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PREFACE

to the Sixth Edition

The sixth edition is an evolutionary improvement over the fifth and earlier editions. See the
updated Preface to the First Edition (overleaf) for more detailed information on the book's
purpose and organization. The principal changes in this edition are:

In addition to the printed version of the text, digital e-book versions are also available.
These have hotlinks to all the videos and to the downloadable content provided. There are
188 videos. All of these are marked in the print version as well, with their URLs provided,
and they can be downloaded by print-book users. A Video Contents is provided, and all
other downloadable items are listed in the Downloads Index.

Over 50 new problem assignments have been added. The problem figures are included
as downloadable PDF files so that students can easily print hard copies on which to work
the solutions.

The author-written programs that come with the book have been completely rewritten to
improve their interface and usability, and they are now compatible with the latest operat-
ing systems and computers. The programs FOURBAR, FIVEBAR, SIXBAR, SLIDER, and
ENGINE have been combined in a new program called LINKAGES that does everything
those programs collectively did with new features added. Program DYNACAM also has
been completely rewritten and is much improved. Program MATRIX is updated. These
computer programs undergo frequent revision to add features and enhancements. Profes-
sors who adopt the book for a course and students using the print book may register to
download the latest student versions of these programs from: http://www.designofma-
chinery.com. Click on the Student or Professor link.

The Working Model program is needed to run the Working Model files included with this
text. Some universities have site licenses for this program on their lab computers. The
supplier, Design Simulation Technologies, offers student licenses for one-semester or
one-year periods at moderate cost. These are available at http://www.design-simulation.
com/Purchase/studentproducts.php.

Many small improvements have been made to the discussion of a variety of topics in many
chapters, based largely on user feedback, and all known errors have been corrected.

The extensive DVD content that was introduced in the Fifth Edition is now downloadable from
a website. These downloads include:

The entire Hrones and Nelson Atlas of Coupler Curves and the Zhang et al Atlas of
Geared Fivebar Coupler Curves.

Wang's Mechanism Simulation in a Multimedia Environment contains 105 Working
Model (WM) files based on the book's figures with AVI files and 19 Matlab® models for
kinematic analysis and animation. The AVT files are linked to their figures in the e-books.

Videos of two "virtual laboratories" that replicate labs created by the author at WPI are
provided. These include demonstrations of the lab machines used and spreadsheet files
of the acceleration and force data taken during the experiments. The intent is to allow
students at other schools to do these exercises as virtual laboratories.


http://www.designofmachinery.com
http://www.designofmachinery.com
http://www.design-simulation.com/Purchase/studentproducts.php
http://www.design-simulation.com/Purchase/studentproducts.php

Robert L. Norton

Mattapoisett, Mass.
August, 2018
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e A series of 34 Master Lecture Videos by the author that cover most of the topics in the book
as well as 39 shorter "snippets" from these lectures are woven into the chapters. Seven
Demonstration Videos are also provided. These were recorded over the author's thirty-one
years of teaching these subjects at WPI and are listed in the Video Contents.

All the downloadable files are accessible to digital-book users through the publisher's website
via links in the digital book. Any instructor or student who uses the print book may register
on my website, htp:/www.designofimachinery.com, either as a student or instructor, and I
will send them a password to access a protected site where they can download the latest ver-
sions of my computer programs, LINKAGES, DYNACAM, and MATRIX, all videos, and all files
listed in the Downloads Index. Note that I personally review each of these requests for access
and approve only those that are filled out completely and correctly according to the provided
instructions. I require complete information and only accept university email addresses.
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PREFACE

to the First Edition

When I hear, I forget

When I see, I remember
When I do, I understand
ANCIENT CHINESE PROVERB

This text is intended for the kinematics and dynamics of machinery topics which are
often given as a single course, or two-course sequence, in the junior year of most mechani-
cal engineering programs. The usual prerequisites are first courses in statics, dynamics,
and calculus. Usually, the first semester, or portion, is devoted to kinematics and the
second to dynamics of machinery. These courses are ideal vehicles for introducing the
mechanical engineering student to the process of design, since mechanisms tend to be
intuitive for the typical mechanical engineering student to visualize and create.

While this text attempts to be thorough and complete on the topics of analysis, it also
emphasizes the synthesis and design aspects of the subject to a greater degree than most
texts in print on these subjects. Also, it emphasizes the use of computer-aided engineering
as an approach to the design and analysis of this class of problems by providing software
that can enhance student understanding. While the mathematical level of this text is
aimed at second- or third-year university students, it is presented de novo and should be
understandable to the technical school student as well.

Part I of this text is suitable for a one-semester or one-term course in kinematics.
Part II is suitable for a one-semester or one-term course in dynamics of machinery. Al-
ternatively, both topic areas can be covered in one semester with less emphasis on some
of the topics covered in the text.

The writing and style of presentation in the text are designed to be clear, informal,
and easy to read. Many example problems and solution techniques are presented and
spelled out in detail, both verbally and graphically. All the illustrations are done with
computer-drawing or drafting programs. Some scanned photographic images are also
included. The entire text, including equations and artwork, is printed directly from the
author's PDF files by laser typesetting for maximum clarity and quality. Many suggested
readings are provided in the bibliography. Short problems and, where appropriate, many
longer, unstructured design project assignments are provided at the ends of chapters.
These projects provide an opportunity for the students ro do and understand.
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The author’s approach to these courses and this text is based on over 40 years’ ex-
perience in mechanical engineering design, both in industry and as a consultant. He has
taught these subjects since 1967, both in evening school to practicing engineers and in
day school to younger students. His approach to the course has evolved a great deal in
that time, from a traditional approach, emphasizing graphical analysis of many struc-
tured problems, through emphasis on algebraic methods as computers became available,
through requiring students to write their own computer programs, to the current state
described above.

The one constant throughout has been the attempt to convey the art of the design
process to the students in order to prepare them to cope with real engineering problems
in practice. Thus, the author has always promoted design within these courses. Only
recently, however, has technology provided a means to more effectively accomplish this
goal, in the form of the graphics microcomputer. This text attempts to be an improvement
over those currently available by providing up-to-date methods and techniques for analysis
and synthesis that take full advantage of the graphics microcomputer, and by emphasizing
design as well as analysis. The text also provides a more complete, modern, and thorough
treatment of cam design than any existing texts in print on the subject.

The author has written three interactive, student-friendly computer programs for
the design and analysis of mechanisms and machines. These programs are designed to
enhance the student’s understanding of the basic concepts in these courses while simul-
taneously allowing more comprehensive and realistic problem and project assignments
to be done in the limited time available than could ever be done with manual solution
techniques, whether graphical or algebraic. Unstructured, realistic design problems which
have many valid solutions are assigned. Synthesis and analysis are emphasized equally.
The analysis methods presented are up to date, using vector equations and matrix tech-
niques wherever applicable. Manual graphical analysis methods are deemphasized. The
graphics output from the computer programs allows the student to see the results of varia-
tion of parameters rapidly and accurately and reinforces learning.

These computer programs are distributed with this book, and can be run on any
Windows NT/2000/XP/Vista/Windows7/8/10 capable computer. Program LINKAGES
analyzes the kinematics and dynamics of fourbar, geared fivebar, sixbar, and fourbar
slider linkages. It also will synthesize fourbar linkages for two and three positions. LINK-
AGES also analyzes the slider-crank linkage as used in the internal combustion engine
and provides a complete dynamic analysis of single- and multicylinder engine inline, V,
and W configurations, allowing the mechanical dynamic design of engines to be done.
DyNACAM allows the design and dynamic analysis of cam-follower systems. MATRIX is a
general-purpose linear equation system solver. These are student editions of professional
programs that are written by the author and that he provides to companies the world over.

All these programs, except MATRIX, provide dynamic, graphical animation of the
designed devices. The reader is strongly urged to make use of these programs in order
to investigate the results of variation of parameters in these kinematic devices. The pro-
grams are designed to enhance and augment the text rather than be a substitute for it. The
converse is also true. Many solutions to the book's examples and to the problem sets are
downloadable as files to be opened in these programs. Most of these solutions can be
animated on the computer screen for a better demonstration of the concept than is possible
on the printed page. The instructor and students are both encouraged to take advantage of



PREFACE

The author’s intention is that synthesis topics be introduced first to allow the students
to work on some simple design tasks early in the term while still mastering the analysis
topics. Though this is not the “traditional” approach to the teaching of this material, the
author believes that it is a superior method to that of initial concentration on detailed
analysis of mechanisms for which the student has no concept of origin or purpose.

Chapters 1 and 2 are introductory. Those instructors wishing to teach analysis before
synthesis can leave Chapters 3 and 5 on linkage synthesis for later consumption. Chapters
4, 6, and 7 on position, velocity, and acceleration analysis are sequential and build upon
each other. In fact, some of the problem sets are common among these three chapters
so that students can use their position solutions to find velocities and then later use both
to find the accelerations in the same linkages. Chapter 8 on cams is more extensive and
complete than that of other kinematics texts and takes a design approach. Chapter 9 on
gear trains is introductory. The dynamic force treatment in Part IT uses matrix methods
for the solution of the system simultaneous equations. Graphical force analysis is not
emphasized. Chapter 10 presents an introduction to dynamic systems modeling. Chapter
11 deals with force analysis of linkages. Balancing of rotating machinery and linkages
is covered in Chapter 12. Chapters 13 and 14 use the internal combustion engine as an
example to pull together many dynamic concepts in a design context. Chapter 15 presents
an introduction to dynamic systems modeling and uses the cam-follower system as the
example. Chapter 16 describes servo- and cam-driven linkages. Chapters 3, 8, 11, 13,
and 14 provide open-ended project problems as well as structured problem sets. The as-
signment and execution of unstructured project problems can greatly enhance the student's
understanding of the concepts as described by the proverb in the epigraph to this preface.

ACKNOWLEDGMENTS The sources of photographs and other nonoriginal art used
in the text are acknowledged in the captions and opposite the title page, but the author
would also like to express his thanks for the cooperation of all those individuals and
companies who generously made these items available. The author would also like to
thank those who reviewed various sections of the first edition of the text and who made
many useful suggestions for improvement. Mr. John Titus of the University of Minnesota
reviewed Chapter 5 on analytical synthesis and Mr. Dennis Klipp of Klipp Engineering,
Waterville, Maine, reviewed Chapter 8 on cam design. Professor William J. Croche-
tiere and Mr. Homer Eckhardt of Tufts University, Medford, MA., reviewed Chapter
15. Mr. Eckhardt and Professor Crochetiere of Tufts, and Professor Charles Warren of
the University of Alabama taught from and reviewed Part I. Professor Holly K. Ault of
Worcester Polytechnic Institute thoroughly reviewed the entire text while teaching from
the prepublication, class-test versions of the complete book. Professor Michael Keefe
of the University of Delaware provided many helpful comments. Sincere thanks also
go to the large number of undergraduate students and graduate teaching assistants who
caught many typos and errors in the text and in the programs while using prepublication
versions. Since the book's first printing, Profs. D. Cronin, K. Gupta and P. Jensen and
Mr. R. Jantz have written to point out errors or make suggestions that I have incorporated
and for which I thank them. The author takes full responsibility for any errors that may
remain and invites from all readers their criticisms, suggestions for improvement, and
identification of errors in the text or programs, so that both can be improved in future
versions. Contact norton@wpi.edu.

xiii

Robert L. Norton
Mattapoisett, Mass.
August, 1991
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Take to Kinematics. It will repay you. It is
more fecund than geometry;

it adds a fourth dimension to space. P ART

CHEBYSCHEV TO SYLVESTER, 1873

KINEMATICS OF
MECHANISMS






Chapter

INTRODUCTION

Inspiration most often strikes
those who are hard at work
ANONYMOUS

1.0 PURPOSE Watch a lecture video (39:10)"

In this text we will explore the topics of kinematics and dynamics of machinery in re-
spect to the synthesis of mechanisms in order to accomplish desired motions or tasks, and
also the analysis of mechanisms in order to determine their rigid-body dynamic behavior.
These topics are fundamental to the broader subject of machine design. On the premise
that we cannot analyze anything until it has been synthesized into existence, we will first
explore the topic of synthesis of mechanisms. Then we will investigate techniques of
analysis of mechanisms. All this will be directed toward developing your ability to
design viable mechanism solutions to real, unstructured engineering problems by using a
design process. We will begin with careful definitions of the terms used in these topics.

11 KINEMATICS AND KINETICS

KINEMATICS The study of motion without regard to forces.
KINETICS The study of forces on systems in motion.

These two concepts are really not physically separable. We arbitrarily separate them
for instructional reasons in engineering education. It is also valid in engineering design
practice to first consider the desired kinematic motions and their consequences, and then
subsequently investigate the kinetic forces associated with those motions. The student
should realize that the division between kinematics and kinetics is quite arbitrary and
is done largely for convenience. One cannot design most dynamic mechanical systems
without taking both topics into thorough consideration. Itis quite logical to consider them
in the order listed since, from Newton’s second law, F = ma, one typically needs to know
the accelerations (a) in order to compute the dynamic forces (F) due to the motion of the

* http://www.designofma-
chinery.com/DOM/Intro-
duction.mp4
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A mechanism

A machine
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system’s mass (m). There are also many situations in which the applied forces are known
and the resultant accelerations are to be found.

One principal aim of kinematics is to create (design) the desired motions of the
subject mechanical parts and then mathematically compute the positions, velocities, and
accelerations that those motions will create on the parts. Since, for most earthbound
mechanical systems, the mass remains essentially constant with time, defining the ac-
celerations as a function of time then also defines the dynamic forces as a function of
time. Stresses, in turn, will be a function of both applied and inertial (ma) forces. Since
engineering design is charged with creating systems that will not fail during their expected
service life, the goal is to keep stresses within acceptable limits for the materials chosen
and the environmental conditions encountered. This obviously requires that all system
forces be defined and kept within desired limits. In machinery that moves (the only
interesting kind), the largest forces encountered are often those due to the dynamics of
the machine itself. These dynamic forces are proportional to acceleration, which brings
us back to kinematics, the foundation of mechanical design. Very basic and early deci-
sions in the design process involving kinematic principles can be crucial to the success
of any mechanical design. A design that has poor kinematics will prove troublesome and
perform badly.

1.2 MECHANISMS AND MACHINES

A mechanism is a device that transforms motion to some desirable pattern and typically
develops very low forces and transmits little power. Hunt!!! defines a mechanism as “a
means of transmitting, controlling, or constraining relative movement.” A machine typi-
cally contains mechanisms that are designed to provide significant forces and transmit
significant power.[l] Some examples of common mechanisms are a pencil sharpener, a
camera shutter, an analog clock, a folding chair, an adjustable desk lamp, and an umbrella.
Some examples of machines that possess motions similar to the mechanisms listed above
are a food blender, a bank vault door, an automobile transmission, a bulldozer, a robot,
and an amusement park ride. There is no clear-cut dividing line between mechanisms and
machines. They differ in degree rather than in kind. If the forces or energy levels within
the device are significant, it is considered a machine; if not, it is considered a mechanism.
A useful working definition of a mechanism is a system of elements arranged to transmit
motion in a predetermined fashion. This can be converted to a definition of a machine
by adding the words and energy after motion.

Mechanisms, if lightly loaded and run at slow speeds, can sometimes be treated
strictly as kinematic devices; that is, they can be analyzed kinematically without regard
to forces. Machines (and mechanisms running at higher speeds), on the other hand, must
first be treated as mechanisms; a kinematic analysis of their velocities and accelerations
must be done, and then they must be subsequently analyzed as dynamic systems in which
their static and dynamic forces due to those accelerations are analyzed using the principles
of kinetics. Part I of this text deals with Kinematics of Mechanisms, and Part II with
Dynamics of Machinery. The techniques of mechanism synthesis presented in Part I
are applicable to the design of both mechanisms and machines, since in each case some
collection of movable members must be created to provide and control the desired mo-
tions and geometry.
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1.3 A BRIEF HISTORY OF KINEMATICS

Machines and mechanisms have been devised by people since the dawn of history. The
ancient Egyptians devised primitive machines to accomplish the building of the pyramids
and other monuments. Though the wheel and pulley (on an axle) were not known to the
Old Kingdom Egyptians, they made use of the lever, the inclined plane (or wedge), and
probably the log roller. The origin of the wheel and axle is not definitively known. Its first
appearance seems to have been in Mesopotamia about 3000 to 4000 B.C.

A great deal of design effort was spent from early times on the problem of time-
keeping as more sophisticated clockworks were devised. Much early machine design
was directed toward military applications (catapults, wall scaling apparatus, etc.). The
term civil engineering was later coined to differentiate civilian from military applica-
tions of technology. Mechanical engineering had its beginnings in machine design as
the inventions of the industrial revolution required more complicated and sophisticated
solutions to motion control problems. James Watt (1736-1819) probably deserves the
title of first kinematician for his synthesis of a straight-line linkage (see Figure 3-29a) to
guide the very long stroke pistons in the then new steam engines. Since the planer was
yet to be invented (in 1817), no means then existed to machine a long, straight guide to
serve as a crosshead in the steam engine. Watt was certainly the first on record to rec-
ognize the value of the motions of the coupler link in the fourbar linkage. Oliver Evans
(1755-1819), an early American inventor, also designed a straight-line linkage for a steam
engine. Euler (1707-1783) was a contemporary of Watt, though they apparently never
met. Euler presented an analytical treatment of mechanisms in his Mechanica Sive Motus
Scienta Analytice Exposita (1736-1742), which included the concept that planar motion is
composed of two independent components, namely, translation of a point and rotation of
the body about that point. Euler also suggested the separation of the problem of dynamic
analysis into the “geometrical” and the “mechanical” in order to simplify the determina-
tion of the system’s dynamics. Two of his contemporaries, d’Alembert and Kant, also
proposed similar ideas. This is the origin of our division of the topic into kinematics and
kinetics as described on a previous page.

In the early 1800s, L’Ecole Polytechnic in Paris, France, was the repository of engi-
neering expertise. Lagrange and Fourier were among its faculty. One of its founders
was Gaspard Monge (1746-1818), inventor of descriptive geometry (which incidentally
was kept as a military secret by the French government for 30 years because of its value
in planning fortifications). Monge created a course in elements of machines and set about
the task of classifying all mechanisms and machines known to mankind! His colleague,
Hachette, completed the work in 1806 and published it as what was probably the first
mechanism textin 1811. Andre Marie Ampere (1775-1836), also a professor at L’Ecole
Polytechnic, set about the formidable task of classifying “all human knowledge.” In his
Essai sur la Philosophie des Sciences, he was the first to use the term cinematique, from
the Greek word for motion,” to describe the study of motion without regard to forces, and
suggested that “this science ought to include all that can be said with respect to motion
in its different kinds, independently of the forces by which it is produced.” His term was
later anglicized to kinematics and germanized to kinematik.

Robert Willis (1800-1875) wrote the text Principles of Mechanism in 1841 while
a professor of natural philosophy at the University of Cambridge, England. He attempt-
ed to systematize the task of mechanism synthesis. He counted five ways of obtaining

* Ampere is quoted as
writing “(The science of
mechanisms) must therefore
not define a machine, as
has usually been done, as
an instrument by the help
of which the direction and
intensity of a given force
can be altered, but as an
instrument by the help of
which the direction and
velocity of a given motion
can be altered. To this
science . . . I have given
the name Kinematics from
Kwpo—motion.” in Maun-
der, L. (1979). “Theory
and Practice.” Proc. 5th
World Cong. on Theory of
Mechanisms and Machines,
Montreal, p. 1.
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relative motion between input and output links: rolling contact, sliding contact, linkages,
wrapping connectors (belts, chains), and tackle (rope or chain hoists). Franz Reuleaux
(1829-1905) published Theoretische Kinematik in 1875. Many of his ideas are still cur-
rent and useful. Alexander Kennedy (1847-1928) translated Reuleaux into English in
1876. This text became the foundation of modern kinematics and is still in print! (See
bibliography at end of chapter.) He provided us with the concept of a kinematic pair
(joint), whose shape and interaction define the type of motion transmitted between ele-
ments in the mechanism. Reuleaux defined six basic mechanical components: the link, the
wheel, the cam, the screw, the ratchet, and the belt. He also defined “higher” and “lower”
pairs, higher having line or point contact (as in a roller or ball bearing) and lower having
surface contact (as in pin joints). Reuleaux is generally considered the father of modern
kinematics and is responsible for the symbolic notation of skeletal, generic linkages used
in all modern kinematics texts.

In the 20th century, prior to World War II, most theoretical work in kinematics was
done in Europe, especially in Germany. Few research results were available in Eng-
lish. In the United States, kinematics was largely ignored until the 1940s when A. E. R.
de Jonge wrote What Is Wrong with ‘Kinematics’ and ‘Mechanisms’ ?[2] which called
upon the U.S. mechanical engineering education establishment to pay attention to the
European accomplishments in this field. Since then, much new work has been done, espe-
cially in kinematic synthesis, by American and European engineers and researchers such
as J. Denavit, A. Erdman, F. Freudenstein, A. S. Hall, R. Hartenberg, R. Kaufman,
B. Roth, G. Sandor, and A. Soni (all of the United States) and K. Hain (of Germany).
Since the fall of the “iron curtain” much original work done by Soviet Russian kinemati-
cians has become available in the United States, such as that by Artobolevsky.[3] Many
U.S. researchers have applied the computer to solve previously intractable problems, of both
analysis and synthesis, making practical use of many of the theories of their predecessors.
[4] This text will make much use of the availability of computers to allow more efficient
analysis and synthesis of solutions to machine design problems. Several computer pro-
grams are included with this book for your use.

1.4 APPLICATIONS OF KINEMATICS

One of the first tasks in solving any machine design problem is to determine the kinematic
configuration(s) needed to provide the desired motions. Force and stress analyses typi-
cally cannot be done until the kinematic issues have been resolved. This text addresses
the design of kinematic devices such as linkages, cams, and gears. Each of these terms
will be fully defined in succeeding chapters, but it may be useful to show some examples
of kinematic applications in this introductory chapter. You probably have used many of
these systems without giving any thought to their kinematics.

Virtually any machine or device that moves contains one or more kinematic ele-
ments such as links, cams, gears, belts, and chains. Your bicycle is a simple example of a
kinematic system that contains a chain drive to provide torque multiplication and simple
cable-operated linkages for braking. An automobile contains many more examples of
kinematic devices. Its steering system, wheel suspensions, and piston engine all contain
linkages; the engine’s valves are opened by cams; and the transmission is full of gears.
Even the windshield wipers are linkage-driven. Figure 1-1a shows a linkage used to
control the rear wheel movement over bumps of a modern automobile.
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(@) Auto suspension linkage (b) Utility tractor with backhoe (c) Linkage-driven exercise mechanism
Photo by the author Photo by the author
FIGURE 11 Copyright © 2018 Robert L. Norton: All Rights Reserved

Examples of kinematic devices in general use

Construction equipment such as tractors, cranes, and backhoes all use linkages ex-
tensively in their design. Figure 1-1b shows a small backhoe that is a linkage driven by
hydraulic cylinders. Another application using linkages is that of exercise equipment as
shown in Figure 1-1c. The examples in Figure 1-1 are all of consumer goods that you
may encounter in your daily travels. Many other kinematic examples occur in the realm
of producer goods—machines used to make the many consumer products that we use.
You are less likely to encounter these outside of a factory environment. Once you become
familiar with the terms and principles of kinematics, you will no longer be able to look at
any machine or product without seeing its kinematic aspects.

15 A DESIGN PROCESS Watch a lecture video (29:47)" * hutp://www.designof-
machinery.com/DOM/

Design_Process.mp4

Design, Invention, Creativity

These are all familiar terms but may mean different things to different people. These
terms can encompass a wide range of activities from styling the newest look in clothing,
to creating impressive architecture, to engineering a machine for the manufacture of facial
tissues. Engineering design, which we are concerned with here, embodies all three of
these activities as well as many others. The word design is derived from the Latin desig-
nare, which means “fo designate, or mark out.” Design can be simply defined as creating
something new. Design is a common human activity. Artwork, clothing, geometric pat-
terns, automobile bodies, and houses are just a few examples of things that are designed.
Design is a universal constituent of engineering practice. Engineering design typically
involves the creation of a device, system, or process using engineering principles.

The complexity of engineering subjects usually requires that the beginning student
be served with a collection of structured, set-piece problems designed to elucidate a
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particular concept or concepts related to the particular topic. These textbook problems
typically take the form of “given A, B, C, and D, find E.” Unfortunately, real-life engi-
neering problems are almost never so structured. Real design problems more often take
the form of “What we need is a framus to stuff this widget into that hole within the time
allocated to the transfer of this other gizmo.” The new engineering graduate will search
in vain among his or her textbooks for much guidance to solve such a problem. This un-
structured problem statement usually leads to what is commonly called “blank paper
syndrome.” Engineers often find themselves staring at a blank sheet of paper pondering
how to begin solving such an ill-defined problem.

Much of engineering education deals with topics of analysis, which means to de-
compose, to take apart, to resolve into its constituent parts. This is quite necessary. The
engineer must know how to analyze systems of various types, mechanical, electrical,
thermal, or fluid. Analysis requires a thorough understanding of both the appropriate
mathematical techniques and the fundamental physics of the system’s function. But,
before any system can be analyzed, it must exist, and a blank sheet of paper provides little
substance for analysis. Thus the first step in any engineering design exercise is that of
synthesis, which means putting together.

The design engineer, in practice, regardless of discipline, continuously faces the chal-
lenge of structuring the unstructured problem. Inevitably, the problem as posed to the
engineer is ill-defined and incomplete. Before any attempt can be made to analyze the
situation, he or she must first carefully define the problem, using an engineering approach,
to ensure that any proposed solution will solve the right problem. Many examples exist
of excellent engineering solutions that were ultimately rejected because they solved the
wrong problem, i.e., a different one than the client really had.

Much research has been devoted to the definition of various “design processes”
intended to provide means to structure the unstructured problem and lead to a viable
solution. Some of these processes present dozens of steps, others only a few. The one
presented in Table 1-1 contains 10 steps and has, in the author’s experience, proved suc-
cessful in over 40 years of practice in engineering design.

ITERATION Before we discuss each of these steps in detail, it is necessary to point
out that this is not a process in which one proceeds from step one through ten in a linear
fashion. Rather it is, by its nature, an iterative process in which progress is made halt-
ingly, two steps forward and one step back. It is inherently circular. To iterate means
to repeat, to return to a previous state. If, for example, your apparently great idea, upon
analysis, turns out to violate the second law of thermodynamics, you can return to the
ideation step and get a better idea! Or, if necessary, you can return to an earlier step in the
process, perhaps the background research, and learn more about the problem. With the
understanding that the actual execution of the process involves iteration, for simplicity,
we will now discuss each step in the order listed in Table 1-1.

Identification of Need

This first step is often done for you by someone, boss or client, saying, “What we need is
....0 Typically this statement will be brief and lacking in detail. It will fall far short of
providing you with a structured problem statement. For example, the problem statement
might be “We need a better lawn mower.”
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Background Research

This is the most important phase in the process, and is unfortunately often the most
neglected. The term research, used in this context, should not conjure up visions of
white-coated scientists mixing concoctions in test tubes. Rather this is research of a more
mundane sort, gathering background information on the relevant physics, chemistry, or
other aspects of the problem. Also it is desirable to find out if this, or a similar problem,
has been solved before. There is no point in reinventing the wheel. If you are lucky
enough to find a ready-made solution on the market, it will no doubt be more economical
to purchase it than to build your own. Most likely this will not be the case, but you may
learn a great deal about the problem to be solved by investigating the existing “art” associ-
ated with similar technologies and products. Many companies purchase, disassemble, and
analyze their competitors’ products, a process sometimes referred to as “benchmarking.”

The patent literature and technical publications in the subject area are obvious
sources of information and are accessible via the World Wide Web. The U.S. Patent and
Trademark Office operates a web site at www.uspto.gov where you can search patents by
keyword, inventor, title, patent number, or other data. You can print a copy of the patent
from the site. A commercial site at www.delphion.com also provides copies of extant
patents including those issued in European countries. The “disclosure” or “specification”
section of a patent is required to describe the invention in such detail that anyone “skilled
in the art” could make the invention. In return for this full disclosure, the government
grants the inventor a 20-year monopoly on the claimed invention. After that term expires,
anyone can use it. Clearly, if you find that the solution exists and is covered by a patent
still in force, you have only a few ethical choices: buy the patentee’s existing solution,
design something that does not conflict with the patent, or drop the project.

Technical publications in engineering are numerous and varied and are provided by a
large number of professional organizations. For the subject matter of this text, the Ameri-
can Society of Mechanical Engineers (ASME), which offers inexpensive student mem-
berships, and the International Federation for the Theory of Machines and Mechanisms
(IFToMM) both publish relevant journals, the ASME Journal of Mechanical Design
and Mechanism and Machine Theory, respectively. Your school library may subscribe
to these, and you can purchase copies of articles from their web sites at http://mechani-
caldesign.asmedigitalcollection.asme.org/journal.aspx and http://www.journals.elsevier.
com/mechanism-and-machine-theory/, respectively.

The World Wide Web provides an incredibly useful resource for the engineer or
student looking for information on any subject. The many search engines available will
deliver a wealth of information in response to selected keywords. The web makes it easy
to find sources for purchased hardware, such as gears, bearings, and motors, for your ma-
chine designs. In addition, much machine design information is available from the web.
A number of useful web sites are catalogued in the bibliography of this chapter.

It is very important that sufficient energy and time be expended on this research and
preparation phase of the process in order to avoid the embarrassment of concocting a great
solution to the wrong problem. Most inexperienced (and some experienced) engineers
give too little attention to this phase and jump too quickly into the ideation and invention
stage of the process. This must be avoided! You must discipline yourself to not try to
solve the problem before thoroughly preparing yourself to do so.

Identifying the need

Reinventing the wheel

Grass shorteners
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TABLE 1-2

Performance Specifica-
tions

1 Device to have
self-contained power
supply.

2 Device to be corrosion
resistant.

3 Device to cost less
than $100.00.

4 Device to emit <80
dB sound intensity at
10 m.

5 Device to shorten
1/4 acre of grass per
hour.

6 etc.. .. etc.

* Orson Welles, famous
author and filmmaker, once
said, “The enemy of art is
the absence of limitations.”
‘We can paraphrase that as
The enemy of design is the
absence of specifications.

Performance
Specifications

Lorem
Ipsum
Dolor amet
Euismod
Volutpat
Laoreet
Adipiscing
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Goal Statement

Once the background of the problem area as originally stated is fully understood, you will
be ready to recast that problem into a more coherent goal statement. This new problem
statement should have three characteristics. It should be concise, be general, and be un-
colored by any terms that predict a solution. It should be couched in terms of functional
visualization, meaning to visualize its function, rather than any particular embodiment.
For example, if the original statement of need was “Design a Better Lawn Mower,” after
research into the myriad of ways to cut grass that have been devised over the ages, the
wise designer might restate the goal as “Design a Means to Shorten Grass.” The original
problem statement has a built-in trap in the form of the colored words “lawn mower.” For
most people, this phrase will conjure up a vision of something with whirring blades and a
noisy engine. For the ideation phase to be most successful, it is necessary to avoid such
images and to state the problem generally, clearly, and concisely. As an exercise, list 10
ways to shorten grass. Most of them would not occur to you had you been asked for 10
better lawn mower designs. You should use functional visualization to avoid unneces-
sarily limiting your creativity!

Performance Specifications *

When the background is understood, and the goal clearly stated, you are ready to formu-
late a set of performance specifications (also called task specifications). These should not
be design specifications. The difference is that performance specifications define what
the system must do, while design specifications define how it must do it. At this stage of
the design process it is unwise to attempt to specify how the goal is to be accomplished.
That is left for the ideation phase. The purpose of the performance specifications is to
carefully define and constrain the problem so that it both can be solved and can be shown
to have been solved after the fact. A sample set of performance specifications for our
“grass shortener” is shown in Table 1-2.

Note that these specifications constrain the design without overly restricting the engi-
neer’s design freedom. It would be inappropriate to require a gasoline engine for specifi-
cation 1, because other possibilities exist that will provide the desired mobility. Likewise,
to demand stainless steel for all components in specification 2 would be unwise, since
corrosion resistance can be obtained by other, less-expensive means. In short, the perfor-
mance specifications serve to define the problem in as complete and as general a manner
as possible, and they serve as a contractual definition of what is to be accomplished. The
finished design can be tested for compliance with the specifications.

Ideation and Invention

This step is full of both fun and frustration. This phase is potentially the most satisfying
to most designers, but it is also the most difficult. A great deal of research has been done
to explore the phenomenon of creativity. It is, most agree, a common human trait. It
is certainly exhibited to a very high degree by all young children. The rate and degree
of development that occurs in the human from birth through the first few years of life
certainly requires some innate creativity. Some have claimed that our methods of West-
ern education tend to stifle children’s natural creativity by encouraging conformity and
restricting individuality. From “coloring within the lines” in kindergarten to imitating the
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textbook’s writing patterns in later grades, individuality is suppressed in favor of a social-
izing conformity. This is perhaps necessary to avoid anarchy but probably does have the
effect of reducing the individual’s ability to think creatively. Some claim that creativity
can be taught, others that it is only inherited. No hard evidence exists for either theory.
It is probably true that one’s lost or suppressed creativity can be rekindled. Other studies
suggest that most everyone underutilizes his or her potential creative abilities. You can
enhance your creativity through various techniques.

CREATIVE PROCESS Many techniques have been developed to enhance or inspire
creative problem solving. In fact, just as design processes have been defined, so has the
creative process shown in Table 1-3. This creative process can be thought of as a subset
of the design process and to exist within it. The ideation and invention step can thus be
broken down into these four substeps.

IDEA GENERATION is the most difficult of these steps. Even very creative people
have difficulty inventing “on demand.” Many techniques have been suggested to improve
the yield of ideas. The most important technique is that of deferred judgment, which
means that your criticality should be temporarily suspended. Do not try to judge the
quality of your ideas at this stage. That will be taken care of later, in the analysis phase.
The goal here is to obtain as large a quantity of potential designs as possible. Even su-
perficially ridiculous suggestions should be welcomed, as they may trigger new insights
and suggest other more realistic and practical solutions.

BRAINSTORMING is a technique for which some claim great success in generat-
ing creative solutions. This technique requires a group, preferably 6 to 15 people, and
attempts to circumvent the largest barrier to creativity, which is fear of ridicule. Most
people, when in a group, will not suggest their real thoughts on a subject, for fear of be-
ing laughed at. Brainstorming’s rules require that no one be allowed to make fun of or
criticize anyone’s suggestions, no matter how ridiculous. One participant acts as “scribe”
and is duty bound to record all suggestions, no matter how apparently silly. When done
properly, this technique can be fun and can sometimes result in a “feeding frenzy” of ideas
that build upon each other. Large quantities of ideas can be generated in a short time.
Judgment on their quality is deferred to a later time.

When you are working alone, other techniques are necessary. Analogies and in-
version are often useful. Attempt to draw analogies between the problem at hand and
other physical contexts. If it is a mechanical problem, convert it by analogy to a fluid or
electrical one. Inversion turns the problem inside out. For example, consider what you
want moved to be stationary and vice versa. Insights often follow. Another useful aid to
creativity is the use of synonyms. Define the action verb in the problem statement, and
then list as many synonyms for that verb as possible. For example:

Problem statement: Move this object from point A to point B.

The action verb is “move.” Some synonyms are push, pull, slip, slide, shove, throw, eject,
Jjump, spill.

By whatever means, the aim in this ideation step is to generate a large number of
ideas without particular regard to quality. But, at some point, your “mental well” will go
dry. You will have then reached the step in the creative process called frustration. It is
time to leave the problem and do something else for a time. While your conscious mind
is occupied with other concerns, your subconscious mind will still be hard at work on the

1

TABLE 1-3
The Creative Process

5a ldea Generation
5b Frustration
5c¢ Incubation

5d Eureka!

Brainstorming

Frustration

Eurekal!
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problem. This is the step called incubation. Suddenly, at a quite unexpected time and
place, an idea will pop into your consciousness, and it will seem to be the obvious and
“right” solution to the problem . .. Eureka! Most likely, later analysis will discover some
flaw in this solution. If so, back up and iterate! More ideation, perhaps more research,
and possibly even a redefinition of the problem may be necessary.

In “Unlocking Human Creativity,”[5] Wallen describes three requirements for creative
insight:

e Fascination with a problem.
e Saturation with the facts, technical ideas, data, and the background of the problem.
e A period of reorganization.

The first of these provides the motivation to solve the problem. The second is the back-
ground research step described above. The period of reorganization refers to the frus-
tration phase when your subconscious works on the problem. Wallenl3! reports that
testimony from creative people tells us that in this period of reorganization they have no
conscious concern with the particular problem and that the moment of insight frequently
appears in the midst of relaxation or sleep. So to enhance your creativity, saturate yourself
in the problem and related background material. Then relax and let your subconscious
do the hard work!

Analysis

Once you are at this stage, you have structured the problem, at least temporarily, and can
now apply more sophisticated analysis techniques to examine the performance of the
design in the analysis phase of the design process. (Some of these analysis methods
will be discussed in detail in the following chapters.) Further iteration will be required
as problems are discovered from the analysis. Repetition of as many earlier steps in the
design process as necessary must be done to ensure the success of the design.

Cost Safety Performance| Reliability RANK

Weighting 35 30 15 20 1.0

Factor
. 3 6 4 9

Design 1 1.05 1.80 .60 1.80 5.3
. 4 2 7 2

Design 2 1.40 .60 1.05 40 3.5
. 1 9 4 5

Design 3 .35 2.70 .60 1.00 4.7
. 9 1 6 7

Design 4 3.15 .30 .90 1.40 5.8
. 7 4 2 6

Design 5 2.45 1.20 .30 1.20 5.2

FIGURE 1-2

A decision matrix
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Selection

When the technical analysis indicates that you have some potentially viable designs, the
best one available must be selected for detailed design, prototyping, and testing. The
selection process usually involves a comparative analysis of the available design solu-
tions. A decision matrix sometimes helps to identify the best solution by forcing you to
consider a variety of factors in a systematic way. A decision matrix for our better grass
shortener is shown in Figure 1-2. Each design occupies a row in the matrix. The columns
are assigned categories in which the designs are to be judged, such as cost, ease of use,
efficiency, performance, reliability, and any others you deem appropriate to the particular
problem. Each category is then assigned a weighting factor, which measures its relative
importance. For example, reliability may be a more important criterion to the user than
cost, or vice versa. You as the design engineer have to exercise your judgment as to the
selection and weighting of these categories. The body of the matrix is then filled with
numbers that rank each design on a convenient scale, such as 1 to 10, in each of the catego-
ries. Note that this is ultimately a subjective ranking on your part. You must examine the
designs and decide on a score for each. The scores are then multiplied by the weighting
factors (which are usually chosen so as to sum to a convenient number such as 1) and the
products are summed for each design. The weighted scores then give a ranking of the
designs. Be cautious in applying these results. Remember the source and subjectivity of
your scores and the weighting factors! There is a temptation to put more faith in these
results than is justified. After all, they look impressive! They can even be taken out to
several decimal places! (But they shouldn’t be.) The real value of a decision matrix is
that it breaks the problem into more tractable pieces and forces you to think about the
relative value of each design in many categories. You can then make a more informed
decision as to the “best” design.

Detailed Design

This step usually includes the creation of a complete set of assembly and detail drawings
or computer-aided design (CAD) part files for each and every part used in the design.
Each detail drawing must specify all the dimensions and the material specifications nec-
essary to make that part. From these drawings (or CAD files) a prototype test model (or
models) must be constructed for physical testing. Most likely the tests will discover more
flaws, requiring further iteration.

Prototyping and Testing

MobELS Ultimately, one cannot be sure of the correctness or viability of any design
until it is built and tested. This usually involves the construction of a prototype physical
model. A mathematical model, while very useful, can never be as complete and accu-
rate a representation of the actual physical system as a physical model, due to the need
to make simplifying assumptions. Prototypes are often very expensive but may be the
most economical way to prove a design, short of building the actual, full-scale device.
Prototypes can take many forms, from working scale models to full-size, but simpli-
fied, representations of the concept. Scale models introduce their own complications in
regard to proper scaling of the physical parameters. For example, volume of material var-
ies as the cube of linear dimensions, but surface area varies as the square. Heat transfer
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to the environment may be proportional to surface area, while heat generation may be
proportional to volume. So linear scaling of a system, either up or down, may lead to
behavior different from that of the full-scale system. One must exercise caution in scal-
ing physical models. You will find as you begin to design linkage mechanisms that a
simple cardboard model of your chosen link lengths, joined together with thumbtacks
for pivots, will tell you a great deal about the quality and character of the mechanism’s
motions. You should get into the habit of making such simple articulated models for all
your linkage designs.

TESTING of the model or prototype may range from simply actuating it and observ-
ing its function to attaching extensive instrumentation to accurately measure displace-
ments, velocities, accelerations, forces, temperatures, and other parameters. Tests may
need to be done under controlled environmental conditions such as high or low tempera-
ture or humidity. The microcomputer has made it possible to measure many phenomena
more accurately and inexpensively than could be done before.

Production

Finally, with enough time, money, and perseverance, the design will be ready for produc-
tion. This might consist of the manufacture of a single final version of the design, but
more likely will mean making thousands or even millions of your widget. The danger,
expense, and embarrassment of finding flaws in your design after making large quantities
of defective devices should inspire you to use the greatest care in the earlier steps of the
design process to ensure that it is properly engineered.

The design process is widely used in engineering. Engineering is usually defined in
terms of what an engineer does, but engineering can also be defined in terms of how the
engineer does what he or she does. Engineering is as much a method, an approach, a
process, a state of mind for problem solving, as it is an activity. The engineering approach
is that of thoroughness, attention to detail, and consideration of all the possibilities. While
it may seem a contradiction in terms to emphasize “attention to detail” while extolling the
virtues of open-minded, freewheeling, creative thinking, it is not. The two activities are
not only compatible, they are also symbiotic. It ultimately does no good to have creative,
original ideas if you do not, or cannot, carry out the execution of those ideas and “reduce
them to practice.” To do this you must discipline yourself to suffer the nitty-gritty, nettle-
some, tiresome details that are so necessary to the completion of any one phase of the
creative design process. For example, to do a creditable job in the design of anything,
you must completely define the problem. If you leave out some detail of the problem
definition, you will end up solving the wrong problem. Likewise, you must thoroughly
research the background information relevant to the problem. You must exhaustively
pursue conceptual potential solutions to your problem. You must then extensively ana-
lyze these concepts for validity. And, finally, you must detail your chosen design down
to the last nut and bolt to be confident it will work. If you wish to be a good designer and
engineer, you must discipline yourself to do things thoroughly and in a logical, orderly
manner, even while thinking great creative thoughts and iterating to a solution. Both at-
tributes, creativity and attention to detail, are necessary for success in engineering design.
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1.6 OTHER APPROACHES TO DESIGN

In recent years, an increased effort has been directed toward a better understanding of de-
sign methodology and the design process. Design methodology is the study of the process
of designing. One goal of this research is to define the design process in sufficient detail
to allow it to be encoded in a form amenable to execution in a computer, using “artificial
intelligence” (AL).

Dixonl®! defines a design as a state of information which may be in any of several
forms:

. .. words, graphics, electronic data, and/or others. It may be partial or complete. It
ranges from a small amount of highly abstract information early in the design process
to a very large amount of detailed information later in the process sufficient to perform
manufacturing. It may include, but is not limited to, information about size and shape,
function, materials, marketing, simulated performance, manufacturing processes, toler-
ances, and more. Indeed, any and all information relevant to the physical or economic
life of a designed object is part of its design.

He goes on to describe several generalized states of information such as the requirements
state that is analogous to our performance specifications. Information about the physi-
cal concept is referred to as the conceptual state of information and is analogous to our
ideation phase. His feature configuration and parametric states of information are similar
in concept to our detailed design phase. Dixon then defines a design process as

The series of activities by which the information about the designed object is changed
from one information state to another.

Axiomatic Design

N. P. Suhl”) suggests an axiomatic approach to design in which there are four domains:
customer domain, functional domain, physical domain, and process domain. These
represent a range from “what” to “how,” i.e., from a state of defining what the customer
wants through determining the functions required and the needed physical embodiment,
to how a process will achieve the desired end. He defines two axioms that need to be
satisfied to accomplish this:

1 Maintain the independence of the functional requirements.
2 Minimize the information content.

The first of these refers to the need to create a complete and nondependent set of perfor-
mance specifications. The second indicates that the best design solution will have the
lowest information content (i.e., the least complexity). Others have earlier referred to
this second idea as KISS, which stands, somewhat crudely, for “keep it simple, stupid.”

The implementation of both Dixon’s and Suh’s approaches to the design process
is somewhat complicated. The interested reader is referred to the literature cited in the
bibliography to this chapter for more complete information.
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* A student once com-

mented that “Life is an odd-

numbered problem.” This
(slow) author had to ask for
an explanation, which was,
“The answer is not in the
back of the book.”

Make the machine
fit the man
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17 MULTIPLE SOLUTIONS

Note that by the nature of the design process, there is not any one correct answer or
solution to any design problem. Unlike the structured “engineering textbook” problems,
which most students are used to, there is no right answer “in the back of the book” for
any real design problem.” There are as many potential solutions as there are designers
willing to attempt them. Some solutions will be better than others, but many will work.
Others will not! There is no “one right answer” in design engineering, which is what
makes it interesting. The only way to determine the relative merits of various potential
design solutions is by thorough analysis, which usually will include physical testing of
constructed prototypes. Because this is a very expensive process, it is desirable to do as
much analysis on paper, or in the computer, as possible before actually building the device.
Where feasible, mathematical models of the design, or parts of the design, should be cre-
ated. These may take many forms, depending on the type of physical system involved. In
the design of mechanisms and machines, it is usually possible to write the equations for
the rigid-body dynamics of the system, and solve them in “closed form” with (or without)
a computer. Accounting for the elastic deformations of the members of the mechanism or
machine usually requires more complicated approaches using finite difference techniques
or the finite element method (FEM).

1.8 HUMAN FACTORS ENGINEERING

With few exceptions, all machines are designed to be used by humans. Even robots must
be programmed by a human. Human factors engineering is the study of the human-
machine interaction and is defined as an applied science that coordinates the design of
devices, systems, and physical working conditions with the capacities and requirements of
the worker. The machine designer must be aware of this subject and design devices to “fit
the man” rather than expect the man to adapt to fit the machine. The term ergonomics
is synonymous with human factors engineering. We often see reference to the good or
bad ergonomics of an automobile interior or a household appliance. A machine designed
with poor ergonomics will be uncomfortable and tiring to use and may even be dangerous.
(Have you programmed your VCR lately, or set its clock?)

There is a wealth of human factors data available in the literature. Some references
are noted in the bibliography. The type of information that might be needed for a machine
design problem ranges from dimensions of the human body and their distribution among
the population by age and gender, to the ability of the human body to withstand accelera-
tions in various directions, to typical strengths and force-generating ability in various
positions. Obviously, if you are designing a device that will be controlled by a human
(a grass shortener, perhaps), you need to know how much force the user can exert with
hands held in various positions, what the user’s reach is, and how much noise the ears
can stand without damage. If your device will carry the user on it, you need data on the
limits of acceleration that the body can tolerate. Data on all these topics exist. Much of
it was developed by the government which regularly tests the ability of military personnel
to withstand extreme environmental conditions. Part of the background research of any
machine design problem should include some investigation of human factors.
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1.9 THE ENGINEERING REPORT Watch a short video (15:57)*

Communication of your ideas and results is a very important aspect of engineering. Many
engineering students picture themselves in professional practice spending most of their
time doing calculations of a nature similar to those they have done as students. Fortu-
nately, this is seldom the case, as it would be very boring. Actually, engineers spend the
largest percentage of their time communicating with others, either orally or in writing.
Engineers write proposals and technical reports, give presentations, and interact with sup-
port personnel and managers. When your design is done, it is usually necessary to present
the results to your client, peers, or employer. The usual form of presentation is a formal
engineering report. Thus, it is very important for the engineering student to develop his
or her communication skills. You may be the cleverest person in the world, but no one
will know that if you cannot communicate your ideas clearly and concisely. In fact, if
you cannot explain what you have done, you probably don’t understand it yourself. To
give you some experience in this important skill, the design project assignments in later
chapters are intended to be written up in formal engineering reports. Information on the
writing of engineering reports can be found in the suggested readings in the bibliography
at the end of this chapter.

110 UNITS Watch a short video (10:07)*

There are several systems of units used in engineering. The most common in the United
States are the U.S. foot-pound-second (fps) system, the U.S. inch-pound-second (ips)
system, and the Systeme International (SI). All systems are created from the choice of
three of the quantities in the general expression of Newton’s second law

F= m_zl (1.1a)

t

where F is force, m is mass, [ is length, and 7 is time. The units for any three of these
variables can be chosen, and the other is then derived in terms of the chosen units. The
three chosen units are called base units, and the remaining one is then a derived unit.

Most of the confusion that surrounds the conversion of computations between either
one of the U.S. systems and the SI system is due to the fact that the SI system uses a dif-
ferent set of base units than the U.S. systems. Both U.S. systems choose force, length,
and fime as the base units. Mass is then a derived unit in the U.S. systems, and they are
referred to as gravitational systems because the value of mass is dependent on the local
gravitational constant. The SI system chooses mass, length, and time as the base units
and force is the derived unit. SIis then referred to as an absolute system since the mass
is a base unit whose value is not dependent on local gravity.

The U.S. foot-pound-second (fps) system requires that all lengths be measured in
feet (ft), forces in pounds (Ib), and time in seconds (sec). Mass is then derived from
Newton’s law as

m=— (1.1b)

and the units are pound seconds squared per foot (Ib-sec?/ft) = slugs.
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* It is unfortunate that the
mass unit in the ips system
has never officially been
given a name such as the
term slug used for mass

in the fps system. The
author boldly suggests (with
tongue only slightly in
cheek) that this unit of mass
in the ips system be called
a blob (bl) to distinguish it
more clearly from the slug
(s1), and to help the student
avoid some of the common
units errors listed above.

Twelve slugs = one blob

Blob does not sound any
sillier than slug, is easy to
remember, implies mass,
and has a convenient abbre-
viation (bl) which is an ana-
gram for the abbreviation
for pound (Ib). Besides, if
you have ever seen a garden
slug, you know it looks just
like a “little blob.”

T A 125-million-dollar
space probe was lost
because NASA failed to
convert data that had been
supplied in ips units by its
contractor, Lockheed Aero-
space, into the metric units
used in the NASA computer
programs that controlled
the spacecraft. It was sup-
posed to orbit the planet
Mars, but instead either
burned up in the Martian
atmosphere or crashed into
the planet because of this
units error. Source: The
Boston Globe, October 1,
1999, p. 1.
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The U.S. inch-pound-second (ips) system requires that all lengths be measured in
inches (in), forces in pounds (Ib), and time in seconds (sec). Mass is still derived from
Newton’s law, equation 1.1b, but the units are now:

Pound-seconds squared per inch (Ib-sec?/in) = blobs
This mass unit is not slugs! It is worth twelve slugs or one blob.”

Weight is defined as the force exerted on an object by gravity. Probably the most
common units error that students make is to mix up these two unit systems (fps and ips)
when converting weight units (which are pounds force) to mass units. Note that the
gravitational acceleration constant (g) on earth at sea level is approximately 32.2 feet per
second squared, which is equivalent to 386 inches per second squared. The relationship
between mass and weight is:

Mass = weight / gravitational acceleration

m=— (1.2)

g
It should be obvious that, if you measure all your lengths in inches and then use g = 32.2 feet/
sec? to compute mass, you will have an error of a factor of twelve in your results. This is a seri-
ous error, large enough to crash the airplane you designed. Even worse off is the student who
neglects to convert weight to mass ar all in his calculations. He will have an error of either 32.2
or 386 in his results. This is enough to sink the ship!®

To even further add to the student’s confusion about units is the common use of the
unit of pounds mass (lb,,,). This unit is often used in fluid dynamics and thermodynam-
ics and comes about through the use of a slightly different form of Newton’s equation:

p=me
8c

1.3)

where m = mass in lb,,,, @ = acceleration, and g. = the gravitational constant.

The value of the mass of an object measured in pounds mass (Ib,,) is numerically
equal to its weight in pounds force (Ibp). However the student must remember to divide
the value of m in 1b,, by g. when substituting into this form of Newton’s equation. Thus
the 1b,, will be divided either by 32.2 or by 386 when calculating the dynamic force.
The result will be the same as when the mass is expressed in either slugs or blobs in the
F = ma form of the equation. Remember that in round numbers at sea level on earth:

I'1b,, = 11by I'slug =322 1by 1 blob = 386 Iby

The SI system requires that lengths be measured in meters (m), mass in kilograms
(kg), and time in seconds (sec). This is sometimes also referred to as the mks system.
Force is derived from Newton’s law, equation 1.1b, and the units are:

kilogram-meters per second? (kg-m/s2) = newtons

Thus in the ST system there are distinct names for mass and force which helps allevi-
ate confusion. When converting between SI and U.S. systems, be alert to the fact that
mass converts from kilograms (kg) to either slugs (sl) or blobs (bl), and force converts
from newtons (N) to pounds (Ib). The gravitational constant (g) in the SI system is ap-
proximately 9.81 m/s2.
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TABLE 1-4 Variables and Units

Base Units in Boldface — Abbreviations in (

Variable Symbol ips unit fps unit Sl unit

Force F pounds (Ib) pounds (Ib) newtons (N)
Length l inches (in) feet (ft) meters (m)
Time t seconds (sec) seconds (sec) seconds (sec)
Mass m Ib—sec Z/in = bl Ib-sec%/ft =s|  kilograms (kg)
Weight w pounds (Ib) pounds (Ib) newtons (N)
Velocity v in/sec ft/sec m/sec
Acceleration a in/sec? ft/sec? m/sec?

Jerk J in/sec3 ft/sec3 m/sec3

Angle 0 degrees (deg) degrees (deg) degrees (deg)
Angle 0 radians (rad) radians (rad) radians (rad)
Angular velocity 0] rad/sec rad/sec rad/sec
Angular acceleration o rad/sec? rad/sec? rad/sec?
Angular jerk ¢ rad/sec3 rad/sec3 rad/sec3
Torque T Ib—in Ib—ft N-m

Mass moment of inertia 1 Ib—in—sec? lb—ft—sec? N—m—sec2
Energy E in—lb ft—Ib joules (J)
Power P in—Ib/sec ft—Ib/sec watts (W)
Volume 1% in3 3 m3

Weight density Y Ib/in3 Ib/ft3 N/m?3

Mass density p bl/in3 sl/t3 kg/m3

The principal system of units used in this textbook will be the U.S. ips system. Most
machine design in the United States is still done in this system. Table 1-4 shows some
of the variables used in this text and their units. Table 1-5 provides conversion factors

between the U.S. and SI systems.

The student is cautioned to always check the units in any equation written for a prob-
lem solution, whether in school or in professional practice after graduation. If properly
written, an equation should cancel all units across the equal sign. If it does not, then you
can be absolutely sure it is incorrect. Unfortunately, a unit balance in an equation does
not guarantee that it is correct, as many other errors are possible. Always double-check

your results. You might save a life.
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TABLE 1-5 Conversion Factors

From U.S. Customary Units to Metric Units

1 Blob (bl) = 175.127 Kilograms (kg)

1 Cubic inch (in%) = 16.387 Cubic centimeters (cc)

1 Foot (ft) = 0.304 8 Meter (m)

1 Horsepower (hp) = 745.699 Watts (W)

1 Inch (in) = 0.0254 Meter (m)

1 Mile, U.S. statute (mi) = 1 609.344 Meters (m)

1 Pound force (Ib) = 4.448 2 Newtons (N)
= 4448222 Dynes

1 Pound mass (Ibm) = 0.453 6 Kilogram (kg)

1 Pound-foot (Ib-ft) = 1.355 8 Newton-meter (N-m)
= 1.3558 Joules (J)

1 Pound-foot/second (Ib-ft/sec) = 1.3558 Watts (W)

1 Pound-inch (Ib-in) = 0.112 8 Newton-meter (N-m)
= 0.1128 Joule (J)

1 Pound-inch/second (Ib-in/sec) = 0.112 8 Watt (W)

1 Pound/foot? (Ib/ft?) = 47.8803 Pascals (Pa)

1 Pound/inch? (Ib/in?), (psi) = 6 894.757 Pascals (Pa)

1 Revolution/minute (rpm) = 0.104 7 Radian/second (rad/s)

1 Slug (sl) = 14.593 9 Kilograms (kg)

1 Ton, short (2000 1bm) 907.184 7 Kilograms (kg)

Between U.S. Customary Units

1 Blob (bl) 12 Slugs (sl)

1 Blob (bl) = 386 Pounds mass (Ibm)

1 Foot (ft) = 12 Inches (in)

1 Horsepower (hp) = 550 Pound-feet/second (Ib-ft/sec)

1 Knot = 1.1515 Miles/hour (mph)

1 Mile, U.S. statute (mi) = 5280 Feet (ft)

1 Mile/hour = 1.4667 Feet/second (ft/sec)

1 Pound force (1b) = 16 Ounces (0z)

1 Pound mass (Ibm) = 0.0311 Slug (sl)

1 Pound-foot (Ib-ft) = 12 Pound-inches (Ib-in)

1 Pound-foot/second (Ib-ft/sec) = 0.001 818 Horsepower (hp)

1 Pound-inch (Ib-in) = 0.083 3 Pound-foot (Ib-ft)

1 Pound-inch/second (Ib-in/sec) = 0.021 8 Horsepower (hp)

1 Pound/inch? (Ib/in?), (psi) = 144 Pounds/foot? (Ib/ft?)

1 Radian/second (rad/sec) = 9.549 Revolutions/minute (rpm)

1 Slug (sl) 32.174 Pounds mass (Ibm)

1 Ton, short 2000 Pounds mass (Ibm)
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11 A DESIGN CASE STUDY

Of all the myriad activities that the practicing engineer engages in, the one that is at once
the most challenging and potentially the most satisfying is design. Doing calculations to
analyze a clearly defined and structured problem, no matter how complex, may be dif-
ficult, but the exercise of creating something from scratch, to solve a problem that is often
poorly defined, is very difficult. The sheer pleasure and joy at conceiving a viable solution
to such a design problem is one of life’s great satisfactions for anyone, engineer or not.

Some years ago, a very creative engineer of the author’s acquaintance, George A.
Wood Jr., heard a presentation by another creative engineer of the author’s acquaintance,
Keivan Towfigh, about one of his designs. Years later, Mr. Wood himself wrote a short
paper about creative engineering design in which he reconstructed Mr. Towfigh’s pre-
sumed creative process when designing the original invention. Both Mr. Wood and Mr.
Towfigh have kindly consented to the reproduction of that paper here. It serves, in this
author’s opinion, as an excellent example and model for the student of engineering design
to consider when pursuing his or her own design career.

Educating for Creativity in Engineering(®]

by GEORGE A. WOOD JR.

One facet of engineering, as it is practiced in industry, is the creative process. Let us define
creativity as Rollo May does in his book, The Courage to Create.[101 It is “the process of bringing
something new into being.” Much of engineering has little to do with creativity in its fullest sense.
Many engineers choose not to enter into creative enterprise, but prefer the realms of analysis, testing
and product or process refinement. Many others find their satisfaction in management or business
roles and are thus removed from engineering creativity as we shall discuss it here.

From the outset, I wish to note that the less creative endeavors are no less important or satisfy-
ing to many engineers than is the creative experience to those of us with the will to create. It would
be a false goal for all engineering schools to assume that their purpose was to make all would-be
engineers creative and that their success should be measured by the “creative quotient” of their
graduates.

On the other hand, for the student who has a creative nature, a life of high adventure awaits if
he can find himself in an academic environment which recognizes his needs, enhances his abilities
and prepares him for a place in industry where his potential can be realized.

In this talk I will review the creative process as I have known it personally and witnessed it
in others. Then I shall attempt to indicate those aspects of my training that seemed to prepare me
best for a creative role and how this knowledge and these attitudes toward a career in engineering
might be reinforced in today’s schools and colleges.

During a career of almost thirty years as a machine designer, I have seen and been a part of a
number of creative moments. These stand as the high points of my working life. When I have been
the creator I have felt great elation and immense satisfaction. When I have been with others at their
creative moments I have felt and been buoyed up by their delight. To me, the creative moment is the
greatest reward that the profession of engineering gives.

Let me recount an experience of eight years ago when I heard a paper given by a creative man
about an immensely creative moment. At the First Applied Mechanisms Conference in Tulsa, Okla-
homa, was a paper entitled The Four-Bar Linkage as an Adjustment Mechanism.[!1] It was nestled
between two “how to do it” academic papers with graphs and equations of interest to engineers in
the analysis of their mechanism problems. This paper contained only one very elementary equation
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* The theory of instant
centers will be thoroughly
explained in Chapter 6.

(research)

(ideation)

(frustration)
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and five simple illustrative figures; yet, I remember it now more clearly than any other paper I have
ever heard at mechanism conferences. The author was Keivan Towfigh and he described the appli-
cation of the geometric characteristics of the instant center of the coupler of a four bar mechanism.

His problem had been to provide a simple rotational adjustment for the oscillating mirror of an
optical galvanometer. To accomplish this, he was required to rotate the entire galvanometer assem-
bly about an axis through the center of the mirror and perpendicular to the pivot axis of the mirror.
High rigidity of the system after adjustment was essential with very limited space available and low
cost required, since up to sixteen of these galvanometer units were used in the complete instrument.

His solution was to mount the galvanometer elements on the coupler link of a one-piece, flexure
hinged, plastic four bar mechanism so designed that the mirror center was at the instant center” of
the linkage at the midpoint of its adjustment. (See Fig 4.) It is about this particular geometric point
(see Fig 1.) that pure rotation occurs and with proper selection of linkage dimensions this condi-
tion of rotation without translation could be made to hold sufficiently accurately for the adjustment
angles required.

Unfortunately, this paper was not given the top prize by the judges of the conference. Yet,
it was, indirectly, a description of an outstandingly creative moment in the life of a creative man.

Let us look at this paper together and build the steps through which the author probably pro-
gressed in the achievement of his goal. I have never seen Mr. Towfigh since, and I shall therefore
describe a generalized creative process which may be incorrect in some details but which, I am sure,
is surprisingly close to the actual story he would tell.

The galvanometer problem was presented to Mr. Towfigh by his management. It was, no doubt,
phrased something like this: “In our new model, we must improve the stability of the adjustment of
the equipment but keep the cost down. Space is critical and low weight is too. The overall design
must be cleaned up, since customers like modern, slim-styled equipment and we’ll lose sales to oth-
ers if we don’t keep ahead of them on all points. Our industrial designer has this sketch that all of
us in sales like and within which you should be able to make the mechanism fit.”

Then followed a list of specifications the mechanism must meet, a time when the new model
should be in production and, of course, the request for some new feature that would result in a strong
competitive edge in the marketplace.

I wish to point out that the galvanometer adjustment was probably only one hoped-for im-
provement among many others. The budget and time allowed were little more than enough needed
for conventional redesign, since this cost must be covered by the expected sales of the resulting
instrument. For every thousand dollars spent in engineering, an equivalent increase in sales or
reduction in manufacturing cost must be realized at a greater level than the money will bring if
invested somewhere else.

In approaching this project, Mr. Towfigh had to have a complete knowledge of the equipment
he was designing. He had to have run the earlier models himself. He must have adjusted the mir-
rors of existing machines many times. He had to be able to visualize the function of each element
in the equipment in its most basic form.

Secondly, he had to ask himself (as if he were the customer) what operational and maintenance
requirements would frustrate him most. He had to determine which of these might be improved
within the design time available. In this case he focused on the mirror adjustment. He considered
the requirement of rotation without translation. He determined the maximum angles that would be
necessary and the allowable translation that would not affect the practical accuracy of the equip-
ment. He recognized the desirability of a one screw adjustment. He spent a few hours thinking
of all the ways he had seen of rotating an assembly about an arbitrary point. He kept rejecting
each solution as it came to him as he felt, in each case, that there was a better way. His ideas had
too many parts, involved slides, pivots, too many screws, were too vibration sensitive or too large.
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He thought about the problem that evening and at other times while he proceeded with the
design of other aspects of the machine. He came back to the problem several times during the next

few days. His design time was running out. He was a mechanism specialist and visualized a host (incubation)
of cranks and bars moving the mirrors. Then one day, probably after a period when he had turned
his attention elsewhere, on rethinking of the adjustment device, an image of the system based on (Eureka!)

one of the elementary characteristics of a four bar mechanism came to him.

I feel certain that this was a visual image, as clear as a drawing on paper. It was probably — ~
not complete but involved two inspirations. First was the characteristics of the instant center.” (See " Defined in Chapter 6.
Figs 1, 2, 3.) Second was the use of flexure hinge joints which led to a one-piece plastic molding.
(See Fig 4.) I am sure that at this moment he had a feeling that this solution was right. He knew it
with certainty. The whole of his engineering background told him. He was elated. He was filled
with joy. His pleasure was not because of the knowledge that his superiors would be impressed or
that his security in the company would be enhanced. It was the joy of personal victory, the aware-
ness that he had conquered.

The creative process has been documented before by many others far more qualified to analyze
the working of the human mind than 1. Yet I would like to address, for the remaining minutes, how
education can enhance this process and help more engineers, designers and draftsmen extend their
creative potential.
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The key elements I see in creativity that have greatest bearing on the quality that results from
the creative effort are visualization and basic knowledge that gives strength to the feeling that the
right solution has been achieved. There is no doubt in my mind that the fundamental mechanical
principles that apply in the area in which the creative effort is being made must be vivid in the mind
of the creator. The words that he was given in school must describe real elements that have physical,
visual significance. F = ma must bring a picture to his mind vivid enough to touch.

If a person decides to be a designer, his training should instill in him a continuing curiosity to
know how each machine he sees works. He must note its elements and mentally see them function
together even when they are not moving. 1 feel that this kind of solid, basic knowledge couples with
physical experience to build ever more critical levels at which one accepts a tentative solution as
“right.”

It should be noted that there have been times for all of us when the inspired “right” solution
has proven wrong in the long run. That this happens does not detract from the process but indicates
that creativity is based on learning and that failures build toward a firmer judgment base as the
engineer matures. These failure periods are only negative, in the growth of a young engineer, when
they result in the fear to accept a new challenge and beget excessive caution which then stifles the
repetition of the creative process.

What would seem the most significant aspects of an engineering curriculum to help the poten-
tially creative student develop into a truly creative engineer?

First is a solid, basic knowledge in physics, mathematics, chemistry and those subjects relat-
ing to his area of interest. These fundamentals should have physical meaning to the student and a
vividness that permits him to explain his thoughts to the untrained layman. All too often technical
words are used to cover cloudy concepts. They serve the ego of the user instead of the education
of the listener.

Second is the growth of the student’s ability to visualize. The creative designer must be able to
develop a mental image of that which he is inventing. The editor of the book Seeing with the Mind’s
Eye,!12] by Samuels, says in the preface:

“«

. visualization is the way we think. Before words, images were. Visualization is the heart
of the bio-computer. The human brain programs and self-programs through its images. Riding
a bicycle, driving a car, learning to read, baking a cake, playing golf - all skills are acquired
through the image making process. Visualization is the ultimate consciousness tool.”

Obviously, the creator of new machines or products must excel in this area.

To me, a course in Descriptive Geometry is one part of an engineer’s training that enhances
one’s ability to visualize theoretical concepts and graphically reproduce the result. This ability is
essential when one sets out to design a piece of new equipment. First, he visualizes a series of
complete machines with gaps where the problem or unknown areas are. During this time, a number
of directions the development could take begin to form. The best of these images are recorded on
paper and then are reviewed with those around him until, finally, a basic concept emerges.

The third element is the building of the student’s knowledge of what can be or has been done
by others with different specialized knowledge than he has. This is the area to which experience will
add throughout his career as long as he maintains an enthusiastic curiosity. Creative engineering
is a building process. No one can develop a new concept involving principles about which he has
no knowledge. The creative engineer looks at problems in the light of what he has seen, learned
and experienced and sees new ways for combining these to fill a new need.

Fourth is the development of the ability of the student to communicate his knowledge to others.
This communication must involve not only skills with the techniques used by technical people but
must also include the ability to share engineering concepts with untrained shop workers, business
people and the general public. The engineer will seldom gain the opportunity to develop a concept
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truly ingenious ideas are lost because the creator cannot transfer his vivid image to those who might
finance or market it.

Fifth is the development of a student’s knowledge of the physical result of engineering. The
more he can see real machines doing real work, the more creative he can be as a designer. The
engineering student should be required to run tools, make products, adjust machinery and visit fac-
tories. It is through this type of experience that judgement grows as to what makes a good machine,
when approximation will suffice and where optimization should halt.

It is often said that there has been so much theoretical development in engineering during the
past few decades that the colleges and universities do not have time for the basics I have outlined
above. It is suggested that industry should fill in the practice areas that colleges have no time for,
so that the student can be exposed to the latest technology. To some degree I understand and sym-
pathize with this approach, but I feel that there is a negative side that needs to be recognized. If a
potentially creative engineer leaves college without the means to achieve some creative success as
he enters his first job, his enthusiasm for creative effort is frustrated and his interest sapped long
before the most enlightened company can fill in the basics. Therefore, a result of the “basics later”
approach often is to remove from the gifted engineering student the means to express himself visu-
ally and physically. Machine design tasks therefore become the domain of the graduates of technical
and trade schools and the creative contribution by many a brilliant university student to products
that could make all our lives richer is lost.

As [ said at the start, not all engineering students have the desire, drive and enthusiasm that
are essential to creative effort. Yet I feel deeply the need for the enhancement of the potential of
those who do. That expanding technology makes course decisions difficult for both student and
professor is certainly true. The forefront of academic thought has a compelling attraction for both
the teacher and the learner. Yet I feel that the development of strong basic knowledge, the abilities
to visualize, to communicate, to respect what has been done, to see and feel real machinery, need
not exclude or be excluded by the excitement of the new. I believe that there is a curriculum bal-
ance that can be achieved which will enhance the latent creativity in all engineering and science
students. It can give a firm basis for those who look towards a career of mechanical invention and
still include the excitement of new technology.

I hope that this discussion may help in generating thought and providing some constructive
suggestions that may lead more engineering students to find the immense satisfaction of the cre-
ative moment in the industrial environment. In writing this paper I have spent considerable time
reflecting on my years in engineering and I would close with the following thought. For those of
us who have known such times during our careers, the successful culminations of creative efforts
stand among our most joyous hours.

Mr. Wood’s description of his creative experiences in engineering design and the edu-
cational factors which influenced them closely parallels this author’s experience as well.
The student is well advised to follow his prescription for a thorough grounding in the
fundamentals of engineering and communication skills. A most satisfying career in the
design of machinery can result.

112 WHAT’S TO COME

In this text we will explore the design of machinery in respect to the synthesis of mecha-
nisms in order to accomplish desired motions or tasks, and also the analysis of mecha-
nisms in order to determine their rigid-body dynamic behavior. On the premise that
we cannot analyze anything until it has been synthesized into existence, we will first
explore the synthesis of mechanisms. Then we will investigate the analysis of those and
other mechanisms for their kinematic behavior. Finally, in Part IT we will deal with the
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dynamic analysis of the forces and torques generated by these moving machines. These
topics cover the essence of the early stages of a design project. Once the kinematics and
kinetics of a design have been determined, most of the conceptual design will have been
accomplished. What then remains is detailed design—sizing the parts against failure.
The topic of detailed design is discussed in other texts such as reference [8].

113 RESOURCES WITH THIS TEXT

The Video Contents contains a list of downloadable Master Lecture videos made by the
author. An index of additional downloadable files is in the Appendices. These include
computer programs, sample files for those programs, PDF files of all problem figures for
use in solving them, two linkage atlases (the Hrones and Nelson fourbar atlas, and the
Zhang, Norton, Hammond geared fivebar atlas), and digital videos with tutorial informa-
tion on various topics in the book, program use, and views of actual machines in operation
to show applications of the theory. There are also Powerpoints of the author’s master
lectures on most of the topics in the book. Clickable links to the Master Lectures, videos,
and other files are also inserted in the e-book version of this text.

Programs

The commercial program Working Model (WM) is included in a “textbook edition” that
has some limitations (see the Preface for more details). It will run all the WM files of
book figures and examples that are included. Three programs written by the author for
the design and analysis of linkages and cams are provided: DYNACAM, LINKAGES, and
MATRIX. User manuals, sample files, and tutorial videos for some of these programs are
provided and are accessed from within the programs.

Videos

The videos provided are in four categories: lectures, tutorials, and snippets on topics in
the text, tutorials on program use, virtual laboratories, and depictions of actual mecha-
nisms and machines.

LECTURES/TUTORIALS/SNIPPETS ~ The lectures and tutorials on topics in the text
typically provide much more information on the topic than can be presented on the page
and also provide a “show and tell” advantage. These are all noted in the sections of the
text where the topics are addressed. See the Video Contents for more information.

PROGRAM TUTORIALS The tutorials on program use give an introduction to the
programs. These videos can be viewed from within the programs if the computer has an
Internet connection.

VIRTUAL LABORATORIES There are two virtual laboratory videos provided, one
on linkages and one on cams. These show and describe laboratory machines used by the
author at WPI to introduce students to the measurement and analysis of kinematic and
dynamic parameters on real machines. Itis instructive to see the differences between theo-
retical predictions of a machine’s behavior and actual measured data. All the data taken
in a typical lab session from these machines is provided along with descriptions of the lab
assignment so that anyone can do a virtual laboratory exercise similar to that done at WPL.
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MACHINES IN ACTION These range from commercially produced videos about a
company’s products or manufacturing processes to student-produced videos about their
projects that involved mechanisms. Most students have not had an opportunity to visit a
manufacturing plant or see the inner workings of machinery, and the hope is that these
videos will give some insight into applications of the theories presented in the text.
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Chapter

KINEMATICS
FUNDAMENTALS

Chance favors the prepared mind
PASTEUR

2.0 INTRODUCTION Watch the lecture vi r this chapter (49:12)"

This chapter will present definitions of a number of terms and concepts fundamental to the
synthesis and analysis of mechanisms. It will also present some very simple but powerful
analysis tools that are useful in the synthesis of mechanisms.

21 DEGREES OF FREEDOM (DOF) OR MOBILITY Watch a short video
3:53)F

A mechanical system’s mobility (M) can be classified according to the number of de-
grees of freedom (DOF) that it possesses. The system’s DOF is equal to the number of
independent parameters (measurements) that are needed to uniquely define its position in
space at any instant of time. Note that DOF is defined with respect to a selected frame of
reference. Figure 2-1 shows a pencil lying on a flat piece of paper with an x, y coordinate
system added. If we constrain this pencil to always remain in the plane of the paper, three
parameters (DOF) are required to completely define the position of the pencil on the pa-
per, two linear coordinates (x, y) to define the position of any one point on the pencil and
one angular coordinate (0) to define the angle of the pencil with respect to the axes. The
minimum number of measurements needed to define its position is shown in the figure as
x, y, and 0. This system of the pencil in a plane then has three DOF. Note that the par-
ticular parameters chosen to define its position are not unique. Any alternate set of three
parameters could be used. There is an infinity of sets of parameters possible, but in this
case there must be three parameters per set, such as two lengths and an angle, to define
the system’s position because a rigid body in plane motion has three DOF.
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FIGURE 2-1
Arigid body in a plane has three DOF

Now allow the pencil to exist in a three-dimensional world. Hold it above your
desktop and move it about. You now will need six parameters to define its six DOF. One
possible set of parameters that could be used is three lengths, (x, y, z), plus three angles
(0,0,p). Any rigid body in three-space has six degrees of freedom. Try to identify these
six DOF by moving your pencil or pen with respect to your desktop.

The pencil in these examples represents a rigid body, or link, which for purposes of
kinematic analysis we will assume to be incapable of deformation. This is merely a conve-
nient fiction to allow us to more easily define the gross motions of the body. We can later
superpose any deformations due to external or inertial loads onto our kinematic motions
to obtain a more complete and accurate picture of the body’s behavior. But remember, we
are typically facing a blank sheet of paper at the beginning stage of the design process. We
cannot determine deformations of a body until we define its size, shape, material proper-
ties, and loadings. Thus, at this stage we will assume, for purposes of initial kinematic
synthesis and analysis, that our kinematic bodies are rigid and massless.

2.2 TYPES OF MOTION

A rigid body free to move within a reference frame will, in the general case, have com-
plex motion, which is a simultaneous combination of rotation and translation. In
three-dimensional space, there may be rotation about any axis (any skew axis or one
of the three principal axes) and also simultaneous translation that can be resolved into
components along three axes. In a plane, or two-dimensional space, complex motion
becomes a combination of simultaneous rotation about one axis (perpendicular to the
plane) and also translation resolved into components along two axes in the plane. For
simplicity, we will limit our present discussions to the case of planar (2-D) kinematic
systems. We will define these terms as follows for our purposes, in planar motion:
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Pure rotation

The body possesses one point (center of rotation) that has no motion with respect to the
“stationary” frame of reference. All other points on the body describe arcs about that
center. A reference line drawn on the body through the center changes only its angular
orientation.

Pure translation

All points on the body describe parallel (curvilinear or rectilinear) paths. A reference line
drawn on the body changes its linear position but does not change its angular orientation.

Complex motion

A simultaneous combination of rotation and translation. Any reference line drawn on the
body will change both its linear position and its angular orientation. Points on the body
will travel nonparallel paths, and there will be, at every instant, a center of rotation, which
will continuously change location.

Translation and rotation represent independent motions of the body. Each can ex-
ist without the other. If we define a 2-D coordinate system as shown in Figure 2-1, the
x and y terms represent the translation components of motion, and the 0 term represents
the rotation component.

2.3 LINKS, JOINTS, AND KINEMATIC CHAINS Watch a short video
11:00)*

We will begin our exploration of the kinematics of mechanisms with an investigation of
the subject of linkage design. Linkages are the basic building blocks of all mechanisms.
We will show in later chapters that all common forms of mechanisms (cams, gears, belts,
and chains) are in fact variations on a common theme of linkages. Linkages are made up
of links and joints.

A link, as shown in Figure 2-2, is an (assumed) rigid body that possesses at least two
nodes that are points for attachment to other links.

Binary link - one with two nodes.
Ternary link - one with three nodes.
Quaternary link - one with four nodes.

Nodes

Binary link Ternary link Quaternary link

FIGURE 2-2

Links of different order
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A joint is a connection between two or more links (at their nodes), which allows some
motion, or potential motion, between the connected links. Joints (also called kinematic
pairs) can be classified in several ways:

1 By the type of contact between the elements, line, point, or surface.
By the number of degrees of freedom allowed at the joint.

By the type of physical closure of the joint: either force or form closed.

B~ W

By the number of links joined (order of the joint).

Reuleaux!!! coined the term lower pair to describe joints with surface contact (as
with a pin surrounded by a hole) and the term higher pair to describe joints with point
or line contact. However, if there is any clearance between pin and hole (as there must
be for motion), so-called surface contact in the pin joint actually becomes line contact,
as the pin contacts only one “side” of the hole. Likewise, at a microscopic level, a block
sliding on a flat surface actually has contact only at discrete points, which are the tops of
the surfaces’ asperities. The main practical advantage of lower pairs over higher pairs is
their better ability to trap lubricant between their enveloping surfaces. This is especially
true for the rotating pin joint. The lubricant is more easily squeezed out of a higher pair,
nonenveloping joint. As a result, the pin joint is preferred for low wear and long life, even
over its lower pair cousin, the prismatic or slider joint.

Figure 2-3a shows the six possible lower pairs, their degrees of freedom, and their
one-letter symbols. The revolute (R) and the prismatic (P) pairs are the only lower pairs
usable in a planar mechanism. The screw (H), cylindric (C), spherical (S), and flat (F)
lower pairs are all combinations of the revolute and/or prismatic pairs and are used in
spatial (3-D) mechanisms. The R and P pairs are the basic building blocks of all other
pairs that are combinations of those two as shown in Table 2-1.

A more useful means to classify joints (pairs) is by the number of degrees of freedom
that they allow between the two elements joined. Figure 2-3 also shows examples of both
one- and two-freedom joints commonly found in planar mechanisms. Figure 2-3b shows
two forms of a planar, one-freedom joint (or pair), namely, a rotating (revolute) pin joint
(R) and a translating (prismatic) slider joint (P). These are also referred to as full joints
(i.e., full = 1 DOF) and are lower pairs. The pin joint allows one rotational DOF, and
the slider joint allows one translational DOF between the joined links. These are both
contained within (and each is a limiting case of) another common, one-freedom joint, the
screw and nut (Figure 2-3a). Motion of either the nut or the screw with respect to the
other results in helical motion. If the helix angle is made zero, the nut rotates without
advancing and it becomes the pin joint. If the helix angle is made 90 degrees, the nut will
translate along the axis of the screw, and it becomes the slider joint.

Figure 2-3c shows examples of two-freedom joints (higher pairs) that simultaneously
allow two independent, relative motions, namely translation and rotation, between the
joined links. Paradoxically, this two-freedom joint is sometimes referred to as a “half
joint,” with its two freedoms placed in the denominator. The half joint is also called a
roll-slide joint because it allows both rolling and sliding. A spherical, or ball-and-socket
joint, (Figure 2-3a) is an example of a three-freedom joint, which allows three independent
angular motions between the two links joined. This joystick or ball joint is typically used
in a three-dimensional mechanism, one example being the ball joints in an automotive
suspension system.
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TABLE 2-1
The Six Lower Pairs

Name .
(Symbol) DOF Contains
Revolute
®R) 1 R
Prismatic
®) 1 P
Helical
H) 1 RP
Cylindric
© 1 RP
Spherical
©) 3 RRR
Planar



| |

Revolute (R) joint—1 DOF
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AB

Cylindric (C) joint—2 DOF

oL,
N

Spherical (S) joint—3 DOF

“Thy b

Planar (F) joint—3 DOF

(a) The six lower pairs

- Ax —»

= —]

Translating full slider (P) joint (form closed)

Rotating full pin (R) joint (form closed)

(b) Full joints—1 DOF (lower pairs)

Link against plane (force closed) Pin in slot (form closed)

(c) Roll-slide (half or RP) joints—2 DOF (higher pairs)

First-order pin joint—1 DOF
(two links joined)

Second-order pin joint—2 DOF
(three links joined)

(d) The order of a joint is one less than the number of links joined

=N
a4

May roll, slide, or roll-slide, depending on friction

FIGURE 2-3

Joints (pairs) of various types

(e) Planar pure-roll (R), pure-slide (P), or roll-slide (RP) joint —1- or 2 DOF (higher pair)

Copyright © 2018 Robert L. Norton: All Rights Reserved
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A joint with more than one freedom may also be a higher pair as shown in Fig-
ure 2-3c. Full joints (lower pairs) and half joints (higher pairs) are both used in planar
(2-D), and in spatial (3-D) mechanisms. Note that if you do not allow the two links in
Figure 2-3c connected by a roll-slide joint to slide, perhaps by providing a high friction
coefficient between them, you can “lock out” the translating (Ax) freedom and make it
behave as a full joint. This is then called a pure rolling joint and has rotational freedom
(AB) only. A common example of this type of joint is your automobile tire rolling against
the road, as shown in Figure 2-3e. In normal use there is pure rolling and no sliding at
this joint, unless, of course, you encounter an icy road or become too enthusiastic about
accelerating or cornering. If you lock your brakes on ice, this joint converts to a pure
sliding one like the slider block in Figure 2-3b. Friction determines the actual number of
freedoms at this kind of joint. It can be pure roll, pure slide, or roll-slide.

To visualize the degree of freedom of a joint in a mechanism, it is helpful to “men-
tally disconnect” the two links that create the joint from the rest of the mechanism. You
can then more easily see how many freedoms the two joined links have with respect to
one another.

Figure 2-3c also shows examples of both form-closed and force-closed joints. A
form-closed joint is kept together or closed by its geometry. A pin in a hole or a slider
in a two-sided slot is form closed. In contrast, a force-closed joint, such as a pin in a
half-bearing or a slider on a surface, requires some external force to keep it together or
closed. This force could be supplied by gravity, a spring, or any external means. There
can be substantial differences in the behavior of a mechanism due to the choice of force
or form closure, as we shall see. The choice should be carefully considered. In linkages,
form closure is usually preferred, and it is easy to accomplish. But for cam-follower sys-
tems, force closure is often preferred. This topic will be explored further in later chapters.

Figure 2-3d shows examples of joints of various orders, where joint order is de-
fined as the number of links joined minus one. It takes two links to make a single joint;
thus the simplest joint combination of two links has joint order one. As additional links
are placed on the same joint, the joint order is increased on a one-for-one basis. Joint
order has significance in the proper determination of overall degree of freedom for the
assembly. We gave definitions for a mechanism and a machine in Chapter 1. With the
kinematic elements of links and joints now defined, we can define those devices more
carefully based on Reuleaux’s classifications of the kinematic chain, mechanism, and
machine.!!!

A kinematic chain is defined as:

An assemblage of links and joints interconnected in a way to provide a controlled output
motion in response to a supplied input motion.

A mechanism is defined as:

A kinematic chain in which at least one link has been “grounded,” or attached, to the
frame of reference (which itself may be in motion).

A machine is defined as:

A combination of resistant bodies arranged to compel the mechanical forces of nature to
do work accompanied by determinate motions.
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* Reuleaux created a set of
220 models of mechanisms

in the 19th century to dem-
pAOnstrate machine motions.
Cornell University acquired

the collection in 1892 and
has now put images and
descriptions of them on the
web at:_

cornell.edu

The same site also has
depictions of three other
collections of machines and
gear trains.

Binary link Ternary link Quartenary link Grounded
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By Reuleaux’s™ definition[!] a machine is a collection of mechanisms arranged to
transmit forces and do work. He viewed all energy- or force-transmitting devices as ma-
chines that utilize mechanisms as their building blocks to provide the necessary motion
constraints.

We will now define a crank as a link that makes a complete revolution and is pivoted
to ground, a rocker as a link that has oscillatory (back and forth) rotation and is pivoted
to ground, and a coupler (or connecting rod) as a link that has complex motion and is
not pivoted to ground. Ground is defined as any link or links that are fixed (nonmoving)
with respect to the reference frame. Note that the reference frame may in fact itself be
in motion.

24 DRAWING KINEMATIC DIAGRAMS

Analyzing the kinematics of mechanisms requires that we draw clear, simple, schematic
kinematic diagrams of the links and joints of which they are made. Sometimes it can be
difficult to identify the kinematic links and joints in a complicated mechanism. Beginning
students of this topic often have this difficulty. This section defines one approach to the
creation of simplified kinematic diagrams.

Real links can be of any shape, but a “kinematic” link, or link edge, is defined as a
line between joints that allow relative motion between adjacent links. Joints can allow
rotation, translation, or both between the links joined. The possible joint motions must be
clear and obvious from the kinematic diagram. Figure 2-4 shows recommended schematic
notations for binary, ternary, and higher-order links, and for movable and grounded joints
of rotational and translational freedoms plus an example of their combination. Many
other notations are possible, but whatever notation is used, it is critical that your diagram
indicate which links or joints are grounded and which can move. Otherwise nobody will
be able to interpret your design’s kinematics. Shading or crosshatching should be used
to indicate that a link is solid.

Figure 2-5a shows a photograph of a simple mechanism used for weight training
called a leg press machine. It has six pin-jointed links labeled L; through Lg and seven
pin joints. The moving pivots are labeled A through D; O;, O4 and Og denote the grounded
pivots of their respective link numbers. Even though its links are in parallel planes sepa-

half joint

=

Moving Grounded Moving Grounded
rotating rotatirg translating translating
joint joint joint joint Moving
half joint
FIGURE 2-4 Copyright © 2018 Robert L. Norton: All Rights Reserved

Schematic notation for kinematic diagrams
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actual contour
of link 6

05

actual contour of link 2 Ll ' ‘
(a) Weight-training mechanism (b) Kinematic diagram
FIGURE 2-5 Copyright © 2018 Robert L. Norton: All Rights Reserved

A mechanism and its kinematic diagram Photo by the author

rated by some distance in the z-direction, it can still be analyzed kinematically as if all
links were in a common plane.

To use the leg press machine, the user loads some weights on link 6 at top right, sits
in the seat at lower right, places both feet against the flat surface of link 3 (a coupler) and
pushes with the legs to lift the weights through the linkage. The linkage geometry is de-
signed to give a variable mechanical advantage that matches the human ability to provide
force over the range of leg motion. Figure 2-5b shows a kinematic diagram of its basic
mechanism. Note that here all the links have been brought to a common plane. Link 1 is
the ground. Links 2, 4, and 6 are rockers. Links 3 and 5 are couplers. The input force F
is applied to link 3. The “output” resistance weight W acts on link 6. Note the difference
between the actual and kinematic contours of links 2 and 6.

The next section discusses techniques for determining the mobility of a mechanism.
That exercise depends on an accurate count of the number of links and joints in the mecha-
nism. Without a proper, clear, and complete kinematic diagram of the mechanism, it will
be impossible to get the count, and thus the mobility, correct.

25 DETERMINING DEGREE OF FREEDOM OR MOBILITY

The concept of degree of freedom (DOF) is fundamental to both the synthesis and analy-
sis of mechanisms. We need to be able to quickly determine the DOF of any collection
of links and joints that may be suggested as a solution to a problem. Degree of freedom
(also called the mobility M) of a system can be defined as:

Degree of Freedom

the number of inputs that need to be provided in order to create a predictable output;

also:

the number of independent coordinates required to define its position.
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* http://www.designofma-
chinery.com/DOM/Grubler.
mp4

At the outset of the design process, some general definition of the desired output
motion is usually available. The number of inputs needed to obtain that output may
or may not be specified. Cost is the principal constraint here. Each required input will
need some type of actuator, either a human operator or a “slave” in the form of a mo-
tor, solenoid, air cylinder, or other energy conversion device. (These devices are dis-
cussed in Section 2.19.) These multiple-input devices will have to have their actions
coordinated by a “controller,” which must have some intelligence. This control is now of-
ten provided by a computer but can also be mechanically programmed into the mechanism
design. There is no requirement that a mechanism have only one DOF, although that is
often desirable for simplicity. Some machines have many DOF. For example, picture the
number of control levers or actuating cylinders on a bulldozer or crane. See Figure 1-1b.

Kinematic chains or mechanisms may be either open or closed. Figure 2-6 shows
both open and closed mechanisms. A closed mechanism will have no open attachment
points or nodes and may have one or more degrees of freedom. An open mechanism of
more than one link will always have more than one degree of freedom, thus requiring as
many actuators (motors) as it has DOF. A common example of an open mechanism is
an industrial robot. An open kinematic chain of two binary links and one joint is called a
dyad. The sets of links shown in Figure 2-3b and c are dyads.

Reuleaux limited his definitions to closed kinematic chains and to mechanisms hav-
ing only one DOF, which he called constrained.!'] The somewhat broader definitions
above are perhaps better suited to current-day applications. A multi-DOF mechanism,
such as a robot, will be constrained in its motions as long as the necessary number of
inputs is supplied to control all its DOF.

Degree of Freedom in Planar Mechanisms Watch a short video (14.29)*

To determine the overall DOF (or mobility) of any mechanism, we must account for the
number of links and joints, and for the interactions among them. The DOF of any assem-
bly of links can be predicted from an investigation of the Gruebler condition.[2! Any link
in a plane has 3 DOF. Therefore, a system of L unconnected links in the same plane will
have 3L DOF, as shown in Figure 2-7a where the two unconnected links have a total of

(a) Open mechanism chain (b) Closed mechanism chain

FIGURE 2-6

Mechanism chains
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Ay, Ay,

(@) Two unconnected links
DOF=6

(b) Connected by a full joint
DOF= 4

(c) Connected by a roll-slide (half) joint
DOF=5

(¢

AB,

FIGURE 2-7

Joints remove degrees of freedom

six DOF. When these links are connected by a full joint in Figure 2-7b, Ay; and Ay, are
combined as Ay, and Ax| and Ax, are combined as Ax. This removes two DOF, leaving
four DOF. In Figure 2-7c the half joint removes only one DOF from the system (because
a half joint has two DOF), leaving the system of two links connected by a half joint with
a total of five DOF. In addition, when any link is grounded or attached to the reference
frame, all three of its DOF will be removed. This reasoning leads to Gruebler’s equation:

M =3L-2J-3G (2.1a)

where: M = degree of freedom or mobility
L = number of links
J = number of joints
G = number of grounded links
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Note that in any real mechanism, even if more than one link of the kinematic chain
is grounded, the net effect will be to create one larger, higher-order ground link, as there
can be only one ground plane. Thus G is always one, and Gruebler’s equation becomes:

M=3(L-1)-2J (2.1b)

The value of J in equations 2.1a and 2.1b must reflect the value of all joints in the
mechanism. That is, half joints count as 1/2 because they only remove one DOF. 1t is
less confusing if we use Kutzbach’s modification of Gruebler’s equation in this form:

M=3(L-1)-2J,—J, (2.10)

where: M = degree of freedom or mobility

L = number of links

J1 = number of 1 DOF (full) joints

Jy = number of 2 DOF (half) joints

The value of J; and J, in these equations must still be carefully determined to ac-

count for all full, half, and multiple joints in any linkage. Multiple joints count as one
less than the number of links joined at that joint and add to the “full” (J1) category. The
DOF of any proposed mechanism can be quickly ascertained from this expression before
investing any time in more detailed design. It is interesting to note that this equation has
no information in it about link sizes or shapes, only their quantity. Figure 2-8a shows a
mechanism with one DOF and only full joints in it.

Figure 2-8b shows a structure with zero DOF that contains both half and multiple
joints. Note the schematic notation used to show the ground link. The ground link need
not be drawn in outline as long as all the grounded joints are identified. Note also the
joints labeled multiple and half in Figure 2-8a and b. As an exercise, compute the DOF
of these examples with Kutzbach’s equation.

Degree of Freedom (Mobility) in Spatial Mechanisms

The approach used to determine the mobility of a planar mechanism can be easily ex-
tended to three dimensions. Each unconnected link in three-space has 6 DOF, and any one
of the six lower pairs can be used to connect them, as can higher pairs with more freedom.
A one-freedom joint removes 5 DOF, a two-freedom joint removes 4 DOF, etc. Grounding
a link removes 6 DOF. This leads to the Kutzbach mobility equation for spatial linkages:

M =6(L—1)—5J; —4J, —3J5 —2J, —J; (22)

where the subscript refers to the number of freedoms of the joint. We will limit our study
to 2-D mechanisms in this text.

2.6 MECHANISMS AND STRUCTURES

The degree of freedom of an assembly of links completely predicts its character. There
are only three possibilities. If the DOF is positive, it will be a mechanism, and the links
will have relative motion. If the DOF is exactly zero, then it will be a Structure, and no
motion is possible. If the DOF is negative, then it is a preloaded structure, which means
that no motion is possible and some stresses may also be present at the time of assembly.
Figure 2-9 shows examples of these three cases. One link is grounded in each case.
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Ground
Note:
There are no
roll-slide
(half) joints
in this
linkage

Sliding full joint

Ground

L=8, J=10
DOF =1

'/‘ Multiple joint

N

Ground (link 1) Ground

(a) Linkage with full and multiple joints

Ground

Multiple joint

L=6, J=75
DOF =0

Half joint

Ground

Ground (link 1)

(b) Linkage with full, half, and multiple joints
FIGURE 2-8

Linkages containing joints of various types

a
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o ® G

(@) Mechanism—DOF=+1

FIGURE 2-9

(b) Structure—DOF= 0

(c) Preloaded structure—DO F=—1

Mechanisms, structures, and preloaded structures

* If the sum of the lengths
of any two links is less than
the length of the third link,
then their interconnection is
impossible.

+ The concept of exact
constraint also applies to
mechanisms with positive
DOF. ltis possible to pro-
vide redundant constraints
to a mechanism (e.g.,
making its theoretical
DOF =0 when 1 is
desired) yet still have it
move because of particular
geometry (see Section 2.8
Paradoxes). Non-exact
constraint should be avoided
in general as it can lead to
unexpected mechanical be-
havior. For an excellent and
thorough discussion of this
issue see Blanding, D. L.,
Exact Constraint: Machine
Design Using Kinematic
Principles, ASME Press,
1999.

** http://www.designofma-
chinery.com/DOM/Num-
ber_Synthesis.mp4

§ Not to be confused with
“joint order” as defined
earlier, which refers to the
number of DOF that a joint
possesses.

Figure 2-9a shows four links joined by four full joints which, from the Gruebler equa-
tion, gives one DOF. It will move, and only one input is needed to give predictable results.

Figure 2-9b shows three links joined by three full joints. It has zero DOF and is thus
a structure. Note that if the link lengths will allow connection,” all three pins can be
inserted into their respective pairs of link holes (nodes) without straining the structure,
as a position can always be found to allow assembly. This is called exact constraint.

Figure 2-9c¢ shows two links joined by two full joints. It has a DOF of minus one,
making it a preloaded structure. In order to insert the two pins without straining the
links, the center distances of the holes in both links must be exactly the same. Practi-
cally speaking, it is impossible to make two parts exactly the same. There will always
be some manufacturing error, even if very small. Thus you may have to force the second
pin into place, creating some stress in the links. The structure will then be preloaded.
You have probably met a similar situation in a course in applied mechanics in the form
of an indeterminate beam, one in which there were too many supports or constraints for
the equations available. An indeterminate beam also has negative DOF, while a simply
supported beam has zero DOF.

Both structures and preloaded structures are commonly encountered in engineering.
In fact the true structure of zero DOF is rare in civil engineering practice. Most build-
ings, bridges, and machine frames are preloaded structures, due to the use of welded and
riveted joints rather than pin joints. Even simple structures like the chair you are sitting
in are often preloaded. Since our concern here is with mechanisms, we will concentrate
on devices with positive DOF only.

2.7 NUMBER SYNTHESIS Watch a short video (3:47)**

The term number synthesis has been coined to mean the determination of the number
and order of links and joints necessary to produce motion of a particular DOF. Link
order in this context refers to the number of nodes per link," i.e., binary, ternary, qua-
ternary, etc. The value of number synthesis is to allow the exhaustive determination of
all possible combinations of links that will yield any chosen DOF. This then equips the
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designer with a definitive catalog of potential linkages to solve a variety of motion control

problems.

As an example we will now derive all the possible link combinations for one DOF,
including sets of up to eight links, and link orders up to and including hexagonal links. For
simplicity we will assume that the links will be connected with only single, full rotating
joints (i.e., a pin connecting two links). We can later introduce half joints, multiple joints,
and sliding joints through linkage transformation. First let’s look at some interesting at-
tributes of linkages as defined by the above assumption regarding full joints.

Hypothesis:

Proof:

If all joints are full joints, an odd number of DOF requires an even number of links
and vice versa.

Given: All even integers can be denoted by 2m or by 2n, and all odd integers can
be denoted by 2m — 1 or by 2n — 1, where n and m are any positive integers. The
number of joints must be a positive integer.

Let: L =number of links, J = number of joints, and M = DOF =2m (i.e., all even numbers)

Then: Rewriting Gruebler’s equation 2.1b to solve for J,

3 M
J_E(L—l)—7 (2.3a)

Try: Substituting M =2m, and L = 2n (i.e., both any even number):

]:3nfmf§ (2.3b)

This cannot result in J being a positive integer as required.

Try: M=2m—-1and L = 2n-1 (i.e., both any odd number):

]:3n—m—§ (2.3¢)

This also cannot result in J being a positive integer as required.

Try: M=2m-1,and L = 2n (i.e., odd-even):

J=3n-m-2 (2.3d)

This is a positive integer for m > 1 and n > 2.

Try: M=2mand L= 2n -1 (i.e., even-odd):

J=3n-m-3 (2.3e)
This is a positive integer for m > 1 and n > 2.

So, for our example of one-DOF mechanisms, we can only consider combinations of
2,4,6,8,...links. Letting the order of the links be represented by:

B = number of binary links
T = number of ternary links
Q = number of quaternaries
P = number of pentagonals
H = number of hexagonals

43
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*# Karunamoorthy [17]
defines some useful rules
for determining the number
of possible combinations for
any number of links with a
given degree of freedom.
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the total number of links in any mechanism will be:
L=B+T+Q+P+H+-- (2.42)

Since two link nodes are needed to make one joint:

J — hodes (2.4b)
2
and
nodes = order of link x no. of links of that order (2.4c)
then
]:(2B+3T+4Q;LSP+6H+~--) (2.4d)

Substitute equations 2.4a and 2.4d into Gruebler’s equation 2.1b.

) 2B+3T+4Q+5P+6H
2

M=3(B+T+Q+P+H-1)—

(2.4e)
M=B-Q-2P-3H-3

Note what is missing from this equation! The ternary links have dropped out. The
DOF is independent of the number of ternary links in the mechanism. But because each
ternary link has three nodes, it can only create or remove 3/2 joints. So we must add or
subtract ternary links in pairs to maintain an integer number of joints. The addition or
subtraction of ternary links in pairs will not affect the DOF of the mechanism.

In order to determine all possible combinations of links for a particular DOF, we must
combine equations 2.3a and 2.4d:"

§<L71)7M_ 2B+3T+4Q+5P+6H
2 2 2
(2.5)
3L-3-M=2B+3T+4Q+5P+6H
Now combine equation 2.5 with equation 2.4a to eliminate B:
L—3-M=T+2Q+3P+4H (2.6)

We will now solve equations 2.4a and 2.6 simultaneously (by progressive substitu-
tion) to determine all compatible combinations of links for DOF = 1, up to eight links.
The strategy will be to start with the smallest number of links, and the highest-order link
possible with that number, eliminating impossible combinations.

(Note: L must be even for odd DOF.)
CASE 1. L=2
L—4=T+2Q+3P+4H=-2 (2.72)

This requires a negative number of links, so L = 2 is impossible.
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CASE 2. L=4
L—4=T+2Q+3P+4H=0 so0: T=Q=P=H=0
L=B+0=4 B=4

The simplest one-DOF linkage is four binary links—the fourbar linkage.

CASE 3. L=6
L-4=T+2Q+3P+4H=2 so: P=H=0
T may only be 0, 1, or 2; O may only be O or 1
If O = 0 then T must be 2 and B must be 4:
B=4 T=2 Q=0 L=4+2+0=6

If Q = 1, then T must be 0 and B must be 5:
B=5 T=0 Q=1 L=54+0+1=6

(2.7b)

(2.7¢)

2.7d)

(2.7¢)

There are then two possibilities for L = 6. Note that one of them is in fact the simpler

fourbar with two ternaries added as was predicted above.
CASE 4. L=8

A tabular approach is needed with this many links:

L-4=T+2Q +3P +4H = 4
B +T+Q+P+H=38

H=1 H=0
B=7, T =0 T+2Q0+3P =4
Q=0, P =0 B+T+Q +P =8
P =0 P=1
\ /
T+2Q=4 T+2Q =1
B +T +Q =8 B+T +Q=7

!

T=1 Q=0, B=6

o2 | [amt] [0

T=0 T=2 T=
B =6 B =5 B =4

(2.7
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TABLE 2-2 1-DOF Planar Mechanisms with Revolute Joints and Up to 8 Links

Link Sets
Binary Ternary Quaternary Pentagonal Hexagonal
4 4 0 0] 0 0
6 4 2 0 0 0
6 5 0 1 0 0
8 7 0 0 0 1
8 4 4 0 0 0
8 5 2 1 0 0
8 6 0 2 0 0
8 6 1 0 1 0

* Tt is also called an Assur
chain.

1 Gogu, G. (2005),
“Mobility of Mechanisms:

A Critical Review.” Mecha-

nism and Machine Theory
(40) pp. 1068-1097.

From this analysis we can see that, for one DOF, there is only one possible four-link
configuration, two six-link configurations, and five possibilities for eight links using bi-
nary through hexagonal links. Table 2-2 shows the so-called “link sets™ for all the pos-
sible linkages for one DOF up to 8 links and hexagonal order.

2.8 PARADOXES

Because the Gruebler criterion pays no attention to link sizes or shapes, it can give mis-
leading results in the face of unique geometric configurations. For example, Figure 2-10a
shows a structure (DOF = 0) with the ternary links of arbitrary shape. This link arrange-
ment is sometimes called the “E-quintet,” because of its resemblance to a capital E and
the fact that it has five links, including the ground.” It is the next simplest structural
building block to the “delta triplet.”

Figure 2-10b shows the same E-quintet with the ternary links straight and parallel and
with equispaced nodes. The three binaries are also equal in length. With this very unique
geometry, you can see that it will move despite Gruebler’s prediction to the contrary.

Figure 2-10c shows a very common mechanism that also disobeys Gruebler’s crite-
rion. The joint between the two wheels can be postulated to allow no slip, provided that
sufficient friction is available. If no slip occurs, then this is a one-freedom, or full, joint
that allows only relative angular motion (A8) between the wheels. With that assumption,
there are 3 links and 3 full joints, from which Gruebler’s equation predicts zero DOF.
However, this linkage does move (actual DOF = 1), because the center distance, or length
of link 1, is exactly equal to the sum of the radii of the two wheels.

There are other examples of paradoxes that disobey the Gruebler criterion due to
their unique geometry. The designer needs to be alert to these possible inconsistencies.
Gogut has shown that none of the simple mobility equations so far discovered (Gruebler,
Kutzbach, etc.) are capable of resolving the many paradoxes that exist. A complete analy-
sis of the linkage motions (as described in Chapter 4) is necessary to guarantee mobility.
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2.9 ISOMERS Watch a short video (4:15)*

The word isomer is from the Greek and means having equal parts. Isomers in chemistry
are compounds that have the same number and type of atoms but which are intercon-
nected differently and thus have different physical properties. Figure 2-11a shows two
hydrocarbon isomers, n-butane and isobutane. Note that each has the same number of
carbon and hydrogen atoms (C4H(), but they are differently interconnected and have
different properties.

Linkage isomers are analogous to these chemical compounds in that the links (like
atoms) have various nodes (electrons) available to connect to other links’ nodes. The
assembled linkage is analogous to the chemical compound. Depending on the particular
connections of available links, the assembly will have different motion properties. The
number of isomers possible from a given collection of links (as in any row of Table 2-2)
is far from obvious. In fact, mathematical prediction of the number of isomers of all link
combinations has been a long-unsolved problem. Many researchers have spent much ef-
fort on this problem with some recent success. See references [3] through [7] for more in-

(a) The E-quintet with DOF=0
—agrees with Gruebler equation

0 O\ @
(b) The E-quintet with DOF =1
—disagrees with Gruebler equation
due to unique geometry ’ ‘ ’
& & &)
Full joint -
pure rollirg
no slip

(c) Rolling cylinders with DOF =1
—disagrees with Gruebler equation
which predicts DOF= 0

FIGURE 2-10
Gruebler paradoxes—linkages that do not behave as predicted by the Gruebler equation
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TABLE 2-3

Number of Valid Isomers

Valid
Isomers
4 1
6 2
8 16
10 230
12 6856
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formation. Dhararipragada et al.[%] presents a good historical summary of isomer research
to 1994. Table 2-3 shows the number of valid isomers found for one-DOF mechanisms
with revolute pairs, up to 12 links.

Figure 2-11b shows all the isomers for the simple cases of one DOF with 4 and 6
links. Note that there is only one isomer for the case of 4 links. An isomer is only unique
if the interconnections between its types of links are different. That is, all binary links
are considered equal, just as all hydrogen atoms are equal in the chemical analog. Link
lengths and shapes do not figure into the Gruebler criterion or the condition of isomer-
ism. The 6-link case of 4 binaries and 2 ternaries has only two valid isomers. These are
known as Watt’s chain and Stephenson’s chain after their discoverers. Note the different
interconnections of the ternaries to the binaries in these two examples. Watt’s chain has
the two ternaries directly connected, but Stephenson’s chain does not.

There is also a third potential isomer for this case of six links, shown in Figure
2-11c, but it fails the test of distribution of degree of freedom, which requires that the
overall DOF (here 1) be uniformly distributed throughout the linkage and not concentrat-
ed in a subchain. Note that this arrangement (Figure 2-11c) has a structural subchain of
DOF = 0 in the triangular formation of the two ternaries and the single binary connecting
them. This creates a truss, or delta triplet. The remaining three binaries in series form
a fourbar chain (DOF = 1) with the structural subchain of the two ternaries and the single
binary effectively reduced to a structure that acts like a single link. Thus this arrangement
has been reduced to the simpler case of the fourbar linkage despite its six bars. This is an
invalid isomer and is rejected. The highest-order link in a linkage cannot have more nodes
than n/2 where n is the total number of links. This makes the arrangements in lines 3, 4,
and 8 of Table 2-2 unable to create a valid linkage, though Grubler predicts it.

Franke’s “Condensed Notation for Structural Synthesis” method can be used to help
find the isomers of any collection of links that includes some links of higher order than
binary. Each higher-order link is shown as a circle with its number of nodes (its valence)
written in it as shown in Figure 2-11. These circles are connected with a number of lines
emanating from each circle equal to its valence. A number is placed on each line to
represent the quantity of binary links in that connection. This gives a “molecular” rep-
resentation of the linkage and allows exhaustive determination of all the possible binary
link interconnections among the higher links. Note the correspondence in Figure 2-11b
between the linkages and their respective Franke molecules. The only combinations of 3
integers (including zero) that add to 4 are: (1, 1, 2), (2, 0, 2), (0, 1, 3), and (0, 0, 4). The
first two are, respectively, Stephenson’s and Watt’s linkages; the third is the invalid isomer
of Figure 2-11c. The fourth combination is also invalid as it results in a 2-DOF chain of
5 binaries in series with the 5th “binary” comprised of the two ternaries locked together
at two nodes in a preloaded structure with a subchain DOF of —1. Figure 2-11d shows all
16 valid isomers of the eightbar 1-DOF linkage.

210 LINKAGE TRANSFORMATION

The number synthesis techniques described above give the designer a tool kit of basic
linkages of particular DOF. If we now relax the arbitrary constraint that restricted us to
only revolute joints, we can transform these basic linkages to a wider variety of mecha-
nisms with even greater usefulness. There are several transformation techniques or rules
that we can apply to planar kinematic chains.
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(@) Hydrocarbon isomers n-butane and isobutane

1 2
Franke's n
molecules e-e
2 2

The only fourbar isomer Stephenson’s sixbar isomer Watt’s sixbar isomer

(b) All valid isomers of the fourbar and sixbar linkages

1
one o Franke's
>

molecule

Fourbar subchain
concentrates the

Structural subchain .
1 DOF of the mechanism

reduces three links
to a zeroDOF
“delta triplet” truss

(c) Aninvalid sixbar isomer which reduces to the simpler fourbar

FIGURE 2-11 Part 1

Isomers of kinematic chains
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* If all revolute joints in a
fourbar linkage are replaced
by prismatic joints, the
result will be a two-DOF
assembly. Also, if three
revolute joints in a fourbar
loop are replaced with
prismatic joints, the one
remaining revolute joint
will not be able to turn,
effectively locking the

two pinned links together
as one. This effectively
reduces the assembly to

a threebar linkage which
should have zero DOF. But
a delta triplet with three
prismatic joints has one
DOF—another Gruebler
paradox.

* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.
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(d) All the valid eightbar 1-DOF isomers

FIGURE 2-11 Part 2

Isomers of kinematic chains (Source: Klein, A.W., 1917. Kinematics of Machinery, McGraw-Hill, NY)

1 Revolute joints in any loop can be replaced by prismatic joints with no change in DOF
of the mechanism, provided that at least two revolute joints remain in the loop.”

Any full joint can be replaced by a half joint, but this will increase the DOF by one.
Removal of a link will reduce the DOF by one.

The combination of rules 2 and 3 above will keep the original DOF unchanged.

[ VS N S

Any ternary or higher-order link can be partially “shrunk” to a lower-order link by
coalescing nodes. This will create a multiple joint but will not change the DOF of the
mechanism.

6 Complete shrinkage of a higher-order link is equivalent to its removal. A multiple
joint will be created, and the DOF will be reduced.

Figure 2-12a’ shows a fourbar crank-rocker linkage transformed into the fourbar
slider-crank by the application of rule #1. It is still a fourbar linkage. Link 4 has become
a sliding block. Gruebler’s equation is unchanged at one DOF because the slider block
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Grashof crank-rocker Grashof crank-slider

Slider block
e

Effective link 4 / Effective rocker

¢ pivot is at infinity

oo

(@) Transforming a fourbar crank-rocker to a crank-slider

Crank 2 Effective link 3
Slider 4
. f
—

Crank 2

Effective link 3

Slider 4

[ 1

(b) Transforming the crank-slider to the Scotch yoke

Roll-slide Effective link 3

(half) joint \ Effective link 2
Follower

Cam +

Effective link 4

2 @3\ \
o

(c) The cam-follower mechanism has an effective fourbar equivalent

FIGURE 2-12

Linkage transformation
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provides a full joint against link 1, as did the pin joint it replaces. Note that this trans-
formation from a rocking output link to a slider output link is equivalent to increasing
the length (radius) of rocker link 4 until its arc motion at the joint between links 3 and 4
becomes a straight line. Thus the slider block is equivalent to an infinitely long rocker
link 4, which is pivoted at infinity along a line perpendicular to the slider axis as shown
in Figure 2-12a.

Figure 2-12b shows a fourbar slider-crank transformed via rule #4 by the substitution
of a half joint for the coupler. The first version shown retains the same motion of the slider
as the original linkage by use of a curved slot in link 4. The effective coupler is always
perpendicular to the tangent of the slot and falls on the line of the original coupler. The
second version shown has the slot made straight and perpendicular to the slider axis. The
effective coupler now is “pivoted” at infinity. This is called a Scotch yoke and gives exact
simple harmonic motion of the slider in response to a constant speed input to the crank.

Figure 2-12c shows a fourbar linkage transformed into a cam-follower linkage by the
application of rule #4. Link 3 has been removed and a half joint substituted for a full joint
between links 2 and 4. This still has one DOF, and the cam-follower is in fact a fourbar
linkage in another disguise, in which the coupler (link 3) has become an effective link of
variable length. We will investigate the fourbar linkage and these variants of it in greater
detail in later chapters.

Figure 2-13a shows Stephenson’s sixbar chain from Figure 2-11b transformed by
partial shrinkage of a ternary link (rule #5) to create a multiple joint. It is still a one-DOF
Stephenson sixbar. Figure 2-13b shows Watt’s sixbar chain from Figure 2-11b with one
ternary link completely shrunk to create a multiple joint. This is now a structure with
DOF = 0. The two triangular subchains are obvious. Just as the fourbar chain is the basic
building block of one-DOF mechanisms, this threebar triangle delta triplet is the basic
building block of zero-DOF structures (trusses).

Shrunk link Shrunk link

~

DOF =1 \ Tl e
® 3 N 5
DOF =1
2 4
DOF =1 DOF =0
(a) Partial shrinkage of a higher link (b) Complete shrinkage of a higher link
retains original DOF reduces DOF by one
FIGURE 2-13

Link shrinkage
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211 INTERMITTENT MOTION

Intermittent motion is a sequence of motions and dwells. A dwell is a period in which
the output link remains stationary while the input link continues to move. There are many
applications in machinery that require intermittent motion. The cam-follower variation
on the fourbar linkage as shown in Figure 2-12c is often used in these situations. The
design of that device for both intermittent and continuous output will be addressed in
detail in Chapter 8. Other pure linkage dwell mechanisms are discussed in Chapter 3.

GENEVA MECHANISM A common form of intermittent motion device is the Ge-
neva mechanism shown in Figure 2-14a.” This is also a transformed fourbar linkage in
which the coupler has been replaced by a half joint. The input crank (link 2) is typically
motor driven at a constant speed. The Geneva wheel is fitted with at least three equi-
spaced, radial slots. The crank has a pin that enters a radial slot and causes the Geneva
wheel to turn through a portion of a revolution. When the pin leaves that slot, the Geneva
wheel remains stationary until the pin enters the next slot. The result is intermittent rota-
tion of the Geneva wheel.

The crank is also fitted with an arc segment, which engages a matching cutout on the
periphery of the Geneva wheel when the pin is out of the slot. This keeps the Geneva
wheel stationary and in the proper location for the next entry of the pin. The number of
slots determines the number of “stops” of the mechanism, where sfop is synonymous with
dwell. A Geneva wheel needs a minimum of three stops to work. The maximum number
of stops is limited only by the size of the wheel.

RATCHET AND PAWL  Figure 2-14b™ shows a ratchet and pawl mechanism. The
arm pivots about the center of the toothed ratchet wheel and is moved back and forth to
index the wheel. The driving pawl rotates the ratchet wheel (or ratchet) in the counter-
clockwise direction and does no work on the return (clockwise) trip. The locking pawl
prevents the ratchet from reversing direction while the driving pawl returns. Both pawls
are usually spring-loaded against the ratchet. This mechanism is widely used in devices
such as “ratchet” wrenches, winches, etc.

LINEAR GENEVA MECHANISM  There is also a variation of the Geneva mechanism
that has linear translational output, as shown in Figure 2-14c.” This mechanism is analo-
gous to an open Scotch yoke device with multiple yokes. It can be used as an intermittent
conveyor drive with the slots arranged along the conveyor chain or belt. It also can be used
with a reversing motor to get linear, reversing oscillation of a single slotted output slider.

212 INVERSION Watch the lecture video (3:44)"

It should now be apparent that there are many possible linkages for any situation. Even
with the limitations imposed in the number synthesis example (one DOF, eight links, up
to hexagonal order), there are eight linkage combinations shown in Table 2-2, and these
together yield 19 valid isomers as shown in Table 2-3. In addition, we can introduce
another factor, namely mechanism inversion. An inversion is created by grounding a
different link in the kinematic chain. Thus there are as many inversions of a given link-
age as it has links.
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* These figures are pro-
vided as animated AVI and
Working Model files. The
filename is the same as the
figure number.

 http://www.designofma-
chinery.com/DOM/Inver-
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Geneva wheel

Driving pawl

Locking pawl

Spring

Woyr

\— Ratchet wheel

View as a video View as a video
http://www.designofmachinery.com/DOM/geneva.avi http://www.designofmachinery.com/DOM/ratchet.avi
(a) Four-stop Geneva mechanism (b) Ratchet and pawl mechanism

Slider\ Vout
N N R N N N

http://www.designofmachinery.com/DOM/linear_geneva.avi

(c) Linear intermittent motion "Geneva" mechanism

See also Figures P3-7 and P4-6 for other examples of linear intermittent motion mechanisms

FIGURE 2-14

Rotary and linear intermittent motion mechanisms
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View as a video

http://www.designofmachinery.com/DOM/slider_inversion.avi

(@) Inversion #1 (b) Inversion #2 (c) Inversion #3

slider block slider block has slider block
translates complex motion rotates
FIGURE 2-15
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(d) Inversion #4

slider block
is stationary

Four distinct inversions of the fourbar slider-crank mechanism (each black link is stationary—all red links move)

The motions resulting from each inversion can be quite different, but some inversions
of a linkage may yield motions similar to other inversions of the same linkage. In these
cases only some of the inversions may have distinctly different motions. We will denote
the inversions that have distinctly different motions as distinct inversions.

Figure 2-15" shows the four inversions of the fourbar slider-crank linkage, all of
which have distinct motions. Inversion #1, with link 1 as ground and its slider block in
pure translation, is the most commonly seen and is used for piston engines and piston
pumps. Inversion #2 is obtained by grounding link 2 and gives the Whitworth or
crank-shaper quick-return mechanism, in which the slider block has complex motion.
(Quick-return mechanisms will be investigated further in the Chapter 3.) Inversion #3
is obtained by grounding link 3 and gives the slider block pure rotation. Inversion #4 is
obtained by grounding the slider link 4 and is used in hand-operated, well pump mecha-
nisms, in which the handle is link 2 (extended) and link 1 passes down the well pipe to
mount a piston on its bottom. (It is upside down in the figure.)

Watt’s sixbar chain has two distinct inversions, and Stephenson’s sixbar has three
distinct inversions, as shown in Figure 2-16.T The pin-jointed fourbar has four distinct
inversions: the crank-rocker, double-crank, double-rocker, and triple-rocker which are
shown in Figures 2-17 and 2-18.

213 THE GRASHOF CONDITION Watch a short video (7:21)8

The fourbar linkage has been shown above to be the simplest possible pin-jointed mecha-
nism for single-degree-of-freedom controlled motion. It also appears in various disguises
such as the slider-crank and the cam-follower. It is in fact the most common and ubig-
uitous device used in machinery. It is also extremely versatile in terms of the types of
motion that it can generate.

* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.

¥ The Watt I is the only
sixbar that has a floating
binary link separated from
ground by two links at each
node, so it is good for long-
reach applications and as a
parallel motion generator.
The Watt II is good for am-
plifying force or motion and
is often used for function
generation. The Stephenson
IIT is often used to improve
transmission angles by con-
necting a driven dyad to its
coupler. It is also stable due
to its three fixed pivots (as
is the Watt IT). The other
two Stephenson inversions
are not as often used.

§ http://www.designof-
machinery.com/DOM/
Grashof_Condition.mp4
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FIGURE 2-16
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View as

a video

http://www.

designofmachinery.

com/DOM/stephen-
sons_sixbar.avi

ASNNNNN

(b) Stephenson’s sixbar inversion Il (c) Stephenson’s sixbar inversion Il

View as a video
http://www.designof-
machinery.com/DOM/

watts_sixbar.avi

(e) Watt’s sixbar inversion Il

(d) Watt’s sixbar inversion |

All distinct inversions of the sixbar linkage

* According to Hunt!18]
(p. 84), Waldron proved
that in a Grashof fourbar
linkage, no two of the links
other than the crank can
rotate more than 180° with
respect to one another, but
in a non-Grashof linkage
(which has no crank) links
can have more than 180° of
relative rotation.

 The fourbar slider is a spe-
cial case. Because two of its
links are effectively infinite
in length (the effective slider
and the effective ground
link are parallel and “meet”
at infinity), the Grashof
condition for a fourbar slider
is always true, provided that
the link lengths are such that
they can physically connect.
If so, S+ oo is always <=
P + c0.

Simplicity is one mark of good design. The fewest parts that can do the job will
usually give the least expensive and most reliable solution. Thus the fourbar linkage
should be among the first solutions to motion control problems to be investigated. The
Grashof condition!3! is a very simple relationship that predicts the rotation behavior or
rotatability of a fourbar linkage’s inversions based only on the link lengths.

Let: S = length of shortest link
L = length of longest link
P = length of one remaining link
Q = length of other remaining link

S+L<P+Q (2.8)

Then if:

the linkage is Grashof and at least one link will be capable of making a full revolution
with respect to the ground plane. This is called a Class I kinematic chain. If the inequal-
ity is not true, then the linkage is non-Grashof and ro link will be capable of a complete
revolution relative to any other link.” This is a Class II kinematic chain.

Note that the above statements apply regardless of the order of assembly of the links.
That is, the determination of the Grashof condition can be made on a set of unassembled
links. Whether they are later assembled into a kinematic chainin §, L, P, Qor S, P, L, Q,
or any other order, will not change the Grashof condition.
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The motions possible from a fourbar linkage will depend on both the Grashof condi-
tion and the inversion chosen. The inversions will be defined with respect to the shortest
link. The motions are:

For the Class I case, S+ L < P+ Q:

Ground either link adjacent to the shortest and you get a crank-rocker, in which the
shortest link will fully rotate and the other link pivoted to ground will oscillate.

Ground the shortest link and you will get a double-crank, in which both links pivoted
to ground make complete revolutions as does the coupler.

Ground the link opposite the shortest and you will get a Grashof double-rocker, in
which both links pivoted to ground oscillate and only the coupler makes a full revolution.

For the Class Il case, S + L > P + Q:
All inversions will be triple-rockers!®! in which no link can fully rotate.
For the ClassIII case, S + L = P + Q:

Referred to as special-case Grashof and also as a Class ITI kinematic chain, all inver-
sions will be either double-cranks or crank-rockers but will have “‘change points” twice
per revolution of the input crank when the links all become colinear. At these change
points the output behavior will become indeterminate. Hunt[!8] calls these “uncertainty
configurations.” At these colinear positions, the linkage behavior is unpredictable as it
may assume either of two configurations. Its motion must be limited to avoid reaching the
change points or an additional, out-of-phase link must be provided to guarantee a “carry
through” of the change points. (See Figure 2-19c.)

Figure 2-17" shows the four possible inversions of the Grashof case: two crank-rock-
ers, a double-crank (also called a drag link), and a double-rocker with rotating coupler.
The two crank-rockers give similar motions and so are not distinct from one another. Fig-
ure 2-18" shows four nondistinct inversions, all triple-rockers, of a non-Grashof linkage.

Figure 2-19a and b shows the parallelogram and antiparallelogram configurations
of the special-case Grashof linkage. The parallelogram linkage is quite useful as it exact-
ly duplicates the rotary motion of the driver crank at the driven crank. One common use
is to couple the two windshield wiper output rockers across the width of the windshield
on an automobile. The coupler of the parallelogram linkage is in curvilinear translation,
remaining at the same angle while all points on it describe identical circular paths. It is
often used for this parallel motion, as in truck tailgate lifts and industrial robots.

The antiparallelogram linkage (also called “butterfly”” or “bow-tie”) is also a double-
crank, but the output crank has an angular velocity different from the input crank. Note
that the change points allow the linkage to switch unpredictably between the parallelo-
gram and antiparallelogram forms every 180 degrees unless some additional links are pro-
vided to carry it through those positions. This can be achieved by adding an out-of-phase
companion linkage coupled to the same crank, as shown in Figure 2-19c. A common
application of this double parallelogram linkage was on steam locomotives, used to con-
nect the drive wheels together. The change points were handled by providing the duplicate
linkage, 90 degrees out of phase, on the other side of the locomotive’s axle shaft. When
one side was at a change point, the other side would drive it through.
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* These figures are pro-
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(c) Double-rocker inversion (GRCR) (b) Double-crank inversion (GCCC)
(coupler rotates) (drag link mechanism)
FIGURE 2-17

All inversions of the Grashof fourbar linkage

(b) Triple-rocker #2 (RRR2)

o View as a video
N http://www.designofmachinery. /
N com/DOM/inversions_non- !
grashof.avi
/‘ ‘\
1 \
! \
/ \
/
(c) Triple-rocker #3 (RRR3) / (d) Triple-rocker #4 (RRR4)

/
’

FIGURE 2-18
All inversions of the non-Grashof fourbar linkage are triple rockers
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(c) Double-parallelogram linkage gives parallel
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motion (pure curvilinear translation) to coupler (d) Deltoid or kite form

and also carries through the change points

FIGURE 2-19

Some forms of the special-case Grashof linkage

The double-parallelogram arrangement shown in Figure 2-19c is quite useful as it
gives a translating coupler that remains horizontal in all positions. The two parallelogram
stages of the linkage are out of phase so each carries the other through its change points.
Figure 2-19d shows the deltoid or kite configuration that is a double-crank in which the
shorter crank makes two revolutions for each one made by the long crank. This is also
called an isoceles linkage or a Galloway mechanism after its discoverer.

There is nothing either bad or good about the Grashof condition. Linkages of all
three persuasions are equally useful in their place. If, for example, your need is for a
motor-driven windshield wiper linkage, you may want a non-special-case Grashof crank-
rocker linkage in order to have a rotating link for the motor’s input, plus a special-case
parallelogram stage to couple the two sides together as described above. If your need is
to control the wheel motions of a car over bumps, you may want a non-Grashof triple-
rocker linkage for short stroke oscillatory motion. If you want to exactly duplicate some
input motion at a remote location, you may want a special-case Grashof parallelogram
linkage, as used in a drafting machine. In any case, this simply determined condition tells
volumes about the behavior to be expected from a proposed fourbar linkage design prior
to any construction of models or prototypes.”

