment 5:  Cycloidal fall to zero over 60°.
Segment 6:  Dwell at zero in for 180°.

		  The S, V, A functions for the slider motion as calculated with program Dynacam are shown 
in Figure 16-13.

	 2	 The geometry of the slider-crank linkage to be driven by the servomotor was chosen based on 
packaging requirements and is shown in Figure 16-13.  The maximum displacement at TDC 
when θ2 = 0 is d = a + b = 9.8 in.  A 2-in stroke requires that the starting displacement dstart 
=  9.8 – 2 = 7.8 in.  Equations 16.4 are used to find the starting crank angle at dstart.
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		  Because of symmetry, either value could be used depending on the desired direction of crank 
rotation.  We will choose clockwise crank rotation with θstart = 71.564°, θend = 0°.  

	 3	 It is only necessary to convert the displacement function with the linkage geometry in order 
to create a usable servo control function because the typical servomotor controller needs only 
that function for control.*  Note that the effects of the chosen velocity, acceleration, and jerk 
functions are all contained within the displacement function because it comes from the integra-
tion of those functions.†  Most servo controllers are capable of importing a table of displace-
ment data, which in this case will be generated by the displacement function of Figure 16-12 
as modified by the linkage geometry.  This data table of crank angles can be generated at any 
resolution desired from every degree to any fraction of a degree.

	
*  Note that this is the same 
situation when a cam profile 
is generated.  Only the 
displacement function is 
used to create the cam con-
tour, but it contains all the 
mathematics of the higher 
derivatives used in the cam 
design.
	
†  The reason the velocity 
function was converted in 
Examples 16-1 and 16-2 
was to show the effects of 
linkage geometry on the 
constant velocity portion of 
the functions.  Only the dis-
placement function would 
be used to program the 
servo controller.  The slope 
of the displacement func-
tion  encodes the velocity.
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	 4	 The values of dstart + d as defined by the linear displacement function of Figure 16-12 for each 
increment of machine angle over the cycle from 0 to 360°  are used as input to equation 16.4 to 
calculate their corresponding angular displacements θ2 to be applied to the servo axis.  Do not 
confuse the linkage crank angles θ2 with the timing angles shown as the independent variable 
in Figures 16-12 and 16-14.  Those angles represent fractions of one machine cycle, which is 
always one revolution of the main timing shaft of the machine.  In a fully servomotor-controlled 
machine with no physical timing shaft, this is often an “imaginary” or virtual “master” axis 
that serves as a timing reference for all “slave” servomotors to follow. 

	 5	 Figure 16-14 shows the displacement functions for both the slider linear displacement and 
the linkage crankshaft angular displacement over the first five segments. The 180° dwell of 
segment 6 is omitted since the crank is then stationary at the start position.  Each function is 
normalized to a range of 0 to 1 to allow their superposition.  Note the large differences between 
the two functions as compared to those of the previous two examples.  In those cases, the total 
rotation of the crank was less and avoided the regions near BDC or TDC where geometric 
distortion is greatest.  This example takes the crank to TDC, and the differences between the 
functions is seen to increase as it approaches TDC.

	 6	 While this design does what the client requested, a close inspection of the crank arm dis-
placement function of Figure 16-14 at 60 and 80 degrees of timing angle shows this to be a 
dynamically poor solution.  There is such a rapid change of slope at those points that it will 
have very large acceleration.  It comes close to violating the fundamental law described earlier 
in this chapter.  This results from the large amount of distortion introduced by the nonlinear 
slider-crank function.  An improvement will be sought in the next example.

✍EXAMPLE 16‑4

Improvement to the Design of Example 16-3

Given:	 The design of Example 16-3 proved to be dynamically poor.  In that example the 
required position and velocity constraints were applied to the slider motion and 
the resulting function was transformed by equations relating slider motion to crank 
motion.  The constraints require that the slider move through a 2-in stroke ending at 
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FIGURE 16-14
Normalized input and output displacements for crank and slider of Example 16-3
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TDC with crank angle θ2 = 0.  The slider needs to be brought to zero velocity for 
an instant at 1.588-in stroke then advanced into the material.  It is then pulled back 
to dwell at 1.400 in before returning to zero.  Rather than apply those constraints 
directly to the slider motion as was done in Example 16-3, we will instead transform 
the constraints from linear parameters to angular parameters first and then apply 
those angular parameters to the motion of the servo-driven crank arm.  Machine 
speed is 120 cycles per min or 2 Hz.

Find:	 The motion function needed to program a servomotor to drive a crank-slider linkage 
that provides the required linkage output motion parameters as defined for specific 
positions of the slider.

Assume:	 The position and velocity accuracy required at intermediate points in the stroke only 
requires that those specific parameters be transformed to corresponding parameters 
at the servo axis.  The shape of the functions between those points is not critical.

	 1	 The functions chosen to provide the motions will be similar to those defined in step 1 of Ex-
ample 16-3 but will instead be applied directly to the crank arm motion.

	 2	 The start and end angles θstart = 71.564°, θend = 0° required to achieve the 2-in stroke were 
calculated in Step 2 of Example 16-3 and will be the same here.

	 3	 The crank angles corresponding to the intermediate positions can be calculated by the same 
method used for the start angle in step 2 of Example 16-3.  There must be a point d1 having 
instantaneous zero velocity when the slider has moved through 1.588 in of its 2-in stroke.  The 
start position of the slider as referenced to the crank pivot was calculated in step 2 of Example 
16-3 to be 7.8 in.  The point d1 will be at 7.8 + 1.588 = 9.388 in.  The corresponding crank 
angle for that position is found from equations 16.4 to be 29.721°. 

	 4	 The dwell at a slider stroke of 1.4 in is 7.8 + 1.4 = 9.6 in from the crank pivot.  Equations 16.4 
show this slider position to correspond to a crank angle of 36.10°.

	 5	 The boundary conditions for crank motion then become:

Start at crank angle of 71.564°.
Segment 1:  B-spline over 60° with the boundary conditions of Table 16-8.*
Segment 2:  Dwell at zero crank degrees for 20°.
Segment 3:  Cycloidal rise to 36.19° over 20°.
Segment 4:  Dwell at 36.19° for 20°.
Segment 5:  Cycloidal rise to 71.564° over 60°.
Segment 6:  Dwell at 71.564° for 180°.

	 6	 The resulting function superposed on the solution for Example 16-3 is shown in Figure 16-15.  
Note the smoother contour approaching 60 and leaving 80 timing degrees.  The slope discon-
tinuity is gone but the critical points are still being maintained.  This is a dynamically superior 
design to that of Example 16-3.

	 7	 It should now be apparent that if any intermediate positions or velocities during the stroke are 
critical, it is necessary to modify the servo function by the linkage geometry to ensure proper 
function.  If only the end positions are critical (the CEP case), then one may be able to get away 
with applying the chosen motion functions directly to the input crank.  This could nevertheless 
cause unwanted distortion to the acceleration function and negatively affect the torque function 
as well.  The engineer would be wise to check these effects in each case.

	
*  This set of boundary 
conditions did not allow 
an acceptable polynomial 
solution, and a B-spline 
was needed to solve it.  B-
splines give better control 
over motions and their 
derivatives than polynomi-
als.  They are not described 
in this book, but informa-
tion on their mathematics 
and use can be found in 
reference 2.

TABLE  16-8
Boundary
Conditions

When θ = 0:
s = 71.546°, v = 0, a = 0

When θ = 35°:
s = 29.721°, v = 0

When θ = 60°:
s = 0°, v = 0, a = 0

Example 16-4, Segment 1
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16.5	 OTHER LINKAGES	

The approach used for a servo-driven slider-crank linkage in the previous example also 
can be used for any other linkage mechanism.  For a fourbar linkage, the desired motion 
functions will be applied to the output rocker, link 4, and modified by the linkage geom-
etry as defined by equations 4.8a, 4.10a, and 4.10b.  Note that the variables θ2 and θ4 must 
be temporarily interchanged since we want to solve for θ2 as a function of θ4 to which the 
servo motion is applied.  Simply consider link 4 to be link 2 and vice versa for the purpose 
of this calculation.  A Watt II sixbar can be solved in the same manner, considering the 
output link to which the servo functions are to be applied as the temporary “input” link 
in order to modify the applied servo function to one that can be applied at the true input 
crank of the mechanism to generate the proper motion.

16.6	 CAM-DRIVEN VERSUS SERVO-DRIVEN MECHANISMS

One can sometimes hear the comment among engineers “Cams are obsolete.  I can do 
anything with a servo that you can with a cam.”  The author heard this said 40 years 
ago and occasionally still does today.  Is this really true?  If so, why are cams still used?  
Cams have been around a long time.  Leonardo DaVinci’s sketches show many examples 
of cams.  Even older illustrations from ancient civilizations show cam-like devices used 
for various purposes.  Servomechanisms are more recent, developed in the second half of 
the twentieth century.  Originally they were only rotary devices (motors) but now are also 
available as linear actuators.  Both systems are extremely useful and valuable, but each 
has its strong points and limitations.

Flexibility

The greatest strength of servo systems is their inherent programmability.  With moder-
ate effort by skilled personnel, a servo can be reprogrammed in a short time to provide a 
different motion within the limits of its mechanical package.  The position, velocity, and 
acceleration profiles of its motion can be changed in software and more than one version 
can be stored in memory, allowing the operator to change the motion with a button press.  
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A cam can provide the same motions as a servo, but its motion program is encoded “in 
hardware” in its shape.  To change the motion program requires remachining its contour.  
Since its motion program and contour are typically designed with software, and modern 
manufacturing techniques allow a cam to be made in a day or two, the cam motion is 
capable of change as well.  But it requires new hardware. 

Cost

Servomotors and their controllers are expensive, typically costing anywhere from $1000 
for a 1/4 hp example to thousands of dollars for large examples.  Cams can cost anywhere 
from a few hundred dollars for an open radial cam to several times as much for a more 
complicated barrel cam, and even more for a three-dimensional cam.  A less expensive 
(nonservo) motor can be used to drive the camshaft.

Reliability

Once a properly designed cam is properly manufactured, it can last a very long time. If it is 
properly lubricated, one should expect many millions of cycles from the cam and follower 
before it fails.  Modern automobile engines are capable of going 200 000 miles without 
camshaft replacement.   Conservatively assuming an average speed of 35 mph and an 
average engine speed of 1500 rpm, this amounts to about a quarter-billion camshaft revo-
lutions without failure.  Cams of the sort used in production machinery do not lead such 
a happy life since they are not bathed in filtered oil, but are often run dry, or with minimal 
lubrication, in less than pristine environments.  Nevertheless, some production machine 
cams last several years on machines that accumulate as many as 100 million cycles per 
year.  Servomotors and controllers have high reliability as well.  Electronic components 
can fail and bearings can wear out, but these systems have long lives if properly sized.

Complexity

Cams and servo systems both require engineering-level personnel to be correctly de-
signed.   Specialized training in cam design or servo programming and tuning is needed 
for these tasks.  The mathematical requirements for their motion functions are essentially 
the same for both systems.  Dynamics is dynamics whether achieved by servo or cam.  F 
always equals mA. The ratio of load inertia to servomotor inertia must be kept in proper 
range by the designer to achieve the desired dynamics.  A cam does not have this require-
ment.  The desired servo motion program can only be achieved by proper tuning of the 
system controller.  If no changes are made to the driven system, the tuning can remain 
untouched for the life of the machine.  Once a properly designed cam is manufactured, 
it needs no further tuning.  If servo systems require some reprogramming during their 
lifetimes, it is typically done by highly trained personnel.  Cams can be serviced by me-
chanics and technicians.

Robustness

Cam-driven machines maintain synchrony and phasing between mechanisms mechani-
cally.  If the power fails, the machine comes to a stop with no change in phasing.  If power 
is lost to a servo-driven system, all control over relative position is lost and crashes can 
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occur with expensive consequences.   Servo controller programs also have been known 
to lose their phasing even with no power loss and then require a machine stop to re-home 
the drives, meaning to get them all back to their zero position.  

Packaging

Cam-follower systems can be quite compact (think of an overhead camshaft valve train) or 
large if the motion must be transferred over some distance, as in many assembly machines 
with camshafts below and tooling above the base plate.  In some cases, a small servomo-
tor mounted at the tooling can provide the needed motions without the complexity of the 
linkage system.  Linear servos lend themselves well to this situation if the desired output 
motion is rectilinear translation, as they can be mounted to act directly on the end effector.  
They can achieve large displacements also.  The resultant reduction of mass and increased 
stiffness of the follower train can have significant dynamic advantages.

Load Capacity

Cams have inherently high mechanical advantage.  This makes them very suitable for 
applications that require the generation of high forces or torques or ones that have large 
inertia loads.  One example is the compaction of the contents in a dry-cell battery.  The 
required forces are thousands of pounds, and cams are typically used to drive a compact-
ing ram into the battery to reduce its volume.  Another is the insertion/bonding of lid 
liners in food jars which requires around 7000 lb force, also done with cam mechanisms.

A servomotor driving the input crank to a linkage or other mechanism through a 
gearbox has the gearbox ratio as a constant mechanical advantage.  The linkage, of course, 
introduces its own additional, variable mechanical advantage.  The same linkage, driven 
by a cam acting on a roller attached to the input crank, substitutes a variable mechanical 
advantage for that of the servo gearbox’s constant one.  A linear servomotor acting directly 
on the end effector has no mechanical advantage. Though these devices can generate large 
forces, a cam with its infinite mechanical advantage will still generate much more force.

As an example, consider the same slider-crank linkage to be driven through the same 
crank angle by either a cam acting on a roller placed at the joint between crank and con-
necting rod or a servomotor driving the crank directly.  Each can provide the identical 
angular displacement, velocity, and acceleration profiles to the crank.  The mass of the 
linkage is the same in both cases.  Let the motion profile be a 3-4-5-6 polynomial rise-fall-
dwell function applied to the crank.  Calculate the torque required by the motor driving the 
cam and the motor directly driving the crank and you will find that the servomotor directly 
driving the crank must apply a torque about 20 times that required on the camshaft.   Now, 
a 20:1 reduction gearbox will even things out, after a fashion.  But, if the purpose of the 
mechanism is to provide large external forces at some point in the stroke, the cam’s vari-
able (and potentially infinite) mechanical advantage may be preferable to the gearbox’s 
constant mechanical advantage.

When dealing with high speeds and high loads, the motor’s so-called velocity-torque 
envelope can become a limitation.  The product of angular velocity and torque is power, 
and any motor has a particular angular velocity-torque curve as shown in Figures 2-40 
through 2-42.  When a servomotor’s size is increased to obtain the required torque for a 
high-load application, its rotor’s polar moment of inertia also increases as the square of 
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its radius.  The result is a disproportionate amount of torque being required to accelerate 
the rotor and thus not being available to drive the load.  This results in an oversized mo-
tor compared to one driving a cam that runs at constant speed and amplifies the force or 
torque through its variable mechanical advantage.  A known example is an application that 
uses 47% of the servomotor’s torque capacity just to accelerate the motor rotor each cycle. 
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16.9	 PROBLEMS

Program Dynacam may be used to solve these problems where applicable.  Where units 
are unspecified, work in any consistent units system you wish.

	 16‑1	 Design a double-dwell motion to translate a slider from 0 to 75 mm in 60° with modi-
fied sine acceleration, dwell for 120°, fall 75 mm in 30° with cycloidal motion, and 
dwell for the remainder.  Calculate and plot the displacement function of the slider 
using Dynacam and modify that function to drive the crank of a nonoffset crank-
slider mechanism with dimensions: crank = 100 mm, coupler = 300 mm such that at 
maximum stroke of the slider, the crank is at zero degrees.  The slider must follow the 
specified motion. Plot the resulting crank input function.

	 16‑2	 Repeat Problem 16-1 for a slider function for a 65-mm rise with 3-4-5 polynomial mo-
tion over 80°, dwell for 100°, fall over 40° with 3-4-5 polynomial motion, and dwell for 
the remainder.

	 16‑3	 Design a single-dwell polynomial motion to translate a slider from 0 to 75 mm and re-
turn to 0 in 120°  and dwell for the remainder.  Total cycle time is 6 sec.  Calculate and 
plot the displacement function of the slider using Dynacam and modify that function 
to drive the crank of a non-offset crank-slider mechanism with the dimensions crank = 
90 mm, coupler = 270 mm such that at maximum stroke of the slider, the crank is at 
180°.  The slider must follow the specified motion. Plot the resulting crank input func-
tion.

