

KINEMATICS FUNDAMENTALS

Terminology. Degrees of Freedom. The Grashof Condition and Formula.

Learning Outcomes

- Define the links of fourbar linkages: ground, crank, coupler, and rocker.
- Define Grashof Condition and its relation to the design a fourbar mechanism.

Kinematics Design of Mechanisms - Fourbar Linkages:

- The science of mechanism kinematics is roughly divided in two divergent topics:
 - 1. Analysis
 - 2. Synthesis
- Analysis: It is study of motions (kinematic) and forces (kinetic) concerning different parts of an existing mechanism.
- Synthesis: It is study of the design of the mechanism and its different links.

Fourbar Linkages: Ground, Crank, Coupler, and Rocker.

- Length of the links are a-b-c-d.
- Angles are positive in RHR direction (or CCW).
- **Note**: A link connected to ground by a hinged joint that can rotate 360° is usually called a crank.

Fourbar Linkages: Ground, Crank, Coupler, and Rocker.

(a) Transforming a fourbar crank-rocker to a crank-slider

Classification of the Fourbar Linkage

- The classification of planar four-bar linkages into three basic types depending on the use of revolute or prismatic joints. These are:
 - RRRR linkage: This type has four revolute joints, which allow the bars to rotate around fixed points.
 - The planar quadrilateral linkage is a general term for this type.
 - Examples of RRRR linkages are the double-crank, crank-rocker, double-rocker, parallelogram, antiparallelogram, deltoid, and trapezium linkages.

Classification of the Fourbar Linkage

- RRRP linkage (or PRRR or RPRR or RRPR): This type has three revolute joints and one prismatic joint, which allows one bar to slide along a line.
 - The slider-crank linkage is a common example of this type, where one bar is a crank, another bar is a slider, and the third bar is a connecting rod.
 - Other examples of RRRP linkages are the Whitworth quick return, crank and slotted lever quick return, and fixed piston mechanisms.
- RRPP linkage: This type has two revolute joints and two prismatic joints, which allow two bars to slide along perpendicular lines.
 - The Scotch yoke linkage is an example of this type, where one bar is a crank, another bar is a slider, and the third bar is a
 yoke that converts the rotary motion of the crank into the linear motion of the slider.

Fourbar Linkages: Ground, Crank, Coupler, and Rocker.

- The *slider-crank linkage* is constructed from four links connected by three revolute and one prismatic joint, or RRRP.
- It can be constructed with crank and a slider connected by the connecting rod.

Grashof Condition

- The *Grashof condition* is a criterion used in the design of planar (2D) four-bar linkages, which are common mechanisms in engineering.
- The Grashof condition helps to determine whether a four-bar linkage can achieve continuous rotation or oscillation. The condition is based on the lengths of the linkages in the mechanism.

Note: After the *synthesis or design of fourbar linkages*, the Grashof condition is always computed to determine whether the power source achieve a complete revolution.

Grashof Condition and Four-Bar Linkages:

- In summary, for a four-bar linkage to satisfy the Grashof condition, it must meet the following criteria:
 - It must have four links (as the name suggests).
 - The sum of the shortest and longest link lengths (denoted as S and L, respectively)
 must be less than or equal to the sum of the remaining two link lengths (denoted
 as P and Q).
 - Mathematically: S + L ≤ P + Q.
 - When this condition holds, the linkage is Grashof, and at least one of the links can complete a full rotation.
 - If S + L > P + Q, the linkage is non-Grashof, and none of the links can rotate completely.

Grashof Condition and Four-Bar Linkages:

- So, four-bar mechanisms are classified by three major categories which are: *Grashof, Non-Grashof, and Special Case:*
- Class I: if shortest link fully rotate with respect to a neighboring link: S + L < P + Q
- Class II: no link will be capable of a complete relative to any other link: S + L = P + Q
- Class III: indeterminate when : S + L > P + Q

$$S + L \le P + Q$$
 Where:

S is the length of the shortest linkL is the length of the longest linkP is the length of a different link, andQ is the length of the remaining link.

Kinematics Design of Mechanisms

Linkage Software Exercise:

Source: https://en.wikipedia.org/wiki/File:Grashof_Type_I_Four-Bar_Kinematic_Inversions.gif

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

TABLE 2-4 Barker's Complete Classification of Planar Fourbar Mechanisms

Adapted from ref. [10]. s = shortest link, l = longest link, Gxxx = Grashof, RRRx = non-Grashof, Sxx = Special case

Туре	s + 1 vs. p + q	Inversion	Class	Barker's Designation	Code	Also Known As
1	<	$L_1 = s = \text{ground}$	I-1	Grashof crank-crank	GCCC	Double-crank
2	<	$L_2 = s = input$	I-2	Grashof crank-rocker-rocker	GCRR	Crank-rocker
3	<	$L_3 = s = \text{coupler}$	I-3	Grashof rocker-crank-rocker	GRCR	Double-rocker
4	<	$L_4 = s = \text{output}$	I-4	Grashof rocker-rocker-crank	GRRC	Rocker-crank
5	>	$L_1 = I = ground$	II-1	Class 1 rocker-rocker	RRR1	Triple-rocker
6	>	$L_2 = I = input$	II-2	Class 2 rocker-rocker	RRR2	Triple-rocker
7	>	$L_3 = I = \text{coupler}$	II-3	Class 3 rocker-rocker	RRR3	Triple-rocker
8	>	$L_4 = I = \text{output}$	II-4	Class 4 rocker-rocker	RRR4	Triple-rocker
9	=	$L_1 = s = \text{ground}$	III-1	Change-point crank-crank-crank	SCCC	SC* double-crank
10	=	$L_2 = s = input$	III-2	Change-point crank-rocker-rocker	SCRR	SC crank-rocker
11	=	$L_3 = s = \text{coupler}$	III-3	Change-point rocker-crank-rocker	SRCR	SC double-rocker
12	=	$L_4 = s = \text{output}$	III-4	Change-point rocker-rocker-crank	SRRC	SC rocker-crank
13	=	Two equal pairs	III-5	Double change point	S2X	Parallelogram or deltoid
14	=	$L_1 = L_2 = L_3 = L_4$	III-6	Triple change point	S3X	Square

^{*} SC = special case

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

(a) Fivebar linkage—2 DOF

(b) Geared fivebar linkage—1 DOF

Kinematics Design of Mechanisms

Match the part, joints and links, in (a) to the picture in

the right (b): (a)

Figure 1–3 Landing Gear of an Aircraft Comparison.