* See the video “The
Grashof Condition” for a
more detailed and complete
exposition of this topic.
http://www.designofma-
chinery.com/DOM/The_
Grashof_Condition.mp4
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Classification of the Fourbar Linkage

Barker!!0] has developed a classification scheme that allows prediction of the type of mo-
tion that can be expected from a fourbar linkage based on the values of its link ratios. A
linkage’s angular motion characteristics are independent of the absolute values of its link
lengths. This allows the link lengths to be normalized by dividing three of them by the
fourth to create three dimensionless ratios that define its geometry.

Let the link lengths be designated ry, 5, r3, and r4 (all positive and nonzero), with
the subscript 1 indicating the ground link, 2 the driving link, 3 the coupler, and 4 the
remaining (output) link. The link ratios are then formed by dividing each link length by
rpgiving: Ay =ri/ro, A3=r3/lrp, Ag=r4/ 1.

Each link will also be given a letter designation based on its type of motion when
connected to the other links. If a link can make a full revolution with respect to the other
links, it is called a crank (C), and if not, a rocker (R). The motion of the assembled link-
age based on its Grashof condition and inversion can then be given a letter code such
as GCRR for a Grashof crank-rocker or GCCC for a Grashof double-crank (drag link)
mechanism. The motion designators C and R are always listed in the order of input link,
coupler, output link. The prefix G indicates a Grashof linkage, S a special-case Grashof
(change point), and no prefix a non-Grashof linkage.

Table 2-4 shows Barker’s 14 types of fourbar linkage based on this naming scheme.
The first four rows are the Grashof inversions, the next four are the non-Grashof triple-
rockers, and the last six are the special-case Grashof linkages. He gives unique names to
each type based on a combination of their Grashof condition and inversion. The tradi-
tional names for the same inversions are also shown for comparison and are less specific
than Barker’s nomenclature. Note his differentiation between the Grashof crank-rocker
(subclass -2) and rocker-crank (subclass -4). To drive a GRRC linkage from the rocker
requires adding a flywheel to the crank as is done with the internal combustion engine’s
slider-crank mechanism (which is a GPRC linkage). See Figure 2-12a.

Barker also defines a solution space whose axes are the link ratios A, A3, A4 as shown
in Figure 2-20. These ratios’ values theoretically extend to infinity, but for any practical
linkages the ratios can be limited to a reasonable value.

In order for the four links to be assembled, the longest link must be shorter than the
sum of the other three links,
L<(S+P+Q) (2.9)

If L=S+ P+ Q, then the links can be assembled but will not move, so this condition
provides a criterion to separate regions of no mobility from regions that allow mobility
within the solution space. Applying this criterion in terms of the three link ratios defines
four planes of zero mobility that provide limits to the solution space.

1=A +A3+Ay
Ay =A+1+2y
Ag=A +1+24 (2.10)
M=1+A3+2y

Applying the S + L = P + Q Grashof condition (in terms of the link ratios) defines
three additional planes on which the change-
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1- GCRR
2-GCcCC
3-GRCR
4 - GRRC
5-RRR1
6 - RRR2
7 - RRR3
8 - RRR4

FIGURE 2-20

Barker's solution space for the fourbar linkage Adapted from reference [10]

TABLE 2-4 Barker’s Complete Classification of Planar Fourbar Mechanisms

Adapted from ref. [10]. s=shortest link, /=longest link, Gxxx = Grashof, RRRx = non-Grashof, Sxx = Special case
Type sp+ +l ‘\’/s. Inversion Class Barker’s Designation Code Also Known As
1 < L, = s=ground I-1 Grashof crank-crank-crank GCCC Double-crank
2 < L, = s=input 1-2 Grashof crank-rocker-rocker GCRR Crank-rocker
3 < Lz = s=coupler I-3 Grashof rocker-crank-rocker GRCR Double-rocker
4 < L, = s=output I-4 Grashof rocker-rocker-crank GRRC Rocker-crank
5 > = |=ground II-1 Class 1 rocker-rocker-rocker RRR1 Triple-rocker
6 > L, = I=input 11-2 Class 2 rocker-rocker-rocker RRR2 Triple-rocker
7 > Lz = I= coupler II-3 Class 3 rocker-rocker-rocker RRR3 Triple-rocker
8 > L, = I=output 11-4 Class 4 rocker-rocker-rocker RRR4 Triple-rocker
9 = = s=ground I11-1 Change-point crank-crank-crank SCCC SC™ double-crank
10 = L, = s=input I11-2 Change-point crank-rocker-rocker SCRR SC crank-rocker
1 = Lz = s=coupler I11-3 Change-point rocker-crank-rocker SRCR SC double-rocker
12 = L, = s=output 111-4 Change-point rocker-rocker-crank SRRC SC rocker-crank
13 = Two equal pairs I11-5 Double change point S2X zfzfe”fé?gram
14 = L=L=1L=1L 111-6 Triple change point S3X Square

* SC = special case
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* This figure is provided as
animated AVI and Working
Model files. Its filename
is the same as the figure
number.
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1+}\.1 =>\.3 +}\.4
1+A3 =21+ 2y (2.11)
1+7L4 :A‘l +7L3

The positive octant of this space, bounded by the Aj—A3, A;—A4, A3—A4 planes and the
four zero-mobility planes (equation 2.10), contains eight volumes that are separated by
the change-point planes (equation 2.11). Each volume contains mechanisms unique to
one of the first eight classifications in Table 2-4 . These eight volumes are in contact with
one another in the solution space, but to show their shapes, they have been “exploded”
apart in Figure 2-20. The remaining six change-point mechanisms of Table 2-4 exist only
in the change-point planes that are the interfaces between the eight volumes. For more
details on this solution space and Barker’s classification system than space permits here,
see reference [10].

214 LINKAGES OF MORE THAN FOUR BARS

Geared Fivebar Linkages Watch a short video (1:24)%

We have seen that the simplest one-DOF linkage is the fourbar mechanism. It is an ex-
tremely versatile and useful device. Many quite complex motion control problems can
be solved with just four links and four pins. Thus in the interest of simplicity, designers
should always first try to solve their problems with a fourbar linkage. However, there will
be cases when a more complicated solution is necessary. Adding one link and one joint
to form a fivebar (Figure 2-21a) will increase the DOF by one, to two. By adding a pair
of gears to tie two links together with a new half joint, the DOF is reduced again to one,
and the geared fivebar mechanism (GFBM) of Figure 2-21b* is created.

The geared fivebar mechanism provides more complex motions than the fourbar
mechanism at the expense of the added link and gearset as can be seen in Appendix E.

(a) Fivebar linkage—2 DOF (b) Geared fivebar linkage—1 DOF

FIGURE 2-21

Two forms of the fivebar linkage


http://www.designofmachinery.com/DOM/Fivebar.mp4
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The reader may also observe the dynamic behavior of the linkage shown in Figure 2-21b
by running the program LINKAGES provided with this text and opening the data file
F02-21b.5br. See Appendix A for instructions on running the program. Accept all the
default values, and animate the linkage.

Sixbar Linkages

We already met Watt’s and Stephenson’s sixbar mechanisms. See Figure 2-16. Watt’s
sixbar can be thought of as two fourbar linkages connected in series and sharing two links
in common. Stephenson’s sixbar can be thought of as two fourbar linkages connected in
parallel and sharing two links in common. Many linkages can be designed by the tech-
nique of combining multiple fourbar chains as basic building blocks into more complex
assemblages. Many real design problems will require solutions consisting of more than
four bars. Some Watt’s and Stephenson’s linkages are provided as built-in examples to
the program SIXBAR supplied with this text. You may run that program to observe these
linkages dynamically. Select any example from the menu, accept all default responses,
and animate the linkages.

Grashof-Type Rotatability Criteria for Higher-Order Linkages

Rotatability is defined as the ability of at least one link in a kinematic chain to make a
full revolution with respect to the other links and defines the chain as Class I, II, or III.
Revolvability refers to a specific link in a chain and indicates that it is one of the links
that can rotate.

ROTATABILITY OF GEARED FIVEBAR LINKAGES Ting[!!] has derived an expres-
sion for rotatability of the geared fivebar linkage that is similar to the fourbar’s Grashof
criterion. Let the link lengths be designated L through L5 in order of increasing length,

then if: Li+L,+Ls<Ly+ L, (2.12)

the two shortest links can revolve fully with respect to the others and the linkage is des-
ignated a Class I kinematic chain. If this inequality is not true, then it is a Class II chain
and may or may not allow any links to fully rotate depending on the gear ratio and phase
angle between the gears. If the inequality of equation 2.12 is replaced with an equal sign,
the linkage will be a Class III chain in which the two shortest links can fully revolve but
it will have change points like the special-case Grashof fourbar.

Reference [11] describes the conditions under which a Class II geared fivebar linkage
will and will not be rotatable. In practical design terms, it makes sense to obey equation
2.12 in order to guarantee a Grashof condition. It also makes sense to avoid the Class III
change-point condition. Note that if one of the short links (say L,) is made zero, equation
2.12 reduces to the Grashof formula of equation 2.8.

In addition to the linkage’s rotatability, we would like to know about the kinds of
motions that are possible from each of the five inversions of a fivebar chain. Ting!!1]
describes these in detail. But if we want to apply a gearset between two links of the
fivebar chain (to reduce its DOF to 1), we really need it to be a double-crank linkage,
with the gears attached to the two cranks. A Class I fivebar chain will be a double-crank
mechanism if the two shortest links are among the set of three links that comprise the
mechanism’s ground link and the two cranks pivoted to ground.!1]
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ROTATABILITY OF N-BAR LINKAGES Ting et al.[12]: [13] have extended rotatabil-
ity criteria to all single-loop linkages of N-bars connected with revolute joints and have
developed general theorems for linkage rotatability and the revolvability of individual
links based on link lengths. Let the links of an N-bar linkage be denoted by L; (i = 1, 2,
....,N),with L} <L, <--- < Ly. The links need not be connected in any particular order
as rotatability criteria are independent of that factor.

A single-loop, revolute-jointed linkage of N links will have (N —3) DOF. The neces-
sary and sufficient condition for the assemblability of an N-bar linkage is:

N-1
Ly < Z L (2.13)
k=1

A link K will be a so-called short link if
{Kh) (2.142)

and a so-called long link if

Ky o, (2.14b)

There will be three long links and (N — 3) short links in any linkage of this type.

A single-loop N-bar kinematic chain containing only first-order revolute joints will
be a Class I, Class II, or Class III linkage depending on whether the sum of the lengths
of its longest link and its (V — 3) shortest links is, respectively, less than, greater than, or
equal to the sum of the lengths of the remaining two long links:

Class I: Ly +(L 4+ Ly ++Ly 3)<Ly 5+ Ly,
Class II: Ly +(Li+Ly++Ly 3)>Ly 5+ Ly (2.15)
Class I1I: Ly +(Ly+Ly++Ly 3)=Ly 5 +Ly

and, for a Class I linkage, there must be one and only one long link between two noninput
angles. These conditions are necessary and sufficient to define the rotatability.

The revolvability of any link Z; is defined as its ability to rotate fully with respect to
the other links in the chain and can be determined from:

N-1
Li+Ly< > I (2.16)
k=1, k=i

Also, if L; is a revolvable link, any link that is not longer than L; will also be revolvable.

Additional theorems and corollaries regarding limits on link motions can be found
in references [12] and [13]. Space does not permit their complete exposition here. Note
that the rules regarding the behavior of geared fivebar linkages and fourbar linkages (the
Grashof law) stated above are consistent with, and contained within, these general rotat-
ability theorems.
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215 SPRINGS AS LINKS

We have so far been dealing only with rigid links. In many mechanisms and machines, it
is necessary to counterbalance the static loads applied to the device. A common example
is the hood hinge mechanism on your automobile. Unless you have the (cheap) model
with the strut that you place in a hole to hold up the hood, it will probably have either a
fourbar or sixbar linkage connecting the hood to the body on each side. The hood may be
the coupler of a non-Grashof linkage whose two rockers are pivoted to the body. A spring
is fitted between two of the links to provide a force to hold the hood in the open position.
The spring in this case is an additional link of variable length. As long as it can provide
the right amount of force, it acts to reduce the DOF of the mechanism to zero, and holds
the system in static equilibrium. However, you can force it to again be a one-DOF system
by overcoming the spring force when you pull the hood shut.

Another example, which may now be right next to you, is the ubiquitous adjustable
arm desk lamp, shown in Figure 2-22. This device has two springs that counterbalance
the weight of the links and lamp head. If well designed and made, it will remain stable
over a fairly wide range of positions despite variation in the overturning moment due to
the lamp head’s changing moment arm. This is accomplished by careful design of the
geometry of the spring-link relationships so that, as the spring force changes with increas-
ing length, its moment arm also changes in a way that continually balances the changing
moment of the lamp head.

A linear spring can be characterized by its spring constant, k = F'/ x, where F is force
and x is spring displacement. Doubling its deflection will double the force. Most coil
springs of the type used in these examples are linear.

216 COMPLIANT MECHANISMS Watch a short video (1:17)

The mechanisms so far described in this chapter all consist of discrete elements in the form
of rigid links or springs connected by joints of various types. Compliant mechanisms
can provide similar motions with fewer parts and fewer (even zero) physical joints. Com-
pliance is the opposite of stiffness. A member or “link” that is compliant is capable of
significant deflection in response to load. An ancient example of a compliant mechanism
is the bow and arrow, in which the bow’s deflection in response to the archer pulling back
the bowstring stores elastic strain energy in the flexible (compliant) bow, and that energy
launches the arrow.

The bow and bowstring comprise two parts, but in its purest form a compliant mecha-
nism consists of a single link whose shape is carefully designed to provide areas of flex-
ibility that serve as pseudo joints. Probably the most commonly available example of a
simple compliant mechanism is the ubiquitous plastic box made with a “living hinge” as
shown in Figure 2-23. This is a dyad or two-link mechanism (box and cover) with a thin
section of material connecting the two. Certain thermoplastics, such as polypropylene,
allow thin sections to be flexed repeatedly without failure. When the part is removed
from the mold, and is still warm, the hinge must be flexed once to align the material’s
molecules. Once cooled, it can withstand millions of open-close cycles without failure.
Figure 2-24 shows a prototype of a fourbar linkage toggle switch made in one piece of
plastic as a compliant mechanism. It moves between the on and off positions by flexure
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FIGURE 2-22
A spring-balanced
linkage mechanism

View as a video

http://www.designofma-

chinery.com/DOM/lamp.avi

T http://www.designofma-
chinery.com/DOM/Compli-
ant_Linkages.mp4

FIGURE 2-23

A box with a “living hinge”
Public domain image.
Source: Polyparadigm/Flickr


http://www.designofmachinery.com/DOM/Compliant_Linkages.mp4
http://www.designofmachinery.com/DOM/lamp.avi
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(@) Switch on (b) Switch off
FIGURE 2-24

One-piece compliant switch Courtesy of Professor Larry L. Howell, Brigham Young University

of the thin hinge sections that serve as pseudo joints between the “links.” The case study
discussed in Chapter 1 describes the design of a compliant mechanism that is also shown
in Figure 6-13).

Figure 2-25a shows a forceps designed as a one-piece compliant mechanism. Instead
of the conventional two pieces connected by a pin joint, this forceps has small cross sec-
tions designed to serve as pseudo joints. It is injection molded of polypropylene thermo-
plastic with “living hinges.” Note that there is a fourbar linkage 1, 2, 3, 4 at the center
whose “joints” are the compliant sections of small dimension at A, B, C, and D. The
compliance of the material in these small sections provides a built-in spring effect to hold
it open in the rest condition. The other portions of the device such as the handles and jaws
are designed with stiffer geometry to minimize their deflections. When the user closes the
jaws, the hooks on the handles latch it closed, clamping the gripped item. Figure 2-25b
shows a two-piece snap hook that uses the compliance of the spring closure that results
from either ear of the wire spring being pivoted at different locations A and A».

These examples show some of the advantages of compliant mechanisms over conven-
tional ones. In some cases, no assembly operations are needed, as there is only one part.
The needed spring effect is built in by control of geometry in local areas. The finished
part is ready to use as it comes out of the mold. These features all reduce cost.

Compliant mechanisms have been in use for a long time (e.g., the bow and arrow, fin-
gernail clipper, paper clips), but found new applications in the late 20th century due in part
to the availability of new materials and modern manufacturing processes. Some of their
advantages over conventional mechanisms are the reduction of number of parts, elimina-
tion of joint clearances, inherent spring loading, and potential reductions in cost, weight,
wear, and maintenance compared to conventional mechanisms. They are, however, more
difficult to design and analyze because of their relatively large deflections that preclude the
use of conventional small-deflection theory. This text will consider only the design and
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"link" 1
"link" 4
latch

latch
"link" 3
"link" 2
Copyright © 2018 Robert L. Norton:
All Rights Reserved
(a) One-piece molded polypropylene compliant forceps
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(b) Compliant snap hook ™
Courtesy of Wichard Inc.,

Charlotte, NC

FIGURE 2-25

Compliant mechanisms

analysis of noncompliant (i.e., assumed rigid) links and mechanisms with physical joints.
For information on the design and analysis of compliant mechanisms see reference [16].

217 MICRO ELECTRO-MECHANICAL SYSTEMS (MEMS)"

Recent advances in the manufacture of microcircuitry such as computer chips have led
to a new form of mechanism known as micro electro-mechanical systems or MEMS.
These devices have features measured in micrometers, and micromachines range in size
from a few micrometers to a few millimeters. They are made from the same silicon
wafer material that is used for integrated circuits or microchips. The shape or pattern of
the desired device (mechanism, gear, etc.) is computer generated at large scale and then
photographically reduced and projected onto the wafer. An etching process then removes
the silicon material where the image either did or did not alter the photosensitive coating
on the silicon (the process can be set to do either). What remains is a tiny reproduction
of the original geometric pattern in silicon. Figure 2-26a shows silicon microgears made
by this method. They are only a few micrometers in diameter.

Compliant mechanisms are very adaptable to this manufacturing technique. Figure
2-26b shows a micromotor that uses the gears of Figure 2-26a and is smaller than a few
millimeters overall. The motor drive mechanism is a series of compliant linkages that
are oscillated by an electrostatic field to drive the crank shown in the enlarged view of
Figure 2-26b. Two of these electrostatic actuators operate on the same crank, 90° out of
phase to carry it through the dead center positions. This motor is capable of continuous
speeds of 360 000 rpm and short bursts to a million rpm before overheating from friction
at that high speed.

Figure 2-27 shows “a compliant bistable mechanism (known as the Young mecha-
nism) in its two stable positions. Thermal actuators amplify thermal expansion to snap

* More information on
MEMS can be found at:
http://www.sandia.gov/ and
ttp://www.memsnet.ore/
mems/


http://www.sandia.gov/
http://www.memsnet.org/mems/
http://www.memsnet.org/mems/
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compliant electrostatic actuators

1 motor drive

(@) Microgears (b) Micromotor and gear train
FIGURE 2-26

- ______________________________________________________________________________________________________________|
MEMS of etched silicon (a) microgears Courtesy of Sandia National Laboratories (b) SEM photos of Sandia Labs’ micromotor
SEM photos courtesy of Professor Cosme Furlong, Worcester Polytechnic Institute

the device between its two positions. It can be used as a microswitch or a microrelay.
+ Professor Larry L. Because it is so small, it can be actuated in a few hundred microseconds.”’

Howell (2002), personal
communication.

Applications for these micro devices are just beginning to be found. Microsensors
made with this technology are currently used in automobile airbag assemblies to detect

LBl

—_— F1
X278 1006Mm WD32

FIGURE 2-27

Compliant bistable silicon micromechanism in two positions Courtesy of Professor Larry L.
Howell, Brigham Young University
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sudden deceleration and fire the airbag inflator. MEMS blood pressure monitors that can
be placed in a blood vessel have been made. MEMS pressure sensors are being fitted to
automobile tires to continuously monitor tire pressure. Many other applications are being
and will be developed to utilize this technology in the future.

218 PRACTICAL CONSIDERATIONS

There are many factors that need to be considered to create good-quality designs. Not all
of them are contained within the applicable theories. A great deal of art based on experi-
ence is involved in design as well. This section attempts to describe a few such practical
considerations in machine design.

Pin Joints versus Sliders and Half Joints

Proper material selection and good lubrication are the key to long life in any situation,
such as a joint, where two materials rub together. Such an interface is called a bearing.
Assuming the proper materials have been chosen, the choice of joint type can have a
significant effect on the ability to provide good, clean lubrication over the lifetime of the
machine.

REVOLUTE (PIN) JOINTS The simple revolute or pin joint (Figure 2-28a) is the
clear winner here for several reasons. It is relatively easy and inexpensive to design and
build a good-quality pin joint. In its pure form—a so-called sleeve or journal bearing—
the geometry of pin-in-hole traps a lubricant film within its annular interface by capillary
action and promotes a condition called hydrodynamic lubrication in which the parts are
separated by a thin film of lubricant as shown in Figure 2-29. Seals can easily be provided
at the ends of the hole, wrapped around the pin, to prevent loss of the lubricant. Replace-
ment lubricant can be introduced through radial holes into the bearing interface, either
continuously or periodically, without disassembly.

A convenient form of bearing for linkage pivots is the commercially available spheri-
cal rod end shown in Figure 2-30. This has a spherical, sleeve-type bearing that self-
aligns to a shaft that may be out of parallel. Its body threads onto the link, allowing links
to be conveniently made from round stock with threaded ends that allow adjustment of
link length.

Relatively inexpensive ball and roller bearings are commercially available in a large
variety of sizes for revolute joints as shown in Figure 2-31. Some of these bearings (prin-

0Oil Stationary journal

Shaft rotating rapidly

« hydrodynamic
lubrication

+ no metal contact

« fluid pumped
by shaft

» shaft lags bearing
centerline

FIGURE 2-29

Hydrodynamic lubrication in a sleeve bearing—clearance and motions exaggerated
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(@) Pin joint
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(b) Slider joint

AB

(c) Half joint

FIGURE 2-28

Joints of various types
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(b) Roller bearing

Copyright © 2018 Robert L. Norton
All Rights Reserved

FIGURE 2-31

Ball and roller
bearings for revolute
joints

FIGURE 2-33

Linear ball bushing
Courtesy of Thomson Indus-
tries, Radford, VA
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FIGURE 2-30 Copyright © 2018 Robert L.Norton: All Rights Reserved

Spherical rod end

cipally ball type) can be obtained prelubricated and with end seals. Their rolling elements
provide low-friction operation and good dimensional control. Note that rolling-element
bearings actually contain higher-joint interfaces (half joints) at each ball or roller, which is
potentially a problem as noted below. However, the ability to trap lubricant within the roll
cage (by end seals) combined with the relatively high rolling speed of the balls or rollers
promotes elastohydrodynamic lubrication and long life. For more detailed information
on bearings and lubrication, see reference [15].

For revolute joints pivoted to ground, several commercially available bearing types
make the packaging easier. Pillow blocks and flange-mount bearings (Figure 2-32) are
available fitted with either rolling-element (ball, roller) bearings or sleeve-type journal
bearings. The pillow block allows convenient mounting to a surface parallel to the pin
axis, and flange mounts fasten to surfaces perpendicular to the pin axis.

PRISMATIC (SLIDER) JOINTS require a carefully machined and straight slot or rod
(Figure 2-28b). These bearings often must be custom made. Though linear ball bearings
(Figure 2-33) are commercially available, they must be run over hardened and ground
shafts. Lubrication is difficult to maintain in any sliding joint. The lubricant is not geo-
metrically captured, and it must be resupplied either by running the joint in an oil bath or
by periodic manual regreasing. An open slot or shaft tends to accumulate airborne dirt
particles that can act as a grinding compound when trapped in the lubricant. This will
accelerate wear.

(a) Pillow-block bearing b) Flange-mount bearing

FIGURE 2-32

Pillow block and flange-mount bearing units. Courtesy of Emerson Power Transmission, lthaca, NY.
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HIGHER (HALF) JOINTS such as a round pin in a slot (Figure 2-28c) or p
a cam-follower joint (Figure 2-12c) suffer even more acutely from the slider’s ?
lubrication problems, because they typically have two oppositely curved surfaces in line
contact, which tend to squeeze any lubricant out of the joint. This type of joint needs to be
run in an oil bath for long life. This requires that the assembly be housed in an expensive,
oil-tight box with seals on all protruding shafts.

These joint types are all used extensively in machinery with great success. As long
as the proper attention to engineering detail is paid, the design can be successful. Some
common examples of all three joint types can be found in an automobile. The windshield
wiper mechanism is a pure pin-jointed linkage. The pistons in the engine cylinders are

true sliders and are bathed in engine oil. The valves in the engine are opened and closed #

by cam-follower (half) joints that are drowned in engine oil. You probably change your P

engine oil fairly frequently. When was the last time you lubricated your windshield wiper (4 cantilever mount
linkage? Has this linkage (not the motor) ever failed? —single shear
Cantilever or Straddle Mount? i P

Any joint must be supported against the joint loads. Two basic approaches are possible as
shown in Figure 2-34. A cantilevered joint has the pin (journal) supported only, as a can-
tilever beam. This is sometimes necessary as with a crank that must pass over the coupler
and cannot have anything on the other side of the coupler. However, a cantilever beam is
inherently weaker (for the same cross section and load) than a straddle-mounted (simply = -
supported) beam. The straddle mounting can avoid applying a bending moment to the
links by keeping the forces in the same plane. The pin will feel a bending moment in both
cases, but the straddle-mounted pin is in double shear—two cross sections are sharing
the load. A cantilevered pin is in single shear. It is good practice to use straddle-mounted
joints (whether revolute, prismatic, or higher) wherever possible. If a cantilevered pin
must be used, then a commercial shoulder screw that has a hardened and ground shank as I

shown in Figure 2-35 can sometimes serve as a pivot pin. P

(b) Straddle mount
—double shear

Short Links
FIGURE 2-34

It sometimes happens that the required length of a crank is so short that it is not possible 4 ever, and

to provide suitably sized pins or bearings at each of its pivots. The solution is to design  straddle-mounted pin
the link as an eccentric crank, as shown in Figure 2-36. One pivot pin is enlarged to  joints

the point that it, in effect, contains the link. The outside diameter of the circular crank

becomes the journal for the moving pivot. The fixed pivot is placed a distance e from the

center of this circle equal to the required crank length. The distance e is the crank’s ec-

centricity (the crank length). This arrangement has the advantage of a large surface area

within the bearing to reduce wear, though keeping the large-diameter journal lubricated

can be difficult.

Bearing Ratio

The need for straight-line motion in machinery requires extensive use of linear translating
slider joints. There is a very basic geometrical relationship called bearing ratio, which if
ignored or violated will invariably lead to problems.
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FIGURE 2-35

Shoulder screw

DESIGN OF MACHINERY 6ed CHAPTER 2

(a) Eccentric crank-rocker (b) Eccentric slider-crank

FIGURE 2-36

Eccentric cranks

The bearing ratio (BR) of Figure 2-37 is defined as the effective length of the slider
over the effective diameter of the bearing: BR = L/D. For smooth operation this ratio
should be greater than 1.5, and never less than 1. The larger it is, the better. Effective
length is defined as the distance over which the moving slider contacts the stationary
guide. There need not be continuous contact over that distance. That is, two short collars,
spaced far apart, are effectively as long as their overall separation plus their own lengths
and are kinematically equivalent to a long tube. Effective diameter is the largest distance
across the stationary guides, in any plane perpendicular to the sliding motion.

If the slider joint is simply a rod in a bushing, as shown in Figure 2-37a, the effective
diameter and length are identical to the actual dimensions of the rod diameter and bush-
ing length. If the slider is a platform riding on two rods and multiple bushings, as shown
in Figure 2-37b, then the effective diameter and length are the overall width and length,
respectively, of the platform assembly. It is this case that often leads to poor bearing ratios.

o
i

.

(a) Single rod in bushing (b) Platform on two rods

FIGURE 2-37
Bearing ratio
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A common example of a device with a poor bearing ratio is a drawer in an inexpen-
sive piece of furniture. If the only guides for the drawer’s sliding motion are its sides
running against the frame, it will have a bearing ratio less than 1, since it is wider than it
is deep. You have probably experienced the sticking and jamming that occurs with such
adrawer. A better-quality chest of drawers will have a center guide with a large L/D ratio
under the bottom of the drawer and will slide smoothly.

Commercial Slides

Many companies provide standard linear slides that can be used for slider crank linkages
and cam-follower systems with translating followers. These are available with linear ball
bearings that ride on hardened steel rails giving very low friction. Some are preloaded to
eliminate clearance and backlash error. Others are available with plain bearings. Figure
2-38 shows an example of a ball-bearing linear slide with a car riding on a rail. Mounting
holes (not shown) are provided for attaching the rail to the ground plane and in the cars
for attaching the elements to be guided. Rails can be any length.

Linkages versus Cams

The pin-jointed linkage has all the advantages of revolute joints listed above. The
cam-follower mechanism (Figure 2-12c) has all the problems associated with the half
joint listed above. But both are widely used in machine design, often in the same machine
and in combination (cams driving linkages). So why choose one over the other?

The “pure” pin-jointed linkage with good bearings at the joints is a potentially su-
perior design, all else equal, and it should be the first possibility to be explored in any
machine design problem. However, there will be many problems in which the need for
a straight, sliding motion or the exact dwells of a cam-follower are required. Then the
practical limitations of cam and slider joints will have to be dealt with accordingly.

Linkages have the disadvantage of relatively large size compared to the output dis-
placement of the working portion; thus they can be somewhat difficult to package. Cams
tend to be compact in size compared to the follower displacement. Linkages are relatively
difficult to synthesize, and cams are relatively easy to design (as long as a computer
program such as DYNACAM is available). But linkages are much easier and cheaper to
manufacture to high precision than cams. Dwells are easy to get with cams, and difficult
with linkages. Linkages can survive very hostile environments, with poor lubrication,
whereas cams cannot, unless sealed from environmental contaminants. Linkages have
better high-speed dynamic behavior than cams, are less sensitive to manufacturing errors,
and can handle very high loads, but cams can match specified motions better.

So the answer is far from clear-cut. It is another design trade-off situation in which
you must weigh all the factors and make the best compromise. Because of the potential
advantages of the pure linkage, it is important to consider a linkage design before choos-
ing a potentially easier design task but an ultimately more expensive solution.

To see machines full of linkages and cams in operation, view the videos:

and: http://www.designofmachinery.com/D ring_Manufacturing.mp4
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rail
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All Rights Reserved

FIGURE 2-38

Ball bearing linear slide


http://www.designofmachinery.com/DOM/Bottle_Printing_Machine.mp4
http://www.designofmachinery.com/DOM/Spring_Manufacturing.mp4
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* The terms motor and
engine are often used
interchangeably, but they do
not mean the same thing.
Their difference is largely
semantic, but the “purist”
reserves the term motor for
electrical, hydraulic, and
pneumatic motors and the
term engine for thermo-
dynamic devices such

as external combustion
(steam, stirling) engines
and internal combustion
(gasoline, diesel) engines.
Thus, a conventional
automobile is powered by

a gasoline or diesel engine,
but its windshield wipers
and window lifts are run by
electric motors. The newest
hybrid automobiles have
one or more electric motors
to drive the wheels plus an
engine to drive a generator
to charge the batteries and
also supply auxiliary power
directly to the wheels.
Diesel-electric locomotives
are hybrids also, using elec-
tric motors at the wheels
for direct drive and diesel
engines running generators
to supply the electricity.
Modern commercial ships
use a similar arrangement
with diesel engines driving
generators and electric mo-
tors turning the propellers.

TABLE 2-5
Motor Power Classes
Class HP
Subfractional <1/20
Fractional 1/20-1
Integral >1
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219 MOTORS AND DRIVERS

Unless manually operated, a mechanism will require some type of driver device to provide
the input motion and energy. There are many possibilities. If the design requires a contin-
uous rotary input motion, such as for a Grashof linkage, a slider-crank, or a cam-follower,
then a motor or engine” is the logical choice. Motors come in a wide variety of types. The
most common energy source for a motor is electricity, but compressed air and pressurized
hydraulic fluid are also used to power air and hydraulic motors. Gasoline or diesel engines
are another possibility. If the input motion is translation, as is common in earth-moving
equipment, then a hydraulic or pneumatic cylinder is usually needed.

Electric Motors

Electric motors are classified both by their function or application and by their electrical
configuration.l'4l Some functional classifications (described below) are gearmotors,
servomotors, and stepping motors. Many different electrical configurations are also
available, and are shown in Figure 2-39 independent of their functional classifications.
The main electrical configuration division is between AC and DC motors, though one
type, the universal motor, is designed to run on either AC or DC.

AC and DC refer to alternating current and direct current respectively. AC is
typically supplied by the power companies and, in the United States, will be alternating
sinusoidally at 60 hertz (Hz), at about +120, +240, or +480 volts (V) peak. Many other
countries supply AC at 50 Hz. Single-phase AC provides a single sinusoid varying with
time, and 3-phase AC provides three sinusoids at 120° phase angles. DC is constant with
time, supplied from generators or battery sources and is most often used in vehicles, such
as ships, automobiles, aircraft, etc. Batteries are made in multiples of 1.5 V, with 6, 12,
and 24 V being the most common. Electric motors are also classed by their rated power
as shown in Table 2-5. Both AC and DC motors are designed to provide continuous rotary
output. While they can be stalled momentarily against a load, they cannot tolerate a full-
current, zero-velocity stall for more than a few minutes without overheating.

DC MOTORS are made in different electrical configurations, such as permanent
magnet (PM), shunt-wound, series-wound, and compound-wound. The names refer to
the manner in which the rotating armature coils are electrically connected to the station-
ary field coils—in parallel (shunt), in series, or in combined series-parallel (compound).
Permanent magnets replace the field coils in a PM motor. Each configuration provides
different forque-speed characteristics. The forque-speed curve of a motor describes how
it will respond to an applied load and is of great interest to the mechanical designer as it
predicts how the mechanical-electrical system will behave when the load varies dynami-
cally with time.

PERMANENT MAGNET DC MOTORS  Figure 2-40a shows a torque-speed curve for
a permanent magnet (PM) motor. Note that its torque varies greatly with speed, ranging
from a maximum (stall) torque at zero speed to zero torque at maximum (no-load) speed.
This relationship comes from the fact that power = forque x angular velocity. Since the
power available from the motor is limited to some finite value, an increase in torque re-
quires a decrease in angular velocity and vice versa. Its torque is maximum at stall (zero
velocity), which is typical of all electric motors. This is an advantage when starting heavy
loads: e.g., an electric-motor-powered vehicle needs no clutch, unlike one powered by an
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Types of electric motors

| Wound Rotor I
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internal combustion engine that cannot start from stall under load. An engine’s torque

increases rather than decreases with increasing angular velocity.

Figure 2-40b shows a family of load lines superposed on the forque-speed curve of
a PM motor. These load lines represent a time-varying load applied to the driven mecha-
nism. The problem comes from the fact that as the required load torque increases, the
motor must reduce speed to supply it. Thus, the input speed will vary in response to load
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(a) Speed-torque characteristic of a PM electric motor
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variations in most motors, regardless of their design.” If constant speed is required, this
may be unacceptable. Other types of DC motors have either more or less speed sensitivity
to load than the PM motor. A motor is typically selected based on its torque-speed curve.

SHUNT-WOUND DC MOTORS have a torque speed curve like that shown in Figure
2-41a. Note the flatter slope around the rated torque point (at 100%) compared to Figure
2-40. The shunt-wound motor is less speed-sensitive to load variation in its operating
range, but stalls very quickly when the load exceeds its maximum overload capacity of
about 250% of rated torque. Shunt-wound motors are typically used on fans and blowers.

SERIES-WOUND DC MOTORS have a torque-speed characteristic like that shown
in Figure 2-41b. This type is more speed-sensitive than the shunt or PM configurations.
However, its starting torque can be as high as 800% of full-load rated torque. It also does
not have any theoretical maximum no-load speed, which makes it tend to run away if the
load is removed. Actually, friction and windage losses will limit its maximum speed,
which can be as high as 20,000 to 30,000 revolutions per minute (rpm). Overspeed de-
tectors are sometimes fitted to limit its unloaded speed. Series-wound motors are used in
sewing machines and portable grinders where their speed variability can be an advantage
as it can be controlled, to a degree, with voltage variation. They are also used in heavy-
duty applications such as vehicle traction drives where their high starting torque is an
advantage. Also their speed sensitivity (large slope) is advantageous in high-load applica-
tions as it gives a “soft start” when moving high-inertia loads. The motor’s tendency to
slow down when the load is applied cushions the shock that would be felt if a large step
in torque were suddenly applied to the mechanical elements.

ComPOUND-WOUND DC MOTORS have their field and armature coils connected
in a combination of series and parallel. As a result their torque-speed characteristic has
aspects of both the shunt-wound and series-wound motors as shown in Figure 2-41c.
Their speed sensitivity is greater than a shunt-wound but less than a series-wound motor
and it will not run away when unloaded. This feature plus its high starting torque and soft-
start capability make it a good choice for cranes and hoists that experience high inertial
loads and can suddenly lose the load due to cable failure, creating a potential runaway
problem if the motor does not have a self-limited no-load speed.

100 100 F— % 100
B 80 \ B 8ot \ B 80 \
& & &
260 | 260 | Zoeof |
8 | 8 | 8 |
g 40 | g4 | g 40 |
[ i [ i [ i
S S) S)
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(a) Shuntwound (b) Series wound (c) Compound wound
FIGURE 2-41

Torque-speed curves for three types of DC motor



KINEMATICS FUNDAMENTALS 77

SPEED-CONTROLLED DC MOTORS If precise speed control is needed, as is often
the case in production machinery, another solution is to use a speed-controlled DC motor
that operates from a controller that increases and decreases the current to the motor in the
face of changing load to try to maintain constant speed. These speed-controlled (typi-
cally PM) DC motors will run from an AC source since the controller also converts AC to
DC. The cost of this solution is high, however. Another possible solution is to provide a
flywheel on the input shaft, which will store kinetic energy and help smooth out the speed
variations introduced by load variations. Flywheels will be investigated in Chapter 11.

AC MOTORS are the least expensive way to get continuous rotary motion, and they
are available with a variety of forque-speed curves to suit various load applications. They
are limited to a few standard speeds that are a function of the AC line frequency (60 Hz in
North America, 50 Hz elsewhere). The synchronous motor speed ny is a function of line
frequency f and the number of magnetic poles p present in the rotor.
ny = % (217)  TABLE 2-6
AC Motor Speeds

Synchronous motors “lock on” to the AC line frequency and run exactly at synchronous
speed. These motors are used for clocks and timers. Nonsynchronous AC motors have a Poles
small amount of slip that makes them lag the line frequency by about 3 to 10%.

Sync  Async
rpm rpm

Table 2-6 shows the synchronous and nonsynchronous speeds for various AC motor- 2 3600 3450

pole configurations. The most common AC motors have 4 poles, giving nonsynchronous
no-load speeds of about 1725 rpm, which reflects slippage from the 60-Hz synchronous 4 1800 1725

speed of 1800 rpm.
6 1200 1140
Figure 2-42 shows typical torque-speed curves for single-phase (1¢) and 3-phase

(39) AC motors of various designs. The single-phase shaded pole and permanent split ) 900 850
capacitor designs have a starting torque lower than their full-load torque. To boost the
start torque, the split-phase and capacitor-start designs employ a separate starting circuit 10 720 690

12 600 575

Permanent split
capacitor Split phase
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FIGURE 2-42

Torque-speed curves for single- and three-phase AC motors
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that is cut off by a centrifugal switch as the motor approaches operating speed. The broken
curves indicate that the motor has switched from its starting circuit to its running circuit.
The NEMA” three-phase motor designs B, C, and D in Figure 2-42 differ mainly in their
starting torque and in speed sensitivity (slope) near the full-load point.

GEARMOTORS If different single (as opposed to variable) output speeds than the
standard ones of Table 2-6 are needed, a gearbox speed reducer can be attached to the
motor’s output shaft, or a gearmotor can be purchased that has an integral gearbox. Gear-
motors are commercially available in a large variety of output speeds and power ratings.
The kinematics of gearbox design are covered in Chapter 9.

SERVOMOTORS These are fast-response, closed-loop-controlled motors capable of
providing a programmed function of acceleration or velocity, providing position control,
and of holding a fixed position against a load. Closed loop means that sensors (typically
shaft encoders) on the motor or the output device being moved feed back information on
its position and velocity. Circuitry in the motor controller responds to the fed back infor-
mation by reducing or increasing (or reversing) the current flow (and/or its frequency) to
the motor. Precise positioning of the output device is then possible, as is control of the
speed and shape of the motor’s response to changes in load or input commands. These are
relatively expensive devices that are commonly used in applications such as moving the
flight control surfaces in aircraft and guided missiles, in numerically controlled machin-
ing centers, automated manufacturing machinery, and in controlling robots, for example.

Servomotors are made in both AC and DC configurations, with the AC type currently
becoming more popular. These achieve speed control by the controller generating a vari-
able frequency current that the synchronous AC motor locks onto. The controller first
rectifies the AC to DC and then “chops” it into the desired frequency, a common method
being pulse-width modification. They have high torque capability and a flat torque-speed
curve similar to Figure 2-41a. Also, they will typically provide as much as three times
their continuous rated torque for short periods such as under intermittent overloads. Other
advantages of servomotors include their ability to do programmed “soft starts,” hold any
speed to a close tolerance in the face of variation in the load torque, and make a rapid
emergency stop using dynamic braking.

STEPPER MOTORS These are brushless permanent magnet, variable reluctance,
or hybrid-type motors designed to position an output device. Unlike servomotors, they
typically run open loop, meaning they receive no feedback as to whether the output device
has responded as requested. Thus, they can get out of phase with the desired program.
They will, however, happily sit energized for an indefinite period, holding the output in
one position (though they do get hot—100-150°F). Their internal construction consists
of a number of magnetic strips arranged around the circumference of both the rotor and
stator. When energized, the rotor will move one step, to the next magnet, for each pulse
received. Thus, these are intermittent motion devices and do not provide continuous
rotary motion like other motors. The number of magnetic strips and controller type deter-
mine their resolution (typically 200 steps/rev, but a microstepper drive can increase this to
2000 or more steps/rev). They are relatively small compared to AC/DC motors and have
low drive torque capacity but have high holding torque. They are moderately expensive
and require special controllers.
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Air and Hydraulic Motors

These have more limited application than electric motors, simply because they require the
availability of a compressed air or hydraulic source. Both of these devices are less energy
efficient than the direct electrical to mechanical conversion of electric motors, because of
the losses associated with the conversion of the energy first from chemical or electrical
to fluid pressure and then to mechanical form. Every energy conversion involves some
losses. Air motors find widest application in factories and shops, where high-pressure
compressed air is available for other reasons. A common example is the air impact wrench
used in automotive repair shops. Although individual air motors and air cylinders are
relatively inexpensive, these pneumatic systems are quite expensive when the cost of
all the ancillary equipment is included. Hydraulic motors are most often found within
machines or systems such as construction equipment (cranes), aircraft, and ships, where
high-pressure hydraulic fluid is provided for many purposes. Hydraulic systems are very
expensive when the cost of all the ancillary equipment is included.

Air and Hydraulic Cylinders

These are linear actuators (piston in cylinder) that provide a limited stroke, straight-line
output from a pressurized fluid flow input of either compressed air or hydraulic fluid
(usually oil). They are the method of choice if you need a linear motion as the input.
However, they share the same high cost, low efficiency, and complication factors as listed
under their air and hydraulic motor equivalents above.

Another problem is that of control. Most motors, left to their own devices, will tend
to run at a constant speed. A linear actuator, when subjected to a constant pressure fluid
source, typical of most compressors, will respond with more nearly constant accelera-
tion, which means its velocity will increase linearly with time. This can result in severe
impact loads on the driven mechanism when the actuator comes to the end of its stroke at
maximum velocity. Servovalve control of the fluid flow, to slow the actuator at the end
of its stroke, is possible but is quite expensive.

The most common application of fluid power cylinders is in farm and construction
equipment such as tractors and bulldozers, where open loop (nonservo) hydraulic cylin-
ders actuate the bucket or blade through linkages. The cylinder and its piston become two
of the links (slider and track) in a slider-crank mechanism. See Figure 1-1b.

Solenoids

These are electromechanical (AC or DC) linear actuators that share some of the limita-
tions of air cylinders, and they possess a few more of their own. They are energy inef-
ficient, are limited to very short strokes (about 2 to 3 cm), develop a force that varies
exponentially over the stroke, and deliver high impact loads. They are, however, inex-
pensive, reliable, and have very rapid response times. They cannot handle much power,
and they are typically used as control or switching devices rather than as devices that do
large amounts of work on a system.
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A common application of solenoids is in camera shutters, where a small solenoid
is used to pull the latch and trip the shutter action when you push the button to take the
picture. Its nearly instantaneous response is an asset in this application, and very little
work is being done in tripping a latch. Another application is in electric door or trunk
locking systems in automobiles, where the click of their impact can be clearly heard when
you turn the key (or press the button) to lock or unlock the mechanism.
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2.21

“2-1

22
*2-3

*2-5
“2-6

2.7
*2-8

2-10
2-11

CPECFTIER MO0 TR

PROBLEMS'

Find three (or other number as assigned) of the following common devices. Sketch
careful kinematic diagrams and find their total degrees of freedom.

An automobile hood hinge mechanism
An automobile hatchback lift mechanism
An electric can opener

A folding ironing board

A folding card table

A folding beach chair

A baby swing

A folding baby walker

A fancy corkscrew as shown in Figure P2-9
A windshield wiper mechanism

A dump truck dump mechanism

A trash truck dumpster mechanism

A pickup truck tailgate mechanism

An automobile jack

A collapsible auto radio antenna

How many DOF do you have in your wrist and hand combined? Describe them.

How many DOF do the following joints have?

a.  Your knee

b.  Your ankle

c.  Your shoulder
d.  Your hip

e. Your knuckle

How many DOF do the following have in their normal environment?

a. A submerged submarine
c. A surface ship
e. A two-button mouse

b. An earth-orbiting satellite
d. A motorcycle (road bike)
f. A computer joystick

Are the joints in Problem 2-3 force closed or form closed?

Describe the motion of the following items as pure rotation, pure translation, or com-
plex planar motion.

a. A windmill

b. A bicycle (in the vertical plane, not turning)
c. A conventional “double-hung” window

d.  The keys on a computer keyboard

e. The hand of a clock

f. A hockey puck on the ice

g

A “casement” window

Calculate the mobility of the linkages assigned from Figure P2-1 part 1 and part 2.
Identify the items in Figure P2-1 as mechanisms, structures, or preloaded structures.
Use linkage transformation on the linkage of Figure P2-1a to make it have 1 DOF.
Use linkage transformation on the linkage of Figure P2-1d to make it have 2 DOF.

Use number synthesis to find all the possible link combinations for 2 DOF, up to 9
links, to hexagonal order, using only revolute joints.
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TABLE P2-0
Topic/Problem Matrix

21 Degrees of Freedom

2-2,2-3,2-4

2.2 Types of Motion
2-6,2-37

2.3 Links, Joints and
Kinematic Chains
2-5,2-17, 2-38, 2-39,
2-40, 2-41, 2-53,
2-54, 2-55, 2-67,
2-72,2-73

2.5 Mobility
2-1,2-7,2-21, 2-24,
2-25, 2-26, 2-28,
2-44,2-48 to 2-53,
2-56 to 2-66, 2-71,
2-74

2.6 Mechanisms and
Structures
2-8,2-27

2.7 Number Synthesis
2-11, 2-69, 2-70

2.9 Isomers
2-12, 2-45, 2-46,
2-47

2.10 Linkage Transforma-
tion
2-9, 2-10, 2-13, 2-14,
2-30, 2-31, 2-34,
2-35,2-36

212 Inversion
2-63, 2-68

213 The Grashof Condi-
tion
2-15,2-22,2-23,
2-29,2-32,2-42,
2-43, 2-75, 2-76

2.15 Springs as Links
2-18, 2-19

2.19 Motors and Drivers
2-16, 2-20, 2-33

* Answers in Appendix F

T All problem figures are
provided as PDF files,

and some are provided as
animated AVI and Working
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FIGURE P2-1 Part1
Linkages for Problems 2-7 to 2-10

2-12  Find all valid isomers of the eightbar 1-DOF link combinations in Table 2-2 having:

a.  Four binary and four ternary links
b.  Five binaries, two ternaries, and one quaternary link
c.  Six binaries and two quaternary links

2-13  Use linkage transformation to create a 1-DOF mechanism with two sliding full joints
from Stephenson’s sixbar linkage in Figure 2-16a.

2-14  Use linkage transformation to create a 1-DOF mechanism with one sliding full joint
and a half joint from Stephenson’s sixbar linkage in Figure 2-16b.

*2-15  Calculate the Grashof condition of the fourbar mechanisms defined below. Build card-
board models of the linkages and describe the motions of each inversion. Link lengths
are in inches (or double given numbers for centimeters).

* Answers in Appendix F

a. 2 4.5 7 9
b. 2 35 7 9
c. 2 4.0 6 8

2-16 What type(s) of electric motor would you specify

a. Todrive a load with large inertia.
b.  To minimize variation of speed with load variation.
c.  To maintain accurate constant speed regardless of load variations.

2-17 Describe the difference between a cam-follower (half) joint and a pin joint.
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View as a video

Linkages for Problems 2-7 to 2-8


http://www.designofmachinery.com/DOM/cylindrical_cam.avi

84

View as a video

FIGURE P2-2
Problem 2-19

http://www.designofma-
chinery.com/DOM/lamp.
2 avi

* Answers in Appendix F
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FIGURE P2-3
Torque-speed characteristic of a 1/8 hp, 2500 rpm, PM DC motor for Problem 2-20

2-18

2-19

2-20

2-21
2-22

2-23
“2-24
2-25

“2-26

Examine an automobile hood hinge mechanism of the type described in Section 2.15.
Sketch it carefully. Calculate its mobility and Grashof condition. Make a cardboard
model. Analyze it with a free-body diagram. Describe how it keeps the hood up.

Find an adjustable arm desk lamp of the type shown in Figure P2-2. Measure it and
sketch it to scale. Calculate its mobility and Grashof condition. Make a cardboard
model. Analyze it with a free-body diagram. Describe how it keeps itself stable. Are
there any positions in which it loses stability? Why?

The torque-speed curve for a 1/8 hp permanent magnet (PM) DC motor is shown in
Figure P2-3. The rated speed for this fractional horsepower motor is 2500 rpm at a
rated voltage of 130 V. Determine:

a, The rated torque in oz-in (ounce-inches—the U.S. industry standard for fractional
hp motors)

b.  The no-load speed

c.  Plot the power-torque curve and find the maximum power that the motor can deliver.

Find the mobility of the mechanisms in Figure P2-4.

Find the Grashof condition and Barker classifications of the mechanisms in Figure P2-
4a, b, and d.

Find the rotatability of each loop of the mechanisms in Figure P2-4e, f, and g.
Find the mobility of the mechanisms in Figure P2-5.

Find the mobility of the ice tongs in Figure P2-6:

a.  When operating them to grab the ice block.
b.  When clamped to the ice block but before it is picked up (ice grounded).
c.  When the person is carrying the ice block with the tongs.

Find the mobility of the automotive throttle mechanism in Figure P2-7.


http://www.designofmachinery.com/DOM/lamp.avi
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(a) Fourbar linkage

all dimensions in mm

L1 =162 Ly, =40
Ly=122 L3=96

(b) Fourbar linkage (c) Radial compressor

View as a video

http://www.designofmachinery.com/DOM/radial_engine.avi

L1 =150 L, =30

L3=150 Ly =30

View as a video

http://www.designofmachinery.com/DOM/walking_beam.avi

(d) Walking-beam conveyor

L1 =87
L, =49
L3 =100
Ly =153
L5 =100
Lg =153
¢
http://www.
designofmachin- X

ery.com/DOM/ (g) Drum brake

drum_brake.avi  View gs a video
FIGURE P2-4

Problems 2-21to 2-23

0204 =L3 =L5 =160
0g04=Lsg=L7=120
0,A=0,C=20
04B=04D =20
04E=04G=30
OgF=0gH =30

7

L3 =130
offset = 52

(e) Bellcrank mechanism (f) Offset crank-slider

Ly =458
L, =198
L3=194
Ly=383
L; =133
L7=133
Lg=198
Ly=194

7

— L— 4.5 typ.
(h) Symmetrical mechanism

View as a video
http://www.designofmachinery.com/DOM/compression_chamber.avi


http://www.designofmachinery.com/DOM/radial_engine.avi
http://www.designofmachinery.com/DOM/walking_beam.avi
http://www.designofmachinery.com/DOM/compression_chamber.avi
http://www.designofmachinery.com/DOM/drum_brake.avi
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Link 8 moves
horizontally
in a straight line

Link 6 moves
horizontally

in a straight line

View as a video

http://www.
designofmachin-
ery.com/DOM/
chebyschev_6bar.avi

View as a video
http://www.designof-

04 machinery.com/DOM/
sylvester_kempe.avi

0,
(b)
FIGURE P2-5

Problem 2-24 (a) Chebyschev and (b) Sylvester-Kempe straight-line mechanism Source: Kempe, How to Draw
a Straight Line, Macmillan: London, 1877

F F

*2-27  Sketch a kinematic diagram of the scissors jack shown in Figure P2-8 and determine its
mobility. Describe how it works.

2-28 Find the mobility of the corkscrew in Figure P2-9.

2-29  Figure P2-10 shows Watt’s sun and planet drive that he used in his steam engine. The
beam 2 is driven in oscillation by the piston of the engine. The planet gear is fixed rig-
idly to link 3 and its center is guided in the fixed track 1. The output rotation is taken
from the sun gear 4. Sketch a kinematic diagram of this mechanism and determine
its mobility. Can it be classified by the Barker scheme? If so, what Barker class and

l subclass is it?

2-30 Figure P2-11 shows a bicycle handbrake lever assembly. Sketch a kinematic diagram

FIGURE P2-6
Problem 2-25

__«
o) air filter

* Answers in Appendix F |

throttle linkage throttle body

— 0™

1
engine / P

—————T—

&S View as a video
FIGURE P2-7 http://www.designofmachinery.com/DOM/gas_pedal.avi

Problem 2-26. Source: P. H. Hill and W. P Rule. (1960) Mechanisms: Analysis and Design
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View as a video
http://www.designof-
machinery.com/DOM/ Q s
scissors_jack.avi

FIGURE P2-8
Problem 2-27

of this device and draw its equivalent linkage. Determine its mobility. Hint: Consider
the flexible cable to be a link.

2-31 Figure P2-12 shows a bicycle brake caliper assembly. Sketch a kinematic diagram of
this device and draw its equivalent linkage. Determine its mobility under two condi-
tions:

a.  Brake pads not contacting the wheel rim.
b. Brake pads contacting the wheel rim.

Hint: Consider the flexible cables to be replaced by forces in this case.

| — 2
5 O j > d_% FIGURE P2-9

Problem 2-28

I Vi Vi
| http://www.designof-
| machinery.com/DOM/ L1 =215
! watts_engine.avi Ly=1.25
1 L3;=1.80 3 1
L4 =0.54 4

Section A—A
FIGURE P2-10

Problem 2-29 James Watt's sun and planet drive
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Fhand

P
Y handlebar handgrip

Fhand
FIGURE P2-11

Problem 2-30 Bicycle hand brake lever assembly

2-32  Find the mobility, the Grashof condition, and the Barker classification of the mecha-
nism in Figure P2-13.

2-33  The approximate torque-speed curve and its equation for a 1/4 hp shunt-wound DC mo-
tor are shown in Figure P2-14. The rated speed for this fractional horsepower motor is
10 000 rpm at a rated voltage of 130 V. Determine:

brake arm
brake arm

frame

FIGURE P2-12

Problem 2-31 Bicycle brake caliper assembly
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http://www.designofmachinery.com/DOM/crimping_tool.avi

FIGURE P2-13
Problem 2-32 Crimping tool

a.  The rated torque in oz-in (ounce-inches, the U.S. industry standard for fractional hp

motors)

The no-load speed

The operating speed range

d. Plot the power-torque curve in the operating range and determine the maximum
power that the motor can deliver in that range.

oo

2-34  Figure P2-15 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its
weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth within link 5 to cut the part. Sketch its kinematic diagram, and
determine its mobility and its type (i.e., is it a fourbar, a Watt sixbar, a Stephenson
sixbar, an eightbar, or what?). Use reverse linkage transformation to determine its pure
revolute-jointed equivalent linkage.

12 000

10000

T S S S S e

e
5 ; s s s s s s s s
R R i B b
= : : : : : : | | |
8 i i i i i i i i
2 N,
4000 IN(D)=-012T 11N, ifTS6250zin \
R
i N N ]
2000 N(T)=—1.7T—RT+ 51Np ifT>6250zin
R i 1 §
o N

0 10 20 30 40 50 60 70 80 90 100

Torque T (0z-in)
FIGURE P2-14

Problem 2-33 Torque-speed characteristic of a 1/4 hp, 10 000 rpm DC motor
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View as a video
FIGURE P2-15 http://www.designofmachinery.com/DOM/power_hacksaw.avi

Problem 2-34 Power hacksaw

* Answers in Appendix F

*2-35 Figure P2-16 shows a manual press used to compact powdered materials. Sketch its

kinematic diagram, and determine its mobility and its type (i.e., is it a fourbar, a Watt
sixbar, a Stephenson sixbar, an eightbar, or what?). Use reverse linkage transformation

to determine its pure revolute-jointed equivalent linkage.

2-36 Sketch the equivalent linkage for the cam and follower mechanism in Figure P2-17 in
the position shown. Show that it has the same DOF as the original mechanism.

View as a video

http://www.designof- ‘
machinery.com/DOM/ . . —
. . 4 View as a video 4
cam_cycloidal.avi | X '
Pamm: http://www.designof- LA
follower I machinery.com/DOM/ i

i powder_compact-
ing_press.avi

1

FIGURE P2-16

Problem 2-35 Powder compacting press Source: P. H. Hill and W. P. Rule. (1960).
Mechanisms: Analysis and Design

FIGURE P2-17
Problem 2-36

powder

die
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2-37

2-38

2-39
2-40
2-41
2-42

2-43

2-44

Describe the motion of the following rides, commonly found at an amusement park, as
pure rotation, pure translation, or complex planar motion.

A Ferris wheel

A “bumper” car

A drag racer ride

A roller coaster whose foundation is laid out in a straight line
A boat ride through a maze

A pendulum ride

A train ride

@ Reo o

For the mechanism in Figure P2-1a, number the links, starting with 1. (Don’t forget the
“ground” link.) Letter the joints alphabetically, starting with point A.

a.  Using your link numbers, describe each link as binary, ternary, etc.

b.  Using your joint letters, determine each joint’s order.

c.  Using your joint letters, determine whether each is a half or full joint.

Repeat Problem 2-38 for Figure P2-1b.
Repeat Problem 2-38 for Figure P2-1c.
Repeat Problem 2-38 for Figure P2-1d.

Find the mobility, the Grashof condition, and the Barker classification of the oil field
pump shown in Figure P2-18.

Find the mobility, the Grashof condition, and the Barker classification of the aircraft
overhead bin shown in Figure P2-19. Make a model and investigate its motions.

Figure P2-20 shows a “Rube Goldberg” mechanism that turns a light switch on when
a room door is opened and off when the door is closed. The pivot at O; goes through
the wall. There are two spring-loaded piston-in-cylinder devices in the assembly. An
arrangement of ropes and pulleys inside the room (not shown) transfers the door swing

76

View as a video
http://www.designof-
machinery.com/DOM/
oil_pump.avi

80

12

-~

FIGURE P2-18
Problem 2-42 An oil field pump - dimensions in inches

o1



http://www.designofmachinery.com/DOM/oil_pump.avi

92 DESIGN OF MACHINERY 6ed CHAPTER 2

%2.79 -
1 Wz

|

917 9.17

7NN

L 9.57

- 917 ———»

FIGURE P2-19
Problem 2-43 An aircraft overhead bin mechanism - dimensions in inches

into a rotation of link 2. Door opening rotates link 2 CW, pushing the switch up as
shown in the figure, and door closing rotates link 2 CCW, pulling the switch down.
Consider the spring-loaded cylinder at the switch to be effectively a single variable-
length binary link. Find the mobility of the linkage.

 This mechanism was
created when the boss
complained that the light
was being left on overnight
too frequently in the shop
storeroom but refused to
provide funds to buy an
electronic solution. The
shop technician solved the
problem mechanically (and
whimsically) from scrap
parts. The boss was later
promoted, perhaps because
of his demonstrated mastery
of budgetary control. Problem 2-44 A "Rube Goldberg" light switch actuating mechanism’ Photo by the author

FIGURE P2-20 Copyright © 2018 Robert L. Norton: All Rights Reserved
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2-45  All the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of
these will give motions similar to others. Those that have distinct motions are called
distinct inversions. How many distinct inversions does the linkage in row 4, column 1
have?

2-46  Repeat Problem 2-45 for the linkage in row 4, column 2.
2-47 Repeat Problem 2-45 for the linkage in row 4, column 3.
2-48  Find the mobility of the mechanism shown in Figure 3-33.
2-49  Find the mobility of the mechanism shown in Figure 3-34.
2-50 Find the mobility of the mechanism shown in Figure 3-35.
2-51 Find the mobility of the mechanism shown in Figure 3-36.
2-52  Find the mobility of the mechanism shown in Figure 3-37b.
2-53 Repeat Problem 2-38 for Figure P2-1e.

2-54 Repeat Problem 2-38 for Figure P2-1f.

2-55 Repeat Problem 2-38 for Figure P2-1g.

2-56  For the example linkage shown in Figure 2-4 find the number of links and their respec-
tive link orders, the number of joints and their respective orders, and the mobility of the
linkage.

2-57 For the linkage shown in Figure 2-5b find the number of joints, their respective orders,
and mobility for:

a. The condition of a finite load W in the direction shown and a zero load F
b.  The condition of a finite load W and a finite load F both in the directions shown after
link 6 is off the stop.

2-58 Figure P2-21a shows a “Nuremberg scissors” mechanism. Find its mobility.
2-59 Figure P2-21b shows a mechanism. Find its mobility and classify its isomer type.

2-60 Figure P2-21c shows a straight-line linkage. Determine its mobility and Grashof con-
dition. Scale the links for dimensions. Does it have a name?

“2-61 Figure P2-21d shows a log transporter. Draw a kinematic diagram of the mechanism,
specify the number of links and joints, and then determine its mobility:

a.  For the transporter wheels locked and no log in the claw.
b.  For the transporter wheels locked with it lifting a log.
c.  For the transporter moving a log to a destination in a straight line.
*2-62  Figure P2-21e shows a plow mechanism attached to a tractor. Draw its kinematic
diagram and find its mobility including the earth as a “link”:

* Answers in Appendix F
a.  When the tractor is stopped and the turnbuckle is fixed. (Hint: Consider the tractor

and wheel to be one with the earth.)
When the tractor is stopped and the turnbuckle is being adjusted. (Same hint.)

c.  When the tractor is moving and the turnbuckle is fixed. (Hint: Add the moving trac-
tor’s DOF to those found in part a.)

2-63  Figure P2-22 shows a Hart inversor sixbar linkage. (a) Is it a Watt or Stephenson link-
age? (b) Determine its inversion, i.e., is it a type I, II, or III?
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(a) Nuremberg linkage (b) Mechanism (c) Straight-line linkage

turnbuckle

(d) Log transporter (e) Tractor-mounted plow mechanism

FIGURE P2-21
Problems 2-58 to 2-62

2-64 Figure P2-23 shows the top view of the partially open doors on one side of an enter-
tainment center cabinet. The wooden doors are hinged to each other and one door is
hinged to the cabinet. There is also a ternary, metal link attached to the cabinet and

] hinge

door

hinge

cylinder

) door
piston

FIGURE P2-22

Problem 2-63 Hart
Inversor Straight-Line FIGURE P2-23

Mechanism Problem 2-64
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foot rest pad
slot in seat rides 2
on pin in frame ‘
back pivots
to frame

seat pivots
to back

(a) (b)
FIGURE P2-24

Problems 2-65 to 2-67

door through pin joints. A spring-loaded piston-in-cylinder device attaches to the
ternary link and the cabinet through pin joints. Draw a kinematic diagram of the door
system and find the mobility of this mechanism.

2-65 Figure P2-24a shows the seat and seat-back of a reclining chair with the linkage that
connects them to the chair frame. Draw its kinematic diagram and determine its mo-
bility with respect to the frame of the chair.

2-66 Figure P2-24b shows the mechanism used to extend the foot support on a reclining
chair. Draw its kinematic diagram and determine its mobility with respect to the frame
of the chair.

2-67 Figure P2-24b shows the mechanism used to extend the foot support on a reclining
chair. Number the links, starting with 1. (Hint: Don’t forget the “ground” link.) Letter
the joints alphabetically, starting with A.

a.  Using the link numbers, describe each link as binary, ternary, etc.
b.  Using the joint letters, determine each joint’s order.
c.  Using the joint letters, determine whether each is a half or full joint.

2-68 Figure P2-25 shows a sixbar linkage.

a. Isita Watt or Stephenson linkage?
b. Determine its inversion, i.e., is it a type L, II, or III?

2-69  Use number synthesis to find all the possible link combinations for 1-DOF, up to 5 links, to
quaternary order, using one cylindrical joint and revolute joints for the remainder.

2-70  Use number synthesis to find all the possible link combinations for 3-DOF, up to 8
links, to quaternary order, using one cylindrical joint and revolute joints for the remain-
der.

%
) )

2-71 Figure P2-26 shows a schematic of a single-cup coffee maker. Calculate the mobility
of the linkage.

2-72  For the mechanism in Figure P2-26, number the links, starting with 1. (Hint: Don’t FIGURE P2-25
forget the “ground” link.) Letter the joints alphabetically, starting with A. Problem 2-68
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receiver

FIGURE P2-26
Problems P2-71 and P2-72

a.  Using the link numbers, describe each link as binary, ternary, etc.
b.  Using the joint letters, determine each joint’s order.
c.  Using the joint letters, determine whether each is a half or full joint.

2-73  Figure P2-27 shows a schematic of an exercise machine. Repeat Problem 2-72 for this
mechanism.

2-74  Calculate the mobility of the linkage in Figure P2-27.

2-75 Calculate the Grashof condition of the fourbar mechanisms defined below. Build card-
board models of the linkages and describe the motions of each inversion. Link lengths
are in millimeters.

a. 80 140 280 360
b. 80 160 240 320
c. 80 180 280 360

< /!
~/

(&

floor
FIGURE P2-27
Problems P2-73 and 2-74
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2-76 The drum brake mechanism in Figure P2-4g is a fourbar linkage with an alternate output
dyad. The input is link 2 and the outputs are links 4 and 6. The input fourbar consists
of links 1, 2, 3, and 4. The alternate output dyad consists of links 5 and 6. The cross-
hatched pivot pins at 02, O4, and O6 are attached to the ground link (1). Determine the
Grashof condition and Barker Classification of the input fourbar.




98

Chapter

GRAPHICAL LINKAGE
SYNTHESIS

Genius is 1% inspiration
and 99% perspiration
THOMAS A. EDISON

3.0 INTRODUCTION

Most engineering design practice involves a combination of synthesis and analysis. Most
engineering courses deal primarily with analysis techniques for various situations. How-
ever, one cannot analyze anything until it has been synthesized into existence. Many
machine design problems require the creation of a device with particular motion charac-
teristics. Perhaps you need to move a tool from position A to position B in a particular
time interval. Perhaps you need to trace out a particular path in space to insert a part
into an assembly. The possibilities are endless, but a common denominator is often the
need for a linkage to generate the desired motions. So, we will now explore some simple
synthesis techniques to enable you to create potential linkage design solutions for some
typical kinematic applications.

31 SYNTHESIS

QUALITATIVE SYNTHESIS means the creation of potential solutions in the absence of
a well-defined algorithm that configures or predicts the solution. Since most real de-
sign problems will have many more unknown variables than you will have equations to
describe the system’s behavior, you cannot simply solve the equations to get a solution.
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Nevertheless you must work in this fuzzy context to create a potential solution and to also
judge its quality. You can then analyze the proposed solution to determine its viability,
and iterate between synthesis and analysis, as outlined in the design process, until you
are satisfied with the result. Several tools and techniques exist to assist you in this pro-
cess. The traditional tool is the drafting board, on which you lay out, to scale, multiple
orthographic views of the design, and investigate its motions by drawing arcs, showing
multiple positions, and using transparent, movable overlays. Computer-aided drafting
(CAD) systems can speed this process to some degree, but you will probably find that the
quickest way to get a sense of the quality of your linkage design is to model it, to scale, in
cardboard, foam board, or drafting Mylar® and see the motions directly.

Other tools are available in the form of computer programs such as LINKAGES, DY-
NACAM, and MATRIX (included with this text), some of which do synthesis, but these are
mainly analysis tools. They can analyze a trial mechanism solution so rapidly that their
dynamic graphical output gives almost instantaneous visual feedback on the quality of the
design. Commercially available programs such as Solidworks, Pro-Engineer, and Work-
ing Model also allow rapid analysis of a proposed mechanical design. The process then
becomes one of qualitative design by successive analysis, which is really an iteration
between synthesis and analysis. Very many trial solutions can be examined in a short time
using these computer-aided engineering (CAE) tools. We will develop the mathematical
solutions used in these programs in subsequent chapters in order to provide the proper
foundation for understanding their operation. But if you want to try these programs to re-
inforce some of the concepts in these early chapters, you may do so. Appendix A describes
these programs, and they each contain a manual for their use. Reference will be made to
program features that are germane to topics in each chapter, as they are introduced. Data
files for input to these computer programs are also provided as downloads for example
problems and figures in these chapters. The data filenames are noted near the figure or
example. The student is encouraged to open these sample files in the programs in order to
observe more dynamic examples than the printed page can provide. These examples can
be run by merely accepting the defaults provided for all inputs.

TYPE SYNTHESIS refers to the definition of the proper type of mechanism best suited
to the problem and is a form of qualitative synthesis.” This is perhaps the most difficult
task for the student as it requires some experience and knowledge of the various types of
mechanisms that exist and which also may be feasible from a performance and manufac-
turing standpoint. As an example, assume that the task is to design a device to track the
straight-line motion of a part on a conveyor belt and spray it with a chemical coating as
it passes by. This has to be done at high, constant speed, with good accuracy and repeat-
ability, and it must be reliable. Moreover, the solution must be inexpensive. Unless you
have had the opportunity to see a wide variety of mechanical equipment, you might not be
aware that this task could conceivably be accomplished by any of the following devices:

- A straight-line linkage
- A cam and follower

- An air cylinder

- A hydraulic cylinder

- A robot

- A solenoid

Each of these solutions, while possible, may not be optimal or even practical. Greater

detail needs to be known about the problem to make that judgment, and that detail will
come from the research phase of the design process. The straight-line linkage may prove
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* A good discussion of
type synthesis and an ex-
tensive bibliography on the
topic can be found in
Olson, D. G., et al. (1985).
“A Systematic Procedure
for Type Synthesis of
Mechanisms with Literature
Review.” Mechanism and
Machine Theory, 20(4),
pp. 285-295.
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to be too large and to have undesirable accelerations; the cam and follower will be expen-
sive, though accurate and repeatable. The air cylinder itself is inexpensive but is noisy and
unreliable. The hydraulic cylinder is more expensive, as is the robot. The solenoid, while
cheap, has high impact loads and high impact velocity. So, you can see that the choice of
device type can have a significant effect on the quality of the design. A poor choice at the
type synthesis stage can create insoluble problems later on. The design might have to be
scrapped after completion, at great expense. Design is essentially an exercise in trade-
offs. Each proposed type of solution in this example has good and bad points. Seldom will
there be a clear-cut, obvious solution to a real engineering design problem. It will be your
job as a design engineer to balance these conflicting features and find a solution that gives
the best trade-off of functionality against cost, reliability, and all other factors of interest.
Remember, an engineer can do, with one dollar, what any fool can do for ten dollars. Cost
is always an important constraint in engineering design.

QUANTITATIVE SYNTHESIS, OR ANALYTICAL SYNTHESIS, means the generation of
one or more solutions of a particular type that you know to be suitable to the problem, and
more importantly, one for which there is a synthesis algorithm defined. As the name sug-
gests, this type of solution can be quantified, as some set of equations exists that will give
a numerical answer. Whether that answer is a good or suitable one is still a matter for the
judgment of the designer and requires analysis and iteration to optimize the design. Often
the available equations are fewer than the number of potential variables, in which case you
must assume some reasonable values for enough unknowns to reduce the remaining set to
the number of available equations. Thus some qualitative judgment enters into the synthe-
sis in this case as well. Except for very simple cases, a CAE tool is needed to do quantita-
tive synthesis. Examples of such tools are the programs LINKAGES by R. L. Norton that
solves the three-position multibar linkage synthesis problem and LINCAGES,” by Erdman
and Gustafson.[!], that solves the four-position fourbar linkage synthesis problem. Program
LINKAGES, provided with this text, does both three-position analytical synthesis as defined
in Chapter 5, and general linkage design by successive analysis. The fast computation of
these programs allows one to analyze the performance of many trial mechanism designs
in a short time and promotes rapid iteration to a better solution.

DIMENSIONAL SYNTHESIS of a linkage is the determination of the proportions
(lengths) of the links necessary to accomplish the desired motions and can be a form of
quantitative synthesis if an algorithm is defined for the particular problem, but can also
be a form of qualitative synthesis if there are more variables than equations. The latter
situation is more common for linkages. (Dimensional synthesis of cams is quantitative.)
Dimensional synthesis assumes that, through type synthesis, you have already determined
that a linkage (or a cam) is the most appropriate solution to the problem. This chapter
discusses graphical dimensional (position) synthesis of linkages in detail. Chapter 5
presents methods of analytical linkage synthesis, and Chapter 8 presents cam synthesis.

3.2 FUNCTION, PATH, AND MOTION GENERATION

FUNCTION GENERATION is defined as the correlation of an input motion with an output
motion in a mechanism. A function generator is conceptually a “black box™ that delivers
some predictable output in response to a known input. Historically, before the advent
of electronic computers, mechanical function generators found wide application in artil-
lery rangefinders and shipboard gun aiming systems, and many other tasks. They are, in
fact, mechanical analog computers
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microcomputers for control systems coupled with the availability of compact servo and
stepper motors has reduced the demand for these mechanical function generator linkage
devices. Many such applications can now be served more economically and efficiently
with electromechanical devices.” Moreover, the computer-controlled electromechanical
function generator is programmable, allowing rapid modification of the function gener-
ated as demands change. For this reason, while presenting some simple examples in
this chapter and a general, analytical design method in Chapter 5, we will not emphasize
mechanical linkage function generators in this text. Note, however, that the cam-follower
system, discussed extensively in Chapter 8, is in fact a form of mechanical function gen-
erator, and it is typically capable of higher force and power levels per dollar than electro-
mechanical systems.

PATH GENERATION is defined as the control of a point in the plane such that it fol-
lows some prescribed path. This is typically accomplished with at least four bars, wherein
a point on the coupler traces the desired path. Specific examples are presented in the sec-
tion on coupler curves below. Note that no attempt is made in path generation to control
the orientation of the link that contains the point of interest. However, it is common for
the timing of the arrival of the point at particular locations along the path to be defined.
This case is called path generation with prescribed timing and is analogous to function
generation in that a particular output function is specified. Analytical path and function
generation will be dealt with in Chapter 5.

MOTION GENERATION is defined as the control of a line in the plane such that it
assumes some prescribed set of sequential positions. Here orientation of the link contain-
ing the line is important. This is a more general problem than path generation, and in
fact, path generation is a subset of motion generation. An example of a motion generation
problem is the control of the “bucket” on a bulldozer. The bucket must assume a set of
positions to dig, pick up, and dump the excavated earth. Conceptually, the motion of a
line, painted on the side of the bucket, must be made to assume the desired positions. A
linkage is the usual solution.

PLANAR MECHANISMS VERSUS SPATIAL MECHANISMS The above discussion of
controlled movement has assumed that the motions desired are planar (2-D). We live in a
three-dimensional world, however, and our mechanisms must function in that world. Spa-
tial mechanisms are 3-D devices. Their design and analysis are much more complex than
those of planar mechanisms, which are 2-D devices. The study of spatial mechanisms
is beyond the scope of this introductory text. Some references for further study are in the
bibliography to this chapter. However, the study of planar mechanisms is not as practically
limiting as it might first appear since many devices in three dimensions are constructed of
multiple sets of 2-D devices coupled together. An example is any folding chair. It will have
some sort of linkage in the left side plane that allows folding. There will be an identical
linkage on the right side of the chair. These two XY planar linkages will be connected by
some structure along the Z direction, which ties the two planar linkages into a 3-D as-
sembly. Many real mechanisms are arranged in this way, as duplicate planar linkages,
displaced in the Z direction in parallel planes and rigidly connected. When you open the
hood of a car, take note of the hood hinge mechanism. It will be duplicated on each side
of the car. The hood and the car body tie the two planar linkages together into a 3-D as-
sembly. Look and you will see many other such examples of assemblies of planar linkages
into 3-D configurations. So, the 2-D techniques of synthesis and analysis presented here
will prove to be of practical value in designing in 3-D as well.
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* It is worth noting that
the day is long past when
a mechanical engineer

can be content to remain
ignorant of electronics and
electromechanics. Virtual-
ly all modern machines are
controlled by electronic
devices. Mechanical
engineers must understand
their operation.
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33 LIMITING CONDITIONS

The manual, graphical, dimensional synthesis techniques presented in this chapter and
the computerizable, analytical synthesis techniques presented in Chapter 5 are reason-
ably rapid means to obtain a trial solution to a motion control problem. Once a potential
solution is found, it must be evaluated for its quality. There are many criteria that may
be applied. In later chapters, we will explore the analysis of these mechanisms in detail.
However, one does not want to expend a great deal of time analyzing, in great detail, a
design that can be shown to be inadequate by some simple and quick evaluations.

TOGGLE POSITIONS  One important test can be applied within the synthesis proce-
dures described below. You need to check that the linkage can in fact reach all of the speci-
fied design positions without encountering a limit position. Linkage synthesis procedures
often only provide that the particular positions specified will be obtained. They say nothing
about the linkage’s behavior between those positions. Figure 3-1a shows a non-Grashof
fourbar linkage at its limits of motion called toggle positions. The roggle positions are
determined by the colinearity of two of the moving links. CD| and C,D; (solid lines) are
the toggle positions reached when driven from link 2. C3D3 and C4D, (dashed lines) are
the toggle positions reached when driven from link 4. A fourbar triple-rocker mechanism
will have four, and a Grashof double-rocker two, of these toggle positions in which the
linkage assumes a triangular configuration. When in a triangular (toggle) position, it will
not allow further input motion in one direction from one of its rocker links (either of link
2 from positions C1D; and C,D; or link 4 from positions C3D3 and C4Dy4). A different
link will then have to be driven to get it out of toggle.

STATIONARY POSITIONS A Grashof fourbar crank-rocker linkage will also assume
two stationary positions as shown in Figure 3-1b, when the shortest link (crank O,C) is
colinear with the coupler CD (link 3), either extended colinear (O,C,D;) or overlapping
colinear (0,CDy). It cannot be back driven from the rocker O4D (link 4) through these
colinear positions (which then act as toggles), but when the crank O,C (link 2) is driven,
it will carry through both stationary positions because it is Grashof. Note that the station-
ary positions define the limits of motion of the driven rocker (link 4), at which its angular
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(a) Non-Grashof triple-rocker toggle positions (b) Grashof crank-rocker stationary configurations

FIGURE 3-1
Linkage limit positions
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Folded position K 4

To operate:

1. Release toggle

2. Lift tailgate —

/
/
/
!
!
!
1
!
1

Truck tailgate (Link 2)

Truck body (Link 1)

FIGURE 3-2
Deltoid toggle linkage used to control truck tailgate motion

velocity will go through zero. Use program LINKAGES to read the data files FO3-01A.4br
and FO3-1b.4br and animate these examples.

After synthesizing a double- or triple-rocker solution to a multiposition (motion
generation) problem, you must check for the presence of toggle positions between your
design positions. An easy way to do this is with a model of the linkage. A CAE tool such
as LINKAGES or Working Model will also check for this problem. It is important to realize
that a toggle condition is only undesirable if it is preventing your linkage from getting from
one desired position to the other. In other circumstances the toggle is very useful. It can
provide a self-locking feature when a linkage is moved slightly beyond the toggle position
and against a fixed stop. Any attempt to reverse the motion of the linkage then causes it
merely to jam harder against the stop. It must be manually pulled “over center,” out of
toggle, before the linkage will move. You have encountered many examples of this appli-
cation, as in card table or ironing board leg linkages and also pickup truck or station wagon
tailgate linkages. An example of such a toggle linkage is shown in Figure 3-2. It happens
to be a special-case Grashof linkage in the deltoid configuration (see also Figure 2-17d),
which provides a locking toggle position when open, and folds on top of itself when closed,
to save space. We will analyze the toggle condition in greater detail in a later chapter.

TRANSMISSION ANGLE  Another useful test that can be very quickly applied to a
linkage design to judge its quality is the measurement of its transmission angle. This can
be done analytically, graphically on the drawing board, or via a model for a rough ap-
proximation. (Extend the links beyond the pivot to measure the angle.) The transmission
angle 1 is shown in Figure 3-3a and is defined as the angle between the output link and the
coupler.” Tt is usually taken as the absolute value of the acute angle of the pair of angles
at the intersection of the two links and varies continuously from some minimum to some
maximum value as the linkage goes through its range of motion. It is a measure of the
quality of force and velocity transmission at the joint. Note in Figure 3-2 that the linkage
cannot be moved from the open position shown by any force applied to the tailgate, link
2, since the transmission angle between links 3 and 4 is zero at that position. But a force
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* The transmission angle
as defined by Alt/?] has
limited application. It only
predicts the quality of force
or torque transmission if the
input and output links are
pivoted to ground. If the
output force is taken from a
floating link (coupler), then
the transmission angle is of
no value. A different index
of merit called the joint
force index (JFI) is pre-
sented in Chapter 11 which
discusses force analysis

in linkages. (See Section
11.12) The JFI is useful for
situations in which the out-
put link is floating as well
as for giving the same kind
of information when the
output is taken from a link
rotating against the ground.
However, the JFI requires
that a complete force analy-
sis of the linkage be done,
whereas the transmission
angle is determined from
linkage geometry alone.
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Link 3 D /
coupler
Link 4
c output link
Link 2
driver
Ty
0, 04
(a) Linkage transmission angle p (b) Static forces at a linkage joint
FIGURE 3-3

Transmission angle in the fourbar linkage

# Altl2] who defined the
transmission angle, recom-
mended keeping

Wmin > 40°. But it can be
argued that at higher speeds,
the momentum of the mov-
ing elements and/or the addi-
tion of a flywheel will carry a
mechanism through locations
of poor transmission angle.
The most common example
is the back-driven slider-
crank (as used in internal
combustion engines) which
has | = 0 twice per revolu-
tion. Also, the transmission
angle is only critical in a
fourbar linkage when the
rocker is the output link

on which the working load
impinges. If the working
load is taken by the coupler
rather than by the rocker,
then minimum transmission
angles less than 40° may be
viable. A more definitive
way to qualify a mecha-
nism’s dynamic function is
to compute the variation in
its required driving torque.
Driving torque and flywheels
are addressed in Chapter

11. A joint force index (JFI)
can also be calculated. (See
footnote on previous page.)

applied to link 4 as the input link will move it. The transmission angle is now between
links 3 and 2 and is 45 degrees.

Figure 3-3b shows a torque T, applied to link 2. Even before any motion occurs,
this causes a static, colinear force F3 to b applied by link 3 to link 4 at point D. Its radial
and tangential components Fy, and F; , are resolved parallel and perpendicular to link 4,
respectively. Ideally, we would like all of the force F34 to go into producing output torque
T4 on link 4. However, only the tangential component creates torque on link 4. The radial
component Fy, provides only tension or compression in link 4. This radial component
only increases pivot friction and does not contribute to the output torque. Therefore, the
optimum value for the transmission angle is 90°. When [ is less than 45° the radial com-
ponent will be larger than the tangential component. Most machine designers try to keep
the minimum transmission angle above about 40° to promote smooth running and good
force transmission. However, if in your particular design there will be little or no external
force or torque applied to link 4, you may be able to get away with even lower values of
. The transmission angle provides one means to judge the quality of a newly synthesized
linkage. If it is unsatisfactory, you can iterate through the synthesis procedure to improve
the design. We will investigate the transmission angle in greater detail in later chapters.

34 POSITION SYNTHESIS View the lecture video (47:57)1

Position synthesis of a linkage is the determination of the proportions (lengths) of the
links necessary to accomplish the desired motions. This section assumes that, through
type synthesis, you have determined that a linkage is the most appropriate solution to the
problem. Many techniques exist to accomplish this task of position synthesis of a four-
bar linkage. The simplest and quickest methods are graphical. These work well for up to
three design positions. Beyond that number, a numerical, analytical synthesis approach
as described in Chapter 5, using a computer, is usually necessary.

 http://www.designofmachinery.com/DOM/Position_Synthesis.mp4
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Note that the principles used in these graphical synthesis techniques are simply those
of euclidean geometry. The rules for bisection of lines and angles, properties of parallel
and perpendicular lines, and definitions of arcs, etc., are all that is needed to generate these
linkages. Compass, protractor, and rule are the only tools needed for graphical linkage
synthesis. Refer to any introductory (high school) text on geometry if your geometric
theorems are rusty.

Two-Position Synthesis

Two-position synthesis subdivides into two categories: rocker output (pure rotation)
and coupler output (complex motion). Rocker output is most suitable for situations in
which a Grashof crank-rocker is desired and is, in fact, a trivial case of function generation
in which the output function is defined as two discrete angular positions of the rocker.
Coupler output is more general and is a simple case of motion generation in which two
positions of a line in the plane are defined as the output. This solution will frequently
lead to a triple-rocker. However, the fourbar triple-rocker can be motor driven by the ad-
dition of a dyad (twobar chain), which makes the final result a Watt sixbar containing a
Grashof fourbar subchain. We will now explore the synthesis of each of these types of
solution for the two-position problem.

A DEXAMPLE 31

Rocker Output - Two Positions with Angular Displacement. (Function Generation)

Problem: Design a fourbar Grashof crank-rocker to give 45° of rocker rotation with equal
time forward and back, from a constant speed motor input.

Solution: (See Figure 3-41)

1 Draw the output link O4B in both extreme positions, B| and B, in any convenient location, such
that the desired angle of motion 0 is subtended.

2 Draw the chord BB, and extend it in either direction.

3 Select a convenient point O, on line BB, extended.

4 Bisect line segment BB, , and draw a circle of that radius about O;.

5 Label the two intersections of the circle and BB, extended, A and A».

6 Measure the length of the coupler as A to By or Aj to Bj.

7  Measure ground length 1, crank length 2, and rocker length 4.

8 Find the Grashof condition. If non-Grashof, redo steps 3 to 8 with O farther from Og.
9 Make a model of the linkage and check its function and transmission angles.

10 You can input the file F03-04.4br to program LINKAGES to see this example come alive.
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 This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.
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(a) Construction method

(b) Finished linkage

View as a video

http://www.designof-

machinery.com/DOM/
fig3_4.avi

FIGURE 3-4

Two-position function synthesis with rocker output (non-quick-return)

Note several things about this synthesis process. We started with the output end of
the system, as it was the only aspect defined in the problem statement. We had to make
many quite arbitrary decisions and assumptions to proceed because there were many more
variables than we could have provided “equations” for. We are frequently forced to make
“free choices” of “a convenient angle or length.” These free choices are actually definitions
of design parameters. A poor choice will lead to a poor design. Thus these are qualitative
synthesis approaches and require an iterative process, even for this simple example. The
first solution you reach will probably not be satisfactory, and several attempts (iterations)
should be expected to be necessary. As you gain more experience in designing kinematic
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solutions, you will be able to make better choices for these design parameters with fewer
iterations. The value of making a simple model of your design cannot be overstressed!
You will get the most insight into your design’s quality for the least effort by making, ar-
ticulating, and studying the model. These general observations will hold for most of the
linkage synthesis examples presented.

@DEXAMPLE 32
Rocker Output - Two Positions with Complex Displacement. (Motion Generation)
Problem: Design a fourbar linkage to move link CD from position C{D| to C2D;.
Solution: (See Figure 3-5%.)
1 Draw the link CD in its two desired positions, C1D and C»D5, in the plane as shown.
2 Draw construction lines from point C; to C; and from point Dy to D;.

3 Bisect line C{C; and line DD, and extend their perpendicular bisectors to intersect at Oy.
Their intersection is the rotopole.

4 Select a convenient radius and draw an arc about the rotopole to intersect both lines O4C and
04C,. Label the intersections By and Bj.

5 Do steps 2 to 8 of Example 3-1 to complete the linkage.

6 Make a model of the linkage and articulate it to check its function and its transmission angles.

Note that Example 3-2 reduces to the method of Example 3-1 once the rotopole is
found. Thus a link represented by a line in complex motion can be reduced to the simpler
problem of pure rotation and moved to any two positions in the plane as the rocker on a
fourbar linkage. The next example moves the same link through the same two positions
as the coupler of a fourbar linkage.

ZDEXAMPLE 3-3

Coupler Output - Two Positions with Complex Displacement. (Motion Generation)

Problem: Design a fourbar linkage to move the link CD shown from position C;D; to CoD»
(with moving pivots at C and D).

Solution: (See Figure 3-6.)
1 Draw the link CD in its two desired positions, C;Dj and C,D», in the plane as shown.
2 Draw construction lines from point C| to C, and from point D to D,.

3 Bisect line C;C; and line DD, and extend the perpendicular bisectors in convenient direc-
tions. The rotopole will not be used in this solution.

4 Select any convenient point on each bisector as the fixed pivots O, and Oy, respectively.
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* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.
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View as a video
http://www.designof-

machinery.com/DOM/
fig3_5.avi

(b) Constructing the linkage by
the method in Example 3-1

FIGURE 3-5

Two-position motion synthesis with rocker output (non-quick-return)

5 Connect O, with C; and call it link 2. Connect O4 with Dy and call it link 4.
6 Line C{D is link 3. Line 0,0, is link 1.

7 Check the Grashof condition, and repeat steps 4 to 7 if unsatisfied. Note that any Grashof
condition is potentially acceptable in this case.

8 Construct a model and check its function to be sure it can get from the initial to final position
without encountering any limit (toggle) positions.

9 Check the transmission angles.

Input file F03-06.4br to program LINKAGES to see Example 3-3. Note that this example
had nearly the same problem statement as Example 3-2, but the solution is quite different.
Thus a link can also be moved to any two positions in the plane as the coupler of a four-
bar linkage, rather than as the rocker. However, to limit its motions to those two coupler
positions as extrema, two additional links are necessary. These additional links can be
designed by the method shown in Example 3-4 and Figure 3-7.
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(a) Two-position synthesis (b) Finished non-Grashof fourbar

FIGURE 3-6
Two-position motion synthesis with coupler output

A DEXAMPLE 3-4

Adding a Dyad (Twobar Chain) to Control Motion in Example 3-3.

Problem: Design a dyad to control and limit the extremes of motion of the linkage in Ex-
ample 3-3 to its two design positions.

Solution: (See Figure 3-7a.)

1 Select a convenient point on link 2 of the linkage designed in Example 3-3. Note that it need
not be on the line O,C). Label this point Bj.

2 Draw an arc about center O, through B to intersect the corresponding line O,B; in the second
position of link 2. Label this point B. The chord BB, provides us with the same problem as
in Example 3-1.

3 Do steps 2 to 9 of Example 3-1 to complete the linkage, except add links 5 and 6 and center Og¢
rather than links 2 and 3 and center O,. Link 6 will be the driver crank. The fourbar subchain
of links Og, A}, By, Oy must be a Grashof crank-rocker.

Note that we have used the approach of Example 3-1 to add a dyad to serve as a driver
stage for our existing fourbar. This results in a sixbar Watt mechanism whose first stage is
Grashof as shown in Figure 3-7b. Thus we can drive this with a motor on link 6. Note also
that we can locate the motor center Og anywhere in the plane by judicious choice of point
B on link 2. If we had put By below center O,, the motor would be to the right of links
2, 3, and 4 as shown in Figure 3-7c. There is an infinity of driver dyads possible that will
drive any double-rocker assemblage of links. Input the files FO3-07b.6br and FO3-07c.6br
to program LINKAGES to see Example 3-4 in motion for these two solutions.
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choice

(b) The completed Watt sixbar linkage with motor at Og

50 A
==
B, .

(c) An alternate location of the driver dyad with motor at Og

FIGURE 3-7

Driving a non-Grashof linkage with a dyad (non-quick-return)
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Three-Position Synthesis with Specified Moving Pivots

Three-position synthesis allows the definition of three positions of a line in the plane
and will create a fourbar linkage configuration to move it to each of those positions. This
is a motion generation problem. The synthesis technique is a logical extension of the
method used in Example 3-3 for two-position synthesis with coupler output. The resulting
linkage may be of any Grashof condition and will usually require the addition of a dyad
to control and limit its motion to the positions of interest. Compass, protractor, and rule
are the only tools needed in this graphical method.

A DEXAMPLE 3-5

Coupler Output - 3 Positions with Complex Displacement. (Motion Generation)

Problem: Design a fourbar linkage to move the link CD shown from position C;D; to CoD>
and then to position C3D3. Moving pivots are at C and D. Find the fixed pivot
locations.

Solution: (See Figure 3-8.)

1 Draw link CD in its three design positions C;D|, CyD;, C3D5 in the plane as shown.
2 Draw construction lines from point C; to C; and from point C, to C3.

3 Bisect line C;C; and line C,C5 and extend their perpendicular bisectors until they intersect.
Label their intersection O,.

4 Repeat steps 2 and 3 for lines DD, and D,D3. Label the intersection Oy.

5 Connect Oy with C| and call it link 2. Connect O4 with Dy and call it link 4.

6 Line C;Dj is link 3. Line 0,04 is link 1.

7 Check the Grashof condition. Any Grashof condition is potentially acceptable in this case.

8 Construct a model and check its function to be sure it can get from initial to final position
without encountering any limit (toggle) positions.

9 Construct a driver dyad according to the method in Example 3-4 using an extension of link 3
to attach the dyad.

Note that while a solution is usually obtainable for this case, it is possible that you
may not be able to move the linkage continuously from one position to the next without
disassembling the links and reassembling them to get them past a limiting position. That
will obviously be unsatisfactory. In the particular solution presented in Figure 3-8, note
that links 3 and 4 are in toggle at position one, and links 2 and 3 are in toggle at position
three. In this case we will have to drive link 3 with a driver dyad, since any attempt to
drive either link 2 or link 4 will fail at the toggle positions. No amount of torque applied
to link 2 at position C will move link 4 away from point D, and driving link 4 will not
move link 2 away from position C3. Input the file FO3-08.4br to program LINKAGES to
see Example 3-5.

m
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Link 1 :O2 O4

(@) Construction method (b) Finished non-Grashof fourbar

FIGURE 3-8

Three-position motion synthesis

Three-Position Synthesis with Alternate Moving Pivots

Another potential problem is the possibility of an undesirable location of the fixed pivots
0, and O4 with respect to your packaging constraints. For example, if the fixed pivot for
a windshield wiper linkage design ends up in the middle of the windshield, you may want
to redesign it. Example 3-6 shows a way to obtain an alternate configuration for the same
three-position motion as in Example 3-5. And, the method to be shown in Example 3-8
allows you to specify the location of the fixed pivots in advance and then find the locations
of the moving pivots on link 3 that are compatible with those fixed pivots.

A DEXAMPLE 3-6

Coupler Output - Three Positions with Complex Displacement - Alternate Attachment Points
for Moving Pivots. (Motion Generation)

Problem: Design a fourbar linkage to move the link CD shown from position C(D; to CoDo
and then to position C3D3. Use different moving pivots than CD. Find the fixed
pivot locations.

Solution: (See Figure 3-9.)

1 Draw the link CD in its three desired positions C{D, CoD,, C3D3, in the plane as done in
Example 3-5.

2 Define new attachment points £ and F that have a fixed relationship between C| Dy and EF
within the link. Now use E{F to define the three positions of the link.
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13

(a) Alternate attachment points

Link 4

(b) Three-position synthesis

\()/\Biz// Link1=0,04
ke

./

(c) Completed Watt sixbar linkage with motor at Og
FIGURE 3-9

Three-position synthesis with alternate moving pivots
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3 Draw construction lines from point E; to E, and from point £, to E3.

4 Bisect line E|E, and line EFE3 and extend the perpendicular bisectors until they intersect.
Label the intersection O,.

5 Repeat steps 2 and 3 for lines F'{F; and FF3. Label the intersection Oy .
6 Connect O with Ej and call it link 2. Connect O4 with F and call it link 4.
7 Line E{Fy is link 3. Line OOy is link 1.

8 Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this
case.

9 Construct a model and check its function to be sure it can get from initial to final position
without encountering any limit (toggle) positions. If not, change locations of points £ and F'
and repeat steps 3 to 9.

10 Construct a driver dyad acting on link 2 according to the method in Example 3-4.

Note that the shift of the attachment points on link 3 from CD to EF has resulted in
a shift of the locations of fixed pivots O; and Oy4 as well. Thus they may now be in more
favorable locations than they were in Example 3-5. It is important to understand that any
two points on link 3, such as E and F, can serve to fully define that link as a rigid body,
and that there is an infinity of such sets of points to choose from. While points C and D
have some particular location in the plane that is defined by the linkage’s function, points
E and F can be anywhere on link 3, thus creating an infinity of solutions to this problem.

The solution in Figure 3-9 is different from that of Figure 3-8 in several respects. It
avoids the toggle positions and thus can be driven by a dyad acting on one of the rockers, as
shown in Figure 3-9c, and the transmission angles are better. However, the toggle positions
of Figure 3-8 might actually be of value if a self-locking feature were desired. Recognize
that both of these solutions are to the same problem, and the solution in Figure 3-8 is just a
special case of that in Figure 3-9. Both solutions may be useful. Line CD moves through
the same three positions with both designs. There is an infinity of other solutions to this
problem waiting to be found as well. Input the file FO3-09c.6br to program LINKAGES to
see Example 3-6.

Three-Position Synthesis with Specified Fixed Pivots

Even though one can probably find an acceptable solution to the three-position problem
by the methods described in the two preceding examples, it can be seen that the designer
will have little direct control over the location of the fixed pivots since they are one of the
results of the synthesis process. The fixed pivots need to be located where the ground
plane of the package exists and is accessible. It would be preferable if we could define the
fixed pivot locations, as well as the three positions of the moving link, and then synthesize
the appropriate attachment points, £ and F, to the moving link to satisfy these more re-
alistic constraints. The principle of inversion can be applied to this problem. Examples
3-5 and 3-6 showed how to find the required fixed pivots for three chosen positions of the
moving pivots. Inverting this problem allows specification of the fixed pivot locations and
determination of the required moving pivots for those locations. The first step is to find
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the three positions of the ground plane that correspond to the three desired coupler posi-
tions. This is done by inverting the linkage™ as shown in Figure 3-10 and Example 3-7.

A DEXAMPLE 3-7

Three-Position Synthesis with Specified Fixed Pivots — Inverting the Three-Position Motion
Synthesis Problem

Problem: Invert a fourbar linkage which moves the link CD shown from position C{D; to
C»D, and then to position C3D3. Use specified fixed pivots O, and Oy.

Solution: First find the inverted positions of the ground link corresponding to the three cou-
pler positions specified. (See Figure 3-10.)

1 Draw the link CD in its three desired positions C;D{, C,D,, C3D3, in the plane, as was done
in Example 3-5 and as shown in Figure 3-10a.

2 Draw the ground link 0,0y in its desired position in the plane with respect to the first coupler
position C{Dq as shown in Figure 3-10a.

3 Draw construction arcs from point C; to O, and from point D, to O, whose radii define the
sides of triangle C;0,D, . This defines the relationship of the fixed pivot O, to the coupler
line CD in the second coupler position as shown in Figure 3-10b.

4 Draw construction arcs from point C, to O4 and from point D; to O4 to define the triangle
C»,04D;. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second
coupler position as shown in Figure 3-10b.

5 Now transfer this relationship back to the first coupler position C|Dy so that the ground plane
position 0'20;t bears the same relationship to C1D; as 0,04 bore to the second coupler
position C>D». In effect, you are sliding C; along the dotted line C»-C| and D, along the
dotted line D,-D. By doing this, we have pretended that the ground plane moved from 0,0,
to olzo;t instead of the coupler moving from C|D| to CoD,. We have inverted the problem.

6 Repeat the process for the third coupler position as shown in Figure 3-10d and transfer the third
relative ground link position to the first, or reference, position as shown in Figure 3-10e.

7 The three inverted positions of the ground plane that correspond to the three desired coupler
positions are labeled 0,04, 0,0, , and 0,0, and have also been renamed EFy, ExF>, and
EsF3 as shown in Figure 3-10f. These correspond to the three coupler positions shown in
Figure 3-10a. Note that the original three lines C; D, C;D5, and C3D5 are not now needed for
the linkage synthesis.

We can use these three new lines EF, EyF5, and E3F5 to find the attachment points
GH (moving pivots) on link 3 that will allow the desired fixed pivots O, and Oy to be used
for the three specified output positions. In effect we will now consider the ground link
0,04 1o be a coupler moving through the inverse of the original three positions, find the
“ground pivots” GH needed for that inverted motion, and put them on the real coupler in-
stead. The inversion process done in Example 3-7 and Figure 3-10 has swapped the roles
of coupler and ground plane. The remaining task is identical to that done in Example 3-5
and Figure 3-8. The result of the synthesis then must be reinverted to obtain the solution.

15

* This method and example
were supplied by Mr. Hom-
er D. Eckhardt, Consulting
Engineer, Lincoln, MA.
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(a) Original coupler three-position (b) Position of the ground plane relative
problem with specified pivots to the second coupler position
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(c) Transferring second ground plane position (d) Position of the ground plane relative
to reference location at first position to the third coupler position
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(e) Transferring third ground plane position (f) The three inverted positions of the ground plane
to reference location at first position corresponding to the original coupler position

FIGURE 3-10

Inverting the three-position motion synthesis problem
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ZDEXAMPLE 3-8

Finding the Moving Pivots for Three Positions and Specified Fixed Pivots

Problem: Design a fourbar linkage to move the link CD shown from position C1Dj to CoD,

and then to position C3D3. Use specified fixed pivots O and O4. Find the required
moving pivot locations on the coupler by inversion.

Solution: Using the inverted ground link positions E|F|, E»F», and E3F3 found in Example

10

11

3-7, find the fixed pivots for that inverted motion, then reinvert the resulting link-
age to create the moving pivots for the three positions of coupler CD that use the
selected fixed pivots O, and Oy as shown in Figure 3-10a (see also Figure 3-11%).

Start with the inverted three positions in the plane as shown in Figures 3-10f and 3-11a. Lines
EF1, E>F», and E5F3 define the three positions of the inverted link to be moved.

Draw construction lines from point £; to E; and from point E; to E3.

Bisect line E|E, and line E»E3 and extend the perpendicular bisectors until they intersect.
Label the intersection G.

Repeat steps 2 and 3 for lines F|F» and F,F3. Label the intersection H.
Connect G with £/ and call it link 2. Connect H with F| and call it link 4. See Figure 3-11b.
In this inverted linkage, line E1F is the coupler, link 3. Line GH is the “ground” link 1.

We must now reinvert the linkage to return to the original arrangement. Line EF] is really
the ground link 0,04, and GH is really the coupler. Figure 3-11c shows the reinversion of
the linkage in which points G and H are now the moving pivots on the coupler and EF'| has
resumed its real identity as ground link O,04. (See Figure 3-10e)

Figure 3-11d reintroduces the original line C|D in its correct relationship to line 0,04 at the
initial position as shown in the original problem statement in Figure 3-10a. This forms the
required coupler plane and defines a minimal shape of link 3.

The angular motions required to reach the second and third positions of line CD shown in
Figure 3-11e are the same as those defined in Figure 3-11b for the linkage inversion. The angle
F1HF, in Figure 3-11b is the same as angle H;04H in Figure 3-11e and F,HF3 is the same as
angle H,O4H3. The angular excursions of link 2 retain the same relationship between Figure
3-11b and e as well. The angular motions of links 2 and 4 are the same for both inversions as
the link excursions are relative to one another.

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in
this case provided that the linkage has mobility among all three positions. This solution is a
non-Grashof linkage.

Construct a model and check its function to be sure it can get from initial to final position
without encountering any limit (toggle) positions. In this case links 3 and 4 reach a toggle
position between points H; and Hy. This means that this linkage cannot be driven from link
2 as it will hang up at that toggle position. It must be driven from link 4.

117

* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.
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(a) Construction to find "fixed" pivots G and H

(c) Reinvert to obtain the result (d) Re-place line CD on link

View as a video
http://www.designof-

machinery.com/DOM/
three_positions.avi

(e) The three positions (link 4 driving CCW) > -7

FIGURE 3-11

Constructing the linkage for three positions with specified fixed pivots by inversion
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By inverting the original problem, we have reduced it to a more tractable form that
allows a direct solution by the general method of three-position synthesis from Examples
3-5 and 3-6.

Position Synthesis for More Than Three Positions

It should be obvious that the more constraints we impose on these synthesis problems, the
more complicated the task becomes to find a solution. When we define more than three
positions of the output link, the difficulty increases substantially.

FOUR-POSITION SYNTHESIS  does not lend itself as well to manual graphical solu-
tions, though Halll3! does present one approach. Probably the best approach is that used by
Sandor and Erdman[4! and others, which is a quantitative synthesis method and requires a
computer to execute it. Briefly, a set of simultaneous vector equations is written to repre-
sent the desired four positions of the entire linkage. These are then solved after some free
choices of variable values are made by the designer. The computer program LINCAGES!!]
by Erdman and Gustafson and the program KINSYN[3] by Kaufman, both provide a con-
venient and user-friendly computer graphics-based means to make the necessary design
choices to solve the four-position problem. See Chapter 5 for further discussion.

3.5 QUICK-RETURN MECHANISMS View the lecture video (55:10)"

Many machine design applications have a need for a difference in average velocity be-
tween their “forward” and “return” strokes. Typically some external work is being done
by the linkage on the forward stroke, and the return stroke needs to be accomplished as
rapidly as possible so that a maximum of time will be available for the working stroke.
Many arrangements of links will provide this feature. The only problem is to synthesize
the right one!

Fourbar Quick-Return

The linkage synthesized in Example 3-1 is perhaps the simplest example of a fourbar
linkage design problem (see Figure 3-4, and program LINKAGES disk file F03-04.4br).
It is a crank-rocker that gives two positions of the rocker with equal time for the forward
stroke and the return stroke. This is called a non-quick-return linkage, and it is a special
case of the more general quick-return case. The reason for its non-quick-return state is
the positioning of the crank center O, on the chord B;B; extended. This results in equal
angles of 180 degrees being swept out by the crank as it drives the rocker from one ex-
treme (toggle position) to the other. If the crank is rotating at constant angular velocity,
as it will tend to when motor driven, then each 180 degree sweep, forward and back, will
take the same time interval. Try this with your model from Example 3-1 by rotating the
crank at uniform velocity and observing the rocker motion and velocity.

If the crank center O; is located off the chord BB, extended, as shown in Figure 3-1b
and Figure 3-12, then unequal angles will be swept by the crank between the toggle posi-
tions (defined as colinearity of crank and coupler). Unequal angles will give unequal time,
when the crank rotates at constant velocity. These angles are labeled o and 3 in Figure
3-12. Their ratio o/f is called the time ratio (Tk) and defines the degree of quick return
of the linkage. Note that the term quick return is arbitrarily used to describe this kind of
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linkage. If the crank is rotated in the opposite direction, it will be a quick-forward mecha-
nism. Given a completed linkage, it is a trivial task to estimate the time ratio by measuring
or calculating the angles o and . It is a more difficult task to design the linkage for a
chosen time ratio. Halll provides a graphical method to synthesize a quick-return Grashof
fourbar. To do so we need to compute the values of o an 3 that will give the specified
time ratio. We can write two equations involving o and 3 and solve them simultaneously.

TR:% a+B=360 - TR:% 3.1

We also must define a construction angle,
8=[180-0] =|180—] (32)
which will be used to synthesize the linkage.
,@DEXAMPLE 3-9
Fourbar Crank-Rocker Quick-Return Linkage for Specified Time Ratio
Problem: Redesign Example 3-1 to provide a time ratio of 1:1.25 with 45° output rocker
motion.

Solution: (See Figure 3-12.)

1 Draw the output link O4B in both extreme positions, in any convenient location, such that the
desired angle of motion, 0y, is subtended.

2 Calculate o, 3, and 8 using equations 3.1 and 3.2. In this example, o. = 160°, = 200°, & = 20°.
3 Draw a construction line through point B at any convenient angle.

4 Draw a construction line through point B, at angle & from the first line.

5 Label the intersection of the two construction lines O,.

6 The line 0,04 now defines the ground link.

7  Find lengths of crank and coupler by measuring O,B1 and O,B; and simultaneously solving:
Coupler + crank = 0,B;
Coupler — crank = 0,B>

or you can construct the crank length by swinging an arc centered at O, from B to cut line
0,B, extended. Label that intersection By ’. The line BB’ is twice the crank length. Bisect
this line segment to measure crank length OA ;.

8 Calculate the Grashof condition. If non-Grashof, repeat steps 3 to 8 with O, farther from O,.
9 Make a model of the linkage and articulate it to check its function.

10 Check the transmission angles.
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Ground

(a) Construction of a quick-return (b) The finished linkage in its
Grashof crank-rocker two toggle positions

FIGURE 3-12

Quick-return Grashof fourbar crank-rocker linkage

This method works well for time ratios down to about 1:1.5. Beyond that value the
transmission angles become poor, and a more complex linkage is needed. Input the file
F03-12.4br to program LINKAGES to see Example 3-9.

Sixbar Quick-Return

Larger time ratios, up to about 1:2, can be obtained by designing a sixbar linkage. The
strategy here is to first design a fourbar drag link mechanism that has the desired time
ratio between its driver crank and its driven or “dragged” crank, and then add a dyad
(twobar) output stage, driven by the dragged crank. This dyad can be arranged to have
either a rocker or a translating slider as the output link. First the drag link fourbar will be
synthesized; then the dyad will be added.”

A DEXAMPLE 3-10

Sixbar Drag Link Quick-Return Linkage for Specified Time Ratio.
Problem: Provide a time ratio of 1:1.4 with 90° rocker motion.
Solution: (See Figure 3-13.)

1 Calculate o and [ using equations 3.1. For this example, oo = 150° and § = 210°.

121




122

DESIGN OF MACHINERY 6ed CHAPTER 3

2 Draw a line of centers XX at any convenient location.

3 Choose a crank pivot location O, on line XX. Draw an axis YY perpendicular to XX through
0.

4 Draw a circle of convenient radius O,A about center O,.
5 Lay out angle o with vertex at O,, symmetrical about quadrant one.

6 Label points A| and A at the intersections of the lines subtending angle o and the circle of
radius O,A .

7 Set the compass to a convenient radius AC long enough to cut XX in two places on either side
of O, when swung from both A; and Aj. Label the intersections C; and C,.

8 The line O»A is the driver crank, link 2, and line A|C] is the coupler, link 3.
9 The distance C|C; is twice the driven (dragged) crank length. Bisect it to find fixed pivot O4.
10 The line 0,04 now defines the ground link. Line O4C] is the driven crank, link 4.

11 Calculate the Grashof condition. If non-Grashof, repeat steps 7 to 11 using a smaller radius
in step 7.

12 Invert the method of Example 3-1 to create the output dyad using XX as the chord and 0O4C;
as the driving crank. The points Bj and B, will lie on line XX and be spaced apart a distance
204C. The pivot Og will lie on the perpendicular bisector of BBy, at a distance from line XX
which subtends the specified output rocker angle.

13 Check the transmission angles.

This linkage provides a quick return when a constant-speed motor is attached to link
2. Link 2 will go through angle o while link 4 (which is dragging the output dyad along)
goes through the first 180 degrees, from position C; to C». Then, while link 2 completes
its cycle through B degrees, the output stage will complete another 180 degrees from C; to
C;. Since angle B is greater than o, the forward stroke takes longer. Note that the chordal
stroke of the output dyad is twice the crank length O4C|. This is independent of the angular
displacement of the output link which can be tailored by moving the pivot Og closer to or
farther from the line XX.

The transmission angle at the joint between link 5 and link 6 will be optimized if the
fixed pivot Og s placed on the perpendicular bisector of the chord BB, as shown in Figure
3-13a. If a translating output is desired, the slider (link 6) will be located on line XX and
will oscillate between B| and B; as shown in Figure 3-13b. The arbitrarily chosen size of
this or any other linkage can be scaled up or down, simply by multiplying all link lengths
by the same scale factor. Thus a design made to arbitrary size can be fit to any package.
Input the file FO3-13a.6br to program LINKAGES to see Example 3-10 in action.

CRANK-SHAPER QUICK RETURN A commonly used mechanism capable of large
time ratios is shown in Figure 3-14. It is often used in metal shaper machines to provide
a slow cutting stroke and a quick-return stroke when the tool is doing no work. It is the
inversion #2 of the crank-slider mechanism as was shown in Figure 2-15b. Itis very easy to
synthesize this linkage by simply moving the rocker pivot O4 along the vertical centerline
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Link 5

Note: Link 5 must couple to links 3 and 4 at point C ‘ Y

(a) Rocker output sixbar drag link quick-return mechanism

ey

Link 6 LinkS\/’/‘
) Mo A
Link 5 2
X s
K
By Z
Link 1
Link 4

|

Note: Link 5 must couple to links 3 and 4 at point C Y

(b) Slider output sixbar drag link quick-return mechanism

FIGURE 3-13

Synthesizing a sixbar drag link quick-return mechanism
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* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.

 In 1876, Kempel72!
proved his theory that a
linkage with only revolute
(pin) and prismatic (slider)
joints can be found that will
trace any algebraic curve
of any order or complex-
ity. But the linkage for a
particular curve may be
excessively complex, may
be unable to traverse the
curve without encountering
limit (toggle) positions, and
may even need to be disas-
sembled and reassembled
to reach all points on the
curve. See the discussion
of circuit and branch defects
in Section 4.12. Neverthe-
less this theory points to
the potential for interesting
motions from the coupler
curve.

§ http://www.designofma-
chinery.com/DOM/Cou-
pler_Curves.mp4

% The algebraic equation
of the coupler curve is
sometimes referred to as a
“tricircular sextic” referring
respectively to its circularity
of 3 (it can contain 3 loops)
and its degree of 6. See
Chapter 5 for its equation.
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Link 1

Link 3

View as a video
http://www.designof-
machinery.com/DOM/
quick_return_shaper.avi

FIGURE 3-14

Crank-shaper quick-return mechanism

0,04 while keeping the two extreme positions of link 4 tangent to the circle of the crank,
until the desired time ratio (0. /) is achieved. Note that the angular displacement of link
4 is then defined as well. Link 2 is the input and link 6 is the output.

Depending on the relative lengths of the links, this mechanism is known as a Whit-
worth or crank-shaper mechanism. If the ground link is the shortest, then it will behave
as a double-crank linkage, or Whitworth mechanism, with both pivoted links making full
revolutions as shown in Figure 2-13b. If the driving crank is the shortest link, then it will
behave as a crank-rocker linkage, or crank-shaper mechanism, as shown in Figure 3-14."
They are the same inversion as the slider block is in complex motion in each case.

3.6 COUPLER CURVES View the lecture video (59:57)%

A coupler is the most interesting link in any linkage. It is in complex motion, and thus
points on the coupler can have path motions of high degree.” In general, the more links,
the higher the degree of curve generated, where degree here means the highest power of
any term in its equation. A curve (function) can have up fo as many intersections (roots)
with any straight line as the degree of the function. The fourbar crank-slider has, in
general, fourth-degree coupler curves; the pin-jointed fourbar, up to sixth degree.™ The
geared fivebar, the sixbar, and more complicated assemblies all have still higher-degree
curves. Wunderlich[7b] derived an expression for the highest degree m possible for a
coupler curve of a mechanism of # links connected with only revolute joints.

m=2.3"21) (33)

This gives, respectively, degrees of 6, 18, and 54 for the fourbar, sixbar, and eightbar
linkage coupler curves. Specific points on their couplers may have degenerate curves of


http://www.designofmachinery.com/DOM/Coupler_Curves.mp4
http://www.designofmachinery.com/DOM/quick_return_shaper.avi

GRAPHICAL LINKAGE SYNTHESIS

lower degree as, for example, the pin joints between any crank or rocker and the coupler
that describes second-degree curves (circles). The parallelogram fourbar linkage has

degenerate coupler curves, all of which are circles.

All linkages that possess one or more “floating” coupler links will generate coupler
curves. It is interesting to note that these will be closed curves even for non-Grashof link-
ages. The coupler (or any link) can be extended infinitely in the plane. Figure 3-15T shows
a fourbar linkage with its coupler extended to include a large number of points, each of
which describes a different coupler curve. Note that these points may be anywhere on the
coupler, including along line AB. There is, of course, an infinity of points on the coupler,

each of which generates a different curve.

Coupler curves can be used to generate quite useful path motions for machine design
problems. They are capable of approximating straight lines and large circle arcs with re-
mote centers. Recognize that the coupler curve is a solution to the path generation problem
described in Section 3.2. It is not by itself a solution to the motion generation problem,
since the attitude or orientation of a line on the coupler is not predicted by the information
contained in the path. Nevertheless it is a very useful device, and it can be converted to a
parallel motion generator by adding two links as described in the next section. As we shall
see, approximate straight-line motions, dwell motions, and more complicated symphonies
of timed motions are available from even the simple fourbar linkage and its infinite variety
of often surprising coupler curve motions.

Cusps AND CRUNODES  come in a variety of shapes which can be crudely catego-
rized as shown in Figure 3-16. There is an infinite range of variation between these gen-
eralized shapes. Interesting features of some coupler curves are the cusp and crunode.
A cusp is a sharp point on the curve which has the useful property of instantaneous zero
velocity. Note that the acceleration at the cusp is not zero. The simplest example of a curve
with a cusp is the cycloid curve which is generated by a point on the rim of a wheel rotat-
ing on a flat surface. When the point touches the surface, it has the same (zero) velocity
as all points on the stationary surface, provided there is pure rolling and no slip between

Link 3

o
O
Oooooooooooo
o

. . (] o o o
View a video Ui > o ° O QARD

. o o o o
http://www.designot- 70, ° " SN

. (o] O (e} O

machinery.com/DOM/ o , o " 5 CiiEe B

coupler_curve_atlas.avi OO ol il o 5 JE 3 N

o © o
OO ® o % O & (o]
A o o . o = o )

(o]
(o] . > O v > O . L k
>O~b\0 Y e / ink 4
04
Link 2 ~__ o~
FIGURE 3-15

The fourbar coupler extended to include a large number of coupler points
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(a) Pseudo ellipse
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(d) Crescent

(e) Single straight

(f) Double straight

FIGURE 3-16 Part 1

A "Cursory Catalog" of
coupler curve shapes
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Cusp

(g) Teardrop
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(h) Scimitar
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(i) Umbrella
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) Triple cusp

Crunode

(k) Figure eight
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(1) Triple loop

FIGURE 3-16 Part 2

A “Cursory Catalog” of
coupler curve shapes

* These figures are pro-
vided as animated AVI and
Working Model files. Its
filename is the same as the
figure number.
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the elements. Anything attached to a cusp point will come smoothly to a stop along one
path and then accelerate smoothly away from that point on a different path. The cusp’s
feature of zero velocity has value in such applications as transporting, stamping, and feed-
ing processes. A crunode is a double point that occurs where the coupler curve crosses
itself creating multiple loops. The two slopes (tangents) at a crunode give the point two
different velocities, neither of which is zero in contrast to the cusp. In general, a fourbar
coupler curve can have up to three real double points,T which may be a combination of
cusps and crunodes as can be seen in Figure 3-16.

The Hrones and Nelson (H&N) atlas of fourbar coupler curves-183 is a useful refer-

ence which can provide the designer with a starting point for further design and analysis.
It contains about 7000 coupler curves and defines the linkage geometry for each of its
Grashof crank-rocker linkages. Figure 3-17a” reproduces a page from this book and the
entire atlas is reproduced as PDF files in the books downloadable files. The H&N atlas
is logically arranged, with all linkages defined by their link ratios, based on a unit length
crank. The coupler is shown as a matrix of fifty coupler points for each linkage geometry,
arranged ten to a page. Thus each linkage geometry occupies five pages. Each page con-
tains a schematic “key” in the upper right corner which defines the link ratios.

Figure 3-17b shows a “fleshed out” linkage drawn on top of the H&N atlas page to
illustrate its relationship to the atlas information. The double circles in Figure 3-17a define
the fixed pivots. The crank is always of unit length. The ratios of the other link lengths
to the crank are given on each page. The actual link lengths can be scaled up or down to
suit your package constraints and this will affect the size but not the shape of the coupler
curve. Any one of the ten coupler points shown can be used by incorporating it into a
triangular coupler link. The location of the chosen coupler point can be scaled from the
atlas and is defined within the coupler by the position vector R whose constant angle ¢ is
measured with respect to the line of centers of the coupler. The H&N coupler curves are
shown as dashed lines. Each dash station represents five degrees of crank rotation. So, for
an assumed constant crank velocity, the dash spacing is proportional to path velocity. The
changes in velocity and the quick-return nature of the coupler path motion can be clearly
seen from the dash spacing.

One can peruse this linkage atlas resource and find an approximate solution to virtu-
ally any path generation problem. Then one can take the tentative solution from the atlas
to a CAE resource such as the LINKAGES program and further refine the design, based on
the complete analysis of positions, velocities, and accelerations provided by the program.
The only data needed for the LINKAGES program are the four link lengths and the location
of the chosen coupler point with respect to the line of centers of the coupler link as shown
in Figure 3-17. These parameters can be changed within program LINKAGES to alter and
refine the design. Input the file FO3-17b.4br to program LINKAGES to animate the linkage
shown in that figure. Also see the video “Coupler Curves” for more information.

An example of an application of a fourbar linkage to a practical problem is shown in
Figure 3-18" which is a movie camera (or projector) film advance mechanism. Point O, is

T Actually, the fourbar coupler curve has 9 double points of which 6 are usually imaginary. However, Fichter
and Hunt(8%! point out that some unique configurations of the fourbar linkage (i.e., thombus parallelograms
and those close to this configuration) can have up to 6 real double points which they denote as comprising 3
“proper” and 3 “improper” real double points. For non-special-case Grashof fourbar linkages with minimum
transmission angles suitable for engineering applications, only the 3 “proper” double points will appear.
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View as a video
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designofmachinery.
com/DOM/coupler_

curve_atlas.avi
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(@) A page from the Hrones and Nelson atlas of fourbar coupler curves

Hrones, J. A., and G. L. Nelson (1951). Analysis of the Fourbar Linkage
MIT Technology Press, Cambridge, MA. Reprinted with permission.
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(b) Creating the linkage from the information in the atlas

FIGURE 3-17*

Selecting a coupler curve and constructing the linkage from the Hrones and Nelson atlas
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* The Hrones and Nelson
atlas is long out of print, but
a reproduction is included
as downloadable PDF files
with this book. A video,
”Coupler Curves” is also
provided that describes

the curve’s properties and
shows how to extract the
information from the atlas
and use it to design a practi-
cal mechanism.

Also, a similar volume to
the H&N book called the
Atlas of Linkage Design
and Analysis Vol. 1: The
Four Bar Linkage is avail-
able from Saltire Software,
9725 SW Gemini Drive,
Beaverton, OR 97005,
(800) 659-1874.

There is also a web site at

) .
{/engi o o
ccapdf/fecca.htm created by
Prof. Thomas J. Thompson
of Cedarville College,
which provides an interac-
tive coupler curve atlas that
allows the link dimensions
to be changed and gener-
ates the coupler curves on
screen.[21]

Program LINKAGES,
included with this text, also
allows rapid investigation
of coupler curve shapes.
For any defined linkage
geometry, the program
draws the coupler curve.
By shift-clicking the mouse
pointer on the coupler point
and dragging it around, you
will see the coupler curve
shape instantly update for
each new coupler point
location. When you release
the mouse button, the new
linkage geometry is pre-
served for that curve.
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View as a video
http://www.designof-
machinery.com/DOM/

camera.avi
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FIGURE 3-18

Movie camera film-
advance mechanism.
(Input the file FO3-18.4br to
program LINKAGES to
animate this linkage.

* These figures are pro-
vided as animated AVI and
Working Model files. Its
filename is the same as the
figure number.
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the crank pivot which is motor driven at constant speed. Point Oy is the rocker pivot, and
points A and B are the moving pivots. Points A, B, and C define the coupler where C is the
coupler point of interest. A movie is really a series of still pictures, each “frame” of which
is projected for a small fraction of a second on the screen. Between each picture, the film
must be moved very quickly from one frame to the next while the shutter is closed to blank
the screen. The whole cycle takes only 1/24 of a second. The human eye’s response time
is too slow to notice the flicker associated with this discontinuous stream of still pictures,
S0 it appears to us to be a continuum of changing images.

The linkage shown in Figure 3-18" is cleverly designed to provide the required mo-
tion. A hook is cut into the coupler of this fourbar Grashof crank-rocker at point C which
generates the coupler curve shown. The hook will enter one of the sprocket holes in the
film as it passes point F;. Notice that the direction of motion of the hook at that point
is nearly perpendicular to the film, so it enters the sprocket hole cleanly. It then turns
abruptly downward and follows a crudely approximate straight line as it rapidly pulls the
film downward to the next frame. The film is separately guided in a straight track called
the “gate.” The shutter (driven by another linkage from the same driveshaft at O,) is closed
during this interval of film motion, blanking the screen. At point F, there is a cusp on the
coupler curve which causes the hook to decelerate smoothly to zero velocity in the verti-
cal direction, and then as smoothly accelerate up and out of the sprocket hole. The abrupt
transition of direction at the cusp allows the hook to back out of the hole without jarring
the film, which would make the image jump on the screen as the shutter opens. The rest
of the coupler curve motion is essentially “wasting time” as it proceeds up the back side, to
be ready to enter the film again to repeat the process. Input the file FO3-18.4br to program
LINKAGES to animate the linkage shown in that figure.

Some advantages of using this type of device for this application are that it is very
simple and inexpensive (only four links, one of which is the frame of the camera), is ex-
tremely reliable, has low friction if good bearings are used at the pivots, and can be reliably
timed with the other events in the overall camera mechanism through common shafting
from a single motor. There are a myriad of other examples of fourbar coupler curves used
in machines and mechanisms of all kinds.

