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Preface

We began the development of the Fifth Editions of Engi-
neering Mechanics: Statics and Dynamics by asking our-
selves how our textbooks could be restructured to help
students learn mechanics more effectively and efficiently. 

From the first editions, our objective has been to pres-
ent material in a way that emulates the teacher’s develop-
ment of concepts in the classroom and emphasizes visual
analysis to enhance student understanding. 

Now, based on our classroom experiences and insights
provided by colleagues and students over many years, we
have designed the fifth editions to conform more closely to
the way today’s students actually use textbooks in learning
mechanics. In developing the new elements described below,
we have continued to adhere to our original goals of teach-
ing effective problem-solving procedures and the central
importance of free-body diagrams.

New to this Edition

Active Examples 
A new example format designed to help students learn con-
cepts and methods and test their understanding. Discussions
are visually related to figures and equations in a new integrated
text/art format for efficient reading. A “Practice Problem” is
provided at the end of theActive Example so that students will
be motivated to spend more time working with the example
and checking whether they understood the material. They can
easily assess their understanding by referring to the answer to
the Practice Problem that is provided on the page, or by study-
ing the complete solution that is presented in an appendix in the
same text/art integrated format as the Active Example.

Example-Focused Problems
New homework problems designed to encourage students
to study given examples and expand their understanding of

concepts. The numbers of these problems are cited at the
beginning of each example so that teachers can easily use
them to encourage study of selected topics.

Results 
Most sections of the text now conclude with a new Results
subsection, a self-contained and complete description of the
results required to understand the following examples and
problems. They are presented in the same integrated text/art
format used in the Active Examples for easier comprehen-
sion. Students can efficiently refer to these subsections while
studying examples and working problems. 

Problem Sets 
Thirty percent of the problems are new in the statics text.
Problems that are relatively lengthier or more difficult have
been marked with an asterisk. Additional problems can be
generated using the online homework system with its algo-
rithmic capabilities.

Hallmark Elements of the Text

Examples 
In addition to the new Active Examples, we maintain our
examples that follow a three-part framework—Strategy/
Solution/Critical Thinking—designed to help students
develop engineering problem skills. In the Strategy sections,
we demonstrate how to plan the solution to a problem. The
Solution presents the detailed steps needed to arrive at the
required results. 

Some of the examples have a focus on design and pro-
vide detailed discussions of applications in statics in engi-
neering design.
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Computational Mechanics
Some instructors prefer to teach statics without emphasiz-
ing the use of the computer. Others use statics as an oppor-
tunity to introduce students to the use of computers in
engineering, having them either write their own programs in
a lower level language of use higher level problem-solving
software. Our book is suitable for both approaches. Optional,
self-contained Computational Mechanics material is avail-
able for this text on the Companion Website, including tuto-
rials using Mathcad and MATLAB. See the supplements
section for further information.

Art Program
We recognize the importance of helping students visualize
problems in mechanics. Students prefer, and are more
motivated by, realistic situations. Our texts include many
photographs as well as figures with “photo-realistic”
rendering to help students visualize applications and provide
a stronger connection to actual engineering practice.

Consistent Use of Color
To help students recognize and interpret elements of figures,
we use consistent identifying colors:

Triple Accuracy Checking—Commitment 
to Students and Instructors
It is our commitment to students and instructors to take pre-
cautions to ensure the accuracy of the text and its solutions
manual to the best of our ability. We use a system of triple
accuracy checking in which three parties, in addition to the
authors, solve the problems in an effort to be sure that their
answers are correct and that they are of an appropriate level
of difficulty. Our accuracy team consists of:

• Scott Hendricks of Virginia Polytechnic University
• Karim Nohra of the University of South Florida
• Kurt Norlin of Laurel Technical Services 

The parties further verified the text, examples, problems, and
solutions manuals to help ensure accuracy. Any errors remain
the responsibility of the authors. We welcome communica-
tion from students and instructors concerning errors or areas
for improvement. Our mailing address is Department of
Aerospace Engineering and Engineering Mechanics, Uni-
versity of Texas at Austin, Austin, Texas 78712. Our email
address is abedford@mail.utexas.edu

Instructor & Student Resources

Student Resources
The Dynamics Study Pack is designed to give students the
tools to improve their skills drawing free-body diagrams, and
to help them review for tests. It contains a tutorial on free-body
diagrams with fifty practice problems of increasing difficulty
with complete solutions. Further strategies and tips help stu-
dents understand how to use the diagrams in solving the ac-
companying problems. This supplement and accompanying
chapter by chapter review material was prepared by Peter
Schiavone of the University ofAlberta.An access code for the
Companion Website is included inside the Study Pack.

The Dynamics Study Pack is also available as a stand-
alone item. Order stand-alone Study Packs with the 
ISBN 0-13-614001-7.

Web Assessment and Tutorial Resources—Students
can access study and review resources such as supplemental
practice problems on the Companion Website for this text.

www.prenhall.com/bedford

MATLAB and Mathcad tutorials are available on the Compan-
ion Website. Each tutorial discusses a basic mechanics con-
cept, and then shows how to solve a specific problem related
to this concept using MATLAB and Mathcad. There are twen-
ty tutorials each for MATLAB and Mathcad. Worksheets were

xiv Preface

Unit vectors

Forces
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Couples

BEDFFM_0136129161.QXD  6/16/07  6:44 PM  Page xiv



Preface xv

developed by Ronald Larsen and Stephen Hunt of Montana
State University–Bozeman.

Additionally, instructors can assign online homework
for students using PH GradeAssist. Answers are graded and
results are recorded electronically. Online subscription is
available.

Activebook—The Activebook is a subscription-based,
full-featured online version of the textbook. Shared com-
ments, note-taking, and text-highlighting make this a pow-
erful tool for study and review. Order access online from
www.prenhall.com/bedford or order ISBN 0-13-600348-6
(Statics), 0-13-600349-3 (Dynamics), 0-13-601212-4 (Com-
bined Statics & Dynamics).

Instructor Resources
Instructor’s Solutions Manual—This supplement, avail-
able to instructors, contains completely worked out solutions.
Each solution comes with the problem statement as well
as associated artwork. The ISBN for the printed manual is 
0-13-614032-7. Solutions are also available electronically
for instructors at www.prenhall.com

Instructor’s Resource Center on CD—This CD con-
tains PowerPoint slides and JPEG files of all art from the
text. It also contains sets of PowerPoint slides showing each
example.

Web Assessment and Tutorial Resources—Through
PH (Prentice Hall) GradeAssist, instructors can create online
assignments for students using problems from the text. PH
GradeAssist also offers every problem in an algorithmic
format so that each student can work with slightly different
numbers. Students also benefit from an integrated e-book.
Answers to problems are recorded in an online gradebook
that can be downloaded into Excel. For additional review,
study, and practice resources, students should access the
Companion Website where they can find supplemental prob-
lem sets and information. Contact your Prentice Hall repre-
sentative for details or a demonstration.

Activebook—Instructors can use the Activebook, a full-
featured online version of the textbook, as a powerful tool to
annotate and share comments with students. Contact your
Prentice Hall representative for details or a demonstration.

Ordering Options
Engineering Mechanics: Dynamics with Study Pack (0-13-
514353-5). Engineering Mechanics: Dynamics with Study
Pack and PHGA (0-13-135456-6).
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C H A P T E R

12
Introduction

How do engineers design and construct the devices
we use, from simple objects such as chairs and pencil
sharpeners to complicated ones such as dams, cars,
airplanes, and spacecraft? They must have a deep
understanding of the physics underlying the design of
such devices and must be able to use mathematical
models to predict their behavior. Students of engineering
begin to learn how to analyze and predict the behaviors
of physical systems by studying mechanics.

! The motions of the bobsled and its crew—their positions, velocities, and
accelerations—can be analyzed using the equations of dynamics. Engineers use
dynamics to predict the motions of objects.
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4 Chapter 12 Introduction

12.1 Engineering and Mechanics

BACKGROUND
How can engineers design complex systems and predict their characteristics
before they are constructed? Engineers have always relied on their knowledge
of previous designs, experiments, ingenuity, and creativity to develop new de-
signs. Modern engineers add a powerful technique: They develop mathemati-
cal equations based on the physical characteristics of the devices they design.
With these mathematical models, engineers predict the behavior of their de-
signs, modify them, and test them prior to their actual construction. Aerospace
engineers use mathematical models to predict the paths the space shuttle will fol-
low in flight. Civil engineers use mathematical models to analyze the effects of
loads on buildings and foundations.

At its most basic level, mechanics is the study of forces and their effects.
Elementary mechanics is divided into statics, the study of objects in equilibri-
um, and dynamics, the study of objects in motion. The results obtained in ele-
mentary mechanics apply directly to many fields of engineering. Mechanical and
civil engineers designing structures use the equilibrium equations derived in
statics. Civil engineers analyzing the responses of buildings to earthquakes and
aerospace engineers determining the trajectories of satellites use the equations
of motion derived in dynamics.

Mechanics was the first analytical science. As a result, fundamental con-
cepts, analytical methods, and analogies from mechanics are found in virtually
every field of engineering. Students of chemical and electrical engineering gain
a deeper appreciation for basic concepts in their fields, such as equilibrium, energy,
and stability, by learning them in their original mechanical contexts. By studying
mechanics, they retrace the historical development of these ideas.

Mechanics consists of broad principles that govern the behavior of objects.
In this book we describe these principles and provide examples that demonstrate
some of their applications. Although it is essential that you practice working
problems similar to these examples, and we include many problems of this kind,
our objective is to help you understand the principles well enough to apply them
to situations that are new to you. Each generation of engineers confronts new
problems.

Problem Solving
In the study of mechanics, you learn problem-solving procedures that you will
use in succeeding courses and throughout your career. Although different types of
problems require different approaches, the following steps apply to many of them:

• Identify the information that is given and the information, or answer, you
must determine. It’s often helpful to restate the problem in your own
words. When appropriate, make sure you understand the physical system
or model involved.

• Develop a strategy for the problem. This means identifying the principles and
equations that apply and deciding how you will use them to solve the problem.
Whenever possible, draw diagrams to help visualize and solve the problem.

• Whenever you can, try to predict the answer. This will develop your intui-
tion and will often help you recognize an incorrect answer.

• Solve the equations and, whenever possible, interpret your results and
compare them with your prediction. This last step is a reality check. Is your
answer reasonable?
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12.1 Engineering and Mechanics 5

Numbers
Engineering measurements, calculations, and results are expressed in numbers.
You need to know how we express numbers in the examples and problems and
how to express the results of your own calculations.

Significant Digits This term refers to the number of meaningful (that is,
accurate) digits in a number, counting to the right starting with the first non-
zero digit. The two numbers 7.630 and 0.007630 are each stated to four sig-
nificant digits. If only the first four digits in the number 7,630,000 are known
to be accurate, this can be indicated by writing the number in scientific nota-
tion as

If a number is the result of a measurement, the significant digits it contains
are limited by the accuracy of the measurement. If the result of a measurement
is stated to be 2.43, this means that the actual value is believed to be closer to
2.43 than to 2.42 or 2.44.

Numbers may be rounded off to a certain number of significant digits. For
example, we can express the value of to three significant digits, 3.14, or we
can express it to six significant digits, 3.14159. When you use a calculator or
computer, the number of significant digits is limited by the number of digits
the machine is designed to carry.

Use of Numbers in This Book You should treat numbers given in prob-
lems as exact values and not be concerned about how many significant digits
they contain. If a problem states that a quantity equals 32.2, you can assume its
value is 32.200. We generally express intermediate results and answers in the
examples and the answers to the problems to at least three significant digits. If
you use a calculator, your results should be that accurate. Be sure to avoid round-
off errors that occur if you round off intermediate results when making a series
of calculations. Instead, carry through your calculations with as much accuracy
as you can by retaining values in your calculator.

Space and Time
Space simply refers to the three-dimensional universe in which we live. Our
daily experiences give us an intuitive notion of space and the locations, or po-
sitions, of points in space. The distance between two points in space is the length
of the straight line joining them.

Measuring the distance between points in space requires a unit of length.
We use both the International System of units, or SI units, and U.S. Customary
units. In SI units, the unit of length is the meter (m). In U.S. Customary units,
the unit of length is the foot (ft).

Time is, of course, familiar—our lives are measured by it. The daily cycles
of light and darkness and the hours, minutes, and seconds measured by our
clocks and watches give us an intuitive notion of time. Time is measured by
the intervals between repeatable events, such as the swings of a clock pendu-
lum or the vibrations of a quartz crystal in a watch. In both SI units and U.S. Cus-
tomary units, the unit of time is the second (s). The minute (min), hour (h), and
day are also frequently used.

If the position of a point in space relative to some reference point changes
with time, the rate of change of its position is called its velocity, and the rate
of change of its velocity is called its acceleration. In SI units, the velocity is
expressed in meters per second and the acceleration is expressed in
meters per second per second, or meters per second squared In U.S.1m/s22.1m/s2

Á

p

7.630 * 106.
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6 Chapter 12 Introduction

Customary units, the velocity is expressed in feet per second (ft /s) and the ac-
celeration is expressed in feet per second squared

Newton’s Laws
Elementary mechanics was established on a firm basis with the publica-
tion in 1687 of Philosophiae Naturalis Principia Mathematica, by Isaac
Newton. Although highly original, it built on fundamental concepts devel-
oped by many others during a long and difficult struggle toward understand-
ing (Fig. 12.1).

1ft /s22.

 Peloponnesian War 400 B.C.

A.D. 400

800

1200

1400

1600

1650

1700

Roman invasion of Britain

Coronation of Charlemagne

Norman conquest of Britain

Signing of Magna Carta

Bubonic plague in Europe

Printing of Gutenberg Bible

Voyage of Columbus

Founding of Jamestown Colony

Thirty Years’  War
Pilgrims’ arrival in Massachusetts

Founding of Harvard University

Settlement of Carolina

Pennsylvania grant to William Penn

Salem witchcraft trials

Aristotle: Statics of levers, speculations on dynamics
Archimedes: Statics of levers, centers of mass, buoyancy

Hero of Alexandria: Statics of levers and pulleys
Pappus: Precise definition of center of mass

John Philoponus: Concept of inertia

Jordanus of Nemore: Stability of equilibrium

Albert of Saxony: Angular velocity
Nicole d’Oresme: Graphical kinematics, coordinates
William Heytesbury: Concept of acceleration

Nicolaus Copernicus: Concept of the solar system
Dominic de Soto: Kinematics of falling objects
Tycho Brahe: Observations of planetary motions

Simon Stevin: Principle of virtual work
Johannes Kepler: Geometry and kinematics of 
planetary motions
Galileo Galilei: Experiments and analyses in statics 
and dynamics, motion of a projectile

René Descartes: Cartesian coordinates
Evangelista Torricelli: Experiments on hydrodynamics
Blaise Pascal: Analyses in hydrostatics

John Wallis, Christopher Wren, Christiaan Huyghens: 
Impacts between objects

Isaac Newton: Concept of mass, laws of motion, 
postulate of universal  gravitation, 
analyses of planetary motions

0

Figure 12.1
Chronology of developments in mechanics up to the publication of Newton’s
Principia in relation to other events in history.
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12.1 Engineering and Mechanics 7

Newton stated three “laws” of motion, which we express in modern terms:

1. When the sum of the forces acting on a particle is zero, its velocity is
constant. In particular, if the particle is initially stationary, it will remain
stationary.

2. When the sum of the forces acting on a particle is not zero, the sum of the
forces is equal to the rate of change of the linear momentum of the particle.
If the mass is constant, the sum of the forces is equal to the product of the
mass of the particle and its acceleration.

3. The forces exerted by two particles on each other are equal in magnitude
and opposite in direction.

Notice that we did not define force and mass before stating Newton’s laws. The
modern view is that these terms are defined by the second law. To demonstrate,
suppose that we choose an arbitrary object and define it to have unit mass. Then
we define a unit of force to be the force that gives our unit mass an acceleration
of unit magnitude. In principle, we can then determine the mass of any object:
We apply a unit force to it, measure the resulting acceleration, and use the sec-
ond law to determine the mass. We can also determine the magnitude of any
force: We apply it to our unit mass, measure the resulting acceleration, and use
the second law to determine the force.

Thus Newton’s second law gives precise meanings to the terms mass and
force. In SI units, the unit of mass is the kilogram (kg). The unit of force is the
newton (N), which is the force required to give a mass of one kilogram an ac-
celeration of one meter per second squared. In U.S. Customary units, the unit
of force is the pound (lb). The unit of mass is the slug, which is the amount of
mass accelerated at one foot per second squared by a force of one pound.

Although the results we discuss in this book are applicable to many of the
problems met in engineering practice, there are limits to the validity of
Newton’s laws. For example, they don’t give accurate results if a problem
involves velocities that are not small compared to the velocity of light

Einstein’s special theory of relativity applies to such problems.
Elementary mechanics also fails in problems involving dimensions that are
not large compared to atomic dimensions. Quantum mechanics must be used
to describe phenomena on the atomic scale.

International System of Units
In SI units, length is measured in meters (m) and mass in kilograms (kg). Time
is measured in seconds (s), although other familiar measures such as minutes
(min), hours (h), and days are also used when convenient. Meters, kilograms,
and seconds are called the base units of the SI system. Force is measured in
newtons (N). Recall that these units are related by Newton’s second law: One
newton is the force required to give an object of one kilogram mass an accel-
eration of one meter per second squared:

Because the newton can be expressed in terms of the base units, it is called a
derived unit.

To express quantities by numbers of convenient size, multiples of units are
indicated by prefixes. The most common prefixes, their abbreviations, and the
multiples they represent are shown in Table 12.1. For example, 1 km is 1 kilo-
meter, which is 1000 m, and 1 Mg is 1 megagram, which is or 1000 kg.
We frequently use kilonewtons (kN).

106 g,

1 N = 11 kg211 m/s22 = 1 kg-m/s2.

13 * 108 m/s2.

Table 12.1 The common prefixes used in
SI units and the multiples they represent.

Prefix Abbreviation Multiple

nano- n
micro-
milli- m
kilo- k
mega- M
giga- G 109

106
103
10-3
10-6m
10-9

BEDFMC12_0136129161.QXD  6/15/07  3:26 PM  Page 7



8 Chapter 12 Introduction

s

s

R

u

u ! R

Figure 12.2
Definition of an angle in radians.

Table 12.2 Unit conversions.

Time

Length

Angle

Mass

Force 4.448 newtons=1 pound

14.59 kilograms=1 slug

360 degrees=2p radians

0.3048 meters=1 foot
25.4 millimeters=1 inch
5280 feet=1 mile
12 inches=1 foot

24 hours=1 day
60 minutes=1 hour
60 seconds=1 minute

U.S. Customary Units
In U.S. Customary units, length is measured in feet (ft) and force is measured
in pounds (lb). Time is measured in seconds (s). These are the base units of the
U.S. Customary system. In this system of units, mass is a derived unit. The unit
of mass is the slug, which is the mass of material accelerated at one foot per
second squared by a force of one pound. Newton’s second law states that

From this expression we obtain

We use other U.S. Customary units such as the mile and
the inch We also use the kilopound (kip), which is 1000 lb.

Angular Units
In both SI and U.S. Customary units, angles are normally expressed in radians
(rad). We show the value of an angle in radians in Fig. 12.2. It is defined to
be the ratio of the part of the circumference subtended by to the radius of the
circle. Angles are also expressed in degrees. Since there are 360 degrees (360°)
in a complete circle, and the complete circumference of the circle is 360°
equals 

Equations containing angles are nearly always derived under the assump-
tion that angles are expressed in radians. Therefore, when you want to substi-
tute the value of an angle expressed in degrees into an equation, you should
first convert it into radians. A notable exception to this rule is that many calcu-
lators are designed to accept angles expressed in either degrees or radians when
you use them to evaluate functions such as 

Conversion of Units
Many situations arise in engineering practice that require values expressed in one
kind of unit to be converted into values in other units. For example, if some of
the data to be used in an equation are given in SI units and some are given in
U.S. Customary units, they must all be expressed in terms of one system of
units before they are substituted into the equation. Converting units is straight-
forward, although it must be done with care.

Suppose that we want to express 1 mile per hour in terms of feet per
second (ft/s). Because 1 mile equals 5280 feet and 1 hour equals 3600 seconds,
we can treat the expressions

as ratios whose values are 1. In this way, we obtain

Some useful unit conversions are given in Table 12.2.

1 mi/h = 11 mi/h2a5280 ft
1 mi

b a 1 h
3600 s

b = 1.47 ft /s.

a5280 ft
1 mi

b and a 1 h
3600 s

b
1mi/h2

sin u.

2p rad.
2pR,

u
u

11 ft = 12 in2. 11 mi = 5280 ft21 slug = 1 lb-s2/ft.

1 lb = 11 slug211 ft /s22.
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12.1 Engineering and Mechanics 9

Identify the given information and the answer that
must be determined.
Develop a strategy; identify principles and
equations that apply and how they will be used.
Try to predict the answer whenever possible.
Obtain the answer and, whenever possible, interpret
it and compare it with the prediction.

SI Units—The base units are time in seconds (s), length in
meters (m), and mass in kilograms (kg). The unit of force is
the newton (N), which is the force required to accelerate a
mass of one kilogram at one meter per second squared.

U.S. Customary Units—The base units are time in seconds
(s), length in feet (ft), and force in pounds (lb). The unit of
mass is the slug, which is the mass accelerated at one foot
per second squared by a force of one pound.

Equivalent quantities, such as 1 hour ! 60 minutes,
can be written as ratios whose values are 1:

and used to convert units. For example,

15 min ! 15 min                 ! 0.25 h.

Problem Solving: These
steps apply to many types
of problems.

Systems of units.

Definition of an
angle in radians.

Conversion of units.
1 h

60 min ! 1,

1 h
60 min

s
u ! R

s

R

u

RESULTS

A comprehensive resource on units has been compiled by Russ Rowlett of the
University of North Carolina at Chapel Hill and made available online at
www.unc.edu/~rowlett/units.

BEDFMC12_0136129161.QXD  6/15/07  3:26 PM  Page 9



10 Chapter 12 Introduction

Example 12.2 Converting Units of Pressure (! Related Problem 12.16)

Deep Submersible Vehicle.

The pressure exerted at a point of the hull of the deep submersible vehicle 
is (pascals). A pascal is 1 newton per square meter. Determine
the pressure in pounds per square foot.

Strategy
From Table 12.2, and With
these unit conversions we can calculate the pressure in pounds per square foot.

Solution
The pressure (to three significant digits) is

Critical Thinking
How could we have obtained this result in a more direct way? Notice from the
table of unit conversions in the inside front cover that 
Therefore,

 = 62,700 lb/ft2.

 3.00 * 106 N/m2 = 13.00 * 106 N/m22a0.0209 lb/ft2

1 N/m2 b
1 Pa = 0.0209 lb/ft2.

 = 62,700 lb/ft2.

 3.00 * 106 N/m2 = 13.00 * 106 N/m22a 1 lb
4.448 N

b a0.3048 m
1 ft

b2

1 foot = 0.3048 meters.1 pound = 4.448 newtons

3.00 * 106 Pa

Active Example 12.1 Converting Units (! Related Problem 12.11)

A man is riding a bicycle at a speed of 6 meters per second (m/s). How fast is
he going in kilometers per hour (km/h)?

Strategy
One kilometer is 1000 meters and one hour is 60 minutes ! 60 seconds " 3600
seconds. We can use these unit conversions to determine his speed in km/h.

Solution

Practice Problem A man is riding a bicycle at a speed of 10 feet per second (ft/s).
How fast is he going in miles per hour (mi/h)?
Answer: 6.82 mi/h.

" 21.6 km/h.

Convert meters to kilometers.

Convert seconds to hours.

6 m/s " 6 m/s
1 km

1000 m!       " 3600 s
1 h!       "
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12.1 Engineering and Mechanics 11

Example 12.3 Determining Units from an Equation (! Related Problem 12.20)

Suppose that in Einstein’s equation

the mass m is in kilograms and the velocity of light c is in meters per second.

(a) What are the SI units of E?
(b) If the value of E in SI units is 20, what is its value in U.S. Customary base units?

Strategy

(a) Since we know the units of the terms m and c, we can deduce the units of
E from the given equation.
(b) We can use the unit conversions for mass and length from Table 12.2 to
convert E from SI units to U.S. Customary units.

Solution

(a) From the equation for E,

the SI units of E are 

(b) From Table 12.2, and Therefore,

The value of E in U.S. Customary units is

Critical Thinking
In part (a), how did we know that we could determine the units of E by deter-
mining the units of The dimensions, or units, of each term in an equation
must be the same. For example, in the equation the dimensions of
each of the terms a, b, and c must be the same. The equation is said to be
dimensionally homogeneous. This requirement is expressed by the colloquial
phrase “Don’t compare apples and oranges.”

a + b = c,
mc2?

E = 120210.7382 = 14.8 slug-ft2/s2.

 = 0.738 slug-ft2/s2.

 1 kg-m2/s2 = 11 kg-m2/s22a 1 slug
14.59 kg

b a 1 ft
0.3048 m

b2

1 ft = 0.3048 m.1 slug = 14.59 kg

kg-m2/s2.

E = 1m kg21c m/s22,

E = mc2,
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12 Chapter 12 Introduction

12.1 The value of p is 3.14159265. . . . If C is the circumference
of a circle and r is its radius, determine the value of to four
significant digits.

r/C

Problems

Problem 12.1

C

r

12.2 The base of natural logarithms is 

(a) Express e to five significant digits.

(b) Determine the value of to five significant digits.

(c) Use the value of e you obtained in part (a) to determine the
value of to five significant digits.
[Part (c) demonstrates the hazard of using rounded-off values in
calculations.]

e2

e2

e = 2.718281828 Á .

12.3 A machinist drills a circular hole in a panel with a nominal
radius mm. The actual radius of the hole is in the range

(a) To what number of significant digits can you express the radius?

(b) To what number of significant digits can you express the area
of the hole?

r = 5 ; 0.01 mm.
r = 5

5 mm

Problem 12.3

12.5 The Burj Dubai, scheduled for completion in 2008, will be
the world’s tallest building with a height of 705 m. The area of its
ground footprint will be 8000 . Convert its height and footprint
area to U.S. Customary units to three significant digits.

m2

Problem 12.5

Problem 12.4

12.4 The opening in the soccer goal is 24 ft wide and 8 ft high,
so its area is What is its area in to
three significant digits?

m224 ft * 8 ft = 192 ft2.
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Problems 13

Problem 12.8

12.7 Suppose that the height of Mt. Everest is known to be
between 29,032 ft and 29,034 ft. Based on this information, 
to how many significant digits can you express the height 
(a) in feet? (b) in meters?

12.8 The maglev (magnetic levitation) train from Shanghai to
the airport at Pudong reaches a speed of 430 km/h. Determine its
speed (a) in mi/h; (b) in ft/s.

12.6 Suppose that you have just purchased a Ferrari F355
coupe and you want to know whether you can use your set of
SAE (U.S. Customary unit) wrenches to work on it. You have
wrenches with widths and 1 in, and
the car has nuts with dimensions 10 mm, 15 mm,
20 mm, and 25 mm. Defining a wrench to fit if w is no more
than 2% larger than n, which of your wrenches can you use?

n = 5 mm,
1>2 in, 3>4 in,w = 1>4 in,

w n

Problem 12.6

! 12.11 The kinetic energy of the man in Active Example 12.1
is defined by where m is his mass and v is his velocity.
The man’s mass is 68 kg and he is moving at 6 m/s, so his kinetic
energy is What is his kinetic
energy in U.S. Customary units?

12.12 The acceleration due to gravity at sea level in SI units is
By converting units, use this value to determine the

acceleration due to gravity at sea level in U.S. Customary units.

12.13 A furlong per fortnight is a facetious unit of velocity,
perhaps made up by a student as a satirical comment on the
bewildering variety of units engineers must deal with. A furlong is
660 ft A fortnight is 2 weeks (14 nights). If you walk
to class at what is your speed in furlongs per fortnight to
three significant digits?

12.14 Determine the cross-sectional area of the beam (a) in ; 
(b) in in2.

m2

2 m/s,
11/8 mile2.

g = 9.81 m/s2.

1
2(68 kg)(6 m/s)2 = 1224 kg-m2/s2.

1
2 mv2,

Problem 12.10

12.9 In the 2006 Winter Olympics, the men’s 15-km cross-
country skiing race was won by Andrus Veerpalu of Estonia in a
time of 38 minutes, 1.3 seconds. Determine his average speed (the
distance traveled divided by the time required) to three significant
digits (a) in km/h; (b) in mi/h.

12.10 The Porsche’s engine exerts 229 ft-lb (foot-pounds) of
torque at 4600 rpm. Determine the value of the torque in N-m
(newton-meters).

Problem 12.14

120 mm x

y

40 mm

40 mm

40
mm

200 mm

BEDFMC12_0136129161.QXD  6/15/07  3:26 PM  Page 13



14 Chapter 12 Introduction

x

y

A

Problem 12.15

12.15 The cross-sectional area of the American
Standard Channel steel beam is What is its
cross-sectional area in mm2?

A = 8.81 in2.
C12 * 30

! 12.16 A pressure transducer measures a value of 
Determine the value of the pressure in pascals. A pascal (Pa) is
one newton per square meter.

300 lb/in2.

Problem 12.17

12.17 A horsepower is 550 ft-lb/s. A watt is 1 N-m/s. Determine
how many watts are generated by the engines of the passenger jet
if they are producing 7000 horsepower.

12.18 Distributed loads on beams are expressed in units of force
per unit length. If the value of a distributed load is 400 N/m, what
is its value in lb/ft?

12.19 The moment of inertia of the rectangular area about
the x axis is given by the equation

The dimensions of the area are and 
Determine the value of I to four significant digits in terms of 
(a) (b) and (c) in4.m4,mm4,

h = 100 mm.b = 200 mm

I = 1
3 bh3.

h

b
x

y

Problem 12.19

! 12.20 In Example 12.3, instead of Einstein’s equation con-
sider the equation where the mass m is in kilograms
and the velocity of light c is in meters per second. (a) What are
the SI units of L? (b) If the value of L in SI units is 12, what is its
value in U.S. Customary base units?

12.21 The equation

is used in the mechanics of materials to determine normal stresses
in beams.

(a) When this equation is expressed in terms of SI base units, 
M is in newton-meters (N-m), y is in meters (m), and I is in
meters to the fourth What are the SI units of 

(b) If and what is
the value of in U.S. Customary base units?s

I = 7 * 10-5 m4,M = 2000 N-m, y = 0.1 m,

s?power 1m42.

s =
My

I

L = mc,
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12.2 Newtonian Gravitation 15

12.2 Newtonian Gravitation

BACKGROUND
Newton postulated that the gravitational force between two particles of mass 
and that are separated by a distance r (Fig. 12.3) is

(12.1)

where G is called the universal gravitational constant. The value of G in SI units
is . Based on this postulate, he calculated the gravita-
tional force between a particle of mass and a homogeneous sphere of mass
and found that it is also given by Eq. (12.1), with r denoting the distance from the
particle to the center of the sphere.Although the earth is not a homogeneous sphere,
we can use this result to approximate the weight of an object of mass m due to the
gravitational attraction of the earth. We have

(12.2)

where is the mass of the earth and r is the distance from the center of the
earth to the object. Notice that the weight of an object depends on its location
relative to the center of the earth, whereas the mass of the object is a measure
of the amount of matter it contains and doesn’t depend on its position.

When an object’s weight is the only force acting on it, the resulting accel-
eration is called the acceleration due to gravity. In this case, Newton’s second
law states that and from Eq. (12.2) we see that the acceleration due
to gravity is

(12.3)

The acceleration due to gravity at sea level is denoted by g. Denoting the
radius of the earth by we see from Eq. (12.3) that Substitut-
ing this result into Eq. (12.3), we obtain an expression for the acceleration due
to gravity at a distance r from the center of the earth in terms of the accelera-
tion due to gravity at sea level:

(12.4)

Since the weight of the object the weight of an object at a distance
r from the center of the earth is

(12.5)

At sea level the weight of an object is given in terms of its mass
by the simple relation

(12.6)

The value of g varies from location to location on the surface of the earth.
The values we use in examples and problems are in SI units and

in U.S. Customary units.g = 32.2 ft/s2
g = 9.81 m/s2

W = mg.

1r = RE2,
W = mg 

RE
2

r 
2 .

W = ma,

a = g 

RE
2

r 
2 .

GmE = gRE
2.RE,

a =
GmE

r 
2 .

W = ma,

mE

W =
GmmE

r 
2 ,

m2m1

6.67 * 10-11 N-m2/kg2

F =
Gm1 m2

r 
2 ,

m2

m1

m2
F

m1

F

r

Figure 12.3
The gravitational forces between two
particles are equal in magnitude and 
directed along the line between them.
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16 Chapter 12 Introduction

where G is the universal gravitational constant. The value
of G in SI units is

6.67 ! 10"11  N-m2/kg2.

where g is the acceleration due to gravity at sea level.

where m is the mass of the object and g is the acceleration
due to gravity at sea level.

W # mg, (12.6)

F # (12.1),

When the earth is modeled as a homogeneous sphere of
radius RE, the acceleration due to gravity at a distance r
from the center is

The gravitational force between two particles of mass m1
and m2 that are separated by a distance r is

Newtonian gravitation.

Acceleration due to
gravity of the earth.

Weight of an object
at sea level.

Gm1m2

r2

,a # g (12.4)
R2

E

r2

Active Example 12.4 Weight and Mass (! Related Problem 12.22)

The C-clamp weighs 14 oz at sea level. [16 oz (ounces) # 1 lb.] The accelera-
tion due to gravity at sea level is g # 32.2 ft/ . What is the mass of the C-clamp
in slugs?

Strategy
We must first determine the weight of the C-clamp in pounds. Then we can use
Eq. (12.6) to determine the mass in slugs.

Solution

Practice Problem The mass of the C-clamp is 0.397 kg. The acceleration due to
gravity at sea level is . What is the weight of the C-clamp at sea level in
newtons? 

Answer: 3.89 N.

g = 9.81 m/s2

s2

Convert the weight from
ounces to pounds.

Use Eq. (12.6) to calculate
the mass in slugs.

0.875 lb
32.2 ft/s2

1 lb
16 oz

W
g

m # # # 0.0272 slug.

14 oz # 14 oz # 0.875 lb.!      "

RESULTS
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12.2 Newtonian Gravitation 17

Example 12.5 Determining an Object’s Weight (! Related Problem 12.27)

When the Mars Exploration Rover was fully assembled, its mass was 180 kg.
The acceleration due to gravity at the surface of Mars is and the ra-
dius of Mars is 3390 km.

(a) What was the rover’s weight when it was at sea level on Earth?
(b) What is the rover’s weight on the surface of Mars?
(c) The entry phase began when the spacecraft reached the Mars atmospheric
entry interface point at 3522 km from the center of Mars. What was the rover’s
weight at that point?

3.68 m/s2

Mars Exploration Rover being assembled.
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18 Chapter 12 Introduction

Strategy

The rover’s weight at sea level on Earth is given by Eq. (12.6) with 

We can determine the weight on the surface of Mars by using Eq. (12.6) with
the acceleration due to gravity equal to 

To determine the rover’s weight as it began the entry phase, we can write an
equation for Mars equivalent to Eq. (12.5).

Solution

(a) The weight at sea level on Earth is

(b) Let be the acceleration due to gravity at the surface of
Mars. Then the weight of the rover on the surface of Mars is

(c) Let be the radius of Mars. From Eq. (12.5), the rover’s
weight when it is 3522 km above the center of Mars is

Critical Thinking
In part (c), how did we know that we could apply Eq. (12.5) to Mars? Equa-
tion (12.5) is applied to Earth based on modeling it as a homogeneous sphere.
It can be applied to other celestial objects under the same assumption. The
accuracy of the results depends on how aspherical and inhomogeneous the
object is.

 = 614 N 1138 lb2. = 1180 kg213.68 m/s22 

13,390,000 m2213,522,000 m22
 W = mgM 

RM
2

r 
2

RM = 3390 km

 = 662 N 1149 lb2. = 1180 kg213.68 m/s22 W = mgM

gM = 3.68 m/s2

 = 1770 N 1397 lb2. = 1180 kg219.81 m/s22 W = mg

3.68 m/s2.

g = 9.81 m/s2.
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Problem 12.29

Problems 19

12.28 If an object is near the surface of the earth, the varia-
tion of its weight with distance from the center of the earth can
often be neglected. The acceleration due to gravity at sea level
is The radius of the earth is 6370 km. The
weight of an object at sea level is mg, where m is its mass. At
what height above the surface of the earth does the weight of
the object decrease to 0.99mg?

12.29 The planet Neptune has an equatorial diameter of 49,532 km
and its mass is If the planet is modeled as a
homogeneous sphere, what is the acceleration due to gravity 
at its surface? (The universal gravitational constant is

)G = 6.67 * 10-11 N-m2/kg2.

1.0247 * 1026 kg.

g = 9.81 m/s2.

! 12.22 The acceleration due to gravity on the surface of the moon
is (a) What would the mass of the C-clamp in Active
Example 12.4 be on the surface of the moon? (b) What would the
weight of the C-clamp in newtons be on the surface of the moon?

12.23 The cube of iron weighs 490 lb at sea
level. Determine the weight in newtons of a 
cube of the same material at sea level.

1 m * 1 m * 1 m
1 ft * 1 ft * 1 ft

1.62 m/s2.

Problems

1 ft

1 ft 1 ft

Problem 12.23

12.24 The area of the Pacific Ocean is 64,186,000 square miles
and its average depth is 12,925 ft. Assume that the weight per unit
volume of ocean water is Determine the mass of the
Pacific Ocean (a) in slugs; (b) in kilograms.

12.25 The acceleration due to gravity at sea level is
The radius of the earth is 6370 km. The universal

gravitational constant is Use this
information to determine the mass of the earth.

12.26 A person weighs 180 lb at sea level. The radius of the
earth is 3960 mi. What force is exerted on the person by the
gravitational attraction of the earth if he is in a space station in
orbit 200 mi above the surface of the earth?

! 12.27 The acceleration due to gravity on the surface of the
moon is The moon’s radius is 
(See Example 12.5.)

(a) What is the weight in newtons on the surface of the moon of
an object that has a mass of 10 kg? 

(b) Using the approach described in Example 12.5, determine the
force exerted on the object by the gravity of the moon if the object
is located 1738 km above the moon’s surface.

RM = 1738 km.1.62 m/s2.

G = 6.67 * 10-11 N-m2/kg2.
g = 9.81 m/s2.

64 lb/ft3.

12.30 At a point between the earth and the moon, the magni-
tude of the force exerted on an object by the earth’s gravity
equals the magnitude of the force exerted on the object by the
moon’s gravity. What is the distance from the center of the
earth to that point to three significant digits? The distance from
the center of the earth to the center of the moon is 383,000 km,
and the radius of the earth is 6370 km. The radius of the
moon is 1738 km, and the acceleration due to gravity at its
surface is 1.62 m/s2.
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Motion of a Point

In this chapter we begin the study of motion. We are not yet
concerned with the properties of objects or the causes of their
motions—our objective is simply to describe and analyze the
motion of a point in space. After defining the position, velocity,
and acceleration of a point, we consider the simplest case, mo-
tion along a straight line. We then show how motion of a point
along an arbitrary path, or trajectory, is expressed and analyzed
using various coordinate systems.

C H A P T E R

13

! The lines show the paths followed by subatomic particles moving in a
magnetic field. The particles with curved paths have both tangential and
normal components of acceleration.
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22 Chapter 13 Motion of a Point

(a)

(b)

O

O

r

r

y

x

x

z

z

y

Figure 13.1
Convenient reference frames for specifying
positions of objects
(a) in a room;
(b) in an airplane.

13.1 Position, Velocity, and Acceleration

BACKGROUND
If you observe people in a room, such as a group at a party, you perceive their
positions relative to the room. For example, some people may be in the back of
the room, some in the middle of the room, and so forth. The room is your “frame
of reference.” To make this idea precise, we can introduce a cartesian coordi-
nate system with its axes aligned with the walls of the room as in Fig. 13.1a and
specify the position of a person (actually, the position of some point of the per-
son, such as his or her center of mass) by specifying the components of the po-
sition vector r relative to the origin of the coordinate system. This coordinate
system is a convenient reference frame for objects in the room. If you are sit-
ting in an airplane, you perceive the positions of objects within the airplane rel-
ative to the airplane. In this case, the interior of the airplane is your frame of
reference. To precisely specify the position of a person within the airplane, we
can introduce a cartesian coordinate system that is fixed relative to the airplane
and measure the position of the person’s center of mass by specifying the com-
ponents of the position vector r relative to the origin (Fig. 13.1b). A reference
frame is simply a coordinate system that is suitable for specifying positions of
points. You may be familiar only with cartesian coordinates. We discuss other
examples in this chapter and continue our discussion of reference frames
throughout the book.

We can describe the position of a point P relative to a given reference frame
with origin O by the position vector r from O to P (Fig. 13.2a). Suppose that P
is in motion relative to the chosen reference frame, so that r is a function of
time t (Fig. 13.2b). We express this by the notation

The velocity of P relative to the given reference frame at time t is defined by

(13.1)v = dr
dt

= lim
¢t:0

 

r1t + ¢t2 - r1t2
¢t

,

r = r1t2.
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P

r

P

(a) (b)

O

r(t ! "t)

P(t ! "t)

r(t ! "t) # r(t)

P(t)

r(t)

(c)

O

O

Figure 13.2
(a) The position vector r of P relative to O.
(b) Motion of P relative to the reference

frame.
(c) Change in position of P from t to

t + ¢t.

v(t ! "t)

v(t ! "t)
v(t ! "t) # v(t)

v(t)

v(t)

O

r$

r

P

O$

O

(a)

r$

r
R

P

O$

O

(b)

Figure 13.4
(a) Position vectors of P relative to O and 
(b) Position vector of relative to O.O¿

O¿.

where the vector is the change in position, or displacement,
of P during the interval of time (Fig. 13.2c). Thus, the velocity is the rate of
change of the position of P.

The dimensions of a derivative are determined just as if it is a ratio, so the
dimensions of v are (distance) (time). The reference frame being used is often
obvious, and we simply call v the velocity of P. However, remember that the
position and velocity of a point can be specified only relative to some reference
frame.

Notice in Eq. (13.1) that the derivative of a vector with respect to time is
defined in exactly the same way as is the derivative of a scalar function. As a
result, the derivative of a vector shares some of the properties of the derivative
of a scalar function. We will use two of these properties: the derivative with re-
spect to time, or time derivative, of the sum of two vector functions u and w is

and the time derivative of the product of a scalar function f and a vector
function u is

The acceleration of P relative to the given reference frame at time t is defined by

(13.2)

where is the change in the velocity of P during the inter-
val of time (Fig. 13.3). The acceleration is the rate of change of the veloc-
ity of P at time t (the second time derivative of the displacement), and its
dimensions are 

We have defined the velocity and acceleration of P relative to the origin O
of the reference frame. We can show that a point has the same velocity and ac-
celeration relative to any fixed point in a given reference frame. Let be an
arbitrary fixed point, and let be the position vector from to P (Fig. 13.4a).
The velocity of P relative to is The velocity of P relative to thev¿ = dr¿>dt.O¿

O¿r¿
O¿

1distance2>1time22.

¢t
v1t + ¢t2 - v1t2

a = dv
dt

= lim
¢t:0

 

v1t + ¢t2 - v1t2
¢t

,

d1fu2
dt

=
df
dt

 u + f 
du
dt

.

d
dt

 1u + w2 = du
dt

+ dw
dt

,

>
¢t

r1t + ¢t2 - r1t2

Figure 13.3
Change in the velocity of P from t to
t + ¢t.
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24 Chapter 13 Motion of a Point

13.2 Straight-Line Motion

BACKGROUND
We discuss this simple type of motion primarily so that you can gain experience
and insight before proceeding to the general case of the motion of a point. But
engineers must analyze straight-line motions in many practical situations, such
as the motion of a vehicle on a straight road or the motion of a piston in an
internal combustion engine.

Description of the Motion
Consider a straight line through the origin O of a given reference frame. We
assume that the direction of the line relative to the reference frame is fixed.

origin O is We wish to show that Let R be the vector from
O to (Fig. 13.4b), so that

Since the vector R is constant, the velocity of P relative to is

The acceleration of P relative to is and the acceleration of P
relative to O is Since Thus, the velocity and ac-
celeration of a point P relative to a given reference frame do not depend on the
location of the fixed reference point used to specify the position of P.

RESULTS

v¿ = v, a¿ = a.a = dv>dt.
a¿ = dv¿>dt,O¿

v¿ = dr¿
dt

= dr
dt

- dR
dt

= dr
dt

= v.

O¿

r¿ = r - R.

O¿
v¿ = v.v = dr>dt.

Position
The position of a point P relative to a given
coordinate system, or reference frame, with
origin O can be described by the position
vector r from O to P.

r

P

O

Velocity
The velocity of P relative to O at a
time t is the derivative of the position r
with respect to t (the rate of change of r).

dr
dt

v ! . (13.1)

Acceleration
The acceleration of P relative to O at a
time t is the derivative of the velocity v
with respect to t (the rate of change of v).

dv
dt

a ! . (13.2)

A point has the same velocity and
acceleration relative to any fixed point in a
given reference frame.
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t

v

a

t

1

Figure 13.7
The slope of the straight line tangent to the
graph of v versus t is the acceleration at time t.

(For example, the x axis of a cartesian coordinate system passes through the ori-
gin and has fixed direction relative to the reference frame.) We can specify the
position of a point P on such a line relative to O by a coordinate s measured
along the line from O to P. In Fig. 13.5a we define s to be positive to the right,
so s is positive when P is to the right of O and negative when P is to the left of
O. The displacement of P during an interval of time from to is the change
in the position where s(t) denotes the position at time t.

By introducing a unit vector e that is parallel to the line and points in the pos-
itive s direction (Fig. 13.5b), we can write the position vector of P relative to O as

Because the magnitude and direction of e are constant, and so the
velocity of P relative to O is

We can write the velocity vector as obtaining the scalar equation

The velocity v of point P along the straight line is the rate of change of the
position s. Notice that v is equal to the slope at time t of the line tangent to the
graph of s as a function of time (Fig. 13.6).

The acceleration of P relative to O is

Writing the acceleration vector as we obtain the scalar equation

The acceleration a is equal to the slope at time t of the line tangent to the graph
of v as a function of time (Fig. 13.7).

By introducing the unit vector e, we have obtained scalar equations de-
scribing the motion of P. The position is specified by the coordinate s, and the
velocity and acceleration are governed by the equations

(13.3)

and

(13.4)

Applying the chain rule of differential calculus, we can write the derivative of
the velocity with respect to time as

obtaining an alternative expression for the acceleration that is often useful:

(13.5)a = dv
ds

 v.

dv
dt

= dv
ds

 
ds
dt

,

a = dv
dt

.

v = ds
dt

a = dv
dt

= d2s

dt2.

a = ae,

a = dv
dt

= d
dt

 1ve2 = dv
dt

 e.

v = ds
dt

.

v = ve,

v = dr
dt

= ds
dt

 e.

de>dt = 0,

r = se.

s1t2 - s1t02, tt0

O P

s

(a)

s

O P
r

(b)

s
e

Figure 13.5
(a) The coordinate s from O to P.
(b) The unit vector e and position vector r.

t

s

v

t

1

Figure 13.6
The slope of the straight line tangent to the
graph of s versus t is the velocity at time t.
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26 Chapter 13 Motion of a Point

Analysis of the Motion
In some situations, the position s of a point of an object is known as a function
of time. Engineers use methods such as radar and laser-Doppler interferometry
to measure positions as functions of time. In this case, we can obtain the velocity
and acceleration as functions of time from Eqs. (13.3) and (13.4) by differenti-
ation. For example, if the position of the truck in Fig. 13.8 during the interval
of time from to is given by the equation

then the velocity and acceleration of the truck during that interval of time are

and

However, it is more common to know an object’s acceleration than to know its
position, because the acceleration of an object can be determined by Newton’s
second law when the forces acting on it are known. When the acceleration is
known, we can determine the velocity and position from Eqs. (13.3)–(13.5) by
integration.

Acceleration Specified as a Function of Time If the acceleration is a
known function of time, we can integrate the relation

(13.6)

with respect to time to determine the velocity as a function of time. We obtain

where A is an integration constant. Then we can integrate the relation

(13.7)

to determine the position as a function of time,

where B is another integration constant. We would need additional information
about the motion, such as the values of v and s at a given time, to determine the
constants A and B.

Instead of using indefinite integrals, we can write Eq. (13.6) as

dv = a dt

s = Lv dt + B,

ds
dt

= v

v = La dt + A,

dv
dt

= a

a = dv
dt

= 2t m/s2.

v = ds
dt

= t2 m/s

s = 6 + 1
3

 t3 m,

t = 4 st = 2 ss

O

Figure 13.8
The coordinate s measures the position of
the center of mass of the truck relative to a
reference point.
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t
t t

t0

a v

(a)

Area ! v(t) " v(t0)

tt0

(b)

Area ! s(t) " s(t0)
Figure 13.9
Relations between areas defined by the
graphs of the acceleration and velocity of P
and changes in its velocity and position.

and integrate in terms of definite integrals:

(13.8)

The lower limit is the velocity at time and the upper limit v is the veloc-
ity at an arbitrary time t. Evaluating the integral on the left side of Eq. (13.8),
we obtain an expression for the velocity as a function of time:

(13.9)

We can then write Eq. (13.7) as

and integrate in terms of definite integrals to obtain

where the lower limit is the position at time and the upper limit s is the po-
sition at an arbitrary time t. Evaluating the integral on the left side, we obtain
the position as a function of time:

(13.10)

Although we have shown how to determine the velocity and position
when the acceleration is known as a function of time, don’t try to remember
results such as Eqs. (13.9) and (13.10). As we will demonstrate in the exam-
ples, we recommend that straight-line motion problems be solved by using
Eqs. (13.3)–(13.5).

We can make some useful observations from Eqs. (13.9) and (13.10):

• The area defined by the graph of the acceleration of P as a function of
time from to t is equal to the change in the velocity from to t
(Fig. 13.9a).

• The area defined by the graph of the velocity of P as a function of time
from to t is equal to the change in position from to t (Fig. 13.9b).

These relationships can often be used to obtain a qualitative understanding of
an object’s motion, and in some cases can even be used to determine the object’s
motion quantitatively.

t0t0

t0t0

s = s0 + L
t

t0

v dt.

t0s0

L
s

s0

 ds = L
t

t0

v dt,

ds = v dt

v = v0 + L
t

t0

a dt.

t0,v0

L
v

v0

 dv = L
t

t0

a dt.
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Constant Acceleration In some situations, the acceleration of an object is
constant or nearly constant. For example, if a dense object such as a golf ball or
a rock is dropped and doesn’t fall too far, the object’s acceleration is approxi-
mately equal to the acceleration due to gravity at sea level.

Let the acceleration be a known constant From Eqs. (13.9) and (13.10),
the velocity and position as functions of time are

(13.11)

and

(13.12)

where and are the position and velocity, respectively, at time Notice that
if the acceleration is constant, the velocity is a linear function of time.

From Eq. (13.5), we can write the acceleration as

Writing this expression as and integrating,

we obtain an equation for the velocity as a function of position:

(13.13)

Although Eqs. (13.11)–(13.13) can be useful when the acceleration is constant,
they must not be used otherwise.

RESULTS

v2 = v2
0 + 2a01s - s02.

L
v

v0

v dv = L
s

s0

a0 ds,

v dv = a0 ds

a0 = dv
ds

 v.

t0.v0s0

s = s0 + v01t - t02 + 1
2

 a01t - t022,

v = v0 + a01t - t02
a0.

28 Chapter 13 Motion of a Point

Position
The position of a point P on a straight line
relative to a reference point O can be described
by the coordinate s measured along the line from
O to P. The displacement of P during an interval
of time from t0 to t is the change in position
s(t) ! s(t0), where s(t) denotes the position at
time t.

O P

s
s

Velocity
The velocity of P relative to O at a time t is the
derivative of the position s with respect to t (the
rate of change of s).

v " (13.3).
ds
dt
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When the Acceleration is Known as a Function of Time

13.2 Straight-Line Motion 29

Acceleration
The acceleration of P relative to O at a
time t is the derivative of the velocity v
with respect to t (the rate of change of v).

a ! (13.4).
dv
dt

The velocity can be integrated with respect
to time to determine the position as a
function of time. B is an integration
constant.

! v,
ds
dt

Lv dt " B.s !

Applying the chain rule

results in an alternative expression for the
acceleration that is often useful.

a ! (13.5)v.
dv
ds

a !
dv
dt

!
dv
ds

ds
dt

The acceleration can be integrated with
respect to time to determine the velocity
as a function of time. A is an integration
constant.

! a,
dv
dt

La dt " A.v !

Alternatively, definite integrals can be
used to determine the velocity. Here v0
is the velocity at time t0, and v is the
velocity at time t. This result shows that
the change in the velocity from time t0
to time t is equal to the area defined by
the graph of the acceleration from time
t0 to time t.

v ! v0 " a dt.

a dt,dv !
v0

v

t
t

t0

a

Area ! v(t) # v(t0)

L t0

t

L

t0

t

L

When the Velocity is Known as a Function of Time
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When the Acceleration is Constant
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Suppose that the acceleration is a constant
a ! a0. Equations (13.3)–(13.5) can be
integrated to obtain these convenient results for
the velocity v and position s at time t. Here v0
is the velocity at time t0, and s0 is the position
at time t0.

v ! v0 " a0(t # t0),

v2 ! v2
0 " 2a0(s # s0).

s ! s0 " v0(t # t0) "

(13.11)

(13.13)

(13.12)a0(t # t0)
2,

1
2

Active Example 13.1 Acceleration that is a Function of Time (! Related Problem 13.12)

The acceleration (in m/s2) of point P relative to point O is given as a function
of time by where t is in seconds. At the position of P is

and at the position of P is What is the position of
P at 

Strategy
Because the acceleration is given as a function of time, we can integrate it to
obtain an equation for the velocity as a function of time. Then we can inte-
grate the velocity to obtain an equation for the position as a function of time.
The resulting equations will contain two unknown integration constants.
We can evaluate them by using the given values of the position at
and .t = 2 s

t = 1 s

O P

s
s 

t = 3 s?
s = 7.5 m.t = 2 s,s = 3 m,

t = 1 s,a = 3t2,

Definite integrals can be used to determine the
position. Here s0 is the velocity at time t0, and s
is the velocity at time t. This result shows that
the change in the position from time t0 to time t
is equal to the area defined by the graph of the
velocity from time t0 to time t.

s ! s0 " v dt.

v dt,dv !
s0

s

t

v

tt0

Area ! s(t) # s(t0)

L t0

t

L

t0

t

L
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13.2 Straight-Line Motion 31

Solution

Practice Problem The acceleration (in ft/s2) of point P relative to point O is given as
a function of time by , where t is in seconds. At the position and veloc-
ity of P are ft and What are the position and velocity of P at

Answer: s = 389 ft, v = 105 ft/s.

O P

s
s 

t = 10 s?
v = 14 ft/s.s = 30

t = 3 s,a = 2t

Integrate the acceleration to determine the velocity
as a function of time.  A is an integration constant.

! 3t2,
dv
dt

a !

v ! t3 " A.

Integrate the velocity to determine the position as a
function of time. B is an integration constant.

! t3 " A,
ds
dt

v !

s ! t4 " At " B.
1
4

Use the known positions at t ! 1 s and at t ! 2 s to
determine A and B, obtaining A ! 0.75 and B ! 2.

s t!2 s ! 7.5 !

(1)4 " A(1) " B,s t!1 s ! 3 !
1
4

(2)4 " A(2) " B.
1
4

Determine the position at t ! 3 s.
s t!3 s !

t4 " 0.75t " 2 :s !
1
4

(3)4 " 0.75(3) " 2 ! 24.5 m.
1
4
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32 Chapter 13 Motion of a Point

h

Example 13.2 Straight-Line Motion with Constant Acceleration (! Related Problem 13.1)

Engineers testing a vehicle that will be dropped by parachute estimate that the
vertical velocity of the vehicle when it reaches the ground will be 6 If they
drop the vehicle from the test rig shown, from what height h should they drop
it to match the impact velocity of the parachute drop?

m/s.

Strategy
If the only significant force acting on an object near the earth’s surface is its
weight, the acceleration of the object is approximately constant and equal to
the acceleration due to gravity at sea level. Therefore, we can assume that
the vehicle’s acceleration during its short fall is We can inte-
grate Eqs. (13.3) and (13.4) to obtain the vehicle’s velocity and position as
functions of time and then use them to determine the position of the vehicle
when its velocity is 6

Solution
Let be the time at which the vehicle is dropped, and let s be the position
of the bottom of the cushioning material beneath the vehicle relative to its
position at (Fig. a). The vehicle’s acceleration is 

From Eq. (13.4),

Integrating, we obtain

where A is an integration constant. Because the vehicle is at rest when it is
released, at Therefore, and the vehicle’s velocity as a
function of time is

v = 9.81t m/s.

A = 0,t = 0.v = 0

v = 9.81t + A,

dv
dt

= a = 9.81 m/s2.

a = 9.81 m/s2.t = 0

t = 0

m/s.

g = 9.81 m/s2.
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13.2 Straight-Line Motion 33

s

(a) The coordinate s measures the position of the bottom of the platform
relative to its initial position.

We substitute this result into Eq. (13.3) to get

and integrate, obtaining

The position when so the integration constant and the
position as a function of time is

From our equation for the velocity as a function of time, the time necessary for
the vehicle to reach 6 as it falls is

Substituting this time into our equation for the position as a function of time
yields the required height h:

Critical Thinking
Notice that we could have determined the height h from which the vehicle
should be dropped in a simpler way by using Eq. (13.13), which relates the
velocity to the position.

:

Solving, we obtain But it is essential to remember that
Eqs. (13.11)–(13.13) apply only when the acceleration is constant, as it is in
this example.

h = 1.83 m.

 16 m/s22 = 0 + 219.81 m/s221h - 02. v2 = v0
2 + 2a01s - s02

h = 4.91t2 = 4.9110.61222 = 1.83 m.

t = v

9.81 m/s2 = 6 m/s

9.81 m/s2 = 0.612 s.

m/s

s = 4.91t2.

B = 0,t = 0,s = 0

s = 4.91t2 + B.

ds
dt

= v = 9.81t
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34 Chapter 13 Motion of a Point

Example 13.3 Graphical Solution of Straight-Line Motion (! Related Problem 13.26)

The cheetah, Acinonyx jubatus, can run as fast as If you assume that
the animal’s acceleration is constant and that it reaches top speed in 4 s, what
distance can the cheetah cover in 10 s?

Strategy
The acceleration has a constant value for the first 4 s and is then zero. We can de-
termine the distance traveled during each of these “phases” of the motion and sum
them to obtain the total distance covered. We do so both analytically and graphically.

Solution
The top speed in terms of feet per second is

First Method Let be the acceleration during the first 4 s. We integrate
Eq. (13.4) to get

obtaining the velocity as a function of time during the first 4 s:

When so Therefore, the
velocity during the first 4 s is Now we integrate Eq. (13.3),

obtaining the position as a function of time during the first 4 s:

s = 13.75t2 ft.

 s - 0 = 27.5a t2

2
- 0b ,

 cs d
0

s

= 27.5 c t2

2
d
0

t

,

 L
s

0
 ds = L

t

0
27.5t dt,

v = 27.5t ft/s.
a0 = 110/4 = 27.5 ft/s2.t = 4 s, v = 110 ft/s;

v = a0 t ft/s.

 v - 0 = a01t - 02, cv d
0

v

= a0 c t d
0

t

,

 L
v

0
 dv = L

t

0
a0 dt,

a0

75 mi/h = 175 mi/h2a5280 ft
1 mi

b a 1 h
3600 s

b = 110 ft/s.

75 mi/h.
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13.2 Straight-Line Motion 35

At the position is 

From to the velocity We write Eq. (13.3)
as

and integrate to determine the distance traveled during the second phase of
the motion,

obtaining The total distance the cheetah travels is 
or 293 yd, in 10 s.

Second Method We draw a graph of the cheetah’s velocity as a function of
time in Fig. a. The acceleration is constant during the first 4 s of motion, so the
velocity is a linear function of time from at to at

The velocity is constant during the last 6 s. The total distance covered
is the sum of the areas during the two phases of motion:

1
214 s21110 ft/s2 + 16 s21110 ft/s2 = 220 ft + 660 ft = 880 ft.

t = 4 s.
v = 110 ft/st = 0v = 0

660 ft = 880 ft,
220 ft +s = 660 ft.

 s - 0 = 110110 - 42,
 cs d

0

s

= 110 c t d
4

10

,

 L
s

0
 ds = L

10

4
110 dt,

ds = v dt = 110 dt

v = 110 ft/s.t = 10 s,t = 4 s

s = 13.751422 = 220 ft.t = 4 s,

110

0
4

t (s)

Area equals the distance
traveled from t ! 0 to t ! 10 s.

100

v 
(f

t/
s)

(a) The cheetah’s velocity as a function
of time.

Critical Thinking
Notice that in the first method we used definite, rather than indefinite, inte-
grals to determine the cheetah’s velocity and position as functions of time. You
should rework the example using indefinite integrals and compare your results
with ours. Whether to use definite or indefinite integrals is primarily a matter
of taste, but you need to be familiar with both procedures.
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36 Chapter 13 Motion of a Point

The problems that follow involve straight-line motion.
The time t is in seconds unless otherwise stated.

! 13.1 In Example 13.2, suppose that the vehicle is dropped
from a height (a) What is its downward velocity 1 s
after it is released? (b) What is its downward velocity just before
it reaches the ground?

13.2 The milling machine is programmed so that during the in-
terval of time from to the position of its head (in
inches) is given as a function of time by . What are
the velocity (in in/s) and acceleration (in ) of the head at
t = 1 s?

in/s2
s = 4t - 2t2

t = 2 s,t = 0

h = 6 m.

s

Problem 13.2

s

s ! 0

Problem 13.3

Problems

13.3 In an experiment to estimate the acceleration due to
gravity, a student drops a ball at a distance of 1 m above the floor.
His lab partner measures the time it takes to fall and obtains an
estimate of 0.46 s. 

(a) What do they estimate the acceleration due to gravity to be?

(b) Let s be the ball’s position relative to the floor. Using the value
of the acceleration due to gravity that they obtained, and assuming
that the ball is released at  , determine s (in m) as a function
of time.

t = 0
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Problem 13.4

s

Problem 13.5

P

s

Problems 13.8/13.9

s

Problem 13.11

13.4 The boat’s position during the interval of time from 
to is given by 

(a) Determine the boat’s velocity and acceleration at 

(b) What is the boat’s maximum velocity during this interval of
time, and when does it occur?

t = 4 s.

s = 4t + 1.6t2 - 0.08t3 m.t = 10 s
t = 2 s

13.5 The rocket starts from rest at and travels straight up. Its
height above the ground as a function of time can be approximated
by , where b and c are constants. At , the
rocket’s velocity and acceleration are and

Determine the time at which the rocket reaches
supersonic speed (325 m/s). What is its altitude when that occurs?
a = 28.2 m/s2.

v = 229 m/s
t = 10 ss = bt2 + ct3

t = 0

13.6 The position of a point during the interval of time from
to is given by 

(a) What is the maximum velocity during this interval of time,
and at what time does it occur?

(b) What is the acceleration when the velocity is a maximum?

s = -1
2 t3 + 6t2 + 4t m.t = 6 st = 0

13.7 The position of a point during the interval of time from
to is 

(a) What is the maximum velocity during this interval of time,
and at what time does it occur?

(b) What is the acceleration when the velocity is a maximum?

13.8 The rotating crank causes the position of point P as a func-
tion of time to be 

(a) Determine the velocity and acceleration of P at 

(b) What is the maximum magnitude of the velocity of P?

(c) When the magnitude of the velocity of P is a maximum, what
is the acceleration of P?

13.9 For the mechanism in Problem 13.8, draw graphs of the po-
sition s, velocity v, and acceleration a of point P as functions of
time for Using your graphs, confirm that the slope
of the graph of s is zero at times for which v is zero and that the
slope of the graph of v is zero at times for which a is zero.

0 … t … 2 s.

t = 0.375 s.

s = 0.4 sin12pt2 m.

s = 12 + 5t2 - t3 ft.t = 3 st = 0

13.10 A seismograph measures the horizontal motion of the
ground during an earthquake. An engineer analyzing the data
determines that for a 10-s interval of time beginning at the
position is approximated by What are 
(a) the maximum velocity and (b) the maximum acceleration of
the ground during the 10-s interval?

13.11 In an assembly operation, the robot’s arm moves along a
straight horizontal line. During an interval of time from to

the position of the arm is given by 

(a) Determine the maximum velocity during this interval of time.

(b) What are the position and acceleration when the velocity is a
maximum?

s = 30t2 - 20t3 mm.t = 1 s,
t = 0

s = 100 cos12pt2 mm.
t = 0
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38 Chapter 13 Motion of a Point

Problem 13.13

! 13.12 In Active Example 13.1, the acceleration (in ) of
point P relative to point O is given as a function of time by .
Suppose that at the position and velocity of P are
and Determine the position and velocity of P at

13.13 The Porsche starts from rest at time During the first
10 seconds of its motion, its velocity in km/h is given as a function
of time by where t is in seconds. (a) What is
the car’s maximum acceleration in , and when does it occur?
(b) What distance in km does the car travel during the 10 seconds?

m/s2
v = 22.8t - 0.88t2,

t = 0.

t = 4 s.v = 2 m/s.
s = 5 mt = 0

a = 3t2
m/s2

13.14 The acceleration of a point is When
and What are the position and

velocity at 

13.15 The acceleration of a point is When
and What are the position and velocity

as functions of time?

13.16 As a first approximation, a bioengineer studying the
mechanics of bird flight assumes that the snow petrel takes off
with constant acceleration. Video measurements indicate that a
bird requires a distance of 4.3 m to take off and is moving at
6.1 m/s when it does. What is its acceleration?

13.17 Progressively developing a more realistic model, the bio-
engineer next models the acceleration of the snow petrel by an
equation of the form where C and are con-
stants. From video measurements of a bird taking off, he estimates
that and determines that the bird requires 1.42 s to take
off and is moving at 6.1 m/s when it does. What is the constant C?
v = 18

va = C(1 + sin vt),

v = 20 ft/s.t = 0, s = 0
a = 60t - 36t2 ft/s2.

t = 3 s?
v = -10 m/s.t = 0, s = 40 m

a = 20t m/s2.

13.18 Missiles designed for defense against ballistic missiles
have attained accelerations in excess of 100 g’s, or 100 times the
acceleration due to gravity. Suppose that the missile shown lifts
off from the ground and has a constant acceleration of 100 g’s.
How long does it take to reach an altitude of 3000 m? How fast is
it going when it reaches that altitude?

13.19 Suppose that the missile shown lifts off from the ground
and, because it becomes lighter as its fuel is expended, its acceler-
ation (in g’s) is given as a function of time in seconds by

What is the missile’s velocity in miles per hour 1 s after liftoff?

a = 100
1 - 0.2t

.

Problems 13.16/13.17

Problems 13.18/13.19
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Problem 13.22

Problems 13.20/13.21

13.20 The airplane releases its drag parachute at time Its velocity is given as a function of time by

What is the airplane’s acceleration at 

13.21 How far does the airplane in Problem 13.20 travel during the interval of time from to t = 10 s?t = 0

t = 3 s?

v = 80
1 + 0.32t

  m/s.

t = 0.

13.22 The velocity of a bobsled is When 
the position of the sled is What is its position when
t = 10 s?

s = 25 ft.
t = 2 s,v = 10t ft/s.

13.23 In September 2003, Tony Schumacher started from rest
and drove a quarter mile (1320 ft) in 4.498 s in a National Hot
Rod Association race. His speed as he crossed the finish line was
328.54 Assume that the car’s acceleration can be expressed
by a linear function of time 

(a) Determine the constants b and c.

(b) What was the car’s speed 2 s after the start of the race?

a = b + ct.
mi/h.

13.24 The velocity of an object is When
the position of the object is What are the

position and acceleration of the object at 

13.25 An inertial navigation system measures the acceleration of
a vehicle from to and determines it to be

At the vehicle’s position and velocity
are and respectively. What are the vehi-
cle’s position and velocity at 

! 13.26 In Example 13.3, suppose that the cheetah’s accelera-
tion is constant and it reaches its top speed of 75 mi/h in 5 s. What
distance can it cover in 10 s?

t = 6 s?
v = 42 m/s,s = 240 m

t = 0,a = 2 + 0.1t m/s2.
t = 6 st = 0

t = 6 s?
s = 600 m.t = 3 s,

v = 200 - 2t2 m/s.
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13.27 The graph shows the airplane’s acceleration during take-
off. What is the airplane’s velocity when it rotates (lifts off) at
t = 30 s?

40 Chapter 13 Motion of a Point

295 ft 

30 mi/h

Problem 13.31

Problems 13.29/13.30

13.28 The graph shows the airplane’s acceleration during take-
off. What distance has the airplane traveled when it lifts off at
t = 30 s?

13.29 The car is traveling at 30 when the traffic light 295 ft
ahead turns yellow. The driver takes 1 s to react before he applies
the brakes.

(a) After he applies the brakes, what constant rate of deceleration
will cause the car to come to a stop just as it reaches the light?

(b) How long does it take the car to travel the 295 ft to the light?

13.30 The car is traveling at 30 mi/h when the traffic light
295 ft ahead turns yellow. The driver takes 1 s to react before
he applies the accelerator. If the car has a constant acceleration
of and the light remains yellow for 5 s, will the car reach
the light before it turns red? How fast is the car moving when it
reaches the light?

5 ft/s2

mi/h

13.31 A high-speed rail transportation system has a top speed of
For the comfort of the passengers, the magnitude of the

acceleration and deceleration is limited to Determine the
minimum time required for a trip of 100 km.

Strategy: A graphical approach can help you solve this prob-
lem. Recall that the change in the position from an initial time 
to a time t is equal to the area defined by the graph of the velocity
as a function of time from to t.t0

t0

2 m/s2.
100 m/s.

a

t

9 ft/s2

3 ft/s2

5 s0
0

30 s

Problems 13.27/13.28

13.32 The nearest star, Proxima Centauri, is 4.22 light years
from the Earth. Ignoring relative motion between the solar system
and Proxima Centauri, suppose that a spacecraft accelerates from
the vicinity of the Earth at 0.01g (0.01 times the acceleration due
to gravity at sea level) until it reaches one-tenth the speed of light,
coasts until it is time to decelerate, and then decelerates at 0.01g
until it comes to rest in the vicinity of Proxima Centauri. How
long does the trip take? (Light travels at )

13.33 A race car starts from rest and accelerates at 
for 10 s. The brakes are then applied, and the car has a constant
acceleration until it comes to rest. Determine 
(a) the maximum velocity, (b) the total distance traveled, and 
(c) the total time of travel.

13.34 When the position of a point is , and its
velocity is From to the acceleration of
the point is From until it comes to rest,
its acceleration is 

(a) What is the total time of travel?

(b) What total distance does the point move?

13.35 Zoologists studying the ecology of the Serengeti Plain
estimate that the average adult cheetah can run and
the average springbok can run 65 If the animals run along
the same straight line, start at the same time, are each assumed
to have constant acceleration, and reach top speed in 4 s, how
close must a cheetah be when the chase begins to catch a
springbok in 15 s?

13.36 Suppose that a person unwisely drives in a
zone and passes a police car going in the

same direction. If the police officers begin constant acceleration
at the instant they are passed and increase their velocity to

in 4 s, how long does it take them to be even with the
pursued car?
80 mi/h

55 mi/h55 mi/h
75 mi/h

km/h.
100 km/h

a = -4 m/s2.
t = 6 sa = 2 + 2t2 m/s2.
t = 6 s,t = 0v = 2 m/s.

s = 6 mt = 0,

a = -30 ft/s2

a = 5 + 2t ft/s2

3 * 108 m/s.
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13.3 Straight-Line Motion When the Acceleration Depends on Velocity or Position 41

13.37 If and what is the velocity of
P relative to O?

Strategy: You can write the position of P relative to O as

and then take the derivative of this expression with respect to time
to determine the velocity.

13.38 If and what
are the velocity and acceleration of P relative to O?

d2u>dt2 = 0,du>dt = -2 rad/s,u = 1 rad,

s = 12 ft2 cos u + 12 ft2 cos u

du>dt = 1 rad/s,u = 1 rad

s

u

2 ft

O

P

2 ft

Problems 13.37/13.38

s

u
O

P

200 mm 400 mm

Problem 13.39

13.39* If and what is the velocity of
P relative to O?

du>dt = 1 rad/s,u = 1 rad

13.3 Straight-Line Motion When the Acceleration
Depends on Velocity or Position

BACKGROUND

Acceleration Specified as a Function of Velocity Aerodynamic and
hydrodynamic forces can cause an object’s acceleration to depend on its
velocity (Fig. 13.10). Suppose that the acceleration is a known function of
velocity—that is,

(13.14)

We cannot integrate this equation with respect to time to determine the veloc-
ity, because a(v) is not known as a function of time. But we can separate
variables, putting terms involving v on one side of the equation and terms
involving t on the other side:

(13.15)

We can now integrate, obtaining

(13.16)L
v

v0

dv
a1v2 = L

t

t0

dt,

dv
a1v2 = dt.

dv
dt

= a1v2.

Figure 13.10
Aerodynamic and hydrodynamic forces de-
pend on an object’s velocity. As the bullet
slows, the aerodynamic drag force resisting
its motion decreases.
© 1973 Kim Vandiver & Harold Edgerton, 
Courtesy of Palm Press, Inc.
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where is the velocity at time In principle, we can solve this equation for
the velocity as a function of time and then integrate the relation

to determine the position as a function of time.
By using the chain rule, we can also determine the velocity as a function

of the position. Writing the acceleration as

and substituting it into Eq. (13.14), we obtain

Separating variables yields

Integrating,

we can obtain a relation between the velocity and the position.

Acceleration Specified as a Function of Position Gravitational forces
and forces exerted by springs can cause an object’s acceleration to depend on
its position. If the acceleration is a known function of position—that is,

(13.17)

we cannot integrate with respect to time to determine the velocity, because a(s)
is not known as a function of time. Moreover, we cannot separate variables,
because the equation contains three variables: v, t, and s. However, by using
the chain rule

we can write Eq. (13.17) as

Now we can separate variables,

(13.18)v dv = a1s2 ds,

dv
ds

 v = a1s2.

dv
dt

= dv
ds

 
ds
dt

= dv
ds

 v,

dv
dt

= a1s2,

L
v

v0

 
v dv
a1v2 = L

s

s0

 ds,

v dv
a1v2 = ds.

dv
ds

 v = a1v2.
dv
dt

= dv
ds

 
ds
dt

= dv
ds

 v

ds
dt

= v

t0.v0

42 Chapter 13 Motion of a Point
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and we integrate:

(13.19)

In principle, we can solve this equation for the velocity as a function of the
position:

(13.20)

Then we can separate variables in this equation and integrate to determine the
position as a function of time:

RESULTS

L
s

s0

 
ds

v1s2 = L
t

t0

 dt.

v = ds
dt

= v1s2.
L

v

v0

v dv = L
s

s0

a1s2 ds.

13.3 Straight-Line Motion When the Acceleration Depends on Velocity or Position 43

When the acceleration is
known as a function of
velocity, a ! a(v).

Separate variables,

then separate variables,

and integrate to determine the velocity as a
function of time.

Or, first apply the chain rule,

and integrate to determine the velocity as a
function of position.

! a (v):

! a (v),

dv
dt

!
dv
dt

dv
ds

!
dv
ds

ds
dt

! dt,

v

dv 
a (v)

! ds,
v dv 
a (v)

When the acceleration is
known as a function of
position, a ! a(s).

Apply the chain rule,

then separate variables,

and integrate to determine the velocity as a
function of position.

! a (s),!
dv
dt

dv
ds

!
dv
ds

ds
dt

v

v dv ! a (s) ds,
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44 Chapter 13 Motion of a Point

Active Example 13.4 Acceleration that is a Function of Velocity (! Related Problem 13.40)

After deploying its drag parachute, the airplane’s acceleration (in ) is
where is the velocity in m/s. Determine the time required for

the plane’s velocity to decrease from 80 m/s to 10 m/s.

Strategy
The airplane’s acceleration is known as a function of its velocity. Writing the
acceleration as we can separate variables and integrate to determine
the velocity as a function of time.

Solution

a = dv>dt,

va = -0.004v2,
m/s2

! "0.004v2 :
dv
dt

! "0.004 dt.dv
v2

Separate variables.

! "
Integrate, defining t ! 0 to be the
time at which the velocity is 80 m/s.
Here v is the velocity at time t.

! "0.004 dt,dv
v2

! "0.004t."
1
v

#
1

80

! "0.004 t ,"
1
v!  "

v

80

t

0

80L
v

0L
t

Solve for t in terms of the velocity.
From this equation, we find that the
time required for the volocity to
decrease to 10 m/s is 21.9 s. The
graph shows the airplane’s velocity
as a function of time.

0
0

t (s)

10 20 30

10

20

30

40

v 
(m

/s
)

5 15 25

50

60

70

80

21.9

#       $1
v

"t ! 250 .
1
80

Practice Problem What distance does the airplane travel as its velocity decreases
from 80 m/s to 10 m/s?

Answer: 520 m.
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Example 13.5 Gravitational (Position-Dependent) Acceleration (! Related Problem 13.62)

In terms of the distance s from the center of the earth, the magnitude of the ac-
celeration due to gravity is where is the radius of the earth. (See the
discussion of gravity in Section 12.2.) If a spacecraft is a distance from the
center of the earth, what outward velocity must it be given to reach a speci-
fied distance h from the earth’s center?

Strategy
The acceleration is known as a function of the position s. We can apply the
chain rule and separate variables, then integrate to determine the velocity as a
function of s.

Solution
The acceleration due to gravity is toward the center of the earth:

Applying the chain rule results in

Separating variables, we obtain

We integrate this equation using the initial condition ( when ) as
the lower limits and the final condition ( when ) as the upper limits:

Solving for we obtain the initial velocity necessary for the spacecraft to
reach a distance h:

Critical Thinking
We can make an interesting and important observation from the result of this
example. Notice that as the distance h increases, the necessary initial velocity

approaches a finite limit. This limit,

is called the escape velocity. In the absence of other effects, an object with this
initial velocity will continue moving outward indefinitely. The existence of an
escape velocity makes it feasible to send spacecraft to other planets. Once escape
velocity is attained, it isn’t necessary to expend additional fuel to keep going.

vesc = lim
h: q

v0 = C2gRE
2

s0
,

v0

v0 = C2gRE
2

 a 1
s0

- 1
h
b .

v0,

 0 -
v0

2

2
= gRE

2
 a 1

h
- 1

s0
b .

 cv2

2
d
v0

0
= gRE

2 c1
s
d

s0

h

,

 L
0

v0

v dv = -L
h

s0

 

gRE
2

s2  ds,

s = hv = 0
s = s0v = v0

v dv = -
gRE

2

s2  ds.

a = dv
dt

= dv
ds

 
ds
dt

= dv
ds

 v = -
gRE

2

s2 .

a = -
gRE

2

s2 .

v0

s0

REgRE
2>s2,

RE

s0

s

v0
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s

Problem 13.41

Problems 13.42/13.43

Problems
! 13.40 In Active Example 13.4, determine the time required for
the plane’s velocity to decrease from 50 m/s to 10 m/s.

13.41 An engineer designing a system to control a router for a
machining process models the system so that the router’s 
acceleration during an interval of time is given by

where is the velocity of the router in in/s. When
the position is and the velocity is 

What is the position at t = 3 s?
v = 2 in/s.s = 0t = 0,

va = -0.4v,
(in in/s2)

13.42 The boat is moving at 10 when its engine is shut
down. Due to hydrodynamic drag, its subsequent acceleration is

where v is the velocity of the boat in 
What is the boat’s velocity 4 s after the engine is shut down?

13.43 In Problem 13.42, what distance does the boat move in the
4 s following the shutdown of its engine?

m/s.a = -0.05v2 m/s2,

m/s

13.44 A steel ball is released from rest in a container of oil. Its
downward acceleration is where v is the
ball’s velocity in What is the ball’s downward velocity 2 s
after it is released?

13.45 In Problem 13.44, what distance does the ball fall in the
first 2 s after its release?

in/s.
a = 2.4 - 0.6v in/s2,

13.46 The greatest ocean depth yet discovered is the Marianas
Trench in the western Pacific Ocean. A steel ball released at the
surface requires 64 min to reach the bottom. The ball’s downward
acceleration is where and the con-
stant What is the depth of the Marianas Trench in
kilometers?

13.47 The acceleration of a regional airliner during its takeoff
run is where v is its velocity in 
How long does it take the airliner to reach its takeoff speed of
200

13.48 In Problem 13.47, what distance does the airliner require
to take off?

ft/s?

ft/s.a = 14 - 0.0003v2 ft/s2,

c = 3.02 s-1.
g = 9.81 m/s2a = 0.9g - cv,

Problems 13.44/13.45
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Problems 13.50/13.51

s

Problems 13.55/13.56

13.49 A sky diver jumps from a helicopter and is falling straight
down at 30 when her parachute opens. From then on, her
downward acceleration is approximately where

and c is a constant. After an initial “transient”
period, she descends at a nearly constant velocity of 5 

(a) What is the value of c, and what are its SI units?

(b) What maximum deceleration is the sky diver subjected to?

(c) What is her downward velocity when she has fallen 2 m from
the point at which her parachute opens?

m/s.
g = 9.81 m/s2

a = g - cv2,
m/s

13.52 A car’s acceleration is related to its position by
When the car is moving at 12 

How fast is the car moving when 

13.53 Engineers analyzing the motion of a linkage determine
that the velocity of an attachment point is given by

where A is a constant. When the
acceleration of the point is measured and determined to be

What is the velocity of the point when 

13.54 The acceleration of an object is given as a function of its
position in feet by When its velocity is

What is the velocity of the object when 

13.55 Gas guns are used to investigate the properties of materi-
als subjected to high-velocity impacts. A projectile is accelerated
through the barrel of the gun by gas at high pressure. Assume that
the acceleration of the projectile in is given by 
where s is the position of the projectile in the barrel in meters and
c is a constant that depends on the initial gas pressure behind the
projectile. The projectile starts from rest at and acceler-
ates until it reaches the end of the barrel at Determine
the value of the constant c necessary for the projectile to leave the
barrel with a velocity of 200 

13.56 If the propelling gas in the gas gun described in Problem
13.55 is air, a more accurate modeling of the acceleration of the
projectile is obtained by assuming that the acceleration of the pro-
jectile is given by where is the ratio of specific
heat for air. (This means that an isentropic expansion process is
assumed instead of the isothermal process assumed in Problem
13.55.) Determine the value of the constant c necessary for the
projectile to leave the barrel with a velocity of 200 m/s.

g = 1.4a = c>sg,

m/s.

s = 3 m.
s = 1.5 m

a = c>s,m/s2

s = 2 ft?v = 1 ft/s .
s = 0,a = 2s2 ft/s2.

s = 2 ft?a = 320 ft/s2.

s = 2 ft,v = A + 4s2 ft/s,

s = 420 m?
m/s.s = 100 m,a = 0.01s m/s2.

Problem 13.49

13.50 The rocket sled starts from rest and accelerates at
until its velocity is 400 It then hits a

water brake and its acceleration is until its
velocity decreases to What total distance does the
sled travel?

13.51 In Problem 13.50, what is the sled’s total time of travel?

100 m/s.
a = -0.003v2 m/s2

m/s.a = 30 + 2t m/s2

BEDFMC13_0136129161.QXD  6/15/07  4:20 PM  Page 47



48 Chapter 13 Motion of a Point

s

v0

238,000 mi

100 mi

Problem 13.62

13.60 The mass is released from rest with the springs 
unstretched. Its downward acceleration is 
where s is the position of the mass measured from the position in
which it is released.

(a) How far does the mass fall?

(b) What is the maximum velocity of the mass as it falls?

13.61 Suppose that the mass in Problem 13.60 is in the position
and is given a downward velocity of 

(a) How far does the mass fall?

(b) What is the maximum velocity of the mass as it falls?

10 ft/s.s = 0

a = 32.2 - 50s ft/s2,

! 13.62 If a spacecraft is 100 mi above the surface of the earth,
what initial velocity straight away from the earth would be 
required for the vehicle to reach the moon’s orbit, 238,000 mi
from the center of the earth? The radius of the earth is 3960 mi.
Neglect the effect of the moon’s gravity. (See Example 13.5.)

v0

Problems 13.60/13.61

s

Problems 13.57–13.59

13.57 A spring–mass oscillator consists of a mass and a spring
connected as shown. The coordinate s measures the displacement
of the mass relative to its position when the spring is unstretched.
If the spring is linear, the mass is subjected to a deceleration pro-
portional to s. Suppose that and that you give the
mass a velocity in the position 

(a) How far will the mass move to the right before the spring
brings it to a stop?

(b) What will be the velocity of the mass when it has returned to
the position 

13.58 In Problem 13.57, suppose that at you release the mass
from rest in the position Determine the velocity of the
mass as a function of s as it moves from the initial position to 

13.59 A spring–mass oscillator consists of a mass and a spring
connected as shown. The coordinate s measures the displacement
of the mass relative to its position when the spring is unstretched.
Suppose that the nonlinear spring subjects the mass to an accelera-
tion and that you give the mass a velocity

in the position 

(a) How far will the mass move to the right before the spring
brings it to a stop?

(b) What will be the velocity of the mass when it has returned to
the position s = 0?

s = 0.v = 1 m/s
a = -4s - 2s3 m/s2

s = 0.
s = 1 m.

t = 0

s = 0?

s = 0.v = 1 m/s
a = -4s m/s2
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13.4 Curvilinear Motion—Cartesian Coordinates 49

13.63 The moon’s radius is 1738 km. The magnitude of the 
acceleration due to gravity of the moon at a distance s from the
center of the moon is

Suppose that a spacecraft is launched straight up from the moon’s
surface with a velocity of 2000 

(a) What will the magnitude of its velocity be when it is 1000 km
above the surface of the moon?

(b) What maximum height above the moon’s surface will it reach?

13.64* The velocity of an object subjected only to the earth’s
gravitational field is

where s is the object’s position relative to the center of the earth,
is the object’s velocity at position and is the earth’s 

radius. Using this equation, show that the object’s acceleration is
given as a function of s by a = -gRE

2>s2.

REs0,v0

v = cv0
2 + 2gRE

2
 a1

s
- 1

s0
b d1>2,

m/s.

4.89 * 1012

s2
  m/s2.

S

N

Tunnel

RE

s

Problems 13.65/13.66

13.65 Suppose that a tunnel could be drilled straight through the
earth from the North Pole to the South Pole and the air was evacu-
ated. An object dropped from the surface would fall with accelera-
tion where g is the acceleration of gravity at sea
level, is the radius of the earth, and s is the distance of the ob-
ject from the center of the earth. (The acceleration due to gravity is
equal to zero at the center of the earth and increases linearly with
distance from the center.) What is the magnitude of the velocity of
the dropped object when it reaches the center of the earth?

13.66* Determine the time in seconds required for the object in
Problem 13.65 to fall from the surface of the earth to the center.
The earth’s radius is 6370 km.

RE

a = -gs>RE,

13.4 Curvilinear Motion—Cartesian Coordinates

BACKGROUND
The motion of a point along a straight line can be described by the scalars s, v,
and a. But if a point describes a curvilinear path relative to some reference
frame, we must specify its motion in terms of its position, velocity, and accel-
eration vectors. In many cases, the motion of the point can be analyzed conve-
niently by expressing the vectors in terms of cartesian coordinates.

Let r be the position vector of a point P relative to the origin O of a
cartesian reference frame (Fig. 13.11). The components of r are the x, y, and z
coordinates of P:

The unit vectors i, j, and k each have constant magnitude and constant direc-
tion relative to the reference frame, so the velocity of P relative to the refer-
ence frame is

(13.21)

Expressing the velocity in terms of scalar components yields

(13.22)v = vx i + vy j + vz k,

v = dr
dt

= dx
dt

 i +
dy
dt

 j + dz
dt

 k.

r = xi + yj + zk.

x

y

z

(x, y, z)
P

r

O i

k

j

Figure 13.11
A cartesian coordinate system with origin O.

BEDFMC13_0136129161.QXD  6/15/07  4:20 PM  Page 49



50 Chapter 13 Motion of a Point

from which we obtain scalar equations relating the components of the velocity
to the coordinates of P:

(13.23)

The acceleration of P is

By expressing the acceleration in terms of scalar components as

(13.24)

we obtain the scalar equations

(13.25)

Equations (13.23) and (13.25) describe the motion of a point relative to a carte-
sian coordinate system. Notice that the equations describing the motion in each
coordinate direction are identical in form to the equations that describe the
motion of a point along a straight line. As a consequence, the motion in each
coordinate direction can often be analyzed using the methods we applied to
straight-line motion.

The projectile problem is the classic example of this kind. If an object is
thrown through the air and aerodynamic drag is negligible, the object accelerates
downward with the acceleration due to gravity. In terms of a fixed cartesian
coordinate system with its y axis upward, the acceleration is given by

and Suppose that at the projectile is located at
the origin and has velocity in the x–y plane at an angle above the horizontal
(Fig. 13.12). At and The acceleration in the x
direction is zero—that is,

Therefore is constant and remains equal to its initial value:

(13.26)

(This result may seem unrealistic. The reason is that your intuition, based upon
everyday experience, accounts for drag, whereas the analysis presented here
does not.) Integrating Eq. (13.26) yields

whereupon we obtain the x coordinate of the object as a function of time:

(13.27)x = 1v0 cos u02t.
L

x

0
 dx = L

t

0
v0 cos u0 dt,

vx = dx
dt

= v0 cos u0.

vx

ax =
dvx

dt
= 0.

vx = v0 cos u0.t = 0, x = 0
u0v0

t = 0az = 0.ax = 0, ay = -g,

ax =
dvx

dt
, ay =

dvy

dt
, az =

dvz

dt
.

a = ax i + ay j + az k,

a = dv
dt

=
dvx

dt
 i +

dvy

dt
 j +

dvz

dt
 k.

vx = dx
dt

, vy =
dy
dt

, vz = dz
dt

.

x

y

v0

u0

Figure 13.12
Initial conditions for a projectile problem.
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Thus we have determined the position and velocity of the projectile in the x
direction as functions of time without considering the projectile’s motion in the
y or z direction.

At and The acceleration in the y direction is

Integrating, we obtain

from which it follows that

(13.28)

Integrating this equation yields

and we find that the y coordinate as a function of time is

(13.29)

Notice from this analysis that the same vertical velocity and position are ob-
tained by throwing the projectile straight up with initial velocity 
(Figs. 13.13a, b). The vertical motion is completely independent of the hori-
zontal motion.

By solving Eq. (13.27) for t and substituting the result into Eq. (13.29), we
obtain an equation describing the parabolic trajectory of the projectile:

(13.30)y = 1tan u02x -
g

2v0
2 cos2 u0

 x2.

v0 sin u0

y = 1v0 sin u02t - 1
2gt2.

L
y

0
 dy = L

t

0
1v0 sin u0 - gt2 dt,

vy =
dy

dt
= v0 sin u0 - gt.

L
vy

v0 sin u0
 dvy = L

t

0
-g dt,

ay =
dvy

dt
= -g.

vy = v0 sin u0.t = 0, y = 0

13.4 Curvilinear Motion—Cartesian Coordinates 51

x

y

(a) (b)
!x !x !x !x !x

Figure 13.13
(a) Positions of the projectile at equal time

intervals The distance

(b) Positions at equal time intervals of 
a projectile given an initial vertical 
velocity equal to v0 sin u0.

¢t
¢x = v01cos u02 ¢t.

¢t.
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52 Chapter 13 Motion of a Point

RESULTS

The components of the position vector of
a point P relative to the origin O of a
cartesian coordinate system are the x, y, z
coordinates of P.

r ! xi " yj " zk.

x

y

z

(x, y, z)
P

r

O

Cartesian components of the velocity of
P relative to the reference frame.

,
dx
dt

vx ! ,
dy
dt

vy ! .            (13.23)
dz
dt

vz !

Cartesian components of the acceleration
of P relative to the reference frame.

,ax ! ,ay ! .      (13.25)
dvz

dt

dvy

dt
dvx

dt
az !

The equations describing the motion in
each coordinate direction are identical in
form to the equations that describe the
motion of a point along a straight line. 
As a consequence, the motion in each
coordinate direction can often be analyzed
using the methods for straight-line motion.

Active Example 13.6 Analysis of Motion in Terms of Cartesian Components
(! Related Problem 13.67)

During a test flight in which a helicopter starts from rest at at the origin
of the coordinate system shown and moves in the x–y plane, onboard ac-
celerometers indicate that its components of acceleration during the
interval of time from to are

What is the magnitude of the helicopter’s velocity at t = 6 s?

 ay = 1.8 - 0.36t,

 ax = 0.6t,

t = 10 st = 0
(in m/s2)

t = 0
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13.4 Curvilinear Motion—Cartesian Coordinates 53

Strategy
We can analyze the motion in each coordinate direction independently, inte-
grating each component of the acceleration to determine each component of
the velocity as a function of time.

Solution

Practice Problem Determine the position vector of the helicopter at relative
to its position at 

Answer: r ƒ t=6 s = 21.6i + 19.4j (m).

t = 0.
t = 6 s

Integrate the x component
of the acceleration to determine 
the x component of the velocity
as a function of time.

vx ! 0.3t2.

! 0.6t,ax !
dvx

dt

L dvx ! 0.6 t dt,
0

vx

L0
t

Evaluate the x component of the
velocity at t ! 6 s. vx t!6 s ! 0.3(6)2 ! 10.8 m/s.

vy ! 1.8t  " 0.18t2.

! 1.8 " 0.36t,ay ! 
dvy 

dt

L dvy !  (1.8 " 0.36t) dt,
0

vy

L0
t

Integrate the y component of 
the acceleration to determine 
the y component of the velocity 
as a function of time.

Evaluate the y component of the
velocity at t ! 6 s. vy t!6 s ! 1.8(6) " 0.18(6)2 ! 4.32 m/s.

Calculate the magnitude of the
velocity at t ! 6 s. (10.8 m/s)2 # (4.32 m/s)2

|v|t!6 s ! vx
2 # vy

2

!

! 11.6 m/s

y

x
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54 Chapter 13 Motion of a Point

Example 13.7 A Projectile Problem (! Related Problem 13.69)

The skier leaves the 20° surface at 
(a) Determine the distance d to the point where he lands.
(b) What are the magnitudes of his components of velocity parallel and per-
pendicular to the 45° surface just before he lands?

