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1 Modeling of a mass and two springs system with

double damping

Obtain a mathematical model for the system shown in figure 3-44

Figure 1: Figure 3-44

We are tasked with modeling the motion of a mass m positioned at the center be-
tween two rigid walls, connected to two springs with constants k1 and k2, and subjected
to friction forces proportional to velocity, with coefficients b1 and b2. The equilibrium
position is defined as x = 0. The mass is displaced to x0 and released from rest. Us-
ing Newton’s second law, we derive the governing equation, solve it using the Laplace
transform method, and compute the inverse transform to express the displacement x(t)
explicitly.

Step 1: Free-Body Diagram and Newton’s Second Law

The forces acting on the mass are:

• Restoring force due to the spring on the left: −k1x
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• Restoring force due to the spring on the right: −k2x

• Frictional force due to velocity, left side: −b1ẋ

• Frictional force due to velocity, right side: −b2ẋ

Applying Newton’s second law, the net force equals the mass times acceleration:

mẍ = −k1x− k2x− b1ẋ− b2ẋ. (1)

Simplifying:
mẍ+ (b1 + b2)ẋ+ (k1 + k2)x = 0. (2)

This is a second-order linear differential equation.

Step 2: Laplace Transform of the Differential Equa-

tion

Taking the Laplace transform of both sides (with zero initial velocity, ẋ(0) = 0, and
initial displacement x(0) = x0):

L{mẍ}+ L{(b1 + b2)ẋ}+ L{(k1 + k2)x} = 0. (3)

Using Laplace transform properties:

L{ẍ} = s2X(s)− sx(0),

L{ẋ} = sX(s),

L{x} = X(s),

where X(s) is the Laplace transform of x(t). Substituting:

m
(
s2X(s)− sx0

)
+ (b1 + b2)sX(s) + (k1 + k2)X(s) = 0. (4)

Reorganizing:
X(s)

[
ms2 + (b1 + b2)s+ (k1 + k2)

]
= msx0. (5)

Solving for X(s):

X(s) =
msx0

ms2 + (b1 + b2)s+ (k1 + k2)
. (6)

Step 3: Simplify the Transfer Function

The denominator is a quadratic equation:

ms2 + (b1 + b2)s+ (k1 + k2). (7)

Let B = b1 + b2 and K = k1 + k2. Thus:

X(s) =
msx0

ms2 +Bs+K
. (8)
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Step 4: Inverse Laplace Transform

The solution is obtained by partial fraction decomposition and using standard Laplace
transform tables. Rewrite the denominator:

ms2 +Bs+K = m
(
s2 +

B

m
s+

K

m

)
. (9)

Define ω2
n = K

m
(natural frequency) and 2ζωn = B

m
(damping ratio), where ζ = B

2
√
mK

.
The denominator becomes:

s2 + 2ζωns+ ω2
n. (10)

The transfer function is:
X(s) =

x0s

s2 + 2ζωns+ ω2
n

. (11)

Using Laplace transform tables, the time-domain solution is:

x(t) = x0e
−ζωnt cos(ωdt), (12)

where ωd = ωn

√
1− ζ2 is the damped natural frequency.

Final Solution

The displacement as a function of time is:

x(t) = x0e
−ζωnt cos

(
ωn

√
1− ζ2t

)
. (13)

2 Modeling a Mass-Spring-Damping System

Figure 2: Figure 3-45
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Consider the system shown in figure 3-45, where m = 2 kg, b = 4 Ns/m and k = 20
N/m. Assume that x(0) = 0.1 m, and v(0) = 0. The displacement is measured from the
equilibrium position

We are tasked with modeling the motion of a mass m suspended vertically from a
ceiling by a spring of stiffness k. The system is subjected to a damping force proportional
to velocity with coefficient b. The equilibrium position is defined as x = 0, where the
spring is stretched due to the weight of the mass. The mass is displaced to x0 and
released from rest. Using Newton’s second law, we derive the governing equation, solve it
using the Laplace transform method, and compute the inverse transform to express the
displacement x(t) explicitly.

Step 1: Free-Body Diagram and Newton’s Second Law

The forces acting on the mass are:

• Restoring force due to the spring: −kx

• Damping force: −bẋ

• Gravitational force: −mg

Applying Newton’s second law:

mẍ = −kx− bẋ−mg. (14)

At equilibrium (x = 0), the spring force balances the weight:

kxeq = mg =⇒ xeq =
mg

k
. (15)

Defining the displacement from equilibrium as y = x−xeq, we substitute x = y+xeq into
the equation:

mÿ = −k(y + xeq)− bẏ −mg,

mÿ = −ky − kxeq − bẏ −mg.

Using kxeq = mg:
mÿ + bẏ + ky = 0. (16)

This is the governing equation for the displacement y from equilibrium.

Step 2: Laplace Transform of the Differential Equa-

tion

Taking the Laplace transform of both sides (with zero initial velocity, ẏ(0) = 0, and initial
displacement y(0) = x0):

L{mÿ}+ L{bẏ}+ L{ky} = 0. (17)
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Using Laplace transform properties:

L{ÿ} = s2Y (s)− sy(0),

L{ẏ} = sY (s),

L{y} = Y (s),

where Y (s) is the Laplace transform of y(t). Substituting:

m
(
s2Y (s)− sx0

)
+ bsY (s) + kY (s) = 0. (18)

Reorganizing:
Y (s)

[
ms2 + bs+ k

]
= msx0. (19)

Solving for Y (s):

Y (s) =
msx0

ms2 + bs+ k
. (20)

Step 3: Simplify the Transfer Function

The denominator is a quadratic equation:

ms2 + bs+ k. (21)

Let ω2
n = k

m
(natural frequency) and 2ζωn = b

m
(damping ratio), where ζ = b

2
√
mk

. The
denominator becomes:

s2 + 2ζωns+ ω2
n. (22)

The transfer function is:
Y (s) =

x0s

s2 + 2ζωns+ ω2
n

. (23)

Step 4: Inverse Laplace Transform

Using Laplace transform tables, the time-domain solution is:

y(t) = x0e
−ζωnt cos(ωdt), (24)

where ωd = ωn

√
1− ζ2 is the damped natural frequency.

Step 5: Final Solution with Parameters

For m = 2
, kg,
k = 20
,N/m,
x0 = 0.1
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,m,
ẋ(0) = 0,
b = 4
,Ns/m, we calculate:

ωn =

√
k

m
=

√
20

2
=

√
10

, rad/s,

ζ =
b

2
√
mk

=
4

2 ·
√
2 · 20

=
4

4
√
10

=
1√
10

,

ωd = ωn

√
1− ζ2 =

√
10

√
1− 1

10
=

√
10 ·

√
9

10
= 3.

The displacement from equilibrium is:

x(t) =
mg

k
+ x0e

−ζωnt cos(ωdt). (25)

Substituting values:

x(t) =
(2)(9.8)

20
+ 0.1e

− 1√
10

√
10t

cos(3t) = 0.98 + 0.1e−t cos(3t). (26)

The solution is represented in figure 3,

Figure 3: Position as a time function

redefining the zero position in the equilibrium position:
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Figure 4: Position y as a time function
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