One other example of a very different application is that of the automobile suspen-
sion (Figure 3-19). Typically, the up and down motions of the car’s wheels are controlled
by some combination of planar fourbar linkages, arranged in duplicate to provide three-
dimensional control as described in Section 3.2. Only a few manufacturers currently use
a true spatial linkage in which the links are not arranged in parallel planes. In all cases
the wheel assembly is attached to the coupler of the linkage assembly, and its motion is
along a set of coupler curves. The orientation of the wheel is also of concern in this case,
so this is not strictly a path generation problem. By designing the linkage to control the
paths of multiple points on the wheel (tire contact patch, wheel center, etc.—all of which are
points on the same coupler link extended), motion generation is achieved as the coupler has
complex motion. Figure 3-19a” and b* shows parallel planar fourbar linkages suspending
the wheels. The coupler curve of the wheel center is nearly a straight line over the small
vertical displacement required. This is desirable as the idea is to keep the tire perpendicular
to the ground for best traction under all cornering and attitude changes of the car body. This
is an application in which a non-Grashof linkage is perfectly acceptable, as full rotation of
the wheel in this plane might have some undesirable results and surprise the driver. Limit
stops are of course provided to prevent such behavior, so even a Grashof linkage could be
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y View as a video
http://www.designof-
- X machinery.com/

DOM/suspension.avi

Springs

(a) Fourbar planar linkages are duplicated in parallel planes,
displaced in the z direction, behind the links shown
shock absorber
(spring not shown)

link 1 is the car frame (not shown)

link 7 is the wheel hub

links 2, 3, 4, 5, and 6 connect 1 to 7

(c) Multilink spatial linkage used
to control rear wheel motion

(b) Fourbar linkage used to
control wheel motion

FIGURE 3-19 Copyright © 2018 Robert L. Norton: All Rights Reserved

Linkages used in automotive chassis suspensions

used. The springs support the weight of the vehicle and provide a fifth, variable-length
“force link” that stabilizes the mechanism as was described in Section 2.15. The function
of the fourbar linkage is solely to guide and control the wheel motions. Figure 3-19¢ shows
a true spatial linkage of seven links (including frame and wheel) and nine joints (some of
which are ball-and-socket joints) used to control the motion of the rear wheel. These links
do not move in parallel planes but rather control the three-dimensional motion of the coupler
which carries the wheel assembly.

Symmetrical-Linkage Coupler Curves View the lecture video (05:48)%

When a fourbar linkage’s geometry is such that the coupler and rocker are the same length
pin-to-pin, all coupler points that lie on a circle centered on the coupler-rocker joint with
radius equal to the coupler length will generate symmetrical coupler curves. Figure 3-20
shows such a linkage, its symmetrical coupler curve, and the locus of all points that will
give symmetrical curves. Using the notation of that figure, the criterion for coupler curve
symmetry can be stated as:
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* The nine independent pa-
rameters of a fourbar link-
age are: four link lengths,
two coordinates of the cou-
pler point with respect to
the coupler link, and three
parameters that define the
location and orientation of
the fixed link in the global
coordinate system.
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FIGURE 3-20 e

A fourbar linkage with a symmetrical coupler curve

AB=0,B=BP (3.4)

A linkage for which equation 3.4 is true is referred to as a symmetrical fourbar link-
age. The axis of symmetry of the coupler curve is the line O4P drawn when the crank O,A
and the ground link 0,0y are colinear-extended (i.e., 8y = 180°). Symmetrical coupler
curves prove to be quite useful as we shall see in the next several sections. Some give good
approximations to circular arcs and others give very good approximations to straight lines
(over a portion of the coupler curve).

In the general case, nine parameters are needed to define the geometry of a nonsym-
metrical fourbar linkage with one coupler point.” We can reduce this to five as follows.
Three parameters can be eliminated by fixing the location and orientation of the ground
link. The four link lengths can be reduced to three parameters by normalizing three link
lengths to the fourth. The shortest link (the crank, if a Grashof crank-rocker linkage)
is usually taken as the reference link, and three link ratios are formed as Ly/L,, L3/L,,
L4/Ly, where Ly = ground, L, = crank, L3 = coupler, and L, = rocker length as shown
in Figure 3-20. Two parameters are needed to locate the coupler point: the distance from
a convenient reference point on the coupler (either B or A in Figure 3-20) to the coupler
point P, and the angle that the line BP (or AP) makes with the line of centers of the coupler
AB (either & or y). Thus, with a defined ground link, five parameters that will define the
geometry of a nonsymmetrical fourbar linkage (using point B as the reference in link 3 and
the labels of Figure 3-20) are: L;/L;, L3/Ly, L4/Ly, BP/L,, and y. Note that multiplying
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these parameters by a scaling factor will change the size of the linkage and its coupler curve
but will not change the coupler curve’s shape.

A symmetrical fourbar linkage with a defined ground link needs only three pa-
rameters to define its geometry because three of the five nonsymmetrical parameters are
now equal per equation 3.4: L3/Ly, = L4/Ly = BP/L,. Three possible parameters to de-
fine the geometry of a symmetrical fourbar linkage in combination with equation 3.4 are
then: L{/Lj, L3/L,, and y. Having only three parameters to deal with rather than five
greatly simplifies an analysis of the behavior of the coupler curve shape when the link-
age geometry is varied. Other relationships for the isosceles-triangle coupler are shown
in Figure 3-20. Length AP and angle 6 are needed for input of the linkage geometry to
program LINKAGES.

Kotal?! did an extensive study of the characteristics of coupler curves of symmetrical
fourbar linkages and mapped coupler curve shape as a function of the three linkage pa-
rameters defined above. He defined a three-dimensional design space to map the coupler
curve shape. Figure 3-21 shows two orthogonal plane sections taken through this design
space for particular values of link ratios,” and Figure 3-22 shows a schematic of the design
space. Though the two cross sections of Figure 3-21 show only a small fraction of the
information in the 3-D design space of Figure 3-22, they nevertheless give a sense of the
way that variation of the three linkage parameters affects the coupler curve shape. Used in
combination with a linkage design tool such as program LINKAGES, these design charts can
help guide the designer in choosing suitable values for the linkage parameters to achieve
a desired path motion.

GEARED FIVEBAR COUPLER CURVES (Figure 3-23) are more complex than the
fourbar variety. Because there are three additional, independent design variables in a
geared fivebar compared to the fourbar (an additional link ratio, the gear ratio, and the
phase angle between the gears), the coupler curves can be of higher degree than those of
the fourbar. This means that the curves can be more convoluted, having more cusps and
crunodes (loops). In fact, if the gear ratio used is noninteger, the input link will have to
make a number of revolutions equal to the factor necessary to make the ratio an integer

before the coupler curve pattern will repeat. The Zhang, Norton. Hammond (ZNH) Atlas of

Geared FiveBar Mechanisms (GFBM)!'%1 shows typical coupler curves for these linkages
limited to symmetrical geometry (e.g., link 2 = link 5 and link 3 = link 4) and gear ratios
of £1 and 2. A page from the ZNH atlas is reproduced in Figure 3-23. Additional pages
are in Appendix E, and the entire atlas is downloadable. Each page shows the family of
coupler curves obtained by variation of the phase angle for a particular set of link ratios
and gear ratio. A key in the upper right corner of each page defines the ratios: o0 = link
3/link 2, B =link 1/1link 2, A = gear 5/ gear 2. Symmetry defines links 4 and 5 as noted
above. The phase angle ¢ is noted on the axes drawn at each coupler curve and can be seen
to have a significant effect on the resulting coupler curve shape.

This reference atlas is intended to be used as a starting point for a geared fivebar
linkage design. The link ratios, gear ratio, and phase angle can be input to the program
FIVEBAR and then varied to observe the effects on coupler curve shape, velocities, and ac-
celerations. Asymmetry of links can be introduced, and a coupler point location other than
the pin joint between links 3 and 4 defined within the LINKAGES program as well. Note
that program LINKAGES expects the gear ratio to be in the form gear 2/gear 5 which is the
inverse of the ratio A in the ZNH atlas.
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T Adapted from materi-
als provided by Professor
Sridhar Kota, University of
Michigan.
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+ Dijksman and Smals [25]
state that an inverted crank-
slider linkage does not
possess any cognates.
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37 COGNATES View the lecture video (18:12)"

It sometimes happens that a good solution to a linkage synthesis problem will be found
that satisfies path generation constraints but has the fixed pivots in inappropriate loca-
tions for attachment to the available ground plane or frame. In such cases, the use of a
cognate to the linkage may be helpful. The term cognate was used by Hartenberg and
Denavit[!1] to describe a linkage, of different geometry, which generates the same coupler
curve. Samuel Roberts (1875)[23] and Chebyschev (1878) independently discovered the
theorem which now bears their names:

Roberts-Chebyschev Theorem

Three different planar, pin-jointed fourbar linkages will trace identical coupler curves.

Hartenberg and Denavit!!1] presented extensions of this theorem to the crank-slider and
the sixbar linkages:

Two different planar crank-slider linkages will trace identical coupler curves.t

The coupler-point curve of a planar fourbar linkage is also described by the joint of a dyad
of an appropriate sixbar linkage.

Figure 3-24a shows a fourbar linkage for which we want to find the two cognates. The
first step is to release the fixed pivots O4 and Op. While holding the coupler stationary,
rotate links 2 and 4 into colinearity with the line of centers (A;B) of link 3 as shown in
Figure 3-24b. We can now construct lines parallel to all sides of the links in the original
linkage to create the Cayley diagram!24] in Figure 3-24c. This schematic arrangement
defines the lengths and shapes of links 5 through 10 which belong to the cognates. All
three fourbars share the original coupler point P and will thus generate the same path mo-
tion on their coupler curves.

In order to find the correct location of the fixed pivot O, from the Cayley diagram,
the ends of links 2 and 4 are returned to the original locations of the fixed pivots O4 and
Op as shown in Figure 3-25a. The other links will follow this motion, maintaining the
parallelogram relationships between links, and fixed pivot O¢ will then be in its proper
location on the ground plane. This configuration is called a Roberts diagram—three
fourbar linkage cognates which share the same coupler curve.

The Roberts diagram can be drawn directly from the original linkage without resort
to the Cayley diagram by noting that the parallelograms which form the other cognates
are also present in the Roberts diagram and the three couplers are similar triangles. It is
also possible to locate fixed pivot O¢ directly from the original linkage as shown in Figure
3-25a. Construct a similar triangle to that of the coupler, placing its base (AB) between
Oy4 and Op. Its vertex will be at Oc.

The ten-link Roberts configuration (Cayley’s nine plus the ground) can now be articu-
lated up to any toggle positions, and point P will describe the original coupler path which
is the same for all three cognates. Point O¢ will not move when the Roberts linkage is
articulated, proving that it is a ground pivot. The cognates can be separated as shown in
Figure 3-25b and any one of the three linkages used to generate the same coupler curve.
Corresponding links in the cognates will have the same angular velocity as the original
mechanism as defined in Figure 3-25.
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(a) Original fourbar linkage
(cognate #1)

(b) Align links 2 and 4 with coupler
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Cognate #2
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(c) Construct lines parallel to all sides of the original fourbar linkage to create cognates
FIGURE 3-24

Cayley diagram to find cognates of a fourbar linkage
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View as a video
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com/DOM/roberts_diagram-
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(@) Return links 2 and 4 to their fixed pivots O, and Op.
Point O ¢ will assume its proper location.

Oc Oc¢
AA1B1P ~ AAyPB, ~ APA3Bs

View as a video By ¢

http://www.designofmachinery. i‘\
com/DOM/roberts_diagram- \
separate_conjugate.avi

Cognate #2

Cognate #1

(b) Separate the three cognates.
Point P has the same path motion in each cognate.

FIGURE 3-25

Roberts diagram of three fourbar cognates
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Nolle[!2! reports on work by Luckl!3] (in German) that defines the character of all
fourbar cognates and their transmission angles. If the original linkage is a Grashof crank-
rocker, then one cognate will be also, and the other will be a Grashof double-rocker. The
minimum transmission angle of the crank-rocker cognate will be the same as that of the
original crank-rocker. If the original linkage is a Grashof double-crank (drag link), then
both cognates will be also and their minimum transmission angles will be the same in pairs
that are driven from the same fixed pivot. If the original linkage is a non-Grashof triple-
rocker, then both cognates are also triple-rockers.

These findings indicate that cognates of Grashof linkages do not offer improved trans-
mission angles over the original linkage. Their main advantages are the different fixed pivot
location and different velocities and accelerations of other points in the linkage. While the
coupler path is the same for all cognates, its velocities and accelerations will not generally
be the same since each cognate’s overall geometry is different.

When the coupler point lies on the line of centers of link 3, the Cayley diagram de-
generates to a group of colinear lines. A different approach is needed to determine the
geometry of the cognates. Hartenberg and Denavit[! 1] give the following set of steps to
find the cognates in this case. The notation refers to Figure 3-26.

I Fixed pivot O lies on the line of centers O40p extended and divides it in the same
ratio as point P divides AB (i.e., Oc/ O4 = PA / AB).

2 Line O4A; is parallel to A{P and A,P is parallel to O4A1, locating A,.
3 Line OpAj is parallel to BjP and A3P is parallel to OgB], locating As.

4 Joint B, divides line AP in the same ratio as point P divides AB. This defines the first
cognate O4A7B,0 .

5 Joint B3 divides line A3P in the same ratio as point P divides AB. This defines the
second cognate OgA3B30c.

The three linkages can then be separated and each will independently generate the
same coupler curve. The example chosen for Figure 3-26 is unusual in that the two cog-
nates of the original linkage are identical, mirror-image twins. These are special linkages
and will be discussed further in the next section.

Program LINKAGES will automatically calculate the two cognates for any linkage con-
figuration input to it. The velocities and accelerations of each cognate can then be calcu-
lated and compared. The program also draws the Cayley diagram for the set of cognates.
Input the file FO3-24.4br to program LINKAGES to display the Cayley diagram of Figure
3-24. Input the files COGNATE1.4br, COGNATE2.4br, and COGNATE3.4br to animate and
view the motion of each cognate shown in Figure 3-25. Their coupler curves (at least those
portions that each cognate can reach) will be seen to be identical.

Parallel Motion View the lecture video (21:50)°

It is quite common to want the output link of a mechanism to follow a particular path
without any rotation of the link as it moves along the path. Once an appropriate path mo-
tion in the form of a coupler curve and its fourbar linkage have been found, a cognate of
that linkage provides a convenient means to replicate the coupler path motion and provide
curvilinear translation (i.e., no rotation) of a new output link that follows the coupler path.
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(a) A fourbar linkage and its coupler curve (b) Cognates of the fourbar linkage

FIGURE 3-26

Finding cognates of a fourbar linkage when its coupler point lies on the line of centers of the coupler

This is referred to as parallel motion. Its design is best described with an example, the
Another common method  result of which will be a Watt I sixbar linkage® that incorporates the original fourbar and

used to obtain parallel mo- parts of one of its cognates. The method shown is as described in Soni.[14]
tion is to duplicate the same
linkage (i.e., the identical
cognate), connect them with
a parallelogram loop, and
remove two redundant links.
This results in an eight-link
mechanism. See Figure

A DEXAMPLE 3-11

Parallel Motion from a Fourbar Linkage Coupler Curve.

P3-7 for an example of such Problem: Design a sixbar linkage for parallel motion over a fourbar linkage coupler path.
a mechanism. The method . .
shown here using a different Solution: (See Figure 3-27.)

cognate results in a simpler

linkage, but either approach Figure 3-27a shows the chosen Grashof crank-rocker fourbar linkage and its coupler curve.

will accomplish the desired The first step is to create the Roberts diagram and find its cognates as shown in Figure 3-27b.

goal. The Roberts linkage can be found directly, without resort to the Cayley diagram, as described
above. The fixed center O is found by drawing a triangle similar to the coupler triangle A|B| P
with base 040p.

2 One of a crank-rocker linkage’s cognates will also be a crank-rocker (here cognate #3) and the
other is a Grashof double-rocker (here cognate #2). Discard the double-rocker, keeping the
links numbered 2, 3, 4, 5, 6, and 7 in Figure 3-27b. Note that links 2 and 7 are the two cranks,
and both have the same angular velocity. The strategy is to coalesce these two cranks on a
common center (O4) and then combine them into a single link.

3 Draw the line gq parallel to line 04O and through point Op as shown in Figure 3-27c.
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Method to construct a Watt-l sixbar that replicates a coupler path with curvilinear translation (parallel motion)
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* Another example of

a parallel motion sixbar
linkage is the Chebyschev
straight-line linkage of Fig-
ure P2-5a. It is a combina-
tion of two of the cognates
shown in Figure 3-26,
assembled by the method
described in Example 3-11
and shown in Figure 3-27.
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4 Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines O4O¢ and
qq until the free end of link 7 is at point O4. The free end of link 5 will then be at point Op
and point P on link 6 will be at P’.

5 Add anew link of length 04O between P and P’. This is the new output link 8, and all points
on it describe the original coupler curve as depicted at points P, P’, and P” in Figure 3-27c.

6 The mechanism in Figure 3-27c has 8 links, 10 revolute joints, and one DOF. When driven
by either crank 2 or 7, all points on link 8 will duplicate the coupler curve of point P.

7 This is an overclosed linkage with redundant links. Because links 2 and 7 have the same an-
gular velocity, they can be joined into one link as shown in Figure 3-27d. Then link 5 can be
removed and link 6 reduced to a binary link supported and constrained as part of the loop 2, 6,
8, 3. The resulting mechanism is a Watt-I sixbar (see Figure 2-16.) with the links numbered
1,2,3,4,6,and 8. Link 8 is in curvilinear translation and follows the coupler path of the
original point pF

Geared Fivebar Cognates of the Fourbar

Chebyschev also discovered that any fourbar coupler curve can be duplicated with a
geared fivebar mechanism whose gear ratio is plus one, meaning that the gears turn
with the same speed and direction. The geared fivebar’s link lengths will be different from
those of the fourbar but can be determined directly from the fourbar. Figure 3-28a shows
the construction method, as described by Hallll5], to obtain the geared fivebar which will
give the same coupler curve as a fourbar. The original fourbar is O4A B Opg (links 1, 2, 3,
4). The fivebar is O4A>PB,0p (links 1, 5, 6, 7, 8). The two linkages share only the coupler
point P and fixed pivots O4 and Op. The fivebar is constructed by simply drawing link 6
parallel to link 2, link 7 parallel to link 4, link 5 parallel to AP, and link 8 parallel to B P.

Fivebar o)
linkage Az
o BZ
(a) Construction of equivalent gear (b) Resulting geared
fivebar linkage fivebar linkage
View as a video View as a video
http://www.designofmachinery. http://www.designofmachinery.com/
com/DOM/geared_5bar.avi DOM/geared_5bar-separate.avi

FIGURE 3-28

A geared fivebar linkage cognate of a fourbar linkage
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A three-gear set is needed to couple links 5 and 8 with a ratio of plus one (gear 5 and
gear 8 have the same diameter and have the same direction of rotation, due to the idler
gear), as shown in Figure 3-28b. Link 5 is attached to gear 5, as is link 8 to gear 8. This
construction technique may be applied to each of the three fourbar cognates, yielding three
geared fivebars (which may or may not be Grashof). The three fivebar cognates can actually
be seen in the Roberts diagram. Note that in the example shown, a non-Grashof triple-
rocker fourbar yields a Grashof fivebar, which can be motor driven. This conversion to a
GFBM linkage could be an advantage when the “right” coupler curve has been found on a
non-Grashof fourbar linkage, but continuous output through the fourbar’s toggle positions
is needed. Thus we can see that there are at least seven linkages which will generate the
same coupler curve, three fourbars, three GFBMs and one or more sixbars.

Program LINKAGES calculates the equivalent geared fivebar configuration for any
fourbar linkage and displays the result. The file FO3-28a.4br can be opened in LINKAGES
to animate the linkage shown in Figure 3-28a. Then also open the file FO3-28b.5br in
program LINKAGES to see the motion of the equivalent geared fivebar linkage. Note that
the original fourbar linkage is a triple-rocker, so it cannot reach all portions of the coupler
curve when driven from one rocker. But its geared fivebar equivalent linkage can make
a full revolution and traverses the entire coupler path. Program LINKAGES will create the
equivalent GFBM of any fourbar linkage.

3.8 STRAIGHT-LINE MECHANISMS View the lecture video (9:21)3

A very common application of coupler curves is the generation of approximate straight
lines. Straight-line linkages have been known and used since the time of James Watt in
the 18th century. Many kinematicians, such as Watt, Chebyschev, Peaucellier, Kempe,
Evans, and Hoeken (as well as others) over a century ago, developed or discovered either
approximate or exact straight-line linkages, and their names are associated with those de-
vices to this day. Figure 3-29 shows a collection of the better-known ones, most of which
are also provided as animated files.

The first recorded application of a coupler curve to a motion problem is that of Watt’s
straight-line linkage, patented in 1784, and shown in Figure 3-29a. Watt devised several
straight-line linkages to guide the long-stroke piston of his steam engine at a time when
metal-cutting machinery that could create a long, straight guideway did not yet exist.”
Figure 3-29b shows the Watt linkage used to guide the steam engine piston.” This triple-
rocker linkage is still used in automobile suspension systems to guide the rear axle up and
down in a straight line as well as in many other applications.

Richard Roberts (1789-1864) (not to be confused with Samuel Roberts of the cog-
nates) discovered the Roberts straight-line linkage shown in Figure 3-29c. This is a
triple-rocker. Other values for AP and BP are possible, but the ones shown give the most
accurate straight line with a deviation from straight of only 0.04% (0.0004 dec%) of the
length of link 2 over the range of 49° < 6, < 69°.

Chebyschev (1821-1894) also devised many straight-line linkages. His well-known
Grashof double-rocker is shown in Figure 3-29d.**
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§ http://www.designof-
machinery.com/DOM/
Straight_Line_Linkages.
mp4

* In Watt’s time, straight-
line motion was dubbed
“parallel motion” though
we use that term somewhat
differently now. James
Watt is reported to have
told his son, “Though I am
not over anxious after fame,
yet I am more proud of the
parallel motion than of any
other mechanical invention
I have made.” Quoted in
Muirhead, J. P. (1854).
The Origin and Progress of
the Mechanical Inventions
of James Watt, Vol. 3,
London, p. 89.

© Note also in Figure 3-29b
(and in Figure P2-10) that
the driven dyad (links 7
and 8 in Figure 3-29b or 3
and 4 in Figure P2-10) are
a complicated arrangement
of sun and planet gears with
the planet axle in a circular
track. These have the same
effect as the simpler crank
and connecting rod. Watt
was forced to invent the

sun and planet drive to get
around James Pickard’s
1780 patent on the crank-
shaft and connecting rod.

** View the video http:/
www.designofmachinery.
com/DOM/Boot_Tester.
mp4 to see an example
of an application of the
Chebyschev linkage.
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(d) A Chebyschev straight-line linkage®

FIGURE 3-29 Part 1

(e) Hoeken straight-line linkage

Some common and classic approximate straight-line linkages
* The link ratios of the Chebyschev straight-line linkage shown have been reported differently by various authors. The ratios used here are
those first reported (in English) by Kempe (1877). But Kennedy (1893) describes the same linkage, reportedly “as Chebyschev demonstrated
it at the Vienna Exhibition of 1893 as having the link ratios 1, 3.25, 2.5, 3.25. We will assume the earliest reference by Kempe to be correct
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. (g) Evans approx. straight-line linkage #2
L3=1
Li=1 2 View as a video
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(j) Peaucellier exact straight-line linkage

AB=CD AD=BC 0,04=0,E . .
View as a video

AOy/AB=AE/AD=PC/BC=m 0<m<1 C http://www.designofmachin-
. . . o ery.com/DOM/peaucellier.avi
(i) Hart inversor exact straight-line linkage

FIGURE 3-29 Part 2
Approximate and exact straight-line linkages

The Hoeken linkagel!6! in Figure 3-29¢ is a Grashof crank-rocker, which has a sig-
nificant practical advantage. In addition, the Hoeken linkage has the feature of very nearly
constant velocity along the center portion of its straight-line motion. Itis interesting to note
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* Hainl17] (1967) cites the
Hoeken referencel 101 (1926)
for this linkage. Nolle [18]
(1974) shows the Hoeken
mechanism but refers to it
as a Chebyschev crank-

3 rocker without noting its
cognate relationship to the

Chebyschev double-rocker,
which he also shows. Itis
certainly conceivable that
Chebyschev, as one of the
creators of the theorem

of cognate linkages,

would have discovered the
“Hoeken” cognate of his
own double-rocker. How-
ever, this author has been
unable to find any mention
of its genesis in the English
literature other than the
ones cited here.

 Peaucellier was a French
army captain and military
engineer who first proposed
his “compas compose” or
compound compass in 1864
but received no immediate
recognition therefor. (He
later received the “Prix
Montyon” from the Institute
of France.) The British-
American mathematician
James Sylvester reported
on it to the Atheneum

Club in London in 1874.
He observed that “The
perfect parallel motion of
Peaucellier looks so simple
and moves so easily that
people who see it at work
almost universally express
astonishment that it waited
so long to be discovered.”
A model of the Peaucellier
linkage was passed around
the table. The famous
physicist Sir William
Thomson (later Lord Kel-
vin) refused to relinquish

it, declaring, “No. I have
not had nearly enough of
it—it is the most beautiful
(footnotes cont’d. opp. page)

DESIGN OF MACHINERY 6ed CHAPTER 3

that the Hoeken and Chebyschev linkages are cognates of one another.” The cognates
shown in Figure 3-26 are the Chebyschev and Hoeken linkages.

Figure 3-29f shows one of Evans’ many straight-line linkages. Itis a triple rocker with
a range of input link motion of about 27 to 333° between toggle positions. The portion of
coupler curve shown is between 150° and 210° and has a very accurate straight line with
a deviation of only 0.25% (0.0025 dec%) of the crank length.

Figure 3-29g shows a second Evans straight-line linkage, also a triple rocker with a
range of input link motion of about —81 to +81° between toggle positions. The portion of
coupler curve shown is between —40 and 40° and has a long but less accurate straight line
with a deviation of 1.5% (0.015 dec%) of the crank length.

Figure 3-29h shows a third Evans straight-line linkage. It is a triple rocker with a
range of input link motion of about —75 to +75° between toggle positions. The portion
of coupler curve shown is all that is reachable between those limits and has two straight
portions. The remainder of the coupler curve is a mirror image making a figure eight.

Some of these straight-line linkages are provided as built-in examples in program
LINKAGES. AVI and Working Model files of many of them are also. Artobolevsky[20]
shows seven Watt, seven Chebyschev, five Roberts, and sixteen Evans straight-line linkages
in his Vol. I that include the ones shown here. A quick look in the downloadable Hrones
and Nelson atlas of coupler curves will reveal a large number of coupler curves with ap-
proximate straight-line segments. They are quite common.

To generate an exact straight line with only pin joints requires more than four links.
At least six links and seven pin joints are needed to generate an exact straight line with a
pure revolute-jointed linkage, i.e., a Watt or Stephenson sixbar. Figure 3-29i shows the
Hart inversor exact straight-line sixbar mechanism. A symmetrical geared fivebar
mechanism (Figure 2-21), with a gear ratio of —1 and a phase angle of wradians, will also
generate an exact straight line at the joint between links 3 and 4. But this linkage is merely
a transformed Watt sixbar obtained by replacing one binary link with a higher joint in the
form of a gear pair. This geared fivebar’s straight-line motion can be seen by opening the
file STRAIGHT.SBR in program LINKAGES, and animating the linkage.

Peaucellier’ (1864) discovered an exact straight-line mechanism of eight bars and
six pins, shown in Figure 3-29j.i Links 5, 6, 7, 8 form a rhombus of convenient size. Links
3 and 4 can be any convenient but equal lengths. When 0,0, exactly equals O,A, point
C generates an arc of infinite radius, i.e., an exact straight line. By moving the pivot O,
left or right from the position shown, changing only the length of link 1, this mechanism
will generate true circle arcs with radii much larger than the link lengths. Other exact
straight-line linkages exist as well. See Artobolevsky.[20]

Designing Optimum Straight-Line Fourbar Linkages

Given the fact that an exact straight line can be generated with six or more links using only
revolute joints, why use a fourbar approximate straight-line linkage at all? One reason
is the desire for simplicity in machine design. The pin-jointed fourbar is the simplest
possible 1-DOF mechanism. Another reason is that a very good approximation to a true
straight line can be obtained with just four links, and this is often “good enough” for the
needs of the machine being designed. Manufacturing tolerances will, after all, cause
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any mechanism’s performance to be less than ideal. As the number of links and joints
increases, the probability that an exact straight-line mechanism will deliver its theoretical
performance in practice is obviously reduced.

There is a real need for straight-line motions in machinery of all kinds, especially
in automated production machinery. Many consumer products such as cameras, film,
toiletries, razors, and bottles are manufactured, decorated, or assembled on sophisticated
and complicated machines that contain a myriad of linkages and cam-follower systems.
Traditionally, most of this kind of production equipment has been of the intermittent-
motion variety. This means that the product is carried through the machine on a linear or
rotary conveyor that stops for any operation to be done on the product, and then indexes the
product to the next workstation where it again stops for another operation to be performed.
The forces, torque, and power required to accelerate and decelerate the large mass of the
conveyor (which is independent of, and typically larger than, the mass of the product)
severely limit the speeds at which these machines can be run.

Economic considerations continually demand higher production rates, requiring
higher speeds or additional, expensive machines. This economic pressure has caused
many manufacturers to redesign their assembly equipment for continuous conveyor mo-
tion. When the product is in continuous motion in a straight line and at constant velocity,
every workhead that operates on the product must be articulated to chase the product and
match both its path and its constant velocity while performing the task. These factors have
increased the need for straight-line mechanisms, including ones capable of near-constant
velocity over the straight-line path.

A (near) perfect straight-line motion is easily obtained with a fourbar crank-slider
mechanism. Ball-bushings (Figure 2-33) and ball-slides (Figure 2-38) are available
commercially at moderate cost and make this a reasonable, low-friction solution to the
straight-line path guidance problem. But, the cost and lubrication problems of a properly
guided crank-slider mechanism are still greater than those of a pin-jointed fourbar linkage.
Moreover, a crank-slider block has a velocity profile that is nearly sinusoidal (with some
harmonic content) and is far from having constant velocity over any part of its motion.
(See Section 3.10 for a modified crank-slider mechanism that has nearly constant slider
velocity for part of its stroke.)

The Hoeken-type linkage offers an optimum combination of straightness and near
constant velocity and is a crank-rocker, so it can be motor driven. Its geometry, dimen-
sions, and coupler path are shown in Figure 3-30. This is a symmetrical fourbar linkage.
Since the angle 7y of line BP is specified and L3 = L4 = BP, only two link ratios are needed
to define its geometry, say Ly / L, and L3 / L. If the crank L, is driven at constant angular
velocity m», the linear velocity V, along the straight-line portion Ax of the coupler path will
be very close to constant over a significant portion of crank rotation Ap.

A study was done to determine the errors in straightness and constant velocity of the
Hoeken-type linkage over various fractions AP of the crank cycle as a function of the link
ratios.[1%1 The structural error in position (i.e., straightness) £g and the structural error in
velocity €y are defined using notation from Figure 3-30 as:
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thing I have ever seen in
my life.”  Source: Strandh,
S. (1979). A History of the
Machine. A&W Publishers:
New York, p. 67.

¥ This Peaucillier link-
age figure is provided as
animated AVI and Working
Model files. Its filename
is the same as the figure
number.
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View as a video . |‘—m Ax _’I S
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FIGURE 3-30

Hoekens linkage geometry: linkage shown with P at center of straight-line portion of path

n (cyi )— MINT, (cyi )

Ec =
s AXx .
3.5
* See reference [19] for the n n 3.5
derivation of equations 3.5. e = MAX (in )_ MIN— (in )
|4 I7x
TABLE 3-1 Link Ratios for Smallest Attainable Errors in Straightness and Velocity for Various Crank-
Angle Ranges of a Hoeken-Type Fourbar Approximate Straight-Line Linkage [19]
Range of Motion Optimized for Straightness Optimized for Constant Velocity
AR © % of Maximum AV Vy Link Ratios Maximu m Ac, Vy Link Ratios
(deg) (deg) cycle ACy % % Loy Lil, L3/l Ax/L, | AVx % % (Loy) L/, L3/l Ax/L

20 170 5.6% | 0.00001% 0.38% 1725 2975 3963 0.601 | 0.006% 0.137% 1374 2.075 2.613 0.480
40 160 1M1% | 0.00004% 153% 1717 2950 3.925 1193 0.038% 0.274% 1361 2.050 2575 0.950
60 150 16.7% | 0.00027% 3.48% 1702 2900 3.850 1763 | 0.106% 0.387% 1347 2.025 2.538 141
80 140 22.2% | 0.001% 6.27% 1679 2825 3738 2299 | 0.340% 0.503% 1319 1975 2463 1845
100 130 27.8% | 0.004% 9.90% 1646 2725 3588 2790 | 0.910% 0.640% 1.275 1900 2.350 2.237
120 120 33.3% | 0.010% 14.68% 161  2.625 3438 3.238 1.885% 0.752% 1229 1825 2.238 2.600
140 110 38.9% | 0.023% 20.48% 1565 2500 3.250 3.623 3.327% 0.888% 1178 1750 2125 2.932
160 100 44.4% | 0.047% 2715% 1504 2350 3.025 3.933 5.878% 1.067% 1124 1675 2.013 3.232
180 90 50.0%| 0.096%  35.31% 1436 2200 2.800 4.181 9.299% 1.446% 1.045 1575 1.863 3.456
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The structural errors were computed separately for each of nine crank-angle ranges
AP from 20° to 180°. Table 3-1 shows the link ratios that give the smallest possible struc-
tural error in either position or velocity over values of Af from 20° to 180°. Note that
one cannot attain optimum straightness and minimum velocity error in the same linkage.
However, reasonable compromises between the two criteria can be achieved, especially
for smaller ranges of crank angle. The errors in both straightness and velocity increase as
longer portions of the curve are used (larger AB). The use of Table 3-1 to design a straight-
line linkage will be shown with an example.

2 DEXAMPLE 3-12

Designing a Hoeken-Type Straight-Line Linkage

Problem: A 100-mm-long straight-line motion is needed over 1/3 of the total cycle (120° of
crank rotation). Determine the dimensions of a Hoeken-type linkage that will

(a) Provide minimum deviation from a straight line. Determine its maximum de-
viation from constant velocity.

(b) Provide minimum deviation from constant velocity. Determine its maximum
deviation from a straight line.

Solution: (See Figure 3-30 and Table 3-1.)

1 Part (a) requires the most accurate straight line. Enter Table 3-1 at the 6th row which is for a
crank-angle duration AB of the required 120°. The 4th column shows the minimum possible
deviation from straight to be 0.01% of the length of the straight-line portion used. For a 100-
mm length the absolute deviation will then be 0.01 mm (0.0004 in). The 5th column shows
that its velocity error will be 14.68% of the average velocity over the 100-mm length. The
absolute value of this velocity error of course depends on the speed of the crank.

2 The linkage dimensions for part (a) are found from the ratios in columns 7, 8, and 9. The crank
length required to obtain the 100-mm length of straight line Ax is:

from Table 3-1: AX 3.238
L,
100 @
[=-2% _109mm _ 5688 mm
3.238 3.23
The other link lengths are then:
. L _
from Table 3-1: =2.625
L,
(b)
L, =2.625L, =2.625(30.88 mm) = 81.07 mm
Ly
from Table 3-1: — =3.438
2
©

L, = 3.438L, =3.438(30.88 mm) =106.18 mm
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The complete linkage is then L| = 81.07, L, =30.88, L3 = Ly = BP = 106.18 mm. The nominal
velocity V. of the coupler point at the center of the straight line (6, = 180°) can be found from
the factor in the 6th column which must be multiplied by the crank length L, and the crank
angular velocity o, in radians per second (rad/sec).

3 Part (b) requires the most accurate velocity. Again enter Table 3-1 at the 6th row which is for a
crank angle duration A of the required 120°. The 10th column shows the minimum possible
deviation from constant velocity to be 1.885% of the average velocity V. over the length of the
straight-line portion used. The 11th column shows the deviation from straight to be 0.752%
of the length of the straight-line portion used. For a 100-mm length the absolute deviation in
straightness for this optimum constant velocity linkage will then be 0.75 mm (0.030 in).

4 Link lengths for this mechanism are found in the same way as was done in step 2 except that
the link ratios 1.825, 2.238, and 2.600 from columns 13, 14, and 15 are used. The result is
Ly =70.19, L, = 38.46, L3y = Ly = BP = 86.08 mm. The nominal velocity V, of the coupler
point at the center of the straight line (6, = 180°) can be found from the factor in the 12th
column which must be multiplied by the crank length L, and the crank angular velocity ®;
in rad/sec.

5 The first solution (step 2) gives an extremely accurate straight line over a significant part of
the cycle. but its 15% deviation in velocity would probably be unacceptable if that factor were
considered important. The second solution (step 3) gives less than 2% deviation from constant
velocity, which may be viable for a design application. Its 3/4% deviation from straightness,
while much greater than the first design, may be acceptable in some situations.

3.9 DWELL MECHANISMS View the lecture video (35:36)°

A common requirement in machine design problems is the need for a dwell in the output
motion. A dwell is defined as zero output motion for some nonzero input motion. In
other words, the motor keeps going, but the output link stops moving. Many produc-
tion machines perform a series of operations which involve feeding a part or tool into a
workspace, and then holding it there (in a dwell) while some task is performed. Then the
part must be removed from the workspace, and perhaps held in a second dwell while the
rest of the machine “catches up” by indexing or performing some other tasks. Cams and
followers (Chapter 8) are often used for these tasks because it is trivially easy to create a
dwell with a cam. But there is always a trade-off in engineering design, and cams have
their problems of high cost and wear as described in Section 2.18.

It is also possible to obtain dwells with “pure” linkages of only links and pin joints,
which have the advantage over cams of low cost and high reliability. Dwell linkages are
more difficult to design than are cams with dwells. Linkages will usually yield only an
approximate dwell but will be much cheaper to make and maintain than cams. Thus they
may be worth the effort.

Single-Dwell Linkages

There are two usual approaches to designing single-dwell linkages. Both result in sixbar
mechanisms, and both require first finding a fourbar with a suitable coupler curve. A
dyad is then added to provide an output link with the desired dwell characteristic. The
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first approach to be discussed requires the design or definition of a fourbar with a coupler
curve that contains an approximate circle arc portion, where the “arc” occupies the desired
portion of the input link (crank) cycle designated as the dwell. An atlas of coupler curves
is invaluable for this part of the task. Symmetrical coupler curves are also well suited to
this task, and the information in Figure 3-21 can be used to find them.

ZDEXAMPLE 313

Single-Dwell Mechanism with Only Revolute Joints

Problem: Design a sixbar linkage for 90° rocker motion over 300 crank degrees with dwell
for the remaining 60°.

Solution: (See Figure 3-31.)

1 Search the H&N atlas for a fourbar linkage with a coupler curve having an approximate (pseu-
do) circle arc portion which occupies 60° of crank motion (12 dashes). The chosen fourbar is
shown in Figure 3-31a.

2 Lay out this linkage to scale including the coupler curve and find the approximate center of the
chosen coupler curve pseudo-arc using graphical geometric techniques. To do so, draw the
chord of the arc and construct its perpendicular bisector as shown in Figure 3-31b. The center
will lie on this bisector. Find it by striking arcs with your compass point on the bisector while
adjusting the radius to get the best fit to the coupler curve. Label the arc center D.

3 Your compass should now be set to the approximate radius of the coupler arc. This will be the
length of link 5 which is to be attached at the coupler point P.

4 Trace the coupler curve with the compass point, while keeping the compass pencil lead on the
perpendicular bisector, and find the extreme location along the bisector that the compass lead
will reach. Label this point E.

5 The line segment DE represents the maximum displacement that a link of length PD, attached
at P, will reach along the bisector.

6 Construct a perpendicular bisector of the line segment DE, and extend it in a convenient direc-
tion.

7 Locate fixed pivot Og on the bisector of DE such that lines OgD and OgE subtend the desired
output angle, in this example, 90°.

8 Draw link 6 from D (or E ) through Og and extend to any convenient length. This is the output
link which will dwell for the specified portion of the crank cycle.

9 Check the transmission angles.

10 Make a model of the linkage and articulate it to check its function.

This linkage dwells because, during the time that the coupler point P is traversing the
pseudo-arc portion of the coupler curve, the other end of link 5, attached to P and the same
length as the arc radius, is essentially stationary at its other end, which is the arc center.
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FIGURE 3-31
Design of a sixbar single-dwell mechanism with rocker output or slider output, using a pseudo-arc coupler curve
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However the dwell at point D will have some “jitter”” or oscillation, due to the fact that D
is only an approximate center of the pseudo-arc on the sixth-degree coupler curve. When
point P leaves the arc portion, it will smoothly drive link 5 from point D to point E, which
will in turn rotate the output link 6 through its arc as shown in Figure 3-31c.” Note that
we can have any angular displacement of link 6 we desire with the same links 2 to 5, as
they alone completely define the dwell aspect. Moving pivot Og left and right along the
bisector of line DE will change the angular displacement of link 6 but not its timing. In
fact, a slider block could be substituted for link 6 as shown in Figure 3-31d,* and linear
translation along line DE with the same timing and dwell at D will result. Input the file
F03-31c.6br to program LINKAGES and animate to see the linkage of Example 3-13 in
motion. The dwell in the motion of link 6 can be clearly seen in the animation, including
the jitter due to its approximate nature.

Double-Dwell Linkages

It is also possible, using a fourbar coupler curve, to create a double-dwell output mo-
tion. One approach is the same as that used in the single-dwell of Example 3-13. Now
a coupler curve is needed which has fwo approximate circle arcs of the same radius but
with different centers, both convex or both concave. A link 5 of length equal to the radius
of the two arcs will be added such that it and link 6 will remain nearly stationary at the
center of each of the arcs, while the coupler point traverses the circular parts of its path.
Significant motion of the output link 6 will occur only when the coupler point is between
those arc portions. Higher-order linkages, such as the geared fivebar, can be used to
create multiple-dwell outputs by a similar technique since they possess coupler curves
with multiple, approximate circle arcs. See the built-in example double-dwell linkage in
program LINKAGES for a demonstration of this approach.

A second approach uses a coupler curve with two approximate straight-line segments
of appropriate duration. If a pivoted slider block (link 5) is attached to the coupler at this
point, and link 6 is allowed to slide in link 5, it only remains to choose a pivot Og at the
intersection of the straight-line segments extended. The result is shown in Figure 3-32.
While block 5 is traversing the “straight-line” segments of the curve, it will not impart any
angular motion to link 6. The approximate nature of the fourbar straight line causes some
jitter in these dwells also.

A DEXAMPLE 3-14

Double-Dwell Mechanism.

Problem: Design a sixbar linkage for 80° rocker output motion over 20 crank degrees with
dwell for 160°, return motion over 140° and second dwell for 40°.

Solution: (See Figure 3-32.)

1 Search the H&N atlas for a linkage with a coupler curve having two approximate straight-line
portions. One should occupy 160° of crank motion (32 dashes), and the second 40° of crank
motion (8 dashes). This is a wedge-shaped curve as shown in Figure 3-32a.

2 Lay out this linkage to scale including the coupler curve and find the intersection of two tangent
lines colinear with the straight segments. Label this point Og.
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152
3 Design link 6 to lie along these straight tangents, pivoted at Og. Provide a slot in link 6 to
accommodate slider block 5 as shown in Figure 3-32b.

4 Connect slider block 5 to the coupler point P on link 3 with a pin joint. The finished sixbar is
shown in Figure 3-32c.

5 Check the transmission angles.

3
. It should be apparent that these linkage dwell mechanisms have some disadvantages.
Besides being difficult to synthesize, they give only approximate dwells which have some

(a) Fourbar coupler curve
with two "straight" segments

, ~
N
/ N
AN
I N\
R
f o\
/ L
(& — 1
| E— | )
T I
(b) Slider dyad for double-dwell
L':‘
View as a video r/ L@ -
http://www.designofmachinery.com/ \ 0, / Q TK ‘ ;L ) /’
DOM/double_dwell_six-bar.avi AN / P |
. o - Dwell
position
Og 5
4
(c) Complete sixbar
double-dwell linkage L
04

FIGURE 3-32
Double-dwell sixbar linkage
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jitter on them. Also, they tend to be large for the output motions obtained, so do not
package well. The acceleration of the output link can also be very high as in Figure 3-32,
when block 5 is near pivot Og. (Note the large angular displacement of link 6 resulting
from a small motion of link 5.) Nevertheless they may be of value in situations where a
completely stationary dwell is not required, and the low cost and high reliability of a link-
age are important factors. Program LINKAGES has both single-dwell and double-dwell
example linkages built in.

310 OTHER USEFUL LINKAGES

There are many practical machine design problems that can be solved with clever linkage
design. One of the best references for these mechanisms is by Hain.[?2] Another use-
ful catalog of linkages is the four volumes of Artobolevsky.l20] We will present a few
examples from these that we find useful. Some are fourbar linkages, others are Watt’s or
Stephenson’s sixbars, or eightbar linkages. Artobolevsky provides link ratios, but Hain
does not. Hain describes their graphical construction, so the dimensions of his linkages
shown here are approximate, obtained by scaling his drawings.

Constant Velocity Piston Motion

The fourbar crank-slider linkage is probably the most frequently used linkage in machin-
ery. Every internal combustion (IC) engine and reciprocating compressor has as many
of them as it has cylinders. Manufacturing machinery uses them to obtain straight-line
motions. In most cases this simple linkage is completely adequate for the application,
converting continuous rotary input to oscillating straight-line output. One limitation is
lack of control over the slider’s velocity profile when the crank is driven with constant
angular velocity. Altering the link ratios (crank vs. coupler) has a second-order effect on
the shape of the slider’s velocity and acceleration curves’ but it will always be fundamen-
tally a sinusoidal motion. In some cases, a constant or near constant velocity is needed
on either the forward or backward stroke of the slider. An example is a piston pump for
metering fluids whose flow rate needs to be constant during the delivery stroke. A direct
solution is to use a cam to drive the piston with a constant velocity motion rather than use
a crank-slider linkage. However, Hain[22! provides a pure linkage solution to this problem
that adds a drag-link fourbar stage to the crank-slider with the drag-link geometry chosen
to modulate the sinusoidal slider motion to be approximately constant velocity.

Figure 3-33 shows the result, which is effectively a Watt sixbar. Constant angular
velocity is input to link 2 of the drag-link stage. It causes its “output’ link 4 to have a non-
constant angular velocity that repeats each cycle. This varying angular velocity becomes
the “input” to the crank-slider stage 4-5-6 whose input link is now link 4. Thus, the drag
link’s velocity oscillation effectively “corrects” or modulates the slider velocity to be close
to constant on the forward stroke as plotted in the figure. The deviation from constant ve-
locity is < 1% over 240° < 0, < 270° and <= 4% over 190° < 6, < 316°. Its velocity on the
return stroke must therefore vary to a greater degree than in the unmodulated linkage. This
is an example of the effect of cascading linkages. Each stage’s output function becomes
the input to the next, and the end result is their mathematical combination, analogous to
adding terms to a series. See the TKSolver file Dragslider.tkw.
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F This topic is addressed in
depth in Chapter 13.



154

DESIGN OF MACHINERY 6ed CHAPTER 3

FIGURE 3-33

Approximate constant velocity, drag link driven slider-crank sixbar mechanism Adapted from Hain[22]

* The linkages shown in
Figures 3-34 and 3-35 can
be animated in program
LINKAGES by opening the
files FO3-34.6br and FO3-
35.6br, respectively.
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In addition to metering fluids, this linkage has application in situations where a part
must be picked up from a nest on the stationary ground plane and transferred to a conveyor
that is moving at constant velocity. The slider has points of zero velocity at each extreme
of motion, exact straight line motion in both directions, and a long region of approximately
constant velocity. Note however, that the Hoeken straight-line linkage of Section 3.8 gives
a nearly exact straight line with close to constant velocity using only four links and four
pin joints rather than the six links and slider track needed here. Hoeken’s linkage is also
useful for the pick-and-place-at-constant-velocity application.

Large Angular Excursion Rocker Motion"

It is often desired to obtain a rocking motion through a large angle with continuous rotary
input. A Grashof fourbar crank-rocker linkage is limited to about 120° of rocker oscil-
lation if the transmission angles are to be kept above 30°. A rocker oscillation of 180°
would obviously take the transmission angle to zero and also create a Barker Class III link-
age with change points, an unacceptable solution. To get a larger oscillation than about
120° with good transmission angles requires six links. Hainl22] designed such a linkage
(shown in Figure 3-34) as a Stephenson III sixbar that gives 180° of rocker motion with
continuous rotation of the input crank. It is a non-quick-return linkage in which 180° of
input crank rotation corresponds to the full oscillation of the output rocker.

An even larger rocker output of about 212° is obtained from the Watt II sixbar linkage
shown in Figure 3-35. This mechanism is used to oscillate the agitator in some washing
machines. The motor drives toothed crank 2 through a pinion P. Crank 2 oscillates rocker
4 through 102° via coupler 3. Rocker 4 serves as the input to rocker 6 through coupler 5.
Rocker 6 is attached to the agitator in the washtub. The minimum transmission angles are
36° in stage 1 (links 2-3-4) and 23° in stage 2 (links 4-5-6).

Hain[?2! also created a remarkable eightbar linkage that gives +360° of oscillatory
rocker motion from continuous unidirectional rotation of the input crank! This linkage,
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View as a video 04
http://www.designofma-
chinery.com/DOM/sixbar_
with_180_rocker.avi

(a) Extreme CCW position of link 6 (b) Mid position of link 6 (c) Extreme CW position of link 6

0404 =1.00  L3=AB=4.248 Lg=1.542  DB=3274
L, =1.556 Ly=2125 CD=2158  /CDB =36°

FIGURE 3-34

Stephenson's lll sixbar with 180° oscillation of link 6 when crank 2 revolves fully Adapted from Hain!22] pp. 448-450

shown in Figure 3-36, has a minimum transmission angle of 30°. Slight changes to this
linkage’s geometry will give more or less than +360° of output crank oscillation.

Remote Center Circular Motion

When a rotary motion is needed but the center of that rotation is not available to mount the
pivot of a crank, a linkage can be used to describe an approximate or exact circular motion
“in the air” remote from the fixed and moving pivots of the linkage. Artobolevsky!20]

View as a video
http://www.designof-
machinery.com/DOM/
washer_agitator_sixbar.

(a) Extreme CCW position of link 6 at +96.4° (b) Extreme CW position of link 6 at —116.2°

‘ L,=1.000 L;=3.800 Ls=1.286 Lg=0.771 O,B=1.286 0,D=1429 0,0, =3.857 0,04 = 4.643 ‘

Link 6 rotates through 212.8° and back with every revolution of link 2
FIGURE 3-35

Washing machine agitator mechanism: constant speed motor drives link 2 and agitator is oscillated by link 6 at Og


http://www.designofmachinery.com/DOM/sixbar_with_180_rocker.avi
http://www.designofmachinery.com/DOM/washer_agitator_sixbar.avi
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(a) First extreme position, 85 = 209° (b) Second extreme position, 65 =19°

0,04=100 L;=0450 L3=0990 Lg=0.325 L7=0938 Lg=0.572 CD=0.325 CE=1.145
DE =0.823 0406 =0.419 04B=0,C=0.59 ZCDE =173°

FIGURE 3-36

Eightbar linkage with —360° oscillatory rotation of link 8 when crank 2 revolves fully Adapted from Hain[22] pp. 368-370

shows ten such mechanisms, two of which are reproduced in Figure 3-37. Figure 3-37a
shows a Chebyschev fourbar approximate circle-tracing linkage. When the crank rotates
CCW, point P traces a circle of the same diameter CW. Figure 3-37b shows a Delone
exact circle-tracing sixbar linkage that contains a pantograph cell (B-C-D-0,) that causes
point P to mimic the motion of point A, giving an exact 1:1 replication of the circular
motion of A about Oy, but rotating in the opposite direction. If a link were added between
Op and P, it would rotate at the same speed but in the opposite direction to link 2. Thus
this linkage could be substituted for a pair of external gears (gearset) with a 1:1 ratio (see
Chapter 9 for information on gears).

(O \ AB=BC =CD =DP =B0O4,=D04=1.0
0,04 =0.75 C

AB=BP =B0,=1.0 040p=0.75 D

A0, =0.136 A0, =0.5

0,04=1. P

204=1.414 -
(0, e
& o
A
(a) Chebyschev approximate circle-tracing fourbar (b) Delone exact circle-tracing sixbar

FIGURE 3-37

Circle generating mechanisms Adapted from Artobolevsky[20], vol. 1, pp. 450-451
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*3-1

3-2

34

3.7

PROBLEMS'

Define the following examples as path, motion, or function generation cases.

A telescope aiming (star tracking) mechanism
A backhoe bucket control mechanism

A thermostat adjusting mechanism

A computer printer head moving mechanism
An XY plotter pen control mechanism

oaon o

Design a fourbar Grashof crank-rocker for 90° of output rocker motion with no quick
return. (See Example 3-1.) Build a model and determine the toggle positions and the
minimum transmission angle from the model.

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of output
rocker motion with no quick return. (See Example 3-2.) Build a model and determine
the toggle positions and the minimum transmission angle from the model.

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of coupler
motion. (See Example 3-3.) Build a model and determine the toggle positions and the
minimum transmission angle from the model. Add a driver dyad. (See Example 3-4.)

Design a fourbar mechanism to give the three positions of coupler motion with no
quick return shown in Figure P3-2. (See also Example 3-5.) Ignore the points O, and
04 shown. Build a model and determine the toggle positions and the minimum trans-
mission angle from the model. Add a driver dyad. (See Example 3-4.)

Design a fourbar mechanism to give the three positions shown in Figure P3-2 using the
fixed pivots O, and O4 shown. Build a model and determine the toggle positions and
the minimum transmission angle from the model. Add a driver dyad.

Repeat Problem 3-2 with a quick-return time ratio of 1:1.4. (See Example 3-9.)

Design a sixbar drag link quick-return linkage for a time ratio of 1:2 and output rocker
motion of 60°.

Design a crank-shaper quick-return mechanism for a time ratio of 1:3 (see Figure 3-14).

Find the two cognates of the linkage in Figure 3-17. Draw the Cayley and Roberts
diagrams. Check your results with program LINKAGES.

-

2.409

‘A 1A:
\

1.750

~— 1.721 —*

FIGURE P3-1
Problems 3-3 to 3-4

159

TABLE P3-0 Part 2
Topic/Problem Matrix

3.9 Dwell Mechanisms
Single Dwell
3-12, 3-72,3-73, 3-74
Double Dwell
3-13, 3-26, 3-27

 All problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Working
Model files. PDF filenames
are the same as the figure
number. Run the file Ani-
mations.html to access and
run the animations.

* Answers in Appendix F.
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0.741
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View as a video
http://www.designofma-
chinery.com/DOM/three_

positions_3_35.avi

v 0, O4
FIGURE P3-2
Problems 3-5 to 3-6
3-11 Find the three equivalent geared fivebar linkages for the three fourbar cognates in
Figure 3-25a. Check your results by comparing the coupler curves with program LINK-
AGES.
3-12  Design a sixbar single-dwell linkage for a dwell of 90° of crank motion, with an output
rocker motion of 45°.
3-13  Design a sixbar double-dwell linkage for a dwell of 90° of crank motion, with an output
rocker motion of 60°, followed by a second dwell of about 60° of crank motion.
3-14 Figure P3-3 shows a treadle-operated grinding wheel driven by a fourbar linkage. Make
a model of the linkage to any convenient scale. Find its minimum transmission angles
from the model. Comment on its operation. Will it work? If so, explain how it does.
. . 3-15 Figure P3-4 shows a non-Grashof fourbar linkage that is driven from link O,A. All
View as a video . . . .
L l dimensions are in centimeters (cm).
http://www.designof-
machinery.com/DOM/ a.  Find the transmission angle at the position shown.
treadle_wheel.avi Find the toggle positions in terms of angle AO»04.
c.  Find the maximum and minimum transmission angles over its range of motion by graphi-
FIGURE P3-3 cal techniques.
d.  Draw the coupler curve of point P over its range of motion.
Problem 3-14 Treadle- 3.16

operated grinding

wheel

Draw the Roberts diagram for the linkage in Figure P3-4 and find its two cognates. Are
they Grashof or non-Grashof?


http://www.designofmachinery.com/DOM/three_positions_3_35.avi
http://www.designofmachinery.com/DOM/treadle_wheel.avi
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3-17

3-18

3-20

3-21

322

323

3-24

Design a Watt I sixbar to give parallel motion that follows the coupler path of point P
of the linkage in Figure P3-4.

Add a driver dyad to the solution of Problem 3-17 to drive it over its possible range of
motion with no quick return. (The result will be an eightbar linkage.)

Design a pin-jointed linkage that will guide the forks of the fork lift truck in Figure P3-5
up and down in an approximate straight line over the range of motion shown. Arrange
the fixed pivots so they are close to some part of the existing frame or body of the truck.

Figure P3-6 shows a “V-link” off-loading mechanism for a paper roll conveyor. Design
a pin-jointed linkage to replace the air cylinder driver that will rotate the rocker arm
and V-link through the 90° motion shown. Keep the fixed pivots as close to the existing
frame as possible. Your fourbar linkage should be Grashof and be in toggle at each
extreme position of the rocker arm. FIGURE P3-4

Problems 3-15 to 3-18

Figure P3-7 shows a walking-beam transport mechanism that uses a fourbar coupler
curve, replicated with a parallelogram linkage for parallel motion. Note the dupli-
cate crank and coupler shown ghosted in the right half of the mechanism—they are
redundant and have been removed from the duplicate fourbar linkage. Using the same
fourbar driving stage (links Ly, L,, L3, L4 with coupler point P), design a Watt I sixbar
linkage that will drive link 8 in the same parallel motion using two fewer links.

Find the maximum and minimum transmission angles of the fourbar driving stage * Answers in Appendix F.
(links Ly, Ly, L3, Ly ) in Figure P3-7 to graphical accuracy.

Figure P3-8 shows a fourbar linkage used in a power loom to drive a comblike reed
against the thread, “beating it up” into the cloth. Determine its Grashof condition and
its minimum and maximum transmission angles to graphical accuracy.

Draw the Roberts diagram and find the cognates of the linkage in Figure P3-9.

fork lift truck

FIGURE P3-5
Problem 3-19
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View as a video
http://www.designof-
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FIGURE P3-8

Problem 3-23
Loom laybar drive

Vi id
http://www.designofma-
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FIGURE P3-6
Problem 3-20

3-25 Find the equivalent geared fivebar mechanism cognate of the linkage in Figure P3-9.

3-26 Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has
a rocker output through 45°.

3-27 Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has
a slider output stroke of 5 crank units.

3-28 Use two of the cognates in Figure 3-26b to design a Watt I sixbar parallel motion mech-
anism that carries a link through the same coupler curve at all points. Comment on its
similarities to the original Roberts diagram.

3-29 Find the cognates of the Watt straight-line mechanism in Figure 3-29a.

3-30 Find the cognates of the Roberts straight-line mechanism in Figure 3-29c.

02 S S O
B o of o
L2 =1.0 O \\'5\/5://
A 4 B
o Ly =2.06 N 5

FIGURE P3-7
Problems 3-21to 3-22 Straight-line walking-beam eightbar transport mechanism


http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
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View as a video

http://www.designof- .=
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machinery.com/DOM/ P
cognates_hw_3_24.avi
3
L, =222
02 04
FIGURE P3-9
Problems 3-24 to 3-27
*3-31 Design a Hoeken straight-line linkage to give minimum error in velocity over 22% of * Answers in Appendix F.

the cycle for a 15-cm-long straight-line motion. Specify all linkage parameters.

3-32 Design a Hoeken straight-line linkage to give minimum error in straightness over 39%
of the cycle for a 20-cm-long straight-line motion. Specify all linkage parameters.

3-33  Design a linkage that will give a symmetrical “kidney bean” shaped coupler curve as
shown in Figure 3-16. Use the data in Figure 3-21 to determine the required link ratios
and generate the coupler curve with program LINKAGES.

3-34 Repeat Problem 3-33 for a “double straight” coupler curve.

3-35 Repeat problem 3-33 for a “scimitar” coupler curve with two distinct cusps. Show that
there are (or are not) true cusps on the curve by using program LINKAGES. (Hint: Think
about the definition of a cusp and how you can use the program’s data to show it.)

*3-36  Find the Grashof condition, inversion, any limit positions, and the extreme values of the
transmission angle (to graphical accuracy) of the linkage in Figure P3-10.

3-37 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-10.
3-38 Find the three geared fivebar cognates of the linkage in Figure P3-10.

FIGURE P3-10
Problems 3-36 to 3-38
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OZ

FIGURE P3-11
Problems 3-39 to 3-41

% Answers in Appendix F *3-39  Find the Grashof condition, any limit positions, and the extreme values of the transmis-
PP ’ sion angle (to graphical accuracy) of the linkage in Figure P3-11.

3-40 Draw the Roberts diagram and find the cognates of the linkage in Figure P3-11.

3-41 Find the three geared fivebar cognates of the linkage in Figure P3-11.

*3-42  Find the Grashof condition, any limit positions, and the extreme values of the transmis-
sion angle (to graphical accuracy) of the linkage in Figure P3-12.

3-43  Draw the Roberts diagram and find the cognates of the linkage in Figure P3-12.
3-44  Find the three geared fivebar cognates of the linkage in Figure P3-12.

3-45  Prove that the relationships between the angular velocities of various links in the Rob-
erts diagram as shown in Figure 3-25 are true.

3-46 Design a fourbar linkage to move the object in Figure P3-13 from position 1 to 2 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed making it a sixbar. All fixed pivots should be on the base.

FIGURE P3-12
Problems 3-42 to 3-44
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Problems 3-46 to 3-48

3-47

3-48

3-49

3-50

3-51

3-52

3-53

Design a fourbar linkage to move the object in Figure P3-13 from position 2 to 3 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-13 through the three positions
shown using points A and B for attachment. Add a driver dyad to limit its motion to the
range of positions designed, making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-14 from position 1 to 2 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-14 from position 2 to 3 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-14 through the three positions
shown using points A and B for attachment. Add a driver dyad to limit its motion to the
range of positions designed, making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-15 from position 1 to 2 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed, making it a sixbar. All fixed pivots should be on the base.

Design a fourbar linkage to move the object in Figure P3-15 from position 2 to 3 using
points A and B for attachment. Add a driver dyad to limit its motion to the range of
positions designed, making it a sixbar. All fixed pivots should be on the base.
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Problems 3-52 to 3-54
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Problems 3-55 to 3-58

3-54 Design a fourbar linkage to move the object in Figure P3-15 through the three positions
shown using points A and B for attachment. Add a driver dyad to limit its motion to the
range of positions designed, making it a sixbar. All fixed pivots should be on the base.

3-55 Design a fourbar mechanism to move the link shown in Figure P3-16 from position 1
to position 2. Ignore the third position and the fixed pivots O, and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

3-56 Design a fourbar mechanism to move the link shown in Figure P3-16 from position 2
to position 3. Ignore the first position and the fixed pivots O, and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

3-57 Design a fourbar mechanism to give the three positions shown in Figure P3-16. Ignore
the fixed pivots O, and O4 shown. Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

3-58 Design a fourbar mechanism to give the three positions shown in Figure P3-16 using
the fixed pivots O, and O4 shown. (See Example 3-7.) Build a model and add a driver
dyad to limit its motion to the range of positions designed, making it a sixbar.

3-59 Design a fourbar mechanism to move the link shown in Figure P3-17 from position 1
to position 2. Ignore the third position and the fixed pivots O, and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

3-60 Design a fourbar mechanism to move the link shown in Figure P3-17 from position 2
to position 3. Ignore the first position and the fixed pivots O and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.
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Problems 3-59 to 3-62

3-61

3-62

3-63

3-64

3-65

3-66

3-67

Design a fourbar mechanism to give the three positions shown in Figure P3-17. Ignore
the fixed pivots O, and O4 shown. Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

Design a fourbar mechanism to give the three positions shown in Figure P3-17 using
the fixed pivots O, and O4 shown. (See Example 3-7.) Build a model and add a driver
dyad to limit its motion to the range of positions designed, making it a sixbar.

Design a fourbar mechanism to move the link shown in Figure P3-18 from position 1

to position 2. Ignore the third position and the fixed pivots O, and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

Design a fourbar mechanism to move the link shown in Figure P3-18 from position 2
to position 3. Ignore the first position and the fixed pivots O, and O4 shown. Build a
model and add a driver dyad to limit its motion to the range of positions designed, mak-
ing it a sixbar.

Design a fourbar mechanism to give the three positions shown in Figure P3-18. Ignore
the fixed pivots O, and O4 shown. Build a model and add a driver dyad to limit its mo-
tion to the range of positions designed, making it a sixbar.

Design a fourbar mechanism to give the three positions shown in Figure P3-18 using
the fixed pivots O, and O4 shown. (See Example 3-7.) Build a model and add a driver
dyad to limit its motion to the range of positions designed, making it a sixbar.

Design a fourbar Grashof crank-rocker for 120° of output rocker motion with a quick-
return time ratio of 1:1.2. (See Example 3-9.)
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Problems 3-63 to 3-66

3-68

3-69

3-70

3-71

3-72

3-73

Design a fourbar Grashof crank-rocker for 100° of output rocker motion with a quick-
return time ratio of 1:1.5. (See Example 3-9.)

Design a fourbar Grashof crank-rocker for 80° of output rocker motion with a quick-
return time ratio of 1:1.33. (See Example 3-9.)

Design a sixbar drag link quick-return linkage for a time ratio of 1:4 and output rocker
motion of 50°.

Design a crank shaper quick-return mechanism for a time ratio of 1:2.5 (See Figure
3-14).

Design a sixbar, single-dwell linkage for a dwell of 70° of crank motion, with an output
rocker motion of 30° using a symmetrical fourbar linkage having the following pa-
rameters: ground link ratio = 2.0, common link ratio = 2.0, and coupler angle y = 40°.
(See Example 3-13.)

Design a sixbar, single-dwell linkage for a dwell of 100° of crank motion, with an
output rocker motion of 50° using a symmetrical fourbar linkage having the following
parameters: ground link ratio = 2.0, common link ratio = 2.5, and coupler angle y =
60°. (See Example 3-13.)
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3-74

3-75

3-76

3-77

3-78

e———— 9.989 > 10.159 ——»

Design a sixbar, single-dwell linkage for a dwell of 80° of crank motion, with an output
rocker motion of 45° using a symmetrical fourbar linkage having the following param-
eters: ground link ratio = 2.0, common link ratio = 1.75, and coupler angle y = 70°.
(See Example 3-13.)

Using the method of Example 3-11, show that the sixbar Chebyschev straight-line
linkage of Figure P2-5 is a combination of the fourbar Chebyschev straight-line link-
age of Figure 3-29d and its Hoeken cognate of Figure 3-29e. See also Figure 3-26 for
additional information useful to this solution. Graphically construct the Chebyschev
sixbar parallel motion linkage of Figure P2-5a from its two fourbar linkage constituents
and build a physical or computer model of the result.

Design a driver dyad to drive link 2 of the Evans straight-line linkage in Figure 3-29f
from 150° to 210°. Make a model of the resulting sixbar linkage and trace the coupler
curve.

Design a driver dyad to drive link 2 of the Evans straight-line linkage in Figure 3-29g
from —40° to 40°. Make a model of the resulting sixbar linkage and trace the coupler
curve.

Figure 6 on page ix of the Hrones and Nelson atlas of fourbar coupler curves shows a
50-point coupler that was used to generate the curves in the atlas. Using the definition
of the vector R given in Figure 3-17b of the text, determine the 10 possible pairs of
values of ¢ and R for the first row of points above the horizontal axis if the grid point
spacing is one-half the length of the unit crank.

75
i
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-—— 9.555 ————»|
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0.742 —»| |=—

FIGURE P3-19
Problems 3-84 to 3-87
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*3-79 The first set of 10 coupler curves on page 1 of the Hrones and Nelson atlas of fourbar
coupler curves has A = B = C = 1.5. Model this linkage with program LINKAGES using
the coupler point farthest to the left in the row shown on page 1 and plot the resulting
coupler curve. Note that you will have to orient link 1 at the proper angle in LINKAGES
to get the curve as shown in the atlas.

3-80 Repeat problem 3-79 for the set of coupler curves on page 17 of the Hrones and Nelson .
3

* Answers in Appendix F.

atlas (see page 32 of the PDF file) which has A = 1.5, B = C = 3.0, using the coupler
point farthest to the right in the row shown.

3-81 Repeat problem 3-79 for the set of coupler curves on page 21 of the Hrones and Nelson
atlas (see page 36 of the PDF file) which has A = 1.5, B = C = 3.5, using the second
coupler point from the right end in the row shown.

3-82 Repeat problem 3-79 for the set of coupler curves on page 34 of the Hrones and Nelson
atlas (see page 49 of the PDF file) which has A = 2.0, B = 1.5, C = 2.0, using the cou-
pler point farthest to the right in the row shown.

3-83 Repeat problem 3-79 for the set of coupler curves on page 115 of the Hrones and Nel-
son atlas (see page 130 of the PDF file) which has A =2.5, B = 1.5, C = 2.5, using the
fifth coupler point from the left end in the row shown.
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FIGURE P3-20

Problem 3-88
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3-84

3-85

3-86

3-87

3-88

3-89

Design a fourbar mechanism to move the link shown in Figure P3-19 from position 1
to position 2. Ignore the third position and the fixed pivots O, and O4 shown. Build a
cardboard model that demonstrates the required movement.

Design a fourbar mechanism to move the link shown in Figure P3-19 from position 2
to position 3. Ignore the first position and the fixed pivots O, and O, shown. Build a
cardboard model that demonstrates the required movement.

Design a fourbar mechanism to give the three positions shown in Figure P3-19. Ignore
the points O, and O4 shown. Build a cardboard model that has stops to limit its motion
to the range of positions designed.

Design a fourbar mechanism to give the three positions shown in Figure P3-19 using
the fixed pivots O, and O4 shown. See Example 3-7. Build a cardboard model that has
stops to limit its motion to the range of positions designed.

The side view of the upper section of a kitchen-pantry cabinet is shown in Figure
P3-20. It has a removable shelf 14 in above the bottom of the section but it is too high
off the floor to be useful. Design a fourbar linkage to move the shelf from the position
shown in the figure to a lower position keeping it horizontal throughout. The moving
pivots should be in Region A and the fixed pivots should be in Region B. Additionally,
the shelf should not intrude into Region C and it should be stable when in the fully
raised position.

Design a fourbar mechanism to give the three positions of coupler motion shown in
Figure P3-21. (See also Example 3-5.) Ignore the points Oy and O4 shown.

fe—— 72,139 — >
CLAN
50.0
Dl\J
50.0 15,0 |
3 3 |
= A
- 85.0 >

FIGURE P3-21
Problems 3-89 and 3-90
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FIGURE P3-22
Problem 3-93

3-90 Design a fourbar mechanism to give the three positions shown in Figure P3-21 using
the fixed pivots O, and O4 shown.

3-91 Design a fourbar Grashof crank-rocker for 60 degrees of output rocker motion with a
quick-return time ratio of 1:1.25.

3-92  Design a crank-shaper quick-return mechanism for a time ratio of 1:4 (Figure 3-14).

3-93  Figure P3-22 shows a non-Grashof fourbar linkage that is driven from link OA. All
dimensions are in inches (in).

(a) Find the transmission angle at the position shown.
(b) Find the toggle positions in terms of angle AO20O4.

3-94 The Peaucellier straight line linkage shown in Figure 3-29(j) will generate true circle
arcs if the fixed pivot O is moved to the left or right with only the length of the ground
link being changed. Determine, graphically, the radius of the circular arc traced by
point P over the range of 0° < 0, < 60°< if the links have the following lengths: L| =
12, L2 =10, L3 = L4 =22, and L5 = L6 = L7 = Lg =6.5.

3-95 Design a fourbar Grashof crank-rocker for 80 degrees of output rocker motion with a
quick-return time ratio of 1:1.333.

3-96 Design a sixbar drag link quick-return linkage for a time ratio of 1:2.6, and output
rocker motion of 70 degrees. (See Example 3-10.)

314 PROJECTS

These larger-scale project statements deliberately lack detail and structure and are loosely defined.
Thus, they are similar to the kind of “identification of need” problem statement commonly encoun-
tered in engineering practice. It is left to the student to structure the problem through background
research and to create a clear goal statement and set of performance specifications before attempt-
ing to design a solution. This design process is spelled out in Chapter 1 and should be followed in
all of these examples. These projects can be done as an exercise in mechanism synthesis alone or
can be revisited and thoroughly analyzed by the methods presented in later chapters as well. All
results should be documented in a professional engineering report.

P3-1 The tennis coach needs a better tennis ball server for practice. This device must fire
a sequence of standard tennis balls from one side of a standard tennis court over the
net such that they land and bounce within each of the three court areas defined by the
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P3-2

P3-3

P3-4

P3-5

P3-6

P3-7

P3-8

court’s white lines. The order and frequency of a ball’s landing in any one of the three
court areas must be random. The device should operate automatically and unattended
except for the refill of balls. It should fire 50 balls between reloads. The timing of
ball releases should vary. For simplicity, a motor driven pin-jointed linkage design is
preferred.

A quadriplegic patient has lost all motion except that of her head. She can only move a
small “mouth stick” to effect a switch closure. She was an avid reader before her injury
and would like again to be able to read standard hardcover books without the need of a
person to turn pages for her. Thus, a reliable, simple, and inexpensive automatic page
turner is needed. The book may be placed in the device by an assistant. It should ac-
commodate as wide a range of book sizes as possible. Book damage is to be avoided
and safety of the user is paramount.

Grandma’s off her rocker again! Junior’s run down to the Bingo parlor to fetch her, but
we’ve got to do something about her rocking chair before she gets back. She’s been
complaining that her arthritis makes it too painful to push the rocker. So, for her 100th
birthday in 2 weeks, we're going to surprise her with a new, automated, motorized
rocking chair. The only constraints placed on the problem are that the device must be
safe and must provide interesting and pleasant motions, similar to those of her present
Boston rocker, to all parts of the occupant’s body. Since simplicity is the mark of good
design, a linkage solution with only full pin joints is preferred.

The local amusement park’s business is suffering as a result of the proliferation of
computer game parlors. They need a new and more exciting ride which will attract
new customers. The only constraints are that it must be safe, provide excitement, and
not subject the occupants to excessive accelerations or velocities. Also it must be

as compact as possible, since space is limited. Continuous rotary input and full pin
joints are preferred.

The student section of ASME is sponsoring a spring fling on campus. They need a
mechanism for their “Dunk the Professor” booth which will carry the unfortunate
(untenured) volunteer into and out of the water tub. The contestants will provide the
inputs to a multiple-DOF mechanism. If they know their kinematics, they can provide
a combination of inputs which will dunk the victim.

The National House of Flapjacks wants to automate its flapjack production. It needs a
mechanism that will automatically flip the flapjacks “on the fly” as they travel through
the griddle on a continuously moving conveyor. This mechanism must track the con-
stant velocity of the conveyor, pick up a pancake, flip it over, and place it back onto the
CONveyor.

Many varieties and shapes of computer video monitors now exist. Their long-term use
leads to eyestrain and body fatigue. There is a need for an adjustable stand which will
hold the video monitor and the separate keyboard at any position the user deems com-
fortable. The computer’s central processor unit (CPU) can be remotely located. This
device should be freestanding to allow use with a comfortable chair, couch, or lounge
of the user’s choice. It should not require the user to assume the conventional “seated
at a desk” posture to use the computer. It must be stable in all positions and safely sup-
port the equipment’s weight.

Most small boat trailers must be submerged in the water to launch or retrieve the boat.
This greatly reduces the life of the trailer, especially in salt water. A need exists for a
trailer that will remain on dry land while it launches or retrieves the boat. No part of
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P3-9

P3-10

P3-11

P3-12

P3-13

P3-14

P3-15

P3-16

P3-17

P3-18

P3-19

P3-20

P3-21

the trailer should get wet. User safety is of greatest concern, as is protection of the boat
from damage.

The “Save the Skeet” foundation has requested a more humane skeet launcher be de-
signed. While they have not yet succeeded in passing legislation to prevent the whole-
sale slaughter of these little devils, they are concerned about the inhumane aspects of
the large accelerations imparted to the skeet as it is launched into the sky for the sports-
man to shoot it down. The need is for a skeet launcher that will smoothly accelerate the
clay pigeon onto its desired trajectory.

The coin-operated “kid bouncer” machines found outside supermarkets typically
provide a very unimaginative rocking motion to the occupant. There is a need for a
superior “bouncer” which will give more interesting motions while remaining safe for
small children.

Horseback riding is a very expensive hobby or sport. There is a need for a horseback
riding simulator to train prospective riders sans the expensive horse. This device
should provide similar motions to the occupant as she would feel in the saddle under
various gaits such as a walk, canter, or gallop. A more advanced version might contain
jumping motions as well. User safety is most important.

The nation is on a fitness craze. Many exercise machines have been devised. There is
still room for improvement to these devices. They are typically designed for the young,
strong athlete. There is also a need for an ergonomically optimum exercise machine for
the older person who needs gentler exercise.

A paraplegic patient needs a device to get himself from his wheelchair into the Jacuzzi
with no assistance. He has good upper body and arm strength. Safety is paramount.

The army has requested a mechanical walking device to test army boots for durability.
It should mimic a person’s walking motion and provide forces similar to an average
soldier’s foot.

NASA wants a zero-g machine for astronaut training. It must carry one person and
provide a negative 1-g acceleration for as long as possible.

The Amusement Machine Co. Inc. wants a portable “whip” ride that will give two or
four passengers a thrilling but safe ride, and which can be pulled behind a pickup truck
from one location to another.

The Air Force has requested a pilot training simulator which will give potential pilots
exposure to g forces similar to those they will experience in dogfight maneuvers.

Cheers needs a better “mechanical bull” simulator for its “yuppie” bar in Boston. It
must give a thrilling “bucking bronco” ride but be safe.

Despite the improvements in handicap access, many curbs block wheelchairs from
public places. Design an attachment for a conventional wheelchair which will allow it
to get up over a curb.

A carpenter needs a dumping attachment to fit in her pickup truck so she can dump
building materials. She can’t afford to buy a dump truck.

The carpenter in Project P3-20 wants an inexpensive lift gate designed to fit her full-
sized pickup truck in order to lift and lower heavy cargo to the truck bed.
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P3-22

P3-23

P3-24

P3-25

P3-26

P3-27

P3-28

P3-29

P3-30

The carpenter in Project P3-20 is very demanding (and lazy). She also wants a device
to lift sheet rock and blueboard into place on ceilings or walls to hold it while she
screws it on.

Click and Clack, the tappet brothers, need a better transmission jack for their Good
News Garage. This device should position a transmission under a car (on a lift) and
allow it to be maneuvered into place safely and quickly.

A paraplegic with good upper body strength, who was an avid golfer before his injury,
wants a mechanism to allow him to stand up in his wheelchair in order to once again
play golf. It must not interfere with normal wheelchair use, though it could be removed
from the chair when he is not golfing.

A wheelchair lift is needed to raise the wheelchair and person 3 ft from the garage
floor to the level of the first floor of the house. Safety, reliability, and cost are of major
concern.

A paraplegic needs a mechanism that can be installed on a full-size 3-door pickup
truck that will lift the wheelchair into the area behind the driver’s seat. This person
has excellent upper body strength and, with the aid of specially installed handles on the
truck, can get into the cab from the chair. The truck can be modified as necessary to
accommodate this task. For example, attachment points can be added to its structure
and the back seat of the truck can be removed if necessary.

There is demand for a better baby transport device. Many such devices are on the mar-
ket. Some are called carriages, others strollers. Some are convertible to multiple uses.
Our marketing survey data so far seems to indicate that the customers want portability
(i.e., foldability), light weight, one-handed operation, and large wheels. Some of these
features are present in existing devices. We need a better design that more completely
meets the needs of the customer. The device must be stable, effective, and safe for the
baby and the operator. Full joints are preferred to half joints and simplicity is the mark
of good design. A linkage solution with manual input is desired.

A boat owner has requested that we design a lift mechanism to automatically move a
1000-1b, 15-ft boat from a cradle on land to the water. A seawall protects the owner’s
yard, and the boat cradle sits above the seawall. The tidal variation is 4 ft and the
seawall is 3 ft above the high tide mark. Your mechanism will be attached to land and
move the boat from its stored position on the cradle to the water and return it to the
cradle. The device must be safe and easy to use and not overly expensive.

The landfills are full! We’re about to be up to our ears in trash! The world needs a bet-
ter trash compactor. It should be simple, inexpensive, quiet, compact, and safe. It can
either be manually powered or motorized, but manual operation is preferred to keep the
cost down. The device must be stable, effective, and safe for the operator.

A small contractor needs a mini-dumpster attachment for his pickup truck. He has
made several trash containers which are 4 ft x 4 ft x 3.5 ft high. The empty container
weighs 150 Ib. He needs a mechanism which he can attach to his fleet of standard, full-
size pickup trucks (Chevrolet, Ford, or Dodge). This mechanism should be able to pick
up the full trash container from the ground, lift it over the closed tailgate of the truck,
dump its contents into the truck bed, and then return it empty to the ground. He would
like not to tip his truck over in the process. The mechanism should store permanently
on the truck in such a manner as to allow the normal use of the pickup truck at all other
times. You may specify any means of attachment of your mechanism to the container
and to the truck.
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P3-31

P3-32

P3-33

P3-34

P3-35

As a feast day approaches, the task of inserting the leaves in the dining room table pres-
ents itself. Typically, the table leaves are stored in some forgotten location, and when
found have to be carried to the table and manually placed in it. Wouldn't it be better

if the leaves (leaf) were stored within the table itself and were automatically inserted
into place when the table was opened? The only constraints imposed on the problem
are that the device must be simple to use, preferably using the action of opening the
table halves as the actuating motion. That is, as you pull the table open, the stored leaf
should be carried by the mechanism of your design into its proper place in order to
extend the dining surface. Thus, a linkage solution with manual input is desired and
full joints are preferred to half joints, though either may be used.

Small sailboats often are not “self-bailing,” meaning that they accumulate rainwater
and can sink at the mooring if not manually bailed (emptied of water) after a rainstorm.
These boats usually do not have a power source such as a battery aboard. Design a
mechanism that can be quickly attached to, detached from, and stored in a 20-foot-long
daysailer, and that will use wave action (boat rocking) as the input to a bilge pump to
automatically keep the boat dry and afloat when left at a mooring.

A machine uses several 200 kg servomotors that bolt underneath the machine’s bed-
plate, which is 0.75 m above the floor. The machine frame has a 400 mm square front
opening through which the motor can be inserted. It must be extended 0.5 m hori-
zontally to its installed location. Design a mechanism to transport the motor from the
stockroom to the machine, insert it under the machine and raise it 200 mm into posi-
tion. Your mechanism also should be capable of removing a motor from the machine.

A paraplegic client has requested that we design a mechanism to attach to his wheel-
chair that will store his backpack behind his seatback. This mechanism must also bring
the backpack around toward the front of the chair so that he can access its contents. He
has some use of his upper body and so can do something to cause your mechanism to
move. It should safely lock itself in place when stowed behind the seatback. It should
not upset the chair’s stabilty or limit its mobility.

In an effort to reduce chronic back injury among janitorial staff, our client, Ready Re-
fuse, has requested that we design a mechanism to safely lift an office size rectangular
trash or recycling container and dump it into a large rolling trash barrel. The mecha-
nism needs to be motorized to dump the smaller container automatically. To operate
the system, the user will roll the large trash barrel up to the rectangular container, which
is sitting on the floor, and press a button that will cause the mechanism move through
the required motion and dump the contents of the container into the large barrel. The
grip design between your mechanism and the top lip of the rectangular trash container
is being designed by another team at Widgets Perfected Inc.; assume that it works.
Your task is to design the motorized mechanism that dumps the container without spill-
ing the contents outside of the large trash barrel.
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POSITION ANALYSIS

Theory is the distilled essence of practice
RANKINE

4.0 INTRODUCTION View the lecture video (49:48)F

Once a tentative mechanism design has been synthesized, it must then be analyzed. A
principal goal of kinematic analysis is to determine the accelerations of all the moving
parts in the assembly. Dynamic forces are proportional to acceleration, from Newton’s
second law. We need to know the dynamic forces in order to calculate the stresses in the
components. The design engineer must ensure that the proposed mechanism or machine
will not fail under its operating conditions. Thus the stresses in the materials must be
kept well below allowable levels. To calculate the stresses, we need to know the static
and dynamic forces on the parts. To calculate the dynamic forces, we need to know the
accelerations. In order to calculate the accelerations, we must first find the positions of
all the links or elements in the mechanism for each increment of input motion, and then
differentiate the position equations versus time to find velocities, and then differentiate
again to obtain the expressions for acceleration. For example, in a simple Grashof fourbar
linkage, we would probably want to calculate the positions, velocities, and accelerations
of the output links (coupler and rocker) for perhaps every two degrees (180 positions) of
input crank position for one revolution of the crank.

This can be done by any of several methods. We could use a graphical approach
to determine the position, velocity, and acceleration of the output links for all 180 posi-
tions of interest, or we could derive the general equations of motion for any position,
differentiate for velocity and acceleration, and then solve these analytical expressions
for our 180 (or more) crank locations. A computer will make this latter task much more
palatable. If we choose to use the graphical approach to analysis, we will have to do an in-
dependent graphical solution for each of the positions of interest. None of the information
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obtained graphically for the first position will be applicable to the second position or to
any others. In contrast, once the analytical solution is derived for a particular mechanism,
it can be quickly solved (with a computer) for all positions. If you want information for
more than 180 positions, it only means you will have to wait longer for the computer to
generate those data. The derived equations are the same. So, have another cup of coffee
while the computer crunches the numbers! In this chapter, we will present and derive
analytical solutions to the position analysis problem for various planar mechanisms. We
will also discuss graphical solutions which are useful for checking your analytical results.
In Chapters 6 and 7 we will do the same for velocity and acceleration analysis of planar
mechanisms.

It is interesting to note that graphical position analysis of linkages is a truly trivial
exercise, while the algebraic approach to position analysis is much more complicated.
If you can draw the linkage to scale, you have then solved the position analysis problem
graphically. It only remains to measure the link angles on the scale drawing to protractor
accuracy. But the converse is true for velocity and especially for acceleration analysis.
Analytical solutions for these are less complicated to derive than is the analytical position
solution. However, graphical velocity and acceleration analysis becomes quite complex
and difficult. Moreover, the graphical vector diagrams must be redone de novo (meaning
literally from new) for each of the linkage positions of interest. This is a very tedious
exercise and was the only practical method available in the days B.C. (Before Computer),
not so long ago. The proliferation of inexpensive microcomputers in recent years has
truly revolutionized the practice of engineering. As a graduate engineer, you will never
be far from a computer of sufficient power to solve this type of problem and may even
have one in your pocket. Thus, in this text we will emphasize analytical solutions which
are easily solved with a microcomputer. The computer programs provided with this text
use the same analytical techniques as derived in the text.

ENGINEERS WANTED

Computer Skills
Mandatory

Apply Within

Geez Joe, - now | wish | took that programming course!
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* Note that a two-argument
arctangent function must
be used to obtain angles

in all four quadrants. The
single-argument arctangent
function found in most
calculators and computer
programming languages
returns angle values in only
the first and fourth quad-
rants. You can calculate
your own two-argument
arctangent function very
easily by testing the sign of
the x component of the ar-
guments and, if x is minus,
adding & radians or 180° to
the result obtained from the
available single-argument
arctangent function.

For example (in Fortran):

FUNCTION Atan2(x,y )
IFx<>0THENQ=y/x
Temp = ATAN(Q)
IF x < 0 THEN

Atan2 = Temp + 3.14159
ELSE

Atan2 = Temp
END IF
RETURN
END

The above code assumes
that the language used has
a built-in single-argument
arctangent function called
ATAN(x) which returns an
angle between =+ 7/2 radians
when given a signed argu-
ment representing the value
of the tangent of that angle.
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41 COORDINATE SYSTEMS

Coordinate systems and reference frames exist for the convenience of the engineer who
defines them. In the next chapters we will provide our systems with multiple coordinate
systems as needed, to aid in understanding and solving the problem. We will denote one
of these as the global or absolute coordinate system, and the others will be local coordi-
nate systems within the global framework. The global system is often taken to be attached
to Mother Earth, though it could as well be attached to another ground plane such as the
frame of an automobile. If our goal is to analyze the motion of a windshield wiper blade,
we may not care to include the gross motion of the automobile in the analysis. In that case
a global coordinate system (GCS—denoted as X, Y) attached to the car would be useful,
and we could consider it to be an absolute coordinate system. Even if we use the earth as
an absolute reference frame, we must realize that it is not stationary either, and as such is
not very useful as a reference frame for a space probe. Though we will speak of absolute
positions, velocities, and accelerations, keep in mind that ultimately, until we discover
some stationary point in the universe, all motions are really relative. The term inertial
reference frame is used to denote a system which itself has no acceleration. All angles
in this text will be measured according to the right-hand rule. That is, counterclockwise
angles, angular velocities, and angular accelerations are positive in sign.

Local coordinate systems are typically attached to a link at some point of interest.
This might be a pin joint, a center of gravity, or a line of centers of a link. These local
coordinate systems may be either rotating or nonrotating as we desire. If we want to
measure the angle of a link as it rotates in the global system, we probably will want to
attach a local nonrotating coordinate system (LNCS—denoted as x, y) to some point on
the link (say a pin joint). This nonrotating system will move with its origin on the link
but remains always parallel to the global system. If we want to measure some parameters
within a link, independent of its rotation, then we will want to construct a local rotating
coordinate system (LRCS—denoted as x’, y’) along some line on the link. This system
will both move and rotate with the link in the global system. Most often we will need to
have both types of local coordinate systems (LNCS and LRCS) on our moving links to
do a complete analysis. Obviously we must define the angles and/or positions of these
moving, local coordinate systems in the global system at all positions of interest.

4.2 POSITION AND DISPLACEMENT

Position

The position of a point in the plane can be defined by the use of a position vector as
shown in Figure 4-1. The choice of reference axes is arbitrary and is selected to suit the
observer. Figure 4-1a shows a point in the plane defined in a global coordinate system
and Figure 4-1b shows the same point defined in a local coordinate system with its origin
coincident with the global system A two-dimensional vector has two attributes, which
can be expressed in either polar or cartesian coordinates. The polar form provides the
magnitude and the angle of the vector. The cartesian form provides the X and Y compo-
nents of the vector. Each form is directly convertible into the other by™
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A yy Ay A
i 2 Polar form: [N
Ry ‘ Ra ‘ @ ﬁ Ry R
Ry o Cartesian form: Ry [0} f
VX >
Ry Rx
(a) Global coordinate system XY (b) Local coordinate system xy
FIGURE 4-1

A position vector in the plane - expressed in both global and local coordinates

the Pythagorean theorem:

R, =\R%+R}

and trigonometry: (4.0a)

R
0 =arctan| —L
Ry

Equations 4.0a are shown in global coordinates but could as well be expressed in local
coordinates.

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one system to co-
ordinates in another. If the system’s origins are coincident as shown in Figure 4-1b and
the required transformation is a rotation, it can be expressed in terms of the original coor-
dinates and the signed angle & between the coordinate systems. If the position of point A
in Figure 4-1b is expressed in the local xy system as Ry, Ry, and it is desired to transform
its coordinates to Ry, Ry in the global XY system, the equations are:

Ry =R, cosd—Rysind

. (4.0b)
Ry =R, sind+ R, cosd

Displacement

Displacement of a point is the change in its position and can be defined as the straight-line
distance between the initial and final position of a point which has moved in the reference
frame. Note that displacement is not necessarily the same as the path length which the
point may have traveled to get from its initial to final position. Figure 4-2a shows a point
in two positions, A and B. The curved line depicts the path along which the point traveled.
The position vector Rp4 defines the displacement of the point B with respect to point A.

y
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Polar form:
‘ Ry ‘ @/9
Cartesian form:
Ry, R,
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FIGURE 4-2

Position difference and relative position

Figure 4-2b defines this situation more rigorously and with respect to a reference frame
XY. The notation R will be used to denote a position vector. The vectors R4 and Rp de-
fine, respectively, the absolute positions of points A and B with respect to this global XY
reference frame. The vector Rpy denotes the difference in position, or the displacement,
between A and B. This can be expressed as the position difference equation:

Rps =Rp-Ry (4.1a)

This expression is read: The position of B with respect to A is equal to the (absolute)
position of B minus the (absolute) position of A, where absolute means with respect to the
origin of the global reference frame. This expression could also be written as:

Rps=Rpp-Rypo (4.1b)

with the second subscript O denoting the origin of the XY reference frame. When a
position vector is rooted at the origin of the reference frame, it is customary to omit the
second subscript. It is understood, in its absence, to be the origin. Also, a vector referred
to the origin, such as Ry, is often called an absolute vector. This means that it is taken
with respect to a reference frame which is assumed to be stationary, e.g., the ground. It
is important to realize, however, that the ground is usually also in motion in some larger
frame of reference. Figure 4-2c shows a graphical solution to equations 4.1.
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In our example of Figure 4-2, we have tacitly assumed so far that this point, which is
first located at A and later at B, is, in fact, the same particle, moving within the reference
frame. It could be, for example, one automobile moving along the road from A to B. With
that assumption, it is conventional to refer to the vector Rp, as a position difference.
There is, however, another situation which leads to the same diagram and equation but
needs a different name. Assume now that points A and B in Figure 4-2b represent not
the same particle but two independent particles moving in the same reference frame, as
perhaps two automobiles traveling on the same road. The vector equations 4.1 and the
diagram in Figure 4-2b still are valid, but we now refer to Rpy as a relative position, or
apparent position. We will use the relative position term here. A more formal way to
distinguish between these two cases is as follows:

CASE 1: One body in two successive positions => position difference
CASE 2: Two bodies simultaneously in separate positions => relative position

This may seem a rather fine point to distinguish, but the distinction will prove useful,
and the reasons for it more clear, when we analyze velocities and accelerations, especially
when we encounter (Case 2 type) situations in which the two bodies occupy the same
position at the same time but have different motions.

4.3 TRANSLATION, ROTATION, AND COMPLEX MOTION

So far we have been dealing with a particle, or point, in plane motion. It is more interest-
ing to consider the motion of a rigid body, or link, which involves both the position of a
point on the link and the orientation of a line on the link, sometimes called the POSE of
the link. Figure 4-3a shows a link AB denoted by a position vector Rg4. An axis system
has been set up at the root of the vector, at point A, for convenience.

Translation

Figure 4-3b shows link AB moved to a new position A’B’ by translation through the dis-
placement AA’ or BB’ which are equal, i.e., R, 4, =Rpp.

A definition of translation is:

All points on the body have the same displacement.

As a result the link retains its angular orientation. Note that the translation need not
be along a straight path. The curved lines from A to A’ and B to B’ are the curvilinear
translation path of the link. There is no rotation of the link if these paths are parallel. If
the path happens to be straight, then it will be the special case of rectilinear translation,
and the path and the displacement will be the same.

Rotation

Figure 4-3c shows the same link AB moved from its original position at the origin by
rotation through an angle. Point A remains at the origin, but B moves through the position
difference vector Rpp=Rp,—Rp, -

183




184

FIGURE 4-3

(a)

(c)
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Rpa

> X

N~ S
\ Curvilinear translation path
(b)

(d)

Translation, rotation, and complex motion

A definition of rotation is:

Different points in the body undergo different displacements and thus there is a displace-
ment difference between any two points chosen.

The link now changes its angular orientation in the reference frame, and all points have
different displacements.

Complex Motion

The general case of complex motion is the sum of the translation and rotation compo-
nents. Figure 4-3d shows the same link moved through both a translation and a rotation.
Note that the order in which these two components are added is immaterial. The resulting
complex displacement will be the same whether you first rotate and then translate or vice
versa. This is so because the two factors are independent. The total complex displace-
ment of point B is defined by the following expression:
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Total displacement = translation component + rotation component
Rpg=Rgp+Rpp (4.10)

The new absolute position of point B referred to the origin at A is:
Rgy =R,y +Rpry (4.1d)

Note that the above two formulas are merely applications of the position difference
equation 4.1a. See also Section 2.2 for definitions and discussion of rotation, translation,
and complex motion. These motion states can be expressed as the following theorems.

Theorems

Euler’s theorem:

The general displacement of a rigid body with one point fixed is a rotation about some
axis.

This applies to pure rotation as defined above and in Section 2.2. Chasles (1793-1880)
provided a corollary to Euler’s theorem now known as:

Chasles’ theorem:!6]

Any displacement of a rigid body is equivalent to the sum of a translation of any one point
on that body and a rotation of the body about an axis through that point.

This describes complex motion as defined above and in Section 2.2. Note that equation
4.1c is an expression of Chasles’ theorem.

4.4 GRAPHICAL POSITION ANALYSIS OF LINKAGES

For any one-DOF linkage, such as a fourbar, only one parameter is needed to completely
define the positions of all the links. The parameter usually chosen is the angle of the input
link. This is shown as 0, in Figure 4-4. We want to find 03 and64. The link lengths are
known. Note that we will consistently number the ground link as 1 and the driver link as
2 in these examples.

The graphical analysis of this problem is trivial and can be done using only high-
school geometry. If we draw the linkage carefully to scale with rule, compass, and pro-
tractor in a particular position (given 6,), then it is only necessary to measure the angles
of links 3 and 4 with the protractor. Note that all link angles are measured from a positive
X axis. In Figure 4-4, a local xy axis system, parallel to the global XY system, has been
created at point A to measure 03. The accuracy of this graphical solution will be limited
by our care and drafting ability and by the crudity of the protractor used. Nevertheless, a
very rapid approximate solution can be found for any one position.

Figure 4-5 shows the construction of the graphical position solution. The four link
lengths a, b, ¢, d and the angle 0, of the input link are given. First, the ground link (1)
and the input link (2) are drawn to a convenient scale such that they intersect at the origin
0, of the global XY coordinate system with link 2 placed at the input angle 6,. Link 1 is
drawn along the X axis for convenience. The compass is set to the scaled length of link 3,
and an arc of that radius is swung about the end of link 2 (point A). Then the compass is
set to the scaled length of link 4, and a second arc is swung about the end of link 1 (point
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# Ceccarellil”] points out
that Chasles’ theorem
(Paris, 1830) was put forth
earlier (Naples, 1763) by
Mozzil8] but the latter’s
work was apparently un-
known or ignored in the rest
of Europe, and the theorem
became associated with
Chasles’ name.
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)

FIGURE 4-4

Measurement of angles in the fourbar linkage

0O4). These two arcs will have two intersections at B and B’ that define the two solutions
to the position problem for a fourbar linkage which can be assembled in two configura-
tions, called circuits, labeled open and crossed in Figure 4-5. Circuits in linkages will be
discussed in a later section.

The angles of links 3 and 4 can be measured with a protractor. One circuit has angles
03 and 04, the other 03> and 6. A graphical solution is only valid for the particular value
of input angle used. For each additional position analysis we must completely redraw
the linkage. This can become burdensome if we need a complete analysis at every 1- or
2-degree increment of 6,. In that case we will be better off to derive an analytical solution
for B3 and 6,4 that can be solved by computer.

v \ Crossed

gy
“ B\

FIGURE 4-5
Graphical position solution to the open and crossed configurations of the fourbar linkage
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4.5 ALGEBRAIC POSITION ANALYSIS OF LINKAGES

The same procedure that was used in Figure 4-5 to solve geometrically for the intersec-
tions B and B’ and angles of links 3 and 4 can be encoded into an algebraic algorithm.
The coordinates of point A are found from

A, =acos0, (4.23)
2a

A, =asinb,

The coordinates of point B are found using the equations of circles about A and Oj.
b =(Bo-A,) +(B,-4,) (4.2b)
¢ =(B,—d) +B2 (4.20)
which provide a pair of simultaneous equations in By and B,.
Subtracting equation 4.2¢ from 4.2b gives an expression for B,.
b +r-d*>  2AB, 2A,B,

T ) 2(A-d)  2(a-d) (420

Substituting equation 4.2d into 4.2¢ gives a quadratic equation in B, which has two
solutions corresponding to those in Figure 4-5.

2
A,B
B§+[S—Ay—yci—d] -c?=0 (4.2¢)
.

This can be solved with the familiar expression for the roots of a quadratic equation,

2
B, = _QENQ —4PR (4.20)

Y 2P
where:
A2 24, (d-S
P=—2—41 iny( )
(Ax—d) A, —d
2 2 2 2
R:(d—S)Z—CZ S:a -b"+c”—d
2(A,-d)

Note that the solutions to this equation set can be real or imaginary. If the latter, it
indicates that the links cannot connect at the given input angle or at all. Once the two
values of By, are found (if real), they can be substituted into equation 4.2d to find their
corresponding x components. The link angles for this position can then be found from

0; =tan" [—By —4 J
B, - Ax
B

0, =tan! Y
B, -d

(4.2g)
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A two-argument arctangent function must be used to solve equations 4.2g since the angles
can be in any quadrant. Equations 4.2 can be encoded in any computer language or
equation solver, and the value of 0, varied over the linkage’s usable range to find all cor-
responding values of the other two link angles.

Vector Loop Representation of Linkages

An alternate approach to linkage position analysis creates a vector loop (or loops) around
the linkage as first proposed by Raven.[®] This approach offers some advantages in the
synthesis of linkages which will be addressed in Chapter 5. The links are represented as
position vectors. Figure 4-6 shows the same fourbar linkage as in Figure 4-4, but the
links are now drawn as position vectors that form a vector loop. This loop closes on itself,
making the sum of the vectors around the loop zero. The lengths of the vectors are the
link lengths, which are known. The current linkage position is defined by the input angle
0, as it is a one-DOF mechanism. We want to solve for the unknown angles 63 and 0.
To do so we need a convenient notation to represent the vectors.

Complex Numbers as Vectors

There are many ways to represent vectors. They may be defined in polar coordinates,
by their magnitude and angle, or in cartesian coordinates as x and y components. These
forms are of course easily convertible from one to the other using equations 4.0a. The
position vectors in Figure 4-6 can be represented as any of these expressions:

Polar form Cartesian form
R@Z6 rcosei+rsin9:i (4.3a)
rel® rcosf+ jrsin® (4.3b)

Equation 4.3a uses unit vectors to represent the x and y vector component direc-
tions in the cartesian form. Figure 4-7 shows the unit vector notation for a position vec-
tor. Equation 4.3b uses complex number notation wherein the X direction component
is called the real portion and the Y direction component is called the imaginary portion.
This unfortunate term imaginary comes about because of the use of the notation j to
represent the square root of minus one, which of course cannot be evaluated numerically.

Yy B
y R;
b R,
A 63 X
C\a——ou
R2 e4
a \9
i d
D - X
(0} Ry L2 Oy
FIGURE 4-6

Position vector loop for a fourbar linkage
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However, this imaginary number is used in a complex number as an operator, not as
a value. Figure 4-8a shows the complex plane in which the real axis represents the
X-directed component of the vector in the plane, and the imaginary axis represents the
Y-directed component of the same vector. So, any term in a complex number which has
no j operator is an x component, and a j indicates a y component.

Note in Figure 4-8b that each multiplication of the vector R4 by the operator j results
in a counterclockwise rotation of the vector through 90 degrees. The vector Rg = jR4
is directed along the positive imaginary or j axis. The vector R¢ = j2 Ry is directed
along the negative real axis because j2 = —1 and thus Rc = —R,. In similar fashion,
Rp = 3R, = —jR, and this component is directed along the negative j axis.

One advantage of using this complex number notation to represent planar vectors
comes from the Euler identity:

e 0= cosf+ jsin® (4.42)

Any two-dimensional vector can be represented by the compact polar notation on the
left side of equation 4.4a. There is no easier function to differentiate or integrate, since
it is its own derivative:

—=jel® (4.4b)

We will use this complex number notation for vectors to develop and derive the
equations for position, velocity, and acceleration of linkages.

The Vector Loop Equation for a Fourbar Linkage

The directions of the position vectors in Figure 4-6 are chosen so as to define their angles
where we desire them to be measured. By definition, the angle of a vector is always
measured at its root, not at its head. We would like angle 6,4 to be measured at the fixed
pivot Oy, so vector Ry is arranged to have its root at that point. We would like to measure
angle 05 at the point where links 2 and 3 join, so vector Rj is rooted there. A similar logic
dictates the arrangement of vectors Ry and Ry. Note that the X (real) axis is taken for
convenience along link 1 and the origin of the global coordinate system is taken at point

A
Yi Polar form:
A O
Ral@ /o
1 Rale /e
A J
Rsin@] ] 0 Cartesian form:
A
i A A
= - X RcosO1i, Rsinf]
T
Rcos0 i

FIGURE 4-7

Unit vector notation for position vectors
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Polar form: Re J®

Cartesian form: Rcos© +jRsin® Imaginary

R =Rl 1

a RB =R

A
' JjRsin®

.2
o R¢ =j’R=-R +0
v,
Ry

(a) Complex number representation of a position vector

FIGURE 4-8

Complex number representation of vectors in the plane

Real Rp =j°R=-jR

> D
Rcos 9 i{

(b) Vector rotations in the complex plane

0,, the root of the input link vector Ry. These choices of vector directions and senses,
as indicated by their arrowheads, lead to this vector loop equation:

R,+R;-R,-R, =0 (4.52)

An alternate notation for these position vectors is to use the labels of the points at
the vector tips and roots (in that order) as subscripts. The second subscript is convention-
ally omitted if it is the origin of the global coordinate system (point O;):

RA +RBA_RBO4_RO4 =0 (4.5b)

Next, we substitute the complex number notation for each position vector. To sim-
plify the notation and minimize the use of subscripts, we will denote the scalar lengths
of the four links as a, b, ¢, and d. These are so labeled in Figure 4-6. The equation then
becomes:

ael® +pel% —cel% _gel® = (4.50)

These are three forms of the same vector equation, and as such can be solved for two
unknowns. There are four variables in this equation, namely the four link angles. The
link lengths are all constant in this particular linkage. Also, the value of the angle of link
1 is fixed (at zero) since this is the ground link. The independent variable is 6, which we
will control with a motor or other driver device. That leaves the angles of link 3 and 4 to
be found. We need algebraic expressions which define 63 and 0,4 as functions only of the
constant link lengths and the one input angle, 8,. These expressions will be of the form:
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93 = f{a, b, c, d, 92}

0, = g{a, b,c,d, 92}

(4.5d)

To solve the polar form, vector equation 4.5c, we must substitute the Euler equivalents
(equation 4.4a) for the e/ terms, and then separate the resulting cartesian form vector
equation into two scalar equations which can be solved simultaneously for 63 and 64.
Substituting equation 4.4a into equation 4.5c:

a(cos6, + jsin®, )+ b(cosO; + jsin®s ) —c(cos6, + jsind, )— d(cos6, + jsin®;)=0  (4.5¢)

This equation can now be separated into its real and imaginary parts and each set to zero.
real part (x component):
acos0, +bcosB; —ccosO, —dcos6; =0w
but: 6, =0, so: (4.6a)
acos6, +bcosB; —ccosB, —d=0
imaginary part (y component):
jasin®, + jbsin®; — jesin®, — jdsin®; =0
but: 6, =0, and the j's divide out, so: (4.6b)

asin®, +bsin6; —csinB, =0

The scalar equations 4.6a and 4.6b can now be solved simultaneously for 63 and
04. To solve this set of two simultaneous trigonometric equations is straightforward but
tedious. Some substitution of trigonometric identities will simplify the expressions. The
first step is to rewrite equations 4.6a and 4.6b so as to isolate one of the two unknowns on
the left side. We will isolate 03 and solve for 64 in this example.

bcosO; =—acos6, +ccosO, +d (4.6¢)
bsin®; =—asin®, +csinf, (4.6d)

Now square both sides of equations 4.6c and 4.6d and add them:
b? (sin2 05 +cos® B ) =(-asin®, +csin@, )2 +(—acos®, +ccoshy + d)2 (4.72)

Note that the quantity in parentheses on the left side is equal to 1, eliminating 63 from
the equation, leaving only 64 which can now be solved for.

b® =(~asin®, +csin@, )2 +(—acosB, +ccosb, + d)2 (4.7b)
Expand this expression and collect terms.
b®> =a® +¢* +d* —2adcos®, +2cdcosd, —2ac(sin@, sin@, +cos, coso, ) (4.7¢0)

Divide through by 2ac and rearrange to get:
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2 32, 2., 2
-b"+c“ +
Ecos 0, — icos 0, + @b rerd sin®, sin®, + cos0, cos0, (4.7d)
a c 2ac
To further simplify this expression, the constants K, K», and K3 are defined in terms
of the constant link lengths in equation 4.7d:

d d b+t +d’
K== K== | AR (4.82)
a c 2ac
and:
K, cos6, — K, cos0, + K5 = cos0, cos, +sinb, sin6, (4.8b)

If we substitute the identity cos(6, —6, )= cos6, cos@, +sin®, sin6,, we get the form
known as Freudenstein’s equation.

K, cosB, — K, cos, + K3 =cos(6, -0, ) (4.8¢)

In order to reduce equation 4.8b to a more tractable form for solution, it will be use-
ful to substitute the half-angle identities which will convert the sin 04 and cos 04 terms

to tan 64 terms:
2tan| %4 1-tan?[ %4
2 ) 2

_ cosfy =—7—<
1+ tan® 9—4] 1+ tan® 6—4
2 2

This results in the following simplified form, where the link lengths and known input
value (6,) terms have been collected as constants A, B, and C.

sin@, = 4.9)

0 0
A tan? (74)+B tan[j‘j+ C=0

(4.102)
where: A=cos0, - K; — K, cos0, + K;
B=-2sin6,
C=K; —(K; +1)cos®, + K3

Note that equation 4.10a is quadratic in form, and the solution is:

wanf 84 | - ~BEVB’ —44C
2 ) 24
(4.10b)

—B++B*-4AC

941,2 =2arctan A

Equation 4.10b has two solutions, obtained from the * conditions on the radical.
These two solutions, as with any quadratic equation, may be of three types: real and equal,
real and unequal, complex conjugate. If the discriminant under the radical is negative,
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then the solution is complex conjugate, which simply means that the link lengths chosen
are not capable of connection for the chosen value of the input angle 6,. This can occur
either when the link lengths are completely incapable of connection in any position or, in
a non-Grashof linkage, when the input angle is beyond a toggle limit position. There is
then no real solution for that value of input angle 0,. Excepting this situation, the solu-
tion will usually be real and unequal, meaning there are two values of 6,4 corresponding
to any one value of 0;. These are referred to as the crossed and open configurations of
the linkage and also as the two circuits of the linkage.” In the fourbar linkage, the minus
solution gives 64 for the open configuration and the positive solution gives 6,4 for the
crossed configuration.

Figure 4-5 shows both crossed and open solutions for a Grashof crank-rocker linkage.
The terms crossed and open are based on the assumption that the input link 2, for which
0, is defined, is placed in the first quadrant (i.e., 0 < 0, < ©/2). A Grashof linkage is then
defined as crossed if the two links adjacent to the shortest link cross one another, and as
open if they do not cross one another in this position. Note that the configuration of the
linkage, either crossed or open, is solely dependent upon the way that the links are as-
sembled. You cannot predict, based on link lengths alone, which of the solutions will be
the desired one. In other words, you can obtain either solution with the same linkage by
simply taking apart the pin which connects links 3 and 4 in Figure 4-5, and moving those
links to the only other positions at which the pin will again connect them. In so doing,
you will have switched from one position solution, or circuit, to the other.

The solution for angle 65 is essentially similar to that for 64. Returning to equations
4.6, we can rearrange them to isolate 6,4 on the left side.

ccosB, =acos6, +bcosB; —d (4.6e)
csinf, =asin®, +bsin6; (4.61)
Squaring and adding these equations will eliminate 64. The resulting equation can be

solved for 03 as was done above for 0, yielding this expression:

K; cos63 + K, cos0, + Ks = cos0, cos03 +sin6, sin0; (4.11a)

The constant K is the same as defined in equation 4.8b, and K4 and K5 are:

d o i
K,=— Kg=—r————— 4.11b
) ’ 2ab (4110)
This also reduces to a quadratic form:
0 0
Dtan® (73)+Etan(?3]+ F=0
(4.12)
where D =cos0, — K; + K, cos6, + K5
E =-25in0,

F=K,; +(K, —1)cos0, + K

and the solution is:

193

* See Section 4-13 for a
more complete discussion
of circuits and branches in
linkages.
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—E++\E?-4DF
0;  =2arctan| —————— (4.13)
1,2 2D

As with the angle 0y, this also has two solutions, corresponding to the crossed and
open circuits of the linkage, as shown in Figure 4-5.

A DEXAMPLE 41

Position Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L} = d = 100 mm, L, = a = 40 mm,
L3 =b=120mm, L4 = ¢ = 80 mm. For 6, = 40° find all possible values of 83 and 6.

Solution: (See Figure 4-6 for nomenclature.)

1 Using equation 4.8a, calculate the link ratios Ky, K, and K3.

d 100
| =—=—=25
a 40
d 100
K,=—=—=125 a
2= (a)
@ -b?+2+d>  40% —120% +80% +100°
Ky = = =0.562
2ac 2(40)(80)

2 Use these link ratios to find the intermediate parameters A, B, and C from equation 4.10a.

A=cos0, — K; — K, cos, + K3 = cos(40°) — 2.5 —1.25cos(40°) + 0.562 = —2.129
B=-2sin0, = —2sin(40°) =-1.286 (b)
C=K; — (K, +1)cos6, + K3 =2.5—(1.25+1)cos(40°) +0.562 = 1.339

3 Use equation 4.10b to find 0,4 for both the open and crossed configurations.

~B—+B*-4AC 1.286 - \/—1.2862 —4(-2.129)(1.339)

0, =2arctan| —————— [=2arctan
open 2A 2(-2.129)
=57.33°
(©)
_B++B? —4AC 1.286+\/—1.2862 —4(-2.129)(1.339)
0, =2arctan| —————— |=2arctan
crossed 2A 2(—2.129)
=-98.01°

4 Use equation 4.11b to find the ratios K4 and K.
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\Y

circuit 1
(open)

3’ 4 circuit 2
(crossed)
B
FIGURE 4-9
Solution to Example 4-1
d 100
Ky=—=—=0.833
b 120
22 2 42 2 2 2 2
—d*—a* - —-100% — 40* —12
K5=c d°—a b=80 00 0 02_2.042 ()
2ab 2(40)(120)

5 Use equation 4.12 to find the intermediate parameters D, E, and F.
D =cos6, — K + K, cos0, + K5 = cos(40°) — 2.5+ 0.833(40°) — 2.042 = -3.137
E =-2sin6, =-2sin(40°) =-1.286 (e)
F=K,; +(K; —1)cos0, + K5 =2.5+(0.833—1)cos(40°) - 2.042 = 0.331

6 Use equation 4.13 to find 03 for both the open and crossed configurations.

—E-E?-4DF 1.286—\/—1.2862 —4(-3.137)(0.331)
0 =2arctan| ————  — |=2arctan
Sopen 2D 2(-3.137)
=20.30° o))
_E+E? —4DF 1,286+ /~1.2867 — 4(~3.137)(0.331)
05 =2arctan| ——————  |=2arctan
crossed 2D 2(_3.137)

=-60.98°

7 The solution is shown in Figure 4-9.
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Y)

o; A
slider axis
-—- ———fé—f—f— —f—f%f— {B > X
e
Rj3 //
—
A b // -
offset //R . 4
a \ // S 4\
0, - 0
R2 —~ 4
0, 7 d \
P > X
R

FIGURE 4-10

Position vector loop for a fourbar crank-slider or slider-crank linkage

4.6 THE FOURBAR CRANK-SLIDER POSITION SOLUTION

The same vector loop approach as used for the pure pin-jointed fourbar can be applied
to a linkage containing sliders. Figure 4-10 shows an offset fourbar crank-slider linkage,
inversion #1. The term offset means that the slider axis extended does not pass through
the crank pivot. This is the general case. (The nonoffset crank-slider linkages shown in
Figure 2-15 are the special cases.) This linkage could be represented by only three posi-
tion vectors, Ry, R3, and Ry, but one of them (R) will be a vector of varying magnitude
and angle. It will be easier to use four vectors, Ry, Ry, R3, and R4 with R arranged paral-
lel to the axis of sliding and R4 perpendicular. In effect the pair of vectors R and Ry are
orthogonal components of the position vector Ry from the origin to the slider.

It simplifies the analysis to arrange one coordinate axis parallel to the axis of sliding.
The variable-length, constant-direction vector R then represents the slider position with
magnitude d. The vector Ry is orthogonal to R and defines the constant magnitude offset
of the linkage. Note that for the special-case, nonoffset version, the vector Ry will be zero
and R = R;. The vectors R, and R3 complete the vector loop. The coupler’s position
vector Rj is placed with its root at the slider which then defines its angle 05 at point B.
This particular arrangement of position vectors leads to a vector loop equation similar to
the pin-jointed fourbar example:

R,-R;-R,-R; =0 (4.142)

Compare equation 4.14a to equation 4.5a and note that the only difference is the sign
of R3. This is due solely to the somewhat arbitrary choice of the sense of the position
vector R3 in each case. The angle 63 must always be measured at the root of vector Rj,
and in this example it will be convenient to have that angle 03 at the joint labeled B. Once
these arbitrary choices are made it is crucial that the resulting algebraic signs be carefully
observed in the equations, or the results will be completely erroneous. Letting the vec-
tor magnitudes (link lengths) be represented by a, b, ¢, d as shown, we can substitute the
complex number equivalents for the position vectors.

ael®2 —pel% —cel _gel% =g (4.14b)
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Substitute the Euler equivalents:

a(cos®, + jsin®, ) — b(cosOs + jsin6; )

—c(cos®, + jsin®, )—d(cosb; + jsin®; )=0 (4.14¢)

Separate the real and imaginary components:

real part (x component):

acos0, —bcosB; —ccosO, —dcosO; =0
but: 6, =0, so: acosO, —bcosB; —ccosO, —d=0 (4.15a)

imaginary part (y component):
jasin®, — jbsin®; — jcsin®, — jdsin®; =0
but: 6, =0, and the j's divide out, so: (4.15b)

asin®, —bsin6; —csinB, =0

We want to solve equations 4.15 simultaneously for the two unknowns, link length d
and link angle 63. The independent variable is crank angle 0,. Link lengths a and b, the
offset ¢, and angle 04 are known. But note that since we set up the coordinate system to
be parallel and perpendicular to the axis of the slider block, the angle 0 is zero and 60y is
90°. Equation 4.15b can be solved for 65 and the result substituted into equation 4.15a to
solve for d. The solution is:

631 = arcsin(%ez_c) (4.16a)
d=acos®, —bcos0; (4.16b)

Note that there are again two valid solutions corresponding to the two circuits of the
linkage. The arcsine function is multivalued. Its evaluation will give a value between
+90° representing only one circuit of the linkage. The value of d is dependent on the
calculated value of 63. The value of 65 for the second circuit of the linkage can be found
from:

asin6, —c
932 :arcsin(—T2J+n 4.17)
A DEXAMPLE 4-2
Position Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.
Problem: Given a fourbar crank-slider linkage with the link lengths L) = a = 40 mm, L3 =

b = 120 mm, offset = ¢ = -20 mm. For 8, = 60° find all possible values of 63 and
slider position d.

Solution: (See Figure 4-10 for nomenclature.)

1 Using equation 4.16a, calculate the link coupler angle 05 for the open configuration.

197




198

DESIGN OF MACHINERY 6ed CHAPTER 4

Y A
circuit 2 a circuit 1
(crossed) b A b (open)
0, = 60°
02 \
> X
/e? =152.91°
le = 27.09° offset ¢ = -20 mm \
3crossed B

' 777@4 - »
~——— deroseed = -86.84 mm —-—-—— d,,,, = 126.84 MM ——->

FIGURE 4-11
Solution to Example 4-2

in6, — 40sin(60°)—(—20
0; =arcsin asmyv ¢ arcsin M =152.91° (a)
open b 120
2 Using equation 4.16b and the result from step 1, calculate slider position d for open linkage.
d =acos®, —bcosO; = 40cos(60°)—120c0s(152.91°) =126.84 mm (b)

3 Using equation 4.17, calculate the link coupler angle 65 for the crossed configuration.

40sin(60°)—(-20)

. asin®, —c
=arcsin| —————
120

+mT= arcsin[—

3crossed

J+1t:27.09° (c)

4 Using equation 4.16b and the result from step 3, calculate slider position d for crossed linkage.
d=acos6, —bcosB; =40 cos(60°) -120 cos(27.09°) =-86.84 mm (d)

5 Note that 03 is measured at the slider end of the coupler as shown in Figure 4-11.

4.7 THE FOURBAR SLIDER-CRANK POSITION SOLUTION

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section. The name change indicates that it will be
driven with the slider as input and the crank as output. This is sometimes referred to as a
“back-driven” crank-slider. We will use the term slider-crank to define it as slider-driven.
This is a very commonly used linkage configuration. Every internal-combustion piston
engine has as many of these as it has cylinders. The vector loop is as shown in Figure
4-10, and the vector loop equation is identical to equation 4.14a. But now we must solve
this equation for 0, as a function of slider position d.

Start with equation 4.14a, make the substitutions of equation 4.14b and the simpli-
fications of equations 4.15 to get the same simultaneous equation set:
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acos6, —bcosb; —ccosB, —d=0 (4.15a)
asin®, —bsinB; —csinf, =0 (4.15b)
but
0, =90° .. sinB, =1, cosB, =0
SO
acosf, —bcosO; —d=0 (4.182)
asin®, —bsinB; —c=0 (4.18b)

As was done in the fourbar linkage solution, isolate the 63 terms on one side, square
both equations, and add them to eliminate 0.

bcosB; =acosO, —d

bsin®; = asin®, —c
square: b? cos® 05 = (acosB, — dy’
b®sin” 03 = (asin®, - c)2
add: b? (sin2 05 +cos” 0, ) = (acosez - d)2 +(asin92 - 0)2
b? =(a00562 - d)2 +(asin62 —0)2
b* = a® cos? 0, —2adcos9, + d? + a’sin’ 0, —2acsin0, +c?
b* =d? (sin2 0, +cos’ 0, ) —2adcos8, —2acsin®, +c* + d*
a® —b? +c? +d? —2ac sin®, —2adcosH, =0 (419)
To simplify, create some constant parameters:
let Ky =a*-b* +c* +d*, K, =—2ac, K; =—2ad
then K; +K,sin6, + K53 cos6, =0 (4.20)

As we did for the fourbar linkage, substitute the tangent half-angle identities (equa-
tion 4.9) for sin 0, and cos 6, to get the equation in terms of one trigonometric function.

2tane—2 1—tan26—2
K +K, 20 +K, o |=0
1+tan® -2 1+tan® -2
2 2
. 5 0, 0,
simplify (K1 - K3)tan 7+2K2 tan7+(K1 +K3) =0
let A=K, -K;, B=2K,, C=K; +K;
0 0
then Atan2?2+Btan72+C=0
—B++B*-4AC
and 92] , =2arctan By E— (4.21)

Once 0, is known for a given value of d, 63 can be found from either equation 4.18a or
4.18b.
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be independently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular to the
slider axis, it is parallel to
itself on both circuits. This
results in the two circuits
being mirror images of one
another, mirrored about a
line through the crank pivot
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points at TDC
and BDC, the slider-crank
has two branches on each
circuit, and the two solu-
tions obtained from equa-
tion 4.21 represent the two
branches on the one circuit
being analyzed. In contrast,
the crank-slider has only
one branch per circuit
because when the crank is
driven, it can make a full
revolution and there are no
change points to separate
branches. See Section

4.13 for a more complete
discussion of circuits and
branches in linkages.
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Note that there are two solutions to equation 4.21 representing the two branches
of the linkage on the circuit to which the given value of slider position d applies.” The
equation will fail when the backdriven slider-crank is at either top dead center (TDC) or
bottom dead center (BDC). These are indeterminate change points between the branches
at which the mathematics cannot predict which branch the linkage will go to next. A real
slider-crank linkage can only make a full revolution of the crank if there is some stored
energy in the crank to carry it through the dead centers twice per revolution. This is why
you must spin a piston engine to start it and why they typically have a flywheel attached to
the crankshaft to provide the angular momentum needed to pass through TDC and BDC.

ZDEXAMPLE 4-3

Position Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method

Problem: Given a fourbar slider-crank linkage with the link lengths L, = a =40 mm, L3 = b
= 120 mm, offset = ¢ =—20 mm. For d = 100 mm, find all possible values of 6, and
03 on the circuit defined by the given value of d.

Solution: (See Figure 4-9 for nomenclature.)
1 Find the TDC and BDC positions of the linkage.

dgpc =b—a=120-40=80 mm

(@)

The requested position of d = 100 mm is within the range of motion of the slider-crank linkage
and is neither TDC nor BDC, so equations 4.20 and 4.21 can be used.
2 Find the intermediate parameters needed from equations 4.20 and 4.21.
K =a? b+ +d?= 407 120 +(-20)* +100% = —2400

K, =—2ac =-2(40)(-20)=1600
K5 =-2ad =-2(40)(100) = -8000

(b)
A=K, — K5 =-2400—(—8000) = 5600
B=2K, =2(1600) = 3200
C =K, + K3 =—2400+(-8000) = =10400
3 Find the two values of 0, from equation 4.21.
2
[ _B+B*—aaC | =3200+4/3200° — 4(5600)(—10400
9, =2tan”}| ——— "~ |=2tan” ‘/ (5600)( ) =95.798°
1 2A 2(5600)
()
2
[ _B_\B*_aacC .| =3200-/3200* — 4(5600)(~10400
6,, =2tan™ | ——————— |=2tan™" ‘/ (5600)( ) =-118.418°

2A 2(5600)
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A
branch 1
¢ b
6, = 95.80° 0, =187.27°
0, X
A 5 6, =15011°
. offset ¢
a 06, =-118.42 L, TS B| 7 o
branch 2 ‘ % glider axis
b
A
Li d =100 mm ——»
FIGURE 4-12

Solution to Example 4-3

4 Find the two values of 63 from either equation 4.16a or 4.17. Calculate 83 with both equations
for one value of 0, and then use equation 4.16b with that result to determine which of the two
equations gives the correct value of d to match the circuit of this linkage. Then use that equa-
tion with each of the 0, values to get the correct values of 03 for each branch of this circuit.
This example needs equation 4.17 for its circuit.

. 4 asin® —c o
6;, =sin” | -—————— |+ w=sin
1 b

asin®,, —c ]+ o] [ 40sin (~118.418°) — (—20)

. [_ 40sin (95.798°) - (-20)

+m=150.113°
120

(@)

+m=187.267°
b 120

8;, = cos™! [

5 The solution is shown in Figure 4-12.

4.8 AN INVERTED CRANK-SLIDER POSITION SOLUTION

Figure 4-13a" shows inversion #3 of the common fourbar crank-slider linkage in which the
sliding joint is between links 3 and 4 at point B. This is shown as an offset crank-slider
mechanism. The slider block has pure rotation with its center offset from the slide axis.
(Figure 2-15c, shows the nonoffset version of this linkage in which the vector Ry is zero.)

The global coordinate system is again taken with its origin at input crank pivot O, and
the positive X axis along link 1, the ground link. A local axis system has been placed at
point B in order to define 63. Note that there is a fixed angle y within link 4 which defines
the slot angle with respect to that link.

In Figure 4-13b, the links have been represented as position vectors having senses
consistent with the coordinate systems that were chosen for convenience in defining the
link angles. This particular arrangement of position vectors leads to the same vector loop
equation as the previous crank-slider example.
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* This figure is provided as
animated AVI and Working
Model files. Its filename

is the same as the figure
number.
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FIGURE 4-13

Inversion #3 of the slider-crank fourbar linkage

Equations 4.14 and 4.15 apply to this inversion as well. Note that the absolute posi-
tion of point B is defined by vector Rg which varies in both magnitude and direction as
the linkage moves. We choose to represent Rp as the vector difference R, — R3 in order
to use the actual links as the position vectors in the loop equation.