Strategy
(a) By neglecting aerodynamic drag and treating the skier as a projectile, we can
determine his velocity and position as functions of time. Using the equation de-
scribing the straight surface on which he lands, we can relate his horizontal and
vertical coordinates at impact and thereby obtain an equation for the time at
which he lands. Knowing the time, we can determine his position and velocity.
(b) We can determine his velocity parallel and perpendicular to the 45° surface
by using the result that the component of a vector U in the direction of a unit
vector e is 

Solution
(a) In Fig. a, we introduce a coordinate system with its origin where the skier
leaves the surface. His components of velocity at that instant are

and

The x component of acceleration is zero, so is constant and the skier’s x
coordinate as a function of time is

The y component of acceleration is

Integrating to determine as a function of time, we obtain

from which it follows that

We integrate this equation to determine the y coordinate as a function of
time. We have

yielding

y = -3.42t - 4.905t2 m.

L
y

0
 dy = L

t

0
1-3.42 - 9.81t2 dt,

vy =
dy
dt

= -3.42 - 9.81t m/s.

L
vy

-3.42
 dvy = L

t

0
-9.81 dt,

vy

ay =
dvy

dt
= -9.81 m/s2.

x = 9.40t m.

vx

vy = -10 sin 20° = -3.42 m/s.

vx = 10 cos 20° = 9.40 m/s

1t = 02
1e # U2e.

10 m/s.

45!

3 m

d

20!

45!

3 m

d

20!
x

e

y

(a)
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The slope of the surface on which the skier lands is so the linear equa-
tion describing it is where A is a constant. At the 
y coordinate of the surface is so and the equation describ-
ing the 45° surface is

Substituting our equations for x and y as functions of time into this equation, we
obtain an equation for the time at which the skier lands:

Solving for t, we get Therefore, his coordinates when he lands are

and

and the distance d is

(b) The components of the skier’s velocity just before he lands are

and

and the magnitude of his velocity is 
Let e be a unit vector that is parallel to the slope on which he lands (Fig. a):

The component of the velocity parallel to the surface is

The magnitude of the skier’s velocity parallel to the surface is There-
fore, the magnitude of his velocity perpendicular to the surface is

Critical Thinking
The key to solving this problem was that we knew the skier’s acceleration.
Knowing the acceleration, we were able to determine the components of his
velocity and position as functions of time. Notice how we determined the posi-
tion at which he landed on the slope. We knew that at the instant he landed, his
x and y coordinates specified a point on the straight line defining the surface of
the slope. By substituting his x and y coordinates as functions of time into the
equation for the straight line defining the slope, we were able to solve for the
time at which he landed. Knowing the time, we could determine his velocity and
position at that instant.

2 ƒ v ƒ 2 - 120.222 = 6.88 m/s.

20.2 m/s.

 = 20.2e 1m/s2. 1e # v2e = 31cos 45°i - sin 45°j2 # 19.40i - 19.1j24e
e = cos 45°i - sin 45°j.

21.3 m/s.ƒv ƒ = 219.4022 + 1-19.122 =

vy = -3.42 - 9.8111.602 = -19.1 m/s,

vx = 9.40 m/s

d = 2115.022 + 118.0 - 322 = 21.3 m.

y = -3.4211.602 - 4.90511.6022 = -18.0 m,

x = 9.4011.602 = 15.0 m

t = 1.60 s.

-3.42t - 4.905t2 = -9.40t - 3.

y = -x - 3 m.

A = -3 m-3 m,
x = 0,y = 1-12x + A,

-1,
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56 Chapter 13 Motion of a Point

Problem 13.68

y

45!
x

Problems 13.72/13.73

Problems
! 13.67 In a second test, the coordinates of the position 
of the helicopter in Active Example 13.6 are given as functions of
time by

(a) What is the magnitude of the helicopter’s velocity at 

(b) What is the magnitude of the helicopter’s acceleration at

13.68 In terms of a particular reference frame, the position of the
center of mass of the F-14 at the time shown is 

The velocity from to is
What is the

position of the center of mass of the plane at t = 4 s?
112 + t22j - 14 + 2t22k 1m/s2.v = 152 + 6t2i +

t = 4 st = 06j + 22k 1m2. r = 10i +1t = 02
t = 3 s?

t = 3 s?

y = 4 + 4t + t2.
x = 4 + 2t,

(in m)

! 13.69 In Example 13.7, suppose that the angle between the
horizontal and the slope on which the skier lands is instead of

Determine the distance d to the point where he lands.

13.70 A projectile is launched from ground level with initial
velocity Determine its range R if (a) 
(b) and (c) u0 = 60°.u0 = 45°,

u0 = 30°,v0 = 20 m/s.

45°.
30°

13.71 Immediately after the bouncing golf ball leaves the 
floor, its components of velocity are and

(a) Determine the horizontal distance from the point where the
ball left the floor to the point where it hits the floor again.

(b) The ball leaves the floor at Determine the
ball’s y coordinate as a function of x. (The parabolic function you
obtain is shown superimposed on the photograph of the ball.)

x = 0, y = 0.

vy = 3.66 m/s .
vx = 0.662 m/s

13.72 Suppose that you are designing a mortar to launch a
rescue line from coast guard vessels to ships in distress. The
light line is attached to a weight fired by the mortar. Neglect
aerodynamic drag and the weight of the line for your preliminary
analysis. If you want the line to be able to reach a ship 300 ft
away when the mortar is fired at 45° above the horizontal, what
muzzle velocity is required?

13.73 In Problem 13.72, what maximum height above the point
from which it was fired is reached by the weight?

R

v0

u0

y

x

Problem 13.70

x

y

Problem 13.71
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Problems 57

13.74 When the athlete releases the shot, it is 1.82 m above the
ground and its initial velocity is Determine the
horizontal distance the shot travels from the point of release to the
point where it hits the ground.

v0 = 13.6 m/s .

30!

v0

Problem 13.74

d

h

v0

Problem 13.75

13.75 A pilot wants to drop survey markers at remote locations
in the Australian outback. If he flies at a constant velocity

at altitude and the marker is released with
zero velocity relative to the plane, at what horizontal distance d
from the desired impact point should the marker be released?

h = 30 mv0 = 40 m/s

13.76 If the pitching wedge the golfer is using gives the ball an
initial angle what range of velocities will cause the
ball to land within 3 ft of the hole? (Assume that the hole lies in
the plane of the ball’s trajectory.)

v0u0 = 50°,

v0

30 ft

3 ftu0

Problem 13.76

13.77 A batter strikes a baseball 3 ft above home plate and pops it
up. The second baseman catches it 6 ft above second base 3.68 s
after it was hit. What was the ball’s initial velocity, and what was the
angle between the ball’s initial velocity vector and the horizontal?

90
 ft

90 ft

Second
base

Home plate

Problem 13.77
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58 Chapter 13 Motion of a Point

20!

Problem 13.80

yc

xc

v0

u0

Problem 13.81

90!

C

B

Receiver’s
path

Path of the ball

30 ft

A

Problem 13.82

13.80 A zoology graduate student is provided with a bow and an
arrow tipped with a syringe of sedative and is assigned to measure
the temperature of a black rhinoceros (Diceros bicornis). The
range of his bow when it is fully drawn and aimed 45° above the
horizontal is 100 m. A truculent rhino suddenly charges straight
toward him at If he fully draws his bow and aims 20°
above the horizontal, how far away should the rhino be when the
student releases the arrow?

30 km/h.

13.81 The crossbar of the goalposts in American football is
above the ground. To kick a field goal, the kicker must

make the ball go between the two uprights supporting the crossbar,
and the ball must be above the crossbar when it does so. Suppose
that the kicker attempts a 40-yd field goal and kicks
the ball with initial velocity and angle By
what vertical distance does the ball clear the crossbar?

u0 = 40°.v0 = 70 ft/s
1xc = 120 ft2

yc = 10 ft

13.82* An American football quarterback stands at A. At the in-
stant the quarterback throws the football, the receiver is at B run-
ning at toward C, where he catches the ball. The ball is
thrown at an angle of 45° above the horizontal, and it is thrown
and caught at the same height above the ground. Determine the
magnitude of the ball’s initial velocity and the length of time it is
in the air.

20 ft/s

13.78 A baseball pitcher releases a fastball with an initial velocity
Let be the initial angle of the ball’s velocity vector

above the horizontal. When it is released, the ball is 6 ft above the
ground and 58 ft from the batter’s plate. The batter’s strike zone ex-
tends from 1 ft 10 in above the ground to 4 ft 6 in above the ground.
Neglecting aerodynamic effects, determine whether the ball will hit
the strike zone (a) if and (b) if 

13.79 In Problem 13.78, assume that the pitcher releases the ball
at an angle above the horizontal, and determine the range
of velocities within which he must release the ball to
hit the strike zone.

1in ft/s2v0

u = 1°

u = 2°.u = 1°

uv0 = 90 mi/h.

4 ft 6 in

1 ft 10 in
58 ft

Problems 13.78/13.79
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Problems 59

13.83 The cliff divers of Acapulco, Mexico, must time their dives
so that they enter the water at the crest (high point) of a wave. The
crests of the waves are 1 m above the mean water depth
The horizontal velocity of the waves is equal to The diver’s
aiming point is 2 m out from the base of the cliff. Assume that his
velocity is horizontal when he begins the dive.

(a) What is the magnitude of the diver’s velocity when he
enters the water?

(b) How far from his aiming point must a wave crest be when he
dives in order for him to enter the water at the crest?

1gh.
h = 4 m.

13.84 A projectile is launched at from a sloping surface.
The angle Determine the range R.a = 80°.

10 m/s

13.85 A projectile is launched at at 60° above the hori-
zontal. The surface on which it lands is described by the equation
shown. Determine the x coordinate of the point of impact.

100 ft/s

2 m6.4 m

1 m

26 m

h

Problem 13.83

a

10 m/s

R

30!

Problem 13.84

y

y " #0.001x2

60!

100 ft/s

x

Problem 13.85

x

y

Problems 13.86/13.87

13.86 At a steel ball in a tank of oil is given a horizontal
velocity The components of the ball’s acceleration,
in are and 
What is the velocity of the ball at 

13.87 In Problem 13.86, what is the position of the ball at 
relative to its position at t = 0?

t = 1 s

t = 1 s?
az = -1.2vz.ax = -1.2vx, ay = -8 - 1.2vy,m/s2,

v = 2i 1m/s2.t = 0,
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60 Chapter 13 Motion of a Point

300 mm

P

y

Problem 13.89

y = 0.0003x2

y

x

Problem 13.90

x

y
y !

x !

Problem 13.91

P

y

x
u

Problem 13.88

13.88 The point P moves along a circular path with radius R.
Show that the magnitude of its velocity is 

Strategy: Use Eqs. (13.23).

ƒv ƒ = R ƒdu>dt ƒ .

13.89 If and
what are the magnitudes of the velocity and acceleration of
point P?

d2y>dt2 = 0,y = 150 mm, dy>dt = 300 mm/s,

13.90* A car travels at a constant speed of on a
straight road of increasing grade whose vertical profile can be
approximated by the equation shown. When the car’s horizontal
coordinate is what is the car’s acceleration?x = 400 m,

100 km/h

13.91* Suppose that a projectile has the initial conditions shown
in Fig. 13.12. Show that in terms of the coordinate system
with its origin at the highest point of the trajectory, the equation
describing the trajectory is

y¿ = -
g

2v0
2 cos2 u0

 1x¿22.

x¿y¿

13.92* The acceleration components of a point are
and At the posi-

tion and velocity of the point are and Show that
(a) the magnitude of the velocity is constant, (b) the velocity and
acceleration vectors are perpendicular, (c) the magnitude of the
acceleration is constant and points toward the origin, and (d) the
trajectory of the point is a circle with its center at the origin.

v = 2j.r = i
t = 0,az = 0.ay = -4 sin 2t,ax = -4 cos 2t,
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13.5 Angular Motion 61

L0

L
u

Figure 13.14
A line L and a reference line in a plane.L0

13.5 Angular Motion

BACKGROUND
We have seen that in some cases the curvilinear motion of a point can be ana-
lyzed by using cartesian coordinates. In the sections that follow, we describe
problems that can be analyzed more simply in terms of other coordinate sys-
tems. To help you understand our discussion of these alternative coordinate sys-
tems, we introduce two preliminary topics in this section: the angular motion of
a line in a plane and the time derivative of a unit vector rotating in a plane.

Angular Motion of a Line
We can specify the angular position of a line L in a particular plane relative to
a reference line in the plane by an angle (Fig. 13.14). The angular veloc-
ity of L relative to is defined by

(13.31)

and the angular acceleration of L relative to is defined by

(13.32)

The dimensions of the angular position, angular velocity, and angular accel-
eration are rad, and respectively. Although these quantities are
often expressed in terms of degrees or revolutions instead of radians, con-
vert them into radians before using them in calculations.

Rotating Unit Vector
The directions of the unit vectors i, j, and k relative to the cartesian reference
frame are constant. However, in other coordinate systems, the unit vectors
used to describe the motion of a point rotate as the point moves. To obtain
expressions for the velocity and acceleration in such coordinate systems, we
must know the time derivative of a rotating unit vector.

We can describe the angular motion of a unit vector e in a plane just as we
described the angular motion of a line. The direction of e relative to a refer-
ence line is specified by the angle in Fig. 13.15a, and the rate of rotation
of e relative to is specified by the angular velocity

The time derivative of e is defined by

Figure 13.15b shows the vector e at time t and at time The change in e
during this interval is and the angle through which e
rotates is The triangle in Fig. 13.15b is isosceles, so

ƒ ¢e ƒ = 2 ƒe ƒ  sin1¢u>22 = 2 sin1¢u>22.¢u = u1t + ¢t2 - u1t2.¢e = e1t + ¢t2 - e1t2, t + ¢t.

de
dt

= lim
¢t:0

 

e1t + ¢t2 - e1t2
¢t

.

v = du
dt

.

L0

uL0

rad/s2,rad/s,

a = dv
dt

= d2u

dt2 .

L0

v = du
dt

,

L0

uL0
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62 Chapter 13 Motion of a Point

e

L0
(a)

e(t)

L0
(b)

u(t)

L0
(c)

de 
dt

!

"e

n

e(t # "t)

L0
(d)

e

n ! vn 

e(t)

n

e(t # "t)

du 

dt

u

"u

u

Figure 13.15
(a) A unit vector e and reference line 
(b) The change in e from t to 
(c) As goes to zero, n becomes perpendicular to e(t).
(d) The time derivative of e.

¢t
t + ¢t.¢e

L0.

To write the vector in terms of this expression, we introduce a unit vector
n that points in the direction of (Fig. 13.15b):

In terms of this expression, the time derivative of e is

To evaluate the limit, we write it in the form

In the limit as approaches zero, 
and the unit vector n is perpendicular to e(t) (Fig. 13.15c). Therefore, the time
derivative of e is

(13.33)

where n is a unit vector that is perpendicular to e and points in the positive 
direction (Fig. 13.15d). In the sections that follow, we use this result in deriving
expressions for the velocity and acceleration of a point in different coordinate
systems.

u

de
dt

= du
dt

 n = vn,

sin1¢u>22>1¢u>22 = 1, ¢u>¢t = du>dt,¢t

de
dt

= lim
¢t:0

 

sin1¢u>22
¢u>2  

¢u
¢t

 n.

de
dt

= lim
¢t:0

 
¢e
¢t

= lim
¢t:0

 

2 sin1¢u>22n
¢t

.

¢e = ƒ ¢e ƒn = 2 sin1¢u>22n.

¢e
¢e
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13.5 Angular Motion 63

RESULTS

Angular Position 
The angular position of a line L in a plane
relative to a reference line L0 in the plane can be
described by an angle u. L0

L
u

Angular Velocity
The angular velocity of L relative to L0 at a time 
t is the derivative of the angular position u with 
respect to t (the rate of change of u).

du
dt

v ! . (13.31)

Angular Acceleration 
The angular acceleration of L relative to L0 at a 
time t is the derivative of the angular velocity v
with respect to t (the rate of change of v).

dv
dt

a ! !
d2u

dt2 . (13.32)

The equations relating the angular position u, the 
angular velocity v, and the angular acceleration
a are identical in form to the equations that relate
the position s, the velocity v, and the acceleration
a in the motion of a point along a straight line.
As a consequence, problems involving angular
motion can be solved using the same methods 
that were applied to straight-line motion.

ds 
dt

v !
du
dt

v !

dv
dt

a ! !
d2s 
dt2

dv
dt

a ! !
d2u

dt2

Angular MotionStraight-Line Motion

Angular Motion of a Line

Rotating Unit Vector

Let e be a unit vector that rotates in a plane relative
to a reference line L0 in the plane.

e

L0
u

The derivative of e with respect to time is

where n is a unit vector that is perpendicular to e
and points in the positive u direction.

! vn, (13.33)!
du 
dt

de 
dt

n

de 
dt

L0

e

u
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64 Chapter 13 Motion of a Point

Active Example 13.8 Analysis of Angular Motion (! Related Problem 13.96)

The rotor of a jet engine is rotating at 10,000 rpm
(revolutions per minute) when the fuel is shut off.
The ensuing angular acceleration is

where is the rotor’s angular
velocity in rad/s. How long does it take the rotor
to slow to 1000 rpm?

Strategy
To analyze the angular motion of the rotor, we
define a line L that is fixed to the rotor and per-
pendicular to its axis. Then we examine the an-
gular motion of L relative to a reference line
The rotor’s angular acceleration is known in
terms of its angular velocity. Just as in the case
of straight-line motion, we can separate vari-
ables and integrate to obtain a relationship be-
tween the angular velocity and the time.

Solution

L0.

va = -0.02v,
(in rad/s2)L

L0

u

Determine the conversion from rpm to rad/s.
! !2p rad

1 revolution
1 rpm ! (1 revolution/min) 

1 min 
60 s

rad/s.
p

30
!

""

Write the angular acceleration as a ! dv/dt
and separate variables.

dv
dt

a ! "0.02v,

dv
v

!

!

"0.02dt.

Integrate, defining t ! 0 to be the time at
which the angular velocity is
10,000 rpm ! 10,000p/30 rad/s.

dt,
0

t

L10,000p/30

1000p/30

L
dv
v

!"0.02

10,000p/30

1000p/30

0

t
!"0.02

ln(10) ! 0.02t.

#     $lnv # $t ,

Solve for t.
ln(10) 
0.02

t ! !115 s.

Practice Problem Determine the number of revolutions the rotor turns as it
decelerates from 10,000 rpm to 1000 rpm. Begin by applying the chain rule to
the angular acceleration:

.

Answer: 7500 revolutions.

a = dv
dt

= dv
du

 
du
dt

= dv
du

 v

BEDFMC13_0136129161.QXD  6/15/07  4:20 PM  Page 64



Problems 65

u

Problem 13.93

L

L0

u

Problem 13.94

L

L0

u

Problem 13.95

Problems 13.97/13.98

Problems
13.93 When an airplane touches down at a stationary wheel
is subjected to a constant angular acceleration until

(a) What is the wheel’s angular velocity at 

(b) At the angle Determine in radians and in
revolutions at t = 1 s.

uu = 0.t = 0,

t = 1 s?

t = 1 s.
a = 110 rad/s2

t = 0,

13.94 Let L be a line from the center of the earth to a fixed point
on the equator, and let be a fixed reference direction. The 
figure views the earth from above the north pole.

(a) Is positive or negative? (Remember that the sun rises in
the east.)

(b) Determine the approximate value of in rad/s and use 
it to calculate the angle through which the earth rotates in one
hour.

du>dt

du>dt

L0

13.95 The angular acceleration of the line L relative to the line
is given as a function of time by At

and the angular velocity of L relative to is
Determine and at t = 3 s.vuv = 5 rad/s.

L0u = 0t = 0,
a = 2.5 - 1.2t rad/s2.L0

! 13.96 In Active Example 13.8, suppose that the angular accel-
eration of the rotor is where is the angular
velocity of the rotor in rad/s. How long does it take the rotor to
slow from 10,000 rpm to 1000 rpm?

13.97 The astronaut is not rotating. He has an orientation control
system that can subject him to a constant angular acceleration of

about the vertical axis in either direction. If he wants to
rotate about the vertical axis (that is, rotate so that he is facing
toward the left) and not be rotating in his new orientation, what is
the minimum time in which he could achieve the new orientation?

13.98 The astronaut is not rotating. He has an orientation control
system that can subject him to a constant angular acceleration of

about the vertical axis in either direction. Refer to Prob-
lem 13.97. For safety, the control system will not allow his angu-
lar velocity to exceed per second. If he wants to rotate 
about the vertical axis (that is, rotate so that he is facing toward
the left) and not be rotating in his new orientation, what is the
minimum time in which he could achieve the new orientation?

180°15°

0.1 rad/s2

180°
0.1 rad/s2

va = -0.00002v2,
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66 Chapter 13 Motion of a Point

u

Problem 13.100

x

y

e

u

Problems 13.101/13.102

x

y

O

P
R

u

Problem 13.103

13.99 The rotor of an electric generator is rotating at 200 rpm
when the motor is turned off. Due to frictional effects, the angular
acceleration of the rotor after the motor is turned off is

where is the angular velocity in rad/s. 

(a) What is the rotor’s angular velocity one minute after the
motor is turned off?

(b) After the motor is turned off, how many revolutions does the
rotor turn before it comes to rest?

Strategy: To do part (b), use the chain rule to write the angu-
lar acceleration as

13.100 The needle of a measuring instrument is connected
to a torsional spring that gives it an angular acceleration

where is the needle’s angular position in radians
relative to a reference direction. The needle is given an angular
velocity in the position

(a) What is the magnitude of the needle’s angular velocity when

(b) What maximum angle does the needle reach before it
rebounds?

u

u = 30°?

u = 0.v = 2 rad/s

u-4u rad/s2,
a =

a = dv
dt

= dv
du

 
du
dt

= dv
du

 v.

va = -0.01v rad/s2,

13.101 The angle measures the direction of the unit vector e
relative to the x axis. The angular velocity of e is 

a constant. Determine the derivative when 
in two ways:

(a) Use Eq. (13.33).

(b) Express the vector e in terms of its x and y components and
take the time derivative of e.

13.102 The angle measures the direction of the unit vector e
relative to the x axis. The angle is given as a function of time by

What is the vector at t = 4 s?de>dtu = 2t2 rad.
u

u

u = 90°de>dt2 rad/s,
v = du>dt =

u

13.103 The line OP is of constant length R. The angle 
where is a constant.

(a) Use the relations

to determine the velocity of point P relative to O.

(b) Use Eq. (13.33) to determine the velocity of point P relative to
O, and confirm that your result agrees with the result of part (a).

Strategy: In part (b), write the position vector of P relative to
O as where e is a unit vector that points from O toward P.r = Re,

vx = dx
dt

 and vy =
dy

dt

v0

u = v0 t,
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13.6 Curvilinear Motion—Normal and Tangential Components 67

13.6 Curvilinear Motion—Normal 
and Tangential Components

BACKGROUND
In this method of describing curvilinear motion, we specify the position of a
point by a coordinate measured along its path and express the velocity and
acceleration in terms of their components tangential and normal (perpendicu-
lar) to the path. Normal and tangential components are particularly useful when
a point moves along a circular path. Furthermore, they give us unique insight
into the character of the velocity and acceleration in curvilinear motion. We
first discuss motion in a planar path because of its conceptual simplicity.

Planar Motion
Consider a point P moving along a plane curvilinear path relative to some ref-
erence frame (Fig. 13.16a). The position vector r specifies the position of P
relative to the reference point O, and the coordinate s measures P’s position
along the path relative to a point on the path. The velocity of P relative to
O is

(13.34)

where (Fig. 13.16b). We denote the distance traveled
along the path from t to by By introducing a unit vector e defined
to point in the direction of we can write Eq. (13.34) as

As approaches zero, becomes and e becomes a unit vector tan-
gent to the path at the position of P at time t, which we denote by (Fig. 13.16c):

(13.35)

The velocity of a point in curvilinear motion is a vector whose magnitude
equals the rate of change of distance traveled along the path and whose direc-
tion is tangent to the path.

v = vet = ds
dt

 et.

et

ds>dt¢s>¢t¢t

v = lim
¢t:0

 
¢s
¢t

 e.

¢r,
¢s.t + ¢t

¢r = r1t + ¢t2 - r1t2
v = dr

dt
= lim

¢t:0
 

r1t + ¢t2 - r1t2
¢t

= lim
¢t:0

 
¢r
¢t

,

O¿

O

(a)

P

r

O! s O! s

O

(b)

P(t)

r(t)

"r

"s

r(t # "t)

e

O

(c)

P(t)

r(t)
r(t # "t)

e

et

Figure 13.16
(a) The position of P along its path is specified by the coordinate s.
(b) Position of P at time t and at time 
(c) The limit of e as is a unit vector tangent to the path.¢t : 0

t + ¢t.
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68 Chapter 13 Motion of a Point

To determine the acceleration of P, we take the time derivative of
Eq. (13.35):

(13.36)

If the path is not a straight line, the unit vector rotates as P moves. As a con-
sequence, the time derivative of is not zero. In the previous section, we
derived an expression for the time derivative of a rotating unit vector in terms
of the unit vector’s angular velocity [Eq. (13.33)]. To use that result, we define
the path angle specifying the direction of relative to a reference line 
(Fig. 13.17). Then, from Eq. (13.33), the time derivative of is

where is a unit vector that is normal to and points in the positive direc-
tion if is positive. Substituting this expression into Eq. (13.36), we
obtain the acceleration of P:

(13.37)

We can derive this result in another way that is less rigorous, but that
gives additional insight into the meanings of the tangential and normal com-
ponents of the acceleration. Figure 13.18a shows the velocity of P at times t
and In Fig. 13.18b, you can see that the change in the velocity,

consists of two components. The component which
is tangent to the path at time t, is due to the change in the magnitude of the
velocity. The component which is perpendicular to the path at time t, is
due to the change in the direction of the velocity vector. Thus, the change in
the velocity is (approximately)

To obtain the acceleration, we divide this expression by and take the limit
as 

= dv
dt

 et + v 
du
dt

 en.

a = lim
¢t:0

 
¢v
¢t

= lim
¢t:0

 a¢v
¢t

 et + v 
¢u
¢t

 enb
¢t : 0:

¢t

v1t + ¢t2 - v1t2 = ¢v et + v¢u en.

v¢u,

¢v,v1t + ¢t2 - v1t2,t + ¢t.

a = dv
dt

 et + v 
du
dt

 en.

du>dt
ueten

det

dt
= du

dt
 en,

et

etu

et

et

a = dv
dt

= dv
dt

 et + v 

det

dt
.

O!

O

r

s
P

en
et

u

Figure 13.17
The path angle u.

et

en

v(t)

v(t " #t)

P

P

(a)

v(t " #t)

et

v#u 

#v

en

v(t)

(b)

#uFigure 13.18
(a) Velocity of P at t and at 
(b) The tangential and normal components

of the change in the velocity.

t + ¢t.
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13.6 Curvilinear Motion—Normal and Tangential Components 69

Thus, we again obtain Eq. (13.37). However, this derivation clearly points out
that the tangential component of the acceleration arises from the rate of change
of the magnitude of the velocity, whereas the normal component arises from
the rate of change in the direction of the velocity vector. Notice that if the path
is a straight line at time t, the normal component of the acceleration equals
zero, because in that case is zero.

We can express the acceleration in another form that often is more con-
venient to use. Figure 13.19 shows the positions on the path reached by P at
times t and If the path is curved, straight lines extended from these
points perpendicular to the path will intersect as shown. The distance from
the path to the point where these two lines intersect is called the
instantaneous radius of curvature of the path. (If the path is circular, is sim-
ply the radius of the path.) The angle is the change in the path angle, and
ds is the distance traveled from t to You can see from the figure that

is related to ds by

Dividing by dt, we obtain

Using this relation, we can write Eq. (13.37) as

For a given value of v, the normal component of the acceleration depends on
the instantaneous radius of curvature. The greater the curvature of the path, the
greater is the normal component of acceleration. When the acceleration is
expressed in this way, the unit vector must be defined to point toward the
concave side of the path (Fig. 13.20).

Thus, the velocity and acceleration in terms of normal and tangential
components are (Fig. 13.21)

(13.38)v = vet = ds
dt

 et

en

a = dv
dt

 et + v2

r
 en.

ds
dt

= v = r 
du
dt

.

ds = r du.

r
t + ¢t.

du
r

r
t + dt.

du>dt

du

P

P

ds

u ! du 

u

r

Figure 13.19
The instantaneous radius of curvature, r.

P P

P

P

et

et

et

et

en
en en

en

Figure 13.20
The unit vector normal to the path
points toward the concave side.

(a)

s

P

v " vet

et

en

(b)

s

a

atet

et

anen

en

P

Figure 13.21
Normal and tangential components of the velocity (a) and acceleration (b).
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y

x

et

P

en

u

Figure 13.22
A point P moving in the x–y plane.

s

R

P

O

u

Figure 13.23
A point moving in a circular path.

and

(13.39)

where

(13.40)

If the motion occurs in the x–y plane of a cartesian reference frame
(Fig. 13.22) and is the angle between the x axis and the unit vector the unit
vectors and are related to the cartesian unit vectors by

and

(13.41)

If the path in the x–y plane is described by a function it can be
shown that the instantaneous radius of curvature is given by

(13.42)

Circular Motion
If a point P moves in a plane circular path of radius R (Fig. 13.23), the dis-
tance s is related to the angle by

Using this relation, then, we can specify the position of P along the circular
path by either s or Taking the time derivative of the equation, we obtain a
relation between and the angular velocity of the line from the cen-
ter of the path to P:

(13.43)

Taking another time derivative, we obtain a relation between the tangential
component of the acceleration and the angular acceleration:

(13.44)

For this circular path, the instantaneous radius of curvature so the nor-
mal component of the acceleration is

(13.45)

Because problems involving circular motion of a point are so common, these
relations are worth remembering. But you must be careful to use them only
when the path is circular.

an = v2

R
= Rv2

r = R,

at = R 
dv
dt

= Ra

at = dv>dt

v = R 
du
dt

= Rv

v = ds>dt
u.

s = Ru 1circular path2.u

r =
c1 + a dy

dx
b2 d3>2

` d2y

dx2 ` .

y = y1x2,en = -sin u i + cos u j.

et = cos u i + sin u j

enet

et,u

at = dv
dt

 and an = v 
du
dt

= v2

r
.

a = at et + an en,

(circular path).

(circular path).

(circular path).
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Three-Dimensional Motion
Although most applications of normal and tangential components involve the
motion of a point in a plane, we briefly discuss three-dimensional motion for the
insight it provides into the nature of the velocity and acceleration. If we consider
the motion of a point along a three-dimensional path relative to some reference
frame, the steps leading to Eq. (13.38) are unaltered. The velocity is

(13.46)

where is the rate of change of distance along the path and the unit
vector is tangent to the path and points in the direction of motion. We take
the time derivative of this equation to obtain the acceleration:

As the point moves along its three-dimensional path, the direction of the unit
vector changes. In the case of motion of a point in a plane, this unit vector
rotates in the plane, but in three-dimensional motion, the picture is more com-
plicated. Figure 13.24a shows the path seen from a viewpoint perpendicular
to the plane containing the vector at times t and This plane is called
the osculating plane. It can be thought of as the instantaneous plane of rota-
tion of the unit vector and its orientation will generally change as P moves
along its path. Since is rotating in the osculating plane at time t, its time
derivative is

(13.47)

where is the angular velocity of in the osculating plane and the unit
vector is defined as shown in Fig. 13.24b. The vector is perpendicular to

parallel to the osculating plane, and directed toward the concave side of the
path. Therefore the acceleration is

(13.48)

In the same way as in the case of motion in a plane, we can also express the accel-
eration in terms of the instantaneous radius of curvature of the path (Fig. 13.24c):

(13.49)

We see that the expressions for the velocity and acceleration in normal
and tangential components for three-dimensional motion are identical in form
to the expressions for planar motion. The velocity is a vector whose magnitude
equals the rate of change of distance traveled along the path and whose direc-
tion is tangent to the path. The acceleration has a component tangential to the
path equal to the rate of change of the magnitude of the velocity and a com-
ponent perpendicular to the path that depends on the magnitude of the velocity
and the instantaneous radius of curvature of the path. In planar motion, the unit
vector is parallel to the plane of the motion. In three-dimensional motion,en

a = dv
dt

 et + v2

r
 en.

a = dv
dt

 et + v 
du
dt

 en.

et,
enen

etdu>dt

det

dt
= du

dt
 en,

et

et,

t + dt.et

et

a = dv
dt

= dv
dt

 et + v 

det

dt
.

et

v = ds>dt

v = vet = ds
dt

 et,

du 

dt

!

et

en

P

ds

et

P

en

et(t)

et(t " dt)

P

P

(a)

(b)

(c)

du
du 

dt
ds 
dt

1 
rr

Figure 13.24
(a) Defining the osculating plane.
(b) Definition of the unit vector 
(c) The instantaneous radius of curvature.

en.
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et

P

Osculating
plane

en

ep

Figure 13.25
Defining the third unit vector ep.

is parallel to the osculating plane, whose orientation depends on the nature
of the path. Notice from Eq. (13.47) that can be expressed in terms of by

(13.50)

As the final step necessary to establish a three-dimensional coordinate sys-
tem, we introduce a third unit vector that is perpendicular to both and 
by the definition

(13.51)

The unit vector is perpendicular to the osculating plane (Fig. 13.25).ep

ep = et * en.

enet

en =

det

dt` det

dt
` .

eten

en

RESULTS

Velocity v and acceleration a of P 
in terms of normal and tangential
components. The unit vector et is
tangent to the path and points in
the direction of motion. The unit
vector en is perpendicular to the
path and points toward the concave 
side of the path.

s

P

v ! vet

et

en

s

a

atet

et

anen

en

P

a ! atet " anen ,

where

v ! vet ! et ,
ds
dt

at !

(13.39)

(13.38)

(13.40),
dv
dt

an ! v !
du
dt

v2

r
.

Normal and Tangential Components in Planar Motion

The parameter r is the instantaneous
radius of curvature of the path. u is
the angle between a fixed reference
direction and the path.

du

P

P

ds

u " du

u

r
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Motion in a Circular Path

If a point moves in a circular path
of radius R, the velocity and the
normal and tangential components
of the acceleration can be expressed
in terms of the angular velocity and
angular acceleration.

s

R

P

O

u

v ! R (circular motion)     (13.43)! Rv,
du
dt

at ! R ! Ra,
dv
dt

an ! 

(circular motion)     (13.44)

(circular motion)     (13.45)! Rv2.
v2

R

Motion in the x–y Plane of a Cartesian Reference Frame

Relations between the unit vectors.

et ! cosui " sinuj,

en ! #sinui " cosuj.
(13.41)

y

x

et

P

en

u

Expression for the instantaneous
radius of curvature when the path
is described by a function y ! y(x).

1 " ! "dy
dx

d2y
dx2

#$
3/2

r ! . (13.42)

2
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Active Example 13.9 Motion in Terms of Normal and Tangential Components
(! Related Problem 13.104)

The motorcycle starts from rest at on a circular track with a 400-m radius.
The tangential component of the motorcycle’s acceleration is given
as a function of time by What is the motorcycle’s velocity in
terms of normal and tangential components at What distance s has the
motorcycle moved along the track at t = 10 s?

t = 10 s?
at = 2 + 0.2t.

(in m/s2)
t = 0

400 mP

et

en

O
s

Strategy
Let s be the distance along the track from the initial position O of the motor-
cycle to its position at time t. Knowing the tangential acceleration as a func-
tion of time, we can integrate to determine the velocity and position s as
functions of time.

Solution

v

Integrate the tangential acceleration
to determine the velocity as a
function of time.

v ! 2t " 0.1t2 m/s.

! 2 " 0.2t,at ! 
dv 
dt

(2 " 0.2t)dt,dv !L0

v

L0

t

Evaluate the velocity at t ! 10 s. v t!10 s ! 2(10) " 0.1(10)2

! 30 m/s.

Express the velocity at t ! 10 s as
a vector in terms of normal and
tangential components.

v ! vet

! 30et (m/s).

Integrate v ! ds/dt to determine
the position as a function of time. (2t " 0.1t 2)dt,ds !L0

S

L0

t

! 2t " 0.1t 2,v ! 
ds
dt

s ! t2 " t3 m.
0.1
3
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13.6 Curvilinear Motion—Normal and Tangential Components 75

Practice Problem Determine the motorcycle’s acceleration in terms of normal
and tangential components at 

Answer: a = 4et + 2.25en (m/s2) .

t = 10 s .

Evaluate  the position 
at t ! 10 s.

s t!10 s ! (10)2 " (10)3

! 133 m.

0.1
3

Example 13.10 The Circular-Orbit Problem (! Related Problem 13.114)

A satellite is in a circular orbit of radius R around the earth. What is its velocity?

Strategy
The acceleration due to gravity at a distance R from the center of the earth is

where is the radius of the earth. (See Eq. 12.4.) By using this
expression together with the equation for the acceleration in terms of normal and
tangential components, we can obtain an equation for the satellite’s velocity.

Solution
In terms of normal and tangential components (Fig. a), the acceleration of the
satellite is

This expression must equal the acceleration due to gravity toward the center
of the earth:

(1)

Because there is no component on the right side of Eq. (1), we conclude that
the magnitude of the satellite’s velocity is constant:

Equating the components in Eq. (1) and solving for v, we obtain

Critical Thinking
In Example 13.5 we determined the escape velocity of an object traveling
straight away from the earth in terms of its initial distance from the center of the
earth. The escape velocity for an object at a distance R from the center of
the earth, is only times the velocity of an object in a cir-
cular orbit of radius R. This explains why it was possible to begin launching
probes to other planets not long after the first satellites were placed in earth orbit.

22vesc = 22gRE
2  >R,

v = CgRE
2

R
.

en

dv
dt

= 0.

et

dv
dt

 et + v2

R
 en =

gRE
2

R2  en.

a = dv
dt

 et + v2

R
 en.

REgRE
2>R2,

en

et

RE
R

(a) Describing the satellite’s motion
in terms of normal and tangential
components.
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Example 13.11 Relating Cartesian Components to Normal and Tangential Components
(! Related Problem 13.122)

During a flight in which a helicopter starts from rest at the cartesian
components of its acceleration are

and

What are the normal and tangential components of the helicopter’s accelera-
tion and the instantaneous radius of curvature of its path at 

Strategy
We can integrate the cartesian components of acceleration to determine the
cartesian components of the velocity at and then we can determine the
components of the tangential unit vector by dividing the velocity vector by
its magnitude: Next, we can determine the tangential component of
the acceleration by evaluating the dot product of the acceleration vector with

Knowing the tangential component of the acceleration, we can then evalu-
ate the normal component and determine the radius of curvature of the path
from the relation 

Solution
Integrating the components of acceleration with respect to time (see Active 
Example 13.6), we find that the cartesian components of the velocity are

and

At and The tangential unit vector at
is (Fig. a)

The components of the acceleration at are

and

ay = 1.8 - 0.36142 = 0.36 m/s2,

ax = 0.6142 = 2.4 m/s2

t = 4 s

et = v
ƒv ƒ

=
4.80i + 4.32j214.8022 + 14.3222 = 0.743i + 0.669j.

t = 4 s
etvy = 4.32 m/s.t = 4 s, vx = 4.80 m/s

vy = 1.8t - 0.18t2 m/s.

vx = 0.3t2 m/s

an = v2>r.et.

et = v> ƒv ƒ .
et

t = 4 s,

t = 4 s?

ay = 1.8 - 0.36t m/s2.

ax = 0.6t m/s2

t = 0,
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so the tangential component of the acceleration at is

The magnitude of the acceleration is so the
magnitude of the normal component of the acceleration is

The radius of curvature of the path is thus

Critical Thinking
The cartesian components of a vector are parallel to the axes of the cartesian
coordinate system, whereas the normal and tangential components are normal
and tangential to the path. In this example, the cartesian components of the
acceleration of the helicopter were given as functions of time. How could we
determine the normal and tangential components of the acceleration at 
without knowing the path? Notice that we used the fact that the velocity vector
is tangent to the path. We integrated the cartesian components of the accelera-
tion to determine the cartesian components of the velocity at That told
us the direction of the path. By dividing the velocity vector by its magnitude,
we obtained a unit vector tangent to the path that pointed in the direction of the
motion, which is the vector et.

t = 4 s.

t = 4 s

r =
ƒv ƒ2
an

=
14.8022 + 14.3222

1.34
= 31.2 m.

an = 2 ƒ a ƒ 2 - at
2 = 212.4322 - 12.0222 = 1.34 m/s2.

212.422 + 10.3622 = 2.43 m/s2,

 = 2.02 m/s2.

 = 10.743i + 0.669j2 # 12.4i + 0.36j2 at = et
# a

t = 4 s

y

x

4.32 m/s

4.80 m/s

et

(a) Cartesian components of the velocity and
the vector et.
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Example 13.12 Centrifuge (! Related Problem 13.128)

The distance from the center of the medical centrifuge to its samples is
300 mm. When the centrifuge is turned on, its motor and control system give
it an angular acceleration Choose the constants A and B so
that the samples will be subjected to a maximum horizontal acceleration of
12,000 g’s and the centrifuge will reach 90% of its maximum operating speed
in 2 min.

Strategy
Since we know both the radius of the circular path in which the samples move
and the horizontal acceleration to which they are to be subjected, we can solve
for the operating angular velocity of the centrifuge. We will use the given an-
gular acceleration to determine the centrifuge’s angular velocity as a function
of time in terms of the constants A and B. We can then use the operating an-
gular velocity and the condition that the centrifuge reach 90% of the operat-
ing angular velocity in 2 min to determine the constants A and B.

Solution
From Eq. (13.45), the samples are subjected to a normal acceleration

Setting and and solving for the
angular velocity, we find that the desired maximum operating speed is

The angular acceleration is

We separate variables to get

dv

A - Bv2 = dt.

a = dv
dt

= A - Bv2.

vmax = 626 rad/s.

R = 0.3 man = 112,000219.812 m/s2

an = Rv2.

300 mm

a = A - Bv2.
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13.6 Curvilinear Motion—Normal and Tangential Components 79

Then we integrate to determine as a function of time, assuming that the
centrifuge starts from rest at 

Evaluating the integrals, we obtain

The solution of this equation for is

As t becomes large, approaches so we have the condition that

(1)

and we can write the equation for as

(2)

We also have the condition that after 2 min. Setting
and in Eq. (2) and solving for we obtain

We solve this equation together with Eq. (1), obtaining and
The graph shows the angular velocity of the cen-

trifuge as a function of time.
B = 1.96 * 10-5 rad-1.

A = 7.69 rad/s2

2AB =
ln1192

240
.

2AB,t = 120 s
v = 0.9vmaxv = 0.9vmax

v = vmax a e22ABt - 1

e22ABt + 1
b .

v

AA
B

= vmax = 626 rad/s,

2A>B,v

v = AA
B

 a e22ABt - 1

e22ABt + 1
b .

v

1

22AB
 lnaA + 2ABv

A - 2ABv
b = t.

L
v

0
 

dv

A - Bv2 = L
t

0
 dt.

t = 0:
v

0 100 400
0

100

200

300

400

500

600

700

v
 (

ra
d/

s)

200

t (s)
300
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Problems

! 13.104 In Active Example 13.9, determine the motorcycle’s
velocity and acceleration in terms of normal and tangential
components at 

13.105 The armature starts from rest at and has constant
angular acceleration At what are the
velocity and acceleration of point P relative to point O in terms
of normal and tangential components?

t = 4 s,a = 2 rad/s2.
t = 0

t = 5 s .

13.106 Suppose that you want to design a medical centrifuge to
subject samples to normal accelerations of 1000 g’s.

(a) If the distance from the center of the centrifuge to the sample
is 300 mm, what speed of rotation in rpm is necessary?

(b) If you want the centrifuge to reach its design rpm in 1 min,
what constant angular acceleration is necessary?

13.107 The medical centrifuge starts from rest at and is
subjected to a constant angular acceleration What is
the magnitude of the total acceleration to which the samples are
subjected at t = 1 s?

a = 3 rad/s2.
t = 0

13.108 A centrifuge used to subject engineering components to
high acceleration has a radius of 8 m. It starts from rest at 
and during its two-minute acceleration phase it is programmed 
so that its angular acceleration is given as a function of time in
seconds by At what is 
the magnitude of the acceleration a component is subjected to?

t = 120 s,a = 0.192 - 0.0016t rad/s2.

t = 0,

80 mm

P

O

Problem 13.105

300 mm

Problems 13.106/13.107

Problem 13.109

Problem 13.108

13.109 A powerboat being tested for maneuverability is started
from rest at and driven in a circular path 12 m in radius.
The tangential component of the boat’s acceleration as a function
of time is 

(a) What are the boat’s velocity and acceleration in terms of
normal and tangential components at 

(b) What distance does the boat move along its circular path
from to t = 4 s?t = 0

t = 4 s?

at = 0.4t m/s2.

t = 0
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CC

y

x

B

A

45!

2 i
n

Problems 13.112/13.113

13.112 At the instant shown, the crank AB is rotating with a
counterclockwise angular velocity of 5000 rpm. Determine the
velocity of point B (a) in terms of normal and tangential compo-
nents and (b) in terms of cartesian components.

13.113 The crank AB is rotating with a constant counterclock-
wise angular velocity of 5000 rpm. Determine the acceleration of
point B (a) in terms of normal and tangential components and 
(b) in terms of cartesian components.

! 13.114 Suppose that a circular tunnel of radius R could be
dug beneath the equator. In principle, a satellite could be placed in
orbit about the center of the earth within the tunnel. The accelera-
tion due to gravity in the tunnel would be where g is the
acceleration due to gravity at sea level and is the earth’s radius.
Determine the velocity of the satellite and show that the time
required to complete one orbit is independent of the radius R. 
(See Example 13.10.)

RE

gR>RE,

4 m

P

O

u

Problems 13.110/13.111

13.110 The angle 

(a) What are the velocity and acceleration of point P in terms of
normal and tangential components at 

(b) What distance along the circular path does point P move
from to 

13.111 The angle What are the velocity and accel-
eration of point P in terms of normal and tangential components
when P has gone one revolution around the circular path starting
at t = 0?

u = 2t2 rad.

t = 1 s?t = 0

t = 1 s?

u = 2t2 rad.

u

Problem 13.115

Equator

Tunnel

RE R

Problem 13.114

13.115 At the instant shown, the magnitude of the airplane’s 
velocity is its tangential component of acceleration is

and the rate of change of its path angle is

(a) What are the airplane’s velocity and acceleration in terms of
normal and tangential components?

(b) What is the instantaneous radius of curvature of the 
airplane’s path?

du>dt = 5°>s.
at = -4 m/s2,

130 m/s,
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82 Chapter 13 Motion of a Point

13.116 In the preliminary design of a sun-powered car, a group
of engineering students estimates that the car’s acceleration will
be Suppose that the car starts from rest at A, and the
tangential component of its acceleration is What
are the car’s velocity and acceleration in terms of normal and
tangential components when it reaches B?

13.117 After subjecting a car design to wind-tunnel testing, the
students estimate that the tangential component of the car’s
acceleration will be where v is the car’s
velocity in If the car starts from rest at A, what are its veloci-
ty and acceleration in terms of normal and tangential components
when it reaches B?

13.118 Suppose that the tangential component of acceleration
of a car is given in terms of the car’s position by 

where s is the distance the car travels along the track
from point A. What are the car’s velocity and acceleration in terms
of normal and tangential components at point B?

0.001s m/s2,
at = 0.4 -

m/s.
at = 0.6 - 0.002v2 m/s2,

at = 0.6 m/s2.
0.6 m/s2.

13.119 The car increases its speed at a constant rate from
at A to at B. What is the magnitude of its accelera-

tion 2 s after it passes point A?

13.120 The car increases its speed at a constant rate from
at A to at B. Determine the magnitude of its accel-

eration when it has traveled along the road a distance (a) 120 ft
from A and (b) 160 ft from A.

60 mi/h40 mi/h

60 mi/h40 mi/h

13.121 Astronaut candidates are to be tested in a centrifuge with
10-m radius that rotates in the horizontal plane. Test engineers
want to subject the candidates to an acceleration of 5 g’s, or five
times the acceleration due to gravity. Earth’s gravity effectively
exerts an acceleration of 1 g in the vertical direction. Determine
the angular velocity of the centrifuge in revolutions per second so
that the magnitude of the total acceleration is 5 g’s.

! 13.122 In Example 13.11, what is the helicopter’s velocity in
terms of normal and tangential components at 

13.123 The athlete releases the shot with velocity 

(a) What are the velocity and acceleration of the shot in terms of
normal and tangential components when it is at the highest point
of its trajectory?

(b) What is the instantaneous radius of curvature of the shot’s
path when it is at the highest point of its trajectory?

13.124 At the athlete releases the shot with velocity

(a) What are the velocity and acceleration of the shot in terms of
normal and tangential components at 

(b) Use the relation to determine the instantaneous
radius of curvature of the shot’s path at 

13.125 At the athlete releases the shot with velocity
Use Eq. (13.42) to determine the instantaneous 

radius of curvature of the shot’s path at t = 0.3 s.
v = 16 m/s.

t = 0,

t = 0.3 s.
an = v2>r t = 0.3 s?

v = 16 m/s.
t = 0,

v = 16 m/s.

t = 4 s?

80 ft

80 ft

y

x
30!

30!

120 ft

100 ft

B
A

Problems 13.119/13.120

10 m

Problem 13.121

20!

v

Problems 13.123–13.125

B

A

200 m

50 m

Problems 13.116–13.118
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y

x

Problem 13.127

y

O

x

Problems 13.129/13.130

13.130* In Problem 13.129, what is the airplane’s normal
component of acceleration as a function of time?

13.126 The cartesian coordinates of a point moving in the x–y
plane are

What is the instantaneous radius of curvature of the path of the
point at 

13.127 The helicopter starts from rest at The cartesian
components of its acceleration are and

Determine the tangential and normal
components of the acceleration at t = 6 s.
ay = 1.8 - 0.36t m/s2.

ax = 0.6t m/s2
t = 0.

t = 3 s?

x = 20 + 4t2 m and y = 10 - t3 m.

! 13.128 Suppose that when the centrifuge in Example 13.12
is turned on, its motor and control system give it an angular
acceleration where is the
centrifuge’s angular velocity. Determine the tangential and
normal components of the acceleration of the samples at

13.129* For astronaut training, the airplane shown is to achieve
“weightlessness” for a short period of time by flying along a path
such that its acceleration is and If the velocity
of the plane at O at time is show that the autopilot
must fly the airplane so that its tangential component of accelera-
tion as a function of time is

at = g 

gt>v021 + 1gt>v022.

v = v0 i,t = 0
ay = -g.ax = 0

t = 0.2 s .

va = 12 - 0.02v,(in rad/s2)

13.131 If and 
what are the velocity and acceleration of P in terms of normal and
tangential components?

13.132* Suppose that the point P moves upward in the slot with
velocity When what are 
and d2y>dt2?

dy>dty = 150 mm,v = 300et 1mm/s2.

d2y>dt2 = 0,y = 100 mm, dy>dt = 200 mm>s,

P

y

300 mm

Problems 13.131/13.132

13.133* A car travels at on a straight road of
increasing grade whose vertical profile can be approximated
by the equation shown. When the car’s horizontal coordinate
is what are the tangential and normal components
of the car’s acceleration?

x = 400 m,

100 km/h

y ! 0.0003x2

y

x

Problem 13.133
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84 Chapter 13 Motion of a Point

13.7 Curvilinear Motion—Polar 
and Cylindrical Coordinates

BACKGROUND
Polar coordinates are often used to describe the curvilinear motion of a point.
Circular motion, certain orbit problems, and, more generally, central-force
problems, in which the acceleration of a point is directed toward a given point,
can be expressed conveniently in polar coordinates.

Consider a point P in the x–y plane of a cartesian coordinate system. We
can specify the position of P relative to the origin O either by its cartesian
coordinates x, y or by its polar coordinates (Fig. 13.26a). To express vec-
tors in terms of polar coordinates, we define a unit vector that points in the
direction of the radial line from the origin to P and a unit vector that is per-
pendicular to and points in the direction of increasing (Fig. 13.26b). In
terms of these vectors, the position vector r from O to P is

(13.52)

(Notice that r has no component in the direction of )
We can determine the velocity of P in terms of polar coordinates by taking

the time derivative of Eq. (13.52):

(13.53)v = dr
dt

= dr
dt

 er + r 

der

dt
.

eu.

r = rer.

uer

eu
er

r, u

13.134 A boy rides a skateboard on the concrete surface of
an empty drainage canal described by the equation shown. He
starts at and the magnitude of his velocity is
approximated by 

(a) Use Eq. (13.42) to determine the instantaneous radius of cur-
vature of the boy’s path when he reaches the bottom.

(b) What is the normal component of his acceleration when he
reaches the bottom?

13.135 In Problem 13.134, what is the normal component of the
boy’s acceleration when he has passed the bottom and reached
y = 10 ft?

v = 22132.22120 - y2 ft/s.
y = 20 ft,

13.136* By using Eqs. (13.41): (a) show that the relations be-
tween the cartesian unit vectors and the unit vectors and are

(b) Show that

det

dt
= du

dt
 en and den

dt
= - du

dt
 et.

j = sin u et + cos u en.

i = cos u et - sin u en

enet

y

x

y ! 0.03x2

Problems 13.134/13.135
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y

r(t ! "t)

P"u

O

r(t)

"r

x

P

r"u 

Figure 13.27
The position vector of P at t and t + ¢t.

x 

y

O

r

(x, y)

x 

y

O

r

P

eu
er

(a) (b)

u u

P

Figure 13.26
(a) The polar coordinates of P.
(b) The unit vectors and and the position vector r.euer

As P moves along a curvilinear path, the unit vector rotates with angular
velocity Therefore, from Eq. (13.33), we can express the time
derivative of in terms of as

(13.54)

Substituting this result into Eq. (13.53), we obtain the velocity of P:

(13.55)

We can get this result in another way that is less rigorous, but more direct
and intuitive. Figure 13.27 shows the position vector of P at times t and

The change in the position vector, consists of two
components. The component is due to the change in the radial position r
and is in the direction. The component is due to the change in and is
in the direction. Thus, the change in the position of P is (approximately)

Dividing this expression by and taking the limit as we obtain the
velocity of P:

One component of the velocity is in the radial direction and is equal to the rate
of change of the radial position r. The other component is normal, or transv-
erse, to the radial direction and is proportional to the radial distance and to the
rate of change of 

We obtain the acceleration of P by taking the time derivative of 
Eq. (13.55):

(13.56)a = dv
dt

= d2r

dt2  er + dr
dt

 
der

dt
+ dr

dt
 
du
dt

 eu + r 
d2u

dt2  eu + r 
du
dt

 
deu
dt

.

u.

 = dr
dt

 er + rv eu.

 v = lim
¢t:0

 a¢r
¢t

 er + r 
¢u
¢t

 eub
¢t : 0,¢t

r1t + ¢t2 - r1t2 = ¢rer + r¢u eu.

eu
ur¢uer

¢r
r1t + ¢t2 - r1t2,t + ¢t.

v = dr
dt

 er + r 
du
dt

 eu = dr
dt

 er + rv eu.

der

dt
= du

dt
 eu.

euer

v = du>dt.
er
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86 Chapter 13 Motion of a Point

The time derivative of the unit vector due to the rate of change of is given
by Eq. (13.54). As P moves, also rotates with angular velocity 
(Fig. 13.28). You can see from this figure that the time derivative of is in
the direction if is positive:

Substituting this expression and Eq. (13.54) into Eq. (13.56), we obtain the
acceleration of P:

Thus, the velocity and acceleration are respectively (Fig. 13.29)

(13.57)

and

(13.58)

where

(13.59)

The term in the radial component of the acceleration is called the
centripetal acceleration, and the term in the transverse component
is called the Coriolis acceleration.

The unit vectors and are related to the cartesian unit vectors by

and (13.60)

eu = -sin u i + cos u j.

er = cos u i + sin u j

euer

21dr>dt2v-rv2

au = r 
d2u

dt2 + 2 
dr
dt

 
du
dt

= ra + 2 
dr
dt

 v.

ar = d2r

dt2 - radu
dt
b2

= d2r

dt2 - rv2

a = ar er + au eu,

v = vr er + vu eu = dr
dt

 er + rv eu

a = cd2r

dt2 - radu
dt
b2 der + cr 

d2u

dt2 + 2 
dr
dt

 
du
dt
deu.

deu
dt

= - du
dt

 er.

du>dt-er

eu
du>dteu

uer

x

y

O

r P

eu
er

v

vr er arer

vu eu
au eu

(a)

x

y

r P

eu

a

xO

(b)

er

u uFigure 13.29
Radial and transverse components of the
velocity (a) and acceleration (b).

x

y

O

r P

deu
dt

du
dt

er 

er ! "
der

dt
du
dt

du
dt

! eu 

eu

u

Figure 13.28
Time derivatives of and eu.er
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13.7 Curvilinear Motion—Polar and Cylindrical Coordinates 87

Circular Motion Circular motion can be conveniently described using either
radial and transverse or normal and tangential components. Let us compare these
two methods of expressing the velocity and acceleration of a point P moving in
a circular path of radius R (Fig. 13.30). Because the polar coordinate is
constant, Eq. (13.57) for the velocity reduces to

In terms of normal and tangential components, the velocity is

Notice in Fig. 13.30 that Comparing these two expressions for the
velocity, we obtain the relation between the velocity and the angular velocity
in circular motion:

From Eqs. (13.58) and (13.59), the acceleration for a circular path of
radius R in terms of polar coordinates is

and the acceleration in terms of normal and tangential components is

The unit vector Because of the relation the normal com-
ponents of acceleration are equal: Equating the transverse and
tangential components, we obtain the relation

Cylindrical Coordinates Polar coordinates describe the motion of a point P
in the x–y plane. We can describe three-dimensional motion by using cylindrical
coordinates r, and z (Fig. 13.31). The cylindrical coordinates r and are the
polar coordinates of P, measured in the plane parallel to the x–y plane, and the

uu,

dv
dt

= at = Ra.

v2>R = Rv2.
v = Rv,er = -en.

a = dv
dt

 et + v2

R
 en.

a = -Rv2er + Raeu,

v = Rv.

eu = et.

v = v et.

v = Rv eu.

r = R eu

er

et

en

x

y

P
R

(a)

s

P

(b)

R

u

Figure 13.30
A point P moving in a circular path.
(a) Polar coordinates.
(b) Normal and tangential components.

ez
r

er
eu

P

r
O x

z

z

y

u

Figure 13.31
Cylindrical coordinates and z of point P and the unit
vectors and ez.er, eu,

r, u,
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88 Chapter 13 Motion of a Point

RESULTS

x

y

O

r P

eu
er

v

vr er arer

vueu
aueu

x

y

r P

eu

a

xO

er

u u

Position r, velocity v, and acceleration a
of P in terms of polar coordinates. The
unit vector er points in the direction of
the radial line from the origin O to P.
The unit vector eu is perpendicular to
er and points in the direction of
increasing u.

r ! rer,

a ! arer " aueu,

v ! vrer " vueu ! 
dr
dt

er " rveu,

where

ar !
d2r
dt2

d2r
dt2

# r!   "du
dt

2

! # rv2,

au !
d2u

dt2
" 2r

dr
dt

dr
dt

du
dt

! ra " 2 v.

(13.52)

(13.57)

(13.58)

(13.59)

Polar Coordinates

definitions of the unit vectors and are unchanged. The position of P per-
pendicular to the x–y plane is measured by the coordinate z, and the unit vector

points in the positive z axis direction.
In terms of cylindrical coordinates, the position vector r is the sum of the

expression for the position vector in polar coordinates and the z component:

(13.61)

(The polar coordinate r is not the magnitude of r, except when P lies in the x–y
plane.) By taking time derivatives, we obtain the velocity

(13.62)

and acceleration

(13.63)

where

(13.64)

Notice that Eqs. (13.62) and (13.63) reduce to the polar coordinate expressions
for the velocity and acceleration, Eqs. (13.57) and (13.58), when P moves
along a path in the x–y plane.

ar = d2r

dt2 - rv2, au = ra + 2 
dr
dt

 v, and az = d2z

dt2 .

a = dv
dt

= ar  er + au  eu + az  ez,

= dr
dt

  er + rv  eu + dz
dt

  ez

v = dr
dt

= vr  er + vu  eu + vz  ez

r = rer + zez.

ez

euer
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eu
er

x

y

P
R

u

Relations between the unit vectors.
er !    cosu i " sinu j,
eu ! #sinu i " cosu j.

(13.60)

ez
r

er
eu

P

r
O x

z

z

y

u

Position r, velocity v, and acceleration
a of P in terms of cylindrical
coordinates.

(13.64)

(13.63)

(13.62)

(13.61)r ! rer " zez,

a ! arer " aueu " azez,

v ! vrer " vueu " vzez

where

!
dr
dt

dz
dt

er " rveu " ez,

ar !
d2r
dt2

az !
d2z
dt2

# rv2, au !
dr
dt

ra " 2 v, .

Cylindrical Coordinates
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90 Chapter 13 Motion of a Point

Active Example 13.13 Analyzing Motion in Terms of Polar Coordinates (! Related Problem 13.138)

The robot arm is programmed so that the point P traverses the path described by

What is the velocity of P in terms of polar coordinates at t = 0.8 s?

 u = 0.5 - 0.2 sin 2pt rad.

 r = 1 - 0.5 cos 2pt m,

Strategy
The polar coordinates r and of are known as functions of time, so we can
determine the derivatives in the expression for the velocity in terms of polar
coordinates and evaluate the velocity at .

Solution

t = 0.8 s

Pu

Determine the derivatives
in the expression for the
velocity.

! psin2pt,
dr
dt

! "0.4pcos2pt.
du
dt

Determine the velocity as
a function of time. 

er # r eu
dr
dt

du
dt

v !

! psin2pter # (1 " 0.5cos2pt)("0.4pcos2pt)eu.

Evaluate the velocity at
t ! 0.8 s.

v ! "2.99er " 0.328eu (m/s).

P

r

x

y

u

Practice Problem What is the acceleration of P in terms of polar coordinates at

Answer: .a = 5.97er - 4.03eu (m/s2)

t = 0.8 s?
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13.7 Curvilinear Motion—Polar and Cylindrical Coordinates 91

Example 13.14 Expressing Motion in Terms of Polar Coordinates (! Related Problem 13.141)

Suppose that you are standing on a large disk (say, a merry-go-round) rotating
with constant angular velocity and you start walking at constant speed 
along a straight radial line painted on the disk. What are your velocity and
acceleration when you are a distance r from the center of the disk?

Strategy
We can describe your motion in terms of polar coordinates (Fig. a). By using
the information given about your motion and the motion of the disk, we can
evaluate the terms in the expressions for the velocity and acceleration in terms
of polar coordinates.

Solution
The speed with which you walk along the radial line is the rate of change of

and the angular velocity of the disk is the rate of change of 
Your velocity is

Your velocity consists of two components: a radial component due to the
speed at which you are walking and a transverse component due to the disk’s
rate of rotation. The transverse component increases as your distance from the
center of the disk increases.

Your walking speed is constant, so Also, the
disk’s angular velocity is constant, so The radial
component of your acceleration is

and the transverse component is

Critical Thinking
Why didn’t we use normal and tangential components to determine your
velocity and acceleration? The reason they would not be convenient in this
example is that the path is not known, and normal and tangential components
are defined in terms of the path.

If you have ever tried walking on a merry-go-round, you know that it is
a difficult proposition. This example indicates why. Subjectively, you are
walking along a straight line with constant velocity, but you are actually
experiencing the centripetal acceleration and the Coriolis acceleration 
due to the disk’s rotation.

auar

au = ra + 2 
dr
dt

 v = 2v0v0.

ar = d2r

dt2 - rv2 = -rv0
2,

d2u>dt2 = 0.v0 = du>dt
d2r>dt2 = 0.v0 = dr>dt

v = dr
dt

 er + rveu = v0 er + rv0 eu.

v = v0.
u,r, dr>dt = v0,

v0v0

v0
v0

er

eu

r

y

xu

(a) Your position in terms of polar
coordinates.
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92 Chapter 13 Motion of a Point

Example 13.15 Velocity in Terms of Polar and Cartesian Components
(! Related Problems 13.155 and  13.156)

In the cam–follower mechanism shown, the slotted bar rotates with constant
angular velocity , and the radial position of the follower is deter-
mined by the elliptic profile of the stationary cam. The path of the follower is
described by the polar equation

r = 0.15
1 + 0.5 cos u

  m.

v = 4 rad/s

r Follower

Cam

y

x
u

Determine the velocity of the follower when in terms of (a) polar
coordinates and (b) cartesian coordinates.

Strategy
By taking the time derivative of the polar equation for the profile of the cam,
we can obtain a relation between the known angular velocity and the radial com-
ponent of velocity that permits us to evaluate the velocity in terms of polar
coordinates. Then, by using Eqs. (13.60), we can obtain the velocity in terms of
cartesian coordinates.

Solution
(a) The polar equation for the cam profile is of the form Taking its
derivative with respect to time, we obtain

 = c 0.075 sin u11 + 0.5 cos u22 d  dudt
.

 = d
du

 a 0.15
1 + 0.5 cos u

b  
du
dt

 
dr
dt

=
dr1u2

du
 
du
dt

r = r1u2.

u = 45°
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Problems 93

The velocity of the follower in polar coordinates is therefore

The angular velocity so we can evaluate the polar com-
ponents of the velocity when obtaining

(b) Substituting Eqs. (13.60) with into the polar coordinate expres-
sion for the velocity, we obtain the velocity in terms of cartesian coordinates:

Critical Thinking
Notice that, in determining the velocity of the follower, we made the tacit
assumption that it stays in contact with the surface of the cam as the bar
rotates. Designers of cam mechanisms must insure that the spring is suffi-
ciently strong so that the follower does not lose contact with the surface. In
Chapter 14 we introduce the concepts needed to analyze such problems.

 = -0.232i + 0.395j 1m/s2. = 0.1161cos 45°i + sin 45°j2 + 0.4431-sin 45°i + cos 45°j2 v = 0.116er + 0.443eu

u = 45°

v = 0.116er + 0.443eu 1m/s2.u = 45°,
v = du>dt = 4 rad/s,

 = c 0.075 sin u11 + 0.5 cos u22 d  dudt
 er + a 0.15

1 + 0.5 cos u
b  

du
dt

 eu.

 v = dr
dt

 er + r 
du
dt

 eu

Problems

13.137 The polar coordinates of the collar A are given as
functions of time in seconds by and 
What are the magnitudes of the velocity and acceleration of the
collar at t = 2 s?

u = 2t rad.r = 1 + 0.2t2 ft
! 13.138 In Active Example 13.13, suppose that the robot arm is
reprogrammed so that the point P traverses the path described by

What is the velocity of P in terms of polar coordinates at ?t = 0.8 s

 u = 0.5 - 0.2 cos 2pt rad.

 r = 1 - 0.5 sin 2pt m,

A

u

r

Problem 13.137
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94 Chapter 13 Motion of a Point

13.139 At the instant shown, and The cartesian components of the velocity of point A are and

(a) Determine the velocity of point A in terms of polar coordinates.

(b) What is the angular velocity of the crane at the instant shown? 

13.140 The polar coordinates of point A of the crane are given as functions of time in seconds by and
Determine the acceleration of point A in terms of polar coordinates at t = 3 s .u = 0.02t2 rad.

r = 3 + 0.2t2 m

du>dt

vy = 8 m/s .
vx = 2 m/su = 30°.r = 3 m

! 13.141 The radial line rotates with a constant angular velocity of Point P moves along the line at a constant speed of
Determine the magnitudes of the velocity and acceleration of P when (See Example 13.14.)r = 2 m.4 m/s.

2 rad/s.

x

y

4 m/s 2 rad/s

P

O

r

Problem 13.141

r

u

y

x

A

Problems 13.139/13.140
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13.144* A boat searching for underwater archaeological sites in
the Aegean Sea moves at 4 knots and follows the path 
where is in radians. (A knot is one nautical mile, or 1852 meters,
per hour.) When determine the boat’s velocity (a) in
terms of polar coordinates and (b) in terms of cartesian coordinates.

u = 2p rad,
u

r = 10u m,

13.142 At the instant shown, the coordinates of the collar A are
The collar is sliding on the bar from B

toward C at a constant speed of 4 ft/s. 

(a) What is the velocity of the collar in terms of polar coordinates?

(b) Use the answer to part (a) to determine the angular velocity of
the radial line from the origin to the collar A at the instant shown.

13.143 At the instant shown, the coordinates of the collar A are
The collar is sliding on the bar from B

toward C at a constant speed of 4 ft/s. 

(a) What is the acceleration of the collar in terms of polar
coordinates?

(b) Use the answer to part (a) to determine the angular accelera-
tion of the radial line from the origin to the collar A at the instant
shown.

y = 1.9 ft .x = 2.3 ft,

y = 1.9 ft .x = 2.3 ft,

y

x

A

B

C

60!

Problems 13.142/13.143

y

x

Problem 13.144

Satellite

r u

Problems 13.147/13.148

13.145 The collar A slides on the circular bar. The radial posi-
tion of A (in meters) is given as a function of by 
At the instant shown, and Determine
the velocity of A in terms of polar coordinates.

13.146 In Problem 13.145, at the instant shown.
Determine the acceleration of A in terms of polar coordinates.

d2u>dt2 = 0

du>dt = 4 rad/s.u = 25°
r = 2 cos u.u

13.147 The radial coordinate of the earth satellite is related to its
angular position by

The product of the radial position and the transverse component of
the velocity is

What is the satellite’s velocity in terms of polar coordinates when

13.148* In Problem 13.147, what is the satellite’s acceleration in
terms of polar coordinates when u = 90°?

u = 90°?

rvu = 8.72 * 1010 m2/s.

r = 1.91 * 107

1 + 0.5 cos u
  m.

u

r

y

x 

A

u

Problems 13.145/13.146
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x

y

r

v

Problem 13.149

13.149 A bead slides along a wire that rotates in the x–y plane
with constant angular velocity The radial component of the
bead’s acceleration is zero. The radial component of its velocity is

when Determine the polar components of the bead’s
velocity as a function of r.

Strategy: The radial component of the bead’s velocity is

and the radial component of its acceleration is

By using the chain rule, 

you can express the radial component of the acceleration in the form

ar =
dvr

dr
 vr - rv0

2.

dvr

dt
=

dvr

dr
 
dr
dt

=
dvr

dr
 vr,

ar = d2r

dt2
- radu

dt
b2

=
dvr

dt
- rv0

2.

vr = dr
dt

,

r = r0.v0

v0.

13.150 If the motion of a point in the x–y plane is such that its
transverse component of acceleration is zero, show that the
product of its radial position and its transverse velocity is constant:
rvu = constant.

au

13.151* From astronomical data, Johannes Kepler deduced
that the line from the sun to a planet traces out equal areas in
equal times (Fig. a). Show that this result follows from the fact
that the transverse component of the planet’s acceleration is
zero. [When r changes by an amount dr and changes by an
amount (Fig. b), the resulting differential element of area
is ]dA = 1

2 r1r du2.du
u

au

x

y

(b)

r ! dr

r
dA

(a)

t2 ! "t

t1

t2

A

A

du

t1 ! "t

u

Problem 13.151
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x

y

r

C

v0

Problem 13.152

13.152 The bar rotates in the x–y plane with constant angular ve-
locity The radial component of acceleration of the
collar C (in ) is given as a function of the radial position in
meters by When the radial component of ve-
locity of C is Determine the velocity of C in terms of
polar coordinates when 

Strategy: Use the chain rule to write the first term in the radial
component of the acceleration as

d2r

dt2
=

dvr

dt
=

dvr

dr
 
dr
dt

=
dvr

dr
vr.

r = 1.5 m.
vr = 2 m/s .

r = 1 m,ar = -8r.
m/s2

v0 = 12 rad/s .

y

x

P

2 m

u

Problems 13.153/13.154

13.153 The hydraulic actuator moves the pin P upward with
velocity Determine the velocity of the pin in
terms of polar coordinates and the angular velocity of the slot-
ted bar when 

13.154 The hydraulic actuator moves the pin P upward with
constant velocity Determine the acceleration of the
pin in terms of polar coordinates and the angular acceleration of
the slotted bar when u = 35°.

v = 2j 1m/s2.
u = 35°.

v = 2j 1m/s2.

! 13.155 In Example 13.15, determine the velocity of the
cam follower when (a) in terms of polar coordinates and
(b) in terms of cartesian coordinates.

! 13.156* In Example 13.15, determine the acceleration of the
cam follower when (a) in terms of polar coordinates and 
(b) in terms of cartesian coordinates.

13.157 In the cam–follower mechanism, the slotted bar rotates
with constant angular velocity and the radial posi-
tion of the follower A is determined by the profile of the stationary
cam. The path of the follower is described by the polar equation

Determine the velocity of the cam follower when (a) in
terms of polar coordinates and (b) in terms of cartesian coordinates.

13.158* In Problem 13.157, determine the acceleration of the
cam follower when (a) in terms of polar coordinates and
(b) in terms of cartesian coordinates.

u = 30°

u = 30°

r = 1 + 0.5 cos 2u ft.

v = 10 rad/s

u = 135°

u = 135°

r A

y

xu

Problems 13.157/13.158
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y

z

x

1 km/s

P

13.160 The airplane flies in a straight line at The ra-
dius of its propeller is 5 ft, and the propeller turns at 2000 rpm in
the counterclockwise direction when seen from the front of the
airplane. Determine the velocity and acceleration of a point on the
tip of the propeller in terms of cylindrical coordinates. (Let the z
axis be oriented as shown in the figure.)

400 mi/h.

13.161 A charged particle P in a magnetic field moves along
the spiral path described by where z is in
meters. The particle moves along the path in the direction shown
with constant speed What is the velocity of the
particle in terms of cylindrical coordinates?

ƒ v ƒ = 1 km/s.

r = 1 m, u = 2z rad,

5 ft
z

Problem 13.160

13.159* The cartesian coordinates of a point P in the x–y
plane are related to the polar coordinates of the point by the
equations and 

(a) Show that the unit vectors i and j are related to the unit vec-
tors and by

and

(b) Beginning with the expression for the position vector of P in
terms of cartesian coordinates, derive Eq. (13.52)
for the position vector in terms of polar coordinates.

(c) By taking the time derivative of the position vector of point P
expressed in terms of cartesian coordinates, derive Eq. (13.55) for
the velocity in terms of polar coordinates.

r = xi + yj,

j = sin u er + cos u eu.

i = cos u er - sin u eu

euer

y = r sin u.x = r cos u

x

y

er

r P

eu

u

Problem 13.159

Problem 13.161
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13.8 Relative Motion

BACKGROUND
We have discussed the curvilinear motion of a point relative to a given refer-
ence frame. In many applications, it is necessary to analyze the motions of
two or more points relative to a reference frame and also their motions rela-
tive to each other. As a simple example, consider a passenger on a moving
bus. If he walks down the aisle, the position and velocity that are important
to him are his position in the bus and how fast he is moving down the aisle.
His subjective motion is relative to the bus. But he also has a position and ve-
locity relative to the earth. It would be convenient to have a framework for an-
alyzing the bus’s motion relative to the earth, the passenger’s motion relative
to the bus, and his motion relative to the earth. We develop such a framework
in this section, introducing concepts and terminology that will be used in many
contexts throughout the book.

Let A and B be two points whose motions we want to describe relative to
a reference frame with origin O. We denote the positions of A and B relative to
O by and (Fig. 13.32). We also want to describe the motion of point A rel-
ative to point B, and denote the position of A relative to B by These vec-
tors are related by

(13.65)

Stated in words, the position of A is equal to the position of B plus the position
of A relative to B. Notice that when we simply say the “position of A” or
“position of B,” we mean their positions relative to O. The derivative of 
Eq. (13.65) with respect to time is

We write this equation as

(13.66)

where is the velocity of A relative to O, is the velocity of B relative to O,
and is the velocity of A relative to B. The velocity of A is equal
to the velocity of B plus the velocity of A relative to B. We now take the deriv-
ative of Eq. (13.66) with respect to time,

and write this equation as

(13.67)

The term is the acceleration of A relative to O, is the acceleration of B
relative to O, and is the acceleration of A relative to B. The
acceleration of A is equal to the acceleration of B plus the acceleration of A rel-
ative to B.

Although they are simple in form, Eqs. (13.65)–(13.67) and the underlying
concepts are extremely useful, and we apply them in a variety of contexts
throughout the book.

aA>B = dvA>B>dt
aBaA

aA = aB + aA>B.

dvA

dt
=

dvB

dt
+

dvA>B
dt

,

vA>B = drA>B>dt
vBvA

vA = vB + vA>B,

drA

dt
=

drB

dt
+

drA>B
dt

.

rA = rB + rA>B.

rA>B.
rBrA

13.8 Relative Motion 99

Figure 13.32

rA rA/B

A

O

rB

B
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RESULTS

Let rA and rB be the positions of
two points A and B relative to the
origin O of a given reference
frame. The position of A is equal
to the position of B plus the
position rA/B of A relative to B.

rA ! rB " rA/B. (13.65)

rA rA/B

A

O

rB

B

The acceleration of A relative to O
is equal to the acceleration of B
relative to O plus the acceleration
aA/B of A relative to B.

aA ! aB " aA/B. (13.67)

The velocity of A relative to O is
equal to the velocity of B relative
to O plus the velocity vA/B of A
relative to B.

vA ! vB " vA/B. (13.66)

Active Example 13.16 Motion of a Ship in a Current (! Related Problem 13.167)

A ship moving at 5 knots (nautical miles per hour) relative to the water is in a
uniform current flowing east at 2 knots. If the helmsman wants to travel north-
west relative to the earth, what direction must he point the ship? What is the
resulting magnitude of the ship’s velocity relative to the earth?

x

y

2 knots

W E

S

N

B A

O
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13.8 Relative Motion 101

Strategy
Let the reference frame shown be stationary with respect to the earth. We de-
note the ship by A and define B to be a point that is stationary relative to the
water. That is, point B is moving toward the east at 2 knots. By applying
Eq. (13.66), we can determine the direction of the ship’s motion relative to the
water and the magnitude of the ship’s velocity relative to the earth.

Solution

Practice Problem If the helmsman wants to travel due north relative to the earth,
what direction must he point the ship? What is the resulting magnitude of the ship’s
velocity relative to the earth?

Answer: 23.6° west of north, 4.58 knots.

Let vA be the unknown magnitude
of the ship’s velocity vA relative to
the earth, which points northwest.

vA ! "vAcos45# i $ vAsin45# j. 

Use the fact that the magnitude of
the ship’s velocity relative to the
water is known, |vA/B| ! 5 knots,
to determine vA.

vA/B ! vA " vB !"(vAcos45# $ 2 knots)i $ vAsin45#j,

|vA/B| ! (vAcos45# $ 2 knots)2 $ (vAsin45#)2 ! 5 knots.

Solving yields vA ! 3.38 knots.

Use the solution for vA to
determine the components of the
ship’s velocity relative to the
water. They indicate that the
helmsman must point the ship at
arctan (4.39/2.39) ! 61.4# west
of north to travel northwest
relative to the earth.

vA/B ! "(vAcos45# $ 2 knots)i $ vAsin45#j,

! "4.39i $ 2.39j (knots).

The ship’s velocity relative to the
earth is equal to the water’s
velocity relative to the earth plus
the ship’s velocity relative to the
water.

vA ! vB $ vA/B.

x

y

vA

vB

45#

vA/B

2 knots

5 knots

O

W E

S

N
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30!

60!

10 m/s

10 m/s

A

B

O
x

y

Problem 13.162

B

A

x

y

2 ft O

10 rad/s

Problems 13.163/13.164 

A x

20 ft/s
50 ft/s

50
0 f

t
B

y

O

Problems 13.165/13.166

Problems
13.162 At two projectiles A and B are simultaneously
launched from O with the initial velocities and elevation angles
shown. Determine the velocity of projectile A relative to
projectile B (a) at and (b) at t = 1 s.t = 0.5 s

t = 0,

13.163 Relative to the earth-fixed coordinate system, the disk
rotates about the fixed point O at What is the velocity of
point A relative to point B at the instant shown?

13.164 Relative to the earth-fixed coordinate system, the disk
rotates about the fixed point O with a constant angular velocity of

What is the acceleration of point A relative to point B at
the instant shown?
10 rad/s.

10 rad/s.

13.165 The train on the circular track is traveling at The
train on the straight track is traveling at In terms of the
earth-fixed coordinate system shown, what is the velocity of pas-
senger A relative to passenger B?

13.166 The train on the circular track is traveling at a constant
speed of The train on the straight track is traveling at

and is increasing its speed at In terms of the earth-
fixed coordinate system shown, what is the acceleration of passen-
ger A relative to passenger B?

2 ft/s2.20 ft/s
50 ft/s.

20 ft/s.
50 ft/s.

! 13.167 In Active Example 13.16, suppose that the velocity of
the current increases to 3 knots flowing east. If the helmsman
wants to travel northwest relative to the earth, what direction must
he point the ship? What is the resulting magnitude of the ship’s
velocity relative to the earth?
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W E

S

N

200 km 50 km/h

Q

P

Problem 13.168

13.168 Aprivate pilot wishes to fly from a city P to a city Q that is
200 km directly north of city P. The airplane will fly with an airspeed
of At the altitude at which the airplane will be flying,
there is an east wind (that is, the wind’s direction is west) with a
speed of What direction should the pilot point the airplane
to fly directly from city P to city Q? How long will the trip take?

50 km/h.

290 km/h.

W E

S

N

500 m

D

C

400 m

3 m/s

Problems 13.169/13.170

W E

S

N

60!

Tell-tale

v0

v0

Problem 13.171

13.169 The river flows north at (Assume that the current
is uniform.) If you want to travel in a straight line from point C to
point D in a boat that moves at a constant speed of relative
to the water, in what direction should you point the boat? How
long does it take to make the crossing?

13.170 The river flows north at 3 m/s. (Assume that the current
is uniform.) What minimum speed must a boat have relative to the
water in order to travel in a straight line from point C to point D?
How long does it take to make the crossing?

Strategy: Draw a vector diagram showing the relationships
of the velocity of the river relative to the earth, the velocity of the
boat relative to the river, and the velocity of the boat relative to
the earth. See which direction of the velocity of the boat relative
to the river causes its magnitude to be a minimum.

10 m/s

3 m/s.

13.171* Relative to the earth, the sailboat sails north with speed
(nautical miles per hour) and then sails east at the

same speed. The telltale indicates the direction of the wind
relative to the boat. Determine the direction and magnitude of the
wind’s velocity (in knots) relative to the earth.

v0 = 6 knots
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104 Chapter 13 Motion of a Point

13.179 In practice, the quarterback throws the football with
velocity at 45° above the horizontal. At the same instant, the
receiver standing 20 ft in front of him starts running straight
downfield at and catches the ball. Assume that the ball is
thrown and caught at the same height above the ground. What is
the velocity v0?

10 ft/s

v0

20 ft

45!

v0

10 ft/s

Problem 13.179

Problems 13.175/13.176

13.177 The acceleration of a point moving along a straight line
is where c is a constant. If the velocity of the point is

what distance does the point move before its velocity
decreases to 

13.178 Water leaves the nozzle at 20° above the horizontal and
strikes the wall at the point indicated. What is the velocity of the
water as it leaves the nozzle?

Strategy: Determine the motion of the water by treating each
particle of water as a projectile.

v0>2?
v0,

a = -cv3,

20 ft
20!

12 ft

35 ft

Problem 13.178

Review Problems
13.172 Suppose that you throw a ball straight up at and
release it at 2 m above the ground.

(a) What maximum height above the ground does the ball reach?

(b) How long after you release it does the ball hit the ground?

(c) What is the magnitude of its velocity just before it hits the
ground?

13.173 Suppose that you must determine the duration of the
yellow light at a highway intersection. Assume that cars will be
approaching the intersection traveling as fast as that
drivers’ reaction times are as long as 0.5 s, and that cars can
safely achieve a deceleration of at least 0.4 g.

(a) How long must the light remain yellow to allow drivers to
come to a stop safely before the light turns red?

(b) What is the minimum distance cars must be from the inter-
section when the light turns yellow to come to a stop safely at the
intersection?

13.174 The acceleration of a point moving along a straight line
is When the position of the point is

and when its position is What is the
velocity of the point when 

13.175 A model rocket takes off straight up. Its acceleration dur-
ing the 2 s its motor burns is Neglect aerodynamic drag,
and determine

(a) the maximum velocity of the rocket during the flight and

(b) the maximum altitude the rocket reaches.

13.176 In Problem 13.175, if the rocket’s parachute fails to
open, what is the total time of flight from takeoff until the rocket
hits the ground?

25 m/s2.

t = 4 s?
s = 90 m.t = 4 s,s = 36 m,

t = 2 s,a = 4t + 2 m/s2.

65 mi/h,

10 m/s
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r A

y

x
h

u

Problems 13.184/13.185

13.184 In the cam–follower mechanism, the slotted bar rotates
with constant angular velocity and the radial posi-
tion of the follower A is determined by the profile of the station-
ary cam. The slotted bar is pinned a distance to the
left of the center of the circular cam. The follower moves in a cir-
cular path 0.42 m in radius. Determine the velocity of the follow-
er when (a) in terms of polar coordinates and (b) in
terms of cartesian coordinates.

13.185* In Problem 13.184, determine the acceleration of the
follower when (a) in terms of polar coordinates and 
(b) in terms of cartesian coordinates.

u = 40°

u = 40°

h = 0.2 m

v = 12 rad/s,

Design Project

Design and carry out experiments to measure the acceleration
due to gravity. Galileo (1564–1642) did so by measuring the
motions of falling objects. Use his method, but also try to de-
vise other approaches that may result in improved accuracy. In-
vestigate the repeatability of your measurements. Write a brief
report describing your experiments, discussing possible
sources of error, and presenting your results.

13.180 The constant velocity What are the magnitudes
of the velocity and acceleration of point P when 

13.181 The constant velocity What is the accelera-
tion of point P in terms of normal and tangential components
when 

13.182 The constant velocity What is the accelera-
tion of point P in terms of polar coordinates when x = 0.25 m?

v = 2 m/s.

x = 0.25 m?

v = 2 m/s.

x = 0.25 m?
v = 2 m/s.

13.183 A point P moves along the spiral path 
where is in radians. The angular position where t is
in seconds, and at Determine the magnitudes of the
velocity and acceleration of P at t = 1 s.

t = 0.r = 0
u = 2t rad,u

r = 10.12u ft,

y

1 m

P

v

x

y ! 0.2 sin px

Problems 13.180–13.182

P

r

u

Problem 13.183
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! The normal force exerted on his skies by the snow gives the skier a normal
component of acceleration, resulting in his curved path.

Force, Mass, and Acceleration

Until now, we have analyzed motions of objects
without considering the forces that cause them.
In this chapter we relate cause and effect: By
drawing the free-body diagram of an object to
identify the forces acting on it, we can use
Newton’s second law to determine the acceleration
of the object. Alternatively, when we know an
object’s acceleration, we can use Newton’s second
law to obtain information about the forces acting
on it.

C H A P T E R

14
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108 Chapter 14 Force, Mass, and Acceleration

14.1 Newton’s Second Law

BACKGROUND
Newton stated that the total force on a particle is equal to the rate of change of
its linear momentum, which is the product of its mass and velocity:

If the particle’s mass is constant, the total force equals the product of its mass
and acceleration:

(14.1)

We pointed out in Chapter 12 that the second law gives precise meanings to the
terms force and mass. Once a unit of mass is chosen, a unit of force is defined
to be the force necessary to give one unit of mass an acceleration of unit mag-
nitude. For example, the unit of force in SI units, the newton, is the force nec-
essary to give a mass of one kilogram an acceleration of one meter per second
squared. In principle, the second law then gives the value of any force and the
mass of any object. By subjecting a one-kilogram mass to an arbitrary force
and measuring the acceleration of the mass, we can solve the second law for the
direction of the force and its magnitude in newtons. By subjecting an arbitrary
mass to a one-newton force and again measuring the acceleration, we can solve
the second law for the value of the mass in kilograms.

If the mass of a particle and the total force acting on it are known, Newton’s
second law determines its acceleration. In Chapter 13, we described how to de-
termine the velocity, position, and trajectory of a point whose acceleration is
known. Therefore, with the second law, a particle’s motion can be determined
when the total force acting on it is known, or the total force can be determined
when the motion is known.

Equation of Motion for the Center of Mass
Newton’s second law is postulated for a particle, or small element of matter,
but an equation of precisely the same form describes the motion of the center
of mass of an arbitrary object. We can show that the total external force on an
arbitrary object is equal to the product of its mass and the acceleration of its
center of mass.

To do so, we consider an arbitrary system of N particles. Let be the mass
of the ith particle, and let be its position vector (Fig. 14.1a). Let m be the total
mass of the particles; that is,

where the summation sign with subscript i means “the sum over i from 1 to N.”
The position of the center of mass of the system is

r =
a

i
mi ri

m
.

m = a
i

mi,

ri

mi

f = m 
dv
dt

= ma.

f = d
dt

 1mv2.
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14.1 Newton’s Second Law 109

By taking two time derivatives of this expression, we obtain

(14.2)

where a is the acceleration of the center of mass.
The ith particle of the system may be acted upon by forces exerted by the

other particles. Let be the force exerted on the ith particle by the jth particle.
Then Newton’s third law states that the ith particle exerts a force on the jth par-
ticle of equal magnitude and opposite direction: If the external force
on the ith particle (i.e., the total force exerted on the ith particle by objects other
than the object we are considering) is denoted by Newton’s second law for
the ith particle is (Fig. 14.1b)

We can write this equation for each particle of the system. Summing the re-
sulting equations from to N, we obtain

(14.3)

The first term on the left side, the sum of the internal forces on the system, is
zero due to Newton’s third law:

The second term on the left side of Eq. (14.3) is the sum of the external forces
on the system. Denoting this sum by and using Eq. (14.2), we conclude
that the sum of the external forces equals the product of the total mass and the
acceleration of the center of mass:

(14.4)©F = ma.

©F

a
i
a

j
fij = f12 + f21 + f13 + f31 + Á = 0.

a
i
a

j
fij + a

i
f i

E = a
i

mi 

d2ri

dt2 .

i = 1

a
j

fij + f i
E = mi 

d2ri

dt2 .

f i
E,

fji = -fij.

fij

a
i

mi 

d2ri

dt2 = m 
d2r
dt2 = ma,

(a)

O ri

r

mi

Figure 14.1
(a) Dividing an object into particles. The vector is 

the position vector of the ith particle, and r is the
position vector of the object’s center of mass.

(b) Forces on the ith particle.

ri

O mi

 j

(b)

ri

afi j ! fi
E
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110 Chapter 14 Force, Mass, and Acceleration

Because this equation is identical in form to Newton’s postulate for a single
particle, for convenience we also refer to it as Newton’s second law.

Notice that we made no assumptions restricting the nature of the system of
particles or its state of motion in obtaining Eq. (14.4). The sum of the external
forces on any object or collection of objects, solid, liquid, or gas, equals the
product of the total mass and the acceleration of the center of mass. 

For example, suppose that the space shuttle is in orbit and has fuel re-
maining in its tanks. If its engines are turned on, the fuel sloshes in a compli-
cated manner, affecting the shuttle’s motion due to internal forces between
the fuel and the shuttle. Nevertheless, we can use Eq. (14.4) to determine the
exact acceleration of the center of mass of the shuttle, including the fuel it
contains, and thereby determine the velocity, position, and trajectory of the
center of mass.

Inertial Reference Frames
When we discussed the motion of a point in Chapter 13, we specified the posi-
tion, velocity, and acceleration of the point relative to an arbitrary reference
frame. But Newton’s second law cannot be expressed in terms of just any ref-
erence frame. Suppose that no force acts on a particle and that we measure the
particle’s motion relative to a particular reference frame and determine that its
acceleration is zero. In terms of this reference frame, Newton’s second law
agrees with our observation. But if we then measure the particle’s motion rela-
tive to a second reference frame that is accelerating or rotating with respect to
the first one, we would find that the particle’s acceleration is not zero. In terms
of the second reference frame, Newton’s second law, at least in the form given
by Eq. (14.4), does not predict the correct result.

A well-known example is a person riding in an elevator. Suppose that
you conduct an experiment in which you ride in an elevator while standing
on a set of scales that measure your weight (Fig. 14.2a). The forces acting
on you are your weight W and the force N exerted on you by the scales
(Fig. 14.2b). You exert an equal and opposite force N on the scales, which is
the force they measure. If the elevator is stationary, you observe that the
scales read your weight, The sum of the forces on you is zero, and
Newton’s second law correctly states that your acceleration relative to the
elevator is zero. If the elevator has an upward acceleration a (Fig. 14.2c),
you know you will feel heavier, and indeed, you observe that the scales read a
force greater than your weight, In terms of an earth-fixed reference
frame, Newton’s second law correctly relates the forces acting on you to your
acceleration: But suppose that you use the elevator
as your frame of reference. Then the sum of the forces acting on you is not
zero, so Newton’s second law states that you are accelerating relative to the
elevator. But you are stationary relative to the elevator. Thus, expressed
in terms of this accelerating reference frame, Newton’s second law gives an
erroneous result.

Newton stated that the second law should be expressed in terms of a ref-
erence frame at rest with respect to the “fixed stars.” Even if the stars were
fixed that would not be practical advice, because virtually every convenient
reference frame accelerates, rotates, or both. Newton’s second law can be ap-
plied rigorously using reference frames that accelerate and rotate by properly
accounting for the acceleration and rotation. We explain how to do this in

©F = N - W = ma.

N 7 W.

N = W.
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14.1 Newton’s Second Law 111

Chapter 17, but for now, we need to give some guidance on when Newton’s
second law can be applied.

Fortunately, in nearly all “down-to-earth” situations, applying Eq. (14.4) in
terms of a reference frame that is fixed relative to the earth results in sufficiently
accurate answers. For example, if a piece of chalk is thrown across a room, a
reference frame that is fixed relative to the room can be used to predict the
chalk’s motion. While the chalk is in motion, the earth rotates, and therefore
the reference frame rotates. But because the chalk’s flight is brief, the effect on
the prediction is very small. (The earth rotates slowly—its angular velocity is
one-half that of a clock’s hour hand.) Equation (14.4) can usually be applied
using a reference frame that translates (moves without rotating) at constant ve-
locity relative to the earth. For example, if two people play tennis on the deck
of a cruise ship moving with constant velocity relative to the earth, Eq. (14.4)
can be expressed in terms of a reference frame fixed relative to the ship to an-
alyze the ball’s motion. But such a “ship-fixed” reference frame cannot be used
if the ship is turning or changing its speed.

