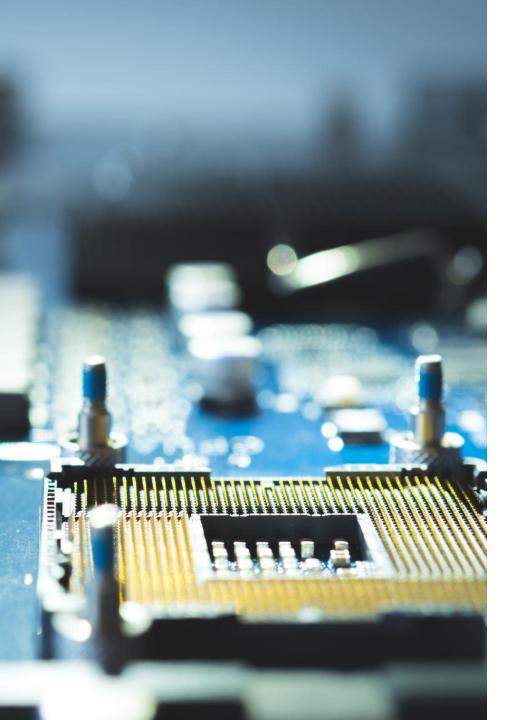
MODELING IN MECHANICAL, ELECTRICAL, FLUID, AND THERMAL SYSTEMS – PART 3/3

(IN THE TIME DOMAIN)

POLYTECHNIC UNIVERSITY OF PR – ORLANDO CAMPUS MECHANICAL ENGINEERING DEPARTMENT PROF. EDUARDO VERAS, PHD.



Learning Outcomes

- Describe the State-Space Model for Representing Physical Systems.
- Describe the State-Space Model for the Liquid-Level System Example.
- Describe the State-Space Model for the Thermal System Example.

Part #3: State-Space Model for Thermal Systems

- Thermal systems are those that involve the transfer of heat from one substance to another.
- There are three different ways heat can flow from one substance to another: conduction, convection, and radiation. (Here we consider only conduction and convection).
- For conduction or convection heat transfer, the heat flow is:

$$q = K\Delta\theta$$
 Eq. (3-18)

Where:

q:= is the heat flow rate, $\frac{kcal}{sec}$, $\Delta \theta$:= is the temperature difference, °C. K:= is the coefficient, $\frac{kcal}{sec. °C}$.

• *For conduction*, the coefficient $K = \frac{kA}{\Delta X}$ where:

k:= is the thermal conductivity, $\frac{kcal}{m \sec \circ C}$ A:= is the area normal to heat flow, m^2 . ΔX := is the thickness of the conductor, m.

• *For convection*, the coefficient K = HA where:

H:= is the convection coefficient, $\frac{kcal}{m^2 \sec C}$ *A*:= is the area normal to heat flow, m^2 .

• The thermal resistance *R* for heat transfer between two substances may be defined as follows:

$$R = \frac{change in the temperature difference, ^{\circ}C}{change in the heat flow rate, ^{kcal}/_{\circ}C}$$

Eq. (3-19)

• The thermal resistance for conduction or convection heat transfer is given by:

$$R = \frac{d(\Delta\theta)}{dq} = \frac{1}{K} \qquad \qquad \text{Eq. (3-20)}$$

 Since the thermal conductivity and convection coefficients are almost constant, the thermal resistance for either conduction or convection is constant.

• The thermal capacitance *C* is defined by:

$$C = \frac{change in heat stored, kcal}{change in temperature, °C}$$
 Eq. (3-21)

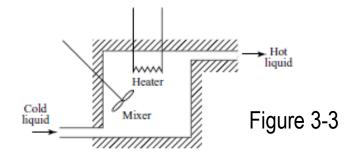
Or:

$$C = mc$$
 Eq. (3-22)

Where:

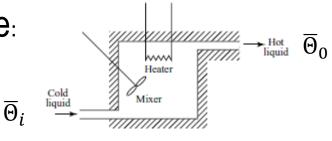
m:= mass of substance considered, kg*c*:= specific heat of substance, $\frac{kcal}{kg \circ C}$

• Consider the system shown in Figure 3-3:



- Assumptions made:
 - tank is insulated to eliminate heat loss to the surrounding air.
 - there is no heat storage in the insulation
 - the liquid in the tank is perfectly mixed so that it is at a uniform temperature.
- Therefore, a single temperature is used to describe the temperature of the liquid in the tank and of the outflowing liquid.