All slider linkages will have at least one link whose effective length between joints
will vary as the linkage moves. In this example the length of link 3 between points A and
B, designated as b, will change as it passes through the slider block on link 4. Thus the
value of b will be one of the variables to be solved for in this inversion. Another variable
will be 04, the angle of link 4. Note however, that we also have an unknown in 63, the
angle of link 3. This is a total of three unknowns. Equations 4.15 can only be solved for
two unknowns. Thus we require another equation to solve the system. There is a fixed
relationship between angles 63 and 6,4, shown as 7y in Figure 4-13, which gives the equa-
tions for the open and crossed configurations of the linkage, respectively:

open configuration: 6; =0, +vy;  crossed configuration: 6; =60, +y—-n (4.22)

Repeating equations 4.15 and renumbering them for the reader’s convenience:

acosB, —bcosB; —ccosf, —d=0 (4.23a)
asin®, —bsinB; —csinB, =0 (4.23b)

These have only two unknowns and can be solved simultaneously for 64 and b. Equa-
tion 4.23b can be solved for link length b/ and substituted into equation 4.23a.

_asin®, —csinf, (4.242)
sin0; '

in®, —csin®
acos9, —wcos% —ccosf, —d=0 (4.24b)

Sin 65
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Substitute equation 4.22, and after some algebraic manipulation, equation 4.24 can

be reduced to:
Psin®, +Qcos6, +R=0

where (4.25)
P=asin®,siny+(acos®, —d)cosy
Q=-asin®, cosy + (a cos0, — d)siny
R=—csiny

Note that the factors P, Q, R are constant for any input value of 6,. To solve this for
04, it is convenient to substitute the tangent half angle identities (equation 4.9) for the

sin 04 and cos 04 terms. This will result in a quadratic equation in tan (84 / 2) which can
be solved for the two values of 0.

2tan(674j
P

5 +0Q 5 +R=0 (4.26a)
1+tan2(—4) 1+tan2(—4)
2 2
This reduces to:
2( 84 04 _
(R-Q)tan | +2Ptan| = +(Q+R)=0
let
S=R-0Q, T=2P, U=Q+R
then
2( 64 04
Stan > +Ttan 5 +U=0 (4.26b)
and the solution is:
~T+\T* -4
8,,, =2arctan “TENT - 45U (4.26¢)

28

As was the case with the previous examples, this also has a crossed and an open so-
lution represented by the plus and minus signs on the radical, respectively. Note that we
must also calculate the values of link length b for each 84 by using equation 4.24a. The
coupler angle 03 is found from equations 4.22 for the open or crossed solution.

4.9 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,” the same approach as shown here for the fourbar linkage can be
used for any number of links in a closed-loop configuration. More complicated linkages
may have multiple loops which will lead to more equations to be solved simultaneously
and may require an iterative solution. Alternatively, Wampler(!0] presents a new, general,
noniterative method for the analysis of planar mechanisms containing any number of rigid
links connected by rotational and/or translational joints.
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* Waldron and Sreeniva-
sanl!l report that the
common solution methods
for position analysis are not
general, i.e., are not extend-
able to n-link mechanisms.
Conventional position
analysis methods, such as
those used here, rely on the
presence of a fourbar loop
in the mechanism that can
be solved first, followed

by a decomposition of the
remaining links into a series
of dyads. Not all mecha-
nisms contain fourbar loops.
(One eightbar, 1-DOF
linkage contains no fourbar
loops—see the 16th isomer
at lower right in Figure
2-11d). Even if there is a
fourbar loop, its pivots may
not be grounded, requiring
that the linkage be inverted
to start the solution. Also,
if the driving joint is not

in the fourbar loop, then
interpolation is needed to
solve for link positions.
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The Geared Fivebar Linkage

Another example, which can be reduced to two equations in two unknowns, is the geared
fivebar linkage or mechanism (GFBM), which was introduced in Section 2.14 and is
shown in Figure 4-14a and program LINKAGES disk file F04-11.5br. The vector loop for
this linkage is shown in Figure 4-14b. It obviously has one more position vector than the
fourbar. Its vector loop equation is:

R, +R;-R, -Rs—R; =0 (4.272)

Note that the vector senses are again chosen to suit the analyst’s desires to have the
vector angles defined at a convenient end of the respective link. Equation 4.27b substi-
tutes the complex polar notation for the position vectors in equation 4-23a, using a, b, c,
d, fto represent the scalar lengths of the links as shown in Figure 4-14.

ae’® 1 pel® —cel® —del® — fel1 =g (4.27b)

Note also that this vector loop equation has three unknown variables in it, namely the
angles of links 3, 4, and 5. (The angle of link 2 is the input, or independent, variable, and
link 1 is fixed with constant angle.) Since a two-dimensional vector equation can only be
solved for two unknowns, we will need another equation to solve this system. Because this
is a geared fivebar linkage, there exists a relationship between the two geared links, here
links 2 and 5. Two factors determine how link 5 behaves with respect to link 2, namely,
the gear ratio A and the phase angle ¢. The relationship is:

05 =210, +0 (4.27¢)

This allows us to express 05 in terms of 0, in equation 4.27b and reduce the unknowns
to two by substituting equation 4.27c into equation 4.27b.

ael® 1 pel® _(el0% —dej(}”ezﬂp) —fej91 =0 (4.282)

Note that the gear ratio A is the ratio of the diameters of the gears connecting the
two links (A=dia, / dias ), and the phase angle ¢ is the initial angle of link 5 with respect
to link 2. When link 2 is at zero degrees, link 5 is at the phase angle ¢. Equation 4.27¢
defines the relationship between 6, and 65. Both A and ¢ are design parameters selected
by the design engineer along with the link lengths. With these parameters defined, the
only unknowns left in equation 4.28 are 63 and 6.

The behavior of the geared fivebar linkage can be modified by changing the link
lengths, the gear ratio, or the phase angle. The phase angle can be changed simply by
lifting the gears out of engagement, rotating one gear with respect to the other, and re-
engaging them. Since links 2 and 5 are rigidly attached to gears 2 and 5, respectively,
their relative angular rotations will be changed also. It is this fact that results in different
positions of links 3 and 4 with any change in phase angle. The coupler curve’s shapes
will also change with variation in any of these parameters as can be seen in Figure 3-23
and in Appendix E.

The procedure for solution of this vector loop equation is the same as that used for
the fourbar linkage:
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Gear 2 (a) (b)

FIGURE 4-14

The geared fivebar linkage and its vector loop

1

Substitute the Euler equivalent (equation 4.4a) into each term in the vector loop equa-
tion 4.28a.

a(c0562 +jsin92)+b(cose3 +jsin63)—c(cos64 +jsin94)
—d[cos(kez +0)+ jsin (A0, +¢)]— f(cos®; + jsin®; )=0 (4.28b)
Separate the real and imaginary parts of the cartesian form of the vector loop equa-
tion.
acos®, +bcosOs; —ccosd, —dcos(A0, +¢)— fcos; =0 (4.28¢)
asin®, +bsin0; —csin®, — dsin(A0, +¢)— fsind; =0 (4.28d)

Rearrange to isolate one unknown (either 03 or 64) in each scalar equation. Note that
0, is zero.

bcos®; =—acos, +ccosby +dcos(A0, +0)+ f (4.28¢)
bsin®; =—asin®, +csin6, +dsin(A6, +¢) (4.28f)
Square both equations and add them to eliminate one unknown, say 5.
b? =Zc[dcos(k62 +¢)—acos92 +chosG4
+ 2c[dsin(7u62 +0)—asin®, ]sin64
+a?+c?+d*+ f? —2af cosO,
—2d(ac0592 —f)cos(?»@z +¢)
—2adsin®, sin(k92 + q))
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5 Substitute the tangent half-angle identities (equation 4.9) for the sine and cosine terms

and manipulate the resulting equation in the same way as was done for the fourbar
linkage in order to solve for 0.

A :2c[dcos(7\.62 +¢)—ac0562 +fJ
B:2c[dsin(%92 +¢)—asin62J
C=a®>-b*+c* +d*+ f? —2af coso,

- Zd(a cos0, — f)cos(?»@z + ¢) —2adsin®, sin(?xe2 + ¢)

D=C-A, E=2B, F=A+C
~E+\E%—4DF
9412 =2arctan| —M8M (4.28h)
, 2D
6 Repeat steps 3 to 5 for the other unknown angle 03.
G= 2b[acos92 - dcos(kﬂz + q>)— f}
H =2b[ asin®, — dsin (16, + ) |
K=a®+b*—c* +d* + f* —2af cosH,
—Zd(acosez —f)cos(kez +¢)
—2adsin6, sin(?»Gz + ¢)
L=K-G; M=2H; N=G+K
~M +yM? —4LN :
631’2 =2arctan — 5. (4.28i)

Note that these derivation steps are essentially identical to those for the pin-jointed
fourbar linkage once 6, is substituted for 05 using equation 4.27c.

FIGURE 4-15

Watt’s sixbar linkage and vector loop
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FIGURE 4-16
Stephenson’s sixbar linkage and vector loops

Sixbar Linkages

WATT’S SIXBAR s essentially two fourbar linkages in series, as shown in Figure 4-15a,
and can be analyzed as such. Two vector loops are drawn as shown in Figure 4-15b.
These vector loop equations can be solved in succession with the results of the first loop
applied as input to the second loop. Note that there is a constant angular relationship
between vectors Ry and Ry within link 4. The solution for the fourbar linkage (equations
4.10 and 4.13, respectively) is simply applied twice in this case. Depending on the inver-
sion of the Watts linkage being analyzed, there may be two four-link loops or one four-link
and one five-link loop. (See Figure 2-16.) In either case, if the four-link loop is analyzed
first, there will not be more than two unknown link angles to be found at one time.

STEPHENSON’S SIXBAR is a more complicated mechanism to analyze. Two vector
loops can be drawn, but depending on the inversion being analyzed, either one or both
loops will have five links™ and three unknown angles as shown in Figure 4-13a and b.
However, the two loops will have at least one nonground link in common and so a solution
can be found. In the other cases an iterative solution such as a Newton-Raphson method
(see Section 4.14) must be used to find the roots of the equations. Program LINKAGES is
limited to the inversions which allow a closed-form solution, one of which is shown in
Figure 4-16, and it does not do the iterative solution.

410 POSITION OF ANY POINT ON A LINKAGE

Once the angles of all the links are found, it is simple and straightforward to define and
calculate the position of any point on any link for any input position of the linkage. Figure
4-17 shows a fourbar linkage whose coupler, link 3, is enlarged to contain a coupler point
P. The crank and rocker have also been enlarged to show points S and U which might
represent the centers of gravity of those links. We want to develop algebraic expressions
for the positions of these (or any) points on the links.

To find the position of point S, draw a position vector from the fixed pivot O, to point
S. This vector Rgp, makes an angle 6, with the vector Ry¢,. This angle & is completely
defined by the geometry of link 2 and is constant. The position vector for point S is then:
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* Waldron and Sreeniva-
sanl!l report that the
common solution methods
for position analysis are not
general, i.e., are not extend-
able to n-link mechanisms.
Conventional position
analysis methods, such as
those used here, rely on the
presence of a fourbar loop
in the mechanism that can
be solved first, followed

by a decomposition of the
remaining links into a series
of dyads. Not all mecha-
nisms contain fourbar loops.
(One eightbar, 1-DOF
linkage contains no fourbar
loops—see the 16th isomer
at lower right in Figure
2-11d). Even if there is a
fourbar loop, its pivots may
not be grounded, requiring
that the linkage be inverted
to start the solution. Also,
if the driving joint is not

in the fourbar loop, then
interpolation is needed to
solve for link positions.
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* The transmission angle
has limited application. It
only predicts the quality of
force or torque transmission
if the input and output links
are pivoted to ground. If
the output force is taken
from a floating link (cou-
pler), then the transmission
angle is of no value. A dif-
ferent index of merit called
the joint force index (JFI)

is presented in Chapter 11
which discusses force analy-
sis in linkages. (See Section
11.12.) The JFI is useful
for situations in which the
output link is floating as
well as giving the same kind
of information when the
output is taken from a link
rotating against the ground.
However, the JFI requires a
complete force analysis of
the linkage be done whereas
the transmission angle is
determined from linkage
geometry alone.
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FIGURE 4-17
Positions of points on the links
RSO2 = RS = Sej(62+82) = S[COS(OZ +62)+]Sln(62 +62 )] (4.29)

The position of point U on link 4 is found in the same way, using the angle 84 which
is a constant angular offset within the link. The expression is:
Ryo, = ue/(%4+94) u[cos(64 +84)+ jsin(6, +84)J (4.30)
The position of point P on link 3 can be found from the addition of two position
vectors R4 and Rpy. Vector Ry is already defined from our analysis of the link angles
in equations 4.5. Vector Rp4 is the relative position of point P with respect to point A.
Vector Rpy is defined in the same way as Rg or Ry, using the internal link offset angle 83
and the position angle of link 3, 6.

Ry, = pel(93+53) = p[cos(63 +83)+jsin(93 +63)] (4.31a)

RP :RA +RPA (4.31b)
Compare equation 4.31b with equations 4.1. Equation 4.31b is the position difference
equation.

411 TRANSMISSION ANGLES
The transmission angle was defined in Section 3.3 for a fourbar linkage. That definition
is repeated here for your convenience.

The transmission angle | is shown in Figure 3-3a and is defined as the angle between the
output link and the coupler. 1t is usually taken as the absolute value of the acute angle of the pair
of angles at the intersection of the two links and varies continuously from some minimum to some
maximum value as the linkage goes through its range of motion. It is a measure of the quality of
force transmission at the joint.”
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We will expand that definition here to represent the angle between any two links in a
linkage, as a linkage can have many transmission angles. The angle between any output
link and the coupler which drives it is a transmission angle. Now that we have developed
the analytic expressions for the angles of all the links in a mechanism, it is easy to define
the transmission angle algebraically. It is merely the difference between the angles of the
two joined links through which we wish to pass some force or velocity. For our fourbar
linkage example it will be the difference between 03 and 64. By convention we take the
absolute value of the difference and force it to be an acute angle.

Otrans =|93 - e4|

. T
it Oyans > 5 then u=m—0,4, else W=0,, (4.32)

This computation can be done for any joint in a linkage by using the appropriate link
angles.

Extreme Values of the Transmission Angle

For a Grashof crank-rocker fourbar linkage the minimum value of the transmission angle
will occur when the crank is colinear with the ground link as shown in Figure 4-18. The
values of the transmission angle in these positions are easily calculated from the law
of cosines since the linkage is then in a triangular configuration. The sides of the two
triangles are link 3, link 4, and either the sum or difference of links 1 and 2. Depending
on the linkage geometry, the minimum value of the transmission angle L,,;,, will occur
either when links 1 and 2 are colinear and overlapping as shown in Figure 4-18a or when
links 1 and 2 are colinear and nonoverlapping as shown in Figure 4-18b. Using notation
consistent with Section 4.5 and Figure 4-6 we will label the links:

a = link 2, b = link 3, ¢ =link 4, d=link 1

(a) Overlapped (b) Extended
FIGURE 4-18
The minimum transmission angle in the Grashof crank-rocker fourbar linkage occurs in one of two positions
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(a) Toggle positions for links b and ¢ (b) Toggle positions for links a and b

FIGURE 4-19

Non-Grashof triple-rocker linkages in toggle

For the overlapping case (Figure 4-18a) the cosine law gives

b +c2 —(d—a)2
Wy =7y; =arccos| —————— (4.33a)
2bc
and for the extended case, the cosine law gives
b% +¢? —(d+a)2
Wy =T —7Y, = TT—arccos ST E— (4.33b)

The minimum transmission angle LL,,;, in a Grashof crank-rocker linkage is then the
smaller of || and ;.

For a Grashof double-rocker linkage the transmission angle can vary from 0 to 90
degrees because the coupler can make a full revolution with respect to the other links. For
a non-Grashof triple-rocker linkage the transmission angle will be zero degrees in the
toggle positions which occur when the output rocker ¢ and the coupler b are colinear as
shown in Figure 4-19a. In the other toggle positions when input rocker a and coupler b are
colinear (Figure 4-19b), the transmission angle can be calculated from the cosine law as:

when v=0,

2 2 2
w] 30

uzarccosl 2c(a+b)

This is not the smallest value that the transmission angle |1 can have in a triple-rocker,
as that will obviously be zero. Of course, when analyzing any linkage, the transmission
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FIGURE 4-20

Finding the crank angle corresponding to the toggle positions

angles can easily be computed and plotted for all positions using equation 4.32. Program
LINKAGES does this. The student should investigate the variation in transmission angle for
the example linkages in those programs. Disk file FO4-15.4br can be opened in program
LINKAGES to observe that linkage in motion.

412 TOGGLE POSITIONS

The input link angles which correspond to the toggle positions (stationary configurations)
of the non-Grashof triple-rocker can be calculated by the following method, using trigo-
nometry. Figure 4-20 shows a non-Grashof fourbar linkage in a general position. A con-
struction line £ has been drawn between points A and O4. This divides the quadrilateral
loop into two triangles, 0,AO04 and ABO4. Equation 4.35 uses the cosine law to express
the transmission angle L in terms of link lengths and the input link angle 6,.

W =a*+d? —2adcos9,

also: h? =b% +c? —2bccospt
SO: a® +d* —2adcosB, = b* +c* —2bccosp
2,2 2 2
and: cospL = bi+e —a—d” + a—dcos 0, (4.35)
2bc be

To find the maximum and minimum values of input angle 6,, we can differentiate
equation 4.35, form the derivative of 6, with respect to [, and set it equal to zero.

49, _be sinn _,, (4.36)
du adsin®,

The link lengths a, b, ¢, d are never zero, so this expression can only be zero when

sin W is zero. This will be true when angle p in Figure 4-20 is either zero or 180°. This
is consistent with the definition of toggle given in Section 3.3. If 1 is zero or 180° then
cos L will be +1. Substituting these two values for cos L into equation 4.35 will give a

21
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solution for the value of 0, between zero and 180° which corresponds to the toggle posi-
tion of a triple-rocker linkage when driven from one rocker.

PP+ -a®>-d*> ad

cosy=———+—cos6, =+1
H 2bc bc 2
or:
2, 2 42 2
+d”—b" — b
cosg, =L 1% 79 7€ ; 0¢ (4.37)
2ad ad
and:
2, 2 32 2
+d”—b" — b
0, :arccos[;i—c 0<0, <n
toggle 2ad ad toggle

One of these * cases will produce an argument for the arccosine function which lies
between t1. The toggle angle which is in the first or second quadrant can be found from
this value. The other toggle angle will then be the negative of the one found, due to the
mirror symmetry of the two toggle positions about the ground link as shown in Figure
4-19. Program LINKAGES computes the values of these toggle angles for any non-Grashof
linkage.

413 CIRCUITS AND BRANCHES IN LINKAGES

In Section 4.5 it was noted that the fourbar linkage position problem has two solutions
which correspond to the two circuits of the linkage. This section will explore the topics
of circuits and branches in linkages in greater detail.

Chase and Mirth!2] define a circuit in a linkage as “all possible orientations of the
links that can be realized without disconnecting any of the joints” and a branch as “a
continuous series of positions of the mechanism on a circuit between two stationary con-
figurations . . . . The stationary configurations divide a circuit into a series of branches.”
A linkage may have one or more circuits each of which may contain one or more branches.
The number of circuits corresponds to the number of solutions possible from the position
equations for the linkage.

Circuit defects are fatal to linkage operation, but branch defects are not. A mecha-
nism that must change circuits to move from one desired position to the other (referred to
as a circuit defect) is not useful as it cannot do so without disassembly and reassembly.
A mechanism that changes branches when moving from one circuit to another (referred to
as a branch defect) may or may not be usable depending on the designer’s intent.

The tailgate linkage shown in Figure 3-2 is an example of a linkage with a deliberate
branch defect in its range of motion (actually at the limit of its range of motion). The
toggle position (stationary configuration) that it reaches with the tailgate fully open serves
to hold it open. But the user can move it out of this stationary configuration by rotating
one of the links out of toggle. Folding chairs and tables often use a similar scheme as do
fold-down seats in automobiles.

Another example of a common linkage with a branch defect is the slider-crank link-
age (crankshaft, connecting rod, and slider driving) used in every piston engine and shown
in Figure 13-3. This linkage has two toggle positions (top and bottom dead center) giv-
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(a) Two circuits of the o
fourbar crank-rocker (b) Two circuits of the
fourbar double crank

circuit 2 circuit 1
4 4
1 \\ s / 1
\ 7/ N
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oo (e o]
effective effective
link 4 link 4
(c) Two circuits of the (d) Two circuits of the
fourbar double-rocker fourbar slider

FIGURE 4-21

Circuits of the fourbar linkage

ing it two branches within one revolution of its crank. It works nevertheless because it is
carried through these stationary configurations by the angular momentum of the rotating
crank and its attached flywheel. One penalty is that the engine must be spun to start it in
order to build sufficient momentum to carry it through these toggle positions.

The Watt sixbar linkage can have four circuits, and the Stephenson sixbar can have
either four or six circuits depending on which link is driving. Eightbar linkages can have
as many as 16 or 18 circuits, not all of which may be real, however.[2]

The number of circuits and branches in the fourbar linkage depends on its Grashof
condition and the inversion used. A non-Grashof, triple-rocker fourbar linkage has only
one circuit but has two branches. All Grashof fourbar linkages have two circuits, but the
number of branches per circuit differs with the inversion. The crank-rocker and double-
crank have only one branch within each circuit. The double-rocker and rocker-crank have
two branches within each circuit. Table 4-1 summarizes these relationships.[?] Table 4-2
shows the circuits and branches for the two configurations of the fourbar slider linkage.
Figure 4-21 shows the circuits for the Grashof fourbar linkage and the fourbar slider.

Any solution for the position of a linkage must take into account the number of pos-
sible circuits that it contains. A closed-form solution, if available, will contain all the
circuits. An iterative solution such as is described in the next section will only yield the
position data for one circuit, and it may not be the one you expect.
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TABLE 4-1

Circuits & Branches
In the Fourbar Linkage

Fourbar Number Branches
Linkage of per
Type Circuits Circuit

Non-

Grashof

triple- 1 2
rocker

Grashof *
crank- 2 1
rocker

Grashof ©
double- 2 1
crank

Grashof ©
double- 2 2
rocker

Grashof ©
rocker - 2 2
crank

" Valid only for non-special-case
Grashof linkages

TABLE 4-2

Circuits & Branches
In the Fourbar Slider

Fourbar Number Branches
Slider of per
Type Circuits Circuit

Crank-

slider 2 1
Slider- 2 2
crank
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* Kramer B! states that “In
theory, any nonlinear alge-
braic system of equations can
be manipulated into the form
of a single polynomial in one
unknown. The roots of this
polynomial can then be used
to determine all unknowns in
the system. However, if the
derived polynomial is greater
than degree four, factoring
and/or some form of iteration
are necessary to obtain the
roots. In general, systems
that have more than a fourth
degree polynomial associated
with the eliminant of all but
one variable must be solved
by iteration. However, if
factoring of the polynomial
into terms of degree four or
less is possible, all roots may
be found without iteration.
Therefore the only truly sym-
bolic solutions are those that
can be factored into terms of
fourth degree or less. This

is the formal definition of a
closed form solution.”

 Viete’s method from “De
Emendatione” by Francois
Viete (1615) as described in
reference [4].
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414 NEWTON-RAPHSON SOLUTION METHOD

The solution methods for position analysis shown so far in this chapter are all of “closed
form,” meaning that they provide the solution with a direct, noniterative approach.” In
some situations, particularly with multiloop mechanisms, a closed-form solution may not
be attainable. Then an alternative approach is needed, and the Newton-Raphson method
(sometimes just called Newton’s method) provides one that can solve sets of simultane-
ous nonlinear equations. Any iterative solution method requires that one or more guess
values be provided to start the computation. It then uses the guess values to obtain a new
solution that may be closer to the correct one. This process is repeated until it converges
to a solution close enough to the correct one for practical purposes. However, there is no
guarantee that an iterative method will converge at all. It may diverge, taking successive
solutions further from the correct one, especially if the initial guess is not sufficiently
close to the real solution.

Though we will need to use the multidimensional (Newton-Raphson) version of
Newton’s method for these linkage problems, it is easier to understand how the algorithm
works by first discussing the one-dimensional Newton method for finding the roots of a
single nonlinear function in one independent variable. Then we will discuss the multidi-
mensional Newton-Raphson method.

One-Dimensional Root-Finding (Newton’s Method)

A nonlinear function may have multiple roots, where a root is defined as the intersection
of the function with any straight line. Typically the zero axis of the independent variable
is the straight line for which we desire the roots. Take, for example, a cubic polynomial
which will have three roots, with either one or all three being real.

y=f(x)=—x3 —2x% +50x+60 (4.38)

There is a closed-form solution for the roots of a cubic function® which allows us to
calculate in advance that the roots of this particular cubic are all real and are x = —7.562,
—1.177, and 6.740.

Figure 4-22 shows this function plotted over a range of x. In Figure 4-22a, an initial
guess value of x; = 1.8 is chosen. Newton’s algorithm evaluates the function for this guess
value, finding y;. The value of y; is compared to a user-selected tolerance (say 0.001) to
see if it is close enough to zero to call x; the root. If not, then the slope () of the function
at xq, y; is calculated either by using an analytic expression for the derivative of the func-
tion or by doing a numerical differentiation (less desirable). The equation of the tangent
line is then evaluated to find its intercept at xo which is used as a new guess value. The
above process is repeated, finding y»; testing it against the user selected tolerance; and, if
it is too large, calculating another tangent line whose x intercept is used as a new guess
value. This process is repeated until the value of the function y; at the latest x; is close
enough to zero to satisfy the user.

The Newton algorithm described above can be expressed algebraically (in pseudo-
code) as shown in equation 4.39. The function for which the roots are sought is f{x), and
its derivative is f'(x). The slope m of the tangent line is equal to f’(x) at the current point

Xi> Yi-
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(a) A guess of x =1.8 converges to the root at x =-1177

FIGURE 4-22

Newton-Raphson method of solution for roots of nonlinear functions

step 1 yi=f(x)
step 2 IF y; <tolerance THEN STOP
step 3 m=f"(x;)
step 4 Xiy] =X — i
m
step 5 Vi1 = f(xi)
step 6 IF y;,1 <tolerance THEN STOP

ELSE x; =X, : GOTO step 1 (4.39)

Yi=DYin ¢

If the initial guess value is close to a root, this algorithm will converge rapidly to the
solution. However, it is quite sensitive to the initial guess value. Figure 4-22b shows the
result of a slight change in the initial guess from x; = 1.8 to x; = 2.5. With this slightly
different guess, it converges to another root. Note also that if we choose an initial guess
of x; = 3.579 which corresponds to a local maximum of this function, the tangent line
will be horizontal and will not intersect the x axis at all. The method fails in this situa-
tion. Can you suggest a value of x; that would cause it to converge to the root at x = 6.74?

So this method has its drawbacks. It may fail to converge. It may behave chaotically.”
It is sensitive to the guess value. It also is incapable of distinguishing between multiple
circuits in a linkage. The circuit solution it finds is dependent on the initial guess. It re-
quires that the function be differentiable, and the derivative as well as the function must
be evaluated at every step. Nevertheless, it is the method of choice for functions whose
derivatives can be efficiently evaluated and which are continuous in the region of the root.
Furthermore, it is about the only choice for systems of nonlinear equations.

(b) A guess of x =2.5 converges to the root at x =-7.562

“Kramer!3! points out that
“the Newton Raphson al-
gorithm can exhibit chaotic
behavior when there are
multiple solutions to kine-
matic constraint equations.
... Newton Raphson

has no mechanism for
distinguishing between the
two solutions” (circuits).
He does an experiment
with just two links, exactly
analogous to finding the
angles of the coupler and
rocker in the fourbar linkage
position problem, and finds
that the initial guess values
need to be quite close to
the desired solution (one of
the two possible circuits) to
avoid divergence or chaotic
oscillation between the two
solutions.
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Multidimensional Root-Finding (Newton-Raphson Method)

The one-dimensional Newton method is easily extended to multiple, simultaneous, non-
linear equation sets and is then called the Newton-Raphson method. First, let’s generalize
the expression developed for the one-dimensional case in step 4 of equation 4.39. Refer
also to Figure 4-22.

y.
Xit1 =X —;l or m(xiﬂ _xi):_yi
but: yi=f(x) m= f'(x;) Xiy1 =X = AX
substituting: o) ax=—f(x;) (4.40)

Here a Ax term is introduced which will approach zero as the solution converges. The Ax
term rather than y; will be tested against a selected tolerance in this case. Note that this
form of the equation avoids the division operation which is acceptable in a scalar equation
but impossible with a matrix equation.

A multidimensional problem will have a set of equations of the form
S, xy, %3, %,

)
fz-(xl,xz,x3,._‘.,xn) -B (4.41)

Jn (X%, %3, ..., X))

where the set of equations constitutes a vector, here called B.

Partial derivatives are required to obtain the slope terms

Oh 9h . A
ox; 0x, 0x,
: : : =A (4.42)
dx;  dx, dx,,

which form the Jacobian matrix of the system, here called A.
The error terms are also a vector, here called X.
AX,
l=x (4.43)
AXp
Equation 4.40 then becomes a matrix equation for the multidimensional case.

AX=-B (4.44)

Equation 4.44 can be solved for X either by matrix inversion or by Gaussian elimination.
The values of the elements of A and B are calculable for any assumed (guess) values of
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the variables. A criterion for convergence can be taken as the sum of the error vector X
at each iteration where the sum approaches zero at a root.

Let’s set up this Newton-Raphson solution for the fourbar linkage.

Newton-Raphson Solution for the Fourbar Linkage

The vector loop equation of the fourbar linkage, separated into its real and imaginary parts
(equations 4.6a and 4.6b) provides the set of functions that define the two unknown link
angles 03 and 04. The link lengths, a, b, ¢, d, and the input angle 6, are given.

fi=acos0, +bcosb; —ccosf, —d=0

(4.452)
f, =asin®, +bsin6; —csinB, =0
acosB, +bcosB; —ccosO, —d
=" . . (4.45b)
asin®, +bsinO; —csinb,
The error vector is:
(A0,
X = (4.46)
_A 64
s
d0; 90 —bsin®;  csin®
A=l P 3 ! (4.47)
A, df bcos®; —ccosB,

%, 08,

This matrix is known as the Jacobian of the system, and, in addition to its usefulness
in this solution method, it also tells something about the solvability of the system. The
system of equations for position, velocity, and acceleration (in all of which the Jacobian
appears) can only be solved if the value of the determinant of the Jacobian is nonzero.

Substituting equations 4.45b, 4.46, and 4.47 into equation 4.44 gives:

—bsin®;  csinB, |[A6, acosO, +bcosO; —ccosb, —d (4.48)
bcos®; —ccosO, ||AB, | |asin®, +bsin; —csinb, ’

To solve this matrix equation, guess values will have to be provided for 63 and 6,4 and
the two equations then solved simultaneously for AB3 and A8,4. For a larger system of
equations, a matrix reduction algorithm will need to be used. For this simple system in
two unknowns, the two equations can be solved by combination and reduction. The test
described above which compares the sum of the values of AB3 and A4 to a selected toler-
ance must be applied after each iteration to determine if a root has been found.

Equation Solvers

Some commercially available equation solver software packages include the ability to
do a Newton-Raphson iterative solution on sets of nonlinear simultaneous equations.
TKSolver” and Mathcad' are examples. TKSolver automatically invokes its Newton-
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Systems, 1220 Rock St.
Rockford, IL 61101, USA.
(800) 435-7887

TPTC Inc., 140 Kendrick
St., Needham, MA 02494
(781) 370-5000
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TABLE P4-0 - Part 1
Topic/Problem Matrix

4.2 Position and Dis-
placement
4-53, 4-57

4.5 Position Analysis of
Fourbar Linkages
4-1,4-2,4-3,4-4,4-5
Graphical 4-6
Analytical 4-7, 4-8,
4-18d, 4-24, 4-36,
4-39. 4-42, 4-45, 4-48,
4-51, 4-58, 4-59

4.6 Fourbar Crank-Slider
Position Solution
Graphical 4-9
Analytical 4-10,
4-18c, 4-18f,
4-18h, 4-20, 4-63,
4-66

4.7 Fourbar Slider-Crank
Position Solution
Graphical 4-60
Analytical 4-61

4.8 Inverted Crank-Slider
Position Solution
Graphical 4-1
Analytical 4-12, 4-48

4.9 Linkages of More
than Four Bars
Graphical GFBM 4-16
Analytical GFBM 4-17
Sixbar 4-34, 4-36,
4-37, 4-39, 4-40, 4-42,
4-49, 4-51
Eightbar 4-43, 4-45,
4-62

410 Position of Any Point
on a Linkage
4-19, 4-22,4-23,
4-46, 4-67

411 Transmission Angles
4-13, 4-14, 4-18b,
4-18e, 4-35, 4-38, 4-41,
4-44,4-47,4-50, 4-54

412 Toggle Positions
4-15, 4-18a, 4-18g,
4-21, 4-25, 4-26,
4-27, 4-28, 4-29,
4-30, 4-52, 4-55, 4-56

DESIGN OF MACHINERY 6ed CHAPTER 4

Raphson solver when it cannot directly solve the presented equation set, provided that
enough guess values have been supplied for the unknowns. These equation solver tools
are quite convenient in that the user need only supply the equations for the system in “raw”
form such as equation 4.45a. It is not necessary to arrange them into the Newton-Raphson
algorithm as shown in the previous section. Lacking such a commercial equation solver,
you will have to write your own computer code to program the solution as described
above. Reference [5] is a useful aid in this regard. The downloads with this text contain
example TKSolver files for the solution of this fourbar position problem as well as others.

415

10

416

4-1

42
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PROBLEMS*

A position vector is defined as having a length equal to your height in inches (or cen-
timeters). The tangent of its angle is defined as your weight in pounds (or kilograms)
divided by your age in years. Calculate the data for this vector and:

a.  Draw the position vector to scale on cartesian axes.

b.  Write an expression for the position vector using unit vector notation.

c.  Write an expression for the position vector using complex number notation, in both
polar and cartesian forms.

A particle is traveling along an arc of 6.5-in radius. The arc center is at the origin of
a coordinate system. When the particle is at position A, its position vector makes a

¥ All problem figures are provided as PDF files, and some are also provided as animated AVI and Working
Model files; PDF filenames are the same as the figure number. Run the file Animations.html to access and run
the animations.
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TABLE P4-1 Data for Problems 4-6, 4-7 and 4-13 to 4-15%

Row Link 1 Link 2 Link 3 Link 4 6,
a 6 2 7 9 30
b 7 9 3 8 85
c 3 10 6 8 45
d 8 5 7 6 25
e 8 5 8 6 75
f 5 8 8 9 15
g 6 8 8 9 25
h 20 10 10 10 50
i 4 5 2 5 80
j 20 10 10 10 33
k 4 6 10 7 88
/ 9 7 10 7 60
m 9 7 " 8 50
n 9 7 " 6 120

\ Y

- X

-

. '/’
NN

O

Crossed

FIGURE P4-1%
Problems 4-6 to 4-7. General configuration and terminology for the fourbar linkage

45° angle with the X axis. At position B, its vector makes a 75° angle with the X axis.
Draw this system to some convenient scale and:

a.  Write an expression for the particle’s position vector in position A using complex
number notation, in both polar and cartesian forms.

b.  Write an expression for the particle’s position vector in position B using complex
number notation, in both polar and cartesian forms.

c.  Write a vector equation for the position difference between points B and A. Substi-
tute the complex number notation for the vectors in this equation and solve for the
position difference numerically.

d.  Check the result of part ¢ with a graphical method.
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TABLE P4-0 - Part 2
Topic/Problem Matrix

414 Newton-Raphson
Solution Method
4-31, 4-32,4-33,
4-64, 4-65

¥ These problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Working
Model files; PDF filenames
are the same as the figure
number. Run the file Ani-
mations.html to access and
run the animations.
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¥ These problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Working
Model files; PDF filenames
are the same as the figure
number. Run the file Ani-
mations.html to access and
run the animations.

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.
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TABLE P4-2 Data for Problems 4-9 to 4-10%
Row Link 2 Link 3 Offset 6>
a 1.4 4 1 45
b 2 6 -3 60
c 3 8 2 -30
d 35 10 1 120
e 5 20 -5 225
f 3 13 0 100
g 7 25 10 330
05 YA
y B
A ¥
Link 3
A /
Link 2 o Offset ~ 6, = 50°
\ J
0, Slider position d

FIGURE P4-2
Problems 4-9, 4-10, 4-60, 4-61 Fourbar slider linkage open configuration and terminology

4-3

44

147
4-8
4.9

Repeat problem 4-2 considering points A and B to represent separate particles, and find
their relative position.

Repeat Problem 4-2 with the particle’s path defined as being along the line
y=-2x+10.

Repeat Problem 4-3 with the path of the particle defined as being along the curve
y=-2x2-2x+ 10.

The link lengths and the value of 6, for some fourbar linkages are defined in Table P4-1.
The linkage configuration and terminology are shown in Figure P4-1. For the rows
assigned, draw the linkage to scale and graphically find all possible solutions (both open
and crossed) for angles 03 and 64. Determine the Grashof condition.

Repeat Problem 4-6 except solve by the vector loop method.
Expand equation 4.7b and prove that it reduces to equation 4.7c.

The link lengths and the value of 6, and offset for some fourbar crank-slider linkages
are defined in Table P4-2. The linkage configuration and terminology are shown in
Figure P4-2. For the rows assigned, draw the linkage to scale and graphically find all
possible solutions (both open and crossed) for angle 03 and slider position d.
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TABLE P4-3 Data for Problems 4-11to 4-12

Row Link 1 Link 2 Link 4 Y 05
a 6 2 4 90 30
b 7 9 3 75 85
c 3 10 6 45 45
d 8 3 60 25
e 8 2 30 75
f 5 8 90 150

FIGURE P4-3

Problems 4-11 to 4-12 Terminology for inversion #3 of the fourbar crank-slider linkage

*¥4-10  Repeat Problem 4-9 except solve by the vector loop method. * Answers in Appendix F

*4-11 The link lengths and the value of 8, and y for some inverted fourbar crank-slider link-
ages are defined in Table P4-3. The linkage configuration and terminology are shownin  f These problems are suited
Figure P4-3. For the rows assigned, draw the linkage to scale and graphically find both o solution using Mathcad,
open and crossed solutions for angles 63 and 64 and vector Rp. Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

*f4-12  Repeat Problem 4-11 except solve by the vector loop method.
*¥4-13  Find the transmission angles of the linkages in the assigned rows in Table P4-1.

*¥4-14  Find the minimum and maximum values of the transmission angle for all the Grashof
crank-rocker linkages in Table P4-1.

*4-15  Find the input angles corresponding to the toggle positions of the non-Grashof linkages
in Table P4-1. (For this problem, ignore the values of 8, given in the table.)

*4-16 The link lengths, gear ratio (L), phase angle (), and the value of 8, for some geared
fivebar linkages are defined in Table P4-4. The linkage configuration and terminology
are shown in Figure P4-4. For the rows assigned, draw the linkage to scale and graphi-
cally find all possible solutions for angles 63 and 0.

*4-17 Repeat Problem 4-16 except solve by the vector loop method.
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TABLE P4-4 Data for Problems 4-16 to 4-17

Row Link1 Link 2 Link 3 Link 4 Link 5 A [0) 6>
a 6 1 7 9 4 2 30 60
b 6 5 7 8 4 -25 60 30
c 3 5 7 8 4 -0.5 0 45
d 4 5 7 8 4 -1 120 75
e 5 9 " 8 8 3.2 -50 -39
f 10 2 7 5 3 1.5 30 120
g 15 7 9 " 4 25 -90 75
h 12 8 7 9 4 -25 60 55
i 9 7 8 4 -4 120 100

. r
Gear ratio: ) = *—
Ts

I,
/d}
Phase angle: ¢ = 05-216, / > ')'\0

ry

FIGURE P4-4

Problems 4-16 to 4-17 Open configuration and geared fivebar linkage terminology

4-18 Figure P4-5 shows the mechanisms for the following problems, each of which refers
to the part of the figure having the same letter. Reference all calculated angles to the
global XY axes.

a. The angle between the X and x axes is 25°. Find the angular displacement of link
4 when link 2 rotates clockwise from the position shown (+37°) to horizontal (0°).
How does the transmission angle vary and what is its minimum between those two
positions? Find the toggle positions of this linkage in terms of the angle of link 2.

b.  Find and plot the angular position of links 3 and 4 and the transmission angle as a
function of the angle of link 2 as it rotates through one revolution.

c.  Find and plot the position of any one piston as a function of the angle of crank 2
as it rotates through one revolution. Once one piston’s motion is defined, find the
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L1 =162 Lp=40
Ly=122 13 =96

04

(a) Fourbar linkage (b) Fourbar linkage (c) Radial compressor
View as a video
‘ all dimensions in mm ‘ http://www.designofmachinery.com/DOM/radial_engine.avi
A 3 B
Ly =150 L, =30 2 PR Eig ‘704
Ly=150 Ly =30 O 5 f@f G
Y, === = b
D
0,04 =L3 =L5=160 } }
0804=L6=L7 =120/ 6 o7
02A =02C =20 ! /‘R !
04B=0,D =20 | |
O4E=0,G =30 é é ,

Oy F=0g4H = 30

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

(d) Walking-beam conveyor (e) Bellcrank mechanism (f) Offset slider-crank

- 229 —»|j<e— 229 —»

Y

Lot 0 , .
Ly =49 Ly =19.8
L3 = 100 L3=194
Ly =153 Ly=383

4= Ls=133
Ls= :00 3 9 I,=133
Le =153 Lg=19.8
, _ @ b 1 PO Lo=19.4

View as a video ~¢2)

http://www. é» ‘ 4.5 typ 7
designofmachin- ) ’ ; )
ery.com/DOM/ (g) Drum brake mechanism (h) Symmetrical mechanism
drum_brake.avi View as a video

http://www.designofmachinery.com/DOM/compression_chamber.avi

FIGURE P4-5

Mechanisms for Problem 4-18


http://www.designofmachinery.com/DOM/radial_engine.avi
http://www.designofmachinery.com/DOM/drum_brake.avi
http://www.designofmachinery.com/DOM/compression_chamber.avi
http://www.designofmachinery.com/DOM/walking_beam.avi
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View as a video

http://www.designofmachinery.com/

DOM/pick_and_place.avi

Gear ratio = -1
0,A=0,D=40
0,0, =108 Ly=108
OsB = 13 = eccentric radius
0sC=92 L7=CB=193
O¢E =164 0405 =128

FIGURE P4-6

product

eccentric on gear 5 —

all dimensions in mm

Section X-X

Problem 4-19 Walking-beam indexer with pick-and-place mechanism

4-19

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

74-20

motions of the other two pistons and their phase relationship to the first piston.
Find the total angular displacement of link 3 and the total stroke of the box as link
2 makes a complete revolution.

Determine the ratio of angular displacement between links 8 and 2 as a function of
angular displacement of input crank 2. Plot the transmission angle at point B for
one revolution of crank 2. Comment on the behavior of this linkage. Can it make
a full revolution as shown?

Find and plot the displacement of piston 4 and the angular displacement of link 3 as
a function of the angular displacement of crank 2.

Find and plot the angular displacement of link 6 versus the angle of input link 2 as
it is rotated from the position shown (+30°) to a vertical position (+90°). Find the
toggle positions of this linkage in terms of the angle of link 2.

Find link 4’s maximum displacement vertically downward from the position shown.
‘What will the angle of input link 2 be at that position?

For one revolution of driving link 2 of the walking-beam indexing and pick-and-place
mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their
motion where its tips are above the top of the platen. Express the stroke as a percent-
age of the crank length O»A. What portion of a revolution of link 2 does this stroke
correspond to? Also find the total angular displacement of link 6 over one revolution
of link 2. The vertical distance from O, to the top of the platen is 64 mm. The vertical
distance from line AD to the top left corner Q of the leftmost pusher finger is 73 mm.
The horizontal distance from point A to Q is 95 mm.

Figure P4-7 shows a power hacksaw, used to cut metal. Link 5 pivots at Os and its
weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth on link 5 to cut the part. It is an offset crank-slider mechanism.
The dimensions are shown in the figure. For one revolution of driving link 2 of the


http://www.designofmachinery.com/DOM/pick_and_place.avi
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0 Ly =75 mm
L3 =170 mm
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workpiece
View as a video
FIGURE P4-7 http://www.designofmachinery.com/DOM/power_hacksaw.avi

Problem 4-20 Power hacksaw

421

4-22

hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the
sawblade as a function of the angle of link 2.

For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of
link O,A referenced to the line of centers 0,04 when driven from link O,A. Then cal-
culate and plot the xy coordinates of coupler point P between those limits, referenced to
the line of centers 0,0y.

For the walking-beam mechanism of Figure P4-9, calculate and plot the x and y
components of the position of the coupler point P for one complete revolution of the
crank OA. Hint: Calculate them first with respect to the ground link 0,0, and then
transform them into the global XY coordinate system (i.e., horizontal and vertical in the
figure). Scale the figure for any additional information needed.

View as a video
http://www.designofma-
chinery.com/DOM/walk-
ing_beam_eight-bar.avi

FIGURE P4-9

Problem 4-22 Straight-line walking-beam eightbar transport mechanism

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

FIGURE P4-8
Problem 4-21



http://www.designofmachinery.com/DOM/power_hacksaw.avi
http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

rocker

crank . "
\7 187

o

ground \~
9.625"
@ —43°

View as a video
http://www.designof-

machinery.com/DOM/

loom_laybar_drive.avi
FIGURE P4-11
Problem 4-24
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FIGURE P4-10
Problem 4-23

1423

424

*4.25

*14.26

For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3
and 4 and the path coordinates of point P with respect to the angle of the input crank
0,A for one revolution.

For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3
and 4 with respect to the angle of the input crank O»A for one revolution.

For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle

of link O»A referenced to the line of centers O>04 when driven from link O»A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P with respect to the angle of the input crank O»A over its possible range of mo-
tion referenced to the line of centers 0,0;4.

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle

of link O»A referenced to the line of centers O>04 when driven from link O»A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O»A over its
possible range of motion referenced to the line of centers 0>0;,.

FIGURE P4-12
Problem 4-25


http://www.designofmachinery.com/DOM/loom_laybar_drive.avi

POSITION ANALYSIS

FIGURE P4-13
Problems 4-26 to 4-27
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4-28

*14-29

*14-30

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle
of link O4B referenced to the line of centers O40, when driven from link O4B. Then
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O4B over its
possible range of motion referenced to the line of centers 040;.

For the rocker-crank linkage in Figure P4-14, find the maximum angular displace-
ment possible for the treadle link (to which force F is applied). Determine the toggle
positions. How does this work? Explain why the grinding wheel is able to fully rotate
despite the presence of toggle positions when driven from the treadle. How would you
get it started if it were in a toggle position?

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle

of link O»A referenced to the line of centers O>04 when driven from link O>A. Then
calculate and plot the angular displacement of links 3 and 4 and the path coordinates of
point P between those limits, with respect to the angle of the input crank O»A over its
possible range of motion referenced to the line of centers 0,0;,.

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle
of link O4B referenced to the line of centers O40, when driven from link O4B. Then
calculate and plot the angular displacement of links 2 and 3 and the path coordinates of

FIGURE P4-15
Problems 4-29 to 4-30
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with the
program LINKAGES.

* Answers in Appendix F.

0.75m 0.13m

View as a video
http://www.designof-
machinery.com/DOM/

treadle_wheel.avi

FIGURE P4-14
Problem 4-28


http://www.designofmachinery.com/DOM/treadle_wheel.avi
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* Answers in Appendix F.

T These problems are suited

to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, the solution
can be checked with the
program LINKAGES.

*4-31

4-32

4-33

4-34

4-35

4-36

74-37

4-38

4-39

4-40

T4-41

4-42

4-43

point P between those limits, with respect to the angle of the input crank O4B over its
possible range of motion referenced to the line of centers 040,.

Write a computer program (or use an equation solver such as Mathcad, Matlab, or
TKSolver) to find the roots of y = 9x% + 50x — 40. Hint: Plot the function to determine
good guess values.

Write a computer program (or use an equation solver such as Mathcad, Matlab, or
TKSolver) to find the roots of y = —x3 — 4x2 4 80x — 40. Hint: Plot the function to
determine good guess values.

Figure 4-22 plots the cubic function from equation 4.38. Write a computer program
(or use an equation solver such as Mathcad, Matlab, or TKSolver to solve the matrix
equation) to investigate the behavior of the Newton-Raphson algorithm as the initial
guess value is varied from x = 1.8 to 2.5 in steps of 0.1. Determine the guess value at
which the convergence switches roots. Explain this root-switching phenomenon based
on your observations from this exercise.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular position of link 4 and the position of slider 6
in Figure 3-33 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the transmission angles at points B and C of the linkage
in Figure 3-33 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29f. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of
the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage
in Figure 3-34 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29g. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of
the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, D, and E of the linkage
in Figure 3-35 as a function of the angle of input link 2.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of the coupler point of the straight-line linkage
shown in Figure 3-29h. (Use LINKAGES to check your result.)

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of
the angle of input link 2.
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74-44  Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the
linkage in Figure 3-36 as a function of the angle of input link 2.

T Note that these can be
long problems to solve and
may be more appropriate for

74-45 Model the linkage shown in Figure 3-37a in LINKAGES. Export the coupler curve coor- @ project assignment than an

dinates to EXCEL and calculate the error function versus a true circle. overnight problem. In most
cases, the solution can be
74-46  Write a computer program or use an equation solver such as Mathcad, Matlab, or checked with the program
TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the LINKAGES.

angle of input link 2. Also plot the variation (error) in the path of point P versus that of
point A, i.e., how close to a perfect circle is point P’s path.

74-47 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at point B of the linkage in Figure
3-37a as a function of the angle of input link 2.

74-48  Figure 3-29f shows Evan’s approximate straight-line linkage #1. Determine the range
of motion of link 2 for which point P varies no more than 0.0025 from the straight
line x = 1.690 in a coordinate system with origin at O; and its x axis rotated 60° from
0,0,.

f4-49  Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the
angle of input link 2.

74-50 Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the transmission angles at points B, C, and D of the linkage
in Figure 3-37b as a function of the angle of input link 2.

74-51 Figure 3-29g shows Evan’s approximate straight-line linkage #2. Determine the range
of motion of link 2 for which point P varies no more than 0.005 from the straight line x
=—0.500 in a coordinate system with origin at O, and its x axis rotated 30° from 0,0;.

4-52  For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive
X axis when links 2 and 3 are in toggle positions?

4-53  The coordinates of the point P on link 4 in Figure P4-16 are (114.68, 33.19) with re-
spect to the xy coordinate system when link 2 is in the position shown. When link 2 is in
another position, the coordinates of P, with respect to the xy system are (100.41, 43.78).
Calculate the coordinates of P and P, in the XY system for the two positions of link 2.
What is the salient feature of the coordinates of P| and P, in the XY system?

74-54  Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular position of link 4 with respect to the XY
coordinate frame and the transmission angle at point B of the linkage in Figure P4-16
as a function of the angle of link 2 with respect to the XY frame.

4-55 For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the
position shown, which is at —26° with respect to the local xy coordinate system. What
angles do link 3 and link 4 rotate through for that excursion of link 2?

74-56  Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the position of the coupler point P of the linkage in Figure
P4-17 with respect to the XY coordinate system as a function of the angle of link 2 with
respect to the XY system. The position of the coupler point P on link 3 with respect to
point A is: p = 15.00, 83 = 0°.
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76

80
View as a video
http://www.designof-
machinery.com/DOM/
oil_pump.avi

A

12

V..

FIGURE P4-16
Problems 4-52 to 4-54 An oil field pump—dimensions in inches

4-57

T Note that these can be 4-58
long problems to solve and

may be more appropriate for

a project assignment than an

overnight problem. In most

cases, the solution can be

checked with the program

LINKAGES.

For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coor-
dinate system if its coordinates in the xy system are (12.816, 10.234).

The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle.
Derive analytical expressions for the positions of points A, B, and a point C on link 3
midway between A and B as a function of 03 and the length AB of link 3. Use a vector
loop equation. (Hint: Place the global origin off the mechanism, preferably below

and to the left and use a total of 5 vectors.) Code your solution in an equation solver

Y
- > 2.79
0, 77&’/’}'
\ X
6.948 9.573
9.174
] 4
P

A . B
12.971
3

FIGURE P4-17
Problems 4-55 to 4-57 An aircraft overhead bin mechanism—dimensions in inches
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TABLE P4-5 Data for Problems 4-60 to 4-61%

Row Link 2 Link 3 Offset d
a 1.4 4 1 25
b 2 6 -3
c 3 8 2 8
d 35 10 1 -8
e 5 20 -5 15
f 3 13 0 -12
g 7 25 10 25

f Drawings of these linkages are in the PDF Problem Workbook folder on the book’s website

4-59

4-60

4-61
4-62

4-63

4-64

4-65

such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one
revolution of link 3.

Figure P4-19 shows a mechanism commonly used as a cabinet door hinge. Write a
computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to
calculate and plot the angular position of link 6 in Figure P4-19 as a function of the
angle of input link 2. 0,04 =AB=BC=DE=1. 0)A=048=BE=CD=1.75.
04C =AE =2.60. Hint: Because the linkage geometry is simple and symmetrical, the
analysis can be done with simple trigonometry.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are
defined in Table P4-5. The linkage configuration and terminology are shown in Figure
P4-2. For the rows assigned, draw the linkage to scale and graphically find all possible
solutions (both open and crossed) for angles 0, and 03.

Repeat Problem 4-60 except solve by the vector loop method.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to calculate and plot the path of point P in Figure 3-29j as a function of the
angle of input link 2 over the range 90° < 0, < 270° for the following link lengths: L;
=12,1p=10,L3=L4=22,and Ls = Lg = L7 = Lg = 6.5. Hint: To make the analysis
convenient, use the mirror image of the figure putting Oy to the right of O, on the posi-
tive x-axis.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to calculate and plot the position of the slider in Figure P4-2 as a function of the
crank angle using the data in row a of Table P4-2 for the link lengths and offset. Check
your solution by comparing it to a graphical solution at the value given for 0.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to find the roots of y = 8x2 — 64x — 178. Hint: Plot the function to determine
good guess values.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK
Solver to find the roots of y = x> —9x2 — 8. Hint: Plot the function to determine good
guess values.
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View as a video
http://www.designof-

machinery.com/DOM/

elliptic_trammel.avi

FIGURE P4-18

Elliptical trammel—
Problem 4-58

T Note that these can be

long problems to solve and
may be more appropriate for
a project assignment than an
overnight problem. In most
cases, the solution can be
checked with the program

LINKAGES.

d

FIGURE P4-19
Problem 4-59
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A<—_!I open \ I|_—>B

eccentric

coupler

housing

Section B-B

- valve stem )
Section A-A

A <, LB

FIGURE P4-20
Problem 4-66

4-66 Figure P4-20 shows a cut-away view of a mechanism that opens and closes a remote

4-67

valve by means of a long rod (valve stem) that moves up and down. The handle has
two round bosses (eccentrics) whose centers are offset from the pivot by 6 mm. The
eccentrics are connected to the valve stem by a coupler consisting of two identical links
whose pivot holes have a center distance of 46 mm. It is an inline crank-slider mecha-
nism. For the 180-degree-motion of the handle from closed to fully open, find and plot
the stroke of the valve stem as a function of the angle of the handle.

For the linkage in Figure 3-32a, calculate and plot the angular displacement of links 3
and 4 and the path coordinates of point P with respect to the angle of the input crank
0,A for one revolution. The link lengths and coupler point data are: Ly =3.72, L, =
1.00, L3 = 1.94, Ly = 3.72, p = 3.06, and &3 = —20°.



Chapter

ANALYTICAL LINKAGE
SYNTHESIS

Imagination is more important than knowledge
ALBERT EINSTEIN

5.0 INTRODUCTION View the lecture video (48:17)*

With the fundamentals of position analysis established, we can now use these techniques
to synthesize linkages for specified output positions analytically. The synthesis tech-
niques presented in Chapter 3 were strictly graphical and somewhat intuitive. The analyt-
ical synthesis procedure is algebraic rather than graphical and is less intuitive. However,
its algebraic nature makes it quite suitable for computerization. These analytical synthesis
methods were originated by Sandor!!] and further developed by his students Erdman,!2!
Kaufman,[3] and Loerch et al.[4]- [5]

51 TYPES OF KINEMATIC SYNTHESIS

Erdman and Sandor!®! define three types of kinematic synthesis, function, path, and
motion generation, which were discussed in Section 3.2. Brief definitions are repeated
here for your convenience.

FUNCTION GENERATION is defined as the correlation of an input function with an
output function in a mechanism. Typically, a double-rocker or crank-rocker is the result,
with pure rotation input and pure rotation output. A slider-crank linkage can be a function
generator as well, driven from either end, i.e., rotation in and translation out or vice versa.

PATH GENERATION is defined as the control of a point in the plane such that it fol-
lows some prescribed path. This is typically accomplished with a fourbar crank-rocker or
double-rocker, wherein a point on the coupler traces the desired output path. No attempt
is made in path generation to control the orientation of the link which contains the point of

233
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interest. The coupler curve is made to pass through a set of desired output points. How-
ever, it is common for the timing of the arrival of the coupler point at particular locations
along the path to be defined. This case is called path generation with prescribed timing
and is analogous to function generation in that a particular output function is specified.

MOTION GENERATION is defined as the control of a line in the plane such that it
assumes some sequential set of prescribed positions. Here orientation of the link con-
taining the line is important. This is typically accomplished with a fourbar crank-rocker
or double-rocker, wherein a point on the coupler traces the desired output path and the
linkage also controls the angle of the coupler link containing the output line of interest.

5.2 TWO-POSITION SYNTHESIS FOR ROCKER OUTPUT

Example 3-1 showed a simple graphical technique for synthesis of a non-quick-return,
Grashof fourbar linkage to drive a rocker through an angle. This technique was employed
in later examples (e.g., 3-2, 3-4, 3-6) to construct a driver dyad to move a synthesized
fourbar linkage through its desired range of motion, thus creating a Watt sixbar linkage.
The rocker excursion cannot exceed 180° theoretically but should be limited to about
120° practically, which will give minimum transmission angles of 30°. The same dyad
synthesis procedure can be done analytically and will prove to be of value in combination
with the other synthesis techniques presented in this chapter.

Figure 5-0 shows the same problem as Figure 3-4 with generic annotation suitable for
analytical determination of link lengths for the driver dyad. Link 4 (which might represent
the input link to the next stage of the resulting Watt sixbar) is here the output link to be
driven by a dyad consisting of links 2 and 3, whose lengths, along with that of the ground
link 1 and its pivot location O, are to be determined. The pivot location O4 (defined in
any convenient coordinate system X7Y), the initial angle 6,4, and the excursion angle 3 are
given. The procedure is as follows:*

First choose a suitable location on link 4 to attach link 3, here labeled B and B, in
its extreme locations. This defines Ry, the length of link 4. These points can be defined
in the chosen coordinate system as:

le = O4x + R4 COS(64) Bly = O4y + R4 Sln(64)
(5.0a)
Bzx :O4X +R4 COS(94 +B) Bzy :O4y +R4 Sln(94 +B)
The vector M is the position difference between vectors Rp, and Rp
M=RB2 —RB1 (SOb)
The parametric equation for line L can be written as:
L(u):RB1 +uM —co<U< 00 (5.0c)

We want the resulting linkage to be a Class 1 Grashof crank rocker. We can achieve
this by placing the crank pivot O, suitably far from B along line L. Let M = IMI. It will be
a Class 2 (non-Grashof) linkage when B{0, < M, become Class 3 (Grashof with change
points) when B10O, = M, be Class 1 when B{O, > M, and will again approach Class 3
when B10, >> M. A reasonable range for B10, seems to be two to three times M.
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(b) Attachment point

Link 2 (R,) Link 3 (R3)

N 02 // T

~ T~
Link 1(R;) 7 —
Link 3 (R3)

(c) Link geometry (d) Finished linkage in two positions
FIGURE 5-0

Analytical two-position synthesis with rocker output (non-quick-return)

Let:Ro, =Ry +KM 2<K<3 (5.0d)
As shown in Example 3-1, the length of the crank must be half the length of vector M:
R, =0.5|M|=Rysin(B/2) (5.0e)

where f is in radians. Link 3 can be found by subtracting R, from the magnitude of Rpg|—
RO2 and link 1 is found by subtracting RO2 from Ry "

Ry =[Rp, —Ro, |- Ry; R =[Ro, ~Ro)| (5.00)

This algorithm will result in a Grashof crank rocker mechanism that drives the rocker
through the specified angle with no quick return.
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5.3 PRECISION POINTS

The points, or positions, prescribed for successive locations of the output (coupler or
rocker) link in the plane are generally referred to as precision points or precision posi-
tions. The number of precision points which can be synthesized is limited by the number
of equations available for solution. The fourbar linkage can be synthesized by closed-form
methods for up to five precision points for motion or path generation with prescribed tim-
ing (coupler output) and up to seven points for function generation (rocker output). Syn-
thesis for two or three precision points is relatively straightforward, and each of these cases
can be reduced to a system of linear simultaneous equations easily solved on a calculator.
The four or more position synthesis problems involve the solution of nonlinear, simul-
taneous equation systems, and so are more complicated to solve, requiring a computer.

Note that these analytical synthesis procedures provide a solution which will be able
to “be at” the specified precision points, but no guarantee is provided regarding the link-
age’s behavior between those precision points. It is possible that the resulting linkage will
be incapable of moving from one precision point to another due to the presence of a toggle
position or other constraint. This situation is actually no different than that of the graphi-
cal synthesis cases in Chapter 3, wherein there was also the possibility of a toggle position
between design points. In fact, these analytical synthesis methods are just an alternate
way to solve the same multiposition synthesis problems. One should still build a simple
cardboard model of the synthesized linkage to observe its behavior and check for the pres-
ence of problems, even if the synthesis was performed by an esoteric analytical method.

54 TWO-POSITION MOTION GENERATION BY ANALYTICAL
SYNTHESIS

Figure 5-1 shows a fourbar linkage in one position with a coupler point located at a
first precision position P;. It also indicates a second precision position (point P,) to be
achieved by the rotation of the input rocker, link 2, through an as yet unspecified angle [3,.
Note also that the angle of the coupler link 3 at each of the precision positions is defined
by the angles of the position vectors Z; and Z,. The angle ¢ corresponds to the angle
03 of link 3 in its first position. This angle is unknown at the start of the synthesis and
will be found. The angle o, represents the angular change of link 3 from position one to
position two. This angle is defined in the problem statement.

It is important to realize that the linkage as shown in the figure is schematic. Its
dimensions are unknown at the outset and are to be found by this synthesis technique.
Thus, for example, the length of the position vector Z; as shown is not indicative of the
final length of that edge of link 3, nor are the lengths (W, Z, U, V') or angles (0,0,0,y)
of any of the links as shown predictive of the final result.

The problem statement is:

Design a fourbar linkage which will move a line on its coupler link such that a point P
on that line will be first at P| and later at P, and will also rotate the line through an angle
o between those two precision positions. Find the lengths and angles of the four links
and the coupler link dimensions AP and B} P as shown in Figure 5-1.
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(a) Two positions

Uy

(b) Schematic linkage made of
two dyads, WZ and US. -
Left-hand dyad shown G| o

FIGURE 5-1
Two-position analytical synthesis

The two-position analytical motion synthesis procedure is as follows:

Define the two desired precision positions in the plane with respect to an arbitrarily
chosen global coordinate system XY using position vectors R and R, as shown in Figure
5-1a. The change in angle o, of vector Z is the rotation required of the coupler link. Note
that the position difference vector P, defines the displacement of the output motion of
point P and is defined as:

P, =R, -R; (5.1
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The dyad WZ,; defines the left half of the linkage. The dyad U;S; defines the right
half of the linkage. Note that Z; and S are both embedded in the rigid coupler (link 3),
and both of these vectors will undergo the same rotation through angle o, from position
1 to position 2. The pin-to-pin length and angle of link 3 (vector V) is defined in terms
of vectors Z; and S;.

V,=Z,-S, (5.2a)
The ground link 1 is also definable in terms of the two dyads.
G, =W, +V,-U, (5.2b)

Thus if we can define the two dyads W, Z;, and Uy, S;, we will have defined a link-
age that meets the problem specifications.

We will first solve for the left side of the linkage (vectors W; and Z) and later use the
same procedure to solve for the right side (vectors Uy and S;). To solve for W, and Z;,
we need only write a vector loop equation around the loop which includes both positions
P and P, for the left-side dyad. We will go clockwise around the loop, starting with W.

W, +Z, —Py —Z; - W; =0 (5.3)
Now substitute the complex number equivalents for the vectors.
wel(0P2) 1 gpi(0+0a) D€’ —ze® —wel® =0 (5.4)
The sums of angles in the exponents can be rewritten as products of terms.
welPelB2 1 zeideio2 _ p21ej82 —ze/® —wel® =0 (5.52)
Simplifying and rearranging:
we/® (ejBZ —1)+ zel? (ejaz —1) = p21ej82 (5.5b)
Note that the lengths of vectors W; and W, are the same magnitude w because they

represent the same rigid link in two different positions. The same can be said about vec-
tors Z; and Z, whose common magnitude is z.

Equations 5.5 are vector equations, each of which contains two scalar equations and
so can be solved for two unknowns. The two scalar equations can be revealed by substi-
tuting Euler’s identity (equation 4.4a) and separating the real and imaginary terms as was
done in Section 4.5.

real part:
[wcosB](cosB, —1)—[wsin@]sinp,
+[zcos¢](cosa, —1)—[zsing[sino, = p,; cosd, (5.62)
imaginary part (with complex operator j divided out):
[wsin@](cos By — 1) +[wcos6]sinp,

+ [zsin¢](cosoc2 —1)+[zcos¢]sin(x2 = p,; 8ind, (5.6b)
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There are eight variables in these two equations: w, 0, By, z, 9, 0, p21, and &,. We
can only solve for two. Three of the eight are defined in the problem statement, namely
O, P21, and &,. Of the remaining five, w, 0, B, z, ¢, we are forced to choose three as
“free choices” (assumed values) in order to solve for the other two.

One strategy is to assume values for the three angles, 6, B,, ¢, on the premise that we
may want to specify the orientation 0, ¢ of the two link vectors W and Z, to suit packag-
ing constraints, and also specify the angular excursion 3, of link 2 to suit some driving
constraint. This choice also has the advantage of leading to a set of equations that are
linear in the unknowns and are thus easy to solve. For this solution, the equations can
be simplified by setting the assumed and specified terms to be equal to some constants.

In equation 5.6a, let:

A= cosf(cosp, —1)—sinBsinp,
B=cos¢(cosa, —1)-singsina, (5.72)

C = p,; cosd,

and in equation 5.6b let:

D= sinG(cosB2 —1)+ cos0sinf,

E =sin¢(cosa, —1)+ cosdsino, (5.7b)
F=p,;sind,
then:
Aw+Bz=C
Dw+Ez=F (5.7¢)

and solving simultaneously,

_CE-BF _AF-CD

w= ; z= 5.7d
AE - BD AE - BD ( )

A second strategy is to assume a length z and angle ¢ for vector Z; and the angular
excursion B, of link 2 and then solve for the vector Wy. This is a commonly used ap-
proach. Note that the terms in square brackets in each of equations 5.6 are respectively
the x and y components of the vectors W; and Z;.

Wy, =wcosb; Zy =zcosd
(5.8a)
le =wsin6; Z1y =zsind
Substituting in equation 5.6,
Wy, (cosB, —1)- W, sinB,
+2;_(coso, —1)— Zy, sinol, = py) cosd,
(5.8b)

W, (cosBz - 1)+ W sinf,
+27, (cosoc2 —1)+ Zy_sinoy = py sind,

239
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Z, and Z;, are known from equation 5.8a with z and ¢ assumed as free choices. To
further simplify the expression, combine other known terms as:

A=cosfB, —1; B=sinf,; C=cosa, —1
(5.8¢)
D=sino,; E = p,y; c08d,; F = p,;sind,
substituting,
AW, —BW, +CZ, -DZ, =E
X y x ¥y
(5.8d)
AW, +BW, +CZ, +DZ, =F
Yy X y X
and the solution is:
A(—cz1 +DZ, + E) + B(—cz1 -DZ, + F)
X y y X
W, =
x —2A
(5.8¢e)
A(—CZ1 -DZ; + F) + B(CZ1 -DZ; - E)
Yy X x y
W1 =
Y -2A

Either of these strategies results in the definition of a left dyad W;Z; and its pivot
locations which will provide the motion generation specified.

We must repeat the process for the right-hand dyad, U;S;. Figure 5-2 highlights the
two positions U;S and U,S, of the right dyad. Vector Uj is initially at angle ¢ and moves
through angle 'y, from position 1 to 2. Vector S is initially at angle y. Note that the rota-
tion of vector S from S to S, is through the same angle o, as vector Z, since they are in
the same link. A vector loop equation similar to equation 5.3 can be written for this dyad.

U,+S,-Py; S, -U; =0 (5.92)
Rewrite in complex variable form and collect terms.

uel® (e”z - 1) +selV (ejaz - 1) = 11216’1.62 (5.9b)

When this is expanded and the proper angles substituted, the x and y component
equations become:

real part:
ucoso(cosy, —1)—usinosiny,

+ scosw(cosocz - 1) —ssinysina, = p,; cosd, (5.10a)
imaginary part (with complex operator j divided out):

usino(cosy, —1)+ucososiny,

+ ssiny(cosa, —1)+ scosysina, = p,; sind, (5.10b)

Compare equations 5.10 to equations 5.6.
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FIGURE 5-2
Right-side dyad shown in two positions

The same first strategy can be applied to equations 5.10 as was used for equations 5.6
to solve for the magnitudes of vectors U and S, assuming values for angles G, y, and ;.
The quantities p,1, 85, and 0, are defined from the problem statement as before.

In equation 5.10a let:
A=coso(cosy, —1)-sincsiny,
B:coslp(cosoc2 —1)—sin\psin0c2 (5.11a)

C= P> COS 62
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and in equation 5.10b let:

D=sino(cosy, —1)+cososiny,

E =siny(cosa, —1)+ cosysina, (5.11b)
F = p,;sind,
then:
Au+Bs=C
Du+Es=F (5.11¢c)

and solving simultaneously,

- CE-BF _AF-CD

= ; 5= (5.11d)
AE — BD AE — BD

If the second strategy is used, assuming angle y, and the magnitude and direction of
vector S; (which will define link 3), the result will be:

U, =ucosc; Sy, =scosy

Uly =usinoc; Sly =ssiny (512a)
Substitute in equation 5.10:
Uy, (cosy, —1)- Uy, siny,

+5y, (cosa, —1)— S, sino, = py cosd,

(5.12b)
Uly (cosyz - 1) +Uy siny,
+5y, (cosoc2 —1)+ Sy sina, = pysind,
Let: A=cosy, -1, B=sinvy,; C=coso, -1
(5.12¢)
D =sina,; E = py; c0sd,; F = p,;sind,
Substitute in equation 5.12b,
AU, ~BU, +CS, -DS, =E
(5.12d)
AU, +BU)_+CS, +DS =F
and the solution is:
A(—CSlx +DSy, + E) + B(—CSly -DS;_+ F)
Ui = 24
(5.12¢)
A(—cs1 -DS, + F) + B(cs1 -DS, - E)
U. = y x x y
=

Y —2A

Note that there are infinities of possible solutions to this problem because we may
choose any set of values for the three free choices of variables in this two-position case.
Technically there is an infinity of solutions for each free choice. Three choices then give
infinity cubed solutions! But since infinity is defined as a number larger than the largest
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number you can think of, infinity cubed is not any more impressively large than just plain
infinity. While not strictly correct mathematically, we will, for simplicity, refer to all of
these cases as having “an infinity of solutions,” regardless of the power to which infinity
may be raised as a result of the derivation. There are plenty of solutions to pick from,
at any rate. Unfortunately, not all will work. Some will have circuit, branch, or order
(CBO) defects such as toggle positions between the precision points. Others will have
poor transmission angles or poor pivot locations or overlarge links. Design judgment is
still most important in selecting the assumed values for your free choices. Despite their
name, you must pay for those “free choices” later. Make a model!

5.5 COMPARISON OF ANALYTICAL AND GRAPHICAL
TWO-POSITION SYNTHESIS

Note that in the graphical solution to this two-position synthesis problem (in Example
3-3 and Figure 3-6), we also had to make three free choices to solve the problem. The
identical two-position synthesis problem from Figure 3-6 is reproduced in Figure 5-3. The
approach taken in Example 3-3 used the two points A and B (as labeled in Figure 5-3)*
as the attachments for the moving pivots. Figure 5-3a shows the graphical construction
used to find the fixed pivots O, and O4. For the analytical solution we will use those
points A and B as the joints of the two dyads WZ and US. These dyads meet at point P,
which is the precision point. The relative position vector P, defines the displacement of
the precision point.

Note that in the graphical solution, we implicitly defined the left dyad vector Z by
locating attachment points A and B on link 3 as shown in Figure 5-3a. This defined the
two variables, z and ¢. We also implicitly chose the value of w by selecting an arbitrary
location for pivot O, on the perpendicular bisector. When that third choice was made, the
remaining two unknowns, angles 3, and 0, were solved for graphically at the same time,
because the geometric construction was in fact a graphical “computation” for the solution
of the simultaneous equations 5.8a.

The graphical and analytical methods represent two alternate solutions to the same
problem. All of these problems can be solved both analytically and graphically. One
method can provide a good check for the other. We will now solve this problem analytically
and correlate the results with the graphical solution from Chapter 3.

,@DEXAMPLE 5-1

Two-Position Analytical Motion Synthesis.

Problem: Design a fourbar linkage to move the link APB shown from position A{PB; to
ArP.B.
Solution: (See Figure 5-3.)

1 Draw the link APB in its two desired positions, A{P{Bj and A,P,B», to scale in the plane as
shown.

243

*In Figure 3-6, these same
points were labeled C and
D.
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(a) Graphical synthesis (b) Analytical synthesis

FIGURE 5-3

Two-position motion synthesis with coupler output

Measure or calculate the values of the magnitude and angle of vector P, namely, py; and 8,.
In this example they are:

P21 = 2416, 52 =165.2°

Measure or calculate the value of the change in angle, o, of vector Z from position 1 to posi-
tion 2. In this example it is:

0, = 43.3°

The three values in steps 2 and 3 are the only ones defined in the problem statement. We must
assume three additional “free choices” to solve the problem. Method two (see equations 5.8)
chooses the length z and angle ¢ of vector Z and B3, the change in angle of vector W. In order
to obtain the same solution as the graphical method produced in Figure 5-3a (from the infinities
of solutions available), we will choose those values consistent with the graphical solution.

7=1.298; 0=26.5% B, =38.4°
Substitute these six values in equations 5.8 and obtain:
w = 2.467 0="71.6°
Compare these to the graphical solution;

w=248 6="71°
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which is a reasonable match given graphical accuracy. This vector W is link 2 of the fourbar.
7 Repeat the procedure for the link-4 side of the linkage. The free choices will now be:
s = 1.035; y=104.1° Y, = 85.6°

8 Substitute these three values along with the original three values from steps 2 and 3 in equa-
tions 5.12 and obtain:

u=1486 c=154°
9  Compare these to the graphical solution:

u=153 o= 14°

These are a reasonable match for graphical accuracy. Vector Uj is link 4 of the fourbar.

10 Line A|By is link 3 and can be found from equation 5.2a. Line 0,0, is link 1 and can be found
from equation 5.2b.

11 Check the Grashof condition, and repeat steps 4 to 7 if unsatisfied. Note that any Grashof
condition is potentially acceptable in this case.

12 Construct a model in CAD or cardboard and check its function to be sure it can get from initial
to final position without encountering any limit (toggle) positions.

13 Check transmission angles.

Open the file E05-01.4br in program LINKAGES to see Example 5-1.

5.6 SIMULTANEOUS EQUATION SOLUTION

These methods of analytical synthesis lead to sets of linear simultaneous equations. The
two-position synthesis problem results in two simultaneous equations which can be solved
by direct substitution. The three-position synthesis problem will lead to a system of four
simultaneous linear equations and will require a more complicated method of solution.
A convenient approach to the solution of sets of linear simultaneous equations is to put
them in a standard matrix form and use a numerical matrix solver to obtain the answers.
Matrix solvers are built into most engineering and scientific pocket calculators. Some
spreadsheet packages and equation solvers will also do a matrix solution.

As an example, consider the following set of simultaneous equations:

—2x1 —Xp +X3 — -1
X, +x; +x3 = 6 (5.13a)
3% +x, —x3 = 2

A system this small can be solved longhand by the elimination method, but we will
put it in matrix form to show the general approach which will work regardless of the
number of equations. The equations 5.13a can be written as the product of two matrices
set equal to a third matrix.
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2 -1 1 x) -1
1 1 1 X x, |= 6 (5.13b)
3 1 -1 X5 2

We will refer to these matrices as A, B, and C,
[A] X [B] = [c] (5.13¢)

where A is the matrix of coefficients of the unknowns, B is a column vector of the unknown
terms, and C is a column vector of the constant terms. When matrix A is multiplied by
B, the result will be the same as the left sides of equation 5.13a. See any text on linear
algebra such as reference [7] for a discussion of the procedure for matrix multiplication.

If equation 5.13c were a scalar equation,
ab=c (5.14a)

rather than a vector (matrix) equation, it would be very easy to solve it for the unknown
b when a and ¢ are known. We would simply divide ¢ by a to find b.

=5 (5.14b)
a

Unfortunately, division is not defined for matrices, so another approach must be used.
Note that we could also express the division in equation 5.14b as:

b=alc (5.14¢)

If the equations to be solved are linearly independent, then we can find the inverse
of matrix A and multiply it by matrix C to find B. The inverse of a matrix is defined as
that matrix which when multiplied by the original matrix yields the identity matrix. The
identity matrix is a square matrix with ones on the main diagonal and zeros everywhere
else. The inverse of a matrix is denoted by adding a superscript of negative one to the
symbol for the original matrix.

1
(AT x[]=[1]=| o
0

S = O

0
0 (5.15)
1

Not all matrices will possess an inverse. The determinant of the matrix must be
nonzero for an inverse to exist. The class of problems dealt with here will yield matrices
which have inverses provided that all data are correctly calculated for input to the matrix
and represent a real physical system. The calculation of the terms of the inverse for a
matrix is a complicated numerical process which requires a computer or preprogrammed
pocket calculator to invert any matrix of significant size. A Gauss-Jordan-elimination
numerical method is usually used to find an inverse. For our simple example in equation
5.13 the inverse of matrix A is found to be:

—1
-2 -1 1 1.0 00 1.0

1 1 1 = | =20 05 -15 (5.16)
301 -1 1.
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If the inverse of matrix A can be found, we can solve equations 5.13 for the unknowns
B by multiplying both sides of the equation by the inverse of A. Note that unlike scalar
multiplication, matrix multiplication is not commutative; i.e., A X B is not equal to B x
A. We will premultiply each side of the equation by the inverse.

but: [A]" x[A]x[B]=[A]" x[c]
(A" x[a]=[1] (517)

[B]=[A]" x[c]

SO:

The product of A and its inverse on the left side of the equation is equal to the identity
matrix I. Multiplying by the identity matrix is equivalent, in scalar terms, to multiplying
by one, so it has no effect on the result. Thus the unknowns can be found by premultiply-
ing the inverse of the coefficient matrix A times the matrix of constant terms C.

This method of solution works no matter how many equations are present as long
as the inverse of A can be found and enough computer memory and/or time is available
to do the computation. Note that it is not actually necessary to find the inverse of matrix
A to solve the set of equations. The Gauss-Jordan algorithm which finds the inverse can
also be used to directly solve for the unknowns B by assembling the A and C matrices
into an augmented matrix of n rows and n + 1 columns. The added column is the C
vector. This approach requires fewer calculations, so it is faster and more accurate. The
augmented matrix for this example is:

2 1 1
1 1 1 6 (5.18a)
301 -1} 2

The Gauss-Jordan algorithm manipulates this augmented matrix until it is in the form
shown below, in which the left, square portion has been reduced to the identity matrix
and the rightmost column contains the values of the column vector of unknowns. In this
case the results are x; = 1, x, = 2, and x3 = 3 which are the correct solution to the original
equations 5.13.

10 0]
0 0 (5.18b)
0 1]

o = O
W N =

The program MATRIX, supplied with this text, solves these problems with this Gauss-
Jordan elimination method and operates on the augmented matrix without actually finding
the inverse of A in explicit form. See Appendix A for instructions on running program
MATRIX. For areview of matrix algebra see reference [7].

57 THREE-POSITION MOTION GENERATION BY ANALYTICAL
SYNTHESIS

The same approach of defining two dyads, one at each end of the fourbar linkage, as used
for two-position motion synthesis can be extended to three, four, and five positions in the

247




248

DESIGN OF MACHINERY 6ed CHAPTER 5

plane. The three-position motion synthesis problem will now be addressed. Figure 5-4
shows a fourbar linkage in one general position with a coupler point located at its first
precision position P;. Second and third precision positions (points P, and P3) are also
shown. These are to be achieved by the rotation of the input rocker, link 2, through as yet
unspecified angles B, and 3. Note also that the angles of the coupler link 3 at each of the
precision positions are defined by the angles of the position vectors Z, Z,, and Z3. The
linkage shown in the figure is schematic. Its dimensions are unknown at the outset and
are to be found by this synthesis technique. Thus, for example, the length of the position
vector Z; as shown is not indicative of the final length of that edge of link 3 nor are the
lengths or angles of any of the links shown predictive of the final result.

The problem statement is:

Design a fourbar linkage which will move a line on its coupler link such that a point
P on that line will be first at Py, later at P,, and still later at P3, and also will rotate the
line through an angle o, between the first two precision positions and through an angle
o3 between the first and third precision positions. Find the lengths and angles of the four
links and the coupler link dimensions AP and B{P; as shown in Figure 5-4.

The three-position analytical motion synthesis procedure is as follows:

For convenience, we will place the global coordinate system XY at the first precision
point P;. We define the other two desired precision positions in the plane with respect
to this global system as shown in Figure 5-4. The position difference vectors P, drawn
from P to P, and P3;, drawn from P to P3, have angles &, and 33, respectively. The
position difference vectors P,; and P53, define the displacements of the output motion of
point P from point 1 to 2 and from 1 to 3, respectively.

The dyad W Z; defines the left half of the linkage. The dyad U;S; defines the right
half of the linkage. Vectors Z and S are both embedded in the rigid coupler (link 3), and
both will undergo the same rotations, through angle o, from position 1 to position 2 and
through angle o3 from position 1 to position 3. The pin-to-pin length and angle of link
3 (vector V) are defined in terms of vectors Z; and S; as in equation 5.2a. The ground
link is defined by equation 5.2b as before.

As we did in the two-position case, we will first solve for the left side of the linkage
(vectors W, and Z) and later use the same procedure to solve for the right side (vectors
U; and Sy). To solve for W; and Z; we need to now write two vector loop equations,
one around the loop which includes positions P; and P, and the second one around the
loop which includes positions P and P53 (see Figure 5-4). We will go clockwise around
the first loop for motion from position 1 to 2, starting with W, and then write the second
loop equation for motion from position 1 to 3 starting with W3

W2 +ZZ—P21—Z1—W1 =0

(5.19)
W3 +Z3 —P31 _Zl _Wl :O
Substituting the complex number equivalents for the vectors.
wel®+B2) L 7pi(0402) _ o0 _ 70d0 _ypel® —
(5.20)
wel0Bs) | goiloras) _ Py’ —ze/® —wel® =0
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83

FIGURE 5-4

Three-position analytical synthesis

Rewriting the sums of angles in the exponents as products of terms.

welPelB2 4 7010102 _ p 082 _ 7070 _1ei® — o

o o . ' ' (5.21a)
we %P3 4 z/%J%5 _ p. % _ z0J® _yel® =0
Simplifying and rearranging:
wed® (esz _1)+ zeJ® (ejocz _1)= Pyl
(5.21b)

Weje(ejﬁa _1)+ 260 (ejocs _1) = py el
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The magnitude w of vectors W, W5, and W3 is the same in all three positions be-
cause it represents the same line in a rigid link. The same can be said about vectors Z;,
Z,, and Z3 whose common magnitude is z.

Equations 5.21 are a set of two vector equations, each of which contains two scalar
equations. This set of four equations can be solved for four unknowns. The scalar equa-
tions can be revealed by substituting Euler’s identity (equation 4.4a) and separating the
real and imaginary terms as was done in the two-position example above.

real part:
wcosO(cosB, —1)—wsinOsinp,
+z.cos ¢(cosoc2 - 1) —zsingsina, = p,; cosd, (5.22a)
wcose(cos[33 - 1) —wsin®sin
+z.cos q)(cosoc3 - 1)—zsin¢sinoc3 = p31 €053 (5.22b)
imaginary part (with complex operator j divided out):
wsin®(cosB, —1)+wcosOsinp,
+zsing(coso, —1)+zcosdsina, = py sind, (5.22¢)
wsinG(cosB3 - 1) +wcosBsin B,
+ zsinq)(cosoc3 —1)+ zcossinoi; = p3; sinds (5.22d)

There are twelve variables in these four equations 5.22: w, 0, B,, B3, z, 0, 0, 03,
Pa1> P31> 02, and 83. We can solve for only four. Six of them are defined in the problem
statement, namely O, 0i3, P21, P31, O, and 83. Of the remaining six, w, 6, B, B3, z, 0,
we must choose two as free choices (assumed values) in order to solve for the other
four. One strategy is to assume values for the two angles, 3, and B3, on the premise that
we may want to specify the angular excursions of link 2 to suit some driving constraint.
(This choice also has the benefit of leading to a set of linear equations for simultaneous
solution.)

This leaves the magnitudes and angles of vectors W and Z to be found (w, 6, z, ¢).
To simplify the solution, we can substitute the following relationships to obtain the x and
y components of the two unknown vectors W and Z, rather than their polar coordinates.

Wi, =wcosb; Zy, =zcosd
(523)
le =wsin6; Z1y =2zsing
Substituting equations 5.23 into 5.22 we obtain:
Wi, (cos[32 - 1)— le sinf,
+Z, (cos oy — 1) ~74, sina, = py; cosd, (5.24a)

Wi (cosB3 —1)— W, sinf;

+7; (cosoi; —1)- Zy sino = py; cosd; (5.24b)
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le (cosB2 - 1)+ W sinB,

+ Zly (cosocz - 1)+ Zy_sinay = py sind, (5.24c)

W, (cos[53 —1)+ W, sinf;
+ ZlV (COS(X3 —1)+ le SinO(.3 = P31 sin 63 (5.24d)

These are four equations in the four unknowns Wy, Wiy, Z;,, and Z;,. By setting
the coefficients which contain the assumed and specified terms equal to some constants,
we can simplify the notation and obtain the following solutions.

A=cosfB, - 1; B=sinf,; C=cosa, -1
D =sino,; E = p,; c0sd,; F=cosfB; -1
(5.25)
G =sinPs; H =coso; —1; K =sino,
L = p3; cosds; M = p,;sind,; N = p3;8ind;
Substituting equations 5.25 in 5.24 to simplify:
AW, -BW, +CZ) -Dz, =E (5.262)
FW, -GWy +HZ, -KZ) =L (5.26b)
BW,_ +AWy +DZ, +CZ =M (5.26¢)
CWy +FW, +KZ, +HZ =N (5.26d)
This system can be put into standard matrix form:
Wi,
A -B C -D E
F -G H -K ‘/Vly L
X = (5.27)
B A D C Z, M
G F K H Z N

This is the general form of equation 5.13c. The vector of unknowns B can be solved
for by premultiplying the inverse of the coefficient matrix A by the constant vector C
or by forming the augmented matrix as in equation 5.18. For any numerical problem,
the inverse of a 4 x 4 matrix can be found with many pocket calculators. The computer
program MATRIX, supplied with this text, will also solve the augmented matrix equation.

Equations 5.25 and 5.26 solve the three-position synthesis problem for the left-hand
side of the linkage using any pair of assumed values for B, and B;. We must repeat the
above process for the right-hand side of the linkage to find vectors U and S. Figure 5-4
also shows the three positions of the US dyad, and the angles G, ¥», V3, W, 0, and 03,
which define those vector rotations for all three positions. The solution derivation for the
right-side dyad, US, is identical to that just done for the left dyad WZ. The angles and
vector labels are the only difference. The vector loop equations are:

U,+S,-P,;-S,-U; =0
(5.28)
U;+S;-P;; -5, -U; =0
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Substituting, simplifying, and rearranging,

uel® (e”z —1)+ selV (ej“2 —1) = p21ej52
(5.29)
uem(em _1)+se1w(e1a3 _1)=p31e153

The solution requires that two free choices be made. We will assume values for the
angles v, and y3. Note that 0, and o3 are the same as for dyad WZ. We will, in effect,
solve for angles ¢ and y by finding the x and y components of the vectors U and S. The
solution is:

A=cosy, —1; B=sinvy,; C=coso, —1

5 D=sina,; E = p,; c0sd,; F=cosy;—1
(5.30)

G=sinys; H=coso; —1; K =sinoy,

L = p3; cosds; M = p,; sind,; N = p;;8ind,
Ale - BUly +CSlx —DSly =E (5.313.)
FU, —~GU,, +HS, ~KS) =L (5.31b)
Ble + AUly +DSlx +CSly =M (5.31C)
GU,, +FUy +KS) +HS; =N (5.31d)

Equations 5.31 can be solved using the approach of equations 5.27 and 5.18, by
changing W to U and Z to S and using the definitions of the constants given in equation
5.30 in equation 5.27.

It should be apparent that there are infinities of solutions to this three-position syn-
thesis problem as well. An inappropriate selection of the two free choices could lead to
a solution which has circuit, branch, or order problems in moving among all specified
positions. Thus we must check the function of the solution synthesized by this or any
other method. A simple model is the quickest check.

5.8 COMPARISON OF ANALYTICAL AND GRAPHICAL
THREE-POSITION SYNTHESIS

Figure 5-5 shows the same three-position synthesis problem as was done graphically in
Example 3-6. Compare this figure to Figure 3-9. The labeling has been changed to be
consistent with the notation in this chapter. The points Py, P,, and P3 correspond to the
three points labeled D in the earlier figure. Points A, A,, and A3 correspond to points E;
points By, By, and B3 correspond to points F. The line AP becomes the Z vector. Point P
is the coupler point which will go through the specified precision points, Py, P,, and Ps3.
Points A and B are the attachment points for the rockers (links 2 and 4, respectively) on the
coupler (link 3). We wish to solve for the coordinates of vectors W, Z, U, and S, which
define not only the lengths of those links but also the locations of the fixed pivots O, and
Oy in the plane and the lengths of links 3 and 1. Link 1 is defined as vector G in Figure
5-4 and can be found from equation 5.2b. Link 3 is vector V found from equation 5.2a.
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Four free choices must be made to constrain the problem to a particular solution out
of the infinities of solutions available. In this case the values of link angles 3, B3, Y2,
and y3 have been chosen to be the same values as those which were found in the graphical
solution to Example 3-6 in order to obtain the same solution as a check and comparison.
Recall that in doing the graphical three-position synthesis solution to this same problem
we in fact also had to make four free choices. These were the x,y coordinates of the mov-
ing pivot locations E and F in Figure 3-9 which correspond in concept to our four free
choices of link angles here.

Example 3-5 also shows a graphical solution to this same problem resulting from
the free choice of the x,y coordinates of points C and D on the coupler for the moving
pivots (see Figure 3-8 and Example 3-5). We found some problems with toggle positions
in that solution and redid it using points E and F as moving pivots in Example 3-6 and
Figure 3-9. In effect the graphical three-position synthesis solution presented in Chapter
3 is directly analogous to the analytical solution presented here. For this analytical ap-
proach we choose to select the link angles 3, B3, ¥,, and y3 rather than the moving pivot
locations E and F in order to force the resulting equations to be linear in the unknowns.
The graphical solution done in the earlier examples is actually a solution of simultaneous
nonlinear equations.

A DEXAMPLE 5-2

Three-Position Analytical Motion Synthesis.

Problem: Design a fourbar linkage to move the link APB shown from position A{PB; to
A,P»B, and then to position A3P3Bj3.

Solution: (See Figure 5-5.)

1 Draw the link APB in its three desired positions, A;P B, A,P,B,, and A3P3B5 to scale in the
plane as shown in the figure.

2 The three positions are then defined with respect to a global origin positioned at the first preci-
sion point P;. The given data are the magnitudes and angles of the position difference vectors
between precision points:
pa1= 2.798 &, =-31.19° p31=3.919 83 =-16.34°

3 The angle changes of the coupler between precision points are:

o =—45° o3 =9.3°

4 The free choices assumed for the link angles are:

B, =342.3° B3 =324.8° Y, = 30.9° v3 = 80.6°
These defined variables and the free choices are also listed on the figure.
5 Once the free choices of link angles are made, the terms for the matrices of equation 5.27 can

be defined by solving equation 5.25 for the first dyad of the linkage and equation 5.30 for the
second dyad of the linkage. For this example they evaluate to:
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Defined Variables

Py = 2798

8, = -31.19°

P31 = 3919

83 = -16.34°

0y =-45.0°

o3 = 93°

Assumed Variables

B, = 342.3°

B3 = 324.8

B, Y2 = 309

0 Y3 = 80.6°

Bs To be found:
Vectors W Z; S; Uj
FIGURE 5-5

Data needed for three-position analytical synthesis
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First dyad (WZ):

A =-0.0473 B =-0.3040 C=-0.2929 D =-0.7071
E =2.3936 F=-0.1829 G =-0.5764 H=-0.0131
K=0.1616 L =3.7607 M =-1.4490 N=-1.1026
Second dyad (US):

A=-0.1419 B=0.5135 C=-0.2929 D =-0.7071
E =2.3936 F=-0.8367 G =0.9866 H=-0.0131
K=0.1616 L =3.7607 M =-1.4490 N=-1.1026

6 Program MATRIX is used to solve this matrix equation once with the values from equation 5.25
inserted to get the coordinates of vectors W and Z, and a second time with values from equa-
tion 5.31 in the matrix to get the coordinates of vectors U and S. The calculated coordinates
of the link vectors from equations 5.25 to 5.31 are:

W, = 0.055 W, =6.832 Z,=1.179 Z,=0.940
Link 2 =w = 6.832
U,=-2.628 U, =-1.825 S, =-0.109 Sy, =1.487
Link4=u=32
7 Equation 5.2a is used to find link 3.
Vi=2Z,—8,=1.179-(-0.109) = 1.288
Vy=2,-5,=0940 - 1487 =-0.547
Link 3 =v=1.399
8 The ground link is found from equation 5.2b
G, =W, +V, -U,=0.055+ 1288 — (-2.628) = 3.971
G,=W,+V, -U,=6.832-0547 - (-1.825) =8.110
Link 1 =¢g=9.03

9 The appropriate vector components are added together to get the locations of fixed pivots O,
and O, with respect to the global origin at precision point Py. See Figures 5-4 and 5-5.

Oy = ~Z,— W, =—1.179 - 0.055 = —1.234
03y =~Z,— W, =—0.940 - 6.832 = —7.772
Oy = =S, — U, = ~(0.109) — (-2.628) = 2.737

Ouy=-S,~ Uy =—1.487 - (-1.825) = 0.338
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Table 5-1 shows the linkage parameters as synthesized by this method. These agree
with the solution found in Example 3-6 within its graphical accuracy. Open the files E05-
02a.mtr and E05-02b.mtr in program MATRIX to compute these results.

This problem can also be solved with program LINKAGES using the same method as
derived in Section 5.7. Though the derivation was done in terms of the polar coordinates
of the position difference vectors P,; and P53y, it was considered more convenient to sup-
ply the cartesian coordinates of these vectors to program LINKAGES. (It is generally more
accurate to measure x,y coordinates from a sketch of the desired positions than to measure
angles with a protractor.) Thus the program requests the rectangular coordinates of Py
and P3;. For this example they are:

Paty = 2.394 paty =-1.449 P31 = 3.761 P31y =-1.103

The angles 0., and 03 must be measured from the diagram and supplied, in degrees.
These six items constitute the set of “givens.” Note that these data are all relative infor-
mation relating the second and third positions to the first. No information about their
absolute locations is needed. The global reference system can be taken to be anywhere
in the plane. We took it to be at the first precision point position Py for convenience. The
free choices 3, and B3 for the first dyad and ¥,, 3 for the second dyad must also be input
to program LINKAGES as they also were to program MATRIX.

Program LINKAGES then solves the matrix equation 5.27 once with the values from
equation 5.25 inserted to get the coordinates of vectors W and Z, and a second time with
values from equation 5.31 in the matrix to get the coordinates of vectors U and S. Equa-
tions 5.2 are then solved to find links 1 and 3, and the appropriate vector components
are added together to get the locations of fixed pivots O, and Oy4. The link lengths are
returned to the main part of program LINKAGES so that other linkage parameters can be
calculated and the linkage animated.

Note that there are two ways to assemble any fourbar linkage, open and crossed (see
Figure 4-5), and this analytical synthesis technique gives no information on which mode

TABLE 5-1 Results of Analytical Synthesis for Example 5-2

Link Number Analytical Solution Graphical Solution
Length Calculated (in) Length from Fig. 3-9 (in)
1 9.03 8.9
2 6.83 6.7
3 1.40 1.5
4 3.20 3.2
Coupler Pt. = 1.51 @ 61.31 degrees 1.5 @ 61degrees
Open/Crossed = CROSSED CROSSED
Start Alpha2 = 0 rad/sec?
Start Omega2 = 1rad/sec
Start Theta2 = 29 degrees
Final Theta2 = 11 degrees

Delta Theta2 = -9 degrees
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of assembly is necessary to get the desired solution. Thus you may have to try both modes
of assembly in program LINKAGES to find the correct one after determining the proper
link lengths with this method.

The finished linkage is the same as the one in Figure 3-9¢ that shows a driver dyad
added to move links 2, 3, and 4 through the three precision points. You may open the
file E05-02.4br in program LINKAGES to see the motions of the analytically synthesized
fourbar solution. The linkage will move through the three positions defined in the problem
statement. The file FO3-09c.6br may also be opened in program LINKAGES to see the full
motion of the finished sixbar linkage.

5.9 SYNTHESIS FOR A SPECIFIED FIXED PIVOT LOCATION

In Example 3-8 we used graphical synthesis techniques and inversion to create a fourbar
linkage for three-position motion generation with specified fixed pivot locations. This
is a commonly encountered problem as the available locations for fixed pivots in most
machines are quite limited. Loerch et al.[4l show how we can use these analytical
synthesis techniques to find a linkage with specified fixed pivots and three output positions
for motion generation. In effect we will now take as our four free choices the x and y
coordinates of the two fixed pivots instead of the angles of the links. This approach will
lead to a set of nonlinear equations containing transcendental functions of the unknown
angles.

Figure 5-6 shows the WZ dyad in three positions. Because we want to relate the
fixed pivots of vectors W and U to our precision points, we will place the origin of our
global axis system at precision point P;. A position vector R; can then be drawn from
the root of vector W to the global origin at Py, R, to P,, and Rj to P3. The vector —-R;
defines the location of the fixed pivot in the plane with respect to the global origin at P;.

We will subsequently have to repeat this procedure for three positions of vector U at
the right end of the linkage as we did with the three-position solution in Section 5.8. The
procedure is presented here in detail only for the left end of the linkage (vectors W, Z).
It is left to the reader to substitute U for W and S for Z in equations 5.32 to generate the
solution for the right side.

We can write the vector loop equation for each precision position:

Wl + Zl = Rl
WZ + 22 = R2 (S.32a)
W3 + Z3 = R3

Substitute the complex number equivalents for the vectors W; and Z;:
wel® + zejq’ =R,
wel (0+B2) 4 Hoi(0ron) R, (5.32b)

wel(OB2) | i) g
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FIGURE 5-6
Three-position synthesis of a linkage with specified fixed pivot locations

Expand:
wel® + zej¢ =R,
welPeiB2 4 70i%J02 = R, (5.32¢)
wel0eiB3 4 zel0ei% = R,
Note that:

W = wel®; Z=ze/® (5.32d)
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and: W+Z=R,

We/P2 4 Z0/%2 =R, (5.32¢)
We/Ps +Ze/% =R,

Previously, we chose 3, and 33 and solved for the vectors W and Z. Now we wish
to, in effect, specify the x, y components of the fixed pivot O (=Ry,, =R}, ) as our two
free choices. This leaves 3, and B3 to be solved for. These angles are contained in tran-
scendental expressions in the equations. Note that, if we assumed values for 3, and B3 as
before, there could only be a solution for W and Z if the determinant of the augmented
matrix of coefficients of equations 5.32e were equal to zero.

1 1 R,
el g2 R, |=0 (5.33a)
eBs i R,

Expand this determinant about the first column which contains the present unknowns

B, and B3:

(Rae/ ~Rye/® ) +.¢/P2 (Rye/® —Ry | +¢/P (R, ~Rye/®2 | =0 (5.33b)

To simplify, let:
A=R;e/* —R,e/*

B=R,e/* —R, (5.33¢)
C=R, -R;e/®

then:
A+BelP2 1 celBs =0 (5.33d)

Equation 5.33d expresses the summation of vectors around a closed loop. Angles
BB, and B3 are contained within transcendental expressions making their solution cum-
bersome. The procedure is similar to that used for the analysis of the fourbar linkage in
Section 4.5. Substitute the complex number equivalents for all vectors in equation 5.33d.
Expand using the Euler identity (equation 4.4a). Separate real and imaginary terms to
get two simultaneous equations in the two unknowns 3, and 5. Square these expressions
and add them to eliminate one unknown. Simplify the resulting mess and substitute the
tangent half angle identities to get rid of the mixture of sines and cosines. It will ultimately
reduce to a quadratic equation in the tangent of half the angle sought, here 3. B, can then
be found by back substituting B3 in the original equations. The results are:”

K, +\JK} + K3 - K?

B5 =2arctan X 4K,
(5.34a)
—(A3 sinP; + A, cosPs + A4)
o = arctan —(AssinP; + As cosPBs + Ag )
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* Note that a two-argument
arctangent function must be
used to obtain the proper
quadrants for angles 3, and
B3. Also, the minus signs in
numerator and denominator
of the equation for 3, look
like they could be canceled,
but should not be. They
are needed to determine the
correct quadrant of 3, in the
two-argument arctangent
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where: Ky = A Ay + A3 Ag
K2 = A3A4 + A5A6 (S.34b)
Al —A3-AF-AZ- A7
K3 =
2
and: Al = —C32 - C42; A2 = C3C6 - C4C5
Ay =—C,Cs —C5Cs; A, =C,C3+C,Cy (5.34¢)
AS = C4C5 - C3C6; A6 = CIC3 - C2C4

C,=R; cos(a2 +5 ) -R, cos(oc3 + CZ)
C, =Rysin(o, +(3)— Rysin(oz +,)
C3=R; cos((x3 +G; ) —R;cos(s
Cy =—Rysin(o; +§; )+ Rysin; (5.34d)
Cs=R, cos(oc2 +& ) —R, cos{,
Cq =—R;sin(o, +&; )+ R, sing,
The ten variables in these equations are: 0, 03, Ba, B3, {1, &o, (3, Ry, Ry, and R3.
The constants C to Cg are defined in terms of the eight known variables, Ry, Ry, R3, {;,
o, and {3 (which are the magnitudes and angles of position vectors Ry, Ry, and R3) and

the angles o, and o3 that define the change in angle of the coupler. See Figure 5-6 for
depictions of these variables.

Note in equation 5.34a that there are two solutions for each angle (just as there were
to the position analysis of the fourbar linkage in Section 4.5 and Figure 4-5). One solution
in this case will be a trivial one wherein 3, = o and 33 = 0i3. The nontrivial solution is
the one desired.

This procedure is then repeated, solving equations 5.34 for the right-hand end of the
linkage using the desired location of fixed pivot Oy to calculate the necessary angles v,
and vy; for link 4.

We have now reduced the problem to that of three-position synthesis without speci-
fied pivots as described in Section 5.7 and Example 5-2. In effect we have found the
particular values of B,, B3, Y2, and y3 which correspond to the solution that uses the
desired fixed pivots. The remaining task is to solve for the values of W,, Wy, Z,, Zy using
equations 5.25 through 5.31.

A DEXAMPLE 5-3

Three-Position Analytical Synthesis with Specified Fixed Pivots.

Problem: Design a fourbar linkage to move the line AP shown from position AP} to AyPy
and then to position A3P3 using fixed pivots O, and Oy, in the locations specified.

Solution: (See Figure 5-7.)

1 Draw the link AP in its three desired positions, APy, ApP5, and A3P3 to scale in the plane as
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shown in Figure 5-7. The three positions are defined with respect to a global origin positioned
at the first precision point P;. The given data are specified in parts 2 to 4 below.

2 The position difference vectors between precision points are:
Py ,=-0.244 P51, =0.013 P31, =-0.542 P31, =10.029
3 The angle changes of the coupler between precision points are:

0 =—11.34° 0y =-22.19°

(@) Input data

Ps

T

0.033 0.029 0.013

(b) Synthesized linkage

FIGURE 5-7
Three-position synthesis example for specified fixed pivots
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4 The assumed free choices are the desired fixed pivot locations.
0y, =-1.712 0,,=0.033 04, =0.288 04, =10.033

5 Solve equations 5.34 twice, once using the O, pivot location coordinates and again using the
Oy pivot location coordinates.

For pivot O5:

C; =-0.205 C, =0.3390 C5 = 0.4028
Cy=0.6731 Cs=0.2041 C = 0.3490
A =-0.6152 Ay =0.0032 Ay=-03171
Aq=-0.0017 As =-0.0032 Ag=-0.3108
K =0.0986 K, =0.0015 K5 =0.0907

The values found for the link angles to match this choice of fixed pivot location O, are:
B, =11.96° B3 =23.96°
For pivot Oy:
C;=-0.3144 C, =-0.0231 C3 =0.5508

Cy =-0.0822 Cs=0.2431 Ce =—0.0443
A =-0.3102 Ay =-0.0044 Ay=-0.1376

Ay =00131 As = 0.0044 Ag=-0.1751

K =0.0240 K, =-0.0026 Ky =0.0232

The values found for the link angles to match this choice of fixed pivot location O, are:
Y, =2.78° v3 = 9.96°

6 At this stage, the problem has been reduced to the same one as in the previous section; i.e.,
find the linkage given the free choices of the above angles 35, B3, Y2, V3, using equations 5.25
through 5.31. The data needed for the remaining calculations are those given in steps 2, 3, and
5 of this example, namely:

for dyad 1:

Pix Py Py P3yy a as by b3
for dyad 2:

Pix Py Py Psyy a az 8 83

See Example 5-2 and Section 5.7 for the procedure. A matrix solving calculator, Mathcad,
TKSolver, Matlab, program MATRIX, or program LINKAGES will solve this and compute the
coordinates of the link vectors:

W, =0.866 W, =0.500 Z,=0.846 Z,=-0.533

U,=-0.253 U,=0973 S, =-0.035 Sy =-1.006
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7 The link lengths are computed as was done in Example 5-2 and are shown in Table 5-2.

This example can be opened in program LINKAGES from the file E05-03.4br and animated.

510 CENTER-POINT AND CIRCLE-POINT CIRCLES

It would be quite convenient if we could find the loci of all possible solutions to the three-
position synthesis problem, as we would then have an overview of the potential locations
of the ends of the vectors W, Z, U, and S. Loerch et al.l[] show that by holding one of
the free choices (say [3,) at an arbitrary value and then solving equations 5.25 and 5.26
while iterating the other free choice (B3) through all possible values from 0 to 27, a circle
will be generated. This circle is the locus of all possible locations of the root of vector
W (for the particular value of 3, used). The root of the vector W is the location of the
fixed pivot or center O,. Thus, this circle is called a center-point circle. The vector N in
Figure 5-8 defines points on the center-point circle with respect to the global coordinate
system which is placed at precision point P for convenience.

If the same thing is done for vector Z, holding o, constant at some arbitrary value and
iterating o3 from O to 27, another circle will be generated. This circle is the locus of all
possible locations of the root of vector Z for the chosen value of o). Because the root of
vector Z is joined to the tip of vector W and W’s tip describes a circle about pivot O, in
the finished linkage, this locus is called the circle-point circle. Vector (—Z) defines points
on the circle-point circle with respect to the global coordinate system.

The x,y components of vectors W and Z are defined by equations 5.25 and 5.26. Ne-
gating the x,y components of Z will give the coordinates of points on the circle-point circle
for any assumed value of o, as angle o3 is iterated from O to 2w. The x,y components of
N = -Z — W define points on the O, center-point circle for any assumed value of B, as B3
is iterated through 0 to 2m. Vector W is calculated using angles 3, and 3, and vector Z
using angles o, and o3, both from equations 5.25 and 5.26.

For the right-hand dyad, there will also be separate center-point circles and circle-
point circles. The x,y components of M = —S — U define points on the O,4 center-point
circle for any assumed value of ¥, as 73 is iterated through O to 2rt. (See Figure 5-8 and
also Figure 5-4.) Negating the x,y components of S will give the coordinates of points
on the circle-point circle for any assumed value of o, as o3 is iterated through O to 2.
Vector U is calculated using angles 7y, and 73, and vector S using angles o, and o3, both
from equations 5.30 and 5.31.

Note that there is still an infinity of solutions because we are choosing the value of
one angle arbitrarily. Thus there will be an infinite number of sets of center-point and
circle-point circles. A computer program can be of help in choosing a linkage design
which has pivots in convenient locations. Program LINKAGES, provided with this text,
will calculate the solutions to the analytical synthesis equations derived in this section,
for user-selected values of all the free choices needed for three-position synthesis, both
with and without specification of fixed pivot locations. Information about the computer
program LINKAGES is in Appendix A.

Figure 5-9 shows the circle-point and center-point circles for the Chebyscheyv straight-
line linkage for choices of B, = 26°, o, = 97.41°, 03 = 158.18°for the left dyad and y =
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TABLE 5-2
Example 5-3 Results

Link 1=2.00 in
Link 2=1.00 in
Link 3=1.00 in
Link 4=1.01 in

Coupler Pt. =1.0 in
@ -60.73°

Circuit = Open

Start Theta2 = 30°
Final Theta2 = 54°
Delta Theta2 =12°
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Root of Z

Root of W

Root of U

FIGURE 5-8
Definition of vectors to define center-point and circle-point circles

36°, 0p = 97.41°, 0.3 = 158.18° for the right dyad. In this example the two larger circles
are the center-point circles which define the loci of possible fixed pivot locations O, and
Oy4. The smaller two circles define the loci of possible moving pivot locations I3 and /34.
Note that the coordinate system has its origin at the reference precision point, in this case
Py, from which we measured all parameters used in the analysis. These circles define the
pivot loci of all possible linkages which will reach the three precision points Py, P,, and
P that were specified for particular choices of angles 35, ¥, and 0. An example linkage
is drawn on the diagram to illustrate one possible solution.
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Circle-point circle
for moving pivot A

Circle-point circle
for moving pivot B

. . \ NG 7
Center-point circle 7 \ C—_ -

for fixed pivot Oy \ Center-point circle

. for fixed pivot Oy

FIGURE 5-9
Circle-point and center-point circles and a linkage that reaches the precision points

511 FOUR- AND FIVE-POSITION ANALYTICAL SYNTHESIS

The same techniques derived above for two- and three-position synthesis can be extended
to four and five positions by writing more vector loop equations, one for each precision
point. To facilitate this, we will now put the vector loop equations in a more general form,
applicable to any number of precision positions. Figure 5-4 will still serve to illustrate
the notation for the general solution. The angles o, 03, By, B3, V2, and y3 will now be
designated as oy, B, and ¥y, k = 2 to n, where k represents the precision position and n
=2, 3, 4, or 5 represents the total number of positions to be solved for. The vector loop
general equation set then becomes:

Wk +Zk_Pk1_Zl_W1 =O, k=2ton (5353)
which, after substituting the complex number forms and simplifying, becomes:

we/® (ejBk - 1) +ze/ (ejo‘k - 1) = e, k=2ton (5.35b)

This can be put in a more compact form by substituting vector notation for those
terms to which it applies, let:

W =we’®; Z=2zel?, P, = pklejs" (5.35¢)
then:

w(efﬁk - 1) + z(ef“k - 1) =P e, k=2ton (5.35d)
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Equation 5.35d is called the standard form equation by Erdman and Sandor.[®] By
substituting the values of oy, B4, and &, in equation 5.35d for all the precision positions
desired, the requisite set of simultaneous equations can be written for the left dyad of the
linkage. The standard form equation applies to the right-hand dyad US as well, with ap-
propriate changes to variable names as required.

U(ejBk —1)+S(ej°‘k —1)=Pk1ej8k, k=2ton (5.35¢)

The number of resulting equations, variables, and free choices for each value of n
is shown in Table 5-3 (after Erdman and Sandor). They provide solutions for the four-
and five-position problems in reference [6]. The circle-point and center-point circles of
the three-position problem become cubic curves, called Burmester curves, in the four-
position problem. Erdman and Gustafson’s commercially available computer program
LINCAGES!8! solves the four-position problem in an interactive way, allowing users to
select center and circle pivot locations on their Burmester curve loci, which are drawn on
the graphics screen of the computer.

512 ANALYTICAL SYNTHESIS OF A PATH GENERATOR
WITH PRESCRIBED TIMING

The approach derived above for motion generation synthesis is also applicable to the case
of path generation with prescribed timing. In path generation, the precision points are
to be reached, but the angle of a line on the coupler is not of concern. Instead, the timing
at which the coupler reaches the precision point is specified in terms of input rocker angle
B,. In the three-position motion generation problem we specified the angles o, and o3
of vector Z in order to control the angle of the coupler. Here we instead want to specify
angles [3, and B3 of the input rocker, to define the timing. Before, the free choices were
B, and 3. Now they will be o, and 03. In either case, all four angles are either specified
or assumed as free choices and the solution is identical. Figure 5-4 and equations 5.25,
5.26, 5.30, and 5.31 apply to this case as well. This case can be extended to as many as
five precision points as shown in Table 5-3.

TABLE 5-3 Number of Variables and Free Choices for Analytical Precision-
Point Motion and Timed Path Synthesis. [®]

No. of No. of No. of No. of No. of No. of
Positions Scalar Scalar Prescribed Free Available
(n) Variables Equations Variables Choices Solutions
2 8 2 3 3 oo’
3 12 4 6 2 oo?
4 16 6 9 1 oo!

5 20 8 12 0 Finite
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513 ANALYTICAL SYNTHESIS OF A FOURBAR FUNCTION
GENERATOR

A similar process to that used for the synthesis of path generation with prescribed timing
can be applied to the problem of function generation. In this case we do not care about
motion of the coupler at all. In a fourbar function generator, the coupler exists only to
couple the input link to the output link. Figure 5-10 shows a fourbar linkage in three
positions. Note that the coupler, link 3, is merely a line from point A to point P. Point P
can be thought of as a coupler point which happens to coincide with the pin joint between
links 3 and 4. As such it will have simple arc motion, pivoting about Oy, rather than, for
example, the higher-order path motion of the coupler point P; in Figure 5-4.

Our function generator uses link 2 as the input link and takes the output from link
4. The “function” generated is the relationship between the angles of link 2 and link
4 for the specified three-position positions, Py, P, and P3. These are located in the plane
with respect to an arbitrary global coordinate system by position vectors R;, R,, and Rj.
The function is:

Yie = f(Bx), k=1,2,..,m; n<7 (5.36)

FIGURE 5-10

Analytical synthesis of a fourbar function generator
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This is not a continuous function. The relationship holds only for the discrete
points (k) specified.

To synthesize the lengths of the links needed to satisfy equation 5.36, we will write
vector loop equations around the linkage in pairs of positions, as was done for the previ-
ous examples. However, we now wish to include both link 2 and link 4 in the loop, since
link 4 is the output. See Figure 5-10.

W, +Z, -U, +U; —~Z; - W, =0

(5.37a)
W;+Z;-Us+U; —Z; -W,; =0
rearranging:
W, +Z,-7Z,-W;=U, -U;
(5.37b)
W;+Z,-Z, -W, =U; - U,
but,
Py=0,-U
(5.37¢)
Py =U;-U;
substituting:
Wy +2, -7, - W, =Py,
(5.37d)
W3 +Z3 —21 _Wl :P31
wel(¢+P2) 4 zej(q)mz) —ze/® —wel® = p, e/
(5.37¢)
welOB3) oo (0703) _ o0 _ 10l _ b 8

Note that equations 5.37d and 5.37e are identical to equations 5.19 and 5.20 derived
for the three-position motion generation case and can also be put into Erdman’s standard
form!®] of equation 5.35 for the n-position case. The twelve variables in equation 5.37¢
are the same as those in equation 5.20: w, 0, By, B3, z, ¢, 0, 03, P21, P31, O, and Os.

For the three-position function generation case the solution procedure then can be
the same as that described by equations 5.20 through 5.27 for the motion synthesis prob-
lem. In other words, the solution equations are the same for all three types of kinematic
synthesis, function generation, motion generation, and path generation with prescribed
timing. This is why Erdman and Sandor called equation 5.35 the standard form equa-
tion. To develop the data for the function generation solution, expand equation 5.37b:
0+B;)

we'l 1 2el(0%02) _ 7000 _yyei® — o d(0412) gl
(5.370)
wel(0+83) | zej(¢+a3) —zed® —wed® = ue!(+13) _jpic

There are also twelve variables in equation 5.37f: w, 6, z, 0, 0y, 03, B2, B3, u, C, o,
and 3. We can solve for any four. Four angles, By, B3, Y2, and 3 are specified from the
function to be generated in equation 5.36. This leaves four free choices. In the function
generation problem it is often convenient to define the length of the output rocker, «, and
its initial angle G to suit the package constraints. Thus, selecting the components # and ¢
of vector U; can provide two convenient free choices of the four required.
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TABLE 5-4 Number of Variables and Free Choices for Function Generation

Synthesis.[®!
No. of No. of No. of No. of No. of No. of
Positions Scalar Scalar Prescribed Free Available
(n) Variables Equations Variables Choices Solutions
2 8 2 1 5 o5
3 12 4 4 4 oot
4 16 6 7 3 co3
5 20 8 10 2 =
6 24 10 13 1 ool
7 28 12 16 (6] Finite

With u, 6, ¥,, and y3 known, U, and U; can be found. Vectors P, and P53, can then
be found from equation 5.37c. Six of the unknowns in equation 5.37¢ are then defined,
namely, B,, B3, P21, P31, 02, and 83. Of the remaining six (w, 0, z, ¢, 0,5, 0(3), we must as-
sume values for two more as free choices in order to solve for the remaining four. We will
assume values (free choices) for the two angles 0., and 03 (as was done for path generation
with prescribed timing) and solve equations 5.37e for the components of W and Z (w,
0, z, ). We have now reduced the problem to that of Section 5.7 and Example 5-2. See
equations 5.20 through 5.27 for the solution.

Having chosen vector U; (u, ) as a free choice in this case, we only have to solve
for one dyad, WZ. Though we arbitrarily choose the length of vector Uy, the resulting
function generator linkage can be scaled up or down to suit packaging constraints without
affecting the input/output relation defined in equation 5.36, because it is a function of
angles only. This fact is not true for the motion or path generation cases, as scaling them
will change the absolute coordinates of the path or motion output precision points which
were specified in the problem statement.

Table 5-4 shows the relationships between number of positions, variables, free choic-
es, and solutions for the function generation case. Note that up to seven angular output
positions can be solved for with this method.

514 OTHER LINKAGE SYNTHESIS METHODS

Many other techniques for the synthesis of linkages to provide a prescribed motion have
been created or discovered in recent years. Most of these approaches are somewhat
involved and many are mathematically complicated. Only a few allow a closed-form
solution; most require an iterative numerical solution. Most address the path synthesis
problem with or without concern for prescribed timing. As Erdman and Sandor point out,
the path, motion, and function generation problems are closely related.[¢]

Space does not permit a complete exposition of even one of these approaches in
this text. We choose instead to present brief synopses of a number of synthesis methods
along with complete references to their full descriptions in the engineering and scientific
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* The nine independent
parameters of a fourbar link-
age are: four link lengths,
two coordinates of the
coupler point with respect to
the coupler link, and three
parameters that define the
location and orientation of
the fixed link in the global
coordinate system.
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literature. The reader interested in a detailed account of any method listed may consult
the referenced papers which can be obtained through any university library or large public
library. Also, some of the authors of these methods may make copies of their computer
code available to interested parties.

Table 5-5 summarizes some of the existing fourbar linkage synthesis methods and
for each one lists the method type, the maximum number of positions synthesized, the
approach, special features, and a bibliographic reference (see the end of this chapter for
the complete reference). The list in Table 5-5 is not exhaustive; other methods than these
also exist.

The listed methods are divided into three types labeled precision, equation, and
optimized (first column of Table 5-5). The type labeled precision (from precision point)
refers to a method, such as the ones described in previous sections of this chapter, that
attempts to find a solution that will pass exactly through the desired (precision) points
but may deviate from the desired path between these points. Precision point methods are
limited to matching a number of points equal to the number of independently adjustable
parameters that define the mechanism. For a fourbar linkage, this is nine.” (Higher-order
linkages with more links and joints will have a larger number of possible precision points.)

For up to 5 precision points in the fourbar linkage, the equations can be solved in
closed form without iteration. (The four-point solution is used as a tool to solve for 5
positions in closed form, but for 6 points or more the nonlinear equations are difficult to
handle.) For 6 to 9 precision points an iterative method is needed to solve the equation
set. There can be problems of nonconvergence, or convergence to singular or imaginary
solutions, when iterating nonlinear equations. Regardless of the number of points solved
for, the solution found may be unusable due to circuit, branch, or order (CBO) defects.
A circuit defect means that the linkage must be disassembled and reassembled to reach
some positions, and a branch defect means that a toggle position is encountered between
successive positions (see Section 4.13). An order defect means that the points are all
reachable on the same branch but are encountered in the wrong order.

The type labeled equation in Table 5-5 refers to methods that solve the tricircular,
trinodal sextic coupler curve to find a linkage that will generate an entire coupler curve
that closely approximates a set of desired points on the curve.

The type labeled optimized in Table 5-5 refers to an iterative optimization procedure
that attempts to minimize an objective function that can be defined in many ways, such
as the least-squares deviation between the calculated and desired coupler point positions,
for example. The calculated points are found by solving a set of equations that define
the behavior of the linkage geometry, using assumed initial values for the linkage param-
eters. A set of inequality constraints that limit the range of variation of parameters such
as link length ratios, Grashof condition, or transmission angle may also be included in
the calculation. New values of linkage parameters are generated with each iteration step
according to the particular optimization scheme used. The closest achievable fit between
the calculated solution points and the desired points is sought, defined as minimization
of the chosen objective function. None of the desired points will be exactly matched by
these methods, but for most engineering tasks this is an acceptable result.

Optimization methods allow larger numbers of points to be specified than do the
precision methods, limited only by available computer time and numerical roundoff er-
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TABLE 5-5 Some Methods for the Analytic Synthesis of Linkages
Type Max Pos. Approach Special Features Bibliography References

Precision 4 Loop equations — Linear equations Freudenstein (1959) 1,2,4,5,6,8,10

closed form extendable to Sandor (1959)
five positions Erdman (1981)

Precision 5 Loop equations — Uses displacement Suh (1967) 1
Newton-Raphson matrix

Precision 5 Loop equations — Specified fixed pivots, Morgan (1990) 14,15, 16, 17
continuation specified moving pivots Subbian (1991)

Precision 7 Closed form 5 pt.— Extendable to Tylaska (1994) 19, 20
iterative to 7 pt. Watt | sixbar

Precision 9 Loop equations — Exhaustive solution Morgan (1987) 12,13,18
Newton-Raphson Wampler (1992)

Equation 10 Coupler curve egn. Iterative solution Blechschmidt (1986) 21

Equation 15 Coupler curve eqgn. Builds on Blechschmidt Ananthasuresh (1993) 22

Optimized N Loop equations — Specified fixed pivots, Fox (1966) 24
least squares control force and torque

Optimized N Loop equations — Path or function Youssef (1975) 25
various criteria generation

Optimized N Least squares on Prescribed timing, Nolle (1971) 9
linear equations rapid convergence

Optimized N Selective precision Relaxes precision Kramer (1975) 26, 27
synthesis (SPS) requirements

Optimized N SPS + fuzzy logic Extends Kramer's SPS Krishnamurthi (1993) 28

Optimized N Quasi-precision pos. Builds on Kramer Mirth (1994) 29

Optimized 3or4d Loop equations and Kinematics and dynamic Conte (1975) 30, 31,32
dynamic criteria forces and torques Kakatsios (1987)

Optimized N Loop equations — Avoids branch problems, Angeles (1988) 33
least squares rapid convergence

Optimized N Energy method FEA™ approach Aviles (1994) 34

Optimized N Genetic algorithm Whole curve synthesis Fang (1994) 35

Optimized N Fourier descriptors Whole curve synthesis Ullah (1996) 36, 37

Optimized N Neural network Whole curve synthesis Vasiliu (1998) 38

Optimized 2,3,0or 4 Loop equations — Automatic generation Bawab (1997) 39
various criteria CBO defect-free

Optimized N Approximate — All solutions—no initial Liu (1999) 40

continuation

guess required

" Finite Element Analysis

ror. Table 5-5 shows a variety of optimization schemes ranging from the mundane (least
squares) to the esoteric (fuzzy logic, genetic algorithms). All require a computer-pro-
grammed solution. Most can be run on current desktop computers in reasonably short
times. Each different optimization approach has advantages and disadvantages in respect
to convergence, accuracy, reliability, complexity, speed, and computational burden. Con-
vergence often depends on a good choice of initial assumptions (guess values) for the
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linkage parameters. Some methods, if they converge at all, do so to a local minimum (only
one of many possible solutions), and it may not be the best one for the task.

Precision Point Methods

Table 5-5 shows several precision point synthesis methods. Some of these are based on
original work by Freudenstein and Sandor.l!% Sandorl!] and Erdman(?}: [6] developed
this approach into the “standard form” which is described in detail in this chapter. This
method yields closed-form solutions for 2, 3, and 4 precision positions and is extendable
to 5 positions. It suffers from the possible circuit, branch, and order (CBO) defects com-
mon to all precision point methods.

The method of Suh and Radcliffel!!] is quite similar to that of Freudenstein and
others!1- [2]. [6]. [10] byt Jeads to a set of simultaneous nonlinear equations which are
solved for up to 5 positions using the Newton-Raphson numerical method (see Section
4.14). This approach adds to the usual CBO problems the possibilities of nonconver-
gence, or convergence to singular or imaginary solutions.

Recent developments in the mathematical theory of polynomials have created new
methods of solution called continuation methods (also called homotopy methods)
which do not suffer from the same convergence problems as other methods and can
also determine all the solutions of the equations starting from any set of assumed val-
ues. 12]. [13] Continuation methods are a general solution to this class of problem and are
reliable and fast enough to allow multiple designs to be investigated in a reasonable time
(typically measured in CPU hours on a powerful computer).