Areference frame in which Eq. (14.4) can be applied is said to be Newtonian,
or inertial. We discuss inertial reference frames in greater detail in Chapter 17.
For now, it should be assumed examples and problems are expressed in terms of
inertial reference frames.

(a)

(b)

W

N

a

(c)

Figure 14.2
(a) Riding in an elevator while standing on scales.
(b) Your free-body diagram.
(c) Upward acceleration of the elevator.
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14.2 Applications—Cartesian Coordinates 
and Straight-Line Motion
By drawing the free-body diagram of an object, the external forces acting on it
can be identified and Newton’s second law used to determine the object’s ac-
celeration. Conversely, if the motion of an object is known, Newton’s second
law can be used to determine the total external force on the object. In particu-
lar, if an object’s acceleration in a particular direction is known to be zero, the
sum of the external forces in that direction must equal zero.

If we express the sum of the forces acting on an object of mass m and the
acceleration of its center of mass in terms of their components in a cartesian ref-
erence frame (Fig. 14.3), Newton’s second law states that

or 1©Fx  i + ©Fy j + ©Fz k2 = m1ax i + ay j + az k2.
©F = ma,

112 Chapter 14 Force, Mass, and Acceleration

RESULTS

a

!F

Newton’s second law implies that the sum of the external
forces on any object equals the product of its mass and the
acceleration of its center of mass relative to an inertial
reference frame. In many situations, a reference frame
(coordinate system) that is fixed with respect to the earth
can be assumed to be inertial.

!F " ma.      (14.4)

In SI units, force is usually expressed in newtons, mass in
kilograms, and acceleration in meters per second squared.
In U.S. Customary units, force is usually expressed in
pounds, mass in slugs, and acceleration in feet per second
squared.
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y

x

z

(b)

!Fx

!Fz ! 0

y

x

z

(a)

ax

!Fy ! 0

Figure 14.4
(a) Acceleration of an object in straight-line motion

along the x axis.
(b) The y and z components of the total force acting on

the object equal zero.

Equating x, y, and z components, we obtain three scalar equations of motion:

(14.5)

The total force in each coordinate direction equals the product of the mass and
the component of the acceleration in that direction.

If an object’s motion is confined to the x–y plane, so the sum of the
forces in the z direction is zero. Thus, when the motion is confined to a fixed
plane, the component of the total force normal to that plane equals zero. For
straight-line motion along the x axis (Fig. 14.4a), Eqs. (14.5) are

We see that in straight-line motion, the components of the total force per-
pendicular to the line equal zero, and the component of the total force tangent
to the line equals the product of the mass and the acceleration along the line
(Fig. 14.4b).

©Fx = max, ©Fy = 0, and ©Fz = 0.

az = 0,

©Fx = max, ©Fy = may,  ©Fz = maz.

(a)

y

x

z

!Fz

(b)

y

x

z

ay

az

ax

!Fy

!Fx

Figure 14.3
(a) Cartesian components of the sum of the forces

on an object.
(b) Components of the acceleration of the center of

mass of the object.
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Active Example 14.1 Straight-Line Motion (! Related Problem 14.1)

The 100-lb crate is released from rest on the inclined surface at time The
coefficients of friction between the crate and the inclined surface are 
and How fast is the crate moving at 

Strategy
We must first determine whether the crate slips when it is released. By assum-
ing that it remains stationary, we can solve for the friction force necessary to
keep the crate in equilibrium and see if it exceeds the maximum static friction
force the surfaces will support. If the crate slips, we can use Newton’s second
law to determine its acceleration down the inclined surface. Once the acceler-
ation is known, we can integrate it to determine the velocity of the crate as a
function of time.

Solution

20!

t = 1 s?mk = 0.15.
ms = 0.2

t = 0.

Draw the free-body diagram of the crate.
The external forces are the weight of the
crate and the normal and friction forces
exerted by the  inclined surface.

N

W
f

y

x

20!

Assuming that the crate is stationary, use
the equilibrium equations to determine
the friction force necessary for equilibrium
and the normal force. 

"Fx # W sin 20! $ f # 0,
"Fy # N $ W cos 20! # 0.

f # W sin 20! # (100 lb)sin 20! # 34.2 lb,
N # W cos 20! # (100 lb)cos 20! # 94.0 lb.

Solving yields
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Practice Problem Suppose that the inclined surface is smooth. (We say that a surface
is “smooth” when it is assumed to exert negligible friction force.) How fast is the crate
moving at 

Answer: 11.0 ft/s.

t = 1 s?

Apply Newton’s second law to
determine the crate’s acceleration.
The magnitude of the friction force
on the slipping crate is mkN.

y

x

ax

!Fx " W sin 20# $ mkN " max :

The mass of the crate is

so the acceleration is

ax "
W sin 20# $ mkN 

m

ax " " 6.47 ft/s2.
(100 lb) sin 20# $ (0.15)(94.0 lb) 

3.11 slug

,

m " "
100 lb 

32.2 ft/s2

W 
g

" 3.11 slug,

Integrate to determine the crate’s
velocity as a function of time. At
t " 1 s, the crate is moving 6.47 ft/s.

ax "
dvx

dt
" 6.47 ft/s2 ,

6.47 dt,L dvx " 
0

vx

L0
t

vx " 6.47t ft/s.

Calculate the maximum static friction
force the surfaces will support. This
value is less than the friction force
necessary for equilibrium, so the crate 
does slip.

msN " (0.2)(94.0 lb) " 18.8 lb.
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Active Example 14.2 Cartesian Coordinates (! Related Problem 14.10)

The 2-kg object is constrained to move in the x–y plane. The total force on the
object is given as a function of time by At the ob-
ject’s position is and its velocity is What
is the object’s position at t = 3 s?

v = 12 i + 5 j (m/s) .r = 5 i + 3 j (m)
t = 0,©  F = 6 i + 2t j (N).

x 

y

!F

Strategy
We can use Newton’s second law to determine the object’s acceleration as a
function of time, then integrate to determine its velocity and position as func-
tions of time.

Solution

Use Newton’s second law to determine the
components of the acceleration.

"ax "
!Fx

m
6 N
2 kg

" 3 m/s2 ,

"ay "
!Fy

m
2t N
2 kg

" t m/s2 .

Integrate to determine vx, using the condition
vx " 12 m/s at t " 0.

ax "
dvx

dt
" 3 m/s2 ,

3 dt,L dvx " 
12

vx

L0
t

vx " 12 # 3t m/s.

Integrate to determine x, using the condition
x " 5 m at t " 0.

x " 5 # 12t  # 

" 12 # 3t m/s,vx " 
dx 

dt

L dx "  (12 # 3t) dt,
5 L0

t

3
2

t2 m.

x
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Practice Problem The 10-lb object is constrained to move in the x–y plane. The
object’s position is given as a function of time by What total force
acts on the object at t = 4 s?

r = 8t2
 i + t3 j (ft) .

Answer: ©F = 4.97i + 7.45 j (lb).

Integrate to determine vy, using
the condition vy ! 5 m/s at t ! 0.

ay !
dvy

dt

t dt,L0

! t m/s2.

L dvy ! 
5

vy

L
t

vy ! 5 "  t2 m/s.1
2

1
2

1
6

1
2

Integrate to determine y, using the
condition y ! 3 m at t ! 0.

vy !
dy
dt

dy ! dt,L0
y ! 3 " 5t "  t3 m.

! 5 "  t2 m/s.

!       "t25 "
3L

y

0L
t

1
6

3
2Determine the position at t ! 3 s.

x#t!3 s ! 5 " 12(3) " (3)2 ! 54.5 m,

y#t!3 s ! 3 " 5(3) " (3)3 ! 22.5 m.

x

y
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Example 14.3 Connected Objects in Straight-Line Motion (! Related Problem 14.28)

The two crates are released from rest. Their masses are and
and the coefficients of friction between crate A and the inclined

surface are and What is the acceleration of the crates?

Strategy
We must first determine whether A slips. We will assume that the crates remain
stationary and see whether the force of friction necessary for equilibrium exceeds
the maximum friction force. If slip occurs, we can determine the resulting ac-
celeration by drawing free-body diagrams of the crates and applying Newton’s
second law to them individually.

Solution
We draw the free-body diagram of crate A and introduce a coordinate system in
Fig. a. If we assume that the crate does not slip, the following equilibrium equa-
tions apply:

In the first equation, the tension T equals the weight of crate B; therefore, the
friction force necessary for equilibrium is

The normal force so the maximum friction force the sur-
face will support is

 = 73.7 N.

 = 10.223140 kg219.81 m/s22 cos 20°4 fmax = ms N

N = mA g cos 20°,

 = 429 N.

 = 130 kg219.81 m/s22 + 140 kg219.81 m/s22 sin 20°

 f = mB g + mA g sin 20°

 ©Fy = N - mA g cos 20° = 0.

 ©Fx = T + mA g sin 20° - f = 0;

A

B

20!

mk = 0.15.ms = 0.2
mB = 30 kg,

mA = 40 kg

f
N

y

x

T

mAg

20!

(a) Free-body diagram of crate A.
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y

x

ax

(d) Vertical acceleration
of crate B.

T

T

Crate A will therefore slip, and the friction force is We show the
crate’s acceleration down the plane in Fig. b. Its acceleration perpendicular to
the plane is zero (i.e., ). Applying Newton’s second law yields

 ©Fy = N - mA g cos 20° = 0.

 ©Fx = T + mA g sin 20° - mk N = mA ax

ay = 0

f = mk N.

(e) The tension is assumed
to be the same on both
sides of the pulley.

y

x

ax

(b) The crate’s acceleration.

y

x

T

mBg

(c) Free-body diagram of crate B.

In this case, we do not know the tension T, because crate B is not in equi-
librium. We show the free-body diagram of crate B and its vertical acceler-
ation in Figs. c and d. The equation of motion is

(In terms of the two coordinate systems we use, the two crates have the same
acceleration ) Thus, by applying Newton’s second law to both crates, we
have obtained three equations in terms of the unknowns T, N, and Solving
for we obtain ax = 5.33 m/s2.ax,

ax.
ax.

©Fx = mB g - T = mB ax.

Critical Thinking
Notice that we assumed the tension in the cable to be the same on each side of
the pulley (Fig. e). In fact, however, the tensions must be different, because a
moment is necessary to cause angular acceleration of the pulley. For now, our
only recourse is to assume that the pulley is light enough that the moment nec-
essary to accelerate it is negligible. In Chapter 18 we include the analysis of the
angular motion of the pulley in problems of this type and obtain more realistic
solutions.
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Example 14.4 Application to Straight-Line Motion (! Related Problem 14.45)

The airplane touches down on the aircraft carrier with a horizontal velocity of
relative to the carrier. The arresting gear exerts a horizontal force of mag-

nitude newtons (N), where v is the plane’s velocity in meters per
second. The plane’s mass is 6500 kg.
(a) What maximum horizontal force does the arresting gear exert on the plane?
(b) If other horizontal forces can be neglected, what distance does the plane
travel before coming to rest?

Tx = 10,000v
50 m/s

Strategy
(a) Since the plane begins to decelerate when it contacts the arresting gear, the
maximum force occurs at first contact when 
(b) The horizontal force exerted by the arresting gear equals the product of the
plane’s mass and its acceleration. Once we know the acceleration, we can inte-
grate to determine the distance required for the plane to come to rest.

Solution
(a) We draw the free-body diagram of the airplane and introduce a coordinate
system in Fig. a. The forces and are the horizontal and vertical components
of force exerted by the arresting gear, and N is the vertical force on the landing

TyTx

v = 50 m/s.

y

x
Tx

Ty
N

mg

(a) Introducing a coordinate system with the x axis parallel to the
horizontal force.
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gear. The horizontal force on the plane is The
magnitude of the maximum force is

or 112,400 lb.

(b) In terms of the plane’s horizontal component of acceleration (Fig. b), we
obtain the equation of motion

-10,000vx = max.

 ©Fx = max:

10,000v = 110,00021502 = 500,000 N,

©Fx = -Tx = -10,000v N.

The airplane’s acceleration is a function of its velocity. We use the chain rule to
express the acceleration in terms of a derivative with respect to x:

Now we separate variables and integrate, defining to be the position at
which the plane contacts the arresting gear:

Evaluating the integrals and solving for x, we obtain

Critical Thinking
The force exerted by the arresting gear depended on the airplane’s velocity,
which resulted in an acceleration that depended on velocity. Our use of the
chain rule to determine the velocity as a function of position when the accel-
eration is a function of the velocity is discussed in Section 13.3.

x = 50m
10,000

=
1502165002

10,000
= 32.5 m.

L
0

50
m dvx = -L

x

0
10,000 dx.

x = 0

max = m 

dvx

dt
= m 

dvx

dx
 
dx
dt

= m 

dvx

dx
 vx = -10,000vx.

y

x

ax

(b) The airplane’s horizontal acceleration.
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Problems 14.2/14.3

F
20!

Problems 14.4/14.5

F

20!

Problems 14.6/14.7

Problems 14.8/14.9

Problems

! 14.1 In Active Example 14.1, suppose that the coefficient of
kinetic friction between the crate and the inclined surface is

Determine the distance the crate has moved down the
inclined surface at 

14.2 The mass of the Sikorsky UH-60A helicopter is 9300 kg. It
takes off vertically with its rotor exerting a constant upward thrust
of 112 kN.

(a) How fast is the helicopter rising 3 s after it takes off?

(b) How high has it risen 3 s after it takes off?

Strategy: Be sure to draw the free-body diagram of the
helicopter.

14.3 The mass of the Sikorsky UH-60A helicopter is 9300 kg. It
takes off vertically at The pilot advances the throttle so that
the upward thrust of its engine (in kN) is given as a function of
time in seconds by 

(a) How fast is the helicopter rising 3 s after it takes off?

(b) How high has it risen 3 s after it takes off? 

T = 100 + 2t2.

t = 0.

t = 1 s .
mk = 0.12.

14.4 The horizontal surface is smooth. The 30-lb box is at rest
when the constant force F is applied. Two seconds later, the box is
moving to the right at 20 ft/s. Determine F. 

14.5 The coefficient of kinetic friction between the 30-lb box
and the horizontal surface is The box is at rest when the
constant force F is applied. Two seconds later, the box is moving
to the right at 20 ft/s. Determine F.

mk = 0.1.

14.6 The inclined surface is smooth. The velocity of the 14-kg
box is zero when it is subjected to a constant horizontal force

What is the velocity of the box two seconds later?

14.7 The coefficient of kinetic friction between the 14-kg box
and the inclined surface is The velocity of the box is
zero when it is subjected to a constant horizontal force 
What is the velocity of the box two seconds later? 

F = 20 N.
mk = 0.1.

F = 20 N.

14.8 The 170-lb skier is schussing on a slope. At the instant
shown, he is moving at 40 ft/s. The kinetic coefficient of friction
between his skis and the snow is If he makes no at-
tempt to check his speed, how long does it take for it to increase
to 60 ft/s?

14.9 The 170-lb skier is schussing on a slope. At the instant
shown, he is moving at 40 ft/s. The kinetic coefficient of friction
between his skis and the snow is Aerodynamic drag
exerts a resisting force on him of magnitude where is
the magnitude of his velocity. If he makes no attempt to check his
speed, how long does it take for it to increase to 60 ft/s?

v0.015v2,
mk = 0.08.

25°

mk = 0.08.

25°
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y

x

z

! F

Problems 14.10–14.12

Problem 14.13

15!

x

T

y

Problem 14.14

Problem 14.15

! 14.10 The total external force on the 10-kg object is constant
and equal to At time its ve-
locity is What is its velocity at

(See Active Example 14.2.) 

14.11 The total external force on the 10-kg object shown in Prob-
lem 14.10 is given as a function of time by 

At time its position is 
and its velocity is 

What is its position at 

14.12 The position of the 10-kg object is given as a function of
time by What
is the total external force on the object at t = 2 s?

r = 120t3 - 3002i + 60t2j + 16t4 - 40t22k 1m2.
t = 4 s?

32k 1m/s2.v = -14i + 26j +30j - 360k 1m2 r = 40i +t = 0,60j + 110t + 402k 1N2. ©F = 1-20t + 902i -

t = 4 s?
v = -14i + 26j + 32k (m/s) .

t = 0,©  F = 90i - 60j + 20k (N).

14.13 The total force exerted on the 80,000-lb launch vehicle by
the thrust of its engine, its weight, and aerodynamic forces during
the interval of time from to is given as a function
of time by

At its velocity is
What is its velocity at t = 4 s?30k (ft/s) .

v = 12i + 220j -t = 2 s,(800 + 60t2)k (lb) .
©  F = (2000 - 400t2)i + (5200 + 440t)j +

t = 4 st = 2 s

14.14 At the instant shown, the horizontal component of acceler-
ation of the 26,000-lb airplane due to the sum of the external
forces acting on it is If the pilot suddenly increases the
magnitude of the thrust T by 4000 lb, what is the horizontal com-
ponent of the plane’s acceleration immediately afterward?

14 ft/s2.

14.15 At the instant shown, the rocket is traveling straight up
at 100 m/s. Its mass is 90,000 kg and the thrust of its engine is
2400 kN. Aerodynamic drag exerts a resisting force (in newtons)
of magnitude where is the magnitude of the velocity.
How long does it take for the rocket’s velocity to increase to
200 m/s?

v0.8v2,
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t

F

!F0

F0

t0 2t0

y

x

(a)

F

y

(b)

x

Problem 14.16

Problem 14.17

x

B

y

Problem 14.18

14.16 A 2-kg cart containing 8 kg of water is initially stationary
(Fig. P14.16a). The center of mass of the “object” consisting of
the cart and water is at The cart is subjected to the time-
dependent force shown in Fig. P14.16b, where and

Assume that no water spills out of the cart and that the
horizontal forces exerted on the wheels by the floor are negligible.

(a) Do you know the acceleration of the cart during the period

(b) Do you know the acceleration of the center of mass of the
“object” consisting of the cart and water during the period

(c) What is the x coordinate of the center of mass of the
“object” when t 7 2t0?

0 6 t 6 t0?

0 6 t 6 t0?

t0 = 2 s.
F0 = 5 N

x = 0.

14.17 The combined weight of the motorcycle and rider is
360 lb. The coefficient of kinetic friction between the tires and the
road is The rider starts from rest, spinning the rear
wheel. Neglect the horizontal force exerted on the front wheel by
the road. In two seconds, the motorcycle moves 35 ft. What was
the normal force between the rear wheel and the road?

mk = 0.8.

14.18 The mass of the bucket B is 180 kg. From to
the x and y coordinates of the center of mass of the

bucket are

Determine the x and y components of the force exerted on the
bucket by its supports at t = 1 s.

 y = 0.1t2 + 0.4t + 6 m.

 x = -0.2t3 + 0.05t2 + 10 m,

t = 2 s,
t = 0
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W

T

L

Path

y

x

Problems 14.19/14.20

y

x

L T

Horizontal

Path
15!

15!

D

mg

Problems 14.21/14.22

y

x

z

Problems 14.23/14.24

14.19 During a test flight in which a 9000-kg helicopter starts
from rest at the acceleration of its center of mass from

to is

What is the magnitude of the total external force on the helicopter
(including its weight) at 

14.20 The engineers conducting the test described in Problem
14.19 want to express the total force on the helicopter at 
in terms of three forces: the weight W, a component T tangent to
the path, and a component L normal to the path. What are the
values of W, T, and L?

t = 6 s

t = 6 s?

a = 0.6ti + 11.8 - 0.36t2j 1m/s22.t = 10 st = 0
t = 0,

14.21 At the instant shown, the 11,000-kg airplane’s velocity is
The forces acting on the plane are its weight, the

thrust the lift and the drag 
(The x axis is parallel to the airplane’s path.) Determine the magni-
tude of the airplane’s acceleration.

14.22 At the instant shown, the 11,000-kg airplane’s velocity is
The rate of change of the magnitude of the veloci-

ty is The radius of curvature of the airplane’s path
is 4500 m, and the y axis points toward the concave side of the path.
The thrust is Determine the lift L and drag D.T = 120,000 N.

dv>dt = 5 m/s2.
v = 300 i 1m/s2.

D = 34 kN.L = 260 kN,T = 110 kN,
v = 270 i 1m/s2.

14.23 The coordinates in meters of the 360-kg sport plane’s
center of mass relative to an earth-fixed reference frame during
an interval of time are

and

where t is the time in seconds. The y axis points upward. The
forces exerted on the plane are its weight, the thrust vector T
exerted by its engine, the lift force vector L, and the drag force
vector D. At determine 

14.24 The force in newtons exerted on the 360-kg sport plane in
Problem 14.23 by its engine, the lift force, and the drag force dur-
ing an interval of time is

where t is the time in seconds. If the coordinates of the plane’s cen-
ter of mass are (0, 0, 0) and its velocity is 
at what are the coordinates of the center of mass at t = 4 s?t = 0,

20i + 35j - 20k 1m/s2
 + 1720 + 200t2k,

 T + L + D = 1-1000 + 280t2i + 14000 - 430t2j

T + L + D.t = 4 s,

 z = -20t - 1.38t2,

 y = 35t - 0.15t3,

 x = 20t - 1.63t2,
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A

x

y

y

x

Problems 14.25/14.26

Problem 14.27

5 kg
2 kg

Problem 14.28

10 lb

5 lb

Problems 14.29/14.30

30!

Problem 14.31

14.25 The robot manipulator is programmed so that 
and during the interval of time from

to The y axis points upward. What are the x and y
components of the total force exerted by the jaws of the manipula-
tor on the 2-kg widget A at 

14.26 The robot manipulator is programmed so that it is station-
ary at and the components of the acceleration of A are

and from
to where and are the components of the ve-

locity in The y axis points upward. What are the x and y
components of the total force exerted by the jaws of the manipula-
tor on the 2-kg widget A at t = 1 s?

mm/s.
vyvxt = 2 s,t = 0

ay = 200 - 0.4vy mm/s2ax = 400 - 0.8vx mm/s2
t = 0

t = 3 s?

t = 4 s.t = 0
z = 0y = 4t3 mm,24t2 mm,

x = 40 +

14.27 In the sport of curling, the object is to slide a “stone”
weighing 44 lb onto the center of a target located 31 yards from
the point of release. In terms of the coordinate system shown, the
point of release is at Suppose that a shot comes to
rest at Assume that the coefficient of
kinetic friction is constant and equal to What were the
x and y components of the stone’s velocity at release?

mk = 0.01.
y = 1 yard.x = 31.0 yards,

x = 0, y = 0.

! 14.28 The two masses are released from rest. How fast are
they moving at (See Example 14.3.)t = 0.5 s?

14.29 The two weights are released from rest. The horizontal
surface is smooth. (a) What is the tension in the cable after the
weights are released? (b) How fast are the weights moving one
second after they are released?

14.30 The two weights are released from rest. The coefficient of
kinetic friction between the horizontal surface and the 5-lb weight
is (a) What is the tension in the cable after the weights
are released? (b) How fast are the weights moving one second
after they are released?

mk = 0.18.

14.31 The mass of each box is 14 kg. One second after they are
released from rest, they have moved 0.3 m from their initial posi-
tions. What is the coefficient of kinetic friction between the boxes
and the surface? 

y

x

31 yd

Curling
stone
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5!

A

Problem 14.33

F

A

B

u

Problems 14.34/14.35

30!

F

Problems 14.36/14.37

30!

Problem 14.38

14.32 The masses and and the coeffi-
cients of friction between all of the surfaces are and

The blocks are stationary when the constant force F is
applied. Determine the resulting acceleration of block B if
(a) ; (b) F = 400 N.F = 200 N

mk = 0.35.
ms = 0.4

mB = 30 kg,mA = 15 kg

14.33 The crane’s trolley at A moves to the right with constant
acceleration, and the 800-kg load moves without swinging.

(a) What is the acceleration of the trolley and load?

(b) What is the sum of the tensions in the parallel cables support-
ing the load?

14.34 The mass of A is 30 kg and the mass of B is 5 kg. The hor-
izontal surface is smooth. The constant force F causes the system
to accelerate. The angle is constant. Determine F. 

14.35 The mass of A is 30 kg and the mass of B is 5 kg. The
coefficient of kinetic friction between A and the horizontal surface
is The constant force F causes the system to accelerate.
The angle is constant. Determine F.u = 20°
mk = 0.2.

u = 20°

14.36 The 100-lb crate is initially stationary. The coefficients of
friction between the crate and the inclined surface are 
and Determine how far the crate moves from its initial
position in 2 s if the horizontal force 

14.37 In Problem 14.36, determine how far the crate moves
from its initial position in 2 s if the horizontal force F = 30 lb.

F = 90 lb.
mk = 0.16.

ms = 0.2

14.38 The crate has a mass of 120 kg, and the coefficients of
friction between it and the sloping dock are and

(a) What tension must the winch exert on the cable to start the
stationary crate sliding up the dock?

(b) If the tension is maintained at the value determined in part (a),
what is the magnitude of the crate’s velocity when it has moved 2 m
up the dock?

mk = 0.5.
ms = 0.6

F
B

A

Problem 14.32
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A

u

Problems 14.39/14.40

30!

2 m

A

B

Problem 14.41

k

s

Problem 14.42

Problem 14.43

14.39 The coefficients of friction between the load A and the bed
of the utility vehicle are and If the floor is
level what is the largest acceleration (in ) of the
vehicle for which the load will not slide on the bed?

14.40 The coefficients of friction between the load A and the bed
of the utility vehicle are and The angle

Determine the largest forward and rearward accelera-
tions of the vehicle for which the load will not slide on the bed. 
u = 20°.

mk = 0.36.ms = 0.4

m/s2(u = 0),
mk = 0.36.ms = 0.4

14.41 The package starts from rest and slides down the smooth
ramp. The hydraulic device B exerts a constant 2000-N force and
brings the package to rest in a distance of 100 mm from the point
at which it makes contact. What is the mass of the package?

14.43 The 450-kg boat is moving at 10 m/s when its engine
is shut down. The magnitude of the hydrodynamic drag force
(in newtons) is where is the magnitude of the velocity
in m/s. When the boat’s velocity has decreased to 1 m/s, what
distance has it moved from its position when the engine was
shut down?

v40v2,

14.42 The force exerted on the 10-kg mass by the linear spring is
where k is the spring constant and s is the displacement

of the mass relative to its position when the spring is unstretched.
The value of k is 40 N/m. The mass is in the position and is
given an initial velocity of 4 m/s toward the right. Determine the
velocity of the mass as a function of s.

Strategy: Use the chain rule to write the acceleration as

dv
dt

= dv
ds

 
ds
dt

= dv
ds

 v.

s = 0

F = -ks,
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Problem 14.44

14.44 A sky diver and his parachute weigh 200 lb. He is falling
vertically at when his parachute opens. With the parachute
open, the magnitude of the drag force (in pounds) is 

(a) What is the magnitude of the sky diver’s acceleration at the
instant the parachute opens?

(b) What is the magnitude of his velocity when he has descended
20 ft from the point where his parachute opens?

0.5 v2.
100 ft/s

Problem 14.46

! 14.45 The Panavia Tornado with a mass of 18,000 kg
lands at a speed of 213 km/h. The decelerating force (in newtons)
exerted on it by its thrust reversers and aerodynamic drag is

where is the airplane’s velocity in m/s. What is
the length of the airplane’s landing roll? (See Example 14.4.)

v80,000 + 2.5v2,

14.46 A 200-lb bungee jumper jumps from a bridge 130 ft above
a river. The bungee cord has an unstretched length of 60 ft and has
a spring constant 

(a) How far above the river is the jumper when the cord brings
him to a stop?

(b) What maximum force does the cord exert on him?

k = 14 lb/ft.

14.47 A helicopter weighs 20,500 lb. It takes off vertically from
sea level, and its upward velocity in ft/s is given as a function of
its altitude h in feet by 

(a) How long does it take the helicopter to climb to an altitude
of 4000 ft?

(b) What is the sum of the vertical forces on the helicopter when
its altitude is 2000 ft?

v = 66 - 0.01h.

Problem 14.45
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20!

45!

200 NA

Problems 14.51/14.52

y

z x

F

(5, 3, 0) ft

(2, 0, 4) ft

(2, 2, 2) ft

A

Problems 14.53/14.54

14.51 What is the acceleration of the 8-kg collar A relative to the
smooth bar?

14.52 Determine the acceleration of the 8-kg collar A relative to
the bar if the coefficient of kinetic friction between the collar and
the bar is mk = 0.1.

14.53 The force What is the magnitude of the acceler-
ation of the 20-lb collar A along the smooth bar at the instant
shown?

14.54* In Problem 14.53, determine the magnitude of the accel-
eration of the 20-lb collar A along the bar at the instant shown if
the coefficient of static friction between the collar and the bar is
mk = 0.2.

F = 50 lb.

y

x

S

O

Problem 14.50

14.50 An astronaut wants to travel from a space station to a satel-
lite S that needs repair. She departs the space station at O. A
spring-loaded launching device gives her maneuvering unit an ini-
tial velocity of (relative to the space station) in the y direc-
tion. At that instant. the position of the satellite is 

and it is drifting at (relative to the station)
in the x direction. The astronaut intercepts the satellite by applying
a constant thrust parallel to the x axis. The total mass of the astro-
naut and her maneuvering unit is 300 kg.

(a) How long does it take the astronaut to reach the satellite?

(b) What is the magnitude of the thrust she must apply to make
the intercept?

(c) What is the astronaut’s velocity relative to the satellite when
she reaches it?

2 m/sz = 0,y = 50 m,
x = 70 m,

1 m/s

O
x

y

""""

####

Screen

30
mm 100 mm

Problems 14.48/14.49

14.48 In a cathode-ray tube, an electron
is projected at O with velocity While
the electron is between the charged plates, the electric field
generated by the plates subjects it to a force where
the charge of the electron (coulombs) and
the electric field strength External forces on the
electron are negligible when it is not between the plates. Where
does the electron strike the screen?

14.49 In Problem 14.48, determine where the electron strikes the
screen if the electric field strength is 
where the frequency v = 2 * 109 s-1.

E = 15 sin1vt2 kN>C,

E = 15 kN>C.
e = 1.6 * 10-19 C

F = -eEj,

v = 12.2 * 1072i 1m/s2.1mass =  9.11 * 10-31 kg2
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x

F

y

z

A

B

Problems 14.55/14.56

4 m

2 m

Problem 14.57

14.55 The 6-kg collar starts from rest at position A, where the
coordinates of its center of mass are (400, 200, 200) mm, and
slides up the smooth bar to position B, where the coordinates of its
center of mass are (500, 400, 0) mm, under the action of a con-
stant force How long does the col-
lar take to go from A to B?

14.56* In Problem 14.55, how long does the collar take to go
from A to B if the coefficient of kinetic friction between the collar
and the bar is mk = 0.2?

F = -40i + 70j - 40k 1N2.

14.57 The crate is drawn across the floor by a winch that re-
tracts the cable at a constant rate of The crate’s mass is
120 kg, and the coefficient of kinetic friction between the crate
and the floor is 

(a) At the instant shown, what is the tension in the cable?

(b) Obtain a “quasi-static” solution for the tension in the cable by
ignoring the crate’s acceleration. Compare this solution with your
result in part (a).

mk = 0.24.

0.2 m/s.

14.58 If and 
what horizontal force is exerted on the 0.4-kg slider

A by the smooth circular slot?
-200 mm/s2,

d2y>dt2 =y = 100 mm, dy>dt = 600 mm/s,

14.59 The 1-kg collar P slides on the vertical bar and has a pin
that slides in the curved slot. The vertical bar moves with constant
velocity The y axis points upward. What are the x and y
components of the total force exerted on the collar by the vertical
bar and the slotted bar when x = 0.25 m?

v = 2 m/s.

300 mm

A

y

Problem 14.58

y

1 m

P

v

x

y ! 0.2 sin px

Problem 14.59

BEDFMC14_0136129161.QXD  6/15/07  4:45 PM  Page 131



132 Chapter 14 Force, Mass, and Acceleration

A

B

70!

Problems 14.61/14.62

14.61* The two 100-lb blocks are released from rest. Determine
the magnitudes of their accelerations if friction at all the contact-
ing surfaces is negligible.

Strategy: Use the fact that the components of the accelera-
tions of the blocks perpendicular to their mutual interface must
be equal.

14.62* The two 100-lb blocks are released from rest. The coeffi-
cient of kinetic friction between all contacting surfaces is

How long does it take block A to fall 1 ft?mk = 0.1.

14.63 The 3000-lb vehicle has left the ground after driving over
a rise. At the instant shown, it is moving horizontally at 
and the bottoms of its tires are 24 in above the (approximately)
level ground. The earth-fixed coordinate system is placed with its
origin 30 in above the ground, at the height of the vehicle’s center
of mass when the tires first contact the ground. (Assume that the
vehicle remains horizontal.) When that occurs, the vehicle’s center
of mass initially continues moving downward and then rebounds
upward due to the flexure of the suspension system. While the
tires are in contact with the ground, the force exerted on them by
the ground is where y is the vertical
position of the center of mass in feet. When the vehicle rebounds,
what is the vertical component of the velocity of the center of
mass at the instant the wheels leave the ground? (The wheels
leave the ground when the center of mass is at )y = 0.

-2400 i - 18,000y j 1lb2,

30 mi/h

y

24 in

30 in 24 in

30 in
x

Problem 14.63

x

y

Problems 14.64/14.65

14.64* A steel sphere in a tank of oil is given an initial velocity
at the origin of the coordinate system shown. The ra-

dius of the sphere is 15 mm. The density of the steel is 
and the density of the oil is If V is the sphere’s volume,
the (upward) buoyancy force on the sphere is equal to the weight of
a volume V of oil. The magnitude of the hydrodynamic drag force D
on the sphere as it falls is where is the magni-
tude of the sphere’s velocity in What are the x and y compo-
nents of the sphere’s velocity at 

14.65* In Problem 14.64, what are the x and y coordinates of the
sphere at t = 0.1 s?

t = 0.1 s?
m/s.

ƒ v ƒƒ D ƒ = 1.6 ƒ v ƒ  N,

980 kg/m3.
8000 kg/m3

v = 2i 1m/s2

y " 0.0003x2

y

x

Problem 14.60

14.60* The 1360-kg car travels along a straight road of increas-
ing grade whose vertical profile is given by the equation shown.
The magnitude of the car’s velocity is a constant When

what are the x and y components of the total force
acting on the car (including its weight)?

Strategy: You know that the tangential component of the
car’s acceleration is zero. You can use this condition together with
the equation for the profile of the road to determine the x and y
components of the car’s acceleration.

x = 200 m,
100 km/h.
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an

at!Fn

!Ft

en

et

(b)(a)

Figure 14.5
(a) Normal and tangential components of the sum of the

forces on an object.
(b) Normal and tangential components of the acceleration of

the center of mass of the object.

14.3 Applications—Normal 
and Tangential Components
When an object moves in a curved path, we can resolve the sum of the
forces acting on it into normal and tangential components (Fig. 14.5a). We can
also express the object’s acceleration in terms of normal and tangential
components (Fig. 14.5b) and write Newton’s second law, in
the form

(14.6)

where

Equating the normal and tangential components in Eq. (14.6), we obtain two
scalar equations of motion:

(14.7)

The sum of the forces in the tangential direction equals the product of the mass
and the rate of change of the magnitude of the velocity, and the sum of the
forces in the normal direction equals the product of the mass and the normal
component of acceleration. If the path of the object’s center of mass lies in a
plane, the acceleration of the center of mass perpendicular to the plane is zero,
so the sum of the forces perpendicular to the plane is zero.

©Ft = mat = m 
dv
dt

, ©Fn = man = m 
v2

r
.

at = dv
dt

 and an = v2

r
.

©Ftet + ©Fnen = m1atet + anen2,
©F = ma,
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Active Example 14.5 Tangential and Normal Components (! Related Problem 14.66)

The boat, which with its passengers weighs 1200 lb, is moving at 20 ft/s in a cir-
cular path with radius At the driver advances the throttle so
that the tangential component of the total force acting on the boat increases to
100 lb and remains constant. He continues following the same circular path.
At determine the magnitude of the boat’s velocity and the total force
acting on the boat in the direction perpendicular to its path.  

Strategy
We can apply Newton’s second law in the tangential direction to determine the
tangential component of the boat’s acceleration and integrate the acceleration
to obtain the velocity as a function of time. Once the velocity at has
been determined, we can apply Newton’s second law in the direction perpen-
dicular to the boat’s path to determine the total normal force at .

Solution

t = 2 s

t = 2 s

R

t = 2 s,

t = 0,R = 40 ft .

Determine the boat’s mass. m ! !
1200 lb 

32.2 ft/s2

W 
g

! 37.3 slug.

Apply Newton’s second law
in the tangential direction to
determine the tangential
component of the boat’s
acceleration.

"F t ! mat :

100 lb ! (37.3 slug)a t ,

a t !

! 2.68 ft/s2

100 lb
37.3 slug
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Practice Problem The boat is moving at 20 ft/s in a circular path with radius
Suppose that at the driver advances the throttle so that the tangential

component of the total force (in pounds) acting on the boat is given as a function of time
by He continues following the same circular path. At determine
the magnitude of the boat’s velocity and the total force acting on the boat in the direc-
tion perpendicular to its path.

Answer: Velocity is 30.7 ft/s, normal force is 880 lb. 

t = 2 s,©  Ft = 200t.

t = 0R = 40 ft .

Integrate the tangential
acceleration to determine
the boat’s velocity as a
function of time.

v ! 20 " 2.68t ft/s.

! 2.68 ft/s2 :a t !
dv 
dt

L 2.68 dt,
20

v

L0
t

dv !
20

Evaluate the velocity at
t ! 2 s.

v ! 20 " 2.68(2)
! 25.4 ft/s.

Determine the normal 
component of the boat’s 
acceleration at t ! 2 s.

! 16.1 ft/s2.
v2 
r

(25.4 ft/s)2

40 ft
! an !

Apply Newton’s second
law in the normal direction
to determine the normal
force acting on the boat at
t ! 2 s.

#Fn ! man

! (37.3 slugs)(16.1 ft/s2)

! 600 lb.
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Active Example 14.6 Train on a Banked Track (! Related Problem 14.79)

The train is supported by magnetic repulsion forces exerted in the direction per-
pendicular to the track. Motion of the train in the transverse direction is pre-
vented by lateral supports. The 20,000-kg train is traveling at 30 m/s on a circular
segment of track with radius and the bank angle of the track is 
What force must the magnetic levitation system exert to support the train, and
what force is exerted by the lateral supports?

Strategy
We know the train’s velocity and the radius of its circular path, so we can de-
termine its normal component of acceleration. By expressing Newton’s second
law in terms of normal and tangential components, we can determine the com-
ponents of force normal and transverse to the track.

Solution

40°.R = 150 m,

View of the train from above showing the
normal and tangential unit vectors. The
vector et is tangential to the train’s path
and the vector en points toward the center
of its circular path.

en

e t
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Practice Problem For what speed of the train would the lateral force S be
zero? (This is the optimum speed for the train to travel on the banked track. If
you were a passenger, you would not need to exert any lateral force to remain
in place in your seat.)

Answer: 35.1 m/s. 

v

View of the front of the train. The
forces acting on it are its weight,
the magnetic force M normal to 
the track, and the force S exerted
by the lateral supports. 40!

mg M

S
en

The sum of the forces in the 
vertical direction (perpendicular 
to the train’s circular path) 
must equal zero.

M cos 40! " S sin 40! # mg $ 0.     (1)

Apply Newton’s second law in the
en direction. M sin 40! # S cos 40! $ m

%Fn $ man:

.
v2 
r

 (2)

an $
v2

R 

Solving Eqs. (1) and (2) with
m $ 20,000 kg, g $ 9.81 m/s2,
v $ 30 m/s, and r $ 150 m yields
M $ 227 kN and S $ 34.2 kN.
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Example 14.7 Newton’s Second Law in Normal and Tangential Components
(! Related Problem 14.73)

Future space stations may be designed to rotate in order to provide simulated
gravity for their inhabitants. If the distance from the axis of rotation of the sta-
tion to the occupied outer ring is what rotation rate is necessary to
simulate one-half of earth’s gravity?

R = 100 m,

Strategy
By drawing the free-body diagram of a person and expressing Newton’s second
law in terms of normal and tangential components, we can relate the force ex-
erted on the person by the floor to the angular velocity of the station. The per-
son exerts an equal and opposite force on the floor, which is his effective weight.

Solution
We draw the free-body diagram of a person standing in the outer ring in Fig. a,
where N is the force exerted on him by the floor. Relative to a nonrotating ref-
erence frame with its origin at the center of the station, the person moves in a

en

et

N

(a) Free-body diagram of a person standing
in the occupied ring.
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circular path of radius R. His normal and tangential components of acceleration
are shown in Fig. b. Applying Eqs. (14.7), we obtain

and

©Fn = N = m 
v2

R
.

©Ft = 0 = m 
dv
dt

at !

an !

dv
dt

v2

R

(b) The person’s normal and tangential
components of acceleration.

The first equation simply indicates that the magnitude of the person’s velocity
is constant. The second equation tells us the force N. The magnitude of his
velocity is where is the angular velocity of the station. If one-half
of earth’s gravity is simulated, Therefore

Solving for we obtain the necessary angular velocity of the station:

This is one revolution every 28.4 s.

Critical Thinking
When you are standing in a room, the floor pushes upward on you with a
force N equal to your weight. The effect of gravity on your body is indistin-
guishable from the effect of a force of magnitude N pushing on your feet and
accelerating you upward with acceleration g in the absence of gravity. (This
observation was one of Einstein’s starting points in developing his general
theory of relativity.) This is the basis of simulating gravity by using rotation,
and it explains why we set in this example to simulate one-half
of earth’s gravity.

N = mg>2

v = A g
2R

= C9.81 m/s2

21100 m2 = 0.221 rad/s.

v,

N = 1
2

 mg = m 

1Rv22
R

.

N = 1
2 mg.

vv = Rv,
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mg

N

f

en

(b) Front view of the free-body
diagram.

an !
v2

R 

(c) The acceleration seen in
the front view.

Example 14.8 Motor Vehicle Dynamics (! Related Problems 14.89, 14.90)

60 m

A civil engineer’s preliminary design for a freeway off-ramp is circular with
radius . If she assumes that the coefficient of static friction between
tires and road is at least what is the maximum speed at which vehi-
cles can enter the ramp without losing traction?

ms = 0.4,
R = 60 m

Strategy
Since a vehicle on the off-ramp moves in a circular path, it has a normal
component of acceleration that depends on its velocity. The necessary normal
component of force is exerted by friction between the tires and the road, and the
friction force cannot be greater than the product of and the normal force. By
assuming that the friction force is equal to this value, we can determine the
maximum velocity for which slipping will not occur.

Solution
We view the free-body diagram of a car on the off-ramp from above the car in
Fig. a and from the front of the car in Fig. b. In Fig. c, we show the car’s
acceleration, which is perpendicular to the circular path of the car and toward
the center of the path. The sum of the forces in the direction equals the product
of the mass and the normal component of the acceleration; that is,

or

The required friction force increases as v increases. The maximum friction force
the surfaces will support is Therefore, the maximum
velocity for which slipping does not occur is

or 55.2 km/h 134.3 mi/h2.v = 2ms gR = 20.419.81 m/s22160 m2 = 15.3 m/s,

fmax = ms N = ms mg.

f = m 
v2

R
.

©Fn = man = m 
v2

R
,

en

ms

et

enf

(a) Top view of the free-body diagram.

BEDFMC14_0136129161.QXD  6/15/07  4:45 PM  Page 140



Problems 141

10 m

Problem 14.69

4 rad/s2 rad/s2

0.6 m

B
A

Problem 14.70
B

A

200 m

50 m

Problems 14.67/14.68

Problems
! 14.66 The boat in Active Example 14.5 weighs 1200 lb with
its passengers. Suppose that the boat is moving at a constant speed
of 20 ft/s in a circular path with radius Determine the
tangential and normal components of force acting on the boat.

14.67 In preliminary design studies for a sun-powered car, it is
estimated that the mass of the car and driver will be 100 kg and
the torque produced by the engine will result in a 60-N tangential
force on the car. Suppose that the car starts from rest on the track
at A and is subjected to a constant 60-N tangential force. Deter-
mine the magnitude of the car’s velocity and the normal compo-
nent of force on the car when it reaches B.

14.68 In a test of a sun-powered car, the mass of the car and
driver is 100 kg. The car starts from rest on the track at A, moving
toward the right. The tangential force exerted on the car (in new-
tons) is given as a function of time by Deter-
mine the magnitude of the car’s velocity and the normal
component of force on the car at t = 40 s .

©  Ft = 20 + 1.2t.

R = 40 ft .

14.69 An astronaut candidate with a mass of 72 kg is tested in a
centrifuge with a radius of 10 m. The centrifuge rotates in the
horizontal plane. It starts from rest at time and has a con-
stant angular acceleration of Determine the magnitude
of the horizontal force exerted on him by the centrifuge (a) at

; (b) at t = 10 s .t = 0

0.2 rad/s2.
t = 0

14.70 The circular disk lies in the horizontal plane. At the instant
shown, the disk rotates with a counterclockwise angular velocity of

and a counterclockwise angular acceleration of 
The 0.5-kg slider A is supported horizontally by the smooth slot
and the string attached at B. Determine the tension in the string
and the magnitude of the horizontal force exerted on the slider by
the slot.

2 rad/s2.4 rad/s

14.71 The circular disk lies in the horizontal plane and rotates
with a constant counterclockwise angular velocity of The
0.5-kg slider A is supported horizontally by the smooth slot and
the string attached at B. Determine the tension in the string and the
magnitude of the horizontal force exerted on the slider by the slot.

4 rad/s.

0.6 m

B

A
90!

0.6 m

4 rad/s

Problem 14.71
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35!

55!

R

B

A

m

Problems 14.77/14.78

v

R

 u

Problem 14.74

L

m

u

Problems 14.75/14.76

14.72 The 32,000-lb airplane is flying in the vertical plane at
At the instant shown, the angle , and the carte-

sian components of the plane’s acceleration are

(a) What are the tangential and normal components of the total
force acting on the airplane (including its weight)?

(b) What is in degrees per second?du>dt

ax = -6 ft/s2, ay = 30 ft/s2.

u = 30°420 ft/s.

! 14.73 Consider a person with a mass of 72 kg who is in the
space station described in Example 14.7. When he is in the occu-
pied outer ring, his simulated weight in newtons is

Suppose that he climbs to a posi-
tion in one of the radial tunnels that leads to the center of the sta-
tion. Let r be his distance in meters from the center of the station.
(a) Determine his simulated weight in his new position in terms
of r. (b) What would his simulated weight be when he reaches the
center of the station? 

14.74 Small parts on a conveyer belt moving with constant
velocity v are allowed to drop into a bin. Show that the angle at
which the parts start sliding on the belt satisfies the equation

where is the coefficient of static friction between the parts
and the belt.

ms

cos u - 1
ms

 sin u = v2

gR
,

u

1
2(72 kg)(9.81 m/s2) = 353 N.

14.75 The 1-slug mass m rotates around the vertical pole in a hor-
izontal circular path. The angle and the length of the string
is What is the magnitude of the velocity of the mass?

Strategy: Notice that the vertical acceleration of the mass is
zero. Draw the free-body diagram of the mass and write Newton’s
second law in terms of tangential and normal components.

14.76 The 1-slug mass m rotates around the vertical pole in a
horizontal circular path. The length of the string is De-
termine the magnitude of the velocity of the mass and the angle 
if the tension in the string is 50 lb.

u

L = 4 ft.

L = 4 ft.
u = 30°

y

x

u

Problem 14.72

14.77 The 10-kg mass m rotates around the vertical pole in a
horizontal circular path of radius If the magnitude of
the velocity of the mass is what are the tensions in the
strings A and B?

14.78 The 10-kg mass m rotates around the vertical pole in a
horizontal circular path of radius For what range of val-
ues of the velocity v of the mass will the mass remain in the circu-
lar path described?

R = 1 m.

v = 3 m/s,
R = 1 m.
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v

Problem 14.82

u

Problem 14.79

15!

L

W

Problem 14.80

A
m

B

45!

Problem 14.81

! 14.79 Suppose you are designing a monorail transportation
system that will travel at and you decide that the angle 
that the cars swing out from the vertical when they go through a
turn must not be larger than If the turns in the track consist of
circular arcs of constant radius R, what is the minimum allowable
value of R? (See Active Example 14.6.)

20°.

u50 m/s,

14.80 An airplane of weight makes a turn at
constant altitude and at constant velocity The bank
angle is 15°.

(a) Determine the lift force L.

(b) What is the radius of curvature of the plane’s path?

v = 600 ft/s.
W = 200,000 lb

14.81 The suspended 2-kg mass m is stationary.

(a) What are the tensions in the strings A and B?

(b) If string A is cut, what is the tension in string B immediately
afterward?

14.82 The airplane flies with constant velocity v along a circular
path in the vertical plane. The radius of the airplane’s circular path
is 2000 m. The mass of the pilot is 72 kg.

(a) The pilot will experience “weightlessness” at the top of the
circular path if the airplane exerts no net force on him at that
point. Draw a free-body diagram of the pilot and use Newton’s
second law to determine the velocity v necessary to achieve this
condition.

(b) Suppose that you don’t want the force exerted on the pilot by
the airplane to exceed four times his weight. If he performs this
maneuver at what is the minimum acceptable radius
of the circular path?

v = 200 m/s,
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O
x

y

v0

Problem 14.84

L0

v0

R

m

u

Problems 14.85/14.86

y

x

z

Problems 14.87/14.88

14.83 The smooth circular bar rotates with constant angular ve-
locity about the vertical axis AB. The radius The
mass m remains stationary relative to the circular bar at 
Determine v0.

b = 40°.
R = 0.5 m.v0

14.84 The force exerted on a charged particle by a magnetic field is

where q and v are the charge and velocity vector of the particle and
B is the magnetic field vector. A particle of mass m and positive
charge q is projected at O with velocity into a uniform
magnetic field Using normal and tangential compo-
nents, show that (a) the magnitude of the particle’s velocity is con-
stant and (b) the particle’s path is a circle with radius mv0>qB0.

B = B0 k.
v = v0 i

F = qv * B,

14.86 The mass m is attached to a string that is wrapped around
the fixed post of radius R. At the mass is given a velocity

as shown. Neglect external forces on m other than the force ex-
erted by the string. Determine the angle as a function of time.u

v0

t = 0,

14.87 The sum of the forces in newtons exerted on the 360-kg
sport plane (including its weight) during an interval of time is

where t is the time in seconds. At the velocity of the
plane’s center of mass relative to the earth-fixed reference frame
is If you resolve the sum of the forces
on the plane into components tangent and normal to the plane’s
path at what are the values of and 

14.88 In Problem 14.87, what is the instantaneous radius of cur-
vature of the plane’s path at The vector components of
the sum of the forces in the directions tangential and normal to the
path lie in the osculating plane. Determine the components of a
unit vector perpendicular to the osculating plane at t = 2 s.

t = 2 s?

©Fn?©Ftt = 2 s,

20i + 35j - 20k 1m/s2. t = 0,

1-1000 + 280t2i + 1480 - 430t2j + 1720 + 200t2k,

m

R

B

A

b

v0

Problem 14.83

14.85 The mass m is attached to a string that is wrapped around
the fixed post of radius R. At the mass is given a velocity

as shown. Neglect external forces on m other than the force
exerted by the string. Determine the tension in the string as a
function of the angle 

Strategy: The velocity vector of the mass is perpendicular to
the string. Express Newton’s second law in terms of normal and
tangential components.

u.

v0

t = 0,
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(a)

(b)

60 m

b

Problems 14.89/14.90

Problem 14.91

Problem 14.92

! 14.89 The freeway off-ramp is circular with 60-m radius
(Fig. a). The off-ramp has a slope (Fig. b). If the
coefficient of static friction between the tires of a car and the road
is what is the maximum speed at which it can enter the
ramp without losing traction? (See Example 14.8.)

! 14.90* The freeway off-ramp is circular with 60-m radius
(Fig. a). The off-ramp has a slope (Fig. b). If the coefficient of
static friction between the tires of a car and the road is 
what minimum slope is needed so that the car could (in theory)
enter the off-ramp at any speed without losing traction? (See
Example 14.8.)

b

ms = 0.4
b

ms = 0.4,

b = 15°

14.91 A car traveling at is at the top of a hill. The coeffi-
cient of kinetic friction between the tires and the road is 
The instantaneous radius of curvature of the car’s path is 200 m. If
the driver applies the brakes and the car’s wheels lock, what is the
resulting deceleration of the car in the direction tangent to its path?

mk = 0.8.
30 m/s

14.92 A car traveling at is at the bottom of a depression.
The coefficient of kinetic friction between the tires and the road is

The instantaneous radius of curvature of the car’s path is
200 m. If the driver applies the brakes and the car’s wheel’s lock,
what is the resulting deceleration of the car in the direction tangen-
tial to its path? Compare your answer to that of Problem 14.91.

mk = 0.8.

30 m/s

14.93 The combined mass of the motorcycle and rider is 160 kg.
The motorcycle starts from rest at and moves along a circular
track with a 400-m radius. The tangential component of accelera-
tion of the motorcycle as a function of time is 
The coefficient of static friction between the tires and the track is

How long after it starts does the motorcycle reach the
limit of adhesion, which means that its tires are on the verge of slip-
ping? How fast is the motorcycle moving when that occurs?

Strategy: Draw a free-body diagram showing the tangential
and normal components of force acting on the motorcycle.

ms = 0.8.

at = 2 + 0.2t m/s2.

t = 0

Problem 14.93

400 mP

et

en

O
s
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y

x
(a) (b)

r

au

ar

r

x

y

!Fu
!Fr

eu er

u u

Figure 14.6
Polar components of (a) the sum of the forces and
(b) the acceleration of the center of mass.

14.4 Applications—Polar and 
Cylindrical Coordinates
When an object moves in a planar curved path, we can describe the motion of
the center of mass of the object in terms of polar coordinates. Resolving the
sum of the forces parallel to the plane into polar components (Fig. 14.6a) and
expressing the acceleration of the center of mass in terms of polar components
(Fig. 14.6b), we can write Newton’s second law, in the form

(14.8)

where

and

Equating the and components in Eq. (14.8), we obtain the scalar equations

(14.9)©Fr = mar = mad2r

dt2 - rv2b
euer

au = r 
d2u

dt2 + 2 
dr
dt

 
du
dt

= ra + 2 
dr
dt

 v.

ar = d2r

dt2 - radu
dt
b2

= d2r

dt2 - rv2

©Fr  er + ©Fu eu = m1ar  er + au eu2,
©F = ma,
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(b)

r

y

z

z

x

au ar

az

(a)

rz

y

z

x

!Fu

!Fz

!Fr

eu er

ez 

u

u

Figure 14.7
(a) Components of the sum of the forces on an object in

cylindrical coordinates.
(b) Components of the acceleration of the center of mass.

and

(14.10)

We can describe the three-dimensional motion of an object using cylindri-
cal coordinates, in which the position of the center of mass perpendicular to the
x–y plane is measured by the coordinate z and the unit vector points in the
positive z direction. We resolve the sum of the forces into radial, transverse, and
z components (Fig. 14.7a) and express the acceleration of the center of mass in
terms of radial, transverse, and z components (Fig. 14.7b). The three scalar equa-
tions of motion are the polar equations (14.9) and (14.10) and the equation of
motion in the z direction,

(14.11)©Fz = maz = m 

dvz

dt
= m 

d2z

dt2 .

ez

©Fu = mau = mara + 2 
dr
dt

 vb .
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Free-body diagram of the
collar A with the force
exerted by the spring
expressed in terms of r.
The bar exerts a transverse
force N on the collar.

N

k(r ! r0)

A

y

x

u

A

y

x

au

ar

u

Apply Newton’s second
law in the radial direction.
This results in an equation
for the radial component
of the acceleration as a
function of r.

"Fr # mar:

!k(r ! r0) # m !          "d2r
dt2 ! rv2 !          "dvr

dt
# m ,

which we can write as

!     (r ! r0).
dvr

dt
# rv2

0

! rv2
0

k
m

Active Example 14.9 Polar Coordinates (! Related Problems 14.98, 14.99)

The smooth bar rotates in the horizontal plane with constant angular velocity
The unstretched length of the linear spring is The collar A has mass m

and is released at with no radial velocity. Determine the radial velocity
of the collar as a function of r.

Strategy
The only force on the collar in the radial direction is the force of the spring,
which we can express in polar coordinates in terms of r. By integrating
Eq. (14.9), we can determine the radial component of the velocity 
as a function of r.

Solution

vr = dr>dt

r = r0

r0.v0.

k

A

v0
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Practice Problem Determine the transverse force N exerted on the collar by the bar
as a function of r. 

Answer: N = 2mv0 A av2
0 - k

m b(r2 - r2
0) + 2k

m
 r0(r - r0).

Use the chain rule to
express the radial
acceleration in terms of
r instead of t, separate
variables, and integrate.

(r ! r0),
dvr

dt
dvr

dr
dr
dt

dvr

dr
" rv2

0
k
m

" " vr !

!                 "#        $r # v2
0

k
m

k
m

!L vr dvr "
0

vr

Lr0

r

r0 dr,

#(r2 ! r2
0) r0(r ! r0).

1
2

1
2

k
m

v2
r " #        $v2

0
k
m

!

Solve to obtain the radial
velocity as a function of r. vr " # $(r2 ! r2

0) # r0(r ! r0).v2
0 !

k
m

2k
m

r

u

y

x

Problem 14.94

Problems

14.94 The center of mass of the 12-kg object moves in the 
x–y plane. Its polar coordinates are given as functions of time by

Determine the polar compo-
nents of the total force acting on the object at t = 2 s.

u = 0.02t3 rad.r = 12 - 0.4t2 m,

14.95 A 100-lb person walks on a large disk that rotates with
constant angular velocity He walks at a constant
speed along a straight radial line painted on the disk.
Determine the polar components of the horizontal force exerted
on him when he is 6 ft from the center of the disk. (How are these
forces exerted on him?)

v0 = 5 ft/s
v0 = 0.3 rad/s.

v0 v0

Problem 14.95
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14.96 The robot is programmed so that the 0.4-kg part A
describes the path

Determine the polar components of force exerted on A by the
robot’s jaws at t = 2 s.

 u = 0.5 - 0.2 sin 2pt rad.

 r = 1 - 0.5 cos 2pt m,

A
r

u

Problem 14.96

r

A

3 m

v0

Problem 14.98

! 14.98 The smooth bar rotates in the horizontal plane with 
constant angular velocity If the radial velocity
of the 1-kg collar A is when its radial position is

what is its radial velocity when (See Active
Example 14.9.)

r = 2 m?r = 1 m,
vr = 10 m/s
v0 = 60 rpm.

14.97 A 50-lb object P moves along the spiral path
where is in radians. Its angular position is given

as a function of time by and at Deter-
mine the polar components of the total force acting on the object
at t = 4 s.

t = 0.r = 0u = 2t rad,
ur = 10.12u ft,

P

r

u

Problem 14.97
r

A

3 m

k

v0

Problem 14.99

! 14.99 The smooth bar rotates in the horizontal plane with
constant angular velocity The spring constant is

and the unstretched length of the spring is 3 m. If the
radial velocity of the 1-kg collar A is when its radial
position is what is its radial velocity when 
(See Active Example 14.9.) 

r = 2 m?r = 1 m,
vr = 10 m/s

k = 20 N/m
v0 = 60 rpm.
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L

m

u

Problem 14.100

14.100 The 2-kg mass m is released from rest with the string
horizontal. The length of the string is By using
Newton’s second law in terms of polar coordinates, determine
the magnitude of the velocity of the mass and the tension in the
string when u = 45°.

L = 0.6 m.

14.101 The 1-lb block A is given an initial velocity 
to the right when it is in the position causing it to slide up
the smooth circular surface. By using Newton’s second law in
terms of polar coordinates, determine the magnitude of the
velocity of the block when 

14.102 The 1-lb block is given an initial velocity to
the right when it is in the position causing it to slide up the
smooth circular surface. Determine the normal force exerted on
the block by the surface when u = 60°.

u = 0,
v0 = 14 ft/s

u = 60°.

u = 0,
v0 = 14 ft/s

A

4 ft

u

Problems 14.101/14.102

14.103 The skier passes point A going From A to B, the
radius of his circular path is 6 m. By using Newton’s second law
in terms of polar coordinates, determine the magnitude of the
skier’s velocity as he leaves the jump at B. Neglect tangential
forces other than the tangential component of his weight.

17 m/s.

A

B

45!

Problem 14.103

1 rad/s2

1 m

O

2 kg

Problem 14.104

14.104* A 2-kg mass rests on a flat horizontal bar. The bar be-
gins rotating in the vertical plane about O with a constant angular
acceleration of The mass is observed to slip relative to
the bar when the bar is 30° above the horizontal. What is the static
coefficient of friction between the mass and the bar? Does the
mass slip toward or away from O?

1 rad/s2.

2 ft

A

2 ft

u

Problems 14.105/14.106

14.105* The slider A is pushed along the circular bar by
the slotted bar. The circular bar lies in the horizontal plane. The
angular position of the slotted bar is Determine
the polar components of the total external force exerted on the
slider at 

14.106* The slider A is pushed along the circular bar by
the slotted bar. The circular bar lies in the vertical plane. The
angular position of the slotted bar is Determine
the polar components of the total force exerted on the slider by
the circular and slotted bars at t = 0.25 s.

u = 10t2 rad.

1>4-lb

t = 0.2 s.

u = 10t2 rad.

1>4-lb
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Cam

k

m

r0

u

v0

Problems 14.107/14.108

14.107* The slotted bar rotates in the horizontal plane with con-
stant angular velocity The mass m has a pin that fits in the slot
of the bar. A spring holds the pin against the surface of the fixed
cam. The surface of the cam is described by 
Determine the polar components of the total external force exerted
on the pin as functions of 

14.108* In Problem 14.107, suppose that the unstretched length
of the spring is Determine the smallest value of the spring con-
stant k for which the pin will remain on the surface of the cam.

r0.

u.

r = r012 - cos u2.v0.

14.109 A charged particle P in a magnetic field moves along the
spiral path described by where z is in me-
ters. The particle moves along the path in the direction shown
with constant speed The mass of the particle is

Determine the sum of the forces on the particle
in terms of cylindrical coordinates.
1.67 * 10-27 kg.

ƒ v ƒ = 1 km/s.

r = 1 m, u = 2z rad,

y

z

x

1 km/s

P

Problem 14.109

y

x
A

 

r

z

z

u

Problems 14.110–14.112

14.110 At the instant shown, the cylindrical coordinates of the 
4-kg part A held by the robotic manipulator are 
and (The coordinate system is fixed with respect to the
earth, and the y axis points upward.) A’s radial position is increasing
at and The angle is in-
creasing when and The
base of the manipulator arm is accelerating in the z direction at

Determine the force vector exerted on A by
the manipulator in terms of cylindrical coordinates.

14.111 Suppose that the robotic manipulator is used in a space
station to investigate zero-g manufacturing techniques. During an
interval of time, the manipulator is programmed so that the cylin-
drical coordinates of the 4-kg part A are 

and Determine the
force vector exerted on A by the manipulator at in terms
of cylindrical coordinates.

14.112* In Problem 14.111, draw a graph of the magnitude of
the force exerted on part A by the manipulator as a function of
time from to and use the graph to estimate the
maximum force during that interval of time.

t = 5 s,t = 0

t = 2 s
z = 0.811 + u2 m.r = 0.511 + sin u2 m,

u = 0.15t2 rad,

d2z>dt2 = 2.5 m/s2.

d2u>dt2 = 2.8 rad/s2.du>dt = 1.2 rad/s,
ud2r>dt2 = -0.4 m/s2.dr>dt = 0.2 m/s,

z = 0.8 m.
r = 0.6 m, u = 25°,
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er

eu

r0

r

(a) (b)

v0

u

Figure 14.8
(a) Initial position and velocity of an earth satellite.
(b) Specifying the subsequent path in terms of polar

coordinates.

14.5 Orbital Mechanics

BACKGROUND
It is appropriate to include a discussion of orbital mechanics in our chapter on
applications of Newton’s second law. Newton’s analytical determination of the
elliptical orbits of the planets, which had been deduced from observational data
by Johannes Kepler, was a triumph for Newtonian mechanics and confirmation
of the inverse-square relation for gravitational acceleration.

We can use Newton’s second law expressed in polar coordinates to de-
termine the orbit of an earth satellite or a planet. Suppose that at a satel-
lite has an initial velocity at a distance from the center of the earth
(Fig. 14.8a). We assume that the initial velocity is perpendicular to the line
from the center of the earth to the satellite. The satellite’s position during its
subsequent motion is specified by its polar coordinates where is meas-
ured from the satellite’s position at (Fig. 14.8b). Our objective is to de-
termine r as a function of

Determination of the Orbit
If we model the earth as a homogeneous sphere, the force exerted on the satel-
lite by gravity at a distance r from the center of the earth is where 
is the earth’s radius. (See Eq. 12.5.) From Eq. (14.9), the equation of motion in
the radial direction is

From Eq. (14.10), the equation of motion in the transverse direction is

 0 = mar 
d2u

dt2 + 2 
dr
dt

 
du
dt
b .

 ©Fu = mau:

 -
mgRE

2

r2 = m cd2r

dt2 - radu
dt
b2 d . ©Fr = mar:

REmgRE
2>r2,

u.
t = 0

u1r, u2,
r0v0

t = 0
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We therefore obtain the two equations

(14.12)

and

(14.13)

We can write Eq. (14.13) in the form

which indicates that

(14.14)

At the components of the velocity are and and the ra-
dial position is We can therefore write the constant in Eq. (14.14) in
terms of the initial conditions:

(14.15)

Using this equation to eliminate from Eq. (14.12), we obtain

(14.16)

We can solve this differential equation by introducing the change of variable

(14.17)

In doing so, we will also change the independent variable from t to because
we want to determine r as a function of the angle instead of time. To express
Eq. (14.16) in terms of u, we must determine in terms of u. Using the
chain rule, we write the derivative of r with respect to time as

(14.18)

Notice from Eq. (14.15) that

(14.19)
du
dt

=
r0v0

r2 = r0v0u2.

dr
dt

= d
dt

 a 1
u
b = - 1

u2
du
dt

= -  
1

u2
du
du

du
dt

.

d2r>dt2
u

u,

u = 1
r
.

d2r

dt2 -
r0

2v0
2

r3 = -  
gRE

2

r2 .

du>dt

r2 du
dt

= rvu = r0v0.

r = r0.
vu = v0,vr = 0t = 0,

r2 du
dt

= rvu = constant.

1
r

d
dt

 ar2 du
dt
b = 0,

r
d2u

dt2 + 2
dr
dt

 
du
dt

= 0.

d2r

dt2 - radu
dt
b2

= -  
gRE

2

r2
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Substituting this expression into Eq. (14.18), we obtain

(14.20)

We differentiate Eq. (14.20) with respect to time and apply the chain rule
again:

Using Eq. (14.19) to eliminate from this expression, we obtain the second
time derivative of r in terms of u:

Substituting this result into Eq. (14.16) yields a linear differential equation for
u as a function of 

The general solution of this equation is

(14.21)

where A and B are constants. We can use the initial conditions to determine A
and B. When Also, when the radial component of ve-
locity so from Eq. (14.20) we see that From these
two conditions, we obtain

Substituting these results into Eq. (14.21), we can write the resulting solution
for as

(14.22)

where

(14.23)e =
r0 v0

2

gRE
2 - 1.

r
r0

= 1 + e
1 + e cos u

,

r = 1>u
A = 0 and B = 1

r0
-

gRE
2

r0
2v0

2.

du>du = 0.vr = dr>dt = 0,
u = 0u = 0, u = 1>r0.

u = A sin u + B cos u +
gRE

2

r0
2v0

2,

d2u

du2 + u =
gRE

2

r0
2v0

2.

u:

d2r

dt2 = -r0 

2 v0
2 u 

2
 
d2u

du2.

du>dt

d2r

dt2 = d
dt

 a -r0 v0 
du
du
b = -r0 v0 

du
dt

 
d
du

 adu
du
b = -r0 v0 

du
dt

 
d2u

du2.

dr
dt

= -r0 v0 
du
du

.
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Types of Orbits
The curve called a conic section (Fig. 14.9) has the property that the ratio of r
to the perpendicular distance d to a straight line called the directrix is constant.
This ratio, is called the eccentricity of the curve. From the figure,
we see that

which we can write as

Comparing this expression with Eq. (14.22), we see that the satellite’s orbit
describes a conic section with eccentricity The value of the eccentricity de-
termines the character of the orbit.

Circular Orbit If the initial velocity is chosen so that Eq. (14.22)
reduces to and the orbit is circular (Fig. 14.10). Setting in
Eq. (14.23) and solving for we obtain

(14.24)

which agrees with the velocity for a circular orbit we obtained by a different
method in Example 13.5.

Elliptic Orbit If the orbit is an ellipse (Fig. 14.10). The max-
imum radius of the ellipse occurs when Setting equal to 180° in
Eq. (14.22), we obtain an expression for the maximum radius of the ellipse
in terms of the initial radius and 

(14.25)

Parabolic Orbit Notice from Eq. (14.25) that the maximum radius of the
elliptic orbit increases without limit as When the orbit is a para-
bola (Fig. 14.10). The corresponding velocity is the minimum initial veloc-
ity for which the radius r increases without limit, which is the escape velocity.
Setting in Eq. (14.23) and solving for we obtain

This is the same value for the escape velocity we obtained in Example 13.5 for
the case of an object moving in a straight path directly away from the center
of the earth.

Hyperbolic Orbit If the orbit is a hyperbola (Fig. 14.10).e 7 1,

v0 = C2gRE
2

r0
.

v0,e = 1

v0

e = 1,e: 1.

rmax = r0 a 1 + e
1 - e b .

e:

uu = 180°.
0 6 e 6 1,

v0 = CgRE
2

r0
,

v0,
e = 0r = r0

e = 0,v0

e.

r
r0

=
1 + 1r0>d02

1 + 1r0>d02 cos u
.

r cos u + d = r0 + d0,

r>d = r0>d0,

Directrix

r0 d0

d

r

Conic section

u

Figure 14.9
If the ratio is constant, the curve
describes a conic section.

r>d

0 ! ´ ! 1

´ " 1 ´ # 1

´ " 0

Figure 14.10
Orbits for different eccentricities.
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14.5 Orbital Mechanics 157

Polar equation for the orbit of an earth satellite
with the initial conditions shown. The parameter

where g is the acceleration due to gravity at sea
level and RE is the radius of the earth modeled as
a homogeneous sphere.

e ! " 1,                                       (14.23)
r0v

2
0 

gR2
E

! , (14.22)
r 
r0

1 # e 
1 # e cos u

r0

r
v0

u

The character of the orbit is determined by the
value of e.

e ! 0
0 $ e $ 1
e ! 1
e % 1

Circular
Elliptic
Parabolic
Hyperbolic

0 $ e $ 1

e ! 1 e % 1

e ! 0

The radial position of the satellite and its
transverse component of velocity satisfy the
relation rvu ! constant.                       (14.14)

The solution we have presented, based on the assumption that the earth is
a homogeneous sphere, approximates the orbit of an earth satellite. Determin-
ing the orbit accurately requires taking into account the variations in the earth’s
gravitational field due to its actual mass distribution. Similarly, depending on
the accuracy required, determining the orbit of a planet around the sun may re-
quire accounting for perturbations due to the gravitational attractions of the
other planets.

RESULTS
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Active Example 14.10 Orbit of an Earth Satellite (! Related Problem 14.115)

An earth satellite is placed into orbit with an initial velocity 
The satellite’s initial position is 6600 km from the center of the earth. Show
that the resulting orbit is elliptic and determine its maximum radius. The earth’s
radius is 6370 km.

Strategy
We must calculate the value of from Eq. (14.23) to determine the type of
orbit. We can use the polar equation for the orbit, Eq. (14.22), to obtain the
maximum radius.

Solution

e

r0

v0

v0 = 9240 m/s.

Practice Problem Determine the velocity of the satellite when it is at its maximum
radius.

Answers: 3810 m/s.

Calculate the value of e. The orbit is
elliptic.

! 0.416.

e ! " 1
r0v

2
0 

gR2
E

! " 1
(6600 # 103 m)(9240 m/s)2 

(9.81 m/s2)(6370 # 103 m)2 

Determine the maximum radius from
 the polar equation for the orbit with
u ! 180$. The graph of the elliptic
orbit is shown.

rmax ! r0
1 % e 

1 % e cos 180$!  "
! r0

1 % e 
1 " e! "

! (6600 km)

! 16,000 km.

1 % 0.416 
1 " 0.416! "
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Parking
orbit

r0 r0

v0

rM

Elliptic
orbit

Moon’s
orbit

(a) (b)

Problem 14.118

r0

v0

RE

b

Problem 14.119

Problem 14.113

Problems

Use the values for the radius of
the earth.

14.113 The International Space Station is in a circular orbit
225 miles above the earth’s surface.
(a) What is the magnitude of the velocity of the space station?
(b) How long does it take to complete one revolution?

RE = 6370 km = 3960 mi

14.119* At an earth satellite is a distance from the cen-
ter of the earth and has an initial velocity in the direction
shown. Show that the polar equation for the resulting orbit is

v0

r0t = 0,

14.117 The time required for a satellite in a circular earth orbit
to complete one revolution increases as the radius of the orbit in-
creases. If you choose the radius properly, the satellite will com-
plete one revolution in 24 hours. If a satellite is placed in such an
orbit directly above the equator and moving from west to east, it
will remain above the same point on the earth as the earth rotates
beneath it. This type of orbit, conceived by Arthur C. Clarke, is
called geosynchronous, and is used for communication and televi-
sion broadcast satellites. Determine the radius of a geosynchro-
nous orbit in km.

14.118* You can send a spacecraft from the earth to the moon
in the following way: First, launch the spacecraft into a circular
“parking” orbit of radius around the earth (Fig. P14.118a).
Then, increase its velocity in the direction tangent to the circular
orbit to a value such that it will follow an elliptic orbit whose
maximum radius is equal to the radius of the moon’s orbit
around the earth (Fig. P14.118b). The radius
Let What velocity is necessary to send a space-
craft to the moon? (This description is simplified in that it disre-
gards the effect of the moon’s gravity.)

v0r0 = 4160 mi.
rM = 238,000 mi.

rM

v0

r0

14.114 The moon is approximately 383,000 km from the earth.
Assume that the moon’s orbit around the earth is circular with
velocity given by Eq. (14.24).
(a) What is the magnitude of the moon’s velocity?
(b) How long does it take to complete one revolution around the
earth?

! 14.115 Suppose that you place a satellite into an elliptic earth
orbit with an initial radius and an initial velocity 
such that the maximum radius of the orbit is (a) Deter-
mine (b) What is the magnitude of the satellite’s velocity when
it is at its maximum radius? (See Active Example 14.10.)

v0.
13,400 km.

v0r0 = 6700 km

Problem 14.115

r0

v0

14.116 A satellite is given an initial velocity 
at a distance from the center of the earth as shown in
Fig. 14.8a. Draw a graph of the resulting orbit.

r0 = 2RE

v0 = 6700 m/s

r
r0

=
1e + 12 cos2 b31e + 12 cos2 b - 14 cos u - 1e + 12 sin b cos b sin u + 1

,

where e = 1r0 v 0
2 >gR E

22 - 1.
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14.123 In a future mission, a spacecraft approaches the surface
of an asteroid passing near the earth. Just before it touches down,
the spacecraft is moving downward at a constant velocity relative
to the surface of the asteroid and its downward thrust is 0.01 N.
The computer decreases the downward thrust to 0.005 N, and an
onboard laser interferometer determines that the acceleration of
the spacecraft relative to the surface becomes 
downward. What is the gravitational acceleration of the asteroid
near its surface?

5 * 10-6 m/s2

14.124 A car with a mass of 1470 kg, including its driver, is
driven at over a slight rise in the road. At the top of the
rise, the driver applies the brakes. The coefficient of static friction
between the tires and the road is and the radius of cur-
vature of the rise is 160 m. Determine the car’s deceleration at the
instant the brakes are applied, and compare it with the decelera-
tion on a level road.

ms = 0.9,

130 km/h

14.125 The car drives at constant velocity up the straight seg-
ment of road on the left. If the car’s tires continue to exert the
same tangential force on the road after the car has gone over the
crest of the hill and is on the straight segment of road on the right,
what will be the car’s acceleration?

Problem 14.123

Problem 14.124

8!5!

Problem 14.125

1

40!

3

2

Problem 14.122

Review Problems
14.120 The Acura NSX can brake from to a stop in a
distance of 112 ft. The car weighs 3250 lb. (a) If you assume that
the vehicle’s deceleration is constant, what are its deceleration and
the magnitude of the horizontal force its tires exert on the road?
(b) If the car’s tires are at the limit of adhesion (i.e., slip is im-
pending), and the normal force exerted on the car by the road
equals the car’s weight, what is the coefficient of friction 
(This analysis neglects the effects of horizontal and vertical
aerodynamic forces.)

14.121 Using the coefficient of friction obtained in Problem
14.120, determine the highest constant speed at which the NSX
could drive on a flat, circular track of 600-ft radius without
skidding.

14.122 A “cog” engine hauls three cars of sightseers to a moun-
taintop in Bavaria. The mass of each car, including its passengers,
is 10,000 kg, and the friction forces exerted by the wheels of the
cars are negligible. Determine the forces in the couplings 1, 2,
and 3 if (a) the engine is moving at constant velocity and (b) the
engine is accelerating up the mountain at 1.2 m/s2.

ms?

60 mi/h
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A

B

20!

Problems 14.127/14.128

v

Projectile

p0

x0

p

x

Problem 14.129

14.126 The aircraft carrier Nimitz weighs 91,000 tons. (A ton is
2000 lb.) Suppose that it is traveling at its top speed of approxi-
mately 30 knots (a knot is ) when its engines are shut
down. If the water exerts a drag force of magnitude 20,000v lb,
where v is the carrier’s velocity in feet per second, what distance
does the carrier move before coming to rest?

14.127 If and the coefficient of
kinetic friction between all surfaces is what is the
acceleration of B down the inclined surface?

14.128 If A weighs 20 lb, B weighs 100 lb, and the coefficient
of kinetic friction between all surfaces is what is the
tension in the cord as B slides down the inclined surface?

mk = 0.15,

mk = 0.11,
mA = 10 kg, mB = 40 kg,

6076 ft/h

14.129 A gas gun is used to accelerate projectiles to high veloci-
ties for research on material properties. The projectile is held in
place while gas is pumped into the tube to a high pressure on
the left and the tube is evacuated on the right. The projectile is
then released and is accelerated by the expanding gas. Assume
that the pressure p of the gas is related to the volume V it occupies
by where is a constant. If friction can be neg-
lected, show that the velocity of the projectile at the position x is

where m is the mass of the projectile and A is the cross-sectional
area of the tube.

v = C 2p0 Ax0
g

m1g - 12  a 1

x0
g-1 - 1

xg-1 b ,

gpVg = constant,

p0

A

B

Problem 14.130

20 ft

8 ft

Problem 14.132

14.130 The weights of the blocks are and
and the surfaces are smooth. Determine the 

acceleration of block A and the tension in the cord.
WB = 20 lb,

WA = 120 lb

14.131 The 100-Mg space shuttle is in orbit when its engines are
turned on, exerting a thrust force for
2 s. Neglect the resulting change in mass of the shuttle. At the end
of the 2-s burn, fuel is still sloshing back and forth in the shuttle’s
tanks. What is the change in the velocity of the center of mass of
the shuttle (including the fuel it contains) due to the 2-s burn?

14.132 The water skier contacts the ramp with a velocity of
parallel to the surface of the ramp. Neglecting friction and

assuming that the tow rope exerts no force on him once he touches
the ramp, estimate the horizontal length of the skier’s jump from
the end of the ramp.

25 mi/h

T = 10i - 20j + 10k 1kN2
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u

Problem 14.136

14.134 As the smooth bar rotates in the horizontal plane, the
string winds up on the fixed cylinder and draws the 1-kg collar A
inward. The bar starts from rest at in the position shown and
rotates with constant angular acceleration. What is the tension in
the string at 

14.135 In Problem 14.134, suppose that the coefficient of
kinetic friction between the collar and the bar is
What is the tension in the string at t = 1 s?

mk = 0.2.

t = 1 s?

t = 0

14.136 If you want to design the cars of a train to tilt as the train
goes around curves in order to achieve maximum passenger com-
fort, what is the relationship between the desired tilt angle the
velocity v of the train, and the instantaneous radius of curvature,

of the track?r,

u,

10
0 m

m

40
0 m

m

6 rad/s2

A

Problems 14.134/14.135

40 ft

Problem 14.133

14.133 Suppose you are designing a roller-coaster track that will
take the cars through a vertical loop of 40-ft radius. If you decide
that, for safety, the downward force exerted on a passenger by his
or her seat at the top of the loop should be at least one-half the
passenger’s weight, what is the minimum safe velocity of the cars
at the top of the loop?

200 mm

Problem 14.137

14.137 To determine the coefficient of static friction between
two materials, an engineer at the U.S. National Institute of Stan-
dards and Technology places a small sample of one material on a
horizontal disk whose surface is made of the other material and
then rotates the disk from rest with a constant angular acceleration
of If she determines that the small sample slips on the
disk after 9.903 s, what is the coefficient of friction?

0.4 rad/s2.
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v0

Design Project

The proposed design for an energy-absorbing bumper for a car
exerts a decelerating force of magnitude on the car
when it collides with a rigid obstacle, where s is the distance
the car travels from the point where it contacts the obstacle
and v is the car’s velocity. Thus the force exerted on the car
by the bumper is a function of the car’s position and velocity.

(a) Suppose that at the car contacts the obstacle with
initial velocity Prove that the car’s position is given as a
function of time by

where and m is the mass of
the car. To do this, first show that this equation satisfies
Newton’s second law. Then confirm that it satisfies the initial
conditions and at 

(b) Investigate the effects of the car’s mass, the initial velocity,
and the constants b and c on the motion of the car when it
strikes the obstacle. (Assume that ) Pay particular
attention to how your choices for the constants b and c affect
the maximum deceleration to which the occupants of the car
would be subjected. Write a brief report presenting the results
of your analysis and giving your conclusions concerning the
design of energy-absorbing bumpers.

d 2 7 b>m.

t = 0.v = v0s = 0

d = c>2m, h = 2d 2 - b>m,

s =
v0

2h
 Ce-1d-h2t - e-1d+h2t D ,

v0.
t = 0

bs + cv

A

u

Problems 14.138/14.139

14.138* The 1-kg slider A is pushed along the curved bar by the
slotted bar. The curved bar lies in the horizontal plane, and its
profile is described by where is in radians.
The angular position of the slotted bar is Determine
the polar components of the total external force exerted on the
slider when 

14.139* In Problem 14.138, suppose that the curved bar lies in
the vertical plane. Determine the polar components of the total
force exerted on A by the curved and slotted bars at t = 0.5 s.

u = 120°.

u = 2t rad.
ur = 21u>2p + 12 m,
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! A swing provides excitement by transforming the potential energy of
height into the kinetic energy of motion. In this chapter we use energy
methods to analyze motions of objects.

C H A P T E R

15
Energy Methods

The concepts of energy and conservation of energy originated in
large part from the study of classical mechanics. A simple trans-
formation of Newton’s second law results in an equation that
motivates the definitions of work, kinetic energy (energy due
to an object’s motion), and potential energy (energy due to an
object’s position). This equation can greatly simplify the solution
of problems involving certain forces that depend on an object’s
position, including gravitational forces and forces exerted by
springs. vy

Datum
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15.1 Work and Kinetic Energy

BACKGROUND
Principle of Work and Energy
We have used Newton’s second law to relate the acceleration of an object’s
center of mass to external forces acting on it. We will now show how Newton’s
second law, which is a vector equation, can be transformed into a scalar equa-
tion that is extremely useful in particular circumstances. We begin with
Newton’s second law in the form

(15.1)

and take the dot product of both sides with the velocity:

(15.2)

We write the left side of this equation as

and write the right side as

obtaining

(15.3)

where is the square of the magnitude of the velocity. The term on the
left side of Eq. (15.3) is the work expressed in terms of the total external force
on the object and an infinitesimal displacement dr of its center of mass. Inte-
grating Eq. (15.3) yields

(15.4)

where and are the magnitudes of the velocity of the center of mass of the
object when it is at positions and respectively. The term is called
the kinetic energy associated with the motion of the center of mass. Denoting
the work done as the center of mass moves from to by

(15.5)

we obtain the principle of work and energy:

The work done on an object as it moves between two positions equals
the change in its kinetic energy.

(15.6)U12 = 1
2 mv2

2 - 1
2 mv1

2.

U12 = L
r2

r1

©F # dr,

r2r1

1
2 mv2r2,r1

v2v1

L
r2

r1

©F # dr = 1
2 mv2

2 - 1
2 mv1

2,

v2 = v # v

©F # dr = 1
2 m d1v22,

m 
dv
dt

# v = 1
2 m 

d
dt

 1v # v2,
©F # v = ©F # dr

dt

©F # v = m 
dv
dt

# v.

©F = m 
dv
dt

,
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15.1 Work and Kinetic Energy 167

The dimensions of work, and therefore the dimensions of kinetic energy, are
In SI units, work is usually expressed in N-m or joules (J).

In U.S. Customary units, work is usually expressed in ft-lb.
If the work done on an object as it moves between two positions can be eval-

uated, the principle of work and energy permits us to determine the change
in the magnitude of the object’s velocity. We can also apply this principle to a
system of objects, equating the total work done by external forces to the change
in the total kinetic energy of the system. But the principle must be applied with
caution, because, as we demonstrate in Example 15.3, net work can be done on
a system by internal forces.

Although the principle of work and energy relates a change in the position
of an object to the change in its velocity, it is not convenient for obtaining other
information about the motion of the object, such as the time it takes the object
to move from one position to another. Furthermore, since the work is an inte-
gral with respect to position, we can usually evaluate it only when the forces
doing work are known as functions of position. Despite these limitations, the
principle is extremely useful for certain problems because the work can be de-
termined very easily.

Evaluating the Work
Let us consider an object in curvilinear motion relative to an inertial reference
frame (Fig. 15.1a) and specify its position by the coordinate s measured along
its path from a reference point O. In terms of the tangential unit vector the
object’s velocity is

Because we can multiply the velocity by dt to obtain an expression for
the vector dr describing an infinitesimal displacement along the path (Fig. 15.1b):

The work done by the external forces acting on the object as a result of the
displacement dr is

©F # dr = 1©F # et2 ds = ©Ft ds,

dr = v dt = ds et.

v = dr>dt,

v = ds
dt

 et.

et,

1force2 * 1length2.

s

et

O

(a)

sO

ds

dr

(b)

!Ft

s1

s2

(c)

Figure 15.1
(a) The coordinate s and tangential unit vector.
(b) An infinitesimal displacement dr.
(c) The work done from to is determined by the tangential

component of the external forces.
s2s1
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!Ft

s1 s2
s

(a)

!Ft

s1 s2 s

(b)

!Ft

s1

(c)

s2
s

Figure 15.2
(a) The work equals the area defined by the graph of the tangential

force as a function of the distance along the path.
(b) Negative work is done if the tangential force is opposite 

to the direction of the motion.
(c) The work done by a constant tangential force equals the product

of the force and the distance.

where is the tangential component of the total force. Therefore, as the ob-
ject moves from a position to a position (Fig. 15.1c), the work is

(15.7)

The work is equal to the integral of the tangential component of the total force
with respect to distance along the path. Thus, the work done is equal to the area
defined by the graph of the tangential force from to (Fig. 15.2a).
Components of force perpendicular to the path do no work. Notice that if 
is opposite to the direction of motion over some part of the path, which means
that the object is decelerating, the work is negative (Fig. 15.2b). If is con-
stant between and the work is simply the product of the total tangential
force and the displacement (Fig. 15.2c):

Constant tangential force (15.8)

Power
Power is the rate at which work is done. The work done by the external forces
acting on an object during an infinitesimal displacement dr is

We obtain the power P by dividing this expression by the interval of time dt dur-
ing which the displacement takes place:

(15.9)P = ©F # v.

©F # dr.

U12 = ©Ft1s2 - s12.
s2,s1

©Ft

©Ft

s2s1

U12 = L
s2

s1

©Ft ds.

s2s1

©Ft
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This is the power transferred to or from the object, depending on whether P is
positive or negative. In SI units, power is expressed in newton-meters per sec-
ond, which is joules per second or watts (W). In U.S. Customary units,
power is expressed in foot-pounds per second or in the anachronistic horse-
power (hp), which is 746 W or approximately 

Notice from Eq. (15.3) that the power equals the rate of change of the
kinetic energy of the object:

Transferring power to and from an object causes its kinetic energy to increase
and decrease, respectively. Using the preceding relation, we can write the aver-
age with respect to time of the power during an interval of time from to as

Performing the integration, we find that the average power transferred to or
from an object during an interval of time is equal to the change in its kinetic
energy, or the work done, divided by the interval of time:

(15.10)

RESULTS
Principle of Work and Energy

Pav =
1
2 mv2

2 - 1
2 mv1

2

t2 - t1
=

U12

t2 - t1
.

Pav = 1
t2 - t1L

t2

t1

P dt = 1
t2 - t1L

v 2
2

v 1
2

 
1
2 m d1v22.

t2t1

P = d
dt

 A 12 mv2 B .
550 ft-lb/s.

1J/s2
15.1 Work and Kinetic Energy 169

v

m

The kinetic energy associated with the motion
of the center of mass of an object of mass m is

magnitude of the velocity of the center of mass.

mv2, where v2 is the square of thedefined to be 1
2

Let the work done by the total external force
acting on an object as its center of mass moves
from a position r1 to a position r2 be defined by

U12 ! "F ! dr.                                  (15.5)Lr1

r2
r2

r1

"F
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170 Chapter 15 Energy Methods

Work done as an object moves from a 
point s1 on its path to a point s2, where
!Ft is the tangential component of the
total external force on the object.
Components of force normal to the path
do no work.

(15.7)

If !Ft is constant between s1 and s2,
the work is the product of the tangential
force and the distance along the path.

U12 " !Ft (s2 # s1). (15.8)

!Ft

s1

s2

U12 " !Ft ds,Ls1

s2

Evaluating the Work

The power, or the rate at which work is
done on an object by the total external
force acting on it, where v is the velocity
of the center of mass.

P ! "F ! v, (15.9)

Power

The average power transferred to an
object during an interval of time from t1
to t2 is equal to the change in its kinetic
energy, or the work done on it, divided by
the interval of time.

Pav ! ! . (15.10)
t2 " t1

mv2
2 " mv2

1 U12

t2 " t1

1
2

1
2

The principle of work and energy states
that the work done on an object as it
moves between two positions equals the
change in its kinetic energy.

U12 ! mv2
2 " mv2

1. (15.6)1
2

1
2

M04_BEDF9165_05_SE_C15.QXD  1/9/08  11:20 AM  Page 170



15.1 Work and Kinetic Energy 171

Active Example 15.1 Work and Energy in Straight-Line Motion (! Related Problem 15.1)

The 180-kg container A starts from rest in position . The horizontal force
(in newtons) that is exerted on the container by the hydraulic piston is given as
a function of the position s in meters by The coefficient of
kinetic friction between the container and the floor is . What is the
velocity of the container when it has reached the position 

Strategy
The force acting on the container is given as a function of its position, so we can
use Eq. (15.7) to determine the work done on it. By applying the principle of
work and energy, we can determine the change in its velocity.

Solution

s = 1 m?
mk = 0.26

F = 700 - 150s.

s = 0

Practice Problem Suppose that the mass of the container A is 120 kg. What is
its velocity when it has reached the position 

Answer: 2.31 m/s.

s = 1 m?

s 

A

Draw the free-body diagram of the
container and identify the forces that do
work. The force exerted by the hydraulic
cylinder and the friction force are tangent
to the path. The normal force N is needed
to calculate the friction force. The container
has no acceleration in the vertical direction,
so N ! (180 kg)(9.81 m/s2) ! 1770 N.

s

N

F

mkN

(180 kg)(9.81 m/s2)

A

Evaluate the work done as the container 
moves from its initial position to s ! 1 m.

U12 ! "Ft ds
s1
L

s2

! (F # mkN)ds
0L

1

!

! 166 N-m.

[(700 # 150s) # (0.26)(1770)]ds
0L

1

Apply the principle of work and energy to
determine the container’s velocity when it
reaches s ! 1 m. Solving yields
v2 ! 1.36 m/s.

A

v
s

166 N-m ! (180 kg)v2
2 # 0.

U12 ! mv2
2 # mv2

1 :
1
2

1
2

1
2
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Example 15.2 Applying Work and Energy to a System (! Related Problem 15.23)

The two crates are released from rest. Their masses are and
and the kinetic coefficient of friction between crate A and the

inclined surface is What is the magnitude of the velocity of the crates
when they have moved 400 mm?

Strategy
We will determine the velocity in two ways.

First Method By drawing free-body diagrams of each of the crates and apply-
ing the principle of work and energy to them individually, we can obtain two
equations in terms of the magnitude of the velocity and the tension in the cable.

Second Method We can draw a single free-body diagram of the two crates,
the cable, and the pulley and apply the principle of work and energy to the
entire system.

Solution
First Method We draw the free-body diagram of crate A in Fig. a. The
forces that do work as the crate moves down the plane are the forces tangen-
tial to its path: the tension T; the tangential component of the weight,

and the friction force Because the acceleration of the crate
normal to the surface is zero, The magnitude v of the
velocity at which A moves parallel to the surface equals the magnitude of
the velocity at which B falls (Fig. b). Using Eq. (15.7) to determine the work,
we equate the work done on A as it moves from to to the
change in the kinetic energy of A.

(1)

The forces that do work on crate B are its weight and the tension T
(Fig. c). The magnitude of B’s velocity is the same as that of crate A. The work
done on B equals the change in its kinetic energy.

(2)L
0.4

0
1mB g - T2 ds = 1

2 mB v2
2 - 0.

L
s2

s1

©Ft ds = 1
2 mv2

2 - 1
2 mv1

2:

mB g

L
0.4

0
3T + mA g sin 20° - mk1mA g cos 20°24 ds = 1

2 mA v2
2 - 0.