	 16‑4	 Using the constant velocity motion program of Example 16-1 applied to the slider of 
a nonoffset fourbar crank-slider linkage with a constant velocity stroke of 150 mm at 
40 mm/s, calculate and plot the s, v, a, j functions for this motion applied directly to 
the slider using program Dynacam.  Total cycle time is 6 sec. Calculate the modified 
program needed to drive the crank of  the linkage to obtain the specified motion at the 
slider.  Crank = 200 mm, coupler = 600 mm, crank start angle = 110°.

Topic/Problem Matrix

 16.3 Cam-Driven Linkages

16-1 to 16-5
 16.4 Servo-Driven Linkag-

es

  16-6, 16-7
 

TABLE  P16-0
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	 16-5	 Repeat Problem 16-4 for slider stroke of 5.5 in at 0.75 in/sec, a crank length of 7.5 in, a 
coupler length of 18 in, and a crank start angle of 120°.  Total cycle time is 12 sec. 

	 16-6	 A nonoffset crank-slider with crank and coupler lengths of 3.25 in and 10.875 in, re-
spectively, is to be driven by a servo through a gear reducer.  The required slider timing 
diagram is shown in Figure P16-1.  The slider moves through the distance s in.  Choose 
a set of servo functions from Table 16-2 to drive the crank with the lowest resulting 
vibration and calculate the resulting crank displacement for one cycle of 40-sec dura-
tion.  Based on this crank input, calculate the resulting slider motion and compare the 
two by plotting their normalized displacements.  The crank angle at t = 0 is 70 deg, and 
the crank turns clockwise to accomplish the first motion of the slider.

	 16-7	 Repeat Problem 16-6 using the timing diagram of Figure P16-1 but with a total stroke 
of 75 mm.  The crank length is 110 mm, the coupler length is 275 mm, and the initial 
crank angle is 90°.

Time (sec)
0 10 4020 32

1Segment # 2 43

s = 2.0

0

FIGURE P16-1
Timing diagram for Problems 16-6 and 16-7



AppendixA
COMPUTER PROGRAMS
I really hate this damned machine;
I wish that they would sell it.
It never does quite what I want
But only what I tell it.
from the Fortune database, Berkeley Unix

A.0	 INTRODUCTION

In addition to the downloadable version of the commercial simulation program Working 
Model, there are three computer programs, written by the author, downloadable with this 
text: programs Linkages, Matrix, and Dynacam.  These are student editions of the 
professional versions of these programs for educational use only.  For commercial ap-
plications, professional versions with extended capabilities are available at http://www.
designofmachinery.com.  Program Linkages is based on the mathematics derived in 
Chapters 4 to 7 and 10 to 14 and use the equations presented therein to solve for position, 
velocity, acceleration, forces, and torques in fourbar, fivebar, sixbar, and slider linkages 
and IC engines.  Program Dynacam is a cam design program based on the mathematics 
derived in Chapters 8 and 15.  Program Matrix is a general linear simultaneous equation 
solver.  All have similar choices for the display of output data in the form of tables and 
plots.  All the programs are designed to be user friendly and reasonably “crashproof.”  The 
author encourages users to email reports of any “bugs” or problems encountered in their 
use to him at norton@wpi.edu.

To obtain these programs and the other videos and files provided with the book, you 
need to register as a student using the book on the website shown above. Note that I 
personally review all applications for access to this protected site, and if a student does 
not fill out the application completely and correctly according to the instructions, then 
they will be denied access.

Learning Tools

All the custom programs provided with this text are designed to be learning tools to aid 
in the understanding of the relevant subject matter and are specifically not intended to be 
used for commercial purposes in the design of hardware and must not be so used. It is 
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quite possible to obtain inappropriate (but mathematically correct) results to any problem 
solved with these programs, due to incorrect or inappropriate input of data.  The user is 
expected to understand the kinematic and dynamic theory underlying the program’s struc-
ture and to also understand the mathematics on which the program’s algorithms are based.  
This information on the underlying theory and mathematics is derived and described in the 
noted chapters of this text.  Most equations used in the programs are derived or presented 
in this textbook.

Disclaimer and Limitations on Use

Student editions of these programs are made available with this book and carry a limited-
term license restricted to educational use in course work for up to 2 years.  If you wish 
to use the program for the benefit of a company or for any commercial purpose, then you 
must obtain the professional edition of the same program.  The student editions may not 
be used commercially!  The professional editions typically offer more features and bet-
ter accuracy than the student editions.  Commercial software for use in design or analysis 
needs to have built-in safeguards against the possibility of the user providing incorrect, 
inappropriate, or ridiculous values for input variables, in order to guard against errone-
ous results due to user ignorance or inexperience.  The student editions of the custom 
programs provided with this text are not commercial software and deliberately do 
not contain such safeguards against improper input data, on the premise that to do 
so would “short-circuit” the student’s learning process.  We learn most from our failures.  
These programs provide an educational environment to explore failure of your designs “on 
paper” and in the process to come to a more thorough and complete understanding of the 
subject matter.  The author and publisher are not responsible for any damages which 
may result from the use or misuse of these programs.

A.1	 GENERAL INFORMATION

Hardware/System Requirements

These programs will run in Windows 2000/NT/XP/Vista/Windows7/8/10, but settings 
changes are needed in Vista as described in the installation instructions.  All programs 
will operate properly in both 32- and 64-bit operating systems. In Windows 10, you may 
have to run them as Windows 7 applications.

Installing the Software

The install.exe files contain the executable program files plus all necessary Dynamic Link 
Library (DLL) and other ancillary files needed to run the programs.  Run the Install file for 
each program to install all of its files on your hard drive.  The program name will appear 
in the list under the Start/Program/Design of Machinery menu after installation and can 
be run from there.  Dynacam and Linkages can be updated from that menu also.  Use 
the Check for Updates link within the program’s folder in the Start menu

User Manual

User manuals are accessible from the programs’ help menus.  Tutorial videos are also in 
some programs. Instructional videos are also accessible from the help menus within the 
programs when the computer is connected to the Internet.



The following tables contain approximate values for strengths and other specifications 
of a variety of engineering materials compiled from various sources.  In some cases, the 
data are minimum recommended values, and in other cases data are from a single test 
specimen.  These data are suitable for use in the engineering exercises contained in this 
text but should not be considered as statistically valid representations of specifications for 
any particular alloy or material.  The designer should consult the materials’ manufacturers 
for more accurate and up-to-date strength information on materials used in engineering 
applications or conduct independent tests of the selected materials to determine their 
ultimate suitability to any application.

Table No.	 Description

 B-1		  Physical Properties of Some Engineering Materials

 B-2		  Mechanical Properties of Some Wrought-Aluminum Alloys

 B-3		  Mechanical Properties of Some Carbon Steels

 B-4		  Mechanical Properties of Some Cast-Iron Alloys

 B-5		  Properties of Some Engineering Plastics

AppendixB

MATERIAL PROPERTIES
These tables are for selected engineering materials.  Many other alloys are available.
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Material Modulus of Elasticity E Modulus of Rigidity G Poisson's
  Ratio ν

 Weight
Density γ

  Mass
Density ρ

Mpsi GPa Mpsi GPa    lb/in3 Mg/m 3

Aluminum alloys
Beryllium copper
Brass, bronze
Copper
Iron, cast, gray
Iron, cast, ductile
Iron, cast, malleable
Magnesium alloys
Nickel alloys
Steel, carbon
Steel, alloys
Steel, stainless
Titanium alloys
Zinc alloys

2.8
8.3
8.6
8.9
7.2
6.9
7.3
1.8
8.3
7.8
7.8
7.8
4.4
6.6

0.10
0.30
0.31
0.32
0.26
0.25
0.26
0.07
0.30
0.28
0.28
0.28
0.16
0.24

0.34
0.29
0.33
0.35
0.28
0.30
0.30
0.33
0.30
0.28
0.28
0.28
0.34
0.33

26.8
49.4
41.5
44.7
40.4
65.0
66.3
16.8
79.6
80.8
80.8
74.1
42.4
31.1

3.9
7.2
6.0
6.5
5.9
9.4
9.6
2.4
11.5
11.7
11.7

10.7
6.2
4.5

71.7
127.6
110.3
120.7
103.4
168.9
172.4
44.8

206.8
206.8
206.8
189.6
113.8
82.7

10.4
18.5
16.0
17.5
15.0
24.5
25.0

6.5
30.0
30.0
30.0
27.5
16.5
12.0

2.8
8.3
8.6
8.9
7.2
6.9
7.3
1.8
8.3
7.8
7.8
7.8
4.4
6.6

  

TABLE  B-1 Physical Properties of Some Engineering Materials
Data from Various Sources.*   These Properties are Essentially Similar for All Alloys of the Particular Material

Specific
 Gravity

* Properties of Some Metals and Alloys, International Nickel Co., Inc., NY; Metals Handbook, American Society for Metals, Materials Park, OH.

1100 Sheet annealed
Cold rolled

2024 Sheet annealed
Heat treated 20

3003 Sheet annealed
Cold rolled

5052 Sheet annealed
Cold rolled

6061 Sheet annealed
Heat treated 14

7075 Bar annealed
Heat treated 14

HB
23
44

28
55
47
77
30
95
60

150

—
—

90
165
179
441
110

200
193

290
124
310
228
572

13
24
26
64
16
29
28
42
18
45
33
83

34
152
76

290
41

186
90

255
55

276
103
503

5
22
11

42
6

27
13
37
8

40
15
73

138

97

97

35
5

20
19
30

4
25

7
25
12
16
11

TABLE  B-2 Mechanical Properties of Some Wrought-Aluminum Alloys 
Data from Various Sources.*  Approximate Values. Consult Manufacturers for More Accurate Information

 Wrought-
Aluminum
   Alloy

Condition
Tensile Yield Strength
       (2% O�set)

Ultimate Tensile
     Strength

Fatigue Strength
   at 5E8 Cycles

Elongation
  over 2 in

  Brinell
Hardness

%MPakpsiMPakpsiMPakpsi

* Properties of Some Metals and Alloys, International Nickel Co., Inc., NY; Metals Handbook, American Society for Metals, Materials Park, OH.
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SAE / AISI
Number Condition

1010

1020

1030

1035

1040

1045

1050

1060

1095

Tensile Yield Strength
       (2% Of fset)

26
44
30
57
38
50
64
75
84
94
40
67
42
54
71

63
80
86
45
77
50
62
84
78
115
117
54
61
76
97
111
66
72
80
112
118

179
303
207
393
259
345
441
517
579
648
276
462
290
372
490
434
552
593
310
531
345
427
579
538
793
807
372
421
524
669
765
455
496
552
772
814

MPakpsi

Ultimate Tensile
     Strength

47
53
55
68
68
75
76
97

106
123
72
80
76
86
85
92
110
113
82
91

90
108
100
104
158
163
98
112
116
140
156
120
147
130
176
183

kpsi MPa

Elongation
  over 2 in

%
28
20
25
15

20
32
12
28
23
17
18
12
18
28
12
29
21
19
16
12
15

20
10
28
13
9

12
18
23
17
14
10
9

21
12
10

  Brinell
Hardness

HB
95
105
111
131
137
149
149
255
302
495
143
163
149
170
170
192
241
262
163
179
179
217
197
235
444
514
200
229
229
277
311
248
13

269
363
375

324
365
379
469
469
517
524
669
731
848
496
552
524
593
586
634
758
779
565
627
621
745
689
717

1089
1 124
676
772
800
965
1076
827
1014
896
1213
1262

Hot rolled
Cold rolled
Hot rolled
Cold rolled
Hot rolled
Normalized @ 1650°F
Cold rolled
Q&T @ 1000°F
Q&T @ 800°F
Q&T @ 400°F
Hot rolled
Cold rolled
Hot rolled
Normalized @ 1650°F
Cold rolled
Q&T @ 1200°F
Q&T @ 800°F
Q&T @ 400°F
Hot rolled
Cold rolled
Hot rolled
Normalized @ 1650 °F
Cold rolled
Q&T @ 1200°F
Q&T @ 800°F
Q&T @ 400°F
Hot rolled
Normalized @ 1650°F
Q&T @ 1200°F
Q&T @ 1000°F
Q&T @ 800°F
Hot rolled
Normalized @ 1650 °F
Q&T @ 1200°F
Q&T @ 800°F
Q&T @ 600°F

TABLE  B-3 Mechanical Properties of Some Carbon Steels
Data from Various Sources.*  Approximate Values. Consult Manufacturers for More Accurate Information

* SAE Handbook, Society of Automotive Engineers, Warrendale, PA; Metals Handbook, American Society for Metals, Materials Park, OH.
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Gray cast iron—Class 20 As cast
Gray cast iron—Class 30 As cast
Gray cast iron—Class 40 As cast
Gray cast iron—Class 50 As cast
Gray cast iron—Class 60 As cast
Ductile iron 60-40-18 Annealed
Ductile iron 65-45-12 Annealed
Ductile iron 80-55-06 Annealed
Ductile iron 120-90-02 Q & T 

Cast-Iron Alloy Condition Tensile Yield Strength
       (2% O�set)

MPa
–
–
–
–

–
324
331

365
827

kpsi
–
–
–
–
–

47
48
53

120

Ultimate Tensile
     Strength

MPa
152
221

290
359
427
448
462
565
965

kpsi
22
32
42
52
62
65
67
82

140

Compressive
   Strength

MPakpsi HB
156
210
235
262
302
160
174

228
325

  Brinell
Hardness

572
752
965

1289
1131

359
365
386
924

83
109
140
164
187
52
53
56

134

TABLE  B-4 Mechanical Properties of Some Cast-Iron Alloys
Data from Various Sources.*  Approximate Values. Consult Manufacturers for More Accurate Information

* Properties of Some Metals and Alloys, International Nickel Co., Inc., NY; Metals Handbook, American Society for Metals, Materials Park, OH.

* Modern Plastics Encyclopedia ,  McGraw-Hill, New York; Machine Design Materials Reference Issue, Penton Publishing, Cleveland, OH. .

ABS
20–40% glass filled

Acetal
20–30% glass filled

Acrylic
Fluoroplastic (PTFE)
Nylon 6/6
Nylon 11

20–30% glass filled
Polycarbonate

10–40% glass filled
HMW polyethylene
Polyphenylene oxide

20–30% glass filled
Polypropylene

20–30% glass filled
Impact polystyrene

20–30% glass filled
Polysulfone

GPa

2.1
4.1
3.4
6.9
2.8
1.4
1.4
1.3

2.5
2.4
6.9
0.7
2.4
7.8
1.4
4.8
2.1
0.7
2.5

Mpsi

0.3
0.6
0.5
1.0
0.4
0.2
0.2
0.2
0.4
0.4
1.0
0.1
0.4
1.1

0.2
0.7
0.3
0.1
0.4

1.05
1.30
1.41
1.56
1.18
2.10
1.14
1.04
1.26
1.20
1.35
0.94
1.06
1.23
0.90
1.10
1.07
1.25
1.24

Material
Approximate
Modulus of
 Elasticity E † 

Specific
Gravity

MPa

41.4
68.9
60.7
68.9
68.9
34.5
68.9
55.2
88.3
62.1

117.2
17.2

66.2
106.9
34.5
51.7
27.6
82.7
70.3

kpsi

6.0
10.0
8.8

10.0
10.0
5.0

10.0
8.0

12.8
9.0

17.0
2.5
9.6

15.5
5.0
7.5
4.0

12.0
10.2

Ultimate
Tensile

Strength

%

160–200
200–230

220
185–220
140–190
330–350
180–300
180–300
250–340

250
275

–
212
260

250–320
300–320
140–175
180–200
300–345

°F

 Max
Temp

68.9
82.7
124.1
124.1
103.4

41.4
68.9
55.2
88.3
82.7
117.2

–
113.1

120.7
48.3
42.7
41.4

110.3
95.8

MPa

10.0
12.0
18.0
18.0
15.0
6.0

10.0
8.0

12.8
12.0
17.0

–
16.4
17.5
7.0
6.2
6.0

16.0
13.9

kpsi

   Ultimate
Compressive

  Strength

5–25
3

60
7
5

100
60

300
4

100
2

525
20
5

500
2

2–80
1

50

TABLE  B-5 Properties of Some Engineering Plastics
Data from Various Sources.* Approximate Values. Consult Manufacturers for More Accurate Information

Elongation
  over 2 in

† Most plastics do not obey Hooke's law.  These apparent moduli of elasticity vary with time and temperature.