Several researchers have developed solutions for the 5- to 9-precision point problem
using this technique. Morgan and Wampler!!4! solved the fourbar linkage 5-point prob-
lem with specified fixed pivots completely and found a maximum of 36 real solutions.
Subbian and Flugrad[!>] used specified moving pivots for the 5-point problem, extended
the 5-point method to sixbar linkages,!1%) and also synthesized eightbar and geared fivebar
mechanisms for 6 and 7 precision points using continuation methods.!17!

Only the continuation method has yet been able to completely solve the fourbar link-
age 9-precision-point problem and yield all its possible solutions. Wampler, Morgan,
and Sommesel!8! used a combination of analytical equation reduction and numerical
continuation methods to exhaustively compute all possible nondegenerate, generic solu-
tions to the 9-point problem.” They proved that there is a maximum of 4326 distinct,
nondegenerate linkages (occurring in 1442 sets of cognate triples) that will potentially
solve a generic 9-precision-point fourbar problem. Their method does not eliminate
physically impossible (complex link) linkages or those with CBO defects. These still have
to be removed by examination of the various solutions. They also solved four examples
and found the maximum number of linkages with real link lengths that generated these
particular 9-point paths to be 21, 45, 64, and 120 cognate triples. Computation times
ranged from 69 to 321 CPU minutes on an IBM 3090 for these four examples.

Tylaska and Kazerounian!19]: [20] took a different approach and devised a method
that synthesizes a fourbar linkage for up to 7 precision points and also synthesized a Watt
I sixbar linkage for up to six body guidance (motion specification) positions with control
over locations of some ground and moving pivots. Their method yields the entire set of
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solutions for any set of design data and is an improvement over iterative methods that are
sensitive to initial guesses. It is less computationally intensive than continuation methods.

Coupler Curve Equation Methods

Blechschmidt and Uicker[?!! and Ananthasuresh and Kotal22] used the algebraic coupler
curve equation rather than a vector loop approach to calculate the coupler point path. The
equation of the coupler curve is a tricircular, trinodal sextic of 15 terms. Beyer[#!] gives
one form of the coupler curve equation as:"

a? [(x—k)2 +y2}(x2 +y2+b> -1 )2 —2ab[(x2 +y? —kx)cosy+kysiny}
(x2 +y% +b? —;'2)[(x—k)2 +y*+ad? —R2]+b2 (x2 +y2) (5.38)

2 2
[(x—k)2+y2+a2—R2] —4a2b2[(x2+y2—kx)siny—kycosy] =0

Nollel23! states that:

The coupler curve equation itself is very complex and as far as is known in the study of me-
chanics (or for that matter elsewhere) no other mathematical result has been found having
algebraic characteristics matching those of the coupler curve.

Its solution is quite involved and requires iteration. Blechschmidt and Uicker’s ap-
proach[21] chose coordinates for 10 points on the desired curve. Ananthasuresh and
Kotal?2! used 15 points with some trial and error required in their selection. The ad-
vantage of these coupler curve equation approaches is that they define the entire curve
which can be plotted and examined for suitability and defects prior to calculating the link
dimensions, which requires significant additional computing time.

Optimization Methods

The methods listed as optimized in Table 5-5 are a diverse group and some have little
in common except the goal of finding a linkage that will generate a desired path. All al-
low a theoretically unlimited number of design points to be specified, but making N too
large will increase the computation time and may not improve the result. One inherent
limitation of optimization methods is that they may converge to a local minimum near the
starting conditions. The result may not be as good as other minima located elsewhere in
the N-space of the variables. Finding the global optimum is possible but more difficult
and time consuming.

Perhaps the earliest application (1966) of optimization techniques to this fourbar
linkage path synthesis problem is that of Fox and Willmert!24] in which they minimized
the area between the desired and calculated curves subject to a number of equality and
inequality constraints. They controlled link lengths to be positive and less than some
maximum, controlled for Grashof condition, limited forces and torques, and restricted
the locations of the fixed pivots. They used Powell’s method to find the minimum of the
objective function.

Youssef et al.[25] used sum of squares, sum of absolute values, or area error criteria
to minimize the objective function. They accommodated path and function generation for

273

* Beyer’s linkage geometry
notation is different than
that used in this book.
Beyer’s labeling for the
equation, as shown by
Hall,[42] is:
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desired curve -
actual curve

(@) Coupler curve

(b) Synthesized
linkage

FIGURE 5-11

Linkage synthesized
to generate a desired
coupler curve by an
optimization method
Reproduced from

“Optimal Kinematic
Synthesis of Planar Linkage
Mechanisms” ?°) with the
kind permission of
Professional Engineering
Publishing, Bury St.
Edmunds, UK.
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single-loop (fourbar) or multiloop linkages with both pin and slider joints. They allowed
constraints to be imposed on the allowable ranges of link lengths and angles, any of which
also may be held constant during the iteration. An example of an optimization done with
this method for 19 evenly spaced points around a desired fourbar coupler path is shown
in Figure 5-11[25] Another example of this method is the 10-bar crank-slider linkage in
Figure 5-12[25] which also shows the desired and actual coupler curve generated by point
P for 24 points corresponding to equal increments of input crank angle.

Nolle and Hunt!®! derived analytical expressions that lead to a set of ten linear simul-
taneous nonhomogeneous equations whose solution gives values for all the independent
variables. They used a least squares approach to the optimization and also allowed speci-
fied timing of the input crank to each position on the coupler. Because their equations are
linear, convergence is rapid requiring only about one second per iteration.

Kramer and Sandorl26l- [27] described a variant on the precision point technique
which they call selective precision synthesis (SPS). It relaxes the requirement that the
curve pass exactly through the precision points by defining “accuracy neighborhoods”
around each point. The size of these tolerance zones can be different for each point, and
more than nine points can be used. They point out that exact correspondence to a set of
points is often not necessary in engineering applications and even if achieved theoretically
would be compromised by manufacturing tolerances.

The SPS approach is suitable to any linkage constructible from dyads or triads and
so can accommodate sixbar and geared fivebar linkages as well as fourbars. Fourbar
function, motion, or path generation (with prescribed timing) can all be synthesized,
using the standard form approach which considers all three forms equivalent in terms of
equation formulation. Spatial mechanisms can also be accommodated. The solutions
are stable and less sensitive to small changes in the data than precision point methods.
Krishnamurthi et al.[28] extended the SPS approach by using fuzzy set theory which gives
a mechanism path as close to the specified points as is possible for a given start point, but
it is sensitive to start point selection and may find a local, rather than the global optimum.

Mirth[29] provided a variation on Kramer’s SPS technique called quasi-precision
position synthesis which uses three precision positions and N quasi positions which are
defined as tolerance zones. This approach retains the computational advantages of the
Burmester (precision point) approach while also allowing the specification of a larger
number of points to improve and refine the design.

Conte et al.30] and Kakatsios and Tricamol3!]: [32] described methods to satisfy a
small number of precision points and simultaneously optimize the linkage’s dynamic
characteristics. The link lengths are controlled to reasonable size, the Grashof condition
is constrained, and the input torque, dynamic bearing and reaction forces, and shaking
moments are simultaneously minimized.

Many of the optimization methods listed above use some form of inequality con-
straints to limit the allowable values of design parameters such as link lengths and trans-
mission angles. These constraints often cause problems that lead to nonconvergence, or
to CBO defects. Angeles et al.133] described an unconstrained nonlinear least-squares-
method that avoids these problems. Continuation methods are employed, and good con-
vergence is claimed with no branch defects.
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desired curve -
actual curve —

(a) Path of point P (b) Synthesized linkage

FIGURE 5-12

Example of synthesis of a 10 link mechanism to generate a coupler path
Reproduced from Youssef et al. (1975), "Optimal Kinematic Synthesis of Planar Linkage Mechanisms
with the kind permission of Professional Engineering Publishing, Bury St. Edmunds, UK.

n[25]

Aviles et al.[34] proposed a novel approach to the linkage synthesis problem that uses
the elastic energy that would be stored in the links if they were allowed to deform elasti-
cally such that the coupler point reaches the desired location. The objective function is
defined as the minimum energy condition in the set of deformed links which of course
will occur when their rigid body positions most closely approach the desired path. This is
essentially a finite element method approach that considers each link to be a bar element.
Newton’s method is used for the iteration and, in this case, converges to a minimum even
when the initial guess is far from a solution.

Fang[35] described an unusual approach to linkage synthesis using genetic algo-
rithms. Genetic algorithms emulate the way that living organisms adapt to nature. Ini-
tially, a population of random “organisms” is generated that represents the system to be
optimized. This takes the form of a bit string, analogous to a cell’s chromosomes, which
is called the first generation. Two operations are performed on a given population, called
crossover and mutation. Crossover combines part of the “genetic code” of a “father”
organism with part of the code of a “mother” organism. Mutation changes values of
the genetic code at random points in the bit string. An objective function is created that
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expresses the “fitness” of the organism for the desired task. Each successive generation
is produced by selecting the organisms that best fit the task. The population “evolves”
through generations until a termination criterion is met based on the objective function.

Some advantages of this approach are that it searches from population to population
rather than point to point, and this makes it less likely to be trapped at local optima. The
population also preserves a number of valid solutions rather than converging to only one.
The disadvantage is long computation times due to the large number of objective function
evaluations required. Nevertheless it is more efficient than random walk or exhaustive
search algorithms. All other optimization approaches listed here deal only with dimen-
sional synthesis, but genetic algorithms can also deal with type synthesis.

Ullah and Kotal30! [37] separated the linkage synthesis problem into two steps. The
first step seeks an acceptable match for the shape of the desired curve without regard to
the size, orientation, or location of the curve in space. Once a curve of suitable shape
and its associated linkage are found, the result can be translated, rotated, and scaled as
desired. This approach simplifies the optimization task compared to the algorithms that
seek a structural optimization that includes size, orientation, and location of the coupler
curve all at once in the objective function. Fourier descriptors are used to characterize the
shape of the curve as is done in many pattern matching applications such as for automated
robotic assembly tasks. A stochastic global optimization algorithm is used which avoids
unwanted convergence to suboptimal local minima.

Vasiliu and Yannou!38! also focus solely on the shape of the desired path, approximat-
ing it with five terms of a Fourier series. They use an artificial neural network approach
to synthesize a linkage to generate the approximate curve shape. A neural network is a
graph of input neurons that represent the shape of the path and output neurons that repre-
sent the dimensional parameters of the linkage. The network is “taught” to properly relate
the output to the input with various algorithms. Learning time was 30 hours for 14 000
iterations for their example, so this method is computer intensive. The matching of their
resulting linkage curve shape to the desired curve is less accurate than that of the method
shown in Figures 5-11 and 5-12.

Bawab et al.[3%] described an approach that will automatically (within the software
program) synthesize a fourbar linkage for two, three, or four positions using Burmester
theory and eliminate all solutions having CBO defects. Limits on link length ratios and
transmission angle are specified, and the objective function is based on these criteria with
weighting factors applied. Regions in the plane within which the fixed or moving pivots
must be located may also be specified.

Liu and Yang!*0! proposed a method for finding all solutions to the approximate
synthesis problem for function generation, rigid body guidance, and path generation with
timing, using a combination of continuation methods and optimization. Their approach
does not require an initial guess, and all possible solutions can be obtained with relatively
short computational times.
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5.16

PROBLEMS*

Note that all three-position synthesis problems below may be done using a matrix solving
calculator, equation solver such as Mathcad, Matlab, or TKSolver, program MATRIX, or
program LINKAGES. Two-position synthesis problems can be done with a four-function
calculator.

5-1
5-2
5-3
5-4

*15-8

59

5-10

*15-11

5-12

5-13

75-14

Redo Problem 3-3 using the analytical methods of this chapter.
Redo Problem 3-4 using the analytical methods of this chapter.
Redo Problem 3-5 using the analytical methods of this chapter.
Redo Problem 3-6 using the analytical methods of this chapter.

See Project P3-8. Define three positions of the boat and analytically synthesize a link-
age to move through them.

See Project P3-30. Define three positions of the dumpster and analytically synthesize a
linkage to move through them. The fixed pivots must be located on the existing truck.

See Project P3-7. Define three positions of the computer monitor and analytically syn-
thesize a linkage to move through them. The fixed pivots must be located on the floor
or wall.

Design a linkage to carry the body in Figure P5-1 through the two positions P and P,
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: Try the free choice values z = 1.075, ¢ = 204.4°, B, = -27°% s =
1.24, ¢y = 74°, v, = —40°.

Design a linkage to carry the body in Figure P5-1 through the two positions P, and P3
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: First try a rough graphical solution to create realistic values for
free choices.

Design a linkage to carry the body in Figure P5-1 through the three positions Py, P,,
and Pj at the angles shown in the figure. Use analytical synthesis without regard for
the fixed pivots shown. Hint: Try the free choice values B, = 30°, B3 = 60°; v, = —10°,
Y3 = 25°.

Design a linkage to carry the body in Figure P5-1 through the three positions Py, P,,
and Pj at the angles shown in the figure. Use analytical synthesis and design it for the
fixed pivots shown.

Design a linkage to carry the body in Figure P5-2 through the two positions P and P,
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: Try the free choice values z =2, ¢ = 150°, B, =30°, s =3, y =
-50°, v, = 40°.

Design a linkage to carry the body in Figure P5-2 through the two positions P, and P3
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: First try a rough graphical solution to create realistic values for
free choices.

Design a linkage to carry the body in Figure P5-2 through the three positions Py, P,,
and Pj at the angles shown in the figure. Use analytical synthesis without regard for the
fixed pivots shown.
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TABLE P5-0
Topic/Problem Matrix

5.2 Two-Position Rocker
Synthesis

5-51, 5-52,5-53

5.4 Two-Position Motion
Generation
5-1,5-2, 5-8, 5-9,
5-12, 5-13, 5-16,
5-17,5-21, 5-22,
5-23, 5-54, 5-55,
5-56, 5-59, 5-60

5.7 Three-Position Mo-
tion Generation
5-3, 5-10, 5-14, 5-18,
5-24, 5-25, 5-27,
5-28, 5-31, 5-32,
5-34, 5-37, 5-38,
5-39, 5-41, 5-42,
5-44, 5-45, 5-57,5-
61, 5-64

5.9 Synthesis for A
Specified Fixed Pivot
Location
5-4, 5-5, 5-6, 5-7,
5-11, 5-15, 5-19,
5-26, 5-29, 5-30,
5-33, 5-35, 5-36,
5-40, 5-43, 5-46,
5-62, 5-65

5.10 Center-Point and
Circle-Point Circles
5-20, 5-47, 5-48,
5-49, 5-50, 5-58,
5-63

£ All problem figures are
provided as PDF files, and
some are also provided as
animated AVI and Work-
ing Model files. PDF file
names are the same as the
figure number. Run the file
Animations.html to access
and run the animations.

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
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*15-15

5-16

5-17

5-18

*5-19

5-20

Design a linkage to carry the body in Figure P5-2 through the three positions Py, P»,
and Pj at the angles shown in the figure. Use analytical synthesis and design it for the
fixed pivots shown.

Design a linkage to carry the body in Figure P5-3 through the two positions Py and P,
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown.

Design a linkage to carry the body in Figure P5-3 through the two positions P, and P;
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown.

Design a linkage to carry the body in Figure P5-3 through the three positions Py, P»,
and Pj at the angles shown in the figure. Use analytical synthesis without regard for
the fixed pivots shown.

Design a linkage to carry the body in Figure P5-3 through the three positions Py, P»,
and Pj at the angles shown in the figure. Use analytical synthesis and design it for the
fixed pivots shown.

Write a program to generate and plot the circle-point and center-point circles for Prob-
lem 5-19 using an equation solver or any programming language.

.~ 1.447 ———»

a—— 0.907 —»

237.4°

W e .

Py 191.1° 111.8°

0.21244474.4.w
N

I I

FIGURE P5-3
Data for Problems 5-16 to 5-20
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with pro-
gram LINKAGES.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with pro-
gram LINKAGES.
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5-21

5-22

5-23

5-24

5-25

*15-26

Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 2 without
regard for the fixed pivot locations shown. Use points A and B for your attachment
points. Determine the range of the transmission angle. The fixed pivots should be on
the base.

Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 3 without
regard for the fixed pivots shown. Use points A and B for your attachment points.
Determine the range of the transmission angle. The fixed pivots should be on the base.

Design a fourbar linkage to carry the box in Figure P5-4 from position 2 to 3 without
regard for the fixed pivots shown. Use points A and B for your attachment points.
Determine the range of the transmission angle. The fixed pivots should be on the base.

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Determine
the range of the transmission angle. Use any points on the object as your attachment
points. The fixed pivots should be on the base.

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Use points A
and B for your attachment points. Determine the range of the transmission angle.

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions
shown in their numbered order using the fixed pivots shown. Determine the range of
the transmission angle.

s 211 -

—= 43 |= 184 >
-<— 86 typ. —»‘ l

Py

|

'y
43 ;yp- 90°| A, B,

o -O
17

—
typ. 52 typ.

<—86—>1
5

-~ 104 —> %

— 167

all dimensions in mm

base )

N \

FIGURE P5-4
Data for Problems 5-21to 5-26
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5-27 Design a fourbar linkage to carry the object in Figure P5-5 through the three posi-
tions shown in their numbered order without regard for the fixed pivots shown. Use
any points on the object as attachment points. The fixed pivots should be on the base.

Determine the range of the transmission angle.

5-28 Design a fourbar linkage to carry the object in Figure P5-5 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Use points A

and B for your attachment points. Determine the range of the transmission angle.

5-29 Design a fourbar linkage to carry the object in Figure P5-5 through the three positions
shown in their numbered order using the fixed pivots shown. Determine the range of

the transmission angle.

5-30  To the linkage solution from Problem 5-29, add a driver dyad with a crank to control

the motion of your fourbar so that it cannot move beyond positions one and three.

5-31 Design a fourbar linkage to carry the object in Figure P5-6 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Use points A
and B for your attachment points. Determine the range of the transmission angle.

5-32  Design a fourbar linkage to carry the object in Figure P5-6 through the three posi-

tions shown in their numbered order without regard for the fixed pivots shown. Use
any points on the object as attachment points. The fixed pivots should be on the base.
Determine the range of the transmission angle.

VA all dimensions in mm
la—— 1080 ——» 421 |=—
- 740—> |«— 184
P35
¥ Y
=
88°
InY P2
27° A
1400
B
A2 ’ B3
o~ 963
60 A3 291 120
| AL | O Ty ¥
* O 1 P, -

base

1500 >
= 2900 >

FIGURE P5-5
Data for Problems 5-27 to 5-30

w
N
e}
A

283

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with pro-
gram LINKAGES.
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with pro-
gram LINKAGES.
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FIGURE P5-6
Data for Problems 5-31to 5-33

*15-33

5-34

*15-35

5-36

5-37

Design a fourbar linkage to carry the object in Figure P5-6 through the three positions
shown in their numbered order using the fixed pivots shown. Determine the range of
the transmission angle.

Design a fourbar linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3
without regard to the fixed pivots shown. The bolt is fed into the gripper in the z direc-
tion (into the paper). The gripper grabs the bolt, and your linkage moves it to position
3 to be inserted into the hole. A second degree of freedom within the gripper assembly
(not shown) pushes the bolt into the hole. Extend the gripper assembly as necessary

to include the moving pivots. The fixed pivots should be on the base. Hint: Try guess
values of B, = 70°, B3 = 140°, 7, = —-5°, y3 = —49°.

Design a fourbar linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3
using the fixed pivot locations shown. Extend the gripper assembly as necessary to
include the moving pivots. See Problem 5-34 for more information.

To the linkage solution from Problem 5-35, add a driver dyad with a crank to control
the motion of your fourbar so that it cannot move beyond positions one and three.

Figure P5-8 shows an off-loading mechanism for paper rolls. The V-link is rotated
through 90° by an air-driven fourbar slider-crank linkage. Design a pin-jointed fourbar
linkage to replace the existing off-loading station and perform essentially the same


http://www.designofmachinery.com/DOM/three_positions_3_54.avi
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FIGURE P5-7

Data for Problems 5-34 to 5-36

function. Choose three positions of the roll including its two end positions and synthe-
size a substitute mechanism. Use a link similar to the existing V-link as one of your
links. Add a driver dyad to limit its motion to the range desired.

A
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crank arm —

paper { P /
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machine S

rod off-loading station x air cylinder fork lift truck
FIGURE P5-8

Problem 5-37
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to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs. In
most cases, your solution
can be checked with pro-
gram LINKAGES.
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FIGURE P5-9
Data for problems 5-38 to 5-40 and 5-47

5-38

5-39

5-40

75-41
75-42
15-43
75-44
¥5-45
5-46
5-47

5-48
5-49

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Use points C
and D for your attachment points. Determine the range of the transmission angle.

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions
shown in their numbered order without regard for the fixed pivots shown. Use any
points on the object as attachment points. Determine the range of the transmission
angle.

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions
shown in their numbered order using the fixed pivots shown. Determine the range of
the transmission angle.

Repeat Problem 5-38 using the data shown in Figure P5-10 instead.
Repeat Problem 5-39 using the data shown in Figure P5-10 instead.
Repeat Problem 5-40 using the data shown in Figure P5-10 instead.
Repeat Problem 5-38 using the data shown in Figure P5-11 instead.
Repeat Problem 5-39 using the data shown in Figure P5-11 instead.
Repeat Problem 5-40 using the data shown in Figure P5-11 instead.

Write a program to generate and plot the circle-point and center-point circles for Prob-
lem 5-40 using an equation solver or any programming language.

Repeat Problem 5-47 using the data from Problem 5-43 instead.

Repeat Problem 5-47 using the data from Problem 5-46 instead.
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Data for problems 5-41to 5-43 and 5-48

= 3.679 > 1.591

2.247

4.000 >
0, Y

FIGURE P5-11
Data for problems 5-44 to 5-46 and 5-49
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5-50

5-51

5-52

5-53

5-54

In Example 5-2 the precision points and rotation angles are specified while the input
and output rotation angles [ and vy are free choices. Using the choices given for 3, and
7>, determine the radii and center coordinates of the center-point circles for O, and O,.
Plot those circles (or portions of them) and show that the choices of B3 and 5 give a
solution that falls on the center-point circles. You can get some verification of your
circle calculations by using program LINKAGES.

Design a driver dyad to move link 2 of Example 5-1 from position 1 to position 2 and
return.

Design a driver dyad to move link 2 of Example 5-2 from position 1 to position 3 and
return.

Design a driver dyad to move link 2 of Example 5-3 from position 1 to position 3 and
return.

Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 2 using
points C and D for your attachment points. The fixed pivots should be within the indi-
cated area.

area for fixed pivots

V7))
IW

13.000

- 1.705

21.000 >

19.544

-~ 12387typ. —————»

FIGURE P5-12
Problems 5-54 to 5-57

13.871
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5-55

5-56

5-57

5-58

5-59

5-60

Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 3 using
points C and D for your attachment points. The fixed pivots should be within the indi-
cated area.

Design a fourbar linkage to carry the object in Figure P5-12 from position 2 to 3 using
points C and D for your attachment points. The fixed pivots should be within the indi-
cated area.

Design a fourbar linkage to carry the object in Figure P5-12 through the three positions
shown in their numbered order using points C and D for your attachment points. The
fixed pivots should be within the indicated area.

Write a program to generate and plot the center-point and circle point circles for Prob-
lem 5-11 using an equation solver or any program language.

Design a linkage to carry the body in Figure P5-13 through the two positions P and P,
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: Try the free choice values z = 50, @= 20°,, = 30°, s =75, y =
120°, vy, = 20°.

Design a linkage to carry the body in Figure P5-13 through the two positions P, and P;
at the angles shown in the figure. Use analytical synthesis without regard for the fixed
pivots shown. Hint: First try a rough graphical solution to create realistic values for
free choices.

Y )
- 125.0 -
72139 — >
Py ‘
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100.0 0°
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- \ 100.0 -
' B\ B\
1

FIGURE P5-13
Problems 5-59 through 5-62
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5-61

5-62

5-63

5-64

5-65

Design a linkage to carry the body in Figure P5-13 through the three positions P;, Py
and Pj at the angles shown in the figure. Use analytical synthesis without regard for
the fixed pivots shown.

Design a linkage to carry the body in Figure P5-13 through the three positions P;, Py
and Pj at the angles shown in the figure. Use analytical synthesis and design it for the
fixed pivots shown.

In Example 5-3 the precision points and rotation angles are specified while the posi-
tions of O, and Oy are free choices. Using the values given for 8, and,, determine the
radii and center coordinates of the center-point circles for O, and O,4. Plot those circles
and show that the values of B3 andy; give a solution that falls on the center-point
circles.

Design a linkage to carry the body in Figure P5-14 through the three positions P;, Py
and Pj at the angles shown in the figure. Use analytical synthesis without regard for
the fixed pivots shown.

Design a linkage to carry the body in Figure P5-14 through the three positions P;, Py
and Pj at the angles shown in the figure. Use analytical synthesis and design it for the
fixed pivots shown.
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FIGURE P5-14
Problems 5-64 through 5-65



Chapter

VELOCITY ANALYSIS

The faster I go, the behinder I get
ANON. PENN. DUTCH

6.0 INTRODUCTION' View the lecture video(28:44)"

Once a position analysis is done, the next step is to determine the velocities of all links and
points of interest in the mechanism. We need to know the velocities in our mechanism or
machine, both to calculate the stored kinetic energy from mV> /2 and also as a step on the
way to the determination of the link’s accelerations that are needed for the dynamic force
calculations. Many methods and approaches exist to find velocities in mechanisms. We
will examine only a few of these methods here. We will first develop manual graphical
methods, which are often useful as a check on the more complete and accurate analytical
solution. We will also investigate the properties of the instant center of velocity which
can shed much light on a mechanism’s velocity behavior with very little effort. Finally,
we will derive the analytical solution for the fourbar and inverted crank-slider as examples
of the general vector loop equation solution to velocity analysis problems. From these
calculations we will be able to establish some indices of merit to judge our designs while
they are still on the drawing board (or in the computer).

6.1 DEFINITION OF VELOCITY

Velocity is defined as the rate of change of position with respect to time. Position (R) is a
vector quantity and so is velocity. Velocity can be angular or linear. Angular velocity
will be denoted as ® and linear velocity as V.

do Ve dR

0=—; =
dt

o 6.1)

Figure 6-1 shows a link PA in pure rotation, pivoted at point A in the xy plane. Its
position is defined by the position vector Rp4. We are interested in the velocity of point

 http://www.designofma-
chinery.com/DOM/Veloc-
ity_Analysis_with_ICs.mp4
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Vpa X

\J
b

FIGURE 6-1

A link in pure rotation

P when the link is subjected to an angular velocity m. If we represent the position vector
Rp4 as a complex number in polar form,

Rp, = pe’’ (6.2)

where p is the scalar length of the vector. We can easily differentiate it to obtain:

dR . 9 dO L
Vpy =—22 = pjel® o pw jel® (6.3)

dt

Compare the right side of equation 6.3 to the right side of equation 6.2. Note that as
aresult of the differentiation, the velocity expression has been multiplied by the (constant)
complex operator j. This causes a rotation of this velocity vector through 90 degrees with
respect to the original position vector. (See also Figure 4-8b.) This 90-degree rotation is
positive, or counterclockwise. However, the velocity expression is also multiplied by o,
which may be either positive or negative. As a result, the velocity vector will be rotated
90 degrees from the angle 0 of the position vector in a direction dictated by the sign of
. This is just mathematical verification of what you already knew, namely that velocity
is always in a direction perpendicular to the radius of rotation and is tangent to the path
of motion as shown in Figure 6-1.

Substituting the Euler identity (equation 4.4a) into equation 6.3 gives us the real and
imaginary (or x and y) components of the velocity vector.

Vpa :pmj(cos9+jsin6):pw(—sin9+jcose) (6.4)

Note that the sine and cosine terms have swapped positions between the real and
imaginary terms, due to multiplying by the j coefficient. This is evidence of the 90-degree
rotation of the velocity vector versus the position vector. The former x component has
become the y component, and the former y component has become a minus x component.
Study Figure 4-8b to review why this is so.

The velocity Vpy in Figure 6-1 can be referred to as an absolute velocity since it
is referenced to A, which is the origin of the global coordinate axes in that system. As
such, we could have referred to it as Vp, with the absence of the second subscript imply-
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(0]

FIGURE 6-2

Velocity difference

ing reference to the global coordinate system. Figure 6-2a shows a different and slightly
more complicated system in which the pivot A is no longer stationary. It has a known
linear velocity V4 as part of the translating carriage, link 3. If  is unchanged, the velocity
of point P versus A will be the same as before, but Vp4 can no longer be considered an
absolute velocity. It is now a velocity difference and must carry the second subscript as
Vp4. The absolute velocity Vp must now be found from the velocity difference equation
whose graphical solution is shown in Figure 6-2b:

VPA = VP - VA (6.53)
rearranging:

Note the similarity of equations 6.5 to the position difference equation 4.1.

Figure 6-3 shows two independent bodies P and A, which could be two automobiles,
moving in the same plane. If their independent velocities Vp and V4 are known, their
relative velocity Vp4 can be found from equations 6.5 arranged algebraically as:

Vpa=Vp-Vyu (6.6)

The graphical solution to this equation is shown in Figure 6-3b. Note that it is similar
to Figure 6-2b except for a different vector being the resultant.

As we did for position analysis, we give these two cases different names despite the
fact that the same equation applies. Repeating the definition from Section 4.2, modified
to refer to velocity:

CASE 1: Two points in the same body => velocity difference
CASE 2: Two points in different bodies => relative velocity

We will find use for this semantic distinction when we analyze both linkage velocities and
the velocity of slip later in this chapter.
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/— Auto # 1

P
Auto # 2

Vp

Vpa

FIGURE 6-3

Relative velocity

6.2 GRAPHICAL VELOCITY ANALYSIS

Before programmable calculators and computers became universally available to engi-
neers, graphical methods were the only practical way to solve these velocity analysis
problems. With some practice and with proper tools such as a drafting machine or CAD
package, one can fairly rapidly solve for the velocities of particular points in a mechanism
for any one input position by drawing vector diagrams. However, it is a tedious process if
velocities for many positions of the mechanism are to be found, because each new position
requires a completely new set of vector diagrams be drawn. Very little of the work done
to solve for the velocities at position 1 carries over to position 2, etc. Nevertheless, this
method still has more than historical value as it can provide a quick check on the results
from a computer program solution. Such a check needs only be done for a few positions
to prove the validity of the program. Also, graphical solutions provide the beginning
student some visual feedback on the solution that can help develop an understanding of
the underlying principles. It is principally for this last reason that graphical solutions are
included in this text even in this “age of the computer.”

To solve any velocity analysis problem graphically, we need only two equations, 6.5
and 6.7 (which is merely the scalar form of equation 6.3):

|V|=v=ro (6.7)

Note that the scalar equation 6.7 defines only the magnitude (v) of the velocity of
any point on a body that is in pure rotation. In a graphical CASE 1 analysis, the direc-
tion of the vector due to the rotation component must be understood from equation 6.3
to be perpendicular to the radius of rotation. Thus, if the center of rotation is known, the
direction of the velocity component due to that rotation is known and its sense will be
consistent with the angular velocity ® of the body.
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(a) Linkage showing velocity of point A (d) Linkage showing velocities of points A, B,and C

FIGURE 6-4

Graphical solution for velocities in a pin-jointed linkage

Figure 6-4 shows a fourbar linkage in a particular position. We wish to solve for the
angular velocities of links 3 and 4 (w3, ®4) and the linear velocities of points A, B, and
C (V4, Vg, Vo). Point C represents any general point of interest. Perhaps C is a coupler
point. The solution method is valid for any point on any link. To solve this problem, we
need to know the lengths of all the links, the angular positions of all the links, and the
instantaneous input velocity of any one driving link or driving point. Assuming we have
designed this linkage, we will know or can measure the link lengths. We must also first
do a complete position analysis to find the link angles 63 and 64 given the input link’s
position 0. This can be done by any of the methods in Chapter 4. In general we must
solve these problems in stages, first for link positions, then for velocities, and finally for
accelerations. For the following example, we will assume that a complete position analysis
has been done and that the input is to link 2 with known 6, and m, for this one “freeze
frame” position of the moving linkage.
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ZDEXAMPLE 61

Graphical Velocity Analysis for One Position of Linkage.

Problem: Given 0,, 03, 04, 0, find ®3, 04, V4, Vp, V¢ by graphical methods.

Solution: (See Figure 6-4.)

1

Start at the end of the linkage about which you have the most information. Calculate the
magnitude of the velocity of point A using scalar equation 6.7.

Vg = (A02 )0)2 (a)

Draw the velocity vector V4 with its length equal to its magnitude v4 at some convenient scale
with its root at point A and its direction perpendicular to the radius AO,. Its sense is the same
as that of ®, as shown in Figure 6-4a.

Move next to a point about which you have some information. Note that the direction of the
velocity of point B is predictable since it is pivoting in pure rotation about point O4. Draw the
construction line pp through point B perpendicular to BOy, to represent the direction of Vg as
shown in Figure 6-4a.

Write the velocity difference vector equation 6.5 for point B versus point A.
VB = VA + VBA (b)

We will use point A as the reference point to find Vg because A is in the same link as B and
we have already solved for V4. Any two-dimensional vector equation can be solved for two
unknowns. Each term has two parameters, namely magnitude and direction. There are then
potentially six unknowns in this equation, two per term. We must know four of them to solve
it. We know both magnitude and direction of V4 and the direction of V. We need to know
one more parameter.

The term Vp4 represents the velocity of B with respect to A. If we assume that the link BA is
rigid, then there can be no component of Vp,4 that is directed along the line BA, because point
B cannot move toward or away from point A without shrinking or stretching the rigid link!
Therefore, the direction of V4 must be perpendicular to the line BA. Draw construction line
qq through point B and perpendicular to BA to represent the direction of Vpy4, as shown in
Figure 6-4a.

Now the vector equation can be solved graphically by drawing a vector diagram as shown in
Figure 6-4b. Either drafting tools or a CAD package is needed for this step. Draw velocity
vector V4 carefully to some scale, maintaining its direction. (It is drawn twice its size in the
figure.) The equation in step 4 says to add Vg4 to V4, so draw a line parallel to line gg across
the tip of V4. The resultant, or left side of the equation, must close the vector diagram, from
the tail of the first vector drawn (V) to the tip of the last, so draw a line parallel to pp across
the tail of V4. The intersection of these lines parallel to pp and gq defines the lengths of Vg
and V4. The senses of the vectors are determined from reference to the equation. V4 was
added to Vpy, so they must be arranged tip to tail. Vp is the resultant, so it must be from the
tail of the first to the tip of the last. The resultant vectors are shown in Figure 6-4b and d.
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7 The angular velocities of links 3 and 4 can be calculated from equation 6.7:

v
Wy =B and W3 =

VBA
=2 c
5o ©

BA

Note that the velocity difference term Vg, represents the rotational component of velocity of
link 3 due to m3. This must be true if point B cannot move toward or away from point A. The
only velocity difference they can have, one to the other, is due to rotation of the line connecting
them. You may think of point B on the line BA rotating about point A as a center, or point A
on the line AB rotating about B as a center. The rotational velocity ® of any body is a “free
vector” that has no particular point of application to the body. It exists everywhere on the body.

8 Finally we can solve for V¢, again using equation 6.5. We select any point in link 3 for which
we know the absolute velocity to use as the reference, such as point A.

Vo=V, +Vgy (d)

In this case, we can calculate the magnitude of V 4 from equation 6.7 as we have already found
3,

Veg =CO3 (e)

Since both V4 and V 4 are known, the vector diagram can be directly drawn as shown in Figure
6-4c. V¢ is the resultant that closes the vector diagram. Figure 6-4d shows the calculated veloc-
ity vectors on the linkage diagram. Note that the velocity difference vector V4 is perpendicular
to line CA (along line rr) for the same reasons as discussed in step 7 above.

The above example contains some interesting and significant principles that deserve
further emphasis. Equation 6.5a is repeated here for discussion.

Vo=V, +V (6.5a
P A PA

This equation represents the absolute velocity Vp of some general point P referenced to the
origin of the global coordinate system. The right side defines it as the sum of the absolute
velocity V4 of some other reference point A in the same system and the velocity difference
(or relative velocity) Vpy of point P versus point A. This equation could also be written:

Velocity = translation component + rotation component

These are the same two components of motion defined by Chasles’ theorem, and
introduced for displacement in Section 4.3. Chasles’ theorem holds for velocity as well.
These two components of motion, translation and rotation, are independent of one another.
If either is zero in a particular example, the complex motion will reduce to one of the
special cases of pure translation or pure rotation. When both are present, the total velocity
is merely their vector sum.

Let us review what was done in Example 6-1 in order to extract the general strategy
for solution of this class of problem. We started at the input side of the mechanism, as
that is where the driving angular velocity is defined. We first looked for a point (A) for
which the motion was pure rotation so that one of the terms in equation 6.5 would be zero.
(We could as easily have looked for a point in pure translation to bootstrap the solution.)
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We then solved for the absolute velocity of that point (V4) using equations 6.5 and 6.7.
(Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation
component in equation 6.5 written for a new point (B). Note that we needed to choose a
second point (B) that was in the same rigid body as the reference point (A) which we had
already solved and about which we could predict some aspect of the new point’s (B’s)
velocity. In this example, we knew the direction of the velocity V. In general this condi-
tion will be satisfied by any point on a link that is jointed to ground (as is link 4). In this
example, we could not have solved for point C until we solved for B, because point C is on
a floating link for which point we do not yet know the velocity direction. (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the
rotation component of velocity is directed perpendicular to the line connecting the two
points in the link (B and A in the example). You will always know the direction of the
rotation component in equation 6.5 if it represents a velocity difference (CASE 1)
situation. [fthe rotation component relates two points in the same rigid body, then that
velocity difference component is always perpendicular to the line connecting those two
points (see Figure 6-2). This will be true regardless of the two points selected. But, this
is not true in a CASE 2 situation (see Figure 6-3). (Steps 5 and 6)

Once we found the absolute velocity (Vp) of a second point on the same link (CASE
1), we could solve for the angular velocity of that link. (Note that points A and B are both
on link 3 and the velocity of point Oy is zero.) Once the angular velocities of all the links
were known, we could solve for the linear velocity of any point (such as C) in any link
using equation 6.5. To do so, we had to understand the concept of angular velocity as a
free vector, meaning that it exists everywhere on the link at any given instant. It has no
particular center. It has an infinity of potential centers. The link simply has an angular
velocity, just as does a frisbee thrown and spun across the lawn.

All points on a frisbee, if spinning while flying, obey equation 6.5. Left to its own
devices, the frisbee will spin about its center of gravity (CG), which is close to the center
of its circular shape. But if you are an expert frisbee player (and have rather pointed
fingers), you can imagine catching that flying frisbee between your two index fingers in
some off-center location (not at the CG), such that the frisbee continues to spin about your
fingertips. In this somewhat far-fetched example of championship frisbee play, you will
have taken the translation component of the frisbee’s motion to zero, but its independent
rotation component will still be present. Moreover, it will now be spinning about a dif-
ferent center (your fingers) than it was in flight (its CG). Thus this free vector of angular
velocity (m) is happy to attach itself to any point on the body. The body still has the same
o, regardless of the assumed center of rotation. It is this property that allows us to solve
equation 6.5 for literally any point on a rigid body in complex motion referenced to any
other point on that body. (Steps 7 and 8)

6.3 INSTANT CENTERS OF VELOCITY View a tutorial video (28:55)F

The definition of an instant center of velocity is a point, common to two bodies in plane
motion, which point has the same instantaneous velocity in each body. Instant centers
are sometimes also called centros or poles. Since it takes two bodies or links to create an
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instant center (IC), we can easily predict the quantity of instant centers to expect from any
collection of links. The combination formula for x things taken r at a time is:

_ n(n—l)(n—2)~~~(n—r+1) n links (6.82)
r! ’
For our case r = 2 and it reduces to:
-1
c= "(”2 ) (6.8b)

From equation 6.8b we can see that a fourbar linkage has 6 instant centers, a sixbar has
15, and an eightbar has 28.

Figure 6-5 shows a fourbar linkage in an arbitrary position. It also shows a linear
graph' that is useful for keeping track of which /Cs have been found. This particular
graph can be created by drawing a circle on which we mark off as many points as there
are links in our assembly. We will then draw a line between the dots representing the link
pairs each time we find an instant center. The resulting linear graph is the set of lines con-
necting the dots. It does not include the circle that was used only to place the dots. This
graph is actually a geometric solution to equation 6.8b, since connecting all the points in
pairs gives all the possible combinations of points taken two at a time.

Some ICs can be found by inspection, using only the definition of the instant center.
Note in Figure 6-5a that the four pin joints each satisfy the definition. They clearly must
have the same velocity in both links at all times. These have been labeled 1 2, I 3, 13 4,
and 11 4. The order of the subscripts is immaterial. Instant center /5 1 is the same as /] ».
These pin-joint /Cs are sometimes called “permanent” instant centers as they remain in
the same location for all positions of the linkage. In general, instant centers will move to
new locations as the linkage changes position, thus the adjective instant. In this fourbar
example there are two more /Cs to be found. It will help to use the Aronhold-Kennedy
theorem, also called Kennedy'’s rule,!3] to locate them.

Kennedy’s rule:

Any three bodies in plane motion will have exactly three instant centers, and they will lie
on the same straight line.

The first part of this rule is just a restatement of equation 6.8b for n = 3. Itis the second
clause in this rule that is most useful. Note that this rule does not require that the three
bodies be connected in any way. We can use this rule, in conjunction with the linear graph,
to find the remaining /Cs that are not obvious from inspection. Figure 6.5b shows the
construction necessary to find instant center /1 3. Figure 6-5¢ shows the construction nec-
essary to find instant center /5 4. The following example describes the procedure in detail.

A DEXAMPLE 6-2

Finding All Instant Centers for a Fourbar Linkage.

Problem: Given a fourbar linkage in one position, find all /Cs by graphical methods.
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 Note that this graph is not
a plot of points on an x, y
coordinate system. Rather
it is a linear graph from the
fascinating branch of math-
ematics called graph theory,
which is itself a branch of
topology. Linear graphs
are often used to depict
interrelationships between
various phenomena. They
have many applications in
kinematics especially as a
way to classify linkages and
to find isomers.

# Discovered independently
by Aronhold in Germany,
in 1872, and by Kennedy

in England, in 1886. Ken-
nedyl3] states in his preface,
“The theorem of the three
virtual (instant) centers ...
was first given, I believe,

by Aronhold, although its
previous publication was
unknown to me until some
years after I had given it in
my lectures.” It tends to be
attributed to Kennedy in the
English-speaking world and
to Aronhold in the German-
speaking world.
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Solution: (See Figure 6-5 and the video Instant Centers and Centrodes.)
1 Draw a circle with all links numbered around the circumference as shown in Figure 6-5a.

2 Locate as many /Cs as possible by inspection. All pin joints will be permanent /Cs. Connect
the link numbers on the circle to create a linear graph and record those /Cs found, as shown in
Figure 6-5a.

3 Identify a link combination on the linear graph for which the /C has not been found, and draw
a dotted line connecting those two link numbers. Identify two triangles on the graph that each
contain the dotted line and whose other two sides are solid lines representing /Cs already found.

FIGURE 6-5

Locating instant centers in the pin-jointed linkage
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On the graph in Figure 6-5b, link numbers 1 and 3 have been connected with a dotted line.
This line forms one triangle with sides 13, 34, 14 and another with sides 13, 23, 12. These
triangles define trios of /Cs that obey Kennedy’s rule. Thus /Cs 13, 34, and 14 must lie on
the same straight line. Also /Cs 13,23 and 12 will lie on a different straight line.

4 On the linkage diagram draw a line through the two known /Cs that form a trio with the un-
known IC. Repeat for the other trio. In Figure 6-5b, a line has been drawn through 7 5 and
I 3 and extended. I; 3 must lie on this line. Another line has been drawn through I} 4 and I5 4
and extended to intersect the first line. By Kennedy’s rule, instant center /1 3 must also lie on
this line, so their intersection is I 3.

5 Connect link numbers 2 and 4 with a dotted line on the linear graph as shown in Figure 6-5c.
This line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14. These
sides represent trios of /Cs that obey Kennedy’s rule. Thus /Cs 24, 23, and 34 must lie on the
same straight line. Also ICs 24, 12, and 14 lie on a different straight line.

6 On the linkage diagram draw a line through the two known /Cs that form a trio with the un-
known IC. Repeat for the other trio. In Figure 6-5c, a line has been drawn through I; 5 and
I} 4 and extended. I, 4 must lie on this line. Another line has been drawn through /5 3 and I5 4
and extended to intersect the first line. By Kennedy’s rule, instant center /5 4 must also lie on
this line, so their intersection is I 4.

7 If there were more links, this procedure would be repeated until all /Cs were found.

The presence of slider joints makes finding the instant centers a little more subtle as
is shown in the next example. Figure 6-6a shows a fourbar crank-slider linkage. Note
that there are only three pin joints in this linkage. All pin joints are permanent instant
centers. But the joint between links 1 and 4 is a rectilinear, sliding full joint. A sliding
joint is kinematically equivalent to an infinitely long link, “pivoted” at infinity. Figure
6-6b shows a nearly equivalent pin-jointed version of the crank-slider in which link 4 is a
very long rocker. Point B now swings through a shallow arc that is nearly a straight line.
It is clear in Figure 6-6b that, in this linkage, /] 4 is at pivot O4. Now imagine increasing
the length of this long, link 4 rocker even more. In the limit, link 4 approaches infinite
length, the pivot O4 approaches infinity along the line that was originally the long rocker,
and the arc motion of point B approaches a straight line. Thus, a slider joint will have its
instant center at infinity along a line perpendicular to the direction of sliding as shown
in Figure 6-6a.

A DEXAMPLE 6-3

Finding All Instant Centers for a Crank-Slider Linkage.
Problem: Given a crank-slider linkage in one position, find all /Cs by graphical methods.
Solution: (See Figure 6-7, and the video Instant Centers and Centrodes.)

1 Draw a circle with all links numbered around the circumference as shown in Figure 6-7a.

2 Locate all ICs possible by inspection. All pin joints will be permanent /Cs. The slider joint’s
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(a) Crank-slider linkage (b) Crank-rocker linkage
FIGURE 6-6

A rectilinear slider's instant center is at infinity

instant center will be at infinity along a line perpendicular to the axis of sliding. Connect the
link numbers on the circle to create a linear graph and record those /Cs found, as shown in
Figure 6-7a.

Identify a link combination on the linear graph for which the /C has not been found, and draw
a dotted line connecting those two link numbers. Identity two triangles on the graph that each
contain the dotted line and whose other two sides are solid lines representing /Cs already found.
In the graph on Figure 6-7b, link numbers 1 and 3 have been connected with a dotted line. This
line forms one triangle with sides 13, 34, 14 and another with sides 13, 23, 12. These sides
represent trios of /Cs that obey Kennedy’s rule. Thus /Cs 13, 34, and 14 must lie on the same
straight line. Also /Cs 13, 23, and 12 lie on a different straight line.

On the linkage diagram draw a line through the two known /Cs that form a trio with the un-
known IC. Repeat for the other trio. In Figure 6-7b, a line has been drawn from 7 5 through
I 3 and extended. 77 3 must lie on this line. Another line has been drawn from 7 4 (at infinity)
through I3 4 and extended to intersect the first line. By Kennedy’s rule, instant center /1 3 must
also lie on this line, so their intersection is Iy 3.

Connect link numbers 2 and 4 with a dotted line on the graph as shown in Figure 6-7c. This
line forms one triangle with sides 24, 23, 34 and another with sides 24, 12, 14. These sides
also represent trios of /Cs that obey Kennedy’s rule. Thus /Cs 24, 23, and 34 must lie on the
same straight line. Also /Cs 24, 12, and 14 lie on a different straight line.

On the linkage diagram draw a line through the two known /Cs that form a trio with the un-
known IC. Repeat for the other trio. In Figure 6-7c, a line has been drawn from I} , to intersect
I 4, and extended. Note that the only way to “intersect” I] 4 at infinity is to draw a line parallel
to the line I3 4 I 4 since all parallel lines intersect at infinity. Instant center /, 4 must lie on this
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FIGURE 6-7

Locating instant centers in the slider-crank linkage

parallel line. Another line has been drawn through 7, 3 and I3 4 and extended to intersect the

first line. By Kennedy’s rule, instant center I 4 must also lie on this line, so their intersection
is 12 4.

7 If there were more links, this procedure would be repeated until all /Cs were found.




304

DESIGN OF MACHINERY 6ed CHAPTER 6

The procedure in this slider example is identical to that used in the pin-jointed fourbar,
except that it is complicated by the presence of instant centers located at infinity.

In Section 2.10 and Figure 2-12c we showed that a cam-follower mechanism is really
a fourbar linkage in disguise. As such it will also possess instant centers. The presence of
the half joint in this, or any linkage, makes the location of the instant centers a little more
complicated. We have to recognize that the instant center between any two links will be
along a line that is perpendicular to the relative velocity vector between the links at the
half joint, as shown in the following example. Figure 6-8 shows the same cam-follower
mechanism as in Figure 2-12c. The effective links 2, 3, and 4 are also shown.

A DEXAMPLE 6-4

Finding All Instant Centers for a Cam-Follower Mechanism.
Problem: Given a cam and follower in one position, find all /Cs by graphical methods.
Solution: (See Figure 6-8.)

1 Draw a circle with all links numbered around the circumference as shown in Figure 6-8b. In
this case there are only three links and thus only three /Cs to be found as shown by equation
6.8. Note that the links are numbered 1, 2, and 4. The missing link 3 is the variable-length
effective coupler.

2 Locate all ICs possible by inspection. All pin joints will be permanent /Cs. The two fixed
pivots /1 » and /1 4 are the only pin joints here. Connect the link numbers on the circle to create
alinear graph and record those /Cs found, as shown in Figure 6-8b. The only link combination
on the linear graph for which the /C has not been found is /5 4, so draw a dotted line connecting
those two link numbers.

3 Kennedy’s rule says that all three /Cs must lie on the same straight line; thus the remaining
instant center /5 4 must lie on the line /7 5 /1 4 extended. Unfortunately in this example, we
have too few links to find a second line on which 7, 4 must lie.

4 On the linkage diagram draw a line through the two known /Cs that form a trio with the un-
known IC. In Figure 6-8c, a line has been drawn from I} 5 through 7; 4 and extended. This
is, of course, link 1. By Kennedy’s rule, I; 4 must lie on this line.

5 Looking at Figure 6-8c that shows the effective links of the equivalent fourbar linkage for
this position, we can extend effective link 3 until it intersects link 1 extended. Just as in the
“pure” fourbar linkage, instant center 2,4 lies on the intersection of links 1 and 3 extended (see
Example 6-2).

6 Figure 6-8d shows that it is not necessary to construct the effective fourbar linkage to find I, 4.
Note that the common tangent to links 2 and 4 at their contact point (the half joint) has been
drawn. This line is also called the axis of slip because it is the line along which all relative
(slip) velocity will occur between the two links. Thus the velocity of link 4 versus 2, V5, is
directed along the axis of slip. Instant center /5 4 must therefore lie along a line perpendicular
to the common tangent, called the common normal. Note that this line is the same as the
effective link 3 line in Figure 6-8c.
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(@) The cam and follower (d) Finding I 4 without using the effective linkage

FIGURE 6-8
Locating instant centers in the cam-follower mechanism

6.4  VELOCITY ANALYSIS WITH INSTANT CENTERS

Once the ICs have been found, they can be used to do a very rapid graphical velocity
analysis of the linkage. Note that, depending on the particular position of the linkage
being analyzed, some of the /Cs may be very far removed from the links. For example,
if links 2 and 4 are nearly parallel, their extended lines will intersect at a point far away
and not be practically available for velocity analysis. Figure 6-9 shows the same linkage
as Figure 6-5 with /; 3 located and labeled. From the definition of the instant center, both
links sharing the instant center will have identical velocity at that point. Instant center /; 3
involves the coupler (link 3), which is in complex motion, and the ground link 1, which is
stationary. All points on link 1 have zero velocity in the global coordinate system, which
is embedded in link 1. Therefore, /1 3 must have zero velocity at this instant. If /1 3 has
zero velocity, then it can be considered to be an instantaneous “fixed pivot” about which
link 3 is in pure rotation with respect to link 1. A moment later, /; 3 will move to a new
location and link 3 will be “pivoting” about a new instant center.
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FIGURE 6-9

Velocity analysis using instant centers

The velocity of point A is shown on Figure 6-9. The magnitude of V4 can be com-
puted from equation 6.7. Its direction and sense can be determined by inspection as was
done in Example 6-1. Note that point A is also instant center /5 3. It has the same velocity
as part of link 2 and as part of link 3. Since link 3 is effectively pivoting about /; 3 at this
instant, the angular velocity m3 can be found by rearranging equation 6.7:

Va
= (6.92)
05 (AIL3 ) a

Once m3 is known, the magnitude of Vg can also be found from equation 6.7:
Vg = (BIL?’ )(D:), (6.9b)

Once Vp is known, w4 can also be found from equation 6.7:

__"8
0)4 = (BO4) (69C)

Finally, the magnitude of V (or the velocity of any other point on the coupler) can be
found from equation 6.7:

ve =(CI 3 )w; (6.9d)

Note that equations 6.7 and 6.9 provide only the scalar magnitude of these velocity
vectors. We have to determine their direction from the information in the scale diagram
(Figure 6-9). Since we know the location of /1 3, which is an instantaneous “fixed” pivot
for link 3, all of that link’s absolute velocity vectors for this instant will be perpendicular



VELOCITY ANALYSIS

to their radii from /; 3 to the point in question. Vz and V¢ can be seen to be perpen-
dicular to their radii from /; 3. Note that V3 is also perpendicular to the radius from Oy4
because B is also pivoting about that point as part of link 4.

A rapid graphical solution to equations 6.9 is shown in the figure. Arcs centered at
I 3 are swung from points B and C to intersect line Al; 3. The magnitudes of velocities
Vp and V- are found from the vectors drawn perpendicular to that line at the intersec-
tions of the arcs and line Ay 3. The lengths of the vectors are defined by the line from the
tip of V4 to the instant center /1 3. These vectors can then be slid along their arcs back
to points B and C, maintaining their tangency to the arcs.

Thus, we have in only a few steps found all the same velocities that were found using
the more tedious method of Example 6-1. The instant center method is a quick graphical
method to analyze velocities, but it will only work if the instant centers are in reachable
locations for the particular linkage position analyzed. However, the graphical method
using the velocity difference equation shown in Example 6-1 will always work, regardless
of linkage position.

Angular Velocity Ratio

The angular velocity ratio my is defined as the output angular velocity divided by the
input angular velocity. For a fourbar mechanism this is expressed as:

(0]
my = —4
)

(6.10)

We can derive this ratio for any linkage by constructing a pair of effective links
as shown in Figure 6-10a. The definition of effective link pairs is two lines, mutually
parallel, drawn through the fixed pivots and intersecting the coupler extended. These are
shown as O»A’ and O4B’ in Figure 6-10a. Note that there is an infinity of possible effec-
tive link pairs. They must be parallel to one another but may make any angle with link 3.
In the figure they are shown perpendicular to link 3 for convenience in the derivation to
follow. The angle between links 2 and 3 is shown as v. The transmission angle between
links 3 and 4 is L. We will now derive an expression for the angular velocity ratio using
these effective links, the actual link lengths, and angles v and .

From geometry:
0,A’=(0,A)sinv 04B’=(0,B)sinp (6.11a)
From equation 6.7
Vy =(0,4")0, (6.11b)

The component of velocity Vy- lies along the link AB. Just as with a two-force mem-
ber in which a force applied at one end transmits only its component that lies along the
link to the other end, this velocity component can be transmitted along the link to point
B. This is sometimes called the principle of transmissibility. We can then equate these
components at either end of the link.

Vy=Vg (6.11c)
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FIGURE 6-10
Effective links and the angular velocity ratio
Then:
0,A’'0, =0,B’0, (6.11d)
rearranging:
0,A’
Bs 222 (6.11¢)
w, O4B
and substituting:
0, _ 0,Asinv _ (6.11f)

®, O,Bsinp
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Note in equation 6.11f that as angle v goes through zero, the angular velocity ratio
will be zero regardless of the values of ®, or the link lengths, and thus ®,4 will be zero.
When angle v is zero, links 2 and 3 will be colinear and thus be in their toggle positions.
We learned in Section 3.3 that the limiting positions of link 4 are defined by these toggle
conditions. We should expect that the velocity of link 4 will be zero when it has come
to the end of its travel. An even more interesting situation obtains if we allow angle [
to go to zero. Equation 6.11f shows that w4 will go to infinity when p = 0, regardless
of the values of m; or the link lengths. We clearly cannot allow U to reach zero. In fact,
we learned in Section 3.3 that we should keep this transmission angle | above about 40
degrees to maintain good quality of motion and force transmission.”

Figure 6-10b shows the same linkage as in Figure 6-10a, but the effective links have
now been drawn so that they are not only parallel but are also colinear, and thus lie on top
of one another. Both intersect the extended coupler at the same point, which is instant
center I 4. So, A’ and B’ of Figure 6-10a are now coincident at /5 4. This allows us to
write an equation for the angular velocity ratio in terms of the distances from the fixed
pivots to instant center /5 4.

0] O,
my = —% =224 (6.11g)
0y O4lh4

Thus, the instant center /5 4 can be used to determine the angular velocity ratio.

Mechanical Advantage

The power P in a mechanical system can be defined as the dot or scalar product of the
force vector F and the velocity vector V at any point:

P=F-V=FV,+F)V, (6.122)
For a rotating system, power P becomes the product of torque 7 and angular velocity ®m
that, in two dimensions, have the same (z) direction:
P=Tw (6.12b)
The power flows through a passive system and:

P, =P, +losses (6.12c)

Mechanical efficiency can be defined as:

out (6.12d)

Linkage systems can be very efficient if they are well made with low friction bearings
on all pivots. Losses are often less than 10%. For simplicity in the following analysis we
will assume that the losses are zero (i.e., a conservative system). Then, letting 7}, and
;, represent input torque and angular velocity, and 7,,,; and ®,,, represent output torque
and angular velocity,
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* This limitation on
transmission angle is only
critical if the output load

is applied to a link that

is pivoted to ground (i.e.,

to link 4 in the case of a
fourbar linkage). If the load
is applied to a floating link
(e.g., a coupler), then other
measures of the quality of
force transmission than the
transmission angle are more
appropriate, as discussed in
Chapter 11, Section 11.12,
where the joint force index
is defined.
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By =Ty
(6.12¢)
Pour = Tour®our
and: Pour =Fin
Tout®our = Tin®in
Tout — Wip (6 12f)
T; Woyr

Note that the torque ratio (my = T, /T;,) is the inverse of the angular velocity ratio.

Mechanical advantage (m4) can be defined as:

Fout
my=—- 6.13a
A=F ( )

Assuming that the input and output forces are applied at some radii r;, and r,,,,;, perpen-
dicular to their respective force vectors,

F .= Tous
out =
out
(6.13b)
T;
E,=—
fin

substituting equations 6.13b in 6.13a gives an expression in terms of torque.

T .
my = ("—“‘J[n—"] (6.13c)
T Fout

Substituting equation 6.12f in 6.13c gives

m, :[hJ[n—"j (6.13d)
Dour J\ Tout
and substituting equation 6.11f gives
Bsi :
= [MIV_] 6.1%)
O, Asinv ) 1y,

See Figure 6-11 and compare equation 6.13e to equation 6.11f and its discussion un-
der angular velocity ratio. Equation 6.13e shows that for any choice of r;, and r,,,,;, the
mechanical advantage responds to changes in angles v and [ in opposite fashion to that of
the angular velocity ratio. If the transmission angle L goes to zero (which we don’t want it
to do), the mechanical advantage also goes to zero regardless of the amount of input force
or torque applied. But, when angle v goes to zero (which it can and does, twice per cycle
in a Grashof linkage), the mechanical advantage becomes infinite! This is the principle
of a rock-crusher mechanism as shown in Figure 6-11. A quite moderate force applied to
link 2 can generate a huge force on link 4 to crush the rock. Of course, we cannot expect
to achieve the theoretical output of infinite force or torque magnitude, as the strengths of
the links and joints will limit the maximum forces and torques obtainable. Another com-
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Tout =Fout Tout

Tin =Finrin

FIGURE 6-11

"Rock-crusher" toggle mechanism

mon example of a linkage that takes advantage of this theoretically infinite mechanical
advantage at the toggle position is a ViseGrip locking pliers (see Figure P6-21).

These two ratios, angular velocity ratio and mechanical advantage, provide use-
ful, dimensionless indices of merit by which we can judge the relative quality of various
linkage designs that may be proposed as solutions.

Using Instant Centers in Linkage Design

In addition to providing a quick numerical velocity analysis, instant center analysis more
importantly gives the designer a remarkable overview of the linkage’s global behavior.
It is quite difficult to mentally visualize the complex motion of a “floating” coupler link
even in a simple fourbar linkage, unless you build a model or run a computer simulation.
Because this complex coupler motion in fact reduces to an instantaneous pure rotation
about the instant center /1 3, finding that center allows the designer to visualize the motion
of the coupler as a pure rotation. One can literally see the motion and the directions of
velocities of any points of interest by relating them to the instant center. It is only neces-
sary to draw the linkage in a few positions of interest, showing the instant center locations
for each position.

Figure 6-12 shows a practical example of how this visual, qualitative analysis tech-
nique could be applied to the design of an automobile rear suspension system. Most
automobile suspension mechanisms are either fourbar linkages or fourbar crank-sliders,
with the wheel assembly carried on the coupler (as was also shown in Figure 3-19). Fig-
ure 6-12a shows a rear suspension design from a domestic car of 1970s vintage that was
later redesigned because of a disturbing tendency to “bump steer,” i.e., turn the rear axle
when hitting a bump on one side of the car. The figure is a view looking from the center
of the car outward, showing the fourbar linkage that controls the up and down motion of
one side of the rear axle and one wheel. Links 2 and 4 are pivoted to the frame of the car
which is link 1. The wheel and axle assembly is rigidly attached to the coupler, link 3.
Thus the wheel assembly has complex motion in the vertical plane. Ideally, one would
like the wheel to move up and down in a straight vertical line when hitting a bum Figure
6-12b shows the motion of the wheel and the new instant center (/; 3) location for the
situation when one wheel has hit a bum The velocity vector for the center of the wheel in
each position is drawn perpendicular to its radius from /1 3. You can see that the wheel
center has a significant horizontal component of motion as it moves up over the bump.
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—»| <«—— Shiftinx

View as a video
http://www.designofmachinery.com/
DOM/bump_steer.mp4

-

Front

Frame

N

FIGURE 6-12
“Bump steer” due to shift in instant center location

This horizontal component causes the wheel center on that side of the car to move forward
while it moves upward, thus turning the axle (about a vertical axis) and steering the car
with the rear wheels in the same way that you steer a toy wagon. Viewing the path of
the instant center over some range of motion gives a clear picture of the behavior of the
coupler link. The undesirable behavior of this suspension linkage system could have been
predicted from this simple instant center analysis before ever building the mechanism.

Another practical example of the effective use of instant centers in linkage design is
shown in Figure 6-13, which is an optical adjusting mechanism used to position a mirror
and allow a small amount of rotational adjustment.[!] A more detailed account of this
design case study!?! is provided in Chapter 1. The designer, K. Towfigh, recognized that
I 3 at point £ is an instantaneous “fixed pivot” and will allow very small pure rotations
about that point with very small translational error. He then designed a one-piece, plastic
fourbar linkage whose “pin joints” are thin webs of plastic that flex to allow slight rota-
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Adj. cerew

The Mechanism — T

The Final Product of Keivan Towfigh

FIGURE 6-13
An optical adjustment compliant linkage Reproduced from reference [2] with permission

tion. This is termed a compliant linkage,” one that uses elastic deformations of the links
as hinges instead of pin joints. He then placed the mirror on the coupler at /| 3. Even the
fixed link 1 is the same piece as the “movable links” and has a small set screw to provide
the adjustment. A simple and elegant design.

6.5 CENTRODES View a tutorial video (21:01)"

Figure 6-14 illustrates the fact that the successive positions of an instant center (or centro)
form a path of their own. This path, or locus, of the instant center is called the centrode.
Since there are two links needed to create an instant center, there will be two centrodes
associated with any one instant center. These are formed by projecting the path of the
instant center first on one link and then on the other. Figure 6-14a shows the locus of
instant center /; 3 as projected onto link 1. Because link 1 is stationary, or fixed, this is
called the fixed centrode. By temporarily inverting the mechanism and fixing link 3 as
the ground link, as shown in Figure 6-14b, we can move link 1 as the coupler and project
the locus of /7 3 onto link 3. In the original linkage, link 3 was the moving coupler, so this
is called the moving centrode. Figure 6-14c shows the original linkage with both fixed
and moving centrodes superposed.

The definition of the instant center says that both links have the same velocity at that
point, at that instant. Link 1 has zero velocity everywhere, as does the fixed centrode.
So, as the linkage moves, the moving centrode must roll against the fixed centrode with-
out slipping. If you cut the fixed and moving centrodes out of metal, as shown in Figure
6-14d, and roll the moving centrode (which is link 3) against the fixed centrode (which is
link 1), the complex motion of link 3 will be identical to that of the original linkage. All
of the coupler curves of points on link 3 will have the same path shapes as in the original
linkage. We now have, in effect, a “linkless” fourbar linkage, really one composed of two
bodies that have these centrode shapes rolling against one another. Links 2 and 4 have
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* See also Section 2.16
for more information on
compliant mechanisms.

T http://www.designofma-
chinery.com/DOM/Cen-
trodes.mp4
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been eliminated. Note that the example shown in Figure 6-14 is a non-Grashof fourbar.
The lengths of its centrodes are limited by the double-rocker toggle positions.

(a) The fixed centrode (b) The moving centrode

Moving Centrode

TT—»

Fixed centrode

(c) The centrodes in contact (d) Roll the moving centrode against the
fixed centrode to produce the same
coupler motion as the original linkage

FIGURE 6-14

Open-loop fixed and moving centrodes (or polodes) of a fourbar linkage
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All instant centers of a linkage will have centrodes.” If the links are directly con-
nected by a joint, such as 153, I3 4, I1 2, and I 4, their fixed and moving centrodes will
degenerate to a point at that location on each link. The most interesting centrodes are
those involving links not directly connected to one another such as /1 3 and /5 4. If we look
at the double-crank linkage in Figure 6-15a in which links 2 and 4 both revolve fully, we
see that the centrodes of 11 3 form closed curves. The motion of link 3 with respect to link
1 could be duplicated by causing these two centrodes to roll against one another without
slipping. Note that there are two loops to the moving centrode. Both must roll on the
single-loop fixed centrode to complete the motion of the equivalent double-crank linkage.

We have so far dealt largely with the instant center /1 3. Instant center I 4 involves
two links that are each in pure rotation and not directly connected to one another. If we
use a special-case Grashof linkage with the links crossed (sometimes called an antiparal-
lelogram linkage), the centrodes of /5 4 become ellipses as shown in Figure 6-15b. To
guarantee no slip, it will probably be necessary to put meshing teeth on each centrode.
We then will have a pair of elliptical, noncircular gears, or gearset, which gives the same
output motion as the original double-crank linkage and will have the same variations in
the angular velocity ratio and mechanical advantage as the linkage had. Thus we can see
that gearsets are also just fourbar linkages in disguise. Noncircular gears find much use
in machinery, such as printing presses, where rollers must be speeded and slowed with
some pattern during each cycle or revolution. More complicated shapes of noncircular
gears are analogous to cams and followers in that the equivalent fourbar linkage must

Fixed Centrode

Centrode #1

Moving Centrode
View as a video

http://www.designofma-

chinery.com/DOM/cen- Centrode #2
trodes_in_contact.avi
View as a video

http://www.designofmachinery.
com/DOM/centrodes_ellipsoid.avi

(a) Closed-loop centrodes of /; 3 (b) Ellipsoidal centrodes of I, 4

for a Grashof double-crank linkage for a special-case Grashof
anti-parallelogram linkage

FIGURE 6-15

Closed-loop fixed and moving centrodes
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* Since instant centers are
called poles as well as cen-
tros, centrodes are some-
times also called polodes.
We will use the centro and
centrode nomenclature in
this text.
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Coupler
motion

Moving j

centrode

Fixed
centrode

(a) Boston rocker

Arc
motion

Pivot A

Spri:gx

(b) Platform rocker

FIGURE 6-16

Some rocking chairs
use centrodes of a
fourbar linkage
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have variable-length links. Circular gears are just a special case of noncircular gears
that give a constant angular velocity ratio and are widely used in all machines. Gears
and gearsets will be dealt with in greater detail in Chapter 9.

In general, centrodes of crank-rockers and double- or triple-rockers will be open
curves with asymptotes. Centrodes of double-crank linkages will be closed curves. Pro-
gram LINKAGES will calculate and draw the fixed and moving centrodes for any linkage
input to it. Open the files FO6-14.4br, FO6-15a.4br, and FO6-15b.4br in program LINK-
AGES to see the centrodes of these linkages drawn as the linkages rotate.

A “Linkless” Linkage

A common example of a mechanism made of centrodes is shown in Figure 6-16a. You
have probably rocked in a Boston or Hitchcock rocking chair and experienced the soothing
motions that it delivers to your body. You may have also rocked in a platform rocker as
shown in Figure 6-16b and noticed that its motion did not feel as soothing.

There are good kinematic reasons for the difference. The platform rocker has a fixed
pin joint between the seat and the base (floor). Thus all parts of your body are in pure
rotation along concentric arcs. You are in effect riding on the rocker of a linkage.

The Boston rocker has a shaped (curved) base, or “runners,” which rolls against the
floor. These runners are usually not circular arcs. They have a higher-order curve contour.
They are, in fact, moving centrodes. The floor is the fixed centrode. When one is rolled
against the other, the chair and its occupant experience coupler curve motion. Every part
of your body travels along a different sixth-order coupler curve that provides smooth ac-
celerations and velocities and feels better than the cruder second-order (circular) motion
of the platform rocker. Our ancestors, who carved these rocking chairs, probably had
never heard of fourbar linkages and centrodes, but they knew intuitively how to create
comfortable motions.

Cusps

Another example of a centrode that you probably use frequently is the path of the tire on
your car or bicycle. As your tire rolls against the road without slipping, the road becomes
a fixed centrode, and the circumference of the tire is the moving centrode. The tire is, in
effect, the coupler of a linkless fourbar linkage. All points on the contact surface of the
tire move along cycloidal coupler curves and pass through a cusp of zero velocity when
they reach the fixed centrode at the road surface as shown in Figure 6-17a. All other points
on the tire and wheel assembly travel along coupler curves that do not have cusps. This
last fact is a clue to a means to identify coupler points that will have cusps in their coupler
curve. Ifa coupler point is chosen to be on the moving centrode at one extreme of its path
motion (i.e., at one of the positions of 1) 3), then it will have a cusp in its coupler curve.
Figure 6-17b shows a coupler curve of such a point, drawn with program LINKAGES. The
right end of the coupler path touches the moving centrode and as a result has a cusp at
that point. So, if you desire a cusp in your coupler motion, many are available. Simply
choose a coupler point on the moving centrode of link 3. Open the file FO6-17b.4br in
program LINKAGES to animate that linkage with its coupler curve or centrodes. Note in
Figure 6-14 that choosing any location of instant center /; 3 on the coupler as the coupler
point will provide a cusp at that point.
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Cycloidal path motion Moving centrode

Fixed centrode
View as a video \‘
http://www.designofmachinery. N
com/DOM/cycloid.avi

(a) Cycloidal motion of a circular, moving centrode rolling on a straight, fixed centrode

Moving centrode \\\ \ / Fixed centrode

Cusp

N / Coupler curve

(b) Coupler curve cusps exist only on the moving centrode

FIGURE 6-17

Examples of centrodes

6.6 VELOCITY OF SLIP

When there is a sliding joint between two links and neither one is the ground link, the
velocity analysis is more complicated. Figure 6-18 shows an inversion of the fourbar
crank-slider mechanism in which the sliding joint is floating, i.e., not grounded. To solve
for the velocity at the sliding joint A, we have to recognize that there is more than one
point A at that joint. There is a point A as part of link 2 (A,), a point A as part of link 3
(A3), and a point A as part of link 4 (A4). This is a CASE 2 situation in which we have at
least two points belonging to different links but occupying the same location at a given
instant. Thus, the relative velocity equation 6.6 will apply. We can usually solve for
the velocity of at least one of these points directly from the known input information us-
ing equation 6.7. It and equation 6.6 are all that is needed to solve for everything else. In
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Axis of
transmission
Effective link 4
04
VAZ.&/[/)
Axis of slip
FIGURE 6-18

Ve locity of slip and velocity of transmission (note that the applied ®is negative as shown)

this example, link 2 is the driver, and 6, and ®, are given for the “freeze frame” position
shown. We wish to solve for w4, the angular velocity of link 4, and also for the velocity
of slip at the joint labeled A.

In Figure 6-18 the axis of slip is shown to be tangent to the slider motion and is the
line along which all sliding occurs between links 3 and 4. The axis of transmission is
defined to be perpendicular to the axis of slip and pass through the slider joint at A. This
axis of transmission is the only line along which we can transmit motion or force across
the slider joint, except for friction. We will assume friction to be negligible in this exam-
ple. Any force or velocity vector applied to point A can be resolved into two components
along these two axes that provide a translating and rotating, local coordinate system for
analysis at the joint. The component along the axis of transmission will do useful work
at the joint. But, the component along the axis of slip does no work, except friction work.

A DEXAMPLE 6-5

Graphical Velocity Analysis at a Sliding Joint.
Problem: Given 0,, 03, 04, 0, find ®3, 04, V4, by graphical methods.
Solution: (See Figure 6-18.)

1 Start at the end of the linkage for which you have the most information. Calculate the magni-
tude of the velocity of point A as part of link 2 (A;) using scalar equation 6.7.

vAZ = (A02 )0.)2 (a)
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2 Draw the velocity vector V4, with its length equal to its magnitude v4; at some convenient
scale and with its root at point A and its direction perpendicular to the radius AO;. Its sense is
the same as that of ®; as is shown in Figure 6-18.

3 Draw the axis of slip and axis of transmission through point A.

4 Project V4, onto the axis of slip and onto the axis of transmission to create the components
Vazsiip and V5 0f V45 on the axes of slip and transmission, respectively. Note that the
transmission component is shared by all true velocity vectors at this point, as it is the only
component that can transmit across the joint.

5 Note that link 3 is pin-jointed to link 2, so V43 = V».

6 Note that the direction of the velocity of point V 44 is predictable since all points on link 4 are
pivoting in pure rotation about point O4. Draw the line pp through point A and perpendicular
to the effective link 4, AO,4. Line pp is the direction of velocity V 4.

7  Construct the true magnitude of velocity vector V 44 by extending the projection of the trans-
mission component V,,,,; until it intersects line p

8 Project V44 onto the axis of slip to create the slip component V 54,

9 Write the relative velocity vector equation 6.6 for the slip components of point A; versus point
Ay.

VSliP42 = VA4slip - VAZslip (b)

10 The angular velocities of links 3 and 4 are identical because they share the slider joint and must
rotate together. They can be calculated from equation 6.7:

A0,

@)

(1)4=(1)3=

Instant center analysis also can be used to solve sliding-joint velocity problems.

@)EXAMPLE 6-6
Graphical Velocity Analysis of a Cam and Follower.
Problem: Given 0,, o, find w3, by graphical methods.
Solution: (See Figure 6-19.)
1 Construct the effective radius of the cam R; .4 at the instantaneous point of contact with the

follower for this position (point A in the figure). Its length is distance O,A. Calculate the
magnitude of the velocity of point A as part of link 2 (A;) using scalar equation 6.7.

vu, =(A0;)w, (a)
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Draw the velocity vector V4, with its length equal to its magnitude v4, at some convenient
scale and with its root at point A and its direction perpendicular to the radius O»A. Its sense
is the same as that of ®, as is shown in Figure 6-19.

Construct the axis of slip (common tangent to cam and follower) and its normal, the axis of
transmission, as shown in Figure 6-19.

Project V4, onto the axis of transmission to create the component V,,,,s. Note that the trans-
mission component is shared by all true velocity vectors at this point, as it is the only com-
ponent that can transmit across the joint.

Project V47 onto the axis of slip to create the slip component V 45,

Note that the direction of the velocity of point V 43 is predictable since all points on link 3 are
pivoting in pure rotation about point O3. Construct the effective radius of the follower R3 o
at the instantaneous point of contact with the follower for this position (point A in the figure).
Its length is distance O3A.

Construct a line in the direction of V43 perpendicular to R3 o Construct the true magnitude
of velocity vector V43 by extending the projection of the transmission component V,,,,, until
it intersects the line of V3.

Project V43 onto the axis of slip to create the slip component V 43,

The total slip velocity at A is the vector difference between the two slip components. Write
the relative velocity vector equation 6.6 for the slip components of point A3 versus Aj.

Vslip32 = VASslip - VAZslip (b)

The angular velocity of link 3 can be calculated from equation 6.7:

Axis of transmission

Raesr ¥ Ay,
o
N «Y/]'
N

V“'["l’.xz = VA3.\'1ip - VA2\'/1']1

FIGURE 6-19

Graphical velocity analysis of a cam and follower



VELOCITY ANALYSIS 321

_Va

(©)

03

The above examples show how mechanisms with sliding or half joints can be solved
graphically for velocities at one position. In the next section, we will develop the general
solution using algebraic equations to solve similar problems.

6.7 ANALYTICAL SOLUTIONS FOR VELOCITY ANALYSIS

View the lecture video (46:41)1

 http://www.designofma-
chinery.com/DOM/Veloc-

ity_Analysis_with_Vectors.

The Fourbar Pin-Jointed Linkage mp4

The vector-loop position equations for the fourbar pin-jointed linkage were derived in
Section 4.5. The linkage was shown in Figure 4-6 and is shown again in Figure 6-20
on which we also show an input angular velocity ®; applied to link 2. This ®, can be
a time-varying input velocity. The vector loop equation is shown in equations 4.5a and
4.5¢c, repeated here for your convenience.

R,+R;-R,-R, =0 (4.52)

As before, we substitute the complex number notation for the vectors, denoting their
scalar lengths as a, b, ¢, d as shown in Figure 6-20a.

ael® 1 pel% —cel —ge/% =0 (4.5¢)

To get an expression for velocity, differentiate equation 4.5¢ with respect to time.

9, dO 9, dO 9, dO
'aeJGZ 72 + 'be!e3 3 _ ‘ce]e4 4 _ 0 6.14a
J a P T T (6.142)
But,
de, do, de,
22, = =0y —A - 6.14b
a d  ° da ¢ (6.14b)
and:
jau)zej62 +jbco3ej°3 —jcu)4ej°4 =0 (6.14c)

Note that the 0 term has dropped out because that angle is a constant, and thus its
derivative is zero. Note also that equation 6.14 is, in fact, the relative velocity or velocity
difference equation.

where: V= jamzej92
Vi = jbw,e’® (6.15b)

VB = jC(J)4eje4

Compare equations 6.15 to equations 6.3, 6.5, and 6.6. This equation is solved graph-
ically in the vector diagram of Figure 6-20b. Note the transmission angle [Ldrawn between
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FIGURE 6-20
Position vector loop for a fourbar linkage showing velocity vectors for a negative (cw) ®,

links 3 and 4 and also between Vg and Vp4. This shows an alternate way to define the
transmission angle using the velocity vectors at point B.

We now need to solve equation 6.14 for w3 and w4, knowing the input velocity w,, the
link lengths, and all link angles. Thus the position analysis derived in Section 4.5 must
be done first to determine the link angles before this velocity analysis can be completed.
We wish to solve equation 6.14 to get expressions in this form:

03 =f(a.b.c.d.6,,05,0,,0,)  ©4=g(a,b,c.d,6,,05,040,) (6.16)

The strategy of solution will be the same as was done for the position analysis. First,
substitute the Euler identity from equation 4.4a in each term of equation 6.14c:

jaw, (cos®, + jsin®, )+ jbws(coss + jsin6; )
—jcwy (cose4 +jsin64) =0 (6.17a)
Multiply through by the operator j:
am, (jcosez +j2 sin92)+b(n3(jcos93 +j2 sin63)

—co)4(jcos64 + sin94)=0 (6.17b)

The cosine terms have become the imaginary, or y-directed terms, and because j2 =-1,
the sine terms have become real or x-directed.

aw, (—sin®, + jcos, )+ bw;(—sind; + jcosd; )
—c0)4(—sin94 +jcose4)=0 (6.17¢)

We can now separate this vector equation into its two components by collecting all
real and all imaginary terms separately:
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real part (x component):

—am, sin®, —bw;sinB; +cw,sinh, =0 (6.17d)
imaginary part (y component):

am, cos, +bws;cosB; —cw, cosO, =0 (6.17¢)

Note that the j’s have canceled in equation 6.17e. We can solve these two equations,
6.17d and 6.17e, simultaneously by direct substitution to get:

03 = aw, sin(8, =6, (6.182)
b sm(63 - 64)

0, =&—S?n(92 ~%) (6.18b)
c s1n(94 —63)

Once we have solved for w3 and m4, we can then solve for the linear velocities by
substituting the Euler identity into equations 6.15,

A\ =ja0)2(00562 +jsin62)= am, (—sin62 +jcos(32) (6.192)
Vg4 = jbos (00593 +jsin93): bw, (—sin63 +jcose3) (6.19b)
Vi = jcwy (cose4 +jsin94)=cw4 (—sin94 +jcos94) (6.19¢)

where the real and imaginary terms are the x and y components, respectively. Equations
6.18 and 6.19 provide a complete solution for the angular velocities of the links and the
linear velocities of the joints in the pin-jointed fourbar linkage. Note that there are also
two solutions to this velocity problem, corresponding to the open and crossed circuits of
the linkage. They are found by the substitution of the open or crossed circuit values of 03
and 0,4 obtained from equations 4.10 and 4.12-4.13 into equations 6.18 and 6.19. Figure
6-20a shows the open circuit.

A DEXAMPLE 6-7

Velocity Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L| = d = 100 mm, L, = a = 40 mm,
Lz =b =120 mm, L4 = ¢ = 80 mm. For 6, = 40° and ®, = 25 rad/sec find the
values of W3 and Wy, V4, Vpa, and Vp for the open circuit of the linkage. Use the
angles found for the same linkage and position in Example 4-1.

Solution: (See Figure 6-20 for nomenclature.)

1 Example 4-1 found the link angles for the open circuit of this linkage to be 63 = 20.298° and
04 = 57.325°.

2 Use these angles and equations 6.18 to find w3 and Wy for the open circuit.
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04-6,) 40(25) sin(57.325°—40°
0 =992 sm( 4 2) (25) sin(s ) =—4.121 rad/sec
b sin(6;-04) 120 sin(20.298°—57.325°)
(@)
0,-65) 4 in(40° - 20.298°
Wy = am; sin(6, 3) 0(25) sin(40°-20.298°) =6.998 rad/sec

c sin(6, —03) 80 sm(57.325°—20.298°)

3 Use the angular velocities and equations 6.19 to find the linear velocities of points A and B.

V, =aw,(-sin6, + jcos6,)
=40(25)(—sin40°+ jcos40°) = —642.79+ j766.04
Vy, =-642.79; V, =766.04; VAmag =1000 mm/sec; VAang =130° (b)

Vpa =bws (—sin63 +jc0s93)
=120(—4.121)(—sin20.298° + j20.298°) = 171.55 — j463.80
Via, =171.55; Vpy  =-463.80; VBAmag =494.51 mm/sec; VBAMg =-69.70° (c)

Vg =co4(-sin®, + jcosd, )
=80(6.998)(—sin57.325 + jc0s57.325) = —471.242 + j302.243
Vg, =—471.242; Vp =302.243; VBmag =559.84 mm/sec; VBang =147.33° (d)

4 As an exercise, repeat the above process to find the velocities for the crossed circuit of the
linkage.

The Fourbar Crank-Slider

The position equations for the fourbar offset crank-slider linkage (inversion #1) were
derived in Section 4.6. The linkage was shown in Figure 4-10 and is shown again in
Figure 6-21a on which we also show an input angular velocity m, applied to link 2. This
, can be a time-varying input velocity. The vector loop equation 4.14 is repeated here
for your convenience.

R,-R;-R,-R; =0 (4.14a)
ael® —pel® _ e _gelf =g (4.14b)

Differentiate equation 4.14b with respect to time noting that a, b, ¢, 0, and 64 are
constant but the length of link d varies with time in this inversion.

jaw,e’® — jbm,e’® —d=0 (6.20a)

The term d is the linear velocity of the slider block. Equation 6.20a is the velocity
difference equation 6.5 and can be written in that form.
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FIGURE 6-21"
Position vector loop for a fourbar crank-slider linkage showing velocity vectors for a negative (CW) 0,

* Note the transmission an-
gle W in Figure 6-21a drawn

VA - VAB - VB =0 between link 3 and effective

or: V,=Vg+V,p link 4 as previously defined.
It is also shown drawn be-
but: Vap==Vga tween vectors Vg and Vgy
then: Vg =V, + Vg, (6.20b)  in Figure 6-21b, indicating

an alternate way to define
Equation 6.20 is identical in form to equations 6.5 and 6.15a. Note that because we  the transmission angle as

arranged the position vector Rj in Figure 4-10 and Figure 6-21 with its root at point B, ~ the acute angle between
directed from B to A, its derivative represents the velocity difference of point A with re-  he absolute velocity and
spect to point B, the opposite of that in the previous fourbar example. Compare this also :fl;;’;lynfﬁecf’;ze;e?ﬁ::
to equation 6.15b noting that its vector Rj is directed from A to B. Figure 6-21b shows approach does not require
the vector diagram of the graphical solution to equation 6.20b. construction of the slider’s

effective link 4 to determine

Substitute the Euler equivalent, equation 4.4a, in equation 6.20a, th .
e transmission angle.

jaw, (c0562 +jsin02)—jbm3(cosﬁ3 +jsin93)—d: 0 (6.21a)
simplify,
am, (—sin62 +j<:0$62)— bos (—sine3 +jcose3)— d=0 (6.21b)
and separate into real and imaginary components.
real part (x component):
—aw, sin®, +bw;sin6; — d=0 (6.21c)
imaginary part (y component):

aw, cos®, —bws;cosB; =0 (6.21d)
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These are two simultaneous equations in the two unknowns, d and 3. Equation
6.21d can be solved for w3 and substituted into 6.21c to find d.

= acosh (6.222)
b cosB;
d=-aw,sin6, +bm,sin6; (6.22b)

The absolute velocity of point A and the velocity difference of point A versus point
B are found from equation 6.20:

V,y=awm, (—sin92 + jcosez) (6.23a)
Vg =bws (—sin63 +jcose3) (6.23b)
VBA = _VAB (623C)

,@D EXAMPLE 6-8

Velocity Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths Ly, = a = 40 mm,
Ly = b =120 mm, offset = ¢ = —20 mm. For 6, = 60° and w, = —30 rad/sec, find
3 and linear velocities of points A and B for the open circuit. Use the angles and
positions found for the same linkage and its link 2 position in Example 4-2.

Solution: (See Figure 6-21, for nomenclature.)

1 Example 4-2 found angle 83 = 152.91° and slider position d = 126.84 mm for the open circuit.
2 Using equation 6.22a and the data from step 1, calculate the coupler angular velocity ®s.

_acoso, o, = 40  cos60°
bcosB; > 120 cos152.91°

0 (—30)=5.616 rad/sec (a)

3 Using equation 6.22b and the data from steps 1 and 2, calculate the slider velocity d.

d=-aw,sind, +bw;sinB; = -40(~30)sin 60°+120(5.616)sin152.91° = 1346 mm/sec (b)

4 Using equation 6.23 and the result from step 2, calculate the linear velocities V4 and V4.

V, =a,(-sind, + jcosd, ) = 40(-30)(-sin60°+ jcos60°) =1039.23— j600
Vg, =1039.23; 'V, =-600; VAmag =1200 mm/sec; VAang =-30° (c)

Vg = bm3(—sin93 +jcose3)
V45 =120(5.616)(—sin152.91° + jcos152.91°) = —306.86 — j600
Vpa =—V,5 =306.86+ j600
Vpa, =306.86; Vpy =600; Vg,  =673.92 mmy/sec; VB, = 62.91° (d)
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The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section. The name change indicates that it will be
driven with the slider as input and the crank as output. This is sometimes referred to as a
“back-driven” crank-slider. We will use the term slider-crank to define it as slider-driven.
This is a very commonly used linkage configuration. Every internal-combustion, piston
engine has as many of these as it has cylinders. The vector loop is as shown in Figure 6-21
and the vector loop equation is identical to that of the crank-slider (equation 4.14a). The
derivation for 0, as a function of slider position d was done in Section 4-7. Now we want
to solve for m, as a function of slider velocity d and the known link lengths and angles.

We can start with equations 6.21c and d, which also apply to this linkage:

—aw, sinB, +bw;sin6; — d=0 (6.21c)
am, cosb, —bw;cosH; =0 (6.21d)
Solve equation 6.21d for w3 in terms of w,.
am, coso,
®, = 59 (6.242)
bcos6,
Substitute equation 6.24a for m3 in equation 6.21c and solve for m,.
dcos®
W = 0555 (6.24b)

a(cos92 sinf3 —sin0O, cose3)

The circuit of the linkage depends on the value of d chosen and the angular velocities will
be for the circuit represented by the values of 6, and 03 used from equation 4.21.”

A DEXAMPLE 6-9

Velocity Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method.

Problem: Given a fourbar slider-crank linkage with the link lengths L, = a = 40 mm,
L3 = b =120 mm, offset = ¢ = —20 mm. For d = 100 mm and d = 1200 mm/sec,
find @, and w3 for both branches of one circuit of the linkage. Use the angles found
for the same linkage in Example 4-3.

Solution: (See Figure 6-21 for nomenclature.)

I Example 4-3 found angles 8, = 95.798°, 83, = 150.113° for branch 1 and 8,, = -118.418°,
03, = 187.267° for branch 2 of this linkage.

2 Using equation 6.24b and the data from step 1, calculate the crank angular velocity @,

dcos(931

(1)2 =
a(cose21 sinB3 —sin6, cos93l)
1200c0s150.113°

= P P S —~ =-32.023 rad/sec  (a)
40(c0s95.798°sin150.113° — 5in 95.798° cos 150.113°)
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be independently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular to the
slider axis, it is parallel to
itself on both circuits. This
results in the two circuits
being mirror images of one
another, mirrored about a
line through the crank pivot
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points at TDC
and BDC, the slider crank
has two branches on each
circuit and the two solutions
obtained from equation 4.21
represent the two branches
on the one circuit being
analyzed. In contrast, the
crank-slider has only one
branch per circuit because
when the crank is driven, it
can make a full revolution
and there are no change
points to separate branches.
See Section 4.13 for a
more complete discussion
of circuits and branches in
linkages.
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3 Using equation 6.24a and data from steps 1 and 2, calculate coupler angular velocity o3,.

o, = 20 0080y, _ 40(-32.023)c0s95.798° 1244 rad/sec ®)
%7 beosy, 120¢0s150.113°

4 Example 4-3 found 6;, = -1 18.418° and 03, = 187.267° for branch 2 of this linkage.

5 Using equation 6.24b and the data from step 2, calculate the crank angular velocity @,

dcose32

(1)2 =
ot(cosez2 sin63, —sin®,, 008932)

~ 1200cos(187.267°)
- 40[ cos(~118.418°)sin (187.267°) - sin(~118.418°) cos (187.267°) |

=36.639 rad/sec (c)

6 Using equation 6.24a and the data from steps 3 and 4, calculate coupler angular velocity ®,.

. 200, cos0,,  40(36.639)cos(~118.418°)
2 bcos®y,  120cos(187.267°)

=5.859 rad/sec (d)

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.8. The linkage was shown in Figure 4-13 and is shown again in Figure 6-22 on
which we also show an input angular velocity ®, applied to link 2. This ®; can vary with
time. The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints
varies as the linkage moves. In this inversion the length of link 3 between points A and
B, designated as b, will change as it passes through the slider block on link 4. To get an
expression for velocity, differentiate equation 4.14b with respect to time noting that a, c,
d, and 0] are constant and b varies with time.

jawzej02 —jbw3ej63 — bel% —jcw4eje4 =0 (6.25a)

The value of db/dt will be one of the variables to be solved for in this case and is

the b term in the equation. Another variable will be my, the angular velocity of link 4.
Note, however, that we also have an unknown in m3, the angular velocity of link 3. There
is a total of three unknowns. Equation 6.25a can only be solved for two unknowns. Thus
we require another equation to solve the system. There is a fixed relationship between
angles 03 and 64, shown as 7y in Figure 6-22 and defined in equation 4.22, repeated here:

open configuration: 6; =0, +7v;  crossed configuration: 6; =0, +y-n (4.22)

Differentiate it with respect to time to obtain:

W3 =0y (6.25b)

We wish to solve equation 6.25a to get expressions in this form:
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FIGURE 6-22

Velocity analysis of inversion #3 of the slider-crank fourbar linkage

W3 =0y :f(a, b, C, d, 92, 93,64,(.02)

(6.26)
db
Ezbzg(a,b,c, d,0,,05,04,0,)
Substitution of the Euler identity (equation 4.4a) into equation 6.25a yields:
ja®, (cos®, + jsin®, )— jbo;(cosOs + jsin®; )
—B(cose3 +jsin93)—jco)4(cose4 +jsin94): 0 (6.27a)
Multiply by the operator j and substitute w4 for w3 from equation 6.25b:
am, (—sin62 +jcos62)—b0)4 (—sin93 +jcos63)
~b(cos®s + jsin®s ) — cwy, (—sinb, + jcosO, ) =0 (6.27b)

We can now separate this vector equation into its two components by collecting all
real and all imaginary terms separately:

real part (x component):
—am,sin®, +bw, sin6; — Bcose3 +cw,sinf, =0 (6.282)
imaginary part (y component):
awm, cosd, —bw, cosO; —Bsin63—cu)4 cosf, =0 (6.28b)
Collect terms and rearrange equations 6.28 to isolate one unknown on the left side.

600593 =-am,sind, +w, (bsin63 +csin94) (6.29a)

Bsin63 =awm, cosb, —my (bcose3 + ccose4) (6.29b)
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Either equation can be solved for b and the result substituted in the other. Solving
equation 6.29a:

. —awm,sin®, + w4 (bsinO; +csin®
h=— 2" 2 il 3 ) (6.302)
cos 05

Substitute in equation 6.29b and simplify:

_am cos(92 - 93)

Wy =—""""F—"= 6.30b
¢ b+ccos(94—93) ( )

Equation 6.30a provides the velocity of slip at point B. Equation 6.30b gives the
angular velocity of link 4. Note that we can substitute —Y =04 —63 from equation 4.18
(for an open linkage) into equation 6.30b to further simplify it. Note that cos(—y) = cos(y).

_amy cos(92 - 93)

4= (6.30¢)

b+ccosy

The velocity of slip from equation 6.30a is always directed along the axis of slip as
shown in Figure 6-22. There is also a component orthogonal to the axis of slip called
the velocity of transmission. This lies along the axis of transmission which is the only
line along which any useful work can be transmitted across the sliding joint. All energy
associated with motion along the slip axis is converted to heat and lost.

The absolute linear velocity of point A is found from equation 6.23a. We can find
the absolute velocity of point B on link 4 since @, is now known. From equation 6.15b:

Vs, = jew,e® =cw,(~—sind, + jcosdy) (6.31a)

The velocity of transmission is the component of Vj4 normal to the axis of slip. The
absolute velocity of point B on link 3 is found from equation 6.5 as

VB3 = VB4 + VB34 = VB4 + VS (6.31b)

lip34

6.8 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE

The position loop equation for the geared fivebar mechanism was derived in Section 4.9
and is repeated here. See Figure P6-4 for notation.

ael® +pel® —cel® — del% —fej01 =0 (4.27b)
Differentiate this with respect to time to get an expression for velocity.
acozjej62 + bco3jeje3 - coo4jeje4 - doosjej95 =0 (6.32a)
Substitute the Euler equivalents:

aa)zj(cose2 +jsin(92)+bco3j(cose3 +jsin63)

—cw4j(c0594 +jsin94)— dcosj(cose5 +jsin95) =0 (6.32b)
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Note that the angle 05 is defined in terms of 0,, the gear ratio A, and the phase angle ¢.
05 =10, +0 (427¢)
Differentiate with respect to time:

s =, (6.32c)

Since a complete position analysis must be done before a velocity analysis, we will
assume that the values of 65 and w5 have been found and will leave these equations in
terms of 05 and ®s.

Separating the real and imaginary terms in equation 6.32b:
real: —aw, sin®, —bw;sin6; +cw, sinf, +dwssinB; =0 (6.32d)
imaginary: aw, cos6, +bw;cosd; —cw, cos6, —dws cosbs =0 (6.32¢)

The only two unknowns are 03 and 4. Either equation 6.32d or 6.32e can be solved
for one unknown and the result substituted in the other. The solution for o3 is:

25in0, [ aw, sin(6, — 0, ) + dws sin (6, — 05 |

;= (6.332)
’ b[cos(93—294)—c0593J
The angular velocity w4 can be found from equation 6.32d using ®3.
0, = aw, sin®, +bw;sinb; —dws sinBs (6.33b)

csinfy

With all link angles and angular velocities known, the linear velocities of the pin
joints can be found from:

V,y=am, (—sinez +jcos(92) (6.33c)
Vpa=bw, (—sin93 +jcose3) (6.33d)
Ve =dos (—sin65 +jcoses) (6.33e)
Vg =V, +Vg, (6.33f)

6.9 VELOCITY OF ANY POINT ON A LINKAGE

Once the angular velocities of all the links are found, it is easy to define and calculate
the velocity of any point on any link for any input position of the linkage. Figure 6-23
shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point The
crank and rocker have also been enlarged to show points S and U which might represent
the centers of gravity of those links. We want to develop algebraic expressions for the
velocities of these (or any) points on the links.

To find the velocity of point S, draw the position vector from the fixed pivot O, to
point S. This vector, Rgp, makes an angle &, with the vector Ryp,. The angle &, is
completely defined by the geometry of link 2 and is constant. The position vector for
point S is then:

RSOZ = RS = sej(62+82) = S[COS(GZ +82)+]SIH(92 +82 ):' (4.29)

331
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FIGURE 6-23
Finding the velocities of points on the links

Differentiate this position vector to find the velocity of that point.

Vg = jsej(92+52)w2 =50, [—sin(e2 +8,)+ jcos(6, +82)J (6.34)
The position of point U on link 4 is found in the same way, using the angle 84 which
is a constant angular offset within the link. The expression is:

Ryo, = ue/(%4+94) u[cos(64 +84)+ jsin(6, +84)J (4.30)

Differentiate this position vector to find the velocity of that point.
Vg = juej(e4+54)m4 =un, [—sin(94 +8,)+ jcos(0, +3, ):| (6.35)
The velocity of point P on link 3 can be found from the addition of two velocity vec-
tors, such as V4 and Vp4. Vy is already defined from our analysis of the link velocities.
Vp4 is the velocity difference of point P with respect to point A. Point A is chosen as the
reference point because angle 05 is defined in a LNCS and angle 83 is defined in a LRCS
whose origins are both at A. Position vector Rpy is defined in the same way as Rg or Ry;

using the internal link offset angle 85 and the angle of link 3, 65. This was done in equa-
tions 4.31 (repeated here).

Rp, = pel03%83) _ p[cos(e3 +83)+ jsin (05 +83)] (4.31a)
Rp=R, +Rpy (4.31b)

Differentiate equations 4.31 to find the velocity of point P.
Vpy = jpej(e3+53)m3 =pw; [—Sin(63 + 83)+jcos(93 +83)J (6.362)

Vp =V, +Vp, (6.36b)
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Please compare equations 6.36 with equations 6.5 and 6.15. It is, again, the velocity
difference equation.

Note that if, for example, you wished to derive an equation for the velocity of a
coupler point P on the crank-slider linkage as set up in Figure 6-21, or the inverted crank-
slider of Figure 6-22, both of which have the vector for link 3 defined with its root at point
B rather than at point A, you might want to use point B as the reference point rather than
point A, making equation 6.36b become:

VP = V33 + VPB3 (6.36C)

Angle 63 would then be defined in a LNCS at point B, and 83 in a LRCS at point B.
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6.11 PROBLEMS* Al problem figures are
. . . . . provided as PDF files, and
6-1 Use the relative velocity equation and solve graphically or analytically. some are also provided as

a. A ship is steaming due north at 20 knots (nautical miles per hour). A submarine is  animated Working Model
laying in wait 1/2 mile due west of the ship. The sub fires a torpedo on a course of ~files. PDF filenames are the
85 degrees. The torpedo travels at a constant speed of 30 knots. Will it strike the ~ Same as the figure number.
ship? If not, by how many nautical miles will it miss? gszizeagiii";:(ﬁf:;e
b. A plane is flying due south at 500 mph at 35,000 ft altitude, straight and level. A animations N
second plane is initially 40 miles due east of the first plane, also at 35,000 feet al- ’
titude, flying straight and level and traveling at 550 mph. Determine the compass
angle at which the second plane would be on a collision course with the first. How
long will it take for the second plane to catch the first?

6-2 A pointis at a 6.5 in radius on a body in pure rotation with ® = 100 rad/sec. The rota-
tion center is at the origin of a coordinate system. When the point is at position A, its
position vector makes a 45° angle with the X axis. At position B, its position vector
makes a 75° angle with the X axis. Draw this system to some convenient scale and:

a.  Write an expression for the particle’s velocity vector in position A using complex
number notation, in both polar and cartesian forms.

b.  Write an expression for the particle’s velocity vector in position B using complex
number notation, in both polar and cartesian forms.

c.  Write a vector equation for the velocity difference between points B and A. Substi-
tute the complex number notation for the vectors in this equation and solve for the
position difference numerically.

d.  Check the result of part ¢ with a graphical method.

6-3 Repeat Problem 6-2 considering points A and B to be on separate bodies rotating about
the origin with ®’s of =50 (A) and +75 rad/sec (B). Find their relative velocity.

*6-4 A general fourbar linkage configuration and its notation are shown in Figure P6-1. The
link lengths, coupler point location, and the values of 6, and ®, for the same fourbar
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TABLE P6-0 Part 1 TABLE P6-1 Data for Problems 6-4 to 6-5f
Topic/Problem Matrix Row Link1 Link2 Lnk3 Link4 0, o, Rpa 83

6.1 Definition of Velocity a 6 2 7 9 30 10 6 30
6-1,6-2,6-3 b 7 9 3 8 85 -12 9 25

6.2 Graphical Velocity c 3 10 6 8 45 -15 10 80
Analysis d 8 5 7 6 25 24 5 45
Pin-Jointed Fourbar e 3 5 3 6 75 ~50 9 300
g';ga’é 6;“’6 65_;318’ f 5 8 8 9 15 45 10 120

-50, 6-5%, 6-64a,

687, 6.94 g 6 8 8 9 25 100 4 300
Fourbar Crank-Slider h 20 10 10 10 50 —65 6 20
6-16a, 6-32, 6-43% i 4 5 2 5 80 25 9 80
Fourbar Slider-Crank j 20 10 5 10 33 25 1 0
6-110,6-111 k 4 6 10 7 88 -80 10 330
Other Fourbar I 9 7 10 7 60 -90 5 180
6-18a, 6-98° m 9 7 1 8 50 75 10 %
:elaored Fivebar n 9 7 1 6 120 15 15 60
Sixbar iDrawings of these linkages are in the PDF Problem Workbook folder.
6-70a, 6-73a, 6-76a,
6-99

Eightbar 6-103%

6.3 Instant Centers of
Velocity
6-12, 6-13, 6-14,
6-15, 6-68, 6-72,
6-75, 6-78, 6-83,
6-86, 6-88, 6-97,
6-102, 6-104, 6-105

6.4 Velocity Analysis with
Instant Centers
6-4, 6-16b, 6-17b,
6-18b, 6-25, 6-29,
6-33, 6-40, 6-70b,
6-73b, 6-76b, 6-84b,

Q0]

2_515(7)3’ 6-92, 6-95, FIGURE P6-1

Mech. Advantage Configuration and terminology for the pin-jointed fourbar linkage of Problems 6-4 to 6-5

6-21a, 6-21b, 6-22a, . .. .. . s

6-22b. 6-58 linkages as used for position analysis in Chapter 4 are redefined in Table P6-1, which is

basically the same as Table P4-1. For the row(s) assigned, draw the linkage to scale and
find the velocities of the pin joints A and B and of instant centers /1 3 and I, 4 using a

6.5 Centrodes
6-23, 6-63, 6-69,

6-89 graphical method. Then calculate @3 and w4 and find the velocity of point P.
6.6 Velocity of Slip #76-5 Repeat Problem 6-4 using an analytical method. Draw the linkage to scale and label it

6-6, 6-8, 6-19, 6-20, before setting up the equations.
6-61, 6-64, 6-65,
6-66. 6-91, 6-106 to *6-6 The general linkage configuration and terminology for an offset fourbar crank-slider
6-109, 6-112, 6-113 linkage are shown in Figure P6-2. The link lengths and the values of 0, and ®, are

------------------ defined in Table P6-2. For the row(s) assigned, draw the linkage to scale and find the
*May be solved using velocities of the pin joints A and B and the velocity of slip at the sliding joint using a
either the velocity graphical method.

difference or instant
center graphical *76-7 Repeat Problem 6-6 using an analytical method. Draw the linkage to scale and label it
method. before setting up the equations.
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TABLE P6-2 Data for Problems 6-6 to 6-7%

Row Link 2 Link 3 Offset 6, 5
a 14 4 1 45 10
b 2 6 -3 60 -12
c 3 8 2 -30 -15
d 35 10 1 120 24
e 5 20 -5 225 -50
f 3 13 0 100 -45
g 7 25 10 330 100

iDrawings of these linkages are in the PDF Problem Workbook folder.

0, YA
Y B 4 J
A —
X
Link 3
A
®2 Offset /ﬂ
) 0, 04 =90°
Link 2 \
> J—V X

0, Slider position d

FIGURE P6-2
Configuration and terminology for Problems 6-6, 6-7, 6-110, 6-111

*6-8 The general linkage configuration and terminology for an inverted fourbar crank-slider
linkage are shown in Figure P6-3. The link lengths and the values of 0, ,, and y are
defined in Table P6-3. For the row(s) assigned, draw the linkage to scale and find the ve-
locities of points A and B and velocity of slip at the sliding joint using a graphical method.

*6-9 Repeat Problem 6-8 using an analytical method. Draw the linkage to scale and label it
before setting up the equations.

*#6-10 The general linkage configuration and terminology for a geared fivebar linkage are
shown in Figure P6-4. The link lengths, gear ratio (A), phase angle (¢), and the values
of 6, and m, are defined in Table P6-4. For the row(s) assigned, draw the linkage to
scale and find @3 and my using a graphical method.

#*16-11 Repeat Problem 6-10 using an analytical method. Draw the linkage to scale and label it
before setting up the equations.

6-12  Find all the instant centers of the linkages shown in Figure P6-5.
6-13  Find all the instant centers of the linkages shown in Figure P6-6.

6-14 Find all the instant centers of the linkages shown in Figure P6-7.
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TABLE P6-0 Part 2
Topic/Problem Matrix

6.7 Analytic Solutions for
Velocity Analysis
6-90
Pin-Jointed Fourbar
6-26, 6-27, 6-30,
6-31, 6-37, 6-38,
6-41, 6-42, 6-48,
6-62
Fourbar Crank-Slider
6-7, 6-34, 6-35, 6-44,
6-45, 6-52, 6-60
Fourbar Inverted
Crank-Slider
6-9
Sixbar
6-70c, 6-71, 6-73c,
6-74, 6-76¢, 6-77,
6-93, 6-101
Eightbar
6-79
Mechanical Advantage
6-55a, 6-55b, 6-57a,
6-57b, 6-59a, 6-59b,
6-67

6.8 Velocity Analysis of
Geared Fivebar
6-11

6.9 Velocity of Any Point
on a Linkage
6-5, 6-16¢, 6-17c,
6-18c, 6-46, 6-47,
6-49, 6-50, 6-51,
6-53, 6-54, 6-56,
6-80, 6-81, 6-82,
6-84c, 6-85,
6-87¢, 6-96

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P6-3 Data for Problems 6-8 to 6-9
Row Link 1 Link 2 Link 4 Y 0, (oD}
a 6 2 4 90 30 10
b 7 9 3 75 85 -15
c 3 10 6 45 45 24
d 8 5 3 60 25 -50
e 8 4 2 30 75 —-45
f 5 8 8 90 150 100

FIGURE P6-3

Configur

6-15

* Answers in Appendix F. “6-16

6-17

6-18

ation and terminology for Problems 6-8 to 6-9

Find all the instant centers of the linkages shown in Figure P6-8.

The linkage in Figure P6-5a has O»A = 0.8, AB = 1.93, AC = 1.33, and offset = 0.38 in.
The crank angle in the position shown is 34.3° and angle BAC = 38.6°. Find w3, V4,
V3, and V¢ for the position shown for 0, = 15 rad/sec in the direction shown:

a. Using the velocity difference graphical method.
b. Using the instant center graphical method.
fe.  Using an analytical method.

The linkage in Figure P6-5c¢ has /1A = 0.75, AB = 1.5, and AC = 1.2 in. The effective
crank angle in the position shown is 77° and angle BAC = 30°. Find ®3, 04, V4, Vp,
and V¢ for the position shown for w, = 15 rad/sec in direction shown:

a. Using the velocity difference graphical method.

b. Using the instant center graphical method.

fc.  Using an analytical method. (Hint: Create an effective linkage for the position
shown and analyze as a pin-jointed fourbar.)

The linkage in Figure P6-5f has AB = 1.8 and AC = 1.44 in. The angle of AB in the posi-

tion shown is 128° and angle BAC = 49°. The slider at B is at an angle of 59°. Find w3,

V3, and V¢ for the position shown for V4 = 10 in/sec in the direction shown:

a. Using the velocity difference graphical method.

b. Using the instant center graphical method.

fe.  Using an analytical method.
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TABLE P6-4 Data for Problems 6-10 to 6-11

Row Link1 Link2 Link3 Link4 Link5 A ¢ (o)) 05
a 6 1 7 9 4 2.0 30 10 60
b 6 5 7 8 4 -25 60 -12 30
c 3 5 7 8 4 -0.5 0 -15 45
d 4 5 7 8 4 -1.0 120 24 75
e 5 9 " 8 8 3.2 -50 -50 -39
f 10 2 7 5 3 1.5 30 -45 120
g 15 7 9 1 4 25 -90 100 75
h 12 8 7 9 4 -2.0 60 -65 55
i 9 7 8 9 4 -4.0 120 25 100

Y

Gearratio )\ =%—

Phase angle ¢ = 05 — A0,

/02 ZOS

2 5
FIGURE P6-4
Configuration and terminology for Problems 6-10 and 6-11

6-19  The cam-follower in Figure P6-5d has O>A = 0.853 in. Find V4, V4,5, and Vg, for
the position shown with ®, = 20 rad/sec in the direction shown.

6-20 The cam-follower in Figure P6-5e has O»A = 0.980 in and O3A = 1.344 in. Find 3,
Virans, and Vg, for the position shown for @, = 10 rad/sec in the direction shown.

6-21 The linkage in Figure P6-6b has L; = 61.9, L, =15, L3 =45.8, L, = 18.1,
Ls=23.1 mm. 6, is 68.3° in the xy coordinate system, which is at —23.3° in the XY co-
ordinate system. The X component of O,C is 59.2 mm. For the position shown, find
the velocity ratio Vls,e/ V12,3 and the mechanical advantage from link 2 to link 6:

a.  Using the velocity difference graphical method.
b.  Using the instant center graphical method.

6-22 Repeat Problem 6-21 for the mechanism in Figure P6-6d, which has the dimensions:
Ly =15,L3 =409, Ls =44.7 mm. 6, is 24.2° in the XY coordinate system.
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Assume rolling contact Assume rolling contact

(b) (c)

|
‘ >
A
. 4 Va 2
Assume rolling contact Assume roll-slide contact

(d) (e) (f)

FIGURE P6-5

Velocity analysis and instant center problems. Problems 6-12 and 6-16 to 6-20

o | @ ;

A

4

(c)
FIGURE P6-6
Problems 6-13, 6-21, and 6-22
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1
1
(9)
FIGURE P6-7
Problems 6-14 and 6-23.
76-23  Generate and draw the fixed and moving centrodes of links 1 and 3 for the linkage in T These problems are suited
Figure P6-7a. to solution using Mathcad,

Matlab, or TKSolver equa-
tion solver programs.

6-24  The linkage in Figure P6-8a has link 1 at —25° and O,A at 37° in the global XY coor-
dinate system. Find w4, V4, and Vp in the global coordinate system for the position
shown if ®, = 15 rad/sec CW. Use the velocity difference graphical method. (Print the
figure from its PDF file and draw on it.)

6-25 The linkage in Figure P6-8a has link 1 at —25° and O,A at 37° in the global XY coor-
dinate system. Find w4, V4, and Vp in the global coordinate system for the position
shown if m, = 15 rad/sec CW. Use the instant center graphical method. (Print the
figure from its PDF file and draw on it.)

76-26  The linkage in Figure P6-8a has 8, = 62° in the local x’y’ coordinate system. The
angle between the X and x axes is 25°. Find my, V4, and Vp in the local coordinate
system for the position shown if @, = 15 rad/sec CW. Use an analytical method.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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T6-27

6-28

6-29

6-30

T6-31

6-32

6-33

6-34

6-35

6-36

T6-37

6-38

6-39

For the linkage in Figure P6-8a, write a computer program or use an equation solver to
find and plot @4, V4, and Vp in the local coordinate system for the maximum range of
motion that this linkage allows if w, = 15 rad/sec CW.

The linkage in Figure P6-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find oy, V4, and Vp in the global coordinate system for the position
shown if @, = 20 rad/sec CCW. Use the velocity difference graphical method. (Print
the figure from its PDF file and draw on it.)

The linkage in Figure P6-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find oy, V4, and Vp in the global coordinate system for the position
shown if @, = 20 rad/sec CCW. Use the instant center graphical method. (Print the
figure from its PDF file and draw on it.)

The linkage in Figure P6-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find oy, V4, and Vp in the global coordinate system for the position
shown if @, = 20 rad/sec CCW. Use an analytical method.

The linkage in Figure P6-8b has link 1 at —36° in the global XY coordinate system.
Write a computer program or use an equation solver to find and plot w4, V4, and Vg in
the local coordinate system for the maximum range of motion that this linkage allows if
0, =20 rad/sec CCW.

The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coor-
dinate system. Find V4 and Vp in the global coordinate system for the position shown
if @y =25 rad/sec CW. Use the velocity difference graphical method. (Print the figure
from its PDF file and draw on it.)

The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coor-
dinate system. Find V4 and Vp in the global coordinate system for the position shown
if my =25 rad/sec CW. Use the instant center graphical method. (Print the figure from
its PDF file and draw on it.)

The offset crank-slider linkage in Figure P6-8f has link 2 at 51° in the global XY coordi-
nate system. Find V4 and Vp in the global coordinate system for the position shown if
y =25 rad/sec CW. Use an analytical method.

For the offset crank-slider linkage in Figure P6-8f , write a computer program or use
an equation solver to find and plot V4 and Vp in the global coordinate system for the
maximum range of motion that this linkage allows if m, = 25 rad/sec CW.

The linkage in Figure P6-8d has link 2 at 58° in the global XY coordinate system. Find
V4, Vg, and Vy,,, in the global coordinate system for the position shown if @, = 30
rad/sec CW. Use the velocity difference graphical method. (Make a copy of the figure
from its PDF file and draw on it.)

The linkage in Figure P6-8d has link 2 at 58° in the global XY coordinate system. Find
V4, Vg, and Vy,,, in the global coordinate system for the position shown if ®, = 30 rad/
sec CW. Use an analytical method.

For the linkage in Figure P6-8d, write a computer program or use an equation solver to
find and plot V4, Vp, and V;,, in the global coordinate system for the maximum range
of motion that this linkage allows if ®, = 30 rad/sec CW.

The linkage in Figure P6-8¢g has the local xy axis at —119° and O,A at 29° in the global
XY coordinate system. Find w4, V4, and Vp in the global coordinate system for the
position shown if @, = 15 rad/sec CW. Use the velocity difference graphical method.
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L1 =162 Lp=40
Ly=122 [3=96

04
(a) Fourbar linkage (b) Fourbar linkage (c) Radial compressor
View as a video
‘ all dimensions in mm ‘ http://www.designofmachinery.com/DOM/radial_engine.avi
A 3 B
L1 =150 L, =30 2 PN ;@7 704
Ly =150 Ly =30 >02 5 F@’* G
) === NSl
D
0,04 =L3 =L5=160 } }
0304=Ls=1L7=120 || ¢ H g
02A =02C =20 ! /’R !
04B=04D =20 | |
04E=0,G=30 é & -

0y F=0gH =30

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi
(d) Walking-beam conveyor (e) Bellcrank mechanism (f) Offset slider-crank
- 229 —»|e— 229 —»
L1 =458
Ly =87 1
L, =49 A Ly =19.8
oo @ Ly=19.4
L3 _ 153 (’??";, Ly=383
pall V% Ny L= 133
LS - 153 “4( L7 =133
6= Lg=19.38
View as a video D 4 E\O Loy=194
http://www.
designofmachin- Z ‘ %
| |=— 4.5 typ.
ery.com/DOM/ ) _ )
drum_brake.avi (g) Drum brake mechanism (h) Symmetrical mechanism
View as a video
FIGURE P6-8 http://www.designofmachinery.com/DOM/compression_chamber.avi

Problems 6-15 and 6-24 to 6-45
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FIGURE P6-9
Problem 6-46

coupler reed

rocker
\7.187"

ground AN

9.625"

@ —43°

Oy

iew Vi
http://www.designot-
machinery.com/DOM/
loom_laybar_drive.avi

FIGURE P6-11

Problem 6-48 Loom
laybar drive
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* Answers in Appendix F.

T These problems are suited

to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

6-40

T6-41

6-42

6-43

6-44

6-45

6-46

*6-47

*16-48

“16-49

The linkage in Figure P6-8g has the local xy axis at —119° and OA at 29° in the global
XY coordinate system. Find w4, V4, and V in the global coordinate system for the po-
sition shown if @, = 15 rad/sec CW. Use the instant center graphical method. (Make a
copy of the figure from its PDF file and draw on it.)

The linkage in Figure P6-8g has the local xy axis at —119° and OA at 29° in the global
XY coordinate system. Find w4, V4, and V in the global coordinate system for the
position shown if @, = 15 rad/sec CW. Use an analytical method.

The linkage in Figure P6-8g has the local xy axis at —119° in the global XY coordinate
system. Write a computer program or use an equation solver to find and plot w4, V4,
and Vp in the local coordinate system for the maximum range of motion that this link-
age allows if m, = 15 rad/sec CW.

The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.
Find the piston velocities Vg, V7, Vg with the crank at —53° using a graphical method if
y = 15 rad/sec CW. (Make a copy of the figure from its PDF file and draw on it.)

The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.
Find the piston velocities Vg, V7, Vg with the crank at —53° using an analytical method
if @y =15 rad/sec CW.

The 3-cylinder radial compressor in Figure P6-8c has its cylinders equispaced at 120°.
Write a program or use an equation solver to find and plot the piston velocities Vg, V7,
Vg for one revolution of the crank if w, = 15 rad/sec CW.

Figure P6-9 shows a linkage in one position. Find the instantaneous velocities of points
A, B, and P if link O»A is rotating CW at 40 rad/sec.

Figure P6-10 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the velocity

of the coupler point P at 2° increments of crank angle for w, = 100 rpm. Check your
result with program LINKAGES.

Figure P6-11 shows a linkage that operates at 500 crank rpm. Write a computer program
or use an equation solver to calculate and plot the magnitude and direction of the velocity
of point B at 2° increments of crank angle. Check the result with program LINKAGES.

Figure P6-12 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the velocity of

FIGURE P6-10

Problem 6-47 A fourbar linkage with a double straight-line coupler curve
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FIGURE P6-12

Problem 6-49 a

the coupler point P at 2° increments of crank angle for m, = 20 rpm over the maximum
range of motion possible. Check your result with program LINKAGES.

76-50  Figure P6-13 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the velocity of
the coupler point P at 2° increments of crank angle for m, = 80 rpm over the maximum
range of motion possible. Check your result with program LINKAGES.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

“16-51 Figure P6-14 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the velocity of
the coupler point P at 2° increments of crank angle for m, = 80 rpm over the maximum
range of motion possible. Check your result with program LINKAGES.

* Answers in Appendix F.

6-52  Figure P6-15 shows a power hacksaw, used to cut metal. Link 5 pivots at Os and its
weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth on link 5 to cut the part. It is an offset crank-slider mechanism
with the dimensions shown in the figure. Draw an equivalent linkage diagram; then
calculate and plot the velocity of the sawblade with respect to the piece being cut over
one revolution of the crank at 50 rpm.

FIGURE P6-13
Problem 6-50
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FIGURE P6-14
Problem 6-51

DT These problems are suited 76-53  Figure P6-16 shows a walking-beam indexing and pick-and-place mechanism that can
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

16-54

be analyzed as two fourbar linkages driven by a common crank. The link lengths are
given in the figure. The phase angle between the two crankpins on links 4 and 5 is
given. The product cylinders being pushed have 60-mm diameters. The point of con-
tact between the left vertical finger and the leftmost cylinder in the position shown is 58
mm at 80° versus the left end of the parallelogram's coupler (point D). Calculate and
plot the absolute velocities of points £ and P and the relative velocity between points E
and P for one revolution of gear 2.

Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder. In
the position shown, AO, = 1.1 m at 178° and O4A is 0.3 m at 226°. 0,04 =0.93 m

at 163°. The V-links are rigidly attached to O4A. The air cylinder is retracted at a
constant velocity of 0.2 m/sec. Draw a kinematic diagram of the mechanism, write the
necessary equations, and calculate and plot the angular velocity of the paper roll and
the linear velocity of its center as it rotates through 90° CCW from the position shown.

*

FIGURE P6-15

Problem 6-52 Power hacksaw

workpiece

View as a video

http://www.designofmachinery.com/DOM/power_hacksaw.avi
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View as a video X <-
http://www.designofmachinery.com/ j/ 0
DOM/pick_and_place.avi

product

Gear Ratio = -1

0,A =0,D = 40 ««
0,0, =108 L3=108
05 B = 13 = eccentric radius "\
0sC=92 L7=CB=193
OgE=164 0505=128 | o X =N g

eccentric on gear 5 —

all dimensions in mm

FIGURE P6-16 Section X-X

Problem 6-53 Walking-beam indexer with pick-and-place mechanism

- . ! . .
6-55 Figure P6-18 shows a powder compaction mechanism. ¥ These problems are suited
a.  Calculate its mechanical advantage for the position shown. to solution using Mathcad,

b. Calculate and plot its mechanical advantage as a function of the angle of link AC as  Matlab, or TKSolver equa-
it rotates from 15 to 60°. tion solver programs.

76-56  Figure P6-19 shows a walking-beam mechanism. Calculate and plot the velocity V,,,
for one revolution of the input crank 2 rotating at 100 rpm.

A
Y

— _ V-links (4)

paper
rolling .
machine;

.......

rod (3) off-loading station x air cylinder (2)
FIGURE P6-17

Problem 6-54
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to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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http://www.designofmachinery.com/
DOM/powder_compacting_press.avi

AB =105 @ 44°
AC =301 @ 44°
BD =172 Fip

All lengths in mm

View as a video

FIGURE P6-18

Problem 6-55 Adapted from P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design

6-57

76-58

6-59

Figure P6-20 shows a crimping tool.

a.  Calculate its mechanical advantage for the position shown.
b. Calculate and plot its mechanical advantage as a function of the angle of link AB as
it rotates from 60 to 45°.

Figure P6-21 shows a locking pliers. Calculate its mechanical advantage for the posi-
tion shown. Scale the diagram for any needed dimensions.

Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamp-

ingitat D. O,A =70, 0,C =138, AB =35, O4B = 34, 04D = 82, and 0,04 = 48 mm.

At the position shown, link 2 is at 104°. Toggle occurs when link 2 reaches 90°.

a. Calculate its mechanical advantage for the position shown.

b. Calculate and plot its mechanical advantage as a function of the angle of link AB as
link 2 rotates from 120 to 90°.

View as a video

http://www.designofma-
chinery.com/DOM/walk- -«——
ing_beam_eight-bar.avi

FIGURE P6-19
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Frana

AB=0.80,BC=123,CD=1.55,AD=24

View as a video
FIGURE P6-20 http://www.designofmachinery.com/DOM/crimping_tool.avi

Problem 6-57

76-60 Figure P6-23 shows a surface grinder. The workpiece is oscillated under the spin-
ning 90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm
crank, a 157-mm connecting rod, and a 40-mm offset. The crank turns at 120 rpm, and
the grinding wheel turns at 3450 rpm. Calculate and plot the velocity of the grinding
wheel contact point relative to the workpiece over one revolution of the crank.

6-61 Figure P6-24 shows an inverted crank-slider mechanism. Link 2 is 2.5 in long. The
distance OyA is 4.1 in and 0,04 is 3.9 in. Find @y, 03, ®4, Va4, Vians, and Vg, for

the position shown with V4, = 20 in/sec in the direction shown.

“16-62  Figure P6-25 shows a drag link mechanism with dimensions. Write the necessary
equations, and solve them to calculate the angular velocity of link 4 for an input of ®,

= 1 rad/sec. Comment on uses for this mechanism.

76-63  Figure P6-25 shows a drag link mechanism with dimensions. Write the necessary equa-

tions, and solve them to calculate and plot the centrodes of instant center /5 4.

347

FIGURE P6-22
Problem 6-59

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P6-21
Problem 6-58

Y
e ]
F P ~G
¥ = .
TS R
1 _‘_:__________-_&———-——l-@- N -
A=A S 1 >
\Q\ e ) A
o ~ o ~— @\ N 1
S~ o | /P
S S < T~
A Vi ¥ ‘
F http://www.designofmachinery.com/
DOM/locking_toggle_pliers.avi
0.5-cm grid


http://www.designofmachinery.com/DOM/crimping_tool.avi
http://www.designofmachinery.com/DOM/locking_toggle_pliers.avi

348 DESIGN OF MACHINERY 6ed CHAPTER 6

View as a video
http://www.designofmachinery.com/

DOM/surface_grinder.avi O

grinding wheel \_5 \/"35

workpiece ‘

+ F table 4 q

D FIGURE P6-23

Problem 6-60 A surface grinder

6-64 Figure P6-26 shows a mechanism with dimensions. Use a graphical method to calculate
the velocities of points A, B, and C and the velocity of slip for the position shown. @,
=20 rad/sec.

* Answers in Appendix F. “6-65 Figure P6-27 shows a cam and follower. Distance O»A = 1.89 in and 03B = 1.645 in.
Find the velocities of points A and B, the velocity of transmission, velocity of slip, and
3 if 0y = 50 rad/sec. Use a graphical method.

6-66 Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical
method to calculate the velocities of points A, B, and C and the velocity of slip for the
position shown. ®, = 10 rad/sec.

