
Energy and the first law of 
thermodynamics

Part II





Lesson 2: Modeling Expansion or 
Compression Work
• Let us evaluate the work done by the closed system 

shown in Figure consisting of a gas (or liquid) contained 
in a piston-cylinder assembly as the gas expands. During 
the process, the gas pressure exerts a normal force on 
the piston. 

• Let 𝑝 denote the pressure acting at the interface 
between the gas and the piston. The force exerted by the 
gas on the piston is simply the product 𝑝𝐴, where 𝐴 is the 
area of the transversal section of the piston face. The work 
done by the system as the piston is displaced a distance 
𝑑𝑥 is:

𝛿𝑊 = 𝑝𝐴𝑑𝑥



Lesson 2: Modeling Expansion or 
Compression Work
• The product 𝐴𝑑𝑥 equals the change in volume of the 
system, 𝑑𝑉. 

• Thus, the work expression can be written as:

𝛿𝑊 = 𝑝𝑑𝑉

• Since 𝑑𝑉 > 0 is positive when volume increases, the
work at the moving boundary is positive when the gas
expands. For a compression, 𝑑𝑉 < 0 is negative

• These signs agree with the previously stated sign
convention for work.



Lesson 2: Modeling Expansion or 
Compression Work
• For a change in volume from 𝑉1 to 𝑉2, the work is
obtained by integrating:

𝑊 = න
𝑉1

𝑉2

𝑝𝑑𝑉

• This equation applies to systems of any shape provided
the pressure is uniform with position over the moving
boundary.

• By free expansion, we mean expansion against zero
opposing force. It occurs when 𝑝 = 0. According to the
last equation, 𝑊 = 0 for each stage of the expansion.
Hence, overall:

𝑊 = 0:    Free expansion



Subtheme 2.1: Expansion or Compression 
Process
• To calculate the Work, it is requires a relationship between the gas 

pressure at the moving boundary and the system volume, but this 
relationship may be difficult, or even impossible, to obtain for actual 
compressions and expansions

• In the cylinder of an automobile engine, for example, combustion and 
other nonequilibrium effects give rise to nonuniformities throughout 
the cylinder



Subtheme 2.1: Expansion or Compression 
Process
• Based on a curve fitted to the 

data could give a plausible 
estimate of the work



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• A quasi-equilibrium process is one in which all states through which 

the system passes may be considered equilibrium states

• A particularly important aspect of the quasi-equilibrium process 
concept is that the values of the intensive properties are uniform 
throughout the system, or every phase present in the system, at each 
state visited

• With this approximation the Work equation can be applied to 
evaluate the work in quasi-equilibrium expansion or compression 
processes. 



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• To consider how a gas might be 

expanded or compressed in a 
quasi-equilibrium fashion, refer to 
Figure

• As shown in the figure, the gas 
pressure is maintained uniform 
throughout by many small masses 
resting on the freely moving piston

• The system would eventually come 
to a new equilibrium state, where 
the pressure and all other intensive 
properties would again be uniform 
in value



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• For such idealized processes, the pressure p in the equation is the 

pressure of the entire quantity of gas undergoing the process and not 
just the pressure at the moving boundary.



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• The relationship between pressure and volume may be
graphical or analytical. Let us first consider a graphical
relationship.

• A graphical relationship is shown in the pressure-volume
diagram (p–V diagram). Initially, the piston face is at
position 𝑥1, and the gas pressure is 𝑝1; after a quasi-
equilibrium expansion process the piston face is at position
𝑥2, and the pressure is reduced to 𝑝2.



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• At each intervening piston position, the uniform pressure
throughout the gas is shown as a point on the diagram. The
curve, or path, connecting states 1 and 2 on the diagram
represents the equilibrium states through which the system
has passed during the process.

• The work done by the gas on the piston during the
expansion is given by Work Equation, which can be
interpreted as the area under the curve of pressure versus
volume. Thus, the shaded area in Figure is equal to the
work for the process.

• Had the gas been compressed from 2 to 1 along the
same path on the 𝑝–𝑉 diagram, the magnitude of the work
would be the same, but the sign would be negative,
indicating that for the compression the energy transfer was
from the piston to the gas.



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• The area interpretation of work in a quasi-equilibrium
expansion or compression process allows a simple
demonstration of the idea that work depends on the
process. This can be brought out by referring to Figure.
Suppose the gas in a piston-cylinder assembly goes from
an initial equilibrium state 1 to a final equilibrium state 2
along two different paths, labeled A and B in Figure.

• Since the area beneath each path represents the work
for that process, the work depends on the details of the
process as defined by the curve and not just on the end
states. Work is not a property; the value of work depends
on the nature of the process between the initial and end
states.



Subtheme 2.2: Quasiequilibrium Expansion or 
Compression Process
• The relationship between pressure and volume during an
expansion or compression process also can be described
analytically. An example is provided by the expression
𝑝𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where the value of n is a constant for
the process. A quasi-equilibrium process described by such
an expression is called a polytropic process. Additional
analytical forms for the pressure-volume relationship also
may be considered.