AppendixC 
 

GEOMETRIC PROPERTIES

DIAGRAMS AND FORMULAS TO CALCULATE THE FOLLOWING  
PARAMETERS FOR SEVERAL COMMON GEOMETRIC SOLIDS

∫
∫
∫
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( )
( )
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= +

= +

= +
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=
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m
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I x y z dm
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k z
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z
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y

z
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mass
location of center of mass

= second moment of mass about axis
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= second moment of mass about axis
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2 2

2 2

2 2
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C
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AppendixD

SPRING DATA

The following catalog pages of helical compression and extension spring data were 
provided courtesy of the Hardware Products Co., Chelsea, Massachusetts   
http://www.hardwareproducts.com/

Other spring information can be found on the Web at:

http://www.leespring.com/

http://www.cookspring.com/

http://www.allrite.com/

http://www.springsfast.com/

http://www.asbg.com/

http://www.centuryspring.com/

http://www.hardwareproducts.com/
http://www.leespring.com/
http://www.cookspring.com/
http://www.allrite.com/
http://www.springsfast.com/
http://www.asbg.com/
http://www.centuryspring.com/
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AppendixE
COUPLER CURVE ATLASES

E.1	 HRONES AND NELSON ATLAS OF FOURBAR LINKAGES

The entire Hrones and Nelson coupler curve atlas is downloadable as PDF files.  Figure 
3-17 in Section 3.6 shows one page from this atlas and describes how to use it.  Read the 
first chapter within the Hrones and Nelson atlas for more information on how it is arranged 
and how to use it.  The downloadable video Coupler Curves and Linkage Atlases gives 
detailed instructions on its use and shows an example.  Once you extract a trial linkage 
geometry from the atlas, use program Linkages to investigate its behavior and to vary 
the linkage geometry. 

E.2	 ZHANG, NORTON, HAMMOND ATLAS OF GEARED FIVEBAR 
LINKAGES

The entire Zhang atlas is downloadable as PDF files.  A sample page is shown in Figure 
3-23. Read the first chapter within the Zhang atlas for information on how it is arranged 
and how to use it.  See Sections 2.4, 3.6, 4.9, 6.8, and 7.4 for more information on the 
geared fivebar linkages.  The video Coupler Curves and Linkage Atlases gives a brief 
overview of this atlas.  Once you extract a trial linkage geometry from the atlas, use 
program Linkages to investigate its behavior and to vary the linkage geometry. 

http://www.designofmachinery.com/DOM/Coupler_Curves.mp4
http://www.designofmachinery.com/DOM/Coupler_Curves.mp4
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A summary of the parameters in the Zhang atlas is:

Alpha = Coupler Link 3 / Link 2

Beta = Ground Link 1 / Link 2

Lambda = Gear Ratio = Gear 5 / Gear 2.

Phase angle is noted on each plot of a coupler curve.

The dots along curves are at every 10 degrees of Link 2’s rotation.

Linkage is symmetrical: Link 2 = Link 5 and Link 3 = Link 4

Note that the Lambda in the atlas is the inverse of the λ that is defined in Sections 4.9, 
6.8, and 7.4.  See also Figures P4-4, P6-4, and P7-4.  For example, a gear ratio Lambda 
of 2 in the Zhang atlas corresponds to a λ of 0.5 in the text and in program Linkages.  
(The difference merely corresponds to a mirroring of the linkage from left to right.)



AppendixF
ANSWERS TO SELECTED 
PROBLEMS
CHAPTER  2		  KINEMATICS FUNDAMENTALS

	 2‑1

	  a.  1	 b.  1	 c.  2	 d.  1	 e.  7	 f.  1	 g.  4	  
h.  4	 i.  4	 j.  2	 k.  1	 l.  1	 m.  2	 n.  2	  
o.  4	

 2‑3	 a.  1	 b.  3	 c.  3	 d.  3	 e.  2

	 2‑4	 a.  6	 b.  6	 c.  5	 d.  4, but 2 are dynamically coupled*	 e.  4	 f.  3

	 2‑5	 force-closed

	 2‑6	
a.	 pure rotation
b.	 complex planar motion
c.	 pure translation
d.	 pure translation
e.	 pure rotation
f.	 complex planar motion
g.	 complex planar motion

	 2‑7	 a.  0	 b.  1	 c.  1	 d.  3

	 2‑8
a.  structure - DOF = 0
b.  mechanism - DOF = 1
c.  mechanism - DOF = 1
d.  mechanism - DOF = 3

	 2‑15	 a.  Grashof	 b.  non-Grashof		  c.  special-case Grashof

	

*  Dynamically coupled 
means that, at speed, lean-
ing the bike to the side 
results in its turning to the 
side to which it is leaning.  
So the angular freedom of 
this machine in the plane 
of the road is coupled with 
its ability to rotate about its 
long axis (lean).  Except at 
very low speed, you steer 
a motorcycle by pushing 
down (toward the ground) 
on the handlebar on the 
inside of the turn, rather 
than by actually turning the 
handlebar in the direction 
of the turn.  If you are 
moving the bike with your 
feet to park it, then you 
turn the handlebar. But at 
any significant speed, the 
gyroscopic effect takes over 
and leaning the bike makes 
it turn. This is true of a 
pedal bike as well if it has 
sufficient forward speed.
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	 2‑21

	  a.  M = 1	 	 b.  M = 1			  c.  M = 1		  
d.  M = 1		 e.  M = –1 (a paradox)	 f.  M = 1	  	  
g.  M = 1		 h.  M = 0 (a paradox)

	 2‑24	 a.  M = 1	 	 b.  M = 1

	 2‑26	 M = 1

	 2‑27	 M = 0

	 2‑35	 M = 1, fourbar slider-crank

	 2‑61	 a.  M = 3	 	 b.  M = 2		 c.  M = 1	

 2‑62	 a.  M = 1	 	 b.  M = 2		 c.  M = 4	

CHAPTER  3		  GRAPHICAL LINKAGE SYNTHESIS

	 3‑1	
a.	 path generation
b.	 motion generation
c.	 function generation
d.	 path generation
e.	 path generation	

Note that synthesis problems have many valid solutions.  We cannot provide a “right answer” to all 
of  these design problems.  Check your solution with a cardboard model and/or by putting it into 
one of the programs supplied with the text.

	 3-3	 See Figure S3-1.

	 3-5	 See Figure S3-1.

	 3-6	 See Figure S3-2.

	 3-8	 See Figure S3-3.

FIGURE S3-1
Solutions to Problems 3-3 and 3-5

(a )  One possible solution to Problem 3-3 (b )   One possible solution to Problem 3-5

FIGURE S3-2
Unique solution to
Problem 3-6
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	 3-10	 The solution using Figure 3-17 is shown in Figure S3-4.  (Use program Linkages to 
check your solution.)	

 3-22	 The transmission angle ranges from 31.5° to 89.9°.

	 3-23	 Grashof crank-rocker.  Transmission angle ranges from 58.1° to 89.8°.

FIGURE S3-3
One possible solution to Problem 3-8

FIGURE S3-4
Solution to Problem 3-10.  Finding the cognates of the fourbar linkage shown in Figure 3-17

Original linkage
 (Cognate #1)

Cayley diagram

Roberts diagram Cognate #3Cognate #2

P
P

P PP

A

B
C

A B

C
B

A

A

B
C

A
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	 3-31	 L1 = 160.6, L2 = 81.3, L3 = 200.2, L4 = 200.2 mm.

	 3-36	 Grashof double-rocker.  Works from 56° to 158° and from 202° to 310°.  Transmission 
angle ranges from 0° to  90°.

	 3-39	 Non-Grashof triple-rocker.  Toggles at ±116°.  Transmission angle ranges from 0° to 
88°.

	 3-42	 Non-Grashof triple-rocker.  Toggles at ±55.4°.  Transmission angle ranges from 0° to 
88.8°.

	 3-79	 Link 2 = 1, link 3 = link 4 = link 1 = 1.5. Coupler point is at 1.414 @ 135° versus link 
3.  Put these data into program Linkages to see the coupler curve.

CHAPTER  4		  POSITION ANALYSIS

	 4‑6 	 and   4-7 	  See Table S4-1 and the file P07-04row.4br.

	 4‑9 	 and   4-10   See Table S4-2.

	 4‑11 	 and   4‑12   See Table S4-3.

	 4‑13	 See Table S4-1.

	 4‑14	 Open the file P07-04row.4br† in program Linkages to see this solution.*

	 4‑15	 Open the file P07-04row.4br† in program Linkages to see this solution.*

	 4‑16 	 See Table S4-4.  

	 4‑17	 See Table S4-4.

	 4‑21	 Open the file P04-21.4br in program Linkages to see this solution.*

	 4‑23	 Open the file P04-23.4br in program Linkages to see this solution.*

	 4‑25	 Open the file P04-25.4br in program Linkages to see this solution.*

	 4‑26	 Open the file P04-26.4br in program Linkages to see this solution.*

	 4‑29	 Open the file P04-29.4br in program Linkages to see this solution.*

	 4‑30	 Open the file P04-30.4br in program Linkages to see this solution.*

	 4‑31	 r1 = –6.265,  r2 = –0.709.

CHAPTER  5		  ANALYTICAL LINKAGE SYNTHESIS

	 5-8	 Given: 	 α2 = –62.5°,	 P21 = 2.47,	 δ2 = 120°

		  For left dyad: 	 Assume:  z = 1.075,	φ = 204°	  β2 = –27°

				    Calculate:  W = 3.67 @ –113.5°

	  For right dyad:	 Assume:  s = 1.24,		  ψ = 74°	  γ2 = –40°

				    Calculate:  U = 5.46 @ –125.6°

	
*  These files can be found 
in the Problem Solutions 
folder downloadable with 
this text.

	

†  The letter x in the 
filename represents the row 
number from the table of 
problem data.
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Trans
Ang

28.4
69.6
70.7

23.5
75.4
45.2
39.4

Crossed
4θ

–143.6
103.6

–149.7

132.2
141.8

–147.3
–135.9

Crossed
3θ

–115.2
173.3

– 79.0

155.7
–113.5
–102.1
–96.5

Trans
Ang

28.4
69.6
70.7

23.5
75.4
45.2
39.4

Open
4θ

117.3
16.5
78.2

7.2
103.1

31.9
35.9

Open
θ3

88.8
–53.1

7.5

–16.3
–1.5

–13.2
–3.5

Row

a
c
e
g
i
k
m

TABLE  S4-1 Solutions for Problems 4-6, 4-7, and 4-13

a
c
e
g

Row
Crossed

–3.0
–4.6

–23.5
–14.9

Slider
Crossed

–0.14
–25.90

4.20
–32.70

3θ
Open

5.0
9.8

16.4
27.1

Slider
Open

180.1
205.9
175.0
212.7

θ3

TABLE  S4-2 Solutions for Problems 4-9 to 4-10

Row

a
c
e

Open
θ3

232.7
91.4

158.2

Open
4θ

142.7
46.4

128.2

Open
RB

1.79
2.72
6.17

Crossed
3θ

–79.0
208.7
–36.2

Crossed
4θ

–169.0
163.7

–66.2

Crossed
RB

1.79
11.20
9.63

TABLE  S4-3 Solutions for Problems 4-11 to 4-12

173.6 –177.7 –115.2 – 124.0
17.6 64.0 –133.7 180.0

–164.0 –94.4 111.2 41.6
44.2 124.4 –69.1 –149.3
37.1 120.2 –67.4 –150.5

Row θ3
Open

θ4
Open

θ3
Crossed

θ4
Crossed

a
c
e
g
i

TABLE  S4-4 Solutions for Problems 4-16 to 4-17
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FIGURE S5-1
Solution to Problem 5-11.  Open the file P05-11 in program LINKAGES for more information  
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FIGURE S5-2
Solution to Problem 5-15.  Open the file P05-15 in program LINKAGES for more information 
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	 5-11	 See Figure S5-1 for the solution.  The link lengths are:

		  Link 1 = 4.35,	 Link 2 = 3.39,	 Link 3 = 1.94,	 Link 4 = 3.87

	 5-15	 See Figure S5-2 for the solution.  The link lengths are:

		  Link 1 = 3.95,	 Link 2 = 1.68,	 Link 3 = 3.05,	 Link 4 = 0.89

	 5-19	 See Figure S5-3 for the solution.  The link lengths are:

		  Link 1 = 2,	 Link 2 = 2.5,	 Link 3 = 1,	 Link 4 = 2.5

	 5-26	 Given: 	  α2 = –45°,	 P21 = 184.78 mm,	  δ2 = –5.28°

			   	 α3 = –90°,	 P31 = 277.35 mm,	  δ3 = –40.47°

			   	 O2x = 86 mm	 O2y = –132 mm

			   	 O4x = 104 mm	 O4y = –155 mm

		  For left dyad: 	 Calculate:  β2 = –85.24°		  β3 = –164.47°

				    Calculate:  W = 110.88 mm		  θ = 124.24°

				    Calculate:  Z = 46.74 mm		  φ = 120.34°

	  For right dyad:	 Calculate:  γ2 = –75.25°		  γ3 = –159.53°

				    Calculate:  U = 120.70 mm		  σ = 104.35°

				    Calculate:  S = 83.29 mm		  ψ = 152.80°

FIGURE S5-3
Solution to Problem 5-19.  Open the file P05-19 in program LINKAGES for more information 
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	 5-33	 Given: 	  α2 = –25°,	 P21 = 133.20 mm,	  δ2 = –12.58°

			   	 α3 = –101°,	 P31 = 238.48 mm,	  δ3 = –51.64°

			   	 O2x =–6.2 mm	 O2y = –164.0 mm

			   	 O4x = 28.0 mm	 O4y = –121.0 mm

		  For left dyad: 	 Calculate:  β2 = –53.07°		  β3 = –94.11°

				    Calculate:  W = 128.34 mm		  θ = 118.85°

				    Calculate:  Z = 85.45 mm		  φ = 37.14°

	  For right dyad:	 Calculate:  γ2 = –77.26°		  γ3 = –145.66°

				    Calculate:  U = 92.80 mm		  σ = 119.98°

				    Calculate:  S = 83.29 mm		  ψ = 65.66°

	 5-35	 Given: 	  α2 = –29.4°,	 P21 = 99.85 mm,	  δ2 = 7.48°

			   	 α3 = –2.3°,	 P31 =188.23 mm,	  δ3 = –53.75°

			   	 O2x = –111.5 mm	 O2y = 183.2 mm

			   	 O4x = –111.5 mm	 O4y = –38.8 mm

		  For left dyad: 	 Calculate:  β2 = 69.98°		  β3 = 139.91°

				    Calculate:  W = 100.06 mm		  θ = 150.03°

				    Calculate:  Z = 306.82 mm		  φ = –49.64°

	  For right dyad:	 Calculate:  γ2 = –4.95°		  γ3 = –48.81°

				    Calculate:  U = 232.66 mm		  σ = 62.27°

				    Calculate:  S = 167.17 mm		  ψ = –88.89°

CHAPTER  6		  VELOCITY ANALYSIS

	 6-4	 and   6-5    See Table S6-1 and the file P07-04row.4br.

	 6-6	 and   6-7 	  See Table S6-2.

	 6-8	 and   6-9 	  See Table S6-3.

	 6-10	 and   6-11	  See Table S6-4.

	 6‑16	 VA = 12 in/sec @ 124.3°, VB = 11.5 in/sec @ 180°, VC = 5.65 in/sec @ 153.3°,  
ω3 = –5.69 rad/sec.

	 6‑47	 Open the file P06-47.4br in program Linkages to see this solution.*

	 6‑48	 Open the file P06-48.4br in program Linkages to see this solution.*

	 6‑49	 Open the file P06-49.4br in program Linkages to see this solution.*

	 6‑51	 Open the file P06-51.4br in program Linkages to see this solution.*

	 6‑62	 Open the file P06-62.4br in program Linkages to see this solution.*

	 6‑65	 VA = 94.5 in/sec, VB = 115.2, Vslip = 162.8, V  = 65.9, ω  = –70 rad/sec.