FIGURE P6-24
Problem 6-61
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L =0.68in
Lr=138in
L3y=1221n
Ly=1.621n

FIGURE P6-25
Problems 6-62 and 6-63

Ly=135in 0, = 14°

- Ly=136 06 = 88°
0¢ |07 Ls=2.69 0,0, = 1.22@ 56.5°
Lg=1.80 0604 =3.86@ 33°

FIGURE P6-26
Problems 6-64, 6-106, 6-107

direction

FIGURE P6-27 of sliding

Problem 6-65
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Q) B
5 4
drum 6 @;
C
F;,li Ly =1.001in
out Ly=4.76 2.86 in
B Ls=455
A = 8, =99°
040, =1.69@15.5°
View as a video
http://www.designofma-
chinery.com/DOM/drum_ (on
pedal.avi
FIGURE P6-29 FIGURE P6-28
Problem 6-67 Problems 6-66, 6-108, 6-109
¥ These problems are suited 6-67 Figure P6-29 shows a drum pedal mechanism. 0»A = 100 mm at 162° and rotates to
to solution using Mathcad, 171°at A’. 0,04 =56 mm, AB = 28 mm, AP = 124 mm, and O4B = 64 mm. The

Matlab, or TKSolver equa-

distance from Oy to Fj, is 48 mm. Find and plot the mechanical advantage and the
tion solver programs.

velocity ratio of the linkage over its range of motion. If the input velocity V;, is a
constant magnitude of 3 m/sec and Fj, is constant at 50 N, find the output velocity and
output force over the range of motion and the power in.

6-68 Figure 3-33 shows a sixbar slider-crank linkage. Find all its instant centers in the posi-
tion shown.

f6-69  Calculate and plot the centrodes of instant center I»4 of the linkage in Figure 3-33 so
that a pair of noncircular gears can be made to replace the driver dyad 23.

6-70 Find the velocity of the slider in Figure 3-33 for the position shown if 6, = 110° with
respect to the global X axis assuming m, = 1 rad/sec CW:

a.  Using a graphical method.
b.  Using the method of instant centers.
c.  Using an analytical method."

f6-71  Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular velocity of link 4 and the linear velocity of
slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle of
input link 2 for a constant w, = 1 rad/sec CW. Plot V. both as a function of 6, and
separately as a function of slider position as shown in the figure. Find the percent
deviation from constant velocity over 240° <0, < 270° and over 190° <0, < 315°.
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6-72

6-73

T6-74

6-75

6-76

T6-77

6-78

T6-79

6-80

T6-81

6-82
6-83
6-84

Figure 3-34 shows Stephenson’s sixbar mechanism. Find all its instant centers in the
position shown:

a. In part (a) of the figure.
b. Inpart (b) of the figure.
c. Inpart (c) of the figure.

Find the angular velocity of link 6 of the linkage in Figure 3-34b for the position shown
(86 = 90° with respect to the x axis) assuming o, = 10 rad/sec CW:

a.  Using a graphical method.
b.  Using the method of instant centers.
c.  Using an analytical method."

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure
3-34 as a function of 0, for a constant w, = 1 rad/sec CW.

Figure 3-35 shows a Watt II sixbar mechanism. Find all its instant centers in the posi-
tion shown:

a. Inpart (a) of the figure.
b. In part (b) of the figure.

Find the angular velocity of link 6 of the linkage in Figure 3-35 with 6, = 90° assum-
ing 0y = 10 rad/sec CCW:

a.  Using a graphical method (use a compass and straightedge to draw the the linkage
with link 2 at 90°).

b.  Using the method of instant centers (use a compass and straightedge to draw the the
linkage with link 2 at 90°).

c.  Using an analytical method.¥

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure
3-35 as a function of 6, for a constant w, = 1 rad/sec CCW.

Figure 3-36 shows an eightbar mechanism. Find all its instant centers in the position
shown in part (a) of the figure.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular velocity of link 8 in the linkage of Figure 3-36
as a function of 6, for a constant ®, = 1 rad/sec CCW.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver
to calculate and plot magnitude and direction of the velocity of point P in Figure 3-37a as a
function of 6,. Also calculate and plot the velocity of point P versus point A.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate the percent error of the deviation from a perfect circle for the path of
point P in Figure 3-37a.

Repeat Problem 6-80 for the linkage in Figure 3-37b.
Find all instant centers of the linkage in Figure P6-30 in the position shown.

Find the angular velocities of links 3 and 4 and the linear velocities of points A, B and
Py in the XY coordinate system for the linkage in Figure P6-30 in the position shown.
Assume that 6, = 45° in the XY coordinate system and m, = 10 rad/sec. The coor-
dinates of the point P on link 4 are (114.68, 33.19) with respect to the xy coordinate
system:
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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§ Note that these can be
long problems to solve and
may be more appropriate for
a project assignment than
an overnight problem. In
most cases, the solution can
be checked with program
LINKAGES.
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A

76

View as a video
http://www.designof-
machinery.com/DOM/
oil_pump.avi

80

12

FIGURE P6-30

Problems 6-83 to 6-85 An oil field pump—dimensions in inches

a.  Using a graphical method.

b.  Using the method of instant centers.

c.  Using an analytical method.
%6-85

Using the data from Problem 6-84,

write a computer program or use an equation solver

such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of
the absolute velocity of point P; in Figure P6-30 as a function of 6,.

6-86

Find all instant centers of the linkage in Figure P6-31 in the position shown.

Y
- > 2.79
0, ——}//vy
\ X
6.948 9.573
9.174
I 4
P

A . B
12.971
3

FIGURE P6-31

Problems 6-86 and 6-87 An aircraft overhead bin mechanism—dimensions in inches
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6-87

6-88

6-89

6-90

6-91

6-92

6-93

6-94

6-95

6-96

6-97

6-98

6-99

Find the angular velocities of links 3 and 4, and the linear velocity of point P in the XY
coordinate system for the linkage in Figure P6-31 in the position shown. Assume that
0, = -94.121° in the XY coordinate system and ®, = 1 rad/sec. The position of the
coupler point P on link 3 with respect to point A is: p = 15.00, 33 = 0°:

a.  Using a graphical method.

b.  Using the method of instant centers.

c.  Using an analytical method."

Figure P6-32 shows a fourbar double slider known as an elliptical trammel. Find all its
instant centers in the position shown.

The elliptical trammel in Figure P6-32 must be driven by rotating link 3 in a full circle.
Points on line AB describe ellipses. Find and draw (manually or with a computer) the fixed
and moving centrodes of instant center /3. (Hint: These are called the Cardan circles.)

Derive analytical expressions for the velocities of points A and B in Figure P6-32 as a
function of 03 , @3, and the length AB of link 3. Use a vector loop equation.

The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.
Find wg and Vp in the global coordinate system for the position shown if @, = 10 rad/
sec CCW. Use the velocity difference graphical method. (Print the figure from its PDF
file and draw on it.)

The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.
Find wg and Vp in the global coordinate system for the position shown if w, = 10 rad/
sec CCW. Use the instant center graphical method. (Print the figure from its PDF file
and draw on it.)

The linkage in Figure P6-33a has link 2 at 120° in the global XY coordinate system.
Find wg and Vp in the global coordinate system for the position shown if w, = 10 rad/
sec CCW. Use an analytical method.

The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are
parallel to each other. Find w3, Vg4, Vp, and Vp if 0, = 15 rad/sec CW. Use the velocity
difference graphical method. (Print the figure’s PDF file and draw on it.)

The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are
parallel to each other. Find w3, V4, Vg, and Vp if @, = 15 rad/sec CW. Use the instant
center graphical method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P6-33b has link 3 perpendicular to the X axis and links 2 and 4 are
parallel to each other. Find m3, V4, Vp, and Vpif @, = 15 rad/sec CW. Use an analytical
method.

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2
and 5. Find instant centers /7 3 and I} 4.

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2
and 5. Find Vp, Vp3, and Vpy4 if the crossheads are each moving toward the origin of
the XY coordinate system with a speed of 20 in/sec. Use a graphical method of your
choice. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find V4 in the position shown if the veloc-
ity of the slider is 20 in/sec downward. Use the velocity difference graphical method.
(Print the figure from its PDF file and draw on it.)
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FIGURE P6-32

Elliptical trammel
Problems 6-88 to 6-90
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A Yi 0,A=620
04B=3.00
AC=1225
BC=1225
CD =5.60
| BOD=110°

(@) Sixbar linkage

5 AB=34.32
n P, BC =504
A | : APy =315

BPy=222
BP,=4152
CP, =27

- 57 ———»

(c) Dual crosshead mechanism

Lr=5 [3=5 Ls=15 BC=8
0204:25 04B=6 04C=6

(e) Drag link slider-crank

FIGURE P6-33
Problems 6-91to 6-103

O
3 4
= Oy
O i - X
P J==A

2 L =443 [,=275
o, 13=323 Ly=275

AP = 1.63

(b) Fourbar linkage

Lr,=50
L3 =84
Ly=25
L5 =289
Le=3.2
L7=64
0,04 =125
AC=24
CD=59

- 465

(d) Sixbar linkage
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(f) Eightbar mechanism
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6-100

6-101

6-102
6-103

6-104

6-105

6-106

6-107
6-108

6-109
6-110

6-111

The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find V4 in the position shown if the velocity
of the slider is 20 in/sec downward. Use the instant center graphical method. (Print the
figure from its PDF file and draw on it.)

For the linkage of Figure P6-33e, write a computer program or use an equation solver
to find and plot Vp in the global coordinate system for one revolution of link 2 if m; =
10 rad/sec CW.

The linkage of Figure P6-33f has link 2 at 130° in the global XY coordinate system.
Find Vp, in the global coordinate system for the position shown if @, = 15 rad/sec CW. 0, A
Use any graphical method. (Print the figure from its PDF file and draw on it.)

For the linkage of Figure P6-33f, locate and identify all instant centers. '

For the linkage of Figure P6-34, locate and identify all instant centers. 0,04 =AB =
BC=DE=1. 00 A=04B=BE=CD=1.75. 04C =AE =2.60.

)
For the linkage of Figure P6-34, show that /] ¢ is stationary for all positions of the link- ’

age. 0004 =AB=BC=DE=1. 0)A=04B=BE=CD=1.75. 04,C =AE=2.60. FIGURE P6-34

Figure P6-26 shows a mechanism with dimensions. Use a graphical method to deter- Problems 6-104, 6-105
mine the velocities of points A and B, and the velocity of slip for the position shown if
y = 24 rad/sec CW. Ignore links 5 and 6.

Repeat Problem 6-106 using an analytical method.

Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical
method to determine the velocities of points A and B and the velocity of slip for the
position shown if @, = 16 rad/sec CCW. Ignore links 5 and 6.

Repeat Problem 6-108 using an analytical method.

The general linkage configuration and terminology for an offset fourbar slider-crank

linkage are shown in Figure P6-2. The link lengths and the values of d and d are
defined in Table P6-5. For the row(s) assigned, find the velocity of the pin joint A and
the angular velocity of the crank using a graphical method.

The general linkage configuration and terminology for an offset fourbar slider-crank

linkage are shown in Figure P6-2. The link lengths and the values of d and d are
defined in Table P6-5. For the rows assigned, find the velocity of pin joint A and the
angular velocity of the crank using the analytic method. Draw the linkage to scale and
label it before setting up the equations.

TABLE P6-5 Data for Problems 6-110 to 6-111%

Row Link 2 Link 3 Offset d d
a 14 4 1 25 10
b 2 6 -3 5 12
c 3 8 2 8 15
d 35 10 1 -8 24
e 5 20 -5 15 _50
f 3 13 0 12 _45
g 7 25 10 25 100

¥ Drawings of these linkages are in the PDF Problem Workbook folder.
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6-112  Figure P6-7b shows an inversion of the fourbar crank-slider. Use a graphical method
to calculate the velocity of the moving joint, the velocity of slip, and the angular veloc-
ity of link 4 for the position shown. L; = 10.0 in, L, = 8.0 in, and 6, =—140 in the LCS
determined by O, and O4. ®, = 5 rad/sec.

6-113  Figure P6-7b shows an inversion of the fourbar crank-slider. Use an analytical method
to calculate and plot the angular velocity of link 4 as a function of the crank angle over
its full 360° of motion. Use the dimensions given in Problem 6-112. o, = 5 rad/sec.
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Chapter

ACCELERATION ANALYSIS

Take it to warp five, Mr. Sulu
CAPTAIN KIRK

7.0 INTRODUCTION View the lecture video (41:39)"

Once a velocity analysis is done, the next step is to determine the accelerations of all links
and points of interest in the mechanism or machine. We need to know the accelerations
to calculate the dynamic forces from F = ma. The dynamic forces will contribute to the
stresses in the links and other components. Many methods and approaches exist to find
accelerations in mechanisms. We will examine only a few of these methods here. We
will first develop a manual graphical method, which is often useful as a check on the more
complete and accurate analytical solution. Then we will derive the analytical solution for
accelerations in the fourbar and inverted crank-slider linkages as examples of the general
vector loop equation solution to acceleration analysis problems.

71 DEFINITION OF ACCELERATION

Acceleration is defined as the rate of change of velocity with respect to time. Velocity
(V, w) is a vector quantity and so is acceleration. Accelerations can be angular or linear.
Angular acceleration will be denoted as o and linear acceleration as A.
do dv
A —_

a:—, jp—
dt

. (7.1)

Figure 7-1 shows a link PA in pure rotation, pivoted at point A in the xy plane. We
are interested in the acceleration of point P when the link is subjected to an angular ve-
locity m and an angular acceleration o, which need not have the same sense. The link’s
position is defined by the position vector R, and the velocity of point P is Vps. These
vectors were defined in equations 6.2 and 6.3 which are repeated here for convenience.
(See also Figure 6-1.)
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FIGURE 7-1

Acceleration of a link in pure rotation with a positive (CCW) o, and a negative (CW) o,

RPA = peje (6.2)
Vpy = =pjel” —=pwje’ 6.3
e e LY (6.3)

where p is the scalar length of the vector Rps. We can easily differentiate equation 6.3 to
obtain an expression for the acceleration of point P:

.
s

o dm 0 dO
Ay, =] e’e—+m'eJe—] 7.2
PA ]P( o el (7.2)
Apy = Pajeje - sz el

Apy =Ab,+Al,

Note that there are two functions of time in equation 6.3, 8 and ®. Thus there are
two terms in the expression for acceleration, the tangential component of acceleration
involving o and the normal (or centripetal) component A" involving @2, As a result
of the differentiation, the tangential component is multiplied by the (constant) complex
operator j. This causes a rotation of this acceleration vector through 90° with respect to
the original position vector. (See also Figure 4-8b.) This 90° rotation is nominally posi-
tive, or counterclockwise (CCW). However, the tangential component is also multiplied
by o, which may be either positive or negative. As a result, the tangential component of
acceleration will be rotated 90° from the angle 6 of the position vector in a direction
dictated by the sign of o.. This is just mathematical verification of what you already
knew, namely that tangential acceleration is always in a direction perpendicular to the
radius of rotation and is thus tangent to the path of motion as shown in Figure 7-1. The
normal, or centripetal, acceleration component is multiplied by j2, or —1. This directs the
centripetal component at 180° to the angle 0 of the original position vector, i.e., toward
the center (centripetal means foward the center). The total acceleration A py of point P
is the vector sum of the tangential A, and normal A’ components as shown in Figure
7-1 and equation 7.2.
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Substituting the Euler identity (equation 4.4a) into equations 7.2 gives us the real and
imaginary (or x and y) components of the acceleration vector.

Ap, = po(-sin®+ jcos®)— pw? (cosO+ jsin) (7.3)

The acceleration Apy in Figure 7-1 can be referred to as an absolute acceleration
since it is referenced to A, which is the origin of the global coordinate axes in that system.
As such, we could have referred to it as Ap, with the absence of the second subscript
implying reference to the global coordinate system.

Figure 7-2a shows a different and slightly more complicated system in which the
pivot A is no longer stationary. It has a known linear acceleration A 4 as part of the trans-
lating carriage, link 3. If o is unchanged, the acceleration of point P versus A will be the
same as before, but A ps can no longer be considered an absolute acceleration. It is now
an acceleration difference and must carry the second subscript as Aps. The absolute
acceleration Ap must now be found from the acceleration difference equation whose
graphical solution is shown in Figure 7-2b:

Ap=A, +Apy
(7.4)
(b +ap)=(A%+A%)+(Aby+AT,)

Note the similarity of equations 7.4 to the velocity difference equation (equation
6.5). Note also that the solution for Ap in equation 7.4 can be found by adding either the
resultant vector A p4 or its normal and tangential components A%, and A%, to the vector
A, in Figure 7-2b. The vector A4 has a zero normal component in this example because
link 3 is in pure translation.

Figure 7-3 shows two independent bodies P and A, which could be two automobiles,
moving in the same plane. Auto #1 is turning and accelerating into the path of auto #2,
that is decelerating to avoid a crash. If their independent accelerations Ap and Ay are
known, their relative acceleration Ap, can be found from equation 7.4 arranged alge-
braically as:

(a) (b)
FIGURE 7-2

Acceleration difference in a system with a positive (CCW) 0, and a negative (Cw) ®
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FIGURE 7-3
Relative acceleration

The graphical solution to this equation is shown in Figure 7-3b.

As we did for velocity analysis, we give these two cases different names despite the
fact that the same equation applies. Repeating the definition from Section 6.1, modified
to refer to acceleration:

CASE 1: Two points in the same body => acceleration difference

CASE 2: Two points in different bodies => relative acceleration

72 GRAPHICAL ACCELERATION ANALYSIS

The comments made in regard to graphical velocity analysis in Section 6.2 apply as well
to graphical acceleration analysis. Historically, graphical methods were the only practical
way to solve these acceleration analysis problems. With some practice, and with proper
tools such as a drafting machine, drafting instruments, or a CAD package, one can fairly
rapidly solve for the accelerations of particular points in a mechanism for any one input
position by drawing vector diagrams. However, if accelerations for many positions of the
mechanism are to be found, each new position requires a completely new set of vector
diagrams be drawn. Very little of the work done to solve for the accelerations at position 1
carries over to position 2, etc. This is an even more tedious process than that for graphical
velocity analysis because there are more components to draw. Nevertheless, this method
still has more than historical value as it can provide a quick check on the results from a
computer program solution. Such a check only needs to be done for a few positions to
prove the validity of the program.

To solve any acceleration analysis problem graphically, we need only three equations,
equation 7.4 and equations 7.6 (which are merely the scalar magnitudes of the terms in
equation 7.2):

|a=4"=ra
(7.6)

‘A” = A" = r?
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Note that the scalar equations 7.6 define only the magnitudes (A%, A”) of the compo-
nents of acceleration of any point in rotation. In a CASE 1 graphical analysis, the direc-
tions of the vectors due to the centripetal and tangential components of the acceleration
difference must be understood from equation 7.2 to be perpendicular to and along the
radius of rotation, respectively. Thus, if the center of rotation is known or assumed, the
directions of the acceleration difference components due to that rotation are known and
their senses will be consistent with the angular velocity ® and angular acceleration o.of
the body.

Figure 7-4 shows a fourbar linkage in one particular position. We wish to solve for
the angular accelerations of links 3 and 4 (03, 04) and the linear accelerations of points A,
B, and C (A4, Ag, Ac). Point C represents any general point of interest such as a coupler
point. The solution method is valid for any point on any link. To solve this problem, we
need to know the lengths of all the links, the angular positions of all the links, the angu-
lar velocities of all the links, and the instantaneous input acceleration of any one driving
link or driving point. Assuming that we have designed this linkage, we will know or can
measure the link lengths. We must also first do a complete position and velocity analysis
to find the link angles 03 and 64 and angular velocities m3 and ®4 given the input link’s
position 0, input angular velocity ®,, and input acceleration 0. This can be done by any
of the methods in Chapters 4 and 6. In general we must solve these problems in stages,
first for link positions, then for velocities, and finally for accelerations. For the following
example, we will assume that a complete position and velocity analysis has been done and
that the input is to link 2 with known 6,, ®,, and oy, for this one “freeze-frame” position
of the moving linkage.

,@DEXAMPLE 71

Graphical Acceleration Analysis for One Position of a Fourbar Linkage.
Problem: Given 05, 03, 04, ), ®3, O4, 0, find 03, 04, Ag, Ap, Ap by graphical methods.
Solution: (See Figure 7-4.)

1 Start at the end of the linkage about which you have the most information. Calculate the mag-
nitudes of the centripetal and tangential components of acceleration of point A using scalar
equations 7.6.

Al =(A0,)03; Al =(A0y)a, (a)

2 On the linkage diagram, Figure 7-4a, draw the acceleration component vectors A"y and A%
with their lengths equal to their magnitudes at some convenient scale. Place their roots at point
A with their directions respectively along and perpendicular to the radius AO,. The sense of
A4 is defined by that of o) (according to the right-hand rule), and the sense of A" is the op-
posite of that of the position vector R4 as shown in Figure 7-4a.

3 Move next to a point about which you have some information, such as B on link 4. Note that
the directions of the tangential and normal components of acceleration of point B are predict-
able since this link is in pure rotation about point O4. Draw the construction line pp through
point B perpendicular to BOy, to represent the direction of A as shown in Figure 7-4a.
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FIGURE 7-4
Graphical solution for acceleration in a pin-jointed linkage with a negative (Cw) o, and a positive (CCW ) ®,
4 Write the acceleration difference vector equation 7.4 for point B versus point A.
AB = AA + ABA (b)
Substitute the normal and tangential components for each term:
(Ah+ag)=(al+A%)+(Ak+A%) ©

We will use point A as the reference point to find A because A is in the same link as B and we
have already solved for A, and A", . Any two-dimensional vector equation can be solved
for two unknowns. Each term has two parameters, namely magnitude and direction. There are
then potentially twelve unknowns in this equation, two per term. We must know ten of them
to solve it. We know both the magnitudes and directions of A and A", and the directions
of A% and A’} that are along line pp and line BOy, respectively. We can also calculate the
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magnitude of A% from equation 7.6 since we know wy. This provides seven known values.
‘We need to know three more parameters to solve the equation.

The term Apgy represents the acceleration difference of B with respect to A. This has two
components. The normal component A%, is directed along the line BA because we are us-
ing point A as the reference center of rotation for the free vector w3, and its magnitude can be
calculated from equation 7.6. The direction of A%, must then be perpendicular to the line BA.
Draw construction line gq through point B and perpendicular to BA to represent the direction
of A%, asshown in Figure 7-4a. The calculated magnitude and direction of component A%,
and the known direction of AL, provide the needed additional three parameters.

Now the vector equation can be solved graphically by drawing a vector diagram as shown in
Figure 7-4b. Either drafting tools or a CAD package is necessary for this step. The strategy
is to first draw all vectors for which we know both magnitude and direction, being careful to
arrange their senses according to equation 7.4.

First draw acceleration vectors ( A'; ) and ( A"} ) tip to tail, carefully to some scale, main-
taining their directions. (They are drawn twice size in the figure.) Note that the sum of these
two components is the vector A4. The equation in step 4 says to add Ags to A4. We know
A%, , so we can draw that component at the end of A4. We also know A%, but this component
is on the left side of equation 7.4, so we must subtract it. Draw the negative (opposite sense)
of A% attheend of A%y .

This exhausts our supply of components for which we know both magnitude and direc-
tion. Our two remaining knowns are the directions of A and AL, that lie along the lines pp
and ¢gq, respectively. Draw a line parallel to line gq across the tip of the vector representing
minus A’ . The resultant, or left side of the equation, must close the vector diagram, from the
tail of the first vector drawn (A,) to the tip of the last, so draw a line parallel to pp across the
tail of A4. The intersection of these lines parallel to pp and gq defines the lengths of A% and
A%, . The senses of these vectors are determined from reference to equation 7.4. Vector A4
was added to A g4, so their components must be arranged tip to tail. Vector Ap is the resultant,
so its component A% must be from the tail of the first to the tip of the last. The resultant vec-
tors are shown in Figure 7-4b and d.

The angular accelerations of links 3 and 4 can be calculated from equation 7.6:

Al Al
(14 = —B (13 = —BA (d)
BO, BA

Note that the acceleration difference term A%, represents the rotational component of ac-
celeration of link 3 due to oi3. The rotational acceleration o of any body is a “free vector”
which has no particular point of application to the body. It exists everywhere on the body.

Finally we can solve for A using equation 7.4 again. We select any point in link 3 for which
we know the absolute velocity to use as the reference, such as point A.
Ac=A,+Acy (e)

In this case, we can calculate the magnitude of AL, from equation 7.6 as we have already found
03,

Ay =coi3 )

363




364

DESIGN OF MACHINERY 6ed CHAPTER 7

The magnitude of the component A, can be found from equation 7.6 using ;.
Ay =co3 ®)

Since both A4 and A4 are known, the vector diagram can be directly drawn as shown in
Figure 7-4c. Vector A is the resultant that closes the vector diagram. Figure 7-4d shows the
calculated acceleration vectors on the linkage diagram.

The above example contains some interesting and significant principles that deserve
further emphasis. Equations 7.4 are repeated here for discussion.

APZAA+APA (74)

(Ah+A%)=(Al + A% )+(Aby + AL )

These equations represent the absolute acceleration of some general point P referenced
to the origin of the global coordinate system. The right side defines it as the sum of the
absolute acceleration of some other reference point A in the same system and the accelera-
tion difference (or relative acceleration) of point P versus point A. These terms are then
further broken down into their normal (centripetal) and tangential components that have
definitions as shown in equation 7.2.

Let us review what was done in Example 7-1 in order to extract the general strategy
for solution of this class of problem. We started at the input side of the mechanism, as that
is where the driving angular acceleration oy was defined. We first looked for a point (A)
for which the motion was pure rotation. We then solved for the absolute acceleration of
that point (A4) using equations 7.4 and 7.6 by breaking A4 into its normal and tangential
components. (Steps 1 and 2)

We then used the point (A) just solved for as a reference point to define the translation
component in equation 7.4 written for a new point (B). Note that we needed to choose
a second point (B) in the same rigid body as the reference point (A) that we had already
solved, and about which we could predict some aspect of the new point’s (B’s) accelera-
tion components. In this example, we knew the direction of the component Al , though
we did not yet know its magnitude. We could also calculate both magnitude and direction
of the centripetal component, A%, since we knew 4 and the link length. In general this
situation will obtain for any point on a link that is jointed to ground (as is link 4). In this
example, we could not have solved for point C until we solved for B, because point C is
on a floating link for which we do not yet know the angular acceleration or absolute ac-
celeration direction. (Steps 3 and 4)

To solve the equation for the second point (B), we also needed to recognize that the
tangential component of the acceleration difference A%, is always directed perpendicu-
lar to the line connecting the two related points in the link (B and A in the example). In
addition, you will always know the magnitude and direction of the centripetal accelera-
tion components in equation 7.4 if it represents an acceleration difference (CASE 1)
situation. If the two points are in the same rigid body, then that acceleration difference
centripetal component has a magnitude of ro* and is always directed along the line con-
necting the two points, pointing toward the reference point as the center (see Figure 7-2).
These observations will be true regardless of the two points selected. But, note this is not
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true in a CASE 2 situation as shown in Figure 7-3a where the normal component of accel-
eration of auto #2 is not directed along the line connecting points A and P. (Steps 5 and 6)

Once we found the absolute acceleration of point B (Ap), we could solve for 0y, the
angular acceleration of link 4 using the tangential component of Ap in equation (d). Be-
cause points A and B are both on link 3, we could also determine the angular acceleration
of link 3 using the tangential component of the acceleration difference A g4 between points
B and A, in equation (d). Once the angular accelerations of all the links were known,
we could then solve for the linear acceleration of any point (such as C) in any link using
equation 7.4. To do so, we had to understand the concept of angular acceleration as a free
vector, which means that it exists everywhere on the link at any given instant. It has no
particular center. It has an infinity of potential centers. The link simply has an angular
acceleration. Itis this property that allows us to solve equation 7.4 for literally any point
on a rigid body in complex motion referenced to any other point on that body. (Steps
7 and 8)

73 ANALYTICAL SOLUTIONS FOR ACCELERATION ANALYSIS

The Fourbar Pin-Jointed Linkage

The position equations for the fourbar pin-jointed linkage were derived in Section 4.5.
The linkage was shown in Figure 4-6 and is shown again in Figure 7-5a on which we also
show an input angular acceleration o) applied to link 2. This input angular acceleration
o may vary with time. The vector loop equation was shown in equations 4.5a and c,
repeated here for your convenience.

R2 +R3 —R4 _Rl =0 (4.5a)

As before, we substitute the complex number notation for the vectors, denoting their
scalar lengths as a, b, ¢, d as shown in Figure 7-5.

ael® 4+ el —cel® —del® =0 (4.5¢0)

In Section 6.7, we differentiated equation 4.5¢ versus time to get an expression for
velocity which is repeated here.

jau)zej62 +jb033eje3 —jcu)4eje4 =0 (6.14c)

We will now differentiate equation 6.14c versus time to obtain an expression for ac-
celerations in the linkage. Each term in equation 6.14c contains two functions of time, 6
and . Differentiating with the chain rule in this example will result in two terms in the
acceleration expression for each term in the velocity equation.

(jza(o% e/ 4 jao, e/%2 )+ (jzbwg e 4 jb o3 e/% )— (jzcmi el 4 jeoy e/ ): 0 (7.7a)
Simplifying and grouping terms:

(a(x2 jel® - am3 e/®2 )+ (b(x3 jel% — b(o% e/% )— (coc4 jel% — col e/ ) =0 (7.7b)
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Position vector loop for a fourbar linkage showing acceleration vectors

Compare the terms grouped in parentheses with equations 7.2. Equation 7.7 contains
the tangential and normal components of the accelerations of points A and B and of the
acceleration difference of B to A. Note that these are the same relationships that we used
to solve this problem graphically in Section 7.2. Equation 7.7 is, in fact, the acceleration
difference equation 7.4 which, with the labels used here, is:

AA+ABA_AB =0 (783.)
where: A, = (Ai, +AZ) = (aocz je’® —aw? ejez)
Ay = (A% +Aba )= (bots jel® —bwiel®) (7.8b)

Ap= (AtB +A§): (coc4 je’® —cw? ej94)

The vector diagram in Figure 7-5b shows these components and is a graphical solu-
tion to equation 7.8a. The vector components are also shown acting at their respective
points on Figure 7-5a.

We now need to solve equation 7.7 for o3 and 0y, knowing the input angular ac-
celeration on, the link lengths, all link angles, and angular velocities. Thus, the position
analysis derived in Section 4.5 and the velocity analysis from Section 6.7 must be done
first to determine the link angles and angular velocities before this acceleration analysis
can be completed. We wish to solve equations 7.8 to get expressions in this form:

(X3 =f(a, b, c, d, 92,63, 64,(02,(03,(1)4,&2) (7.9&)
oy =g(a,b,c,d,6,,05,0,,0,, 05,0, 0) (7.9b)

The strategy of solution will be the same as was done for the position and velocity
analysis. First, substitute the Euler identity from equation 4.4a in each term of equation 7.7:
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[ a0y j(cos8, + jsin®, ) aw3 (cosd, + jsin®, ) |
+[ bty j(cos; + jsind;)~ b (cosd; + jsin6;) | (7.10a)
—[C(x4j(cose4 +jsing, ) —cw? (cos, +jsin94)}=0
Multiply by the operator j and rearrange:
[ a0y (~sin®, + jcos, ) - aw3 (cos6, + jsing, )|
+[ bt (~sin; + jeosd )~ bw3 (cos; + jsin; ) (7.10b)

- [coc4(—sin64 +jcose4)—ccoi(cos64 +jsin64)}= 0

We can now separate this vector equation into its two components by collecting all
real and all imaginary terms separately:

real part (x component):

—aoL, sin®, — aw3 cosB, —boi;sinB; — b3 cosB; +co, sinb, +c w3 cosd, =0 (7.11a)
imaginary part ( y component):
aoi, cosO, — a3 sin 6, + bo; cosB; — b(x)% sinB3; —coi, cosO, + cw’sing, =0 (7.11b)

Note that the j’s have canceled in equation 7.11b. We can solve equations 7.11a and
7.11b simultaneously to get:

CD- AF
O3 =——— (7.12a)
AE -BD
CE - BF
Oy =——— (7.12b)
AE —-BD
where:
A=csinf,
B=bsin0;
C=ao,sin®, + a(x)% cos9, + b(x)% cos03 — cwi cosfy,
D=ccosf, (7.12¢)

E =bcos6,

F =ao., cos0, — am% sin6, — bm% sin6; + cmi sinf,

Once we have solved for o3 and 0y, we can then solve for the linear accelerations by
substituting the Euler identity into equations 7.8b,
A, = . . 2 ..
A =00, (—sm92 +]cos92)— am; (c0562 +Jsm92)
_ : 2 _ 2 .

A, =-a0,sind, —awj cosb, A4, = a0 cos 0, —am; sin6, (7.13a)

Ap,=boy (—sin93 +jcose3)—bw§ (00593 + jsin63)
Apy =-bossinb; —bw3 cosb, Apa, =bot3cos0; —bw?sin6;, (7.13b)

Ag=cay(-sind, + jcos, )—cwj (cosby + jsin@, )
Ap =—coysinb, —co)i cosf, ABy =co0, cos0y, —cu)i sin®
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where the real and imaginary terms are the x and y components, respectively. Equations
7.12 and 7.13 provide a complete solution for the angular accelerations of the links and
the linear accelerations of the joints in the pin-jointed fourbar linkage.

,@D EXAMPLE 7-2

Acceleration Analysis of a Fourbar Linkage with the Vector Loop Method.

Problem: Given a fourbar linkage with the link lengths L; = d = 100 mm, L, = a = 40 mm,

Ly =b =120 mm, L4 = ¢ = 80 mm. For 6, = 40°, 0, = 25 rad/sec, and o, = 15
rad/sec? find the values of o3 and 0y, A4, Ay, and Ap for the open circuit of the
linkage. Use the angles and angular velocities found for the same linkage and
position in Example 6-7.

Solution: (See Figure 7-5 for nomenclature.)

1

3

Example 4-1 found the link angles for the open circuit of this linkage in this position to be
03 = 20.298° and 6,4 = 57.325°. Example 6-7 found the angular velocities at this position to
be w3 =—4.121 and w4 = 6.998 rad/sec.

Use these angles, angular velocities, and equations 7.12 to find a3 and oy for the open circuit.
First find the parameters in equation 7.12c.

A=csin6, =80sin57.325° = 67.340

B = bsin03 =120sin20.298° = 41.628

C =aol,sin, + aw% cos6, + bw% cos03 — cwi cos0,
= 40(15)sin 40° + 40(25)” cos 40° +120(—4.121)” c0s20.298° — 80(6.998)” cos 57.325°
=19332.98

D =ccos6, =80c0s57.325° = 43.190 (a)
E =bcosB; =120c0s20.298° = 112.548

F = ao., cos8, —am3 sin6, — bw% sin@; + cw} sin0,

= 40(15)cos 40° — 40(25)” sin 40° ~ 120(—4.121)” sin 20.298° + 80(6.998)” sin 57.325°

=-13019.25
Then find o3 and 0y with equations 7.12a and b.
CD—- AF 19332.98(43.190)—-67.340(—13 019.25
o= = ( ) ( ) =296.089 rad/sec’ (b)
AE - BD 67.340(112.548) — 41.628(43.190)
E—BF 19332.98(112.548)—41.628(—-13 019.25
Oy = c = ( ) ( ) = 470.134 rad/sec? (c)

 AE-BD  67.340(112.548) - 41.628(43.190)

4 Use equations 7.13 to find the linear accelerations of points A and B.

A 5, =-aoy, sinB, — aw; cosO, =—40(15)sin 40°— 40(25)” cos 40° = —19.537 m/sec?
(d)
A4, =a0, cost, - am? sin®, = 40(15)cos 40°— 40(25)” sin 40° = ~15.617 m/sec’
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Apy =-bosin®; - b3 cos 6,
= ~120(269.089)sin 20.298° — 120(—4.121)” c0s20.298° = —14 237 m/sec’

(e)
ABAy =bot3 cosO; —bw?sin6,
=120(269.089)c0s20.298°— 120 (—4.121)” 5in 20.298° = 32.617 m/sec?
Ap =-—coysinb, —cm?cosh,
= -80(470.134)sin 57.325° — 80(6.998)” c0s57.325° = —33.774 m/sec’
o))

ABy =coi, cosO, —cw?sing,

= 80(470.134) c0s 57.325° — 80(6.998)” sin 57.325° = 17.007 m/sec?

The Fourbar Crank-Slider

The first inversion of the offset crank-slider has its slider block sliding against the ground
plane as shown in Figure 7-6a. Its accelerations can be solved for in similar manner as
was done for the pin-jointed fourbar.

The position equations for the fourbar offset crank-slider linkage (inversion #1) were
derived in Section 4.6. The linkage was shown in Figures 4-9 and 6-21 and is shown
again in Figure 7-6a on which we also show an input angular acceleration o, applied to
link 2. This o, can be a time-varying input acceleration. The vector loop equations 4.14
are repeated here for your convenience.

R, -R;-R,-R; =0 (4.14a)

ael® —pel® — el _ gl = (4.14b)

FIGURE 7-6

Position vector loop for a fourbar crank-slider linkage showing acceleration vectors
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In Section 6.7 we differentiated equation 4.14b with respect to time noting thata, b, c,
01, and 0,4 are constant but the length of link d varies with time in this inversion.

jau)zej62 —jbu)3ej93 —d=0 (6.20a)
The term d is the linear velocity of the slider block. Equation 6.20a is the velocity
difference equation.

We now will differentiate equation 6.20a with respect to time to get an expression for
acceleration in this inversion of the crank-slider mechanism.

(jaotzeje2 +j2aw%ej92 )— (jb a3ej93 +j2bu)§ej63 )— d=0 (7.14a)

Simplifying:

(aazjewz_aoéeﬁz)_(ba3ﬁﬂ%__bmgeﬁs)_dzo (7.14b)

Note that equation 7.14 is again the acceleration difference equation:
AA - AAB - AB =0
ABA = _AAB (7.153)
AB = AA + ABA
Ay = (AfL‘ +A'},) = (aocz je® —aw? e/ )
Ag, :(A%A +A§A):(boc3 je!® —bw? eje3) (7.15b)

Agp=AL=d

In this mechanism, link 4 is in pure translation and so has zero m4 and zero 0y. The
acceleration of link 4 has only a “tangential” component of acceleration along its path.

The two unknowns in the vector equation 7.14 are the angular acceleration of link

3, a3, and the linear acceleration of link 4, d. To solve for them, substitute the Euler
identity,

ao, (~sin®, + jcosd, ) - aw3 (cosd, + jsinG, )
-bogy (—sin93 +jcose3)+bu)§ (cos63 + jsin93)— d=0 (7.16a)
and separate the real (x) and imaginary (y) components:
real part (x component):
—aol, sin®, — am? cosB, +bai; sin®; +bw3 cosO; — d=0 (7.16b)
imaginary part (y component):
ao, cosB, —aw3 sin®, —ba; cosOs +bm3 sin®y =0 (7.160)

Equation 7.16¢ can be solved directly for o3 and the result substituted in equation
7.16b to find d.
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aot, cos®, —ams sind, + bu)% sin03
OL3 =
bcosB,

(7.16d)
d=—ac,sin®, —am3 cosd, +bo; sin; +bw3 cos; (7.16¢)

The other linear accelerations can be found from equation 7.15b and are shown in
the vector diagram of Figure 7-6b.

ZDEXAMPLE 7-3

Acceleration Analysis of a Fourbar Crank-Slider Linkage with a Vector Loop Method.

Problem: Given a fourbar crank-slider linkage with the link lengths L, = a = 40 mm,
Ly = b =120 mm, offset = ¢ = -20 mm. For 0, = 60°, w, = -30 rad/sec, and 0, =
20 rad/sec?, find o3 and linear acceleration of the slider for the open circuit. Use
the angles, positions, and angular velocities found for the same linkage in Examples
4-2 and 6-8.

Solution: (See Figure 7-6 for nomenclature.)

1 Example 4-2 found angle 63 = 152.91° and slider position d = 126.84 mm for the open circuit.
Example 6-8 found the the coupler angular velocity ®3 to be 5.616 rad/sec.

2 Using equation 7.16d and the data from step 1, calculate the coupler angular acceleration ot3.

_ao,cos, —a®3sing, +bw3sind,

o
? bcos6;

2 . 2 .
40(20)cos60° —40(—30)" sin60° +120(5.616) sin152.91°
= ( ) ( ) ( ) =271.94 rad/sec®>  (a)
120cos152.91°

3 Using equation 7.16e and the data from steps 1 and 3, calculate the slider acceleration d.

d= —ao, sinB, — am? cos®, +bat; sinO; +bw? cosO,
=—40(20)sin 60° - 40(—30)” cos60° +120(271.94)sin 152.91° +120(5.616) cos152.91°
=-7.203 m/sec’ (b)

The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section. The name change indicates that it will be
driven with the slider as input and the crank as output. This is sometimes referred to as a
“back-driven” crank-slider. We will use the term slider-crank to define it as slider-driven.
This is a very commonly used linkage configuration. Every internal-combustion, piston
engine has as many of these as it has cylinders. The vector loop is as shown in Figure 7-6
and the vector loop equation is identical to that of the crank-slider (equation 4.14a). The

derivation for 6, and ®, as a function of slider position d and slider velocity d were done,
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* The crank-slider and
slider-crank linkage

both have two circuits or
configurations in which
they can be independently
assembled, sometimes
called open and crossed.
Because effective link 4 is
always perpendicular to the
slider axis, it is parallel to
itself on both circuits. This
results in the two circuits
being mirror images of one
another, mirrored about a
line through the crank pivot
and perpendicular to the
slide axis. Thus, the choice
of value of slider position
d in the calculation of the
slider-crank linkage deter-
mines which circuit is being
analyzed. But, because of
the change points at TDC
and BDC, the slider-crank
has two branches on each
circuit and the two solutions
obtained from equation 4.21
represent the two branches
on the one circuit being
analyzed. In contrast, the
crank-slider has only one
branch per circuit because
when the crank is driven, it
can make a full revolution
and there are no change
points to separate branches.
See Section 4.13 for a
more complete discussion
of circuits and branches in
linkages.
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respectively, in Sections 4-7 and 6-7. Now we want to solve for o, and o3 as a function of
slider acceleration d and the known lengths, angles, and angular velocities of the links.

We can start with equations 7.16b and c, which also apply to this linkage:

—ao, sin®, — am3 cosh, +boiysind; +bm3 cosO; — d=0 (7.16b)

ao, cosB, —aw3 sin®, —bai; cosO; +bw3 sinds =0 (7.16¢)
Solve equation 7.16¢ for o3 in terms of ..

_ao, cosH, —am% sin 0, +bm§ sin0;

o 7.17a
3 bcosB, ( )
Substitute equation 7.17a for a3 in equation 7.16b and solve for .
5 ) ) ,
am; (cos0, cosB; +sinB, sin6; )—bw3 +dcosO
oy = —2 (cos6, cos6 2 5in0;)-bos : (7.17b)

a(cos(92 sin@; —sin®, cose3)

The circuit of the linkage depends on the value of d chosen and the angular accelerations
will be for the branch represented by the values of 8, and 63 used from equation 4.21.”

,@DEXAMPLE 7-4

Acceleration Analysis of a Fourbar Slider-Crank Linkage with a Vector Loop Method.

Problem: Given a fourbar slider-crank linkage with the link lengths Ly = a = 40 mm,
L3 = b = 120 mm, offset = ¢ = —20 mm. For d = 100 mm and d =900 mm/sec?,
find o, and o3 for both branches of one circuit of the linkage. Use the angles and
angular velocities found for the same linkage in Example 4-3 and Example 6-9,
respectively.

Solution: (See Figure 7-6 for nomenclature.)

I Example 4-3 found angles 8, = 95.80°, 03, = 150.11° for branch 1 of this linkage. Example
6-9 found the the angular velocities to be ty =-32.023 and 3, =~1.244 rad/sec for branch 1.

2 Using equation 7.17b and the data from step 1, calculate the crank angular acceleration o .

5 ) ) 5
_awy (c05621 cosB3 +sin6, sinB; )— bwz +dcosbs

(XZ -
1 . .
ot(cosez1 sinB3 —sin cos931)
o - 40(~32.023)* (c0s95.80° cos150.11° + in 95.80° sin 150.11°) — 120(~1.244)” +900c0s150.11°
2 40(c0s95.80°sin150.11° —sin 95.80°c0s 150.11°)
0, =706.753 rad/sec’ (@)

3 Using equation 7.17a and the data from steps 1 and 2, calculate the coupler angular accelera-
tion 03,
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aoy, cos, — am%l sin6, +bw§1 sin63

Oy =
31 bcos6;
40( - 706.753) 05 95.80° — 40(~32.023)” 5in 95.80° + 120( — 1.244)° 5in150.11°
o =
& 120¢0s150.11°
03, =418.804 rad/sec? (b)

4 Example 4-3 found angles 6, =1 18.42°, 03, = 187.27° for branch 2 of this linkage. Example
6-9 found the the angular velocities to be ,, = 36.64 and w3, = 5.86 rad/sec for branch 2.
Using equation 7.17b and the data from step 3, calculate the crank angular acceleration 0.,
for branch 2.

am%2 (cos622 cosB3, +sinB, sinB; )— bo)%2 +dcosb;,

(12 -
2 a(cosez2 sinB3, —sin®,, cos6;, )
o - 40(36.64) (cos—118.42°cos187.27° + sin— 118.42° sin 187.27°) —120(5.86)” + 900 c0s187.27°
2 40[ cos(~118.42°)sin 187.27° —sin (~118.42°) cos187.27°|
0, =—809.801 rad/sec? (c)

5 Using equation 7.17a and the data from steps 3 and 4, calculate the coupler angular accelera-
tion 033,

o - aoy, cosb, — aw%z sin®, + boo%2 sin63,
3 =

2 bcosOs
40( - 809.801) cos—118.42° — 40(36.64)” sin—118.42° + 120( 5.859) sin 187.27°
o =
%2 120c0s187.27°
o3, =—521.852 rad/sec? (d)

Coriolis Acceleration

The examples used for acceleration analysis above have involved only pin-jointed link-
ages or the inversion of the crank-slider in which the slider block has no rotation. When
a sliding joint is present on a rotating link, an additional component of acceleration will
be present, called the Coriolis component, after its discoverer. Figure 7-7a shows a
simple, two-link system consisting of a link with a radial slot and a slider block free to
slip within that slot.

The instantaneous location of the block is defined by a position vector (Rp) refer-
enced to the global origin at the link center. This vector is both rotating and changing
length as the system moves. As shown this is a two-degree-of-freedom system. The two
inputs to the system are the angular acceleration (o) of the link and the relative linear slip
velocity (V pgip) of the block versus the disk. The angular velocity @ is a result of the time
history of the angular acceleration. The situation shown, with a counterclockwise o and
a clockwise m, implies that earlier in time the link had been accelerated up to a clockwise
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FIGURE 7-7
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angular velocity and is now being slowed down. The transmission component of veloc-
ity (Vpsrans) 18 a result of the m of the link acting at the radius Rp whose magnitude is p.

We show the situation in Figure 7-7 at one instant of time. However, the equations to
be derived will be valid for all time. We want to determine the acceleration at the center
of the block (P) under this combined motion of rotation and sliding. To do so, we first
write the expression for the position vector Rp that locates point P.

R, = pel® (7.182)

Note that there are two functions of time in equation 7.17, p and 6. When we
differentiate versus time, we get two terms in the velocity expression:

Vp = po, je/%2 + pe®2 (7.18b)
These are the transmission component and the slip component of velocity.

VP = VPtrans + VPSlip (7.18C)

The po term is the transmission component and is directed at 90 degrees to the axis
of slip that, in this example, is coincident with the position vector Rp. The p term is the
slip component and is directed along the axis of slip in the same direction as the position

vector in this example. Their vector sum is Vp as shown in Figure 7-7a.

To get an expression for acceleration, we must differentiate equation 7.18 versus
time. Note that the transmission component has three functions of time in it, p, ®, and 6.
The chain rule will yield three terms for this one term. The slip component of velocity
contains two functions of time, p and 0, yielding two terms in the derivative for a total of
five terms, two of which turn out to be the same.

Ap :(poczjej92 +poo%j2ej62 +po)2jejez )+(pw2jej62 +1'5ej62 ) (7.19a)

slip

Ap

coriolis

The Coriolis component of acceleration shown in a system with a positive (CCw) o and a negative(CW) ®
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Simplifying and collecting terms:
Ap= poczjej92 - po)%ej92 +2p0)2jej92 + pel® (7.19b)
These terms represent the following components:

Ap (7.19¢)

= APtangential + APnormal + APcoriolis + APslip

Note that the Coriolis term has appeared in the acceleration expression as a result of
the differentiation simply because the length of the vector p is a function of time. The
Coriolis component magnitude is twice the product of the velocity of slip (equation 7.18)
and the angular velocity of the link containing the slider slot. Its direction is rotated 90
degrees from that of the original position vector Rp either clockwise or counterclockwise
depending on the sense of m.” (Note that we chose to align the position vector Rp with
the axis of slip in Figure 7-7 which can always be done regardless of the location of the
center of rotation—also see Figure 7-6 where R is aligned with the axis of slip.) All
four components from equations 7.19 are shown acting on point P in Figure 7-7b. The
total acceleration Ap is the vector sum of the four terms as shown in Figure 7-7c. Note
that the normal acceleration term in equation 7.19b is negative in sign, so it becomes a
subtraction when substituted in equation 7.19c.

This Coriolis component of acceleration will always be present when there is
a velocity of slip associated with any member that also has an angular velocity. In
the absence of either of those two factors the Coriolis component will be zero. You
have probably experienced Coriolis acceleration if you have ever ridden on a carousel or
merry-go-round. If you attempted to walk radially from the outside to the inside (or vice
versa) while the carousel was turning, you were thrown sideways by the inertial force
due to the Coriolis acceleration. You were the slider block in Figure 7-7, and your slip
velocity combined with the rotation of the carousel created the Coriolis component. As
you walked from a large radius to a smaller one, your tangential velocity had to change
to match that of the new location of your foot on the spinning carousel. Any change in
velocity requires an acceleration to accomplish. It was the “ghost of Coriolis” that pushed
you sideways on that carousel.

Another example of the Coriolis component is its effect on weather systems. Large
objects that exist in the earth’s lower atmosphere, such as hurricanes, span enough area
to be subject to significantly different velocities at their northern and southern extremi-
ties. The atmosphere turns with the earth. The earth’s surface tangential velocity due to
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the
equator. The winds of a storm system are attracted toward the low pressure at its center.
These winds have a slip velocity with respect to the surface, which in combination with
the earth’s o creates a Coriolis component of acceleration on the moving air masses.
This Coriolis acceleration causes the inrushing air to rotate about the center, or “eye” of
the storm system. This rotation will be counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. The movement of the entire storm system from
south to north also creates a Coriolis component that will tend to deviate the storm’s track
eastward, though this effect is often overridden by the forces due to other large air masses
such as high-pressure systems that can deflect a storm. These complicated factors make
it difficult to predict a large storm’s true track.
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celeration is the cross prod-
uct of 2 and the velocity
of slip. The cross product
operation will define its
magnitude, direction, and
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FIGURE 7-8
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Note that in the analytical solution presented here, the Coriolis component will be
accounted for automatically as long as the differentiations are correctly done. However,
when doing a graphical acceleration analysis, one must be on the alert to recognize the
presence of this component, calculate it, and include it in the vector diagrams when its
two constituents Vg, and o are both nonzero.

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.7. The linkage was shown in Figures 4-10 and 6-22 and is shown again in Figure
7-8a on which we also show an input angular acceleration o, applied to link 2. This o,
can vary with time. The vector loop equations 4.14 are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints
varies as the linkage moves. In this inversion the length of link 3 between points A and B,
designated as b, will change as it passes through the slider block on link 4. In Section 6.7
we got an expression for velocity by differentiating equation 4.14b with respect to time,
noting that a, ¢, d, and 07 are constant and b, 03, and 04 vary with time.

jaoozej62 —jbw3eje3 — be/% —jcw4eje4 =0 (6.252)

Differentiating this with respect to time will give an expression for accelerations in this
inversion of the crank-slider mechanism.

(jaoczeje2 +j2a(:o%ejez )—(jboc3ej93 +j2bu)§ej93 +j5m3eje3)

—(bej93 +ij3ej93 )—(jcoa4ej94 +j2c0)ﬁej94 ):0 (7.20a)

coriolis

Acceleration analysis of a fourbar crank-slider-inversion #3 driven with positive (CCW) o, and negative (CW) ®,
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Simplifying and collecting terms:
(aoc2 je’®2 —awle® )—(boc3 je’ —bw2e® +2bw; jel +5eje3)
- (coc4 jel% —ccof‘ej94 )= 0 (7.20b)

Equation 7.20 is in fact the acceleration difference equation (equation 7.4) and can
be written in that notation as shown in equations 7.21.

Ay —-Ap—Ap=0

but: Apy=-Ayp (7.21a)
and: A=A, +Ap,
AA = AAtangential + AAnormal
AAB = AABtangential + AABnormal + AABcoriolis + AAleip (7'21b)
AB = ABtangential + ABnormal
Atangential =ao; jejez AAnormal = _aw%ejez
Btangential =coy jej64 ABnormal == wiej94
AABtangential = bO!.3 jej63 AABnormal =-b wgej% (7~21C)
AABcoriolis = 25 @3 jeje3 AAleip = b'ej93

Because this sliding link also has an angular velocity, there will be a nonzero Coriolis

component of acceleration at point B which is the 2b term in equation 7.20. Since a
complete velocity analysis was done before doing this acceleration analysis, the Coriolis
component can be readily calculated at this point, knowing both ® and V), from the
velocity analysis.

The b termin equations 7.20b and 7.21c¢ is the slip component of acceleration. This
is one of the variables to be solved for in this acceleration analysis. Another variable to
be solved for is 0, the angular acceleration of link 4. Note, however, that we also have
an unknown in o3, the angular acceleration of link 3. This is a total of three unknowns.
Equation 7.20 can only be solved for two unknowns. Thus we require another equation
to solve the system. There is a fixed relationship between angles 63 and 64, shown as yin
Figure 7-8 and defined in equation 4.22, repeated here:

open configuration: 6; =6, +7v;  crossed configuration: 6; =0, +y-n (4.22)
Differentiate it twice with respect to time to obtain:
W3 =0y4; Oz = 0Oly (722)

We wish to solve equation 7.20 to get expressions in this form:

o3 =0y = £(a,b,b,¢,d,0;, 05,04, 0, 03,04, 0, ) (7.232)
2 . .

%zbzg(a, b,b,c,d,0;,0,04, 0y, 03,04, 0 ) (7.23b)
t
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Substitution of the Euler identity (equation 4.4a) into equation 7.20 yields:
ao; 1(00592 +jsin92)—a0)% (c0592 +jsin02)
—bo j(cosB; + jsind; )+ b3 (cosb; + jsin6;)

—250331'((:0593 +jsin93)—b(cose3 +jsin93) (7.24a)
—cay j(cosBy + jsin®, ) +cwj (cosBy + jsin®, ) =0
Multiply by the operator j and substitute o4 for oz from equation 7.22:
aol, (—sine2 +jcosez)—aco% (00562 +jsin92)
—bay (—sin93 +jcose3)+bw§ (00563 + jsin63)
- 25033 (—sine3 + jcosGS)— 5((:0593 + jsin93) (7.24b)

—coyy (—sinBy + jcos, )+ cwj (cosby + jsin®, ) =0

We can now separate this vector equation 7.24b into its two components by collecting
all real and all imaginary terms separately:

real part (x component):
—a 0., sin0, —am? cos, +bo, sinB; + b3 cosh;
+2bw,sin®; —bcos; +cou, sind, +cm3 cosh, =0 (7.25a)
imaginary part (y component):
ao, cos, —ams sin®, —bo, cosB; + b3 sin6,
- 25&)3 cos 03 —Bsin93 —cot, cos, +cmjsind, =0 (7.25b)

Note that the j’s have canceled in equation 7.25b. We can solve equations 7.25
simultaneously for the two unknowns, oy and b . The solution is:

a[ocz cos(93 - 92)+ o3 sin(93 -0, )}+ co} sin(94 - 93)—215003

%= b+ccos(63 —64) (7.262)
am; [bcos(93 -0, )+ccos(0, —62)]+a0c2 [bsin(ez -63)—csin(6, -6, )]
. +25cw4sin(94—93)—wi[b2+c2+2bccos(94—93)J
b= (7.26b)

b+ccos(93 —94)

Equation 7.26a provides the angular acceleration of link 4. Equation 7.26b pro-
vides the acceleration of slip at point B. Once these variables are solved for, the linear
accelerations at points A and B in the linkage of Figure 7-8 can be found by substituting
the Euler identity into equations 7.21.
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A, = a0, (—sin®, + jcos®, ) — aw3 (cosO, + jsin®, ) (7.27a)
Aps=boy (sin93 —jc0s93)+bw§(cose3 +jsin93)

+2b W3 (sin93 - jcos63)— b(cose3 +jsin63) (7.27b)

Ap=——coy (sin64 —jcos64)—cwi (00594 +jsin64) (7.27¢)

These components of these vectors are shown in Figure 7-8b.

74 ACCELERATION ANALYSIS OF THE GEARED FIVEBAR
LINKAGE

The velocity equation for the geared fivebar mechanism was derived in Section 6.8 and is
repeated here. See Figure P7-4 for notation.

acozjej92 + bco3jej63 - cu)4jeje4 - dmsjej95 =0 (6.32a)
Differentiate this with respect to time to get an expression for acceleration.
(aoczjejGZ - am%ej62 )+ (boc3jeje3 - bw%ej63 )
—(c 0y jel® —colel® )— (dossjejeS —dwlel®s ) =0 (7.28a)
Substitute the Euler equivalents:
. . 2 ..
ao, (—sin®, + jcos6, )—aw3 (cos, + jsind, )
+ boc3(—sin93 +jcos63)—b(u§ (cos93 +jsin93)
—couy (—sinBy + jcos, )+ cwj (cosby + jsin®, )
—das (—sin95 +jcoses)+dm§ (coses +jsin95): 0 (7.28b)

Note that the angle 05 is defined in terms of 6,, the gear ratio A, and the phase angle ¢.
This relationship and its derivatives are:

05 =10, +¢; 05 = AW, Ols = A0ly (7.28¢c)

Since a complete position and velocity analysis must be done before an acceleration

analysis, we will assume that the values of 05 and 5 have been found and will leave these
equations in terms of 05, s, and Ols.

Separating the real and imaginary terms in equation 7.28b:
real:
—ao, sinB, — am3 cos8, —baiy sinB; — bm3 cosOy

+coL sinB, +cmj cosb, +das sinBs + dw? cosbs =0 (7.28d)
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imaginary:
aoL, cos, —ams sin®, +boi; cosO; —bm3 sinbs
—coi, cos0, +cm?sin®, —dois cosOs + dm? sinBs =0 (7.28¢)

The only two unknowns are o3 and 0y. Either equation 7.28d or 7.28e can be solved
for one unknown and the result substituted in the other. The solution for o3 is:

—ao., sin(6, -0, ) — aw3 cos(0, —6,)
- bw% cos(93 - 94)+ dm% cos(es - 94)

+dossin(65 -0, )+ cwj

o3 = bsin(93 _94) (7.29a)
and angular acceleration 0y is:
ao, sin(6, —05)+awj cos(6, —63)
—coj cos(93 —94)— dw? cos(93 - 95)
+dots sin(0; 05 )+ bw3
oy = (7.29b)

csin(0, —63)

With all link angles, angular velocities, and angular accelerations known, the linear
accelerations for the pin joints can be found from:

A, =ao0, (—sine2 + jcosez)— a3 (c0592 +jsin62) (7.29¢)
Ap,=boy (—sin93 +jcos93)—b(n§ (cose3 +jsin93) (7.29d)
Ac-=cos (—sineS +jc0365)—c0)§ (cos@S +jsin65) (7.2%)
Ag=A,+Ap, (7.29f)

75 ACCELERATION OF ANY POINT ON A LINKAGE

Once the angular accelerations of all the links are found, it is easy to define and calculate
the acceleration of any point on any link for any input position of the linkage. Figure
7-9 shows the fourbar linkage with its coupler, link 3, enlarged to contain a coupler point
P. The crank and rocker have also been enlarged to show points S and U which might
represent the centers of gravity of those links. We want to develop algebraic expressions
for the accelerations of these (or any) points on the links.

To find the acceleration of point S, draw the position vector from the fixed pivot O,
to point S. This vector Rgp, makes an angle 6, with the vector Ryp,. This angle 6, is
completely defined by the geometry of link 2 and is constant. The position vector for
point S is then:

Rgo, =Ry = sel(02+2) s[cos(ez +8,)+jsin(6, +3, )] (4.29)
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t
Ap Ap

Ap

FIGURE 7-9

Finding the acceleration of any point on any link

We differentiated this position vector in Section 6.9 to find the velocity of that point.
The equation is repeated here for your convenience.

Vg = jsej(92+82)w2 =50, [—sin(ez +8,)+ jcos(0, +8, )] (6.34)

We can differentiate again versus time to find the acceleration of point S.

Ag =50, jej(eﬁﬁz) - 503 ej(92+82)
=50, [—sin(92 +62)+jcos(92 +9, )] (7.30)

- 503 [cos(e2 +82)+jsin(62 +82)]

The position of point U on link 4 is found in the same way, using the angle &4 which
is a constant angular offset within the link. The expression is:

Ryo, = ue/(04+84) _ u[cos(94 +84)+jsin(94 +9, )] (4.30)

We differentiated this position vector in Section 6.9 to find the velocity of that point.
The equation is repeated here for your convenience.

A\ :juej(94+54)m4 =UWy [—sin(64 +84)+jcos(64 +84)] (6.35)

We can differentiate again versus time to find the acceleration of point U.

Ay =uol, jej(e“a“) —uw? ¢J(04+84)
=uoy [—sin(64 +8,)+ jcos(6, +84)J (7.31)

—uwj [cos(64 +84)+ jsin(6, +84)]
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* The video Fourbar
Linkage Virtual Labora-
tory shows the measured
acceleration of the coupler
point on an actual link-
age mechanism and also
discusses the reasons for
differences between the
measured values and those
calculated with equation
7.32. The measured data
are also provided.
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The acceleration of point P on link 3 can be found from the addition of two accelera-
tion vectors, such as A4 and Apy. Vector Ay is already defined from our analysis of the
link accelerations. Apy is the acceleration difference of point P with respect to point A.
Point A is chosen as the reference point because angle 03 is defined at a local coordinate
system whose origin is at A. Position vector Rpy is defined in the same way as Ry; or Rg,
using the internal link offset angle 85 and the angle of link 3, 63. We previously analyzed
this position vector and differentiated it in Section 6.9 to find the velocity difference of
that point with respect to point A. Those equations are repeated here for your convenience.

Rpy = pej(e3+83) = p[cos(63 +83)+ jsin(6; +83)] (4.31a)
Rp=R,+Rpy (4.31b)
Vpa = jpej(e3+53)(u3 = po3 [—sin(63 +53)+jcos(63 +53)J (6.36a)
Vp =V, +Vpy (6.36b)

We can differentiate equation 6.36 again versus time to find A p4, the acceleration of
point P versus A. This vector can then be added to the vector A4 already found to define
the absolute acceleration A p of point P.

AP :AA +APA (7.323)
where:
Apy = POz J'ej(93+83) - pw3 I(03+53)
= poi3 [—sin(93 + 63)+jcos(93 +83)J (7.32b)

- pm% [005(63 + 63)+jsin(63 +0; )]

Compare equation 7.32 with equation 7.4. It is again the acceleration difference
equation. Note that this equation applies to any point on any link at any position for
which the positions and velocities are defined. It is a general solution for any rigid body."

7.6 HUMAN TOLERANCE OF ACCELERATION

It is interesting to note that the human body does not sense velocity, except with the eyes,
but is very sensitive to acceleration. Riding in an automobile, in the daylight, one can
see the scenery passing by and have a sense of motion. But, traveling at night in a com-
mercial airliner at a 500 mph constant velocity, we have no sensation of motion as long
as the flight is smooth. What we will sense in this situation is any change in velocity due
to atmospheric turbulence, takeoffs, or landings. The semicircular canals in the inner ear
are sensitive accelerometers that report to us on any accelerations that we experience. You
have no doubt also experienced the sensation of acceleration when riding in an elevator
and starting, stopping, or turning in an automobile. Accelerations produce dynamic forces
on physical systems, as expressed in Newton’s second law, F=ma. Force is proportional
to acceleration, for a constant mass. The dynamic forces produced within the human body
in response to acceleration can be harmful if excessive. The human body is, after all, not
rigid. It is a loosely coupled bag of water and tissue, most of which is quite internally
mobile. Accelerations in the headward or footward directions will tend to either starve or
flood the brain with blood as this liquid responds to Newton’s law and effectively moves
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Tolerance time Headward Tolerance time
Tmin 0.02 min

Footward

Average levels of linear acceleration, in dif ferent directions that can be tolerated on a voluntary basis for specified periods .
Each curve shows the average G load that can be tolerated for the time indicated. The data points obtained were actually
those on the axes; the lines as such are extrapolated from the data points to form the concentric figures.

(Source: Adapted from reference (1], Fig. 17-17, p. 505, reprinted with permission)
FIGURE 7-10

Human tolerance of acceleration

within the body in a direction opposite to the imposed acceleration as it lags the motion
of the skeleton. Lack of blood supply to the brain causes blackout; excess blood supply
causes redout. Either results in death if sustained for a long enough period.

A great deal of research has been done, largely by the military and NASA, to de-
termine the limits of human tolerance to sustained accelerations in various directions.
Figure 7-10 shows data developed from such tests.l!] The units of linear acceleration
were defined in Table 1-4 as in/sec?, ft/sec2, or m/sec2. Another common unit for accel-
eration is the g, defined as the acceleration due to gravity, which on earth at sea level is
approximately 386 in/sec?, 32.2 ft/sec2, or 9.8 m/sec2. The g is a very convenient unit
to use for accelerations involving the human as we live in a 1 g environment. Our weight,
felt on our feet or buttocks, is defined by our mass times the acceleration due to gravity or
mg. Thus an imposed acceleration of 1g above the baseline of our gravity, or 2g’s, will
be felt as a doubling of our weight. At 6g’s we would feel six times as heavy as normal
and would have great difficulty even moving our arms against that acceleration. Figure
7-10 shows that the body’s tolerance of acceleration is a function of its direction versus
the body, its magnitude, and its duration. Note also that the data used for this chart were
developed from tests on young, healthy military personnel in prime physical condition.
The general population, children and elderly in particular, should not be expected to be
able to withstand such high levels of acceleration. Since much machinery is designed for
human use, these acceleration tolerance data should be of great interest and value to the
machine designer. Several references dealing with these human factors data are provided
in the bibliography to Chapter 1.
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TABLE 71 Acceleration Levels Commonly Encountered in Human Activities
Gentle acceleration in an automobile +01g
Commercial jet aircraft on takeoff +03¢g

Hard acceleration in an automobile +0.5¢g

Panic stop in an automobile -07¢g

Fast cornering in a sports car (e.g., BMW, Corvette, Porsche, Ferrari) +0.9 g to +1.0g
Formula 1race car +2.0g,-40g
Roller coasters (various) +3.5t0+6.5g"
NASA space shuttle on takeoff +4.0g

Top fuel dragster with drogue chute (>300 mph in 1/4 mile) +45¢g

Military jet fighter (e.g., F-15, F-16, F-22, F-35—note: pilot wears a G-suit) +9.0g

*Some U.S. state laws currently limit roller coaster accelerations to a maximum of 5.0 to 5.4 g.

Another useful benchmark when designing machinery for human occupation is to
attempt to relate the magnitudes of accelerations that you commonly experience to the
calculated values for your potential design. Table 7-1 lists some approximate levels of
acceleration, in g’s, that humans can experience in everyday life. Your own experience
of these will help you develop a “feel” for the values of acceleration that you encounter
in designing machinery intended for human occupation.

Acceleration levels in machinery that does not carry humans is limited only by con-
siderations of the stresses in its parts. These stresses are often generated in large part by
the dynamic forces due to accelerations. The range of acceleration values in such machin-
ery is so wide that it is not possible to comprehensively define any design guidelines for
acceptable or unacceptable levels of acceleration. If the moving mass is small, then very
large numerical values of acceleration are reasonable. If the mass is large, the dynamic
stresses that the materials can sustain may limit the allowable accelerations to low values.
Unfortunately, the designer usually does not know how much acceleration is too much in
a design until completing it to the point of calculating stresses in the parts. This usually
requires a fairly complete and detailed design. If the stresses turn out to be too high and
are due to dynamic forces, then the only recourse is to iterate back through the design
process and reduce the accelerations and/or masses in the design. This is one reason that
the design process is a circular and not a linear one.

As one point of reference, the acceleration of the piston in a small, four-cylinder
economy car engine (about 1.5-L displacement) at idle speed is about 40g’s. At highway
speeds the piston acceleration can be as high as 700g’s. At the engine’s top speed of 6000
rpm the peak piston acceleration is 2000g’s! As long as you’re not riding on the piston,
this is acceptable. These engines last a long time in spite of the high accelerations their
components experience. One key factor is the choice of proper part geometry and use
of low-mass, high-strength, high-stiffness materials for the moving parts to minimize
dynamic forces at high acceleration and enable the parts to tolerate the applied stresses.
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77 JERK

No, not you! The time derivative of acceleration is called jerk, pulse, or shock. The
name is apt, as it conjures the proper image of this phenomenon. Jerk is the time rate of
change of acceleration. Force is proportional to acceleration. Rapidly changing accelera-
tion means a rapidly changing force. Rapidly changing forces tend to “jerk” the object
about! You have probably experienced this phenomenon when riding in an automobile.
If the driver is inclined to “jackrabbit” starts and accelerates violently away from the
traffic light, you will suffer from large jerk because your acceleration will go from zero
to a large value quite suddenly. But, when Jeeves, the chauffeur, is driving the Rolls, he
always attempts to minimize jerk by accelerating gently and smoothly, so that Madame is
entirely unaware of the change.

Controlling and minimizing jerk in machine design is often of interest, especially if
low vibration is desired. Large magnitudes of jerk will tend to excite the natural frequen-
cies of vibration of the machine or structure to which it is attached and cause increased
vibration and noise levels. Jerk control is of greater interest in the design of cams than of
linkages, and we will investigate it in greater detail in Chapter 8 on cam design.

The procedure for calculating the jerk in a linkage is a straightforward extension of
the methods shown for acceleration analysis. Let angular jerk be represented by:

do
=— 7.33
= (7.33a)
and linear jerk by:
dA
J=— 7.33b
o (7.33b)

To solve for jerk in a fourbar linkage, for example, the vector loop equation for ac-
celeration (equation 7.7) is differentiated versus time. Refer to Figure 7-5 for notation.

—a(ugjej62 —Zamzoczej92 + aoczmzjzej92 + aq)zjej92
- boogjej63 - 2bw3oc3ej63 + boc3w3j2eje3 + b(p3jeje3
+cm) jel® +2cw,00,e7% —caym, 2’ —co,je’® =0 (7.34a)
Collect terms and simplify:
—am%jej92 - 3au)2(x2ej92 +aq)2jejez
- bmgjej93 - 3bw3oc3ej93 + b(p3jeje3
+ coof;jej94 + 3cw4(x4eje4 - ccp4jej94 =0 (7.34b)
Substitute the Euler identity and separate into x and y components:
real part (x component):
amg sin®, —3aw, 0., cosO, —a@, sin6,
+ b3 sin O — 3bw;0L3 cos O — b sin O,

— co} sin®, +3cm,01, o0, +cp, sind, =0 (7.352)

385




386

TABLE P7-0 Part1
Topic/Problem Matrix

74 Definition of Acceler-

ation
7-1,7-2,7-10, 7-56

7.2 Graphical Accelera-

tion Analysis

Pin-Jointed Fourbar
7-3,7-14a, 7-21,
7-24,7-30, 7-33,
7-70a, 7-72a, 7-77
Fourbar Crank-Slider
7-5, 7-13a, 7-27, 7-36,
7-89, 7-91

Fourbar Slider-Crank
7-93

Other Fourbar 7-15a
Fivebar 7-79

Sixbar

7-52,7-53, 7-61a,
7-63a, 7-65a, 7-75,
7-82

Eightbar 7-86

7.3 Analytic Solutions for

Acceleration Analysis

Pin-Jointed Fourbar
7-22,7-23,7-25,
7-26, 7-34, 7-35,
7-41, 7-46, 7-51,
7-70b, 7-71, 7-72b
Fourbar Crank-Slider
7-6, 7-28, 7-29, 7-37,
7-38, 7-45, 7-50,
7-58, 7-90, 7-92
Fourbar Slider-Crank
7-94

Coriolis Acceleration
7-12, 7-20

Fourbar Inverted
Crank-Slider
7-7,7-8,7-16, 7-59
Other Fourbar
7-15b, 7-74

Fivebar 7-80, 7-81
Sixbar

7-17,7-18, 7-19,
7-48, 7-54, 7-61b,
7-62, 7-63b, 7-64,
7-65b, 7-66, 7-76,
7-83, 7-84, 7-85
Eightbar 7-67
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imaginary part (y component):
—a(ug cos0, —3am,0., sin 6, +a@, coso,
— b3 cos0; — 3bm; 013 5inO; +b@; cosh,
+ 3 o8B, +3cw,0, SinB, —c@, cosO, =0 (7.35b)

These can be solved simultaneously for @3 and @4, which are the only unknowns.
The driving angular jerk, @,, if nonzero, must be known in order to solve the system. All
the other factors in equations 7.35 are defined or have been calculated from the position,
velocity, and acceleration analyses. To simplify these expressions we will set the known
terms to temporary constants.

In equation 7.35a, let:

D =bw3sinb,

Azawg sin®, G =3cm40,4Ccos0,

B =3aw,0, cos0, E =3bw;0i5 cos 64 H =csinf, (7.36a)
C=a@,sin0, F=cw}sinb, K =bsin6;
Equation 7.35a then reduces to:
A-B-C+D-E-F+G+H
03 = = Pa (7.36b)

Note that equation 7.36b defines angle @3 in terms of angle ¢4. We will now simplify
equation 7.35b and substitute equation 7.36b into it.

In equation 7.35b, let:
S= cmi cos0,

Lzawg cos0, P=bu)g cos 05

M =3am,0, sin 6, Q=3bw;0;5in0; T =3cm40,sin0, (7.372)
N =ag, cos0, R=bcos0; U =ccosf,
Equation 7.35b then reduces to:
Ro; U@, —~L-M+N—-P-Q+S+T=0 (7.37b)

Substituting equation 7.36b in equation 7.35b:

R(A—B—C+D—E—F+G+H(p4
K

J—U(p4—L—M+N—P—Q+S+T=0 (7.39)
The solution is:

KN — KL — KM — KP— KQ+ AR — BR—CR+ DR — ER — FR+GR+ KS + KT
P4 KU — HR

(7.39)

The result from equation 7.39 can be substituted into equation 7.36b to find @3. Once

the angular jerk values are found, the linear jerk at the pin joints can be found from:
Ju= —acog’jej92 —S»amzoczeje2 +a(p2jej92
Tps = —b3je® —3bw;05/% + by jel (7.40)

Jp =—colje’® —3co 0,/ +cq,jel®
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The same approach as used in Section 7.5 to find the acceleration of any point on any
link can be used to find the linear jerk at any point.

JP:JA+JPA (741)

The jerk difference equation 7.41 can be applied to any point on any link if we let P
represent any arbitrary point on any link and A represent any reference point on the same
link for which we know the value of the jerk vector. Note that if you substitute equations
7.40 into 7.41, you will get equation 7.34.

78 LINKAGES OF N BARS

The same analysis techniques presented here for position, velocity, acceleration, and jerk,
using the fourbar and fivebar linkage as the examples, can be extended to more complex
assemblies of links. Multiple vector loop equations can be written around a linkage of
arbitrary complexity. The resulting vector equations can be differentiated and solved
simultaneously for the variables of interest. In some cases, the solution will require
simultaneous solution of a set of nonlinear equations. A root-finding algorithm such as
the Newton-Raphson method will be needed to solve these more complicated cases. A
computer is necessary. An equation solver software package such as TKSolver or Mathcad
that will do an iterative root-finding solution will be a useful aid to the solution of any of
these analysis problems, including the examples shown here.
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710 PROBLEMSS

7-1 A point at a 6.5-in radius is on a body that is in pure rotation with ® = 100 rad/sec and
a constant o, = —500 rad/sec? at point A. The rotation center is at the origin of a coordi-
nate system. When the point is at position A, its position vector makes a 45° angle with
the X axis. It takes 0.01 sec to reach point B. Draw this system to some convenient
scale, calculate the 6 and ® of position B, and:

a.  Write an expression for the particle’s acceleration vector in position A using complex
number notation, in both polar and cartesian forms.

b.  Write an expression for the particle’s acceleration vector in position B using complex
number notation, in both polar and cartesian forms.

c.  Write a vector equation for the acceleration difference between points B and A.
Substitute the complex number notation for the vectors in this equation and solve
for the acceleration difference numerically.

d.  Check the result of part ¢ with a graphical method.

7-2 In problem 7-1 let A and B represent points on separate, rotating bodies both having the
given wand o at =0, 64 =45°, andOg = 120°. Find their relative acceleration.

*7-3  The link lengths, coupler point location, and the values of 85, m,, and o, for the same
fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are
redefined in Table P7-1, which is basically the same as Table P6-1. The general link-
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TABLE P7-0 Part 2
Topic/Problem Matrix

7.5 Acceleration of Any
Point on a Linkage
Pin-Jointed Fourbar
7-4,7-13b, 7-14b,
7-31,7-32,7-39,
7-40, 7-42, 7-43,
7-44,7-49, 7-55,
7-68, 7-70b, 7-71,
7-72b, 7-73, 7-78
Other Fourbar
7-15b, 7-47
Geared Fivebar
7-9, 7-60
Sixbar
7-69, 7-87, 7-88

77 Jerk
7-11, 7-57

§ All problem figures are
provided as PDF files, and
some are also provided as
animated Working Model
files. PDF filenames are the
same as the figure number.
Run the file Animations.
html to access and run the
animations.

* Answers in Appendix F.
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* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P7-1 Data for Problems 7-3, 7-4, and 7-11%

Row Link1 Link2 Link3 Link4 0, W) oy Rpa 33
a 6 2 7 9 30 10 0 6 30
b 7 9 3 8 85 -12 5 9 25
c 3 10 6 8 45 -15 -10 10 80
d 8 5 7 6 25 24 -4 5 45
e 8 5 8 6 75 -50 10 9 300
f 5 8 8 9 15 - 45 50 10 120
g 6 8 8 9 25 100 18 4 300
h 20 10 10 10 50 - 65 25 6 20
i 4 5 2 5 80 25 -25 9 80
j 20 10 5 10 33 25 - 40 1 0
k 4 6 10 7 88 - 80 30 10 330
/ 9 7 10 7 60 -90 20 5 180
m 9 7 i 8 50 75 -5 10 90
n 9 7 i 6 120 15 - 65 15 60

FIGURE P7-1

Configuration and terminology for Problems 7-3, 7-4, and 7-11

age configuration and terminology are shown in Figure P7-1. For the row(s) assigned,
draw the linkage to scale and graphically find the accelerations of points A and B. Then
calculate o3 and 0,4 and the acceleration of point P.

“17-4  Repeat Problem 7-3, solving by the analytical vector loop method of Section 7.3.

“7-5  The link lengths and offset and the values of 0,, o, and o, for some noninverted,
offset fourbar crank-slider linkages are defined in Table P7-2. The general linkage con-
figuration and terminology are shown in Figure P7-2. For the row(s) assigned, draw
the linkage to scale and graphically find the accelerations of the pin joints A and B and
the acceleration of slip at the sliding joint.

“17-6  Repeat Problem 7-5 using an analytical method.
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TABLE P7-2 Data for Problems 7-5 to 7-6 and 7-587

Row Link 2 Link 3 Offset 0> (OF) 0
a 14 4 1 45 10 0
b 2 6 -3 60 -12 5
c 3 8 2 -30 -15 -10
d 35 10 1 120 24 4
e 5 20 -5 225 -50 10
f 3 13 0 100 - 45 50
g 7 25 10 330 100 18

iDrawings of these linkages are in the PDF Problem Workbook folder.

0, Slider position d, d d

FIGURE P7-2
Configuration and terminology for Problems 7-5 to 7-6, 7-58, and 7-93 to 7-94

77

“7-8
“7-9

7-10

The link lengths and the values of 0;, ®,, and y for some inverted fourbar crank-slider
linkages are defined in Table P7-3. The general linkage configuration and terminology
are shown in Figure P7-3. For the row(s) assigned, find accelerations of the pin joints
A and the acceleration of slip at the sliding joint. Solve by the analytical vector loop
method of Section 7.3 for the open configuration of the linkage.

Repeat Problem 7-7 for the crossed configuration of the linkage.

The link lengths, gear ratio (A), phase angle (0), and the values of 6,, ®,, and oy, for
some geared fivebar linkages are defined in Table P7-4. The general linkage configura-
tion and terminology are shown in Figure P7-4. For the row(s) assigned, find 0,3 and
o4 and the linear acceleration of point P.

An automobile driver took a curve too fast. The car spun out of control about its center
of gravity (CG) and slid off the road in a northeasterly direction. The friction of the
skidding tires provided a 0.25 g linear deceleration. The car rotated at 100 rpm. When
the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest.

a.  What was the acceleration experienced by the child seated on the middle of the rear
seat, 2 ft behind the car’s CG, just prior to impact?
b. What force did the 100-1b child exert on her seatbelt harness as a result of the
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* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P7-3 Data for Problems 7-7 to 7-8 and 7-59

Row Link 1 Link 2 Link 4 Y 0> o)) oo
a 6 2 4 90 30 10 -25
b 7 9 3 75 85 -15 -40
c 3 10 6 45 45 24 30
d 8 5 3 60 25 -50 20
e 8 4 2 30 75 -45 -5
f 5 8 8 90 150 100 -65

0
% 3
A 04
y
Y
B
3
/ x
A e

(05 /92
|

0, 1 Lo, X

FIGURE P7-3
Configuration and terminology for Problems 7-7 to 7-8 and 7-59

i7-
* Answers in Appendix F. 711

T These problems are suited

to solution using Mathcad, *7-12
Matlab, or TKSolver equa-

tion solver programs.

7-13

7-14

acceleration, just prior to impact?
c.  Assuming a constant deceleration during the 0.1 sec of impact, what was the mag-
nitude of the average deceleration felt by the passengers in that interval?

For the row(s) assigned in Table P7-1, find the angular jerk of links 3 and 4 and the
linear jerk of the pin joint between links 3 and 4 (point B). Assume an angular jerk of
zero on link 2. The linkage configuration and terminology are shown in Figure P7-1.

You are riding on a carousel that is rotating at a constant 12 rpm. It has an inside
radius of 4 ft and an outside radius of 12 ft. You begin to run from the inside to the
outside along a radius. Your peak velocity with respect to the carousel is 4 mph and
occurs at a radius of 8 ft. What are your maximum Coriolis acceleration magnitude
and its direction with respect to the carousel?

The linkage in Figure P7-5a has O,A = 0.8, AB = 1.93, AC = 1.33, and

offset = 0.38 in. The crank angle in the position shown is 34.3° and angle BAC =
38.6°. Find o3, Ay, Ap, and A for the position shown for w, = 15 rad/sec and oy = 10
rad/sec? in directions shown:

a. Using the acceleration difference graphical method.
b. Using an analytical method.

The linkage in Figure P7-5b has /1A = 0.75, AB = 1.5, and AC = 1.2 in. The effective
crank angle in the position shown is 77° and angle BAC = 30°. Find o ,A , A , and
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TABLE P7-4 Data for Problem 7-9 and 7-60

Row Link 1 Link 2 Link 3 Link 4 Link 5 A (0} 6> (o] oo Rpa 33
a 6 1 7 9 4 2.0 30 60 10 0 6 30
b 6 5 7 8 4 -25 60 30 -12 5 9 25
c 3 5 7 8 4 -05 [¢] 45 -15 -10 10 80
d 4 5 7 8 4 -1.0 120 75 24 -4 5 45
e 5 9 1 8 8 3.2 -50 -39 -50 10 9 300
f 10 2 7 5 3 15 30 120 - 45 50 10 120
g 15 7 9 M 4 25 -90 75 100 18 4 300
h 12 8 7 9 4 -25 60 55 - 65 25 6 20
i 9 7 8 9 4 -4.0 120 100 25 -25 9 80

Y
L YA 8 N
Gearratio: A= *+—
T's
Phase angle: @ = 65 — A0,
y
sy ! )
w” 2
7 LD, ¢

FIGURE P7-4

Configuration and terminology for Problems 7-9 and 7-60

7-15

7-16

A for the position shown for @, = 15 rad/sec and o, = 10 rad/sec? in the directions
shown:

a. Using the acceleration difference graphical method.

b. Using an analytical method. (Hint: Create an effective linkage for the position
shown and analyze it as a pin-jointed fourbar.)

The linkage in Figure P7-5c has AB = 1.8 and AC = 1.44 in. The angle of AB in the

position shown is 128° and angle BAC = 49°. The slider at B is at an angle of 59°.

Find a3, Ag, and A ¢ for the position shown for V4 = 10 in/sec and A4 = 15 in/sec? in

the directions shown:

a. Using the acceleration difference graphical method.
b. Using an analytical method.

The linkage in Figure P7-6a has OoA =5.6,AB=9.5, 04C=9.5,L; =388 mm. 0,1 1 These problems are suited
135° in the xy coordinate system. Write the vector loop equations; differentiate them, to solution using Mathcad,
and do a complete position, velocity, and acceleration analysis of the linkage. Assume Matlab, or TKSolver equa-
@, = 10 rad/sec and o, = 20 rad/sec?. tion solver programs.
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4
Assume rolling contact c 1 C
B
A
\Y 2 A
(a) (b) (c)

FIGURE P7-5
Problems 7-13 to 7-15

7-17 Repeat Problem 7-16 for the linkage shown in Figure P7-6b which has the dimensions:

¥ Thesa? prob!ems are suited Ly =619,L,=151L3=45.8,Ly=18.1, Ls=23.1 mm. 6, is 68.3° in the xy coordi-
to solution using Mathcad, nate system, which is at —23.3° in the XY coordinate system. The X component of O,C
Matlab, or TKSolver equa- is 59.2 mm.
tion solver programs.

7-18  Repeat Problem 7-16 for the linkage shown in Figure P7-6¢ which has the dimensions:

0,A =117, 0,C =20, L3 =25, L5 = 25.9 mm. Point B is offset 3.7 mm from the x;
axis and point D is offset 24.7 mm from the x, axis. 0, is at 13.3° in the x,y, coordi-
nate system.

7-19  Repeat Problem 7-16 for the linkage shown in Figure P7-6d which has the dimensions:
Ly =15,L3=40.9, Ls =44.7 mm. 0, is 24.2° in the XY coordinate system.

FIGURE P7-6
Problems 7-16 to 7-19
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0, Vic \&i
Viiip velocity diagram
VD scale 1'in =1 in/sec
Ve
FIGURE P7-7
Problem 7-20
77-20  Figure P7-7 shows a sixbar linkage with O,B = 1, BD = 1.5, DC = 3.5, DO¢, = 3, and
g g 2 6

“7-21

7-22

723

“7-24

7-25

726

7-27

*17-28

h = 1.3 in. Find the angular acceleration of link 6 if ®, is a constant 1 rad/sec.

The linkage in Figure P7-8a has link 1 at —25° and link 2 at 37° in the global XY co-
ordinate system. Find oy, A4, and Ap in the global coordinate system for the position
shown if m, = 15 rad/sec CW and o, = 25 rad/sec2 ccw. Use the acceleration differ-
ence graphical method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8a has link 1 at —25° and link 2 at 37° in the global XY co-
ordinate system. Find oy, A4, and Ap in the global coordinate system for the position
shown if @, = 15 rad/sec CW and o, = 25 rad/sec? ccw. Use an analytical method.

At t = 0, the non-Grashof linkage in Figure P7-8a has link 1 at —25° and link 2 at 37°
in the global XY coordinate system and m, = 0. Write a computer program or use an
equation solver to find and plot wy, 04, V4, A, Vg, and Ap in the local coordinate
system for the maximum range of motion that this linkage allows if o = 15 rad/sec
CW constant.

The linkage in Figure P7-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find o4, A4, and Ap in the global coordinate system for the position
shown if m, = 20 rad/sec CCW, constant. Use the acceleration difference graphical
method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8b has link 1 at —36° and link 2 at 57° in the global XY co-
ordinate system. Find o4, A4, and Ap in the global coordinate system for the position
shown if m, = 20 rad/sec CCW, constant. Use an analytical method.

For the linkage in Figure P7-8b, write a computer program or use an equation solver to
find and plot 0y, A4, and Ap in the local coordinate system for the maximum range of
motion that this linkage allows if w, = 20 rad/sec CCW, constant.

The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coor-
dinate system. Find A4 and Ap in the global coordinate system for the position shown
if @y = 25 rad/sec CW, constant. Use the acceleration difference graphical method.
(Print the figure from its PDF file and draw on it.)

The offset crank-slider linkage in Figure P7-8f has link 2 at 51° in the global XY coordi-
nate system. Find A4 and Ap in the global coordinate system for the position shown if
, = 25 rad/sec CW, constant. Use an analytical method.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

* Answers in Appendix F.
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L1 =162 Lp=40
Ly=122 [3=96

04
(a) Fourbar linkage (b) Fourbar linkage (c) Radial compressor
|all dimensions in mm | View as a video
http://www.designofmachinery.com/DOM/radial_engine.avi
A 3 B
Ly =150 Lp =30 — 2 i —————— T}@; ‘704
7 L3 =150 Ly =30 box >02 5 E _@,,‘ G
&< Li/ ‘
¢ | o |
0204 =L3=L5=160 i i
3 B 0304=Lg=L7=120 || ¢ | 5

’’’’’’’’’’ B 0,A=0,C=20 |
/ 04,B=0,D=20 \ }8 \
O04E=0,G=30 é é

OgF=0gH=30 F

View as a video
http://www.designofmachinery.com/DOM/walking_beam.avi

(d) Walking-beam conveyor (e) Bellcrank mechanism (f) Offset slider-crank
v ~— 229 —»|e— 2290 —»
Ly =458
Ly=87 L, =198
Ly=49 Ly=194
L3 =100 [4=383
L4=153 Ls=133
Ls =100 L7=133
Le =153 Lg=19.8
View as a video ) 4 E\O Lo=194
http://www.
designofmachin- 7) ‘ %
ery.com/DOM/ X —= [=—451yp.
drum_brake.avi  (g) Drum brake mechanism (h) Symmetrical mechanism
FIGURE P7-8 http://www.designofma(fhinery.com/DOM/compression_chamber.avi

Problems 7-21to 7-38


http://www.designofmachinery.com/DOM/radial_engine.avi
http://www.designofmachinery.com/DOM/walking_beam.avi
http://www.designofmachinery.com/DOM/drum_brake.avi
http://www.designofmachinery.com/DOM/compression_chamber.avi
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7-29

7-30

7-31

7-32

7-33

7-34

7-35

7-36

7-37

7-38

*7-39

*7-40

*17-41

For the offset crank-slider linkage in Figure P7-8f, write a computer program or use
an equation solver to find and plot A4 and Ap in the global coordinate system for the
maximum range of motion that this linkage allows if w, = 25 rad/sec CW, constant.

The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system. Find
Ay, Ap, and Ay, (the acceleration of the box) in the global coordinate system for the po-
sition shown if @, = 30 rad/sec CW, constant. Use the acceleration difference graphical
method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8d has link 2 at 58° in the global XY coordinate system. Find
Ay, Ap, and Ay, (the acceleration of the box) in the global coordinate system for the
position shown if @, = 30 rad/sec CW, constant. Use an analytical method.

For the linkage in Figure P7-8d, write a computer program or use an equation solver
to find and plot A4, Ap, and Ay, (the acceleration of the box) in the global coordinate
system for the maximum range of motion that this linkage allows if m, = 30 rad/sec
CW, constant.

The linkage in Figure P7-8g has the local xy axis at —119° and OA at 29° in the global
XY coordinate system. Find oy, A4, and Ap in the global coordinate system for the
position shown if 0, = 15 rad/sec CW, constant. Use the acceleration difference
graphical method. (Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-8g has the local xy axis at —119° and OA at 29° in the global
XY coordinate system. Find oy, A4, and Ap in the global coordinate system for the
position shown if @, = 15 rad/sec CW and o = 10 rad/sec CCW, constant. Use an
analytical method.

At ¢ = 0, the non-Grashof linkage in Figure P7-8g has the local xy axis at —119° and
0»A at 29° in the global XY coordinate system and ®, = 0. Write a computer program
or use an equation solver to find and plot my, 04, V4, A4, Vg, and Ap in the local coor-
dinate system for the maximum range of motion that this linkage allows if o = 15 rad/
sec CCW, constant.

The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at
120°. Find the piston accelerations Ag, A7, Ag with the crank at —53° using a graphical
method if w, = 15 rad/sec CW, constant. (Print the figure’s PDF file and draw on it.)

The 3-cylinder radial compressor in Figure P7-8c has its cylinders equispaced at 120°.
Find the piston accelerations Ag, A7, Ag with the crank at —53° using an analytical
method if w, = 15 rad/sec CW, constant.

For the 3-cylinder radial compressor in Figure P7-8f, write a program or use an equa-
tion solver to find and plot the piston accelerations Ag, A7, Ag for one revolution of the
crank.

Figure P7-9 shows a linkage in one position. Find the instantaneous accelerations of
points A, B, and P if link O,A is rotating CW at 40 rad/sec.

Figure P7-10 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the acceleration
of the coupler point P at 2° increments of crank angle for w, = 100 rpm. Check your
result with program LINKAGES.

Figure P7-11 shows a linkage that operates at 500 crank rpm. Write a computer
program or use an equation solver to calculate and plot the magnitude and direction
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P7-9
Problem 7-39

* Answers in Appendix F.
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View as a video
http://www.designof-
machinery.com/DOM/
loom_laybar_drive.avi

FIGURE P7-11

Problem 7-41 Loom
laybar drive

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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FIGURE P7-10
Problem 7-40 A fourbar linkage with a double straight-line coupler curve

*7.42

7.43

*17.44

17.45

of the acceleration of point B at 2° increments of crank angle. Check your result with
program LINKAGES.

Figure P7-12 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2° increments of crank angle for @, = 20 rpm over the
maximum range of motion possible. Check your result with program LINKAGES.

Figure P7-13 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the acceleration
of the coupler point P at 2° increments of crank angle for 0, = 80 rpm over the maxi-
mum range of motion possible. Check your result with program LINKAGES.

Figure P7-14 shows a linkage and its coupler curve. Write a computer program or use
an equation solver to calculate and plot the magnitude and direction of the accelera-
tion of the coupler point P at 2° increments of crank angle for @, = 80 rpm over the
maximum range of motion possible. Check your result with program LINKAGES.

Figure P7-15 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its
weight forces the sawblade against the workpiece while the linkage moves the blade
(link 4) back and forth on link 5 to cut the part. It is an offset crank-slider mechanism

FIGURE P7-12
Problem 7-42


http://www.designofmachinery.com/DOM/loom_laybar_drive.avi
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FIGURE P7-13
Problem 7-43

with the dimensions shown in the figure. Draw an equivalent linkage diagram, and
then calculate and plot the acceleration of the sawblade with respect to the piece being
cut over one revolution of the crank at 50 rpm.

7-46 Figure P7-16 shows a walking-beam indexing and pick-and-place mechanism that can be T These problems are suited
analyzed as two fourbar linkages driven by a common crank. The link lengths are given to solution using Mathcad,
in the figure. The phase angle between the two crankpins on links 4 and 5 is indicated. Matlab, or TKSolver equa-
The product cylinders being pushed have 60-mm diameters. The point of contact between  tion solver programs.
the left vertical finger and the leftmost cylinder in the position shown is 58 mm at 80°
versus the left end of the parallelogram's coupler (point D). Calculate and plot the relative
acceleration between points £ and P for one revolution of gear 2.

77-47  Figure P7-17 shows a paper roll off-loading mechanism driven by an air cylinder. In
the position shown O4A is 0.3 m at 226° and 0,04 = 0.93 m at 163.2°. The V-links
are rigidly attached to O4A. The paper roll center is 0.707 m from O4 at —181° with
respect to O4A. The air cylinder is retracted at a constant acceleration of 0.1 m/sec?.
Draw a kinematic diagram of the mechanism, write the necessary equations, and calcu-
late and plot the angular acceleration of the paper roll and the linear acceleration of its
center as it rotates through 90° cCW from the position shown.

FIGURE P7-14
Problem 7-44
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Ly =75 mm
5 i L3 =170 mm

workpiece
View as a video
FIGURE P7-15 http://www.designofmachinery.com/DOM/power_hacksaw.avi
Problem 7-45 Power hacksaw
7-48  Figure P7-18 shows a mechanism and its dimensions. Find the accelerations of points
7 A, B, and C for the position shown if 0, = 40 rad/min and oy = -1500 rad/min? as
shown.

N . 7-49  Figure P7-19 shows a walking-beam mechanism. Calculate and plot the acceleration
" These problems are suited AR luti fthe i K2 . 100
o solution using Marhcad, out for one revolution of the input crank 2 rotating at rpm.
Matlab, or TKSolver equa- 7-50

Figure P7-20 shows a surface grinder. The workpiece is oscillated under the spinning
90-mm-diameter grinding wheel by the crank-slider linkage which has a 22-mm crank,
a 157-mm connecting rod, and a 40-mm offset. The crank turns at 30 rpm, and the

tion solver programs.

View as a video
http://www.designofmachinery.com/ X - 10

DOM/pick_and_place.avi

product

Gear Ratio = -1

0,A =04D = 40 \
0,0, =108 L3=108
O5B = 13 = eccentric radius\**,‘
0sC=92 L7=CB=193
OgE=164 0q05=128 | o &7 XU ge

eccentric on gear 5 —

all dimensions in mm

Section X-X
FIGURE P7-16 Section

Problem 7-46 Walking-beam indexer with pick-and-place mechanism


http://www.designofmachinery.com/DOM/power_hacksaw.avi
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= V-links (4)

| N

FIGURE P7-17
Problem 7-47

FIGURE P7-18
Problem 7-48

off-loading station x air cylinder (2)

L =0.801n

Ly =297

Ls =261

0, =241°

0,0, = 1.85@ 278.5°

32

5in
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View as a video

FIGURE P7-19 http://www.designofmachinery.com/DOM/walking_beam_eight-bar.avi

Problem 7-49 Straight-line walking-beam eightbar transport mechanism

7-51

7-52

7-53

7-54

grinding wheel turns at 3450 rpm. Calculate and plot the acceleration of the grinding
wheel contact point relative to the workpiece over one revolution of the crank.

Figure P7-21 shows a drag link mechanism with dimensions. Write the necessary
equations and solve them to calculate the angular acceleration of link 4 for an input of
, = 1 rad/sec. Comment on uses for this mechanism.

Figure P7-22 shows a mechanism with dimensions. Use a graphical method to calculate
the accelerations of points A, B, and C for the position shown. ®, = 20 rad/sec.

Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical
method to calculate the accelerations of points A, B, and C for the position shown. ®;
= 10 rad/sec.

Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical
method to calculate the accelerations of points A, B, and C for one revolution of the
input link. ®, = 10 rad/sec.

View as a video

http://www.designofmachinery.com/

DOM/surface_grinder.avi 0

grinding wheel \_5 \/(“)5/

‘ workpie;.;er - ‘
, e 4

A
offset /2

f 02\J> > (0]

FIGURE P7-20
Problem 7-50 A surface grinder
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Ly =0.68 in
Ly =138 in
L3=122in
Ly=162in

FIGURE P7-21
Problem 7-51

77-55  Figure P7-24 shows a drum-pedal mechanism. O,A = 100 mm at 162° and rotates to
171°atA’. 0,04 =56 mm, AB =28 mm, AP = 124 mm, and O4B = 64 mm. The
distance from Oy to F;, is 48 mm. If the input velocity V;, is a constant magnitude of 3
m/sec, find the output acceleration over the range of motion.

*17-56 A tractor-trailer tipped over while negotiating an on-ramp to the New York Thruway.
The road has a 50-ft radius at that point and tilts 3° toward the outside of the curve.
The 45-ft-long by 8-ft-wide by 8.5-ft-high trailer box (13 ft from ground to top) was
loaded with 44 415 1b of paper rolls in two rows by two layers as shown in Figure
P7-25. The rolls are 40 in diameter by 38 in long, and weigh about 900 Ib each. They
are wedged against backward rolling but not against sideward sliding. The empty

L2 =1.35in 62 = 14°

/// L4=136 06 =880
O¢ ] Ls=2.69 0,04 =1.22@ 56.5°
Lg=1.80 0604 =3.86@ 33°

FIGURE P7-22
Problems 7-52 and 7-89 to 7-90
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drum

View as a video
http://www.designofma-
chinery.com/DOM/drum_
pedal.avi

FIGURE P7-24
Problem 7-55

* Answers in Appendix F.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.


http://www.designofmachinery.com/DOM/drum_pedal.avi

402 DESIGN OF MACHINERY 6ed CHAPTER 7

6@;

C
Ly =1.001n

Ly=476 86in
Ls =455

0, =99°
040, =1.69@15.5°

7
. FIGURE P7-23

Problems 7-53 to 7-54 and 7-91to 7-92

trailer weighed 14 000 Ib. The driver claims that he was traveling at less than 15 mph
and that the load of paper shifted inside the trailer, struck the trailer sidewall, and tipped
the truck. The paper company that loaded the truck claims the load was properly stowed
and would not shift at that speed. Independent tests of the coefficient of friction between
similar paper rolls and a similar trailer floor give a value of 0.43 + 0.08. The composite
center of gravity of the loaded trailer is estimated to be 7.5 ft above the road. Determine
the truck speed that would cause the truck to just begin to tip and the speed at which the
rolls will just begin to slide sideways. What do you think caused the accident?

FIGURE P7-25
Problem 7-56
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7-57

7-58

7-59

7-60

7-61

7-62

7-63

7-64

7-65

Figure P7-26 shows a V-belt drive. The sheaves have pitch diameters of 150 and 300
mm, respectively. The smaller sheave is driven at a constant 1750 rpm. For a cross-
sectional differential element of the belt, write the equations of its acceleration for one
complete trip around both sheaves including its travel between the sheaves. Compute
and plot the acceleration of the differential element versus time for one circuit around
the belt path. What does your analysis tell about the dynamic behavior of the belt?
Relate your findings to your personal observation of a belt of this type in operation.
(Look in your school’s machine shop or under the hood of an automobile—but mind
your fingers!)

Write a program using an equation solver or any computer language to solve for the
displacements, velocities, and accelerations in an offset crank-slider linkage as shown
in Figure P7-2. Plot the variation in all links’ angular and all pins’ linear positions,
velocities, and accelerations with a constant angular velocity input to the crank over
one revolution for both open and crossed configurations of the linkage. To test the pro-
gram, use data from row a of Table P7-2. Check your results with program LINKAGES.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in an inverted crank-
slider linkage as shown in Figure P7-3. Plot the variation in all links’ angular and all
pins’ linear positions, velocities, and accelerations with a constant angular velocity
input to the crank over one revolution for both open and crossed configurations of the
linkage. To test the program, use data from row e of Table P7-3 except for the value of
o, which will be set to zero for this exercise.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to solve for the displacements, velocities, and accelerations in a geared fivebar
linkage as shown in Figure P7-4. Plot the variation in all links’ angular and all pins’
linear positions, velocities, and accelerations with a constant angular velocity input to
the crank over one revolution for both open and crossed configurations of the link-
age. To test the program, use data from row a of Table P7-4 . Check your results with
program LINKAGES.

Find the acceleration of the slider in Figure 3-33 for the position shown if 6, = 110°
with respect to the global X axis assuming a constant @, = 1 rad/sec CW:

a.  Using a graphical method. fb.  Using an analytical method.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-

Solver to calculate and plot the angular acceleration of link 4 and the linear acceleration

of slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle
of input link 2 for a constant w, = 1 rad/sec CW. Plot A both as a function of 6, and
separately as a function of slider position as shown in the figure.

Find the angular acceleration of link 6 of the linkage in Figure 3-34 part (b) for the position
shown (B = 90° with respect to the x axis) assuming constant ®, = 10 rad/sec CW:

a.  Using a graphical method. fb.  Using an analytical method.

Write a computer program or use an equation solver such as Mathcad, Matlab, or

TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of

Figure 3-34 as a function of 6, for a constant m, = 1 rad/sec CW.

Use a compass and straightedge (ruler) to draw the linkage in Figure 3-35 with link 2

at 90° and find the angular acceleration of link 6 of the linkage assuming constant ®, =

10 rad/sec cCw when 6, = 90°:

a.  Using a graphical method. fb.  Using an analytical method.

403

FIGURE P7-26

Problem 7-57

V-belt drive cCourtesy of
T.B. Wood'’s Sons Co.,
Chambersburg, PA

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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7-66

7-67

77-68

7-69
7-70

7-71

7-72

7-73

7-74

7-75

“1-76

7-71

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of
Figure 3-35 as a function of 6, for a constant ®, = 1 rad/sec CCW.

Write a computer program or use an equation solver such as Mathcad, Matlab, or TK-
Solver to calculate and plot the angular acceleration of link 8 in the linkage of Figure
3-36 as a function of 6, for a constant ®, = 1 rad/sec CCW.

Write a computer program or use an equation solver such as Mathcad, Matlab, or
TKSolver to calculate and plot magnitude and direction of the acceleration of point P
in Figure 3-37a as a function of 6. Also calculate and plot the acceleration of point P
versus point A.

Repeat Problem 7-68 for the linkage in Figure 3-37b.

Find the angular accelerations of links 3 and 4 and the linear accelerations of points A,
B, and P in the XY coordinate system for the linkage in Figure P7-27 in the position
shown. Assume that 8, = 45° in the XY coordinate system and m, = 10 rad/sec, con-
stant. The coordinates of the point P on link 4 are (114.68, 33.19) with respect to the
Xy coordinate system:

a.  Using a graphical method. fb.  Using an analytical method.

Using the data from Problem 7-70, write a computer program or use an equation solver
such as Mathcad, Matlab, or TKSolver to calculate and plot magnitude and direction of
the absolute acceleration of point P; in Figure P7-27 as a function of 6,.

Find the angular accelerations of links 3 and 4, and the linear acceleration of point P in the
XY coordinate system for the linkage in Figure P7-28 in the position shown. Assume that
0, = —94.121° in the XY coordinate system, w, = 1 rad/sec, and oy = 10 rad/sec?. The
position of the coupler point P on link 3 with respect to point A is: p = 15.00, §3 = 0°:

a.  Using a graphical method. b Using an analytical method.

For the linkage in Figure P7-28, write a computer program or use an equation solver
such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity and
acceleration of links 2 and 4, and the magnitude and direction of the velocity and ac-
celeration of point P as a function of 0, through its possible range of motion starting at
the position shown. The position of the coupler point P on link 3 with respect to point
Ais: p=15.00, 83 = 0°. Assume that, @ 1 =0, 6, =-94.121° in the XY coordinate
system, 0, = 0, and oy = 10 rad/sec2, constant.

Derive analytical expressions for the accelerations of points A and B in Figure P7-29
as a function of 03, 3, 03, and the length AB of link 3. Use a vector loop equation.
Code them in an equation solver or a programming language and plot them.

The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.
Find 0 and Ap in the global coordinate system for the position shown if @, = 10 rad/
sec CCW and ol = 50 rad/sec2 CW. Use the acceleration difference graphical method.
(Print the figure from its PDF file and draw on it.)

The linkage in Figure P7-30a has link 2 at 120° in the global XY coordinate system.
Find 0 and Ap in the global coordinate system for the position shown if @, = 10 rad/
sec cCW and o = 50 rad/sec? CW. Use an analytical method.

The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4
are parallel to each other. Find o4, A4, Ap, and Ap if @, = 15 rad/sec CW and o, =
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View as a video
http://www.designof-
machinery.com/DOM/

oil_pump.avi

80

76

12

y/
FIGURE P7-27 '

Problems 7-70 to 7-71 An oil field pump—dimensions in inches

100 rad/ sec? CW. Use the acceleration difference graphical method. (Print the figure
from its PDF file and draw on it.)

*7-78  The linkage in Figure P7-30b has link 3 perpendicular to the X axis and links 2 and 4
are parallel to each other. Find oy, A, Ap, and Ap if @, = 15 rad/sec CW and o, =
100 rad/sec2 CW. Use an analytical method.

2.79

>

9.573

FIGURE P7-28
Problems 7-72 and 7-73 An aircraft overhead bin mechanism—dimensions in inches
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View as a video
http://www.designof-
machinery.com/DOM/

elliptic_trammel.avi

FIGURE P7-29

Elliptical trammel
Problem 7-74

* Answers in Appendix F.
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§ Note that these can be
long problems to solve and
may be more appropriate for
a project assignment than

an overnight problem. In
most cases, the solution can
be checked with program

LINKAGES.

* Answers in Appendix F.

7-79

7-80

7§7-81

7-82

7-83

7-84

§7-85

7-86

“7-87

§7-88

7-89

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Find Ag, Ap,, and Ap, if the crossheads are each moving toward the origin of the
XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec. Use
the acceleration difference method. (Print the figure from its PDF file and draw on it.)

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Find Ag, Ap,, and Ap, if the crossheads are each moving toward the origin of
the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec?.
Use an analytical method.

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at crossheads 2
and 5. Att =0, crosshead 2 is at rest at the origin of the global XY coordinate system
and crosshead 5 is at rest at (70, 0). Write a computer program to find and plot A p, and
Ap, for the first 5 sec of motion if Ay = 0.5 in/sec? upward and A5 = 0.5 in/sec? to the
left.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find o and A4 in the position shown if the
velocity of the slider is constant at 20 in/sec downward. Use the acceleration difference
graphical method. Print the figure’s PDF file and draw on it.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis. Find o and A4 in the position shown if the
velocity of the slider is constant at 20 in/sec downward. Use an analytical method.

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X axis
and link 2 aligned with the global X axis at # = 0. Write a computer program or use an
equation solver to find and plot A as a function of 6, over the possible range of mo-
tion of link 2 in the global XY coordinate system.

For the linkage of Figure P7-30e, write a computer program or use an equation solver
to find and plot Ap in the global coordinate system for one revolution of link 2 if m, is
constant at 10 rad/sec CW.

The linkage of Figure P7-30f has link 2 at 130° in the global XY coordinate system.
Find Ap in the global coordinate system for the position shown if ®w, = 15 rad/sec CW
and oy = 50 rad/sec? CW. Use the acceleration difference graphical method. (Print the
figure from its PDF file and draw on it.)

Figure 3-14 shows a crank-shaper quick-return mechanism with the dimensions: L, =
4.80in, Ly = 24.00 in, L5 = 19.50 in. The distance from link 4’s pivot (O4) to link 2’s
pivot (O) is 16.50 in. The vertical distance from O to point C on link 6 is 6.465 in.
Use a graphical method to find the acceleration of point C on link 6 when the linkage is
near the rightmost position shown with 8, = 45° measured from an axis running from
an origin at O, through O4. Assume that link 2 has a constant angular velocity of 2
rad/sec CW.

Use the data in Problem 7-87 and an analytical method to calculate and plot the accel-
eration of point C on link 6 of that mechanism for one revolution of input crank 2.

Figure P7-22 shows a mechanism with dimensions. Use a graphical method to deter-
mine the acceleration of points A and B for the position shown for w, = 24 rad/s CW.
Ignore links 5 and 6.
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A Y1 0,A=620
0,B=3.00
AC =225
BC=1225
CD =5.60
\ BOD=110°

(a) Sixbar linkage

Y

AB=3432
Py BC =504
APy=315
BPy =222
BP,=4152
CP,=27

- 57 ————»

(c) Dual crosshead mechanism

X

Lh=5 [3=5 Ls=15 BC=38
0204:2,5 04B=6 O4C=6

(e) Drag link slider-crank

FIGURE P7-30
Problems 7-75 to 7-86

407
Y B3
3 4
0, 20,
O | - X
P JRA
Z — 443 1y =275
o, [3=323 L,=275
AP = 1.63

(b) Fourbar linkage

Lr,=50
L3=84
Ly=25
L5 =89
Le=32
L7=64
0,04 =125
AC=24
CD=59

-~ 19—

- 465

(d) Sixbar linkage

(f) Eightbar mechanism

J—.
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TABLE P7-5 Data for Problems 7-93 to 7-94

Row Link 2 Link 3 Offset d d d
a 14 4 1 2.5 10
b 2 6 -3 5 12 5
c 3 8 2 8 15 ~10
d 35 10 1 -8 24 4
e 5 20 5 15 50 10
f 3 13 0 12 _45 50
g 7 25 10 25 100 18

iDrawings of these linkages are in the PDF Problem Workbook folder.

7-90

7-91

7-92

7-93

7-94

. _ 71
http://www.designofma-
chinery.com/DOM/Four- L7-1
bar_Machine_Virtual_labo-

ratory.mp4

§ http://www.designofma-
chinery.com/DOM/Four-
bar_Virtual_Lab.zip

Figure P7-22 shows a mechanism with dimensions. Use an analytical method to cal-
culate the accelerations of points A and B for the position shown for w, = 24 rad/s CW.
Ignore links 5 and 6.

Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical
method to determine the accelerations of points A and B for the position shown for m,
= 16 rad/s CCW. Ignore links 5 and 6.

Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical
method to calculate the accelerations of points A and B for the position shown for m, =
16 rad/s CCW. Ignore links 5 and 6.

The general linkage configuration and terminology for an offset fourbar slider-crank
linkage are shown in Figure P7-2. The link lengths and the values of d, d, and d are
defined in Table P7-5. For the row(s) assigned, find the acceleration of the pin joint A
and the angular acceleration of the crank using a graphical method.

The general linkage configuration and terminology for an offset fourbar slider-crank
linkage are shown in Figure P7-2. The link lengths and the values of d, d, and d are
defined in Table P7-5. For the rows assigned, find the acceleration of pin joint A and
the angular acceleration of the crank using the analytic method. Draw the linkage to
scale and label it before setting up the equations.

VIRTUAL LABORATORY View the video (35:38)"  View the lab §

View the video Fourbar Linkage Virtual Laboratory. Open the file Virtual Fourbar
Linkage Lab 7-1.doc and follow the instructions as directed by your professor.


http://www.designofmachinery.com/DOM/Fourbar_Machine_Virtual_laboratory.mp4
http://www.designofmachinery.com/DOM/Fourbar_Virtual_Lab.zip

Chapter

CAM DESIGN

It is much easier to design than to perform
SAMUEL JOHNSON

8.0 INTRODUCTION View the lecture video (50:42)*

Cam-follower systems are frequently used in all kinds of machines. The valves in your
automobile engine are opened by cams. Machines used in the manufacture of many con-
sumer goods are full of cams.” Compared to linkages, cams are easier to design to give
a specific output function, but they are much more difficult and expensive to make than a
linkage. Cams are a form of degenerate fourbar linkage in which the coupler link has been
replaced by a half joint as shown in Figure 8-1. This topic was discussed in Section 2.10
on linkage transformation (see also Figure 2-12). For any one instantaneous position of
cam and follower, we can substitute an effective linkage that will, for that instantaneous
position, have the same motion as the original. In effect, the cam-follower is a fourbar
linkage with variable-length (effective) links. It is this conceptual difference that makes
the cam-follower such a versatile and useful function generator. We can specify virtually
any output function we desire and quite likely create a curved surface on the cam to gener-
ate that function in the motion of the follower. We are not limited to fixed-length links as
we were in linkage synthesis. The cam-follower is an extremely useful mechanical device,
without which the machine designer’s tasks would be more difficult to accomplish. But,
as with everything else in engineering, there are trade-offs. These will be discussed in later
sections. A list of the variables used in this chapter is provided in Table 8-1.

This chapter will present the proper approach to designing a cam-follower system,
and in the process also present some less than proper designs as examples of the prob-
lems that inexperienced cam designers often get into. Theoretical considerations of the
mathematical functions commonly used for cam curves will be discussed. Methods for
the derivation of custom polynomial functions, to suit any set of boundary conditions,
will be presented. The task of sizing the cam with considerations of pressure angle and
radius of curvature will be addressed, and manufacturing processes and their limitations
discussed. The computer program DYNACAM will be used throughout the chapter as a tool

T http://www.designof-
machinery.com/DOM/
Cam_Design_I.mp4

* View the video http:/
www.designofmachinery.
com/DOM/Pick_and_
Place_Mechanism.mp4 to
see an example of a cam
driven mechanism from an
actual production machine.



http://www.designofmachinery.com/DOM/Cam_Design_I.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
http://www.designofmachinery.com/DOM/Pick_and_Place_Mechanism.mp4
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TABLE 8-1 Notation Used in This Chapter

t =time, seconds

0 = camshaft angle, degrees or radians (rad)

® = camshaft angular velocity, rad/sec

B = total angle of any segment, rise, fall, or dwell, degrees or rad
h = total lift (rise or fall) of any one segment, length units

s or S = follower displacement, length units

v = ds/dB = follower velocity, length/rad

V = dS/dt = follower velocity, length/sec

a = dv/d6 = follower acceleration, length/rad?

A = dV/dt = follower acceleration, length/sec?

Jj = da/d6=follower jerk, length/rad®

J = dA/dt = follower jerk, length/sec®

s v ajrefers to the group of diagrams, length units versus radians
S V A Jrefers to the group of diagrams, length units versus time
RD = base circle radius, length units

Rp = prime circle radius, length units

Rf: roller follower radius, length units

€ = eccentricity of cam-follower, length units

= pressure angle, degrees or radians

p = radius of curvature of cam surface, length units

Ppiten = radius of curvature of pitch curve, length units

P, = Minimum radius of curvature of pitch curve or cam surface, length units

to present and illustrate design concepts and solutions. Information about this program
is in Appendix A.

81 CAM TERMINOLOGY

Cam-follower systems can be classified in several ways: by type of follower motion, either
translating or rotating (oscillating); by type of cam, radial, cylindrical, three-dimension-
al; by type of joint closure, either force- or form-closed; by type of follower, curved or
flat, rolling or sliding; by rype of motion constraints, critical extreme position (CEP),
critical path motion (CPM); by type of motion program, rise-fall (RF), rise-fall-dwell
(RFD), rise-dwell-fall-dwell (RDFD). We will now discuss each of these classification
schemes in greater detail.

Type of Follower Motion

Figure 8-1a shows a system with an oscillating, or rotating, follower. Figure 8-1b shows
a translating follower. These are analogous to the crank-rocker fourbar and the crank-



CAM DESIGN 41

slider fourbar linkages, respectively. An effective fourbar linkage can be substituted for
the cam-follower system for any instantaneous position. The lengths of the effective links
are determined by the instantaneous locations of the centers of curvature of cam and fol-
lower as shown in Figure 8-1. The velocities and accelerations of the cam-follower system
can be found by analyzing the behavior of the effective linkage for any position. A proof
of this can be found in reference [1]. Of course, the effective links change length as the
cam-follower moves, giving it an advantage over a pure linkage as this allows greater
flexibility in meeting the desired motion constraints.

The choice between these two forms of the cam-follower is usually dictated by the
type of output motion desired. If true rectilinear translation is required, then the translat-
ing follower is dictated. If pure rotation output is needed, then the oscillator is the obvious
choice. There are advantages to each of these approaches, separate from their motion
characteristics, depending on the type of follower chosen. These will be discussed in a
later section.

Effective link 3

Effective link 2

FOHOWer]
i

Effective link 4

(@) An oscillating cam-follower has an effective pin-jointed fourbar equivalent

Instantaneous center
of cam curvature
Half joint

Effective link 2 Effective link 3

S — /

LLEESNN <« >

® Vfollower © 3 Vfollower
Spring | | Effective link 4
Follower Effective link 1 /V I14 @ ¥
(b) A translating cam-follower has an effective fourbar slider-crank equivalent
FIGURE 8-1

Effective linkages in the cam-follower mechanism
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Type of Joint Closure

Force and form closure were discussed in Section 2.3 on the subject of joints and have
the same meaning here. Force closure, as shown in Figure 8-1, requires an external
force be applied to the joint in order to keep the two links, cam and follower, physically
in contact. This force is usually provided by a spring. This force, defined as positive in a
direction that closes the joint, cannot be allowed to become negative. If it does, the links
have lost contact because a force-closed joint can only push, not pull. Form closure, as
shown in Figure 8-2, closes the joint by geometry. No external force is required. There
are really two cam surfaces in this arrangement, one surface on each side of the follower.
Each surface pushes, in its turn, to drive the follower in both directions.

Figure 8-2a and b shows track or groove cams that capture a single follower in the
groove and both push and pull on the follower. Figure 8-2c shows another variety of form-

Half joint Half joint Follower
'/ / / N Follower '/ //
Ocam “//’ / / | Ocam /"/ /

|y 4

k Y -

Vfollower \ \\\ ———

‘\\ = \\\
. — Track or groove / =
/ S Cam
Cam
Track or groove
(@) Form-closed cam with translating follower (b) Form-closed cam with oscillating follower

Conjugate 1

;

. (Dcam “‘
(c) Conjugate cams on common shaft |

o

Conjugate

FIGURE 8-2

Form-closed cam-follower systems
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closed cam-follower arrangement, called conjugate cams. There are two cams fixed on
a common shaft that are mathematical conjugates of one another. Two roller followers,
attached to a common arm, are each pushed in opposite directions by the conjugate cams.
When form-closed cams are used in automobile or motorcycle engine valve trains, they
are called desmodromic” cams. There are advantages and disadvantages to both force-
and form-closed arrangements that are discussed in Section 8-7.

Type of Follower

Follower, in this context, refers only to that part of the follower link that contacts the
cam. Figure 8-3 shows three common arrangements, flat-faced, mushroom (curved), and
roller. The roller follower has the advantage of lower (rolling) friction than the sliding
contact of the other two but can be more expensive. Flat-faced followers can package
smaller than roller followers for some cam designs and are often favored for that reason
as well as cost for automotive valve trains. Roller followers are most frequently used
in production machinery where their ease of replacement and availability from bearing
manufacturers’ stock in any quantities are advantages. Grooved or track cams require
roller followers. Roller followers are essentially ball or roller bearings with customized
mounting details. Figure 8-5a shows two common types of commercial roller followers.
Flat-faced or mushroom followers are usually custom-designed and manufactured for
each application. For high-volume applications such as automobile engines, the quantities
are high enough to warrant a custom-designed follower.

Type of Cam

The direction of the follower’s motion relative to the axis of rotation of the cam determines
whether it is a radial or axial cam. All cams shown in Figures 8-1 to 8-3 are radial cams

1 Vfollower i Vfollower
Follower Follower Follower
NN N |
Spring \5 ‘ N Spring \55 ‘ Spring \

= ‘\V\ Cam / ‘\\ Cam
i Y B
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* More information on
desmodromic cam-follower
mechanisms can be found
at http://members.chello
nl/~wgj.jansen/ where a
number of models of their
commercial implementa-
tions can be viewed in
operation as movies.

i Vfollower

(a) Roller follower (b) Mushroom follower (c) Flat-faced follower

FIGURE 8-3

Three common types of cam followers
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* View the video http:/
www.designofmachinery.
com/DOM/Spring_Manu-
facturing.mp4 to see an
example of spring manufac-
turing machinery that uses
many cams.
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because the follower motion is generally in a radial direction. Open radial cams are also
called plate cams.

Figure 8-4 shows an axial cam whose follower moves parallel to the axis of cam rota-
tion. This arrangement is also called a face cam if open (force-closed) and a cylindrical
or barrel cam if grooved or ribbed (form-closed).

Figure 8-5b shows a selection of cams of various types.” Clockwise from the lower
left, they are: an open (force-closed) axial or face cam; an axial grooved (track) cam
(form-closed) with external gear; an open radial, or plate cam (force-closed); a ribbed
axial cam (form-closed); an axial grooved (barrel) cam.

Three-dimensional cams (Figure 8-5c) are a combination of radial and axial cams.
The input rotation of the cam drives a follower train having both radial and axial motion.
The follower motion has two coupled degrees of freedom.

Type of Motion Constraints

There are two general categories of motion constraint, critical extreme position (CEP;
also called endpoint specification) and critical path motion (CPM). Critical extreme
position refers to the case in which the design specifications define the start and finish
positions of the follower (i.e., extreme positions) but do not specify any constraints on
the path motion between the extreme positions. This case is discussed in Sections 8.3
and 8.4 and is the easier of the two to design as the designer has great freedom to choose
the cam functions that control the motion between extremes. Critical path motion is
a more constrained problem than CEP because the path motion and/or one or more of
its derivatives are defined over all or part of the interval of motion. This is analogous to
function generation in the linkage design case except that with a cam we can achieve a
continuous output function for the follower. Section 8.5 discusses this CPM case. It may
only be possible to create an approximation of the specified function and still maintain
suitable dynamic behavior.

Roller ‘\ T Half joint / Follower assembly
RXXY T | N J

NN\

View a video
http://www.designof-
machinery.com/DOM/

cylindrical_cam.avi

SIS, ‘ ‘

v ) v )

- Vfollower

FIGURE 8-4 Copyright © 2018 Robert L. Norton: All Rights Reserved

Axial, cylindrical, or barrel cam with form-closed, translating follower
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5

SR iy B

(b) Commercial cams and a motorcycle camshaft

(a) Commercial roller followers
Courtesy of McGill Manufacturing Co.
South Bend, IN

(c) Three-dimensional cams

FIGURE 8-5 Copyright © 2018 Robert L. Norton: All Rights Reserved

Cams and roller followers

Type of Motion Program

The motion programs rise-fall (RF), rise-fall-dwell (RFD), and rise-dwell-fall-dwell
(RDFD) all refer mainly to the CEP case of motion constraint and in effect define how
many dwells are present in the full cycle of motion, none (RF), one (RFD), or more than
one (RDFD). Dwells, defined as no output motion for a specified period of input motion,
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are an important feature of cam-follower systems because it is very easy to create exact
dwells in these mechanisms. The cam-follower is the design type of choice whenever a
dwell is required. We saw in Section 3.9 how to design dwell linkages and found that at
best we could obtain only an approximate dwell. The resulting single- or double-dwell
linkages tend to be quite large for their output motion and are somewhat difficult to
design. (See program LINKAGES for some built-in examples of these dwell linkages.)
Cam-follower systems tend to be more compact than linkages for the same output motion.

If your need is for a rise-fall (RF) CEP motion, with no dwell, then you should really
be considering a crank-rocker linkage rather than a cam-follower to obtain all the link-
age’s advantages over cams of reliability, ease of construction, and lower cost that were
discussed in Section 2.18. If your needs for compactness outweigh those considerations,
then the choice of a cam-follower in the RF case may be justified. Also, if you have a
CPM design specification, and the motion or its derivatives are defined over the interval,
then a cam-follower system is the logical choice in the RF case.

The rise-fall-dwell (RFD) and rise-dwell-fall-dwell (RDFD) cases are obvious
choices for cam-followers for the reasons discussed above. However, each of these two
cases has its own set of constraints on the behavior of the cam functions at the interfaces
between the segments that control the rise, the fall, and the dwells. In general, we must
match the boundary conditions (BCs) of the functions and their derivatives at all inter-
faces between the segments of the cam. This topic will be thoroughly discussed in the
following sections.