L
s2

s1

©Ft ds = 1
2 mv2

2 - 1
2 mv1

2:

s2 = 0.4 ms1 = 0

N = mA g cos 20°.
mk N.mA g sin 20°;

mk = 0.15.
mB = 30 kg,

mA = 40 kg

A

B

20!

v

v

A

B
20!

(b) The magnitude of the velocity of each
crate is the same.

20!
T

N

mAg
A

0.4 m

mkN

(a) Free-body diagram of A.
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B

T

mBg

0.4 m

(c) Free-body diagram of B.

(d) Free-body diagram of the system.

20!

N

mAg
A

0.4 m

mkN

B mBg

0.4 m

Critical Thinking
You will often find it simpler to apply the principle of work and energy to an entire
system instead of its separate parts. However, as we demonstrate in the next
example, you need to be aware that internal forces in a system can do net work.

By summing Eqs. (1) and (2), we eliminate T, obtaining

Solving for the velocity, we get 

Second Method We draw the free-body diagram of the system consisting of
the crates, cable, and pulley in Fig. d. Notice that the cable tension does not ap-
pear in this diagram. The reactions at the pin support of the pulley do no work,
because the support does not move. The total work done by external forces
on the system as the boxes move 400 mm is equal to the change in the total 
kinetic energy of the system.

This equation is identical to the one we obtained by applying the principle of
work and energy to the individual crates.

340 sin 20° - 10.1521402 cos 20° + 30419.81210.42 = 1
2140 + 302v2

2.

= 1
2 mA v2

2 + 1
2 mB v2

2 - 0:

L
0.4

0
3mA g sin 20° - mk1mA g cos 20°24 ds + L

0.4

0
mB g ds

v2 = 2.07 m/s.

340 sin 20° - 10.1521402 cos 20° + 30419.81210.42 = 1
2140 + 302v2

2.

L
0.4

0
1mA g sin 20° - mk mA g cos 20° + mB g2 ds = 1

21mA + mB2v2
2:
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v

v

A

B

u

(c) The magnitude of the velocity of each crate
is the same.

b
T

N mkN

mAg

T

M

NmkN

b

mBg

Example 15.3 Net Work by Internal Forces (! Related Problem 15.30)

Crates A and B are released from rest. The coefficient of kinetic friction be-
tween A and B is and friction between B and the inclined surface can be neg-
lected. What is the velocity of the crates when they have moved a distance b?

Strategy
By applying the principle of work and energy to each crate, we can obtain two
equations in terms of the tension in the cable and the velocity.

Solution
We draw the free-body diagrams of the crates in Figs. a and b. The acceleration
of A normal to the inclined surface is zero, so The magnitudes
of the velocities of A and B are equal (Fig. c). The work done on A equals the
change in its kinetic energy.

(1)L
b

0
1T - mA g sin u - mk mA g cos u2 ds = 1

2 mA v2
2.

U12 = 1
2 
mAv2

2 - 1
2 
mAv2

1:

N = mA g cos u.

A

B

u

mk,

(b) Free-body diagram of B.

(a) Free-body diagram of A.
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The work done on B equals the change in its kinetic energy.

(2)

Summing these equations to eliminate T and solving for we obtain

Critical Thinking
If we attempt to solve this example by applying the principle of work and
energy to the system consisting of the crates, the cable, and the pulley
(Fig. d), we obtain an incorrect result. Equating the work done by external
forces to the change in the total kinetic energy of the system, we obtain

 1mB g sin u2b - 1mA g sin u2b = 1
2 mA v2

2 + 1
2 mB v2

2.

 L
b

0
 mB g sin u ds - L

b

0
 mA g sin u ds = 1

2 mA v2
2 + 1

2 mB v2
2:

v2 = 22gb31mB - mA2 sin u - 2mk mA cos u4>1mA + mB2.
v2,

L
b

0
1-T + mB g sin u - mk mA g cos u2 ds = 1

2 mB v2
2.

U12 = 1
2 mB v2

2 - 1
2 mB v1

2:

M
b

mBg

b

mAg

(d) Free-body diagram of the system.

But if we sum our work and energy equations for the individual crates—
Eqs. (1) and (2)—we obtain the correct equation:

The internal frictional forces the crates exert on each other do net work on the
system. We did not account for this work in applying the principle of work and
energy to the free-body diagram of the entire system.

31mB g sin u2b - 1mA g sin u2b4 + 3-12mk mA g cos u2b4 =  1
2 mA v2

2 + 1
2 mB v2

2.
('''''')''''''* ('''')''''*

Work done by Work done by
external forces internal forces
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F

20!

Problem 15.4

12 m/s

1 m

Problems 15.5/15.6

Problems 15.7/15.8

Problem 15.2

F

Problem 15.3

Problems

! 15.1 In Active Example 15.1, what is the velocity of the
container when it has reached the position ?

15.2 The mass of the Sikorsky UH-60A helicopter is 9300 kg. It
takes off vertically with its rotor exerting a constant upward thrust
of 112 kN. Use the principle of work and energy to determine how
far it has risen when its velocity is 6 m/s.

Strategy: Be sure to draw the free-body diagram of the 
helicopter.

s = 2 m

15.3 The 20-lb box is at rest on the horizontal surface when the
constant force is applied. The coefficient of kinetic fric-
tion between the box and the surface is Determine how
fast the box is moving when it has moved 2 ft from its initial posi-
tion (a) by applying Newton’s second law; (b) by applying the
principle of work and energy.

mk = 0.2.
F = 5 lb

15.5 The 0.45-kg soccer ball is 1 m above the ground when it is
kicked straight upward at 10 m/s. By using the principle of work
and energy, determine: (a) how high above the ground the ball
goes, (b) the magnitude of the ball’s velocity when it falls back to
a height of 1 m above the ground, (c) the magnitude of the ball’s
velocity immediately before it hits the ground.

15.6 Assume that the soccer ball is stationary the instant before
it is kicked upward at The duration of the kick is 0.02 s.
What average power is transferred to the ball during the kick?

12 m/s.

15.7 The 2000-lb drag racer starts from rest and travels a
quarter-mile course. It completes the course in 4.524 seconds
and crosses the finish line traveling at 325.77 mi/h. (a) How much
work is done on the car as it travels the course? (b) Assume that
the horizontal force exerted on the car is constant and use the
principle of work and energy to determine it.

15.8 The 2000-lb drag racer starts from rest and travels a
quarter-mile course. It completes the course in 4.524 seconds and
crosses the finish line traveling at 325.77 mi/h. Assume that the
horizontal force exerted on the car is constant. Determine (a) the
maximum power and (b) the average power transferred to the car
as it travels the quarter-mile course.

15.4 At the instant shown, the 30-lb box is moving up the
smooth inclined surface at 2 ft/s. The constant force 
How fast will the box be moving when it has moved 1 ft up the
surface from its present position?

F = 15 lb.
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s

Problems 15.14/15.15

sk

20!

Problems 15.12/15.13

Problems 15.9–15.11

15.9 As the 32,000-lb airplane takes off, the tangential compo-
nent of force exerted on it by its engines is 
Neglecting other forces on the airplane, use the principle of work
and energy to determine how much runway is required for its
velocity to reach 200 mi/h.

15.10 As the 32,000-lb airplane takes off, the tangential compo-
nent of force exerted on it by its engines is .
Neglecting other forces on the airplane, determine (a) the maxi-
mum power and (b) the average power transferred to the airplane
as its velocity increases from zero to 200 mi/h.

15.11 The 32,000-lb airplane takes off from rest in the position
. The total tangential force exerted on it by its engines and

aerodynamic drag (in pounds) is given as a function of its position
s by Use the principle of work and energy
to determine how fast the airplane is traveling when its position
is s = 950 ft.

©Ft = 45,000 - 5.2s.

s = 0

©Ft = 45,000 lb

©Ft = 45,000 lb.

15.12 The spring is unstretched when The
5-kg cart is moved to the position and released from
rest. What is the magnitude of its velocity when it is in the posi-
tion ?

15.13 The spring ( ) is unstretched when . The
5-kg cart is moved to the position and released from
rest. What maximum distance down the sloped surface does the
cart move relative to its initial position?

s = -1 m
s = 0k = 20 N/m

s = 0

s = -1 m
s = 0.(k = 20 N/m)

15.14 The force exerted on a car by a prototype crash barrier as
the barrier crushes is , where s is the
distance in feet from the initial contact. The effective length of the
barrier is 18 ft. How fast can a 5000-lb car be moving and be
brought to rest within the effective length of the barrier?

15.15 A 5000-lb car hits the crash barrier at 80 mi/h and is
brought to rest in 0.11 seconds. What average power is transferred
from the car during the impact?

F = -(120s + 40s3) lb

15.16 A group of engineering students constructs a sun-powered
car and tests it on a circular track with a 1000-ft radius. The car,
with a weight of 460 lb including its occupant, starts from rest.
The total tangential component of force on the car is

where s is the distance (in ft) the car travels along the track from
the position where it starts.

(a) Determine the work done on the car when it has gone a
distance 

(b) Determine the magnitude of the total horizontal force
exerted on the car’s tires by the road when it is at the position
s = 120 ft.

s = 120 ft.

©Ft = 30 - 0.2s lb,
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15.17 At the instant shown, the 160-lb vaulter’s center of mass is
8.5 ft above the ground, and the vertical component of his velocity
is As his pole straightens, it exerts a vertical force on the
vaulter of magnitude where y is the vertical
position of his center of mass relative to its position at the instant
shown. This force is exerted on him from to when
he releases the pole. What is the maximum height above the
ground reached by the vaulter’s center of mass?

y = 4 ft,y = 0

180 + 2.8y2 lb,
4 ft/s.

178 Chapter 15 Energy Methods

15.18 The springs are unstretched when .
The 50-lb weight is released from rest in the position .

(a) When the weight has fallen 1 ft, how much work has been
done on it by each spring?

(b) What is the magnitude of the velocity of the weight when it
has fallen 1 ft?

s = 0
s = 0(k = 25 lb/ft)

15.19 The coefficients of friction between the 160-kg crate and
the ramp are and 

(a) What tension must the winch exert to start the crate mov-
ing up the ramp?

(b) If the tension remains at the value after the crate starts slid-
ing, what total work is done on the crate as it slides a distance

up the ramp, and what is the resulting velocity of the crate?

15.20 In Problem 15.19, if the winch exerts a tension
after the crate starts sliding, what total 

work is done on the crate as it slides a distance up 
the ramp, and what is the resulting velocity of the crate?

s = 3 m
T = T011 + 0.1s2
s = 3 m

T0

T0

mk = 0.28.ms = 0.3

15.21 The 200-mm-diameter gas gun is evacuated on the right of
the 8-kg projectile. On the left of the projectile, the tube contains
gas with pressure The force F is slowly
increased, moving the projectile 0.5 m to the left from the position
shown. The force is then removed, and the projectile accelerates to
the right. If you neglect friction and assume that the pressure of the
gas is related to its volume by what is the velocity
of the projectile when it has returned to its original position?

15.22 In Problem 15.21, if you assume that the pressure of the
gas is related to its volume by while the gas is
compressed (an isothermal process) and by 
while it is expanding (an isentropic process), what is the velocity
of the projectile when it has returned to its original position?

pV1.4 = constant
pV = constant

pV = constant,

p0 = 1 * 105 Pa 1N/m22.

F

ProjectileGas

1 m

Problems 15.21/15.22

s

k

k

Problem 15.18

18! s

Problems 15.19/15.20

Problem 15.17
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20 kg

4 kg

Problems 15.24/15.25

Problems 179

! 15.23 In Example 15.2, suppose that the angle between the
inclined surface and the horizontal is increased from to .
What is the magnitude of the velocity of the crates when they
have moved 400 mm?

15.24 The system is released from rest. The 4-kg mass slides on
the smooth horizontal surface. By using the principle of work and
energy, determine the magnitude of the velocity of the masses
when the 20-kg mass has fallen 1 m.

15.25 Solve Problem 15.24 if the coefficient of kinetic 
friction between the 4-kg mass and the horizontal surface is
mk = 0.4.

30°20°

45!

30!

Problems 15.26/15.27

15.26 Each box weighs 50 lb and the inclined surfaces are
smooth. The system is released from rest. Determine the magni-
tude of the velocities of the boxes when they have moved 1 ft.

15.27 Solve Problem 15.26 if the coefficient of kinetic friction
between the boxes and the inclined surfaces is mk = 0.05.

A

B
C

45!

Problems 15.28–15.30

15.28 The masses of the three blocks are 
and Neglect the mass of the bar 

holding C in place. Friction is negligible. By applying the princi-
ple of work and energy to A and B individually, determine the
magnitude of their velocity when they have moved 500 mm.

15.29 Solve Problem 15.28 by applying the principle of work
and energy to the system consisting of A, B, the cable connecting
them, and the pulley.

! 15.30 The masses of the three blocks are 
and . The coefficient of kinetic friction

between all surfaces is . Determine the magnitude of 
the velocity of blocks A and B when they have moved 500 mm.
(See Example 15.3.)

mk = 0.1
mC = 12 kgmB = 16 kg,

mA = 40 kg,

mC = 12 kg.mB = 16 kg,
mA = 40 kg,
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(a)

2
z

!mgj

(x1, y1, z1)1

x

y

(x2, y2, z2)
z

(b)

2

x

y

1

Figure 15.3
(a) An object moving between two positions.
(b) The work done by the weight is the same for any path.

15.2 Work Done by Particular Forces

BACKGROUND
We have seen that if the tangential component of the total external force on
an object is known as a function of distance along the object’s path, the prin-
ciple of work and energy can be used to relate a change in the position of
the object to the change in its velocity. For certain types of forces, however,
not only can we determine the work without knowing the tangential compo-
nent of the force as a function of distance along the path, but we don’t even
need to know the path. Two important examples are weight and the force
exerted by a spring.

Weight
To evaluate the work done by an object’s weight, we orient a cartesian co-
ordinate system with the y axis upward and suppose that the object moves
from position 1 with coordinates to position 2 with coordinates

(Fig. 15.3a). The force exerted by the object’s weight is
(Other forces may act on the object, but we are concerned only

with the work done by its weight.) Because we can multiply the
velocity, expressed in cartesian coordinates, by dt to obtain an expression for
the vector dr:

Taking the dot product of F and dr yields

The work done as the object moves from position 1 to position 2 reduces to an
integral with respect to y:

U12 = L
r2

r1

 F # dr = L
y2

y1

- mg dy.

F # dr = 1-mgj2 # 1dx i + dy j + dz k2 = -mg dy.

dr = adx
dt

 i +
dy
dt

 j + dz
dt

 kb  dt = dx i + dy j + dz k.

v = dr>dt,
F = -mgj.
1x2, y2, z22 1x1, y1, z12
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15.2 Work Done by Particular Forces 181

Evaluating the integral, we obtain the work done by the weight of an object as
it moves between two positions:

(15.11)

The work is simply the product of the weight and the change in the object’s
height. The work done is negative if the height increases and positive if it de-
creases. Notice that the work done is independent of the path the object follows
from position 1 to position 2 (Fig. 15.3b). Thus, we don’t need to know the path
to determine the work done by an object’s weight—we only need to know the
relative heights of the initial and final positions.

What work is done by an object’s weight if we account for its variation
with distance from the center of the earth? In terms of polar coordinates, we
can write the weight of an object at a distance r from the center of the earth as
(Fig. 15.4)

Using the expression for the velocity in polar coordinates, we obtain, for the
vector 

(15.12)

The dot product of F and dr is

so the work reduces to an integral with respect to r:

Evaluating the integral, we obtain the work done by an object’s weight,
accounting for the variation of the weight with height:

(15.13)U12 = mgRE
2a 1

r2
- 1

r1
b .

U12 = L
r2

r1

 F # dr = L
r2

r1

-
mgRE

2

r2  dr.

F # dr = a - mgRE
2

r2  erb # 1dr er + r du eu2 = - mgRE
2

r2  dr,

dr = adr
dt

 er + r 
du
dt

 eub  dt = dr er + r du eu.

dr = v dt,

F = - mgRE
2

r2  er.

U12 = -mg1y2 - y12.

er
eu

uRE

Fr

Figure 15.4
Expressing an object’s weight
in polar coordinates.
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Again, the work is independent of the path from position 1 to position 2. To
evaluate it, we only need to know the object’s radial distance from the center of
the earth at the two positions.

Springs
Suppose that a linear spring connects an object to a fixed support. In terms of
polar coordinates (Fig. 15.5), the force exerted on the object is

where k is the spring constant and is the unstretched length of the spring.
Using Eq. (15.12), we get the dot product of F and dr:

It is convenient to express the work done by a spring in terms of its stretch, de-
fined by (Although the word stretch usually means an increase in
length, we use the term more generally to denote the change in length of the
spring. A negative stretch is a decrease in length.) In terms of this variable,

and the work is

The work done on an object by a spring attached to a fixed support is

(15.14)

where and are the values of the stretch at the initial and final positions. We
don’t need to know the object’s path to determine the work done by the spring.
Remember, however, that Eq. (15.14) applies only to a linear spring. In Fig. 15.6,
we determine the work done in stretching a linear spring by calculating the area
defined by the graph of the force as a function of S.

S2S1

U12 = - 1
2 k1S2

2 - S1
22,

U12 = L
r2

r1

 F # dr = L
S2

S1

-kS dS.

F # dr = -kS dS,

S = r - r0.

F # dr = 3-k1r - r02er4 # 1dr er + r du eu2 = -k1r - r02 dr.

r0

F = -k1r - r02er,

k

r

u
k(r ! r0)

r

Figure 15.5
Expressing the force exerted by a linear spring in polar
coordinates.
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S

kS

S2

S1

kS2

kS1

U ! 
1
2

1
2S2(kS2) "

1
2 k(  " )S1(kS1) ! S 2

   

2 S 1

   

2

Figure 15.6
Work done in stretching a linear spring
from to (If the work
done on the spring is positive, so the
work done by the spring is negative.)

S2 7 S1,S2.S1

For some types of
forces, the work done
during a motion from 
a position 1 to a
position 2 can be 
determined easily.
Notice that the work
is independent of the
path from 1 to 2.

Weight
When the weight can be 
regarded as constant, the work is

where the positive y axis points 
upwards. The work is the 
product of the weight and the 
change in height. It is negative 
if the height increases and 
positive if it decreases.

U12 ! "mg(y2 " y1), (15.11)

"mgj

y

x

z
2

(x1, y1, z1)1

(x2, y2, z2)

Variable Weight
when the variation of gravity with 
height must be considered, the 
work is 

where RE is the radius of the earth.

U12 ! mgR2
E ,    (15.13)!       "1

r2

1
r1

"

2

1

r2

RE

r1

Springs
The work done on an object by a
linear spring is

where S1 and S2 are the values of 
the stretch of the spring at the 
initial and final positions.

2

1

U12 ! " k(S2
2 " S2

1),       (15.14)1
2

RESULTS

BEDFMC15_0136129161.QXD  6/15/07  5:28 PM  Page 183



184 Chapter 15 Energy Methods

Active Example 15.4 Work Done by Weight and Springs (! Related Problem 15.49)

The 40-kg hammer is lifted to position 1 and released from rest. It falls and
strikes a workpiece when it is in position 2. The spring constant is

and the springs are unstretched when the hammer is in posi-
tion 2. Neglect friction. What is the velocity of the hammer just before it strikes
the workpiece?

k = 1500 N/m,

Strategy
Work is done on the hammer by its weight and by the forces exerted on it
by the springs. We can apply the principle of work and energy to the motion
of the hammer from position 1 to position 2 to determine the velocity at
position 2.

Solution

400
mm

300 mm

2

1

k k

Workpiece

Hammer

Calculate the work done by the weight:
The hammer falls downward, so the work
is positive, and its magnitude is the product
of the weight and the change in height.

Uweight ! (weight)(change in height)

! [(40 kg)(9.81 m/s2)](0.4 m)

! 157 N-m.
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Practice Problem The 40-kg hammer is given a downward velocity of 2 m/s
in position 1. It falls and strikes a workpiece when it is in position 2. The spring
constant is , and the springs are unstretched when the hammer is
in position 1. Neglect friction. What is the velocity of the hammer just before
it strikes the workpiece?

k = 1500 N/m

Answer: v2 = 2.97 m/s.

400
mm

300 mm

2

1k k

Workpiece

Hammer

Calculate the work done by each of the
springs. The springs are unstretched in
position 2.

S1 !

S2 ! 0,

Uspring ! " 

(0.3 m)2 # (0.4 m)2 " 0.3 m

! 0.2 m,

! 30 N-m.

k(S2
2 " S1

2)

! " (1500 N/m)[(0)2 " (0.2 m)2]1
2

1
2

Apply work and energy to obtain the
velocity of the hammer in position 2.

Uweight # 2(Uspring) !

157 N-m # 2(30 N-m) !

Solving, we obtain

v2 ! 3.29 m/s.

mv2
2 "

(40 kg)v2
2 " 0.

mv2
1 :

1
2

1
2

1
2
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1

2

3

Example 15.5 Work Done by Weight (! Related Problem 15.31)

At position 1, the skier is approaching his jump at When he reaches the
horizontal end of the ramp at position 2, 20 m below position 1, he jumps up-
ward, achieving a vertical component of velocity of (Disregard the small
change in the vertical position of his center of mass due to his jumping motion.)
Neglect aerodynamic drag and the frictional forces on his skis.

(a) What is the magnitude of the skier’s velocity as he leaves the ramp at
position 2?

(b) At the highest point of his jump, position 3, what are the magnitude of his
velocity and the height of his center of mass above position 2?

3 m/s.

15 m/s.

Strategy
(a) If we neglect aerodynamic and frictional forces, the only force doing work
from position 1 to position 2 is the skier’s weight. The normal force exerted
on his skis by the ramp does no work because it is perpendicular to his path.
We need to know only the change in the skier’s height from position 1 to
position 2 to determine the work done by his weight, so we can apply the prin-
ciple of work and energy to determine his velocity at position 2 before he
jumps.

(b) From the time he leaves the ramp at position 2 until he reaches position 3,
the only force acting on the skier is his weight, so the horizontal component of
his velocity is constant. This means that we know the magnitude of his velocity
at position 3, because he is moving horizontally at that point. Therefore, we can
apply the principle of work and energy to his motion from position 2 to posi-
tion 3 to determine his height above position 2.
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y

x
2

(a) The height of the skier’s center of mass
is measured relative to position 2.

Solution
(a) We will use Eq. (15.11) to evaluate the work done by the skier’s weight,
measuring the height of his center of mass relative to position 2 (Fig. a). The
principle of work and energy from position 1 to position 2 is

Solving for we find that the skier’s horizontal velocity at position 2 before
he jumps upward is After he jumps upward, the magnitude of his
velocity at position 2 is 

(b) The magnitude of the skier’s velocity at position 3 is equal to the horizon-
tal component of his velocity at position 2: Applying work
and energy to his motion from position 2 to position 3, we obtain

from which it follows that 

Critical Thinking
Why didn’t we need to include the effect of the normal force exerted on the
skier by the ramp? The reason is that it is perpendicular to his path and so
does no work. To obtain an accurate prediction of the skier’s motion, we would
need to account for the friction force exerted by the ramp and aerodynamic
forces. Nevertheless, our approximate analysis in this example provides use-
ful insight, showing how the work done by gravity as he descends increases
his kinetic energy. Notice that the work done by gravity is determined by his
change in height, not the length of his path.

y3 = 0.459 m.

  -m19.8121y3 - 02 = 1
2 m124.822 - 1

2 m125.022, 

 U23 = -mg1y3 - y22  = 1
2 mv3

2 - 1
2 m1v2

œ22:

v3 = v2 = 24.8 m/s.

v2
œ = 2124.822 + 1322 = 25.0 m/s.

24.8 m/s.
v2,

 -m19.81210 - 202 = 1
2 mv2

2 - 1
2 m11522.

 U12 = -mg1y2 - y12 = 1
2 mv2

2 - 1
2 mv1

2:
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v1

r1
RE

Example 15.6 Work Done by the Earth’s Gravity (! Related Problem 15.74)

A spacecraft at a distance from the center of the earth has a 
velocity of magnitude relative to a nonrotating reference
frame with its origin at the center of the earth. Determine the magnitude of
the spacecraft’s velocity when it is at a distance from the center
of the earth.

Strategy
By applying Eq. (15.13) to determine the work done by the gravitational force
on the spacecraft, we can use the principle of work and energy to determine the
magnitude of the spacecraft’s velocity.

Solution
From Eq. (15.13), the work done by gravity as the spacecraft moves from a dis-
tance from the center of the earth to a distance is

Let be the magnitude of the velocity of the spacecraft when it is at a distance
from the center of the earth. Applying the principle of work and energy

yields

We solve for obtaining

The velocity 

Critical Thinking
Notice that we did not need to specify the direction of the spacecraft’s initial
velocity to determine the magnitude of its velocity at a different distance from
the center of the earth. This illustrates the power of the principle of work and
energy, as well as one of its limitations. Even if we know the direction of the
initial velocity, the principle of work and energy tells us only the magnitude of
the velocity at a different distance.

v2 = v1>2.

 = AgRE

6
.

 = Ca2gRE

3
b + 2gRE

2 a 1
4RE

- 1
2RE
b

 v2 = Cv1
2 + 2gRE

2 a 1
r2

- 1
r1
b

v2,

U12 = mgRE
2 a 1

r2
- 1

r1
b = 1

2 mv2
2 - 1

2 mv1
2.

r2

v2

U12 = mgRE
2 a 1

r2
- 1

r1
b .

r2r1

r2 = 4RE

v1 = 22gRE>3r1 = 2RE
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(a) (b)

2 ft

2

1 1

2

Problem 15.35

30!

30!

200 ft

(a)

(b)

(c)

Problem 15.32

(a)

1

2

60!

1

2

(b)

40!

2 m

Problems 15.33/15.34

Problems

! 15.31 In Example 15.5, suppose that the skier is moving at 
20 m/s when he is in position 1. Determine the horizontal 
component of his velocity when he reaches position 2, 20 m
below position 1.

15.32 Suppose that you stand at the edge of a 200-ft cliff and
throw rocks at in the three directions shown. Neglecting
aerodynamic drag, use the principle of work and energy to 
determine the magnitude of the velocity of the rock just before 
it hits the ground in each case.

30 ft/s

15.33 The 30-kg box is sliding down the smooth surface at 
when it is in position 1. Determine the magnitude of the box’s
velocity at position 2 in each case.

15.34 Solve Problem 15.33 if the coefficient of kinetic friction
between the box and the inclined surface is mk = 0.2.

1 m/s

15.35 In case (a), a 5-lb ball is released from rest at position 1
and falls to position 2. In case (b), the ball is released from rest 
at position 1 and swings to position 2. For each case, use the 
principle of work and energy to determine the magnitude of 
the ball’s velocity at position 2. [In case (b), notice that the 
force exerted on the ball by the string is perpendicular to the 
ball’s path.]

L

2

1

40!

15.36 The 2-kg ball is released from rest in position 1 with the
string horizontal. The length of the string is What is the
magnitude of the ball’s velocity when it is in position 2?

15.37 The 2-kg ball is released from rest in position 1 with the
string horizontal. The length of the string is What is the
tension in the string when the ball is in position 2?

Strategy: Draw the free-body diagram of the ball when it is
in position 2 and write Newton’s second law in terms of normal
and tangential components.

L = 1 m.

L = 1 m.

Problems 15.36/15.37
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15.43 The forces acting on the 28,000-lb airplane are the thrust T
and drag D, which are parallel to the airplane’s path; the lift L,
which is perpendicular to the path; and the weight W. The airplane
climbs from an altitude of 3000 ft to an altitude of 10,000 ft. Dur-
ing the climb, the magnitude of its velocity decreases from

to 

(a) What work is done on the airplane by its lift during the climb?

(b) What work is done by the thrust and drag combined?

600 ft/s.800 ft/s

T

W

D

L

Problem 15.43

R

v0

Problem 15.40

(3, !1, 3) m

x

y

z

(5, 5, 2) m1

2

2 kg

Problem 15.41

(4, !1, 4) ft

x

y

z

(!2, 6, 4) ft
1

2

4 lb

Problem 15.42

15.40 A stunt driver wants to drive a car through the circular loop
of radius Determine the minimum velocity at which
the car can enter the loop and coast through without losing contact
with the track. What is the car’s velocity at the top of the loop?

v0R = 5 m.

15.41 The 2-kg collar starts from rest at position 1 and slides
down the smooth rigid wire. The y axis points upward. What is the
magnitude of the velocity of the collar when it reaches position 2?

15.42 The 4-lb collar slides down the smooth rigid wire from
position 1 to position 2. When it reaches position 2, the magnitude
of its velocity is What was the magnitude of its velocity at
position 1?

24 ft/s.

1
2

95"

65"

Problems 15.38/15.39

15.38 The 400-lb wrecker’s ball swings at the end of a 25-ft
cable. If the magnitude of the ball’s velocity at position 1 is 
what is the magnitude of its velocity just before it hits the wall at
position 2?

15.39 The 400-lb wrecker’s ball swings at the end of a 25-ft
cable. If the magnitude of the ball’s velocity at position 1 is 
what is the maximum tension in the cable as the ball swings from
position 1 to position 2?

4 ft/s,

4 ft/s,
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1

2

0.8 m

m

u

Problem 15.48

15.48 A small pellet of mass starts from rest at
position 1 and slides down the smooth surface of the cylinder
to position 2, where 

(a) What work is done on the pellet as it slides from position 1 
to position 2?

(b) What is the magnitude of the pellet’s velocity at position 2?

u = 30°.

m = 0.2 kg

(a) (b)

Problem 15.47

15.44 The 2400-lb car is traveling at position 1. If the
combined effect of the aerodynamic drag on the car and the 
tangential force exerted on its wheels by the road is that they 
exert no net tangential force on the car, what is the magnitude of
the car’s velocity at position 2?

15.45 The 2400-lb car is traveling at position 1. If the
combined effect of the aerodynamic drag on the car and the
tangential force exerted on its wheels by the road is that they
exert a constant 400-lb tangential force on the car in the direction
of its motion, what is the magnitude of the car’s velocity at 
position 2?

40 mi/h

40 mi/h

15.46 The mass of the rocket is 250 kg. Its engine has a constant
thrust of 45 kN. The length of the launching ramp is 10 m. If the
magnitude of the rocket’s velocity when it reaches the end of the
ramp is how much work is done on the rocket by friction
and aerodynamic drag?

52 m/s,

15.47 A bioengineer interested in the energy requirements of
sports determines from videotape that when the athlete begins
his motion to throw the 7.25-kg shot (Fig. P15.47a), the shot is
stationary and 1.50 m above the ground. At the instant the athlete
releases it (Fig. P15.47b), the shot is 2.10 m above the ground.
The shot reaches a maximum height of 4.60 m above the ground
and travels a horizontal distance of 18.66 m from the point
where it was released. How much work does the athlete do on
the shot from the beginning of his motion to the instant he
releases it?

30!
120 ft

1

2

30!
100 ft

Problems 15.44/15.45

2 m

Problem 15.46 ! 15.49 In Active Example 15.4, suppose that you want to in-
crease the value of the spring constant k so that the velocity of the
hammer just before it strikes the workpiece is 4 m/s. What is the
required value of k?
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20 kg

4 kgk

Problems 15.56/15.57

15.56 The system is released from rest. The 4-kg mass slides on 
the smooth horizontal surface. The spring constant is 
and the tension in the spring when the system is released is 50 N. 
By using the principle of work and energy, determine the magnitude
of the velocity of the masses when the 20-kg mass has fallen 1 m.

15.57 Solve Problem 15.56 if the coefficient of kinetic friction
between the 4-kg mass and the horizontal surface is mk = 0.4.

k = 100 N/m,

k

20 kg
4 kg

k

4 ft

30!

Problems 15.52/15.53

15.52 The 50-lb package starts from rest, slides down the
smooth ramp, and is stopped by the spring.

(a) If you want the package to be brought to rest 6 in from the
point of contact, what is the necessary spring constant k?

(b) What maximum deceleration is the package subjected to?

15.53 The 50-lb package starts from rest, slides down the ramp,
and is stopped by the spring. The coefficient of kinetic friction
between the package and the ramp is If you want the
package to be brought to rest 6 in from the point of contact, what
is the necessary spring constant k?

mk = 0.12.

15.54 The system is released from rest with the spring un-
stretched. The spring constant is Determine the
magnitude of the velocity of the masses when the right mass has
fallen 1 m.

15.55 The system is released from rest with the spring
unstretched. The spring constant is What maximum
downward velocity does the right mass attain 
as it falls?

k = 200 N/m.

k = 200 N/m.

Problems 15.54/15.55

k

10 ft/s

Problems 15.50/15.51

15.50 Suppose that you want to design a bumper that will bring 
a 50-lb package moving at to rest 6 in from the point of 
contact with the bumper. If friction is negligible, what is the 
necessary spring constant k?

15.51 In Problem 15.50, what spring constant is necessary if 
the coefficient of kinetic friction between the package and the
floor is and the package contacts the bumper moving 
at 10 ft/s?

mk = 0.3

10 ft/s

M04_BEDF9165_05_SE_C15.QXD  1/8/08  2:31 PM  Page 192



k

2

1

200 mm

250 mm

Problems 15.63–15.65

x

y
(4, 4, 2) m

(6, 2, 1) m

(1, 1, 0) m1

2

z

Problem 15.66

15.63 The 4-kg collar is released from rest in position 1 on the
smooth bar. If the spring constant is and the spring is
unstretched in position 2, what is the velocity of the collar when it
has fallen to position 2?

15.64 The 4-kg collar is released from rest in position 1 on the
smooth bar. The spring constant is The tension in the
spring in position 2 is 500 N. What is the velocity of the collar
when it has fallen to position 2?

15.65 The 4-kg collar starts from rest in position 1 on the
smooth bar. Its velocity when it has fallen to position 2 is 
The spring is unstretched when the collar is in position 2. What is
the spring constant k?

4 m/s.

k = 4 kN/m.

k = 6 kN/m

15.66 The 10-kg collar starts from rest at position 1 and slides
along the smooth bar. The y axis points upward. The spring constant
is , and the unstretched length of the spring is 2 m. 
What is the velocity of the collar when it reaches position 2?

k = 100 N/m

Problems 193

k

30!

Problems 15.58/15.59

k

1

Problems 15.60–15.62

15.58 The 40-lb crate is released from rest on the smooth in-
clined surface with the spring unstretched. The spring constant is

(a) How far down the inclined surface does the crate slide before
it stops?

(b) What maximum velocity does the crate attain on its way down?

15.59 Solve Problem 15.58 if the coefficient of kinetic friction
between the 4-kg mass and the horizontal surface is mk = 0.2.

k = 8 lb/ft.

15.60 The 4-kg collar starts from rest in position 1 on the smooth
bar with the spring unstretched. The spring constant is 
How far does the collar fall relative to position 1?

15.61 In position 1 on the smooth bar, the 4-kg collar has a
downward velocity of and the spring is unstretched. The
spring constant is What maximum downward
velocity does the collar attain as it falls?

15.62 The 4-kg collar starts from rest in position 1 on the
smooth bar. The tension in the spring in position 1 is 20 N. The
spring constant is How far does the collar fall
relative to position 1?

k = 100 N/m.

k = 100 N/m.
1 m/s

k = 100 N/m.
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15.70 The 2-kg collar is initially at rest at position 1. A constant
100-N force is applied to the string, causing the collar to slide up
the smooth vertical bar. What is the velocity of the collar when it
reaches position 2? (See Problem 15.69.)

y

200 N

x

(4, 4, 2) m

(6, 2, 1) m

(1, 1, 0) m1

2

z

Problem 15.71

2

1

100 N

200 mm

500 mm

Problem 15.70

15.71 The 10-kg collar starts from rest at position 1. The tension
in the string is 200 N, and the y axis points upward. If friction is
negligible, what is the magnitude of the velocity of the collar
when it reaches position 2? (See Problem 15.69.)

T

r

u

Problem 15.69

30 in

6 in

60!

Problems 15.67/15.68

15.67 A spring-powered mortar is used to launch 10-lb packages 
of fireworks into the air. The package starts from rest with the
spring compressed to a length of 6 in. The unstretched length of 
the spring is 30 in. If the spring constant is what 
is the magnitude of the velocity of the package as it leaves the 
mortar?

15.68 Suppose you want to design the mortar in Problem 15.67 
to throw the package to a height of 150 ft above its initial position.
Neglecting friction and drag, determine the necessary spring 
constant.

k = 1300 lb/ft,

15.69 Suppose an object has a string or cable with constant ten-
sion T attached as shown. The force exerted on the object can be
expressed in terms of polar coordinates as Show that
the work done on the object as it moves along an arbitrary plane
path from a radial position to a radial position is
U12 = -T1r2 - r12. r2r1

F = -Ter.
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1000 km 200 m/s

Problem 15.75

15.75 A piece of ejecta is thrown up by the impact of a meteor 
on the moon. When it is 1000 km above the moon’s surface, the
magnitude of its velocity (relative to a nonrotating reference
frame with its origin at the center of the moon) is 
What is the magnitude of its velocity just before it strikes the
moon’s surface? The acceleration due to gravity at the surface of
the moon is The moon’s radius is 1738 km.1.62 m/s2.

200 m/s.

15.76 A satellite in a circular orbit of radius r around the earth
has velocity where is the radius of
the earth. Suppose you are designing a rocket to transfer a 900-kg
communication satellite from a circular parking orbit with 6700-km
radius to a circular geosynchronous orbit with 42,222-km radius.
How much work must the rocket do on the satellite?

15.77 The force exerted on a charged particle by a magnetic 
field is

where q and v are the charge and velocity of the particle and B is
the magnetic field vector. Suppose that other forces on the particle
are negligible. Use the principle of work and energy to show that
the magnitude of the particle’s velocity is constant.

F = qv * B,

RE = 6370 kmv = 2gRE
2>r,

15.72 As the lands at the cable from A to B
engages the airplane’s arresting hook at C. The arresting 
mechanism maintains the tension in the cable at a constant value,
bringing the 26,000-lb airplane to rest at a distance of 72 ft. 
What is the tension in the cable? (See Problem 15.69.)

15.73 If the airplane in Problem 15.72 lands at what 
distance does it roll before the arresting system brings it to rest?

240 ft/s,

210 ft/s,F/A-18

320 km

vesc

Problem 15.74

B
C

A

72 ft

66 ft

Problems 15.72/15.73

! 15.74 A spacecraft 320 km above the surface of the earth is
moving at escape velocity What is its 
distance from the center of the earth when its velocity is 50 per-
cent of its initial value? The radius of the earth is 6370 km. 
(See Example 15.6.) 

vesc = 10,900 m/s.
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15.3 Potential Energy and Conservative Forces 

BACKGROUND
Potential Energy
The work done on an object by some forces can be expressed as the change of
a function of the object’s position called the potential energy. When all the forces
that do work on a system have this property, we can state the principle of work
and energy as a conservation law: The sum of the kinetic and potential energies
is constant.

When we derived the principle of work and energy in Section 15.1 by
integrating Newton’s second law, we were able to evaluate the integral on one
side of the equation, obtaining the change in the kinetic energy:

(15.15)

Suppose we could determine a scalar function of position V such that

(15.16)

Then we could also evaluate the integral defining the work:

(15.17)

where and are the values of V at the positions and respectively.
Substituting this expression into Eq. (15.15), we obtain the principle of work and
energy in the form

(15.18)

If the kinetic energy increases as the object moves from position 1 to position
2, the function V must decrease, and vice versa, as if V represents a reservoir of
“potential” kinetic energy. For this reason, V is called the potential energy.

Equation (15.18) states that the sum of the kinetic and potential energies of
an object has the same value at any two points. Energy is conserved. However,
there is an important restriction on the use of this result. We arrived at Eq. (15.18)
by assuming that a function V, the potential energy, exists that satisfies Eq. (15.16).
This is true only for a limited class of forces, which are said to be conservative. We
discuss conservative forces in the next section. If all of the forces that do work on
an object are conservative, Eq. (15.18) can be applied, where V is the sum of the
potential energies of the forces that do work on the object. Otherwise, Eq. (15.18)
cannot be used. A system is said to be conservative if all of the forces that do work
on the system are conservative. The sum of the kinetic and potential energies of a
conservative system is conserved.

An object may be subjected to both conservative and nonconservative
forces. When that is the case, it is often convenient to introduce the potential en-
ergies of the forces that are conservative into the statement of the principle of
work and energy. To allow for this option, we write Eq. (15.15) as

(15.19)1
2 mv1

2 + V1 + U12 = 1
2 mv2

2 + V2.

1
2 mv1

2 + V1 = 1
2 mv2

2 + V2.

r2,r1V2V1

U12 = L
r2

r1

©F # dr = L
V2

V1

- dV = -1V2 - V12,
dV = - ©F # dr.

U12 = L
r2

r1

©F # dr = 1
2 mv2

2 - 1
2 mv1

2.
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!mgj

y

x

z

Figure 15.8
Weight of an object expressed in terms of a
coordinate system with the y axis pointing
upward.

When the principle of work and energy is written in this form, the term 
includes the work done by all nonconservative forces acting on the object. If
a conservative  force does work on the object, there is a choice. The work can
be calculated and included in or the force’s potential energy can be includ-
ed in V. This procedure can also be applied to a system that is subjected to
both conservative and nonconservative forces. The sum of the kinetic and po-
tential energies of a system in position 1 plus the work done as the system moves
from position 1 to position 2 is equal to the total sum of the kinetic and poten-
tial energies in position 2.

Conservative Forces
We can apply conservation of energy only if the forces doing work on an ob-
ject or system are conservative and we know (or can determine) their potential
energies. In this section, we determine the potential energies of some conserva-
tive forces and use the results to demonstrate applications of conservation of
energy. But before discussing forces that are conservative, we demonstrate with
a simple example that frictional forces are not conservative.

The work done by a conservative force as an object moves from a position
1 to a position 2 is independent of the object’s path. This result follows from
Eq. (15.17), which states that the work depends only on the values of the po-
tential energy at positions 1 and 2. Equation (15.17) also implies that if the
object moves along a closed path, returning to position 1, the work done by a
conservative force is zero. Suppose that a book of mass m rests on a table and
you push it horizontally so that it slides along a path of length L. The magni-
tude of the force of friction is and the direction of the force is opposite
to that of the book’s motion (Fig. 15.7). The work done is

The work is proportional to the length of the object’s path and therefore is not
independent of the path. As this simple example demonstrates, friction forces
are not conservative.

The weight of an object and the force exerted by a spring attached to a
fixed support are conservative forces. Using them as examples, we demonstrate
how you can determine the potential energies of other conservative forces. We
also use the potential energies of these forces in examples of the use of conser-
vation of energy to analyze the motions of conservative systems.

Weight To determine the potential energy associated with an object’s weight,
we use a cartesian coordinate system with its y axis pointing upward (Fig. 15.8).
The weight is and its dot product with the vector dr is

From Eq. (15.16), the potential energy V must satisfy the relation

(15.20)

which we can write as

dV
dy

= mg.

dV = -F # dr = mg dy,

F # dr = 1-mgj2 # 1dx i + dy j + dz k2 = -mg dy.

F = -mgj,

U12 = L
L

0
-mk mg ds = -mk mgL.

mk mg,

U12,

U12

2

1

mkmg

Figure 15.7
The book’s path from position 1 to position 2.
The force of friction points opposite to the
direction of the motion.

BEDFMC15_0136129161.QXD  6/15/07  5:29 PM  Page 197



198 Chapter 15 Energy Methods

Integrating this equation, we obtain

where C, the constant of integration, is arbitrary. This expression satisfies Eq. (15.20)
for any value of C. Another way of understanding why C is arbitrary is to notice in
Eq. (15.18) that it is the difference in the potential energy between two positions that
determines the change in the kinetic energy. We will let and write the poten-
tial energy of the weight of an object as

(15.21)

The potential energy is the product of the object’s weight and height. The height
can be measured from any convenient reference level, or datum. Since it is the dif-
ference in potential energy that determines the change in the kinetic energy, it is the
difference in height that matters, not the level from which the height is measured.

The roller coaster (Fig. 15.9a) is a classic example of conservation of energy.
If aerodynamic and frictional forces are neglected, the weight is the only force
doing work, and the system is conservative. The potential energy of the roller
coaster is proportional to the height of the track relative to a datum. In Fig. 15.9b,

V = mgy.

C = 0

V = mgy + C,

(b)

(a)

Datum

Potential energy

Kinetic energy

Total energy ! 0

Figure 15.9
(a) Roller coaster and a reference level, or datum.
(b) The sum of the potential and kinetic energies is constant.
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k

r

k(r ! r0)

r

u

Figure 15.11
Expressing the force exerted by a linear
spring in polar coordinates.

we assume that the roller coaster started from rest at the datum level. The sum of
the kinetic and potential energies is constant, so the kinetic energy “mirrors” the
potential energy. At points of the track that have equal heights, the magnitudes of
the velocities are equal.

To account for the variation of weight with distance from the center of the
earth, we can express the weight in polar coordinates as

where r is the distance from the center of the earth (Fig. 15.10). From Eq. (15.12),
the vector dr in terms of polar coordinates is

(15.22)

The potential energy must satisfy

or

We integrate this equation and let the constant of integration be zero, obtaining
the potential energy

(15.23)

Compare this expression with the gravitational potential energy given by
Eq. (15.21), in which the variation of the gravitational force with height is
neglected. (See Problem 15.109.)

Springs In terms of polar coordinates, the force exerted on an object by a lin-
ear spring is

where is the unstretched length of the spring (Fig. 15.11). Using Eq. (15.22),
we see that the potential energy must satisfy

dV = -F # dr = k1r - r02 dr.

r0

F = -k1r - r02er,

V = - mgRE
2

r
.

dV
dr

=
mgRE

2

r2 .

dV = -F # dr =
mgRE

2

r2  dr,

dr = dr er + r du eu.

F = - mgRE
2

r2  er,
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er
eu

uRE

Fr

Figure 15.10
Expressing weight in terms of polar
coordinates.
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RESULTS

Conservative Forces and Potential Energy

For a given force F, if there is a function of position V such that

dV ! "F !dr,

then F is said to be conservative, and V is called the potential energy
associated with F.

If all of the forces that do work on an
object are conservative, the sum of
the kinetic energy and the total
potential energy is the same at any
two positions.

mv2
1 # V1 !

1
2

1
2 mv2

2 # V2. (15.18)

When both conservative and
nonconservative forces do work on
an object, the principle of work and
energy can be expressed in terms of
the potential energy V of the 
conservative forces and the work U12
done by nonconservative forces.

mv21 # V1 # U12 !
1
2 mv2

2 # V2.         (15.19)1
2

Conservation of Energy

Expressed in terms of the stretch of the spring this equation is
or

Integrating, we obtain the potential energy of a linear spring:

(15.24)V = 1
2 kS2.

dV
dS

= kS.

dV = kS dS,
S = r - r0,
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Applying conservation of energy typically
involves three steps.

Determine whether the forces are conservative. Draw a
free-body diagram to identify the forces that do work and
confirm that they are conservative.
Determine the potential energy. Evaluate the potential
energies of the forces that do work.
Apply conservation of energy. Equate the sum of the kinetic
and potential energies at two positions. This results in an
expression relating a change in position to the change in the
kinetic energy.

1.

2.

3.

!mgj

y

x

z

V " mgy, (15.21)

where the positive y axis points upward.
The potential energy is the product of
the weight and the height above an
arbitrary reference level, or datum.

Weight
When the weight can be regarded as
constant, the potential energy is

Variable Weight
When the variation of gravity with
height must be considered, the potential
energy is

where RE is the radius of the earth.

V ! " , (15.23)
mgRE

2

r

uRE

r

Springs
The potential energy of a linear spring is

where S is the stretch of the spring.

 kS2, (15.24)V ! 1
2

k

Potential Energies Associated with Particular Forces
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Active Example 15.7 Potential Energy of Weight and Springs (! Related Problem 15.89)

The 40-kg hammer is lifted to position 1 and released from rest. It falls and
strikes a workpiece when it is in position 2. The spring constant is

and the springs are unstretched when the hammer is in posi-
tion 2. Neglect friction. Use conservation of energy to determine the hammer’s
velocity when it reaches position 2.

Strategy
We must confirm that the forces that do work on the hammer are conservative.
If they are, we can determine the velocity of the hammer at position 2 by equat-
ing the sum of its kinetic and potential energies at position 1 to the sum of its
kinetic and potential energies at position 2.

Solution

k = 1500 N/m,

400
mm

300 mm

2

1

k k

Workpiece

Hammer

From the free-body diagram of the
hammer, we see that work is done only by
its weight and the forces exerted by the
springs. The system is conservative. F F

mg

400
mm

2

1

k k

Workpiece

Hammer

300 mm

y

Datum

Choose a datum for the potential energy
associated with the weight of the hammer.
Let the datum (y ! 0) be position 2.

Vweight ! mgy.

Potential energy of one of the springs in
terms of the stretch S of the spring. Vspring ! kS2.1

2
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Calculate the stretch of one
of the springs at  positions
1 and 2.

S1 !

S2 ! 0.

(0.3 m)2 " (0.4 m)2 # 0.3 m

! 0.2 m,

Apply conservation of
energy to positions 1 and
2 to determine the velocity
at position 2.

Solving, we obtain

v2 ! 3.29 m/s.

(Vweight)1 " 2(Vspring)1 " mv2
1 ! (Vweight)2 " 2(Vspring)2 "

1
2

1
2

1
2

1
2

1
2

1
2 mv2

2,

1
2

1
2 mv2

2:

!     "mgy1 " 2 " mv2
1 ! mgy2 " 2 "kS1

2 !     "kS2
2

! 0 " 0 " (40 kg)v2 
2.

(1500 N/m)(0.2 m)2(40 kg)!9.81 m/s2"(0.4 m) " 2#                   $ " 0

Practice Problem The 40-kg hammer is given a downward velocity of 2 m/s in posi-
tion 1. It falls and strikes a workpiece when it is in position 2. The spring constant is

and the springs are unstretched when the hammer is in position 1. 
Neglect friction. Use conservation of energy to determine the velocity of the hammer just
before it strikes the workpiece.

k = 1500 N/m,

400
mm

300 mm

2

1k k

Workpiece

Hammer

Answer: v2 = 2.97 m/s.
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3 m

k

2 m

A

B

Example 15.8 Conservation of Energy of a System (! Related Problem 15.91)

The spring is connected to the floor and to the 90-kg collar A.
Collar A is at rest, supported by the spring, when the 135-kg box B is released
from rest in the position shown. What are the velocities of A and B when B has
fallen 1 m?

1k = 300 N/m2

Strategy
If all of the forces that do work on the system are conservative, we can apply
conservation of energy to obtain one equation in terms of the velocities of A
and B when B has fallen 1 m. To complete the solution, we must also use kine-
matics to determine the relationship between the velocities of A and B.

Solution
Determine whether the System Is Conservative We consider the collar A,
box B, and pulley as a single system. From the free-body diagram of the sys-
tem in Fig. a, we see that work is done only by the weights of the collar and box
and the spring force F. The system is therefore conservative.

Determine the Potential Energy Using the initial position of collar A as
its datum, the potential energy associated with the weight of A when it has
risen a distance (Fig. b) is Using the initial position of box B
as its datum, the potential energy associated with its weight when it has fall-
en a distance is (The minus sign is necessary because
is positive downward.)

To determine the potential energy associated with the spring force, we must
account for the fact that in the initial position the spring is compressed by the
weight of collar A. The spring is initially compressed a distance such that

(Fig. c). When the collar has moved upward a distance the stretch
of the spring is so its potential energy is

VS = 1
2 kS2 = 1

2 kaxA -
mA g

k
b2

.

S = xA - d = xA - mA g>k,
xA,mA g = kd
d

xBVB = -mB gxB.xB

VA = mA gxA.xA

204 Chapter 15 Energy Methods

N

F

MPmAg

mBg

Px

Py

(a) Free-body diagram of the system.
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The total potential energy of the system in terms of the displacements of the
collar and box is

Apply Conservation of Energy The sum of the kinetic and potential energies
of the system in its initial position and in the position shown in Fig. b must be
equal. Denoting the total kinetic energy by T, we have

(1)

We want to determine and when but we have only one equa-
tion in terms of and To complete the solution, we must relate
the displacement and velocity of the collar A to the displacement and velocity
of the box B.

From Fig. b, the decrease in the length of the rope from A to the pulley as
the collar rises must equal the distance the box falls:

Solving this equation for the value of when we obtain
By taking the derivative of this equation with respect to time,

we also obtain a relation between and 

Setting we determine from the preceding equation that

We solve this equation together with Eq. (1) for the velocities of the collar
and box when and obtaining and

Critical Thinking
Why didn’t we have to consider the forces exerted on the collar and box by the
rope? The reason is that they are internal forces when the collar, box, and
pulley are regarded as a single system. This example clearly demonstrates the
advantage of applying conservation of energy to an entire system whenever
possible.

vB = 2.45 m/s.
vA = 3.82 m/sxB = 1 m,xA = 1.33 m

0.641vA = vB.

xA = 1.33 m,

c 3 m - xA213 m - xA22 + 12 m22 dvA = vB.

vB:vA

xA = 1.33 m.
xB = 1 m,xA

213 m22 + 12 m22 - 213 m - xA22 + 12 m22 = xB.

vB.xA, xB, vA,
xB = 1 m,vBvA

+ mA gxA - mB gxB + 1
2 kaxA -

mA g
k
b2

.

 0 + 1
2 ka -

mA g
k
b2

= 1
2 mA vA

2 + 1
2 mB vB

2

 T1 + V1 = T2 + V2:

 = mA gxA - mB gxB + 1
2 kaxA -

mA g
k
b2

.

 V = VA + VB + VS

B

3 m

2 m

A
xBxA

(b) Displacements of the collar
and box.

A

Position of the
collar when the
spring is unstretched

d
xA

kd

mAg

(c) Determining the initial compression
of the spring.
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r/RE

Kinetic energy

Total energy

Potential energy

6543210

mv0
1–
2

2

mgRE––––––r0
–

2

Example 15.9 Conservation of Energy of a Spacecraft (! Related Problem 15.103)

A spacecraft at a distance from the center of the earth is moving
outward with initial velocity . Determine the velocity of the
craft as a function of its distance from the center of the earth.

Strategy
The potential energy associated with the earth’s gravity is given by Eq. (15.23).
The initial radial position and velocity of the spacecraft are given, so we can use
conservation of energy to determine its velocity as a function of its radial position.

Solution
Determine whether the System Is Conservative If work is done on the
spacecraft by gravity alone, the system is conservative.
Determine the Potential Energy The potential energy associated with the
weight of the spacecraft is given in terms of its distance r from the center of
the earth by Eq. (15.23):

Apply Conservation of Energy Let v be the magnitude of the spacecraft’s
velocity at an arbitrary distance r. The sums of the potential and kinetic ener-
gies at and at r must be equal.

Solving for v, we find that the spacecraft’s velocity as a function of r is

Critical Thinking
The graph shows the kinetic energy, potential energy, and total energy as func-
tions of . The kinetic energy decreases and the potential energy increases as
the spacecraft moves outward until its velocity decreases to zero at r = 6RE.

r>RE

v = CgREa2RE

r
- 1

3
b .

 - mgRE
2

2RE
+ 1

2 m A23  gRE B = - mgRE
2

r
+ 1

2 mv2.

 - mgRE
2

r0
+ 1

2 mv0
2 = - mgRE

2

r
+ 1

2 mv2:

r0

V = - mgRE
2

r
.

v0 = 22gRE>3r0 = 2RE

206 Chapter 15 Energy Methods

v0

r0
RE
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12 m/s

1 m

12 m/s

1 m

Datum

Datum

(a) (b)

Problem 15.79

30!

1

2 5 ft

2 ft
Datum

Problem 15.78

Problems

15.78 The 10-lb box is released from rest at position 1 and slides
down the smooth inclined surface to position 2.

(a) If the datum is placed at the level of the floor as shown, what
is the sum of the kinetic and potential energies of the box when it
is in position 1?

(b) What is the sum of the kinetic and potential energies of the
box when it is in position 2?

(c) Use conservation of energy to determine the magnitude of the
box’s velocity when it is in position 2.

15.79 The 0.45-kg soccer ball is 1 m above the ground when it is
kicked upward at Use conservation of energy to determine
the magnitude of the ball’s velocity when it is 4 m above the
ground. Obtain the answer by placing the datum (a) at the level of
the ball’s initial position and (b) at ground level.

12 m/s.

15.80 The Lunar Module used in the Apollo moon landings
could make a safe landing if the magnitude of its vertical velocity
at impact was no greater than Use conservation of energy to
determine the maximum height h at which the pilot could shut off
the engine if the vertical velocity of the lander is (a) down-
ward and (b) upward. The acceleration due to gravity at the
moon’s surface is 1.62 m/s2.

2 m/s
2 m/s

5 m/s.

15.81 The 0.4-kg collar starts from rest at position 1 and slides
down the smooth rigid wire. The y axis points upward. Use con-
servation of energy to determine the magnitude of the velocity of
the collar when it reaches point 2.

h

Problem 15.80

(3, 0, 2) m

x

y

z

(5, 5, 2) m1

2

0.4 kg

Problem 15.81
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m

2

1

u
R

20!

Problems 15.85/15.86

15.85 A small pellet of mass starts from rest at
position 1 and slides down the smooth surface of the cylinder to
position 2. The radius Use conservation of energy to
determine the magnitude of the pellet’s velocity at position 2 if

15.86 In Problem 15.85, what is the value of the angle at
which the pellet loses contact with the surface of the cylinder?

u

u = 45°.

R = 0.8 m.

m = 0.2 kg

208 Chapter 15 Energy Methods

15.82 At the instant shown, the 20-kg mass is moving down-
ward at Let d be the downward displacement of the
mass relative to its present position. Use conservation of energy
to determine the magnitude of the velocity of the 20-kg mass
when d = 1 m.

1.6 m/s.

15.83 The mass of the ball is , and the string’s length
is The ball is released from rest in position 1 and swings
to position 2, where 

(a) Use conservation of energy to determine the magnitude of the
ball’s velocity at position 2.

(b) Draw graphs of the kinetic energy, the potential energy, and
the total energy for values of from zero to 180°.u

u = 40°.
L = 1 m.

m = 2 kg

15.84 The mass of the ball is and the string’s length is
The ball is released from rest in position 1. When the

string is vertical, it hits the fixed peg shown.

(a) Use conservation of energy to determine the minimum angle 
necessary for the ball to swing to position 2.

(b) If the ball is released at the minimum angle determined in
part (a), what is the tension in the string just before and just after
it hits the peg?

u

u

L = 1 m.
m = 2 kg

L

2

1

u

m

Problem 15.83

L

1

2

L
1
2u

Problem 15.84

20 kg
4 kg

Problem 15.82
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A

B

k

Problem 15.91

h

Problem 15.90
B

1 m

1 m

A

2 m

10 kg

C D

Problems 15.87/15.88

15.87 The bar is smooth. The 10-kg slider at A is given a
downward velocity of 6.5 m/s.

(a) Use conservation of energy to determine whether the slider
will reach point C. If it does, what is the magnitude of its velocity
at point C?

(b) What is the magnitude of the normal force the bar exerts on
the slider as it passes point B?

15.88 The bar is smooth. The 10-kg slider at A is given a
downward velocity of 7.5 m/s. 

(a) Use conservation of energy to determine whether the slider
will reach point D. If it does, what is the magnitude of its velocity
at point D?

(b) What is the magnitude of the normal force the bar exerts on
the slider as it passes point B?

! 15.91 The collar A slides on the smooth horizontal bar.
The spring constant The weights are 
and . At the instant shown, the spring is unstretched
and B is moving downward at 4 ft/s. Use conservation of energy
to determine the velocity of B when it has moved downward 2 ft
from its current position. (See Example 15.8.)

WB = 60 lb
WA = 30 lbk = 40 lb/ft.

Problems 209

15.90 A rock climber of weight W has a rope attached a distance h
below him for protection. Suppose that he falls, and assume that
the rope behaves like a linear spring with unstretched length h and
spring constant where C is a constant. Use conservation
of energy to determine the maximum force exerted on the climber
by the rope. (Notice that the maximum force is independent of h,
which is a reassuring result for climbers: The maximum force
resulting from a long fall is the same as that resulting from a
short one.)

k = C>h,

! 15.89 In Active Example 15.7, suppose that you want to in-
crease the value of the spring constant k so that the velocity of the
hammer just before it strikes the workpiece is 4 m/s. Use conser-
vation of energy to determine the required value of k.

BEDFMC15_0136129161.QXD  6/15/07  5:29 PM  Page 209



210 Chapter 15 Energy Methods

k

0.3 m

0.15 m

0.25 m

Problems 15.94/15.95

k

r

u

Problem 15.96

15.94 The mass the spring constant 
and the unstretched length of the spring is 0.1 m. When the system
is released from rest in the position shown, the spring contracts,
pulling the mass to the right. Use conservation of energy to deter-
mine the magnitude of the velocity of the mass when the string
and the spring are parallel.

15.95 In Problem 15.94, what is the tension in the string when
the string and spring are parallel?

k = 200 N/m,m = 1 kg,

15.96 The force exerted on an object by a nonlinear spring is

where k and q are constants and is the unstretched length of the
spring. Determine the potential energy of the spring in terms of its
stretch S = r - r0.

r0

F = -3k1r - r02 + q1r - r0234er,

A

k

B

0.15 m

0.3 m

Problem 15.92

15.92 The spring constant The masses
and The horizontal bar is smooth. 

At the instant shown, the spring is unstretched and the mass B
is moving downward at 1 m/s. How fast is B moving when it
has moved downward 0.2 m from its present position?

mB = 18 kg.mA = 14 kg
k = 700 N/m.

1 ft

A

2 in5 in

B

k

Problem 15.93

15.93 The semicircular bar is smooth. The unstretched length of
the spring is 10 in. The 5-lb collar at A is given a downward
velocity of 6 ft/s, and when it reaches B the magnitude of its
velocity is 15 ft/s. Determine the spring constant k.
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r

T

Problems 15.101/15.102

2 m

1.5 m

Problems 15.97/15.98

T

r

u

Problem 15.99

30 lb

3 ft

2 ft

A

k

Problem 15.100

15.97 The 20-kg cylinder is released at the position shown and
falls onto the linear spring Use conservation of
energy to determine how far down the cylinder moves after con-
tacting the spring.

15.98 The 20-kg cylinder is released at the position shown
and falls onto the nonlinear spring. In terms of the stretch S of
the spring, its potential energy is where

and What is the velocity of
the cylinder when the spring has been compressed 0.5 m?

q = 4000 N/m3.k = 3000 N/m
V = 1

2 kS2 + 1
4 qS4,

1k = 3000 N/m2.

15.99 The string exerts a force of constant magnitude T on the
object. Use polar coordinates to show that the potential energy
associated with this force is V = Tr.

15.100 The system is at rest in the position shown, with the 
12-lb collar A resting on the spring when a
constant 30-lb force is applied to the cable. What is the velocity
of the collar when it has risen 1 ft? (See Problem 15.99.)

1k = 20 lb/ft2,

15.101 A 1-kg disk slides on a smooth horizontal table and is
attached to a string that passes through a hole in the table. A
constant force is exerted on the string. At the instant
shown, and the velocity of the disk in terms of polar
coordinates is . Use conservation of energy to
determine the magnitude of the velocity of the disk when 

(See Problem 15.99.)

15.102 A 1-kg disk slides on a smooth horizontal table and 
is attached to a string that passes through a hole in the table.
A constant force is exerted on the string. At the instant
shown, and the velocity of the disk in terms of polar
coordinates is . Because this is central-force motion,
the product of the radial position r and the transverse component
of velocity is constant. Use this fact and conservation of energy
to determine the velocity of the disk in terms of polar coordinates
when r = 2 m.

vu

v = 8eu (m/s)
r = 1 m

T = 10 N

r = 2 m.

v = 6eu (m/s)
r = 1 m

T = 10 N
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15.107 The Voyager and Galileo spacecraft observed volcanic
plumes, believed to consist of condensed sulfur or sulfur dioxide
gas, above the surface of the Jovian satellite Io. The plume ob-
served above a volcano named Prometheus was estimated to
extend 50 km above the surface. The acceleration due to gravity
at the surface is Using conservation of energy and
neglecting the variation of gravity with height, determine the 
velocity at which a solid particle would have to be ejected to
reach 50 km above Io’s surface.

15.108 Solve Problem 15.107 using conservation of energy and
accounting for the variation of gravity with height. The radius of
Io is 1815 km.

1.80 m/s2.

15.109* What is the relationship between Eq. (15.21), which is
the gravitational potential energy neglecting the variation of the
gravitational force with height, and Eq. (15.23), which accounts
for the variation? Express the distance from the center of the earth
as where is the earth’s radius and y is the height
above the surface, so that Eq. (15.23) can be written as

By expanding this equation as a Taylor series in terms of 
and assuming that show that you obtain a potential
energy equivalent to Eq. (15.21).

y>RE V 1,
y>RE

V = - mgRE

1 +
y

RE

 .

REr = RE + y,

Problems 15.107/15.108

! 15.103 A satellite initially is inserted into orbit at a distance
from the center of the earth. When it is at a

distance from the center of the earth, the magni-
tude of its velocity is . Use conservation of energy
to determine its initial velocity . The radius of the earth is 
6370 km. (See Example 15.9.)

v0

v = 7000 m/s
r = 18,000 km

r0 = 8800 km

15.104 Astronomers detect an asteroid 100,000 km from the
earth moving at relative to the center of the earth. Suppose
the asteroid strikes the earth. Use conservation of energy to deter-
mine the magnitude of its velocity as it enters the atmosphere.
(You can neglect the thickness of the atmosphere in comparison to
the earth’s 6370-km radius.)

15.105 A satellite is in the elliptic earth orbit shown. Its velocity
in terms of polar coordinates when it is at the perigee A is

(m/s). Determine the velocity of the satellite in terms
of polar coordinates when it is at point B.

15.106 Use conservation of energy to determine the magnitude
of the velocity of the satellite in Problem 15.105 at the apogee C.
Using your result, confirm numerically that the velocities at
perigee and apogee satisfy the relation rA vA = rC vC.

v = 8640eu

2 km/s

B

A
C

8000 km8000 km
16,000 km

13,900 km

Problems 15.105/15.106

v

v0

r0

r

RE

Problem 15.103
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15.4 Relationships between Force 
and Potential Energy

BACKGROUND
Here we consider two questions: (1) Given a potential energy, how can we
determine the corresponding force? (2) Given a force, how can we determine
whether it is conservative? That is, how can we tell whether an associated
potential energy exists?

The potential energy V of a force F is a function of position that satisfies
the relation

(15.25)

Let us express V in terms of a cartesian coordinate system:

The differential of V is

(15.26)

Expressing F and dr in terms of cartesian components and taking their dot prod-
uct yields

Substituting this expression and Eq. (15.26) into Eq. (15.25), we obtain

which implies that

(15.27)

Given a potential energy V expressed in cartesian coordinates, we can use
Eqs. (15.27) to determine the corresponding force. The force

(15.28)

where is the gradient of V. By using expressions for the gradient in terms
of other coordinate systems, we can determine the force F when we know the
potential energy in terms of those coordinate systems. For example, in terms of
cylindrical coordinates,

(15.29)F = - a 0V
0r

 er + 1
r

 
0V
0u  eu + 0V

0z
 ezb .

§V

F = - a 0V
0x

 i + 0V
0y

 j + 0V
0z

 kb = - §V,

Fx = - 0V
0x

, Fy = - 0V
0y

, and Fz = - 0V
0z

.

0V
0x

 dx + 0V
0y

 dy + 0V
0z

 dz = -1Fx dx + Fy dy + Fz dz2,
 = Fx dx + Fy dy + Fz dz.

 F # dr = 1Fx i + Fy j + Fz k2 # 1dxi + dyj + dzk2
dV = 0V

0x
 dx + 0V

0y
 dy + 0V

0z
 dz.

V = V1x, y, z2.
dV = -F # dr.
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Definition of the potential energy V associated with
a conservative force F.dV ! "F !dr.        (15.25)

A conservative force F can be
determined from its
its potential energy V.

Cartesian Coordinates

F ! " .#i
$V
$x

j
$V
$y

# k
$V
$z! "

Cylindrical Coordinates

F ! " .

(15.28)

 (15.29)#er
$V
$r

eu
$V
$u

# ez
$V
$z! "1

r

A force F is conservative if
and only if its curl  % & F
is zero.

Cartesian Coordinates

% & F ! .
$
$x

i

Fx

$
$y

j

Fy

$
$z

k

Fz

Cylindrical Coordinates

% & F ! .

(15.30)

(15.31)
$
$r

er

Fr

$
$u

reu

rFu

$
$z

ez

Fz

1
r

If a force F is conservative, its curl is zero. The expression for the
curl of F in cartesian coordinates is

(15.30)

Substituting Eqs. (15.27) into this expression confirms that when
F is conservative. The converse is also true. A force F is conservative if its
curl is zero. We can use this condition to determine whether a given force is
conservative. In terms of cylindrical coordinates, the curl of F is

(15.31)

RESULTS

§ * F = 1
r
4 er reu ez

0
0r

0
0u

0
0z

Fr rFu Fz

4 .
§ * F = 0

§ * F = 4 i j k
0

0x
0
0y

0
0z

Fx Fy Fz

4 .§ * F
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Active Example 15.10 Determining the Force from a Potential Energy
(! Related Problems 15.112, 15.113)

The potential energy associated with the weight of an object of mass m at a
distance r from the center of the earth is (in cylindrical coordinates)

where is the radius of the earth. Use this expression to determine the force
exerted on the object by its weight.

Strategy
The potential energy is expressed in cylindrical coordinates, so we can obtain
the force from Eq. (15.29).

Solution

RE

V = -
mgRE

2

r
,

Evaluate the partial
derivatives in Eq. (15.29).

!V
!r

"

!V
!u

" 0,

!V
!z

" 0.

,
mgRE

2 
r2

Determine the force
from Eq. (15.29). F " # er.

mgRE
2 

r2

Practice Problem Determine whether the force F obtained in this example is conservative.

Answer: Yes

Problems
y

x
1 B

A

2
(1, 1) m

Problems 15.110/15.111

15.110 The potential energy associated with a force F acting on
an object is where x and y are in meters.

(a) Determine F.

(b) Suppose that the object moves from position 1 to position 2
along path A, and then moves from position 1 to position 2 along
path B. Determine the work done by F along each path.

15.111 An object is subjected to the force 
where x and y are in meters.

(a) Show that F is not conservative.

(b) Suppose the object moves from point 1 to point 2 along the
paths A and B shown in Problem 15.110. Determine the work
done by F along each path.

F = y i - xj 1N2,

V = x2 + y3 N-m,
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216 Chapter 15 Energy Methods

y

x
1

2

1 ft

Problem 15.114

RT

r0

v0

Problem 15.115

! 15.112 In terms of polar coordinates, the potential energy
associated with the force F exerted on an object by a nonlinear
spring is

where k and q are constants and is the unstretched length of
the spring. Determine F in terms of polar coordinates. (See Active
Example 15.10.)

! 15.113 In terms of polar coordinates, the force exerted on an
object by a nonlinear spring is

where k and q are constants and is the unstretched length of
the spring. Use Eq. (15.31) to show that F is conservative.
(See Active Example 15.10.)

15.114 The potential energy associated with a force F acting on
an object is where r is in feet.

(a) Determine F.

(b) If the object moves from point 1 to point 2 along the circular
path, how much work is done by F?

V = -r sin u + r2 cos2 u ft-lb,

r0

F = -3k1r - r02 + q1r - r0234er,

r0

V = 1
2

 k1r - r022 + 1
4

 q1r - r024,

15.115 In terms of polar coordinates, the force exerted on an 
object of mass m by the gravity of a hypothetical two-dimensional
planet is where is the acceleration due to
gravity at the surface, is the radius of the planet, and r is the
distance of the object from the center of the planet.

(a) Determine the potential energy associated with this gravita-
tional force.

(b) If the object is given a velocity at a distance what is its
velocity v as a function of r?

r0,v0

RT

gTF = -1mgT RT>r2er,

15.116 By substituting Eqs. (15.27) into Eq. (15.30), confirm
that if F is conservative.

15.117 Determine which of the following forces are conservative:

(a)

(b)

(c) F = 12xy2 + y32i + 12x2y - 3xy22j.F = 1x - xy22i + x2yj;

F = 13x2 - 2xy2i - x2j;

§ * F = 0
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Review Problems
15.118 The driver of a 3000-lb car moving at applies an
increasing force on the brake pedal. The magnitude of the resulting
frictional force exerted on the car by the road is 
where s is the car’s horizontal position (in feet) relative to its
position when the brakes were applied. Assuming that the car’s
tires do not slip; determine the distance required for the car to stop 
(a) by using Newton’s second law and (b) by using the principle
of work and energy.

15.119 Suppose that the car in Problem 15.118 is on wet
pavement and the coefficients of friction between the tires and the
road are and Determine the distance
required for the car to stop.

mk = 0.35.ms = 0.4

f = 250 + 6s lb,

40 mi/h

30!

F

Problems 15.121/15.122

Problems 15.123/15.124

Problems 15.118/15.119

15.121 The coefficients of friction between the 20-kg crate and
the inclined surface are and If the crate
starts from rest and the horizontal force what is the
magnitude of the velocity of the crate when it has moved 2 m?

15.122 The coefficients of friction between the 20-kg crate and
the inclined surface are and If the crate
starts from rest and the horizontal force what is the
magnitude of the velocity of the crate when it has moved 2 m?

F = 40 N,
mk = 0.22.ms = 0.24

F = 200 N,
mk = 0.22.ms = 0.24

15.123 The Union Pacific Big Boy locomotive weighs 1.19 mil-
lion lb, and the tractive effort (tangential force) of its drive wheels
is 135,000 lb. If you neglect other tangential forces, what distance
is required for the train to accelerate from zero to 

15.124 In Problem 15.123, suppose that the acceleration of the loco-
motive as it accelerates from zero to is 
where m is the mass of the locomotive, and v is its
velocity in feet per second.

(a) How much work is done in accelerating the train to 

(b) Determine the locomotive’s velocity as a function of time.

60 mi/h?

F0 = 135,000 lb,
1F0>m211 - v>882,60 mi/h

60 mi/h?

Review Problems 217

15.120 An astronaut in a small rocket vehicle (combined
is hovering 100 m above the surface of the

moon when he discovers that he is nearly out of fuel and can exert
the thrust necessary to cause the vehicle to hover for only 5 more
seconds. He quickly considers two strategies for getting to the sur-
face: (a) Fall 20 m, turn on the thrust for 5 s, and then fall the rest
of the way; (b) fall 40 m, turn on the thrust for 5 s, and then fall
the rest of the way. Which strategy gives him the best chance of
surviving? How much work is done by the engine’s thrust in each
case? 1gmoon = 1.62 m/s2.2

450 kg2mass =

15.125 A car traveling hits the crash barrier described in
Problem 15.14. Determine the maximum deceleration to which
the passengers are subjected if the car weighs (a) 2500 lb and
(b) 5000 lb.

65 mi/h
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15.130 The piston and the load it supports are accelerated up-
ward by the gas in the cylinder. The total weight of the piston and
load is 1000 lb. The cylinder wall exerts a constant 50-lb frictional
force on the piston as it rises. The net force exerted on the piston
by pressure is where p is the pressure of the gas,

is atmospheric pressure, and is the
cross-sectional area of the piston. Assume that the product of p
and the volume of the cylinder is constant. When the
piston is stationary and What is the velocity of
the piston when s = 2 ft?

p = 5000 lb/ft2.
s = 1 ft,

A = 1 ft2patm = 2117 lb/ft2
1p2 - patm2A,

s

Piston

Gas

Problem 15.130

15.126 In a preliminary design for a mail-sorting machine,
parcels moving at slide down a smooth ramp and are
brought to rest by a linear spring. What should the spring constant
be if you don’t want a 10-lb parcel to be subjected to a maximum
deceleration greater than 10 g’s?

2 ft/s

15.127 When the 1-kg collar is in position 1, the tension in the
spring is 50 N, and the unstretched length of the spring is 260 mm.
If the collar is pulled to position 2 and released from rest, what is
its velocity when it returns to position 1?

15.128 When the 1-kg collar is in position 1, the tension in the
spring is 100 N, and when the collar is in position 2, the tension in
the spring is 400 N.

(a) What is the spring constant k?

(b) If the collar is given a velocity of at position 1, what is
the magnitude of its velocity just before it reaches position 2?

15 m/s

kA

kB

Problem 15.129

300 mm k

600 mm

1 2

Problems 15.127/15.128

2 ft/s

3 ft
k

Problem 15.126

15.129 The 30-lb weight is released from rest with the two
springs unstretched.

(a) How far does the weight fall before rebounding?

(b) What maximum velocity does it attain?

1kA = 30 lb/ft, kB = 15 lb/ft2

15.131 When a 22,000-kg rocket’s engine burns out at an alti-
tude of 2 km, the velocity of the rocket is and it is traveling
at an angle of 60° relative to the horizontal. Neglect the variation
in the gravitational force with altitude.

(a) If you neglect aerodynamic forces, what is the magnitude of
the velocity of the rocket when it reaches an altitude of 6 km?

(b) If the actual velocity of the rocket when it reaches an altitude
of 6 km is how much work is done by aerodynamic
forces as the rocket moves from 2 km to 6 km altitude?

2.8 km/s,

3 km/s
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15.133 Suppose that, in designing a loop for a roller coaster’s
track, you establish as a safety criterion that at the top of the loop
the normal force exerted on a passenger by the roller coaster
should equal 10 percent of the passenger’s weight. (That is, the
passenger’s “effective weight” pressing him down into his seat is
10 percent of his actual weight.) The roller coaster is moving at

when it enters the loop. What is the necessary instanta-
neous radius of curvature of the track at the top of the loop?r

62 ft/s

15.134 A 180-lb student runs at grabs a rope, and swings
out over a lake. He releases the rope when his velocity is zero.

(a) What is the angle when he releases the rope?

(b) What is the tension in the rope just before he releases it?

(c) What is the maximum tension in the rope?

15.135 If the student in Problem 15.134 releases the rope when
what maximum height does he reach relative to his

position when he grabs the rope?
u = 25°,

u

15 ft/s,

1

 5 ft

2 15 ft
35!

b

Problems 15.136/15.137

15.136 A boy takes a running start and jumps on his sled at posi-
tion 1. He leaves the ground at position 2 and lands in deep snow
at a distance How fast was he going at position 1?

15.137 In Problem 15.136, if the boy starts at position 1 going
what distance b does he travel through the air?15 ft/s,

b = 25 ft.

50 ft

r

Problem 15.133

30 ftu

Problems 15.134/15.135

15.132 The 12-kg collar A is at rest in the position shown at
and is subjected to the tangential force 

for 1.5 s. Neglecting friction, what maximum height h does the
collar reach?

F = 24 - 12t2 Nt = 0

h

2 m

AF

Problem 15.132
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N

Problem 15.144

15.143 Suppose that an object of mass m is beneath the surface
of the earth. In terms of a polar coordinate system with its origin
at the earth’s center, the gravitational force on the object is

where is the radius of the earth. Show that the
potential energy associated with the gravitational force is

15.144 It has been pointed out that if tunnels could be drilled
straight through the earth between points on the surface, trains
could travel between those points using gravitational force for
acceleration and deceleration. (The effects of friction and aero-
dynamic drag could be minimized by evacuating the tunnels
and using magnetically levitated trains.) Suppose that such a
train travels from the North Pole to a point on the equator.
Disregard the earth’s rotation. Determine the magnitude of the
velocity of the train (a) when it arrives at the equator and
(b) when it is halfway from the North Pole to the equator. The
radius of the earth is (See Problem 15.143.)RE = 3960 mi.

V = mgr2>2RE.

RE-1mgr>RE2er,

A

k

0.4 m

0.9 m

B

Problem 15.140

y

x

1

2

2 ft

4 ft

Problems 15.141/15.142

15.140 The spring constant is and
The collar A slides on the smooth horizontal bar.

The system is released from rest in the position shown with the
spring unstretched. Use conservation of energy to determine the
velocity of the collar A when it has moved 0.5 m to the right.

mB = 60 kg.
k = 850 N/m, mA = 40 kg,

15.141 The y axis is vertical and the curved bar is smooth. If the
magnitude of the velocity of the 4-lb slider is at position 1,
what is the magnitude of its velocity when it reaches position 2?

15.142 In Problem 15.141, determine the magnitude of the
velocity of the slider when it reaches position 2 if it is subjected
to the additional force during its motion.F = 3xi - 2j 1lb2

6 ft/s

15.139 The masses and The collar A
slides on the smooth horizontal bar. The system is released from
rest. Use conservation of energy to determine the velocity of the
collar A when it has moved 0.5 m to the right.

mB = 60 kg.mA = 40 kg

A

B

Problem 15.139

A

k

Problem 15.138

15.138 The 1-kg collar A is attached to the linear spring
by a string. The collar starts from rest in the posi-

tion shown, and the initial tension in the string is 100 N. What dis-
tance does the collar slide up the smooth bar?

1k = 500 N/m2
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Design Project

Determine the specifications (unstretched length and
spring constant k) for the elastic cord to be used at a
bungee-jumping facility. Participants are to jump from a
platform 150 ft above the ground. When they rebound,
they must avoid an obstacle that extends 15 ft below the
point at which they jumped. In determining the specifica-
tions for the cord, establish reasonable safety limits for the
minimum distances by which participants must avoid the
ground and obstacle. Account for the fact that participants
will have different weights. If necessary, specify a maxi-
mum allowable weight for participants. Write a brief
report presenting your analyses and making a design rec-
ommendation for the specifications of the cord.

Problem 15.146

Problem 15.147

15.145 In Problem 15.123, what is the maximum power trans-
ferred to the locomotive during its acceleration?

15.146 Just before it lifts off, a 10,500-kg airplane is traveling at
The total horizontal force exerted by the plane’s engines is

189 kN, and the plane is accelerating at 

(a) How much power is being transferred to the plane by its engines?

(b) What is the total power being transferred to the plane?

15 m/s2.
60 ft/s.

15.147 The “Paris Gun” used by Germany in World War I had
a range of 120 km, a 37.5-m barrel, and a muzzle velocity of

and fired a 120-kg shell.

(a) If you assume the shell’s acceleration to be constant, what
maximum power was transferred to the shell as it traveled along
the barrel?

(b) What average power was transferred to the shell?

1550 m/s
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! The total linear momentum of the pool balls is approximately the same
before and after their impact. In this chapter we use methods based on linear
and angular momentum to analyze motions of objects.

Momentum Methods

Integrating Newton’s second law with respect to time
yields a relation between the time integral of the forces
acting on an object and the change in the object’s linear
momentum. With this result, called the principle of
impulse and momentum, we can determine the change
in an object’s velocity when the external forces are
known as functions of time, analyze impacts between
objects, and evaluate forces exerted by continuous
flows of mass.

C H A P T E R

16

v¿A

vA

v¿B
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224 Chapter 16 Momentum Methods

16.1 Principle of Impulse and Momentum

BACKGROUND
The principle of work and energy is a very useful tool in mechanics. We can
derive another useful tool for the analysis of motion by integrating Newton’s sec-
ond law with respect to time. We express Newton’s second law in the form

Then we integrate with respect to time to obtain

(16.1)

where and are the velocities of the center of mass of the object at the times
and The term on the left is called the linear impulse, and mv is the linear

momentum. Equation (16.1) is called the principle of impulse and momentum:
The impulse applied to an object during an interval of time is equal to the change
in the object’s linear momentum (Fig. 16.1). The dimensions of the linear im-
pulse and linear momentum are 

The average with respect to time of the total force acting on an object
from to is

so we can write Eq. (16.1) as

(16.2)

With this equation, we can determine the average value of the total force acting
on an object during a given interval of time if we know the change in the object’s
velocity.

A force that acts over a small interval of time but exerts a significant lin-
ear impulse is called an impulsive force. An impulsive force and its average
with respect to time are shown in Fig. 16.2. Determining the time history of such
a force is often impractical, but with Eq. (16.2) its average value can sometimes

1t2 - t12©Fav = mv2 - mv1.

©Fav = 1
t2 - t1L

t2

t1

©F dt,

t2t1

1mass2 * 1length2>1time2.
t2.t1

v2v1

L
t2

t1

©F dt = mv2 - mv1,

©F = m 
dv
dt

.

Time t1

t1

t2

mv1 !F

Time t2

mv2!F dt ! mv2 " mv1f
Figure 16.1
Principle of impulse and momentum.
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16.1 Principle of Impulse and Momentum 225

be determined. For example, a golf ball struck by a club is subjected to an im-
pulsive force. By making high-speed motion pictures, the duration of the impact
and the ball’s velocity after the impact can be measured. Knowing the duration
of the impact and the ball’s change in linear momentum, we can determine the
average force exerted by the club. (See Example 16.3.)

We can express Eqs. (16.1) and (16.2) in scalar forms that are often useful.
The sum of the forces in the direction tangent to an object’s path equals the
product of the object’s mass and the rate of change of its velocity along the path
(see Eq. 14.7):

Integrating this equation with respect to time, we obtain

(16.3)

where and are the velocities along the path at the times and The im-
pulse applied to an object by the sum of the forces tangent to its path during an
interval of time is equal to the change in the object’s linear momentum along
the path. In terms of the average with respect to time of the sum of the forces
tangent to the path, or

we can write Eq. (16.3) as

(16.4)

This equation relates the average of the sum of the forces tangent to the path dur-
ing an interval of time to the change in the velocity along the path.

Notice that Eq. (16.1) and the principle of work and energy, Eq. (15.6), are
quite similar. They both relate an integral of the external forces to the change in
an object’s velocity. Equation (16.1) is a vector equation that determines the
change in both the magnitude and direction of the velocity, whereas the princi-
ple of work and energy, a scalar equation, gives only the change in the magnitude
of the velocity. But there is a greater difference between the two methods: In the
case of impulse and momentum, there is no class of forces equivalent to the con-
servative forces that make the principle of work and energy so easy to apply.

When the external forces acting on an object are known as functions of
time, the principle of impulse and momentum can be applied to determine the
change in velocity of the object during an interval of time. Although this is an
important result, it is not new. In Chapter 14, when we used Newton’s second
law to determine an object’s acceleration and then integrated the acceleration with
respect to time to determine the object’s velocity, we were effectively applying
the principle of impulse and momentum. However, in the rest of this chapter
we show that this principle can be extended to new and interesting applications.

1t2 - t12©Ft av = mv2 - mv1.

©Ft av = 1
t2 - t1L

t2

t1

©Ft dt,

t2.t1v2v1

L
t2

t1

©Ft dt = mv2 - mv1,

©Ft = mat = m 
dv
dt

.

t
t2t1

Fav

F

Figure 16.2
An impulsive force and its average value.
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RESULTS

Integrating Newton’s second law with respect
to time from t1 to t2 yields the principle of
impulse and momentum: the linear impulse
applied to an object is equal to the change in its
linear momentum.

3
t2

t1

!F dt " mv2 # mv1. (16.1)

Linear impulse

Time t1

mv1 !F

Time t2

mv2

A force that acts over a small interval of time 
but exerts significant linear impulse is called 
an impulsive force. The principle of impulse 
and moment often can be used to determine 
the average value of an impulsive force.

(t2 ! t1)"Fav # mv2 ! mv1 (16.2)

By introducing the average of the total force
with respect to time from t1 to t2 ,

the principle of impulse and momentum can be
expressed in terms of the average force.

"Fav # "F dt,
1

t2 ! t1 Lt1

t2

Alternative forms of the principle of impulse
and momentum that are often useful. !Ft is
the tangential component of the total force on
an object and !Ft av is the average of !Ft from
t1 to t2. The terms v1 and v2 are the velocities
along the path at t1 and t2.

(t2 " t1)!Ft av # mv2 " mv1. (16.4)

!Ft dt # mv2 " mv1, (16.3)Lt1
t2
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16.1 Principle of Impulse and Momentum 227

Active Example 16.1 Applying Impulse and Momentum (! Related Problem 16.7)

A 1200-kg helicopter starts from rest at time The components of the total
force (in newtons) on the helicopter from to are

Determine the helicopter’s velocity at t = 10 s .

©Fz = 0.

©Fy = 2160 - 360t,

©Fx = 720t,

t = 10 st = 0
t = 0.

Practice Problem Suppose that the components of the total force acting on the
helicopter from to are not known. But it is known that at the
helicopter’s velocity is What is the average total force acting on it
from to 

Answer: 720  i + 600j (N).

t = 20 s?t = 10 s
36  i + 8j (m/s) .

t = 20 s,t = 20 st = 10 s

Strategy
We know the helicopter’s velocity at and the components of the total
force acting on it as functions of time, so we can use Eq. (16.1) to determine its
velocity at 

Solution

t = 10 s .

t = 0

y

x

Apply the principle of
impulse and momentum
from t ! 0 to t ! 10 s.

3
10

0

[720t i " (2160 # 360t)j]dt ! (1200)v2 # (1200)(0),

$F dt ! mv2 # mv1:

36,000i " 3600j ! 1200v2.

Solving for v2, the velocity at t ! 10 s is 30i " 3j (m/s).

360t2i " (2160t # 180t2)j     ! 1200v2,!" 
10

0

Lt1
t2
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The motorcycle starts from rest at time The tangential component of the
total force (in newtons) on it from to is

The combined mass of the motorcycle and rider is 225 kg. What is the magni-
tude of the motorcycle’s velocity at t = 30 s?

©Ft = 300 - 9t.

t = 30 st = 0
t = 0.

We obtain 

Practice Problem What is the average of the tangential component of the total
force on the motorcycle from to 

Answer: ©Ft = 165 N.

t = 30 s?t = 0

v2 = 22 m/s.

Strategy
The velocity at is known and the tangential component of the total force
is known as a function of time, so we can use Eq. (16.3) to determine the mag-
nitude of the velocity at 

Solution

t = 30 s .

t = 0

Apply Eq. (16.3) to the
interval of time from
t ! 0 to t ! 30 s.

3
30

0

(300 " 9t)dt ! 225v2 " 225(0),

#Ft dt ! mv2 " mv1:

4950 ! 225v2.

300t " 4.5t2 !" 
30

0
! 225v2,

Lt1
t2

Active Example 16.2 Impulse and Momentum Tangent to the Path (! Related Problems 16.29, 16.30)

BEDFMC16_0136129161.QXD  6/15/07  6:16 PM  Page 228



16.1 Principle of Impulse and Momentum 229

y

x

21!

1.9 in

(a) Estimating the distance traveled during one
0.001-s interval.

Example 16.3 Determining an Impulsive Force (! Related Problem 16.33)

A golf ball in flight is photographed at intervals of 0.001 s. The 1.62-oz ball is
1.68 in in diameter. If the club was in contact with the ball for 0.0006 s, esti-
mate the average value of the impulsive force exerted by the club.

Strategy
By measuring the distance traveled by the ball in one of the 0.001-s intervals,
we can estimate its velocity after being struck and then use Eq. (16.2) to deter-
mine the average total force on the ball.

Solution
By comparing the distance moved during one of the 0.001-s intervals with the
known diameter of the ball, we estimate that the ball traveled 1.9 in and that
its direction is 21° above the horizontal (Fig. a). The magnitude of the ball’s
velocity is 11.9>122 ft

0.001 s
= 158 ft/s.

The weight of the ball is so its mass is 
slug. From Eq. (16.2), we obtain

which yields

Critical Thinking
The average force during the time the club is in contact with the ball includes
both the impulsive force exerted by the club and the ball’s weight. In compar-
ison with the large average impulsive force exerted by the club, the weight

is negligible.
Determining the time history of the force exerted on the ball by the club

would require a complicated analysis accounting for the ball’s deformation dur-
ing the impact. In contrast, we were able to determine the average force exerted
on the ball by a straightforward application of impulse and momentum.

1-0.101j lb2

©Fav = 775i + 297j 1lb2.
13.14 * 10-3 slug21158 ft/s21cos 21°i + sin 21°j2 - 0, 

10.0006 s2©Fav =

1t2 - t12©Fav = mv2 - mv1:

3.14 * 10-3
0.101>32.2 =1.62>16 = 0.101 lb,

© Harold & Esther Edgerton Foundation, 2007,
courtesy of Palm Press, Inc.
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Problems
16.1 The 20-kg crate is stationary at time It is subjected
to a horizontal force given as a function of time (in newtons) by

(a) Determine the magnitude of the linear impulse exerted on the
crate from to . 

(b) Use the principle of impulse and momentum to determine
how fast the crate is moving at t = 4 s.

t = 4 st = 0

F = 10 + 2t2.

t = 0.

16.2 The 100-lb crate is released from rest on the inclined sur-
face at time The coefficient of kinetic friction between the
crate and the surface is .

(a) Determine the magnitude of the linear impulse due to the
forces acting on the crate from to 

(b) Use the principle of impulse and momentum to determine
how fast the crate is moving at t = 2 s.

t = 2 s.t = 0

mk = 0.18
t = 0.

16.3 The mass of the helicopter is 9300 kg. It takes off vertically
at time The pilot advances the throttle so that the upward
thrust of its engine (in kN) is given as a function of time in
seconds by 

(a) Determine the magnitude of the linear impulse due to the
forces acting on the helicopter from to 

(b) Use the principle of impulse and momentum to determine
how fast the helicopter is moving at t = 3 s.

t = 3 s.t = 0

T = 100 + 2t2.

t = 0.

16.4 A 150 million-kg cargo ship starts from rest. The total force
exerted on it by its engines and hydrodynamic drag (in newtons)
can be approximated as a function of time in seconds by

. Use the principle of impulse and
momentum to determine how fast the ship is moving in 16 minutes.
©Ft = 937,500 - 0.65t2

Problem 16.4

30!

F

Problem 16.1

Problem 16.2

Problem 16.3
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y

x

z

!F

Problems 16.8/16.9

Problem 16.6

Problem 16.5

16.5 The combined mass of the motorcycle and rider is 136 kg.
The coefficient of kinetic friction between the motorcycle’s tires
and the road is The rider starts from rest and spins the
rear (drive) wheel. The normal force between the rear wheel and
the road is 790 N.

(a) What impulse does the friction force on the rear wheel
exert in 2 s?

(b) If you neglect other horizontal forces, what velocity is
attained by the motorcycle in 2 s?

mk = 0.6.

16.6 A bioengineer models the force generated by the wings of the
0.2-kg snow petrel by an equation of the form 
where and are constants. From video measurements of a bird
taking off, he estimates that and determines that the bird
requires 1.42 s to take off and is moving at 6.1 m/s when it does.
Use the principle of impulse and momentum to determine the
constant . F0

v = 18
vF0

F = F0 (1 + sin vt),

! 16.7 In Active Example 16.1, what is the average total force
acting on the helicopter from to ?