	
*  These files can be found 
in the Problem Solutions 
folder downloadable with 
this text.
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–4.25
130.50
162.005.4

41.2
142.5

33.5
73.0

–176.0

–10.3
23.7
–2.7

120.0
135.0
–15.0

20.0
240.0
180.0

Row

a
c
e 11.5

14.6
89.4

–3.6
–14.9

5.7

ω3
Open
ω3

Mag
VA

Ang
VA

Open
Vslip

Open
magVB Vslip MagVB

TABLE  S6-3 Solutions for Problems 6-8 to 6-9

Crossed Crossed Crossed

a
c
e
g
i
k
m

VP
Mag Ang

VP
Mag
VP

Crossed
ω4ω 3

CrossedAng
VP

Open
ω 4ω 3

Open

22.0
119.1

139.9
1435.3
476.5
362.7
571.3

TABLE  S6-1 Solutions for Problems 6-4 to 6-5

–6.0
–12.7

1.85
76.4

–25.3
–56.2

18.3

–4.0
–19.8
–40.8
146.8
25.6

–94.8
83.0

40.8
273.8
260.5
798.4
103.1

436.0
680.8

58.2
–53.3
–12.1
92.9

–13.4
–77.4
149.2

–0.66
–22.70
–23.30
239.00

56.90
–55.60

7.73

–2.66
–15.70

19.30
168.60

6.00
–16.90
–57.00

Row

129.4
199.9
42.0

153.9
70.4
79.3

133.5

Row

a
c
e
g

TABLE  S6-2 Solutions for Problems 6-6 to 6-7

VA

14
45

250
700

VA

135
–120

135
60

ω3

–2.47
5.42

–8.86
–28.80

VB Mag

–9.9
–41.5

–189.7
738.9

ω3

2.47
–5.42

8.86
28.80

Mag Ang Open Open Crossed Crossed
VB Mag

–9.92
–3.54

–163.80
–38.90

Row
ω3

Open
ω4

Open
ω3

Crossed
ω4

Crossed

a 32.6 16.9 –75.2 –59.6
c 10.7 –2.6 –8.2 5.1
e –158.3 –81.3 –116.8 –193.9
g –8.9 –40.9 –48.5 –16.5
i –40.1 47.9 59.6 –28.4

TABLE  S6-4 Solutions for Problems 6-10 to 6-11
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Mag AngMagCrossedCrossedAngOpenOpenRow
APα4α3 AP

240.4
238.9
264.8
191.0
–81.1

220.2
261.5

α3 α4 AP AP

–11.3
100.6
–65.5
–63.0
150.0
–39.1
103.9

TABLE  S7-1 Solutions for Problems 7-3 to 7-4

a
c
e
g
i
k
m

26.1
–154.4

331.9
–23 510.0

–344.6
–2693.0

680.8

53.3
–71.6
275.6

–19 783.0
505.3

–4054.0
149.2

419
4400

10 260
172 688

9492
56 271
35 149

77.9
–65.2
1287.7

–43 709.0
121.9
311.0

9266.1

50.7
–148.0
1344.1

–47 436.0
–728.0

1672.1
10 303.0

298
3554

19 340
273 634

27 871
27 759
63 831

Row
AA AA α3 AB AB α 3 AB A B

a

c

e

g

25

–29

–447

–1136

124

709

6653

62 688

–25

29

447

1136

TABLE  S7-2 Solutions for Problems 7-5 to 7-6

140

676

12 500

70 000

–135

153

45

150

180

180

0

180

74

490

11 095

58 429

180

180

0

180

Mag Ang Open Open Crossed Crossed CrossedOpen
Mag Ang Mag Ang

Row

a 130.5 130.5
c –212.9 –212.9
e 896.3 896.3

α 3α3 α4 α4 A slipA slip

–128.5
1078.8

–1818.6

TABLE  S7-3 Solutions for Problems 7-7 to 7-8

19.0
–728.2
1822.6

–9.9
–217.8
595.6

–9.9
–217.8
595.6

Open Open Crossed Crossed CrossedOpen

Row

a
c
e
g
i

α3 α4 α 3 α4

3191
314

2171
–22 064

–5697

2492
228

–6524
–23 717
–3380

–6648
87

7 781
–5529
–2593

–5949
147

5414
–29 133

–7184

Open Open Crossed Crossed

TABLE  S7-4 Solutions for Problem 7-9



ANSWERS TO SELECTED PROBLEMS 841

F

CHAPTER  7		  ACCELERATION ANALYSIS

	 7-3	 and  7-4 	  See Table S7-1 and the file P07-04row.4br.

	 7-5	 and  7-6   See Table S7-2.

	 7-7	 and  7-8 	  See Table S7-3.

	 7-9	  See Table S7-4.

	 7‑12	 176.9 in/sec2.

	 7‑21	 AA  = 26.26 m/sec2 @ 211.1°, AB  = 8.328 m/sec2 @ –13.9°.

	 7‑24	 AA  = 16 m/sec2 @ 237.6°, AB  = 12.01 m/sec2 @ 207.4°, α4 = 92 rad/sec2.

	 7‑28	 AA  = 39.38 m/sec2 @ –129°, AB  = 39.7 m/sec2 @ –90°.

	 7‑39	 Open the file P07-39.4br in program Linkages to see this solution.*

	 7‑40	 Open the file P07-40.4br in program Linkages to see this solution.*

	 7‑41	 Open the file P07-41.4br in program Linkages to see this solution.*

	 7‑42	 Open the file P07-42.4br in program Linkages to see this solution.*

	 7‑44	 Open the file P07-44.4br in program Linkages to see this solution.*

	 7‑56	 Tipover at 19.0 to 20.3 mph; load slides at 16.2 to 19.5 mph.

	 7‑76	 AD  = 7 554.1 in/sec2 @ 150.8°, α6 = 692.98 rad/sec2.

	 7‑78	 AA  = 677.1 in/sec2 @ –119.7°, AB  = 1 337.5 in/sec2 @ –26.09°, AP  = 730.37 in/sec2 
@ –53.65°, α4 = 431.175 rad/sec2

	 7‑87	 AC  = 37.5 in/sec2 @ 90°

CHAPTER 8		  CAM DESIGN
Most of the problems in this cam chapter are design problems with more than one correct 
solution.  Use program Dynacam to check your solution obtained with Mathcad, Matlab, 
Excel, or TKSolver and also to explore various solutions and compare them to find the 
best one for the constraints given in each problem.

	 8‑1	 See Figure S8-1a.

	 8‑2	 See Figure S8-1b.

	 8‑4	 φ = 4.9°.

	 8‑6	 φ = 13.8°.

CHAPTER 9		  GEAR TRAINS

	 9‑1	 Pitch diameter = 4.8, circular pitch = 0.628, addendum = 0.20, dedendum = 0.25, tooth 
thickness = 0.314, and clearance = 0.050.

	 9‑5	 a.  pd = 10,	  b.  pd = 6

	 9‑6	 Assume a minimum no. of teeth = 16, then: pinion = 16t and 1.600-in pitch dia.  Gear = 
112t and 11.240-in pitch dia. Contact ratio = 1.68.

	
*  These files can be found 
in the Problem Solutions 
folder downloadable with 
this text.
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	 9‑7	 Assume a minimum no. of teeth = 16, then: pinion = 16t and 3.20-in pitch dia.  Gear = 
96t and 19.20-in pitch dia.  An idler gear of any dia. is needed to get the positive ratio. 
Contact ratio = 1.67.

	 9‑10	 Three stages of 4:1, 4:1, and 5:1 give –80:1.  Stage 1 = 20t (d = 1.67 in) to 80t (d = 6.67in).  
Stage 2 = 20t (d = 1.67 in) to 80t (d = 6.67in).  Stage 3 = 18t (d = 1.5 in) to 90t (d = 7.5 
in).

	 9‑12	 The square root of 120 is > 10 so will need three stages.  5 x 4 x 6 = 150.  Using a mini-
mum no. of teeth = 18 gives 18:90, 18:72, and 18:108 teeth.  Pitch dias. are 3.6, 18 and 
21.6 in.  An idler (18t) is needed to make the overall ratio positive.

	 9‑14	 The factors 4 x 7 = 28.  The ratios 24:96 and 15:105 revert to same center distance of 7.5 
in.  Pitch dias. are 1.875, 3, 12, and 13.125 in.

	 9‑16	 The factors 6.5 x 10 = 65.  The ratios 22:143 and 15:150 revert to same center distance 
of 10.3125 in.  Pitch dias. are 2.75, 17.875, 1.875, and 18.75.

	 9‑19	 The factors 2 x 1.5 = 3.  The ratios 15:30 and 18:27 revert to the same center distance 
of 3.75.  Pitch dias. are 2.5, 5, 3, and 4.5.  The reverse train uses the same 1:2 first stage 
as the forward train, so it needs a second stage of 1:2.25 which is obtained with a 12:27 
gearset.  The center distance of the 12:27 reverse stage is 3.25 which is less than that of 
the forward stage.  This allows the reverse gears to engage through an idler of any suitable 
diameter to reverse output direction.

	 9‑21	 For the low speed of 6:1, the factors 2.333 x 2.571 = 6.  The ratios 15:35 and 14:36 revert 
to the same center distance of 3.125.  Pitch dias. are 1.875, 4.375, 1.75, and 4.5.  The 
second speed train uses the same 1:2.333 first stage as the low-speed train, so it needs a 
second stage of 1:1.5 which is obtained with a 20:30 gearset which reverts to the same 
center distance of 3.125.  The additional pitch dias. are 2.5 and 3.75.  The reverse train 
also uses the same 1:2.333 first stage as both forward trains, so it needs a second stage of 
1:1.714 which is obtained with a 14:24 gearset.  The center distance of the 14:24 reverse 
stage is 2.375 which is less than that of the forward stages.  This allows the reverse gears 
to engage through an idler of any suitable diameter to reverse output direction.

O2 O4

ω2 ω4

2

3

4

direction
of sliding

O2 O4

ω2 ω4

FIGURE S8-1
Solutions to Problems 8-1 and 8-2

A B
φ = 54°

VA

VB

Vtrans

( a )  E�ective linkage for Problem 8-1 (b )  Pressure angle φ for Problem 8-2    

 radii of
curvature
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	 9‑25	 a. ω2 = 790,	 c. ωarm = –4.544,		  e. ω6 = –61.98

	 9‑26	 a. ω2 = –59,	 c. ωarm = 61.54,		  e. ω6 = –63.33

	 9‑27	 a.  577.7 rpm and 4.33 to 1,		  b.  x = 577.7 x 2 – 800 = 355.4 rpm 

	 9‑29	 See Table S9-1 for solution.  The third row has the smallest error and smallest gears.

	 9‑35	 η = 0.963.

	 9‑37	 η = 0.996.

	 9‑39	 ω1 = 979.6 rpm, ω2 = 2742.9 rpm.

	 9‑41	 ω1 = –293.9 rpm, ω3 = –587.8 rpm.

	 9‑43	 ωG = –18.6 rpm, ωF = –187.7 rpm.

	 9‑67	 φ = 26.23°.

	 9‑69	 Gear ratio = 2.4 and contact ratio = 1.698.  Circular pitch = 0.785, base pitch = 0.738, 
pitch dia.= 6.25 and 15, outside dia. = 6.75 and 15.5, center dist. = 10.625, addendum = 
0.250, dedendum = 0.313, whole depth = 0.562 5, clearance = 0.063 (all in inches).

	 9‑71	 Four stages with factors 6 x 5 x 5 x 5 x 5 = 750: Stage 1 = 14t to 84t.  Stages 2, 3, 4 = 
14t to 70t.  Output in same direction as input due to even number of stages.

CHAPTER 10		  DYNAMICS FUNDAMENTALS

	 10-1	 CG @ 8.77 in from handle end,  Izz = 0.394 in-lb-sec2,  k = 9.35 in.

	 10-2	 CG @ 8.08 in from handle end,  Izz = 0.221 in-lb-sec2,  k = 8.95 in.

	 10-4	
a.  x =    3.547,  	 y = 4.8835,  	 z = 1.4308,  	 w = –1.3341
b.  x = –62.029,  	 y = 0.2353, 	 z = 17.897,  	 w =  24.397

Pinion 1 

25
29
30
30
31
31
31
35

Gear 1 

67
57
32
64
48
64
79
67

Ratio 1 

2.68
1.966
1.067
2.133
1.548
2.065
2.548
1.914

Pinion 2 

70
47
31
62
45
60
75
50

Gear 2 

71
65
79
79
79
79
80
71

Ratio 2 

1.014
1.383
2.548
1.274
1.756
1.317
1.067
1.420

Train Ratio

2.718 285 71
2.718 268 53
2.718 279 57
2.718 279 57
2.718 279 57
2.718 279 57
2.718 279 57
2.718 285 71

Abs Error

5.71E-06
1.15E-05
4.30E-07
4.30E-07
4.30E-07
4.30E-07
4.30E-07
5.71E-06

TABLE  S9-1 Solution to Problem 9-29
Possible Ratios for Two-Stage Compound Gear Train to Give the Ratio 2.718 28 
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*  These files can be found 
in the Problem Solutions 
folder downloadable with 
this text.

	 10-6	
a.	 In series: 	 keff = 3.09,	 Softer spring dominates
b.	 In parallel: 	  keff = 37.4,  	 Stiffer spring dominates

	 10-9	
a.	 In series: 	 ceff = 1.09,	 Softer damper dominates
b.	 In parallel: 	  ceff = 13.7,   	 Stiffer damper dominates

	 10-12	 keff = 12 N/mm,	 meff = 0.688 kg

	 10-14	 keff = 225 N/mm,	 meff = 58.5 kg

	 10-20	 Effective mass in 1st gear = 0.054 bl, 2nd gear = 0.096 bl, 3rd gear = 0.216 bl,  
4th gear = 0.863 bl.

	 10-21	 Effective spring constant at follower = 308.35 lb/in.

	 10-25	 Effective spring constant = 111.1 N/mm, effective mass =  27 kg.

	 10-26	 x = 5.775 in.

	 10-34	 Icrank about pivot = 1 652 kg-mm2, Irocker about pivot = 18 420 kg-mm2, Icoupler about 
CG = 2106 kg-mm2 (both couplers are the same).

	 10-35	 x = 774 mm to strike point of ball.

CHAPTER 11		  DYNAMIC FORCE ANALYSIS

	 11-3	 Open file P11-03row.sld in program Linkages to check your solution.*

	 11-4	 Open file P11-03row.sld in program Linkages to check your solution.*

	 11-5	 Open file P11-05row.4br in program Linkages to check your solution.*  

	 11-6	 Open file P11-05row.4br in program Linkages to check your solution.*  

	 11-7	 Open file P11-07row.4br in program Linkages to check your solution.*  

	 11-12	 F12x = –1851 N, F12y = 1315 N;  F14x = 1047 N, F14y = –3156 N;   
F32x = 479 N, F32y = –275 N;  F43x = 53.7 N, F43y = –1087 N;  T12 = –45.3 N-m

	 11-13	 Open file P11-13.4br in program Linkages to check your solution.*  

	 11-14	 F12 = 1 308 lb,	 F32 = 1 290 lb,	 F43 = 1 290 lb,	 F14 = 710 lb,	  
Fhand = 63.2 lb,	 JFI = 0.645.

	 11-25	 T12 = 463 lb-in

	 11-40	 Mass moment of inertia needed in flywheel = 11.8 bl-in2.  Many flywheel geometries 
are possible.  Assuming a steel cylinder with a radius of 9.0 in, thickness = 1.474 in.

CHAPTER 12		  BALANCING

	 12-1		
a.	 mbrb = 0.934,	 θb = –75.5°
c.	 mbrb = 5.932,	 θb = 152.3°	
e.	 mbrb = 7.448,	 θb = –80.76°
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	 12-5
a.	 mara = 0.814,	 θa = –175.2°, 	 mbrb = 5.50, 	 θb = 152.1° 
c.	 mara = 7.482,	 θa = –154.4°, 	 mbrb = 7.993, 	 θb = 176.3° 
e.	 mara = 6.254,	 θa = –84.5°,	  mbrb = 3.671, 	 θb = –73.9° 

	 12-6	 Wa = 3.56 lb,	 θa = 44.44°,	 Wb = 2.13 lb,	 θb = –129.4° 

	 12-7	 Wa = 4.2 lb,	 θa = –61.8°,	 Wb= 3.11 lb,	 θb = 135°

	 12-8	 These are the same linkages as in Problem 11-5.  Open the file P11-05row.4br in 
program Linkages to check your solution.*  Then use the program to calculate the 
flywheel data. 	

 12-9	 Open the file P12-09.4br in program Linkages to check your solution.*

	 12-14	 R3 = 5.85 in,	 θ3 = s–142.11°,	 R4 = 1.13 in,	 θ4 = 120° 

	 12-16	 W4 = 14.48 lb,	 θ4 = 89.15°,	 W5 = 5.04 lb,	 θ5 = 83.90° 

	 12-18	 d3 = 18.95 mm,	 θ3 = –147.46°,	 d4 = 20.8 mm,	 θ4 = 28.94° 

	 12-38	 Plane 2: e = 0.113, θ = –152.15°.  Plane 3: e = 0.184, θ = 19.36°.