Lesson 3: Broadening Our Understanding of 
Energy
• We consider the total energy of a system, which includes kinetic 

energy, gravitational potential energy, and other forms of energy

• When a gas initially at an equilibrium state in a closed, insulated 
vessel is stirred vigorously and allowed to come to a final equilibrium 
state, the energy of the gas is increased in the process

• In this case, the change in system energy cannot be attributed to 
changes in the system’s overall kinetic or gravitational potential 
energy

• In engineering thermodynamics, the change in the total energy of a 
system is considered to be made up of three macroscopic 
contributions



Lesson 3: Broadening Our Understanding of 
Energy
• The change in the total energy of a system is: The identification of 

internal energy as a macroscopic form of energy is a significant step in 
the present development, for it sets the concept of energy in 
thermodynamics apart from that of mechanics

• The internal energy is an extensive property of the system, as is the 
total energy.



Lesson 3: Broadening Our Understanding of 
Energy
• Internal energy is represented by the symbol 𝑈, and the change in internal energy in a process is

𝑈2 − 𝑈1. 

• The specific internal energy is symbolized by 𝑢 or ത𝑢, respectively, depending on whether it is expressed on a unit mass
or per mole basis. The change in the total energy of a system is:

𝐸2 − 𝐸1 = (𝐾𝐸2− 𝑈𝐾𝐸1) + (𝑃𝐸2− 𝑈𝑃𝐸1) + (𝑈2− 𝑈1)

∆𝐸 = ∆𝐾𝐸 + ∆𝑃𝐸 + ∆𝑈

• The identification of internal energy as a macroscopic form of energy is a significant step in the present development, for
it sets the concept of energy in thermodynamics apart from that of mechanics.



Lesson 3: Broadening Our Understanding of 
Energy
• To further expand our understanding of internal energy, consider a system 

we will often encounter in subsequent sections of the course, a system 
consisting of a gas contained in a tank. Let us develop a microscopic 
interpretation of internal energy by thinking of the energy attributed to the 
motions and configurations of the individual molecules, atoms, and 
subatomic particles making up the matter in the system. 

• Gas molecules move about, encountering other molecules or the walls of 
the container. Part of the internal energy of the gas is the translational 
kinetic energy of the molecules. Other contributions to the internal energy 
include the kinetic energy due to rotation of the molecules relative to their 
centers of mass and the kinetic energy associated with vibrational motions 
within the molecules. 



Lesson 3: Broadening Our Understanding of 
Energy
• Besides, energy is stored in the chemical bonds between the atoms 

that make up the molecules. Energy storage on the atomic level 
includes energy associated with electron orbital states, nuclear spin, 
and binding forces in the nucleus. In dense gases, liquids, and solids, 
intermolecular forces play an important role in affecting the internal 
energy.





Subtheme 3.1: Energy Transfer by Heat

• So far, we have considered only quantitatively those interactions 
between a system and its surroundings that can be classed as work

• Based on the experiment, beginning with the work of Joule in the 
early part of the nineteenth century, we know that energy transfers 
by heat are induced only as a result of a temperature difference 
between the system and its surroundings and occur only in the 
direction of decreasing temperature

• Because the underlying concept is so important in thermodynamics, 
this section is devoted to further consideration of energy transfer by 
heat



Subtheme 3.2: Sign Convention, Notation, 
and Heat Transfer Rate
• The symbol  denotes an amount of energy transferred across the 

boundary of a system in a heat interaction with the system’s 
surroundings

• The sign convention for heat transfer is the reverse of the one 
adopted for work, where a positive value for W signifies an energy 
transfer from the system to the surroundings

• These signs for heat and work are a legacy from engineers and 
scientists who were concerned mainly with steam engines and other 
devices that develop a work output from an energy input by heat 
transfer



Subtheme 3.2: Sign Convention, Notation, 
and Heat Transfer Rate
• The symbol 𝑄 denotes an amount of energy transferred across the boundary of a system in a heat interaction with the
system’s surroundings. Heat transferred into a system is taken to be positive, and heat transferred out from a system is
taken as negative.

𝑄 > 0:   heat transfer to the system
𝑄 < 0:   heat transfer from the system

• This sign convention is used throughout the course. The sign convention for heat transfer is the reverse of the one
adopted for work, where a positive value for W signifies an energy transfer from the system to the surroundings.

• These signs for heat and work are a legacy from engineers and scientists who were concerned mainly with steam
engines and other devices that develop a work output from an energy input by heat transfer. For such applications, it was
convenient to regard both the work developed and the energy input by heat transfer as positive quantities.