8.2 S VA J DIAGRAMS

The first task faced by the cam designer is to select the mathematical functions to be used
to define the motion of the follower. The easiest approach to this process is to “linear-
ize” the cam, i.e., “unwrap it” from its circular shape and consider it as a function plotted
on cartesian axes. We plot the displacement function s, its first derivative velocity v,
its second derivative acceleration a, and its third derivative jerk j, all on aligned axes as
a function of camshaft angle 6 as shown in Figure 8-6. Note that we can consider the
independent variable in these plots to be either time ¢ or shaft angle 0, as we know the
constant angular velocity wof the camshaft and can easily convert from angle to time and
vice versa.

0=ot (8.1)

Figure 8-6a shows the specifications for a four-dwell cam that has eight segments,
RDFDRDFDRDFD. Figure 8-6b shows the s v a j curves for the whole cam over 360 degrees
of camshaft rotation. A cam design begins with a definition of the required cam functions
and their s v a j diagrams. Functions for the nondwell cam segments should be chosen
based on their velocity, acceleration, and jerk characteristics and the relationships at the
interfaces between adjacent segments including the dwells. These function characteristics
can be conveniently and quickly investigated with program DYNACAM which generated
the data and plots shown in Figure 8-6.
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Function:  cycloid mod sine mod trap simp harm
Segment: 1 P20 3 14 5 | 7
s Lo | &
Segment Function Start End Delta V
Number Used Angle Angle Angle
1 Cycloid rise 0 60 60 Y
2 Dwell 60 90 30 ‘ ‘
3 ModSine fall 90 150 60
4 Dwell 150 180 30
5 ModTrap rise 180 240 60
6 Dwell 240 270 30 i
7 SimpHarm fall 270 330 60 \/
8 Dwell 330 360 30

(a) Cam program specifications

(b) Plots of cam-follower's s v aj diagrams

FIGURE 8-6

Cycloidal, modified sine, modified trapezoid, and simple harmonic motion functions on a four-dwell cam

8.3 DOUBLE-DWELL CAM DESIGN—CHOOSING SV A J
FUNCTIONS

Many cam design applications require multiple dwells. The double-dwell case is quite
common. Perhaps a double-dwell cam is driving a part feeding station on a production
machine that makes toothpaste. This hypothetical cam’s follower is fed an empty tooth-
paste tube (during the low dwell), then moves the empty tube into a loading station (during
the rise), holds the tube absolutely still in a critical extreme position (CEP) while tooth-
paste is squirted into the open bottom of the tube (during the high dwell), and then retracts
the filled tube back to the starting (zero) position and holds it in this other critical extreme
position. At this point, another mechanism (during the low dwell) picks the tube up and
carries it to the next operation, which might be to seal the bottom of the tube. A similar
cam could be used to feed, align, and retract the tube at the bottom-sealing station as well.

Cam specifications such as this are often depicted on a timing diagram as shown in
Figure 8-7 which is a graphical representation of the specified events in the machine cycle.
A machine’s cycle is defined as one revolution of its master driveshaft. In a complicated
machine, such as our toothpaste maker, there will be a timing diagram for each subas-
sembly in the machine. The time relationships among all subassemblies are defined by
their timing diagrams which are all drawn on a common time axis. Obviously all these
operations must be kept in precise synchrony and time phase for the machine to work.

This simple example in Figure 8-7 is a critical extreme position (CEP) case, because
nothing is specified about the functions to be used to get from the low dwell position
(one extreme) to the high dwell position (other extreme). The designer is free to choose
any function that will do the job. Note that these specifications contain only information
about the displacement function. The higher derivatives are not specifically constrained
in this example. We will now use this problem to investigate several different ways to
meet the specifications.

417
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Motion
mm or in
A High
dwell
1
Low . .
dwell Rise Fall
0 >
0 90 180 270 360 Cam angle 6 deg
0 0.25 0.50 0.75 1.0 Time t sec
FIGURE 8-7
Cam timing diagram
A DEXAMPLE 841
Naive Cam Design—A Bad Cam.
Problem: Consider the following cam design CEP specification:
dwell at zero displacement for 90 degrees (low dwell)
rise 1in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall 1in (25 mm) in 90 degrees
cam ® 21 rad/sec = 1 rev/sec

Solution:

1

The naive or inexperienced cam designer might proceed with a design as shown in Figure 8-8a.
Taking the given specifications literally, it is tempting to merely “connect the dots” on the tim-
ing diagram to create the displacement (s) diagram. (After all, when we wrap this s diagram
around a circle to create the actual cam, it will look quite smooth despite the sharp corners on
the s diagram.) The mistake our beginning designer is making here is to ignore the effect on
the higher derivatives of the displacement function that results from this simplistic approach.

Figure 8-8b, ¢, and d shows the problem. Note that we have to treat each segment of the cam
(rise, fall, dwell) as a separate entity in developing mathematical functions for the cam. Tak-
ing the rise segment (#2) first, the displacement function in Figure 8-8a during this portion is
a straight line, or first-degree polynomial. The general equation for a straight line is:

y=mx+b (8.2)
where m is the slope of the line and b is the y intercept. Substituting variables appropriate to
this example in equation 8.2, angle 6 replaces the independent variable x, and the displacement

s replaces the dependent variable y. By definition, the constant slope m of the displacement is
the velocity constant K.

For the rise segment, the y intercept b is zero because the low dwell position typically is taken
as zero displacement by convention. Equation 8.2 then becomes:

s=K,0 (8.3)
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4 Differentiating with respect to 6 gives a function for velocity during the rise.
v =K, = constant (8.4)
5 Differentiating again with respect to 0 gives a function for acceleration during the rise.

a=0 (8.5)

This seems too good to be true (and it is). Zero acceleration means zero dynamic
force. This cam appears to have no dynamic forces or stresses in it!

Figure 8-8 shows what is really happening here. If we return to the displacement
function and graphically differentiate it twice, we will observe that, from the definition of
the derivative as the instantaneous slope of the function, the acceleration is in fact zero
during the interval. But, at the boundaries of the interval, where rise meets low dwell on
one side and high dwell on the other, note that the velocity function is multivalued. There
are discontinuities at these boundaries. The effect of these discontinuities is to create a
portion of the velocity curve that has infinite slope and zero duration. This results in the
infinite spikes of acceleration shown at those points.
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FIGURE 8-8

The s v aj diagrams of a "bad" cam design
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* This rule is stated by
Neklutin[?! but is disputed
by some other authors. 314!
Nevertheless, this author
believes that it is a good
(and simple) rule to follow
in order to get accept-

able dynamic results with
high-speed cams. There
are clear simulation data
and experimental evidence
that smooth jerk functions
reduce residual vibrations in
cam-follower systems.[10]
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These spikes are more properly called Dirac delta functions. Infinite acceleration
cannot really be obtained, as it requires infinite force. Clearly the dynamic forces will be
very large at these boundaries and will create high stresses and rapid wear. In fact, if this
cam were built and run at any significant speeds, the sharp corners on the displacement
diagram that are creating these theoretical infinite accelerations would be quickly worn
to a smoother contour by the unsustainable stresses generated in the materials. This is an
unacceptable design.

The unacceptability of this design is reinforced by the jerk diagram which shows
theoretical values of +infinity at the discontinuities (the doublet function). The prob-
lem has been engendered by an inappropriate choice of displacement function. In fact,
the cam designer should not be as concerned with the displacement function as with its
higher derivatives.

The Fundamental Law of Cam Design

Any cam designed for operation at other than very low speeds must be designed with the
following constraints:

The cam function must be continuous through the first and second derivatives of displace-
ment across the entire interval (360 degrees).

Corollary:

The jerk function must be finite across the entire interval (360 degrees).

In any but the simplest of cams, the cam motion program cannot be defined by a
single mathematical expression, but rather must be defined by several separate functions,
each of which defines the follower behavior over one segment, or piece, of the cam. These
expressions are sometimes called piecewise functions. These functions must have third-
order continuity (the function plus two derivatives) at all boundaries. The displace-
ment, velocity, and acceleration functions must have no discontinuities in them.”

If any discontinuities exist in the acceleration function, then there will be infinite
spikes, or Dirac delta functions, appearing in the derivative of acceleration, jerk. Thus the
corollary merely restates the fundamental law of cam design. Our naive designer failed
to recognize that by starting with a low-degree (linear) polynomial as the displacement
function, discontinuities would appear in the upper derivatives.

Polynomial functions are one of the best choices for cams as we shall shortly see,
but they do have one fault that can lead to trouble in this application. Each time they
are differentiated, they reduce by one degree. Eventually, after enough differentiations,
polynomials degenerate to zero degree (a constant value) as the velocity function in Figure
8-8b shows. Thus, by starting with a first-degree polynomial as a displacement function,
it was inevitable that discontinuities would soon appear in its derivatives.

In order to obey the fundamental law of cam design, one must start with at least a
fifth-degree polynomial (quintic) as the displacement function for a double-dwell cam.
This will degenerate to a cubic function in the acceleration. The parabolic jerk function
will have discontinuities, and the (unnamed) derivative of jerk will have infinite spikes in
it. This is acceptable, as the jerk is still finite.
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Simple Harmonic Motion (SHM)

Our naive cam designer recognized his mistake in choosing a straight-line function for the
displacement. He also remembered a family of functions he had met in a calculus course
that have the property of remaining continuous throughout any number of differentiations.
These are the harmonic functions. On repeated differentiation, sine becomes cosine,
which becomes negative sine, which becomes negative cosine, etc., ad infinitum. One
never runs out of derivatives with the harmonic family of curves. In fact, differentiation
of a harmonic function really only amounts to a 90° phase shift of the function. It is as
though, when you differentiated it, you cut out, with a scissors, a different portion of the
same continuous sine wave function, which is defined from minus infinity to plus infinity.
The equations of simple harmonic motion (SHM) for a rise motion are:

h 0
s_E{l—cos[nEH (8.6a)
V_E—sin[n%J (8.6b)
2 )
a__ZECOS[nE] (8.6¢)
3
j= %gsin(ngj (8.6d)

where h is the total rise, or lift, 0 is the camshaft angle, and [ is the total angle of the rise
interval.

We have here introduced a notation to simplify the expressions. The independent
variable in our cam functions is 0, the camshaft angle. The period of any one segment is
defined as the angle B. Its value can, of course, be different for each segment. We normal-
ize the independent variable 6 by dividing it by the period of the segment 3. Both 6 and
B are measured in radians (or both in degrees). The value of 8/ will then vary from 0
to 1 over any segment. It is a dimensionless ratio. Equations 8.6 define simple harmonic
motion and its derivatives for this rise segment in terms of 6/p.

This family of harmonic functions appears, at first glance, to be well suited to the
cam design problem of Figure 8-7. If we define the displacement function to be one of
the harmonic functions, we should not “run out of derivatives” before reaching the ac-
celeration function.

ZDEXAMPLE 8-2

Sophomoric* Cam Design—Simple Harmonic Motion—Still a Bad Cam.

Problem: Consider the same cam design CEP specification as in Example 8-1:
dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall 1 in (25 mm) in 90 degrees

cam ® 27 rad/sec = 1 rev/sec

421

* Sophomoric, from
sophomore, def. wise fool,
from the Greek, sophos =
wisdom, moros = fool.
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F

Though this is actually

a half-period cosine wave,
we will call it a full-rise (or
full-fall) simple harmonic
function to differentiate

it from the half-rise (and
half-fall) simple harmonic
function which is actually a
quarter-period cosine.

Solution:

| Figure 8-9 shows a full-rise simple harmonic function™ applied to the rise segment of our cam
design problem.

2 Note that the velocity function is continuous, as it matches the zero velocity of the dwells at
each end. The peak value is 6.28 in/sec (160 mm/sec) at the midpoint of the rise.

3 The acceleration function, however, is not continuous. It is a half-period cosine curve and has
nonzero values at start and finish that are +78.8 in/sec? (2.0 m/sec?).

4 Unfortunately, the dwell functions, which adjoin this rise on each side, have zero acceleration
as can be seen in Figure 8-6. Thus there are discontinuities in the acceleration at each end
of the interval that uses this simple harmonic displacement function.

5 This violates the fundamental law of cam design and creates infinite spikes of jerk at the ends
of this fall interval. This is also an unacceptable design.

)i

cam angle 0

FIGURE 8-9

Simple harmonic
motion with dwells
has discontinuous
acceleration.

T http://www.designof-
machinery.com/DOM/
Cam_Design_II.mp4

What went wrong? While it is true that harmonic functions are differentiable ad
infinitum, we are not dealing here with single harmonic functions. Our cam function
over the entire interval is a piecewise function (Figure 8-6) made up of several segments,
some of which may be dwell portions or other functions. A dwell will always have zero
velocity and zero acceleration. Thus we must match the dwells’ zero values at the ends
of those derivatives of any nondwell segments that adjoin them. The simple harmonic
displacement function, when used with dwells, does not satisfy the fundamental law of
cam design. Its second derivative, acceleration, is nonzero at its ends and thus does not
match the dwells required in this example.

The only case in which the simple harmonic displacement function will satisfy the
fundamental law is the non-quick-return RF case, i.e., rise in 180° and fall in 180° with
no dwells. Then the cam profile, if run against a flat-faced follower, becomes an eccentric
as shown in Figure 8-10. As a single continuous (not piecewise) function, its derivatives
are continuous also. Figure 8-11 shows the displacement (in inches) and acceleration
functions (in g’s) of an eccentric cam as actually measured on the follower. The noise,
or “ripple,” on the acceleration curve is due to small, unavoidable, manufacturing errors.
Manufacturing limitations will be discussed in a later section.

Cycloidal Displacement View the lecture video (51:17)f

The two bad examples of cam design described above should lead the cam designer to the
conclusion that consideration only of the displacement function when designing a cam
is erroneous. The better approach is to start with consideration of the higher derivatives,
especially acceleration. The acceleration function, and to a lesser extent the jerk function,
should be the principal concern of the designer. In some cases, especially when the mass
of the follower train is large, or when there is a specification on velocity, that function
must be carefully designed as well.
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FIGURE 8-11 Copyright © 2018 Robert L. Norton: All Rights Reserved

Displacement and acceleration as measured on the follower of an eccentric cam

With this in mind, we will redesign the cam for the same example specifications as
above. This time we will start with the acceleration function. The harmonic family of
functions still has advantages that make them attractive for these applications. Figure 8-12
shows a full-period sinusoid applied as the acceleration function. It meets the constraint
of zero magnitude at each end to match the dwell segments that adjoin it. The equation

for a sine wave is:
. 0
a= Csm[Zn—)
p

We have again normalized the independent variable 6 by dividing it by the period of
the segment B with both 6 and B measured in radians. The value of 6/ ranges from 0 to
1 over any segment and is a dimensionless ratio. Since we want a full-cycle sine wave,
we must multiply the argument by 2. The argument of the sine function will then vary
between 0 and 27 regardless of the value of B. The constant C defines the amplitude of
the sine wave.

(8.7)

Integrate to obtain velocity,
a= L =Csin an
de B
. 6
J.dv = stm(ZnEJde

V= —Cﬁcos[2ngj+kl
2n B

(8.8)
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a cos ot

FIGURE 8-10

A flat-faced follower
on an eccentric cam
has simple harmonic
motion.*

* If a roller follower is
used instead of a flat-faced
follower, then the trace of
the roller follower center
will still be a true eccentric,
but the cam surface will not.
This is due to the lead-lag
error of the contact point of
the roller with the cam sur-
face. When going “uphill,”
the contact point leads the
follower center and when
going “downhill,” it lags
the center. This distorts the
cam surface shape from that
of a true eccentric circle.
However, the motion of

the follower will be simple
harmonic motion as defined
in Figure 8-10 regardless of
follower type.
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where k; is the constant of integration. To evaluate k;, substitute the boundary condi-
tion v = 0 at 6 = 0, since we must match the zero velocity of the dwell at that point. The
constant of integration is then:

e b

27
and: (8.9

V= C%{l— cos(Zn%ﬂ

Note that substituting the boundary values at the other end of the interval, v =0, 6 = 3,
will give the same result for k. Integrate again to obtain displacement:

V= E = Cﬂ{l— COS[ZEQH
de 27 B
J.ds =J. {C%[l - cos[Zn%H}de (8.10)

2
5= CLG—CB—Sin(ZTC9]+k2
2n an? B

To evaluate k,, substitute the boundary condition s = 0 at 6 = 0, since we must match
the zero displacement of the dwell at that point. To evaluate the amplitude constant C,
substitute the boundary condition s = & at 6 = 3, where % is the maximum follower rise
(or lift) required over the interval and is a constant for any one cam specification.

ky =0 L (8.11)
C= ZEB—Z
Substituting the value of the constant C in equation 8.7 for acceleration gives:
a=2n£2sin[2ngj (8.12a)
B p
Differentiating with respect to 6 gives the expression for jerk.
j= an? %COS[ZTEEJ (8.12b)
B B
Substituting the values of the constants C and k| in equation 8.9 for velocity gives:
h 0
v=—|1-cos| 2n— (8.12¢c)
L3

This velocity function is the sum of a negative cosine term and a constant term. The
coefficient of the cosine term is equal to the constant term. This results in a velocity curve
that starts and ends at zero and reaches a maximum magnitude at /2 as can be seen in
Figure 8-12. Substituting the values of the constants C, kj, and k, in equation 8.10 for
displacement gives:
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s:h{g—isin(mtgﬂ (8.12d)
B 2m p

Note that this displacement expression is the sum of a straight line of slope / and a nega-
tive sine wave. The sine wave is, in effect, “wrapped around” the straight line as can be
seen in Figure 8-12. Equation 8.12d is the expression for a cycloid. This cam function is
referred to either as cycloidal displacement or sinusoidal acceleration.

In the form presented, with 0 (in radians) as the independent variable, the units of
equation 8.12d are length, of equation 8.12c length/rad, of equation 8.12a length/rad?,
and of equation 8.12b length/rad3. To convert these equations to a time base, multiply
velocity v by the camshaft angular velocity o (in rad/sec), multiply acceleration a by 0?2,
and jerk j by 3.

A DEXAMPLE 8-3

Junior Cam Design—Cycloidal Displacement—An Acceptable Cam.

Problem: Consider the same cam design CEP specification as in Examples 8-1 and 8-2:
dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall 1 in (25 mm) in 90 degrees
cam ® 2n rad/sec = 1 rev/sec
Solution:

1 The cycloidal displacement function is an acceptable one for this double-dwell cam specifica-
tion. Its derivatives are continuous through the acceleration function as seen in Figure 8-12.
The peak acceleration is 100.4 in/sec? (2.55 m/sec?).

2 The jerk curve in Figure 8-12 is discontinuous at its boundaries but is of finite magnitude, and
this is acceptable. Its peak value is 2523 in/sec3 (64 m/sec?).

3 The velocity is smooth and matches the zeros of the dwell at each end. Its peak value is 8 in/
sec (0.2 m/sec).

4 The only drawback to this function is that it has relatively large magnitudes of peak accelera-
tion and peak velocity compared to some other possible functions for the double-dwell case.

The reader may open the file E08-03.cam in program DYNACAM to investigate this
example in more detail.

Combined Functions

Dynamic force is proportional to acceleration. We generally would like to minimize
dynamic forces, and thus should be looking to minimize the magnitude of the accelera-
tion function as well as to keep it continuous. Kinetic energy is proportional to velocity
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cam angle 0

FIGURE 8-12

Sinusoidal
acceleration gives
cycloidal
displacement.
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FIGURE 8-13
Constant acceleration gives infinite jerk.

squared. We also would like to minimize stored kinetic energy, especially with large mass
follower trains, and so are concerned with the magnitude of the velocity function as well.

CONSTANT ACCELERATION If we wish to minimize the peak value of the magni-
tude of the acceleration function for a given problem, the function that would best satisfy
this constraint is the square wave as shown in Figure 8-13. This function is also called
constant acceleration. The square wave has the property of minimum peak value for a
given area in a given interval. However, this function is not continuous. It has discontinui-
ties at the beginning, middle, and end of the interval, so, by itself, this is unacceptable
as a cam acceleration function.

TRAPEZOIDAL ACCELERATION The square wave’s discontinuities can be removed
by simply “knocking the corners off” the square wave function and creating the trapezoi-
dal acceleration function shown in Figure 8-14a. The area lost from the “knocked off
corners” must be replaced by increasing the peak magnitude above that of the original
square wave in order to maintain the required specifications on lift and duration. But, this
increase in peak magnitude is small, and the theoretical maximum acceleration can be
significantly less than the theoretical peak value of the sinusoidal acceleration (cycloidal
displacement) function. One disadvantage of this trapezoidal function is its discontinu-
ous jerk function, as shown in Figure 8-14b. Ragged jerk functions such as this tend to
excite vibratory behavior in the follower train due to their high harmonic content. The
cycloidal’s sinusoidal acceleration has a relatively smoother cosine jerk function with only
two discontinuities in the interval and is preferable to the trapezoid’s square waves of jerk.
But the cycloidal’s theoretical peak acceleration will be larger, which is not desirable. So,
trade-offs must be made in selecting the cam functions.

MODIFIED TRAPEZOIDAL ACCELERATION An improvement can be made to the
trapezoidal acceleration function by substituting pieces of sine waves for the sloped sides
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Trapezoidal Constant acceleration
acceleration (for comparison)
a A ‘ Rise
Amax St
Low \ | { High
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j —
(P) 0 — -0
0 B
FIGURE 8-14

Trapezoidal acceleration gives finite jerk.

of the trapezoids as shown in Figure 8-15. This function is called the modified trapezoi-
dal acceleration curve.” This function is a marriage of the sine acceleration and constant
acceleration curves. Conceptually, a full period sine wave is cut into fourths and “pasted
into” the square wave to provide a smooth transition from the zeros at the endpoints to
the maximum and minimum peak values, and to make the transition from maximum to
minimum in the center of the interval. The portions of the total segment period (B) used
for the sinusoidal parts of the function can be varied. The most common arrangement
is to cut the square wave at /8, 3B/8, 5p/8, and 73/8 to insert the pieces of sine wave as
shown in Figure 8-15.

The modified trapezoidal function defined above is one of many combined functions
created for cams by piecing together various functions, while being careful to match the
values of the s, v, and a curves at all the interfaces between the joined functions. It has the
advantage of relatively low theoretical peak acceleration, and reasonably rapid, smooth
transitions at the beginning and end of the interval. The modified trapezoidal cam func-
tion has been a popular and often used program for double-dwell cams.

MODIFIED SINUSOIDAL ACCELERATIONT The sine acceleration curve (cycloidal
displacement) has the advantage of smoothness (less ragged jerk curve) compared to
the modified trapezoid but has higher theoretical peak acceleration. By combining two
harmonic (sinusoid) curves of different frequencies, we can retain some of the smooth-
ness characteristics of the cycloid and also reduce the peak acceleration compared to the
cycloid. As an added bonus we will find that the peak velocity is also lower than in either
the cycloidal or modified trapezoid. Figure 8-16 shows how the modified sine accelera-
tion curve is made up of pieces of two sinusoid functions, one of higher frequency than
the other. The first and last quarters of the high-frequency (short period, 3/2) sine curve
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* Developed by C. N.
Neklutin of Universal
Match Corp. See ref. [2].

F Developed by E. H.
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A
(a) Take a sine wave > 0
B2
A B C ; D
(b) Split the sine = 0
wave apart
0 B/8 3p/8 B2 5p/8 788 B
by E B . C F D
(c) Take a constant
acceleration = 0
square wave
0 p/8 3p/8 B2 5P/8 7B8/8 B
A E B C F D
(d) Combine the two
B/8 3p/8 B2 5P/8 788 B
(e) Modified trapezoidal o
acceleration > 0
0 B2 B

FIGURE 8-15

Creating the modified trapezoidal acceleration function
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are used for the first and last eighths of the combined function. The center half of the
low-frequency (long period, 3/2) sine wave is used to fill in the center three-fourths of
the combined curve. Obviously, the magnitudes of the two curves and their derivatives
must be matched at their interfaces in order to avoid discontinuities.

The SCCA Family of Double-Dwell Functions

SCCA stands for Sine-Constant-Cosine-Acceleration and refers to a family of accelera-
tion functions that includes constant acceleration, simple harmonic, modified trapezoid,
modified sine, and cycloidal curves.[!!] These very different looking curves can all be
defined by the same equation with only a change of numeric parameters. In like fashion,
the equations for displacement, velocity, and jerk for all these SCCA functions differ only
by their parametric values.

To reveal this similitude, it is first necessary to normalize the variables in the equa-
tions. We have already normalized the independent variable, cam angle 6, dividing it by
the interval period . We will further simplify the notation by defining

xX=— (8.13a)

B

The normalized variable x then runs from O to 1 over any interval. The normalized fol-
lower displacement is

s
== 8.13b
Y=o (8.13b)
where s is the instantaneous follower displacement and 4 is the total lift. The normalized
variable y then runs from O to 1 over any follower displacement.

The general shapes of the s v a j functions of the SCCA family are shown in Figure
8-17. The interval B is divided into five zones, numbered 1 through 5. Zones 0 and 6 rep-
resent the dwells on either side of the rise (or fall). The widths of zones 1 to 5 are defined
in terms of 3 and one of three parameters, b, ¢, d. The values of these three parameters
define the shape of the curve and define its identity within the family of functions. The
normalized velocity, acceleration, and jerk are denoted, respectively, as:

,_dy ,_d%y . dy

=— =— 8.14
™ Y= 2 Y= (8.14)

In zone 0, all functions are zero. The expressions for the functions within each other
zone of Figure 8-17 are as follows:

b
Zone 1: OSxSE: b#0

2
v=c Ea-( & sn( 2 150

y'=C, |:2—£COS[£X):| (8.15b)
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(a) Sine wave #1

of period B/2 >0
0 B2
A B C D
(b) Sine wave #2
of period 3f/2 > 0
0 3p/2
A . D
(c) Take 1st and 4th
quarters of #1 § >0
0 P8 B2 /8 P
1 B C
(d) Take 2nd and 3rd
quarters of #2 ; >0
p/8 B2 7B/8
A B C . D,
(e) Combine to get
modified sine )
p p BB

FIGURE 8-16
Creating the modified sine acceleration function
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FIGURE 8-17

Parameters for the normalized SCCA family of curves

(8.15¢)

(8.15d)

(8.16a)

(8.16b)

(8.16¢)

(8.16d)
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. i 1-d
y'=C, CO{E(X_TH (8.17¢)
b8 b4 1-d
" =-C,=sin| —| x——— 8.17d
e, S S{x-15 oo
Zone 4: ﬂSxSl—2
2 2
2
X b b 2 2 1 1 1
=Cy|——+|—+1-=|x+(2d"-D" || == —= |-— 8.18
Y a{ 2 (ﬂ 2jx( )(nz 8) 4} (8150
y’:Ca(—x+2+1—2) (8.18b)
T 2
y’'=-C, (8.18¢)
y”=0 (8.18d)

2 32 2 2 2
b 24 =b7) (1-bY-d®* (b} [n
y=Cay_x+ ( > )+( )4 —(;J sm[z(x—l)} (8.192)
b b T
'=Cyq——— —(x-1 8.19b
y a{n ncos[b(x )}} ( )
” . T
y :Casm[g(x—l)} (8.19¢)
y/// — Ca ECOS|:£(X _ 1):| (819d)
b b
Zone 6: x>1
y= 1, y/ — y// — y’”= 0 (8,20)

The coefficient C,, is a dimensionless peak acceleration factor. It can be evaluated from
the fact that, at the end of the rise in zone 5 when x = 1, the expression for displacement
(equation 8.19a) must have y = 1 to match the dwell in zone 6. Setting the right side of
equation 8.19a equal to 1 gives:

= 4n?
Ca= (rc2 —8)(b2 _dz)—Zn(n—2)b+n2 (8.212)

We can also define dimensionless peak factors (coefficients) for velocity (C,) and jerk
(C)) in terms of C,. The velocity is a maximum at x = 0.5. Thus C, will equal the right
side of equation 8.17b when x = 0.5.
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TABLE 8-2 Parameters and Coefficients for the SCCA Family of Functions

Function b c d Cy C, C 5
Constant acceleration 0.00 1.00 0.00 2.0000 4.0000 infinite
Modified trapezoid 0.25 0.50 0.25 2.0000 4.8881 61.426
Simple harmonic 0.00 0.00 1.00 1.5708 4.9348 infinite
Modified sine 0.25 0.00 0.75 1.7596 5.5280 69.466
Cycloidal displacement 0.50 0.00 0.50 2.0000 6.2832 39.478

b+d ¢
C,=C,| —+— (8.21b)
b 2

The jerk is a maximum at x = 0. Setting the right side of equation 8.15d to zero gives:

T
C.=C, —
J ab

b#0 (8.21¢)

Table 8-2 shows the values of b, ¢, d and the resulting factors C,, C,, and CJ for the
five standard members of the SCCA family. There is an infinity of related functions with
values of these parameters between those shown. Figure 8-18 shows these five members
of the “acceleration family” superposed with their design parameters noted. Note that all
the functions shown in Figure 8-18 were generated with the same set of equations (8.15
through 8.21) with only changes to the values of the parameters b, ¢, and d. A TKSolver
file (SCCA.tk) that is provided calculates and plots any of the SCCA family of normalized
functions, along with their coefficients C,, C,, and Cj, in response to the input of values
for b, ¢, and d. Note also that there is an infinity of family members as b, ¢, and d can take
on any set of values that add to 1.

Acceleration A Cycloidal (b =0.5,¢=0,d=0.5) . .

Simple harmonic
(b=0,c=0,d=1)

T C,=6.28

a= 20T/~ _
C,=4.00— 4 Ca =489 Modified sine
(b=0.25,c=0,d=0.75)
B 0
0
Modified trapezoid — Ca=493

(b=0.25,c=0.5,d=0.25) )
Constant acceleration
(b=0,c=1,d=0)
FIGURE 8-18

Comparison of five acceleration functions in the SCCA family
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4-5-6-7 polynomial displacement

Acceleration A ,\/
ik p ‘( 3-4-5 polynomial displacement

Cycloidal displacement (sine acceleration)

Y

Modified sine

Modified trapezoid

FIGURE 8-19
Comparison of five acceptable double-dwell cam acceleration functions

To apply the SCCA functions to an actual cam design problem only requires that
they be multiplied or divided by factors appropriate to the particular problem, namely the

actual rise A, the actual duration [ (rad), and the cam velocity o (rad/sec).

s=hy length S=s length

V= % y"  length/rad V =vo length/sec
a= B%y” length/rad? A=aw®? length/sec?
Jj= [3% y” length/rad J=jo® length/sec

Modified sine
Modified trapezoid

Jerk A /
3-4-5 polynomial

R —\\{/ 4-5-6-7 polynomial
L
c N Cycloidal
) \\\J\ |

Modified sine

FIGURE 8-20
Comparison of five double-dwell cam jerk functions
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TABLE 8-3 Factors for Peak Velocity and Acceleration of Some Cam Functions

Function Max. Veloc. Max. Accel. Max. Jerk Comments
Constant accel. 2.000h/B 4.000 h/ [32 Infinite oo jerk—not acceptable
Harmonic disp. 1.571 h/B 4,945 h/ [32 Infinite oo jerk—not acceptable
Trapezoid accel. 2.000h/B 5.300 h/ 2 44 p/B3 Not as good as mod. trap.
Mod. trap. accel. 2.000h/B 4.888 h/ > 61 h/p? Low accel. but rough jerk
Mod. sine accel. 1.760 h/p 5.528 h/p? 69 h/p? Low veloc., good accel.
3-4-5 poly. disp. 1.875 h/B 5.777 hip? 60 h/p? Good compromise
Cycloidal disp. 2.000h/B 6.283 h/p2 40 h/p3 Smooth accel. and jerk

4-5-6-7 poly. disp. 2188 h/p 7.526 h/p? 52 h/p3 Smooth jerk, high accel.

Figure 8-19 shows a comparison of the shapes and relative magnitudes of five accept-
able cam acceleration programs including the cycloidal, modified trapezoid, and modified
sine acceleration curves.” The cycloidal curve has a theoretical peak acceleration that
is approximately 1.3 times that of the modified trapezoid’s peak value for the same cam
specification. The peak value of acceleration for the modified sine is between those of
the cycloidal and modified trapezoids. Table 8-3 lists the peak values of acceleration,
velocity, and jerk for these functions in terms of the total rise 4 and period 3.

Figure 8-20 compares the jerk curves for the same functions. The modified sine jerk
is somewhat less ragged than the modified trapezoid jerk but not as smooth as that of the
cycloid, which is a full-period cosine. Figure 8-21 compares their velocity curves. The
peak velocities of the cycloidal and modified trapezoid functions are the same, so each
will store the same peak kinetic energy in the follower train. The peak velocity of the
modified sine is the lowest of the five functions shown. This is the principal advantage

Velocity A 4-5-6-7 polynomial

3-4-5 polynomial
Modified trapezoid

Cycloidal

\ Modified sine

FIGURE 8-21

Comparison of five double-dwell cam velocity functions
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* The 3-4-5 and 4-5-6-7
polynomial functions also
shown in the figure will be
discussed in a later section.
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of the modified sine acceleration curve and the reason it is often chosen for applications
in which the follower mass or moment of inertia is very large.

An example of such an application is shown in Figure 8-22 which is an indexing
table drive used for automated assembly lines. The round indexing table is mounted on a
vertical spindle and driven as part of the rotary follower train by a form-closed barrel cam
that moves it through some angular displacement, and then holds the table still in a dwell

. . tabl lutions —
Angular motion of table: | % 350" _ ablerevolutions |
Q
Rotates 60° then dwells, g ;28'
Q -
six times per revolution 2 180-
2 120-
Q
2 60-
S 0
2
g
2
=)
B}
2
0_
0 1 2 3 4 5 6
cam revolutions during one table revolution
4 table is attached
to rotary follower
rotary follower and above it

(shown transparent)

output

Copyright © 2018 Robert L. Norton: All Rights Reserved

Six-stop rotary indexer. Table carries tooling to make a product during the dwells.
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(called a “stop”) while an assembly operation is performed on the workpiece carried on
the table. These indexers may have three or more stops, each corresponding to an index
position. The table is solid steel and may be several feet in diameter; thus its mass moment
of inertia is large. To minimize the stored kinetic energy, which must be dissipated each
time the table is brought to a stop, the manufacturers often use the modified sine program
on these multidwell cams, because of its lower peak velocity.

Let us again try to improve the double-dwell cam example using the SCCA combined

functions of modified trapezoid and modified sine acceleration.

A DEXAMPLE 8-4

Senior Cam Design—Combined Functions—Better Cams.

Problem: Consider the same cam design CEP specification as in Examples 8-1 to 8-3:
dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall 1 in (25 mm) in 90 degrees
cam ® 2n rad/sec = 1 rev/sec
Solution:

1

The modified trapezoidal function is an acceptable one for this double-dwell cam specification.
Its derivatives are continuous through the acceleration function as shown in Figure 8-19. The
peak acceleration is 78.1 in/sec? (1.98 m/sec?).

The modified trapezoidal jerk curve in Figure 8-20 is discontinuous at its boundaries but has
finite magnitude of 3925 in/sec (100 m/sec3), and this is acceptable.

The modified trapezoidal velocity in Figure 8-21 is smooth and matches the zeros of the dwell
at each end. Its peak magnitude is 8 in/sec (0.2 m/sec).

The advantage of this modified trapezoidal function is that it has smaller theoretical peak ac-
celeration than the cycloidal but its peak velocity is identical to that of the cycloidal.

The modified sinusoid function is also an acceptable one for this double-dwell cam specifica-
tion. Its derivatives are also continuous through the acceleration function as shown in Figure
8-19. Its peak acceleration is 88.3 in/sec? (2.24 m/sec?).

The modified sine jerk curve in Figure 8-20 is discontinuous at its boundaries but is of finite
magnitude and is larger in magnitude at 4439 in/sec3 (113 m/sec3) but smoother than that of
the modified trapezoid.

The modified sine velocity (Figure 8-21) is smooth, matches the zeros of the dwell at each
end, and is lower in peak magnitude than either the cycloidal or modified trapezoidal at 7 in/
sec (0.178 m/sec). This is an advantage for high-mass follower systems as it reduces stored
kinetic energy. This, coupled with a peak acceleration lower than the cycloidal (but higher
than the modified trapezoidal), is its chief advantage.
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Displacement Modified trapezoid
A
h

Cycloidal

AN

Y
D

0 Modified sine B
FIGURE 8-23
Comparison of three SCCA double-dwell cam displacement functions

Figure 8-23 shows the displacement curves for these three cam programs. (Open
the file E08-04.cam in program DYNACAM to plot these also.) Note how little difference
there is between the displacement curves despite the large differences in their acceleration
waveforms in Figure 8-19. This is evidence of the smoothing effect of the integration pro-
cess. Differentiating any two functions will exaggerate their differences. Integration tends
to mask their differences. It is nearly impossible to recognize these very differently behav-
ing cam functions by looking only at their displacement curves. This is further evidence
of the folly of our earlier naive approach to cam design that dealt exclusively with the
displacement function. The cam designer must be concerned with the higher derivatives
of displacement. The displacement function is primarily of value to the manufacturer of
the cam who needs its coordinate information in order to cut the cam.

FALL FUNCTIONS We have used only the rise portion of the cam for these ex-
amples. The fall is handled similarly. The rise functions presented here are applicable
to the fall with slight modification. To convert rise equations to fall equations, it is only
necessary to subtract the rise displacement function s from the maximum lift /# and to
negate the higher derivatives, v, a, and j.

Polynomial Functions

The class of polynomial functions is one of the more versatile types that can be used
for cam design. They are not limited to single- or double-dwell applications and can be
tailored to many design specifications. The general form of a polynomial function is:

§=Cy+Cpx+Cyx? +C3x> +Cyx* +Cox® + xS + -+ +C,x" (8.23)

where s is the follower displacement; x is the independent variable, which in our case
will be replaced by either 6/B or time ¢. The constant coefficients C,, are the unknowns to
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be determined in our development of the particular polynomial equation to suit a design
specification. The degree of a polynomial is defined as the highest power present in any
term. Note that a polynomial of degree n will have n + 1 terms because there is an x0 or
constant term with coefficient C), as well as coefficients through and including C,,.

We structure a polynomial cam design problem by deciding how many boundary
conditions (BCs) we want to specify on the s v a j diagrams. The number of BCs then
determines the degree of the resulting polynomial. We can write an independent equa-
tion for each BC by substituting it into equation 8.16 or one of its derivatives. We will
then have a system of linear equations that can be solved for the unknown coefficients C,

.., C,,. If k represents the number of chosen boundary conditions, there will be k equa-
tions in k unknowns Cy, . . ., C,, and the degree of the polynomial will be n = k— 1. The
order of the n-degree polynomial is equal to the number of terms, k.

Double-Dwell Applications of Polynomials

THE 3-4-5 POLYNOMIAL Reconsider the double-dwell problem of the previous three
examples and solve it with polynomial functions. Many different polynomial solutions are
possible. We will start with the simplest one possible for the double-dwell case.

2 DEXAMPLE 85

The 3-4-5 Polynomial for the Double-Dwell Case.

Problem: Consider the same cam design CEP specification as in Examples 8-1 to 8-4:
dwell at zero displacement for 90 degrees (low dwell)
rise 1 in (25 mm) in 90 degrees
dwell at 1 in (25 mm) for 90 degrees (high dwell)
fall 1 in (25 mm) in 90 degrees
cam ® 2m rad/sec = 1 rev/sec
Solution:

1 To satisfy the fundamental law of cam design the values of the rise (and fall) functions at their
boundaries with the dwells must match with no discontinuities in, at a minimum, s, v, and a.

2 Figure 8-24 shows the axes for the s v a j diagrams on which the known data have been drawn.
The dwells are the only fully defined segments at this stage. The requirement for continuity
through the acceleration defines a minimum of six boundary conditions for the rise segment
and six more for the fall in this problem. They are shown as filled circles on the plots. For
generality, we will let the specified total rise be represented by the variable 4. The minimum
set of required BCs for this example is then:

for the rise:
when 0=0; then s=0, v=0, a=0

(a)
when 0=0B; then s=h, v=0, a=0

for the fall:
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when 0=0; then s=h, v=0, a=0

()
when 0=0,; then  s=0, v=0, a=0

We will use the rise for an example solution. (The fall is a similar derivation.) We have six
BCs on the rise. This requires six terms in the equation. The highest term will be fifth degree.
We will use the normalized angle 6/f as our independent variable, as before. Because our
boundary conditions involve velocity and acceleration as well as displacement, we need to
differentiate equation 8.23 versus 0 to obtain expressions into which we can substitute those
BCs. Rewriting equation 8.23 to fit these constraints and differentiating twice, we get:

2 3 4 5
avelglal)olp) g o] o

2 3 4
1 0 0 0 0
v=—|C; +2C, (—]+3C3 (—] +4Cy (—] +5Cs [—] (d)
B B B B p
2 3
B p B p
Substitute the boundary conditions 6=0, s = 0 into equation (¢):
0=Cy+0+0+---
Co=0 ()
Substitute 6 = 0, v = 0 into equation (d):
O:%(Cl +0+0+--)
¢ =0 ©®
Substitute 0=0, a = 0 into equation (e):
1
0=B—2(C2 +0+0+--)
Substitute =0, s = & into equation (c):
h:C3+C4+C5 (l)
Substitute =0, v = 0 into equation (d):
1 .
O:B(3C3+4C4+5C5) 0

Substitute 6=f, a = 0 into equation (e):

1
0=B—2(6C3 +12C4 +20Cs)) (k)
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FIGURE 8-24

Minimum boundary conditions for the double-dwell case

10

Three of our unknowns are found to be zero, leaving three unknowns to be solved for, C3, Cy,
Cs. Equations (i), (j), and (k) can be solved simultaneously to get:

The equation for this cam design’s displacement is then:

3 4 5
s=h 10[%] —15(%) +6(§] (8.24)

The expressions for velocity and acceleration can be obtained by substituting the values of C3,
C4, and Cjs into equations 8.18b and c. This function is referred to as the 3-4-5 polynomial,
after its exponents. Open the file E08-07.cam in program DYNACAM to investigate this ex-
ample in more detail.

Figure 8-25 shows the resulting s v a j diagrams for a 3-4-5 polynomial rise func-

tion. Note that the acceleration is continuous but the jerk is not, because we did not place
any constraints on the boundary values of the jerk function. It is also interesting to note
that the acceleration waveform looks very similar to the sinusoidal acceleration of the
cycloidal function in Figure 8-12. Figure 8-19 shows the relative peak accelerations of
this 3-4-5 polynomial compared to four other functions with the same 4 and . Table 8-3
lists factors for the maximum velocity, acceleration, and jerk of these functions.

a4

cam angle 6

FIGURE 8-25

3-4-5 polynomial rise.
Its acceleration is very
similar to the sinusoid
of cycloidal motion
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* Any matrix solving cal-
culator, equation solver such
as Matlab, Mathcad, or
TKSolver, or programs MA-
TRIX and DYNACAM (sup-
plied with this text) will do
the simultaneous equation
solution for you. Programs
MATRIX and DYNACAM are
discussed in Appendix A.
You need only to supply the
desired boundary conditions
to DYNACAM and the coef-
ficients will be computed.
The reader is encouraged to
do so and examine the ex-
ample problems presented
here with the DYNACAM
program.

cam angle 0

FIGURE 8-26

4-5-6-7 polynomial rise
whose jerk is piecewise
continuous with the
dwells
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THE 4-5-6-7 POLYNOMIAL  We left the jerk unconstrained in the previous example.
We will now redesign the cam for the same specifications but will also constrain the jerk
function to be zero at both ends of the rise. It will then match the dwells in the jerk func-
tion with no discontinuities. This gives eight boundary conditions and yields a seventh-
degree polynomial. The solution procedure to find the eight unknown coefficients is
identical to that used in the previous example. Write the polynomial with the appropriate
number of terms. Differentiate it to get expressions for all orders of boundary conditions.
Substitute the boundary conditions and solve the resulting set of simultaneous equations.
This problem reduces to four equations in four unknowns, as the coefficients Cy, C;, Cy,
and Cj turn out to be zero. For this set of boundary conditions the displacement equation

for the rise is:
4 5 6 7
s=h 35(9J _84[9j +7o[9] _20(9] (825)
B B B B

This is known as the 4-5-6-7 polynomial, after its exponents. Figure 8-26 shows
the s v a j diagrams for this function. Compare these functions to the 3-4-5 polynomial
functions shown in Figure 8-25. Note that the acceleration of the 4-5-6-7 starts off slowly,
with zero slope (as we demanded with our zero jerk BC), and as a result goes to a larger
peak value of acceleration in order to replace the missing area in the leading edge.

This 4-5-6-7 polynomial function has the advantage of smoother jerk for better vibra-
tion control, compared to the 3-4-5 polynomial, the cycloidal, and all other functions so
far discussed, but it pays a price in the form of higher peak theoretical acceleration than
all those functions. See also Table 8-3.

SUMMARY The previous two sections have attempted to present an approach to the
selection of appropriate double-dwell cam functions, using the common rise-dwell-fall-
dwell cam as the example, and to point out some of the pitfalls awaiting the cam designer.
The particular functions described are only a few of the ones that have been developed for
this double-dwell case over many years, by many designers, but they are probably the most
used and most popular among cam designers. Most of them are also included in program
DYNACAM. There are many trade-offs to be considered in selecting a cam program for
any application, some of which have already been mentioned, such as function continuity,
peak values of velocity and acceleration, and smoothness of jerk. There are many other
trade-offs still to be discussed in later sections of this chapter, involving the sizing and
the manufacturability of the cam.

84 SINGLE-DWELL CAM DESIGN—CHOOSING SV A J
FUNCTIONS

Many applications in machinery require a single-dwell cam program, rise-fall-dwell
(RFD). Perhaps a single-dwell cam is needed to lift and lower a roller that carries a mov-
ing paper web on a production machine that makes envelopes. This cam’s follower lifts
the paper up to one critical extreme position at the right time to contact a roller that applies
alayer of glue to the envelope flap. Without dwelling in the up position, it immediately re-
tracts the web back to the starting (zero) position and holds it in this other critical extreme
position (low dwell) while the rest of the envelope passes by. It repeats the cycle for the
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next envelope as it comes by. Another common example of a single-dwell application is
the cam that opens the valves in your automobile engine. This lifts the valve open on the
rise, immediately closes it on the fall, and then keeps the valve closed in a dwell while the
compression and combustion take place.

If we attempt to use the same type of cam programs as were defined for the double-
dwell case for a single-dwell application, we will achieve a solution that may work but
is not optimal. We will nevertheless do so here as an example in order to point out the
problems that result. Then we will redesign the cam to eliminate those problems.

A DEXAMPLE 8-6

Using Cycloidal Motion for a Symmetrical Rise-Fall Single-Dwell Case.

Problem: Consider the following single-dwell cam specification:
rise 1 in (25 mm) in 90 degrees
fall 1 in (25 mm) in 90 degrees
dwell at zero displacement for 180 degrees (low dwell)
cam ® 15 rad/sec
Solution:

1 Figure 8-27 shows a cycloidal displacement rise and separate cycloidal displacement fall ap-
plied to this single-dwell example. Note that the displacement (s) diagram looks acceptable in
that it moves the follower from the low to the high position and back in the required intervals.

2 The velocity (v) also looks acceptable in shape in that it takes the follower from zero velocity
at the low dwell to a peak value of 19.1 in/sec (0.49 m/sec) to zero again at the maximum
displacement, where the glue is applied.

3 Figure 8-27 also shows the acceleration function for this solution. Its maximum absolute value
is about 573 in/secZ.

cycloidal rise  cycloidal fall dwell

T~ .

S

—(O—

v

§

Unnecessary return

to zero acceleration . /i,,,i + 573 infsec?

/j/ \ ]
Unnecessary 0 790 180 270 360
discontinuity in jerk

FIGURE 8-27

Cycloidal motion (or any double-dwell program) is a poor choice for the single-dwell case.

5
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4 The problem is that this acceleration curve has an unnecessary return to zero at the end of the
rise. Itis unnecessary because the acceleration during the first part of the fall is also negative.
It would be better to keep it in the negative region at the end of the rise.

5 This unnecessary oscillation to zero in the acceleration causes the jerk to have more abrupt
changes and discontinuities. The only real justification for taking the acceleration to zero is the
need to change its sign (as is the case halfway through the rise or fall) or to match an adjacent
segment that has zero acceleration.

The reader may open the file E08-06.cam in program DYNACAM to investigate this
example in more detail.

For the single-dwell case we would like a function for the rise that does not return its
acceleration to zero at the end of the interval. The function for the fall should begin with
the same nonzero acceleration value as ended the rise and then be zero at its terminus to
match the dwell. One function that meets those criteria is the double harmonic which
gets its name from its two cosine terms, one of which is a half-period harmonic and the
other a full-period wave. The equations for the double harmonic functions are:

for the rise:

a:g—jg{cos[n%j—cos(mt%ﬂ (8.26a)
_ h 0

for the fall:

a:—g—jg{cos(ngjwtcos(mt%ﬂ (8.26b)
Jj= g—jg{sin[n%]+25in[2ngﬂ

Note that these double harmonic functions should never be used for the double-dwell
case because their acceleration is nonzero at one end of the interval.
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P Double Double
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Continuous jerk

0 90 180 270 360
FIGURE 8-28

Double harmonic motion can be used for the single-dwell case if rise and fall durations are equal.

,@DEXAMPLE 87

Double Harmonic Motion for Symmetrical Rise-Fall Single-Dwell Case.

Problem: Consider the same single-dwell cam specification as in Example 8-5:
rise 1 in (25 mm) in 90 degrees
fall 1 in (25 mm) in 90 degrees
dwell at zero displacement for 180 degrees (low dwell)
cam ® 15 rad/sec
Solution:

1 Figure 8-28 shows a double harmonic rise and a double harmonic fall. The peak velocity is
19.5 in/sec (0.50 m/sec) which is similar to that of the cycloidal solution of Example 8-6.

2 Note that the acceleration of this double harmonic function does not return to zero at the end
of the rise. This makes it more suitable for a single-dwell case in that respect.

3 The double harmonic jerk function peaks at 36 931 in/sec (938 m/sec?) and is quite smooth
compared to the cycloidal solution.

4 Unfortunately, the peak negative acceleration is 900 in/sec?, nearly twice that of the cycloidal
solution. This is a smoother function but will develop higher dynamic forces. Open the file
E08-07.cam in program DYNACAM to see this example in greater detail.

5 Another limitation of this function is that it may only be used for the case of an equal time
(symmetrical) rise and fall. If the rise and fall times are different, the acceleration will be
discontinuous at the juncture of rise and fall, violating the fundamental law of cam design.
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Neither of the solutions in Examples 8-6 and 8-7 is optimal. We will now apply
polynomial functions and redesign it to both improve its smoothness and reduce its peak
acceleration.

Single-Dwell Applications of Polynomials

To solve the problem of Example 8-7 with a polynomial, we must decide on a suitable
set of boundary conditions. But first, we must decide how many segments to divide the
cam cycle into. The problem statement seems to imply three segments, a rise, a fall, and
a dwell. We could use those three segments to create the functions as we did in the two
previous examples, but a better approach is to use only two segments, one for the rise-fall
combined and one for the dwell. As a general rule we would like to minimize the number
of segments in our polynomial cam functions. Any dwell requires its own segment. So,
the minimum number possible in this case is two segments.

Another rule of thumb is that we would like to minimize the number of boundary
conditions specified because the degree of the polynomial is tied to the number of BCs.
As the degree of the function increases, so will the number of its inflection points and
its number of minima and maxima. The polynomial derivation process will guarantee
that the function will pass through all specified BCs but says nothing about the function’s
behavior between the BCs. A high-degree function may have undesirable oscillations
between its BCs.

With these assumptions we can select a set of boundary conditions for a trial solution.
First we will restate the problem to reflect our two-segment configuration.

A DEXAMPLE 8-8

Designing a Polynomial for the Symmetrical Rise-Fall Single-Dwell Case.

Problem: Redefine the CEP specification from Examples 8-5 and 8-6.
rise-fall 1 in (25.4 mm) in 90° and fall 1 in (25.4 mm) in 90° over 180°
dwell at zero displacement for 180° (low dwell)
cam M 15 rad/sec

Solution:

1 Figure 8-29 shows the minimum set of seven BCs for this symmetrical problem, which will
give a sixth-degree polynomial. The dwell on either side of the combined rise-fall segment
has zero values of s, v, a, and j. The fundamental law of cam design requires that we match
these zero values, through the acceleration function, at each end of the rise-fall segment.

2 These then account for six BCs; s, v, a = 0 at each end of the rise-fall segment.
3 We also must specify a value of displacement at the 1-in peak of the rise that occurs at 8 = 90°.
This is the seventh BC. Note that due to symmetry, it is not necessary to specify the velocity

to be zero at the peak. It will be anyway.

4 Figure 8-29 also shows the coefficients of the displacement polynomial that result from the
simultaneous solution of the equations for the chosen BCs. For generality we have substituted
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Segment Function Start End Delta
number used angle angle angle
1 Poly 6 0 180 180
Boundary Conditions Imposed Equation Resulting
Function Theta %Beta Boundary Cond. Exponent  Coefficient

Displ 0 0 0 0 0
Veloc 0 0 0 1 0
Accel 0 0 0 ) 0
Displ 180 1 0 3 64
Veloc 180 1 0 4 -192
Accel 180 1 0 5 192
Displ 9 05 1 6 - 64

FIGURE 8-29
Boundary conditions and coefficients for a single-dwell polynomial application

the variable / for the specified 1-in rise. The function turns out to be a 3-4-5-6 polynomial
whose equation is:

3 4 5 6
s=h 64(9] —192(9J +192(9j —64[9J (@)
B B B B

Figure 8-30 shows the s v a j diagrams for this solution with its maximum values
noted. Compare these acceleration and s v a j curves to the double harmonic and cycloi-
dal solutions to the same problem in Figures 8-27 and 8-28. Note that this sixth-degree
polynomial function is as smooth as the double harmonic functions (Figure 8-28) and does
not unnecessarily return the acceleration to zero at the top of the rise as does the cycloidal
(Figure 8-27). The polynomial has a peak acceleration of 547 in/sec2, which is less than
that of either the cycloidal or double harmonic solution. This 3-4-5-6 polynomial is a

- — +438 in/sec?

= _547 infsec?

o
O
o

180 270 360
FIGURE 8-30

3-4-5-6 polynomial function for two-segment symmetrical rise-fall, single-dwell cam
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superior solution to either of those presented for the symmetrical rise-fall case and is an
example of how polynomial functions can be easily tailored to particular design specifi-
cations. The reader may open the file EO8-08.cam in program DYNACAM to investigate
this example in greater detail.

Effect of Asymmetry on the Rise-Fall Polynomial Solution

The examples so far presented in this section all had equal time for rise and fall, referred
to as a symmetrical rise-fall curve. What will happen if we need an asymmetric program
and attempt to use a single polynomial as was done in the previous example?

QDEXAMPLE 8-9

Designing a Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case.

Problem: Redefine the specification from Example 8-8 as:
rise-fall rise 1 in (25.4 mm) in 45° and fall 1 in (25.4 mm) in 135° over 180°
dwell at zero displacement for 180° (low dwell)
cam ® 15 rad/sec

Solution:

1

Figure 8-31 shows the minimum set of seven BCs for this problem that will give a sixth-degree
polynomial. The dwell on either side of the combined rise-fall segment has zero values for
S, V, A, and J. The fundamental law of cam design requires that we match these zero values,
through the acceleration function, at each end of the rise-fall segment.

The endpoints account for six BCs; § = V = A = 0 at each end of the rise-fall segment.

We also must specify a value of displacement at the 1-in peak of the rise that occurs at 0 = 45°.
This is the seventh BC.

Simultaneous solution of this equation set gives a 3-4-5-6 polynomial whose equation is:
3 4 5 6
s=h 151.704(%] —455.111(%] +455.111(%] —151.704[%] (a)

For generality we have substituted the variable % for the specified 1-in rise.

Figure 8-31 shows the S V A J diagrams for this solution with its maximum values noted. Ob-
serve that the derived sixth-degree polynomial has obeyed the stated boundary conditions and
does in fact pass through a displacement of 1 unit at 45°. But note also that it overshoots that
point and reaches a height of 2.37 units at its peak. The acceleration peak is also 2.37 times
that of the symmetrical case of Example 8-8. Without any additional boundary conditions
applied, the function seeks symmetry. Note that the zero velocity point is still at 90° when we
would like it to be at 45°. We can try to force the velocity to zero with an additional boundary
condition of V' =0 when 6 = 45°.

Figure 8-32 shows the S V A J diagrams for a seventh-degree polynomial having 8 BCs, S =V =
A=0at0=0°% S=V=A=0at0=180°% S5 =1, V=0at 6 =45° Note that the resulting
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segment 1 2
max = 2.37 at 90°
h=1at45°
S
v
7 boundary
conditions ——— 41297 in/sec?
A <
1297 in/sec?
J
0 45 180 360

FIGURE 8-31

Unacceptable polynomial for a two-segment asymmetrical rise-fall, single-dwell cam
elsewhere. It now plunges to a negative displacement of —3.934, and the peak acceleration
is much larger. This points out an inherent problem in polynomial functions, namely that
their behavior between boundary conditions is not controllable and may create undesirable
deviations in the follower motion. This problem is exacerbated as the degree of the function

increases since it then has more roots and inflection points, thus allowing more oscillations
between the boundary conditions.

7 Open the files Ex_08-09a and b in program DYNACAM to see this example in greater detail.

segment 1 2
=1at45 %Q\
J{\ Y 3934

8 boundary

conditions —————— 44011 in/sec?

U— —3458 in/sec?

A

J

o

45 180 360
FIGURE 8-32
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In this case, the rule of thumb to minimize the number of segments is in conflict with

the rule of thumb to minimize the degree of the polynomial. One alternative solution
to this asymmetrical problem is to use three segments, one for the rise, one for the fall,
and one for the dwell. Adding segments will reduce the order of the functions and bring
them under control.

A DEXAMPLE 8-10

Designing a Three-Segment Polynomial for an Asymmetrical Rise-Fall Single-Dwell Case
Using Minimum Boundary Conditions.

Problem: Redefine the specification from Example 8-9 as:
rise 1in (25.4 mm) in 45°
fall 1in (25.4 mm) in 135°
dwell at zero displacement for 180° (low dwell)
cam ® 15 rad/sec
Solution:

1

The first attempt at this solution specifies 5 BCs; § = V = A = 0 at the start of the rise (to
match the dwell), S = 1 and V = 0 at the end of the rise. Note that the rise segment BCs leave
the acceleration at its end unspecified, but the fall segment BCs must include the value of the
acceleration at the end of the rise that results from the calculation of its acceleration. Thus,
the fall requires one more BC than the rise.

This results in the following fourth degree equation for the rise segment:

3 4
48] (2] "

Evaluating the acceleration at the end of rise gives —4377.11 in/sec. This value becomes a
BC for the fall segment. The set of 6 BCs for the fall is then: S=1, V=0, A =-4377.11 at
the start of the fall (to match the rise) and S = V= A =0 at the end of the fall to match the
dwell. The fifth-degree equation for the fall is then:

2 3 4 5
s=h 1—54(%) +152(%) —147[%} +48[§J (b)

Figure 8-33 shows the S V A J diagrams for this solution with its extreme values noted. Ob-
serve that this polynomial on the fall also has a problem—the displacement still goes negative.

The trick in this case (and in general) is to first calculate the segment with the smaller accel-
eration (here the second segment) because of its larger duration angle . Then use its smaller
acceleration value as a boundary condition on the first segment. The 5 BCs for segment 2 are
then §=1and V =0 at the start of the fall and S = V = A = 0 at the end of the fall (to match
the dwell). These give the following fourth-degree polynomial for the fall.
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segment ‘ 1 2 3
h=1at45°
S l/
segment 1 )
5 boundary -1.226 in
conditions
T
segment 2
6 boundary
conditions A
seg 2 only
= —4377 in/sec?
J

0 45 180 360
FIGURE 8-33

Uacceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam

2 3 4
s=h 1—6[%) +8(%] —3(%] ()

6 Evaluating the acceleration at the start of the fall gives —486.4 in/sec2. This value becomes a
BC for the rise segment. The set of 6 BCs for the rise is then: S = V = A =0 at the start of
the rise to match the dwells, and S = 1, V=0, A = —486.4 at the end of the rise (to match the
fall). The fifth-degree equation for the rise is then:

3 4 5
s=h 9.333[%] —13.667(%) +5.333[%] (d)

7 The resulting cam design is shown in Figure 8-34. The displacement is now under control and
the peak acceleration is much less than the previous design at about 2024 in/sec?.

8 The design of Figure 8-34 is acceptable (though not optimum)™ for this example. Open the
files Ex_08-10a and b in program DYNACAM to see this example in greater detail.

8.5 CRITICAL PATH MOTION (CPM)

Probably the most common application of critical path motion (CPM) specifications in
production machinery design is the need for constant velocity motion. There are two

451

* An optimum solution to
this generic problem can be
found in reference [5].
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segment | 1 2 3
h=1at45°
S J(
segment 1
6 boundary
conditions 4
segment2
5 boundary A >< —486.4 in/sec?
conditions seg 1 only
2024 in/sec?
LY

0 45 180 360
FIGURE 8-34

Acceptable polynomials for a three-segment asymmetrical rise-fall, single-dwell cam

general types of automated production machinery in common use, intermittent motion
assembly machines and continuous motion assembly machines.

Intermittent motion assembly machines carry the manufactured goods from work-
station to workstation, stopping the workpiece or subassembly at each station while an-
other operation is performed upon it. The throughput speed of this type of automated
production machine is typically limited by the dynamic forces that are due to accelerations
and decelerations of the mass of the moving parts of the machine and its workpieces. The
workpiece motion may be either in a straight line as on a conveyor or in a circle as on a
rotary table as shown in Figure 8-22.

Continuous motion assembly machines never allow the workpiece to stop and
thus are capable of higher throughput speeds. All operations are performed on a moving
target. Any tools that operate on the product have to “chase” the moving assembly line
to do their job. Since the assembly line (often a conveyor belt or chain, or a rotary table)
is moving at some constant velocity, there is a need for mechanisms to provide constant
velocity motion, matched exactly to the conveyor, in order to carry the tools alongside
for a long enough time to do their job. These cam driven “chaser” mechanisms must
then return the tool quickly to its start position in time to meet the next part or subas-
sembly on the conveyor (quick-return). There is a motivation in manufacturing to convert
from intermittent motion machines to continuous motion in order to increase production
rates. Thus there is some demand for this type of constant velocity mechanism. Though
we met some linkages in Chapter 6 that give approximate constant velocity output, the
cam-follower system is well suited to this problem, allowing theoretically exact constant
follower velocity, and the polynomial cam function is particularly adaptable to the task.
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Polynomials Used for Critical Path Motion

A DEXAMPLE 8-11

Designing a Polynomial for Constant Velocity Critical Path Motion.

Problem: Consider the following statement of a critical path motion (CPM) problem:

Accelerate the follower from zero to 10 in/sec
Maintain  a constant velocity of 10 in/sec for 0.5 sec
Decelerate the follower to zero velocity

Return the follower to start position

Cycle time exactly 1 sec

Solution:

1 This unstructured problem statement is typical of real design problems as was discussed in
Chapter 1. No information is given as to the means to be used to accelerate or decelerate the
follower or even as to the portions of the available time to be used for those tasks. A little
reflection will cause the engineer to recognize that the specification on total cycle time in effect
defines the camshaft velocity to be its reciprocal or one revolution per second. Converted to
appropriate units, this is an angular velocity of 2x rad/sec.

2 The constant velocity portion uses half of the total period of 1 sec in this example. The de-
signer must next decide how much of the remaining 0.5 sec to devote to each other phase of
the required motion.

3 The problem statement seems to imply that four segments are needed. Note that the designer
has to somewhat arbitrarily select the lengths of the individual segments (except the constant
velocity one). Some iteration may be required to optimize the result. Program DYNACAM
makes the iteration process quick and easy, however.

4 Assuming four segments, the timing diagram in Figure 8-35 shows an acceleration phase, a con-
stant velocity phase, a deceleration phase, and a return phase, labeled as segments 1 through 4.

MO:{O" /— Accelerate ’/— Decelerate
Constant velocity Return
1 2 3 4
o
5in 10 in/sec
\
0 =
0 30 210 240 360 cam angle 0 deg
0 0.08 0.58 0.67 1.00 time t sec

FIGURE 8-35

Constant velocity cam timing diagram
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function  Poly 3 Poly 1 Poly 3 Poly 5
A ‘ ‘
ST 2 3 4
3 Q
(a) 10
. in/sec.
0 % >
& 0 30 0 180 0 30 0 120
v i "
1 2 3 4
10|t To——
(b) 0 — 0>
e 0 30 0 180 0 30 0 120
a " "
1 | 2 {3 4
Lo e 240
@ 0+ - S -
B 7 s
D o 0 30 0 180 0 30 0 120
7 2 3 4
03 0 180 0 30 0 120 deg
e 030 30 210 210240 240 360 deg

FIGURE 8-36

A possible set of boundary conditions for the four-segment constant velocity solution

5 The segment angles (3’s) are assumed, for a first approximation, to be 30° for segment 1, 180°
for segment 2, 30° for segment 3, and 120° for segment 4 as shown in Figure 8-36. These
angles may need to be adjusted in later iterations, except for segment 2 which is rigidly con-
strained in the specifications.

6 Figure 8-36 shows a tentative set of boundary conditions for the s v a j diagram. The solid
circles indicate a set of boundary conditions that will constrain the continuous function to these
specifications. These are for segment 1:

when 0=0° s=0, v=0, none

(a)

when 0=30% none, v =10, a=0

7 Note that the displacement at 8= 30° is left unspecified. The resulting polynomial function
will provide us with the values of displacement at that point, which can then be used as a
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9 05%in
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------- 10 in/sec

239.9 in/sec? - M
)7

cam angle (deg)

FIGURE 8-37

Segment one for the four-segment solution to the constant velocity problem (Example 8-11)

10

boundary condition for the next segment, in order to make the overall functions continuous
as required. The acceleration at 8= 30° must be zero in order to match that of the constant
velocity segment 2. The acceleration at 8= 0 is left unspecified. The resulting value will be
used later to match the end of the last segment’s acceleration.

Putting these four BCs for segment 1 into program DYNACAM yields a cubic function whose
s v a jplots are shown in Figure 8-37. Its equation is:

oY o)
s=0.83376(gj —0.27792(Ej (8.27a)

The maximum displacement occurs at 8= 30°. This will be used as one BC for segment 2.
The entire set for segment 2 is:

when 0=30% s =0.556, v=10
(b)

when 0=210°% none, none

Note that in the derivations and in the DYNACAM program each segment’s local angles run
from zero to the [3 for that segment. Thus, segment 2’s local angles are 0° to 180°, which cor-
respond to 30° to 210° globally in this example. We have left the displacement, velocity, and
acceleration at the end of segment 2 unspecified. They will be determined by the computation.

Since this is a constant velocity segment, its integral, the displacement function, must be a
polynomial of degree one, i.e., a straight line. If we specify more than two BCs we will get
a function of higher degree than one that will pass through the specified endpoints but may
also oscillate between them and deviate from the desired constant velocity. Thus we can only
provide two BCs, a slope and an intercept, as defined in equation 8.2. But, we must provide at
least one displacement boundary condition in order to compute the coefficient C; from equa-
tion 8.23. Specifying the two BCs at only one end of the interval is perfectly acceptable. The
equation for segment 2 is:
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------- 10 in/sec

N R R
0.556 in <¥

90 180
cam angle (deg)

FIGURE 8-38

Segment two for the four-segment solution to the constant velocity problem (Example 8-11)

12

14

15

s= 5[§]+0.556 (8.27b)

Figure 8-38 shows the displacement and velocity plots of segment 2. The acceleration and
jerk are both zero. The resulting displacement at 6= 210° is 5.556.

The displacement at the end of segment 2 is now known from its equation. The four boundary
conditions for segment 3 are then:

when 6=210° s =5.556, v=10, a=0
(©)

when 6 =240°; none, v=0, none

This generates a cubic displacement function for segment 3 as in Figure 8-39. Its equation is:

3
5= —0.27792[%] + 0.83376(%] +5.556 (8.27¢)

The boundary conditions for the last segment 4 are now defined, as they must match those of
the end of segment 3 and the beginning of segment 1. The displacement at the end of segment
3 is found from the computation in DYNACAM to be s = 6.112 at 6 = 240° and the acceleration
at that point is —239.9. We left the acceleration at the beginning of segment 1 unspecified.
From the second derivative of the equation for displacement in that segment we find that the
acceleration is 239.9 at 6= 0°. The BCs for segment 4 are then:

when 0 =240°; $=6.112, v=0, a=-239.9
(d)
when 0 =360°; s=0, v

0, a=239.9

The equation for segment 4 is then:

oY) o) oY o)
=-9.9894| — 249735 — | —7.7548| — | —13.3413| — 6.112 8.27d
* [Bj ' [BJ [BJ [BJ ' ®279
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A /‘
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S
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cam angle (deg)
FIGURE 8-39

Four-segment solution to the constant velocity problem of Example 8-11

16  Figure 8-39 shows the s v a j plots for the complete cam. It obeys the fundamental law of
cam design because the piecewise functions are continuous through the acceleration. The
maximum value of acceleration is 257 in/sec2. The maximum negative velocity is —29.4 in/
sec. We now have four piecewise-continuous functions, equations 8.27, which will meet the
performance specifications for this problem.

The reader may open the file E08-11.cam in program DYNACAM to investigate this ex-
ample in greater detail.

While this design is acceptable, it can be improved. One useful strategy in design-
ing polynomial cams is to minimize the number of segments, provided that this does not
result in functions of such high degree that they misbehave between boundary conditions.
Another strategy is to always start with the segment for which you have the most informa-
tion. In this example, the constant velocity portion is the most constrained and must be a
separate segment, just as a dwell must be a separate segment. The rest of the cam motion
exists only to return the follower to the constant velocity segment for the next cycle. If we
start by designing the constant velocity segment, it may be possible to complete the cam
with only one additional segment. We will now redesign this cam, to the same specifica-
tions but with only two segments as shown in Figure 8-40.

A DEXAMPLE 8-12

Designing an Optimum Polynomial for Constant Velocity Critical Path Motion.

Problem: Redefine the problem statement of Example 8-11 to have only two segments.

Maintain  a constant velocity of 10 in/sec for 0.5 sec
Decelerate and accelerate follower to constant velocity
Cycle time exactly 1 sec

Solution: See Figures 8-40 and 8-41.
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function Poly 1 Poly 5
segment 1 2
s A o
(a) X |
10 in/sec
0 ‘ =9
0 180 0 180
4 1 2 §
10 o &
(b) 0 ‘ > 0
0 180 0 180
A T 1 2
(c) 0 ‘ —0 > 9
local @ 0 180 0 180
global® 0 180 180 360 deg

FIGURE 8-40

Boundary conditions for the two-segment constant velocity solution

The BCs for the first, constant velocity, segment will be similar to our previous solution except
for the global values of its angles and the fact that we will start at zero displacement rather than
at 0.556 in. They are:
when 6=0° s=0, v=10
(@)

when 6=180°% none, none

The displacement and velocity plots for this segment are identical to those in Figure 8-38
except that the displacement starts at zero. The equation for segment 1 is:

5= 5[%) (8.28a)

The program calculates the displacement at the end of segment 1 to be 5.00 in. This defines
that BC for segment 2. The set of BCs for segment 2 is then:

when 6=180°% s=15.00, v=10, a=0

®)
when 6 =360° s=0, v=10, a=0

The equation for segment 2 is:

5 4 3 1
s=—60(%) +150(%} —100(%) +5(%) +5 (8.28b)
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FIGURE 8-41

Two-segment solution to the constant velocity problem of Example 8-12

4 The s v a j diagrams for this design are shown in Figure 8-41. Note that they are much
smoother than the four-segment design. The maximum acceleration in this example is now
230 in/sec?, and the maximum negative velocity is —27.5 in/sec. These are both less than in
the previous design of Example 8-11.

5 The fact that our displacement in this design contains negative values as shown in the s diagram
of Figure 8-41 is of no concern. This is due to our starting with the beginning of the constant
velocity portion as zero displacement. The follower has to go to a negative position in order
to have distance to accelerate up to speed again. We will simply shift the displacement coordi-
nates by that negative amount to make the cam. To do this, simply calculate the displacement
coordinates for the cam. Note the value of the largest negative displacement. Add this value
to the displacement boundary conditions for all segments and recalculate the cam functions
with DYNACAM. (Do not change the BCs for the higher derivatives.) The finished cam’s
displacement profile will be shifted up such that its minimum value will now be zero.

So, not only do we now have a smoother cam but the dynamic forces and stored
kinetic energy are both lower. Note that we did not have to make any assumptions about
the portions of the available nonconstant velocity time to be devoted to speeding up or
slowing down. This all happened automatically from our choice of only two segments and
the specification of the minimum set of necessary boundary conditions. This is clearly a
superior design to the previous attempt and is in fact an optimal polynomial solution to
the given specifications. The reader is encouraged to open the file EO8-12.cam in program
DYNACAM to investigate this example in more detail.

SUMMARY These sections have presented polynomial functions as the most ver-
satile approach (of those shown here) to virtually any cam design problem. It is only
since the development and general availability of computers that polynomial functions
have become practical to use, as the computation to solve the simultaneous equations is
often beyond hand calculation abilities. With the availability of a design aid to solve the
equations such as program DYNACAM, polynomials have become a practical and prefer-
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able way to solve many, but not all, cam design problems. Spline functions, of which
polynomials are a subset, offer even more flexibility in meeting boundary constraints and
other cam performance criteria. Space does not permit a detailed exposition of spline
functions as applied to cam systems here. See reference [6] for more information.

8.6 SIZING THE CAM—PRESSURE ANGLE AND RADIUS OF
CURVATURE View the lecture video (48:55)%

Once the s v a j functions have been defined, the next step is to size the cam. There are two
major factors that affect cam size, the pressure angle and the radius of curvature. Both
of these involve either the base circle radius on the cam (R;) when using flat-faced fol-
lowers, or the prime circle radius on the cam (R p) when using roller or curved followers.

The base circle’s and prime circle’s centers are at the center of rotation of the cam.
The base circle is defined as the smallest circle that can be drawn tangent to the physical
cam surface as shown in Figure 8-42. All radial cams will have a base circle, regardless
of the follower type used.

The prime circle is only applicable to cams with roller followers or radiused (mush-
room) followers and is measured to the center of the follower. The prime circle is de-
fined as the smallest circle that can be drawn tangent to the locus of the centerline of the
follower as shown in Figure 8-42. The locus of the centerline of the follower is called the
pitch curve. Cams with roller followers are in fact defined for manufacture with respect
to the pitch curve rather than with respect to the cam’s physical surface. Cams with flat-
faced followers must be defined for manufacture with respect to their physical surface, as
there is no pitch curve.

Pitch curve
Cam surface
ey
) / b /’*"\\ \ Roller follower
\ \

manannn AN

Prime circle

Base circle

/ /,
o ||

e JJ

FIGURE 8-42

Base circle Ry, prime circle R, and pitch curve of a radial cam with roller follower
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The process of creating the physical cam from the s diagram can be visualized con-
ceptually by imagining the s diagram to be cut out of a flexible material such as rubber.
The x axis of the s diagram represents the circumference of a circle, which could be either
the base circle, or the prime circle, around which we will “wrap” our “rubber” s diagram.
We are free to choose the initial length of our s diagram’s x axis, though the height of the
displacement curve is fixed by the cam displacement function we have chosen. In effect
we will choose the base or prime circle radius as a design parameter and stretch the length
of the s diagram’s axis to fit the circumference of the chosen circle.

We will present equations for pressure angle and radius of curvature only for radial
cams with translating followers here. For related information on oscillating followers and
axial (barrel) cams, see Chapter 7 of reference [5].

Pressure Angle—Translating Roller Followers

The pressure angle is defined as shown in Figure 8-43. It is the complement of the
transmission angle that was defined for linkages in previous chapters and has a similar
meaning with respect to cam-follower operation. By convention, the pressure angle is
used for cams, rather than the transmission angle. Force can only be transmitted from
cam to follower or vice versa along the axis of transmission which is perpendicular to
the axis of slip, or common tangent.

PRESSURE ANGLE The pressure angle ¢ is the angle between the direction of
motion (velocity) of the follower and the direction of the axis of transmission.” When
¢ = 0, all the transmitted force goes into motion of the follower and none into slip veloc-
ity. When ¢ becomes 90° there will be no motion of the follower. As a rule of thumb, we
would like the pressure angle to be between zero and about 30° for translating followers
to avoid excessive side load on the sliding follower. If the follower is oscillating on a
pivoted arm, a pressure angle up to about 35° is acceptable. Values of ¢ greater than this
can increase the follower sliding or pivot friction to undesirable levels and may tend to
jam a translating follower in its guides.

EccENTRICITY Figure 8-44 shows the geometry of a cam and translating roller
follower in an arbitrary position. This shows the general case in that the axis of motion
of the follower does not intersect the center of the cam. There is an eccentricity € defined
as the perpendicular distance between the follower’s axis of motion and the center of the
cam. Often this eccentricity € will be zero, making it an aligned follower, which is the
special case.

In Figure 8-44, the axis of transmission is extended to intersect effective link 1, which
is the ground link. (See Section 8.0 and Figure 8-1 for a discussion of effective links in
cam systems.) This intersection is instant center /, 4 (labeled B) which, by definition, has
the same velocity in link 2 (the cam) and in link 4 (the follower). Because link 4 is in
pure translation, all points on it have identical velocities Vi, Which are equal to the
velocity of I, 4 in link 2. We can write an expression for the velocity of I 4 in terms of
cam angular velocity and the radius b from cam center to I 4,

vy, =bo= S (8.29)
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Cam pressure angle

where s or S is the instantaneous displacement of the follower from the S diagram and $
is its time derivative in units of length/sec. (Note that capital V, A, J denote time-based
variables and v, g, j are functions of cam angle—length/rad, length/rad2, length/rad3.)

But S= d—S
dt
dSdo dSdoe dS
and ——=——=—0=V0
dt d0 do dt do
SO bw=vo
then b=v (8.30)

This is an interesting relationship which says that the distance b to the instant center
I 4 is equal to the velocity of the follower v in units of length per radian as derived in
previous sections. We have reduced this expression to pure geometry, independent of the
angular velocity o of the cam.



CAM DESIGN 463

Pressure angle —_— 1
—

\‘/ (0 Vﬁ)//(m:g,- = V/

Common normal /

(axis of transmission)

Common tangent Effective

(axis of slip) \ ’ link 4
i —_—— - — - - g - — - >
to 11’4 @ o

",
/ / e
ey

Prime circle
radius R, .

//
/ Effective
y/ | link 1
i Sy
0] \
cam \ to 11’4 @

Follower axis
of motion

—» £ -— ¢ —>

i<— bh —»
FIGURE 8-44
Geometry for the derivation of the equation for pressure angle

Note that we can express the distance b in terms of the prime circle radius R), and the
eccentricity €, by the construction shown in Figure 8-44. Swing the arc of radius R,, until
it intersects the axis of motion of the follower at point D. This defines the length of line
d from effective link 1 to this intersection. This is constant for any chosen prime circle
radius R,. Points A, C, and I, 4 form a right triangle whose upper angle is the pressure
angle ¢ and whose vertical leg is (s + d), where s is the instantaneous displacement of the
follower. From this triangle:

c=b-g=(s+d)tan¢

and (8.31a)
b=(s+d)tand+e

Then from equation 8.30,
v:(s+d)tan¢+8 (8.31b)
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and from triangle CDO,,

d=R: - ¢ (8.31c)

Substituting equation 8.3 1¢ into equation 8.31b and solving for ¢ give an expression
for pressure angle in terms of displacement s, velocity v, eccentricity €, and the prime
circle radius R),.

V—¢&
[p2 2
S+ RP—8

The velocity v in this expression is in units of length/rad, and all other quantities are
in compatible length units. We have typically defined s and v by this stage of the cam
design process and wish to manipulate R, and € to get an acceptable maximum pressure
angle ¢. As R, is increased, ¢ will be reduced. The only constraints against large values
of R, are the practical ones of package size and cost. Often there will be some upper limit
on the size of the cam-follower package dictated by its surroundings. There will always
be a cost constraint and bigger = heavier = more expensive.

¢ =arctan (8.31d)

Choosing a Prime Circle Radius

Both R), and € are within a transcendental expression in equation 8.31d, so they cannot
be conveniently solved for directly. The simplest approach is to assume a trial value for
R, and an initial eccentricity of zero, and use program DYNACAM, your own program, or
an equation solver such as Matlab, TKSolver or Mathcad to quickly calculate the values
of ¢ for the entire cam, and then adjust R, and repeat the calculation until an acceptable
arrangement is found. Figure 8-45 shows the calculated pressure angles for a four-dwell
cam. Note the similarity in shape to the velocity functions for the same cam in Figure
8-6, as that term is dominant in equation 8.31d.

cycloidal mod sine mod trap  simple harmonic
rise fall rise fall

16° -
)
[5)
2
2
) i
N 0 1 1 {o—o0-
=
=
2}
72}
=
&

16 L
0 90 180 270 360

cam angle (deg)
FIGURE 8-45

Pressure angle functions are similar in shape to velocity functions.
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USING ECCENTRICITY  If a suitably small cam cannot be obtained with acceptable
pressure angle, then eccentricity can be introduced to change the pressure angle. Using
eccentricity to control the pressure angle has its limitations. For a positive ®, a positive
value of eccentricity will decrease the pressure angle on the rise but will increase it on
the fall. Negative eccentricity does the reverse.

This is of little value with a form-closed (groove or track) cam, as it is driving the
follower in both directions. For a force-closed cam with spring return, you can sometimes
afford to have a larger pressure angle on the fall than on the rise because the stored energy
in the spring is attempting to speed up the camshaft on the fall, whereas the cam is stor-
ing that energy in the spring on the rise. The limit of this technique can be the degree
of overspeed attained with a larger pressure angle on the fall. The resulting variations in
cam angular velocity may be unacceptable.

The most value gained from adding eccentricity to a follower comes in situations
where the cam program is asymmetrical and significant differences exist (with no eccen-
tricity) between maximum pressure angles on rise and fall. Introducing eccentricity can
balance the pressure angles in this situation and create a smoother running cam.

If adjustments to R), or € do not yield acceptable pressure angles, the only recourse
is to return to an earlier stage in the design process and redefine the problem. Less lift
or more time to rise or fall will reduce the causes of the large pressure angle. Design is,
after all, an iterative process.

Overturning Moment—Translating Flat-Faced Follower

Figure 8-46 shows a translating, flat-faced follower running against a radial cam. The
pressure angle can be seen to be zero for all positions of cam and follower. This seems
to be giving us something for nothing, which can’t be true. As the contact point moves
left and right, the point of application of the force between cam and follower moves with
it. There is an overturning moment on the follower associated with this off-center force
which tends to jam the follower in its guides, just as did too large a pressure angle in the
roller follower case. In this case, we would like to keep the cam as small as possible in
order to minimize the moment arm of the force. Eccentricity will affect the average value
of the moment, but the peak-to-peak variation of the moment about that average is unaf-
fected by eccentricity. Considerations of too-large pressure angle do not limit the size of
this cam, but other factors do. The minimum radius of curvature (see below) of the cam
surface must be kept large enough to avoid undercutting. This is true regardless of the
type of follower used.

Radius of Curvature—Translating Roller Follower

The radius of curvature is a mathematical property of a function. Its value and use is
not limited to cams but has great significance in their design. The concept is simple. No
matter how complicated a curve’s shape may be, nor how high the degree of the describ-
ing function, it will have an instantaneous radius of curvature at every point on the curve.
These radii of curvature will have instantaneous centers (which may be at infinity), and
the radius of curvature of any function is itself a function that can be computed and plot-
ted. For example, the radius of curvature of a straight line is infinity everywhere; that of
acircle is a constant value. A parabola has a constantly changing radius of curvature that
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Overturning moment on a flat-faced follower

approaches infinity. A cubic curve will have radii of curvature that are sometimes posi-
tive (convex) and sometimes negative (concave). The higher the degree of a function, in
general, the more potential variety in its radius of curvature.

Cam contours are usually functions of high degree. When they are wrapped around
their base or prime circles, they may have portions that are concave, convex, or flat.
Infinitesimally short flats of infinite radius will occur at all inflection points on the cam
surface where it changes from concave to convex or vice versa.

The radius of curvature of the finished cam is of concern regardless of the follower
type, but the concerns are different for different followers. Figure 8-47 shows an obvious
(and exaggerated) problem with a roller follower whose own (constant) radius of curvature
Ryis too large to follow the locally smaller concave (negative) radius —p on the cam. (Note
that, normally, one would not use that large a roller compared to the cam.)

A more subtle problem occurs when the roller follower radius Ry is larger than the
smallest positive (convex) local radius +p on the cam. This problem is called undercut-
ting and is depicted in Figure 8-48. Recall that for a roller follower cam, the cam contour
is actually defined as the locus of the center of the roller follower, or the pitch curve. The
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Vfollower
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FIGURE 8-47

The result of using a roller follower larger than the one for which the cam was designed

machinist is given these x,y coordinate data (on computer tape or disk) and also told the
radius of the follower Ry The machinist will then cut the cam with a cutter of the same
effective radius as the follower, following the pitch curve coordinates with the center of
the cutter.

Figure 8-48a shows the situation in which the follower (cutter) radius Rfis at one
point exactly equal to the minimum convex radius of curvature of the cam (+p,,,;,).- The
cutter creates a perfect sharp point, or cusp, on the cam surface. This cam will not run
very well at speed! Figure 8-48b shows the situation in which the follower (cutter) radius
is greater than the minimum convex radius of curvature of the cam. The cutter now un-
dercuts or removes material needed for cam contours in different locations and also creates
a sharp point or cusp on the cam surface. This cam no longer has the same displacement
function you so carefully designed.

The rule of thumb is to keep the absolute value of the minimum radius of curvature
Pmin of the cam pitch curve preferably at least 2 to 3 times as large as the radius of the
roller follower Ry.

|pmin| >> Rf (8.32)

A derivation for radius of curvature can be found in any calculus text. For our case of
a roller follower, we can write the equation for the radius of curvature of the pitch curve
of the cam as:

[(RP + 5)2 +1? T/Z

(RP +s)2 +21° —a(RP + s)

P pitch = (8.33)

In this expression, s, v, and a are the displacement, velocity, and acceleration of the
cam program as defined in a previous section. Their units are length, length/rad, and
length/rad?, respectively. R, is the prime circle radius. Do not confuse this prime circle
radius R, with the radius of curvature, p;icp. R, is a constant value which you choose
as a design parameter and p,;;, is the constantly changing radius of curvature that results
from your design choices.
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Small positive radius of curvature can cause undercutting.

Also do not confuse R, the prime circle radius, with Ry, the radius of the roller fol-
lower. See Figure 8-43 for definitions. You can choose the value of Ry to suit the prob-
lem, so you might think that it is simple to satisfy equation 8.32 by just selecting a roller
follower with a small value of Rz Unfortunately it is more complicated than that, as a
small roller follower may not be strong enough to withstand the dynamic forces from the
cam. The radius of the pin on which the roller follower pivots is substantially smaller than
Ry because of the space needed for roller or ball bearings within the follower. Dynamic
forces will be addressed in later chapters where we will revisit this problem.

We can solve equation 8.33 for p,,;, since we know s, v, and a for all values of 6
and can choose a trial R,. If the pressure angle has already been calculated, the R, found
for its acceptable values should be used to calculate p,;,, as well. If a suitable follower
radius cannot be found which satisfies equation 8.32 for the minimum values of ;.
calculated from equation 8.33, then further iteration will be needed, possibly including a
redefinition of the cam specifications.

Program DYNACAM calculates p,,;, for all values of 6 for a user supplied prime
circle radius R),. Figure 8-49 shows p,;., for the four-dwell cam of Figure 8-6. Note that
this cam has both positive and negative radii of curvature. The large values of radius of
curvature are truncated at arbitrary levels on the plot as they are heading to infinity at the
inflection points between convex and concave portions. Note that the radii of curvature
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Radius of curvature of a four-dwell cam

go out to positive infinity and return from negative infinity or vice versa at these inflection
points (perhaps after a round trip through the universe?).

Once an acceptable prime circle radius and roller follower radius are determined
based on pressure angle and radius of curvature considerations, the cam can be drawn
in finished form and subsequently manufactured. Figure 8-50 shows the profile of the
four-dwell cam from Figure 8-6. The cam surface contour is swept out by the envelope
of follower positions just as the cutter will create the cam in metal. The sidebar shows the
parameters for the design, which is an acceptable one. The p,,,;;, is 1.7 times Ryand the
pressure angles are less than 30°. The contours on the cam surface appear smooth, with
no sharp corners. Figure 8-51 shows the same cam with only one change. The radius
of follower Ry has been made the same as the minimum radius of curvature, p,;,. The
sharp corners or cusps in several places indicate that undercutting has occurred. This has
now become an unacceptable cam, simply because of a roller follower that is too large.

The coordinates for the cam contour, measured to the locus of the center of the roller
follower, or the pitch curve as shown in Figure 8-50, are defined by the following expres-
sions, referenced to the center of rotation of the cam. See Figure 8-44 for nomenclature.
The subtraction of the cam input angle 6 from 27 is necessary because the relative motion
of the follower versus the cam is opposite to that of the cam versus the follower. In other
words, to define the contour of the centerline of the follower’s path around a stationary
cam, we must move the follower (and also the cutter to make the cam) in the opposite
direction of cam rotation.

x=coshy(d+s) +¢
y=sinAy(d+s) +¢ (8.34)
where:

L=(2n-0)- arctan(ij
d+s
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Radial plate cam profile is generated by the locus of the roller follower (or cutter)

Radius of Curvature—Translating Flat-Faced Follower

The situation with a flat-faced follower is different from that of a roller follower. A nega-
tive radius of curvature on the cam cannot be accommodated with a flat-faced follower.
The flat follower obviously cannot follow a concave cam. Undercutting will occur when
the radius of curvature becomes negative if a cam with that condition is made.

Figure 8-52 shows a cam and translating flat-faced follower in an arbitrary position.
The origin of the global XY coordinate system is placed at the cam’s center of rotation,
and the X axis is defined parallel to the common tangent, which is the surface of the flat
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FIGURE 8-51
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Geometry for derivation of radius of curvature and cam contour with flat-faced follower

follower. The vector r is attached to the cam, rotates with it, and serves as the reference
line to which the cam angle 0 is measured from the X axis. The point of contact A is
defined by the position vector R4. The instantaneous center of curvature is at C and the
radius of curvature is p. Ry, is the radius of the base circle and s is the displacement of the
follower for angle 0. The eccentricity is €.

We can define the location of contact point A from two vector loops (in complex

notation).
R, =x+j(Ry+s)
and
R, =ce/® 4 jp
so:
cej(em) +jp=x+ j(Rb + s) (8.35a)

Substitute the Euler equivalent (equation 4.4a) in equation 8.35a and separate the real
and imaginary parts.

real:
ccos(B+0)=x (8.35b)
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imaginary:
csin(0+0)+p=Ry +s (8.35¢)
The center of curvature C is stationary on the cam, meaning that the magnitudes of
c and p, and angle o do not change for small changes in cam angle 0. (These values are

not constant but are at stationary values. Their first derivatives with respect to 0 are zero,
but their higher derivatives are not zero.)

Differentiating equation 8.35a with respect to 6 then gives:

0+0at) ﬂ_'_ . ds

jcej( = ) ]% (8.36)

Substitute the Euler equivalent (equation 4.4a) in equation 8.36 and separate the real
and imaginary parts.

real:

—csin(9+oc):% (8.37)

imaginary:
ds

ccos(6+0c):d—e—v (8.38)

Inspection of equations 8.35b and 8.36 shows that:
xX=v (8.39)

This is an interesting relationship that says the x position of the contact point between
cam and follower is equal to the velocity of the follower in length/rad. This means that the
v diagram gives a direct measure of the necessary minimum face width of the flat follower.

facewidth > v, —Vmin (8.40)

If the velocity function is asymmetric, then a minimum-width follower will have to
be asymmetric also, in order not to fall off the cam.

Differentiating equation 8.39 with respect to 6 gives:

dx dv

dx _dv _ 841
o do - (841)

Equations 8.35¢ and 8.37 can be solved simultaneously and equation 8.41 substituted
in the result to yield:
p=R,+s+a (8.42a)
and the minimum value of radius of curvature is

Pmin = Rp + (S + a)min (8.42b)
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BASE CIRCLE  Note that equations 8.42 define the radius of curvature in terms of
the base circle radius and the displacement and acceleration functions from the s v a j
diagrams only. Because p cannot be allowed to become negative with a flat-faced fol-
lower, we can formulate a relationship from equation 8.42b that will predict the minimum
base circle radius R, needed to avoid undercutting. The only factor on the right side of
equations 8.42 that can be negative is the acceleration, a. We have defined s to be always
positive, as is Rj,. Therefore, the worst case for undercutting will occur when a is near its
largest negative value, a,,;,, whose value we know from the a diagram. The minimum
base circle radius can then be defined as:

Ry . >Pmin —(s+a) (8.43)

Because the value of a,,,;, is negative and it is also negated in equation 8.43, it domi-
nates the expression. To use this relationship, we must choose some minimum radius
of curvature p,,;, for the cam surface as a design parameter. Since the hertzian contact
stresses at the contact point are a function of local radius of curvature, that criterion can
be used to select p,,;,,- That topic is beyond the scope of this text and will not be further
explored here. See reference [1] for further information on contact stresses.

CAM CONTOUR  For a flat-faced follower cam, the coordinates of the physical cam sur-
face must be provided to the machinist as there is no pitch curve to work to. Figure 8-52
shows two orthogonal vectors, r and q, which define the cartesian coordinates of contact
point A between cam and follower with respect to a rotating axis coordinate system em-
bedded in the cam. Vector r is the rotating “x” axis of this embedded coordinate system.
Angle y defines the position of vector R, in this system. Two vector loop equations can
be written and equated to define the coordinates of all points on the cam surface as a

function of cam angle 6.

RA:x+j(Rb +s)

and
'
. j(0+7J
R,=re’®+ge ' 2
SO:
. J(9+E)
re® +ge’\ 2/ =x+ j(Rb + s) (8.44)
Divide both sides by ¢/6:
r+jq= xe /8 +j(RlJ + s)efje (8.45)

Separate into real and imaginary components and substitute v for x from equation 8.39:

real (x component):
r:(Rb +s)sin9+vc059 (8.46a)
imaginary (y component):

q= (Rb +s)cose—vsin6 (8.46b)
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FIGURE 8-53

Undercutting due to negative radius of curvature used with flat-faced follower

Equations 8.46 can be used to machine the cam for a flat-faced follower. These x, y com-
ponents are in the rotating coordinate system that is embedded in the cam.

Note that none of the equations developed above for this case involve the eccentric-
ity, €. Itis only a factor in cam size when a roller follower is used. It does not affect the
geometry of a flat follower cam.

Figure 8-53 shows the result of trying to use a flat-faced follower on a cam whose
theoretical path of follower point P has negative radius of curvature due to a base circle
radius that is too small. If the follower tracked the path of P as is required to create the
motion function defined in the s diagram, the cam surface would actually be as developed
by the envelope of straight lines shown. But, these loci of the follower face are cutting
into cam contours that are needed for other cam angles. The line running through the
forest of follower loci is the path of point P needed for this design. The undercutting can
be clearly seen as the crescent-shaped missing pieces at four places between the path of P
and the follower face loci. Note that if the follower were zero width (at point P), it would
work kinematically, but the stress at the knife edge would be infinite.

SUMMARY The task of sizing a cam is an excellent example of the need for and value
of iteration in design. Rapid recalculation of the relevant equations with a tool such as
program DYNACAM makes it possible to quickly and painlessly arrive at an acceptable
solution while balancing the often conflicting requirements of pressure angle and radius
of curvature constraints. In any cam, either the pressure angle or radius of curvature
considerations will dictate the minimum size of the cam. Both factors must be checked.
The choice of follower type, either roller or flat-faced, makes a big difference in the cam
geometry. Cam programs that generate negative radii of curvature are unsuited to the
flat-faced type of follower unless very large base circles are used to force p to be positive
everywhere.
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The cam designer is often faced with many confusing decisions, especially at an early
stage of the design process. Many early decisions, often made somewhat arbitrarily and
without much thought, can have significant and costly consequences later in the design.
The following is a discussion of some of the trade-offs involved with such decisions in the
hope that it will provide the cam designer with some guidance in making these decisions.

Translating or Oscillating Follower?

There are many cases, especially early in a design, when either translating or rotating
motion could be accommodated as output from the cam, though in other situations, the
follower motion and geometry is dictated to the designer. If some design freedom is al-
lowed, and straight-line motion is specified, the designer should consider the possibility
of using an approximate straight-line motion, which is often adequate and can be obtained
from a large-radius rocker follower. The rocker or oscillating follower has advantages
over the translating follower when a roller is used. A round-cross-section translating fol-
lower slide is free to rotate about its axis of translation and needs to have some antirota-
tion guiding provided (such as a keyway or second slide) to prevent z axis misalignment
of the roller follower with the cam. Many commercial, nonrotating slide assemblies are
now available, often fitted with ball bearings, and these provide a good way to deal with
this issue. However, an oscillating follower arm will keep the roller follower aligned in
the same plane as the cam with no guiding other than its own pivot.

Also, the pivot friction in an oscillating follower typically has a small moment arm
compared to the moment of the force from the cam on the follower arm. But, the friction
force on a translating follower has a one-to-one geometric relationship with the cam force.
This can have a larger parasitic effect on the system.

Translating flat-faced followers are often deliberately arranged with their axis slightly
out of the plane of the cam in order to create a rotation about their own axis due to the
frictional moment resulting from the offset. The flat follower will then precess around
its own axis and distribute the wear over its entire face surface. This is common practice
with automotive valve cams that use flat-faced followers or “tappets.”

Force- or Form-Closed?

A form-closed (track or groove) cam or conjugate cams are more expensive to make than
a force-closed (open) cam simply because there are two surfaces to machine and grind.
Also, heat treating will often distort the track of a form-closed cam, narrowing or widen-
ing it such that the roller follower will not fit properly. This virtually requires post heat-
treat grinding for track cams in order to resize the slot. An open (force-closed) cam will
also distort on heat-treating, but can still be usable without grinding.

FOLLOWER JUMP The principal advantage of a form-closed (track) or conjugate-
pair cam is that it does not need a return spring, and thus can be run at higher speeds than
a force-closed cam whose spring and follower mass will go into resonance at some speed,
causing potentially destructive follower jump. This phenomenon will be investigated in
Chapter 15 on cam dynamics. High-speed automobile and motorcycle racing engines of-
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ten use form-closed (desmodromic)” valve cam trains to allow higher engine rpm without
incurring valve “float,” or follower jump.

CROSSOVER SHOCK Though the lack of a return spring can be an advantage, it
comes, as usual, with a trade-off. In a form-closed (track) cam there will be crossover
shock each time the acceleration changes sign. Crossover shock describes the impact
force that occurs when the follower suddenly jumps from one side of the track to the
other as the dynamic force (ma) reverses sign. There is no flexible spring in this system
to absorb the force reversal as in the force-closed case. The high impact forces at cross-
over cause noise, high stresses, and local wear. Also, the roller follower has to reverse
direction at each crossover, which causes sliding and accelerates follower wear. Studies
have shown that roller followers running against a well-lubricated open radial cam have
slip rates of less than 1%.[%]

Radial or Axial Cam?

This choice is largely dictated by the overall geometry of the machine for which the cam is
being designed. If the follower must move parallel to the camshaft axis, then an axial cam
is dictated. If there is no such constraint, a radial cam is probably a better choice simply
because it is a less complicated, thus less expensive, cam to manufacture.

Roller or Flat-Faced Follower?

The roller follower is a better choice from a cam design standpoint simply because it
accepts negative radius of curvature on the cam. This allows more variety in the cam
program. Also, for any production quantity, the roller follower has the advantage of be-
ing available from several manufacturers in any quantity from one to a million. For low
quantities it is not usually economical to design and build your own custom follower. In
addition, replacement roller followers can be obtained from suppliers on short notice when
repairs are needed. Also, they are not particularly expensive even in small quantities.

Perhaps the largest users of flat-faced followers are automobile engine makers. Their
quantities are high enough to allow any custom design they desire. It can be made or
purchased economically in large quantity and can be less expensive than a roller follower
in that case. Also with engine valve cams, a flat follower can save space over a roller.
Nevertheless, many manufacturers have switched to roller followers in automobile engine
valve trains to reduce friction and improve fuel economy. Most new automotive internal
combustion engines designed in the United States in recent years have used roller follow-
ers for those reasons. Diesel engines have long used roller followers (tappets) as have
racers who “hop-up” engines for high performance.

Cams used in automated production line machinery use stock roller followers almost
exclusively. The ability to quickly change a worn follower for a new one taken from the
stockroom without losing much production time on the “line” is a strong argument in
this environment. Roller followers come in several varieties (see Figure 8-5a). They are
based on roller or ball bearings. Plain bearing versions are also available for low-noise
requirements. The outer surface, which rolls against the cam, can be either cylindrical or
spherical in shape. The “crown” on the spherical follower is slight, but it guarantees that
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the follower will ride near the center of a flat cam even with some inaccuracy of alignment
of the axes of rotation of cam and follower. If a cylindrical follower is chosen and care
is not taken to align the axes of cam and roller follower, or if it deflects under load, the
follower will ride on one edge and wear rapidly.

Commercial roller followers are typically made of high carbon alloy steel such as
AISI 52100 and hardened to Rockwell HRC 60-62. The 52100 alloy is well suited to
thin sections that must be heat-treated to a uniform hardness. Because the roller makes
many revolutions for each cam rotation, its wear rate will typically be higher than that of
the cam. Chrome plating the follower can markedly improve its life. Chrome is harder
than steel at about HRC 70. Steel cams are typically hardened to a range of HRC 50-55.

To Dwell or Not to Dwell?

The need for a dwell is usually clear from the problem specifications. If the follower must
be held stationary for any time, then a dwell is required. Some cam designers tend to
insert dwells in situations where they are not specifically needed for follower stasis, in a
mistaken belief that this is preferable to providing a rise-return motion when that is what
is really needed. If the designer is attempting to use a double-dwell program in what really
needs only to be a single-dwell case, with the motivation to “let the vibrations settle out”
by providing a “short dwell” at the end of the motion, he or she is misguided. Instead,
the designer probably should be using a different cam program, perhaps a polynomial or
a B-spline tailored to the specifications. Taking the follower acceleration to zero, whether
for an instant or for a “short dwell,” is generally undesirable unless absolutely required for
machine function. (See Examples 8-6, 8-7, and 8-8.) A dwell should be used only when
the follower is required to be stationary for some measurable time. Moreover, if you do
not need any dwell at all, consider using a linkage instead. They are a lot easier and less
expensive to manufacture.

To Grind or Not to Grind?

Some production machinery cams are used as-milled, and not ground. Automotive valve
cams are ground. The reasons are largely due to cost and quantity considerations as well
as the high speeds of automotive cams. There is no question that a ground cam is superior
to a milled cam, but a hard-machined” cam can perform nearly as well as a well-ground
cam. The question in each case is whether the grinding advantage gained is worth the
cost. In small quantities, as are typical of production machinery, grinding about doubles
the cost of a cam. The advantages in terms of smoothness and quietness of operation,
and of wear, are not in the same ratio as the cost difference.[%> 101 Automotive cams are
made in large quantity, run at very high speed, and are expected to last for a very long time
with minimal maintenance. This is a very challenging specification. It is a great credit
to the engineering of these cams that they very seldom fail in 150 000 miles or more of
operation. These cams are made on specialized equipment which keeps the cost of their
grinding to a minimum.

Industrial production machine cams also see very long lives, often 10 to 20 years,
running into billions of cycles at typical machine speeds. Unlike the typical automotive
application, industrial cams often run around the clock, 7 days a week, 50+ weeks a year.
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* “Hard machining” is a
relatively recent addition

to the machinist’s toolbox.
Modern boron-nitride
cutting tools are able to
machine pre-hardened steel
at up to about HRC 50 hard-
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and then machined (rather
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by a grinding operation to
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get finishes close to those
from grinding. This has
greatly reduced the cost
and tunaround time for cam
manufacturing. Cams that
formerly took multiple days
to manufacture are now
made in hours from a stock
of pre-hardened cam blanks.
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. . ,
TABLE P8-0 To Lubricate or Not to Lubricate?

Topic/Problem Matrix Cams like lots of lubrication. Automotive cams are literally drowned in a flow of filtered

and sometimes cooled engine oil. Many production machine cams run immersed in an oil

8.1 Cam Terminology

8-1, 8-3,8-5

8.3 Double-Dwell Cam

Design

Simple Harmonic
Motion (SHM)

8-26

Cycloidal Displace-
ment

8-23, 8-70

Modified Trapezoidal
8-7, 8-11, 8-21, 8-44,
8-64

Modified Sinusoidal
8-8. 8-10, 8-22, 8-45,
8-66

Polynomial

8-24, 8-25, 8-33,
8-46, 8-59, 8-60,
8-68

8.4 Single-Dwell Cam

Design
8-9, 8-41, 8-42, 8-47,
8-53, 8-61

8.5 Critical Path Motion

8-17, 8-43, 8-48,
8-54, 8-63

8.6 Sizing the Cam

Pressure Angle

8-2, 8-4, 8-6, 8-34,
8-56, 8-57, 8-58,
8-71, 8-72, 8-73
Radius of Curvature -
Roller Followers
8-18, 8-19, 8-20,
8-27, 8-28, 8-29,
8-30, 8-31, 8-32,
8-35, 8-36, 8-37,
8-38, 8-39, 8-40
Radius of Curvature -
Flat-Faced Followers
8-49, 8-50, 8-51,
8-52, 8-62, 8-65,
8-67, 8-69,8-74, 8-75
Roller & Flat-Faced
Followers

8-12, 8-13, 8-14, 8-15

bath. These are reasonably happy cams. Others are not so fortunate. Cams that operate
in close proximity to the product on an assembly machine in which oil would cause con-
tamination of the product (food products, personal products) often are run dry. Camera
mechanisms, which are full of linkages and cams, are often run dry. Lubricant would
eventually find its way to the film or sensors.

Unless there is some good reason to eschew lubrication, a cam and follower should
be provided with a generous supply of clean lubricant, preferably a hypoid-type oil con-
taining additives for boundary lubrication conditions. The geometry of a cam-follower
joint (half-joint) is among the worst possible from a lubrication standpoint. Unlike a
journal bearing, which tends to trap a film of lubricant within the annulus of the joint,
the half-joint is continually trying to squeeze the lubricant out of itself. This can result
in a boundary, or mixed boundary/elasto-hydrodynamic lubrication state in which some
metal-to-metal contact will occur. Lubricant must be continually resupplied to the joint.
Another purpose of the liquid lubricant is to remove the heat of friction from the joint. If
run dry, significantly higher material temperatures will result, with accelerated wear and
possible early failure.
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8.9 PROBLEMS
Programs DYNACAM and MATRIX may be used to solve these problems or to check your
solution where appropriate.

*8-1 Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods,
find and sketch the equivalent fourbar linkage for this position of the cam and follower.

*8-2  Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods,
find the pressure angle at the position shown.

8-3  Figure P8-2 shows a cam and follower. Using graphical methods, find and sketch the
equivalent fourbar linkage for this position of the cam and follower.

*8-4  Figure P8-2 shows a cam and follower. Using graphical methods, find the pressure
angle at the position shown.

8-5 Figure P8-3 shows a cam and follower. Using graphical methods, find and sketch the
equivalent fourbar linkage for this position of the cam and follower.

*8-6  Figure P8-3 shows a cam and follower. Using graphical methods, find the pressure
angle at the position shown.

#8-7 Design a double-dwell cam to move a follower from 0 to 2.5" in 60°, dwell for 120°, FIGURE P8-2
fall 2.5" in 30°, and dwell for the remainder. The total cycle must take 4 sec. Choose Problems 8-3 to 8-4
suitable functions for rise and fall to minimize accelerations. Plot the s v a j diagrams.

#8-8  Design a double-dwell cam to move a follower from 0 to 1.5” in 45°, dwell for 150°,
fall 1.5” in 90°, and dwell for the remainder. The total cycle must take 6 sec. Choose
suitable functions for rise and fall to minimize velocities. Plot the s v a j diagrams.

#8-9  Design a single-dwell cam to move a follower from 0 to 2” in 60°, fall 2” in 90°, and
dwell for the remainder. The total cycle must take 2 sec. Choose suitable functions for
rise and fall to minimize accelerations. Plot the s v a j diagrams.

#8-10 Design a three-dwell cam to move a follower from 0 to 2.5” in 40°, dwell for 100°, fall
1.5” in 90°, dwell for 20°, fall 1” in 30°, and dwell for the remainder. The total cycle
must take 10 sec. Choose suitable functions for rise and fall to minimize velocities.
Plot the s v a j diagrams.

FIGURE P8-3
Problems 8-5 to 8-6

* Answers in Appendix F.

¥ Problem figures are pro-
<—— direction of sliding vided as downloadable PDF
files with same names as the

FIGURE P8-1
Problems 8-1to 8-2
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8-11

£8-12

8-13

8-14

8-15

8-16

8-17

8-18

8-19

8-20

8-21

78-22

Design a four-dwell cam to move a follower from 0 to 2.5” in 40°, dwell for 100°, fall
1.5” in 90°, dwell for 20°, fall 0.5” in 30°, dwell for 40°, fall 0.5” in 30°, and dwell for
the remainder. The total cycle must take 15 sec. Choose suitable functions for rise and
fall to minimize accelerations. Plot the s v a j diagrams.

Size the cam from Problem 8-7 for a 1” radius roller follower considering pressure
angle and radius of curvature. Use eccentricity only if necessary to balance those func-
tions. Plot both those functions. Draw the cam profile. Repeat for a flat-faced follower.
Which would you use?

Size the cam from Problem 8-8 for a 1.5” radius roller follower considering pressure
angle and radius of curvature. Use eccentricity only if necessary to balance those func-
tions. Plot both those functions. Draw the cam profile. Repeat for a flat-faced follower.
Which would you use?

Size the cam from Problem 8-9 for a 0.5” radius roller follower considering pressure
angle and radius of curvature. Use eccentricity only if necessary to balance those func-
tions. Plot both those functions. Draw the cam profile. Repeat for a flat-faced follower.
Which would you use?

Size the cam from Problem 8-10 for a 2” radius roller follower considering pressure
angle and radius of curvature. Use eccentricity only if necessary to balance those func-
tions. Plot both those functions. Draw the cam profile. Repeat for a flat-faced follower.
Which would you use?

Size the cam from Problem 8-11 for a 0.5” radius roller follower considering pressure
angle and radius of curvature. Use eccentricity only if necessary to balance those func-
tions. Plot both those functions. Draw the cam profile. Repeat for a flat-faced follower.
Which would you use?

A high friction, high inertia load is to be driven. We wish to keep peak velocity low.
Combine segments of polynomial displacements with a constant velocity segment on
both rise and fall to reduce the maximum velocity below that obtainable with a full
period modified sine acceleration alone (i.e., one with no constant velocity portion).
Rise 1”7 in 90°, dwell for 60°, fall in 50°, dwell for remainder. Compare the two designs
and comment. Use an ® of one for comparison.

A constant velocity of 0.4 in/sec is to be matched for 1.5 sec. The follower must return
to your choice of start point and dwell for 2 sec. Total cycle is 6 sec. Design a cam for
a follower radius of 0.75” and a maximum pressure angle of 30° absolute value.

A constant velocity of 0.25 in/sec must be matched for 3 sec. Then the follower must
return to your choice of start point and dwell for 3 sec. The total cycle time is 12 sec.
Design a cam for a follower radius of 1.25” and a maximum pressure angle of 35° abso-
lute value.

A constant velocity of 2 in/sec must be matched for 1 sec. Then the follower must
return to your choice of start point. The total cycle time is 2.75 sec. Design a cam for
a follower radius of 0.5” and a maximum pressure angle of 25° absolute value.

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a modified trapezoidal acceleration cam function for any specified values
of lift and duration. Test it using a lift of 20 mm over 60° at 1 rad/sec.

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a modified sine acceleration cam function for any specified values of lift
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8-23

8-24

8-25

8-26

78-27

8-28

8-29

8-30

78-31

8-32

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a cycloidal displacement cam function for any specified values of lift and
duration. Test it using a lift of 20 mm over 60° at 1 rad/sec.

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a 3-4-5 polynomial displacement cam function for any specified values of
lift and duration. Test it using a lift of 20 mm over 60° at 1 rad/sec.

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a 4-5-6-7 polynomial displacement cam function for any specified values
of lift and duration. Test it using a lift of 20 mm over 60° at 1 rad/sec.

Write a computer program or use an equation solver to calculate and plot the s v a j
diagrams for a simple harmonic displacement cam function for any specified values of
lift and duration. Test it using a lift of 20 mm over 60° at 1 rad/sec.

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a modified trapezoidal acceleration cam function for
any specified values of lift, duration, eccentricity, and prime circle radius. Test it using
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to
obtain a maximum pressure angle of 20°. What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a modified sine acceleration cam function for any
specified values of lift, duration, eccentricity, and prime circle radius. Test it using a
lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to
obtain a maximum pressure angle of 20°. What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a cycloidal displacement cam function for any speci-
fied values of lift, duration, eccentricity, and prime circle radius. Test it using a lift of
20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to obtain

a maximum pressure angle of 20°. What is the minimum diameter of roller follower
needed to avoid undercutting with these data?

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a 3-4-5 polynomial displacement cam function for
any specified values of lift, duration, eccentricity, and prime circle radius. Test it using
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to
obtain a maximum pressure angle of 20°. What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a 4-5-6-7 polynomial displacement cam function for
any specified values of lift, duration, eccentricity, and prime circle radius. Test it using
a lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to
obtain a maximum pressure angle of 20°. What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

Write a computer program or use an equation solver to calculate and plot the pressure
angle and radius of curvature for a simple harmonic displacement cam function for any
specified values of lift, duration, eccentricity, and prime circle radius. Test it using a
lift of 20 mm over 60° at 1 rad/sec, and determine the prime circle radius needed to
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8-33
8-34
8-35

8-36
8-37
8-38

8-39

$8.40

£8-41

8-42

8-43

8-44

8-45

18.46

obtain a maximum pressure angle of 20°. What is the minimum diameter of roller fol-
lower needed to avoid undercutting with these data?

Derive equation 8.25 for the 4-5-6-7 polynomial function.
Derive an expression for the pressure angle of a barrel cam with zero eccentricity.

Design a radial plate cam to move a translating roller follower through 30 mm in 30°,
dwell for 100°, fall 10 mm in 10°, dwell for 20°, fall 20 mm in 20°, and dwell for the
remainder. Camshaft ® = 200 rpm. Minimize the follower’s peak velocity and deter-
mine the minimum prime circle radius that will give a maximum 25° pressure angle.
Determine the minimum radii of curvature on the pitch curve.

Repeat Problem 8-35, but minimize the follower’s peak acceleration instead.
Repeat Problem 8-35, but minimize the follower’s peak jerk instead.

Design a radial plate cam to lift a translating roller follower through 10 mm in 65°,
return to 0 in 65° and dwell for the remainder. Camshaft ® = 3500 rpm. Minimize
the cam size while not exceeding a 25° pressure angle. What size roller follower is
needed?

Design a cam-driven quick-return mechanism for a 3:1 time ratio. The translating
roller follower should move forward and back 50 mm and dwell in the back position for
80°. It should take one-third the time to return as to move forward. Camshaft

® = 100 rpm. Minimize the package size while maintaining a 25° maximum pressure
angle. Draw a sketch of your design and provide s v a j, ¢, and p diagrams.

Design a cam-follower system to drive a linear translating piston at constant veloc-

ity for 200° through a stroke of 100 mm at 60 rpm. Minimize the package size while
maintaining a 25° maximum pressure angle. Draw a sketch of your design and provide
svayj,d,and p diagrams.

Design a cam-follower system to rise 20 mm in 80°, fall 10 mm in 100°, dwell at 10
mm for 100°, fall 10 mm in 50°, and dwell at O for 30°. Total cycle time is 4 sec.
Avoid unnecessary returns to zero acceleration. Minimize the package size and maxi-
mize the roller follower diameter while maintaining a 25° maximum pressure angle.
Draw a sketch of your design and provide s v a j, 0, and p diagrams.

Design a single-dwell cam to move a follower from 0 to 35 mm in 75°, fall 35 mm in
120°, and dwell for the remainder. The total cycle time is 3 sec. Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

Design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec then
return to its starting position with a total cycle time of 3 sec.

Design a double-dwell cam to move a follower from O to 50 mm in 75°, dwell for 75°,
fall 50 mm in 75°, and dwell for the remainder. The total cycle must take 5 sec. Use a
modified trapezoidal function for rise and fall and plot the s v a j diagrams.

Design a double-dwell cam to move a follower from O to 50 mm in 75°, dwell for 75°,
fall 50 mm in 75°, and dwell for the remainder. The total cycle must take 5 sec. Use a
modified sinusoidal function for rise and fall and plot the s v a j diagrams.

Design a double-dwell cam to move a follower from O to 50 mm in 75°, dwell for 75°,
fall 50 mm in 75°, and dwell for the remainder. The total cycle must take 5 sec. Use a
4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.
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8-47

848

$8-49

8-50

#8-51

8-52

8-53

18.54

8-55

8-56

78-57

8-58

+8-59

£8-60

Design a single-dwell cam to move a follower from 0 to 65 mm in 90°, fall 65 mm in
180°, and dwell for the remainder. The total cycle time is 2 sec. Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

¥ These problems are suited
to solution using program
DYNACAM.

Design a cam to move a follower at a constant velocity of 200 mm/sec for 3 sec then

return to its starting position with a total cycle time of 6 sec.

Size the cam from Problem 8-42 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

Size the cam from Problem 8-44 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

Size the cam from Problem 8-45 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

Size the cam from Problem 8-46 for a translating flat-faced follower considering fol-
lower face width and radius of curvature. Plot radius of curvature and cam profile.

Design a single-dwell cam to move a follower from 0 to 50 mm in 100°, fall 50 mm in
120°, and dwell for the remainder. The total cycle time is 1 sec. Choose suitable func-
tions to minimize acceleration and plot the s v a j diagrams for the rise/fall.

Design a cam to move a follower at a constant velocity of 300 mm/sec for 2 sec then
return to its starting position with a total cycle time of 4 sec.

Write a computer program or use an equation solver to calculate and plot the s v a j T These problems are suite
diagrams for the family of SCCA cam functions for any specified values of lift and to solution using Mathcad,
duration. It should allow changing values of the parameters b, ¢, d, and C,, to plot any Matlab, or TKSolver equa-
member of the family. Test all functions with 100 mm rise in 100°, dwell 80°, fall in tion solver programs.
120°, dwell for remainder. Shaft turns at 1 rad/sec.

Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the cam of Problem 8-42 for any given prime
circle radius and follower eccentricity. Test it using R, = 45 mm and e = 10 mm.

Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the cam of Problem 8-43 for any given prime
circle radius and follower eccentricity. Test it using R, = 100 mm and ¢ = —~15 mm.

Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-46
for any given prime circle radius and follower eccentricity. Test it using R, =75 mm
and e = 20 mm.

Design a cam to move a follower from 20.5 to 15 mm in 60°, fall an additional 15 mm
in 90°, rise 20.5 mm in 110°, and dwell for the remainder. Use polynomial functions
for the rise and falls. Some of the boundary conditions are given in Table P8-1; howev-
er, in order to make the polynomials piecewise continuous, other boundary conditions
will have to be determined. The shaft speed is 250 rpm. Plot the s v a j diagrams.

Design a cam to move a follower from 32 to 12 mm in 60°, fall an additional 12 mm in
50°, dwell 35°, rise 12 mm in 45°, rise an additional 20 mm in 65°, and dwell for the
remainder. Use polynomial functions for the rises and falls. Velocity and acceleration
are zero at the beginning and end of each event and jerk is zero at 6 = 0°, 110°, 145°,
and 255°. The shaft speed is 37.5 rpm. Plot the s v a j diagrams.
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* These problems are suited
to solution using program
DYNACAM.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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TABLE P8-1 Data for Problem 8-59

Event S v A J

First fall (60°)

Beginning 20.5 0 0 0

Ending 15.0
Second fall (90°)

Beginning 15.0 0 0

Ending 0.0 0 Aq 0
Rise (110°)

Beginning 0.0 0 match Aq

Ending 20.5 0 0

£8-61

£8-62

£8-63

18-64

£8-65

+8-66

£8-67

+8-68

£8-69

+8-70

8-71

Design a single-dwell cam to move a follower from 0 to 0.6” in 0.8 sec, fall 0.6 in 1.2
sec and dwell for the remainder of the cycle. The total cycle must take 4 sec. Choose
suitable programs for rise and fall to minimize velocities. Plot the s v a j diagrams.

Size the cam from Problem 8-61 for a flat-faced follower considering follower face
width and radius of curvature. Plot the radius of curvature and draw the cam profile.

Design a cam to move a follower at a constant velocity of 4 in/sec for 2 sec then return
to its starting position with a total cycle time of 4 sec.

Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec,
fall 2” in 4/3 sec and dwell for the remainder of the cycle. The total cycle must take 6
sec. Use a modified trapezoidal function for rise and fall and plot the s v a j diagrams.

Size the cam from Problem 8-64 for a flat-faced follower considering follower face
width and radius of curvature. Plot the radius of curvature and draw the cam profile.

Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec,
fall 2” in 4/3 sec and dwell for the remainder of the cycle. The total cycle must take 6
sec. Use a modified sinusoidal function for rise and fall and plot the s v a j diagrams.

Size the cam from Problem 8-66 for a flat-faced follower considering follower face
width and radius of curvature. Plot the radius of curvature and draw the cam profile.

Design a double-dwell cam to move a follower from 0 to 2” in 4/3 sec, dwell for 1 sec,
fall 2” in 4/3 sec and dwell for the remainder of the cycle. The total cycle must take 6
sec. Use a 4-5-6-7 polynomial function for rise and fall and plot the s v a j diagrams.

Size the cam from Problem 8-68 for a flat-faced follower considering follower face
width and radius of curvature. Plot the radius of curvature and draw the cam profile.

Design a double-dwell cam to move a follower from 0 to 1.5” in 1 sec, dwell for 2
sec, fall 1.5” in 1 sec and dwell for the remainder of the cycle. The total cycle must
take 8 sec. Use a cycloidal displacement function for rise and fall and plot the s v a j
diagrams.

Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the cam of Problem 8-61 for any given prime
circle radius and follower eccentricity. Test it using R, = 1.500 in and = 0.250 in.
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8-72  Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the cam of Problem 8-63 for any given prime

circle radius and follower eccentricity. Test it using R, = 5.000 in and €= -1.250 in.

8-73  Write a computer program or use an equation solver such as Mathcad or TKSolver to
calculate and plot the pressure angle for the rise segment of the cam of Problem 8-68
for any given prime circle radius and follower eccentricity. Test it using R, =3 in and

e =0.750 in.

8-74  Write a computer program or use an equation solver such as Mathcad or TKSolver to
draw the cam profile for the cam of Problem 8-61 with a translating flat-faced follower

for any given base circle radius. Test it using R, = 1.500 in.

+8-75 Write a computer program or use an equation solver such as Mathcad or TKSolver to
draw the cam profile for the cam of Problem 8-63 with a translating flat-faced follower

for any given base circle radius. Test it using R, = 2.000 in.

810 VIRTUAL LABORATORY View the video (21:28) View the lab handout®

L8-1 View the video Cam Machine Virtual Laboratory that is downloadable. Open the file

Virtual Cam Machine Lab.doc and follow the instructions as directed by your professor.

81 PROJECTS
These larger-scale project statements deliberately lack detail and structure and are loose-
ly defined. Thus, they are similar to the kind of “identification of need” or problem state-
ment commonly encountered in engineering practice. It is left to the student to structure
the problem through background research and to create a clear goal statement and set of
task specifications before attempting to design a solution. This design process is spelled
out in Chapter 1 and should be followed in all of these examples. Document all results
in a professional engineering report. (See Section 1.9 and the Chap. 1 bibliography for
information on report writing.)

P8-1 A timing diagram for a halogen headlight filament insertion device is shown in Figure
P8-4. Four points are specified. Point A is the start of rise. At B the grippers close
to grab the filament from its holder. The filament enters its socket at C and is fully
inserted at D. The high dwell from D to E holds the filament stationary while it is
soldered in place. The follower returns to its start position from E to F. From F to A
the follower is stationary while the next bulb is indexed into position. It is desirable
to have low to zero velocity at point B where the grippers close on the fragile filament.
The velocity at C should not be so high as to “bend the filament in the breeze.” Design
and size a complete cam-follower system to do this job.

¥P8-2 A cam-driven pump to simulate human aortic pressure is needed to serve as a consis-
tent, repeatable pseudo-human input to a hospital’s operating room computer monitor-
ing equipment, in order to test it daily. Figure P8-5 shows a typical aortic pressure
curve and a pump pressure-volume characteristic. Design a cam to drive the piston and
give as close an approximation to the aortic pressure curve shown as can be obtained
without violating the fundamental law of cam design. Simulate the dicrotic notch as

best you can.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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* These problems are suited
to solution using program
DYNACAM.
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Timing Diagram Displacement Table

s Cam angle,® Point s

120
140
150
180
300
360

(O V)]

IS I RS

0 120 180 360

FIGURE P8-4

Data for cam design Project P8-1

* These problems are suited
to solution using program

DYNACAM.

Blood
pressure

mmHg

P8-3 A fluorescent light bulb production machine moves 5500 lamps per hour through a
550°C oven on a chain conveyor which is in constant motion. The lamps are on 2-in
centerlines. The bulbs must be sprayed internally with a tin oxide coating as they leave
the oven, still hot. This requires a cam-driven device to track the bulbs at constant
velocity for the 0.5 sec required to spray them. The spray guns will fiton a 6 x 10 in
table. The spray creates hydrochloric acid, so all exposed parts must be resistant to that
environment. The spray head transport device will be driven from the conveyor chain
by a shaft having a 28-tooth sprocket in mesh with the chain. Design a complete spray
gun transport assembly to these specifications.

P-4 A 30-ft-tall drop tower is being used to study the shape of water droplets as they fall
through air. A camera is to be carried by a cam-operated linkage which will track
the droplet’s motion from the 8-ft to the 10-ft point in its fall (measured from release

Human Aortic Pressure System Pressure—Volume Function

120 | Pump 15
pressure
80 / : mmkg 80 40 mmHg/in3
40 Dicrotic notch ‘ 40
|
0 4 : » Time 0 - >
0 T =0.83 sec 0 Stroke volume in3
(a) (b)
Pump body Accumulator
Spring
Follower Piston — ’/» Pressure outlet
] [
s

\— Saline

FIGURE P8-5

Data for cam design Project P8-2
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FIGURE P8-6

Tming diagram for Project P8-6. Displacements in mm (not to scale)

#p8-5

#P8-6

tpg-7

pg-8

#p8-9

point at the top of the tower). The drops are released every 1/2 sec. Every drop is to
be filmed. Design a cam and linkage which will track these droplets, matching their
velocities and accelerations in the 1-ft filming window.

A device is needed to accelerate a 3000-1b vehicle into a barrier with constant velocity,
to test its 5 mph bumpers. The vehicle will start at rest, move forward, and have con-
stant velocity for the last part of its motion before striking the barrier with the specified
velocity. Design a cam-follower system to do this. The vehicle will leave contact with
your follower just prior to the crash.