CHAPTER 13		  ENGINE DYNAMICS

	 13-1	 Exact solution = – 42 679.272 in/sec  @ 299.156° and 200 rad/sec

Fourier series approximation = – 42 703.631 in/sec  @ 299.156° and 200 rad/sec

Error = –0.0571%  (–0.000 571)

	 13-3	 Gas torque =  2040 (approx.),	 	 Gas force = 3142

	 13-5	 Gas torque =  2039.53 (approx.), 	 Gas torque = 2039.91 (exact)

				    Error = 0.0186%   (0.000 186)

	 13-7	
a.  mb = 0.007 48 at lb = 7.2 ,		 mp = 0.012 51 at lp = 4.31
b.  mb = 0.008 00 at lb = 7.2, 		 ma = 0.012 00 at la = 4.80
c.  Imodel = 0.691 2,			  Error = 11.48%  (0.114 8)

	 13-9	 m2a = 0.018 at ra = 3.5,	 Imodel = 0.220 5, 	 Error = –26.5%  (–0.265)	

 13-11	 Open the file P13-11.eng in program Engine to check your solution.*

	 13-14	 Open the file P13-14.eng in program Engine to check your solution.*

	 13-19	 Open the file P13-19.eng in program Engine to check your solution.*

	
*  These files can be found 
in the Problem Solutions 
folder downloadable with 
this text.
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CHAPTER 14		  MULTICYLINDER ENGINES
Note: Use program Engine to check your solutions.

	 14-23	 mr product on the balance shafts = 5.017E–3 bl-in or 1.937 lb-in.	

CHAPTER 15		  CAM DYNAMICS

	 15-1 	 to   15-5	 Use program Dynacam to solve these problems.  There is not any one right 
answer to these design problems.

	 15-6	 See Table S15-1.	

 15-7 	 to  15-19	  Use program Dynacam to solve these problems.  There is not any one right 
answer to these design problems.

a 3.42 3.38 8.2
b 4.68 4.65 19.7
c 0.26 0.26 15.5
d 2.36 2.33 21.2
e 5.18 5.02 29.0
f 2.04 1.96 49.0

ωn ωd c c

TABLE  S15-1
Solutions to Problem
15-6



AppendixG
EQUATIONS FOR UNDER- 
OR OVERBALANCED  
MULTICYLINDER ENGINES

G.1	 INTRODUCTION

Chapter 14 developed the equations for shaking forces, moments, and torques in multi-
cylinder engines of inline and vee configurations.  In Chapter 14, it is assumed that the 
crank throws are all exactly balanced, an assumption that greatly simplifies the equations.  
However, some multicylinder engines overbalance the crank throws to reduce main bear-
ing forces.  This also can have an effect on shaking forces and moments.  

This appendix provides replacement equations for the simplified versions in Chapter 
14, and these equations do not assume exactly balanced crank throws.*  The equation 
numbers used here correspond to those in Chapter 14 and can be substituted for the simpli-
fied ones if desired.  In the equations that follow, mA is the effective crank pin mass and 
mB the effective wrist pin mass as defined in Chapter 13.  The parameters mc and rc rep-
resent, respectively, the counterweight mass of any one crank throw and the radius to the 
counterweight’s CG.  All other parameters are the same as defined in Chapters 13 and 14.

	

*  These complete equa-
tions are used in program 
Linkages.
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For an inline engine (Section 14.3) the shaking forces for an engine with an under- or 
overbalanced crankshaft are: 
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For an inline engine (Section 14.3) the shaking moments for an engine with an under- 
or overbalanced crankshaft are: 
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G

For a vee or opposed engine (Sections 14.7 and 14.8) the shaking forces for an engine 
with an under- or overbalanced crankshaft are: 





∑∑

∑∑

∑∑

∑∑

( )

( )

( ) ( )

( ) ( )

= + γ + ω ω φ + ω φ












+ ω ω + π φ + ω + π φ












= − γ + ω ω φ − ω φ












+ ω ω + π φ − ω + π φ












= +

==

==

==

==

cos cos cos sin sin

cos cos sin sin ˆ

(14.10j)

sin sin cos cos sin

sin cos cos sin ˆ

ˆ ˆ

2

11

2

11

2

11

2

11

F F F m r t t

m r t t

F F F m r t t

m r t t

F F

s s A i i
i

n

i

n

c c i i
i

n

i

n

s s A i i
i

n

i

n

c c i i
i

n

i

n

s s

x L R

y L R

x y

i

j

F i j

s

s

s

For a vee or opposed engine (Sections 14.7 and 14.8) the shaking moments for an 
engine with an under- or overbalanced crankshaft are: 




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Note that inertia torque is unaffected by crankshaft balance condition because, at 
constant angular velocity, the acceleration vector of the crank pin mass is centripetal and 
has no moment arm.  The moment of inertia added to the crankshaft by any overbalance 
mass will increase the flywheel effect of the crankshaft and thus reduce its willingness 
to change rotational speed in transient angular acceleration.  But, the size of the engine’s 
physical flywheel can be reduced to compensate for the more massive crankshaft.
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A
acceleration    3,  178,  357

absolute    359,  364
analysis

analytical    365
graphical    360,  361

angular    590,  599,  608
as free vector    365
definition    357
inverted slider-crank    376,  378

cam-follower    416
comparison of shapes    434
peak factor    432

centripetal    358,  364,  579
coriolis    373.   

See Also coriolis acceleration
difference

analytical solution    364,  366
definition    360
equation    359
graphical solution    364
in slider-crank    370

discontinuities in    422
human tolerance of    382
linear    590,  599
modified sine    427,  434
modified trapezoidal    427
normal    364
of any point on link    380
of a valve train    785
of geared fivebar    379
of piston    384
of slip    378

relative    359,  364
sinusoidal    425
tangential    358,  364
tolerance    383

accelerometer    382
across variable    568
actuator    38,  582
addendum    493,  497

circle    497
modification coefficients    502

AGMA    497,  502
air

cylinder    38,  100
motor    79

all wheel drive    537
all-wheel-drive    537
Ampere, Andre Marie    5
amplitude ratio    772
analogies    11,  763
analogs    569
analysis    11,  12,  24,  98,  99,  589

definition    8
of mechanisms    3,  30

analytical linkage synthesis 100,  102, 
  233,  236,  245.   
See Also linkage: synthesis

compare to graphical    243
angle

of approach    494
of a vector

definition    189
of recess    494

angular velocity ratio    309,  310,   
311,  492

definition    307
antiparallelogram    57

linkage    315
apparent position    183
applications

assembly machines    452
automobile engine    409
automobile suspension    128,  311
automobile transmission    493
engine valves    443
indexing table drive    435
movie camera    126
of air motors    79
of fluid power cylinders    79
of hydraulic motors    79
of kinematics    6
of solenoids    80
optical adjusting mechanism    312
steam locomotives    57
toggle linkages    103

approximate
circle arc    149,  151
dwell    152
straight line    125,  141,  144,  151

arc of action    494
arctangent

two-argument code for    180
arm (epicyclic)    521.   

See Also gear: train: epicyclic
Artobolevsky    6



DESIGN OF MACHINERY 6ed     INDEX852

I

linkage catalog    153
reference    158

asperities    33
atlas of coupler curves

fourbar    126
geared fivebar    131

automobile
clutch    622
suspension    128,  141,  311
wheel balancer    661

axis
of rotation    558
of slip

cam-follower    304,  461
inverted slider-
crank    330,  374,  610
slider block    318,  319

of transmission    495
cam-follower    461,  462
gear teeth    494
inverted slider-crank    330,  610
slider block    318,  319

axle    311

B
babbitt    711
backdrive    102,  506
background research    9,  16,  22,   

639
backhoe    7
backlash    497,  498.   

See Also gear: antibacklash
definition    497

balance
complete    642
dynamic    642,  646

tires    662,  663
mass    643
shafts    736,  752,  755
single-plane    643
static    642,  643,  755

tires    661
balancer

Lanchester    756
Nakamura    756

balancing    578
dynamic    649,  755

secondary force    756
engines

multi-cylinder    751
single-cylinder    705

linkages    651
effect on input torque    656,  657
effect on pin forces    655
optimum counterweights    657
shaking force    651
shaking moment    657

static    645
ball

and socket    33
joint    33.  See Also joint

bank
angle    742.  See Also vee: angle
engine    721.  See Also engines: vee
of cylinders    674

Barker    60
base circle

cam    460,  473
gear    497,  500,  507
involute    493
radius    460

base units    17
BDC.  See bottom dead center (BDC)
beam

cantilever    574
double cantilever    574
indeterminate    42
simply supported    42

bearing    69
ball    69
bushing    72
effective diameter    72
effective length    72
flange-mount    69
journal    69
linear ball    70
pillow block    69
ratio    72,  73

definition    72
poor, example of    73

roller    69
rolling-element    69
sleeve    69
spherical rod end    69

belt    6,  32,  490
flat    509
synchronous    509
timing    509
vee    491,  509
vibration in    511

benchmarking    9
Berkof-Lowen method    651
BFI.  See Brute Force and Ignorance

big end (conrod)    689
binary    42

link    32
binomial

expansion    683
theorem    682,  687

bisector    151
blank paper syndrome    8,  624
blobs    18
bore/stroke ratio    709
Boston rocker    316
bottom dead center (BDC)    675
boundary conditions    409,  416,   

439,  445
brainstorming    11
brake    521
branch

defect    212
definition    212

building blocks    36
bump steer    311
Burmester curves    266
bushing    72

ball    145

C
CAD.  See Computer Aided:  

Drafting
CAE.  See Computer Aided:  

Engineering
cam    6,  32,  100,  148,  385,  409, 

763
and follower    100,  148,  304
automotive valve    574,  776
axial    414,  476
barrel    414,  435
conjugate    476
contour    473
cylindrical    414
definition    409
design

fundamental law of    420
desmodromic    780
disk    565,  764,  775
double-dwell    417
face    414
force-closed    780,  783
form-closed    781,  783
ground    477
mechanisms    568
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milled    477
motion program types    415
plate    414,  783
radial    414,  476
single-dwell    443

asymmetrical rise-fall    448
symmetrical rise-fall    443

stationary    470
track    780

CAM.  See Computer Aided:  
Manufacturing

cam-follower    52,  53,  55,  73
camshaft    780
capacitor    569,  571
carburetor    677
carry through    57
cartesian

coordinates    188
form    180

Cayley diagram    134,  137.   
See Also cognate

degenerate    137
center

of curvature    472
of gravity    556,  599,  687

global    557
of percussion    563,  659,  689
of rotation    563,  564,  659,  689
point    263

circle    263
centrifugal force    578,  752
centrodes    313.  See Also polodes

fixed, moving    315
noncircular gears    508

centros    298.   
See Also instant centers

CEP cams.  See Critical Extreme 
Position (CEP)

chain    32
drive    490,  510

vibration in    511
silent    510

change points    57
characteristic equation    768,  769
Chasles

reference    218
theorem    185,  297

Chebyschev    134,  140,  144,  263.   
See Also Roberts: -Chebyschev 
theorem

chordal action    510

circle
arc    144

with remote center    125
point    263

circle    263
circuit

defect    212
definition    212
of a linkage    193

distinguishing    215
number of    213

circular
gears    316
pitch    498

civil engineering    5
clearance    497
Clerk    677

cycle    675
engine    677

clockworks    5
closed

curve    125
kinematic chains    38
mechanism    38

closed loop    78
clutch

automobile    622,  699
synchromesh    532,  533

CNC.  See Continuous Numerical 
Control (CNC)

coefficient
of damping    568,  573.  See 

Also resonance
of fluctuation    621,  622,  697.  See 

Also flywheel
cognate    134,  137.   

See Also Cayley diagram;   
See Also Roberts: -Chebyschev 
theorem;   
See Also Roberts: diagram

character of    134
fourbar linkage    134
geared fivebar    140

colinearity    102,  119
combined functions

for cams    425
common

normal    304,  494,  495
tangent    304,  493

communication    17,  24

complex
motion    31

conrod    688
coupler    36,  124
definition    32,  184

number    188
notation    188,  189

plane    189
compliance

definition    65
compliant mechanisms    65
component

orthogonal    196
compound

epicyclic train    525
gear train    512.  See Also gear: train

compression
ignition    679
stroke    676

Computer Aided
Drafting    99,  624
Engineering    99,  100,  126

computer graphics    119
computer programs.  See programs
concave    466
conjugate

action    506
cams    413,  780

conjugates    413,  493
connecting rod    36,  674
conrod    679,  688,  691

two per crank throw    746
conrod/crank ratio    709,  710
conservation of energy    580
conservative model    764
constant

acceleration    426
of integration    766
velocity    452

constrained    38
construction angle    120
contact ratio    502

minimum    502
continuation methods    272
continuous    53

motion    452,  453
convex    466
coordinate system    32,  180,  590

absolute    17,  180
global    180,  237,  605
local    180
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nonrotating    180,  590,  605
rotating    180,  605

coriolis acceleration    373,  375
correction planes    647,  755
cost    100
coulomb friction    566,  606.   

See Also friction: non-linear
counter

balance    65
couple    647
rotating eccentrics    752
shaft    532
weight    644,  656,  708,  755

crankshaft    706
optimum balance    657

coupler    22,  124,  126,  207
as a physical pendulum    658
attachment points

alternate    114
curve equation    273
curves    125,  126,  128,  131,   

134,  151
atlas of    126
degenerate    124
degree of    124
design charts    131
symmetrical    129

definition    36
output    105,  107,  111,  112
point    126,  151

coupler curve
equation

complexity    273
synthesis    274

CPM cams.   
See Critical Path Motion

crank    126,  674,  688
definition    36
eccentric    71
phase diagram    723,  738
short    71
throw    719

crank-conrod ratio    682
crankpin    691

splayed    755
crank-rocker    57,  126
crankshaft    677,  719

balance weights    705
mirror symmetric    738,  747
phase diagram    722

crank-shaper    55

crank-slider.   
See Also slider-crank

constant velocity slider    153
quick-return    122
threebar    593

creative process    11,  21
definition    21

creativity    7,  10,  11,  21,  28
Critical Extreme Position (CEP)     

410,  414,  417
critically damped.   

See damping: critical
Critical Path Motion (CPM) 

    410,  414,  452, 453,  458
crossed

helical gears    505
mechanism    193,  256

crossover shock    476,  497,  782
crowned pulley    509
crunode    125,  126,  131
cubic function

finding roots of    214
current    568
curvilinear translation    137,  140
cusp

on cam    467
on coupler curve    128,  131
on moving centrode    316

cycloid
curve    125
gear tooth    493

cycloidal
coupler curve    316
displacement    422,  425,  443

compared    434
dynamic torque    784
single-dwell    442

cylinder
air and hydraulic    79.   

See Also air: cylinder;   
See Also hydraulic: cylinder

D
d’Alembert    5,  578,  579,  581,  64

3,  691
dampers    574,  772

combining    569
in parallel    570
in series    569

damping    566,  568,  574,  763,  767, 
  775

coefficient    568
critical    768,  769
effective    570,  573
internal    576
nonlinear    566
pseudo-viscous    568
quadratic    566
ratio    768,  772,  774,  775
viscous    566

DC component    683
decision matrix    13
dedendum    497,  500

circle    498
deferred judgment    11
deflection    555,  566

bending    574
torsional    576

degree    124,  131,  439
degree of freedom    30,  35,  40

definition    37
distribution of    48
spatial mechanisms    40
visualizing    35

DeJonge    6
Delone    156
delta

phase angle    722
optimum    722

power stroke angle    732
triplet    46,  48,  52

deltoid    59
Denavit, J.    6,  134
density

mass    555
weight    555

derived unit    17
descriptive geometry    5,  24
design    7,  21,  100

axiomatic    15
by successive analysis    99,  100
case study    21
computer-aided    13
definition    7
detailed    13,  15,  26
process    3,  7,  8,  14,  28,  99,  555
qualitative    99
ratios    709
simplicity in    56
specifications    10
trade-off    73,  621,  709
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desmodromic    413,  476,  780.   
See Also cam: form-closed

determinant    259
diagrams

kinematic
drawing    36

diametral pitch    498
Diesel cycle    679
differential    521.   