16.8 At time , the velocity of the 15-kg object is
(m/s). The total force acting on it from 

to s is 

Use the principle of impulse and momentum to determine its ve-
locity at s. 

16.9 At time , the velocity of the 15-kg object is
(m/s). The total force acting on it from 

to s is 

What is the average total force on the object during the interval of
time from to t = 4 s?t = 0

©F = (2t2 - 3t + 7)i + 5tj + (3t + 7)k (N).

t = 4
t = 0v = 2i + 3j - 5k

t = 0

t = 4

©F = (2t2 - 3t + 7)i + 5tj + (3t + 7)k (N).

t = 4
t = 0v = 2i + 3j - 5k

t = 0

t = 10 st = 0
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y

4 ft

A
F

Problem 16.12

Problem 16.10

16.10 The 1-lb collar A is initially at rest in the position 
shown on the smooth horizontal bar. At a force

is applied to the collar, causing it
to slide along the bar. What is the velocity of the collar at t = 2 s?
F = 1

20 t2i + 1
10 tj - 1

30 t3k 1lb2 t = 0,

16.11 The axis is vertical and the curved bar is smooth.
The 4-lb slider is released from rest in position 1 and requires
1.2 s to slide to position 2. What is the magnitude of the average
tangential force acting on the slider as it moves from position 1
to position 2?

y

16.13 The 10-kg box starts from rest on the smooth surface and
is subjected to the horizontal force described in the graph. Use the
principle of impulse and momentum to determine how fast the
box is moving at s. 

16.14 The 10-kg box starts from rest and is subjected to the hori-
zontal force described in the graph. The coefficients of friction
between the box and the surface are Determine
how fast the box is moving at s. t = 12

ms = mk = 0.2.

t = 12y

x

1

2

2 ft

4 ft

16.12 During the first 5 s of the 14,200-kg airplane’s takeoff roll,
the pilot increases the engine’s thrust at a constant rate from 22 kN
to its full thrust of 112 kN.

(a) What impulse does the thrust exert on the airplane during
the 5 s?

(b) If you neglect other forces, what total time is required for the
airplane to reach its takeoff speed of 46 m/s?

F

50 N

0

F (N)

t (s)
4 8 12

Problem 16.11

Problems 16.13/16.14

BEDFMC16_0136129161.QXD  6/15/07  6:16 PM  Page 232



Problems 233

30!

Problems 16.15/16.16

16.15 The crate has a mass of 120 kg, and the coefficients of fric-
tion between it and the sloping dock are and 
The crate starts from rest, and the winch exerts a tension

(a) What impulse is applied to the crate during the first second of
motion?

(b) What is the crate’s velocity after 1 s?

16.16 Solve Problem 16.15 if the crate starts from rest at 
and the winch exerts a tension T = 1220 + 200t N.

t = 0

T = 1220 N.

mk = 0.5.ms = 0.6

10 lb

5 lb

Problem 16.20

y

O
x

" " " " " " " "

# # # # # # # #

30 mm

Problem 16.19

16.19 In a cathode-ray tube, an electron 
is projected at O with velocity While the
electron is between the charged plates, the electric field generated by
the plates subjects it to a force The charge on the elec-
tron is (coulombs), and the electric field
strength is where the frequency

(a) What impulse does the electric field exert on the electron
while it is between the plates?

(b) What is the velocity of the electron as it leaves the region
between the plates?

v = 2 * 109 s-1.
E = 15 sin1vt2 kN/C,

e = 1.6 * 10-19 C
F = -eEj.

v = 12.2 * 1072i 1m/s2.1mass = 9.11 * 10-31 kg2

16.20 The two weights are released from rest at time The
coefficient of kinetic friction between the horizontal surface and
the 5-lb weight is Use the principle of impulse and mo-
mentum to determine the magnitude of the velocity of the 10-lb
weight at 

Strategy: Apply the principle to each weight individually.

t = 1 s.

mk = 0.4.

t = 0.

30!

2 m

B

A

Problems 16.17/16.18

16.17 In an assembly-line process, the 20-kg package A starts
from rest and slides down the smooth ramp. Suppose that you
want to design the hydraulic device B to exert a constant force of
magnitude F on the package and bring it to rest in 0.15 s. What is
the required force F?

16.18 The 20-kg package A starts from rest and slides down the
smooth ramp. If the hydraulic device B exerts a force of magni-
tude on the package, where t is in seconds
measured from the time of first contact, what time is required to
bring the package to rest?

F = 54011 + 0.4t22 N
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A

B

u

Problems 16.22/16.23

16.22 The two crates are released from rest. Their masses are
and and the surfaces are smooth. The

angle What is the magnitude of the velocity of crate A
after 1 s?

Strategy: Apply the principle of impulse and momentum to
each crate individually.

16.23 The two crates are released from rest. Their masses are
and The coefficient of kinetic friction

between the contacting surfaces is The angle 
What is the magnitude of the velocity of crate A after 1 s?

u = 20°.mk = 0.1.
mB = 80 kg.mA = 20 kg

u = 20°.
mB = 80 kg,mA = 20 kg

16.24 At a 20-kg projectile is given an initial velocity
at above the horizontal.

(a) By using Newton’s second law to determine the acceleration
of the projectile, determine its velocity at 

(b) What impulse is applied to the projectile by its weight
from to 
(c) Use the principle of impulse and momentum to determine the
projectile’s velocity at 

16.25 A soccer player kicks the stationary 0.45-kg ball to a
teammate. The ball reaches a maximum height above the ground
of 2 m at a horizontal distance of 5 m from the point where it was
kicked. The duration of the kick was 0.04 seconds. Neglecting the
effect of aerodynamic drag, determine the magnitude of the aver-
age force the player exerted on the ball. 

t = 3 s.

t = 3 s?t = 0

t = 3 s.

u0 = 60°v0 = 20 m/s
t = 0,

Problem 16.25

A

B

20!

Problem 16.21

16.21 The two crates are released from rest. Their masses are
and and the coefficient of kinetic fric-

tion between crate A and the inclined surface is What
is the magnitude of the velocity of the crates after 1 s?

mk = 0.15.
mB = 30 kg,mA = 40 kg
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y

x

O
m

v0

L

Problem 16.26

16.26 An object of mass slides with constant velocity
on a horizontal table (seen from above in the figure).

The object is connected by a string of length to the fixed
point O and is in the position shown, with the string parallel to the
x axis, at 

(a) Determine the x and y components of the force exerted on the
mass by the string as functions of time.

(b) Use your results from part (a) and the principle of impulse and
momentum to determine the velocity vector of the mass at 

Strategy: To do part (a), write Newton’s second law for the
mass in terms of polar coordinates.

t = 1 s.

t = 0.

L = 1 m
v0 = 4 m/s

m = 2 kg

16.27 A rail gun, which uses an electromagnetic field to acceler-
ate an object, accelerates a 30-g projectile from zero to 5 km/s in
0.0004 s. What is the magnitude of the average force exerted on
the projectile?

Problems 16.29/16.30

! 16.29 The motorcycle starts from rest at and travels
along a circular track with 300-m radius. From to 
the component of the total force on the motorcycle tangential to
its path is The combined mass of the motorcycle
and rider is 150 kg. Use the principle of impulse and momentum
to determine the magnitude of the motorcycle’s velocity at

(See Active Example 16.2.)

! 16.30 The motorcycle starts from rest at and travels
along a circular track with 300-m radius. From to 
the component of the total tangential force on the motorcycle is
given as a function of time by The com-
bined mass of the motorcycle and rider is 150 kg. Use the princi-
ple of impulse and momentum to determine the magnitude of the
motorcycle’s velocity at (See Active Example 16.2.)t = 10 s.

©Ft = 460 + 3t2 N.

t = 10 s,t = 0
t = 0

t = 10 s.

©Ft = 600 N.

t = 10 s,t = 0
t = 0

Problem 16.28

16.28 The mass of the boat and its passenger is 420 kg. At time
, the boat is moving at 14 m/s and its motor is turned off.

The magnitude of the hydrodynamic drag force on the boat (in
newtons) is given as a function of time by . Deter-
mine how long it takes for the boat’s velocity to decrease to 5 m/s.

830(1 - 0.08t)

t = 0
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Problem 16.35

Problem 16.34

! 16.33 In Example 16.3, suppose that the mass of the golf
ball is 0.046 kg and its diameter is 43 mm. The club is in contact
with the ball for 0.0006 s, and the distance the ball travels in one
0.001-s interval is 50 mm. What is the magnitude of the average
impulsive force exerted by the club?

16.34 In a test of an energy-absorbing bumper, a 2800-lb car
is driven into a barrier at 5 mi/h. The duration of the impact is
0.4 seconds. When the car rebounds from the barrier, the magni-
tude of its velocity is 1.5 mi/h.

(a) What is the magnitude of the average horizontal force exerted
on the car during the impact?

(b) What is the average deceleration of the car during the impact?

16.35 A bioengineer, using an instrumented dummy to test a pro-
tective mask for a hockey goalie, launches the 170-g puck so that
it strikes the mask moving horizontally at 40 m/s. From photo-
graphs of the impact, she estimates its duration to be 0.02 s and
observes that the puck rebounds at 5 m/s.

(a) What linear impulse does the puck exert?

(b) What is the average value of the impulsive force exerted
on the mask by the puck?

16.36 A fragile object dropped onto a hard surface breaks be-
cause it is subjected to a large impulsive force. If you drop a 2-oz
watch from 4 ft above the floor, the duration of the impact is
0.001 s, and the watch bounces 2 in above the floor, what is the
average value of the impulsive force?

16.31 The titanium rotor of a Beckman Coulter ultracentrifuge
used in biomedical research contains 2-gram samples at a distance
of 41.9 mm from the axis of rotation. The rotor reaches its maxi-
mum speed of 130,000 rpm in 12 minutes. 

(a) Determine the average tangential force exerted on a sample
during the 12 minutes the rotor is accelerating. 

(b) When the rotor is at its maximum speed, what normal acceler-
ation are samples subjected to? 

16.32 The angle between the horizontal and the airplane’s path
varies from to at a constant rate of 5 degrees per
second. During this maneuver, the airplane’s thrust and aerody-
namic drag are balanced, so that the only force exerted on the air-
plane in the direction tangent to its path is due to its weight. The
magnitude of the airplane’s velocity when is 120 m/s. Use
the principle of impulse and momentum to determine the magni-
tude of the velocity when u = 30°.

u = 0

u = 30°u = 0
u

u

Problem 16.32
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mA

k
mB

Problems 16.41/16.42

16.39 A 5-oz baseball is 3 ft above the ground when it is struck
by a bat. The horizontal distance to the point where the ball strikes
the ground is 180 ft. Photographic studies indicate that the ball
was moving approximately horizontally at 100 ft/s before it was
struck, the duration of the impact was 0.015 s, and the ball was
traveling at 30° above the horizontal after it was struck. What was
the magnitude of the average impulsive force exerted on the ball
by the bat?

16.40 Paraphrasing the official rules of racquetball, a standard
racquetball is inches in diameter, weighs 1.4 ounces (16 ounces !
1 pound), and bounces between 68 and 72 inches from a 100-inch
drop at a temperature between 70 and 74 degrees Fahrenheit.
Suppose that a ball bounces 71 inches when it is dropped from
a 100-inch height. If the duration of the impact is 0.08 s, what
average force is exerted on the ball by the floor?

16.41 The masses . The surface is smooth. At , A
is stationary, the spring is unstretched, and B is given a velocity 
toward the right. 

(a) In the subsequent motion, what is the velocity of the common
center of mass of A and B? 

(b) What are the velocities of A and B when the spring is
unstretched? 

Strategy: To do part (b), think about the motions of the
masses relative to their common center of mass. 

16.42 The masses and and
The two masses are released from rest on the

smooth surface with the spring stretched 1 m. What are the magni-
tudes of the velocities of the masses when the spring is unstretched?

k = 400 N/m.
mB = 30 kg,mA = 40 kg

v0

t = 0mA = mB

21
4

30!

Problem 16.39

16.38 An entomologist measures the motion of a 3-g locust
during its jump and determines that the insect accelerates from
rest to 3.4 m/s in 25 ms (milliseconds). The angle of takeoff is
55° above the horizontal. What are the horizontal and vertical
components of the average impulsive force exerted by the
locust’s hind legs during the jump?

Problem 16.37

16.37 The 0.45-kg soccer ball is given a kick with a 0.12-s dura-
tion that accelerates it from rest to a velocity of 12 m/s at 60°
above the horizontal.

(a) What is the magnitude of the average total force exerted on
the ball during the kick?

(b) What is the magnitude of the average force exerted on the ball
by the player’s foot during the kick?

Strategy: Use Eq. (16.2) to determine the average total
force on the ball. To determine the average force exerted by the
player’s foot, you must subtract the ball’s weight from the
average total force.
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A

B

r
rA

rB

O

Figure 16.4
Position vector r of the common center of
mass of A and B.

A

FAB

FBA B

Figure 16.3
Two objects and the forces they exert on
each other.

16.2 Conservation of Linear Momentum
and Impacts

BACKGROUND
In this section, we consider the motions of several objects and show that if the
effects of external forces can be neglected, the total linear momentum of the
objects is conserved. (By external forces, we mean forces that are not exerted
by the objects under consideration.) This result provides a powerful tool for an-
alyzing interactions between objects, such as collisions, and also permits us to
determine forces exerted on objects as a result of gaining or losing mass.

Conservation of Linear Momentum
Consider the objects A and B in Fig. 16.3. is the force exerted on A by B,
and is the force exerted on B by A. These forces could result from the two
objects being in contact, for example, or could be exerted by a spring connect-
ing them. As a consequence of Newton’s third law, the two forces are equal and
opposite, so that

(16.5)

Suppose that no external forces act on A and B or that the external forces are neg-
ligible in comparison with the forces that A and B exert on each other. Then we
can apply the principle of impulse and momentum to each object for arbitrary
times and 

If we sum these equations, the terms on the left cancel, and we obtain

which means that the total linear momentum of A and B is conserved:

(16.6)

We can show that the velocity of the combined center of mass of the objects A
and B (that is, the center of mass of A and B regarded as a single object) is also
constant. Let and be the position vectors of their individual centers of
mass (Fig. 16.4). The position of the combined center of mass is

By taking the derivative of this equation with respect to time and using Eq. (16.6),
we obtain

(16.7)

where is the velocity of the combined center of mass. Although the
goal will usually be to determine the individual motions of the objects, know-
ing that the velocity of the combined center of mass is constant can contribute
to our understanding of a problem, and in some instances the motion of the
combined center of mass may be the only information that can be obtained.

v = dr>dt

v =
mA vA + mB vB

mA + mB
= constant,

r =
mA rA + mB rB

mA + mB
.

rBrA

mA vA + mB vB = constant.

mA vA1 + mB vB1 = mA vA2 + mB vB2,

 L
t2

t1

FBA dt = mB vB2 - mB vB1.

 L
t2

t1

FAB dt = mA vA2 - mA vA1,

t2:t1

FAB + FBA = 0.

FBA

FAB
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Impacts
In machines that perform stamping or forging operations, dies impact against
workpieces. Mechanical printers create images by impacting metal elements
against the paper and platen. Vehicles impact each other intentionally, as when
railroad cars are rolled against each other to couple them, and unintentionally
in accidents. Impacts occur in many situations of concern in engineering. In
this section, we consider a basic question: If we know the velocities of two ob-
jects before they collide, how can we determine their velocities afterward? In
other words, what is the effect of the impact on the motions of the objects?

If colliding objects are not subjected to external forces, their total linear
momentum must be the same before and after the impact. Even when they are
subjected to external forces, the force of the impact is often so large, and its du-
ration so brief, that the effect of external forces on the motions of the objects dur-
ing the impact is negligible. Suppose that objects A and B with velocities 
and collide, and let and be their velocities after the impact (Fig. 16.5a).
If the effects of external forces are negligible, then the total linear momentum
of the system composed of A and B is conserved:

(16.8)

Furthermore, the velocity v of the center of mass of A and B is the same before
and after the impact. Thus, from Eq. (16.7),

(16.9)

If A and B adhere and remain together after they collide, they are said to undergo
a perfectly plastic impact. Equation (16.9) gives the velocity of the center of
mass of the object they form after the impact (Fig. 16.5b). A remarkable feature
of this result is that we determine the velocity following the impact without
considering the physical nature of the impact.

If A and B do not adhere, linear momentum conservation alone does not pro-
vide enough equations to determine their velocities after the impact. We first con-
sider the case in which they travel along the same straight line before and after
they collide.

Direct Central Impacts Suppose that the centers of mass of A and B
travel along the same straight line with velocities and before their impact
(Fig. 16.6a). Let R be the magnitude of the force A and B exert on each other
during the impact (Fig. 16.6b). We assume that the contacting surfaces are ori-
ented so that R is parallel to the line along which the two objects travel and is
directed toward their centers of mass. This condition, called direct central
impact, means that A and B continue to travel along the same straight line after
their impact (Fig. 16.6c). If the effects of external forces during the impact are
negligible, the total linear momentum of the objects is conserved:

(16.10)mA vA + mB vB = mA vA
œ + mB vB

œ .

vBvA

v =
mA vA + mB vB

mA + mB
.

mA vA + mB vB = mA vA
œ + mB vB

œ .

vB
œvA

œvB

vA

Even when significant external forces act on A and B, if the external forces
are negligible in a particular direction, Eqs. (16.6) and (16.7) apply in that direc-
tion. These equations also apply to an arbitrary number of objects: If the external
forces acting on any collection of objects are negligible, the total linear momen-
tum of the objects is conserved, and the velocity of their center of mass is constant.

v

v vBvA

(b)

v vBvA

(a)

v!B
v!A v

A
B

A
B

A B

A
B

Figure 16.5
(a) Velocities of A and B before and after

the impact, and the velocity v of their
center of mass.

(b) A perfectly plastic impact.
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vA vB

A B
(a) Before

impact

(b) During
impact

v !A v!B

A B

R B

RA

A B

(c) After
impact

Figure 16.6
(a) Objects A and B traveling along the

same straight line.
(b) During the impact, they exert a force R

on each other.
(c) They travel along the same straight line

after the central impact.

A B

A

A B

B

(a)

(b)

(c)

Figure 16.7
(a) First contact, 
(b) Closest approach, 
(c) End of contact, t = t2.

t = tC.
t = t1.

However, we need another equation to determine the velocities and To
obtain it, we must consider the impact in more detail.

Let be the time at which A and B first come into contact (Fig. 16.7a). As
a result of the impact, they will deform and their centers of mass will continue
to approach each other. At a time their centers of mass will have reached
their nearest proximity (Fig. 16.7b). At this time, the relative velocity of the
two centers of mass is zero, so they have the same velocity. We denote it by 
The objects then begin to move apart and separate at a time (Fig. 16.7c). We
apply the principle of impulse and momentum to A during the intervals of time
from to the time of closest approach and from to 

(16.11)

(16.12)

Then we apply the principle to B for the same intervals of time:

(16.13)

(16.14)

As a result of the impact, part of the objects’ kinetic energy can be lost due
to a variety of mechanisms, including permanent deformation and generation of
heat and sound. As a consequence, the impulse they impart to each other dur-
ing the “restitution” phase of the impact from to is, in general, smaller than
the impulse they impart from to The ratio of these impulses is called the
coefficient of restitution:

(16.15)

The value of e depends on the properties of the objects as well as their velocities
and orientations when they collide, and it can be determined only by experiment
or by a detailed analysis of the deformations of the objects during the impact.

e = L
t2

tC

R dt

L
tC

t1

R dt

.

tC.t1

t2tC

L
t2

tC

R dt = mB vB
œ - mB vC.

L
tC

t1

R dt = mB vC - mB vB,

L
t2

tC

-R dt = mA vA
œ - mA vC.

L
tC

t1

-R dt = mA vC - mA vA,

t2:tCtCt1

t2

vC.

tC,

t1

vB
œ .vA

œ
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If we divide Eq. (16.12) by Eq. (16.11) and divide Eq. (16.14) by Eq. (16.13),
we can express the resulting equations in the forms

and

Subtracting the first equation from the second, we obtain

(16.16)

Thus, the coefficient of restitution is related in a simple way to the relative ve-
locities of the objects before and after the impact. If e is known, Eq. (16.16)
can be used together with the equation of conservation of linear momentum,
Eq. (16.10), to determine and 

If Eq. (16.16) indicates that The objects remain together
after the impact, and the impact is perfectly plastic. If it can be shown
that the total kinetic energy is the same before and after the impact:

An impact in which kinetic energy is conserved is called perfectly elastic. Although
this is sometimes a useful approximation, energy is lost in any impact in which
material objects come into contact. If a collision can be heard, kinetic energy has
been converted into sound. Permanent deformations of the colliding objects after
the impact also represent losses of kinetic energy.

Oblique Central Impacts We can extend the procedure used to analyze
direct central impacts to the case in which the objects approach each other at an
oblique angle. Suppose that A and B approach with arbitrary velocities and

(Fig. 16.8) and that the forces they exert on each other during their impact
are parallel to the x axis and point toward their centers of mass. No forces are
exerted on A and B in the y or z directions, so their velocities in those directions
are unchanged by the impact:

(16.17)

In the x direction, linear momentum is conserved:

(16.18)

By the same analysis we used to arrive at Eq. (16.16), the x components of ve-
locity satisfy the relation

(16.19)

We can analyze an oblique central impact in which an object A hits a sta-
tionary object B if friction is negligible. Suppose that B is constrained so that it
cannot move relative to the inertial reference frame. For example, in Fig. 16.9,
A strikes a wall B that is fixed relative to the earth. The y and z components of
A’s velocity are unchanged, because friction is neglected and the impact exerts
no force in those directions. The x component of A’s velocity after the impact
is given by Eq. (16.19) with B’s velocity equal to zero:1vA

œ 2x = -e1vA2x.

e =
1vB

œ 2x - 1vA
œ 2x1vA2x - 1vB2x.

mA1vA2x + mB1vB2x = mA1vA
œ 2x + mB1vB

œ 2x.

 1vA
œ 2z = 1vA2z, 1vB

œ 2z = 1vB2z. 1vA
œ 2y = 1vA2y, 1vB

œ 2y = 1vB2y, 

vB

vA

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA1vA

œ 22 + 1
2 mB1vB

œ 22 1when e = 12.
e = 1,

vB
œ = vA

œ .e = 0,
vB

œ .vA
œ

e =
vB

œ - vA
œ

vA - vB
.

1vC - vB2e = vB
œ - vC.

1vC - vA2e = vA
œ - vC
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v!B
y

x

vBvA

A B

A
B

v!A

Figure 16.8
An oblique central impact.

y

x

vA

A

A

B

v!A

Figure 16.9
Impact with a stationary object.
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RESULTS

Conservation of Linear Momentum

Impacts

Perfectly Plastic Collision

If the only forces acting on two objects
A and B are the forces they exert on
each other, their total linear momentum
is conserved and the velocity v of their
common center of mass is constant.

mAvA ! mBvB " constant.

v "

(16.6)

(16.7)" constant.
mAvA ! mBvB

mA ! mB

If two objects A and B collide and the
effects of external forces are negligible,
their total linear momentum and the
velocity of their common center of mass
are the same before and after the impact.

mAvA ! mBvB " mAv¿A ! mBv¿B, (16.8)

v " (16.9).
mAvA ! mBvB

mA ! mB

v vBvA

v#B
v#A v

A B

A
B

In this type of collision, A and B adhere
and remain together after their impact.
The velocity of their common center of
mass after the impact is given by
Eq. (16.9).

v

v vBvA

A B

A
B
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16.2 Conservation of Linear Momentum and Impacts 243

Linear momentum is conserved in the
direction perpendicular to the plane of the
impact and the components of velocity are
related by the coefficient of restitution.

The components of velocity parallel to the
plane of the impact are unchanged.

(v¿A)y ! (vA)y,    (v¿B)y ! (vB)y,

(v¿A)z ! (vA)z,    (v¿B)z ! (vB)z.
(16.17)

e ! (16.19)

mA(vA)x " mB(vB)x ! mA(v¿A)x " mB(v¿B)x. (16.18)

.
(v¿B)x # (v¿A)x 

(vA)x # (vB)x

v$B
y

x

vBvA

A B

A
B

v$A

Direct Central Impact

Oblique Central Impact

Linear momentum is conserved and the 
velocities before and after the impact are
related by the coefficient of restitution e. If
e ! 0, the collision is perfectly plastic, and
if e ! 1, the total kinetic energy is
conserved.

mAvA " mBvB ! mAv¿A " mBv¿B, (16.10)

e ! (16.16).
v¿B # v¿A
vA # vB

vA vB

A B
Before 
impact

During 
impact

v $A v$B

A B

R B

RA

A B

After 
impact
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Active Example 16.4 Conservation of Linear Momentum (! Related Problem 16.43)

A person of mass stands at the center of a stationary barge of mass Sup-
pose that the person runs to the right-hand end of the barge and stops. What are
her position and the barge’s position relative to their original positions? Neglect
horizontal forces exerted on the barge by the water.

mB.mP

Strategy
The only horizontal forces on the person and barge are the forces they exert on
each other, so the horizontal velocity of their common center of mass must be
constant. Its velocity is initially zero, so it must remain zero—it does not move.
We can use this condition to determine the positions of the centers of mass of
the person and the barge when the person is at the right end of the barge.

Solution

L
1
2

L
1
2

Place the origin of the coordinate
system at the initial position of the
common center of mass of the person
and barge. Let xP be the person’s
position when she has arrived at
the right end of the barge, and let xB
be the barge’s position to the left of
the origin.

y

x 

xB

xP

L
1
2

The position of the common center of
mass of the person and the barge must
remain x ! 0.

Solving this equation together with the relation
xP " xB ! L/2 yields the two positions.

! 0.
xPmP " (#xB)mB

mP " mB
x !

mBL
2(mP " mB)

xP ! ,
mPL

2(mP " mB)
xB ! .
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Active Example 16.5 Analyzing an Impact (! Related Problem 16.60)

The 4-kg masses A and B slide on the smooth horizontal bar with the velocities
shown. Determine their velocities after they collide if their coefficient of resti-
tution is e = 0.8.

Strategy
Knowing the masses, the velocities before the collision, and the coefficient of
restitution, we can use Eqs. (16.10) and (16.16) to determine the velocities of
the two masses after the collision.

Practice Problem Suppose that the masses A and B are coated with Velcro and
stick together when they collide. What is their velocity after the impact?

Answer: 2.5 m/s.

Apply Eq. (16.16) (definition of
the coefficient of restitution).

v¿B ! v¿A
vA ! vB

v¿B ! v¿A
10 m/s ! (!5 m/s) 

e  "

0.8  "

:

. (2)

Solve Eqs. (1) and (2) to obtain
the velocities after the impact. v¿A  " !3.5 m/s, v¿B  " 8.5 m/s.

10 m/s 5 m/s

A B

Apply Eq. (16.10) (conservation
of linear momentum). (4 kg)(10 m/s) # (4 kg)(!5 m/s) " (4 kg)v¿A # (4 kg)v¿B.     (1)

mAvA # mBvB " mAv¿A # mBv¿B :

Practice Problem If the person leaves her initial position at the center of the station-
ary barge and starts running with velocity toward the right, what is the resulting
velocity of the barge?

Answer: vB = (mP>mB)vP toward the left .

y

x 

vB

vP

vP
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x

B

A

vA

z

y

Example 16.6 Applying Momentum Methods to Spacecraft Docking (! Related Problem 16.77)

The Apollo command-service module (A) attempts to dock with the Soyuz cap-
sule (B), July 15, 1975. Their masses are and 
The Soyuz is stationary relative to the reference frame shown, and the command-
service module approaches with velocity 
(a) If the first attempt at docking is successful, what is the velocity of the cen-
ter of mass of the combined vehicles afterward?
(b) If the first attempt is unsuccessful and the coefficient of restitution of the
resulting impact is what are the velocities of the two spacecraft after
the impact?

e = 0.95,

0.2i + 0.03j - 0.02k 1m/s2.vA =

mB = 6.6 Mg.mA = 18 Mg

Strategy
(a) If the docking is successful, the impact is perfectly plastic, and we can use
Eq. (16.9) to determine the velocity of the center of mass of the combined object
after the impact.
(b) By assuming an oblique central impact with the forces exerted by the
docking collars parallel to the x axis, we can use Eqs. (16.18) and (16.19) to
determine the velocities of both spacecraft after the impact.

Solution
(a) From Eq. (16.9), the velocity of the center of mass of the combined vehicles is

(b) The y and z components of the velocities of both spacecraft are unchanged.
To determine the x components, we first use conservation of linear momentum,
Eq. (16.18).

 118 Mg210.2 m/s2 + 0 = 118 Mg21vA
œ 2x + 16.6 Mg21vB

œ 2x.

 mA1vA2x + mB1vB2x = mA1vA
œ 2x + mB1vB

œ 2x:

 = 0.146i + 0.0220j - 0.0146k 1m/s2. =
118 Mg230.2i + 0.03j - 0.02k 1m/s24 + 0

18 Mg + 6.6 Mg

 v =
mA vA + mB vB

mA + mB
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We then use the coefficient of restitution, Eq. (16.19), to obtain

Solving these two equations yields and 
so the velocities of the spacecraft after the impact are

Critical Thinking
Why are calculations of this kind useful? Analytical simulations of the impact
of the two spacecraft as they docked were used in designing the docking
mechanisms and also in training the astronauts who performed the docking
maneuver.

 vœ
B = 0.285i 1m/s2. vœ
A = 0.0954i + 0.03j - 0.02k 1m/s2, 

1vB
œ 2x = 0.285 m/s,1vA

œ 2x = 0.0954 m/s

 0.95 =
1vB

œ 2x - 1vA
œ 2x

0.2 m/s - 0
.

 e =
1vB

œ 2x - 1vA
œ 2x1vA2x - 1vB2x  :

Problems

Problem 16.43

! 16.43 A girl weighing 80 lb stands at rest on a 325-lb floating
platform. She starts running at 10 ft/s relative to the platform and
runs off the end. Neglect the horizontal force exerted on the plat-
form by the water. 

(a) After she starts running, what is her velocity relative to the
water? 

(b) While she is running, what is the velocity of the common cen-
ter of mass of the girl and the platform relative to the water? (See
Active Example 16.4.)

2 ft/sA 1 ft/sB

Problems 16.44/16.45

16.44 Two railroad cars with weights and
collide and become coupled together. Car A is

full, and car B is half full, of carbolic acid. When the cars collide,
the acid in B sloshes back and forth violently.

(a) Immediately after the impact, what is the velocity of the com-
mon center of mass of the two cars?

(b) When the sloshing in B has subsided, what is the velocity of
the two cars?

16.45 The weights of the railroad cars are 
and The railroad track has a constant slope of 
0.2 degrees upward toward the right. If the cars are 6 ft apart at
the instant shown, what is the velocity of their common center of
mass immediately after they become coupled together?

WB = 70,000 lb.
WA = 120,000 lb

WB = 70,000 lb
WA = 120,000 lb
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45!

M

S 7 km/s b

Problems 16.46/16.47

Problem 16.48

16.46 The 400-kg satellite S traveling at 7 km/s is hit by a 1-kg
meteor M traveling at 12 km/s. The meteor is embedded in the
satellite by the impact. Determine the magnitude of the velocity
of their common center of mass after the impact and the angle 
between the path of the center of mass and the original path of
the satellite.

16.47 The 400-kg satellite S traveling at 7 km/s is hit by a 1-kg
meteor M. The meteor is embedded in the satellite by the impact.
What would the magnitude of the velocity of the meteor need to
be to cause the angle between the original path of the satellite
and the path of the center of mass of the combined satellite and
meteor after the impact to be 0.5°? What is the magnitude of the
velocity of the center of mass after the impact?

b

b

16.48 A 68-kg astronaut is initially stationary at the left side
of an experiment module within an orbiting space shuttle. The
105,000-kg shuttle’s center of mass is 4 m to the astronaut’s right.
He launches himself toward the center of mass at 1 m/s relative to
the shuttle. He travels 8 m relative to the shuttle before bringing
himself to rest at the opposite wall of the experiment module.

(a) What is the change in the magnitude of the shuttle’s velocity
relative to its original velocity while the astronaut is in motion?

(b) What is the change in the magnitude of the shuttle’s velocity
relative to its original velocity after his “flight”?

(c) Where is the shuttle’s center of mass relative to the astronaut
after his “flight”?

v

u0

Problems 16.50/16.51

16.49 An 80-lb boy sitting in a stationary 20-lb wagon wants to
simulate rocket propulsion by throwing bricks out of the wagon.
Neglect horizontal forces on the wagon’s wheels. If the boy has
three bricks weighing 10 lb each and throws them with a horizon-
tal velocity of 10 ft/s relative to the wagon, determine the velocity
he attains (a) if he throws the bricks one at a time and (b) if he
throws them all at once.

16.50 The catapult, designed to throw a line to ships in distress,
throws a 2-kg projectile. The mass of the catapult is 36 kg, and it
rests on a smooth surface. If the velocity of the projectile relative
to the earth as it leaves the tube is 50 m/s at relative
to the horizontal, what is the resulting velocity of the catapult
toward the left?

16.51 The catapult, which has a mass of 36 kg and throws a 2-kg
projectile, rests on a smooth surface. The velocity of the projectile
relative to the catapult as it leaves the tube is 50 m/s at 
relative to the horizontal. What is the resulting velocity of the cat-
apult toward the left?

u0 = 30°

u0 = 30°

Problem 16.49
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v

Problem 16.52

16.52 A bullet with a mass of 3.6 grams is moving horizontally
with velocity and strikes a 5-kg block of wood, becoming em-
bedded in it. After the impact, the bullet and block slide 24 mm
across the floor. The coefficient of kinetic friction between the
block and the floor is . Determine the velocity . vmk = 0.4

v

16.53 A 0.12-ounce bullet hits a suspended 15-lb block of wood
and becomes embedded in it. The angle through which the wires
supporting the block rotate as a result of the impact is measured
and determined to be 7°. What was the bullet’s velocity?

2 ft 7!

vC

y

x

vB

Problem 16.55

16.55 A 12,000-lb bus collides with a 2800-lb car. The velocity
of the bus before the collision is and the velocity
of the car is The two vehicles become entangled
and remain together after the collision. The coefficient of kinetic
friction between the vehicles’ tires and the road is 

(a) What is the velocity of the common center of mass of the two
vehicles immediately after the collision?

(b) Determine the approximate final position of the common cen-
ter of mass of the vehicles relative to its position when the colli-
sion occurred. (Assume that the tires skid, not roll, on the road.)

mk = 0.6.

vC = 33j 1ft/s2. vB = 18i 1ft/s2

B 0.2 m/s

1 m/s

A

26!

Problem 16.54

16.54 The overhead conveyor drops the 12-kg package A into
the 1.6-kg carton B. The package is tacky and sticks to the bottom
of the carton. If the coefficient of friction between the carton and
the horizontal conveyor is what distance does the car-
ton slide after the impact?

mk = 0.2,

Problem 16.53
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A
B

y

x9 m

6 m

Problem 16.56

vA

A B

Problems 16.57/16.58

16.56 The velocity of the 200-kg astronaut A relative to the
space station is The velocity of the 300-kg
structural member B relative to the station is 
When they approach each other, the astronaut grasps and clings to
the structural member.

(a) What is the velocity of their common center of mass when
they arrive at the station?

(b) Determine the approximate position at which they contact
the station.

-20i + 30j 1mm/s2.40i + 30j 1mm/s2.

16.57 The weights of the two objects are lb and
lb. Object A is moving at ft/s and undergoes a

perfectly elastic impact with the stationary object B. Determine
the velocities of the objects after the impact.

16.58 The weights of the two objects are lb and
lb. Object A is moving at ft/s and undergoes a

direct central impact with the stationary object B. The coefficient
of restitution is Determine the velocities of the objects
after the impact.

e = 0.8.

vA = 2WB = 8
WA = 5

vA = 2WB = 8
WA = 5

16.61 In a study of the effects of an accident on simulated occu-
pants, the 1900-lb car with velocity mi/h collides with
the 2800-lb car with velocity mi/h. The coefficient of
restitution of the impact is What are the velocities of
the cars immediately after the collision? 

16.62 In a study of the effects of an accident on simulated occu-
pants, the 1900-lb car with velocity mi/h collides with
the 2800-lb car with velocity mi/h. The coefficient of
restitution of the impact is The duration of the collision
is 0.22 s. Determine the magnitude of the average acceleration to
which the occupants of each car are subjected. 

e = 0.15.
vB = 20

vA = 30

e = 0.15.
vB =  20

vA = 30

vA vB

Problems 16.61/16.62

vA

A B

vB

Problem 16.59

3 m/s 2 m/s

A B

Problem 16.60

16.59 The objects A and B with velocities m/s and
m/s undergo a direct central impact. Their masses are
kg and kg. After the impact, the object B is

moving to the right at 16 m/s. What is the coefficient of
restitution?

mB = 12mA = 8
vB = 4

vA = 20

! 16.60 The 8-kg mass A and the 12-kg mass B slide on the
smooth horizontal bar with the velocities shown. The coefficient
of restitution is Determine the velocities of the masses
after they collide. (See Active Example 16.5.) 

e = 0.2.
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vA

A B C

k

Problems 16.63–16.65

A B

vA

Problem 16.66

16.66 Suppose that you investigate an accident in which a 3400-lb
car A struck a parked 1960-lb car B. All four of car B’s wheels
were locked, and skid marks indicate that it slid 20 ft after the im-
pact. If you estimate the coefficient of kinetic friction between B’s
tires and the road to be and the coefficient of restitution
of the impact to be , what was A’s velocity just before
the impact? (Assume that only one impact occurred.) 

vAe = 0.2
mk = 0.8

16.63 The balls are of equal mass m. Balls B and C are con-
nected by an unstretched spring and are stationary. Ball A moves
toward ball B with velocity The impact of A with B is per-
fectly elastic 

(a) What is the velocity of the common center of mass of balls B
and C immediately after the impact?

(b) What is the velocity of the common center of mass of B and C
at time t after the impact?

16.64 In Problem 16.63, what is the maximum compressive
force in the spring as a result of the impact?

16.65* The balls are of equal mass m. Balls B and C are con-
nected by an unstretched spring and are stationary. Ball A moves
toward ball B with velocity The impact of A with B is perfect-
ly elastic Suppose that you interpret this as an impact
between ball A and an “object” D consisting of the connected
balls B and C.

(a) What is the coefficient of restitution of the impact between A
and D?

(b) If you consider the total energy after the impact to be the sum
of the kinetic energies where is the
velocity of the center of mass of D after the impact, how much
energy is “lost” as a result of the impact?

(c) How much energy is actually lost as a result of the impact? 
(This problem is an interesting model for one of the mechanisms of
energy loss in impacts between objects. The energy “loss” calculated
in part (b) is transformed into “internal energy”—the vibrational
motions of B and C relative to their common center of mass.)

vD
œ1

2 m1vA
œ 22 + 1

212m21vD
œ 22,

1e = 12. vA.

1e = 12. vA.

5 ft

Problem 16.67

16.67 When the player releases the ball from rest at a height of
5 ft above the floor, it bounces to a height of 3.5 ft. If he throws the
ball downward, releasing it at 3 ft above the floor, how fast would
he need to throw it so that it would bounce to a height of 12 ft?
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16 in

12 in

2

1

k k

Workpiece

Problems 16.72/16.73

16.70 By making measurements directly from the photograph of
the bouncing golf ball, estimate the coefficient of restitution.

16.71 If you throw the golf ball in Problem 16.70 horizontally at
2 ft/s and release it 4 ft above the surface, what is the distance
between the first two bounces?

16.72 In a forging operation, the 100-lb weight is lifted into
position 1 and released from rest. It falls and strikes a work-
piece in position 2. If the weight is moving at 15 ft/s immedi-
ately before the impact and the coefficient of restitution is

what is the velocity of the weight immediately
after the impact?

16.73 The 100-lb weight is released from rest in position 1.
The spring constant is lb/ft, and the springs are un-
stretched in position 2. If the coefficient of restitution of the
impact of the weight with the workpiece in position 2 is 
what is the magnitude of the velocity of the weight immediately
after the impact?

e = 0.6,

k = 120

e = 0.3,

Problems 16.70/16.71

12 m/s

1 m

16.68 The 0.45-kg soccer ball is 1 m above the ground when it is
kicked upward at 12 m/s. If the coefficient of restitution between
the ball and the ground is what maximum height above
the ground does the ball reach on its first bounce?

16.69 The 0.45-kg soccer ball is stationary just before it is
kicked upward at 12 m/s. If the impact lasts 0.02 s, what average
force is exerted on the ball by the player’s foot?

e = 0.6,

Problems 16.68/16.69

© Harold & Esther Edgerton Foundation, 2007, courtesy of Palm
Press, Inc.
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16.76 Two small balls, each of 1-lb weight, hang from strings of
length ft. The left ball is released from rest with 
The coefficient of restitution of the impact is Through
what maximum angle does the right ball swing?

e = 0.9.
u = 35°.L = 3

L
L

m

m

u

Problem 16.76

6 m/s

Problems 16.74/16.75

16.74* A bioengineer studying helmet design uses an experi-
mental apparatus that launches a 2.4-kg helmet containing a 2-kg
model of the human head against a rigid surface at 6 m/s. The
head suspended within the helmet is not immediately affected by
the impact of the helmet with the surface and continues to move to
the right at 6 m/s, so the head then undergoes an impact with the
helmet. If the coefficient of restitution of the helmet’s impact with
the surface is 0.85 and the coefficient of restitution of the subse-
quent impact of the head with the helmet is 0.15, what is the
velocity of the head after its initial impact with the helmet?

16.75* (a) If the duration of the impact of the head with the
helmet in Problem 16.74 is 0.004 s, what is the magnitude of
the average force exerted on the head by the impact?

(b) Suppose that the simulated head alone strikes the rigid surface
at 6 m/s, the coefficient of restitution is 0.5, and the duration of
the impact is 0.0002 s. What is the magnitude of the average force
exerted on the head by the impact?

! 16.77 In Example 16.6, if the Apollo command-service
module approaches the Soyuz spacecraft with velocity

and the docking is successful,
what is the velocity of the center of mass of the combined
vehicles afterward?

16.78 The 3-kg object A and 8-kg object B undergo an 
oblique central impact. The coefficient of restitution is 

Before the impact, and
What are the velocities of A and B

after the impact?
vB = -2i - 6j + 5k 1m/s2.vA = 10i + 4j + 8k 1m/s2e = 0.8.

0.25 i + 0.04 j + 0.01 k (m/s)

A B

y

x

Problem 16.78

baseball

Bat

y

x

vb

vB

Problem 16.79

16.79 A baseball bat (shown with the bat’s axis perpendicular to
the page) strikes a thrown baseball. Before their impact, the ve-
locity of the baseball is and
the velocity of the bat is
Neglect the change in the velocity of the bat due to the direct
central impact. The coefficient of restitution is What
is the ball’s velocity after the impact? Assume that the baseball
and the bat are moving horizontally. Does the batter achieve a
potential hit or a foul ball?

e = 0.2.

vB = 601-cos 45°i - cos 45°j2 1ft/s2.vb = 1321cos 45°i + cos 45°j2 1ft/s2
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20!

Direction
of goal

x

y

vP

vS

Problems 16.83/16.84

16.83 The velocity of the 170-g hockey puck is
If you neglect the change in the velocity

of the stick resulting from the impact, and if the
coefficient of restitution is what should be to send
the puck toward the goal?

16.84 In Problem 16.83, if the stick responds to the impact the
way an object with the same mass as the puck would and the
coefficient of restitution is what should be to send
the puck toward the goal?

vSe = 0.6,

vSe = 0.6,
vS = v S j
vP = 10i - 4j 1m/s2.

x

45!

A

B

y

Problems 16.80/16.81

16.80 The cue gives the cue ball A a velocity parallel to the y
axis. The cue ball hits the eight ball B and knocks it straight into
the corner pocket. If the magnitude of the velocity of the cue ball
just before the impact is 2 m/s and the coefficient of restitution is

what are the velocity vectors of the two balls just after the
impact? (The balls are of equal mass.)

16.81 In Problem 16.80, what are the velocity vectors of the
two balls just after the impact if the coefficient of restitution is
e = 0.9?

e = 1,

Problem 16.82

16.82 If the coefficient of restitution is the same for both im-
pacts, show that the cue ball’s path after two banks is parallel to
its original path.
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16.3 Angular Momentum

BACKGROUND
In this section we derive a result, analogous to the principle of impulse and mo-
mentum, that relates the integral of a moment with respect to time to the change
in a quantity called the angular momentum.

Principle of Angular Impulse and Momentum
We describe the position of an object relative to an inertial reference frame
with origin O by the position vector r from O to the object’s center of mass
(Fig. 16.10a). Recall that we obtained the very useful principle of work and
energy by taking the dot product of Newton’s second law with the velocity.
Here we obtain another useful result by taking the cross product of Newton’s
second law with the position vector. This procedure gives us a relation between
the moment of the external forces about O and the object’s motion.

We take the cross product of Newton’s second law with r:

(16.20)

Notice that the derivative of the quantity with respect to time is

(The first term on the right side is zero because and the cross prod-
uct of parallel vectors is zero.) Using this result, we can write Eq. (16.20) as

(16.21)

where the vector

(16.22)HO = r * mv

r * ©F =
dHO

dt
,

dr>dt = v

d
dt

 1r * mv2 = adr
dt

* mvb + ar * m 
dv
dt
b .

(')'*
= 0

r * mv

r * ©F = r * ma = r * m 
dv
dt

.

(b)

v

HO ! r " mv

r

O

(a)

O

r

!F

Figure 16.10
(a) The position vector and the total external force on an object.
(b) The angular momentum vector and the right-hand rule for

determining its direction.

BEDFMC16_0136129161.QXD  6/15/07  6:16 PM  Page 255



256 Chapter 16 Momentum Methods

is called the angular momentum about O (Fig. 16.10b). If we interpret the an-
gular momentum as the moment of the linear momentum of the object about
point O, Eq. (16.21) states that the moment equals the rate of change
of the moment of momentum about point O. If the moment is zero during an
interval of time, is constant.

Integrating Eq. (16.21) with respect to time, we obtain

(16.23)

The integral on the left is called the angular impulse, and the equation itself is
called the principle of angular impulse and momentum: The angular impulse ap-
plied to an object during an interval of time is equal to the change in the object’s
angular momentum. If we know the moment as a function of time, we
can determine the change in the angular momentum. The dimensions of the
angular impulse and angular momentum are 

Central-Force Motion
If the total force acting on an object remains directed toward a point that is
fixed relative to an inertial reference frame, the object is said to be in central-
force motion. The fixed point is called the center of the motion. Orbits are the
most familiar instances of central-force motion. For example, the gravita-
tional force on an earth satellite remains directed toward the center of the
earth.

If we place the reference point O at the center of the motion (Fig. 16.11a),
the position vector r is parallel to the total force, so equals zero. There-
fore, Eq. (16.23) indicates that in central-force motion, an object’s angular mo-
mentum is conserved:

(16.24)

In plane central-force motion, we can express r and v in cylindrical coordinates
(Fig. 16.11b):

r = rer,   v = vr er + vueu.

HO = constant.

r * ©F

1mass2 * 1length22>1time2.r * ©F

L
t2

t1

1r * ©F2 dt = 1HO22 - 1HO21.
HO

r * ©F

(a)

O

!F

r

x

y

z

(b)

r

O

vr

vu

yy

x

Figure 16.11
(a) Central-force motion.
(b) Expressing the position and velocity in cylindrical coordinates.
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The integral with respect to time of the
moment exerted by the external forces on an
object, the angular impulse, is equal to the
change in its linear momentum. If the moment
is zero during an interval of time, the angular
momentum is constant.

(r ! "F)dt # (HO)2 $ (HO)1.         (16.23)

O

r

!F

Lt1
t2

Angular impulse

Principle of Angular Impulse and Momentum

The cross product of the position vector of the
center of mass with the linear momentum is
called the angular momentum associated with
the motion of the center of mass.

HO # r ! mv. (16.22)

v

HO # r ! mv

r

O

Angular Momentum

RESULTS

Substituting these expressions into Eq. (16.22), we obtain the angular momentum:

From this expression we see that

(16.25)rvu = constant.

HO = 1rer2 * m1vr er + vueu2 = mrvuez.
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Active Example 16.7 Angular Impulse and Momentum (! Related Problem 16.91)

The disk of mass m slides on the smooth horizontal table. It is attached to a
string that is drawn through a hole in the table at O at constant velocity At

the radial position is and the transverse velocity of the disk is
zero. The disk is subjected to a force that has constant magnitude F and is per-
pendicular to the string. Determine the disk’s velocity as a function of time.

Strategy
By expressing r as a function of time, we can determine the moment of the force
on the disk about O as a function of time. The disk’s angular momentum depends
on its velocity, so we can apply the principle of angular impulse and momen-
tum to obtain information about the velocity as a function of time.

r = r0t = 0,
v0.

r

F

O

v0

In plane central-force motion, the product of
the radial distance from the center of motion
and the transverse component of the velocity
is constant.

rvu ! constant. (16.25)

r

O

vr

vu

y

x

Motion in which the total force acting on an
object remains directed toward a point O that
is fixed relative to an inertial reference frame.
The moment about O is zero, so the angular
momentum about O is constant.

HO ! constant. (16.24)

O

!F

r

x

y

z

Central-Force Motion

BEDFMC16_0136129161.QXD  6/15/07  6:16 PM  Page 258



16.3 Angular Momentum 259

Practice Problem Let the transverse force The string is drawn through a
hole in the table at O at constant velocity Suppose that at the radial position
is and the transverse velocity of the disk is Use the fact that the disk is in
central-force motion to determine its velocity as a function of time.

Answer: v = -v0er +
r0v0

r0 - v0t
eu.

v0.r = r0

t = 0,v0.
F = 0.

Express r in terms of the initial radius
r0 and the constant velocity v0.

r ! r0 " v0t.

Express the moment about O in terms
of cylindrical coordinates.

r # $F ! rer # ("Ter % Feu)

! F(r0 " v0t )ez.

O

F
T

r

eu er

Express the angular momentum about
O in terms of cylindrical coordinates.

HO ! r # mv

! rer # m(vrer % vueu)

! mvu(r0 " v0t)ez.

Apply the principle of angular impulse
and momentum for the interval of time
from 0 to t.

(r # $F) dt ! (HO)2 " (HO)1 :Lt1
t2

L0
t

F(r0 " v0t)ez dt ! mvu(r0 " v0t)ez " 0,

!          "r0t "F ez ! mvu!r0 " v0t"ez.v0t
21

2

[r0t " (1/2)v0t
2]F

(r0 " v0t)m
vu !

Solve for vu.

Express the velocity as a function of time
in terms of cylindrical coordinates.

v ! vrer % vueu

[r0t " (1/2)v0t
2]F

(r0 " v0t)m
! "v0er % eu.

Solution
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rPrA
vA

vP

Example 16.8 Applying Conservation of Momentum and Energy to a Satellite
(! Related Problems 16.87, 16.88)

When an earth satellite is at perigee (the point at which it is nearest to the earth),
the magnitude of its velocity is and its distance from the center
of the earth is . What are the magnitude of the velocity and
the distance of the satellite from the earth at apogee (the point at which it is
farthest from the earth)? The radius of the earth is 

Strategy
Because the satellite undergoes central-force motion about the center of the earth,
the product of its distance from the center of the earth and the transverse compo-
nent of its velocity is constant. This gives us one equation relating and We
can obtain a second equation relating and by using conservation of energy.

Solution
From Eq. (16.25), conservation of angular momentum requires that

From Eq. (15.27), the potential energy of the satellite in terms of its distance
from the center of the earth is

The sum of the kinetic and potential energies at apogee and perigee must be
equal:

Substituting into this equation and rearranging terms, we obtain

This equation yields the trivial solution and also the solution for the
velocity at apogee:

Substituting the values of g, and we obtain and

Critical Thinking
In this example, the satellite’s velocity and its distance from the center of the earth
at perigee were known. Notice that with this information, you can use Eq. (16.25)
to determine the transverse component of the satellite’s velocity at any given
radial position. You can use conservation of energy to determine the magnitude of
the satellite’s velocity at the same radial position, which means that you can also
determine the radial component of the satellite’s velocity vr.

vu

rA = 16,000 km.
vA = 4370 m/svP,RE, rP,

vA =
2gRE

2

rP vP
- vP.

vA = vP

1vA - vP2avA + vP -
2gRE

2

rP vP
b = 0.

rA = rP vP>vA

1
2

 mvA
2 -

mgRE
2

rA
= 1

2
 mvP

2 -
mgRE

2

rP
.

V = -
mgRE

2

r
.

rA vA = rP vP.

rAvA

rA.vA

RE = 6370 km.
rA

vArP = 10,000 km
vP = 7000 m/s
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O

r

x

y

z

Problems 16.85/16.86

B

A
C

8000 km8000 km
16,000 km

13,900 km

Problems 16.87/16.88

Problems
16.85 At the instant shown the position of the 
2-kg object’s center of mass is and its
velocity is No external forces act
on the object. What is the object’s angular momentum about
the origin O at 

16.86 The total external force on the 2-kg object is given as a
function of time by At time the ob-
ject’s position and velocity are and 

(a) Use Newton’s second law to determine the object’s velocity v
and position r as functions of time.

(b) By integrating with respect to time from to
determine the angular impulse about O exerted on the

object during this interval of time.

(c) Use the results of part (a) to determine the change in the ob-
ject’s angular momentum from to t2 = 6 s.t1 = 0

t2 = 6 s,
t1 = 0r * ©F

v = 0.r = 0
t1 = 0,©F = 2ti + 4j 1N2.

t2 = 1 s?

v = -16i + 8j - 12k 1m/s2.r = 6i + 4j + 2k 1m21t1 = 02, ! 16.87 A satellite is in the elliptic earth orbit shown. Its veloci-
ty at perigee A is 8640 m/s. The radius of the earth is 6370 km.

(a) Use conservation of angular momentum to determine the
magnitude of the satellite’s velocity at apogee C.
(b) Use conservation of energy to determine the magnitude of the
velocity at C.
(See Example 16.8.)

! 16.88 For the satellite in Problem 16.87, determine the mag-
nitudes of the radial velocity and transverse velocity at B.
(See Example 16.8.)

vuvr
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r

A

v0

k

Problems 16.89/16.90

r

Problems 16.91/16.92

16.89 The bar rotates in the horizontal plane about a smooth pin
at the origin. The 2-kg sleeve A slides on the smooth bar, and the
mass of the bar is negligible in comparison to the mass of the
sleeve. The spring constant is and the spring is un-
stretched when At the radial position of the sleeve
is and the angular velocity of the bar is 
What is the angular velocity of the bar when 

16.90 The bar rotates in the horizontal plane about a smooth pin
at the origin. The 2-kg sleeve A slides on the smooth bar, and the
mass of the bar is negligible in comparison to the mass of the
sleeve. The spring constant is and the spring is un-
stretched when At the radial position of the sleeve
is its radial velocity is and the angular veloci-
ty of the bar is What are the angular velocity of the
bar and the radial velocity of the sleeve when r = 0.25 m?

v0 = 6 rad/s.
vr = 0,r = 0.2 m,

t = 0,r = 0.
k = 40 N/m,

r = 0.25 m?
v0 = 6 rad/s.r = 0.2 m

t = 0,r = 0.
k = 40 N/m,

! 16.91 A 2-kg disk slides on a smooth horizontal table and is
connected to an elastic cord whose tension is where r is
the radial position of the disk in meters. If the disk is at
and is given an initial velocity of 4 m/s in the transverse direction,
what are the magnitudes of the radial and transverse components
of its velocity when (See Active Example 16.7.)

16.92 In Problem 16.91, determine the maximum value of r
reached by the disk.

r = 2 m?

r = 1 m
T = 6r N,

A
B

12 m

v0

Problem 16.95

16.95 Two gravity research satellites
are tethered by a cable. The satellites and cable

rotate with angular velocity revolution per minute.
Ground controllers order satellite A to slowly unreel 6 m of
additional cable. What is the angular velocity afterward?

v0 = 0.25
mB = 50 kg2 1mA = 250 kg,

r

T

Problems 16.93/16.94

16.93 A 1-kg disk slides on a smooth horizontal table and is
attached to a string that passes through a hole in the table.

(a) If the mass moves in a circular path of constant radius
with a velocity of 2 m/s, what is the tension T?

(b) Starting from the initial condition described in part (a), the
tension T is increased in such a way that the string is pulled
through the hole at a constant rate until Determine the
value of T as a function of r while this is taking place.

16.94 In Problem 16.93, how much work is done on the mass in
pulling the string through the hole as described in part (b)?

r = 0.5 m.

r = 1 m
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y

2i (m/s)

6 m

O
x

Problems 16.96/16.97

16.96 The astronaut moves in the x–y plane at the end of a 10-m
tether attached to a large space station at O. The total mass of the
astronaut and his equipment is 120 kg.

(a) What is the astronaut’s angular momentum about O before the
tether becomes taut?

(b) What is the magnitude of the component of his velocity per-
pendicular to the tether immediately after the tether becomes taut?

16.97 The astronaut moves in the x–y plane at the end of a 10-m
tether attached to a large space station at O. The total mass of the
astronaut and his equipment is 120 kg. The coefficient of restitu-
tion of the “impact” that occurs when he comes to the end of the
tether is What are the x and y components of his velocity
immediately after the tether becomes taut?

e = 0.8.

16.98 A ball suspended from a string that goes through a hole in
the ceiling at O moves with velocity in a horizontal circular
path of radius The string is then drawn through the hole until
the ball moves with velocity in a horizontal circular path of ra-
dius Use the principle of angular impulse and momentum to
show that 

Strategy: Let e be a unit vector that is perpendicular to the
ceiling. Although this is not a central-force problem—the ball’s
weight does not point toward O—you can show that

so that is conserved.e # HOe # 1r * ©F2 = 0,

rA vA = rB vB.
rB.

vB

rA.
vA

O

vB
rB

rA
vA

Problem 16.98

16.4 Mass Flows

BACKGROUND
In this section, we use conservation of linear momentum to determine the force
exerted on an object as a result of emitting or absorbing a continuous flow of
mass. The resulting equation applies to a variety of situations, including deter-
mining the thrust of a rocket and calculating the forces exerted on objects by
flows of liquids or granular materials.

Suppose that an object of mass m and velocity v is subjected to no ex-
ternal forces (Fig. 16.12a) and emits an element of mass with velocity

relative to the object (Fig. 16.12b). We denote the new velocity of the ob-
ject by The linear momentum of the object before the element of
mass is emitted equals the total linear momentum of the object and the ele-
ment afterward:

Evaluating the products and simplifying, we obtain

(16.26)m¢v + ¢m f v f - ¢m f¢v = 0.

mv = 1m - ¢m f21v + ¢v2 + ¢m f1v + vf2.
v + ¢v.

vf

¢mf

(a)

(b)

m ! "mf

"mf

v

v # "v

v # vf 

m

Figure 16.12
An object’s mass and velocity (a) before and
(b) after emitting an element of mass.
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Now we assume that instead of shedding a discrete element of mass, the object
emits a continuous flow of mass and that is the amount emitted in an interval
of time We divide Eq. (16.26) by and write the resulting equation as

Taking the limit of this equation as we obtain

where a is the acceleration of the object’s center of mass and the term 
is the mass flow rate—the rate at which mass flows from the object. Compar-
ing this equation with Newton’s second law, we conclude that a flow of mass
from an object exerts a force

(16.27)

on the object. The force is proportional to the mass flow rate and to the magni-
tude of the relative velocity of the flow, and its direction is opposite to the di-
rection of the relative velocity. Conversely, a flow of mass to an object exerts
a force in the same direction as the relative velocity.

Ff = -
dmf

dt
 vf

dmf>dt

-  

dmf

dt
 vf = ma,

¢t : 0,

m 
¢v
¢t

+
¢mf

¢t
 vf -

¢mf

¢t
 
¢v
¢t

 ¢t = 0.

¢t¢t.
¢mf

RESULTS

Ff ! " vf. (16.27)
dmf 

dt

The force exerted on an object due to a
flow of mass leaving the object (rocket
exhaust, water hose, etc.) with relative
velocity vf. The term dmf/dt is the mass
flow rate, or mass per unit time, leaving
the object.

vf

Active Example 16.9 Force Resulting from a Mass Flow (! Related Problem 16.113)

The rocket sled is slowed by a water brake after its motor has burned out. A tube
extends downward into a trough of water between the tracks. The open end of
the tube points forward so that water enters the tube in the direction parallel to
the x axis as the sled moves forward. The other end of the tube points upward,
so that the water flows out in the direction parallel to the y axis. If is the sled’s
velocity, the water enters the sled with velocity relative to the sled and flows
out with the same velocity. The mass flow rate through the tube is wherervA,

v
v
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Strategy
We can use Eq. (16.27) to determine the force exerted by the water entering
the sled.

Solution

is the density of the water and is the cross-
sectional area of the tube. At an instant when what force is exerted
on the sled by the flow of water entering it?

v = 300 m/s,
A = 0.01 m2r = 1000 kg/m3

x

z

y

vf ! "v i

The velocity of the water entering
the sled relative to the sled isDetermine the velocity

of the mass flow
relative to the object.

! "300 i (m/s).

! "rvA
dmf 

dt

Because water is entering the sled,

Determine the
mass flow rate.

! "(1000 kg/m3)(300 m/s)(0.01 m2)

! "3000 kg/s.

Ff ! " vf
dmf 

dt

The force exerted on the sled is

Apply Eq. (16.27).
! "("3000 kg/s)["300 i (m/s)]

! "900,000 i (N).

Practice Problem Use Eq. (16.27) to determine the force exerted on the sled
by the flow of water leaving it.

Answer: Ff = -900,000 j (N).
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Example 16.10 Thrust of a Rocket (! Related Problem 16.110)

The classic example of a force created by a mass flow is the rocket. The one
shown has a uniform, constant exhaust velocity parallel to the x axis.
(a) What force is exerted on the rocket by the mass flow of its exhaust?
(b) If the force determined in part (a) is the only force acting on the rocket, and
it starts from rest with an initial mass determine the rocket’s velocity as a
function of its mass m.

Strategy
(a) Equation (16.27) gives the force exerted on the rocket in terms of the exhaust
velocity and the mass flow rate of fuel.
(b) We can use Newton’s second law to obtain an equation for the rocket’s
velocity as a function of its mass.

Solution
(a) In terms of the coordinate system shown, the velocity vector of the exhaust
is From Eq. (16.27), the force exerted on the rocket is

where is the mass flow rate of the rocket’s fuel. The force exerted on the
rocket by its exhaust is toward the right, opposite to the direction of the flow of
the exhaust.
(b) Newton’s second law applied to the rocket is

where m is the rocket’s mass. The mass flow rate of fuel is the rate at which the
rocket’s mass is being consumed. Therefore, the rate of change of the mass of
the rocket is

Using this expression, we can write Newton’s second law as

Because the exhaust velocity is constant, we can integrate the preceding equa-
tion to determine the velocity of the rocket as a function of its mass:

The result is

Critical Thinking
The velocity attained by the rocket is determined by the exhaust velocity and the
amount of mass expended. Thus, a rocket can gain more velocity by expending
more of its mass. However, notice that increasing the ratio from 10 to 100
increases the velocity attained by only a factor of two. In contrast, increasing the

m0>m
vx = vf lnam0

m
b .

L
vx

0
 dvx = -vfL

m

m0

 
dm
m

.

vf

dvx = -vf 
dm
m

.

dm
dt

= -
dmf

dt
.

©Fx =
dmf

dt
 v f = m 

dvx

dt
,

dmf>dt

Ff = -
dmf

dt
 vf =

dmf

dt
 v f i,

vf = –v f i.

m0,

vf

y

xvf
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16.4 Mass Flows 267

exhaust velocity results in a proportional increase in the rocket’s velocity.
Rocket engineers use fuels such as liquid oxygen and liquid hydrogen because
they produce a relatively large exhaust velocity. This objective has also led to
research on rocket engines that use electromagnetic fields to accelerate charged
particles of fuel to large velocities.

u

y

x

v0

v0

FP

u

(a) Free-body diagram of the stream.

Example 16.11 Force Resulting from a Mass Flow (! Related Problem 16.104)

A horizontal stream of water with velocity and mass flow rate hits a
plate that deflects the water in the horizontal plane through an angle . Assume
that the magnitude of the velocity of the water when it leaves the plate is ap-
proximately equal to What force is exerted on the plate by the water?

Strategy
We can determine the force exerted on the plate by treating the part of the stream
in contact with the plate as an object with mass flows entering and leaving it.

Solution
In Fig. a, we draw the free-body diagram of the part of the stream in contact with
the plate. Streams of mass with velocity enter and leave this “object,” and 
is the force exerted on the stream by the plate. We wish to determine the force

exerted on the plate by the stream. First we consider the departing stream
of water. The mass flow rate of water leaving the free-body diagram must be
equal to the mass flow rate entering. In terms of the coordinate system shown,
the velocity of the departing stream is

Let be the force exerted on the object by the departing stream. From
Eq. (16.27),

The velocity of the entering stream is Since this flow is entering the
object rather than leaving it, the resulting force is in the same direction as the
relative velocity:

The sum of the forces on the free-body diagram must equal zero:

Hence, the force exerted on the plate by the water is (Fig. b)

Critical Thinking
This simple example affords an insight into how turbine blades and airplane
wings can create forces by deflecting streams of liquid or gas (Fig. c).

-FP = FD + FE =
dmf

dt
 v0311 - cos u2i - sin u j4.

FD + FE + FP = 0.

FE =
dmf

dt
 vf =

dmf

dt
 v0 i.

FE

vf = v0 i.

FD = -
dmf

dt
 vf = -

dmf

dt
 1v0 cos u i + v0 sin u j2.

FD

vf = v0 cos u i + v0 sin u j.

-FP

FPv0

v0.

u
dmf>dtv0

!FP

(b) Force exerted on the plate.

(c) Pattern of moving fluid
around an airplane wing.
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dmc
dt



dmf
dt

dmc
dt

Compressor


Combustion
chamber


Turbine



Example 16.12 Jet Engine (! Related Problems 16.118–16.120)

In the turbojet engine, a mass flow rate of inlet air enters the compres-
sor with velocity The air is mixed with fuel and ignited in the combustion
chamber. The mixture then flows through the turbine, which powers the com-
pressor. The exhaust, with a mass flow rate equal to that of the air plus the mass
flow rate of the fuel exits at a high exhaust velocity 
exerting a large force on the engine. Suppose that and

The inlet air velocity is and the exhaust
velocity is What is the engine’s thrust?ve = 480 m/s.

vi = 120 m/sdmf>dt = 0.130 kg/s.
dmc>dt = 13.5 kg/s

ve,1dmc>dt + dmf>dt2,
vi.

dmc>dt

Strategy
We can determine the engine’s thrust by using Eq. (16.27). We must include
both the force exerted by the engine’s exhaust and the force exerted by the mass
flow of air entering the compressor to determine the net thrust.

Solution
The engine’s exhaust exerts a force to the left equal to the product of the mass
flow rate of the fuel–air mixture and the exhaust velocity. The inlet air exerts a
force to the right equal to the product of the mass flow rate of the inlet air and
the inlet velocity. The engine’s thrust (the net force to the left) is

 = 4920 N.

 = 113.5 + 0.130214802 - 113.5211202
 T = admc

dt
+

dmf

dt
bve -

dmc

dt
 vi
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16.100 The mass flow rate of water through the nozzle is
1.6 slugs/s. Determine the magnitude of the horizontal force
exerted on the truck by the flow of water.

20 ft
20!

12 ft

35 ft

Problem 16.100

16.101 The front-end loader moves at a constant speed of 2 mi/h
scooping up iron ore. The constant horizontal force exerted on the
loader by the road is 400 lb. What weight of iron ore is scooped
up in 3 s?

16.102 The snowblower moves at 1 m/s and scoops up 750 kg/s
of snow. Determine the force exerted by the entering flow of
snow.

16.103 The snowblower scoops up 750 kg/s of snow. It blows
the snow out the side at 45° above the horizontal from a port 2 m
above the ground and the snow lands 20 m away. What horizontal
force is exerted on the blower by the departing flow of snow?

Problem 16.101

Problems 16.102/16.103

x

45!

y

(a)

x

y

(b)
x

y

(c)

Problem 16.104

! 16.104 A nozzle ejects a stream of water horizontally at
40 m/s with a mass flow rate of 30 kg/s, and the stream is de-
flected in the horizontal plane by a plate. Determine the force
exerted on the plate by the stream in cases (a), (b), and (c).
(See Example 16.11.)

Problem 16.99

16.99 The Cheverton fire-fighting and rescue boat can pump
3.8 kg/s of water from each of its two pumps at a velocity of
44 m/s. If both pumps point in the same direction, what total
force do they exert on the boat?

Problems
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y

x

70!

20 m/s

80 m/s

Problem 16.105

x

y

A

Problem 16.106

16.105* A stream of water with velocity 80i (m/s) and a mass
flow rate of 6 kg/s strikes a turbine blade moving with constant
velocity 20i (m/s).

(a) What force is exerted on the blade by the water?

(b) What is the magnitude of the velocity of the water as it
leaves the blade?

16.106 At the instant shown, the nozzle A of the lawn sprinkler
is located at m. Water exits each nozzle at 8 m/s rela-
tive to the nozzle with a mass flow rate of 0.22 kg/s. At the instant
shown, the flow relative to the nozzle at A is in the direction of
the unit vector

Determine the total moment about the z axis exerted on the sprin-
kler by the flows from all four nozzles.

e = 113
 i - 113

 j + 113
 k.

10.1, 0, 02

45!

2 m

x

y

0.3 m/s

u

Problems 16.107/16.108

16.107 A 45-kg/s flow of gravel exits the chute at 2 m/s and falls
onto a conveyer moving at 0.3 m/s. Determine the components of
the force exerted on the conveyer by the flow of gravel if 

16.108 Solve Problem 16.107 if u = 30°.

u = 0.

20!

Problem 16.109

16.109 Suppose that you are designing a toy car that will be pro-
pelled by water that squirts from an internal tank at 10 ft/s relative
to the car. The total weight of the car and its water “fuel” is to be
2 lb. If you want the car to achieve a maximum speed of 12 ft/s,
what part of the total weight must be water?

! 16.110 The rocket consists of a 1000-kg payload and a 9000-kg
booster. Eighty percent of the booster’s mass is fuel, and its exhaust
velocity is 1200 m/s. If the rocket starts from rest and external forces
are neglected, what velocity will it attain? (See Example 16.10.)

Booster Payload

Problem 16.110
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Payload1 2

Problem 16.111

16.111* The rocket consists of a 1000-kg payload and a booster. The booster has two stages whose total mass is 9000 kg. Eighty percent
of the mass of each stage is fuel, and the exhaust velocity of each stage is 1200 m/s. When the fuel of stage 1 is expended, it is discarded
and the motor of stage 2 is ignited. Assume that the rocket starts from rest and neglect external forces. Determine the velocity attained by
the rocket if the masses of the stages are and Compare your result to the answer to Problem 16.110.m2 = 3000 kg.m1 = 6000 kg

16.112 A rocket of initial mass takes off straight up. Its ex-
haust velocity and the mass flow rate of its engine 
are constant. Show that, during the initial part of the flight, when
aerodynamic drag is negligible, the rocket’s upward velocity as a
function of time is

v = vf lna m0

m0 - m 
#

f  t
b - gt.

m
#

f = dmf>dtvf

m0

Problem 16.112

s

Problems 16.114/16.115

! 16.113 The mass of the rocket sled in Active Example 16.9 is
440 kg. Assuming that the only significant force acting on the sled
in the direction of its motion is the force exerted by the flow of
water entering it, what distance is required for the sled to deceler-
ate from 300 m/s to 100 m/s?

16.114* Suppose that you grasp the end of a chain that weighs
3 lb/ft and lift it straight up off the floor at a constant speed of 2 ft/s.

(a) Determine the upward force F you must exert as a function of
the height s.

(b) How much work do you do in lifting the top of the chain to

Strategy: Treat the part of the chain you have lifted as an
object that is gaining mass.

16.115* Solve Problem 16.114, assuming that you lift the end
of the chain straight up off the floor with a constant acceleration
of 2 ft/s2.

s = 4 ft?
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s

Problems 16.116/16.117

16.116* It has been suggested that a heavy chain could be used
to gradually stop an airplane that rolls past the end of the run-
way. A hook attached to the end of the chain engages the plane’s
nose wheel, and the plane drags an increasing length of the chain
as it rolls. Let m be the airplane’s mass and its initial velocity,
and let be the mass per unit length of the chain. Neglecting
friction and aerodynamic drag, what is the airplane’s velocity as
a function of s?

16.117* In Problem 16.116, the frictional force exerted on the
chain by the ground would actually dominate other forces as the
distance s increases. If the coefficient of kinetic friction between
the chain and the ground is and you neglect all forces except the
frictional force, what is the airplane’s velocity as a function of s?

mk

rL

v0

! 16.118 A turbojet engine is being operated on a test stand.
The mass flow rate of air entering the compressor is 13.5 kg/s
and the mass flow rate of fuel is 0.13 kg/s. The effective
velocity of the air entering the compressor is zero, and the
exhaust velocity is 500 m/s. What is the thrust of the engine?
(See Example 16.12.)

20!

20!

Problem 16.120

! 16.119 A turbojet engine is in an airplane flying at 400 km/h.
The mass flow rate of air entering the compressor is 13.5 kg/s
and the mass flow rate of fuel is 0.13 kg/s. The effective velocity
of the air entering the inlet is equal to the airplane’s velocity, and
the exhaust velocity (relative to the airplane) is 500 m/s. What is
the thrust of the engine? (See Example 16.12.)

! 16.120 A turbojet engine’s thrust reverser causes the ex-
haust to exit the engine at 20° from the engine centerline. The
mass flow rate of air entering the compressor is 44 kg/s, and
the air enters at 60 m/s. The mass flow rate of fuel is 1.5 kg/s,
and the exhaust velocity is 370 m/s. What braking force does
the engine exert on the airplane? (See Example 16.12.)

Review Problems
16.121 The total external force on a 10-kg object is constant
and equal to At the object’s
velocity is 

(a) What impulse is applied to the object from to 

(b) What is the object’s velocity at 

16.122 The total external force on an object is
At the object’s velocity is

At the x component of its velocity 
is 48 ft/s.

(a) What impulse is applied to the object from to 

(b) What is the object’s velocity at t = 6 s?

t = 6 s?t = 0

t = 12 s,v = 20j 1ft/s2. t = 0,F = 10ti + 60j 1lb2.
t = 4 s?

t = 4 s?t = 2 s

-8i + 6j 1m/s2. t = 2 s,90i - 60j + 20k 1N2. 16.123 An aircraft arresting system is used to stop airplanes
whose braking systems fail. The system stops a 47,500-kg air-
plane moving at 80 m/s in 9.15 s.

(a) What impulse is applied to the airplane during the 9.15 s?

(b) What is the average deceleration to which the passengers
are subjected?

Problem 16.123
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x

y

Problem 16.125

16.124 The 1895 Austrian 150-mm howitzer had a 1.94-m bar-
rel, possessed a muzzle velocity of 300 m/s, and fired a 38-kg
shell. If the shell took 0.013 s to travel the length of the barrel,
what average force was exerted on the shell?

16.125 An athlete throws a shot weighing 16 lb. When he re-
leases it, the shot is 7 ft above the ground and its components of
velocity are and 

(a) Suppose the athlete accelerates the shot from rest in 0.8 s, and
assume as a first approximation that the force F he exerts on the
shot is constant. Use the principle of impulse and momentum to
determine the x and y components of F.

(b) What is the horizontal distance from the point where he re-
leases the shot to the point where it strikes the ground?

vy = 26 ft/s.vx = 31 ft/s

16.126 The 6000-lb pickup truck A moving at 40 ft/s collides
with the 4000-lb car B moving at 30 ft/s.

(a) What is the magnitude of the velocity of their common center
of mass after the impact?

(b) Treat the collision as a perfectly plastic impact. How much
kinetic energy is lost?

A

B

30!

Problem 16.126

16.127 Two hockey players con-
verging on the puck at become entangled and fall. Be-
fore the collision, and 
If the coefficient of kinetic friction between the players and the ice 
is what is their approximate position when they stop 
sliding?
mk = 0.1,

vB = -3i + 6j 1m/s2.vA = 9i + 4j 1m/s2x = 0, y = 0
1mA = 80 kg, mB = 90 kg2

A

x

y

B

Problem 16.127

16.128 The cannon weighed 400 lb, fired a cannonball weighing
10 lb, and had a muzzle velocity of 200 ft/s. For the 10° elevation
angle shown, determine (a) the velocity of the cannon after it was
fired and (b) the distance the cannonball traveled. (Neglect drag.)

10!

Problem 16.128
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v

25!

Problem 16.129

16.129 A 1-kg ball moving horizontally at 12 m/s strikes a 10-kg
block. The coefficient of restitution of the impact is and
the coefficient of kinetic friction between the block and the in-
clined surface is What distance does the block slide be-
fore stopping?

mk = 0.4.

e = 0.6,

16.130 A Peace Corps volunteer designs the simple device
shown for drilling water wells in remote areas. A 70-kg “ham-
mer,” such as a section of log or a steel drum partially filled with
concrete, is hoisted to and allowed to drop onto a protec-
tive cap on the section of pipe being pushed into the ground. The
combined mass of the cap and section of pipe is 20 kg. Assume
that the coefficient of restitution is nearly zero.

(a) What is the velocity of the cap and pipe immediately after
the impact?

(b) If the pipe moves 30 mm downward when the hammer is
dropped, what resistive force was exerted on the pipe by the
ground? (Assume that the resistive force is constant during the
motion of the pipe.)

h = 1 m

Hammer

h

Problem 16.130

16.133 The 10-kg mass A is moving at 5 m/s when it is 1 m
from the stationary 10-kg mass B. The coefficient of kinetic fric-
tion between the floor and the two masses is and the
coefficient of restitution of the impact is Determine how
far B moves from its initial position as a result of the impact.

e = 0.5.
mk = 0.6,

1 m

A B

5 m/s

Problem 16.133

Problems 16.131/16.132

16.131 A tugboat and a barge 
are stationary with a slack hawser connecting them.

The tugboat accelerates to before
the hawser becomes taut. Determine the velocities of the tugboat
and the barge just after the hawser becomes taut (a) if the “im-
pact” is perfectly plastic and (b) if the “impact” is per-
fectly elastic Neglect the forces exerted by the water and
the tugboat’s engines.

16.132 In Problem 16.131, determine the magnitude of the im-
pulsive force exerted on the tugboat in the two cases if the dura-
tion of the “impact” is 4 s. Neglect the forces exerted by the water
and the tugboat’s engines during this period.

1e = 12. 1e = 02
2 knots 11 knot = 1852 m/h2160,000 kg2 1mass =1mass = 40,000 kg2
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16.134 The kinetic coefficients of friction between the 5-kg
crates A and B and the inclined surface are 0.1 and 0.4, respective-
ly. The coefficient of restitution between the crates is If
the crates are released from rest in the positions shown, what are
the magnitudes of their velocities immediately after they collide?

16.135 Solve Problem 16.134 if crate A has a velocity of 0.2 m/s
down the inclined surface and crate B is at rest when the crates are
in the positions shown.

e = 0.8.

0.1 m

60!

A

B

Problems 16.134/16.135

16.136 A small object starts from rest at A and slides down the
smooth ramp. The coefficient of restitution of the impact of the
object with the floor is At what height above the floor
does the object hit the wall?

e = 0.8.

1 ft

3 ft 60!

6 ft

A

Problem 16.136

30 !

A B

b

Problems 16.137–16.139

2 m

3 m/s

D

Problem 16.140

16.137 The cue gives the cue ball A a velocity of magnitude 3 m/s.
The angle and the coefficient of restitution of the impact of
the cue ball and the eight ball B is If the magnitude of the
eight ball’s velocity after the impact is 0.9 m/s, what was the coeffi-
cient of restitution of the cue ball’s impact with the cushion? (The
balls are of equal mass.)

16.138 What is the solution to Problem 16.137 if the angle

16.139 What is the solution to Problem 16.137 if the angle
and the coefficient of restitution of the impact between

the two balls is e = 0.9?
b = 15°

b = 10°?

e = 1.
b = 0

16.140 A ball is given a horizontal velocity of 3 m/s at 2 m
above the smooth floor. Determine the distance D between the
ball’s first and second bounces if the coefficient of restitution is
e = 0.6.
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x

y

z

Problems 16.141/16.142

16.141* A basketball dropped on the floor from a height of 4 ft re-
bounds to a height of 3 ft. In the layup shot shown, the magnitude
of the ball’s velocity is 5 ft/s, and the angles between its velocity
vector and the positive coordinate axes are 
and just before it hits the backboard. What are the mag-
nitude of its velocity and the angles between its velocity vector and
the positive coordinate axes just after the ball hits the backboard?

16.142* In Problem 16.141, the basketball’s diameter is 9.5 in,
the coordinates of the center of the basket rim are 

and the backboard lies in the x–y plane. Determine the
x and y coordinates of the point where the ball must hit the back-
board so that the center of the ball passes through the center of the
basket rim.

z = 12 in,
x = 0, y = 0,

uz = 124°
ux = 42°, uy = 68°,

Problem 16.145

16.145 The snow is 2 ft deep and weighs the snow-
plow is 8 ft wide, and the truck travels at 5 mi/h. What force
does the snow exert on the truck?

20 lb/ft3,

r

45!

v0

r0

u

RE

Problems 16.143/16.144

16.143 A satellite at from the center of the
earth is given an initial velocity in the direction
shown. Determine the magnitude of the transverse component of
the satellite’s velocity when (The radius of the
earth is 3960 mi.)

16.144 In Problem 16.143, determine the magnitudes of the
radial and transverse components of the satellite’s velocity
when r = 15,000 mi.

r = 20,000 mi.

v0 = 20,000 ft/s
r0 = 10,000 mi

8 ft

Problem 16.146

16.146 An empty 55-lb drum, 3 ft in diameter, stands on a set of
scales. Water begins pouring into the drum at 1200 lb/min from 8 ft
above the bottom of the drum. The weight density of water is ap-
proximately What do the scales read 40 s after the water
starts pouring?

62.4 lb/ft3.
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16.147 The ski boat’s jet propulsive system draws water in at A
and expels it at B at 80 ft/s relative to the boat. Assume that the
water drawn in enters with no horizontal velocity relative to the
surrounding water. The maximum mass flow rate of water through
the engine is 2.5 slugs/s. Hydrodynamic drag exerts a force on the
boat of magnitude 1.5v lb, where v is the boat’s velocity in feet
per second. Neglecting aerodynamic drag, what is the ski boat’s
maximum velocity?

16.148 The ski boat in Problem 16.147 weighs 2800 lb. The
mass flow rate of water through the engine is 2.5 slugs/s, and the
craft starts from rest at Determine the boat’s velocity at 
(a) and (b) t = 60 s.t = 20 s

t = 0.

AB

Problems 16.147/16.148

s

Problem 16.149

16.149* A crate of mass m slides across a smooth floor pulling
a chain from a stationary pile. The mass per unit length of the
chain is If the velocity of the crate is when what is
its velocity as a function of s?

s = 0,v0rL.

Design and carry out experiments to measure the coefficients
of restitution when (a) a table tennis ball; (b) a tennis ball; and
(c) a soccer ball or basketball strike a rigid surface. Investigate
the repeatability of your results. Determine how sensitive your
results are to the velocity of the ball. Write a brief report de-
scribing your experiments, discussing possible sources of error,
and presenting your results. Also comment on possible reasons
for the differences in your results for the three kinds of balls.

Design Project

© Harold & Esther Edgerton Foundation, 2007, courtesy of Palm
Press, Inc.
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C H A P T E R

17

! In designing a jet engine, the engineers must analyze the rotational motion
of its fan, compressor, and turbine.

a

v

Planar Kinematics of Rigid Bodies

If the external forces acting on an object are known, Newton’s
second law can be used to determine the motion of the object’s
center of mass without considering any angular motion of the
object about its center of mass. In many situations, however, an-
gular motion must also be considered. The rotational motions of
some objects are central to their functions, as in the cases of
gears, wheels, generators, and turbines. In this chapter we analyze
motions of objects, including their rotational motions.
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280 Chapter 17 Planar Kinematics of Rigid Bodies

17.1 Rigid Bodies and Types of Motion

BACKGROUND
If a brick is thrown (Fig. 17.1a), we can determine the motion of its center of
mass without having to be concerned about its rotational motion. The only sig-
nificant force is the weight of the brick, and Newton’s second law determines
the acceleration of its center of mass. But suppose that the brick is standing on
the floor, it is tipped over (Fig. 17.1b), and we want to determine the motion
of its center of mass as it falls. In this case, the brick is subjected to its weight
and also to a force exerted by the floor. We cannot determine either the force
exerted by the floor or the motion of the brick’s center of mass without also
considering its rotational motion.

Before we can analyze such motions, we must consider how to describe
them. A brick is an example of an object whose motion can be described by
treating the object as a rigid body. A rigid body is an idealized model of an ob-
ject that does not deform, or change shape. The precise definition is that the
distance between every pair of points of a rigid body remains constant. Although
any object does deform as it moves, if its deformation is sufficiently small, we
can approximate its motion by modeling it as a rigid body. For example, in
normal use, a twirler’s baton (Fig. 17.2a) can be modeled as a rigid body, but a
fishing rod (Fig. 17.2b) cannot.

(a) (b)

Figure 17.1
(a) A thrown brick—its rotation doesn’t affect the motion of its

center of mass.
(b) A tipped brick—its rotation and the motion of its center of

mass are interrelated.

(b)(a)

Figure 17.2
(a) A baton can be modeled as a rigid body.
(b) Under normal use, a fishing rod is too flexible

to be modeled as a rigid body.
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17.1 Rigid Bodies and Types of Motion 281

Describing the motion of a rigid body requires a reference frame (coordi-
nate system) relative to which the motions of the points of the rigid body and
its angular motion are measured. In many situations, it is convenient to use a
reference frame that is fixed with respect to the earth. For example, we would
use such an earth-fixed reference frame to describe the motion of the center of
mass and the angular motion of the brick in Fig. 17.1. In the paragraphs that fol-
low, we discuss some types of rigid-body motions relative to a given reference
frame that occur frequently in applications.

Translation
If a rigid body in motion relative to a given reference frame does not rotate, 
it is said to be in translation (Fig. 17.3a). For example, the child’s swing in 
Fig. 17.3b is designed so that the horizontal bar to which the seats are attached
is in translation. Although each point of the horizontal bar moves in a circular
path, the bar does not rotate. It remains horizontal, making it easier for the child
to ride safely. Every point of a rigid body in translation has the same velocity
and acceleration, so we describe the motion of the rigid body completely if we
describe the motion of a single point.

Rotation about a Fixed Axis
After translation, the simplest type of rigid-body motion is rotation about an
axis that is fixed relative to a given reference frame (Fig. 17.4a). Each point of
the rigid body on the axis is stationary, and each point not on the axis moves in
a circular path about the axis as the rigid body rotates. The rotor of an electric
motor (Fig. 17.4b) is an example of an object rotating about a fixed axis. The
motion of a ship’s propeller relative to the ship is rotation about a fixed axis. We
discuss this type of motion in more detail in the next section.

(a) (b)

Figure 17.3
(a) An object in translation does not rotate.
(b) The translating part of the swing on

which the child sits remains level.

(b)

Rotor

(a)

Figure 17.4
(a) A rigid body rotating about a fixed axis.
(b) Relative to the frame of an electric motor,

the rotor rotates about a fixed axis.

BEDFMC17_0136129161.QXD  6/15/07  6:48 PM  Page 281
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(a)

Plane of
the motion

(b)

Piston
(translation)

Connecting rod
(general planar motion)

Crankshaft
(rotation)

Figure 17.6
Translation, rotation about a fixed axis, and planar
motion in an automobile engine.

Planar Motion
Consider a plane that is fixed relative to a given reference frame and a rigid
body intersected by the plane (Fig. 17.5a). If the rigid body undergoes a motion
in which the points intersected by the plane remain in the plane, the body is
said to be in two-dimensional, or planar, motion. We refer to the fixed plane as
the plane of the motion. Rotation of a rigid body about a fixed axis is a special
case of planar motion. As another example, when a car moves in a straight path,
its wheels are in planar motion (Fig. 17.5b).

The components of an internal combustion engine illustrate these types of
motion (Fig. 17.6). Relative to a reference frame that is fixed with respect to the
engine, the pistons translate within the cylinders. The connecting rods are in
general planar motion, and the crankshaft rotates about a fixed axis.

Figure 17.5
(a) A rigid body intersected by a fixed

plane.
(b) A wheel undergoing planar motion.

RESULTS

Rigid Body
An idealized model of an object that does not deform, or change shape.
The distance between every pair of points of a rigid body remains
constant.

Translation
Motion of a rigid body in which it does
not rotate. Every point of a rigid body
in translation has the same velocity and
acceleration, so the motion of the object
is completely described by describing
the motion of a single point.
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Rotation about a Fixed Axis
Motion of a rigid body in which points
on a fixed axis are stationary. Each point
not on the axis moves in a circular path
about the axis as the rigid body rotates.

Planar Motion
Motion of a rigid body in which points
intersected by a fixed plane remain in the
plane. Rotation about a fixed axis is a
special case of planar motion.

Plane of
the motion

Body-fixed
line

Reference
line 

Fixed axis

u

17.2 Rotation about a Fixed Axis

BACKGROUND
By considering the rotation of an object about an axis that is fixed relative to a
given reference frame, we can introduce some of the concepts of rigid-body
motion in a familiar context. In this type of motion, each point of the rigid body
moves in a circular path around the fixed axis, so we can analyze the motions
of points using results developed in Chapter 13.

In Fig. 17.7, we show a rigid body rotating about a fixed axis and introduce
two lines perpendicular to the axis. The reference line is fixed, and the body-
fixed line rotates with the rigid body. The angle between the reference line andu

Figure 17.7
Specifying the orientation of an object
rotating about a fixed axis.
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ωBαB

ωA
αA

rB

rA

P

Figure 17.9
Relating the angular velocities and angular
accelerations of meshing gears.

the body-fixed line describes the position, or orientation, of the rigid body about
the fixed axis. The rigid body’s angular velocity, or rate of rotation, and its ang-
ular acceleration are

(17.1)

Each point of the object not on the fixed axis moves in a circular path about the
axis. Using our knowledge of the motion of a point in a circular path, we can
relate the velocity and acceleration of a point to the object’s angular velocity and
angular acceleration. In Fig. 17.8, we view the object in the direction parallel
to the fixed axis. The velocity of a point at a distance r from the fixed axis is
tangent to the point’s circular path (Fig. 17.8a) and is given in terms of the
angular velocity of the object by

(17.2)

A point has components of acceleration tangential and normal to its circular
path (Fig. 17.8b). In terms of the angular velocity and angular acceleration of
the object, the components of acceleration are

(17.3)

With these relations, we can analyze problems involving objects rotating about
fixed axes. For example, suppose that we know the angular velocity and angular
acceleration of the gear in Fig. 17.9 relative to a particular reference frame, and
we want to determine and The velocities of the gears must be equal at P,
because there is no relative motion between them in the tangential direction at P.
Therefore, and we find that the angular velocity of gear B is

By taking the derivative of this equation with respect to time, we determine the
angular acceleration of gear B:

aB = a rA

rB
baA.

vB = a rA

rB
bvA.

rAvA = rB vB,

aB.vB

aA

vA

at = ra, an = v2

r
= rv2.

v = rv.

v = du
dt

, a = dv
dt

= d2u

dt2 .

(b)

r

at

an

a
v

r

(a)

v

v

Figure 17.8
(a) Velocity and (b) acceleration of a point of

a rigid body rotating about a fixed axis.
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17.2 Rotation about a Fixed Axis 285

From this result, we see that the tangential components of the accelerations of the
gears at P are equal: However, the normal components of the ac-
celerations of the gears at P are different in direction and, if the gears have dif-
ferent radii, are different in magnitude as well. The normal component of the
acceleration of gear A at P points toward the center of gear A, and its magnitude
is The normal component of the acceleration of gear B at P points toward
the center of gear B, and its magnitude is rB vB

2 = 1rA>rB21rAvA
22.rAvA

2 .

rAaA = rB aB.

RESULTS

Viewed with the fixed axis of rotation
perpendicular to the page, each point of 
the rigid body describes a circular path 
around the fixed axis as the rigid body 
rotates. The velocity of a point can be 
expressed in terms of its radial distance 
from the axis and the angular velocity of 
the rigid body. The tangential and normal 
components of acceleration of the point 
can be expressed in terms of the radial 
distance, the angular velocity, and the 
angular acceleration of the rigid body.

an ! ! rv2.

v ! rv. (17.2)

at ! ra,
(17.3)

v2

r

r

v

v

r

a t

an

a
v

The position of a rigid body undergoing
rotation about a fixed axis can be specified
by the angle u between a body-fixed line
and a fixed reference line. The angular
velocity v and angular acceleration a of
the body-fixed line are the angular velocity
and angular acceleration of the rigid body
about the axis.

Body-fixed
line

Reference
line 

Fixed axis

u

v ! , .                                    (17.1)
du
dt

a ! !
dv
dt

d2u

dt2
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286 Chapter 17 Planar Kinematics of Rigid Bodies

Active Example 17.1 Objects Rotating about Fixed Axes (! Related Problem 17.1)

Gear A of the winch turns gear B, raising the hook H. Gear A starts from rest at
time and its clockwise angular acceleration (in ) is given as a func-
tion of time by What is the upward velocity of the hook and what
vertical distance has it risen at ?t = 10 s

aA = 0.2t.
rad/s2t = 0

A

H

50 mm

B

200 mm

100
mm

At their point of contact, the gears have the 
same tangential component of acceleration.
The tangential component of acceleration
equals the product of the radial distance
from the axis of rotation and the angular
acceleration.

50 mm

at

0.2t rad/s2

200 mm aB

at ! (0.05 m)(0.2t rad/s2) ! (0.2 m)aB.

aB ! ! 0.05t rad/s2.

Therefore the counterclockwise angular
acceleration of B is

(0.05 m)(0.2t rad/s2)
(0.2 m)

Strategy
By equating the tangential components of acceleration of gears A and B at their
point of contact, we can determine the angular acceleration of gear B. Then we
can integrate to determine the angular velocity of gear B and the angle through
which it has turned at . With that information, we can determine the
velocity of the hook and the distance through which it has traveled.