Figure P8-6 shows a timing diagram for a machine cam to drive a translating roller
follower. Design suitable functions for all motions and size the cam for acceptable
pressure angles and roller follower diameter. Note points of required zero velocity at
particular displacements. Cam speed is 30 rpm. Hint: Segment 8 should be solved
with polynomial functions, the fewer the better.

An athletic footwear manufacturer wants a device to test rubber heels for their ability
to withstand millions of cycles of force similar to that which a walking human’s foot
applies to the ground. Figure P8-7 shows a typical walker’s force-time function and

a pressure-volume curve for a piston-accumulator. Design a cam-follower system to
drive the piston in a way that will create a force-time function on the heel similar to the
one shown. Choose suitable piston diameters at each end.

Design an engine exhaust-valve cam with 10-mm lift over 132 camshaft deg. The rest
of the cycle is a dwell. The valve-open duration is measured between cam-follower
displacements of 0.5 mm above the dwell position, where valve clearance is taken up
and the valve begins to move as shown in Figure P8-8. Engine crankshaft speed ranges
from 1000 to 10 000 rpm. The cam should take up the clearance with minimal impact,
then continue to lift to 10-mm at 66° as rapidly as possible, close to the 0.5 mm point
by 132° and then return it to zero at a controlled velocity. See Figure 8-3a. Select a
spring from the Appendix to prevent valve float (follower jump) assuming an effective
follower train mass of 200 grams. The camshaft turns at half the crank speed.

Design a cam-driven peanut-butter (PB) pump for a 600/min cookie assembly line.
The cookies are spaced at 40-mm centers on a constant-velocity conveyor. A square,
1-mm thick patch containing 0.4 cc of peanut butter is applied to the cookie as it
passes by a nozzle. Entrained air in the PB makes it compressible. Figure P8-5 shows
a similar setup with a cam driving a follower attached to a piston pump. The peanut

* These problems are suited
to solution using program
DYNACAM.
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Human Walking Force System Pressure—Volume Function
Force 120 Pump 120
Ib ‘ pressure
80 | Pt 80
! 30 psi/in?
40 | 40
0 -+ ‘ > Time 0 4 >
0 T=0.5sec 0 Stroke volume in3
(a) (b)
Pump body Accumulator
Spring /

Heel
Follower \ Piston = Piston
[ |
- -

=

Oil

IGURE P8-7

ata for cam design Project P8-7

butter flows from the “pressure outlet.” The accumulator represents entrained air in
the PB. If pumped at constant rate with a piston pump, there is a lag at the start as

the entrained air is compressed. Once compressed, it flows uniformly when the piston
moves at constant velocity. At the end of the stroke, the stored energy in the entrained
air causes “peanut-butter drool,” making a messy cookie. To get a sharp-edged start to
the “patch” of peanut butter, we need an extra “kick” at the beginning of the pump-
ing cycle to wind up the “air spring,” followed by a period of constant velocity motion
to lay down a uniform thickness of PB. At the end of the patch, we need a “sniff” to
rapidly retract the piston slightly and prevent drool. The piston then returns to the start
point at constant velocity to refill the pump and repeat the cycle. The velocity of the
“kick” should be about 3 times the steady-state velocity and of as short a duration as
practical. The velocity of the “sniff” is optimal at about —4 times the steady-state veloc-

Valve
Motion
(mm) rise fall
05 | ~ dwell |
l ‘4— 66 —»a— 66 ——‘ {
09 92 9 Camshaft Angle (deg) 360

FIGURE P8-8

Timing diagram for Project P8-8—exhaust-valve cam. Determine suitable values for ? from problem statement.
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FIGURE P8-9
Timing diagram for Project P8-9—peanut butter pump. Determine suitable values for a—f from problem statement

pg-10

Motion
(mm)

ity with as short a duration as practical. Figure P8-9 shows the displacement timing
diagram. Size the piston and design the piston-driver cam for good dynamic operation
with reasonable accelerations and size it in a reasonable package. Select a return spring
for a moving follower mass of 0.5 kg.

Figure P8-10 shows timing diagrams for 3 cams used in a production machine. Design
suitable SVAJ functions to run at 250 rpm with 10-kg effective mass on each fol-
lower. Size the cams for suitable pressure angles and radii of curvature using a 20-mm
diameter roller follower. Select a suitable spring for each follower from the Appendix,
specify its preload and sketch the assembly, showing all three cams on a common cam-
shaft driving the three follower trains along the X axis.

0 90 180 270 360
10
Cam 1
0 \ i
20° 160° 210° 320°
40
\// Cam 2
0 i \
10° 160° 355°
20
\\/ Cam 3
0 1

550 140° 283°
Camshaft Angle (deg)

FIGURE P8-10
Timing diagram for Project P8-10

 These problems are suited
to solution using program
DYNACAM.
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Chapter

GEAR TRAINS

Cycle and epicycle,
orb-in orb
JOHN MILTON, PARADISE LOST

9.0 INTRODUCTION View the lecture video (54:45)

The earliest known reference to gear trains is in a treatise by Hero of Alexandria (c. 100
B.C.). Gear trains are widely used in all kinds of mechanisms and machines, from can
openers to aircraft carriers. Whenever a change in the speed or torque of a rotating device
is needed, a gear train or one of its cousins, the belt or chain drive mechanism, will usually
be used. This chapter will explore the theory of gear tooth action and the design of these
ubiquitous devices for motion control. The calculations involved are trivial compared to
those for cams or linkages. The shape of gear teeth has become quite standardized for
good kinematic reasons that we will explore.

Gears of various sizes and styles are readily available from many manufacturers.
Assembled gearboxes for particular ratios are also stock items. The kinematic design of
gear trains is principally involved with the selection of appropriate ratios and gear diam-
eters. A complete gear train design will necessarily involve considerations of strength of
materials and the complicated stress states to which gear teeth are subjected. This text
will not deal with the stress analysis aspects of gear design. There are many texts that do.
Some are listed in the bibliography at the end of this chapter. This chapter will discuss
the kinematics of gear tooth theory, gear types, and the kinematic design of gearsets and
gear trains of simple, compound, reverted, and epicyclic types. Chain and belt drives
will also be discussed. Examples of the use of these devices will be presented as well.


http://www.designofmachinery.com/DOM/Gear_Design.mp4
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91 ROLLING CYLINDERS

The simplest means of transferring rotary motion from one shaft to another is a pair of
rolling cylinders. They may be an external set of rolling cylinders as shown in Figure
9-1a or an internal set as in Figure 9-1b. Provided that sufficient friction is available at
the rolling interface, this mechanism will work quite well. There will be no slip between
the cylinders until the maximum available frictional force at the joint is exceeded by the
demands of torque transfer.

A variation on this mechanism is what causes your car or bicycle to move along
the road. Your tire is one rolling cylinder and the road the other (very large radius) one.
Friction is all that prevents slip between the two, and it works well unless the friction coef-
ficient is reduced by the presence of ice or other slippery substances. In fact, some early
automobiles had rolling cylinder drives inside the transmission, as do some present-day
snowblowers and garden tractors that use a rubber-coated wheel rolling against a steel
disk to transmit power from the engine to the wheels.

A variant on the rolling cylinder drive is the flat or vee belt as shown in Figure 9-2.
This mechanism also transfers power through friction and is capable of quite large power
levels, provided enough belt cross section is provided. Friction belts are used in a wide
variety of applications from small sewing machines to the alternator drive on your car, to
multihorsepower generators and pumps. Whenever absolute phasing is not required and
power levels are moderate, a friction belt drive may be the best choice. They are relatively
quiet running, require no lubrication, and are inexpensive compared to gears and chain
drives. A constant velocity transmission (CVT) as used in a number of automobiles is also
a vee belt and pulley device in which the pulleys are adjusted in width to change the ratio.
As one pulley widens, the other narrows to change the relative radii of the belt within their
respective vees. The belt circumference, of course, remains the same.

Both rolling cylinders and belt (or chain) drives have effective linkage equivalents
as shown in Figure 9-3. These effective linkages are valid only for one instantaneous
position but nevertheless show that these devices are just another variation of the fourbar
linkage in disguise.

FIGURE 9-2

A two-groove vee belt drive Courtesy of T. B. Wood's Sons Co., Chambersburg, PA
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Rolling cylinders
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Pitch point

FIGURE 9-3
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Sheave

Sheave

(a) Gear train (b) Belt train

Gear and belt trains each have an equivalent fourbar linkage for any instantaneous position.

View as a video
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FIGURE 9-4

An external gearset

The principal drawbacks to the rolling cylinder drive (or smooth belt) mechanism are
its relatively low torque capability and the possibility of slip. Some drives require absolute
phasing of the input and output shafts for timing purposes. A common example is the
valve train drive in an automobile engine. The valve cams must be kept in phase with
the piston motion or the engine will not run properly. A smooth belt or rolling cylinder
drive from crankshaft to camshaft would not guarantee correct phasing. In this case some
means of preventing slip is needed.

This usually means adding some meshing teeth to the rolling cylinders. They then
become gears as shown in Figure 9-4 and are together called a gearset. When two gears
are placed in mesh to form a gearset such as this one, it is conventional to refer to the
smaller of the two gears as the pinion and to the other as the gear.

9.2 THE FUNDAMENTAL LAW OF GEARING

Conceptually, teeth of any shape will prevent gross slip. Old water-powered mills and
windmills used wooden gears whose teeth were merely round wooden pegs stuck into the
rims of the cylinders. Even ignoring the crudity of construction of these early examples
of gearsets, there was no possibility of smooth velocity transmission because the geometry
of the tooth “pegs” violated the fundamental law of gearing which, if followed, provides
that the angular velocity ratio between the gears of a gearset remains constant throughout
the mesh. A more complete and formal definition of this law is given below. The angular
velocity ratio (my) referred to in this law is the same one that we derived for the fourbar
linkage in Section 6.4 and equation 6.10. It is equal to the ratio of the radius of the input
gear to that of the output gear.

(0] r;

my =—24 =+ M ¢ (9.1a)
O, Tout doul
; T, d

my= in__ 4 out =+ out (9.1b)
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The torque ratio (;m7) was shown earlier to be the reciprocal of the velocity ratio
(my); thus a gearset is essentially a device to exchange torque for velocity or vice versa.
Since there are no applied forces as in a linkage, but only applied torques on the gears,
the mechanical advantage m 4 of a gearset is equal to its torque ratio my. The most com-
mon application is to reduce velocity and increase torque to drive heavy loads as in your
automobile transmission. Other applications require an increase in velocity, for which a
reduction in torque must be accepted. In either case, it is usually desirable to maintain
a constant ratio between the gears as they rotate. Any variation in ratio will show up as
oscillation in the output velocity and torque even if the input is constant with time.

The radii in equations 9.1 are those of the rolling cylinders to which we are adding
the teeth. The positive or negative sign accounts for internal or external cylinder sets
as defined in Figure 9-1. An external set reverses the direction of rotation between the
cylinders and requires the negative sign. An internal gearset or a belt or chain drive will
have the same direction of rotation on input and output shafts and require the positive sign
in equations 9.1. The surfaces of the rolling cylinders will become the pitch circles, and
their diameters the pitch diameters of the gears. The contact point between the cylinders
lies on the line of centers as shown in Figure 9-3a, and this point is called the pitch point.

In order for the fundamental law of gearing to be true, the gear tooth contours on
mating teeth must be conjugates of one another. There is an infinite number of possible
conjugate pairs that could be used, but only a few curves have seen practical application
as gear teeth. The cycloid still is used as a tooth form in watches and clocks, but most
other gears use the involute curve for their shape.

The Involute Tooth Form

The involute is a curve that can be generated by unwrapping a taut string from a cylinder
(called the evolute) as shown in Figure 9-5. Note the following about this involute curve:

The string is always tangent to the cylinder.

The center of curvature of the involute is always at the point of tangency of the string
with the cylinder.

A tangent to the involute is then always normal to the string, the length of which is the
instantaneous radius of curvature of the involute curve.

Figure 9-6 shows two involutes on separate cylinders in contact or “in mesh.” These
represent gear teeth. The cylinders from which the strings are unwrapped are called the
base circles of the respective gears. Note that the base circles are necessarily smaller than
the pitch circles, which are at the radii of the original rolling cylinders, r, and r,. The gear
tooth must project both below and above the rolling cylinder surface (pitch circle) and the
involute only exists outside of the base circle. The amount of tooth that sticks out above
the pitch circle is the addendum, shown as a, and a, for pinion and gear, respectively.
These are equal for standard, full-depth gear teeth.

The geometry at this tooth-tooth interface is similar to that of a cam-follower joint
as was defined in Figure 8-44. There is a common tangent to both curves at the contact
point, and a common normal, perpendicular to the common tangent. Note that the
common normal is, in fact, the “strings” of both involutes, which are colinear. Thus the
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FIGURE 9-6
Contact geometry and pressure angle of involute gear teeth

common normal, which is also the axis of transmission, always passes through the pitch
point regardless of where in the mesh the two teeth are contacting.

Figure 9-7 shows a pair of involute tooth forms in two positions, just beginning con-
tact and about to leave contact. The common normals of both these contact points still
pass through the same pitch point. It is this property of the involute that causes it to obey
the fundamental law of gearing. The ratio of the driving gear radius to the driven gear
radius remains constant as the teeth move into and out of mesh.

From this observation of the behavior of the involute we can restate the fundamental
law of gearing in a more kinematically formal way as: the common normal of the tooth
profiles, at all contact points within the mesh, must always pass through a fixed point on
the line of centers, called the pitch point. The gearset’s velocity ratio will then be a con-
stant defined by the ratio of the respective radii of the gears to the pitch point.

The points of beginning and leaving contact define the mesh of the pinion and gear.
The distance along the line of action between these points within the mesh is called the
length of action, Z, defined by the intersections of the respective addendum circles with
the line of action, as shown in Figure 9-7. Variables are defined in Figures 9-6 and 9-7.

Z= \/(rp +ap )2 _(rp °°S¢)2 +\/(rg +dg )2 _(Vg cos¢)2 —Csing ©2)

The distance along the pitch circle within the mesh is the arc of action, and the angles
subtended by these points and the line of centers are the angle of approach and angle
of recess. These are shown only on the gear in Figure 9-7 for clarity, but similar angles
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Pressure angle rotated in direction of driven gear \
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Axis of transmission Pitch point
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Angle of recess
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Addendum circles

A

FIGURE 9-7

Pitch point, pitch circles, pressure angle, length of action, arc of action, and angles of approach and recess during

the meshing of a gear and pinion

exist for the pinion. The arc of action on both pinion and gear pitch circles must be the
same length for zero slip between the theoretical rolling cylinders.

Pressure Angle

The pressure angle in a gearset is similar to that of the cam and follower and is defined
as the angle between the axis of transmission or line of action (common normal) and the
direction of velocity at the pitch point as shown in Figures 9-6 and 9-7. Pressure angles of
gearsets are standardized at a few values by the gear manufacturers. These are defined at
the nominal center distance for the gearset as cut. The standard values are 14.5°,20°, and
25° with 20° being the most commonly used and 14.5° now being considered obsolete.
Any custom pressure angle can be made, but its expense over the available stock gears
with standard pressure angles would be hard to justify. Special cutters would have to be
made. Gears to be run together must be cut to the same nominal pressure angle.

Changing Center Distance

When involute teeth (or any teeth) have been cut into a cylinder, with respect to a particu-
lar base circle, to create a single gear, we do not yet have a pitch circle. The pitch circle
only comes into being when we mate this gear with another to create a pair of gears, or
gearset. There will be some range of center-to-center distances over which we can achieve
a mesh between the gears. There will also be an ideal center distance (CD) that will give
us the nominal pitch diameters for which the gears were designed. However, limitations
of manufacturing processes give a low probability that we will be able to exactly achieve

\mpiniun
Driving (CW)
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this ideal center distance in every case. More likely, there will be some error in the center
distance, even if small.

What will happen to the adherence to the fundamental law of gearing if there is error
in the location of the gear centers? If the gear tooth form is not an involute, then an error
in center distance will violate the fundamental law, and there will be variation, or “ripple,”
in the output velocity. The output angular velocity will not be constant for a constant input
velocity. However, with an involute tooth form, center distance errors do not affect the
velocity ratio. This is the principal advantage of the involute over all other possible tooth
forms and the reason why it is nearly universally used for gear teeth. Figure 9-8 shows
what happens when the center distance is varied on an involute gearset. Note that the
common normal still goes through a pitch point, common to all contact points within the
mesh. But the pressure angle is affected by the change in center distance.

Figure 9-8 also shows the pressure angles for two different center distances. As the
center distance increases, so will the pressure angle and vice versa. This is one result of a
change, or error, in center distance when using involute teeth. Note that the fundamental
law of gearing still holds in the modified center distance case. The common normal is

New pitch point

Shift in center distance \ ‘
. ! } New, larger Base circle
Pitch pitch radius is unchanged
radius of Pitch point of pinion :
pinion shifts position </ /
Velocity at \/ o N .
itch point Sl ‘ . ) New pitch
piteh p = /L/:// Y - circles

Pressure
angle
0=2°

(a) Correct center distance

FIGURE 9-8

L

T

Vi

Pitch Base circle

: pressure New, larger : h
rafdlus angle pitch radius is unchanged
ot gear o =23° of gear

Line of action (common normal)
is tangent to both base circles

(b) Increased center distance

Changing center distance of involute gears changes the pressure angle and pitch diameters
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still tangent to the two base circles and still goes through the pitch point. The pitch point
has moved, but in proportion to the move of the center distance and the gear radii. The
velocity ratio is unchanged despite the shift in center distance. In fact, the velocity ratio
of involute gears is fixed by the ratio of the base circle diameters, which are unchanging
once the gear is cut.

Backlash

Another factor affected by changing center distance is backlash. Increasing the CD will
increase the backlash and vice versa. Backlash is defined as the clearance between mat-
ing teeth measured at the pitch circle. Manufacturing tolerances preclude a zero clear-
ance, as all teeth cannot be exactly the same dimensions, and all must mesh. So, there
must be some small difference between the tooth thickness and the space width (see Figure
9-9). As long as the gearset is run with a nonreversing torque, backlash should not be a
problem. But, whenever torque changes sign, the teeth will move from contact on one
side to the other. The backlash gap will be traversed, and the teeth will impact with no-
ticeable noise. This is the same phenomenon as crossover shock in the form-closed cam.
As well as increasing stresses and wear, backlash can cause undesirable positional error
in some applications. If the center distance is set exactly to match the theoretical value
for the gearset, the tooth-to-tooth composite backlash tolerance is in the range of 0.0001
to 0.0007 inches for precision gears. The increase in angular backlash as a function of
error in center distance is approximately

0p =43 ZOO(AC)@ minutes of arc (9.3)
T

where ¢ = pressure angle, AC = error in center distance, and d = pitch diameter of the
gear on the shaft where the backlash is measured.

In servomechanisms, where motors are driving, for example, the control surfaces
on an aircraft, backlash can cause potentially destructive “hunting” in which the control
system tries in vain to correct positional errors due to backlash “slop” in the mechanical
drive system. Such applications need antibacklash gears which are really two gears
back to back on the same shaft that can be rotated slightly at assembly with respect to one
another, and then fixed so as to take up the backlash. In less critical applications, such as
the propeller drive on a boat, backlash on reversal will not even be noticed.

The American Gear Manufacturers Association (AGMA) defines standards for gear
design and manufacture. They define a spectrum of quality numbers and tolerances rang-
ing from the lowest (3) to the highest precision (16). Obviously the cost of a gear will be
a function of this quality index.

9.3 GEAR TOOTH NOMENCLATURE

Figure 9-9 shows two teeth of a gear with the standard nomenclature defined. Pitch circle
and base circle have been defined above. The tooth height is defined by the addendum
(added on) and the dedendum (subtracted from) that are referenced to the nominal pitch
circle. The dedendum is slightly larger than the addendum to provide a small amount of
clearance between the tip of one mating tooth (addendum circle) and the bottom of the
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Space Circular pitch p.

Top land
thickness Face width

Face
Addendum circle
Flank

)‘ 7 Bottom land
Addendum //\;
\ Pitch circle

Dedendum

\

Dg:dendum/ \
circle Clearance Base circle
Base pitch py,
FIGURE 9-9

Gear tooth nomenclature

tooth space of the other (dedendum circle). The tooth thickness is measured at the pitch
circle, and the tooth space width is slightly larger than the tooth thickness. The difference
between these two dimensions is the backlash. The face width of the tooth is measured
along the axis of the gear. The circular pitch is the arc length along the pitch circle cir-
cumference measured from a point on one tooth to the same point on the next. The circular
pitch defines the tooth size. The other tooth dimensions are standardized based on that
dimension as shown in Table 9-1. The definition of circular pitch p.. is:

_md

De N (9.4a)

where d = pitch diameter and N = number of teeth. The tooth pitch can also be measured
along the base circle circumference and then is called the base pitch p,.

Dp = P COsd (9.4b)

The units of p,. are inches or millimeters. A more convenient and common way to
define tooth size is to relate it to the diameter of the pitch circle rather than its circumfer-
ence. The diametral pitch p, is:

N
== 9.4
Pa= (940
The units of p, are reciprocal inches, or number of teeth per inch. This measure is only
used in U.S. specification gears. Combining equations 9.4a and 9.4c gives the following
relationship between circular pitch and diametral pitch.

T
Pg=— (9.4d)
Pec
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TABLE 9-1 AGMA Full-Depth Gear Tooth Specifications

Parameter Coarse Pitch (pg<20) Fine Pitch (pg 220)
Pressure angle ¢ 20° or 25° 20°
Addendum a 1.000 / py 1.000 / py
Dedendum b 1.250 / py 1.250 / py
Working depth 2.000/ py 2.000/ py
Whole depth 2.250/ pg 2200/ pg + 0.002in
Circular tooth thickness 1.571/ py 1.571 / pyg
Fillet radius—basic rack 0.300/ py Not standardized
Minimum basic clearance 0.250/ py 0.200/ pg + 0.002in
Minimum width of top land 0.250/ py Not standardized
Clearance (shaved or ground teeth) 0.350/ py 0.350/ pg + 0.002in

The SI system, used for metric gears, defines a parameter called the module, which
is the reciprocal of diametral pitch with pitch diameter measured in millimeters.

m= N (946)

The units of the module are millimeters. Unfortunately, metric gears are not inter-
changeable with U.S. gears, despite both being involute tooth forms, as their standards for
tooth sizes are different. In the United States, gear tooth sizes are specified by diametral
pitch, elsewhere by module. The conversion from one standard to the other is

254
m=—
Pd

(9.4f)

where m is in mm and py is in inches.

The velocity ratio my and the torque ratio my of the gearset can be put into a more
convenient form by substituting equation 9.4c into equations 9.1, noting that the diametral
pitch of meshing gears must be the same.

d; N;

my =+—-=+—M1 (9.5a)
dout Nout
d N,

mp =+ = y_oul (9.5b)
din Nin

Thus the velocity ratio and torque ratio can be computed from the number of teeth on the
meshing gears, which are integers. Note that a minus sign implies an external gearset and
a positive sign an internal gearset as shown in Figure 9-1. The gear ratio m is always > 1
and can be expressed in terms of either the velocity ratio or torque ratio depending on
which is larger than 1. Thus mg expresses the gear train’s overall ratio independent of
change in direction of rotation or of the direction of power flow through the train when
operated as either a speed reducer or a speed increaser.
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Pitch circle

(c) ¢=25°

FIGURE 9-10

AGMA full-depth tooth
profiles for three
pressure angles
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mg =|my| or mg =|my|, for mg =1 (9.5¢)

STANDARD GEAR TEETH Standard, full-depth gear teeth have equal addenda on
pinion and gear, with the dedendum being slightly larger for clearance. The standard tooth
dimensions are defined in terms of the diametral pitch. Table 9-1 shows the definitions
of dimensions of standard, full-depth gear teeth as defined by the AGMA, and Figure
9-10 shows their shapes for three standard pressure angles. Figure 9-11 shows the actual
sizes of 20° pressure angle, standard, full-depth teeth from p, = 4 to 80. Note the inverse
relationship between p, and tooth size. While there are no theoretical restrictions on the
possible values of diametral pitch, a set of standard values is defined based on available
gear cutting tools. These standard tooth sizes are shown in Table 9-2 in terms of diametral
pitch and in Table 9-3 in terms of metric module.

94 INTERFERENCE AND UNDERCUTTING

The involute tooth form is only defined outside of the base circle. In some cases, the
dedendum will be large enough to extend below the base circle. If so, then the portion
of tooth below the base circle will not be an involute and will interfere with the tip of
the tooth on the mating gear, which is an involute. If the gear is cut with a standard gear
shaper or a “hob,” the cutting tool will also interfere with the portion of tooth below the
base circle and will cut away the interfering material. This results in an undercut tooth as
shown in Figure 9-12. This undercutting weakens the tooth by removing material at its
root. The maximum moment and maximum shear from the tooth loaded as a cantilever
beam both occur in this region. Severe undercutting will promote early tooth failure.

Interference (and undercutting caused by manufacturing tools) can be prevented sim-
ply by avoiding gears with too few teeth. If a gear has a large number of teeth, they will
be small compared to its diameter. As the number of teeth is reduced for a fixed diameter
gear, the teeth must become larger. At some point, the dedendum will exceed the radial
distance between the base circle and the pitch circle, and interference will occur.

Table 9-4a shows the minimum number of pinion teeth that can mesh with a rack
without interference as a function of pressure angle. Gears with this few teeth can be
generated without undercutting only by a pinion cutter or by milling. Gears that are cut
with a hob, which has the same action as a rack with respect to the gear being cut, must
have more teeth to avoid undercutting the involute tooth form during manufacture. The
minimum number of teeth that can be cut by a hob without undercutting as a function of
pressure angle is shown in Table 9-4b. Table 9-5a shows the maximum number of 20-de-
gree pressure angle full-depth gear teeth that can mesh with a given number of pinion teeth
without interference and Table 9-5b shows the same information for 25-degree pressure
angle full-depth gear teeth. Note that the pinion tooth numbers in this table are all fewer
than the minimum number of teeth that can be generated by a hob. As the mating gear
gets smaller, the pinion can have fewer teeth and still avoid interference.

Unequal-Addendum Tooth Forms

In order to avoid interference and undercutting on small pinions, the tooth form can be
changed from the standard, full-depth shapes of Figure 9-10 that have equal addenda on
both pinion and gear to an involute shape with a longer addendum on the pinion and a
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TABLE 9-2
Standard Diametral
Pitches

Coarse Fine

(pg<20) (pg=20)

1 20
125 24
15 32
175 48
2 64
25 72
3 80
4 96
5 120
6
8
10
2
1
16
FIGURE 9-11 8

Actual tooth sizes for various diametral pitches Courtesy of Barber-Colman Co., Loves Park, IL

Base circle of gear

/ .
\ Pitch circles

; Base circle of pinion
NN
Undercutting N

S

Interference

Tooth below base circle \
is not an involute

FIGURE 9-12

Interference and undercutting of teeth below the base circle
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TABLE 9-3
Standard Metric
Modules
Metric Equivalent
Module P4 (in-1 )
(mm)
0.3 84.67
0.4 63.50
0.5 50.80
0.8 31.75
1 25.40
1.25 20.32
1.5 16.93
2 12.70
3 8.47
4 6.35
5 5.08
6 4.23
8 3.18
10 2.54
12 212
D 16 1.59
20 1.27
25 1.02
TABLE 9-4a

Minimum Number of

Pinion Teeth
ToAvoid Interference
Between a Full-Depth
Pinion and a Full-Depth
Rack

Pressure  Minimum
Angle Number
(deg) of Teeth

14.5 32
20 18
25 12
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shorter one on the gear called profile-shifted gears. The AGMA defines addendum mod-
ification coefficients, x; and x,, which always sum to zero, being equal in magnitude and
opposite in sign. The positive coefficient x; is applied to increase the pinion addendum,
and the negative x, decreases the gear addendum by the same amount. The total tooth
depth remains the same. This shifts the pinion dedendum circle outside its base circle
and eliminates that noninvolute portion of pinion tooth below the base circle. The stan-
dard coefficients are +0.25 and +0.50, which add or subtract 25% or 50% of the standard
addendum. The limit of this approach occurs when the pinion tooth becomes pointed.

There are secondary benefits to this technique. The pinion tooth becomes thicker at
its base and thus stronger. The gear tooth is correspondingly weakened, but since a full-
depth gear tooth is stronger than a full-depth pinion tooth, this shift brings them closer to
equal strength. A disadvantage of unequal-addendum tooth forms is an increase in sliding
velocity at the tooth tip. The percent sliding between the teeth is greater than with equal
addendum teeth which increases tooth-surface stresses. Friction losses in the gear mesh
are also increased by higher sliding velocities. Figure 9-13 shows the contours of profile-
shifted involute teeth. Compare these to standard tooth shapes in Figure 9-10.

9.5 CONTACT RATIO

The contact ratio m,, defines the average number of teeth in contact at any one time as:

m, = Zz (9.62)

iy
where Z is the length of action from equation 9.2 and p, is the base pitch from equation 9.4b.
Substituting equations 9.4b and 9.4d into 9.6a defines m, in terms of p:

_ paZ

" mcoso (9.6b)

mp

The contact ratio m, can also be expressed as a function only of pressure angle ¢,
number of pinion teeth, N, and the gear ratio mg.

LL73% O VU I (5 B LN TR
\/(2 +1 2coscp + 5 +1 5 cosd 2(1+mG)sm<1)

m, = (9.6¢)
P TCcos

If the contact ratio is 1, then one tooth is leaving contact just as the next is beginning
contact. This is undesirable because slight errors in the tooth spacing will cause oscilla-
tions in the velocity, vibration, and noise. In addition, the load will be applied at the tip of
the tooth, creating the largest possible bending moment. At larger contact ratios than 1,
there is the possibility of load sharing among the teeth. For contact ratios between 1 and 2,
which are common for spur gears, there will still be times during the mesh when one pair
of teeth will be taking the entire load. However, these will occur toward the center of the
mesh region where the load is applied at a lower position on the tooth, rather than at its tip.
This point is called the highest point of single-tooth contact (HPSTC). The minimum
acceptable contact ratio for smooth operation is 1.2. A minimum contact ratio of 1.4 is
preferred and larger is better. Most spur gearsets will have contact ratios between 1.4 and 2.
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TABLE 9-4b
Minimum Number of

Pinion Teeth
To Avoid Undercutting
When Cut With a Hob

Base circle / R

Pinion

of pinion N g 4 Long addendum Pressure Minimum
/ on pinion Angle Number
. . (deg) of Teeth
Pitch circles
14.5 37
N | Short addendum
' e—-- ™~ on gear
Base circle ¢ 20 5
25 14

ofgear T T— o 7

FIGURE 9-13
Profile-shifted teeth with long and short addenda to avoid interference and undercutting TAB!'E 9-5a
Maximum Number
of Gear Teeth
To Avoid Interference
~ Between a 20°Full-Depth
@]EXAMPLE 9-1 Pinion and Full-Depth
- Gears of Various Sizes
Determining Gear Tooth and Gear Mesh Parameters.

Number Maximum

Problem: Find the gear ratio, circular pitch, base pitch, pitch diameters, pitch radii, center of Pinion Gear
distance, addendum, dedendum, whole depth, clearance, outside diameters, and Teeth Teeth
contact ratio of a gearset with the given parameters. If the center distance is in- 17 1309
creased 2% what is the new pressure angle and increase in backlash? - 101
Given: A 6 pg, 20° pressure angle, 19-tooth pinion is meshed with a 37-tooth gear. 15 45
14 26
Assume: The tooth forms are standard AGMA full-depth involute profiles. 13 16
Solution:
1 The gear ratio is found from the tooth numbers on pinion and gear using equations 9.5a and
9.5c¢.
N 37 TABLE 9-5b
__ & _ _ .
mg —N_—B—1-947 (@)  Maximum Number
b of Gear Teeth
To Avoid Interference
2 The circular pitch can be found either from equation 9.4a or 9.4d. Between a 25°Full-Depth
Pinion and Full-Depth
7 P Gears of Various Sizes
pe=—=—=0524 in ®) :
pqg 6 Number  Maximum
of Pinion Gear
. . . . Teeth Teeth
3 The base pitch measured on the base circle is (from equation 9.4b):
1" 249
Pp = P €08 =0.524¢0s(20°) = 0.492 in (c) 10 32
9 13

4 The pitch diameters and pitch radii of pinion and gear are found from equation 9.4c.
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9

11

12

N, 19 d

d, :_P:?:3,167 in, T =7p:1.583 in (@
Pd
N 7 d

d, =—g:%=6.167 in, Ty =7g= 3.083 in (e)
Pd

The nominal center distance C is the sum of the pitch radii:

C=r,+r, =4.667 in (D)

The addendum and dedendum are found from the equations in Table 9-1:

1.0 . 1.25 .
a=—=0.167 in, b=—-=0.208 in ®

Pd bd
The whole depth /4, is the sum of the addendum and dedendum.

h, =a+b=0.167+0.208=0.375 in (h)

The clearance is the difference between dedendum and addendum.
c=b—a=0208-0.167=0.042 in )
The outside diameter of each gear is the pitch diameter plus two addenda:

D,, =d, +2a=3.500 in, Dy, =dy +2a=6.500 in )

The contact ratio is found from equations 9.2 and 9.6a.

Z= \/(rp +a, )2 —(rp COS(I))2 +\/(rg +ag )2 —(rg (:osq))2 —Csino

= \/(1.583+ 0.167)" —(1.583c0s20°)°

+1/(3.083+0.167)° - (3.08300520°)° — 4.6675in20° = 0.798 in

Z 0798
m,=-—=—""-=162 (k)
pp 0492

If the center distance is increased from the nominal value due to assembly errors or other fac-
tors, the effective pitch radii will change by the same percentage. The gears’ base radii will
remain the same. The new pressure angle can be found from the changed geometry. For a 2%
increase in center distance (1.02x):

_; | "base circl 4| rpcos _ 20°
Oy = COS | P | — o5 | L ¢ =cos 1| &2 =22.89° )
1.02r, 1.02r, 102

The change in backlash as measured at the pinion is found from equation 9.3.

tan ¢

22.89°
0 =43 200(Ac)—d=43 200(0.02)(4.667)M
T

=171 minutes ofarc (m)
(3.167)
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9.6 GEAR TYPES

Gears are made in many configurations for particular applications. This section describes
some of the more common types.

Spur, Helical, and Herringbone Gears

SPUR GEARS are ones in which the teeth are parallel to the axis of the gear. This is
the simplest and least expensive form of gear to make. Spur gears can only be meshed if
their axes are parallel. Figure 9-14 shows a spur gear.

HELICAL GEARS are ones in which the teeth are at a helix angle y with respect to
the axis of the gear as shown in Figure 9-15a. Figure 9-16 shows a pair of opposite-hand”
helical gears in mesh. Their axes are parallel. Two crossed helical gears of the same
hand can be meshed with their axes at an angle as shown in Figure 9-17. The helix angles
can be designed to accommodate any skew angle between the nonintersecting shafts.

Helical gears are more expensive than spur gears but offer some advantages. They
run quieter than spur gears because of the smoother and more gradual contact between
their angled surfaces as the teeth come into mesh. Spur gear teeth mesh along their entire
face width at once. The sudden impact of tooth on tooth causes vibrations that are heard
as a “whine” which is characteristic of spur gears but is absent with helical gears. Also,
for the same gear diameter and diametral pitch, a helical gear is stronger due to the slightly
thicker tooth form in a plane perpendicular to the axis of rotation.

HERRINGBONE GEARS are formed by joining two helical gears of identical pitch
and diameter but of opposite hand on the same shaft. These two sets of teeth are often
cut on the same gear blank. The advantage compared to a helical gear is the internal
cancellation of its axial thrust loads since each “hand” half of the herringbone gear has an
oppositely directed thrust load. Thus no thrust bearings are needed other than to locate the
shaft axially. This type of gear is much more expensive than a helical gear and tends to
be used in large, high-power applications such as ship drives, where the frictional losses
from axial loads would be prohibitive. A herringbone gear is shown in Figure 9-15b. Its
face view is the same as the helical gear’s.

EFFICIENCY The general definition of efficiency is output power/input power ex-
pressed as a percentage. A spur gearset can be 98 to 99% efficient. The helical gearset is

Helix

angle
— V
— —_—
— /\ =

- — ey

=] /‘ e
— —
=—— e
—_——— ——

(@) Helical gear (b) Herringbone gear

FIGURE 9-15
A helical gear and a herringbone gear
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FIGURE 9-14

A spur gear
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX

* Helical gears are either
right- or left-handed. Note
that the gear of Figure 9-15a
is left-handed because, if
either face of the gear were
placed on a horizontal sur-
face, its teeth would slope
up to the left.

View as a video

http://www.designof-
machinery.com/DOM/
helical_parallel.avi

FIGURE 9-16

Parallel axis helical
gears

Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX
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View as a video
http://www.designof-
machinery.com/DOM/

helical_crossed.avi

FIGURE 9-17

Crossed axis helical
gears

Courtesy of the Boston
Gear Division of IMO
Industries, Quincy, MA

View as a video
http://www.designof-
machinery.com/DOM/

worm_gear_set.avi

FIGURE 9-18

A worm and worm
gear (or worm wheel)
Courtesy of Martin
Sprocket and Gear Co.,
Arlington, TX
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less efficient than the spur gearset due to sliding friction along the helix angle. They also
present a reaction force along the axis of the gear, which the spur gear does not. Thus heli-
cal gearsets must have thrust bearings as well as radial bearings on their shafts to prevent
them from pulling apart along the axis. Some friction losses occur in the thrust bearings
as well. A parallel helical gearset will be about 96 to 98% efficient, and a crossed helical
set only 50 to 90% efficient. The parallel helical set (opposite hand but same helix angle)
has line contact between the teeth and can handle high loads at high speeds. The crossed
helical set has point contact and a large sliding component that limit its application to
light load situations.

If the gearsets have to be shifted in and out of mesh while in motion, spur gears are
a better choice than helical, as the helix angle interferes with the axial shifting motion.
(Herringbone gears of course cannot be axially disengaged.) Truck transmissions often
use spur gears for this reason, whereas automobile (standard) transmissions use helical,
constant mesh gears for quiet running and have a synchromesh mechanism to allow shift-
ing. These transmission applications will be described in a later section.

Worms and Worm Gears

If the helix angle is increased sufficiently, the result will be a worm, which has only one
tooth wrapped continuously around its circumference a number of times, analogous to
a screw thread. This worm can be meshed with a special worm gear (or worm wheel),
whose axis is perpendicular to that of the worm as shown in Figure 9-18. Because the
driving worm typically has only one tooth, the ratio of the gearset is equal to one over the
number of teeth on the worm gear (see equations 9.5). These teeth are not involutes over
their entire face, which means that the center distance must be maintained accurately to
guarantee conjugate action.

Worms and wheels are made and replaced as matched sets. These worm gearsets
have the advantage of very high gear ratios in a small package and can carry very high
loads especially in their single or double enveloping forms. Single enveloping means that
the worm gear teeth are wrapped around the worm. Double enveloping sets also wrap the
worm around the gear, resulting in an hourglass-shaped worm. Both of these techniques
increase the surface area of contact between worm and wheel, increasing load carrying
capacity and also cost. One trade-off in any wormset is very high sliding and thrust loads
that make the wormset rather inefficient at 40 to 85% efficiency.

Perhaps the major advantage of the wormset is that it can be designed to be impos-
sible to backdrive. A spur or helical gearset can be driven from either shaft, as a veloc-
ity step-up or step-down device. While this may be desirable in many cases, if the load
being driven must be held in place after the power is shut off, the spur or helical gearset
will not do. They will “backdrive.” This makes them unsuitable for such applications as
a jack to raise a car unless a brake is added to the design to hold the load. The wormset,
on the other hand, can only be driven from the worm. The friction can be large enough
to prevent it being backdriven from the worm wheel. Thus it can be used without a brake
in load-holding applications such as jacks and hoists.
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Standard full-depth involute rack

FIGURE 9-19

A rack and pinion Photo courtesy of Martin Sprocket and Gear Co., Austin, TX

Rack and Pinion

If the diameter of the base circle of a gear is increased without limit, the base circle will
become a straight line. If the “string” wrapped around this base circle to generate the
involute were still in place after the base circle’s enlargement to an infinite radius, the
string would be pivoted at infinity and would generate an involute that is a straight line.
This linear gear is called a rack. Its teeth are trapezoids, yet are true involutes. This fact
makes it easy to create a cutting tool to generate involute teeth on circular gears, by ac-
curately machining a rack and hardening it to cut teeth in other gears. Rotating the gear
blank with respect to the rack cutter while moving the cutter axially back and forth across
the gear blank will shape, or develop, a true involute tooth on the circular gear.

Figure 9-19 shows a rack and pinion. The most common application of this device
is in rotary to linear motion conversion or vice versa. It can be backdriven, so it requires
a brake if used to hold a load. An example of its use is in rack-and-pinion steering in
automobiles. The pinion is attached to the bottom end of the steering column and turns
with the steering wheel. The rack meshes with the pinion and is free to move left and
right in response to your angular input at the steering wheel. The rack is also one link
in a multibar linkage that converts the linear translation of the rack to the proper amount
of angular motion of a rocker link attached to the front wheel assembly to steer the car.

Bevel and Hypoid Gears

BEVEL GEARS For right-angle drives, crossed helical gears or a wormset can be used.
For any angle between the shafts, including 90°, bevel gears may be the solution. Just as
spur gears are based on rolling cylinders, bevel gears are based on rolling cones as shown
in Figure 9-20. The angle between the axes of the cones and the included angles of the
cones can be any compatible values as long as the apices of the cones intersect. If they
did not intersect, there would be a mismatch of velocity at the interface. The apex of each
cone has zero radius, thus zero velocity. All other points on the cone surface will have
nonzero velocity. The velocity ratio of the bevel gears is defined by equation 9.1a using
the pitch diameters at any common point of intersection of cone diameters.

SPIRAL BEVEL GEARS If the teeth are parallel to the axis of the gear, it will be a
straight bevel gear as shown in Figure 9-21. If the teeth are angled with respect to the
axis, it will be a spiral bevel gear (Figure 9-22), analogous to a helical gear. The cone
axes and apices must intersect in both cases. The advantages and disadvantages of straight
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FIGURE 9-20

Bevel gears are based on rolling cones.

FIGURE 9-21

Straight bevel gears
Courtesy of Martin
Sprocket and Gear,
Arlington, TX

FIGURE 9-22

Spiral bevel gears
Courtesy of the Boston
Gear Division of IMO

Industries, Quincy, MA

bevel and spiral bevel gears are similar to those of the spur gear and helical gear, respec-
tively, regarding strength, quietness, and cost. Bevel gear teeth are not involutes but are
based on an “octoid” tooth curve. They must be replaced in pairs (gearsets) as they are
not universally interchangeable, and their center distances must be accurately maintained.

HyroID GEARS If the axes between the gears are nonparallel and also nonintersect-
ing, bevel gears cannot be used. Hypoid gears will accommodate this geometry. Hypoid
gears are based on rolling hyperboloids of revolution as shown in Figure 9-23. (The term
hypoid is a contraction of hyperboloid.) The tooth form is not an involute. These hypoid
gears are used in the final drive of front-engine, rear-wheel-drive automobiles, in order to
lower the axis of the driveshaft below the center of the rear axle to reduce the “driveshaft
hump” in the back seat.

Noncircular Gears

Noncircular gears are based on the rolling centrodes of a Grashof double-crank fourbar
linkage. Centrodes are the loci of the instant center /o4 of the linkage and were described
in Section 6.5. Figure 6-15b shows a pair of centrodes that could be used for noncircular
gears. Teeth would be added to their circumferences in the same way that we add teeth
to rolling cylinders for circular gears. The teeth then act to guarantee no slip. Figure
9-24 shows a pair of noncircular gears based on a different set of centrodes than those of
Figure 6-15b. (The gears of Figure 9-24 really do make complete revolutions in mesh!)
Of course, the velocity ratio of noncircular gears is not constant. That is their purpose,
to provide a time-varying output function in response to a constant velocity input. Their
instantaneous velocity ratio is defined by equation 6.11f. These devices are used in a va-
riety of rotating machinery such as printing presses where variation in the angular velocity
of rollers is required on a cyclical basis.
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(@) Rolling hyperboloids of revolution (b) Automotive hypoid final drive gears

Courtesy of General Motors Co., Detroit, Ml
FIGURE 9-23

Hypoid gears are based on hyperboloids of revolution.

Belt and Chain Drives

VEE BELTS A vee belt drive is shown in Figure 9-2. Vee belts are made of elastomers
(synthetic rubber) reinforced with synthetic or metallic cords for strength. The pulleys,
or sheaves, have a matching vee groove that helps to grip the belt as belt tension jams the
belt into the vee. Vee belts have a transmission efficiency of 95 to 98% when first installed.
This will decrease to about 93% as the belt wears and slippage increases. Because of slip,
the velocity ratio is neither exact nor constant. Flat belts running on flat and crowned
pulleys are still used in some applications as well. As discussed above, slip is possible
with untoothed belts and phasing cannot be guaranteed.

SYNCHRONOUS (TIMING) BELTS = The synchronous belt solves the phasing prob-
lem by preventing slip while retaining some of the advantages of vee belts and can cost
less than gears or chains. Figure 9-25a shows a synchronous (or toothed) belt and its
special gearlike pulleys or sheaves. These belts are made of a rubberlike material but
are reinforced with steel or synthetic cords for higher strength and have molded-in teeth
that fit in the grooves of the pulleys for positive drive. They are capable of fairly high
torque and power transmission levels and are frequently used to drive automotive engine
camshafts as shown in Figure 9-25b. They are more expensive than conventional vee
belts and are noisier, but run cooler and last longer. Their transmission efficiency is 98%
and stays at that level with use. Manufacturers’ catalogs provide detailed information on
sizing both vee and synchronous belts for various applications. See Bibliography.

CHAIN DRIVES are often used for applications where positive drive (phasing) is
needed and large torque requirements or high temperature levels preclude the use of tim-
ing belts. When the input and output shafts are far apart, a chain drive may be the most
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Noncircular gears
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(@) Standard synchronous belt (b) Engine valve camshaft drive
Courtesy of T. B. Wood's Sons Co., Courtesy of Chevrolet Division,
Chambersburg, PA General Motors Co., Detroit, Ml

FIGURE 9-25

Toothed synchronous belts and sprockets

economical choice. Conveyor systems often use chain drives to carry the work along
the assembly line. Steel chain can be run through many (but not all) hostile chemical or
temperature environments. Many types and styles of chain have been designed for vari-
ous applications ranging from the common roller chain (Figure 9-26a) as used on your
bicycle or motorcycle, to more expensive inverted tooth or “silent chain” designs (Figure
9-26b) used for camshaft drives in expensive automobile engines. Figure 9-27 shows a
typical sprocket for a roller chain. Note that the sprocket teeth are not the same shape as
gear teeth and are not involutes. The sprocket tooth shape is dictated by the need to match
the contour of the portion of chain that nestles in the grooves. In this case the roller chain
has cylindrical pins that engage the sprocket.

One unique limitation of chain drive is something called “chordal action.” The links
of the chain form a set of chords when wrapped around the circumference of the sprocket.

-~
Uupuy

(a) Roller chain (b) Inverted-tooth or silent chain
FIGURE 9-26

Chain types for power transmission From Phelan, R. M. (1970). Fundamentals of Mechanical Design, 3rd ed., McGraw-Hill. NY.
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As these links enter and leave the sprocket, they impart a “jerky” motion to the driven
shaft that causes some variation, or ripple, on the output velocity. Chain drives do not
exactly obey the fundamental law of gearing. If very accurate, constant output velocity
is required, a chain drive may not be the best choice.

VIBRATION IN BELTS AND CHAINS You may have noticed when watching the
operation of, for example, a vee belt such as your car engine’s fan belt, that the belt span
between pulleys vibrates laterally, even when the belt’s linear velocity is constant. If you
consider the acceleration of a belt particle as it travels around the belt path, you will realize
that its acceleration is theoretically zero while traversing the unsupported spans between
sheaves at constant velocity; but when it enters the wrap of a sheave, it suddenly acquires
anonzero centripetal acceleration that remains essentially constant in magnitude while the
belt particle is on the sheave. Thus the acceleration of a belt particle has sudden jumps
from zero to some constant magnitude or vice versa, four times per traverse for a simple
two-sheave system such as that of Figure 9-2, and more if there are multiple sheaves. This
provides theoretically infinite pulses of jerk to the belt particles at these transitions, and
this excites the lateral natural frequencies of the belt’s unsupported span between sheaves.
The result is lateral vibration of the belt span that creates dynamic variation in belt tension
and noise. If you watch the fan belt on a running engine, you will notice that it is flapping
between the sheaves. This is due to the infinite jerk pulse as the belt leaves the sheave.

9.7 SIMPLE GEAR TRAINS View the lecture video (37:54)F

A gear train is any collection of two or more meshing gears. A simple gear train is one
in which each shaft carries only one gear, the most basic, two-gear example of which is
shown in Figure 9-4. The velocity ratio my (sometimes called train ratio) of this gearset is
found by expanding equation 9.5a. Figure 9-28 shows a simple gear train with five gears
in series. The expression for this simple train’s velocity ratio is:

BRI

N.
my = i_ln (9.7)
Nout

or in general terms:

which is the same as equation 9.5a for a single gearset.

Each gearset potentially contributes to the overall train ratio, but in any case of a
simple (series) train, the numerical effects of all gears except the first and last cancel out.
The train ratio of a simple train is always just the ratio of the first gear over the last. Only
the sign of the overall ratio is affected by the intermediate gears which are called idlers
because typically no power is taken from their shafts. If all gears in the train are external
and there is an even number of gears in the train, the output direction will be opposite that
of the input. If there is an odd number of external gears in the train, the output will be in
the same direction as the input. Thus a single, external idler gear of any diameter can be
used to change the direction of the output gear without affecting its velocity.

A single gearset of spur, helical, or bevel gears is usually limited to a ratio of about
10:1 simply because the gearset will become very large, expensive, and hard to package
above that ratio if the pinion is kept above the minimum numbers of teeth shown in Table
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FIGURE 9-27

A roller chain sprocket
Courtesy of Martin

Sprocket and Gear Co.,
Arlington, TX
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FIGURE 9-28

A simple gear train
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9-4aorb. If the need is to get a larger train ratio than can be obtained with a single gearset,
it is clear from equations 9.6 that the simple train will be of no help.

It is common practice to insert a single idler gear to change direction, but more than
one idler is superfluous. There is little justification for designing a gear train as is shown
in Figure 9-28. If the need is to connect two shafts that are far apart, a simple train of
many gears could be used but will be more expensive than a chain or belt drive for the
same application. Most gears are not cheap.

9.8 COMPOUND GEAR TRAINS

To get a train ratio of greater than about 10:1 with spur, helical, or bevel gears (or any
combination thereof), it is necessary to compound the train (unless an epicyclic train
is used—see Section 9.9). A compound train is one in which at least one shaft carries
more than one gear. This will be a parallel or series-parallel arrangement, rather than
the pure series connections of the simple gear train. Figure 9-29 shows a compound train
of four gears, two of which, gears 3 and 4, are fixed on the same shaft and thus have the
same angular velocity.

The train ratio is now:

S Na | Na
mv—[ N, J[ Ns] (9.8a)

This can be generalized for any number of gears in the train as:

_y product of number of teeth on driver gears

my =%
product of number of teeth on driven gears

(9.8b)

Note that these intermediate ratios do not cancel and the overall train ratio is the
product of the ratios of parallel gearsets. Thus a larger ratio can be obtained in a compound
gear train despite the approximately 10:1 limitation on individual gearset ratios. The plus
or minus sign in equation 9.8b depends on the number and type of meshes in the train,
whether external or internal. Writing the expression in the form of equation 9.8a and
carefully noting the sign of each mesh ratio in the expression will result in the correct
algebraic sign for the overall train ratio.

Design of Compound Trains

If one is presented with a completed design of a compound gear train such as that in
Figure 9-29, it is a trivial task to apply equation 9.8 and determine the train ratio. It is not
so simple to do the inverse, namely, design a compound train for a specified train ratio.

A DEXAMPLE 9-2

Compound Gear Train Design.

Problem: Design a compound train for an exact train ratio of 180:1. Find a combination of
gears that will give that ratio.
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FIGURE 9-29
A compound gear train

Solution:

1

The first step is to determine how many stages, or gearsets, are necessary. Simplicity is the
mark of good design, so try the smallest possibility first. Take the square root of 180, which
is 13.416. So, two stages each of that ratio will give approximately 180:1. However, this is
larger than our design limit of 10:1 for each stage, so try three stages. The cube root of 180 is
5.646, well within 10, so three stages will do.

If we can find some integer ratio of gear teeth that will yield 5.646:1, we can simply use three
of them to design our gearbox. Using a lower limit of 12 teeth for the pinion and trying several
possibilities we get the gearsets shown in Table 9-6 as possibilities.

The number of gear teeth obviously must be an integer. The closest to an integer in Table 9-6
is the 79.05 result. Thus a 79:14 gearset comes closest to the desired ratio. Applying this
ratio to all three stages will yield a train ratio of (79/14)3 = 179.68:1, which is within 0.2% of
180:1. This may be an acceptable solution provided that the gearbox is not being used in a
timing application. If the purpose of this gearbox is to step down the motor speed for a crane
hoist, for example, an approximate ratio will be adequate.

Many gearboxes are used in production machinery to drive camshafts or linkages from a master
driveshaft and must have the exact ratio needed or else the driven device will eventually get out
of phase with the rest of the machine. If that were the case in this example, then the solution
found in step 3 would not be good enough. We will need to redesign it for exactly 180:1. Since
our overall train ratio is an integer, it will be simplest to look for integer gearset ratios. Thus
we need three integer factors of 180. The first solution above gives us a reasonable starting
point in the cube root of 180, which is 5.646. If we round this up (or down) to an integer, we
may be able to find a suitable combination.

TABLE 9-6
Example 9-2

Possible Gearsets for 180:1
Three-Stage Compound
Train

Gearset Pinion Gear
Ratio Teeth Teeth
5646 x 12 = 67.75
5.646 x 13 = 73.40
5.646 x 14 = 79.05
5.646 x 15 = 84.69
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TABLE 9-7

Example 9-2

Exact Solution for 180:1
Three-Stage Compound
Train
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Ratio Teeth Teeth
6 x 14 = 84
6 x 14 = 84
5 x 14 = 70
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hree-stage compound gear train for train ratio m,,=1:180 (gear ratio mg = 180:1)

5 Two compounded stages of 6:1 together give 36:1. Dividing 180 by 36 gives 5. Thus the stages
shown in Table 9-7 provide one possible exact solution.

This solution, shown in Figure 9-30, meets our design criteria. It has the correct, exact
ratio; the stages are all less than 10:1; and no pinion has less than 14 teeth, which avoids
undercutting if 25° pressure angle gears are used (Table 9-4b).

Design of Reverted Compound Trains

In the preceding example the input and output shaft locations are in different locations.
This may well be acceptable or even desirable in some cases, depending on other packag-
ing constraints in the overall machine design. Such a gearbox, whose input and output
shafts are not coincident, is called a nonreverted compound train. In some cases, such
as automobile transmissions, it is desirable or even necessary to have the output shaft con-
centric with the input shaft. This is referred to as “reverting the train” or “bringing it back
onto itself.” The design of a reverted compound train is more complicated because of
the additional constraint that the center distances of the stages must be equal. Referring to
Figure 9-31, this constraint can be expressed in terms of their pitch radii, pitch diameters,
or numbers of teeth (provided that all gears have the same diametral pitch).
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FIGURE 9-31
A reverted compound gear train

B+ =1,+1s (9.92)

or dy, +d; =d, +ds (9.9b)
If p4 is the same for all gears, equation 9.4c can be substituted in equation 9.9b and the

diametral pitch terms will cancel giving
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N, +N3 =N, +Njs

2 DEXAMPLE 9-3

Reverted Gear Train Design.

(9.9¢)

TABLE 9-8
Example 9-3

Possible Gearsets for 18:1
Two-Stage Reverted
Compound Train

Problem: Design a reverted compound train for an exact train ratio of 18:1.

Solution:

1 Though itis not at all necessary to have integer gearset ratios in a compound train (only integer
tooth numbers), if the train ratio is an integer, it is easier to design with integer ratio gearsets.

2 The square root of 18 is 4.2426, well within our 10:1 limitation. So two stages will suffice in
this gearbox.

3 If we could form two identical stages, each with a ratio equal to the square root of the overall
train ratio, the train would be reverted by default. Table 9-8 shows that there are no reasonable
combinations of tooth ratios that will give the exact square root needed. Moreover, this square
root is not a rational number, so we cannot get an exact solution by this approach.

Gearset Pinion Gear

Ratio  Teeth Teeth
42426 x 12 50.91
42426 x 13 55.15
42426 x 14 59.40
42426 x 15 63.64
4.2426 x 16 67.88
42426 x 17 72.12
42426 x 18 76.37
42426 x 19 80.61
42426 x 20 84.85
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4 Instead, let’s factor the train ratio. All numbers in the factors 9 x 2 and 6 x 3 are less than 10,
so they are acceptable on that basis. It is probably better to have the ratios of the two stages
closer in value to one another for packaging reasons, so the 6 x 3 choice will be tried.

5 Figure 9-31 shows a two-stage reverted train. Note that, unlike the nonreverted train in Figure
9-29, the input and output shafts are now in-line and cantilevered; thus each must have double
bearings on one end for moment support and a good bearing ratio as was defined in Section
2.18.

6 Equation 9.8 states the relationship for its compound train ratio. In addition, we have the
constraint that the center distances of the stages must be equal. Use equation 9.9¢ and set it
equal to an arbitrary constant K to be determined.

N, +N3;=N,+Ns=K (@)

7 We wish to solve equations 9.8 and 9.9¢ simultaneously. We can separate the terms in equation
9.8 and set them each equal to one of the stage ratios chosen for this design.

N, 1

Ny 6

N; =6N, (b)

Ny, 1

Ns 3

Ns=3N, (©)

8 Separating the terms in equation («):

N, +N;=K )]
N4+Ns=K (e)

9  Substituting equation (b) in (d) and equation (c) in (e) yields:
N2+6N2:K:7N2 (f)
N,+3N,=K=4N, (9]

10 To make equations (f) and (g) compatible, K must be set to at least the lowest common multiple
of 7 and 4, which is 28. This yields values of N, = 4 teeth and N4 = 7 teeth.

11 Since a four-tooth gear will have unacceptable undercutting, we need to increase our value of
K sufficiently to make the smallest pinion large enough.

12 A new value of K =28 x4 = 112 will increase the four-tooth gear to a 16-tooth gear, which is
acceptable for a 25° pressure angle (Table 9-4b). With this assumption of K =112, equations
(D), (c), (f), and (g) can be solved simultaneously to give:

N2 =16 N3 =96
()
N, =28 Ny =84

which is a viable solution for this reverted train.

The same procedure outlined here can be applied to the design of reverted trains involving
several stages such as the helical gearbox in Figure 9-32.



GEAR TRAINS

FIGURE 9-32

A commercial, three-stage reverted compound gearbox
Courtesy of Boston Gear Division of IMO Industries, Quincy, MA

An Algorithm for the Design of Compound Gear Trains

The examples of compound gear train design presented above used integer train ratios. If
the required train ratio is noninteger, it is more difficult to find a combination of integer
tooth numbers that will give the exact train ratio. Sometimes an irrational gear ratio may
be needed for such tasks as conversion of English to metric measure within a machine tool
gear train or when 7 is a factor in the ratio. Then the closest approximation to the desired
irrational train ratio that can be contained in a reasonable package is needed.

DilParel!l and Selfridge and Riddle[?] have devised algorithms to solve this problem.
Both require a computer for their solution. The Selfridge and Riddle approach will be
described here. It is applicable to two- or three-stage compound trains. A low limit N,y,;,
and a high limit N,,,, on the acceptable number of teeth for any gear must be specified.
An error tolerance € expressed as a percentage of the desired train ratio R (made always
> 1) is also selected. For a two-stage compound train the ratio will be as shown in equa-
tion 9.5¢ expanded according to equation 9.8b with the signs neglected for this analysis.

R=my=—"-— 9.10a
7 N,N, (9.10a)

The range of acceptable ratios is determined by the choice of error tolerance €.

Ripy =R-¢
(9.10b)
Rhigh =R+¢
N3Ns
RlOW < N2N4 < Rhigh (910C)

Then, since the tooth numbers must be integers:
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N;3Ns < INT(N,Ny Ry ) (9.10d)

Let: P = INT(N; Ny Ryig ) (9.10€)
Also from equation 9.10c,

N3N > INT(N,N4 Ry, ) (9.10f)
Let: Q=INT(N,N4 Ry, )+1 (9.10g)

rounding up to the next integer.

A search is done on all values of a temporary parameter K defined as Q < K < P to
see if a usable product pair can be found. Because of multiplicative symmetry, the largest
value of N3 that need be considered is

Ny <P (9.112)
Let: N, =P (9.11b)

The smallest value of N3 that need be considered occurs when K is at its smallest
value O and N5 takes its largest value Ny;gp. (N3 is also constrained by Njpy,.)

N3 2 Q (9.11c)
Nhigh
Q+ Npjop —1
Let: N, = INT| ~—_M&h (9.11d)
Nhigh

which also rounds up to the next integer.

The search finds those values of N3 that meet N,, < N3 < N, and N5 = K/ N3. The
computer code for this algorithm is shown in Table 9-9. The complete program COM-
POUND.TK is downloadable with this book, encoded for use with the TKSolver program.
The code can be easily rewritten for other equation solvers or compilers.

This algorithm is extendable to three-stage compound gear trains, and the two-stage
version can be modified to force reversion of the train by adding a center distance calcula-
tion for each gearset and a comparison to a selected tolerance on center distance. These
files are downloadable as TRIPLE.TK and REVERT.TK, respectively. These programs each
generate a table of all solutions that meet the stated error criteria within the tooth limits
specified.

A DEXAMPLE 9-4

Compound Gear Train Design to Approximate an Irrational Ratio.

Problem: Find a pair of gearsets which when compounded will give a train ratio of
3.14159:1 with an error of < 0.0005%. Limit gears to tooth numbers between 15
and 100. Also determine the tooth numbers for the smallest error possible if the
two gearsets must be reverted.
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TABLE 9-9 Algorithm for Design of Two-Stage Compound Gear Trains

From Author’s downloadable TKSolver file Compound.tk. Based on Reference [2]

" Ratio is the desired gear train ratio and must be > 1. Nmin is the minimum number of teeth acceptable on any pinion.

" Nmax is the maximum number of teeth acceptable on any gear. eps/ is initial estimate of the error tolerance on Ratio.

" eps is the tolerance used in the computation, initialized to eps/ but modified (doubled) until solutions are found.

" counter indicates how many times the initial tolerance was doubled. Note that a large initial value on eps/ will cause long
" computation times whereas a too-small value (that gives no solutions) will quickly be increased and lead to a faster solution.
" pinionl, pinion2, gearl, and gear2 are tooth numbers for solution.

eps = epsl " initialize error bound
counter = 0 " initialize counter
redo: " reentry point for additional tries at solution
S=1 " initialize the array pointer
R_high = Ratio + eps " initialize tolerance bands around ratio
R _low = Ratio - eps " initialize tolerance bands around ratio
Nh3 = INT( Nmax"2 / R_high ) " intermediate value for computation
Nh4 = INT( Nmax / SQRT ( R_high)) " intermediate value for computation
For pinionl = Nmin to Nh4 " loop for first pinion
Nhh = MIN ( Nmax, INT (Nh3 / pinionl)) " intermediate value for computation
For pinion2 = pinionl to Nhh " loop for 2nd pinion
P = INT( pinionl * pinion2 * R_high) " intermediate value for computation
Q = INT{ pinionl * pinion2 * R_low) + 1 " intermediate value for computation
IF (P < Q)THEN GOTO np2 " skip to next pinion?2 if true
Nm = MAX ( Nmin, INT ( (Q + Nmax - 1)/ Nmax )) " intermediate value for computation
Np = SORT(P) " intermediate value for computation
ForK=QtoP " loop for parameter K
For gearl = Nm to Np " loop for first gear
IF (MOD( K, gearl ) <> 0 ) Then GOTO ngl " not a match - skip to next gearl

gear2 = K/ gearl

error = ( Ratio - K/ ( pinionl * pinion2) )
"check to see if is within current tolerance
IF error > eps THEN GOTO ngl

" find second gear tooth number
" find error in ratio

" is out of bounds - skip to next gearl

" else load solution into arrays
pinl[S] = pinionl

pin2[S] = pinion2

gearl[S] = gearl

gear2[S] = gear2

error[S] = ABS(error)

ratiol [S] = gearl / pinionl
ratio2[S] = gear2 / pinion2
ratio[S] = ratiol[S] * ratio2[S]

S=S+1 " increment array pointer
ngl: Next gearl
Next K
np2: Next pinion2
Next pinionl

" test to see if any solution occurred with current eps value

IF (Length (pinl) = 0 ) Then GOTO again ELSE Return
again:

eps =eps *2

counter = counter + 1

GOTO redo

" have a solution
" double eps value and try again
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* Note that this gear train TABLE 9-10 Nonreverted Gearsets and Errors in Ratio for Example 9-4
combination gives an ap- K K
proximation for T that is Ny N3 Ratio1 Ng Ng Ratio2 my Error
g‘at“ﬂ‘l‘? 4 dec‘“ia‘ P‘lfces' 17 54 3176 91 90 0.989 3.141564 2.568 2 E-05
o, Tis exatfiplc as s 17 60 3529 o1 81 0.890 3.141564 2.568 2 E-05
for an approximation to 5
decimal places within a tol- 22 62 2.818 61 68 1115 3.141580 1.026 8 E-05
erance of 5 ten-thousandths 23 75 3.261 82 79 0.963 3.141 569 2.054 1E-05
of one percent. This ratio 25 51 2.040 50 77 1540 3.141600* 1.000 0 E-05
is off by one thousandth 28 85 3.036 86 89 1.035 3141611 2.129 6 E-05
of a percent of the desired 29 88 3.034 85 88 1.035 3.141582" 7.849 9 E-06
5-place value.
33 68 2.061 61 93 1525 3.141580 1.026 8 E-05
. 4 75 1.829 46 79 1717 3.141569 2.0541E-05
F This is the closest pos-
Sible approximation to 43 85 1.977 56 89 1589 314161 2129 6 E-05
43 77 1791 57 100 1.754 3.141575 1513 3 E-05

a 5-place value for 7 in

a nonreverted gear train
within the given limitations
on gear sizes.

TABLE 9-11 Reverted Gearsets and Errors in Ratio for Example 9-4

N> N3 Ratio1 Ny Ng Ratio 2 my Error
22 39 1773 22 39 1.773 3.142 562 -9.619 8 E-04
44 78 1.773 44 78 1773 3.142 562 -9.619 8 E-04
D Solution:
1 Input data to the algorithm are R = 3.141 59, N5, = 15, Npjgp = 100, initial € = 3.141 59 E-5.

2 The TKSolver file COMPOUND.TK (see Table 9-9) was used to generate the nonreverted solu-
tions shown in Table 9-10.

3 The best nonreverted solution (7th row in Table 9-10) has an error in ratio of 7.849 9 E-06
(0.000 249 87%) giving a ratio of 3.141 582 with gearsets of 29:88 and 85:88 teeth.

4 The TKSolver file REVERT.TK was used to generate the reverted solutions shown in Table 9-11.

5 The best reverted solution has an error in ratio of —9.619 8 E-04 (-0.030 62%) giving a ratio
of 3.142 562 with gearsets of 22:39 and 22:39 teeth.

6 Note that imposing the additional constraint of reversion has reduced the number of possible
solutions effectively to one (the two solutions in Table 9-11 differ by a factor of 2 in tooth
numbers but have the same error) and the error is much greater than that of even the worst of
the 11 nonreverted solutions in Table 9-10.

9.9 EPICYCLIC OR PLANETARY GEAR TRAINS

The conventional gear trains described in the previous sections are all one-degree-of-
freedom (DOF) devices. Another class of gear train has wide application, the epicyclic or
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Input #1

Output
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arm v
Input #1 D
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}c [ 0, {
1 \ >\ Planet gear
Input #2 \*\ 1
Pinion Sun gear
(a) Conventional gearset (b) Planetary or epicyclic gearset

FIGURE 9-33

Conventional gearsets are special cases of planetary or epicyclic gearsets

planetary train. This is a two-DOF device. Two inputs are needed to obtain a predict-
able output. In some cases, such as the automotive differential, one input is provided (the
driveshaft) and two frictionally coupled outputs are obtained (the two driving wheels).
In other applications such as automatic transmissions, aircraft engine to propeller reduc-
tions, and in-hub bicycle transmissions, two inputs are provided (one usually being a zero
velocity, i.e., a fixed gear), and one controlled output results.

Figure 9-33a shows a conventional, one-DOF gearset in which link 1 is immobilized
as the ground link. Figure 9-33b shows the same gearset with link 1 now free to rotate as
an arm that connects the two gears. Now only the joint O, is grounded and the system
DOF =2. This has become an epicyclic train with a sun gear and a planet gear orbiting
around the sun, held in orbit by the arm. Two inputs are required. Typically, the arm
and the sun gear will each be driven in some direction at some velocity. In many cases,
one of these inputs will be zero velocity, i.e., a brake applied to either the arm or the sun
gear. Note that a zero velocity input to the arm merely makes a conventional train out of
the epicyclic train as shown in Figure 9-33a. Thus the conventional gear train is simply
a special case of the more complex epicyclic train, in which its arm is held stationary.

In this simple example of an epicyclic train, the only gear left to take an output from,
after putting inputs to sun and arm, is the planet. It is a bit difficult to get a usable output
from this orbiting gear as its pivot is moving. A more useful configuration is shown in
Figure 9-34 to which a ring gear has been added. This ring gear meshes with the planet
and pivots at O,, so it can be easily tapped as the output member. Most planetary trains
will be arranged with ring gears to bring the planetary motion back to a grounded pivot.
Note how the sun gear, ring gear, and arm are all brought out as concentric hollow shafts
so that each can be accessed to tap its angular velocity and torque as either an input or
an output.

Epicyclic trains come in many varieties. Levail3! cataloged 12 possible types of basic
epicyclic trains as shown in Figure 9-35. These basic trains can be connected together to
create a larger number of trains having more degrees of freedom. This is done in automo-
tive automatic transmissions as described in a later section.
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FIGURE 9-34
Planetary gearset with ring gear used as output

View a video While it is relatively easy to visualize the power flow through a conventional gear
http://www.designof- train and observe the directions of motion for its member gears, it is very difficult to
machinery.com/DOM/ determine the behavior of a planetary train by observation. We must do the necessary

compound_epicycloi-

dal_gear_train.avi calculations to determine its behavior and may be surprised at the often counterintuitive
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FIGURE 9-35
Levai's 12 possible epicyclic trains [3]
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GEAR TRAINS

results. Since the gears are rotating with respect to the arm and the arm itself has motion,
we have a velocity difference problem here that requires equation 6.5b be applied to this
problem. Rewriting the velocity difference equation 6.5b in terms of angular velocities
specific to this system, we get:

Wgeqr = Ogrm + Ogear/arm (9.12)

Equations 9.12 and 9.5a are all that is needed to solve for the velocities in an epicyclic
train, provided that the tooth numbers and two input conditions are known.

The Tabular Method

One approach to the analysis of velocities in an epicyclic train is to create a table which
represents equation 9.12 for each gear in the train.

A DEXAMPLE 9-5

Epicyclic Gear Train Analysis by the Tabular Method.

Problem: Consider the train in Figure 9-34, with the tooth numbers and initial conditions:
Sun gear Nj = 40-tooth external gear
Planet gear N3 = 20-tooth external gear
Ring gear N4 = 80-tooth internal gear
Input to arm 200 rpm clockwise
Input to sun 100 rpm clockwise

We wish to find the absolute output angular velocity of the ring gear.
Solution:

1 The solution table is set up with a column for each term in equation 9.12 and a row for each
gear in the train. It will be most convenient if we can arrange the table so that meshing gears
occupy adjacent rows. The table for this method, prior to data entry, is shown in Figure 9-36.

2 Note that the gear ratios are shown straddling the rows of gears to which they apply. The gear
ratio column is placed next to the column containing the velocity differences ®geq/qrm because
the gear ratios only apply to the velocity difference. The gear ratios cannot be directly applied
to the absolute velocities in the @, column.

1 2 3

Gear # U)gear = Ourm +| O gear/arm Gear

ratio

FIGURE 9-36

Table for the solution of planetary gear trains
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1 2 3

Gear # (Dggar = Warm + | O gear/arm Gear
Ratio

2 -100 -200
-40/20

3 -200
+20/80

4 -200

FIGURE 9-37

Given data for planetary gear train from Example 9-5 placed in solution table

3 The solution strategy is simple but is fraught with opportunities for careless errors. Note that
we are solving a vector equation with scalar algebra and the signs of the terms denote the sense
of the m vectors which are all directed along the Z axis. Great care must be taken to get the
signs of the input velocities and of the gear ratios correct in the table, or the answer will be
wrong. Some gear ratios may be negative if they involve external gearsets, and others will be
positive if they involve an internal gear. We have both types in this example.

4 The first step is to enter the known data as shown in Figure 9-37 which in this case are the
arm velocity (in all rows) and the absolute velocity of gear 2 in column 1. The gear ratios can
also be calculated and placed in their respective locations. Note that these ratios should be
calculated for each gearset in a consistent manner, following the power flow through the train.
That is, starting at gear 2 as the driver, it drives gear 3 directly. This makes its ratio —N,/N3,
or input over output, not the reciprocal. This ratio is negative because the gearset is external.
Gear 3 in turn drives gear 4 so its ratio is +N3/N4. This is a positive ratio because of the in-
ternal gear.

5 Once any one row has two entries, the value for its remaining column can be calculated from
equation 9.12, which is shown in the top row of Figures 9-37 and 9-38. Once any one value in
the velocity difference column (column 3) is found, the gear ratios can be applied to calculate
all other values in that column. Finally, the remaining rows can be calculated from equation
9.12 to yield the absolute velocities of all gears in column 1. These computations are shown in
Figure 9-38 which completes the solution.

6 The overall train value for this example can be calculated from the table and is from arm to
ring gear +1.25:1 and from sun gear to ring gear +2.5:1.

1 2 3
Gear # o gear = Ourm +| O gear/arm Gear
Ratio
2 -100 =200 +100
—-40/20
3 -400 -200 -200
+20/80
4 =250 -200 =50

FIGURE 9-38
Solution for planetary gear train from Example 9-5
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In this example, the arm velocity was given. If it is to be found as the output, then it must
be entered in the table as an unknown, x, and the equations solved for that unknown.

FERGUSON’S PARADOX  Epicyclic trains have several advantages over conventional
trains including higher train ratios in smaller packages, reversion by default, and simul-
taneous, concentric, bidirectional outputs available from a single unidirectional input.
These features make planetary trains popular as automatic transmissions in automobiles
and trucks, etc.

The so-called Ferguson paradox of Figure 9-39 illustrates all these features of the
planetary train. It is a compound epicyclic train with one 20-tooth planet gear (gear 5)
carried on the arm and meshing simultaneously with three sun gears. These sun gears
have 100 teeth (gear 2), 99 teeth (gear 3), and 101 teeth (gear 4), respectively. The center
distances between all sun gears and the planet are the same despite the slightly different
pitch diameters of each sun gear. This is possible because of the properties of the involute
tooth form as described in Section 9.2. Each sun gear will run smoothly with the planet
gear. Each gearset will merely have a slightly different pressure angle.

A DEXAMPLE 9-6

Analyzing Ferguson’s Paradox by the Tabular Method.

Problem: Consider Ferguson’s paradox train in Figure 9-39, which has the following tooth
numbers and initial conditions:
Sun gear #2 N = 100-tooth external gear
Sun gear #3 N3 = 99-tooth external gear
Sun gear #4 N4 = 101-tooth external gear
Planet gear N5 = 20-tooth external gear
Input to sun #2 0 rpm
Input to arm 100 rpm counterclockwise

Planet 20t
/ \ 5

Sun #4 - 101t

Sun # 3 - 99t

Arm
\ Sun # 2 - 100t
/ Arm

NN

FIGURE 9-39

Ferguson's paradox compound planetary gear train

Bearing / Bearing j
3 4
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1 2 3

Gear # ® gear = Oarm +| Ogear/arm Gear
Ratio

2 0 +100
-100/20

5 +100
-20/99

3 +100

5 +100
-20/101

4 +100

FIGURE 9-40

Given data for Ferguson's paradox planetary gear train from Example 9-6

Sun gear 2 is fixed to the frame, thus providing one input (zero velocity) to the
system. The arm is driven at 100 rpm counterclockwise as the second input. Find
the angular velocities of the two outputs that are available from this compound
train, one from gear 3 and one from gear 4, both of which are free to rotate on the
main shaft.

Solution:

1 The tabular solution for this train is set up in Figure 9-40 which shows the given data. Note
that the row for gear 5 is repeated for clarity in applying the gear ratio between gears 5 and 4.

2 The known input values of velocity are the arm angular velocity and the zero absolute velocity
of gear 2.

3 The gear ratios in this case are all negative because of the external gear sets, and their values
reflect the direction of power flow from gear 2 to 5, then 5 to 3, and 5 to 4 in the second branch.

4 Figure 9-41 shows the calculated values added to the table. Note that for a counterclockwise
100 rpm input to the arm, we get a counterclockwise 1 rpm output from gear 4 and a clockwise
1 rpm output from gear 3, simultaneously.

This result accounts for the use of the word paradox to describe this train. Not only
do we get a much larger ratio (100:1) than we could from a conventional train with gears
of 100 and 20 teeth, but we have our choice of output directions!

Automotive automatic transmissions use compound planetary trains, which are al-
ways in mesh, and which give different ratio forward speeds, plus reverse, by simply
engaging and disengaging brakes on different members of the train. The brake provides
zero velocity input to one train member. The other input is from the engine. The output
is thus modified by the application of these internal brakes in the transmission according
to the selection of the operator (Park, Reverse, Neutral, Drive, etc.). An example of a
modern, eight-speed automatic transmission is shown in Figure 9-45.
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1 2 3
Gear # Ooear = | Qarm +| Ogear/arm Gear
Ratio
2 0 +100 -100
—-100/20
5 +600 +100 +500
-20/99
3 —-1.01 +100 —-101.01
5 +600 +100 +500
-20/101
4 +0.99 +100 -99.01

FIGURE 9-41

Solution to Ferguson's paradox planetary gear train from Example 9-6

The Formula Method

It is not necessary to tabulate the solution to an epicyclic train. The velocity difference
formula can be solved directly for the train ratio. We can rearrange equation 9.12 to solve
for the velocity difference term. Then, let o represent the angular velocity of the first
gear in the train (chosen at either end), and ®; represent the angular velocity of the last
gear in the train (at the other end).

For the first gear in the system:

OF/arm = OF =~ Ogpy (9.13a)

For the last gear in the system:
Or/arm = O = Ogpm (9.13b)

Dividing the last by the first:

o w; —0
L/iarm _ L arm_ _ p (9.13¢)
OFr/arm  OF = Ogrm

This gives an expression for the fundamental train value R which defines a velocity
ratio for the train with the arm held stationary. The leftmost side of equation 9.13c in-
volves only the velocity difference terms that are relative to the arm. This fraction is equal
to the ratio of the products of tooth numbers of the gears from first to last in the train as
defined in equation 9.8b which can be substituted for the leftmost side of equation 9.13c.

Re+ product of number of teeth on driver gears  ®] — 0y,

+ = 9.14
product of number of teeth on driven gears ®p — ®gp, (014)

This equation can be solved for any one of the variables on the right side provided
that the other two are defined as the two inputs to this two-DOF train. Either the veloci-
ties of the arm plus one gear must be known or the velocities of two gears, the first and
last, as so designated, must be known. Another limitation of this method is that both the
first and last gears chosen must be pivoted to ground (not orbiting), and there must be a
path of meshes connecting them, which may include orbiting planet gears. Let us use this
method to again solve the Ferguson paradox of Example 9-6.
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ZDEXAMPLE 9-7

Analyzing Ferguson’s Paradox by the Formula Method.

Problem: Consider the same Ferguson paradox train as in Example 9-6 which has the follow-
ing tooth numbers and initial conditions (see Figure 9-37):
Sun gear #2 N, = 100-tooth external gear
Sun gear #3 N3 = 99-tooth external gear
Sun gear #4 Ny = 101-tooth external gear
Planet gear N5 = 20-tooth external gear
Input to sun #2 0 rpm
Input to arm 100 rpm counterclockwise

Sun gear 2 is fixed to the frame, providing one input (zero velocity) to the system.
The arm is driven at 100 rpm CCW as the second input. Find the angular velocities
of the two outputs that are available from this compound train, one from gear 3 and
one from gear 4, both of which are free to rotate on the main shaft.

Solution:

1 We will have to apply equation 9.14 twice, once for each output gear. Taking gear 3 as the last
gear in the train with gear 2 as the first, we have:

N, =100 N3 =99 N5 =20
(a)

@ gy =+100 op=0 o, =7

2 Substituting in equation 9.14 we get:
Pﬁﬂ&ﬁﬂzw—%m
NS N3 OF = Ogppy

100 20 w3 —100
)2
20 99 0-100

®; =-1.01

3 Now taking gear 4 as the last gear in the train with gear 2 as the first, we have:

N, =100 N, =101 N5 =20
(c)
@ gy =+100 op =0 oy =?
4 Substituting in equation 9.14, we get:
Pﬁﬂ@ﬁﬂ:m—%m
NS N4 WOF = Wgpp
100 20 w4 —100
—— | o e @
20 101 0-100

w, =+0.99

These are the same results as were obtained with the tabular method.
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910 EFFICIENCY OF GEAR TRAINS

The general definition of efficiency is output power/input power. It is expressed as a frac-
tion (decimal %) or as a percentage. The efficiency of a conventional gear train (simple or
compound) is very high. The power loss per gearset is only about 1 to 2% depending on
such factors as tooth finish and lubrication. A gearset’s basic efficiency is termed Ey. An
external gearset will have an E() of about 0.98 or better and an external-internal gearset
about 0.99 or better. When multiple gearsets are used in a conventional simple or com-
pound train, the overall efficiency of the train will be the product of the efficiencies of all
its stages. For example, a two-stage train with both gearset efficiencies of Ey = 0.98 will
have an overall efficiency of 1 = 0.982 = 0.96.

Epicyclic trains, if properly designed, can have even higher overall efficiencies than
conventional trains. But, if the epicyclic train is poorly designed, its efficiency can be so
low that it will generate excessive heat and may even be unable to operate at all. This
strange result can come about if the orbiting elements (planets) in the train have high losses
that absorb a large amount of “circulating power” within the train. It is possible for this
circulating power to be much larger than the throughput power for which the train was
designed, resulting in excessive heating or stalling. The computation of the overall ef-
ficiency of an epicyclic train is much more complicated than the simple multiplication in-
dicated above that works for conventional trains. Molian[#] presents a concise derivation.

To calculate the overall efficiency 1 of an epicyclic train, we need to define a basic
ratio p which is related to the fundamental train value R defined in equation 9.13c:

if|[R|>1, thenp=Relsep=1/R (9.15)

This constrains p to represent a speed increase rather than a decrease regardless of which
way the gear train is intended to operate.

For the purpose of calculating torque and power in an epicyclic gear train, we can con-
sider it to be a “black box” with three concentric shafts as shown in Figure 9-42. These
shafts are labeled 1, 2, and arm and connect to either “end” of the gear train and to its
arm, respectively. Two of these shafts can serve as inputs and the third as output in any
combination. The details of the gear train’s internal configuration are not needed if we
know its basic ratio p and the basic efficiency E of its gearsets. All the analysis is done
relative to the arm of the train since the internal power flow and losses are only affected
by rotation of shafts 1 and 2 with respect to the arm, not by rotation of the entire unit.
We also model it as having a single planet gear for the purpose of determining E( on the
assumption that the power and the losses are equally divided among all gears actually in
the train. Counterclockwise torques and angular velocities are considered positive. Power
is the product of torque and angular velocity, so a positive power is an input (torque and
velocity in same direction) and negative power is an output.

If the gear train is running at constant speed or is changing speed too slowly to sig-
nificantly affect its internal kinetic energy, then we can assume static equilibrium and the
torques will sum to zero.

L+5+T1,, =0 (9.16)

The sum of power in and out must also be zero, but the direction of power flow affects the
computation. If the power flows from shaft 1 to shaft 2, then:
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FIGURE 9-42
Generic epicyclic
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BTy (0 = 0gpm )+ Ty (03 = g ) =0 (9.17a)
If the power flows from shaft 2 to shaft 1, then:
T3 () = gy )+ Eg Ty (03 = gy ) =0 (9.17b)

If the power flows from shaft 1 to 2, equations 9.16 and 9.17a are solved simultaneously
to obtain the system torques. If the power flows in the other direction, then equations 9.16
and 9.17b are used instead. Substitution of equation 9.13c¢ in combination with equation
9.15 introduces the basic ratio p and after simultaneous solution yields:

T
ower flow from 1 to 2 T, =—2" (9.18a)
p 1 PEy—1
o —
E,T,
T, = —ppbfif‘”l" (9.18b)
o —
E,T
power flow from 2 to 1 T, = —2-arm. (9.19a)
pP—Ey
T,
T, = __g ag" (9.19b)
—Ey

Once the torques are found, the input and output power can be calculated using the
known input and output velocities (from a kinematic analysis as described above) and the
efficiency then determined from output power/input power.

There are eight possible cases depending on which shaft is fixed, which shaft is
input, and whether the basic ratio p is positive or negative. These cases are shown in
Table 9-12[4! which includes expressions for the train efficiency as well as for the torques.
Note that the torque on one shaft is always known from the load required to be driven or
the power available from the driver, and this is needed to calculate the other two torques.

A DEXAMPLE 9-8
Determining the Efficiency of an Epicyclic Gear Train.”

Problem: Find the overall efficiency of the epicyclic train shown in Figure 9-43. The basic ef-
ficiency Eis 0.9928 and the gear tooth numbers are: Na= 82t, Ng = 84t, No = 86t,
Np = 82t, Np = 82t, and Np = 84t. Gear A (shaft 2) is fixed to the frame, providing
a zero velocity input. The arm is driven as the second input.

Solution:

1 Find the basic ratio p for the gear train using equations 9.14 and 9.15. Note that gears B and
C have the same velocity as do gears D and E, so their ratios are 1 and thus are omitted.

_ NpNpNp _ 84(82)(84) _1764 . 00567 (@)
NpNeNa  82(36)(82) 1763

2 The combination of p > 1, shaft 2 fixed and input to the arm corresponds to Case 2 in Table
9-12, giving an efficiency of:
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TABLE 9-12 Torques and Efficiencies in an Epicyclic Train 4!

Fixed Input Train

Case P shaft  Shaft  Ratio K T2 Tarm Efficiency (1)
2 >+ 2 arm ﬁ T _pEL:) (%JTI Eg(_p;ol)
R e = R =
I
o= 2 ! =p T fat;r:lEo pl]iosz? farm %

6 <— 2 arm ﬁ i _pEL:) [P_Efo JTI Eg(_P;bl)
7 <1 1 5 p-l EoTurm. _PTarm T p—Ey
P p—Ep p—Ey anm p-1
ST R R ¢ x
_ Bo(p—1) _ 09928(1.000567-1) _ 007327 3% )

p—E, 1.000567 —0.9928

3 This is a very low efficiency which makes this gearbox essentially useless. About 93% of the
input power is being circulated within the gear train and wasted as heat.

FIGURE 9-43 Copyright © 2018 Robert L. Norton: All Rights Reserved

Epicyclic Train for Example 9-8
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The above example points out a problem with epicyclic gear trains that have basic
ratios near unity. They have low efficiency and are useless for transmission of power.
Large speed ratios with high efficiency can only be obtained with trains having large
basic ratios. 5!

¥ http://www.designofma- 9.1 TRANSMISSIONS View the lecture video (41:06)"
chinery.com/DOM/Gear_

Transmissions.mp4 COMPOUND REVERTED GEAR TRAINS are commonly used in manual (nonautomatic)
automotive transmissions to provide user-selectable ratios between the engine and the
drive wheels for torque multiplication (mechanical advantage). Modern gearboxes usually
have from four to seven forward speeds and one reverse. Most transmissions of this type
use helical gears for quiet operation. These gears are not moved into and out of engage-
ment when shifting from one speed to another except for reverse. Rather, the desired ratio
gears are selectively locked to the output shaft by synchromesh mechanisms as in Figure
9-44 which shows a four-speed, manually shifted, synchromesh automotive transmission.

The input shaft is at top left. The input gear is always in mesh with the leftmost gear
on the countershaft at the bottom. This countershaft has several gears integral with it, each
of which meshes with a different output gear that is freewheeling on the output shaft. The
output shaft is concentric with the input shaft, making this a reverted train, but the input
and output shafts only connect through the gears on the countershaft except in “top gear”
(fourth speed), for which the input and output shafts are directly coupled together with a
synchromesh clutch for a 1:1 ratio.

The synchromesh clutches are beside each gear on the output shaft and are partially
hidden by the shifting collars that move them left and right in response to the driver’s hand

CLUTCH 3-4 SYNCHRONIZER 3RD SPEED 1-2 SYNCHRONIZER
GEA\R (ENGAGED 3RD GEAR) GEAR (NEUTRAL)

http://www.designof- Rever:

machinery.com/DOM/ http://www.designof-
manual_transmission_ machinery.com/DOM/
high_gear.avi manual_transmission_

3RD SPEED Q = reverse.avi
View Low Gear
http://www.designof-
machinery.com/DOM/
COUNTERGEAR COUNTERGEAR manual_transmission_

DRIVEN

3RD GEA .
GEAR low_gear.avi

FIGURE 9-44

Four-speed manual synchromesh automobile transmission Source: Crouse, W. H. (1980). Automotive Mechanics, 8th ed.,
McGraw-Hill, New York, NY, p. 480. Reprinted with permission.
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on the shift lever. These clutches act to lock one gear to the output shaft at a time to pro-
vide a power path from input to output of a particular ratio. The arrows on the figure show
the power path for third-speed forward, which is engaged. Reverse gear, on the lower
right, engages an idler gear which is physically shifted into and out of mesh at standstill.

PLANETARY OR EPICYCLIC TRAINS are commonly used in automatic-shifting au-
tomotive transmissions as shown in Figure 9-45. The input shaft, which couples to the
engine’s crankshaft, is one input to the multi-DOF transmission that consists of several
stages of epicyclic trains. Automatic transmissions can have any number of ratios. Au-
tomotive examples historically have had from one (early) to ten (current) forward speeds.
Truck and bus automatic transmissions may have more.

Several epicyclic gearsets can be seen near the center of the eight-speed transmis-
sion in Figure 9-45. They are controlled by hydraulically operated multidisk clutches
and brakes within the transmission that impart zero velocity (second) inputs to various
elements of the train to create one of eight forward velocity ratios plus reverse in this
particular example. The clutches force zero relative velocity between the two elements
engaged, and the brakes force zero absolute velocity on the element. Since all gears are
in constant mesh, the transmission can be shifted under load by switching the internal
brakes and clutches on and off. They are controlled by a combination of inputs that in-
clude driver selection (PRND), road speed, throttle position, engine load and speed, and
other factors that are automatically monitored and computer controlled. Some modern
transmission controllers use artificial intelligence techniques to learn and adapt to the
operator’s style of driving by automatically resetting the shift points for gentle or aggres-
sive performance based on driving habits. Some allow manual control of shift points.

At the left side of Figure 9-45 is a turbine-like fluid coupling between engine and
transmission, called a torque converter, a cutaway of which is shown in Figure 9-46.
This device allows sufficient slip in the coupling fluid to let the engine idle with the trans-
mission engaged and the vehicle’s wheels stopped. The engine-driven impeller blades,

turbine stator clutches planetary
lock-up clutch impeller and brakes trains

FIGURE 9-45

ZF eight-speed automatic transmission Photo: Stefan Krause, License: FAL

533




534

flywheel

turbine attached
to transmission
input shaft

stator —

engine
crankshaft

pilot bearing

FIGURE 9-46

(a) Schematic cross-section
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(b) Torque converter

Copyright © 2018 Robert L. Norton: All Rights Reserved

Cutaways of torque converters Photo courtesy of Mannesmann Sachs AG

running in oil, transmit torque by pumping oil past a set of stationary stator blades and
against the furbine blades attached to the transmission input shaft. The stator blades,
which do not move, serve to redirect the flow of oil exiting the impeller blades to a more
favorable angle relative to the turbine blades. This redirection of flow is responsible for
the torque multiplication that gives the device its name, torque converter. Without the
stator blades, it is just a fluid coupling that will transmit, but not multiply, the torque. In a
torque converter, the maximum torque increase of about 2x occurs at stall when the trans-
mission’s turbine is stopped and the engine-driven impeller is turning, creating maximum
slip between the two. This torque boost aids in accelerating the vehicle from rest when its
inertia must be overcome. The torque multiplication decreases to one at zero slip between
impeller and turbine. However, the device cannot reach a zero slip condition on its own.
It will always operate with a few percent of slip. This wastes energy in steady-state op-
eration, as when the vehicle is traveling at constant speed on level ground. To conserve
this energy, most torque converters are now equipped with an electromechanical lockup
clutch that engages above about 30 mph in top gear and locks the stator to the impeller,
making the transmission efficiency then close to 100%. When speed drops below a set
speed, or when the transmission downshifts, the clutch is disengaged, allowing the torque
converter to again perform its function.
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B3 B2 B1 Clutch/Brake Activation
C2 %’ e o %’ Range
; 3 Ci C By By B3
First X X
2 8 1
Cl 6 I I l—-— Second X X
. I I T Third X X
X X
T T ‘ Fourth
INPUT OUTPUT Reverse X X

(a) Schematic of 4-speed automatic transmission

FIGURE 9-47

Schematic of automatic transmission from Figure 9-45 Adapted from reference [6]

Figure 9-47a shows a schematic of a four-speed automatic transmission. Its three
epicyclic stages, two clutches (Cy, Cp), and three band brakes (B;, By, B3) are depicted.
Figure 9-47b shows an activation table of the brake-clutch combinations for each speed
ratio of this transmission. 6]

An historically interesting example of an epicyclic train used in a manually shifted
gearbox is the Ford Model T transmission shown and described in Figure 9-48. Over
9 million were produced from 1909 to 1927, before the invention of the synchromesh
mechanism shown in Figure 9-44. Conventional (compound-reverted) transmissions as
used in most other automobiles of that era (and into the 1930s) were unaffectionately
known as “crashboxes,” the name being descriptive of the noise made when shifting un-
synchronized gears into and out of mesh while in motion. Henry Ford had a better idea, that
he copied from F.W. Lanchester.” Ford’s Model T planetary gears were in constant mesh.
The two forward speeds and one reverse were achieved by engaging/disengaging a clutch
and band brakes in various combinations via foot pedals. These provided second inputs to
the epicyclic train which, like Ferguson’s paradox, gave bidirectional outputs, all without
any “crashing” of gear teeth. This Lanchester/Model T transmission is the precursor to all
modern automatic transmissions which replace the T’s foot pedals with automated hydraulic
operation of the clutches and brakes.

CONTINUOUSLY VARIABLE TRANSMISSION (CVT) A transmission that has no
gears, the CVT uses two sheaves or pulleys that adjust their axial widths simultaneously
in opposite directions to change the ratio of the belt drive that runs in the sheaves. This
concept was invented by Daimler in 1896 and was used on some very early automobiles
as the final drive and transmission combined. It is finding renewed application in the 21st
century in the quest for higher-efficiency vehicle drives. Figure 9-49 shows a commercial
automobile CVT that uses a steel, segmented “belt” of vee cross section that runs on ad-
justable width sheaves. To change the transmission ratio, one sheave’s width is opened
and the other closed in concert such that the effective pitch radii deliver the desired ratio.
It thus has an infinity of possible ratios, varying continuously between two limits. The
ratio is adjustable while running under load. The CVT shown is designed and computer
controlled to keep the vehicle’s engine running at essentially constant speed at an rpm
that delivers the best fuel economy, regardless of vehicle speed. Similar designs of CVTs
that use conventional rubber vee belts have long been used in low-power machinery such
as snow blowers and lawn tractors.

(b) Clutch / brake activation table

* Frederick W. Lanchester,
a major automotive pioneer,
invented the compound epi-
cyclic manual transmission
and patented it in England
in 1898, well before Ford
made the Model T (from
1909 to 1927). Ford made
money by the millions and
Lanchester died poor. As a
side note, contemporary re-
ports claim that Henry Ford
was never able to master the
double-clutching required to
properly shift a “crashbox
transmission” of the period.
This factoid is claimed

to be the reason he chose
Lanchester’s constant mesh,
planetary transmission for
his Model T. Ransom E.
Olds had also used this
transmission in his Curved-
Dash Olds well before Ford
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gear teeth planets brake bands
The input from the engine is to arm 2. N3 =27 By B B3
Gear 6 is rigidly attached to the output Ni=3
shaft which drives the wheels. Gears 3,
Ns=2%4
4, and 5 rotate at the same speed. _
Ne =27

There are two forward speeds. Low N7=21 arm
(1:2.75) is selected by engaging band Ng =30 2
brake By to lock gear 7 to the frame.
Clutch C is disengaged.

- clutch C

High (1:1) is selected by engaging
clutch C which locks the input shaft
directly to the output shaft.

Reverse (1:-4) is obtained by engaging
brake band B to lock gear 8 to the
frame. Clutch C is disengaged.

car brake

gear-train brakes

FIGURE 9-48 Copyright © 2018 Robert L. Norton: All Rights Reserved

Ford Model T epicyclic transmission

912 DIFFERENTIALS

' A differential is a device that allows a difference in velocity (and displacement) between

two elements. This requires a 2-DOF mechanism such as an epicyclic gear train. Perhaps
the most common application of differentials is in the final drive mechanisms of wheeled
land vehicles as shown in Figure P9-3. When a four-wheeled vehicle turns, the wheels
on the outside of the turn must travel farther than the inside wheels due to their different
turning radii as shown in Figure 9-50. Without a differential mechanism between the
inner and outer driving wheels, the tires must slip on the road surface for the vehicle to

output shaft

variable-width sheave

input shaft steel, segmented "vee" belt

variable-width sheave

FIGURE 9-49

Continuously Variable Transmission (CVT) Courtesy of ZF Getriebe GmbH, Saabruken, Germany
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turn. If the tires have good traction, a nondifferentiated drive train will attempt to go in
a straight line at all times and will fight the driver in turns. In a “full-time” four-wheel
-drive™ (4WD) vehicle (sometimes called “all wheel drive” or AWD) an additional differ-
ential is needed between the front and rear wheels to allow the wheel velocities at each end
of the vehicle to vary in proportion to the traction developed at either end of the vehicle
under slippery conditions. Figure 9-51 shows an AWD automotive chassis with its three
differentials. In this example, the center differential is packaged with the transmission
and front differential but effectively is in the driveshaft between the front and rear wheels
as shown in Figure 9-50. Differentials are made with various gear types. For rear axle
applications, a bevel gear epicyclic is commonly used as shown in Figure 9-52a and in
Figure P9-3. For center and front differentials, helical or spur gear arrangements are often
used as in Figure 9-52b and c.

An epicyclic train used as a differential has one input and two outputs. Taking the
rear differential in an automobile as an example, its input is from the driveshaft and its
outputs are to the right and left wheels. The two outputs are coupled through the road via
the traction (friction) forces between tires and pavement. The relative velocity between
each wheel can vary from zero when both tires have equal traction and the car is not
turning, to twice the epicyclic train’s input speed when one wheel is on ice and the other
has traction. Front or rear differentials split the torque equally between their two wheel
outputs. Since power is the product of torque and angular velocity, and power out can-
not exceed power in, the power is split between the wheels according to their velocities.
When traveling straight ahead (both wheels having traction), half the power goes to each
wheel. As the car turns, the faster wheel gets more power and the slower one less. When
one wheel loses traction (as on ice), it gets all the power (50% torque x 200% speed), and
the wheel with traction gets zero power (50% torque x 0% speed). This is why 4WD or
AWD is needed in slippery conditions. In AWD, the center differential splits the torque
between front and rear in some proportion. If one end of the car loses traction, the other
may still be able to control it provided it still has traction.

A Difference
in radius

Front Diff

Center Diff

4

Rear Diff

FIGURE 9-50

Turning behavior of a four-wheel vehicle Source: Courtesy of Tochigi Fuji Sangyo, Japan
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* Non-full-time 4WD is
common in trucks and
differs from AWD in that it
lacks the center differential,
making it usable only when
the road is slippery. Any
required differences in
rotational velocity between
rear and front driven wheels
is then accommodated by
tire slip. On dry pave-
ment, a non-full-time 4WD
vehicle will not handle

well and can be dangerous.
Unlike vehicles with AWD,
which is always engaged,
non-full-time 4WD vehicles
normally operate in 2WD
and require driver action to
obtain 4WD. Manufactur-
ers caution against shifting
these vehicles into 4WD
unless traction is poor.



538

Vi Video Fr.
Spinning
http://www.designof-

machinery.com/DOM/
differential_normal.avi

View a Video
Locked

http://www.designof-
machinery.com/DOM/
differential_locked.avi

(c)

FIGURE 9-52

Differentials
Courtesy of Tochigi Fuji
Sangyo, Japan
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Center differential

Front differential

O Rear differential

FIGURE 9-51
An all-wheel-drive (AWD) chassis and drive train Source: Courtesy of Tochigi Fuji Sangyo, Japan

LIMITED SLIP DIFFERENTIALS Because of their behavior when one wheel loses
traction, various differential designs have been created to limit the slip between the two
outputs under those conditions. These are called limited slip differentials and typically
provide some type of friction device between the two output gears to transmit some torque
but still allow slip for turning. Some use a fluid coupling between the gears, and others
use spring-loaded friction disks or cones as can be seen in Figure 9-52a. Some use an
electrically controlled clutch within the epicyclic train to lock it up on demand for off-
road applications as shown in Figure 9-52b. The TORSEN® (from TORque SENsing)
differential of Figure 9-53, invented by V. Gleasman, uses wormsets whose resistance to
backdriving provides torque coupling between the outputs. The lead angle of the worm
determines the percent of torque transmitted across the differential. These differentials are
used in many AWD vehicles including the Army’s High Mobility Multipurpose Wheeled
Vehicle (HMMWYV) known as the “Humvee” or “Hummer.”
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(a) TORSEN® Type 1 differential (b) TORSEN® Type 2 differential

FIGURE 9-53
TORSEN’ limited-slip differentials Source: Courtesy of JTEKT Torsen Inc., Rochester, NY
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9.1

f9-2

9.3

9-4

PROBLEMS*

A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 5.
Calculate the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and
clearance.

A 40-tooth, 10 p, gear has AGMA standard full-depth involute teeth. Calculate pitch
diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

A 30-tooth, 12 p, gear has AGMA standard full-depth involute teeth. Calculate the
pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance.

Using any available string, some tape, a pencil, and a drinking glass or tin can, generate
and draw an involute curve on a piece of paper. With your protractor, show that all
normals to the curve are tangent to the base circle.

¥ Problem figures are pro-
vided as downloadable PDF
files with same names as the
figure number.

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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Table P9-0 Part 1+
Topic/Problem Matrix
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9.2 Fundamental Law of

Gearing
9-4, 9-46, 9-47, 9-49,
9-50, 9-51, 9-66,
9-67, 9-68

9.3 Gear Tooth Nomen-
clature
9-1,9-2,9-3,9-48,
9-53, 9-54, 9-69,
9-70, 9-74

9.4 Interference and
Undercutting
9-5, 9-55, 9-56, 9-57,
9-58, 9-75

9.5 Contact Ratio
9-59, 9-60. 9-72,
9-76

9.6 Gear Types
9-23, 9-24, 9-61,
9-62

9.7 Simple Gear Trains
9-6,9-7,9-8, 9-9,
9-73, 9-77

9.8 Compound Gear
Trains
9-10, 9-11, 9-12,
9-13, 9-14, 9-15,
9-16, 9-17, 9-18,
9-29, 9-30, 9-31,
9-32,9-33,9-71,
9-78

9.9 Epicyclic or Planetary
Gear Trains
9-25, 9-26, 9-27,
9-28, 9-36, 9-38,
9-39, 9-41, 9-42,
9-43, 9-79

9.10 Efficiency of Gear
Trains
9-35, 9-37, 9-40,
9-63, 9-64, 9-65,
9-80, 9-81

* Answers in Appendix F.

*9-6

*19-7

*19-10

f9-11

*19-12

9-13

19-14

9-15

“19-16

9-17

f9-18

*9-19

9-20

A spur gearset must have pitch diameters of 2.5 and 8 in. What is the largest standard
tooth size, in terms of diametral pitch p, that can be used without having any interference
or undercutting? Find the number of teeth on the hob-cut gear and pinion for this p:

a.  Fora 20° pressure angle.
b.  For a25° pressure angle. (Note that diametral pitch need not be an integer.)

Design a simple, spur gear train for a ratio of —7:1 and diametral pitch of 10. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of +6:1 and diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of —7:1 and diametral pitch of 8. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a simple, spur gear train for a ratio of +6.5:1 and diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Calculate the contact ratio.

Design a compound, spur gear train for a ratio of —80:1 and diametral pitch of 12.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of 50:1 and diametral pitch of 8. Specify
pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of 120:1 and diametral pitch of 5.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, spur gear train for a ratio of —250:1 and diametral pitch of 9.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 28:1 and diametral pitch of
8. Specity pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 40:1 and diametral pitch of
8. Specity pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 65:1 and diametral pitch of
8. Specity pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 7:1 and diametral pitch of 4.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear train for a ratio of 12:1 and diametral pitch of
6. Specity pitch diameters and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear transmission that will give two shiftable ratios
of +3:1 forward and —4.5:1 reverse with diametral pitch of 6. Specify pitch diameters
and numbers of teeth. Sketch the train to scale.

Design a compound, reverted, spur gear transmission that will give two shiftable ratios
of +5:1 forward and —3.5:1 reverse with diametral pitch of 6. Specify pitch diameters
and numbers of teeth. Sketch the train to scale.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

Note: All problem figures are provided as PDF files, and some are also provided as animated Working Model
files. PDF filenames are the same as the figure number.
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*19-21 Design a compound, reverted, spur gear transmission that will give three shiftable ra-
tios of +6:1, +3.5:1 forward, and —4:1 reverse with diametral pitch of 8. Specify pitch
diameters and numbers of teeth. Sketch the train to scale.

Table P9-0 Part 2
Topic/Problem Matrix

9.11 Transmissions
9-19, 9-20, 9-21,
9-22,9-34, 9-44

f9-22  Design a compound, reverted, spur gear transmission that will give three shiftable
ratios of +4.5:1, +2.5:1 forward, and —3.5:1 reverse with diametral pitch of 5. Specify
pitch diameters and numbers of teeth. Sketch the train to scale.

79-23  Design the rolling cones for a —3:1 ratio and a 60° included angle between the shafts.
Sketch the train to scale.

79-24  Design the rolling cones for a —4.5:1 ratio and a 40° included angle between the shafts.
Sketch the train to scale.

*9-25  Figure P9-1 shows a compound planetary gear train (not to scale). Table P9-1 gives
data for gear numbers of teeth and input velocities. For the row(s) assigned, find the
variable represented by a question mark.

*9-26  Figure P9-2 shows a compound planetary gear train (not to scale). Table P9-2 gives
data for gear numbers of teeth and input velocities. For the row(s) assigned, find the
variable represented by a question mark.

Bearing

FIGURE P9-1
Planetary gearset for Problem 9-25 and 9-81

TABLE P9-1 Data for Problem 9-25 and 9-81

Row N> N3 Ng N5 Ng (OF) We O grm
a 30 25 45 50 200 ? 20 -50
b 30 25 45 50 200 30 ? -90 * Answers in Appendix F.
c 30 25 45 50 200 50 0] ?
d 30 25 45 30 160 ? 40 -50  These problems are suited
e 30 25 45 30 160 50 ? -75 to solution using Mathcad,
f 30 25 45 30 160 50 0 2 Matlab, or TKSolver equa-

tion solver programs.
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TABLE P9-2 Data for Problem 9-26

V72

Row N2 N3 Ng Ng Ng 2 (O Ourm
a 50 25 45 30 40 ? 20 -50
b 30 35 55 40 50 30 ? - 90
c 40 20 45 30 35 50 0 ?
d 25 45 35 30 50 ? 40 -50
e 35 25 55 35 45 30 ? -75
f 30 30 45 40 35 40 0 ?

N Arm
4 §
NP
N 74
Nt &=
NN ?
NN 15
N
N
N N
N 6
3 RN
N
vzl N vzl
INy— A
Nzl
N
RN
N
N

\
\

e

)

/11111, \\\\ \\\

N

/.

FIGURE P9-2

Compound planetary gear train for Problem 9-26

*19-27  Figure P9-3 shows a planetary gear train used in an automotive rear-end differential
(not to scale). The car has wheels with a 16-in rolling radius and is moving forward
in a straight line at 55 mph. The engine is turning 2500 rpm. The transmission is in
direct drive (1:1) with the driveshaft.

a.  What are the rear wheels’ rpm and the gear ratio between ring and pinion?
b.  As the car hits a patch of ice, the right wheel speeds up to 800 rpm. What is the
speed of the left wheel? Hint: The average of both wheels’ rpm is a constant.

* Answers in Appendix F. c.  Calculate the fundamental train value of the epicyclic stage.

79-28 Design a speed-reducing planetary gearbox to be used to lift a 5-ton load 50 ft with a
 These problems are suited motor that develops 20 1b-ft of torque at its operating speed of 1750 rpm. The available
to solution using Mathcad, winch drum has no more than a 16-in diameter when full of its steel cable. The speed

Matlab, or TKSolver equa-

reducer should be no larger in diameter than the winch drum. Gears of no more than
tion solver programs.

about 75 teeth are desired, and diametral pitch needs to be no smaller than 6 to stand
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FIGURE P9-3

Automotive differential planetary gear train for Problem 9-27

*19-29

9-30

79-31

19-32

9-33

79-34

the stresses. Make multiview sketches of your design and show all calculations. How
long will it take to raise the load with your design?

Determine all possible two-stage compound gear combinations that will give an ap-
proximation to the Naperian base 2.71828. Limit tooth numbers to between 18 and 80.
Determine the arrangement that gives the smallest error.

Determine all possible two-stage compound gear combinations that will give an ap-
proximation to 27. Limit tooth numbers to between 15 and 90. Determine the arrange-
ment that gives the smallest error.

Determine all possible two-stage compound gear combinations that will give an
approximation to 1/2. Limit tooth numbers to between 20 and 100. Determine the ar-
rangement that gives the smallest error.

Determine all possible two-stage compound gear combinations that will give an ap-
proximation to 37t/2. Limit tooth numbers to between 20 and 100. Determine the
arrangement that gives the smallest error.

Figure P9-4a shows a reverted clock train. Design it using 25° nominal pressure
angle gears of 24 p; having between 12 and 150 teeth. Determine the tooth numbers
and nominal center distance. If the center distance has a manufacturing tolerance of
+ 0.006 in, what will the pressure angle and backlash at the minute hand be at each
extreme of the tolerance?

Figure P9-4b shows a three-speed shiftable transmission. Shaft F, with the cluster of
gears E, G, and H, is capable of sliding left and right to engage and disengage the three
gearsets in turn. Design the three reverted stages to give output speeds at shaft F of
150, 350, and 550 rpm for an input speed of 450 rpm to shaft D.

543

* Answers in Appendix F.

T These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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Problems 9-33 to 9-34 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

*19-35  Figure P9-5a shows a compound epicyclic train used to drive a winch drum. Gear A is
driven at 18 rpm CW and gear D is fixed to ground. Tooth numbers are in the figure.
Find speed and direction of the drum. What is train efficiency for gearsets Ey = 0.97?

* Answers in Appendix F.

T These problems are suited 79-36 Figure P9-5b shows a compound epicyclic train with its tooth numbers. The arm is
to solution using Mathcad, driven CCW at 20 rpm. Gear A is driven CW at 40 rpm. Find speed of ring gear D.
Matlab, or TKSolver equa-

. *19-37  Figure P9-6a shows an epicyclic train with its tooth numbers. The arm is driven CCW
tion solver programs.

at 50 rpm and gear A on shaft 1 is fixed to ground. Find speed of gear D on shaft 2.
What is the efficiency of this train if the basic gearsets have Ey = 0.96?
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(a) (b)
FIGURE P9-5

Problems 9-35 to 9-36 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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Problems 9-37 to 9-38 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

79-38  Figure P9-6b shows a differential with its tooth numbers. Gear A is driven CCW at 10
rpm and gear B is driven CW at 24 rpm. Find the speed of gear D.

*19-39  Figure P9-7a shows a gear train containing both compound-reverted and epicyclic

stages. Tooth numbers are in the figure. The motor is driven CW at 1500 rpm. Find
the speeds of shafts 1 and 2.

79-40  Figure P9-7b shows an epicyclic train used to drive a winch drum. The arm is driven at
250 rpm CCW and gear A, on shaft 2, is fixed to ground. Find speed and direction of

the drum on shaft 1. What is train efficiency if the basic gearsets have Ejy = 0.98?

HOUSING

* Answers in Appendix F.

 These problems are suited,
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

FIGURE P9-7

Problems 9-39 to 9-40 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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Problem 9-41  Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

“19-41  Figure P9-8 shows an epicyclic train with its tooth numbers. Gear 2 is driven at 600
rpm CW and gear D is fixed to ground. Find speed and direction of gears 1 and 3.

*A in A dix F.
ASwers i Appendix 79-42  Figure P9-9 shows a compound epicyclic train. Shaft 1 is driven at 300 rpm CCW and

gear A is fixed to ground. The tooth numbers are indicated in the figure. Determine the
speed and direction of shaft 2.

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa- *19-43  Figure P9-10 shows a compound epicyclic train. Shaft 1 is driven at 60 rpm. Tooth
tion solver programs. numbers are in the figure. Find speed and direction of gears G and M.

79-44  Calculate the ratios in the Model T transmission shown in Figure 9-48 and prove that
the values shown in the figure’s sidebar are correct.

79-45 Do Problem 7-57.
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FIGURE P9-9
Problem 9-42 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission
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Problem 9-43 Source: P. H. Hill and W. P. Rule. (1960). Mechanisms: Analysis and Design, with permission

9-46

9-47

9-48

9-49

9-50

79-51

79-52

Figure P9-11 shows an involute generated from a base circle of radius r;,. Point A is
simultaneously on the base circle and the involute. Point B is any point on the involute
curve and point C is on the base circle where a line drawn from point B is tangent to
the base circle. Point O is the center of the base circle. The angle ¢p (angle BOC)

is known as the involute pressure angle corresponding to point B (not to be confused
with the pressure angle of two gears in mesh, which is defined in Figure 9-6). The
angle AOB is known as the involute of ¢ and is often designated as inv ¢. Using the
definition of the involute tooth form and Figure 9-5, derive an equation for inv ¢p as a
function of ¢p alone.

Using data and definitions from Problem 9-46, show that when point B is at the pitch
circle the involute pressure angle is equal to the pressure angle of two gears in mesh.

Using data and definitions from Problem 9-46, and with point B at the pitch circle
where the involute pressure angle ¢p is equal to the pressure angle ¢ of two gears in
mesh, derive equation 9.4b.

Using Figures 9-6 and 9-7, derive equation 9.2, which is used to calculate the length of
action of a pair of meshing gears.

Backlash of 0.03 mm measured on the pitch circle of a 40-mm-diameter pinion in mesh
with a 100-mm-diameter gear is desired. If the gears are standard, full-depth, with 25°
pressure angles, by how much should the center distance be increased?

Backlash of 0.0012 in measured on the pitch circle of a 2.000-in-diameter pinion in
mesh with a 5.000-in-diameter gear is desired. If the gears are standard, full-depth,
with 25° pressure angles, by how much should the center distance be increased?

A 22-tooth gear has standard full-depth involute teeth with a module of 6. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/pg.

547

B involute
4 curve

base
circle

FIGURE P9-11
Problem 9-46

 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.
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 These problems are suited
to solution using Mathcad,
Matlab, or TKSolver equa-
tion solver programs.

DESIGN OF MACHINERY 6ed CHAPTER 9

953

1954

9-55

79-56

9-57

958

959

19-60

9-61

T9-62

19-63

9-64

9-65

9-66

A 40-tooth gear has standard full-depth involute teeth with a module of 3. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/p,.

A 30-tooth gear has standard full-depth involute teeth with a module of 2. Calculate
the pitch diameter, circular pitch, addendum, dedendum, tooth thickness, and clearance
using the AGMA specifications in Table 9-1 substituting m for 1/p,.

Determine the minimum number of teeth on a pinion with a 20° pressure angle for the
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference:
1:1, 2:1, 3:1, 4:1, 5:1.

Determine the minimum number of teeth on a pinion with a 25° pressure angle for the
following gear-to-pinion ratios such that there will be no tooth-to-tooth interference:
1:1, 2:1, 3:1, 4:1, 5:1.

A pinion with a 3.000-in pitch diameter is to mesh with a rack. What is the largest
standard tooth size, in terms of diametral pitch, that can be used without having any
interference? a. Fora?20°pressure angle b. For a 25° pressure angle

A pinion with a 75-mm pitch diameter is to mesh with a rack. What is the largest
standard tooth size, in terms of metric module, that can be used without having any
interference? a. Fora?20°pressure angle b. For a 25° pressure angle

In order to have a smooth-running gearset it is desired to have a contact ratio of at least
1.5. If the gears have a pressure angle of 25° and gear ratio of 4, what is the minimum
number of teeth on the pinion that will yield the required minimum contact ratio?

In order to have a smooth-running gearset it is desired to have a contact ratio of at least
1.5. If the gears have a pressure angle of 25° and a 20-tooth pinion, what is the mini-
mum gear ratio that will yield the required minimum contact ratio?

Calculate and plot the train ratio of a noncircular gearset, as a function of input angle,
that is based on the centrodes of Figure 6-15b. The link length ratios are
L]/Lz = 1.60, L3/L2 = 1.60, and L4/L2 = 1.00.

Repeat problem 9-61 for a fourbar linkage with link ratios of L/L, = 1.80,
L3/L2 = 1.80, and L4/L2 = 1.00.

Figure 9-35b (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 50, 25, 35, and 90 for gears 2, 3, 4, and 5, respectively. The arm is
driven at 180 rpm CW and gear 5 is fixed to ground. Determine the speed and direc-
tion of gear 2. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Figure 9-35h (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 80, 20, 25, and 85 for gears 2, 3, 4, and 5, respectively. Gear 2 is
driven at 200 rpm CCW. Determine the speed and direction of the arm if gear 5 is fixed
to ground. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Figure 9-35i (repeated here) shows (schematically) a compound epicyclic train. The
tooth numbers are 24, 18, 20, and 90 for gears 2, 3, 4, and 5, respectively. The arm is
driven at 100 rpm CCW and gear 2 is fixed to ground. Determine the speed and direc-
tion of gear 5. What is the efficiency of this train if the basic gearsets have Ey = 0.98?

Using Figure 9-8, derive an equation for the operating pressure angle of two gears
in mesh as a function of their base circle radii, the standard center distance, and the
change in center distance.
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Levai's 12 possible epicyclic trains [3]

*19-67 A pinion and gear in mesh have base circle radii of 1.8126 and 3.6252 in, respectively.
If they were cut with a standard pressure angle of 25°, determine their operating pres-
sure angle if the standard center distance is increased by 0.062 in.

* Answers in Appendix F.

T These problems are suited
79-68 A pinion and gear in mesh have base circle radii of 1.35946 and 2.26577 in, respectively. to solution using Mathcad,

If they have a standard center distance of 4.000 in, determine the standard pressure angle Matlab, or TKSolver equa-
and the operating pressure angle if the standard center distance is increased by 0.050 in. tion solver programs.

*19-69 A 25-tooth pinion meshes with a 60-tooth gear. They have a diametral pitch of 4, a
pressure angle of 20°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, outside diameters. and contact ratio of the gearset.

79-70 A 15-tooth pinion meshes with a 45-tooth gear. They have a diametral pitch of 5, a
pressure angle of 25°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, outside diameters. and contact ratio of the gearset.

*19-71  Design a compound, spur gear train that will reduce the speed of a 900-rpm synchronous
AC motor to exactly 72 revolutions per hour with the output rotating in the same direction
as the motor. Use gears with a pressure angle of 25° and minimize the package size.

79-72 A gearset with a contact ratio of at least 1.5 is desired. If the gears have standard
AGMA full-depth teeth with a pressure angle of 25°, and the pinion has 21 teeth, what
is the minimum gear ratio that will give the required minimum contact ratio?

79-73  Provide a preliminary design (pitch diameters and numbers of teeth) for a gear set with
a gear ratio of mg = 4, a diametral pitch p; = 8, and a contact ratio of at least 1.5.

9-74 A 22-tooth pinion meshes with a 55-tooth gear. They have a diametral pitch of 8, a
pressure angle of 20°, and AGMA full-depth involute profiles. Find the gear ratio, cir-
cular pitch, base pitch, pitch diameters, standard center distance, addendum, dedendum,
whole depth, clearance, and outside diameters.
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9-75

9-76

9-77

9-78

9-79

9-80

9-81

A 16-tooth pinion meshes with a 48-tooth gear. They have a diametral pitch of 10, a
pressure angle of 25°, and AGMA full-depth involute profiles that have been modified
to have unequal addendum tooth forms of +0.50. Find the pitch diameters, addendum,
dedendum, whole depth, dedendum diameters, base diameters, and outside diameters.

Design a gearset that has standard, full-depth teeth, a gear ratio of 5 and a contact ratio
of at least 1.6 minimizing the space occupied by the pinion and gear. Determine the
diametral pitch and the outside diameters of the pinion and gear if a course diametral
pitch is required.

Provide a preliminary design (pitch diameters and numbers of teeth) for a gearset that
will have a gear ratio of mg = 6, a diametral pitch pd = 5, and a contact ratio of at least
1.75.

Design a compound, spur gear train for a ratio of —180:1 and diametral pitch of 10.
Specify pitch diameters and numbers of teeth. Sketch the train to scale.

Figures 9-35b and 9-35i show (schematically) two epicyclic trains, each with an arm,
aring gear, and three external gears. If the arm (1) is the input, the ring gear (5) is the
output, and gear 2 is stationary, find the velocity ratios for these two configurations
given the following tooth numbers: 18, 27, 24, and 60 for gears 2, 3, 4, and 5, respec-
tively.

Determine the overall efficiencies of the epicyclic trains given in Problem 9-79 if they
each have basic efficiencies of Ey = 0.98.

Figure P9-1 shows a compound planetary gear train (not to scale). Table P9-1 gives
data for gear numbers of teeth. For the row(s) assigned (ignoring the velocity data),
find the overall efficiency of the train if £y = 0.980, the arm is the input, the sun is the
output, and the ring gear is stationary.
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The entire world of machinery ...
is inspired by the play of organs
of reproduction. The designer
animates artificial objects by
simulating the movements of
animals engaged in propagating
the species. Our machines are
Romeos of steel and Juliets of
cast iron.

J. COHEN. (1966). Human Robots
in Myth and Science, Allen &
Unwin, London, p. 67.
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Chapter 1 ()

DYNAMICS FUNDAMENTALS

He has half the deed done
who has made a beginning
HORACE, 65-8 B.C.

10.0 INTRODUCTION Watch the lecture video for this chapter (52:01)*

Part I of this text has dealt with the kinematics of mechanisms while temporarily ignor-
ing the forces present in those mechanisms. This second part will address the problem of
determining the forces present in moving mechanisms and machinery. This topic is called
kinetics or dynamic force analysis. We will start with a brief review of some fundamen-
tals needed for dynamic analysis. It is assumed that the reader has had an introductory
course in dynamics. If that topic is rusty, one can review it by referring to reference [1]
or to any other text on the subject.

1041 NEWTON'’S LAWS OF MOTION Watch a short video (4:00)"

Dynamic force analysis involves the application of Newton’s three laws of motion which
are:

1 A body at rest tends to remain at rest and a body in motion at constant velocity will
tend to maintain that velocity unless acted upon by an external force.

2 The time rate of change of momentum of a body is equal to the magnitude of the ap-
plied force and acts in the direction of the force.

* http://www.designofma-
chinery.com/DOM/Dynam-
ics_Fundamentals.mp4

T http://www.designofmachin-
ery.com/DOM/Newtons_Laws.
mp4


http://www.designofmachinery.com/DOM/Dynamics_Fundamentals.mp4
http://www.designofmachinery.com/DOM/Newtons_Laws.mp4
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3 For every action force there is an equal and opposite reaction force.

The second law is expressed in terms of rate of change of momentum, M = mv, where
m is mass and v is velocity. Mass m is assumed to be constant in this analysis. The time
rate of change of mv is ma, where a is the acceleration of the mass center.

F=ma (10.1)
F is the resultant of all forces on the system acting at the mass center.

We can differentiate between two subclasses of dynamics problems depending upon
which quantities are known and which are to be found. The “forward dynamics problem
is the one in which we know everything about the external loads (forces and/or torques)
being exerted on the system, and we wish to determine the accelerations, velocities, and
displacements which result from the application of those forces and torques. This subclass
is typical of the problems you probably encountered in an introductory dynamics course,
such as determining the acceleration of a block sliding down a plane, acted upon by grav-
ity. Given F and m, solve for a.

The second subclass of dynamics problem, called the inverse dynamics problem,
is one in which we know the (desired) accelerations, velocities, and displacements to
be imposed upon our system and wish to solve for the magnitudes and directions of the
forces and torques which are necessary to provide the desired motions and which result
from them. This inverse dynamics case is sometimes also called kinetostatics. Given a
and m, solve for F.

Whichever subclass of problem is addressed, it is important to realize that they are
both dynamics problems. Each merely solves F = ma for a different variable. To do so,
we must first review some fundamental geometric and mass properties which are needed
for the calculations.

10.2 DYNAMIC MODELS

It is often convenient in dynamic analysis to create a simplified model of a complicated
part. These models are sometimes considered to be a collection of point masses con-
nected by massless rods. For a model of a rigid body to be dynamically equivalent to
the original body, three things must be true:

1 The mass of the model must equal that of the original body.
2 The center of gravity must be in the same location as that of the original body.

3 The mass moment of inertia must equal that of the original body.

10.3 MASS Watch a short video (10:06)F

Mass is not weight! Mass is an invariant property of a rigid body. The weight of the
same body varies depending on the gravitational system in which it sits. See Section 1.10
for a discussion of the use of proper mass units in various measuring systems. We will


http://www.designofmachinery.com/DOM/Mass.mp4
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assume the mass of our parts to be constant with time. For most earthbound machines,
this is reasonable. The rate at which an automobile loses mass due to fuel consumption,
for example, is slow enough to be ignored when calculating dynamic forces over short
time spans. However, this would not be a safe assumption for a vehicle such as the Space
Shuttle, whose mass changes rapidly and drastically during lift-off.

When designing machinery, we must first do a complete kinematic analysis of our
design, as described in Part I of this text, in order to obtain information about the accel-
erations of the moving parts. We next want to use Newton’s second law to calculate the
dynamic forces. But to do so we need to know the masses of all the moving parts that have
these known accelerations. These parts do not exist yet! As with any design problem,
we