See Also gear: train: epicyclic
automotive    537

center    537
rear    537

center    537
definition    536
limited slip    538
Torsen    538

dimensional synthesis    100,  102,   
104,  158.  See Also analytical: 
linkage synthesis

of a fourbar linkage    104
Dirac delta functions    420
discontinuities    420
discriminant    769
displacement

cam    416,  438
definition    181
total    185

dissipative element    772
Dixon, A.    15
DOF.  See degree of freedom
dot product    580
double

crank    57.
dwell    153,  417

cam    417
linkage    151,  416

enveloping wormset    506
harmonic    444,  784
parallelogram linkage    59
rocker    57,  103,  109,  141.   

See Also crank-rocker
dragged crank    121
drag link    57,  121
driver    74

crank    601
stage    109

driving torque    606,  686.   
See Also torque: driving

duplicate planar linkages    101
dwell    53,  73,  148,  151,  415,  477

cam
double-    417
single    443
single-    443

definition    148
linkages    148
mechanism    53,  148,  152
motion    125

dyad    105,  238,  240,  243,  251,  263
definition    38
driver    109,  111,  114

analytical synthesis    234
output    121,  122,  148

Dynacam program
example

constant velocity    454
force    776,  777,  780
polynomial    442
radius of curvature    469
single-dwell    442
torque    783,  785

general information    817,  818
dynamic

analysis    26
balance.  See balance: dynamic
balancing.  See balancing: dynamic

devices requiring    647
machine    662

equilibrium    578
equivalence    659

requirements for    688
force    3,  4,  18,  178,  382,  384,  555

analysis    553,  589
measurement    785

friction    566
models    554
system    4,  578,  590

E
eccentric

crank    71
masses    752,  753

eccentricity
cam-follower

definition    461
effect on pressure angle    464
flat-faced    465,  474
roller    461

effective
damping    573
linkage    409,  491
links    52,  307

mass    571
spring    573

efficiency    505,  580
definition    529
of a conventional gear train    529
of an epicyclic train    529

elastomers    509
electrical circuit    569
electric motors    74,  617.   

See Also motor
electromechanical devices    101
encoder    795
endpoint specification    414
energy

kinetic    291
in cam-followers    426,  435,  459
in flywheels    618,  697
in lever ratios    571
in resonance    772
in rotating systems    558
in virtual work    580,  581
peak    434

law of conservation    580
method    580
potential    580,  772
storage elements    773

engineering    14
approach    14
design    4,  7,  98,  148

cost in    100
definition    7

human factors    16
report    17

Engine program    672,  683,  693,   
717

flywheel calculations    697
engines    74,  674

inline    719
four-cylinder    756
six-cylinder    752

multicylinder    719
balancing    751

opposed    721
twin    751

radial    721
rotary    721
vee    674,  721,  739

eight    674,  739,  746,  747,  754
,  755
six    739,  755
twelve    752
twin    754
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epicyclic gear train.   
See gear: train: epicyclic

efficiency of    530
equation solver    217,  577,  624
equilibrium    566,  578
E-quintet    46
equivalent

mass    571
spring    571
system    568,  573,  763

Erdman, Arthur G.    6,  119,   
233,  266

ergonomics    16.  See Also human 
factors engineering

euclidean geometry    105
Euler    5

equivalents    191
identity    189
theorem    185

Eureka!    11,  23
Evans, Oliver    5

straight-line linkages    144
even firing.  See firing: even
evolute    493
exact straight line.  See straight-line: 

mechanisms: exact
Example 16-1    800
Example 16-2    803
Example 16-3    807
exhaust stroke    677
external

gearset    499
load    599
torque    599

F
face width (gears)    498
Ferguson’s paradox    525,  528
film advance mechanism    126
finite

difference method    16
element method    16

firing
even    730

importance of    733
inline four    736,  739
vee eight    750
vee engines    750

order    736,  748

pattern    730
uneven    733

first moment of mass.   
See mass: moment

fivebar linkage
geared    63

fixed
centrode    313,  316.   

See Also centrodes
pivots    112,  114,  126,  134

specified    115.   
See Also specified fixed pivots

flat belts.  See belt: flat
flat-four engine.   

See engines: opposed
flexure hinge    22
fluctuation    621.  See Also coeffi-

cient: of fluctuation
flywheel    77,  559,  613

calculation
in program Dynacam    783
in program Fourbar    617

designing
for fourbar linkage    616
for IC engine    697

effect    656
engine    697,  699
in IC engines    752
materials    622
moment of inertia of    697
physical    622
sizing    621

follower    763
cam    101,  409

aligned    461
force-closed    764,  775
form-closed    780
system    409,  763
underdamped    774

flat-faced    413,  470,  476
float    476
force- or form-closed?    476
jump    476,  774,  776,  778
mushroom    413
roller    780
rotating    410
slip    780
translating    410

flat-faced    574
precession    475
roller    783

translating or rotating?    475
foot-pound-second (fps) system    17

force
analysis

kinetostatic    775,  776,  780,  781, 
  800,  803

applied    591,  594
centrifugal    579,  691
closed    35
closure    35,  412,  780
crankpin    701,  703,  705
dynamic    672

cam-follower    776,  777,  778,   
781,  783,  785
compared to gravitational    581
minimizing    425

external    581,  643
externally applied    591
gas.  See gas: force
gravitational    580,  590
impact    776
inertia    571,  581,  625 

,  643,  685,  691,  703
link    129
mainpin    703

effect of balancing on    709
piston sidewall    701
primary    739
reaction    601
secondary    739
shaking    612,  642,  672

cancelling    752,  753
fourbar linkage    656
in inline engines    723,  739
in one-cylinder engines    685,  691
in vee engines    744
primary    736
secondary    736

spring    565,  764,  775
transducer    662,  785
transmission    104
wristpin    701,  705

forcing frequency.   
See frequency: forcing

form-closure    35,  412,  780
Formula 1

engine redline    684
forward dynamic analysis.   

See force: analysis: dynamic
fourbar linkage    55,  134,  599,  642

acceleration    365
anti-parallelogram    57
change points    57
classification of    60
cognates    137

character of    137
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coupler curves    125
crank-rocker    50,  102
double-rocker    102,  103,  105
Grashof condition    55
linkless    313
mechanism    22
optimum straight-line    144
quick-return    119,  120
subchain    105
symmetrical    130
triple-rocker    57,  103

Fourbar program
example

three-position synthesis    256
two-position synthesis    245

Fourier    5,  683
descriptors    276
series    683,  726

equation    683
four-position synthesis.   

See synthesis: four-position
four-stroke cycle    675,  733
free body    579,  593

diagram    590,  599, 
  691,  700,  764,  767

free choices    106
for function synthesis    268
in three-position synthesis    250,  252
in two-position synthesis    239,   

240,  242
free vector    298,  363,  365
frequency

forcing    772,  774
fundamental    766,  774,  779
natural    763

and resonance    774
cam-follower    775,  777,  780,  789
circular    766,  771
undamped    766,  767

overtones    766
ratio    772
response    785

Freudenstein, F.    6,  192
friction    35,  491,  691

belts    491
Coulomb    566
force    596
in linkages    104
nonlinear    566
work    318

frisbee    298
frustration    10,  11,  23

full joint    33,  39.   
See Also joint

function
forcing    771,  789
generation    100,  414.   

See Also motion: generation;   
See Also path: generation
analytical synthesis    267
definition    101,  233
table of free choices    268
two-position    105

generator    100,  267,  409,  796
functional visualization    10
fundamental frequency    683. 
fundamental law

of cam design    422,  774
of gearing    492,  494,  496

definition    494
of servomechanism design    797

fuzzy logic    271,  274

G
Galloway mechanism    59
gas

force    679,  685,  693,  703,  730
curve    679,  685

pressure    685
curve    677,  679,  685

torque    685,  687,  730.  See 
Also torque

gate    128
Gauss-Jordan elimination    246
gear

antibacklash    497.   
See Also backlash

base pitch    502
bevel    507,  508

spiral    507
straight    507

blank    507
helical    505
herringbone    505
hypoid    508
idler    512
rack    507
ratio    131,  204,  571
set    141,  315
shaper    500
spur    505
teeth    493

full-depth    500
HPSTC    503

unequal-addendum    500,  502
tooth action    490
train    490,  511

compound    512
design algorithm    517
earliest known reference    490
epicyclic    521,  523,  533
error in center distance    496
irrational ratio    518
reverted    515,  532
simple    511

worm    506
wormset    506

gearbox    490,  513
geared fivebar

coupler curves    131
mechanism    62,  204

analysis    204,  379
cognate of fourbar    140
coupler curves    124
inversions of    63

gearing
fundamental law of    492

definition    494
gears    32,  492

non-circular    315,  508
profile-shifted    502
worm.  See worm

gearset    492,  506
angle of approach    494
angle of recess    494
arc of action    494
changing center distance    495
contact ratio    502,  504
external    493
highest point of single-tooth con-

tact    502
internal    493,  499
length of action    494,  502
pressure angle    495

genetic algorithms    271
Geneva

mechanism    53
wheel    53

global mass center    651.   
See Also center: of gravity

goal statement    10,  639
graphical

dimensional synthesis    100
compare to analytical    243
tools needed for    105,  111

position analysis    179
Grashof    56,  178
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condition    56,  59,  111
geared fivebar    63

crank-rocker    143
double-rocker    210
fivebar    141
linkage    74
special-case    57

gravitational
constant    17,  18
system    17

gravity    383
ground

definition    36
pivots    115
plane    134

Gruebler    38
criterion    46
equation    39,  42,  43

H
Hachette    5
Hain, Kurt    6

linkages    153
reference    157

half
joint    35,  43

Hall, Allen S.    6,  119,  120,  140
Hammond, T.    131
harmonic    444

number    751
harmonics    683,  726
Hartenberg, Richard    6,  134
Hart inversor    144
helical motion    33
helix angle    33,  505,  506
higher pair    6,  33,  35.  See 

Also joint
Hitchcock chair    316
hob (gear)    500
hodograph.  See polar: plot
Hoeken

linkage    143,  144,  145
reference    157

homogeneous    766
ODE    766
solution    767

homotopy methods    272
hood hinge    101
hood hinge mechanism    65

Hrones
reference    157

Hrones and Nelson atlas    126
human factors engineering    16,  29
Humvee    538
hunting    497
hydraulic

cylinder    100.  See Also cylinder: air 
and hydraulic

motor    74,  79.  See Also motors: air 
and hydraulic

hyperboloids    508
hypoid gears    508

I
idea generation    11
ideation    10,  11,  15,  23

and invention    10
identification of need    8
identity matrix    246
idler gear.  See gear: idler
imaginary axis    189
imbalance    661
inch-pound-second (ips)    18
inclined plane    5
incubation    12,  23
indeterminate beam.   

See beam: indeterminate
indexers    435
indexing    148

table    435
indices of merit    311
induction system    676
inductor    569,  570
inertia

balance    736
vee engine    739,  750

force    578,  643,  693,  721,  730.   
See Also force: inertia

mass moment of    558
torque    578,  581,  694,  727.   

See Also torque: inertia
inertial reference frame    180
infinity of solutions    242,  263
inflection points    446,  469
initial conditions    766
inner ear    382

input torque    616,  656.   
See Also torque: input

instant centers    298,  299
cam-follower    304,  463
fourbar linkage    22,  299,  313
generate centrodes    315
permanent    299,  301
slider-crank    301
using in linkage design    311

intake stroke    676
interference    500
intermittent motion    53,  452
internal combustion engine    606,   

672,  717.   
See Also engines

internal gearset.   
See gearset: internal

invention    7,  10
inverse dynamics    554,  589,  775.   

See Also force: analysis:  
kinetostatic

inversion
definition    53
for three-position synthesis    114,   

115,  119
in ideation    11
of slider-crank    122

force analysis    608
position solution    202

inversions
distinct    55
of fourbar linkage    57
of sixbar linkages    55

inverted slider crank.   
See slider-crank: inverted

involute    493,  496,  500,  507
definition    493
teeth    495

isomer    47
invalid    48
number of valid isomers    48

iteration    8,  12,  13,  99,  104
,  106,  453,  555,  624

J
Jacobian    216,  217
jerk    385,  442

angular    385,  386
cam    416
difference    387
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in belts and chains    511
linear    386

jitter    151
joint    6,  33.  See Also pairs

cam-follower    70
cantilevered    71
force-closed    35
force index    208,  623
form-closed    35
multiple    40,  43
one-freedom    33
order    35
slider    33
sliding    301
straddle mounted    71
two-freedom    33

joystick    33

K
Kant    5
Kaufman, R.    119,  233
Kempe    124

reference    157
Kennedy, Alexander    6
Kennedy’s rule    299,  301
kinematic

applications    6
chain    35

class of    56,  63,  64
definition    35
inversion of    57

pair    6,  33.  See Also pairs
structure    40,  42
synthesis    589.  See Also synthesis

kinematics    3,  4,  5,  553,  763,   
776,  785

definition    3
diagrams

drawing    36
history of    5,  27

kinetic energy.  See energy: kinetic
kinetics    3,  5,  553
kinetostatics    554,  589,  775,  783.   

See Also force: analysis:  
kinetostatic;   
See Also inverse dynamics

Kinsyn    119
KISS    15
Koster    568,  775,  789
Kota, S.    131

Kutzbach    40

L
Lagrange    5
Lanchester

engine    758
Frederick    535,  758
harmonic balancer    756,  759

L’Ecole Polytechnic    5
length of action    494,  502
Levai

12 basic epicyclic trains    521
lever    5

ratio    571,  575
limit stops    128
Lincages    119,  266
line

contact    33
of action    495
of centers    126

linear
acceleration    357,  383
actuator    79
ball bearings    70
Geneva mechanism    53
graph    299
jerk    385
motion    79
velocity    291

link    6,  31,  32,  47
output    178
ratio    126,  131
shrinkage

complete    50,  52
partial    50,  52

linkage    100
advantages    73
antiparallelogram    57
assemblability    64
basic building blocks    32,  63
cam-driven    798
circle-tracing    156
compliant    313
crank-rocker

180 deg output    154
360 deg output    154

deltoid    59
design    32
disadvantages    73
double-parallelogram    59

fourbar
independent parameters of    270

fourbar drag-link    153
Galloway    59
Grashof

inversions    57
Grashof condition    63
isoceles    59
kite    59
large angular excursion    154
linkless    316
non-quick-return    119
parallelogram    57
rotatability    56
self-locking    103,  114.  See 

Also toggle
servo-driven    806
sixbar    207

Stephenson’s    207
Watt’s    207

special-case Grashof    57
substituted for gears    156
synthesis    100,  102,  134
torque    104,  111
transformation    43,  48,  409

linkages    6,  32
cascaded    153
connected in parallel    63
connected in series    63,  153,  154
versus cams    73

Linkages program
fivebar

coupler curves    131
exact straight line    144

fourbar
cognates    137
coupler curve    126
fivebar equivalent    141
quick-return    119
straight-line linkages    144
symmetrical linkage    131
three-position synthesis    111,  114
toggle    211
toggle positions    103
two-position synthesis    109

general information    817
linkage

force analysis    589
sixbar

double-dwell    153,  416
linkages    63
quick-return    122
single-dwell    151

linkless fourbar linkage    316



DESIGN OF MACHINERY 6ed     INDEX860

I

living hinge    66
load

lines    75
torque    75

load sharing    502
locomotive    57
Loerch    233,  257
log roller    5
Lord Kelvin

comment on Peaucellier linkage    144
losses    580,  772
lower pair    6,  33.  See Also joint
lubricant    33
lubrication    69,  73,  478,  677

hydrodynamic    69
problems    70
seals for    69

lumped
mass    648

model    690,  691
model    571,  691,  763
parameter    571,  575

M
machine    4,  5,  35,  178

definition    4,  35
design    3,  5,  73,  98,  385

machinery
rotating    559

Maglev    797
mandrel    662
mass    4,  18,  554,  565,  687,  764, 

774,  775
balance    644
density    555
effective    573,  574,  775,  785
equivalent    687
lumped    574,  689
moment    556,  652
moment of inertia    558,  590,  618,   

656,  687
point    554,  562,  643

masses
combining    571

massless rod    562,  643
mass-radius product    645,  649,   

663,  708
mass-spring model    764

materials    710
Mathcad    217,  464
Matlab    464
matrix

augmented    247,  251,  259
coefficient    251
inverse    246
solution    245,  577
solver    245,  577

Matrix program
example

force analysis    597,  599,  602
linkage synthesis    255

force analysis    577
how to use.   