Subtheme 3.2: Sign Convention, Notation, 
and Heat Transfer Rate
• The value of a heat transfer depends on the details of a process and not just the end states. Thus, like work, heat is not a
property, and its differential is written as 𝛿𝑄. The amount of energy transfer by heat for a process is given by the integral:

𝑄 = 1׬
2
𝛿𝑄

• where the limits mean “from state 1 to state 2” and do not refer to the values of heat at those states. As for work, the
notion of “heat” at a state has no meaning, and the integral should never be evaluated as:

𝑄2 − 𝑄1



Subtheme 3.2: Sign Convention, Notation, 
and Heat Transfer Rate
• The net rate of heat transfer is denoted by the amount of energy transfer by heat during a time and can be found by
integrating from time 𝑡1 to time 𝑡2:

𝑄 = 𝑡1׬
𝑡2 ሶ𝑄 𝑑𝑡

• To perform the integration, it would be necessary to know how the rate of heat transfer varies with time. In some cases, it
is convenient to use the heat flux, ሶ𝑞, which is the heat transfer rate per unit of the system surface area. The net rate of heat
transfer, ሶ𝑄, is related to the heat flux by the integral:

ሶ𝑄 = න

𝐴

ሶ𝑞𝑑𝐴

where 𝐴 represents the area on the boundary of the system where heat transfer occurs. The units for 𝑄 are the same as
those introduced previously for 𝑊.



Subtheme 3.2: Sign Convention, Notation, 
and Heat Transfer Rate
• The net rate of heat transfer is denoted by the amount of energy 

transfer by heat during a time and can be found by integrating from 
time  to time : To perform the integration, it would be necessary to 
know how the rate of heat transfer varies with time



Lesson 4: Practical Examples

• The gas is a closed system

• The moving boundary is the only work mode

• The expansion is a polytropic process





Lesson 4: Practical Examples

• A gas in a piston-cylinder assembly undergoes an 
expansion process for which the relationship between 
pressure and volume is given by 𝑝𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
The initial pressure is 3 𝑏𝑎𝑟, the initial volume is 0.1 𝑚3, 
and the final volume is 0.2 𝑚3. Determine the work for 
the process, in 𝑘𝐽, if (a) 𝑛 = 1.5, (b) 𝑛 = 1.0, and 
(c) 𝑛 = 0.



Lesson 4: Practical Examples

Assumptions:

• The gas is a closed system.
• The moving boundary is the only work mode.
• The expansion is a polytropic process.

Analysis: The required values for the work are obtained by
the integration of Work Equation using the given pressure-
volume relation.



Lesson 4: Practical Examples

(a) Introducing the relationship 𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑉𝑛 into Eqn. 14 and performing the integration:

𝑊 = න
𝑉1

𝑉2

𝑝𝑑𝑉 = න
𝑉1

𝑉2 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑉𝑛 𝑑𝑉

=
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑉2

1−𝑛 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑉1
1−𝑛

1 − 𝑛

The constant in this expression can be evaluated at either end state: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑝1𝑉1
𝑛 = 𝑝2𝑉2

𝑛. The work expression 
then becomes:

𝑊 =
𝑝2𝑉2

𝑛 𝑉2
1−𝑛 − 𝑝1𝑉1

𝑛 𝑉1
1−𝑛

1 − 𝑛
=
𝑝2𝑉2 − 𝑝1𝑉1

1 − 𝑛

This expression is valid for all values of 𝑛 except 𝑛 = 1.0. The case 𝑛 = 1.0 is taken up in part (b).



Lesson 4: Practical Examples

To evaluate 𝑊, the pressure at state 2 is required. This can be found by using 𝑝1𝑉1
𝑛 = 𝑝2𝑉2

𝑛 which on rearrangement
yields:

𝑝2 = 𝑝1
𝑉1
𝑉2

𝑛

= 3 𝑏𝑎𝑟
0.1

0.2

1.5

= 1.06 𝑏𝑎𝑟

Accordingly:

𝑊 =
1.06 𝑏𝑎𝑟 0.2 𝑚3 − 3 0.1

1 − 1.5

105
𝑁
𝑚2

1 𝑏𝑎𝑟

1 𝑘𝐽

103 𝑁𝑚
= +17.6 𝑘𝐽



Lesson 4: Practical Examples

(b) For 𝑛 = 1.0, the pressure-volume relationship is 𝑝𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑉. The work is:

𝑊 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 න
𝑉1

𝑉2 𝑑𝑉

𝑉
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑙𝑛

𝑉2
𝑉1

= (𝑝1𝑉1)𝑙𝑛
𝑉2
𝑉1

Substituting values:

𝑊 = 3 𝑏𝑎𝑟 0.1 𝑚3
10

𝑁
𝑚2

1 𝑏𝑎𝑟

1 𝑘𝐽

103 𝑁𝑚
𝑙𝑛

0.2

0.1
= +20.79 𝑘𝐽

(c) For 𝑛 = 0, the pressure-volume relation reduces to 𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and the integral becomes 𝑊 = 𝑝(𝑉2 − 𝑉1),
which is a special case of the expression found in part (a). Substituting values and converting units as above, 𝑊 =
+30 𝑘𝐽.



Conclusion

• This module has centered on systems for which applied forces affect 
only their overall velocity and position

• To analyze such systems, the concepts of kinetic and potential energy 
alone do not suffice, nor does the rudimentary conservation of 
energy principle introduced in this lesson

• In thermodynamics, the concept of energy is broadened to account 
for other observed changes, and the principle of conservation of 
energy is extended to include a wide variety of ways in which systems 
interact with their surroundings
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