Solution

t = 10 s
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17.2 Rotation about a Fixed Axis 287

Integrate vB ! duB/dt to determine
the angle through which gear B has
turned as a function of time.

3
uB

0 3
t

0

duB ! 0.025t2 dt:

uB ! 0.00833t3 rad.

Determine vB and uB at t ! 10 s.

vB ! 0.025(10)2

uB ! 0.00833(10)3

! 2.5 rad/s,

! 8.33 rad.

The velocity of the hook is equal to
the velocity of gear B at r ! 0.1 m.

vH ! (0.1 m)vB

! (0.1 m)(2.5 rad/s)

! 0.25 m/s.

100 mm

vB

vH ! (0.1 m) vB

The amount of cable wound around
the drum at t ! 10 s, which is the
distance the hook has risen, is the
product of uB and the radius of the
drum.

(0.1 m)uB ! (0.1 m)(8.33 rad)

! 0.833 m.

Practice Problem Let be the point of gear A that is in contact with gear B at What is the
magnitude of the acceleration of at that instant?

Answer: 5.00 m/s2.

PA

t = 10 s.PA

Integrate aB ! dvB/dt to determine
the angular velocity of gear B as a
function of time.

3
vB

0 3
t

0

dvB ! 0.05t dt:

vB ! 0.025t2 rad/s.
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288 Chapter 17 Planar Kinematics of Rigid Bodies

Problems
! 17.1 In Active Example 17.1, suppose that at a given instant
the hook H is moving downward at 2 m/s. What is the angular
velocity of gear A at that instant?

17.2 The angle (in radians) is given as a function of time by
. At determine the magnitudes of (a) the

velocity of point A and (b) the tangential and normal components
of acceleration of point A.

t = 4 s,u = 0.2pt2
u

A
2 ft

θ

Problem 17.2

100 mm

A

Problem 17.3

2.5 m
1 m

A

2 m

3 rad/s
1 rad/s2

Problem 17.4

200 mm
200 mm

A ωB ωC

100 mm

100 mm
ω

Problem 17.5

45
mm

120
mm

Problems 17.6/17.7

17.3 The mass A starts from rest at and falls with a con-
stant acceleration of . When the mass has fallen one meter,
determine the magnitudes of (a) the angular velocity of the pulley
and (b) the tangential and normal components of acceleration of a
point at the outer edge of the pulley.

8 m/s2
t = 0

17.4 At the instant shown, the left disk has an angular velocity
of counterclockwise and an angular acceleration of

clockwise.

(a) What are the angular velocity and angular acceleration of the
right disk? (Assume that there is no relative motion between the
disks at their point of contact.)

(b) What are the magnitudes of the velocity and acceleration
of point A?

1 rad/s2
3 rad/s

17.5 The angular velocity of the left disk is given as a function
of time by 

(a) What are the angular velocities and at 

(b) Through what angle does the right disk turn from to
t = 5 s?

t = 0

t = 5 s?vCvB

vA = 4 + 0.2t rad/s.

17.6 (a) If the bicycle’s 120-mm sprocket wheel rotates through
one revolution, through how many revolutions does the 45-mm
gear turn? (b) If the angular velocity of the sprocket wheel is

what is the angular velocity of the gear?

17.7 The rear wheel of the bicycle has a 330-mm radius and is
rigidly attached to the 45-mm gear. If the rider turns the pedals,
which are rigidly attached to the 120-mm sprocket wheel, at one
revolution per second, what is the bicycle’s velocity?

1 rad/s,
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B

16 in

A

x

y

8 in

8 in

Problems 17.8/17.9

y

x

Problem 17.10

0.4 m

0.4 m 0.4 m

0.2 m

A

B

Problems 17.11/17.12

17.8 The disk is rotating about the origin with a constant
clockwise angular velocity of 100 rpm. Determine the x and
y components of velocity of points A and B (in in/s).

17.9 The disk is rotating about the origin with a constant clock-
wise angular velocity of 100 rpm. Determine the x and y compo-
nents of acceleration of points A and B (in ).in/s2

17.10 The radius of the Corvette’s tires is 14 in. It is traveling at
80 mi/h when the driver applies the brakes, subjecting the car to a
deceleration of . Assume that the tires continue to roll, not
skid, on the road surface. At that instant, what are the magnitudes
of the tangential and normal components of acceleration (in )
of a point at the outer edge of a tire relative to a nonrotating
coordinate system with its origin at the center of the tire?

ft/s2

25 ft/s2

17.11 If the bar has a counterclockwise angular velocity of
and a clockwise angular acceleration of what are

the magnitudes of the accelerations of points A and B?

17.12 If the magnitudes of the velocity and acceleration of point A
of the rotating bar are and what are

and ƒ aB ƒ ?ƒ vB ƒ
ƒ aA ƒ = 28 m/s2,ƒ vA ƒ = 3 m/s

40 rad/s2,8 rad/s

x

R
β

R

Problem 17.13

17.13 A disk of radius rolls on a horizontal surface.
The relationship between the horizontal distance x the center of
the disk moves and the angle through which the disk rotates is

Suppose that the center of the disk is moving to the right
with a constant velocity of 

(a) What is the disk’s angular velocity?

(b) Relative to a nonrotating reference frame with its origin at the
center of the disk, what are the magnitudes of the velocity and
acceleration of a point on the edge of the disk?

2 m/s.
x = Rb.

b

R = 0.5 m
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290 Chapter 17 Planar Kinematics of Rigid Bodies

rA

rB

rA/B

O

A

B

(a) (b)

rA/B

O

(c)

vB

vB

O

B

A

B

A

The velocity of A is the 
vector sum of these velocities

vA/B ! vrA/B

v

vrA/B

v

Figure 17.10
(a) A rigid body in planar motion.
(b) The velocity of A relative to B.
(c) The velocity of A is the sum of its velocity

relative to B and the velocity of B.

17.3 General Motions: Velocities

BACKGROUND
Each point of a rigid body in translation undergoes the same motion. Each point
of a rigid body rotating about a fixed axis undergoes circular motion about the
axis. To analyze more complicated motions that combine translation and rota-
tion, we must develop equations that relate the relative motions of points of a
rigid body to its angular motion.

Relative Velocities
In Fig. 17.10a, we view a rigid body from a perspective perpendicular to the
plane of its motion. Points A and B are points of the rigid body contained in the
latter plane, and O is the origin of a given reference frame. The position of A
relative to B, is related to the positions of A and B relative to O by

Taking the derivative of this equation with respect to time, we obtain

(17.4)vA = vB + vA>B,

rA = rB + rA>B.

rA>B,
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17.3 General Motions: Velocities 291

where and are the velocities of A and B relative to the given reference
frame and is the velocity of A relative to B. (When we simply
speak of the velocity of a point, we will mean its velocity relative to the given
reference frame.)

We can show that is related in a simple way to the rigid body’s angu-
lar velocity. Since A and B are points of the rigid body, the distance between
them, is constant. That means that, relative to B, A moves in a
circular path as the rigid body rotates. That velocity of A relative to B is there-
fore tangent to the circular path and equal to the product of and the angu-
lar velocity of the rigid body (Fig. 17.10b). From Eq. (17.4), the velocity of
A is the sum of the velocity of B and the velocity of A relative to B (Fig. 17.10c).
This result can be used to relate velocities of points of a rigid body in planar
motion when the angular velocity of the body is known.

For example, in Fig. 17.11a, we show a circular disk of radius R rolling
with counterclockwise angular velocity on a stationary plane surface. Saying
that the surface is stationary means that we are describing the motion of the
disk in terms of a reference frame that is fixed with respect to the surface. By

v

v
rA>B

rA>B = ƒ rA>B ƒ ,

vA>B
vA>B = drA>B>dt

vBvA

B

R

x

y

(b)

C

vA/B ! Rv

(c)
x

y

B AR

(a)

R

C

(d)
x

y

B
AvB ! Rv

Rv

The velocity of A is the
sum of these velocities

Rv

v

vB/C ! Rv

v

v

Figure 17.11
(a) A disk rolling with angular velocity 
(b) The velocity of the center B relative to C.
(c) The velocity of A relative to B.
(d) The velocity of A equals the sum of the velocity of B

and the velocity of A relative to B.

v.
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292 Chapter 17 Planar Kinematics of Rigid Bodies

(b)(a)

Direction of rotationInstantaneous axis of rotation

! !

Figure 17.12
(a) An angular velocity vector.
(b) Right-hand rule for the direction of the vector.

rolling, we mean that the velocity of the disk relative to the surface is zero at
the point of contact C. The velocity of the center B of the disk relative to C is
illustrated in Fig. 17.11b. Since the velocity of B in terms of the fixed
coordinate system shown is

This result is very useful: The magnitude of the velocity of the center of a round
object rolling on a stationary plane surface equals the product of the radius
and the magnitude of the angular velocity.

We can determine the velocity of any other point of the disk in the same
way. Figure 17.11c shows the velocity of a point A relative to point B. The ve-
locity of A is the sum of the velocity of B and the velocity of A relative to B
(Fig. 17.11d):

The Angular Velocity Vector
We can express the rate of rotation of a rigid body as a vector. Euler’s theorem
states that a rigid body constrained to rotate about a fixed point B can move be-
tween any two positions by a single rotation about some axis through B. Sup-
pose that we choose an arbitrary point B of a rigid body that is undergoing an
arbitrary motion at a time t. Euler’s theorem allows us to express the rigid body’s
change in position relative to B during an interval of time from t to as a
single rotation through an angle about some axis. At time t, the rigid body’s
rate of rotation about the axis is its angular velocity and the axis
about which the body rotates is called the instantaneous axis of rotation.

The angular velocity vector, denoted by !, specifies both the direction of
the instantaneous axis of rotation and the angular velocity. The angular velocity
vector is defined to be parallel to the instantaneous axis of rotation (Fig. 17.12a),
and its magnitude is the rate of rotation, the absolute value of Its direction isv.

v = du>dt,
du

t + dt

vA = vB + vA>B = -Rvi + Rvj.

vB = vC + vB>C = -Rvi.

vC = 0,
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17.3 General Motions: Velocities 293

related to the direction of the rigid body’s rotation through a right-hand rule:
Pointing the thumb of the right hand in the direction of !, the fingers curl around
! in the direction of the rotation (Fig. 17.12b).

For example, the axis of rotation of the rolling disk in Fig. 17.11 is parallel
to the z axis, so the angular velocity vector of the disk is parallel to the z axis and
its magnitude is Curling the fingers of the right hand around the z axis in the
direction of the rotation, the thumb points in the positive z direction (Fig. 17.13).
The angular velocity vector of the disk is 

The angular velocity vector allows us to express the results of the 
previous section in a convenient form. Let A and B be points of a rigid body with
angular velocity ! (Fig. 17.14a). We can show that the velocity of A relative 
to B is

(17.5)

At the present instant, relative to B, point A is moving in a circular path of radius
where is the angle between the vectors and (Fig. 17.14b).

The magnitude of the velocity of A relative to B is equal to the product of the ra-
dius of the circular path and the angular velocity of the rigid body; that is,

The right-hand side of this equation is the magni-
tude of the cross product of and In addition, is perpendicular both
to and But is equal to or Notice in 
Fig. 17.14b that, pointing the fingers of the right hand in the direction of and
closing them toward the thumb points in the direction of the velocity of A
relative to B, so Substituting Eq. (17.5) into Eq. (17.4), we
obtain an equation for the relation between the velocities of two points of a rigid
body in terms of its angular velocity:

(17.6)

If the angular velocity vector and the velocity of one point of a rigid body
are known, Eq. (17.6) can be used to determine the velocity of any other point
of the rigid body. Returning to the example of a disk of radius R rolling with

vA = vB + ! * rA>B.(')'*
vA>B

vA>B = ! * rA>B.
rA>B,

!
rA>B * !?! * rA>BvA>BrA>B.!

vA>B!.rA>Bƒ vA>B ƒ = 1 ƒ rA>B ƒ  sin b2 ƒ ! ƒ .

!rA>Bbƒ rA>B ƒ  sin b,

vA>B =
drA>B

dt
= ! * rA>B.

! = vk.

v.

B

rA/B

A

(a)

!

B
(b)

rA/B

vA/BA

!rA/B! sin b 

!
b

Figure 17.14
(a) Points A and B of a rotating rigid body.
(b) A is moving in a circular path relative to B.

y

z

x

v

Figure 17.13
Determining the direction of the angular 
velocity vector of a rolling disk.
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294 Chapter 17 Planar Kinematics of Rigid Bodies

RESULTS

Relative Velocities

The velocity of A (relative to a
given reference frame) is equal to
the velocity of B plus the velocity
vA/B ! drA/B / dt of A relative to B.

vA ! vB " vA/B. (17.4)

rA

rB

rA/B

O

A

B

AB
rA/B

x

y v

Figure 17.15
A rolling disk and the position vector of A
relative to B.

angular velocity (Fig. 17.15), let us use Eq. (17.6) to determine the veloc-
ity of point A. The velocity of the center of the disk is given in terms of the
angular velocity by the disk’s angular velocity vector is 
and the position vector of A relative to the center is The velocity
of point A is

Compare this result with the velocity of point A shown in Fig. 17.11d.

 = -Rvi + Rvj.

 vA = vB + ! * rA>B = -Rvi + 1vk2 * 1Ri2
rA>B = Ri.

! = vk,vB = -Rvi,

v
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17.3 General Motions: Velocities 295

The round object of radius R is rolling on the stationary
plane surface with counterclockwise angular velocity v.
The velocity of the point C in contact with the surface
is zero. The velocity of the center B is Rv in the
direction shown.

B

v

vB ! Rv

C

The angular velocity vector ! describes an object’s
rotation relative to a given reference frame. The vector is
defined to be parallel to the object’s axis of rotation. Its
direction is specified by a right-hand rule: When the
fingers of the right hand curl around the axis in the
direction of the object’s rotation, the thumb points in the
direction of !. The magnitude of ! is the object’s
angular velocity about its axis of rotation.

Direction of rotation

!

Suppose that an object’s axis of rotation is parallel to the
z axis and the object is rotating in the counterclockwise
direction with angular velocity v. Then its angular
velocity vector is ! ! vk.

y

z

x

v

Rolling Motion

Angular Velocity Vector
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296 Chapter 17 Planar Kinematics of Rigid Bodies

Active Example 17.2 Determining Velocities and Angular Velocities (! Related Problem 17.33)

Bar AB is rotating with a clockwise angular velocity of 10 rad/s. Point C slides
on the horizontal surface. At the instant shown, determine the angular velocity
of bar BC and the velocity of point C.

0.4 m

10 rad/sA

B

C

0.4 m 0.8 m

Strategy
The angular velocity of bar AB is given, and point A is stationary, so we can use
Eq. (17.6) to determine the velocity of point B. Then by applying Eq. (17.6) to
points B and C of bar BC, we can determine both the angular velocity of bar BC
and the velocity of point C.

The velocity of a point A of an
object relative to a point B can
be expressed in terms of the
position of A relative to B and
the angular velocity vector of
the object.

vA ! vB " ! # rA/B.        (17.6)

vA/B

B

rA/B

A

!
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17.3 General Motions: Velocities 297

The angular velocity vBC of bar BC and the 
horizontal velocity vC of point C are unknown. 
Because the velocity of point B has been 
determined, applying Eq. (17.6) to points B 
and C results in two equations in terms of vBC 
and vC.

vC ! vB " !BC # rC/B :

! (4 " 0.4vBC) i " ($4 " 0.8vBC) j.

Equating i and j components,

and solving yields vBC ! 5 rad/s

and vC ! 6 m/s.

vC ! 4 " 0.4vBC,

0 ! $4 " 0.8vBC,

vCi ! 4i $ 4j "

i j k

0 0 vBC

0.8 $0.4 0

0.4 m
rC/B

y

A

B

C
x

vC

0.8 m

vBC

Solution

The axis of rotation of bar AB is parallel to the 
z axis, and the bar is rotating in the clockwise 
direction, so its angular velocity vector is

0.4 m

10 rad/s

rB/A

y

A

B

C
x

0.4 m

vB ! vA " !AB # rB/A

! 4i $ 4j (m/s).

! 0 "

i j k

0 0 $10

0.4 0.4 0
!AB ! $10k (rad/s).

Apply Eq. (17.6) to determine the velocity of 
point B.

Practice Problem Suppose that at the present instant the bars AB and BC are in the
positions shown. What would the angular velocity of bar AB need to be for point C to
be moving toward the left at 3 m/s? What would the angular velocity of bar BC be?

Answer: Bar AB, 5 rad/s counterclockwise. Bar BC, 2.5 rad/s clockwise.
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298 Chapter 17 Planar Kinematics of Rigid Bodies

D vR

6 in

B

C

A

12 in

10 rad/s

16 in6 in 6 in

10 in

Strategy
To determine the velocity of the rack, we must determine the angular velocity
of the member CD. Since we know the angular velocity of bar AB, we can apply
Eq. (17.6) to points A and B to determine the velocity of point B. Then we can
apply Eq. (17.6) to points C and D to obtain an equation for in terms of the
angular velocity of the member CD. We can also apply Eq. (17.6) to points B
and C to obtain an equation for in terms of the angular velocity of bar BC.
By equating the two expressions for we will obtain a vector equation in two
unknowns: the angular velocities of bars BC and CD.

Solution
We first apply Eq. (17.6) to points A and B (Fig. a). In terms of the coordinate
system shown, the position vector of B relative to A is 
and the angular velocity vector of bar AB is The velocity
of B is

We now apply Eq. (17.6) to points C and D. Let be the unknown angular
velocity of member CD (Fig. a). The position vector of C relative to D is

and the angular velocity vector of member CD
is The velocity of C is

 = 0.833vCD i + 0.500vCD j.

 vC = vD + !CD * rC>D = 0 + 3 i j k
0 0 -vCD

-0.500 0.833 0

3!CD = -vCD k.
rC>D = -0.500i + 0.833j 1ft2, vCD

 = 10i - 5j 1ft/s2.
 vB = vA + !AB * rB>A = 0 + 3 i j k

0 0 -10
0.5 1 0

3
!AB = -10k 1rad/s2.rB>A = 0.5i + j 1ft2,

vC,
vC

vC

B
C

A
D x

y

10 rad/s

rB/A
rC/D

vCD

(a) Determining the velocities of
points B and C.

Example 17.3 Analysis of a Linkage (! Related Problem 17.36)

Bar AB rotates with a clockwise angular velocity of What is the vertical
velocity of the rack of the rack-and-pinion gear?vR

10 rad/s.
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Now we apply Eq. (17.6) to points B and C (Fig. b). We denote the unknown
angular velocity of bar BC by The position vector of C relative to B is

and the angular velocity vector of bar BC is
Expressing the velocity of C in terms of the velocity of B, we

obtain

 = vB + 0.167vBC i + 1.333vBC j.

 vC = vB + !BC * rC>B = vB + 3 i j k
0 0 vBC

1.333 -0.167 0

3!BC = vBC k.
rC>B = 1.333i - 0.167j 1ft2, vBC.

B
C

x

y

rC/B

vBC

(b) Expressing the velocity of point C in
terms of the velocity of point B.

Substituting our expressions for and into this equation, we get

Equating the i and j components yields two equations in terms of and 

Solving these equations, we obtain and 
The vertical velocity of the rack is equal to the velocity of the gear where

it contacts the rack:

Critical Thinking
How did we know the sequence of steps that would determine the velocity of
the rack and pinion gear? The Strategy section may give you the impression
that there is only one method of solution and that it should be obvious.
Neither of these things is true. But most problems of this kind can be solved
by repeatedly applying Eq. (17.6) until enough equations have been obtained
to determine what you need to know. Just remember that Eq. (17.6) applies
only to two points of the same rigid body. For example, in this case we could
apply Eq. (17.6) to points B and C, but we could not have applied it to points
A and C.

vR = 10.5 ft2vCD = 10.52113.782 = 6.89 ft/s.

vCD = 13.78 rad/s.vBC = 8.92 rad/s

 0.500vCD = -5 + 1.333vBC.

 0.833vCD = 10 + 0.167vBC, 

vCD:vBC

0.833vCD i + 0.500vCD j = 10i - 5j + 0.167vBC i + 1.333vBC j.

vCvB
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300 Chapter 17 Planar Kinematics of Rigid Bodies

y

z

x

30 rad/s

Problem 17.14

y

xA

B

10 rad/s

Problem 17.15

Problems

17.14 The turbine rotates relative to the coordinate system at
about a fixed axis coincident with the x axis. What is

its angular velocity vector?
30 rad/s

17.15 The rectangular plate swings in the x–y plane from arms
of equal length. What is the angular velocity vector of (a) the 
rectangular plate and (b) the bar AB?

17.16 Bar OQ is rotating in the clockwise direction at 
What are the angular velocity vectors of the bars OQ and PQ?

Strategy: Notice that if you know the angular velocity of bar
OQ, you also know the angular velocity of bar PQ.

4 rad/s.

17.17 A disk of radius rolls on a horizontal surface.
The relationship between the horizontal distance x the center of
the disk moves and the angle through which the disk rotates is

Suppose that the center of the disk is moving to the right
with a constant velocity of 

(a) What is the disk’s angular velocity?

(b) What is the disk’s angular velocity vector?

2 m/s.
x = Rb.

b

R = 0.5 m

17.18 The rigid body rotates with angular velocity 
The distance 

(a) Determine the x and y components of the velocity of A rela-
tive to B by representing the velocity as shown in Fig. 17.10b.

(b) What is the angular velocity vector of the rigid body?

(c) Use Eq. (17.5) to determine the velocity of A relative to B.

rA>B = 0.4 m.
v = 12 rad/s.

1.2 m

O

Q

P

1.2 m

y

x

4 rad / s

Problem 17.16

x

R
β

R

x

y

Problem 17.17

x

y

B A

v

rA/B

Problem 17.18
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17.19 The bar is rotating in the counterclockwise direction with
angular velocity v. The magnitude of the velocity of point A is 
6 m/s. Determine the velocity of point B.

17.20 The bar is rotating in the counterclockwise direction with
angular velocity v. The magnitude of the velocity of point A rela-
tive to point B is 6 m/s. Determine the velocity of point B.

17.21 The bracket is rotating about point O with counterclock-
wise angular velocity v. The magnitude of the velocity of point A
relative to point B is 4 m/s. Determine v.

17.22 Determine the x and y components of the velocity of
point A.

17.23 If the angular velocity of the bar is constant, what are the
x and y components of the velocity of point A 0.1 s after the
instant shown?

17.24 The disk is rotating about the z axis at in the
clockwise direction. Determine the x and y components of the
velocities of points A, B, and C.

17.25 If the magnitude of the velocity of point A relative to point
B is what is the magnitude of the disk’s angular velocity?4 m/s,

50 rad/s

17.26 The radius of the Corvette’s tires is 14 in. It is traveling at
80 mi/h. Assume that the tires roll, not skid, on the road surface.

(a) What is the angular velocity of its wheels?

(b) In terms of the earth-fixed coordinate system shown, deter-
mine the velocity (in ft/s) of the point of the tire with coordinates
(-14 in, 0, 0) .

A

B

180 mm48!

120 mm

y

xO

Problem 17.21

y

x

A

5 rad/s

O

2 m

30!

Problems 17.22/17.23

x

y

100 mm

C

A

B

45! 45!

Problems 17.24/17.25

y

x

Problem 17.26

0.4 m

0.4 m

!

0.4 m

0.2 m

A

B

y

x

Problems 17.19/17.20
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x

y

B

A

2 m

30!

Problem 17.29

x

y

A

B

G

70!

Problem 17.30

y

x

T

G

Problem 17.28

6 rad/s
A

B

C

4 in

4 in 10 in

3 in

Problem 17.31

17.28 The helicopter is in planar motion in the x–y plane. At the
instant shown, the position of the craft’s center of mass, G, is

and its velocity is 
The position of point T where the tail rotor is mounted is

The helicopter’s angular velocity is
clockwise. What is the velocity of point T?0.2 rad/s

x = -3.5 m, y = 4.5 m.

vG = 12 i + 4j 1m/s2.x = 2 m, y = 2.5 m;

17.29 The bar is moving in the x–y plane and is rotating in the
counterclockwise direction. The velocity of point A relative to the
reference frame is The magnitude of the
velocity of point A relative to point B is 8 m/s. What is the
velocity of point B relative to the reference frame?

vA = 12i - 2j (m/s) .

17.30 Points A and B of the 2-m bar slide on the plane surfaces.
Point B is moving to the right at What is the velocity of the
midpoint G of the bar?

Strategy: First apply Eq. (17.6) to points A and B to determine
the bar’s angular velocity. Then apply Eq. (17.6) to points B and G.

3 m/s.

17.31 Bar AB rotates at 6 rad/s in the clockwise direction.
Determine the velocity (in in/s) of the slider C.

17.32 If and the sleeve P is moving to the right at
what are the angular velocities of bars OQ and PQ?2 m/s,
u = 45°

1.2 m

O

Q

P

θ

1.2 m

Problem 17.32

17.27 Point A of the rolling disk is moving toward the right. 
The magnitude of the velocity of point C is 5 m/s. Determine the
velocities of points B and D.

x

y

A

45!

C

D

B

0.6 m

Problem 17.27
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! 17.33 In Active Example 17.2, consider the instant when bar 
AB is vertical and rotating in the clockwise direction at 10 rad/s.
Draw a sketch showing the positions of the two bars at that 
instant. Determine the angular velocity of bar BC and the
velocity of point C.

17.34 Bar AB rotates in the counterclockwise direction at
Determine the angular velocity of bar BD and the 

velocity of point D.
6 rad/s.

17.35 At the instant shown, the piston’s velocity is 
What is the angular velocity of the 

crank AB?
-14  i (m/s) .vC =

y

0.32 m

0.48 m

0.16 m0.24 m0.32 m

6 rad/s

A
B

x

D

C

Problem 17.34

B

A
50 mm

50 mm

175 mm

y

x
C

Problem 17.35

! 17.36 In Example 17.3, determine the angular velocity of the
bar AB that would be necessary so that the downward velocity of
the rack at the instant shown.

17.37 Bar AB rotates at in the clockwise direction. 
Determine the angular velocities of bars BC and CD.

12 rad/s

 vR = 10 ft/s

A

C

B

D

350 
mm

200
mm

300 mm 350 mm

12 rad/s

Problem 17.37

17.38 Bar AB is rotating at 10 rad/s in the counterclockwise
direction. The disk rolls on the circular surface. Determine the
angular velocities of bar BC and the disk at the instant shown.

2 m

A

B

C

3 m

3 m

1 m

Problem 17.38
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17.44 The diameter of the disk is 1 m, and the length of bar AB
is 1 m. The disk is rolling, and point B slides on the plane 
surface. Determine the angular velocity of bar AB and the 
velocity of point B.

CB
12 in

G

y

A D

10 in
2 rad/s

45! 30! x

Problem 17.39

x

y

A

B

C10 rad/s ED

400 mm

700 mm 700 mm
400
mm

Problem 17.40

A

B

C

D

E
x

y

600 mm

600 mm

400 mm

500 mm

300
mm

300
mm

200
mm

Problem 17.41

G

70 mm

BA

D

C

30 mm

30 mm

E F

30 mm

Stationary

Problem 17.42

1 ft 6 in

2 ft 6 in1 ft5 ft

2 ft

C
B

D EA

Scoop

Problem 17.43

4 rad/s

A

B

Problem 17.44

17.39 Bar AB rotates at in the counterclockwise 
direction. Determine the velocity of the midpoint G of bar BC.

2 rad/s

17.40 Bar AB rotates at in the counterclockwise 
direction. Determine the velocity of point E.

10 rad/s

17.41 Bar AB rotates at in the counterclockwise 
direction. Determine the velocity of point C.

4 rad/s

17.42 The upper grip and jaw of the pliers ABC is stationary.
The lower grip DEF is rotating a in the clockwise 
direction. At the instant shown, what is the angular velocity of
the lower jaw CFG?

0.2 rad/s

17.43 The horizontal member ADE supporting the scoop is sta-
tionary. If the link BD is rotating in the clockwise direction at

what is the angular velocity of the scoop?1 rad/s,
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17.45 A motor rotates the circular disk mounted at A, moving
the saw back and forth. (The saw is supported by a horizontal slot
so that point C moves horizontally.) The radius AB is 4 in, and the
link BC is 14 in long. In the position shown, and the link
BC is horizontal. If the angular velocity of the disk is one revolu-
tion per second counterclockwise, what is the velocity of the saw?

17.46 In Problem 17.45, if the angular velocity of the disk is one
revolution per second counterclockwise and what is the
velocity of the saw?

u = 270°,

u = 45°

17.47 The disks roll on the plane surface. The angular velocity
of the left disk is in the clockwise direction. What is the
angular velocity of the right disk?

2 rad/s

x

y

B

A

C θ

Problems 17.45/17.46

2 rad/s

1 ft1 ft

3 ft

Problem 17.47

17.49 If and what is the velocity
of point C, where the excavator’s bucket is attached?

17.50 If what clockwise angular velocity 
will cause the vertical component of the velocity of point C to be
zero? What is the resulting velocity of point C?

vBCvAB = 2 rad/s,

vBC = 4 rad/s,vAB = 2 rad/s

x

y

B
C

5 m5.5 m

1.6 m

A

4 m 3 m 2.3 m

BC
ABv

v

Problems 17.49/17.50

17.48 The disk rolls on the curved surface. The bar rotates at
in the counterclockwise direction. Determine the 

velocity of point A.
10 rad/s

10 rad/s
40 mm

A

x

y

120 mm

Problem 17.48

180 mm 220 mm
100 mm

460
mm

340
mm

70
mm

200
mm

Steering link

Brake disks

B
A

C
D

E

Problem 17.51

17.51 The steering linkage of a car is shown. Member DE rotates about the fixed pin E. The right brake disk is rigidly attached to
member DE. The tie rod CD is pinned at C and D. At the instant shown, the Pitman arm AB has a counterclockwise angular velocity of

What is the angular velocity of the right brake disk?1 rad/s .
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A

y

x

z

30!

40!

B

C

920 mm760 m
m

Problems 17.54/17.55

x

D
C

y

B30!
20!

A

250 mm

300 mm

250 mm

Problem 17.56

17.52 An athlete exercises his arm by raising the mass m. The
shoulder joint A is stationary. The distance AB is 300 mm, and the
distance BC is 400 mm. At the instant shown, and

How fast is the mass m rising?

17.53 The distance AB is 12 in, the distance BC is 16 in,
and the mass m is rising at What is the

angular velocity vBC?
24 in/s.vAB = 0.6 rad/s,

vBC = 2 rad/s.
vAB = 1 rad/s

17.54 Points B and C are in the x–y plane. The angular velocity
vectors of the arms AB and BC are and

What is the velocity of point C?

17.55 If the velocity of point C of the robotic arm is
what are the angular velocities of

arms AB and BC?
vC = -0.15i + 0.42j 1m/s2,
!BC = 0.4k 1rad/s2. !AB = -0.2k 1rad/s2

17.56 The link AB of the robot’s arm is rotating at in the
counterclockwise direction, the link BC is rotating at in the
clockwise direction, and the link CD is rotating at in the
counterclockwise direction. What is the velocity of point D?

4 rad/s
3 rad/s

2 rad/s

A B m

C

vAB

vBC
30!

60!

Problems 17.52/17.53

0.12 rad/s

0.12 rad/s

B C

D

E

25 mm

18 mm

25 mm

Problem 17.57

17.57 The person squeezes the grips of the shears, causing the
angular velocities shown. What is the resulting angular velocity of
the jaw BD?
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9 in/s2 in

3 in

Problem 17.59

17.58 Determine the velocity and the angular velocity of the
small pulley.

vW

17.59 Determine the velocity of the block and the angular 
velocity of the small pulley.

50 mm

0.6 m/s

vW

100 mm

Problem 17.58

0.6 m

Inner ring

1.0 m

Carriers (3)

Outer ring

12 rpm

7 rpm

Problems 17.60/17.61

17.60 The device shown in the next column is used in the
semiconductor industry to polish silicon wafers. The wafers are
placed on the faces of the carriers. The outer and inner rings are
then rotated, causing the wafers to move and rotate against an
abrasive surface. If the outer ring rotates in the clockwise direc-
tion at 7 rpm and the inner ring rotates in the counterclockwise
direction at 12 rpm, what is the angular velocity of the carriers?

17.62 The ring gear is fixed and the hub and planet gears are
bonded together. The connecting rod rotates in the counterclock-
wise direction at 60 rpm. Determine the angular velocity of the
sun gear and the magnitude of the velocity of point A.

A

240 mm

720 mm

340
mm

Planet gear

Connecting
rod

Hub gear

140
    mm

Sun gear

Ring gear

Problem 17.62

17.63 The large gear is fixed. Bar AB has a counterclockwise
angular velocity of What are the angular velocities of
bars CD and DE?

2 rad/s.

4 in

2 rad/s

16 in

A

B C D

E

10 in

4 in

10 in

Problem 17.63

17.61 Suppose that the outer ring rotates in the clockwise 
direction at 5 rpm and you want the centerpoints of the carriers 
to remain stationary during the polishing process. What is the 
necessary angular velocity of the inner ring?
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rA/C

A

C

(a)

vA/C ! rA/Cv

v

(b)

C

v

Figure 17.16
(a) An instantaneous center C and a 

different point A.
(b) Every point is rotating about the 

instantaneous center.

17.4 Instantaneous Centers

BACKGROUND
A point of a rigid body whose velocity is zero at a given instant is called an
instantaneous center. “Instantaneous” means that the point may have zero
velocity only at the instant under consideration, although we also refer to a fixed
point, such as a point of a fixed axis about which a rigid body rotates, as an
instantaneous center.

When we know the location of an instantaneous center of a rigid body in
two-dimensional motion and we know its angular velocity, the velocities of
other points are easy to determine. For example, suppose that point C in
Fig. 17.16a is the instantaneous center of a rigid body in plane motion with
angular velocity Relative to C, a point A moves in a circular path. The velocity
of A relative to C is tangent to the circular path and equal to the product of the
distance from C to A and the angular velocity. But since C is stationary at the
present instant, the velocity of A relative to C is the velocity of A. At this instant,
every point of the rigid body rotates about C (Fig. 17.16b).

The instantaneous center of a rigid body in planar motion can often be lo-
cated by a simple procedure. Suppose that the directions of the motions of two
points A and B are known and are not parallel (Fig. 17.17a). If we draw lines
through A and B perpendicular to their directions of motion, then the point C
where the lines intersect is the instantaneous center. To show that this is true, let
us express the velocity of C in terms of the velocity of A (Fig. 17.17b):

The vector is perpendicular to so this equation indicates that 
is parallel to the direction of motion of A. We also express the velocity of C in
terms of the velocity of B:

The vector is perpendicular to so this equation indicates that 
is parallel to the direction of motion of B. We have shown that the component of

perpendicular to the direction of motion of A is zero and that the component
of perpendicular to the direction of motion of B is zero, so vC = 0.vC

vC

vCrC>B,! * rC>B
vC = vB + ! * rC>B.

vCrC>A,! * rC>A
vC = vA + ! * rC>A.

v.

Direction of
motion of A

Instantaneous
center

Direction of
motion of B

A

B

C

(a) (b)

A

B

C

rC/B

rC/A

Figure 17.17
(a) Locating the instantaneous center in

planar motion.
(b) Proving that vC = 0.
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Direction of
motion of A

Instantaneous
center

Direction of
motion of B

A
B

C

(a) (b)

A
B

C

Figure 17.18
(a) An instantaneous center external to the rigid body.
(b) A hypothetical extended body. Point C would be stationary.

(a)

R

C

v

(b)

A

x
C

y

vA !   2 Rv

2 R
v

Figure 17.19
(a) Point C is the instantaneous center of the

rolling disk.
(b) Determining the velocity of point A.

An instantaneous center may not be a point of the rigid body (Fig. 17.18a).
This simply means that at the instant in question, the rigid body is rotating about
an external point. It is helpful to imagine extending the rigid body so that it
includes the instantaneous center (Fig. 17.18b). The velocity of point C of the
extended body would be zero at the instant under consideration.

Notice in Fig. 17.18a that if the directions of motion of A and B are changed
so that the lines perpendicular to their directions of motion become parallel, C
moves to infinity. In that case, the rigid body is in pure translation, with an an-
gular velocity of zero.

Returning once again to our example of a disk of radius R rolling with an-
gular velocity (Fig. 17.19a), the point C in contact with the floor is stationary
at the instant shown—it is the instantaneous center of the disk. Therefore, the
velocity of any other point is perpendicular to the line from C to the point, and
its magnitude equals the product of and the distance from C to the point. In
terms of the coordinate system given in Fig. 17.19b, the velocity of point A is

 = -Rvi + Rvj.

 vA = - 22Rv cos 45°i + 22Rv sin 45°j

v

v

RESULTS

A point of a rigid body whose velocity is zero at a given instant is called an
instantaneous center. “Instantaneous” means that the point may have zero velocity
only at the instant under consideration, although a fixed point, such as a point of a
fixed axis around which a rigid body rotates, is also referred to as an instantaneous
center.

If a point C is an instantaneous center of
a rigid body undergoing two-dimensional
motion with angular velocity v, the
magnitude and direction of the velocity
of any other point A can be determined.

rA/C

A

CvA/C ! rA/Cv

v

BEDFMC17_0136129161.QXD  6/15/07  6:49 PM  Page 309
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If the directions of motion of two points A and B of a rigid
body in two-dimensional motion are known, the location
of the instantaneous center C can be determined. It is the
intersection of lines drawn through A and B perpendicular
to their directions of motion. Notice that if the directions
of motion of A and B are parallel, the instantaneous center
is at infinity, i.e., the rigid body is in translation.

Direction of
motion of A

Instantaneous
center

Direction of
motion of B

A

B

C

Active Example 17.4 Linkage Analysis by Instantaneous Centers (! Related Problem 17.70)

Bar AB rotates with a counterclockwise angular velocity of 10 rad/s. At the
instant shown, what are the angular velocities of bars BC and CD?

A
10 rad/s

D

B C

2 m 2 m

2 m

Begin with bar AB, because its
angular velocity is known, and
use its instantaneous center to
determine the velocity of point B.

vB ! (2 m)(10 rad/s) ! 20 m/s.

A
10 rad/s

D

B

vB

C

2 m

Strategy
Bars AB and CD rotate about fixed points, so we know their instantaneous
centers. We also know the directions of motion of points B and C, so we can
locate the instantaneous center of bar BC. Using these instantaneous centers, and
the relations between the velocities of points of the bars and the angular veloc-
ities of the bars, we can determine the angular velocities.

Solution
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17.4 Instantaneous Centers 311

Use the instantaneous center of bar BC
and the angular velocity of bar BC to
determine the velocity of point C.

Locate the instantaneous center of
bar BC by drawing lines through points
B and C perpendicular to their directions
of motion. Use the instantaneous center
and the known velocity of point B to
determine the angular velocity of bar BC.

so

! 10  8 m/s.

vC ! ( 8 m) (10 rad/s)

20 m/s ! (2 m) vBC,

! 10 rad/s.vBC !
20 m/s 

2 m

A D

B

20 m/s

2 m

Instantaneous center of bar BC

vC

C

8 m
vBC

Use the velocity of point C and the 
instantaneous center of bar CD to 
determine the angular velocity of 
bar CD.

so

! 10 rad/s.

!
10  8 m/s 

8 m

vCD
8 m

!

vC ! ( 8 m) vCD,

A D

B C

vC

vCD

8 m

vC

Practice Problem Suppose that at the instant shown bar CD is rotating in the
counterclockwise direction at 5 rad/s. Use instantaneous centers to determine the angu-
lar velocity of bar BC.

Answer: 5 rad/s clockwise.
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Problems
17.64 If the bar has a clockwise angular velocity of and

what are the coordinates of the instantaneous center
of the bar, and what is the value of 

17.65 If and what are the 
coordinates of the instantaneous center of the bar, and what is
its angular velocity?

vB = 36 m/s,vA = 24 m/s

vB?
vA = 20 m/s,

10 rad/s

17.66 The velocity of point O of the bat is
and the bat rotates about the z axis with a counterclockwise angular
velocity of What are the x and y coordinates of the bat’s
instantaneous center?

4 rad/s.

vO = -6 i - 14j 1ft/s2,

17.67 Points A and B of the 1-m bar slide on the plane surfaces.
The velocity of B is 

(a) What are the coordinates of the instantaneous center of the bar?

(b) Use the instantaneous center to determine the velocity of A.

vB = 2 i 1m/s2.

17.68 The bar is in two-dimensional motion in the x–y plane.
The velocity of point A is and B is moving in 
the direction parallel to the bar. Determine the velocity of B
(a) by using Eq. (17.6) and (b) by using the instantaneous center
of the bar.

vA = 8i 1ft/s2,

1 m 1 m
A B

y

x

A Bv v

Problems 17.64/17.65

y

x
O

Problem 17.66

x

y

A

B

G

70!

Problem 17.67

x

y

B

A

4 ft

30!

Problem 17.68
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x

y

B

A

2 m

30!

Problem 17.69

A

B

O

1 rad/s

Problem 17.72

A

10 rad/s

D

B C

2 m 1 m

2 m

Problem 17.70

6 in

12 in

A

B

O

1 rad/s

Problem 17.71

2 ft

O

Q

P

2 ft

u

Problem 17.73

C

0.2 m

0.4 m 0.2 m 0.2 m

D

A

B

5 rad/s

Problem 17.74

17.69 Point A of the bar is moving at in the direction of
the unit vector and point B is moving in the 
direction of the unit vector 

(a) What are the coordinates of the bar’s instantaneous center?

(b) What is the bar’s angular velocity?

0.766 i + 0.643j.
0.966 i - 0.259j,

8 m/s

! 17.70 Bar AB rotates with a counterclockwise angular velo-
city of 10 rad/s. At the instant shown, what are the angular veloci-
ties of bars BC and CD? (See Active Example 17.4.)

17.71 Use instantaneous centers to determine the horizontal 
velocity of B.

17.72 When the mechanism in Problem 17.71 is in the position
shown here, use instantaneous centers to determine the horizontal
velocity of B.

17.73 The angle and bar OQ is rotating in the counter-
clockwise direction at Use instantaneous centers to 
determine the velocity of the sleeve P.

0.2 rad/s.
u = 45°,

17.74 Bar AB is rotating in the counterclockwise direction at
The disk rolls on the horizontal surface. Determine the 

angular velocity of bar BC.
5 rad/s.
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314 Chapter 17 Planar Kinematics of Rigid Bodies

6 rad/s
A

B

C

4 in

4 in 10 in

3 in

Problem 17.75

17.75 Bar AB rotates at in the clockwise direction. Use
instantaneous centers to determine the angular velocity of bar BC.

6 rad/s

17.76 The crank AB is rotating in the clockwise direction at
2000 rpm (revolutions per minute).

(a) At the instant shown, what are the coordinates of the instanta-
neous center of the connecting rod BC?

(b) Use instantaneous centers to determine the angular velocity of
the connecting rod BC at the instant shown.

17.77 The disks roll on the plane surface. The left disk rotates at
in the clockwise direction. Use instantaneous centers to 

determine the angular velocities of the bar and the right disk.
2 rad/s

17.78 Bar AB rotates at in the clockwise direction.
Use instantaneous centers to determine the angular velocities of
bars BC and CD.

12 rad/s

17.79 The horizontal member ADE supporting the scoop is 
stationary. The link BD is rotating in the clockwise direction at

Use instantaneous centers to determine the angular 
velocity of the scoop.
1 rad/s.

17.80 The disk is in planar motion. The directions of the velocities
of points A and B are shown. The velocity of point A is 

(a) What are the coordinates of the disk’s instantaneous center?

(b) Determine the velocity and the disk’s angular velocity.vB

vA = 2 m/s.

B

A
50 mm

50 mm

175 mm

y

x
C

Problem 17.76

2 rad/s

1 ft1 ft

3 ft

Problem 17.77

A

C

B

D

350 
mm

200
mm

300 mm 350 mm

12 rad/s

Problem 17.78

1 ft 6 in

2 ft 6 in1 ft5 ft

2 ft

C
B

D EA

Scoop

Problem 17.79

B

A
x

y

(0.5, 0.4)m

30!

70!

vB

vA

Problem 17.80
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rArB

rA/B

O

A

B

rA/B

O

B

aB

aB

O

B

arA/B

Av2rA/B

arA/B

v2rA/B
A

(a) (b)

(c)

The acceleration of A is the vector
sum of these three accelerations

v

v
a

a

Figure 17.20
(a) Points A and B of a rigid body in planar motion and 

the position vector of A relative to B.
(b) Components of the acceleration of A relative to B.
(c) The acceleration of A.

17.5 General Motions: Accelerations

BACKGROUND
In Chapter 18, we will be concerned with determining the motion of a rigid
body when we know the external forces and couples acting on it. The govern-
ing equations are expressed in terms of the acceleration of the center of mass
of the rigid body and its angular acceleration. To solve such problems, we need
the relationship between the accelerations of points of a rigid body and its
angular acceleration. In this section, we extend the methods we have used to
analyze velocities of points of rigid bodies to accelerations.

Consider points A and B of a rigid body in planar motion relative to a given
reference frame (Fig. 17.20a). Their velocities are related by

Taking the derivative of this equation with respect to time, we obtain

aA = aB + aA>B,

vA = vB + vA>B.
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316 Chapter 17 Planar Kinematics of Rigid Bodies

where and are the accelerations of A and B relative to the reference frame
and is the acceleration of A relative to B. (When we simply speak of the
acceleration of a point, we will mean its acceleration relative to the given
reference frame.) Because A moves in a circular path relative to B as the rigid
body rotates, has normal and tangential components (Fig. 17.20b). The
tangential component equals the product of the distance and the
angular acceleration of the rigid body. The normal component points toward
the center of the circular path, and its magnitude is The
acceleration of A equals the sum of the acceleration of B and the acceleration of
A relative to B (Fig. 17.20c).

For example, let us consider a circular disk of radius R rolling on a sta-
tionary plane surface. The disk has counterclockwise angular velocity and
counterclockwise angular acceleration (Fig. 17.21a). The disk’s center B is
moving in a straight line with velocity toward the left if is positive. There-
fore, the acceleration of B is and is toward the left if is pos-
itive (Fig. 17.21b). In other words, the magnitude of the acceleration of the
center of a round object rolling on a stationary plane surface is the product of
the radius and the angular acceleration.

Now that we know the acceleration of the disk’s center, let us determine
the acceleration of the point C that is in contact with the surface. Relative to B,
C moves in a circular path of radius R with angular velocity and angular
acceleration The tangential and normal components of the acceleration of Ca.

v

ad>dt1Rv2 = Ra
vRv,

a
v

ƒ vA>B ƒ 2>rA>B = v2rA>B.
a

rA>B = ƒ rA>B ƒ
aA>B

aA>B aBaA

The acceleration of C is the
vector sum of these accelerations

(d)

x

y

B

C

Rv2       

Ra    

Ra Ra

(b)

v
a

Ra

B

(a)

a

R

B

v

(c)

B

C

v
a

Rv2       

Ra

Figure 17.21
(a) A disk rolling with angular velocity and angular acceleration 
(b) Acceleration of the center B.
(c) Components of the acceleration of C relative to B.
(d) The acceleration of C.

a.v
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17.5 General Motions: Accelerations 317

A

B

! ! (! ! rA/B)

" ! rA/B

a
v

Figure 17.22
Vector components of the acceleration of A
relative to B in planar motion.

relative to B are shown in Fig. 17.21c. The acceleration of C is the sum of the
acceleration of B and the acceleration of C relative to B (Fig. 17.21d). In terms
of the coordinate system shown,

The acceleration of point C parallel to the surface is zero, but C does have an
acceleration normal to the surface.

Expressing the acceleration of a point A relative to a point B in terms of A’s
circular path about B as we have done is useful for visualizing and understand-
ing the relative acceleration. However, just as we did in the case of the relative
velocity, we can obtain in a form more convenient for applications by using
the angular velocity vector The velocity of A relative to B is given in terms
of by Eq. (17.5):

Taking the derivative of this equation with respect to time, we obtain

We next define the angular acceleration vector to be the rate of change of the
angular velocity vector:

(17.7)

Then the acceleration of A relative to B is

Using this expression, we can write equations relating the velocities and accel-
erations of two points of a rigid body in terms of its angular velocity and angular
acceleration:

(17.8)

(17.9)

In the case of planar motion, the term in Eq. (17.9) is the tangential
component of the acceleration of A relative to B, and is the
normal component (Fig. 17.22). Therefore, for planar motion, we can write
Eq. (17.9) in the simpler form

(17.10)planar motionaA = aB + " * rA>B - v2rA>B. 
! * 1! * rA>B2" * rA>B

 aA = aB + " * rA>B + ! * 1! * rA>B2. vA = vB + ! * rA>B, 

aA>B = " * rA>B + ! * 1! * rA>B2.
" = d!

dt
.

"

 = d!

dt
* rA>B + ! * 1! * rA>B2.

 aA>B = d!

dt
* rA>B + ! * vA>B

vA>B = ! * rA>B.

!
!.

aA>B

 = Rv2j.

 aC = aB + aC>B = -Rai + Rai + Rv2j
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318 Chapter 17 Planar Kinematics of Rigid Bodies

The round object of radius R rolling on the 
stationary plane surface has counterclockwise 
angular acceleration a. The component of the 
acceleration of point C tangential to the surface 
is zero. The acceleration of the center B is aR 
in the direction shown.

B

a

aB ! Ra

C

In planar motion, a point A of a rigid body 
moves in a circular path relative to a point B. 
The tangential and normal components of the  
acceleration of A relative to B can be expressed 
in terms of the distance from A to B and the 
angular velocity and angular acceleration of 
the rigid body.

rA/B

O

B

arA/B

v2rA/B
A

v
a

RESULTS

Relative Velocities and Accelerations

Equation (17.9) can be expressed in a simpler
form in planar motion.

aA ! aB " ! # rA/B $ v2 rA/B.                    (17.10)

Planar Motion

The velocity and acceleration of A (relative
to a given reference frame) can be expressed
in terms of the velocity and acceleration of B,
the position of A relative to B, the angular
velocity of the rigid body, and the angular
acceleration ! ! d"/dt of the rigid body.

rArB

rA/B

O

A

B

(17.9)

(17.8)

aA ! aB " ! # rA/B " " # (" # rA/B).

aA/B

vA ! vB " " # rA/B,

vA/B

Rolling Motion
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17.5 General Motions: Accelerations 319

Active Example 17.5 Acceleration of a Point of a Rolling Disk (! Related Problem 17.85)

The rolling disk has counterclockwise angular velocity and counterclockwise
angular acceleration What is the acceleration of point A?

Strategy
We know the acceleration of the center of a rolling disk in terms of the radius
of the disk and its angular acceleration. We can obtain the acceleration of point
A by adding the acceleration of the center to the tangential and normal compo-
nents of the acceleration of A relative to the center.

Solution

a.
v v

a

R
A

y
v
a

A
aB ! aR

B

x

Express the acceleration of the center B of the
disk as a vector in terms of the coordinate
system shown.

aB ! "aBi ! "aRi.

Relative to B, point A follows a circular path.
Express the tangential and normal components
of the acceleration of A relative to B as a vector.

aA/B ! "v2Ri # aRj.

aR

y

x

v2R

B A

The acceleration of A equals the acceleration of 
B plus the acceleration of A relative to B. ! "aRi " v2Ri # aRj.

aA ! aB # aA/B 

Practice Problem Determine the acceleration of point A by applying Eq. (17.10) to
point A and the center B of the disk.

Answer: aA = -aR  i - v2R  i + aR j.
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320 Chapter 17 Planar Kinematics of Rigid Bodies

Bar AB has a counterclockwise angular velocity of and a clockwise
angular acceleration of What are the angular accelerations of bars BC
and CD?

300 rad/s2.
10 rad/s

10 rad/s

300 rad/s2

B
C

y

2 m 2 m

2 m

A D
x

A

10 rad/s

300 rad/s2

D x

B

rB/A

C

y

2 m

(a) Determining the motion of B.

Strategy
Since we know the angular velocity of bar AB, we can determine the velocity of
point B. Then we can apply Eq. (17.8) to points C and D to obtain an equation
for in terms of the angular velocity of bar CD. We can also apply Eq. (17.8)
to points B and C to obtain an equation for in terms of the angular velocity
of bar BC. By equating the two expressions for we will obtain a vector equa-
tion in two unknowns: the angular velocities of bars BC and CD. Then, by fol-
lowing the same sequence of steps, but using Eq. (17.10), we can obtain the
angular accelerations of bars BC and CD.

Solution
The velocity of B is (Fig. a)

Let be the unknown angular velocity of bar CD (Fig. b). The velocity of
C in terms of the velocity of D is

 = -2vCD i - 2vCD j.

 = 0 + 3 i j k
0 0 vCD

-2 2 0

3 vC = vD + !CD * rC>D
vCD

 = -20i 1m/s2. = 0 + 110k2 * 12j2 vB = vA + !AB * rB>A

vC,
vC

vC

Example 17.6 Angular Accelerations of Members of a Linkage (! Related Problem 17.90)
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vCD
aCD

A D x

B C

y

rC/D

2 m

2 m

(b) Determining the motion of C in
terms of the angular motion of 
bar CD.

A D x

B C

y

2 m

vBCaBC

rC/B

(c) Determining the motion of C in
terms of the angular motion of 
bar BC.

Denoting the angular velocity of bar BC by (Fig. c), we obtain the
velocity of C in terms of the velocity of B:

Equating our two expressions for yields

Equating the i and j components, we obtain and 

We can use the same sequence of steps to determine the angular accelerations.
The acceleration of B is (Fig. a)

The acceleration of C in terms of the acceleration of D is (Fig. b)

The acceleration of C in terms of the acceleration of B is (Fig. c)

Equating the expressions for we obtain

Equating i and j components, we obtain the angular accelerations 
and 

Critical Thinking
To determine the angular accelerations of a set of pinned rigid bodies, it is usu-
ally necessary to determine their angular velocities first, because the angular
velocity appears in Eqs. (17.9) and (17.10). But as this example demonstrates,
this initial step provides you with a guide for completing the solution. Once
you have found a sequence of steps using Eq. (17.8) for determining the angu-
lar velocities, the same sequence of steps using Eq. (17.9) or (17.10) will
determine the angular accelerations.

aCD = -100 rad/s2.100 rad/s2
aBC =

1200 - 2aCD2i - 1200 + 2aCD2j = 400i - 1200 - 2aBC2j.
aC,

 = 400i - 1200 - 2aBC2j. = 600i - 200j + 1aBC k2 * 12i2 - 1-102212i2 aC = aB + !BC * rC>B - vBC
2 rC>B

 = 1200 - 2aCD2i - 1200 + 2aCD2j.
 = 0 + 3 i j k

0 0 aCD

-2 2 0

3 - 110221-2i + 2j2
 aC = aD + !CD * rC>D - vCD

2 rC>D
 = 600i - 200j 1m/s22. = 0 + 1-300k2 * 12j2 - 1102212j2 aB = aA + !AB * rB>A - vAB

2 rB>A
-10 rad/s.

vBC =vCD = 10 rad/s

-2vCD i - 2vCD j = -20i + 2vBC j.

vC

 = -20i + 2vBC j.
 = -20i + 1vBC k2 * 12i2 vC = vB + "BC * rC>B

vBC
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322 Chapter 17 Planar Kinematics of Rigid Bodies

x

y

B A

v

rA/B

a

Problem 17.81

x

y

A

2 m

30 rad/s2

5 rad/s2

30!

x

y

A B
O

1 m 1 m

20 rad/s 6 rad/s2

Problem 17.83

17.81 The rigid body rotates about the z axis with counterclock-
wise angular velocity and counterclockwise angular
acceleration The distance 

(a) What are the rigid body’s angular velocity and angular
acceleration vectors?

(b) Determine the acceleration of point A relative to point B, 
first by using Eq. (17.9) and then by using Eq. (17.10).

rA>B = 0.6 m.a = 2 rad/s2.
v = 4 rad/s

17.82 The bar rotates with a counterclockwise angular velocity
of and a counterclockwise angular acceleration of

Determine the acceleration of A (a) by using Eq. (17.9)
and (b) by using Eq. (17.10).
30 rad/s2.

5 rad/s

17.83 The bar rotates with a counterclockwise angular velocity of
and a counterclockwise angular acceleration of

(a) By applying Eq. (17.10) to point A and the fixed point O, 
determine the acceleration of A.

(b) By using the result of part (a) and applying Eq. (17.10) to
points A and B, determine the acceleration of B.

6 rad/s2.20 rad/s

17.84 The helicopter is in planar motion in the x–y plane. At the
instant shown, the position of its center of mass G is 

its velocity is and its accelera-
tion is The position of point T where the
tail rotor is mounted is The helicopter’s
angular velocity is clockwise, and its angular accelera-
tion is counterclockwise. What is the acceleration of
point T?

0.1 rad/s2
0.2 rad/s

x = -3.5 m, y = 4.5 m.
aG = 2i + 3j 1m/s22.vG = 12i + 4j 1m/s2,y = 2.5 m,

x = 2 m,

! 17.85 Point A of the rolling disk is moving toward the right
and accelerating toward the right. The magnitude of the velocity
of point C is 2 m/s, and the magnitude of the acceleration of point 
C is Determine the accelerations of points B and D. 
(See Active Example 17.5.)

14 m/s2.

y

x

T

G

Problem 17.84

x

y

A

45!

C

D

B

300 mm

Problem 17.85

Problems

Problem 17.82
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Problems 323

17.86 The disk rolls on the circular surface with a constant
clockwise angular velocity of What are the accelerations
of points A and B?

Strategy: Begin by determining the acceleration of the cen-
ter of the disk. Notice that the center moves in a circular path and
the magnitude of its velocity is constant.

1 rad/s.

17.87 The length of the bar is and the angle 
The bar’s angular velocity is and its angular accel-
eration is The endpoints of the bar slide on the plane
surfaces. Determine the acceleration of the midpoint G.

Strategy: Begin by applying Eq. (17.10) to the endpoints of
the bar to determine their accelerations.

a = 6 rad/s2.
v = 1.8 rad/s

u = 30°.L = 4 ft

17.88 The angular velocity and angular acceleration of bar AB
are and The dimensions of the
rectangular plate are What are the angular velocity
and angular acceleration of the rectangular plate?

12 in * 24 in.
aAB = 10 rad/s2.vAB = 2 rad/s

17.89 The ring gear is stationary, and the sun gear has an angular
acceleration of in the counterclockwise direction. 
Determine the angular acceleration of the planet gears.

10 rad/s2

0.4 m

A

B 

1.2 m

y

x

Problem 17.86

L

G

v
a

u

y

x

Problem 17.87

12 in

A

B

C

D

45!
45!

20 in

vAB
aAB

Problem 17.88

20 in

Sun gear

34 in

Planet gears (3)

Ring gear7 in

Problem 17.89

A

B

4 rad/s

10 rad/s2

Problem 17.91

! 17.90 In Example 17.6, what is the acceleration of the 
midpoint of bar BC?

17.91 The 1-m-diameter disk rolls, and point B of the 1-m-long
bar slides, on the plane surface. Determine the angular accelera-
tion of the bar and the acceleration of point B.
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324 Chapter 17 Planar Kinematics of Rigid Bodies

17.97 The angular velocity and angular acceleration of bar AB
are and What is the acceleration of
point D?

aAB = 8 rad/s2.vAB = 2 rad/s

17.98 The angular velocity If the acceleration 
of the slider C is zero at the instant shown, what is the angular 
acceleration aAB?

vAB = 6 rad/s .

y

0.32 m

0.48 m

0.16 m0.24 m0.32 m

A B x

D

C

vAB aAB

Problem 17.97

A

B

C

4 in

4 in 10 in

3 in

x

y

C

vAB

aAB

Problem 17.98

1.2 m

O

Q

P

θ

1.2 m

Problems 17.92/17.93

O

P

Q

θ

200 mm 400 mm

Problem 17.94

B

A
50 mm

50 mm

175 mm

y

x
C

Problem 17.95

C

1 m

2 m

A B

D

1 m

1 m 2 m

y

vAB aAB

Problem 17.96

17.92 If and sleeve P is moving to the right with a
constant velocity of what are the angular accelerations of
bars OQ and PQ?

17.93 If and bar OQ has a constant clockwise angular
velocity of what is the acceleration of sleeve P?1 rad/s,

u = 50°

2 m/s,
u = 45°

17.94 The angle and bar OQ has a constant counter-
clockwise angular velocity of What is the angular acceler-
ation of bar PQ?

2 rad/s.
u = 60°,

17.95 At the instant shown, the piston’s velocity and acceleration
are and What is the 
angular acceleration of the crank AB?

aC = -2200  i (m/s2).vC = -14  i (m/s)

17.96 The angular velocity and angular acceleration of bar AB
are and Determine the angular
accelerations of bars BC and CD.

aAB = -6 rad/s2.vAB = 4 rad/s
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Problems 325

17.99 The angular velocity and angular acceleration of bar AB
are and Determine the angular
acceleration of bar BC.

aAB = 10 rad/s2.vAB = 5 rad/s

17.100 At the instant shown, bar AB is rotating at 10 rad/s in the
counterclockwise direction and has a counterclockwise angular
acceleration of . The disk rolls on the circular surface.
Determine the angular accelerations of bar BC and the disk.

20 rad/s2

17.101 If and
what is the acceleration of point C where the

scoop of the excavator is attached?

17.102 If the velocity of point C of the excavator is
and is constant, what are 

and aBC?
vAB, aAB, vBC,vC = 4 i 1m/s2

aBC = 4 rad/s2,
vAB = 2 rad/s, aAB = 2 rad/s2, vBC = 1 rad/s,

C

0.2 m

0.4 m 0.2 m 0.2 m

D

A

B

vAB
aAB

Problem 17.99

2 m

A

B

C

3 m

3 m

1 m

Problem 17.100

x

y

B
C

5 m5.5 m

1.6 m

A

4 m 3 m 2.3 m

BC
BC

AB

ABa a

v
v

Problems 17.101/17.102

17.103 The steering linkage of a car is shown. Member DE rotates about the fixed pin E. The right brake disk is rigidly attached to
member DE. The tie rod CD is pinned at C and D. At the instant shown, the Pitman arm AB has a counterclockwise angular velocity of

and a clockwise angular acceleration of What is the angular acceleration of the right brake disk?2 rad/s2.1 rad/s

180 mm 220 mm
100 mm

460
mm

340
mm

70
mm

200
mm

Steering link

Brake disks

B
A

C
D

E

Problem 17.103
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A

B

C

D

E
x

y

600 mm

600 mm

400 mm

500 mm

300
mm

300
mm

200
mm

Problem 17.106

0.08 rad/s2
0.12 rad/s

0.08 rad/s2
0.12 rad/s

B C

D

E

25 mm

18 mm

25 mm

Problem 17.107

17.106 If counterclockwise and 
counterclockwise, what is the acceleration of point C?

aAB = 12 rad/s2vAB = 4 rad/s

17.107 The angular velocities and angular accelerations of the
grips of the shears are shown. What is the resulting angular 
acceleration of the jaw BD?

17.104 At the instant shown, bar AB has no angular velocity, 
but has a counterclockwise angular acceleration of 
Determine the acceleration of point E.

10 rad/s2.

17.105 If and what are the
angular accelerations of bars BC and CD?

aAB = 100 rad/s2,vAB = 12 rad/s

x

y

A

B

C ED
400 mm

700 mm 700 mm400
mm

Problem 17.104

A

C

B

D

350
mm

200
mm

300 mm 350 mm

AB

ABa

v

Problem 17.105
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17.108 If arm AB has a constant clockwise angular velocity of
arm BC has a constant clockwise angular velocity of
and arm CD remains vertical, what is the acceleration 

of part D?

17.109 If arm AB has a constant clockwise angular velocity of
and you want D to have zero velocity and acceleration,

what are the necessary angular velocities and angular accelera-
tions of arms BC and CD?

17.110 If you want arm CD to remain vertical and you want
part D to have velocity and zero acceleration,
what are the necessary angular velocities and angular accelera-
tions of arms AB and BC?

vD = 1.0 i 1m/s2
0.8 rad/s

0.2 rad/s,
0.8 rad/s,

17.111 Link AB of the robot’s arm is rotating with a constant
counterclockwise angular velocity of and link BC is 
rotating with a constant clockwise angular velocity of 
Link CD is rotating at in the counterclockwise direction
and has a counterclockwise angular acceleration of 
What is the acceleration of point D?

6 rad/s2.
4 rad/s

3 rad/s.
2 rad/s,

17.112 The upper grip and jaw of the pliers ABC is stationary.
The lower grip DEF is rotating in the clockwise direction with a
constant angular velocity of At the instant shown, what
is the angular acceleration of the lower jaw CFG?

0.2 rad/s.

17.113 The horizontal member ADE supporting the scoop is sta-
tionary. If link BD has a clockwise angular velocity of and
a counterclockwise angular acceleration of what is the
angular acceleration of the scoop?

2 rad/s2,
1 rad/s

G

70 mm

BA

D

C

30 mm

30 mm

E F

30 mm

Stationary

Problem 17.112

1 ft 6 in

2 ft 6 in 1 ft5 ft

2 ft

C
B

D EA

Scoop

Problem 17.113

y

50!
x

D

B

C

A

15!

170 mm

300 mm

30
0 m

m

Problems 17.108–17.110

x

D
C

y

B30!
20!

A

250 mm

300 mm

250 mm

Problem 17.111

17.114 The ring gear is fixed, and the hub and planet gears are
bonded together. The connecting rod has a counterclockwise an-
gular acceleration of Determine the angular accelera-
tions of the planet and sun gears.

17.115 The connecting rod has a counterclockwise angular ve-
locity of and a clockwise angular acceleration of 
Determine the magnitude of the acceleration of point A.

12 rad/s2.4 rad/s

10 rad/s2.

A

240 mm

720 mm

340
mm

140
    mm

Planet gear

Connecting
rod

Sun gear

Hub gear

Ring gear

Problems 17.114/17.115
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rB

y

x

z

A

rA

rA/B

B

O

Secondary 
(body-fixed)
reference frame

Primary
reference
frame

Figure 17.24
A point B of a rigid body, a body-fixed
secondary reference frame, and an arbitrary
point A.

17.6 Sliding Contacts

BACKGROUND
In this section we consider a type of problem that is superficially similar to
those we have discussed previously in this chapter, but which requires a differ-
ent method of solution. For example, in Fig. 17.23, pin A of the bar connected
at C slides in a slot in the bar connected at B. Suppose that we know the angu-
lar velocity of the bar connected at B, and we want to determine the angular
velocity of bar AC. We cannot use the equation to ex-
press the velocity of pin A in terms of the angular velocity of the bar fixed at B,
because we derived that equation under the assumption that A and B are points
of the same rigid body. Here pin A moves relative to the bar connected at B as
it slides along the slot. This is an example of a sliding contact between rigid bod-
ies. To solve this type of problem, we must rederive Eqs. (17.8), (17.9), and
(17.10) without making the assumption that A is a point of the rigid body.

To describe the motion of a point that moves relative to a given rigid body,
it is convenient to use a reference frame that moves with the rigid body. We say
that such a reference frame is body-fixed. In Fig. 17.24, we introduce a body-fixed
reference frame xyz with its origin at a point B of the rigid body, in addition to

vA = vB + ! * rA>B

A

B C

Figure 17.23
Linkage with a sliding contact.

4 in 16 in

A

B C D

E

10 in

4 in

10 in

AB

ABv
a

Problem 17.116

17.116 The large gear is fixed. The angular velocity and angular acceleration of bar AB are and 
Determine the angular accelerations of bars CD and DE.

aAB = 4 rad/s2.vAB = 2 rad/s
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17.6 Sliding Contacts 329

the primary reference frame with origin O. (The primary reference frame is the
reference frame relative to which we are describing the motion of the rigid body.)
We do not assume A to be a point of the rigid body. The position of A relative 
to O is

where x, y, and z are the coordinates of A in terms of the body-fixed reference
frame. Our next step is to take the derivative of this expression with respect to
time in order to obtain an equation for the velocity of A. In doing so, we rec-
ognize that the unit vectors i, j, and k are not constant, because they rotate with
the body-fixed reference frame:

Now, what are the derivatives of the unit vectors? In Section 17.3, we showed
that if is the position of a point P of a rigid body relative to another point B
of the same rigid body, Since we can regard
the unit vector i as the position vector of a point P of the rigid body (Fig. 17.25),
its derivative is Applying the same argument to the unit vectors
j and k, we obtain

Using these expressions, we can write the velocity of point A as

(17.11)

where

(17.12)

is the velocity of A relative to the body-fixed reference frame. That is, is the
velocity of A relative to the primary reference frame, and is the velocity
of A relative to the rigid body.

Equation (17.11) expresses the velocity of a point A as the sum of three
terms (Fig. 17.26): the velocity of a point B of the rigid body, the velocity

of A relative to B due to the rotation of the rigid body, and the velocity
of A relative to the rigid body.vA rel

! * rA>B
vA rel

vA

vA rel = dx
dt

 i +
dy
dt

 j + dz
dt

 k

vA = vB + vA rel + ! * rA>B,(''')'''*
vA>B

di
dt

= ! * i, dj
dt

= ! * j, dk
dt

= ! * k.

di>dt = ! * i.

drP>B>dt = vP>B = ! * rP>B.
rP>B

vA = vB + dx
dt

 i + x 
di
dt

+
dy
dt

 j + y 

dj
dt

+ dz
dt

 k + z 
dk
dt

.

rA = rB + xi + yj + zk,('')''*
rA>B

y

x

z

i
B P

Figure 17.25
Interpreting i as the position vector of a
point P relative to B.

rA/B

B

A

vB

B

A
vArel

A

! !

"  rA/B

vB
!

!

Figure 17.26
Expressing the velocity of A in terms of the
velocity of a point B of the rigid body.
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B
A

B
A

vx

v

x

(d)

y

B
A

x vA rel ! vi

x

(c)

y

(b)

A
(a)

v

v

v

Figure 17.28
(a) A point moving along a bar.
(b) The bar is rotating.
(c) A body-fixed reference frame.
(d) Components of vA.

y

xz

B

A
vArel

aArel

Figure 17.27
Imagine yourself to be stationary relative to
the rigid body.

To obtain an equation for the acceleration of point A, we take the deriva-
tive of Eq. (17.11) with respect to time and use Eq. (17.12). The result is (see
Problem 17.142)

(17.13)

where

(17.14)

is the acceleration of A relative to the body-fixed reference frame. That is, 
is the acceleration of A relative to the primary reference frame, and is the
acceleration of A relative to the rigid body.

In the case of planar motion, we can express Eq. (17.13) in the simpler form

(17.15)

In summary, and are the velocity and acceleration of point A rela-
tive to the primary reference frame—the reference frame relative to which the
rigid body’s motion is being described. The terms and are the ve-
locity and acceleration of point A relative to the body-fixed reference frame.
That is, they are the velocity and acceleration measured by an observer mov-
ing with the rigid body (Fig. 17.27). If A is a point of the rigid body, then 
and are zero, and Eqs. (17.11) and (17.13) are identical to Eqs. (17.8)
and (17.9).

We can illustrate these concepts with a simple example. Figure 17.28a
shows a point A moving with velocity v parallel to the axis of a bar. (Imagine
that A is a bug walking along the bar.) Suppose that at the same time, the bar is
rotating about a fixed point B with a constant angular velocity relative to an
earth-fixed reference frame (Fig. 17.28b). We will use Eq. (17.11) to determine
the velocity of A relative to the earth-fixed reference frame.

Let the coordinate system in Fig. 17.28c be fixed with respect to the bar,
and let x be the present position of A. In terms of this body-fixed reference
frame, the angular velocity vector of the bar (and the reference frame) rela-
tive to the primary earth-fixed reference frame is Relative to the ! = vk.

v

aA rel

vA rel

aA relvA rel

aAvA

aA = aB + aA rel + 2! * vA rel + " * rA>B - v2rA>B.(''''''''')'''''''''*
aA>B

aA rel

aA

aA rel = d2x

dt2  i +
d2y

dt2  j + d2z

dt2  k

aA = aB + aA rel + 2! * vA rel + " * rA>B + ! * 1! * rA>B2,('''''''''''')'''''''''''*
aA>B
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17.6 Sliding Contacts 331

In the case of planar motion, Eq. (17.13) can be 
written

vA ! vB " vA rel " ! # rA/B,     (17.11)

" " # rA/B " ! # (! # rA/B).

aA ! aB " aA rel " 2! # vA rel

" " # rA/B $ v2rA/B.

aA ! aB " aA rel " 2! # vA rel

(17.13)

(17.15)

The terms vA, vB, aA, and aB are the velocities and 
accelerations of points A and B relative to the primary 
reference frame. ! and " are the angular velocity and 
angular acceleration of the rigid body relative to the 
primary reference frame. The term

is the velocity of A relative to the secondary reference 
frame, that is, relative to the rigid body. The term

is the acceleration of A relative to the secondary
reference frame.

vA rel ! (17.12)i
dx
dt

j
dy
dt

" k
dz
dt

" 

aA rel ! (17.14)i j
d2x
dt2

d2y 
dt2" k

d2z 
dt2" 

rB

y

x

z

A

rA

rA/B

B

O

Secondary 
(body-fixed)
reference frame

Primary
reference 
frame

body-fixed reference frame, point A moves along the x axis with velocity v, so
From Eq. (17.11), the velocity of A relative to the earth-fixed ref-

erence frame is

Relative to the earth-fixed reference frame, A has a component of velocity par-
allel to the bar and also a perpendicular component due to the bar’s rotation
(Fig. 17.28d). Although is the velocity of A relative to the earth-fixed refer-
ence frame, notice that it is expressed in components that are in terms of the
body-fixed reference frame.

RESULTS

vA

 = vi + vxj.
 = 0 + vi + 1vk2 * 1xi2 vA = vB + vA rel + ! * rA>B

vA rel = vi.
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332 Chapter 17 Planar Kinematics of Rigid Bodies

Active Example 17.7 Linkage with a Sliding Contact (! Related Problem 17.117)

Bar AB has a counterclockwise angular velocity of and a counterclock-
wise angular acceleration of At the instant shown, determine the
angular velocity of bar AC and the velocity of the pin A relative to the slot in
bar AB.

Strategy
By introducing a secondary reference frame that is fixed with respect to the
slotted bar AB, we can apply Eq. (17.11) to points A and B, thereby expressing
the velocity of the pin A in terms of its velocity relative to the slot (the term

) and the known angular velocity of bar AB. The pin A is a point of the bar
AC, so we can apply Eq. (17.8) to points A and C to express the velocity of the
pin A in terms of the unknown angular velocity of bar AC. By equating the two
expressions for the velocity of A, we will obtain two equations in terms of the
velocity of A relative to the slot and the angular velocity of bar AC.

Solution

vA rel

10 rad/s2.
2 rad/s

800 mm

400 mm
2 rad/s

10 rad/s2

A

B C

The coordinate system is fixed with respect to
bar AB. That is, it rotates with the bar. Apply
Eq. (17.11) to points A and B.

B C

800 mm

400 mm
2 rad/s

10 rad/s2

A

y

x

rA/B

vA ! vB " vA rel " ! # rA/B

  ! vA rel $ 0.8 i " 1.6 j.

! 0 " vA rel "

i j k

0 0 2

0.8 0.4 0

(1)

The velocity of the pin A relative to the body-
fixed reference frame is parallel to the slot. Let
vA rel be the unknown velocity of A along the
slot. The angle b ! arctan(0.4/0.8) ! 26.6%.

vA rel ! vA rel cos b i " vA rel sin b j.          (2)

A

B C

800 mm

400 mm

y

x

A relv

b
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17.6 Sliding Contacts 333

Substitute Eq. (2) into Eq. (1). vA ! (vA rel cos 26.6" # 0.8) i $ (vA rel sin 26.6" $ 1.6) j.        (3)

Let vAC be the unknown 
counterclockwise angular velocity 
of bar AC. Apply Eq. (17.8) to 
points A and C.

vA ! vC $ !AC % rA/C

!#0.4vAC i.

! 0 $

i j k

0 0 vAC

0 0.4

(4)

0

C

y

x

400 mm

A

B

rA/C

aAC

vAC

Equate expressions (3) and (4) to 
determine vA rel and vAC.

   (vA rel cos 26.6" # 0.8) i + (vA rel sin 26.6" + 1.6) j ! #0.4vAC i.

Equating i and j components gives the two equations

   vA rel cos 26.6" # 0.8 ! #0.4vAC ,

   vA rel sin 26.6" $ 1.6 ! 0.

Solving yields vA rel ! #3.58 m/s and vAC ! 10 rad/s. At
this instant, the pin A is moving relative to the slot at
3.58 m/s toward B. The velocity vector of the pin A relative
to the slot is

vA rel    ! vA rel cos 26.6" i $ vA rel sin 26.6" j

            ! (#3.58) cos 26.6" i $ (#3.58) sin 26.6" j

            ! #3.2 i # 1.6 j (m/s).

Practice Problem At the instant shown, determine the angular acceleration of bar AC and the acceleration
of the pin A relative to the slot in bar AB.

Answer: A is accelerating at 75.1 m/s2 toward B.aAC = 170 rad/s2 counterclockwise,
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334 Chapter 17 Planar Kinematics of Rigid Bodies

Strategy
We will use a secondary reference frame with its origin at B that is body fixed with
respect to bar BC. By using Eqs. (17.11) and (17.15) to express the velocity and
acceleration of the stationary pin A in terms of the velocity and acceleration of
pin B, we can determine the angular velocity and angular acceleration of bar BC.

Solution
Angular Velocity Let the angular velocity and angular acceleration of bar
BC, which are also the angular velocity and angular acceleration of the body-
fixed coordinate system, be and (Fig. a). The velocity of the station-
ary pin A is zero. From Eq. (17.11),

(1)vA = 0 = vB + vA rel + ! * rA>B,

aBCvBC

C

R

b

B

v0 b

A

x

y

aBC

vBC

(a) A reference frame fixed with respect 
to bar BC.

Example 17.8 Bar Sliding Relative to a Support (! Related Problems 17.130, 17.131)

The collar at B slides along the circular bar, causing pin B to move at constant
speed in a circular path of radius R. Bar BC slides in the collar at A. At the in-
stant shown, determine the angular velocity and angular acceleration of bar BC.

v0

C

R

b

B

v0 b

A
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17.6 Sliding Contacts 335

where is the velocity of A relative to the body-fixed coordinate system
and is the angular velocity vector of the coordinate system. The
velocity of pin B is The velocity of the stationary pin A relative to the
body-fixed coordinate system is parallel to the bar (Fig. b), so we can express
it in the form

(2)

and write Eq. (1) as

From the i and j components of this equation, we obtain

Solving these equations, we determine that the velocity of pin A relative to the
body-fixed coordinate system is

and the angular velocity of bar BC is

Angular Acceleration The acceleration of pin A is zero. From Eq. (17.15),

(3)

The acceleration of pin B is The acceleration of pin A relative
to the body-fixed coordinate system is parallel to the bar (Fig. c). We can
therefore express it as

(4)

and write Eq. (3) as

 - v2
BC1bi + bj2.

 + 2 3 i j k
0 0 vBC

-v0>2 -v0>2 0

3 + 3 i j k
0 0 aBC

b b 0

3 0 = - v 2
0

R
 i + aA rel cos 45°i + aA rel sin 45°j

aA rel = aA rel cos 45°i + aA rel sin 45°j

aB = -1v0
2>R2i.aA = 0 = aB + aA rel + 2! * vA rel + " * rA>B - v2rA>B.

vBC = -  

v0

2b
.

 = -  

v0

2
 i -

v0

2
 j

 vA rel = vA rel cos 45°i + vA rel sin 45°j

 v0 + vA rel sin 45° + bvBC = 0.

 vA rel cos 45° - bvBC = 0, 

+ 3 i j k
0 0 vBC

b b 0

3 .0 = v0  j + vA rel cos 45°i + vA rel sin 45°j

vA rel = vA rel cos 45°i + vA rel sin 45°j

vB = v0  j.
! = vBC k

vA rel

B
x

45!

y
vA rel

A

(b) Direction of the velocity of the fixed pin
A relative to the body-fixed coordinate
system.

B
x

45!

y

A

aA rel

(c) Direction of the acceleration of the
fixed pin A relative to the body-fixed
coordinate system.
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336 Chapter 17 Planar Kinematics of Rigid Bodies

Example 17.9 Analysis of a Sliding Contact (! Related Problems 17.136, 17.137)

Bar AB rotates with a constant counterclockwise angular velocity of 
Block B slides in a circular slot in the curved bar BC. At the instant shown, the
center of the circular slot is at D. Determine the angular velocity and angular
acceleration of bar BC.

Strategy
Since we know the angular velocity of bar AB, we can determine the velocity
of point B. Because B is not a point of bar BC, we must apply Eq. (17.11) to
points B and C. By equating our expressions for we can solve for the angu-
lar velocity of bar BC. Then, by following the same sequence of steps, but this
time using Eq. (17.15), we can determine the angular acceleration of bar BC.

Solution
To determine the velocity of B, we express it in terms of the velocity of A
and the angular velocity of bar AB: In terms of the
coordinate system shown in Fig. a, the position vector of B relative to A is

where Therefore, the velocity of B is

(1) = -0.350i + 0.857j 1m/s2.
 vB = vA + !AB * rB>A = 0 + 3 i j k

0 0 1
0.857 0.350 0

3b = arcsin1350>5002 = 44.4°.

rB>A = 10.500 + 0.500 cos b2i + 0.350j = 0.857i + 0.350j 1m2,
vB = vA + !AB * rB>A.

vB,

1 rad/s.

350 mm

500
mm

1000 mm

500
mmA C

B

1 rad/s

D

500
mm

A C

B

1 rad/s

x

y

500
mm

rB/A

D
b

(a) Determining the velocity of point B.

From the i and j components of this equation, we obtain

Solving these equations, we determine that the angular acceleration of bar BC is

Critical Thinking
In this example, the bar BC slides relative to its support at A. Notice that the
fixed support A moves relative to the coordinate system that is body-fixed with
respect to the bar BC. Because the bar BC is stationary with respect to the body-
fixed coordinate system, we knew that the velocity and acceleration of the sup-
port A relative to the body-fixed coordinate system is parallel to bar BC. That
was why we could express them in the forms given by Eqs. (2) and (4).

aBC = -
v2

0

2b
 a 1

R
+ 1

b
b .

aA rel sin 45° - v0vBC + baBC - bv2
BC = 0.

-
v2

0

R
+ aA rel cos 45° + v0vBC - baBC - bv2

BC = 0,
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To apply Eq. (17.11) to points B and C, we introduce a parallel secondary
coordinate system that rotates with the curved bar (Fig. b). The velocity of B is

(2)

The position vector of B relative to C is

Relative to the body-fixed coordinate system, point B moves in a circular path
about point D (Fig. c). In terms of the angle the vector

We substitute the preceding expressions for and into Eq. (2), obtaining

Equating this expression for to its value given in Eq. (1) yields the two
equations

Solving these equations, we obtain and 
We follow the same sequence of steps to determine the angular acceleration

of bar BC. The acceleration of point B is

(3) = -0.857i - 0.350j 1m/s22. = 0 + 0 - 112210.857i + 0.350j2 aB = aA + !AB * rB>A - v2
AB rB>A

vBC = -1.0 rad/s.vB rel = 1.0 m/s

vB rel cos b - 0.143vBC = 0.857.

-vB rel sin b - 0.350vBC = -0.350,

vB

vB = -vB rel sin bi + vB rel cos bj + 3 i j k
0 0 vBC

-0.143 0.350 0

3 .vB relrB>C
vB rel = -vB rel sin bi + vB rel cos bj.

b,

rB>C = -10.500 - 0.500 cos b2i + 0.350j = -0.143i + 0.350j 1m2.
vB = vC + vB rel + "BC * rB>C.

A C

B

b

rB/C

500
mm

x

y
vBC
aBC

D

(b) A coordinate system fixed with respect
to the curved bar.

C

B

x

y

D

vB rel

b

(c) The velocity of B relative to the body-
fixed coordinate system.
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338 Chapter 17 Planar Kinematics of Rigid Bodies

Because the motion of point B relative to the body-fixed coordinate system
is a circular path about point D, there is a tangential component of
acceleration, which we denote and a normal component of acceleration

These components are shown in Fig. d. In terms of the angle
the vector

Applying Eq. (17.15) to points B and C, we obtain the acceleration of B:

Equating this expression for to its value given in Eq. (3) yields the two
equations

Solving we obtain and 

Critical Thinking
This example was distinguished by the fact that the slotted bar has the shape of
a circular arc. As a result, the block B moved in a circular path relative to the
coordinate system that is fixed with respect to the circular bar. The direction of
the velocity was tangential to the circular path. However, as a result of the
curved path, we knew that would have components tangential and normal
to the path. Furthermore, the magnitude of the normal component could be writ-
ten in terms of the magnitude of the velocity and the radius of the circular
path. Therefore, once was known, only the tangential component of
needed to be determined.

aB relvB rel

aB rel

vB rel

aBC = 2.040 rad/s2.aBt = 0.408 m/s2

 aBt cos b - 0.143aBC - 0.350 = -0.350.

 -aBt sin b - 0.350aBC + 0.143 = -0.857, 

aB

 + 3 i j k
0 0 aBC

-0.143 0.350 0

3 - 1-1221-0.143i + 0.350j2.
 + 2 3 i j k

0 0 -1
-112 sin b 112 cos b 0

3 - 31122>0.54 cos bi - 31122>0.54 sin bj

 = 0 - aBt sin bi + aBt cos bj

 + ABC * rB>C - v2
BC rB>C

 aB = aC + aB rel + 2!BC * vB rel

 - 1v2
B rel>0.52 cos bi - 1v2

B rel>0.52 sin bj.

 aB rel = -aBt sin bi + aBt cos bj

b,
v2

B rel>10.5 m2. aBt,

C

B

x 

y

D

aBt

500
mm

b

v2
B rel

0.5

(d) Acceleration of B relative to the body-
fixed coordinate system.
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1 m/s

C

2 rad/s

A

DB

400
mm

600
mm

600
mm

4 rad/s

y

x

Problems 17.119/17.120

Problems

! 17.117 In Active Example 17.7, suppose that the distance
from point C to the pin A on the vertical bar AC is 300 mm instead
of 400 mm. Draw a sketch of the linkage with its new geometry.
Determine the angular velocity of bar AC and the velocity of the
pin A relative to the slot in bar AB.

17.118 The bar rotates with a constant counterclockwise angu-
lar velocity of and sleeve A slides at a constant velocity
of relative to the bar. Use Eq. (17.15) to determine the ac-
celeration of A.

4 ft/s
10 rad/s

x

2 ft

y

10 rad/s 4 ft/s

B
A

Problem 17.118

17.119 Sleeve C slides at relative to bar BD. Use the body-
fixed coordinate system shown to determine the velocity of C.

17.120 The angular accelerations of the two bars are zero and
sleeve C slides at a constant velocity of relative to bar BD.
What is the acceleration of sleeve C?

1 m/s

1 m/s

7 in

4 in

D

C

BA

Problems 17.121–17.123

17.121 Bar AC has an angular velocity of in the counter-
clockwise direction that is decreasing at The pin at C
slides in the slot in bar BD.

(a) Determine the angular velocity of bar BD and the velocity of
the pin relative to the slot.

(b) Determine the angular acceleration of bar BD and the acceler-
ation of the pin relative to the slot.

17.122 The velocity of pin C relative to the slot is up-
ward and is decreasing at What are the angular velocity
and angular acceleration of bar AC?

17.123 What should the angular velocity and acceleration of bar
AC be if you want the angular velocity and acceleration of bar BD
to be counterclockwise and counterclockwise,
respectively?

24 rad/s24 rad/s

42 in/s2.
21 in/s

4 rad/s2.
2 rad/s
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2.4 m

1.2 m1.4 m

A B

C

aAC

vAC

Problems 17.128/17.129

10 m/s
A

C

B

30!

1 m

Problems 17.130/17.131

17.128 The angular velocity per second. Determine
the angular velocity of the hydraulic actuator BC and the rate
at which the actuator is extending.

17.129 The angular velocity per second and the angu-
lar acceleration per second squared. Determine the
angular acceleration of the hydraulic actuator BC and the rate of
change of the actuator’s rate of extension.

aAC = -2°
vAC = 5°

vAC = 5°

! 17.130 The sleeve at A slides upward at a constant velocity of
Bar AC slides through the sleeve at B. Determine the an-

gular velocity of bar AC and the velocity at which the bar slides
relative to the sleeve at B. (See Example 17.8.)

! 17.131 The sleeve at A slides upward at a constant velocity
of Determine the angular acceleration of bar AC and the
rate of change of the velocity at which the bar slides relative to
the sleeve at B. (See Example 17.8.)

10 m/s.

10 m/s.

1.8 m 1.2 m

B

C

2.4 m

1 m

A

D

Problems 17.126/17.127

17.126 The hydraulic actuator BC of the crane is extending (in-
creasing in length) at a rate of At the instant shown, what
is the angular velocity of the crane’s boom AD?

Strategy: Use Eq. (17.8) to write the velocity of point C in
terms of the velocity of point A, and use Eq. (17.11) to write the
velocity of point C in terms of the velocity of point B. Then
equate your two expressions for the velocity of point C.

17.127 The hydraulic actuator BC of the crane is extending
(increasing in length) at a constant rate of At the
instant shown, what is the angular acceleration of the crane’s
boom AD?

0.2 m/s.

0.2 m/s.

A

B

C

80 mm 35 mm

60 mm

Problems 17.124/17.125

17.124 Bar AB has an angular velocity of in the clock-
wise direction. What is the velocity of pin B relative to the slot?

17.125 Bar AB has an angular velocity of in the clock-
wise direction and an angular acceleration of in the
counterclockwise direction. What is the acceleration of pin B
relative to the slot?

10 rad/s2
4 rad/s

4 rad/s
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B

x

2 ft 6 in

y

2 ft 6 in4 ft 6 in

20!

A

C

Problems 17.132/17.133

1 ft 6 in

2 ft 6 in1 ft5 ft

2 ft

C
B

D EA

Scoop

Problems 17.134/17.135

17.132 Block A slides up the inclined surface at Determine
the angular velocity of bar AC and the velocity of point C.

17.133 Block A slides up the inclined surface at a constant
velocity of Determine the angular acceleration of bar AC
and the acceleration of point C.

2 ft/s.

2 ft/s.

17.134 The angular velocity of the scoop is clockwise.
Determine the rate at which the hydraulic actuator AB is extending.

17.135 The angular velocity of the scoop is clockwise
and its angular acceleration is zero. Determine the rate of change
of the rate at which the hydraulic actuator AB is extending.

1 rad/s

1 rad/s

A

BC

2 ft

10 rad/s

1 ft

45!

Problems 17.138/17.139

17.138* The disk rolls on the plane surface with a counterclock-
wise angular velocity of Bar AB slides on the surface of
the disk at A. Determine the angular velocity of bar AB.

17.139* The disk rolls on the plane surface with a constant
counterclockwise angular velocity of Determine the 
angular acceleration of bar AB.

10 rad/s.

10 rad/s.

! 17.136 Suppose that the curved bar in Example 17.9 rotates
with a counterclockwise angular velocity of 

(a) What is the angular velocity of bar AB?

(b) What is the velocity of block B relative to the slot?

! 17.137 Suppose that the curved bar in Example 17.9 has a
clockwise angular velocity of and a counterclockwise
angular acceleration of What is the angular
acceleration of bar AB?

10 rad/s2.
4 rad/s

2 rad/s.

A B

40 mm

40 mm

30 mm

C

60 mm

Problems 17.140/17.141

17.140* Bar BC rotates with a counterclockwise angular 
velocity of A pin at B slides in a circular slot in the 
rectangular plate. Determine the angular velocity of the plate and
the velocity at which the pin slides relative to the circular slot.

17.141* Bar BC rotates with a constant counterclockwise
angular velocity of Determine the angular acceleration of
the plate.

2 rad/s.

2 rad/s.

17.142* By taking the derivative of Eq. (17.11) with respect to
time and using Eq. (17.12), derive Eq. (17.13).
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rA/B

x

y

z
rA

rB

O

A

B Secondary
reference
frame

Primary
reference
frame

!

"

17.7 Moving Reference Frames

BACKGROUND
In this section we revisit the subjects of Chapters 13 and 14—the motion of a
point and Newton’s second law. In many situations, it is convenient to describe
the motion of a point by using a secondary reference frame that moves relative
to some primary reference frame. For example, to measure the motion of a point
relative to a moving vehicle, we would choose a secondary reference frame that
is fixed with respect to the vehicle. Here we show how the velocity and accel-
eration of a point relative to a primary reference frame are related to their val-
ues relative to a moving secondary reference frame. We also discuss how to
apply Newton’s second law using moving secondary reference frames when
the primary reference frame is inertial. In Chapter 14 we mentioned the exam-
ple of playing tennis on the deck of a cruise ship. If the ship translates with con-
stant velocity, we can use the equation expressed in terms of a
reference frame fixed with respect to the ship to analyze the ball’s motion. We
cannot do so if the ship is turning or changing its speed. However, we can apply
the second law using reference frames that accelerate and rotate relative to an
inertial reference frame by properly accounting for the acceleration and rotation.
We explain how this is done in this section.

Motion of a Point Relative to a Moving Reference Frame
Equations (17.11) and (17.13) give the velocity and acceleration of an arbitrary
point A relative to a point B of a rigid body in terms of a body-fixed secondary
reference frame:

(17.16)

(17.17)

But these equations don’t require us to assume that the secondary reference
frame is connected to some rigid body. They apply to any reference frame hav-
ing a moving origin B and rotating with angular velocity and angular accel-
eration relative to a primary reference frame (Fig. 17.29). The terms andvA!

"

+ " * 1" * rA>B2.aA = aB + aA rel + 2" * vA rel + ! * rA>BvA = vB + vA rel + " * rA>B,

©F = ma

Figure 17.29
A secondary reference frame with origin B
and an arbitrary point A.
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y

x
z

B

A

vA rel

aA rel

Inertial Reference Frames
We say that a reference frame is inertial if it can be used to apply Newton’s second
law in the form Why can an earth-fixed reference frame be treated as
inertial in many situations, even though it both accelerates and rotates? How can
Newton’s second law be applied using a reference frame that is fixed with respect
to a ship or airplane? We are now in a position to answer these questions.

Earth-Centered, Nonrotating Reference Frame We begin by show-
ing why a nonrotating reference frame with its origin at the center of the earth
can be assumed to be inertial for the purpose of describing motions of objects
near the earth. Figure 17.31a shows a hypothetical nonaccelerating, nonrotat-
ing reference frame with origin O and a secondary nonrotating, earth-centered
reference frame. The earth (and therefore the earth-centered reference frame)

©F = ma.