• In Figure 3-3, the variables are:



 $\overline{\Theta}_i$:= steady-state temperature of inflowing liquid, °C $\overline{\Theta}_0$:= steady-state temperature of outflowing liquid, °C G:= steady-state liquid flow rate, $\frac{kg}{sec}$ M:= mass of liquid in the tank, kg c:= specific heat of liquid, $\frac{kcal}{kg}$ °C R:= thermal resistance, °C sec/kcal C:= thermal capacitance, $\frac{kcal}{c}$ \overline{H} := steady-state heat input rate, $\frac{kcal}{sec}$

- We can obtain the dynamic equation given the following conditions:
 - 1. The temperature of the inflowing liquid is suddenly changed from $\overline{\Theta}_i$ to $\overline{\Theta}_i + \theta_i$ while the heat input rate *H*.
 - 2. The liquid flow rate *G* are kept constant.
 - 3. The heat outflow rate is changed from \overline{H} to $\overline{H} + h_0$.
 - 4. The temperature of the outflowing liquid will be changed from $\overline{\Theta}_0$ to $\overline{\Theta}_0 + \theta_0$.
- For these conditions, the *heat balance equation* for this case is: $C \frac{d\theta}{dt} = Gc\theta_i h_0$ Eq. (3-23)
- Substituting Eq. (3-20) into Eq. (3-23), yields: $RC \frac{d\theta}{dt} + \theta = \theta_i$ Eq. (3-24)

- Now, we derive the state-space model for thermal control system considering small deviations from steady-state operation. Assume that the heat loss to the surroundings is negligible.
- Solution:
- From Eq. (3-24): $RC \frac{d\theta}{dt} + \theta = \theta_i$
- From Eq. (3-20): $Rdq = d\theta$
- The heat transfer results in a change in the system's temperature. So, taking the heat flow and temperature changes over a time interval, dt, Eq. (3-20) becomes:

$$R\frac{dq}{dt} = \frac{d\theta}{dt}$$

• Solution (cont.): Changing notation:

1 --

10

$$RC\frac{d\theta}{dt} + \theta(t) = \theta_i(t) \quad \rightarrow \quad RC\dot{\theta}(t) + \theta(t) = \theta_i(t)$$
 (a)

$$R\frac{dq}{dt} = \frac{d\theta}{dt} \longrightarrow Rq(t) = \dot{\theta}(t)$$
 (b)

- From Eq. (a): $\dot{\theta}(t) = -\frac{1}{RC}\theta(t) + \frac{1}{RC}\theta_i(t)$ C
- **Note**: Recall that $C = \frac{dq}{d\theta}$ and deriving $q = mc\theta$, we get $dq = mcd\theta$ (or $\frac{dq}{d\theta} = mc$), where *c* is the specific heat of the liquid and *m* is the mass of liquid in the tank. Then:

$$C = mc \qquad \qquad (d)$$
$$q = C\theta \qquad \qquad (e)$$

• Solution (cont.): Substituting Eq (b) and Eq. (e) into Eq. (c), we get:

• Let us define state variables $x_1(t)$ and $x_2(t)$ as:

$$x_1(t) = \theta(t) \tag{g}$$

$$x_2(t) = q(t) \tag{h}$$

- Solution (cont.):
- From Eq. (g): $\dot{x}_1(t) = \dot{\theta}(t) \Rightarrow \dot{x}_1(t) = \dot{\theta}(t) = -\frac{1}{RC}\theta(t) + \frac{1}{RC}\theta_i(t)$ Eq. (i)
- From Eq. (h): $\dot{x}_2(t) = \dot{q}(t)$ $\dot{x}_2(t) = \dot{q}(t) = -\frac{1}{R^2 C^2} q(t) + \frac{1}{R^2 C} \theta_i(t)$ Eq. (j)
- Dropping t from Eq. (i) & Eq. (h), the state-space model in matrix form is: $\dot{x}(t) = Ax(t) + Bu(t)$

y(t) = Cx(t) + Du(t)

State Equation:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{RC} & 0 \\ 0 & -\frac{1}{(RC)^2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{RC} \\ \frac{1}{R^2C} \end{bmatrix} u$$
Output Equation:
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

State-Space Model for Representing Physical Systems

- In the state-space model representation, the numbers of state variables is equal with the highest-order of the ordinary differential equation (ODE) describing the dynamic system.
- The set of state variables is not unique, and they may be defined in terms of physical variables which can be measured.
- State-space models are the cornerstone of modem control theory.

THANK YOU

POLYTECHNIC UNIVERSITY OF PR – ORLANDO CAMPUS MECHANICAL ENGINEERING DEPARTMENT PROF. EDUARDO VERAS, PHD. EVERAS@PUPR.EDU