See programs: general information;  
See Also programs: how to run 
them

solution method    247
May, Rollo    21
mechanical

advantage    310,  493
analog computer    100
circuit    568
efficiency    309
engineering    5
function generator    100
system    569

mechanism    4,  5,  35,  40,  178
cam- vs. servo-driven    812
compliant    65,  66

advantages    66
bistable    67

crank-shaper    124
definition    4,  35
double-dwell    151
forces in    553
large angular excursion    154
non-quick-return    119
optical adjusting    312
pick-and-place    154
planar    101
quick-return    119
remote center    155
washing machine    154
Whitworth    124

MEMS    67
microchips    67
microcomputer    14,  101
Micro Electro-Mechanical Systems     

67
microgears    67

micromotor    67
microsensors    68
Milton, J.    490
mirror symmetric    738,  752
mks system    18
mobility    37
model    14,  252,  557,  568

cardboard    14,  103,  107
dynamic    562
dynamically equivalent    688.   

See Also dynamic equivalence: 
requirements for

finite-element    674
lumped mass    691
lumped parameter    764
of rotating links    562
simplified    554
single DOF    576
statically equivalent    690

modeling
rotating links    562

modified
sine    435
trapezoid    427,  434

module    499
modulus

of elasticity    574
of rupture    574

moment
first of mass.  See mass: moment
first, of mass    556
mass    556
of inertia.   

See mass: moment of inertia
definition    558
experimental method    560
transferring    559

primary    736
secondary    736,  739
second of mass.   

See mass: moment of inertia
second, of mass    558
shaking    642,  672,  753

cancelling    752
in inline engines    728,  730
in vee engines    744

momentum    554,  677
Monge, Gaspard    5
motion

complex
definition    184

generation    111,  234.   
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See Also function: generation;   
See Also path: generation
analytical synthesis    235,  237,   
247
definition    101
three-position    111,  112
two-position    107

intermittent    78
parallel    137
simple harmonic    421
straight-line    99

motor    38,  74,  582
AC    74
closed loop    78
compound-wound    74,  76
DC    74

permanent magnet (PM)    74
speed-controlled    77

gearmotor    74,  78
micro    67
open loop    78
permanent magnet    74
series-wound    76
servo    74
shunt-wound    76
speed torque characteristic    617
stepper    74,  78,  101
synchronous    77
universal    74

movie camera    126
moving

centrode    313,  316.   
See Also centrodes

pivots    112,  115,  151
multiple solutions    16

N
Nakamura    756

balancer    756
Nascar

engine redline    684
natural frequency    756,  766,  789

circular    766
damped    766,  768
undamped    766,  768

Nelson, G. L.    126
neural network    276
Newton-Raphson method    207,   

214,  387
chaotic behavior of    215
in equation solvers    218

Newton’s
equation    18,  764
laws    382,  553,  589,  643
method    214,  589
second law    3
third law    595

node    32,  38,  47
noise, vibration, and harshness 

(NVH)    756
no-load speeds    77
non-Grashof    56

triple-rocker    210
number synthesis    42
nut    33

O
objective function    270
octoid    508
offset    196

in slider-crank
definition    196

oil bath    478
open

kinematic chain    38
mechanism    193,  256.  See 

Also crossed: mechanism
operator    189
order

of joints    35
of links    42
of polynomial    439

orthogonal    196
oscillation - cam-follower    773
Otto cycle    675
overbalanced crank    708
overdamped.  See damping
overdamped system    769
overlays    99
overshoot of response    769
oversquare engine    710
overtones    766,  772
overturning moment    465

P
pairs    33.  See Also joint

higher    33
lower    33

pantograph    156

parabolic displacement    797
paradoxes

Ferguson’s    526
Gruebler’s    46

parallel
axis theorem    559,  624
connections

dampers    569
springs    569

linkage planes    101
motion    138

parallel motion    141
parallelogram linkage    57,  59 

See Also antiparallelogram
particular solution    766,  771.   

See Also homogeneous: solution
patent

crankshaft    141
websites    9

path    101
generation    101.   

See Also function: generation;   
See Also motion: generation
definition    101
precision points    236
with coupler 
curve    125,  126,  128,  134
with prescribed timing    101,  266

pawl
driving    53
locking    53

Peaucellier    144
percussion.  See center: of percussion
performance specifications    10,  15,   

22,  639
phase angle

crankshaft    719
geared fivebar    131,  204
optimum    719
sign convention    722

physical pendulum    658
piecewise continuous function    422
piezoelectric

accelerometer    785
force transducer    662

pin
double shear    71
forces    684,  699

crankpin    700
mainpin    703
wristpin    700

joint    33,  69
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single shear    71
pinion    492,  507
piston    384,  606,  674,  688,  691

acceleration    680,  683,  693
engine    55
position    680
pump    55,  606,  675,  717
velocity    680

pitch
circle    493,  495,  497
curve    460,  467,  469
diameters    493,  495
diametral    498
point    493,  494

pivots
fixed-specified.  See specified fixed 

pivots
moving.  See moving: pivots

planetary gear train.   
See gear: train: epicyclic

planet gear    521.  See Also sun gear
platform rocker    316
point masses.  See mass: point
polar

coordinates    188
form    180
plot    739.  See Also hodograph

poles    298
polodes    313.  See Also centrodes
polynomial    784

345    439,  441,  442
4567    442
asymmetrical risefall    448

3-segment    450
function    420,  439

design rule    446
POSE    183
position    178,  180,  291

absolute    185
analysis    185,  187
difference    183

equation    182,  293
of any point on a link    207
relative    183
vector    180,  188

potential energy.   
See energy: potential

pounds force (lbf)    18
pounds mass (lbm)    18
power    74,  309,  568,  580,  581,   

731,  783
equation    582
stroke    677,  736,  738

angles    731,  733
to weight ratio    675

practical considerations    624,  789,   
812

precision
points    236,  243
position    236,  248

preload
cam-follower spring    775.   

See Also spring: preload
preloaded structure    40
pressure angle

cam-follower    460
flat-faced    465
force analysis    785
roller    461

of gearsets    495
primary component.   

See Also Fourier: series
of shaking force    683
of shaking moment    730

prime
circle    460,  785

radius    460,  468
principal axes    31
principle

of d’Alembert    578
of transmissibility    307

problem
definition    22
unstructured    8

production    14
programs    817

disclaimer on liability    818
Dynacam    817,  818.   

See Also Dynacam program
Engine.  See Engine program
Linkages    817,  818
Matrix    817.   

See Also Matrix program
Projects

Chapter 3    173
Chapter 8    485
Chapter 11    639
Chapter 13    716
Chapter 14    761

prototypes    13,  575
prototyping    13

and testing    13

publications, technical
websites for    9

pulleys    509
pulse.  See jerk
pure

harmonic    621,  730,  767
rolling    35,  125

joint    35
rotation    32,  107,  291,  688,  691
slide    35
translation    32,  370,  563,  688,  691

pushrod    574

Q
qualitative

synthesis.  See synthesis: qualitative
quasi-static    578
quaternary link    32,  42
quick

forward    120
return    119,  122,  126

mechanism    55
sixbar    121

R
rack    507

and pinion    507
steering    507

radius
of curvature    460

flat follower    470
roller follower    466,  467

of gyration    561,  565
prime circle    777

ratchet    6
and pawl    53
wheel    53

ratio
gear    571
lever    571

reference frame    36.   
See Also coordinate system

relative position   
See position: relative

report, technical    17
resistor    569.  See Also damper
resonance    772,  796

cam-follower
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force-closed    774
form-closed    780

resonate    772
response

complete    772
damped    767
forced    772
steady state    772
transient    766,  769,  772
undamped    764

Reuleaux, Franz    6,  33,  38
classification of mechanisms    35

reverted
compound train    514.   

See Also gear: train
gear train design    515

revolvability    64
definition    64

right angle drives    507.   
See Also gear: bevel

rigid body    31,  32
acceleration    364
motion    183

ring gear    521.   
See Also gear: train: epicyclic

rise-dwell-fall-dwell.  See cam
rise-dwell-fall-dwell cam    410,  415
rise-fall cam    410,  415
rise-fall-dwell cam    410,  415,  443
Roberts

-Chebyschev theorem    134.   
See Also Chebyschev

diagram    134.   
See Also Cayley diagram;   
See Also cognate

straight-line linkage    141
Roberts, Richard    141
Roberts, Samuel    134,  141
robot    38,  100
rocker

arm    574
definition    36
infinitely long    52
output    105

rocking
chair    316.  See Also centrodes
couple    646

roller    413.   
chain    510

follower    413,  468,  476,  565,   
764,  775

chrome plated    477
crowned    477
in valve trains    477
materials    477
slip    476

rolling
centrodes    508
cones    507
contact    6
cylinders    491,  493

roll-slide joint    33,  35
root finding    387
rotatability    56,  63,  64

definition    63
of geared fivebar linkage    63
of N-bar linkages    64

rotation    31
definition    184
pure    32

balance in    642
rotational

DOF    33
freedom    35
kinetic energy    675

rotopole    107
roughness.  See surface contact

S
Sanders    387
Sandor, G. N.    6,  119,  233
scalar magnitude    306
scaling    13
SCCA

family of curves    429,  433
Scotch yoke    52,  53
screw    6

joint    33
s-curve    797
second

harmonic    683
moment

of area    574
of mass    558

secondary component.   
See Also Fourier: series

of shaking force    683
of shaking moment    730

selection    13
self-locking linkage.   

See linkage: self-locking

series connections
dampers    569
springs    570

servo
mechanism    497,  795
motor    78,  101,  795,  796

linear    796
valve    79

shaft
encoder    662
hollow    521

shaking
force.  See force: shaking
moment.  See moment: shaking
torque.  See torque: shaking

sheave    509.  See Also pulleys
shock    385.  See Also jerk
silent chain.  See chain
simple

gear train.  See gear: train: simple
simply supported.   

See beam: simply supported
simultaneous equation solution    245.  

See Also Matrix
dynamic forces    577,  590

single
cylinder engine    674
dwell    153,  443

cam    443
mechanism    148,  149,  416

enveloping wormset    506
gearset    511

single-plane balance.   
See balance: single-plane

SI system    17
sixbar

drag-link quick-return    121,  194,   
197,  200,  323,  368

linkage    134
mechanism    148
Watts linkage    109

Sixbar program
example

three-position synthesis    257
skew axis    31
slide

ball-bearing    73
linear    73

slider block    50,  606
slider-crank    50,  55,  74,  122, 

  301,  606,  608
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analysis
acceleration    369
Fourier    683
instant centers    301
position solution    196
vector loop    196

inverted    201,  376,  608
acceleration    376
Whitworth crank-shaper    55

linkage
dynamic model    691
in IC engines    672
multicylinder    717
offset    201
one-cylinder    674

nonoffset    679
offset

definition    196
sliding

contact    6
joints    43.  See Also joint

slip    125
component    319,  320,  374
velocity    373

slop    497
slugs    17,  18
solenoid    38,  79,  100
solids modelling    624
solution methods    577
Soni, A.    138
source torque.  See torque: source
space probe lost    18
space width (gears)    497,  498
spatial

linkage    128
mechanisms    101

specified fixed pivots    114,  117,  257.  
See Also pivots: fixed: specified;  
See Also synthesis: of linkages

speed controlled DC motor.   
See motor: DC

speed-torque characteristic.   
See motor

spline functions    460
spreadsheet    577
spring

compression    574
constant    65,  565,  574,  764,   

775,  780
definition    566
effective    570,  573,  775

free length    775

helical coil    776
physical    775,  780
preload    777

springs    129,  570
as links    65
combining    570
in parallel    571
in series    570

sprocket    510
standard form equation    266,  268.   

See Also analytical linkage 
synthesis

static
balancing.  See balancing: static
equivalence    690
friction    566

steady state    766
Stephenson’s

sixbar    207
stiction    566
stiffness    555,  774
stops    53,  435.  See Also dwell
straight-line

linkage    5,  99
Chebyschev    141
Evans    144
exact    144
Hart    144
Hoeken    143
optimum    144
Peaucellier    144
Roberts’    141
Watt’    141

mechanisms    141
approximate    144
exact    144

strain gages    785
strength    555
stresses    4,  178,  384,  555
structural

building block    46
subchain    48

structure    40,  42
preloaded    42

Suh, N. P.    15
sun gear    521.   

See Also gear: train: epicyclic
superposition    577,  578,  685,  699
surface contact    33
suspension system    311
s v a j diagrams    416

polynomials    439

sweet spot    563.   
See Also center: of percussion

synchromesh    506,  532
clutch    532
transmission    532

synchronous belt.   
See belt: synchronous

synonyms    11
synthesis    98,  99,  102,  106

algorithm    100
analytical    100,  104

compare to graphical    243
elastic energy method    275
equation    270
equation methods    273
optimization methods    273
optimized    270
precision    270
precision point methods    272
selective precision synthesis    274
using genetic algorithms    275

definition    8
four-position

analytical    266
graphical    119

graphical
tools needed for    105

of mechanisms    3,  25,  30
qualitative    98,  99,  100,  106
quantitative    100,  119
three position

analytical    247,  251,  253
graphical    111
motion    248
specified fixed pivots    257,  260

two position    105
analytical    243
graphical    111

type    100

T
tabular method    523
tackle    6
tappet    574
TDC.  See top dead center (TDC)
ternary link    32,  42,  44.   

See Also link
testing    13,  14
thermodynamics    672,  679
threebar crank-slider    593.   

See Also slider-crank
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three-freedom joint    33.   
See Also joint

three-position synthesis.   
See synthesis: three position: 
motion

through variable    568
time ratio    119,  121,  122
timing

belt.  See belt: timing
diagram    417

Ting, K. L.    63
TKSolver    217,  387,  464,  624
toggle    102,  103,  314

angle    212
linkage    103
position    102,  114,  134,  236,  243

calculating location    210
in rock crusher    311

tolerance
(human) of acceleration    383

toothed belts    509.  See Also belt
tooth thickness    497,  498
top dead center (TDC)    675
torque    656

applied    591
camshaft    783
converter    533

lock-up clutch    534
stator blades    534

driving    581
dynamic    783,  785
external    581
flywheel-smoothed    697
gas    686

flywheel-smoothed    697
in four-cylinder inline en-
gine    733,  739
in one-cylinder engine    685
in vee engines    746

inertia    685
flywheel-smoothed    697
in four-cylinder inline en-
gine    736,  739
in inline engines    727
in one-cylinder engine    695
in vee engines    745
in virtual work    581

input    657,  783
oscillations in    783
ratio    310,  493
shaking    612,  685

in fourbar linkage    657
in multicylinder engines    730

in one-cylinder engines    694
source    591,  596,  601
total    739,  750

engine    697
variation    616

torque-speed relation    74.  See 
Also speed-torque characteristic

torque-time
diagram    619
function    697

Towfigh, K.    21,  22,  312
trade-offs    100,  148,  442,  780
train ratio    512.  See Also gear: ratio
transducer    795
transfer

port    677
theorem    559

transient    766
translating

follower    410
slider    121

translation    31,  32
curvilinear    137,  183
definition    183
rectilinear    183,  411

translational DOF    33
transmission    493,  506,  675

automatic    526
automotive    532
component    319,  320,  374
compound epicyclic manual    535
continuously variable    535
Ford model T    535
synchromesh    532

transmission angle    307,  309,  310,   
568,  622

definition    103,  208
differences in cognates    137
extreme values    209
limited application    208
minimum    104
optimal    122
poor    243
quick-return linkage    121

trapezoidal
acceleration    426
rule    620

tricircular sextic    124,  273
triple-rocker    57,  210
truss    48

two-bar chain    105,  121
two-dimensional space    31
two-freedom joint    33
two-plane balance    646
two position synthesis.   

See synthesis: two position
two-stroke

cycle    675,  677,  731
engine    732

type synthesis    99,  158.   
See Also synthesis: type

U
undercutting    467,  470,  500
underdamped    770,  771.   