Figure 17.30
Imagine yourself to be stationary relative to
the secondary reference frame.

rB

O

gB
B

(a)

rB

O

gB
B

rA

gA
rA/B

A

(b)

!F

Figure 17.31
(a) An inertial reference frame and a nonrotating reference

frame with its origin at the center of the earth.
(b) Determining the motion of an object A.

are the velocity and acceleration of A relative to the primary reference frame.
The terms and are the velocity and acceleration of A relative to the
secondary reference frame. That is, they are the velocity and acceleration meas-
ured by an observer moving with the secondary reference frame (Fig. 17.30).

When the velocity and acceleration of a point A relative to a moving sec-
ondary reference frame are known, we can use Eqs. (17.16) and (17.17) to de-
termine the velocity and acceleration of A relative to the primary reference
frame. There will also be situations in which the velocity and acceleration of A
relative to the primary reference frame will be known and we will want to use
Eqs. (17.16) and (17.17) to determine the velocity and acceleration of A rela-
tive to a moving secondary reference frame.

aA relvA rel

aA
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344 Chapter 17 Planar Kinematics of Rigid Bodies

accelerates due to the gravitational attractions of the sun, moon, etc. We denote
the earth’s acceleration by the vector 

Suppose that we want to determine the motion of an object A of mass m
(Fig. 17.31b). A is also subject to the gravitational attractions of the sun, moon,
etc., and we denote the resulting gravitational acceleration by the vector 
The vector is the sum of all other external forces acting on A, including
the gravitational force exerted on it by the earth. The total external force act-
ing on A is We can apply Newton’s second law to A, using our
hypothetical inertial reference frame:

(17.18)

Here, is the acceleration of A relative to O. Since the earth-centered refer-
ence frame does not rotate, we can use Eq. (17.17) to write as

where is the acceleration of A relative to the earth-centered reference
frame. Using this relation and our definition of the earth’s acceleration 
in Eq. (17.18), we obtain

(17.19)

If the object A is on or near the earth, its gravitational acceleration due to the
attraction of the sun, etc., is very nearly equal to the earth’s gravitational ac-
celeration If we neglect the difference, Eq. (17.19) becomes

(17.20)

Thus, we can apply Newton’s second law using a nonrotating, earth-centered ref-
erence frame. Even though this reference frame accelerates, virtually the same
gravitational acceleration acts on the object. Notice that this argument does not
hold if the object is not near the earth.

Earth-Fixed Reference Frame For many applications, the most conven-
ient reference frame is a local, earth-fixed reference frame. Why can we
usually assume that an earth-fixed reference frame is inertial? Figure 17.32
shows a nonrotating reference frame with its origin O at the center of the earth,
and a secondary earth-fixed reference frame with its origin at a point B. Since
we can assume that the earth-centered, nonrotating reference frame is inertial,
we can write Newton’s second law for an object A of mass m as

(17.21)

where is A’s acceleration relative to O. The earth-fixed reference frame ro-
tates with the angular velocity of the earth, which we denote by We can
use Eq. (17.17) to write Eq. (17.21) in the form

(17.22)

where is A’s acceleration relative to the earth-fixed reference frame. If
we can neglect the terms in brackets on the right side of Eq. (17.22), we can
take the earth-fixed reference frame to be inertial. Let us consider each term.
(Recall from the definition of the cross product that ƒ U * V ƒ = ƒ U ƒ ƒ V ƒ  sin u,

aA rel

 + !E * 1!E * rA>B24, ©F = maA rel + m3aB + 2!E * vA rel

!E.
aA

©F = maA,

©F = maA rel.

gB.

gA

©F = maA rel + m1gB - gA2.
aB = gB

aA rel

aA = aB + aA rel,

aA

aA

©F + mgA = maA.

©F + mgA.

©F
gA.

gB.

rAO

rB

B

A

rA/B

!F

Figure 17.32
An earth-centered, nonrotating reference
frame (origin O), an earth-fixed reference
frame (origin B), and an object A.
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17.7 Moving Reference Frames 345

where is the angle between the two vectors. Therefore, the magnitude of the
cross product is bounded by the product of the magnitudes of the vectors.)

• The term The earth’s angular velocity is approx-
imately one revolution per Therefore, the magni-
tude of this term is bounded by For ex-
ample, if the distance from the origin of the earth-fixed reference frame
to the object A is 10,000 m, this term is no larger than 

• The term This term is the acceleration of the origin B of the earth-
fixed reference frame relative to the center of the earth. B moves in a cir-
cular path due to the earth’s rotation. If B lies on the earth’s surface,
is bounded by where is the radius of the earth. Using the value

we find that This value is too large
to neglect for many purposes. However, under normal circumstances,
is accounted for as a part of the local value of the acceleration due to
gravity.

• The term This term is called the Coriolis acceleration. Its
magnitude is bounded by For exam-
ple, if the magnitude of the velocity of A relative to the earth-fixed refer-
ence frame is this term is no larger than 

We see that in most applications, the terms in brackets in Eq. (17.22) can be
neglected. However, in some cases this is not possible. The Coriolis acceleration
becomes significant if an object’s velocity relative to the earth is large, and even
very small accelerations become significant if an object’s motion must be pre-
dicted over a large period of time. In such cases, we can still use Eq. (17.22) to
determine the motion, but must retain the significant terms. When this is done,
the terms in brackets are usually moved to the left side:

(17.23)

Written in this way, the equation has the usual form of Newton’s second law, ex-
cept that the left side contains additional “forces.” (We use quotation marks be-
cause the quantities these terms represent are not forces, but arise from the
motion of the earth-fixed reference frame.)

Coriolis Effects The term in Eq. (17.23) is called the
Coriolis force. It explains a number of physical phenomena that exhibit
different behaviors in the northern and southern hemispheres.The earth’s
angular velocity vector points north. When an object in the northern
hemisphere that is moving tangent to the earth’s surface travels north 
(Fig. 17.33a), the cross product points west (Fig. 17.33b).
Therefore, the Coriolis force points east; it causes an object moving north to
turn to the right (Fig. 17.33c). If the object is moving south, the direction of

is reversed and the Coriolis force points west; its effect is to cause the
object moving south to turn to the right (Fig. 17.33c). For example, in the
northern hemisphere, winds converging on a center of low pressure tend to
rotate about that center in the counterclockwise direction (Fig. 17.34a).

When an object in the southern hemisphere travels north (Fig. 17.33d), the
cross product points east (Fig. 17.33e). The Coriolis force points
west and tends to cause the object to turn to the left (Fig. 17.33f). If the object
is moving south, the Coriolis force points east and tends to cause the object to
turn to the left (Fig. 17.33f). In the southern hemisphere, winds converging on

!E * vA rel

vA rel

!E * vA rel

!E

-2m!E * vA rel

©F - maB - 2m!E * vA rel - m!E * 1!E * rA>B2 = maA rel.

1.45 * 10-3 m/s2.10 m/s,

2vE ƒ vA rel ƒ = 11.45 * 10-42 ƒ vA rel ƒ .
2!E * vA rel:

aB

vE
2RE = 0.0337 m/s2.RE = 6370 km,

REvE
2RE,

aB

aB:
5.3 * 10-5 m/s2.

ƒ rA>B ƒ
vE

2 ƒ rA>B ƒ = 15.29 * 10-92 ƒ rA>B ƒ .
day = 7.27 * 10-5 rad/s.

vE!E * 1!E * rA>B2:
u
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346 Chapter 17 Planar Kinematics of Rigid Bodies

a center of low pressure tend to rotate about that center in the clockwise direc-
tion (Fig. 17.34b).

Arbitrary Reference Frame How can we analyze an object’s motion rela-
tive to a reference frame that undergoes an arbitrary motion, such as a reference
frame fixed with respect to a moving vehicle? Suppose that the primary
reference frame with its origin at O in Fig. 17.35 is inertial and the secondary

(a) (b)

Figure 17.34
Storms in the (a) northern and (b) southern hemispheres.

N

vA rel

!E

N

vA rel!E

N

N

(a)

(d)

(c)

(f)

(b)

(e)

vA rel

vA rel

!E

!E ! vA rel

!E

!E ! vA rel

Figure 17.33
(a) An object in the northern hemisphere moving north.
(b) Cross product of the earth’s angular velocity with the object’s velocity.
(c) Effects of the Coriolis force in the northern hemisphere.
(d) An object in the southern hemisphere moving north.
(e) Cross product of the earth’s angular velocity with the object’s velocity.
(f) Effects of the Coriolis force in the southern hemisphere.
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rA/B

x

y

z
rA

rB

O

A

B Secondary
reference
frame

Primary
reference
frame

!

"

The terms vA, vB, aA, and aB are the velocities
and accelerations of points A and B relative to
the primary reference frame. " and ! are the
angular velocity and angular acceleration of 
the secondary reference frame relative to the 
primary reference frame. The terms vA rel and 
aA rel are the velocity and acceleration of A 
relative to the secondary reference frame.

In planar problems, Eq. (17.17) can be written

vA ! vB " vA rel " " # rA/B,   (17.16)

" ! # rA/B " " # (" # rA/B).

aA ! aB " aA rel " 2" # vA rel

" ! # rA/B $ v2rA/B.

aA ! aB " aA rel " 2" # vA rel

(17.17)

rB

O

A

!F

rA/B

B

rA

"
!

Figure 17.35
An inertial reference frame (origin O) and a
reference frame undergoing an arbitrary
motion (origin B).

reference frame with its origin at B undergoes an arbitrary motion with angular
velocity and angular acceleration !. We can write Newton’s second law for
an object A of mass m as

(17.24)

where is A’s acceleration relative to O. We use Eq. (17.17) to write Eq. (17.24)
in the form

(17.25)

where is A’s acceleration relative to the secondary reference frame. This
is Newton’s second law expressed in terms of a secondary reference frame un-
dergoing an arbitrary motion relative to an inertial primary reference frame. If
the forces acting on A and the secondary reference frame’s motion are known,
Eq. (17.25) can be used to determine 

RESULTS

Motion of a Point Relative to a Moving Reference Frame

aA rel.

aA rel

©F - m3aB + 2" * vA rel + ! * rA>B + " * 1" * rA>B24 = maA rel,

aA

©F = maA,

"
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348 Chapter 17 Planar Kinematics of Rigid Bodies

Active Example 17.10 A Rotating Secondary Reference Frame (! Related Problem 17.143)

Relative to a primary reference frame that is fixed with respect to the earth, the
merry-go-round rotates with constant counterclockwise angular velocity .
Suppose that you are in the center at B and observe a second person A using a
reference frame that is fixed with respect to the merry-go-round. The person A
is standing still on the ground just next to the merry-go-round. What are her
velocity and acceleration relative to your reference frame at the instant shown?

v

B x

y

v

O
A

R

A
B

The reference frame with
origin O is assumed to be
inertial. The secondary
reference frame with origin B
is undergoing an arbitrary
motion relative to the inertial
reference frame. ! and " are
the angular velocity and
angular acceleration of the
secondary reference frame
relative to the inertial reference
frame. Point A is the center of
mass of an object of mass m.

Newton’s second law for the object A can be expressed in terms of the acceleration 
of A relative to the inertial reference frame:

!F " maA.                               (17.24)

!F # m [aB $ 2! %  vA rel $ " %  rA/B $ ! % (! % rA/B)] " maA rel.     (17.25)

By using Eq. (17.17), Newton’s second law also can be expressed in terms of the 
acceleration of A relative to the secondary reference frame:

When Newton’s second law is expressed in this way, additional “forces” appear on 
the left side of the equation which are artifacts arising from the motion of the 
secondary reference frame.

rB

O

A

!F

rA/B

B

rA

!
"

A reference frame is said to be inertial if it can be used 
to apply Newton’s second law in the form !F " ma.

Inertial Reference Frames
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Practice Problem Suppose that the person A is not standing on the ground, but is
standing on the outer edge of the merry-go-round, moving with it. Now she is station-
ary relative to the secondary reference frame. Use Eqs. (17.16) and (17.17) to determine
her velocity and acceleration relative to the earth.

Answer: vA = vRj, aA = -v2Ri.

B x

y

v

O
A

R

Strategy
The person A is stationary relative to the earth, so her velocity and accelera-
tion relative to the primary reference frame are known. We can use Eqs. (17.16)
and (17.17) to determine her velocity and acceleration relative to
the secondary reference frame.

Solution

aA relvA rel

Apply Eq. (17.17).

Her acceleration relative to your reference frame is

0 ! 0 " aA rel " 2 " 0 # v2 (Ri)

! 0 " aA rel " 2v2Ri # v2Ri.

aA rel ! #v2Ri.

" ! $ rA/B # v2rA/B:

aA ! aB " aA rel " 2" $ vA rel

0

i

0

j

v

0 #vR 0

k

B x

y

Av2R

vR

v

Although person A is stationary
relative to the earth, she has
velocity and acceleration relative
to the rotating reference frame.

Apply Eq. (17.16).

Her velocity relative to your reference frame is

0 ! 0 " vA rel "

! 0 " vA rel " vRj.

vA rel ! #vRj.

vA ! vB " vA rel " " $ rA/B:

0
i

0
j
v

R 0 0

k
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x

y

A

rA/B

B

Example 17.11 A Reference Frame Fixed with Respect to a Ship (! Related Problem 17.147)

At the instant shown, the ship B is moving north at a constant speed of 
relative to the earth and is turning toward the west at a constant rate of 5.0° per
second. Relative to the ship’s body-fixed coordinate system, its radar indicates
that the position, velocity, and acceleration of the helicopter A are

and

What are the helicopter’s velocity and acceleration relative to the earth?

aA rel = 0.4i - 0.2j - 13.0k 1m/s22.
 vA rel = -53.5i + 2.0j + 6.6k 1m/s2, rA>B = 420.0i + 236.2j + 212.0k 1m2,

15.0 m/s

Strategy
We are given the ship’s velocity and enough information to determine its accel-
eration, angular velocity, and angular acceleration relative to the earth. We also
know the position, velocity, and acceleration of the helicopter relative to the sec-
ondary body-fixed coordinate system. Therefore, we can use Eqs. (17.16) and
(17.17) to determine the helicopter’s velocity and acceleration relative to the earth.

Solution
In terms of the body-fixed coordinate system, the ship’s velocity is

The ship’s angular velocity due to its rate of turning is
The ship is rotating about the y axis. Point-

ing the arc of the fingers of the right hand around the y axis in the direction of
the ship’s rotation, we find that the thumb points in the positive y direction, so
the ship’s angular velocity vector is The helicopter’s
velocity relative to the earth is

 = -20.0i + 2.0j - 30.1k 1m/s2.
 = 15.0i + 1-53.5i + 2.0j + 6.6k2 + 3 i j k

0 0.0873 0
420.0 236.2 212.0

3 vA = vB + vA rel + ! * rA>B
! = 0.0873j 1rad/s2.

v = 15.0>1802p = 0.0873 rad/s.
vB = 15.0i 1m/s2.
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en

et u

(a) Determining the ship’s acceleration.

en x

et

z

(b) Correspondence between the normal and
tangential components and the body-
fixed coordinate system.

We can determine the ship’s acceleration by expressing it in terms of normal
and tangential components in the form given by Eq. (13.37) (Fig. a):

The z axis is perpendicular to the ship’s path and points toward the convex
side of the path (Fig. b). Therefore, in terms of the body-fixed coordinate
system, the ship’s acceleration is The ship’s angular
velocity vector is constant, so The helicopter’s acceleration relative
to the earth is

 = -1.65i - 0.20j - 6.59k 1m/s22.
 + 0 + 10.0873j2 * 3 i j k

0 0.0873 0
420.0 236.2 212.0

3 = -1.31k + 10.4i - 0.2j - 13.0k2 + 2 3 i j k
0 0.0873 0

-53.5 2.0 6.6

3 + ! * 1! * rA>B2 aA = aB + aA rel + 2! * vA rel + " * rA>B
" = 0.

aB = -1.31k 1m/s22.
 = 1.31en 1m/s22. aB = dv

dt
 et + v 

du
dt

 en = 0 + 115210.08732en

Critical Thinking
Notice the substantial differences between the helicopter’s velocity and
acceleration relative to the earth and the values the ship measures using its
body-fixed coordinate system. The ship’s instruments, like those used on any
moving vehicle, intrinsically make measurements relative to a body-fixed
reference frame. Equations (17.16) and (17.17) must be used to transform
measurements of velocity and acceleration into values relative to other ref-
erence frames.
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Example 17.12 An Earth-Fixed Reference Frame (! Related Problem 17.151)

The satellite A is in a circular polar orbit (an orbit that intersects the earth’s
axis of rotation). Relative to a nonrotating primary reference frame with its
origin at the center of the earth, the satellite moves in a circular path of ra-
dius R with a velocity of constant magnitude At the present instant, the
satellite is above the equator. The secondary earth-fixed reference frame
shown is oriented with the y axis in the direction of the north pole and the
x axis in the direction of the satellite. What are the satellite’s velocity and
acceleration relative to the earth-fixed reference frame? Let be the angular
velocity of the earth.

Strategy
We are given enough information to determine the satellite’s velocity and ac-
celeration and relative to the nonrotating primary reference frame and
the angular velocity vector of the secondary reference frame. We can there-
fore use Eqs. (17.16) and (17.17) to determine the satellite’s velocity and
acceleration and relative to the earth-fixed reference frame.

Solution
At the present instant, the satellite’s velocity and acceleration relative to a non-
rotating primary reference frame with its origin at the center of the earth are

and The angular velocity vector of the earth pointsaA = -1vA
2 >R2i.vA = vA  j

aA relvA rel

!
aAvA

B

R

N

A

vA

x

y

vE

vA.
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17.7 Moving Reference Frames 353

north (confirm this by using the right-hand rule), so the angular velocity of the
earth-fixed reference frame is From Eq. (17.16),

Solving for we find that the satellite’s velocity relative to the earth-fixed
reference frame is

The second term on the right side of this equation is the satellite’s velocity
toward the west relative to the rotating earth-fixed reference frame.

From Eq. (17.17),

Solving for we find the satellite’s acceleration relative to the earth-
fixed reference frame:

Critical Thinking
In this example, we assumed that the motion of the satellite was known rela-
tive to a nonrotating primary reference frame with its origin at the center of the
earth, and used Eqs. (17.16) and (17.17) to determine its velocity and acceler-
ation relative to a secondary earth-fixed reference frame. The reverse of this
procedure is more common in practice. Ground-based measuring instruments
measure velocity and acceleration relative to an earth-fixed reference frame,
and Eqs. (17.16) and (17.17) are used to determine their values relative to
other reference frames.

aA rel = - avA
2

R
+ vE

2Rb i.

aA rel,

-
vA

2

R
 i = 0 + aA rel + 2 3 i j k

0 vE 0
0 vA RvE

3 + 0 + 3 i j k
0 vE 0
0 0 -RvE

3 .aA = aB + aA rel + 2! * vA rel + " * rA>B + ! * 1! * rA>B2:

vA rel = vA  j + RvE k.

vA rel,

 vA  j = 0 + vA rel + 3 i j k
0 vE 0
R 0 0

3 . vA = vB + vA rel + ! * rA>B:

! = vE   j.
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y

B

A x

z

Example 17.13 Inertial Reference Frames (! Related Problem 17.154)

Suppose that you and a friend play tennis on the deck of a cruise ship, and
you use the ship-fixed coordinate system with origin B to analyze the mo-
tion of the ball A. At the instant shown, the ball’s position and velocity rela-
tive to the ship-fixed coordinate system are and

The mass of the ball is 0.056 kg. Ignore the
aerodynamic force on the ball for this example. As a result of the ship’s
motion, the acceleration of the origin B relative to the earth is

and the angular velocity of the ship-fixed coor-
dinate system is constant and equal to Use Newton’s sec-
ond law to determine the ball’s acceleration relative to the ship-fixed
coordinate system, (a) assuming that the ship-fixed coordinate system is in-
ertial and (b) not assuming that the ship-fixed coordinate system is inertial,
but assuming that a local earth-fixed coordinate system is inertial.

! = 0.1j 1rad/s2.aB = 1.10i + 0.07k 1m/s22,
vA rel = i - 2j + 7k 1m/s2. rA>B = 5i + 2j + 12k 1m2

Strategy
In part (a), we know the ball’s mass and the external forces acting on it, so we
can simply apply Newton’s second law to determine the acceleration. In part (b),
we can express Newton’s second law in the form given by Eq. (17.25), which
applies to a coordinate system undergoing an arbitrary motion relative to an in-
ertial reference frame.

Solution
(a) If the ship-fixed coordinate system is assumed to be inertial, we can apply
Newton’s second law to the ball in the form The only external
force on the ball is its weight,

so we obtain aA rel = -9.81j 1m/s22.-10.056219.812j = 0.056aA rel,

©F = maA rel.
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(b) If we treat the earth-fixed reference frame as inertial, we can solve Eq. (17.25)
for the ball’s acceleration relative to the ship-fixed reference frame:

Critical Thinking
This example demonstrates the care you must exercise in applying Newton’s
second law. When we treated the ship-fixed coordinate system as inertial,
Newton’s second law did not correctly predict the ball’s acceleration relative
to the coordinate system, because the effects of the motion of the coordinate
system on the ball’s relative motion were not accounted for.

 = -2.45i - 9.81j + 0.25k 1m/s22.
- 0 - 10.1j2 * C i j k

0 0.1 0
5 2 12

S = 1
0.056

 3-10.056219.812j4 - 11.10i + 0.07k2 - 2C i j k
0 0.1 0
1 -2 7

S aA rel = 1
m

©F - aB - 2! * vA rel - " * rA>B - ! * 1! * rA>B2

y

x

x

B

A

u

Problem 17.144

y

x

y ! 0.25x2 m
O

A

Problems 17.145/17.146

Problems

! 17.143 In Active Example 17.10, suppose that the merry-go-
round has counterclockwise angular velocity and counterclock-
wise angular acceleration The person A is standing still on the
ground. Determine her acceleration relative to your reference
frame at the instant shown.

17.144 The x–y coordinate system is body fixed with respect to
the bar. The angle (in radians) is given as a function of time by

The x coordinate of the sleeve A (in feet) is
given as a function of time by Use Eq. (17.16) to
determine the velocity of the sleeve at relative to a non-
rotating reference frame with its origin at B. (Although you are
determining the velocity of A relative to a nonrotating reference
frame, your answer will be expressed in components in terms of
the body-fixed reference frame.)

t = 4 s
x = 1 + 0.03t3.

u = 0.2 + 0.04t2.
u

a.
v

17.145 The metal plate is attached to a fixed ball-and-socket
support at O. The pin A slides in a slot in the plate. At the instant
shown, and and
the plate’s angular velocity and angular acceleration are

and What are the x, y, and z components
of the velocity and acceleration of A relative to a nonrotating
reference frame with its origin at O?

17.146 The pin A slides in a slot in the plate. Suppose that at the
instant shown,
and the plate’s angular velocity and angular acceleration are

and What are the x,
y, and z components of the velocity and acceleration of A relative to
a nonrotating reference frame that is stationary with respect to O?

" = 3i - 6j 1rad/s22.! = -4j + 2k 1rad/s2xA = 1 m, dxA>dt = -3 m/s, d2xA>dt2 = 4 m/s2,

A = 0.! = 2k 1rad/s2 d2xA>dt2 = 0,xA = 1 m, dxA>dt = 2 m/s,
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17.149 The train on the circular track is traveling at a constant
speed of in the direction shown. The train on the straight
track is traveling at in the direction shown and is increasing
its speed at Determine the velocity of passenger A that 
passenger B observes relative to the given coordinate system,
which is fixed to the car in which B is riding.

17.150 In Problem 17.149, determine the acceleration of passen-
ger A that passenger B observes relative to the coordinate system
fixed to the car in which B is riding.

2 ft/s2.
20 ft/s

50 ft/s

A
x

y

20 ft/s50 ft/s

500 ft

50
0 f

t

B

Problems 17.149/17.150

N
vA

B A
x

y

R

RE

Problem 17.151

! 17.151 The satellite A is in a circular polar orbit (a circular
orbit that intersects the earth’s axis of rotation). The radius of the
orbit is R, and the magnitude of the satellite’s velocity relative to
a nonrotating reference frame with its origin at the center of the
earth is At the instant shown, the satellite is above the equa-
tor. An observer B on the earth directly below the satellite meas-
ures its motion using the earth-fixed coordinate system shown.
What are the velocity and acceleration of the satellite relative to
B’s earth-fixed coordinate system? The radius of the earth is 
and the angular velocity of the earth is (See Example 17.12.)vE.

RE

vA.

x

y

A

B

N

Problem 17.147

50 m

x

y

Problem 17.148

17.148 The space shuttle is attempting to recover a satellite for
repair. At the current time, the satellite’s position relative to a
coordinate system fixed to the shuttle is 50i (m). The rate gyros
on the shuttle indicate that its current angular velocity is

The shuttle pilot measures the velocity
of the satellite relative to the body-fixed coordinate system and
determines it to be What are the x, y,
and z components of the satellite’s velocity relative to a nonrotat-
ing coordinate system with its origin fixed to the shuttle’s center
of mass?

-2i - 1.5j + 2.5k 1rad/s2.0.05j + 0.03k 1rad/s2.

! 17.147 The coordinate system is fixed relative to the ship B.
At the instant shown, the ship is sailing north at 5 m/s relative to
the earth, and its angular velocity is 0.26 rad/s counterclockwise.
Using radar, it is determined that the position of the airplane is

and its velocity relative to the ship’s
coordinate system is What is the air-
plane’s velocity relative to the earth? (See Example 17.11.)

870i - 45j - 21k (m/s) .
1080i + 1220j + 6300k (m)
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N

L

y

x

v

B

A

RE

Problem 17.152

17.152 A car A at north latitude L drives north on a north–south
highway with constant speed v. The earth’s radius is and the
earth’s angular velocity is (The earth’s angular velocity vector
points north.) The coordinate system is earth fixed, and the x axis
passes through the car’s position at the instant shown. Determine
the car’s velocity and acceleration (a) relative to the earth-fixed
coordinate system and (b) relative to a nonrotating reference
frame with its origin at the center of the earth.

vE.
RE,

x
A

y
B

2000 m

z
20!

Problem 17.153

17.153 The airplane B conducts flight tests of a missile. At the
instant shown, the airplane is traveling at relative to the
earth in a circular path of 2000-m radius in the horizontal plane.
The coordinate system is fixed relative to the airplane. The x axis
is tangent to the plane’s path and points forward. The y axis points
out the plane’s right side, and the z axis points out the bottom of
the plane. The plane’s bank angle (the inclination of the z axis
from the vertical) is constant and equal to 20°. Relative to the air-
plane’s coordinate system, the pilot measures the missile’s posi-
tion and velocity and determines them to be 
and 

(a) What are the x, y, and z components of the airplane’s angular
velocity vector?

(b) What are the x, y, and z components of the missile’s velocity
relative to the earth?

vA>B = 100.0 i + 94.0j + 34.2k 1m/s2.rA>B = 1000 i 1m2

200 m/s

A x

y

x

y

B

A
B

3 m

v

Problem 17.154

! 17.154 To conduct experiments related to long-term space-
flight, engineers construct a laboratory on earth that rotates
about the vertical axis at B with a constant angular velocity
of one revolution every 6 s. They establish a laboratory-fixed
coordinate system with its origin at B and the z axis pointing
upward. An engineer holds an object stationary relative to the
laboratory at point A, 3 m from the axis of rotation, and releases
it. At the instant he drops the object, determine its acceleration
relative to the laboratory-fixed coordinate system, (a) assuming
that the laboratory-fixed coordinate system is inertial and (b) not
assuming that the laboratory-fixed coordinate system is inertial,
but assuming that an earth-fixed coordinate system with its
origin at B is inertial. (See Example 17.13.)

v

BEDFMC17_0136129161.QXD  6/15/07  6:49 PM  Page 357



358 Chapter 17 Planar Kinematics of Rigid Bodies

N

xy

B
RE

A

L

x

A

b

Problem 17.157

17.157* Consider a point A on the surface of the earth at north
latitude L. The radius of the earth is and the earth’s angular 
velocity is A plumb bob suspended just above the ground at
point A will hang at a small angle relative to the vertical because
of the earth’s rotation. Show that is related to the latitude by

Strategy: Using the earth-fixed coordinate system shown,
express Newton’s second law in the form given by Eq. (17.22).

tan b =
vE

2RE sin L cos L

g - vE
2RE cos2 L

.

b

b

vE.
RE,

17.158* Suppose that a space station is in orbit around the earth
and two astronauts on the station toss a ball back and forth. They
observe that the ball appears to travel between them in a straight
line at constant velocity.

(a) Write Newton’s second law for the ball as it travels between
the astronauts in terms of a nonrotating coordinate system with
its origin fixed to the station. What is the term Use the
equation you wrote to explain the behavior of the ball observed
by the astronauts.

(b) Write Newton’s second law for the ball as it travels between
the astronauts in terms of a nonrotating coordinate system with its
origin fixed to the center of the earth. What is the term Ex-
plain the difference between this equation arid the one you ob-
tained in part (a).

©F?

©F?

x

x

k A

y

v

Problem 17.155

N

30!

y
x

Problem 17.156

17.155 The disk rotates in the horizontal plane about a fixed
shaft at the origin with constant angular velocity 
The 2-kg slider A moves in a smooth slot in the disk. The spring is
unstretched when and its constant is Deter-
mine the acceleration of A relative to the body-fixed coordinate
system when 

Strategy: Use Eq. (17.25) to express Newton’s second law
for the slider in terms of the body-fixed coordinate system.

x = 0.4 m.

k = 400 N/m.x = 0

v = 10 rad/s.

17.156* Engineers conduct flight tests of a rocket at 30° north
latitude. They measure the rocket’s motion using an earth-fixed
coordinate system with the x axis pointing upward and the y axis
directed northward. At a particular instant, the mass of the rocket
is 4000 kg, the velocity of the rocket relative to the engineers’
coordinate system is and the sum of the
forces exerted on the rocket by its thrust, weight, and aerodynamic
forces is Determine the rocket’s acceleration
relative to the engineers’ coordinate system (a) assuming that their
earth-fixed coordinate system is inertial and (b) not assuming that
their earth-fixed coordinate system is inertial.

400 i + 400 j 1N2.2000 i + 2000 j 1m/s2,
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17.159 If and bar OQ rotates in the counterclockwise
direction at what is the angular velocity of bar PQ?

17.160 If and the sleeve P is moving to the left at
what are the angular velocities of bars OQ and PQ?2 m/s,
u = 55°

5 rad/s,
u = 60°

Review Problems

O
P

Q

200 mm 400 mm

u

Problems 17.159/17.160

vH

120 mm/s

40 mm

Problem 17.161

17.161 Determine the vertical velocity of the hook and the
angular velocity of the small pulley.

vH

CC

y

x

B

A

5 in

45!

2 i
n

Problems 17.162–17.164

17.162 If the crankshaft AB is turning in the counterclockwise 
direction at 2000 rpm, what is the velocity of the piston?

17.163 If the piston is moving with velocity 
what are the angular velocities of the crankshaft AB and the con-
necting rod BC?

17.164 If the piston is moving with velocity and
its acceleration is zero, what are the angular accelerations of the
crankshaft AB and the connecting rod BC?

vC = 20j 1ft/s2
vC = 20j 1ft/s2,
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6 in2 in

2 in A

B

P

Problem 17.174

17.174 The crank AB has a constant clockwise angular velocity of
200 rpm. What are the velocity and acceleration of the piston P?

A 15!

760 mm

90
0 m

m

y

x

z B

50!

C

Problems 17.170–17.173

A

B

C

4 in

4 in 10 in

3 in

x

y

C

G

Problems 17.167–17.169

17.167 Point C is moving to the right at What is the ve-
locity of the midpoint G of bar BC?

17.168 Point C is moving to the right with a constant velocity of
What is the acceleration of the midpoint G of bar BC?

17.169 If the velocity of point C is what are
the angular velocity vectors of arms AB and BC?

vC = 1.0 i 1in/s2,20 in/s.

20 in/s.

17.170 Points B and C are in the x–y plane. The angular velocity
vectors of arms AB and BC are and

Determine the velocity of point C.

17.171 If the velocity of point C is what are
the angular velocity vectors of arms AB and BC?

17.172 The angular velocity vectors of arms AB and BC are
and and their angular

acceleration vectors are and
What is the acceleration of point C?

17.173 The velocity of point C is and
What are the angular velocity and angular acceleration

vectors of arm BC?
aC = 0.

vC = 1.0 i 1m/s2
!BC = 1.0k 1rad/s22. !AB = 1.0k 1rad/s22"BC = 2.0k 1rad/s2,"AB = -0.5k 1rad/s2

vC = 1.0 i 1m/s2,
"BC = -2.0k 1rad/s2. "AB = -0.5k 1rad/s2

y

6 rad/s

A
B

x

D

C
8 in

12 in

4 in6 in8 in

Problems 17.165/17.166

17.165 Bar AB rotates at in the counterclockwise direc-
tion. Use instantaneous centers to determine the angular velocity
of bar BCD and the velocity of point D.

17.166 Bar AB rotates with a constant angular velocity of
in the counterclockwise direction. Determine the acceler-

ation of point D.
6 rad/s

6 rad/s
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y

6 in

4 in

x

8 in

10 rad/s
A B

C
20 rad/s2

Problem 17.175

1 m

0.6 m Scoop

A B

D

C

0.15 m

0.6 m

1 m

Problems 17.176/17.177

17.175 Bar AB has a counterclockwise angular velocity of
and a clockwise angular acceleration of Determine the
angular acceleration of bar BC and the acceleration of point C.

20 rad/s2.
10 rad/s

17.176 The angular velocity of arm AC is counterclock-
wise. What is the angular velocity of the scoop?

17.177 The angular velocity of arm AC is counterclock-
wise and its angular acceleration is clockwise. What is
the angular acceleration of the scoop?

4 rad/s2
2 rad/s

1 rad/s

17.178 If you want to program the robot so that, at the instant
shown, the velocity of point D is and the
angular velocity of arm CD is counterclockwise, what
are the necessary angular velocities of arms AB and BC?

0.3 rad/s
vD = 0.2i + 0.8j 1m/s2

x

D
C

y

B30!
20!

A

250 mm

300 mm

250 mm

Problem 17.178

20 in

Sun gear

34 in

Planet gears (3)

Ring gear7 in

Problem 17.179

17.179 The ring gear is stationary, and the sun gear rotates at
120 rpm in the counterclockwise direction. Determine the angular
velocity of the planet gears and the magnitude of the velocity of
their centerpoints.
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A B m

C

vBC

vAB

30!

60!

Problem 17.185

17.185 An athlete exercises his arm by raising the 8-kg mass m.
The shoulder joint A is stationary. The distance AB is 300 mm, the
distance BC is 400 mm, and the distance from C to the pulley is
340 mm. The angular velocities and

are constant. What is the tension in the cable?vBC = 2 rad/s
vAB = 1.5 rad/s

30!

A

B

C

2 m

1.8 m

Problems 17.180/17.181

B
C

A

12 in

16 in6 in 6 in

D

R

6 in

10 in

Problems 17.182/17.183

A

B

C

1 m 2 m

2 m

Problem 17.184

17.180 Arm AB is rotating at in the clockwise direction.
Determine the angular velocity of arm BC and the velocity at
which the arm slides relative to the sleeve at C.

17.181 Arm AB is rotating with an angular velocity of 
and an angular acceleration of both in the clockwise
direction. Determine the angular acceleration of arm BC.

20 rad/s2,
10 rad/s

10 rad/s

17.182 Arm AB is rotating with a constant counterclockwise
angular velocity of Determine the vertical velocity and
acceleration of the rack R of the rack-and-pinion gear.

17.183 The rack R of the rack-and-pinion gear is moving 
upward with a constant velocity of What are the angular
velocity and angular acceleration of bar BC?

10 ft/s.

10 rad/s.

17.184 Bar AB has a constant counterclockwise angular velocity
of The 1-kg collar C slides on the smooth horizontal bar.
At the instant shown, what is the tension in the cable BC?

2 rad/s.
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0.8 m

0.8 m 1.0 m

A

v0

B

D C E

3 m

2 m

2 m
A B

C

D

b

Problem 17.186

y

x

A

B

Problem 17.187

17.186 The hydraulic actuator BC of the crane is extending (in-
creasing in length) at a constant rate of When the angle

what is the angular velocity of the crane’s boom AD?b = 35°,
0.2 m/s.

17.187 The coordinate system shown is fixed relative to the
ship B. The ship uses its radar to measure the position of a station-
ary buoy A and determines it to be The ship
also measures the velocity of the buoy relative to its body-fixed
coordinate system and determines it to be What
are the ship’s velocity and angular velocity relative to the earth?
(Assume that the ship’s velocity is in the direction of the y axis.)

2i - 8j 1m/s2.400i + 200j 1m2.

Design Project

Bar AB rotates about the fixed point A with constant angular
velocity 

(a) Determine the lengths of the bars AB and BC so that as bar
AB rotates, the collar C moves back and forth between the posi-
tions D and E.

(b) Draw graphs of the velocity and acceleration of the collar
C as functions of the angular position of bar AB.

(c) Suppose that a design constraint is that the magnitude of
the acceleration of collar C must not exceed What is
the maximum allowable value of v0?

200 m/s2.

v0.
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C H A P T E R

18
Planar Dynamics of Rigid Bodies

In Chapter 17 we analyzed planar motions of rigid bodies
without considering the forces and couples causing them. In
this chapter we derive planar equations of angular motion for a
rigid body. By drawing the free-body diagram of an object and
applying the equations of motion, we can determine both the
acceleration of its center of mass and its angular acceleration
in terms of the forces and couples to which it is subjected.

! The riders exert forces on the pedals of the exercise bicycles, resulting in
planar motions of the cranks, chain, and wheels.

a
!M
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366 Chapter 18 Planar Dynamics of Rigid Bodies

18.1 Momentum Principles for a System of Particles

BACKGROUND 
Our derivations of the equations of motion for rigid bodies are based on prin-
ciples governing the motion of a system of particles. We summarize these gen-
eral and important principles in this section.

Force–Linear Momentum Principle
We begin by showing that the sum of the external forces on a system of parti-
cles equals the rate of change of the total linear momentum of the system. Let
us consider a system of N particles. We denote the mass of the ith particle by

and denote its position vector relative to the origin O of an inertial reference
frame by (Fig. 18.1). Let be the force exerted on the ith particle by the jth
particle, and let the external force on the ith particle (i.e., the total force exerted
by objects other than the system of particles we are considering) be Newton’s
second law states that the total force acting on the ith particle equals the prod-
uct of its mass and the rate of change of its linear momentum; that is,

(18.1)

where is the velocity of the ith particle. Writing this equation for
each particle of the system and summing from to N, we obtain

(18.2)

The first term on the left side of this equation is the sum of the internal forces on
the system of particles. As a consequence of Newton’s third law 
that term equals zero:

The second term on the left side of Eq. (18.2) is the sum of the external forces
on the system. Denoting it by we conclude that the sum of the external
forces on the system equals the rate of change of its total linear momentum:

(18.3)

Let m be the sum of the masses of the particles:

The position of the center of mass of the system is

(18.4)

so the velocity of the center of mass is

v = dr
dt

=
a

i
mivi

m
.

r =
a

i
miri

m
,

m = a
i

mi.

©F = d
dt

 a
i

mivi.

©F,

a
i
a

j
fij = f12 + f21 + f13 + f31 + Á = 0.

1fij + fji = 02,
a

i
a

j
fij + a

i
f i

E = d
dt

 a
i

mivi.

i = 1
vi = dri>dt

a
j

fij + f i
E = d

dt
 1mivi2,

f i
E.

fijri

mi

O

mi

ri

Figure 18.1
A system of particles. The vector is the
position vector of the ith particle.

ri
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18.1 Momentum Principles for a System of Particles 367

By using this expression, we can write Eq. (18.3) as

The total external force on a system of particles thus equals the rate of change
of the product of the total mass of the system and the velocity of its center of
mass. Since any object or collection of objects, including a rigid body, can be
modeled as a system of particles, this result is one of the most general and ele-
gant in mechanics. Furthermore, if the total mass m is constant, we obtain

where is the acceleration of the center of mass. We see that the total
external force equals the product of the total mass and the acceleration of the
center of mass.

Moment–Angular Momentum Principles
We now obtain relations between the sum of the moments due to the forces act-
ing on a system of particles and the rate of change of the total angular momen-
tum of the system. In Fig. 18.2, is the position vector of the ith particle of a
system of particles, r is the position vector of the center of mass of the system,
and is the position vector of the ith particle relative to the center of mass.
These vectors are related by

(18.5)

We take the cross product of Newton’s second law for the ith particle, Eq. (18.1),
with the position vector and sum from to N, writing the resulting equa-
tion in the form

(18.6)

The first term on the left side of this equation is the sum of the moments about
O due to the forces exerted on the particles by the other particles of the system.
This term vanishes if we assume that the mutual forces exerted by each pair of
particles are not only equal and opposite, but directed along the straight line
between the particles. For example, consider particles 1 and 2 in Fig. 18.3. If
the forces the particles exert on each other are directed along the line between
the particles, we can write the moment about O as

(18.7)

The second term on the left side of Eq. (18.6) is the sum of the moments about O
due to external forces, which we denote by We write Eq. (18.6) as

(18.8)

where

(18.9)HO = a
i

ri * mivi

©MO =
dHO

dt
,

©MO.

r1 * f12 + r1 * f21 = r1 * 1f12 + f212 = 0.

a
i
a

j
ri * fij + a

i
ri * f i

E = d
dt

 a
i

ri * mivi.

i = 1ri

ri = r + Ri.

Ri

ri

a = dv>dt

©F = ma,

©F = d
dt

 1mv2.

mi

ri

r

Ri

O

Figure 18.2
The vector is the position vector of the
ith particle relative to the center of mass.

Ri

r1

2

r2

f12

f21

1

O

Figure 18.3
Particles 1 and 2 and the forces they exert
on each other. If the forces act along the
line between the particles, their total
moment about O is zero.
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O

mv

r

HO ! H " r # mv 

H

Figure 18.4
The angular momentum about O equals the
sum of the angular momentum about the
center of mass and the angular momentum
about O due to the velocity of the center
of mass.

is the total angular momentum about O. The sum of the moments about O is
equal to the rate of change of the total angular momentum about O. By using
Eqs. (18.4) and (18.5), we can write Eq. (18.8) as

(18.10)

where

(18.11)

is the total angular momentum of the system about the center of mass.
We also need to determine the relation between the sum of the moments

about the center of mass, which we denote by and H. We can obtain this
relation by letting the fixed point O be coincident with the center of mass
at the present instant. In that case, and and we see from
Eq. (18.10) that

(18.12)

The sum of the moments about the center of mass is equal to the rate of change
of the total angular momentum about the center of mass. The angular momen-
ta about point O and about the center of mass are related by (Fig. 18.4)

(18.13)

RESULTS
The equations of motion for a rigid body can be derived from principles gov-
erning the motion of a system of particles. This section summarizes these
principles.

HO = H + r * mv.

©M = dH
dt

.

r = 0,©MO = ©M

©M,

H = a
i

Ri * mi 

dRi

dt

©MO = d
dt

 1r * mv + H2,

Consider a system of N particles. Let mi be the mass of 
the ith particle, and let ri be its position relative to the 
origin O of an inertial reference frame. The position of 
the center of mass of the system is

denotes the sum from i ! 1 to N. The vector Ri is the
position of the ith particle relative to the center of mass.

(18.4)

where m is the total mass of the system and
i

$

mi

ri

r

Ri

O

,
$miri

r ! i
m
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18.2 The Planar Equations of Motion 369

The sum of the external forces on a
system of particles (which can represent 
virtually any object, including a rigid 
body) is equal to the rate of change of its 
linear momentum. The linear momentum 
is the product of the total mass m and the 
velocity v ! dr/dt of the center of mass. 
The term a ! dv/dt is the acceleration of
the center of mass.

If the total mass is constant,

"F !

"F ! (mv).
d 
dt

.
da 
dt

m

The sum of the moments about the origin
O due to the forces acting on a system of
particles is equal to the rate of change of
the total angular momentum about O.

"

dHO

dt
"MO ! , (18.8)

where the total angular momentum
about O is

HO ! ri # mivi.             (18.9)
i

The sum of the moments about the center
of mass due to the forces acting on a
system of particles is equal to the rate of
change of the total angular momentum
about the center of mass. "

dH 
dt

"M ! , (18.12)

where the total angular momentum
about the center of mass is

H ! Ri #                       (18.11)
dRi 
dti

mi

Relationship between the total angular
momentum HO about the origin and
the total angular momentum H about the
center of mass.

HO ! H $ r # mv.                 (18.13)

Force-Linear Momentum Principle

Moment-Angular Momentum Principles

18.2 The Planar Equations of Motion

BACKGROUND 
We now derive the equations of motion for a rigid body in planar motion. We
have shown that the total external force on any object equals the product of the
mass of the object and the acceleration of its center of mass:

(18.14)

This equation, which we refer to as Newton’s second law, describes the motion
of the center of mass of a rigid body. To derive the equations of angular motion,
we consider first rotation about a fixed axis and then general planar motion.

Rotation about a Fixed Axis
Let O be a point that is stationary relative to an inertial reference frame, and let

be a nonrotating line through O. Suppose that a rigid body rotates about 
In terms of a coordinate system with its z axis aligned with (Fig. 18.5a), weLO

LO.LO

©F = ma.
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(a)

mi

x

ri

v

LO

y

z

Plane of the motion

O

Figure 18.5
(a) A coordinate system with the z axis

aligned with the axis of rotation, 
(b) The magnitude of is the

perpendicular distance from the axis
of rotation to mi.

k * ri

LO.

can express the rigid body’s angular velocity vector as and the velocity
of the ith particle of the rigid body is

Let denote the sum of the moments about By taking the
dot product of Eq. (18.8) with k, we obtain

(18.15)

where

is the angular momentum about Using the identity 
we can write this expression as

(18.16)

In Fig. 18.5b, we show that is the perpendicular distance from to
the ith particle, which we denote by Using the definition of the moment of
inertia of the rigid body about 

we can write Eq. (18.16) as

Substituting this expression into Eq. (18.15), we obtain the equation of angular
motion for a rigid body rotating about a fixed axis. The sum of the moments
about the fixed axis equals the product of the moment of inertia about the fixed
axis and the angular acceleration:

(18.17)

General Planar Motion
Figure 18.6a shows the plane of the motion of a rigid body in general planar
motion. Point O is a fixed point contained in the plane, is the line through
O that is perpendicular to the plane, and L is the line parallel to that passes
through the center of mass of the rigid body. In terms of the coordinate system
shown, we can express the rigid body’s angular velocity vector as and
the velocity of the ith particle of the rigid body relative to the center of mass is

By taking the dot product of Eq. (18.10) with k, we obtain

(18.18)

where

H = H # k = a
i

[Ri * mi1vk * Ri2] # k

©MO = d
dt

 [1r * mv2 # k + H],

dRi

dt
= ! * Ri = vk * Ri.

! = vk,

LO

LO

©MO = IOa.

HO = IOv.

IO = a
i

mi r i
2,

LO,
ri.

LOƒ k * ri ƒ

HO = a
i

mi1k * ri2 # 1k * ri2v = a
i

mi ƒ k * ri ƒ 2v.

1U * V2 # W,
U # 1V * W2 =LO.

HO = HO
# k = a

i
[ri * mi1vk * ri2] # k

©MO =
dHO

dt
,

LO.©MO = ©MO
# k

dri

dt
= ! * ri = vk * ri.

! = vk,

O

(b)

mi
y

x

b

z

ri
ri ! !ri! sin b
! !k " ri!

k

LO
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(a)

(b)

y

xz

Ri

Ri

k

y

xz

L

LO

r

O

Plane of the motion

mi

mi

b
ri ! !Ri! sin b
! !k " Ri!

L

!

Figure 18.6
(a) A coordinate system with the z axis

aligned with L.
(b) The magnitude of is the

perpendicular distance from L to mi.
k * Ri

The sum of the external forces on any object
equals the product of its mass and the
acceleration of its center of  mass relative to
an inertial reference frame.

!F " ma. (18.14)

If a rigid body undergoes planar motion
about a fixed axis O, the sum of the moments
about O due to external forces and couples
equals the product of the moment of inertia
of the rigid body about O and the angular
acceleration.

!MO " IOa. (18.17)

!MO

O

a

is the angular momentum about L. Using the identity 
we can write this equation for H as

The term is the perpendicular distance from L to the ith particle
(Fig. 18.6b). In terms of the moment of inertia of the rigid body about L,

the rigid body’s angular momentum about L is

Substituting this expression into Eq. (18.18), we obtain

(18.19)

With this equation we can obtain the relation between the sum of the moments
about L, which we denote by and the angular acceleration. If we let the
fixed axis be coincident with L at the present instant, then 
and and from Eq. (18.19) we obtain the equation of angular motion for
a rigid body in general planar motion. The sum of the moments about the cen-
ter of mass equals the product of the moment of inertia about the center of mass
and the angular acceleration:

(18.20)

RESULTS

©M = Ia.

r = 0,
©MO = ©MLO

©M,

©MO = d
dt

 [1r * mv2 # k + Iv] = 1r * ma2 # k + Ia.

H = Iv.

I = a
i

mir i
2,

ƒ k * Ri ƒ = ri

H = a
i

mi1k * Ri2 # 1k * Ri2v = a
i

mi ƒ k * Ri ƒ 2v.

1U * V2 # W,
U # 1V * W2 =
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372 Chapter 18 Planar Dynamics of Rigid Bodies

The equations of planar motion can be used
to obtain information about an object’s
motion, or determine unknown forces or
couples acting on the object, or both. Doing
so typically requires three steps.

Draw the free-body diagram. Isolate the object and
identify the external forces and couples acting on it.
Apply the equations of motion. Write the equations
of motion, choosing a suitable coordinate system for
applying Newton’s second law. For example, if the
center of mass moves in a circular path, it may be
advantageous to use tangential and normal components.
Determine kinematic relationships. If necessary,
supplement the equations of motion with relationships
between the acceleration of the center of mass and the
angular acceleration of the object.

1.

2.

3.

If a rigid body undergoes planar motion,
the sum of the moments about the center
of mass due to external forces and couples
equals the product of the moment of
inertia of the rigid body about the center
of mass and the angular acceleration. If the
angular acceleration is zero, the sum of the 
moments about the center of mass is zero.

!M " Ia.     (18.20)

!M

a

Active Example 18.1 Translating Object (! Related Problem 18.4)

The airplane weighs 830,000 lb, and the total thrust of its engines during its
takeoff roll is Determine the airplane’s acceleration and the
normal forces exerted on its wheels by the runway at A and B during takeoff.
Neglect the horizontal forces exerted on its wheels.

T = 208,000 lb.

A B

T

16 ft
68 ft

9 ft

6 ft
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18.2 The Planar Equations of Motion 373

Practice Problem With upgraded engines, the airplane’s acceleration during its take-
off roll is . Its weight is unchanged. Determine the normal forces exerted on its
wheels by the runway at A and B.

Answer: .A = 688,000 lb, B = 142,000 lb

9 ft/s2

Apply Newton’s second law to determine the 
acceleration.

The airplane’s mass is

The acceleration is

!Fx " T " max.

m " " " 25,800 slug.
W 
g

830,000 lb 
32.2 ft/s2

ax " " " 8.07 ft/s2.
T 
m

208,000 lb 
25,800 slug

The airplane has no vertical acceleration, so the 
sum of the vertical forces equals zero. !Fy " A # B $ W " 0.                                (1)

The airplane has no angular acceleration, so the 
sum of the moments about the center of mass 
equals zero.

!M " (6 ft)T # (68 ft)B $ (16 ft)A " 0.   (2)

Solving Eqs. (1) and (2) with W " 830,000 lb
and T " 208,000 lb yields A " 687,000 lb and
B " 143,000 lb.

Strategy
We must draw the free-body diagram of the airplane to identify the external
forces acting on it. We can apply Newton’s second law to determine the hori-
zontal acceleration. Then we will use two conditions to determine the normal
forces at A and B. (1) The airplane’s acceleration in the vertical direction is
zero, so the sum of the forces in the vertical direction must equal zero. (2) The
airplane’s angular acceleration is zero during its takeoff roll, so the equation of
angular motion states that the sum of the moments about the center of mass due
to the forces on the airplane is zero.

Solution
y

x

A W B

T

16 ft
68 ft

6 ft

9 ft

Draw the free-body
diagram of the
airplane.
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374 Chapter 18 Planar Dynamics of Rigid Bodies

Active Example 18.2 Rolling Motion (! Related Problems 18.32, 18.33)

The homogeneous circular disk with radius R and mass m is released from
rest on the inclined surface. The moment of inertia of the disk about its cen-
ter is . Determine the disk’s angular acceleration as it rolls down the
surface.

Strategy
We must draw the individual free-body diagram of the disk and apply the equa-
tions of motion. We must also use the relationship between the angular accel-
eration of the disk and the acceleration of its center of mass.

Solution
Draw the Free-Body Diagram

I = 1
2 mR2R

b

Free-body diagram of the disk. N and f
are the normal and friction forces exerted
by the inclined surface.

N

f

mg sin b 

mg cos b 

Apply Newton’s second law. !Fx " mg sin b # f " max.        (1)

y

x

a

ax

Apply the equation of angular motion.
In this case it is convenient to define
the moment and angular acceleration to
be positive in the clockwise direction.

!M " Rf " Ia.                           (2)

Apply the Equations of Motion
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18.2 The Planar Equations of Motion 375

Practice Problem It was assumed that the disk would roll, and not slip, when it was
released from rest on the inclined surface. Let be the coefficient of static friction be-
tween the disk and the surface. What is the largest value of the angle for which the disk
will roll instead of slipping?

Answer: b = arctan(3ms).

b

ms

Relationship between the
acceleration of the center of the
disk and the angular acceleration
in rolling motion.

ax ! Ra.        (3)

Solving Eqs. (1)–(3) for the
three variables ax, a, and f and

substituting I ! mR2 yields the

angular acceleration.

a ! sin b.1
2

2g
3R

Determine Kinematic Relationships

Active Example 18.3 Bar in General Planar Motion (! Related Problem 18.45)

The slender bar of mass m slides on the smooth floor and wall. It has counter-
clockwise angular velocity at the instant shown. What is the bar’s angular
acceleration?

v

l

u

v

Strategy
After drawing the free-body diagram of the bar, we will apply Newton’s second
law and the equation of angular motion. This will result in three equations in
terms of the two components of acceleration of the bar’s center of mass, the
angular acceleration, and the unknown forces exerted on the bar by the floor and
wall. We must obtain two kinematic relations between the acceleration of the
center of mass and the angular acceleration to complete the solution.
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376 Chapter 18 Planar Dynamics of Rigid Bodies

Express the acceleration of the
center of mass G of the bar in
terms of components,

Write the equation of angular

moment of inertia of the bar
about its center of mass.

motion. Here I ! ml2 is the1
12 "M ! N # P!        "l sin u1

2 ! Ia.       (3)!        "l cos u1
2

x

y

G

ay

ax

a

and write Newton’s second law.

aG ! axi $ ayj,

"Fx ! P ! max,                                             (1)

"Fy ! N # mg ! may.                                   (2)

Free-body diagram of the bar.
N and P are the normal forces
exerted by the floor and wall.

x

y

G

u

mg

N

P
l

1
2

l
1
2

Apply the Equations of Motion

Solution
Draw the Free-Body Diagram
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18.2 The Planar Equations of Motion 377

Determine Kinematic Relationships

Express the acceleration of the 
center of mass in terms of the 
acceleration of the top end B of 
the bar. Equating i components 
results in a relation between ax 
and the angular acceleration a.

Express the acceleration of the 
center of mass in terms of the 
acceleration of the bottom end 
A of the bar. Equating j 
components results in a relation 
between ay and the angular 
acceleration a.

l
1
2

l
1
2

A

rG/B

rG/A

x

y

B

G

u

Equating the j components yields

l(a sin u ! v2 cos u).          (4)ay "

# !

aG " aA ! !$rG/A # v2rG/A:

l sin u i

#

l cos u j  .#v2 !                     "

l sin u1
2

1
2

1
2

1
2

l cos u# 1
2

axi ! ayj " aAi !

0

i j k

0 0 a

Equating the i components yields

l(a cos u ! v2 sin u).           (5)ax "

#

aG " aB ! !$rG/B # v2rG/B:

l sin u i

#

l cos u j  .#v2 !                   "

l sin u1
2

1
2

1
2

1
2

l cos u1
2#

axi ! ayj " aBj !

0

i j k

0 0 a

Solving Eqs. (1)–(5) for the five
variables ax, ay, a, N, and P yields
the angular acceleration.

sin u.a "
3g
2l

Practice Problem Suppose that the bar is released from rest with .  At that in-
stant, what normal forces are exerted on the bar by the floor and wall?

Answer: N = 0.813mg, P = 0.325mg.

u = 30°
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A
x

y

G

ay

ax

l
1
2

a

(b) The angular acceleration and
components of the acceleration
of the center of mass.

mg

x

y

Ay

Ax

G

l
1
2(a) Free-body diagram of the bar.

Example 18.4 Bar Rotating about a Fixed Axis (! Related Problem 18.19)

The slender bar of mass m is released from rest in the horizontal position shown.
Determine the bar’s angular acceleration and the force exerted on the bar by
the support A at that instant.

Strategy
Since the bar rotates about a fixed point, we can use Eq. (18.22) to determine
its angular acceleration. The advantage of using this equation instead of
Eq. (18.23) is that the unknown reactions at A will not appear in the equation
of angular motion. Once we know the angular acceleration, we can determine
the acceleration of the center of mass and use Newton’s second law to obtain
the reactions at A.

Solution
Draw the Free-Body Diagram In Fig. a, we draw the free-body diagram of
the bar, showing the reactions at the pin support.

A

l

Apply the Equations of Motion Let the acceleration of the center of mass G
of the bar be and let its counterclockwise angular acceleration
be (Fig. b). Newton’s second law for the bar is

 ©Fy = Ay - mg = may.

 ©Fx = Ax = max, 

a
aG = axi + ay j,

The equation of angular motion about the fixed point A is

(1)©MA = A 12 l Bmg = IAa.
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18.2 The Planar Equations of Motion 379

The moment of inertia of a slender bar about its center of mass is 
(See Appendix C.) From the parallel-axis theorem, the moment of inertia of the
bar about A is

Substituting this expression into Eq. (1), we obtain the angular acceleration:

Determine Kinematic Relationships To determine the reactions and 
we need to determine the acceleration components and We can do so by
expressing the acceleration of G in terms of the acceleration of A:

At the instant the bar is released, its angular velocity Also, so
we obtain

Equating i and j components, we get

Substituting these acceleration components into Newton’s second law, we find
that the reactions at A at the instant the bar is released are

Critical Thinking
We could have determined the kinematic relationship between the bar’s angu-
lar acceleration and the acceleration of the center of mass G in a less formal
way. Because G describes a circular path about A, we know that the tangen-
tial component of its acceleration equals the product of the radial distance
from A to G and the angular acceleration of the bar. Due to the directions in
which we defined and to be positive, The normal com-
ponent of the acceleration of G is equal to the square of its velocity divided
by the radius of its circular path. The velocity equals zero at the instant the bar
is released, so ax = 0.

ay = -1l>22a.aay

Ay = mg + m A - 3
4 g B = 1

4 mg.

Ax = 0,

ay = -  1
2 la = -  3

4 g.

ax = 0,

aG = ax i + ay j = 1ak2 * A - 1
2 li B = -  1

2 la j.

aA = 0,v = 0.

aG = aA + ! * rG>A - v2rG>A.

ay.ax

Ay,Ax

a =
1
2 mgl
1
3 ml2

= 3
2

g
l
.

IA = I + d2m = 1
12 ml2 + A 12 l B2m = 1

3 ml2.

I = 1
12 ml2.
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y

x

G

mg
Ay

Ax

N

u

Ay

Ax mBg
l

1
2

(a) Free-body diagrams of the bar and block.

y

x

G

aA

ax

ay

aA

a

(b) Definitions of the accelerations.

A

l

A

u

The slender bar has mass m and is pinned at A to a metal block of mass that
rests on a smooth, level surface. The system is released from rest in the posi-
tion shown. What is the bar’s angular acceleration at the instant of release?

mB

Example 18.5 Connected Rigid Bodies (! Related Problems 18.53, 18.54)

Strategy
We must draw free-body diagrams of the bar and the block and apply the equa-
tions of motion to them individually. To complete the solution, we must also
relate the acceleration of the bar’s center of mass and its angular acceleration
to the acceleration of the block.

Solution
Draw the Free-Body Diagrams We draw the free-body diagrams of the bar
and block in Fig. a. Notice the opposite forces they exert on each other where
they are pinned together.

Apply the Equations of Motion Writing the acceleration of the center of
mass of the bar as (Fig. b), we have, from Newton’s second
law,

and

Letting be the counterclockwise angular acceleration of the bar (Fig. b), its
equation of angular motion is

©M = Ax A 12 l cos u B + Ay A 12 l sin u B = Ia.

a

©Fy = Ay - mg = may.

©Fx = Ax = max

aG = axi + ay j
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x

y

G

rG/A

A

u

l
1
2

(c) Position vector of G relative to A.

We express the block’s acceleration as (Fig. b) and write Newton’s second
law for the block:

Determine Kinematic Relationships To relate the bar’s motion to that of
the block, we express the acceleration of the bar’s center of mass in terms of
the acceleration of point A (Figs. b and c):

Equating i and j components, we obtain

and

We have five equations of motion and two kinematic relations in terms of
seven unknowns: and Solving them for the angular 
acceleration and using the relation for the bar’s moment of inertia,
we obtain

Critical Thinking
This example is a simple case of a very important type of problem. The
approach we used is applicable to analyzing planar motions of a broad class
of machines consisting of interconnected moving parts. The free-body dia-
grams of the individual parts are first drawn, including the forces and cou-
ples the parts exert on each other. The equations of motion are written for
each part. The solution is completed by determining kinematic relationships.
In this example, the block is constrained to move horizontally. The block and
bar have the same acceleration at the pin A, and the acceleration of the cen-
ter of mass G of the bar is related to the bar’s angular acceleration and the
acceleration of point A because the bar is pinned at A. As this example illus-
trates, determining kinematic relationships is usually the most challenging
part of the solution.

a =
3
2 1g>l2 sin u

1 - 3
4 Cm>1m + mB2 D cos2 u

.

I = 1
12 ml2

aA.Ax, Ay, N, ax, ay, a,

ay = -  1
2 la sin u.

ax = aA - 1
2 la cos u

ax i + ay j = aA i + 3 i j k
0 0 a

- 1
2 l sin u 1

2 l cos u 0

3 - 0.

aG = aA + ! * rG>A - v2rG>A,

©Fy = N - Ay - mBg = 0.

©Fx = -  Ax = mBaA,

aAi
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A B

1.5 m 1.5 m

1 m

5! 5!

Problem 18.5

18.5 The crane moves to the right with constant acceleration,
and the 800-kg load moves without swinging.

(a) What is the acceleration of the crane and load?

(b) What are the tensions in the cables attached at A and B?

60 in

A B
14 in

28 in

14 in

F

Problems 18.1/18.2

4 ft 3 ft

T

5 ft

W

2 ft
BA

Problem 18.3

A B

T

2 m
26 m

3 m 5 m

Problem 18.4

Problems
18.1 A horizontal force is applied to the 230-lb refrig-
erator as shown. Friction is negligible.

(a) What is the magnitude of the refrigerator’s acceleration?

(b) What normal forces are exerted on the refrigerator by the
floor at A and B?

18.2 Solve Problem 18.1 if the coefficient of kinetic friction at
A and B is mk = 0.1.

F = 30 lb

18.3 As the 2800-lb airplane begins its takeoff run at 
its propeller exerts a horizontal force Neglect
horizontal forces exerted on the wheels by the runway.

(a) What distance has the airplane moved at ?

(b) What normal forces are exerted on the tires at A and B?

t = 2 s

T = 1000 lb .
t = 0,

! 18.4 The Boeing 747 begins its takeoff run at time The
normal forces exerted on its tires at A and B are and

If you assume that these forces are constant and
neglect horizontal forces other than the thrust T, how fast is the
airplane moving at (See Active Example 18.1.)t = 4 s?

NB = 2800 kN.
NA = 175 kN

t = 0.
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15 in

16 in
A B

60 in

6 in 4 in

h

b c

BA

Problem 18.7

Problem 18.6

18.6 The total weight of the go-cart and driver is 240 lb. The
location of their combined center of mass is shown. The rear
drive wheels together exert a 24-lb horizontal force on the track.
Neglect the horizontal forces exerted on the front wheels.

(a) What is the magnitude of the go-cart’s acceleration?

(b) What normal forces are exerted on the tires at A and B?

18.8 The moment of inertia of the disk about O is 
At the stationary disk is subjected to a constant 50 N-m
torque.

(a) What is the magnitude of the resulting angular acceleration of
the disk?

(b) How fast is the disk rotating (in rpm) at t = 4 s?

t = 0,
I = 20 kg-m2.

18.7 The total weight of the bicycle and rider is 160 lb. The loca-
tion of their combined center of mass is shown. The dimensions
shown are and What is the
largest acceleration the bicycle can have without the front wheel
leaving the ground? Neglect the horizontal force exerted on the
front wheel by the road.

Strategy: You want to determine the value of the accelera-
tion that causes the normal force exerted on the front wheel by the
road to equal zero.

h = 38 in.b = 21 in, c = 16 in,

18.9 The 10-lb bar is on a smooth horizontal table. The figure
shows the bar viewed from above. Its moment of inertia about the
center of mass is The bar is stationary when the
force is applied in the direction parallel to the y axis. At
that instant, determine (a) the acceleration of the center of mass,
and (b) the acceleration of point A.

18.10 The 10-lb bar is on a smooth horizontal table. The figure
shows the bar viewed from above. Its moment of inertia about the
center of mass is The bar is stationary when the
force is applied in the direction parallel to the y axis. At
that instant, determine the acceleration of point B.

F = 5 lb
I = 0.8 slug-ft2.

F = 5 lb
I = 0.8 slug-ft2.

Problems 18.9/18.10

y

A

F

B

x 

2 ft2 ft

50 N-m

O

Problem 18.8
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384 Chapter 18 Planar Dynamics of Rigid Bodies

Problem 18.14

18.14 The moment of inertia of the wind-tunnel fan is
The fan starts from rest. The torque exerted on it by the engine
is given as a function of the angular velocity of the fan by

(a) When the fan has turned 620 revolutions, what is its angular
velocity in rpm (revolutions per minute)?

(b) What maximum angular velocity in rpm does the fan attain?

Strategy: By writing the equation of angular motion, deter-
mine the angular acceleration of the fan in terms of its angular
velocity. Then use the chain rule:

a = dv
dt

= dv
du

 
du
dt

= dv
du

 v.

T = 140 - 0.02v2 N-m.

225 kg-m2.T

300 mm

Problem 18.11

Problem 18.12

18.11 The moment of inertia of the astronaut and maneuvering
unit about the axis through their center of mass perpendicular to
the page is A thruster can exert a force 
For safety, the control system of his maneuvering unit will not
allow his angular velocity to exceed per second. If he is ini-
tially not rotating, and at he activates the thruster until he
is rotating at per second, through how many degrees has he
rotated at t = 10 s?

15°
t = 0

15°

T = 10 N.I = 40 kg-m2.

18.12 The moment of inertia of the helicopter’s rotor is
The rotor starts from rest. At the pilot begins

advancing the throttle so that the torque exerted on the rotor by
the engine (in ft-lb) is given as a function of time in seconds by

(a) How long does it take the rotor to turn ten revolutions?

(b) What is the rotor’s angular velocity (in rpm) when it has
turned ten revolutions? 

T = 200t.

t = 0,420 slug-ft2.

18.13 The moments of inertia of the pulleys are
and 

A 5 N-m counterclockwise couple is applied to pulley A.
Determine the resulting counterclockwise angular accelerations
of the three pulleys.

IC = 0.036 kg-m2.IB = 0.045 kg-m2,IA = 0.0025 kg-m2,

200 mm
200 mm

A
B

C

100 mm

100 mm

Problem 18.13
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18.15 The moment of inertia of the pulley about its axis is
If the 1-kg mass A is released from rest, how

far does it fall in 0.5 s?

Strategy: Draw individual free-body diagrams of the pulley
and the mass.

I = 0.005 kg-m2.

18.16 The radius of the pulley is 125 mm and the moment of
inertia about its axis is If the system is released
from rest, how far does the 20-kg mass fall in 0.5 s? What is the
tension in the rope between the 20-kg mass and the pulley? 

I = 0.05 kg-m2.

18.17 The moment of inertia of the pulley is The
coefficient of kinetic friction between the 5-lb weight and the
horizontal surface is Determine the magnitude of the
acceleration of the 5-lb weight in each case.

mk = 0.2.

0.4 slug-ft2.

Problem 18.15

Problem 18.16

18.18 The 5-kg slender bar is released from rest in the horizontal
position shown. Determine the bar’s counterclockwise angular
acceleration (a) at the instant it is released, and (b) at the instant
when it has rotated 

! 18.19 The 5-kg slender bar is released from rest in the 
horizontal position shown. At the instant when it has rotated 
its angular velocity is 4.16 rad/s. At that instant, determine the 
magnitude of the force exerted on the bar by the pin support. 
(See Example 18.4.)

18.20 The 5-kg slender bar is released from rest in the horizontal
position shown. Determine the magnitude of its angular velocity
when it has fallen to the vertical position.

Strategy: Draw the free-body diagram of the bar when it
has fallen through an arbitrary angle and apply the equation of
angular motion to determine the bar’s angular acceleration as a
function of Then use the chain rule to write the angular
acceleration as

a = dv
dt

= dv
du

 
du
dt

= dv
du

 v.

u.

u

45°,

45°.

2 lb

6 in

(a) (b)

5 lb

2 lb

6 in

5 lb

Problem 18.17

100 mm

A

20 kg
4 kg

1.2 m

Problems 18.18–18.20

y

x

A

B

C

D E
0.2 m

0.2 m
0.4 m 0.2 m

Problems 18.21/18.22

18.21 The object consists of the 2-kg slender bar ABC welded to
the 3-kg slender bar BDE. The y axis is vertical.

(a) What is the object’s moment of inertia about point D?

(b) Determine the object’s counterclockwise angular acceleration
at the instant shown.

18.22 The object consists of the 2-kg slender bar ABC welded 
to the 3-kg slender bar BDE. The y axis is vertical. At the instant
shown, the object has a counterclockwise angular velocity of 
5 rad/s. Determine the components of the force exerted on it by
the pin support.
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386 Chapter 18 Planar Dynamics of Rigid Bodies

30!
A

B

y

x
O

Problem 18.25

x

y

300
mm

40!

700 mm

BA

C

Problems 18.26/18.27

18.26 Arm BC has a mass of 12 kg and the moment of inertia
about its center of mass is Point B is stationary and arm
BC has a constant counterclockwise angular velocity of 2 rad/s. At
the instant shown, what are the couple and the components of
force exerted on arm BC at B?

18.27 Arm BC has a mass of 12 kg and the moment of inertia
about its center of mass is At the instant shown, arm
AB has a constant clockwise angular velocity of 2 rad/s and arm
BC has a counterclockwise angular velocity of 2 rad/s and a
clockwise angular acceleration of What are the couple
and the components of force exerted on arm BC at B?

4 rad/s2.

3 kg-m2.

3 kg-m2.

18 m 12 m

5! 6!

2 m

2 m

G
Ff Fr

y

x 

Problems 18.28/18.29

18.28 The space shuttle’s attitude control engines exert two
forces and The force vectors and the cen-
ter of mass G lie in the x–y plane of the inertial reference frame.
The mass of the shuttle is 54,000 kg, and its moment of inertia
about the axis through the center of mass that is parallel to the
z axis is Determine the acceleration of the 
center of mass and the angular acceleration. (You can ignore the
force exerted on the shuttle by its weight.)

18.29 In Problem 18.28, suppose that and you want
the shuttle’s angular acceleration to be zero. Determine the neces-
sary force and the resulting acceleration of the center of mass.Fr

Ff = 4 kN

4.5 * 106 kg-m2.

Fr = 2 kN.Ff = 8 kN

x

m

l

Problem 18.23

1.80 m
1.40 m

0.30 m

0.80 m

0.70 m
A

B

C

y

x

Problem 18.24

18.23 The length of the slender bar is and its mass is
It is released from rest in the position shown.

(a) If what is the bar’s angular acceleration at the 
instant it is released?

(b) What value of x results in the largest angular acceleration
when the bar is released? What is the angular acceleration?

x = 1 m,

m = 30 kg.
l = 4 m

18.24 Model the arm ABC as a single rigid body. Its mass is
320 kg, and the moment of inertia about its center of mass is

Point A is stationary. If the hydraulic piston
exerts a 14-kN force on the arm at B, what is the arm’s angular
acceleration?

I = 360 kg-m2.

18.25 The truck’s bed weighs 8000 lb and its moment of inertia
about O is At the instant shown, the coordinates of
the center of mass of the bed are and the coordinates of
point B are If the bed has a counterclockwise angular
acceleration of what is the magnitude of the force ex-
erted on the bed at B by the hydraulic cylinder AB?

0.2 rad/s2,
(15, 11) ft .

(10, 12) ft
33,000 slug-ft2.
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18.30 Points B and C lie in the x–y plane. The y axis is vertical.
The center of mass of the 18-kg arm BC is at the midpoint of the
line from B to C, and the moment of inertia of the arm about the
axis through the center of mass that is parallel to the z axis is

At the instant shown, the angular velocity and angular
acceleration vectors of arm AB are and

The angular velocity and angular
acceleration vectors of arm BC are (rad/s) and

Determine the force and couple exerted on
arm BC at B.

18.31 Points B and C lie in the x–y plane. The y axis is vertical.
The center of mass of the 18-kg arm BC is at the midpoint of the
line from B to C, and the moment of inertia of the arm about the
axis through the center of mass that is parallel to the z axis is

At the instant shown, the angular velocity and angular
acceleration vectors of arm AB are and

The angular velocity vector of arm BC is
If you want to program the robot so that the

angular acceleration of arm BC is zero at this instant, what couple
must be exerted on arm BC at B?

vBC = 0.4k 1rad/s2.aAB = -0.3k 1rad/s22. vAB = 0.6k 1rad/s21.5 kg-m2.

aBC = 2k 1rad/s22. vBC = 0.4k
aAB = -0.3k 1rad/s22. vAB = 0.6k 1rad/s21.5 kg-m2.

A 15!

760 mm

90
0 m

m

y

x

z B

50!

C

Problems 18.30/18.31

30!

R

Problems 18.32/18.33

D

R R

D

Problem 18.34

8 in
4 in

Problem 18.35

! 18.32 The radius of the 2-kg disk is Its moment
of inertia is It rolls on the inclined surface. If
the disk is released from rest, what is the magnitude of the veloci-
ty of its center two seconds later? (See Active Example 18.2.)

! 18.33 The radius of the 2-kg disk is Its moment
of inertia is What minimum coefficient of stat-
ic friction is necessary for the disk to roll, instead of slip, on the
inclined surface? (See Active Example 18.2.)

I = 0.0064 kg-m2.
R = 80 mm.

I = 0.0064 kg-m2.
R = 80 mm.

18.34 A thin ring and a homogeneous circular disk, each of
mass m and radius R, are released from rest on an inclined surface.
Determine the ratio of the velocities of their centers
when they have rolled a distance D.

vring>vdisk

18.35 The stepped disk weighs 40 lb and its moment of inertia is
If the disk is released from rest, how long does it

take its center to fall 3 ft? (Assume that the string remains vertical.)
I = 0.2 slug-ft2.
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388 Chapter 18 Planar Dynamics of Rigid Bodies

k R

Problem 18.38

Problem 18.39

v0

Problem 18.40

18.39 The disk weighs 12 lb and its radius is 6 in. It is station-
ary on the surface when the force is applied.

(a) If the disk rolls on the surface, what is the acceleration of its
center?

(b) What minimum coefficient of static friction is necessary for
the disk to roll instead of slipping when the force is applied?

F = 10 lb

18.40 A 42-lb sphere with radius is placed on a hori-
zontal surface with initial angular velocity The
coefficient of kinetic friction between the sphere and the surface is

What maximum velocity will the center of the sphere
attain, and how long does it take to reach that velocity?

Strategy: The friction force exerted on the spinning sphere
by the surface will cause the sphere to accelerate to the right. The
friction force will also cause the sphere’s angular velocity to
decrease. The center of the sphere will accelerate until the sphere
is rolling on the surface instead of slipping relative to it. Use the
relation between the velocity of the center and the angular veloci-
ty of the sphere when it is rolling to determine when the sphere
begins rolling.

mk = 0.06.

v0 = 40 rad/s.
R = 4 in

R

k m

x

Problems 18.36/18.37

18.36 The radius of the pulley is and its moment
of inertia is The mass The spring con-
stant is The system is released from rest with the
spring unstretched. At the instant when the mass has fallen 0.2 m,
determine (a) the angular acceleration of the pulley, and (b) the
tension in the rope between the mass and the pulley.

18.37 The radius of the pulley is and its moment
of inertia is The mass The spring con-
stant is The system is released from rest with the
spring unstretched. What maximum distance does the mass fall
before rebounding?

Strategy: Assume that the mass has fallen an arbitrary
distance x. Write the equations of motion for the mass and the
pulley and use them to determine the acceleration a of the mass
as a function of x. Then apply the chain rule:

dv
dt

= dv
dx

 
dx
dt

= dv
dx

 v.

k = 135 N/m.
m = 5 kg.I = 0.1 kg-m2.

R = 100 mm

k = 135 N/m.
m = 5 kg.I = 0.1 kg-m2.

R = 100 mm

18.38 The mass of the disk is 45 kg, and its radius is 
The spring constant is The disk is rolled to the left
until the spring is compressed 0.5 m and released from rest.

(a) If you assume that the disk rolls, what is its angular accelera-
tion at the instant it is released?

(b) What is the minimum coefficient of static friction for which
the disk will not slip when it is released?

k = 600 N/m.
R = 0.3 m.

F
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18.41 A soccer player kicks the ball to a teammate 8 m away.
The ball leaves the player’s foot moving parallel to the ground at
6 m/s with no angular velocity. The coefficient of kinetic friction
between the ball and the grass is How long does it take
the ball to reach his teammate? The radius of the ball is 112 mm
and its mass is 0.4 kg. Estimate the ball’s moment of inertia by
using the equation for a thin spherical shell: I = 2

3  mR2.

mk = 0.32.

18.42 The 100-kg cylindrical disk is at rest when the force F is ap-
plied to a cord wrapped around it. The static and kinetic coefficients
of friction between the disk and the surface are 0.2. Determine the an-
gular acceleration of the disk if (a) and (b) 

Strategy: First solve the problem by assuming that the disk
does not slip, but rolls on the surface. Determine the frictional
force, and find out whether it exceeds the product of the coef-
ficient of friction and the normal force. If it does, you must re-
work the problem assuming that the disk slips.

F = 1000 N.F = 500 N

Problem 18.41

F

300 mm

Problem 18.42

0.50 m
M

Sun gear

0.86 m

Planet gears (3)

Ring gear0.18 m

Problems 18.43/18.44

4 m
30!

Problem 18.45

18.43 The ring gear is fixed. The mass and moment of inertia of
the sun gear are and The mass and
moment of inertia of each planet gear are and

If a couple is applied to the sun
gear, what is the latter’s angular acceleration?

18.44 In Problem 18.43, what is the magnitude of the tangential
force exerted on the sun gear by each planet gear at their points of
contact when the 200 N-m couple is applied to the sun gear?

M = 200 N-mIP = 0.60 kg-m2.
mP = 38 kg

IS = 40 kg-m2.mS = 320 kg

! 18.45 The 18-kg ladder is released from rest in the position
shown. Model it as a slender bar and neglect friction. At the in-
stant of release, determine (a) the angular acceleration of the lad-
der and (b) the normal force exerted on the ladder by the floor.
(See Active Example 18.3.)
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A

3 ft 1 ft

O

Problem 18.49

120 mm

40 mm

Problem 18.50

18.49 The 5-lb horizontal bar is connected to the 10-lb disk by a
smooth pin at A. The system is released from rest in the position
shown. What are the angular accelerations of the bar and disk at
that instant?

18.50 The 0.1-kg slender bar and 0.2-kg cylindrical disk are re-
leased from rest with the bar horizontal. The disk rolls on the
curved surface. What is the bar’s angular acceleration at the in-
stant it is released?

20!

30!

4 m

Problem 18.46

60!

1 m

Problem 18.47

O

0.3 m

1.2 m

A

Problem 18.48

18.46 The 18-kg ladder is released from rest in the position
shown. Model it as a slender bar and neglect friction. Determine
its angular acceleration at the instant of release.

18.47 The 4-kg slender bar is released from rest in the position
shown. Determine its angular acceleration at that instant if (a) the
surface is rough and the bar does not slip, and (b) the surface is
smooth.

18.48 The masses of the bar and disk are 14 kg and 9 kg, respec-
tively. The system is released from rest with the bar horizontal.
Determine the bar’s angular acceleration at that instant if (a) the
bar and disk are welded together at A and (b) the bar and disk are
connected by a smooth pin at A.

Strategy: In part (b), draw individual free-body diagrams of
the bar and disk.
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120 mm

T

A

Problem 18.51

18.51 The mass of the suspended object A is 8 kg. The mass of
the pulley is 5 kg, and its moment of inertia is If the
force what is the magnitude of the acceleration of A?T = 70 N,

0.036 kg-m2.

18.52 The suspended object A weighs 20 lb. The pulleys are
identical, each weighing 10 lb and having moment of inertia

If the force what is the magnitude of
the acceleration of A?

T = 15 lb,0.022 slug-ft2.

4 in

4 in

T

A

Problem 18.52

1 m

55!

Problems 18.53/18.54

! 18.53 The 2-kg slender bar and 5-kg block are released from
rest in the position shown. If friction is negligible, what is the
block’s acceleration at that instant? (See Example 18.5.)

! 18.54 The 2-kg slender bar and 5-kg block are released from
rest in the position shown. What minimum coefficient of static
friction between the block and the horizontal surface would be
necessary for the block not to move when the system is released?
(See Example 18.5.)

1 m

M

0.25 m

40!

Problem 18.55

18.55 As a result of the constant couple M applied to the 1-kg
disk, the angular acceleration of the 0.4-kg slender bar is zero. 
Determine M and the counterclockwise angular acceleration of the
rolling disk.
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Problem 18.60

18.60 Let the total moment of inertia of the car’s two rear
wheels and axle be and let the total moment of inertia of the
two front wheels be The radius of the tires is R, and the total
mass of the car, including the wheels, is m. If the car’s engine ex-
erts a torque (couple) T on the rear wheels and the wheels do not
slip, show that the car’s acceleration is

Strategy: Isolate the wheels and draw three free-body
diagrams.

a = RT

R2m + IR + IF
.

IF.
IR,

Problems 18.56/18.57

Problem 18.58

F

0.4 m

0.4 m

0.2 m

A B

C

Problem 18.59

18.56 The slender bar weighs 40 lb, and the crate weighs 80 lb.
At the instant shown, the velocity of the crate is zero and it has an
acceleration of toward the left. The horizontal surface is
smooth. Determine the couple M and the tension in the rope.

18.57 The slender bar weighs 40 lb, and the crate weighs 80 lb.
At the instant shown, the velocity of the crate is zero and it has an
acceleration of toward the left. The coefficient of kinetic
friction between the horizontal surface and the crate is 
Determine the couple M and the tension in the rope. 

mk = 0.2.
14 ft/s2

14 ft/s2

18.58 Bar AB is rotating with a constant clockwise angular
velocity of 10 rad/s. The 8-kg slender bar BC slides on the hori-
zontal surface. At the instant shown, determine the total force
(including its weight) acting on bar BC and the total moment
about its center of mass.

18.59 The masses of the slender bars AB and BC are 10 kg and
12 kg, respectively. The angular velocities of the bars are zero at
the instant shown and the horizontal force The
horizontal surface is smooth. Determine the angular accelerations
of the bars.

F = 150 N.

6 ft

3 ft 6 ft

M

0.4 m

10 rad/sA

B

C

0.4 m 0.8 m

y

x 
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1500 mm

649 mmA
B

723 mm

Problems 18.61/18.62

18.61 The combined mass of the motorcycle and rider is 160 kg.
Each 9-kg wheel has a 330-mm radius and a moment of inertia

The engine drives the rear wheel by exerting a
couple on it. If the rear wheel exerts a 400-N horizontal force on
the road and you do not neglect the horizontal force exerted on the
road by the front wheel, determine (a) the motorcycle’s accelera-
tion and (b) the normal forces exerted on the road by the rear and
front wheels. (The location of the center of mass of the motor-
cycle, not including its wheels, is shown.)

18.62 In Problem 18.61, if the front wheel lifts slightly off the
road when the rider accelerates, determine (a) the motorcycle’s
acceleration and (b) the torque exerted by the engine on the rear
wheel.

I = 0.8 kg-m2.

18.63 The moment of inertia of the vertical handle about O is
The object B weighs 15 lb and rests on a smooth

surface. The weight of the bar AB is negligible (which means that
you can treat the bar as a two-force member). If the person exerts
a 0.2-lb horizontal force on the handle 15 in above O, what is the
resulting angular acceleration of the handle?

0.12 slug-ft2.

18.64 The bars are each 1 m in length and have a mass of
2 kg. They rotate in the horizontal plane. Bar AB rotates with a
constant angular velocity of 4 rad/s in the counterclockwise
direction. At the instant shown, bar BC is rotating in the coun-
terclockwise direction at 6 rad/s. What is the angular accelera-
tion of bar BC?

18.65 Bars OQ and PQ each weigh 6 lb. The weight of the
collar P and the friction between the collar and the horizontal bar
are negligible. If the system is released from rest with 
what are the angular accelerations of the two bars?

18.66 In Problem 18.65, what are the angular accelerations of
the two bars if the collar P weighs 2 lb?

u = 45°,

6 in

12 in

A

B

O

Problem 18.63

BA

C

aBC

6 rad/s

4 rad/s

135!

2 ft

u

O

Q

P

2 ft

Problems 18.65/18.66

Problem 18.64

BEDFMC18_0136129161.QXD  6/20/07  6:25 PM  Page 393



394 Chapter 18 Planar Dynamics of Rigid Bodies

45!

B

A

1.2 m

0.5 m

Problem 18.67

2R

R

Problem 18.68

A

B

y

x

C

D

0.2 m 0.2 m

0.2 m10 rad/s

Problem 18.69

r

A

2 m

v

Problems 18.70/18.71

18.67 The 4-kg slender bar is pinned to 2-kg sliders at A and B.
If friction is negligible and the system is released from rest in
the position shown, what is the angular acceleration of the bar at
that instant?

18.68 The mass of the slender bar is m and the mass of the
homogeneous disk is 4m. The system is released from rest in the
position shown. If the disk rolls and the friction between the bar
and the horizontal surface is negligible, show that the disk’s
angular acceleration is counterclockwise.a = 6g>95R

18.69 Bar AB rotates in the horizontal plane with a constant an-
gular velocity of 10 rad/s in the counterclockwise direction. The
masses of the slender bars BC and CD are 3 kg and 4.5 kg, respec-
tively. Determine the x and y components of the forces exerted on
bar BC by the pins at B and C at the instant shown.

18.70 The 2-kg bar rotates in the horizontal plane about the
smooth pin. The 6-kg collar A slides on the smooth bar. At the in-
stant shown, and the collar is sliding
outward at 0.5 m/s relative to the bar. If you neglect the moment
of inertia of the collar (that is, treat the collar as a particle), what
is the bar’s angular acceleration?

Strategy: Draw individual free-body diagrams of the bar and
the collar, and write Newton’s second law for the collar in polar
coordinates.

18.71 In Problem 18.70, suppose that the moment of inertia of
the collar about its center of mass is Determine the an-
gular acceleration of the bar and compare your answer with the
answer to Problem 18.70.

0.2 kg-m2.

r = 1.2 m, v = 0.4 rad/s,
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(a)

(b)

L
M

L
M

Figure 18.7
Objects of equal mass that have differ-
ent moments of inertia about L.

Appendix: Moments of Inertia
When a rigid body is subjected to forces and couples, the rotational motion that
results depends not only on the mass of the body, but also on how its mass is
distributed. Although the two objects in Fig. 18.7 have the same mass, the
angular accelerations caused by the couple M are different. This difference is
reflected in the equation of angular motion through the moment of
inertia, I. The object in Fig. 18.7a has a smaller moment of inertia about the
axis L, so its angular acceleration is greater.

In deriving the equations of motion of a rigid body in Sections 18.1 and
18.2, we modeled the body as a finite number of particles and expressed its
moment of inertia about an axis as

where is the mass of the ith particle and is the perpendicular distance from
to the ith particle (Fig. 18.8a). To calculate moments of inertia of objects, it

is often more convenient to model them as continuous distributions of mass
and express the moment of inertia about as

(18.21)

where r is the perpendicular distance from to the differential element of
mass dm (Fig. 18.8b). When the axis passes through the center of mass of the
object, we denote the axis by L and the moment of inertia about L by I.

The dimensions of the moment of inertia of an object are 
Notice that the definition implies that its value must be positive.

Simple Objects
We begin by determining moments of inertia of some simple objects. In the next
subsection we describe the parallel-axis theorem, which simplifies the task of de-
termining moments of inertia of objects composed of combinations of simple parts.

Slender Bars We will determine the moment of inertia of a straight slender bar
about a perpendicular axis L through the center of mass of the bar (Fig. 18.9a).
“Slender” means we assume that the bar’s length is much greater than its width.
Let the bar have length l, cross-sectional area A, and mass m. We assume that A is
uniform along the length of the bar and that the material is homogeneous.
Consider a differential element of the bar of length dr at a distance r from the cen-
ter of mass (Fig. 18.9b). The element’s mass is equal to the product of its volume
and the mass density: Substituting this expression into Eq. (18.21),
we obtain the moment of inertia of the bar about a perpendicular axis through its
center of mass:

The mass of the bar equals the product of the mass density and the volume of
the bar so we can express the moment of inertia as

(18.22)

We have neglected the lateral dimensions of the bar in obtaining this result. That
is, we treated the differential element of mass dm as if it were concentrated on

I = 1
12 ml2.

1m = rAl2,
I = Lm

r2
 dm = L

l>2
-l>2rAr2 dr = 1

12 rAl3.

dm = rA dr.

1mass2 * 1length22.

LO

IO = Lm
r2 dm,

LO

LO

rimi

IO = a
i

mi ri
2,

LO

M = Ia

(a)

LO

ri

mi

(b)

LO

r

dm

Figure 18.8
Determining the moment of inertia by model-
ing an object as (a) a finite number of parti-
cles and (b) a continuous distribution of mass.
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z

y

x

(a)

x

y y

T

(b)

x

y

dm

y

dA

z

r

Figure 18.10
(a) A plate of arbitrary shape and uniform

thickness T.
(b) An element of volume obtained by pro-

jecting an element of area dA through
the plate.

the axis of the bar. As a consequence, Eq. (18.22) is an approximation for the
moment of inertia of a bar. Later in this section, we will determine the moments
of inertia for a bar of finite lateral dimension and show that Eq. (18.22) is a good
approximation when the width of the bar is small in comparison to its length.

Thin Plates Consider a homogeneous flat plate that has mass m and uniform
thickness T. We will leave the shape of the cross-sectional area of the plate
unspecified. Let a cartesian coordinate system be oriented so that the plate lies
in the x–y plane (Fig. 18.10a). Our objective is to determine the moments of
inertia of the plate about the x, y, and z axes.

We can obtain a differential element of volume of the plate by projecting an
element of area dA through the thickness T of the plate (Fig. 18.10b). The resulting
volume is T dA. The mass of this element of volume is equal to the product of
the mass density and the volume: Substituting this expression into
Eq. (18.9), we obtain the moment of inertia of the plate about the z axis in the form

where r is the distance from the z axis to dA. Because the mass of the plate is
where A is the cross-sectional area of the plate, the product
The integral on the right is the polar moment of inertia of the

cross-sectional area of the plate. Therefore, we can write the moment of inertia
of the plate about the z axis as

(18.23)

From Fig. 18.10b, we see that the perpendicular distance from the x axis to the
element of area dA is the y coordinate of dA. Consequently, the moment of in-
ertia of the plate about the x axis is

(18.24)

where is the moment of inertia of the cross-sectional area of the plate about
the x axis. The moment of inertia of the plate about the y axis is

(18.25)

where is the moment of inertia of the cross-sectional area of the plate about
the y axis.

Because the sum of the area moments of inertia and is equal to
the polar moment of inertia the moment of inertia of the thin plate about
the z axis is equal to the sum of its moments of inertia about the x and y axes:

(18.26)

Thus, we have expressed the moments of inertia of a thin homogeneous plate
of uniform thickness in terms of the moments of inertia of the cross-sectional
area of the plate. In fact, these results explain why the area integrals and

are called moments of inertia.
The use of the same terminology and similar symbols for moments of iner-

tia of areas and moments of inertia of objects can be confusing, but is entrenched
in engineering practice. The type of moment of inertia being referred to can be
determined either from the context or from the units, for moments of
inertia of areas and for moments of inertia of objects.1mass2 * 1length22 1length24
JO

Ix, Iy,

Iz axis = Ix axis + Iy axis.

JO,
IyIx

Iy

Iy axis = Lm
x2 dm = rTLA

x2 dA = m
A

 Iy,

Ix

Ix axis = Lm
y2 dm = rTLA

y2 dA = m
A

 Ix,

Iz axis = m
A

 JO.

JOrT = m>A.
m = rTA,

Iz axis = Lm
r2 dm = rTLA

r2 dA,

dm = rT dA.
drr

dm

L

(a)

(b)

l

Figure 18.9
(a) A slender bar.
(b) A differential element of length dr.
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LO

l

l

O

y

x

dxx

dm
1

2

O

(a) Differential element of bar 1.

y

x

dy

y

dm

1

2

O

r

(b) Differential element of bar 2.

Example 18.6 Moment of Inertia of an L-Shaped Bar (! Related Problem 18.72)

Two homogeneous slender bars, each of length l, mass m, and cross-sectional
area A, are welded together to form an L-shaped object. Use integration to
determine the moment of inertia of the object about the axis through point
O. The axis is perpendicular to the two bars.

Strategy
Using the same integration procedure we used for a single bar, we can determine
the moment of inertia of each bar about and sum the results.