See Also damping
undersquare engine    710
units	    17

space probe lost due to    18
units systems    17
unit vectors    188
Unobtainium    688,  774
unstructured problem    8

V
valve    574

cam    476,  492
float    776
spring    574

valves    409
vector

angle of
definition    189.   
        See Also free vector

loop    238
vee

angle    721,  739,  742,  750.  See 
Also bank: angle;   
See Also engines: vee
desirable    750

belt    509.   
See Also belt: vee

engines.   
See engines: vee

velocity    178,  291
absolute    292,  297,  298
analysis

algebraic    321
geared fivebar    330
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graphical    294,  296
inverted slider-crank    319
sliding joint    318
using instant centers    305

angular    291,  319,  330,  375
cam    416
cam-follower

peak factor    432
constant    143

in slider-crank    153
definition    291
difference    293,  297,  298,  321,  359

equation    293
of point on link    331
of slip    317,  330,  375
of transmission    330
ratio    493,  499,  508

of involute gears    497
relative    293,  297,  317,  321,  566

vibration
in cam-followers    568,  771,  780
in engines    730
in linkages    612

videos    26
virtual laboratory    26,  408,  485,   

638,  671
virtual work    582,  613

equation    582
ViseGrip    311
visualization    24
voltage    568

W
Wampler, C.    203,  272
Watt, James    5,  141

proudest accomplishment    141
Watt’s

epicyclic crank    141
linkage

guide steam engine    141
sixbar    105,  207
straight-line fourbar    141

wear    33
weather systems    375
wedge    5
weight    18
weighting factor    13
well pump    55
wheel    6

and axle    5

Whitworth quick-return    55,  124
Willis, Robert    5
windshield wiper linkage    59
Wood, George A. Jr.    21
work    36,  580
Working Model    99,  103,  817
worldwide web    9

keywords for searching    29
useful sites    29

worm    506
lead angle    538
set    506
wheel    506

wrapping connectors    6
wrist pin    689,  691
writing engineering reports    29

Y
Young’s modulus    574

Z
zero velocity    126
Zhang, C.    131
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ANIMATIONS Folder

AVI, Working Model, and Matlab files 
by Sid Wang
These files are self-cataloging.  Run 
the master catalog file Animation.html 
to access and run these animations.  
Most have AVI movie files in addition 
to their native file formats.  The na-
tive Working Model files also can be 
accessed directly from the Working 
Model Files folder listed below.

CUSTOM PROGRAMS

Programs by R. L. Norton

	 Program Dynacam
	 Program Linkages
	 Program Matrix

These are available from the author’s 
website at www.designofmachinery.
com. Print-book users can register 
on my website as a student or profes-
sor, and I will send a password to ac-
cess a protected site where they can 
download the latest versions of these 
programs. Student or professor reg-
istration will also allow print-book 
users to download all the files listed 
in this index.  Digital book users will 
have access to the downloadable 
files in the Video Contents and in this 
Index, and the computer programs 
through the publisher’s website.

Note that I personally review each 
of these requests for access to my 
protected site and will approve only 
those that are filled out completely 
and correctly according to the 
provided instructions.  I require com-
plete information and accept ONLY 
university email addresses for both 
you and your instructor.  (No Gmail, 
Yahoo, Naver, etc.)  So be sure to fol-
low the instructions exactly, or your 
request will be denied.

Run the Install.exe file to install the 
program.  

Key to filename suffixes
Dynacam	 .cam

Engine*	 .eng

Fivebar*	 .5br

Fourbar*	 .4br

Linkages	 .bar

Matlab	 .m
Matrix		 .mtx

Sixbar*		 .6br

Slider*		 .sld

TKSolver	 .tkw

Working Model	 .wm2d, wm3

EXAMPLES AND FIGURES Folder

Data files for Norton’s custom pro-
grams that match some examples 
and figures in text.

Chapter 2  Subfolder
F02-19b.5br

Chapter 3  Subfolder
Cognate1.4br
Cognate2.4br
Cognate3.4br
F03-01a.4br
F03-01b.4br
F03-04.4br
F03-06.4br
F03-07b.6br
F03-07c.6br
F03-08.4br
F03-09c.6br
F03-12.4br
F03-13a.6br
F03-17b.4br
F03-18.4br
F03-24.4br
F03-28a.4br
F03-28b.5br
F03-29a.4br
F03-29c.4br
F03-29d.4br
F03-29e.4br
F03-29f.4br
F03-31c.6br
F03-34.6br
F03-35.6br
FP03-07.4br
Straight.5br

Chapter 4  Subfolder
F04-11.5br
F04-15.4br

Chapter 5  Subfolder
E05-01.4br
E05-02a.mtr
E05-02b.mtr
E05-02.4br
E05-03.4br

Chapter 6  Subfolder
F06-14.4br
F06-15a.4br

F06-15b.4br
F06-17b.4br

Chapter 8  Subfolder
E08-03.cam
E08-04.cam
E08-05.cam
E08-06.cam
E08-07.cam
E08-08.cam
E08-09a.cam
E08-09b.cam
E08-10a.cam
E08-10b.cam
E08-10c.cam
E08-11.cam
E08-12.cam

Chapter 11  Subfolder
E11-01.mtr
E11-02.mtr
E11-03.mtr
E11-03.4br
F11-06.4br

Chapter 12  Subfolder
F12-05.4br

Chapter 14  Subfolder
BMWV12.eng
F14-12.eng
F14-14.eng
F14-18.eng
F14-24.eng

Chapter 15  Subfolder
E15-01.cam
E15-02.cam

Appendix A  Subfolder
F_A-05.4br
F_A-11.5br

*  Program Linkages will open these files. 
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LINKAGE ATLASES Folder
Contains PDF file of atlases of 
coupler curves for fourbar and geared 
fivebar linkages.

Hrones and Nelson Fourbar Atlas

Zhang et al. Geared Fivebar Atlas

PDF PROBLEM WORKBOOK Folder
Contains PDF files of all the figures 
needed to solve the text’s end-of-chap-
ter problems.  Each PDF file contains 
one problem figure and all of the 
problem statements associated with 
it.  They are grouped in subfolders by 
chapter and their filenames are the 
same as the figure number or problem 
number involved.  These files provide 
the student with a printable work-
book of illustrated problems in which 
graphical problem solutions can be 
directly worked out or analytical solu-
tion results recorded.

PROBLEM SOLUTIONS Folder

Data files that solve selected problems 
in the text.

Chapter 3  Subfolder
P03-14.4br
P03-22.4br
P03-23.4br
P03-36.4br
P03-42.4br

Chapter 4  Subfolder
P04-21.4br
P04-23.4br
P04-25.4br
P04-26.4br
P04-29.4br
P04-30.4br

Chapter 5  Subfolder
P05-08.4br
P05-11.4br
P05-15.4br
P05-19.4br
P05-26.4br

Chapter 6  Subfolder
P06-47.4br
P06-48.4br
P06-49.4br
P06-51.4br
P06-62.4br

Chapter 7  Subfolder
P07-04a.4br
P07-04c.4br
P07-04e.4br

P07-04g.4br
P07-04i.4br
P07-04k.4br
P07-04m.4br
P07-39.4br
P07-40.4br
P07-41.4br
P07-42.4br
P07-44.4br

Chapter 10  Subfolder
P10-04a.mtr
P10-04b.mtr

Chapter 11  Subfolder
P11-03a.sld
P11-03c.sld
P11-03e.sld
P11-03g.sld
P11-04a.tkw
P11-05a.tkw
P11-05a.4br
P11-05c.4br
P11-05e.4br
P11-05g.4br
P11-06a.tkw
P11-06c.tkw
P11-06e.tkw
P11-06g.tkw
P11-07a.4br
P11-07c.4br
P11-07e.4br
P11-12.4br
P11-13.4br

Chapter 12  Subfolder
P12-09.4br

Chapter 13  Subfolder
P13-11.eng
P13-14.eng
P13-19a.eng
P13-19b.eng

PROGRAM MANUAL Folder
Contains a PDF file of the user 
manual for programs Linkages, 
Dynacam, and Matrix.

TKSOLVER FILES Folder

TKSolver model files. 
The TKsolver program is needed to 
run these files and is not included 
with this text.  See www.uts.com.

Gears.tk Subfolder
Compound.tkw
Revert.tkw
Triple.tkw

Linkages.tk Subfolder
3 position FixPivots.tkw

3 position.tkw
Cognate.tkw
Coupler.tkw
DragSlider.tkw
Eq04-02.tkw
Ex11-04.tkw
Figure P05-05.tkw
Fivebar.tkw
Fourbar.tkw
Inverted slider-crank.tkw
SCCA.tkw
Slider_Cmpr.tkw
Slider.tkw
Soni Cognate.tkw
Symmetric.tkw
Transport.tkw
Virtual Work.tkw

Misc.tk Subfolder
CamCalc.tkw
Constrnt.tkw
Cubic.tkw
Cycloid.tkw
F04-18.tkw
Pressang.tkw
SCCA.tkw
Student.tkw

VIDEOS
	 See the Video Contents. 

VIRTUAL LABS
	 See the Video Contents.

WORKING MODEL FILES Folder 

Chapter 2  Subfolder

Working Model 2D Files
02-10b.wm2d - Scotch Yoke
02.12a.wm2d - Geneva
02-12b.wm2d - Ratchet and Pawl
02-12c.wm2d - Linear Geneva
02-13.wm2d - Slider-Crank
02-14abc.wm2d - Stephenson Inversion
02-14de.wm2d - Watt Inversions
02-15.wm2d - Grashof Inversions
02-16.wm2d - Non-Grashof Inversions
02-19b.wm2d - Geared Fivebar
02-20.wm2d - Desk Lamp
P2-01f.wm2d - Overhead Valve 
P2-03.wm2d - Front End Loader 
P2-04c.wm2d - Radial Engine
P2-04d.wm2d - Walking Beam 
P2-04e.wm2d - Drafting Arm
P2-04g.wm2d - Drum Brake
P2-04h.wm2d - Compression Chamber
P2-05a.wm2d - Chebyschev Mechanism
P2-05b.wm2d - Kempe SL Mechanism
P2-07.wm2d - Throttle Mechanism
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P2-08.wm2d - Scissors Jack
P2-10.wm2d - Watt’s Engine
P2-13.wm2d - Crimping Tool 
P2-14.wm2d - Pick and Place 
P2-15.wm2d - Power Hacksaw
P2-16.wm2d - Powder Press
P2-18.wm2d - Oil Field Pump

Working Model 3D Files
P2-01h.wm3 - Cylindrical Cam

Chapter 3  Subfolder

Working Model 2D Files
03-04.wm2d - Example 3-1
03-05.wm2d - Example 3-2
03-07b.wm2d - Example 3-4
03-09c.wm2d - Example 3-6
03-11.wm2d - 3-Position Synthesis
03-12b.wm2d - 4br Quick Return
03-13a.wm2d - 6br Quick Return
03-14.wm2d - Quick-Return Shaper
03-14.-*wm2d - Quick-Return Shaper
03-15.wm2d - Coupler Curves
03-17.wm2d - Coupler Curve Atlas
03-17a.wm2d - Coupler Curve Atlas
03-18.wm2d - Camera Film Advance
03-18-*.wm2d - Camera Film Advance 
03-19a.wm2d - Auto Suspensions
03-19a-*.wm2d - Auto Suspensions
03-24a.wm2d - Roberts Diagram
03-25a.wm2d - Roberts Diagram
03-25b.wm2d - Roberts Diagram
03-26.wm2d - Chebyschev Cognates
03-26a.wm2d - Roberts Diagram
03-26b.wm2d - Chebyschev Cognates
03-26b-*.wm2d - Chebyschev Cognates
03-27c.wm2d - Curvilinear Trans.
03-27d.wm2d - Curvilinear Trans.
03-28.wm2d - GFBM 4br Cognate
03-28-*.wm2d - GFBM Cognates (alt.)
03-29.wm2d - Straight-Line Linkages
03-29a.wm2d - Watt Straight-Line 
03-29b.wm2d - Watt’s Engine
03-29c.wm2d - Roberts Straight-Line 
03-29d.wm2d - Chebyschev SL
03-29e.wm2d - Hoeken Straight-Line 
03-29f.wm2d - Evans Straight-Line
03-29g.wm2d - Peaucellier Strt-Line
03-31c.wm2d - Single-Dwell—Rocker 
03-31d.wm2d - Single-Dwell—Slider 
03-32.wm2d - Double-Dwell Linkage
03-34.wm2d - 180° Rocker Output
03-35.wm2d - Washing Machine 
03-36.wm2d - 360° Rocker Output
P3-03.wm2d - Treadle Wheel
P3-07.wm2d - Walking Beam
P3-08.wm2d - Loom Laybar Drive

Chapter 4  Subfolder

Working Model 2D Files
04-16.wm2d - Double Rocker Toggle 
P4-01.wm2d - Fourbar Analysis
P4-02.wm2d - Slider-Crank Analysis
P4-03.wm2d - Inverted Slider-Crank
P4-05c.wm2d - Radial Engine
P4-05d.wm2d - Walking Beam 
P4-05e.wm2d - Drafting Machine
P4-05g.wm2d - Drum Brake
P4-05h.wm2d - Compression Chamber
P4-06.wm2d - Pick and Place 
P4-07.wm2d - Power Hacksaw
P4-09.wm2d - Walking Beam Conveyor
P4-11.wm2d - Loom Laybar Drive
P4-14.wm2d - Treadle Wheel
P4-18.wm2d - Elliptical Trammel

Chapter 6  Subfolder

Working Model 2D Files
06-05c.wm2d - Instant Centers
06-10b.wm2d - Instant Centers
06-11.wm2d - Rock Crusher
06-12.wm2d - Suspension
06-14a.wm2d - Centrodes 1
06-14b.wm2d - Centrodes 2
06-14c.wm2d - Centrodes 3
06-14d.wm2d - Centrodes 4 
06-15a.wm2d - Centrodes 5
06-15b.wm2d - Centrodes 6
06-17a.wm2d - Cycloidal Motion
P6-01.wm2d - Fourbar Analysis
P6-02.wm2d - Slider-Crank Analysis
P6-03.wm2d - Inverted Slider-Crank 
P6-08c.wm2d - Radial Engine
P6-08d.wm2d - Walking Beam 
P6-08e.wm2d - Drafting Machine
P6-08g.wm2d - Drum Brake
P6-08h.wm2d - Compression Chamber
P6-15.wm2d - Power Hacksaw
P6-16.wm2d - Pick and Place
P6-18.wm2d - Powder Press
P6-19.wm2d - Walking Beam Conveyor
P6-21.wm2d - Toggle Pliers
P6-23.wm2d - Surface Grinder
P6-29.wm2d - Drum Pedal
P6-30.wm2d - Oil Field Pump
P6-32.wm2d - Elliptical Trammel

Working Model 3D Files
06-12.wm3 - Bump Steering

Chapter 7  Subfolder

Working Model 2D Files
P7-01.wm2d - Fourbar Analysis
P7-02.wm2d - Slider-Crank Analysis
P7-03.wm2d - Inverted Slider-Crank
P7-08c.wm2d - Radial Engine

P7-08d.wm2d - Walking Beam 
P7-08e.wm2d - Drafting Machine
P7-08g.wm2d - Drum Brake
P7-08h.wm2d - Compress Chamber
P7-15.wm2d - Power Hacksaw
P7-16.wm2d - Pick and Place
P7-19.wm2d - Walking Beam 
P7-20.wm2d - Surface Grinder
P7-24.wm2d - Drum Pedal

Chapter 8  Subfolder

Working Model 2D Files
08-02a.wm2d - Translating Follower
08-02b.wm2d - Oscillating Follower
08-03a.wm2d - Roller Follower
08-03c.wm2d - Flat-Faced Follower
08-39.wm2d - Cam and Follower
08-48.wm2d - Radii of Curvature
E8-02.wm2d - Example 8-2
E8-03.wm2d - Example 8-3
E8-04.wm2d - Example 8-4
E8-07.wm2d - Example 8-7

Working Model 3D Files
08-03a.wm3 - Roller Follower
08-04.wm3 - Cylindrical Cam

Chapter 9  Subfolder

Working Model 2D Files
09-01b.wm2d - Internal Gearset
09-04.wm2d - External Gearset
09-05.wm2d - Involute Curves
09-06.wm2d - Tooth Engagement
09-19.wm2d - Rack and Pinion
09-28.wm2d - Compound Gear Train
09-33.wm2d - Planetary Gearset

Working Model 3D Files
09-16.wm3 - Helical-Parallel Gears
09-17.wm3 - Helical-Crossed Gears
09-18.wm3 - Worm and Worm Gear
09-21.wm3 - Bevel Gears
09-30.wm3 - Gear Trains
09-34.wm3 - Planetary Gearset
09-44a.wm3 - Transmission - High 
09-44b.wm3 - Transmission - Low 
09-44c.wm3 - Transmission - Reverse
09-51.wm3 - Drive Train
P9-02.wm3 - Compound Epicyclic
P9-03_open.wm3 - Differential
P9-03_locked.wm3 - Differential

Chapter 10  Subfolder

Working Model 2D Files
10-11a.wm2d - Valve Train

Chapter 13  Subfolder

Working Model 2D Files
13-01.wm2d - Vee-Eight Engine
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