Solution
We orient a coordinate system with the z axis along and the x axis collinear
with bar 1 (Fig. a). The mass of the differential element of length dx of bar 1 is

The moment of inertia of bar 1 about is

In terms of the mass of the bar, we can write this result as

The mass of the element of length dy of bar 2 shown in Fig. b is 
From the figure, we see that the perpendicular distance from to the element
is Therefore, the moment of inertia of bar 2 about is

In terms of the mass of the bar, we obtain

The moment of inertia of the L-shaped object about is

Critical Thinking
In this example we used integration to determine a moment of inertia of an
object consisting of two straight bars. The same procedure could be applied to
more complicated objects made of such bars, but it would obviously be cum-
bersome. Once we have used integration to determine a moment of inertia of
a single bar, such as Eq. (18.22), it would be very convenient to be able to use
that result to determine moments of inertia of composite objects made of bars
without having to resort to integration. We show how this can be done in the
next section.

IO = 1IO21 + 1IO22 = 1
3 ml2 + 4

3  ml2 = 5
3 ml2.

LO

1IO22 = 4
3  ml2.

1IO22 = Lm
r2 dm = L

l

0
rA1l2 + y22 dy = 4

3  rAl3.

LOr = 2l2 + y2.
LO

dm = rA dy.

1IO21 = 1
3 ml2.

m = rAl,

1IO21 = Lm
r2 dm = L

l

0
rAx2 dx = 1

3 rAl3.

LOdm = rA dx.

LO

LO

LO

LO
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Example 18.7 Moments of Inertia of a Triangular Plate (! Related Problem 18.76)

The thin, homogeneous plate is of uniform thickness and mass m. Determine its
moments of inertia about the x, y, and z axes.

Strategy
The moments of inertia about the x and y axes are given by Eqs. (18.24) and
(18.25) in terms of the moments of inertia of the cross-sectional area of the
plate. We can determine the moment of inertia of the plate about the z axis from
Eq. (18.26).

Solution
From Appendix B, the moments of inertia of the triangular area about the x and
y axes are and Therefore, the moments of inertia of the
plate about the x and y axes are

and

The moment of inertia about the z axis is

Critical Thinking
As this example demonstrates, you can use the moments of inertia of areas tab-
ulated in Appendix B to determine moments of inertia of thin homogeneous
plates. For plates with more complicated shapes, you can use the methods for
determining moments of inertia of composite areas.

Iz axis = Ix axis + Iy axis = m A 16 h2 + 1
2 b2 B .

Iy axis = m
A

 Iy = m
1
2 bh

 A 14 hb3 B = 1
2 mb2.

Ix axis = m
A

 Ix = m
1
2 bh

 A 1
12 bh3 B = 1

6 mh2

Iy = 1
4 hb3.Ix = 1

12 bh3

x

y

b

h

Parallel-Axis Theorem
The parallel-axis theorem allows us to determine the moment of inertia of a com-
posite object when we know the moments of inertia of its parts. Suppose that we
know the moment of inertia I about an axis L through the center of mass of an
object and we wish to determine its moment of inertia about a parallel axis 
(Fig. 18.11a). To determine we introduce parallel coordinate systems xyz and

with the z axis along and the axis along L, as shown in Fig. 18.11b.
(In this figure, the axes and L are perpendicular to the page.) The origin O of
the xyz coordinate system is contained in the plane. The terms and 
are the coordinates of the center of mass relative to the xyz coordinate system.

The moment of inertia of the object about is

(18.27)

where r is the perpendicular distance from to the differential element of
mass dm and x, y are the coordinates of dm in the x–y plane. The x–y coordinates
of dm are related to its coordinates by

and
y = y¿ + dy.

x = x¿ + dx

x¿-y¿

LO

IO = Lm
r2 dm = Lm

1x2 + y22 dm,

LO

dydxx¿ –y¿
LO

z¿LOx¿y¿z¿,
IO,

LOIO
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(b)(a)

LO

L x

y

x!

y!

dx
dm

r!r

dyd
O Figure 18.11

(a) An axis L through the center of mass of
an object and a parallel axis 

(b) The xyz and coordinate systems.x¿y¿z¿
LO.

Substituting these expressions into Eq. (18.27), we can write that equation as

(18.28)

Since where is the perpendicular distance from L to
dm, the first integral on the right side of this equation is the moment of inertia
I of the object about L. Recall that the and coordinates of the center of mass
of the object relative to the coordinate system are defined by

Because the center of mass of the object is at the origin of the system,
and Therefore, the integrals in the second and third terms on the

right side of Eq. (18.28) are equal to zero. From Fig. 18.11b, we see that
where d is the perpendicular distance between the axes L and

Therefore, we obtain

(18.29)

This is the parallel-axis theorem for moments of inertia of objects. Equation
(18.29) relates the moment of inertia I of an object about an axis through the
center of mass to its moment of inertia about any parallel axis, where d is the
perpendicular distance between the two axes and m is the mass of the object.

The parallel-axis theorem makes it possible to determine moments of inertia
of composite objects. Determine the moment of inertia about a given axis 
typically requires three steps:

1. Choose the parts. Try to divide the object into parts whose moments of
inertia can easily be determined.

2. Determine the moments of inertia of the parts. Determine the moment of
inertia of each part about the axis through its center of mass parallel to

Then use the parallel-axis theorem to determine its moment of inertia
about 

3. Sum the results. Sum the moments of inertia of the parts (or subtract in the case
of a hole or cutout) to obtain the moment of inertia of the composite object.

LO.
LO.

LO

IO

IO = I + d2m.

LO.
dx

2 + dy
2 = d2,

y¿ = 0.x¿ = 0
x¿y¿z¿

x¿ = Lm
x¿dm

Lm
dm

,  y¿ = Lm
y¿dm

Lm
dm

.

x¿y¿z¿
y¿x¿

r¿1x¿22 + 1y¿22 = 1r¿22,

 + Lm
1dx

2 + dy
22 dm.

 IO = Lm
[1x¿22 + 1y¿22] dm + 2dxLm

x¿dm + 2dyLm
y¿dm
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l2!

LO

1

2

1/2

l
1
2

l
1
2 !2"

(a) The distances from to parallel axes
through the centers of mass of bars 1
and 2.

LO

LO

l

l

O

Example 18.8 Application of the Parallel-Axis Theorem (! Related Problems 18.82, 18.83)

Two homogeneous, slender bars, each of length l and mass m, are welded
together to form an L-shaped object. Determine the moment of inertia of the
object about the axis through point O. (The axis is perpendicular to the
two bars.)

Strategy
The moment of inertia of a straight slender bar about a perpendicular axis
through its center of mass is given by Eq. (18.22). We can use the parallel-axis
theorem to determine the moments of inertia of the bars about the axis and
sum them to obtain the moment of inertia of the composite bar.

Solution
Choose the Parts The parts are the two bars, which we call bar 1 and bar 2
(Fig. a).

Determine the Moments of Inertia of the Parts From Appendix C, the
moment of inertia of each bar about a perpendicular axis through its center of
mass is The distance from to the parallel axis through the center

of mass of bar 1 is (Fig. a). Therefore, the moment of inertia of bar 1 about
is

The distance from to the parallel axis through the center of mass of bar 2
is The moment of inertia of bar 2 about is

Sum the Results The moment of inertia of the L-shaped object about is

Critical Thinking
Compare this solution with Example 18.6, in which we used integration to
determine the moment of inertia of the same object about We obtained
the result much more easily with the parallel-axis theorem, but of course we
needed to know the moments of inertia of the bars about the axes through
their centers of mass.

LO.

IO = 1IO21 + 1IO22 = 1
3 ml2 + 4

3  ml2 = 5
3 ml2.

LO

1IO22 = I + d2m = 1
12 ml2 + C l2 + A 12 l B2 D  m = 4

3  ml2.

LO[l2 + A 12 l B2]1>2.
LO

1IO21 = I + d2m = 1
12 ml2 + A 12 l B2m = 1

3 ml2.

LO

1
2 l

LOI = 1
12 ml2.

LO

LOLO
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L

0.6 m

0.2 m

x

y

0.3 m
x
_

0.8 m

(a) The coordinate of the center of
mass of the object.

x

0.2 m

y

x

0.5 m

(b) Distance from L to the center of
mass of the bar.

y

x

0.3 m

0.5 m

(c) Distance from L to the center of
mass of the disk.

Example 18.9 Moments of Inertia of a Composite Object (! Related Problems 18.102, 18.103)

The object consists of a slender 3-kg bar welded to a thin, circular 2-kg disk.
Determine the moment of inertia of the object about the axis L through its cen-
ter of mass. (The axis L is perpendicular to the bar and disk.)

Strategy
We must locate the center of mass of the composite object and then apply the
parallel-axis theorem. We can obtain the moments of inertia of the bar and disk
from Appendix C.

Solution
Choose the Parts The parts are the bar and the disk. Introducing the co-
ordinate system in Fig. a, we have, for the x coordinate of the center of mass
of the composite object,

Determine the Moments of Inertia of the Parts The distance from the center
of mass of the bar to the center of mass of the composite object is 0.2 m (Fig. b).
Therefore, the moment of inertia of the bar about L is

The distance from the center of mass of the disk to the center of mass of the
composite object is 0.3 m (Fig. c). The moment of inertia of the disk about L is

Sum the Results The moment of inertia of the composite object about L is

Critical Thinking
This example demonstrates the most common procedure for determining
moments of inertia of objects in engineering applications. Objects usually con-
sist of assemblies of parts. The center of mass of each part and its moment of
inertia about the axis through its center of mass must be determined. (It may
be necessary to determine this information experimentally, or it is sometimes
supplied by manufacturers of subassemblies.) Then the center of mass of the
composite object is determined, and the parallel axis theorem is used to deter-
mine the moment of inertia of each part about the axis through the center of
mass of the composite object. Finally, the individual moments of inertia are
summed to obtain the moment of inertia of the composite object.

I = Ibar + Idisk = 0.430 kg-m2.

Idisk = 1
2 12 kg210.2 m22 + 12 kg210.3 m22 = 0.220 kg-m2.

Ibar = 1
12 13 kg210.6 m22 + 13 kg210.2 m22 = 0.210 kg-m2.

 =
10.3 m213 kg2 + 10.6 m + 0.2 m212 kg213 kg2 + 12 kg2 = 0.5 m.

 x =
xbar mbar + xdisk mdisk

mbar + mdisk
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y

z

x!

z

dz

x

(a) A differential element of the cylin-
der in the form of a disk.

y

z

R

l

x

Example 18.10 Moments of Inertia of a Homogeneous Cylinder (! Related Problems 18.95, 18.96)

The homogeneous cylinder has mass m, length l, and radius R. Determine the
moments of inertia of the cylinder about the x, y, and z axes.

Strategy
We can determine the moments of inertia of the cylinder by an interesting
application of the parallel-axis theorem. We use it to determine the moments of
inertia about the x, y, and z axes of an infinitesimal element of the cylinder con-
sisting of a disk of thickness dz. Then we integrate the results with respect to z
to obtain the moments of inertia of the cylinder.

Solution
Consider an element of the cylinder of thickness dz at a distance z from the cen-
ter of the cylinder (Fig. a). (You can imagine obtaining this element by “slicing”
the cylinder perpendicular to its axis.) The mass of the element is equal to the
product of the mass density and the volume of the element: 
We obtain the moments of inertia of the element by using the values for a thin
circular plate given in Appendix C. The moment of inertia about the z axis is

We integrate this result with respect to z from to l/2, thereby summing
the moments of inertia of the infinitesimal disk elements that make up the
cylinder. The result is the moment of inertia of the cylinder about the z axis:

We can write this result in terms of the mass of the cylinder, as

The moment of inertia of the disk element about the axis is

We use this result and the parallel-axis theorem to determine the moment of
inertia of the element about the x axis:

Integrating this expression with respect to z from to l/2, we obtain the
moment of inertia of the cylinder about the x axis:

Ix axis = L
l>2

-l>2 A 14 rpR4 + rpR2z2 B  dz = 1
4 rpR4l + 1

12 rpR2l3.

- l>2
dIx axis = dIx¿ axis + z2 dm = 1

4 1rpR2 dz2R2 + z21rpR2 dz2.

dIx¿ axis = 1
4 dm R2 = 1

4 1rpR2 dz2R2.

x¿

Iz axis = 1
2 mR2.

m = r1pR2l2,
Iz axis = L

l>2
-l>2  

1
2 rpR4 dz = 1

2 rpR4l.

- l>2
dIz axis = 1

2 dm R2 = 1
21rpR2 dz2R2.

dm = r1pR2 dz2.
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LO 2 m

1 m

Problem 18.72

l
O

l

Problem 18.73

x

y

1 m

2 m

50!

Problems 18.74/18.75

In terms of the mass of the cylinder,

Due to the symmetry of the cylinder,

Critical Thinking
When the cylinder is very long in comparison to its width the first
term in the equation for can be neglected, and we obtain the moment of
inertia of a slender bar about a perpendicular axis, Eq. (18.22). On the other
hand, when the radius of the cylinder is much greater than its length 
the second term in the equation for can be neglected, and we obtain the
moment of inertia for a thin circular disk about an axis parallel to the disk. This
indicates the sizes of the terms you neglect when you use the approximate
expressions for the moments of inertia of a “slender” bar and a “thin” disk.

Ix axis

1R W l2,Ix axis

1l W R2,
Iy axis = Ix axis.

Ix axis = 1
4 mR2 + 1

12 ml2.

Problems
! 18.72 The axis is perpendicular to both segments of the
L-shaped slender bar. The mass of the bar is 6 kg and the material
is homogeneous. Use integration to determine the moment of
inertia of the bar about (See Example 18.6.)LO.

LO

18.73 Two homogeneous slender bars, each of mass m and
length l, are welded together to form the T-shaped object. Use
integration to determine the moment of inertia of the object about
the axis through point O that is perpendicular to the bars.

18.74 The slender bar lies in the x–y plane. Its mass is 6 kg and
the material is homogeneous. Use integration to determine its
moment of inertia about the z axis.

18.75 The slender bar lies in the x–y plane. Its mass is 6 kg and
the material is homogeneous. Use integration to determine its
moment of inertia about the y axis.
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L
0.6 m

L1 L2

0.6 m

Problem 18.80

y!

x!

x

y

Problem 18.81

l
O l

Problems 18.82/18.83

Ro

Ri

x

y

Problem 18.77

y

x

y " 4 #    x2 ft
1
4

Problems 18.78/18.79

h

b

y

x

Problem 18.76

! 18.76 The homogeneous thin plate has mass and
dimensions and Determine the moments of
inertia of the plate about the x, y, and z axes. (See Example 18.7.)

h = 2 m.b = 1 m
m = 12 kg

18.77 The brass washer is of uniform thickness and mass m.

(a) Determine its moments of inertia about the x and z axes.

(b) Let and compare your results with the values given in
Appendix C for a thin circular plate.

Ri = 0,

18.78 The homogeneous thin plate is of uniform thickness and
weighs 20 lb. Determine its moment of inertia about the y axis.

18.79 Determine the moment of inertia of the 20-lb plate about
the x axis.

18.80 The mass of the object is 10 kg. Its moment of inertia
about is What is its moment of inertia about 
(The three axes lie in the same plane.)

L2?10 kg-m2.L1

! 18.81 An engineer gathering data for the design of a maneu-
vering unit determines that the astronaut’s center of mass is at

and that her moment of inertia about the
z axis is The astronaut’s mass is 81.6 kg. What is her
moment of inertia about the axis through her center of mass?z¿

105.6 kg-m2.
x = 1.01 m, y = 0.16 m

! 18.82 Two homogeneous slender bars, each of mass m and
length l, are welded together to form the T-shaped object. Use
the parallel-axis theorem to determine the moment of inertia
of the object about the axis through point O that is perpendicular
to the bars. (See Example 18.8.)

! 18.83 Use the parallel-axis theorem to determine the
moment of inertia of the T-shaped object about the axis through
the center of mass of the object that is perpendicular to the two
bars. (See Example 18.8.)
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x

x!

y
y!

0.6 m 2 m

0.8 m

Problems 18.84/18.85

4 in

y!

x!

x

y

8 in

Problems 18.86/18.87

x

y

Problem 18.88

x

y

0.4 m 0.4 m

0.3 m

0.3 m

Problems 18.89/18.90

400 mm

x

400 mm

y

1000 mm

200
mm

200
mm

Problems 18.91/18.92

18.84 The mass of the homogeneous slender bar is 30 kg. Deter-
mine its moment of inertia about the z axis.

18.85 The mass of the homogeneous slender bar is 30 kg. Deter-
mine the moment of inertia of the bar about the axis through its
center of mass.

z¿

18.86 The homogeneous slender bar weighs 5 lb. Determine its
moment of inertia about the z axis.

18.87 Determine the moment of inertia of the 5-lb bar about the
axis through its center of mass.z¿

18.88 The rocket is used for atmospheric research. Its weight
and its moment of inertia about the z axis through its center of
mass (including its fuel) are 10,000 lb and respec-
tively. The rocket’s fuel weighs 6000 lb, its center of mass is lo-
cated at and the moment of inertia of
the fuel about the axis through the fuel’s center of mass parallel to
the z axis is When the fuel is exhausted, what is the
rocket’s moment of inertia about the axis through its new center of
mass parallel to the z axis?

2200 slug-ft2.

x = -3 ft, y = 0, z = 0,

10,200 slug-ft2,

18.89 The mass of the homogeneous thin plate is 36 kg. Deter-
mine the moment of inertia of the plate about the x axis.

18.90 Determine the moment of inertia of the 36-kg plate about
the z axis.

18.91 The mass of the homogeneous thin plate is 20 kg. Deter-
mine its moment of inertia about the x axis.

18.92 The mass of the homogeneous thin plate is 20 kg. Deter-
mine its moment of inertia about the y axis.
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x

z

60 mm

180 mm

180 mm

y

Problems 18.97/18.98

x

y

z

a

b

c

Problem 18.99

x

y

z

R

h

Problems 18.95/18.96

O

30 mm10 mm

30
mm

80 mm

130 mm

Problem 18.94

y

x

6 ft

3 ft

2 ft

3 ft

Problem 18.93

18.93 The thermal radiator (used to eliminate excess heat from a
satellite) can be modeled as a homogeneous thin rectangular plate.
The mass of the radiator is 5 slugs. Determine its moments of in-
ertia about the x, y, and z axes.

18.94 The mass of the homogeneous thin plate is 2 kg. Deter-
mine the moment of inertia of the plate about the axis through
point O that is perpendicular to the plate.

! 18.95 The homogeneous cone is of mass m. Determine its
moment of inertia about the z axis, and compare your result with
the value given in Appendix C. (See Example 18.10.)

! 18.96 Determine the moments of inertia of the homogeneous
cone of mass m about the x and y axes, and compare your results
with the values given in Appendix C. (See Example 18.10.)

18.97 The homogeneous object has the shape of a truncated
cone and consists of bronze with mass density 
Determine the moment of inertia of the object about the z axis.

18.98 Determine the moment of inertia of the object described 
in Problem 18.97 about the x axis.

r = 8200 kg>m3.

18.99 The homogeneous rectangular parallelepiped is of mass m.
Determine its moments of inertia about the x, y, and z axes and
compare your results with the values given in Appendix C.
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y

x

z

4R

R

Problems 18.100/18.101

200 mm

y

x, x!

z

Al

Fe
600 mm

600 mm

y!

z!

Problems 18.102/18.103

120 mm
40

mm

20 mm

40 mm

x z

yy

Problems 18.104/18.105

10 mm 30 mm

100 mm

LO

O

20 mm

Problems 18.106/18.107

4 in

4 in 8 in

2 in 2 in
x

y y

z

4 in

4 in

4 in

Problems 18.108/18.109

18.100 The sphere-capped cone consists of material with density
The radius Determine its moment of

inertia about the x axis.

18.101 Determine the moment of inertia of the sphere-capped
cone described in Problem 18.100 about the y axis.

R = 80 mm.7800 kg/m3.

! 18.102 The circular cylinder is made of aluminum (Al) with
density and iron (Fe) with density
Determine its moment of inertia about the axis. (See Exam-
ple 18.9.)

! 18.103 Determine the moment of inertia of the composite
cylinder described in Problem 18.102 about the axis. (See
Example 18.9.)

y¿

x¿
7860 kg/m3.2700 kg/m3

18.104 The homogeneous machine part is made of aluminum
alloy with mass density Determine the moment
of inertia of the part about the z axis.

18.105 Determine the moment of inertia of the machine part
described in Problem 18.104 about the x axis.

r = 2800 kg/m3.

18.106 The object shown consists of steel of density
Determine its moment of inertia about 

the axis through point O.

18.107 Determine the moment of inertia of the object described
in Problem 18.106 about the axis through the center of mass of the
object parallel to LO.

LO

r = 7800 kg/m3.

18.108 The thick plate consists of steel of density
Determine the moment of inertia of the plate about the z axis.

18.109 Determine the moment of inertia of the object described
in Problem 18.108 about the x axis.

r = 15 slug/ft3.
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T

6 in

1 ft 7 ft

Problem 18.110

100 mm

100 mm

200 mm 200 mm
A

B C

Problem 18.111

Review Problems
18.110 The airplane is at the beginning of its takeoff run. Its
weight is 1000 lb, and the initial thrust T exerted by its engine is
300 lb. Assume that the thrust is horizontal, and neglect the tan-
gential forces exerted on the wheels.

(a) If the acceleration of the airplane remains constant, how long
will it take to reach its takeoff speed of 80 mi/h?

(b) Determine the normal force exerted on the forward landing
gear at the beginning of the takeoff run.

18.111 The pulleys can turn freely on their pin supports. Their
moments of inertia are and

They are initially stationary, and at ,
a constant couple is applied to pulley A. What is the
angular velocity of pulley C and how many revolutions has it
turned at t = 2 s?

M = 2 N-m
t = 0IC = 0.032 kg-m2.

IA = 0.002 kg-m2, IB = 0.036 kg-m2,

330 mm

15!

Problem 18.114

18.112 A 2-kg box is subjected to a 40-N horizontal force. 
Neglect friction.

(a) If the box remains on the floor, what is its acceleration?

(b) Determine the range of values of c for which the box will 
remain on the floor when the force is applied.

18.113 The slender 2-slug bar AB is 3 ft long. It is pinned to the
cart at A and leans against it at B.

(a) If the acceleration of the cart is what normal
force is exerted on the bar by the cart at B?

(b) What is the largest acceleration a for which the bar will 
remain in contact with the surface at B?

a = 20 ft/s2,

18.114 To determine a 4.5-kg tire’s moment of inertia, an engi-
neer lets the tire roll down an inclined surface. If it takes the tire
3.5 s to start from rest and roll 3 m down the surface, what is the
tire’s moment of inertia about its center of mass?

40 N

BA

100 mm

c

100 mm

Problem 18.112

A

B

a

60!

Problem 18.113
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12 in

8 in

8 lb

16 lb

A

B

Problem 18.115

18.115 Pulley A weighs 4 lb, and
If the system is released from rest, what dis-

tance does the 16-lb weight fall in 0.5 s?
IB = 0.014 slug-ft2.

IA = 0.060 slug-ft2,

18.116 Model the excavator’s arm ABC as a single rigid body.
Its mass is 1200 kg, and the moment of inertia about its center of
mass is The angular velocity of the arm is zero
and its angular acceleration is counterclockwise. What
force does the vertical hydraulic cylinder exert on the arm at B?

18.117 Model the excavator’s arm ABC as a single rigid body. Its
mass is 1200 kg, and the moment of inertia about its center of mass
is The angular velocity of the arm is 2 rad/s coun-
terclockwise and its angular acceleration is counterclock-
wise. What are the components of the force exerted on the arm at A?

1 rad/s2
I = 3600 kg-m2.

1 rad/s2
I = 3600 kg-m2.

y

xO

Problem 18.118

x

y

B

C

3.0 m
2.4 m

A

1.7 m 1.7 m

Problems 18.116/18.117

18.118 To decrease the angle of elevation of the stationary 200-kg
ladder, the gears that raised it are disengaged, and a fraction of a
second later a second set of gears that lower it are engaged. At the
instant the gears that raised the ladder are disengaged, what is the
ladder’s angular acceleration and what are the components of force
exerted on the ladder by its support at O? The moment of inertia of
the ladder about O is and the coordinates of
its center of mass at the instant the gears are disengaged are
x = 3 m, y = 4 m.

IO = 14,000 kg-m2,

45!

40 in

8 in

Problem 18.119

18.119 The slender bars each weigh 4 lb and are 10 in long. The
homogeneous plate weighs 10 lb. If the system is released from
rest in the position shown, what is the angular acceleration of the
bars at that instant?
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410 Chapter 18 Planar Dynamics of Rigid Bodies

18.121 Each of the go-cart’s front wheels weighs 5 lb and has a
moment of inertia of The two rear wheels and rear
axle form a single rigid body weighing 40 lb and having a mo-
ment of inertia of The total weight of the go-cart and
driver is 240 lb. (The location of the center of mass of the go-cart
and driver, not including the front wheels or the rear wheels and
rear axle, is shown.) If the engine exerts a torque of 12 ft-lb on the
rear axle, what is the go-cart’s acceleration?

0.1 slug-ft2.

0.01 slug-ft2.

15 in

16 in
A B

60 in

6 in 4 in

Problem 18.121

x

D
C

y

B30!
20!

A

250 mm

300 mm

250 mm

Problem 18.123

18.120 A slender bar of mass m is released from rest in the posi-
tion shown. The static and kinetic coefficients of friction at the
floor and wall have the same value If the bar slips, what is its
angular acceleration at the instant of release?

m.

l

u

Problem 18.120

18.122 Bar AB rotates with a constant angular velocity of
10 rad/s in the counterclockwise direction. The masses of the
slender bars BC and CDE are 2 kg and 3.6 kg, respectively. The 
y axis points upward. Determine the components of the forces
exerted on bar BC by the pins at B and C at the instant shown.

A

B

C
400 mm

10 rad/s D
x

y

700 mm 700 mm400
mm 

E

Problem 18.122

18.123 At the instant shown, the arms of the robotic mani-
pulator have constant counterclockwise angular velocities

and The mass
of arm CD is 10 kg, and its center of mass is at its midpoint. At
this instant, what force and couple are exerted on arm CD at C?

vCD = 4 rad/s.vAB = -0.5 rad/s, vBC = 2 rad/s,
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A

B45!
30!

O

Problems 18.124/18.125

240 mm

720 mm

340
mm

140
    mm

Planet gear

Connecting
rod

Sun gear

Hub gear

Ring gear

Problem 18.126

18.124 Each bar is 1 m in length and has a mass of 4 kg. The
inclined surface is smooth. If the system is released from rest in
the position shown, what are the angular accelerations of the bars
at that instant?

18.125 Each bar is 1 m in length and has a mass of 4 kg. The
inclined surface is smooth. If the system is released from rest in
the position shown, what is the magnitude of the force exerted 
on bar OA by the support at O at that instant?

18.126* The fixed ring gear lies in the horizontal plane. The
hub and planet gears are bonded together. The mass and moment
of inertia of the combined hub and planet gears are

and The moment of inertia of
the sun gear is The mass of the connecting rod is
5 kg, and it can be modeled as a slender bar. If a 1 kN-m counter-
clockwise couple is applied to the sun gear, what is the resulting
angular acceleration of the bonded hub and planet gears?

IS = 60 kg-m2.
IHP = 130 kg-m2.mHP = 130 kg

18.128* If the crank AB described in Problem 18.127 has a
counterclockwise angular velocity of 2000 rpm at the instant
shown, what is the piston’s acceleration due to the couple M and
the force exerted by the fuel–air mixture?

40!

50 m
m

A

M

B

C

125 mm

Problems 18.127/18.128

Design Project

Investigate the effects of the coefficients of friction and the di-
mensions b, c, and h on the bicycle rider’s ability to accelerate
and decelerate. Consider a range of coefficients of friction that
you think might encompass dry, wet, and icy road surfaces. In
studying deceleration, consider the cases in which the brakes
act on the front wheel only, the rear wheel only, and both
wheels. Pay particular attention to the constraint that the bicy-
cle’s front and rear wheels should not leave the ground. Write a
brief report presenting your analyses and making observations
about their implications for bicycle design. Notice that the
rider can alter the dimensions h, b, and c to some extent by
changing the position of his upper body. Comment on how the
rider can thereby affect the bicycle’s performance with respect
to acceleration and deceleration.

h

b c

18.127* The system is stationary at the instant shown. The net
force exerted on the piston by the exploding fuel–air mixture and
friction is 5 kN to the left. A clockwise couple acts
on the crank AB. The moment of inertia of the crank about A is

The mass of the connecting rod BC is 0.36 kg, and
its center of mass is 40 mm from B on the line from B to C. The
connecting rod’s moment of inertia about its center of mass is

The mass of the piston is 4.6 kg. What is the pis-
ton’s acceleration? (Neglect the gravitational forces on the crank
and connecting rod.)

0.0004 kg-m2.

0.0003 kg-m2.

M = 200 N-m
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! The wind does work on the rotor of the wind turbine, causing it to rotate
and power an electric generator. 

C H A P T E R

19

In Chapters 15 and 16 we demonstrated that energy and 
momentum methods are useful for solving particular types of
problems in dynamics. If the forces on an object are known as
functions of position, the principle of work and energy can be
used to determine the change in the magnitude of the velocity 
of the object as it moves between two positions. If the forces 
are known as functions of time, the principle of impulse and 
momentum can be used to determine the change in the object’s
velocity during an interval of time. We now extend these 
methods to situations in which both the translational and 
rotational motions of objects must be considered.

Energy and Momentum 
in Rigid-Body Dynamics

L!M du
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414 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

19.1 Work and Energy

BACKGROUND
We will show that the work done on a rigid body by external forces and couples
as it moves between two positions is equal to the change in its kinetic energy.
To obtain this result, we adopt the same approach used in Chapter 18 to obtain
the equations of motion for a rigid body. We derive the principle of work and
energy for a system of particles and use it to deduce the principle for a rigid body.

Let be the mass of the ith particle of a system of N particles. Let be
the position of the ith particle relative to a point O that is fixed with respect to
an inertial reference frame (Fig. 19.1). We denote the sum of the kinetic energies
of the particles by

(19.1)

where is the velocity of the ith particle. Our objective is to relate
the work done on the system of particles to the change in T. We begin with
Newton’s second law for the ith particle,

where is the force exerted on the ith particle by the jth particle and is the
external force on the ith particle. We take the dot product of this equation with

and sum from to N:

(19.2)

We can express the term on the right side of this equation as the rate of change
of the total kinetic energy:

Multiplying Eq. (19.2) by dt yields

We integrate this equation, obtaining

(19.3)

The terms on the left side are the work done on the system by internal and ex-
ternal forces as the particles move from positions to positions We see
that the work done by internal and external forces as a system of particles
moves between two positions equals the change in the total kinetic energy of
the system.

If the particles represent a rigid body, and we assume that the internal forces
between each pair of particles are directed along the straight line between them,
the work done by internal forces is zero. To show that this is true, we consider
two particles of a rigid body designated 1 and 2 (Fig. 19.2). The sum of the

1ri22.1ri21
a

i
a

j L
1ri221ri21 fij

# dri + a
i L

1ri221ri21 f i
E # dri = T2 - T1.

a
i
a

j
fij

# dri + a
i

f i
E # dri = dT.

a
i

vi
# d
dt

 1mi vi2 = d
dtai  

1
2 mi vi

# vi = dT
dt

.

a
i
a

j
fij

# vi + a
i

f i
E # vi = a

i
vi

# d
dt

 1mi vi2.
i = 1vi

f i
Efij

a
j

fij + f i
E = d

dt
 1mi vi2,

vi = dri>dt

T = a
i

 
1
2 mi vi

# vi,

rimi

O

mi

ri

Figure 19.1
A system of particles. The vector is the
position vector of the ith particle.

ri

r2
r1

m1
m2

f12
f21

O

Figure 19.2
Particles 1 and 2 and the forces they exert on
each other.
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19.1 Work and Energy 415

forces the two particles exert on each other is zero so the rate
at which the forces do work (the power) is

We can show that is perpendicular to and therefore the rate at which
work is done by the internal forces between these two particles is zero. Because
the particles are points of a rigid body, we can express their relative velocity in
terms of the rigid body’s angular velocity as

(19.4)

This equation shows that the relative velocity is perpendicular to
which is the position vector from particle 1 to particle 2. Since the

force is parallel to it is perpendicular to We can repeat
this argument for each pair of particles of the rigid body, so the total rate at
which work is done by internal forces is zero. This implies that the work done
by internal forces as a rigid body moves between two positions is zero. Notice
that if an object is not rigid, work can be done by internal forces.

Therefore, in the case of a rigid body, the work done by internal forces in
Eq. (19.3) vanishes. Denoting the work done by external forces by we ob-
tain the principle of work and energy for a rigid body: The work done by external
forces and couples as a rigid body moves between two positions equals the
change in the total kinetic energy of the body:

(19.5)

We can also state this principle for a system of rigid bodies: The work done by
external and internal forces and couples as a system of rigid bodies moves be-
tween two positions equals the change in the total kinetic energy of the system.

Kinetic Energy
The kinetic energy of a rigid body can be expressed in terms of the velocity of
the center of mass of the body and its angular velocity. We consider first general
planar motion and then rotation about a fixed axis.

General Planar Motion Let us model a rigid body as a system of parti-
cles, and let be the position vector of the ith particle relative to the body’s
center of mass (Fig. 19.3). The position of the center of mass is

where m is the mass of the rigid body. The position of the ith particle relative
to O is related to its position relative to the center of mass by

(19.6)

and the vectors satisfy the relation

(19.7)

The kinetic energy of the rigid body is the sum of the kinetic energies of its
particles, given by Eq. (19.1):

(19.8)T = a
i

 
1
2 mi vi 

#
 vi.

a
i

mi Ri = 0.

Ri

ri = r + Ri,

r =
a

i
mi ri

m
,

Ri

U12 = T2 - T1.

U12,

v2 - v1.r2 - r1,f21

r2 - r1,
v2 - v1

v2 - v1 = ! * 1r2 - r12. !

v2 - v1,f21

f12
# v1 + f21

# v2 = f21
# 1v2 - v12.

1f12 + f21 = 02,

r
ri

O

mi

Ri

Figure 19.3
Representing a rigid body as a system 
of particles.
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416 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

By taking the derivative of Eq. (19.6) with respect to time, we obtain

where v is the velocity of the center of mass. Substituting this expression into
Eq. (19.8) and using Eq. (19.7), we obtain the kinetic energy of the rigid body
in the form

(19.9)

where v is the magnitude of the velocity of the center of mass.
Let L be the axis through the center of mass that is perpendicular to the

plane of the motion (Fig. 19.4a). In terms of the coordinate system shown, we
can express the angular velocity vector as The velocity of the ith par-
ticle relative to the center of mass is so we can write 
Eq. (19.9) as

(19.10)

The magnitude of the vector is the perpendicular distance from L to
the ith particle (Fig. 19.4b), so the term in brackets in Eq. (19.10) is the moment
of inertia of the body about L:

Thus, we obtain the kinetic energy of a rigid body in general planar motion in
the form

(19.11)

where m is the mass of the rigid body, v is the magnitude of the velocity of the
center of mass, I is the moment of inertia about the axis L through the center of
mass, and is the angular velocity. We see that the kinetic energy consists of
two terms, the translational kinetic energy due to the velocity of the center of
mass and the rotational kinetic energy due to the angular velocity (Fig. 19.5).

Fixed-Axis Rotation An object rotating about a fixed axis is in general
planar motion, and its kinetic energy is given by Eq. (19.11). But in this case

v

T = 1
2 mv2 + 1

2 Iv2,

a
i

mi1k * Ri2 # 1k * Ri2 = a
i

mi ƒ k * Ri ƒ 2 = a
i

mi r i
2 = I.

rik * Ri

T = 1
2 mv2 + 1

2 ca
i

mi1k * Ri2 # 1k * Ri2 dv2.

dRi>dt = vk * Ri,
! = vk.

T = 1
2 mv2 + a

i
 
1
2 mi 

dRi

dt
 #  

dRi

dt
,
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dRi

dt
,

(a)

mi
y

xz

Ri

L

r

O

Plane of
the motion

(b)

mi
y

xz

Ri

k

Lri ! !Ri! sin b

!
! !k " Ri!

b

Figure 19.4
(a) A coordinate system with the z axis

aligned with L.
(b) The magnitude of is the 

perpendicular distance from L to mi.
k * Ri

v
v

T ! mv2 " Iv21
2

1
2

Figure 19.5
Kinetic energy in general planar motion.
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19.1 Work and Energy 417

there is another expression for the kinetic energy that is often convenient.
Suppose that a rigid body rotates with angular velocity about a fixed axis O.
In terms of the distance d from O to the center of mass of the body, the velocity
of the center of mass is (Fig. 19.6a). From Eq. (19.11), the kinetic
energy is

According to the parallel-axis theorem, the moment of inertia about O is
so we obtain the kinetic energy of a rigid body rotating about

a fixed axis O in the form (Fig. 19.6b)

(19.12)

Work and Potential Energy
The procedures for determining the work done by different types of forces and
the expressions for the potential energies of forces discussed in Chapter 15
provide the essential tools for applying the principle of work and energy to a rigid
body. The work done on a rigid body by a force F is given by

(19.13)

where is the position of the point of application of F (Fig. 19.7). If the point
of application is stationary, or if its direction of motion is perpendicular to F,
no work is done.

A force F is conservative if a potential energy V exists such that

(19.14)

In terms of its potential energy, the work done by a conservative force F is

where and are the values of V at and 
If a rigid body is subjected to a couple M (Fig. 19.8a), what work is done

as the body moves between two positions? We can evaluate the work by repre-
senting the couple by forces (Fig. 19.8b) and determining the work done by the

1rp22.1rp21V2V1

U12 = L
1rp221rp21 F # drp = L

V2

V1

-dV = -1V2 - V12,
F #  drp = -dV.

rp

U12 = L
1rp221rp21 F # drp,

T = 1
2 IOv

2.

IO = I + d2m,

T = 1
2 m1vd22 + 1

2 Iv2 = 1
21I + d2m2v2.

v = vd

v v ! vd

d
O

(a)

v

O

(b)

T ! IOv2
v

1
2

Figure 19.6
(a) Velocity of the center of mass.
(b) Kinetic energy of a rigid body rotating

about a fixed axis.

F

F

(rp)2
(rp)1

O

Figure 19.7
The work done by a force on a rigid body 
is determined by the path of the point of 
application of the force.
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418 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

forces. If the rigid body rotates through an angle in the direction of the cou-
ple (Fig. 19.8c), the work done by each force is so the total work is

Integrating this expression, we obtain the work done by a
couple M as the rigid body rotates from to in the direction of M:

(19.15)

If M is constant, the work is simply the product of the couple and the angular
displacement:

(constant couple)

A couple M is conservative if a potential energy V exists such that

(19.16)

We can express the work done by a conservative couple in terms of its potential
energy:

For example, in Fig. 19.9, a torsional spring exerts a couple on a bar that is
proportional to the bar’s angle of rotation: From the relation

we see that the potential energy must satisfy the equation

Integrating this equation, we find that the potential energy of the torsional
spring is

(19.17)

If all the forces and couples that do work on a system of rigid bodies are
conservative, we can express the total work done as the body moves between
two positions 1 and 2 in terms of the total potential energy of the forces and
couples:

Combining this relation with the principle of work and energy, Eq. (19.5), we
conclude that the sum of the kinetic energy and the total potential energy is
constant—energy is conserved:

(19.18)

If a system is subjected to both conservative and nonconservative forces, the
principle of work and energy can be written in the form

(19.19)

The term includes the work done by all nonconservative forces acting on
the system as it moves from position 1 to position 2. If a force is conservative,
there is a choice. The work it does can be calculated and included in or the
force’s potential energy can be included in V.

U12,

U12

T1 + V1 + U12 = T2 + V2

T1 + V1 = T2 + V2

U12 = V1 - V2.

V = 1
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V2
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-dV = -1V2 - V12.
M du = -dV.

U12 = M1u2 - u12
U12 = L
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A 12 D du BF,
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(c)

(b)

(a)

F

F
du

Ddu

D

F

F

M

Ddu

1
2

1
2

Figure 19.8
(a) A rigid body subjected to a couple.
(b) An equivalent couple consisting of 

two forces: 
(c) Determining the work done by the

forces.

DF = M.
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Power
The work done on a rigid body by a force F during an infinitesimal displace-
ment of its point of application is

We obtain the power P transmitted to the rigid body—the rate at which work is
done on it—by dividing this expression by the interval of time dt during which
the displacement takes place. We obtain

(19.20)

where is the velocity of the point of application of F.
Similarly, the work done on a rigid body in planar motion by a couple M

during an infinitesimal rotation in the direction of M is

Dividing this expression by dt, we find that the power transmitted to the rigid
body is the product of the couple and the angular velocity:

(19.21)

The total work done on a rigid body during an interval of time equals the
change in kinetic energy of the body, so the total power transmitted equals the
rate of change of the body’s kinetic energy:

The average with respect to time of the power during an interval of time from
to is

This expression shows that we can determine the average power transferred to
or from a rigid body during an interval of time by dividing the change in kinetic
energy of the body, or the total work done, by the interval of time:

(19.22)

RESULTS

Principle of Work and Energy

Pav =
T2 - T1

t2 - t1
=

U12

t2 - t1
.

Pav = 1
t2 - t1L

t2

t1

P dt = 1
t2 - t1L

T2

T1

 dT =
T2 - T1

t2 - t1
.

t2t1

P = dT
dt

.

P = Mv.

M du.

du

vp

P = F #  vp,

F #  drp.

drp

ku

k

(a)

(b)

u

Figure 19.9
(a) A linear torsional spring connected to a

bar.
(b) The spring exerts a couple of magnitude

in the direction opposite that of the
bar’s rotation.
ku

Let T be the total kinetic energy of a system of rigid bodies.
The principle of work and energy states that the work done
by external and internal forces and couples as the system
moves between two positions equals the change in the total
kinetic energy of the system.

U12 ! T2 " T1.     (19.5)
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420 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

The kinetic energy of a rigid body in general 
planar motion is the sum of the translational 
kinetic energy and the rotational kinetic energy.

v
v

T ! mv2 " Iv2.          (19.11)1
2

1
2

Kinetic energy of a rigid body undergoing 
planar motion about a fixed axis O. IO is the 
moment of interia of the rigid body about O.

O

v

T ! IOv
2.          (19.12)1

2

Kinetic Energy

Work done on a rigid body by a force F as the
point of application of the force moves from
position (rp)1 to position (rp)2. A force F is
conservative if a potential energy V exists such
that
   F ! drp ! #dV.                                   (19.14)

F

F

(rp)2
(rp)1

O

U12 !L F ! drp.          (19.13)
(rp)1

(rp)2

Work Done by a Force
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19.1 Work and Energy 421

Work done on a rigid body by a couple M as the rigid 
body rotates from angular position (in radians) u1 to 
angular position u2. A couple M is conservative if a 
potential energy V exists such that

   M du ! "dV.                                                 (19.16)

U12 !L M du.                  (19.15)

If M is constant,

   U12 ! M (u2 " u1).

u1

u2

M

Work Done by a Couple

Conservation of Energy

If all of the forces that do work on a system of rigid 
bodies are conservative, the sum of the total kinetic 
energy and the total potential energy is the same at 
any two positions.

T1 # V1 ! T2 # V2.       (19.18)

When both conservative and nonconservative forces
do work on a system of rigid bodies, the principle
of work and energy can be expressed in terms of the
potential energy V of the conservative forces and the
work U12 done by nonconservative forces.

T1 # V1 # U12 ! T2 # V2.     (19.19)

Applying energy methods
to a rigid body or system
of rigid bodies typically
involves three steps.

1.  Identify the forces and couples that do work. Use free-body
     diagrams to determine which external forces and couples do
     work on the system.

2.   Apply the principle of work and energy or conservation of 
     energy. Either equate the total work done during a change
     in position to the change in the kinetic energy, or equate the
     sum of the kinetic and potential energies at two positions.

3.  Determine kinematic relationships. To complete the
     solution, it will often be necessary to obtain relations
     between velocities of points of rigid bodies and their
     angular velocities.
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422 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

The power transmitted to a rigid body by a couple is 
the product of the couple and the angular velocity of 
the rigid body.

P ! Mv.                           (19.21)

The average power transferred to a rigid body during
an interval of time is equal to the change in kinetic
energy of the body, or the total work done during that
time, divided by the interval of time.

(19.22).Pav !
T2 " T1

t2 " t1

U12

t2 " t1
!

The power transmitted to a rigid body by a force. 
The term vp is the velocity of the point of application 
of the force.

P ! F ! vp.                         (19.20)

Active Example 19.1 Applying Work and Energy to a Rolling Disk (! Related Problems 19.19, 19.20)

A disk of mass m and moment of inertia is released from rest on an
inclined surface. Assuming that the disk rolls without slipping, what is the mag-
nitude of the velocity of its center when it has moved a distance b?

Strategy
We will equate the work done as the disk rolls a distance b to the change in its
kinetic energy. To determine the velocity of the center of the disk, we will need
the relationship between the velocity of the center and the angular velocity of
the disk.

Solution

Identify the Forces and Couples that Do Work

I = 1
2mR2

R

b
b

Free-body diagram of the disk. N and f are the normal and
friction forces exerted by the inclined surface. The disk’s
weight does work as the disk rolls, but the normal and
friction forces do not. To explain why, we can write the
work done by a force F as

where vp is the velocity of the point of application of F.
Because the velocity of the point where the normal and
friction forces act is zero, they do no work.

N

f

mg sin b 

mg cos b 
drp

dtL F ! drp ! 
(rp)1

(rp)2

L F ! dt ! 
t1

t2

L F ! vp dt,
t1

t2

Power
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Practice Problem Suppose that the disk is released from rest and is subjected to a
constant clockwise couple M as it rolls down the inclined surface. What is the magni-
tude of the velocity of the center of the disk when it has moved a distance b?

Answer: .v = A4
3
agb sin b + Mb

mR b

The work done by the disk’s weight is the
product of the component of the weight in
the direction of motion and the distance b.
Notice that this result is also obtained by
multiplying the weight of the disk mg by the 
decrease in height of the center of mass.

U12 ! (mg sin b)b.

Equate the work to the change in the kinetic
energy of the disk. The initial kinetic energy
is zero. Let v be the velocity of the center of
the disk and v its angular velocity when the
center has moved a distance b.

mgb sin b ! mv2 " Iv2 # 0.     (1)1
2

1
2

Solving Eqs. (1) and (2) for v and v and 

substituting I ! mR2 yields the velocity.
4gb sin b

3
v ! .1

2

Relationship between the velocity of the 
center of the disk and the angular velocity in 
rolling motion.

v ! Rv.     (2)

R v

v

Determine Kinematic Relationships

Apply Work and Energy
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424 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Example 19.2 Applying Work and Energy to a Motorcycle (! Related Problems 19.27, 19.28)

Each wheel of the motorcycle has mass radius and
moment of inertia The combined mass of the rider and the
motorcycle, not including the wheels, is The motorcycle starts
from rest, and its engine exerts a constant couple on the rear
wheel. Assume that the wheels do not slip. What horizontal distance b must the
motorcycle travel to reach a velocity of 25 m/s?

M = 140 N-m
mC = 142 kg.

I = 0.8 kg-m2.
R = 330 mm,mW = 9 kg,

RR

mWg

By

Bx

mWg

Ay

Ax

mCg

(a) Free-body diagram of the system.

Strategy
We can apply the principle of work and energy to the system consisting of the
rider and the motorcycle, including its wheels, to determine the distance b.

Solution
Determining the distance b requires three steps.
Identify the Forces and Couples that Do Work We draw the free-body
diagram of the system in Fig. a. The weights do no work because the motion is
horizontal, and the forces exerted on the wheels by the road do no work because
the velocity of their point of application is zero. (See Active Example 19.1.)
Thus, no work is done by external forces and couples! However, work is done
by the couple M exerted on the rear wheel by the engine (Fig. b). Although this
is an internal couple for the system we are considering—the wheel exerts an
opposite couple on the body of the motorcycle—net work is done because the
wheel rotates whereas the body does not.
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19.1 Work and Energy 425

Apply Work and Energy If the motorcycle moves a horizontal distance b, the
wheels turn through an angle b/R rad, and the work done by the constant couple
M is

Let v be the motorcycle’s velocity and the angular velocity of the wheels
when the motorcycle has moved a distance b. The work equals the change in the
total kinetic energy:

(1)

Determine Kinematic Relationship The angular velocity of the rolling
wheels is related to the velocity v by Substituting this relation into
Eq. (1) and solving for b, we obtain

Critical Thinking
Although we drew separate free-body diagrams of the motorcycle and its rear
wheel to clarify the work done by the couple exerted by the engine, notice that
we treated the motorcycle, including its wheels, as a single system in applying
the principle of work and energy. By doing so, we did not need to consider the
work done by the internal forces between the motorcycle’s body and its
wheels. When applying the principle of work and energy to a system of rigid
bodies, you will usually find it simplest to express the principle for the system
as a whole. This is in contrast to determining the motion of a system of rigid
bodies by using the equations of motion, which usually requires that you
draw free-body diagrams of each rigid body and apply the equations to them
individually.

 = 129 m.

 = c 1
2
1142 kg2 + 19 kg2 +

0.8 kg-m210.33 m22 d  10.33 m2 125 m/s22
140 N-m

 b = a 1
2

 mC + mW + I

R2 b  
Rv2

M

v = v>R.

Ma b
R
b = 1

2
 mC v2 + 2a 1

2
 mW v2 + 1

2
 Iv2b - 0.

v

U12 = M1u2 - u12 = Ma b
R
b .

mWg

Ay

Ax

M
Cy

Cx

mWg

By

Bx

Cy

Cx

mCgM

(b) Isolating the rear wheel.

BEDFMC19_0136129161.QXD  6/20/07  6:50 PM  Page 425



426 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Example 19.3 Applying Conservation of Energy to a Linkage (! Related Problem 19.40)

B

A

C

u

C

B

mCg

N

mg

mg

ku
Ax

Ay

Datum

u

u

(a) Free-body diagram of the system.

Vbar AB + Vbar BC + Vcollar = mg112 l cos u2 + mg132 l cos u2 + mcg12 l cos u2.
The potential energy of the torsional spring is given by Eq. (19.17):

We now have all the ingredients to apply conservation of energy. We equate the
sum of the kinetic and potential energies at the position to the sum of the
kinetic and potential energies at an arbitrary value of 

To determine from this equation, we must express the velocities and
in terms of v.vBC

vG, vC,v

 + 2mgl cos u + 2mC gl cos u + 1
2 ku2.

 0 + 2mgl + 2mC gl = 1
6 ml2v2 + 1

2 mv2
G + 1

24 ml2v2
BC + 1

2 mC vC
2

 T1 + V1 = T2 + V2:

u:
u = 0

Vspring = 1
2 ku2.

The slender bars AB and BC of the linkage have mass m and length l, and the
collar C has mass A torsional spring at A exerts a clockwise couple on
bar AB. The system is released from rest in the position and allowed to
fall. Neglecting friction, determine the angular velocity of bar AB
as a function of 

Strategy
The objective in this example—determining an angular velocity as a function
of the position of the system—encourages an energy approach. We must first
identify forces and couples that do work on the system. If they are conservative,
we can apply conservation of energy to determine as a function of If non-
conservative forces do work on the system, we can apply the principle of work
and energy.

Solution
Identify the Forces and Couples that Do Work We draw the free-body di-
agram of the system in Fig. a. The forces and couples that do work—the weights
of the bars and collar and the couple exerted by the torsional spring—are con-
servative. We can use conservation of energy and the kinematic relationships be-
tween the angular velocities of the bars and the velocity of the collar to determine

as a function of 
Apply Conservation of Energy We denote the center of mass of bar BC by
G and the angular velocity of bar BC by (Fig. b). The moment of inertia of
each bar about its center of mass is Since bar AB rotates about the
fixed point A, we can write its kinetic energy as

The kinetic energy of bar BC is

The kinetic energy of the collar C is

Using the datum in Fig. (a), we obtain the potential energies of the weights:

Tcollar = 1
2 mC v2

C.

Tbar BC = 1
2 mv2

G + 1
2 Iv 2

BC = 1
2 mv2

G + 1
24 ml2v2

BC.

Tbar AB = 1
2 IAv

2 = 1
2 CI + A 12 l B2m Dv2 = 1

6 ml2v2.

I = 1
12 ml2.
vBC

u.v

u.v

u.
v = du>dt
u = 0

kumC.
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Determine Kinematic Relationships We can determine the velocity of
point B in terms of and then express the velocity of point C in terms of the
velocity of point B and the angular velocity 

The velocity of B is

The velocity of C, expressed in terms of the velocity of B, is

Equating i and j components, we obtain

(The minus signs indicate that the directions of the velocities are opposite to the
directions we assumed in Fig. b.) Now that we know the angular velocity of
bar BC in terms of we can determine the velocity of its center of mass in
terms of by expressing it in terms of 

Substituting these expressions for and into our equation of conser-
vation of energy and solving for we obtain

Critical Thinking
Newton’s second law and the equation of angular motion for a rigid body can
be applied to this example instead of conservation of energy. How can you
decide what approach to use? The energy methods we have described are gen-
erally useful only when you can easily determine the work done by forces and
couples acting on a system or their associated potential energies. When that is
the case, an energy approach is often preferable. To apply Newton’s second
law and the equation of angular motion to this example, it would be necessary
to draw individual free-body diagrams of the two bars and the collar C, there-
by introducing into the formulation the forces exerted on the bars and collar at
the pins connecting them. In contrast, we were able to apply conservation of
energy to the system as a whole, greatly simplifying the solution.

v = c2gl1m + mC2 11 - cos u2 - 1
2 ku2

1
3 ml2 + 1m + 2mC2l2 sin2 u

d1>2.

v,
vGvBC, vC,

 = - 1
2 lv cos u i - 3

2 lv sin u j.

 = - lv cos u i - lv sin u j + 3 i j k
0 0  -v

1
2 l sin u 1

2 l cos u 0

3 vG = vB + !BC * rG>B vB:v
v,

vBC = -v, vC = -2lv sin u.

 = - lv cos u i - lv sin u j + 3 i j k
0 0 vBC

l sin u l cos u 0

3 . vC j = vB + !BC * rC>B
 = - lv cos u i - lv sin u j.

 = 0 + 3 i j k
0 0 v

- l sin u l cos u 0

3 vB = vA + !AB * rB>A
vBC.

v

B

u

v

u

vBC

A

C

vC

y

x

G

(b) Angular velocities of the bars and the 
velocity of the collar.
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19.3 The 20-kg disk is at rest when the constant 10 N-m counter-
clockwise couple is applied. Determine the disk’s angular velocity
(in rpm) when it has rotated through four revolutions (a) by apply-
ing the equation of angular motion and (b) by apply-
ing the principle of work and energy.

©  M = Ia,

19.5 The helicopter’s rotor starts from rest. Suppose that its 
engine exerts a constant 1200 ft-lb couple on the rotor and 
aerodynamic drag is negligible. The rotor’s moment of inertia 
is 

(a) Use work and energy to determine the magnitude of the
rotor’s angular velocity when it has rotated through 5 revolutions.

(b) What average power is transferred to the rotor while it rotates
through 5 revolutions?

19.6 The helicopter’s rotor starts from rest. The moment exerted
on it (in N-m) is given as a function of the angle through which it
has turned in radians by The rotor’s moment
of inertia is Determine the rotor’s angular 
velocity (in rpm) when it has turned through 10 revolutions.

I = 540 kg-m2.
M = 6500 - 20u.

I = 400 slug-ft2.

10 N-m

0.25 m

Problem 19.3

Problem 19.4

Problems 19.5/19.6

19.2 The 4-lb slender bar is 2 ft in length. It started from rest in
an initial position relative to the inertial reference frame. When it
is in the position shown, the velocity of the end A is 
and the bar has a counterclockwise angular velocity of 12 rad/s.
How much work was done on the bar as it moved from its initial
position to its present position?

2i + 6j (ft/s)

x

y
B

A
30!

Problem 19.2

Problems

19.1 The moment of inertia of the rotor of the medical centrifuge
is The rotor starts from rest and the motor 
exerts a constant torque of 0.8 N-m on it.

(a) How much work has the motor done on the rotor when the
rotor has rotated through four revolutions?

(b) What is the rotor’s angular velocity (in rpm) when it has 
rotated through four revolutions?

I = 0.2 kg-m2.

Problem 19.1

19.4 The space station is initially not rotating. Its reaction con-
trol system exerts a constant couple on it until it has rotated 
then exerts a constant couple of the same magnitude in the 
opposite direction so that its angular velocity has decreased to
zero when it has undergone a total rotation of The maneuver
takes 6 hours. The station’s moment of inertia about the axis of ro-
tation is How much work is done in per-
forming this maneuver? In other words, how much energy 
had to be expended in the form of reaction control fuel?

I = 1.5 * 1010 kg-m2.

180°.

90°,
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19.8 The 8-kg slender bar is released from rest in the horizontal
position 1 and falls to position 2.

(a) How much work is done by the bar’s weight as it falls from
position 1 to position 2?

(b) How much work is done by the force exerted on the bar by
the pin support as the bar falls from position 1 to position 2?

(c) Use conservation of energy to determine the bar’s angular 
velocity when it is in position 2.

19.9 The 20-lb bar is released from rest in the horizontal posi-
tion 1 and falls to position 2. In addition to the force exerted on
it by its weight, it is subjected to a constant counterclockwise
couple Determine the bar’s counterclockwise
angular velocity in position 2.

M = 30 ft-lb .

1.0 m1.0 m1.0 m

T

T

Problem 19.7

A

2 m
y

x

2

1

Problem 19.8

A

2

1

4 ft

M

M

y

x

40!

Problem 19.9

19.10 The object consists of an 8-lb slender bar welded to a 
circular disk. When the object is released from rest in position 1,
its angular velocity in position 2 is 4.6 rad/s. What is the weight 
of the disk?

19.11* The object consists of an 8-lb slender bar welded to a 
12-lb circular disk. The object is released from rest in position 1.
Determine the x and y components of force exerted on the object
by the pin support when it is in position 2.

5 in
22 in

1

2

45!

x
A

y

Problems 19.10/19.11

19.7 During extravehicular activity, an astronaut’s angular 
velocity is initially zero. She activates two thrusters of her 
maneuvering unit, exerting equal and opposite forces 
The moment of inertia of the astronaut and her equipment about
the axis of rotation is Use the principle of work and 
energy to determine the angle through which she has rotated 
when her angular velocity reaches per second.15°

45 kg-m2.

T = 2 N.
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200 mm

140 mm

A
B

Problem 19.16

100 mm

100 mm

200 mm

M

A

B
200 mm

C

Problem 19.17

19.16 The moments of inertia of gears A and B are
and Gear A is connected to a

torsional spring with constant If gear B is given
an initial counterclockwise angular velocity of 10 rad/s with 
the torsional spring unstretched, through what maximum 
counterclockwise angle does gear B rotate?

k = 12 N-m/rad.
IB = 0.09 kg-m2.IA = 0.02 kg-m2

19.17 The moments of inertia of three pulleys that can turn freely
on their pin supports are 
and The pulleys are stationary when a 
constant couple is applied to pulley A. What is the 
angular velocity of pulley A when it has turned 10 revolutions?

M = 2 N-m
IC = 0.032 kg-m2.

IA = 0.002 kg-m2, IB = 0.036 kg-m2,

19.12 The mass of each box is 4 kg. The radius of the pulley is
120 mm and its moment of inertia is The surfaces
are smooth. If the system is released from rest, how fast are the
boxes moving when the left box has moved 0.5 m to the right?

19.13 The mass of each box is 4 kg. The radius of the pulley is
120 mm and its moment of inertia is The coefficient
of kinetic friction between the boxes and the surfaces is

If the system is released from rest, how fast are the
boxes moving when the left box has moved 0.5 m to the right?
mk = 0.12.

0.032 kg-m2.

0.032 kg-m2.

19.14 The 4-kg bar is released from rest in the horizontal 
position 1 and falls to position 2. The unstretched length of the
spring is 0.4 m and the spring constant is What is
the magnitude of the bar’s angular velocity when it is in 
position 2?

k = 20 N/m.

19.15 The moments of inertia of two gears that can turn freely on
their pin supports are and 
The gears are at rest when a constant couple is 
applied to gear B. Neglecting friction, use the principle of work
and energy to determine the angular velocities of the gears when
gear A has turned 100 revolutions.

M = 2 N-m
IB = 0.006 kg-m2.IA = 0.002 kg-m2

30!

Problems 19.12/19.13

60!1

2

A

0.6 m 1 m

Problem 19.14

90 mm

60 mm
A

B

M

Problem 19.15
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19.18 Model the arm ABC as a single rigid body. Its mass is
300 kg, and the moment of inertia about its center of mass is

Starting from rest with its center of mass 2 m
above the ground (position 1), arm ABC is pushed upward by the
hydraulic cylinders. When it is in the position shown (position 2),
the arm has a counterclockwise angular velocity of 1.4 rad/s.
How much work do the hydraulic cylinders do on the arm in
moving it from position 1 to position 2?

I = 360 kg-m2.

! 19.19 The mass of the circular disk is 5 kg and its radius is
The disk is stationary when a constant clockwise 

couple is applied to it, causing the disk to roll 
toward the right. Consider the disk when its center has moved a
distance 

(a) How much work has the couple M done on the disk? 

(b) How much work has been done by the friction force exerted
on the disk by the surface?

(c) What is the magnitude of the velocity of the center of the
disk?

(See Active Example 19.1.)

b = 0.4 m.

M = 10 N-m
R = 0.2 m.

1.80 m
1.40 m

0.30 m

0.80 m

0.70 m

2.25 m

A

B

C

Problem 19.18

b

M

Problem 19.19

M

R

b
b

Problem 19.20

0.2
m

0.1
m

Problem 19.21

F

300 mm

Problem 19.22

! 19.20 The mass of the homogeneous cylindrical disk is
and its radius is The angle The

disk is stationary when a constant clockwise couple 
is applied to it. If the disk rolls without slipping, what is the
velocity of the center of the disk when it has moved a distance

(See Active Example 19.1.)b = 0.4 m?

M = 10 N-m
b = 15°.R = 0.2 m.m = 5 kg

19.21 The mass of the stepped disk is 18 kg and its moment of
inertia is If the disk is released from rest, what is its
angular velocity when the center of the disk has fallen 1 m?

0.28 kg-m2.

19.22 The 100-kg homogeneous cylindrical disk is at rest when
the force is applied to a cord wrapped around it, 
causing the disk to roll. Use the principle of work and energy to
determine the angular velocity of the disk when it has turned 
one revolution.

F = 500 N
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s

Problems 19.27/19.28

R

k m

Problem 19.29

! 19.27 The total moment of inertia of the car’s two rear wheels
and axle is and the total moment of inertia of the two front
wheels is The radius of the tires is R, and the total mass of the
car, including the wheels, is m. The car is moving at velocity 
when the driver applies the brakes. If the car’s brakes exert a 
constant retarding couple M on each wheel and the tires do not
slip, determine the car’s velocity as a function of the distance s
from the point where the brakes are applied. (See Example 19.2.)

! 19.28 The total moment of inertia of the car’s two rear wheels
and axle is The total moment of inertia of the two
front wheels is The radius of the tires is 0.3 m. The
mass of the car, including the wheels, is 1480 kg. The car is 
moving at 100 km/h. If the car’s brakes exert a constant 
retarding couple of 650 N-m on each wheel and the tires do 
not slip, what distance is required for the car to come to a stop?
(See Example 19.2.)

0.2 kg-m2.
0.24 kg-m2.

v0

IF.
IR,

19.29 The radius of the pulley is and its moment
of inertia is The mass The spring con-
stant is The system is released from rest with the
spring unstretched. Determine how fast the mass is moving when
it has fallen 0.5 m.

k = 135 N/m.
m = 5 kg.I = 0.1 kg-m2.

R = 100 mm

F

Problem 19.26

Problem 19.23

10 lb

6 in
20!

5 lb

Problems 19.24/19.25

19.23 The 1-slug homogeneous cylindrical disk is given a 
clockwise angular velocity of 2 rad/s with the spring unstretched.
The spring constant is If the disk rolls, how far will its
center move to the right?

k = 3 lb/ft.

19.24 The system is released from rest. The moment of inertia of
the pulley is The slanted surface is smooth. 
Determine the magnitude of the velocity of the 10-lb weight 
when it has fallen 2 ft.

19.25 The system is released from rest. The moment of inertia of
the pulley is The coefficient of kinetic friction 
between the 5-lb weight and the slanted surface is 
Determine the magnitude of the velocity of the 10-lb weight when
it has fallen 2 ft.

mk = 0.3.
0.03 slug-ft2.

0.03 slug-ft2.

19.26 Each of the cart’s four wheels weighs 3 lb, has a radius of
5 in, and has moment of inertia The cart 
(not including its wheels) weighs 20 lb. The cart is stationary
when the constant horizontal force is applied. How 
fast is the cart going when it has moved 2 ft to the right?

F = 10 lb

I = 0.01 slug-ft2.

1 ftk
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O

1.2 m 0.3 m

A

Problems 19.30/19.31

0.15 m A

M

20!

Problem 19.32

45!

Problem 19.33

19.30 The masses of the bar and disk are 14 kg and 9 kg, 
respectively. The system is released from rest with the bar 
horizontal. Determine the angular velocity of the bar when it is
vertical if the bar and disk are welded together at A.

19.31 The masses of the bar and disk are 14 kg and 9 kg, 
respectively. The system is released from rest with the bar 
horizontal. Determine the angular velocity of the bar when it is
vertical if the bar and disk are connected by a smooth pin at A.

19.32 The 45-kg crate is pulled up the inclined surface by the
winch. The coefficient of kinetic friction between the crate and the
surface is The moment of inertia of the drum on which
the cable is being wound is The crate starts from
rest, and the motor exerts a constant couple on the
drum. Use the principle of work and energy to determine the 
magnitude of the velocity of the crate when it has moved 1 m.

M = 50 N-m
IA = 4 kg-m2.

mk = 0.4.

19.33 The 2-ft slender bars each weigh 4 lb, and the rectangular
plate weighs 20 lb. If the system is released from rest in the position
shown, what is the velocity of the plate when the bars are vertical?

19.34 The mass of the 2-m slender bar is 8 kg. A torsional spring
exerts a counterclockwise couple on the bar, where

and is in radians. The bar is released from rest
with What is the magnitude of the bar’s angular velocity
when u = 60°?

u = 5°.
uk = 40 N-m/rad

ku

k

u

Problem 19.34

0.3 m

0.2 m

9 kg

18 kg

A

B

Problem 19.36

19.36 The mass of the left pulley is 7 kg, and its moment of 
inertia is The mass of the right pulley is 3 kg, and its
moment of inertia is If the system is released from
rest, how fast is the 18-kg mass moving when it has fallen 0.1 m?

0.054 kg-m2.
0.330 kg-m2.

19.35 The mass of the suspended object A is 8 kg. The mass of
the pulley is 5 kg, and its moment of inertia is If the
force is applied to the stationary system, what is the
magnitude of the velocity of A when it has risen 0.2 m?

T = 70 N
0.036 kg-m2.

120 mm

T

A

Problem 19.35
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434 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

k

l
u

Problem 19.39

1 m

A

B

u

200 mm

Problem 19.40

2 m

u

Problem 19.38

19.38 The 8-kg slender bar is released from rest with 
The horizontal surface is smooth. What is the bar’s angular 
velocity when u = 30°.

u = 60°.

19.39 The mass and length of the bar are and
The spring constant is If the bar is 

released from rest in the position what is its angular 
velocity when it has fallen to u = 20°?

u = 10°,
k = 180 N/m.l = 1.2 m.

m = 4 kg

! 19.40 The 4-kg slender bar is pinned to a 2-kg slider at A and
to a 4-kg homogeneous cylindrical disk at B. Neglect the friction
force on the slider and assume that the disk rolls. If the system is
released from rest with what is the bar’s angular velocity
when (See Example 19.3.)u = 0?

u = 60°,

19.37 The 18-kg ladder is released from rest with The
wall and floor are smooth. Modeling the ladder as a slender bar,
use conservation of energy to determine the angular velocity of
the bar when u = 40°.

u = 10°.

4 m

u

Problem 19.37
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1.2 m

O

Q

P

θ

1.2 m

Problem 19.41

19.41* The sleeve P slides on the smooth horizontal bar. The
mass of each bar is 4 kg and the mass of the sleeve P is 2 kg. 
If the system is released from rest with what is the 
magnitude of the velocity of the sleeve P when u = 40°?

u = 60°,

19.42* The system is in equilibrium in the position shown. The
mass of the slender bar ABC is 6 kg, the mass of the slender bar
BD is 3 kg, and the mass of the slider at C is 1 kg. The spring 
constant is If a constant 100-N downward force is
applied at A, what is the angular velocity of bar ABC when it has
rotated 20° from its initial position?

k = 200 N/m.

A

1 m

1 m

B

D

1 m

50!50!

C

k

Problem 19.42

19.43* The masses of bars AB and BC are 5 kg and 3 kg, respec-
tively. If the system is released from rest in the position shown,
what are the angular velocities of the bars at the instant before the
joint B hits the smooth floor?

1 m

2 m 1 m

A B

C

Problem 19.43

9 in

4 in 12 in

y

x
B

A

Problem 19.44

19.44* Bar AB weighs 5 lb. Each of the sleeves A and B weighs 
2 lb. The system is released from rest in the position shown. What is
the magnitude of the angular velocity of the bar when the sleeve B
has moved 3 in to the right?

19.45* Each bar has a mass of 8 kg and a length of 1 m. The
spring constant is and the spring is unstretched
when If the system is released from rest with the bars 
vertical, what is the magnitude of the angular velocity of the 
bars when u = 30°?

u = 0.
k = 100 N/m,

k

u

u

Problem 19.45
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436 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

19.2 Impulse and Momentum

BACKGROUND
In this section, we review our discussion of the principle of linear impulse and
momentum from Chapter 16 and then derive the principle of angular impulse
and momentum for a rigid body. These principles relate time integrals of the
forces and couples acting on a rigid body to changes in the velocity of its center
of mass and its angular velocity.

Linear Momentum
Integrating Newton’s second law with respect to time yields the principle of
linear impulse and momentum for a rigid body:

(19.23)

Here, and are the velocities of the center of mass at the times and 
(Fig. 19.10). If the external forces acting on a rigid body are known as functions
of time, this principle yields the change in the velocity of the center of mass of
the body during an interval of time. In terms of the average of the total force from

to 

we can write Eq. (19.23) as

(19.24)

This form of the principle of linear impulse and momentum is often useful when
an object is subjected to impulsive forces. (See Section 16.1.)

1t2 - t12©Fav = mv2 - mv1.

©Fav = 1
t2 - t1L

t2

t1

©F dt,

t2,t1

t2t1v2v1

L
t2

t1

©F dt = mv2 - mv1.

50 m
m

A

M

B

C

125 mm

Problems 19.46/19.47

19.46* The system starts from rest with the crank AB vertical. A
constant couple M exerted on the crank causes it to rotate in the
clockwise direction, compressing the gas in the cylinder. Let s be
the displacement (in meters) of the piston to the right relative to
its initial position. The net force toward the left exerted on the
piston by atmospheric pressure and the gas in the cylinder is

The moment of inertia of the crank about A is
The mass of the connecting rod BC is 0.36 kg, and

the center of mass of the rod is at its midpoint. The connecting
rod’s moment of inertia about its center of mass is 
The mass of the piston is 4.6 kg. If the clockwise angular velocity
of the crank AB is 200 rad/s when it has rotated 90° from its ini-
tial position, what is M? (Neglect the work done by the weights
of the crank and connecting rod.)

0.0004 kg-m2.

0.0003 kg-m2.
350>11 - 10s2 N.

19.47* In Problem 19.46, if the system starts from rest with the crank
AB vertical and the couple what is the clockwise angu-
lar velocity of AB when it has rotated 45° from its initial position?

M = 40 N-m,
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19.2 Impulse and Momentum 437

Time t1 mv1

!F

Time t2

f !F dt ! mv2 " mv1
mv2

t2

t1

Figure 19.10
Principle of linear impulse and momentum.

If the only forces acting on two rigid bodies A and B are the forces they exert
on each other, or if other forces are negligible, the total linear momentum of A
and B is conserved:

(19.25)

Angular Momentum
When momentum principles are applied to rigid bodies, it is often necessary to
determine both the velocities of their centers of mass and their angular veloci-
ties. For this task, linear momentum principles alone are not sufficient. In this sec-
tion, we derive angular momentum principles for a rigid body in planar motion.

Principles of Angular Impulse and Momentum The total moment
about the center of mass of a rigid body in planar motion equals the product 
of the moment of inertia of the body about its center of mass and the angular
acceleration:

We can write this equation in the form

(19.26)

where

(19.27)

is the rigid body’s angular momentum about its center of mass. Integrating
Eq. (19.26) with respect to time, we obtain one form of the principle of
angular impulse and momentum:

(19.28)

Here, and are the values of the angular momentum at the times and
This equation says that angular impulse about the center of mass of the rigid

body during the interval of time from to is equal to the change in the rigid
body’s angular momentum about its center of mass. If the total moment about
the center of mass is known as a function of time, Eq. (19.28) can be used to
determine the change in the angular velocity from to 

We can derive another useful form of this principle: Let r be the posi-
tion vector of the center of mass of the rigid body relative to a fixed point

t2.t1

t2t1

t2.
t1H2H1

L
t2

t1

©M dt = H2 - H1.

H = Iv

©M = dH
dt

,

©M = Ia.

mA vA + mB vB = constant.

v

r

v

O

Figure 19.11
A rigid body in planar motion with velocity
v and angular velocity v.
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438 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

r

O
k

!MO

v

Figure 19.13
The direction of k.

Angular momentum
HO ! D(m!v!) " Iv

v

v v

D

Angular momentum
HO ! #D(m!v!) " Iv

v

D

O O

(a) (b)

Figure 19.14
Determining the angular momentum about
O by calculating the “moment” of the linear
momentum.

mv1

mv2r2

r1

Iv2Iv1

"MO

O

(r1 $ mv1) % k " Iv1 "f "MO dt ! (r2 $ mv2) % k " Iv2

t2

t1

Figure 19.12
The impulse about O equals the change in
the angular momentum about O.

O (Fig. 19.11). In Chapter 18, we derived a relationship between the total
moment about O due to external forces and couples and the rate of change
of the rigid body’s angular momentum about O:

(19.29)

where

(19.30)

Integrating Eq. (19.29) with respect to time, we obtain a second form of the
principle of angular impulse and momentum:

(19.31)

The angular impulse about a fixed point O during the interval of time from to 
is equal to the change in the rigid body’s angular momentum about O (Fig. 19.12).

The term in Eq. (19.30) is the rigid body’s angular momentum
about O due to the velocity of its center of mass. This term has the same form as
the moment of a force, but with the linear momentum mv in place of the force. If
we define and to be positive in the counterclockwise direction, the unit
vector k points out of the page (Fig. 19.13) and is the counter-
clockwise “moment” of the linear momentum. The vector expression can be used
to calculate this quantity, but it is often easier to use the fact that its magnitude is
the product of the magnitude of the linear momentum and the perpendicular dis-
tance from point O to the line of action of the velocity. The “moment” is positive
if it is counterclockwise (Fig. 19.14a) and negative if it is clockwise (Fig. 19.14b).

1r * mv2 #  k
v©MO

1r * mv2 #  k

t2t1

L
t2

t1

©MO dt = HO2 - HO1.

HO = 1r * mv2 # k + Iv.

©MO =
dHO

dt
,
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19.2 Impulse and Momentum 439

Impulsive Forces and Couples The average of the moment about the
center of mass from to is

Using this equation, we can write Eq. (19.28) as

(19.32)

In the same way, we can express Eq. (19.31) in terms of the average moment
about point O:

(19.33)

When the average value of the moment and its duration are known, we can use
Eq. (19.32) or Eq. (19.33) to determine the change in the angular momentum.
These equations are often useful when a rigid body is subjected to impulsive
forces and couples.

Conservation of Angular Momentum We can use Eq. (19.31) to obtain
an equation of conservation of total angular momentum for two rigid bodies. Let
A and B be rigid bodies in two-dimensional motion in the same plane, and sup-
pose that they are subjected only to the forces and couples they exert on each
other or that other forces and couples are negligible. Let be the moment
about a fixed point O due to the forces and couples acting on A, and let be
the moment about O due to the forces and couples acting on B. Under the same
assumption we made in deriving the equations of motion—the forces between
each pair of particles are directed along the line between the particles—the
moment For example, in Fig. 19.15, A and B exert forces on
each other by contact. The resulting moments about O are 
and 

We apply Eq. (19.31) to A and B for arbitrary times and obtaining

and

Summing these equations, the terms on the left cancel, and we obtain

We see that the total angular momentum of A and B about O is conserved:

(19.34)

Notice that this result holds even when A and B are subjected to significant ex-
ternal forces and couples if the total moment about O due to the external forces
and couples is zero. The point O can sometimes be chosen so that this condi-
tion is satisfied. The result also applies to an arbitrary number of rigid bodies:
Their total angular momentum about O is conserved if the total moment about
O due to external forces and couples is zero.

HOA + HOB = constant.

HOA1 + HOB1 = HOA2 + HOB2.

L
t2

t1

MOB dt = HOB2 - HOB1.

L
t2

t1

MOA dt = HOA2 - HOA1

t2,t1

MOB = 3rp * 1-R24 # k = -MOA.
MOA = 1rp * R2 # k

MOB = -MOA.

MOB

MOA

1t2 - t12 1©MO2av = HO2 - HO1.

1t2 - t12©Mav = H2 - H1.

©Mav = 1
t2 - t1L

t2

t1

©M dt.

t2t1

A

A

B

B

!R

rp

rp

O

O

R

Figure 19.15
Rigid bodies A and B exerting forces on
each other by contact.
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The principle of linear impulse and momentum 
states that the linear impulse applied to a rigid
body is equal to the change in its linear
momentum.

!F dt " mv2 # mv1.             (19.23)Lt1
t2

Time t1 mv1

!F

Time t2

mv2

Linear 
impulse

By introducing the average of the total force
with respect to time from t1 to t2,

the principle of impulse and momentum can
be expressed in terms of the average force.

!Fav " (t2 # t1)!Fav " mv2 # mv1.        (19.24)
1

t2 # t1 L !F dt,
t1

t2

If the only forces acting on two rigid bodies A 
and B are the forces they exert on each other, or 
if other forces are negligible, their total linear 
momentum is conserved.

mAvA $ mBvB " constant.         (19.25)

Angular Momentum of a Rigid Body in Planar Motion

One form of the principle of angular impulse
and momentum states that the angular impulse
about the center of mass during an interval of
time from t1 to t2 is equal to the change in the
angular momentum about the center of mass.

!M dt " H2 # H1.               (19.28)

Angular 
impulse

Lt1
t2

Equation (19.28) can be expressed in terms of
the average moment about the center of mass. (t2 # t1)!Mav " H2 # H1.          (19.32)

Angular momentum about the center of mass. H " Iv.                   (19.27)

RESULTS

Linear Momentum
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19.2 Impulse and Momentum 441

Angular momentum about a fixed point O. HO ! (r " mv) ! k # Iv. (19.30)

v

r

v

O

y

x

A second form of the principle of angular
impulse and momentum states that the
angular impulse about a fixed point O
during an interval of time from t1 to t2 is
equal to the change in the angular
momentum about O.

!MO dt " HO2 # HO1. (19.31)Lt1
t2

Angular impulse

mv1

mv2r2

r1

Iv2Iv1

O

!MO

The term (r ! mv) ! k can be evaluated by
calculating the “moment” of the angular
momentum about O.

Angular momentum 
HO " D(m!v!) # Iv

v

v v

D

Angular momentum 
HO " $D(m!v!) # Iv

v

D

O O

Equation (19.31) can be expressed in terms
of the average moment about point O.

(t2 # t1)(!MO)av " HO2 # HO1. (19.33)

If the only forces acting on two rigid bodies
A and B are the forces they exert on each
other, or if the moment due to other forces
about a fixed point O is negligible, the total
angular momentum of A and B about O is
conserved.

HOA ! HOB " constant.                     (19.34)
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442 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Active Example 19.4 Principle of Angular Impulse and Momentum (! Related Problem 19.55)

Prior to their contact, disk A has a counterclockwise angular velocity and 
disk B is stationary. At , disk A is moved into contact with disk B. As a
result of friction, the angular velocity of A decreases and the clockwise angu-
lar velocity of B increases until there is no slip between the disks. What are
their final angular velocities and ? The moments of inertia of the disks are

and .IBIA

vBvA

t = 0
v0

Prior to contact

Final angular velocities

A B

RA RB

ω

A

B

0

ωBω

A

Ax

Ay

mAg

NN

f

f
Bx

By

mBg

Draw the free-body diagrams of
the contacting disks. N and f are
normal and friction forces they
exert on each other.

Strategy
The disks rotate about fixed axes through their centers of mass while they are
in contact, so we can apply the principle of angular impulse and momentum
in the form given by Eq. (19.28) to each disk. When there is no longer any
slip between the disks, their velocities are equal at their point of contact.
With this kinematic relationship and the equations obtained from the princi-
ple of angular impulse and momentum, we can determine the final angular
velocities.

Solution
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19.2 Impulse and Momentum 443

Let tf be the time at which slip ceases. Apply the
principle of angular impulse and momentum to disk
A from t ! 0 to t ! tf, treating counterclockwise
moments and angular velocities as positive.

"M dt ! H2 # H1:Lt1
t2

#RA f dt ! IAvA # IAv0 . (1)L0
tf

Apply the principle of angular impulse and 
momentum to disk B from t ! 0 to t ! tf , treating
counterclockwise moments and angular velocities
as positive.

"M dt ! H2 # H1:Lt1
t2

#RB f dt ! #IBvB # 0.         (2)L0
tf

Divide Eq. (1) by Eq. (2).
RA

RB

IAvA ! IAv0

!IBvB
" . (3)

When slip ceases, the velocities of the disks are
equal at their point of contact.

RAvA ! RBvB . (4)

Solve Eqs. (3) and (4) for vA and vB.

1
vA ! v0,

RA
2IB

RB
2IA

1 "

RA/RB
vB ! v0.

RA
2IB

RB
2IA

1 "

Practice Problem Disk A has an initial counterclockwise angular velocity . Before disk A
comes into contact with disk B, suppose that you want disk B to have an initial angular velocity
such that, when slip between the two disks ceases, their angular velocity is zero. What is the
necessary initial angular velocity of disk B?

Answer: counterclockwise.
RBIA

RAIB
v0

v0
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444 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Example 19.5 Impulsive Force on a Rigid Body (! Related Problem 19.56)

To help prevent injuries to passengers, engineers design a street light pole so 
that it shears off at ground level when struck by a vehicle. From video of a 
test impact, the engineers estimate the angular velocity of the pole to
be and the horizontal velocity of its center of mass to be

after the impact, and they estimate the duration of the impact to
be If the pole can be modeled as a 70-kg slender bar of length

the car strikes it at a height above the ground, and the
couple exerted on the pole by its support during the impact is negligible, what
average force was required to shear off the bolts supporting the pole?

Strategy
We will determine the average force by applying the principles of linear and an-
gular impulse and momentum, expressed in terms of the average forces and
moments exerted on the pole. We can apply the principle of angular impulse and
momentum by using either Eq. (19.32) or Eq. (19.33). We will use Eq. (19.33)
to demonstrate its use.

Solution
We draw the free-body diagram of the pole in Fig. a, where F is the average
force exerted by the car and S is the average shearing force exerted on the pole
by the bolts. Let m be the mass of the pole, and let v and be the velocity of
its center of mass and its angular velocity at the end of the impact (Fig. b).
From Eq. (19.24), the principle of linear impulse and momentum expressed in
terms of the average horizontal force is

(1)

To apply the principle of angular impulse and momentum, we use Eq. (19.33),
placing the fixed point O at the bottom of the pole (Figs. a and b). The pole’s
angular momentum about O at the end of the impact is

 = - 1
2 lmv + Iv.

 HO2 = 31r * mv2 #  k + Iv42 = C A 12 lj B * m1vi2 D  #  k + Iv

 ¢t1F - S2 = mv - 0.

 1t2 - t12 1©Fx2av = 1mvx22 - 1mvx21:
v

h = 0.5 ml = 6 m,
¢t = 0.01 s.

v = 6.8 m/s
v = 0.74 rad/s

y

xh

mg

F

S O

l
1
2

(a) Free-body diagram of the pole.
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y

x

r

v

O

v

l
1
2

(b) Velocity and angular velocity at the end of the impact.

We can also obtain this result by calculating the “moment” of the linear
momentum about O and adding the term The magnitude of the “moment”
is the product of the magnitude of the linear momentum (mv) and the
perpendicular distance from O to the line of action of the linear momentum

and it is negative because the “moment” is clockwise. (See Fig. 19.14.)
From Eq. (19.33), we obtain

Solving this equation together with Eq. (1) for the average shear force S, we obtain

Critical Thinking
This example demonstrates both the power and the limitations of momentum
methods. As the car collides with the light pole, the car’s structure deforms,
the light pole deforms, and the bolts supporting the pole fail. The time history
of the force exerted on the car and pole by the impact hinges upon the details of
these complicated phenomena. Using momentum methods and information
about the motion of the pole after the impact, we were able to estimate the
average value of the force, but we cannot determine its time history. To do so
would require either more elaborate experiments or an analysis of the collision
in which the deformations of the car and pole are modeled. This kind of tradeoff
occurs frequently in engineering. Often limited information about a phenome-
non can be obtained quickly, as we do in this example, but more accurate and
complete information could be obtained by investing the necessary time and
resources. The question that must be answered is whether the additional invest-
ment is essential to achieve the required engineering objectives.

 = 207,000 N.

 =
C 1216 m2 - 0.5 m D 170 kg2 16.8 m/s2 - C 1

12170 kg2 16 m22 D 10.74 rad/s210.5 m2 10.01 s2
 S =

A 12 l - h Bmv - Iv

h ¢t

 ¢t1-hF2 = - 1
2 lmv + Iv - 0.

 1t2 - t12 (©MO2av = HO2 - HO1:

A 12 l B ,
Iv.
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r1

r1

r2

r2

v2

v1

Example 19.6 Conservation of Angular Momentum (! Related Problem 19.58)

In a well-known demonstration of conservation of angular momentum, a per-
son stands on a rotating platform holding a mass m in each hand. The com-
bined moment of inertia of the person and platform about their axis of rotation
is and each mass Neglect the moments of inertia of
the masses she holds about their centers of mass—that is, treat them as parti-
cles. If the person’s angular velocity with her arms extended to is

revolution per second, what is her angular velocity when she pulls
the masses inward to (You have observed skaters using this phe-
nomenon to control their angular velocity in a spin by altering the positions of
their arms.)

Strategy
If we neglect friction in the rotating platform, the total angular momentum of
the person, platform, and masses about the axis of rotation is conserved. We
can use this condition to determine 

Solution
The total angular momentum is the sum of the angular momentum of the per-
son and platform and the angular momentum of the two masses. When her
arms are extended, the velocity of each mass m is so the “moment” of the
angular momentum of each mass about the axis of rotation is The
total angular momentum is

When she pulls the masses inward, the total angular momentum is

The total angular momentum is conserved.

,

This yields revolutions per second.

Critical Thinking
Calculate the total kinetic energy of the person, platform, and masses when her
arms are extended and when she has pulled the masses inward. You will find
that the total kinetic energy is greater in the second case. It appears that con-
servation of energy is violated. However, she does work on the weights in
pulling them inward. Her physiological energy supplies the additional kinetic
energy.

v2 = 4.56v1 = 4.56

 C0.4 kg-m2 + 2(4 kg)(0.6 m)2 Dv1 = C0.4 kg-m2 + 2(4 kg)(0.2 m)2 Dv2.

 (IP + 2mr 1
2)v1 = (IP + 2mr2

2)v2

 HO1 = HO2:

HO2 = IPv2 + 2r2(mr2v2).

HO1 = IPv1 + 2r1(mr1v1).

r1(mr1v1).
r1v1,

v2.

r2 = 0.2 m?
v2v1 = 1

r1 = 0.6 m

m = 4 kg.IP = 0.4 kg-m2
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50 N-m

O

Problem 19.48

Problem 19.49

T

300 mm

Problems 19.50/19.51

Problem 19.52

Problems

19.48 The moment of inertia of the disk about O is At
the stationary disk is subjected to a constant 50 N-m torque.

(a) Determine the angular impulse exerted on the disk from 
to 

(b) What is the disk’s angular velocity at t = 5 s?

t = 5 s.
t = 0

t = 0,
22 kg-m2.

19.49 The moment of inertia of the jet engine’s rotating assem-
bly is The assembly starts from rest. At the 
engine’s turbine exerts a couple on it that is given as a function
of time by 

(a) What is the magnitude of the angular impulse exerted on the
assembly from to 

(b) What is the magnitude of the angular velocity of the assembly
(in rpm) at t = 20 s?

t = 20 s?t = 0

M = 6500 - 125t N-m.

t = 0,400 kg-m2.

19.50 An astronaut fires a thruster of his maneuvering unit, ex-
erting a force where t is in seconds. The com-
bined mass of the astronaut and his equipment is 122 kg, and the
moment of inertia about their center of mass is Model-
ing the astronaut and his equipment as a rigid body, use the princi-
ple of angular impulse and momentum to determine how long it
takes for his angular velocity to reach 0.1 rad/s.

45 kg-m2.

T = 211 + t2 N,

19.51 The combined mass of the astronaut and his equipment is
122 kg, and the moment of inertia about their center of mass is

The maneuvering unit exerts an impulsive force T of 0.2-s
duration, giving him a counterclockwise angular velocity of 1 rpm.

(a) What is the average magnitude of the impulsive force?

(b) What is the magnitude of the resulting change in the velocity
of the astronaut’s center of mass?

45 kg-m2.

19.52 A flywheel attached to an electric motor is initially at rest.
At the motor exerts a couple on the
flywheel. The moment of inertia of the flywheel is 

(a) What is the flywheel’s angular velocity at 

(b) What maximum angular velocity will the flywheel attain?

t = 10 s?

10 kg-m2.
M = 200e-0.1t N-mt = 0,
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h
R

Problem 19.57

Problem 19.53

2.5 mm

F

Problem 19.54

0.2 m
0.4 m 0.3 m

A

B C

v0

Problem 19.55

19.53 A main landing gear wheel of a Boeing 777 has a radius 
of 0.62 m and its moment of inertia is After the plane
lands at 75 m/s, the skid marks of the wheel’s tire is measured and
determined to be 18 m in length. Determine the average friction
force exerted on the wheel by the runway. Assume that the airplane’s
velocity is constant during the time the tire skids (slips) on the
runway.

24 kg-m2.

19.54 The force a club exerts on a 0.045-kg golf ball is shown.
The ball is 42 mm in diameter and can be modeled as a homoge-
neous sphere. The club is in contact with the ball for 0.0006 s, and
the magnitude of the velocity of the ball’s center of mass after the
ball is hit is 36 m/s. What is the magnitude of the ball’s angular
velocity after it is hit?

! 19.55 Disk A initially has a counterclockwise angular velocity
Disks B and C are initially stationary. At 

disk A is moved into contact with disk B. Determine the 
angular velocities of the three disks when they have stopped
slipping relative to each other. The masses of the disks are

and (See Active 
Example 19.4.)

mC = 9 kg.mA = 4 kg, mB = 16 kg,

t = 0,v0 = 50 rad/s.

! 19.56 In Example 19.5, suppose that in a second test at a
higher velocity the angular velocity of the pole following the impact
is the horizontal velocity of its center of mass is

and the duration of the impact is 
Determine the magnitude of the average force the car exerts on
the pole in shearing off the supporting bolts. Do so by applying
the principle of angular impulse and momentum in the form given
by Eq. (19.32).

19.57 The force exerted on the cue ball by the cue is horizontal.
Determine the value of h for which the ball rolls without slipping.
(Assume that the frictional force exerted on the ball by the table is
negligible.)

¢  t = 0.009 s .v = 7.3 m/s,
v = 0.81 rad/s,
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A

v0

B

12 m

Problem 19.59

r

A

3 m

k

v0

Problems 19.60–19.62

! 19.58 In Example 19.6, we neglected the moments of inertia of
the two masses m about the axes through their centers of mass in
calculating the total angular momentum of the person, platform,
and masses. Suppose that the moment of inertia of each mass about
the vertical axis through its center of mass is 
If the person’s angular velocity with her arms extended to

is what is her angular
velocity when she pulls the masses inward to  
Compare your result to the answer obtained in Example 19.6.

19.59 Two gravity research satellites 
are tethered by a cable.

The satellites and cable rotate with angular velocity
Ground controllers order satellite A to slowly unreel 6 m of
additional cable. What is the angular velocity afterward?

v0 = 0.25 rpm.
mB = 50 kg, IB = 16 kg-m22350 kg-m2;

1mA = 250 kg, IA =

r2 = 0.2 m?v2

v1 = 1 revolution per second,r1 = 0.6 m

IM = 0.001 kg-m2.

19.60 The 2-kg bar rotates in the horizontal plane about the
smooth pin. The 6-kg collar A slides on the smooth bar. Assume
that the moment of inertia of the collar A about its center of mass
is negligible; that is, treat the collar as a particle. At the instant
shown, the angular velocity of the bar is and the 
distance from the pin to the collar is Determine the
bar’s angular velocity when 

19.61 The 2-kg bar rotates in the horizontal plane about the
smooth pin. The 6-kg collar A slides on the smooth bar. The
moment of inertia of the collar A about its center of mass is

At the instant shown, the angular velocity of the 
bar is and the distance from the pin to the collar is

Determine the bar’s angular velocity when 
and compare your answer to that of Problem 19.60.

19.62* The 2-kg bar rotates in the horizontal plane about the
smooth pin. The 6-kg collar A slides on the smooth bar. The
moment of inertia of the collar A about its center of mass is

The spring is unstretched when and the spring
constant is At the instant shown, the angular 
velocity of the bar is the distance from the pin 
to the collar is and the radial velocity of the collar 
is zero. Determine the radial velocity of the collar when
r = 2.4 m.

r = 1.8 m,
v0 = 2 rad/s,

k = 10 N/m.
r = 0,0.2 kg-m2.

r = 2.4 m
r = 1.8 m.

v0 = 60 rpm
0.2 kg-m2.

r = 2.4 m.
r = 1.8 m.
v0 = 60 rpm
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19.63 The circular bar is welded to the vertical shafts, which can
rotate freely in bearings at A and B. Let I be the moment of inertia
of the circular bar and shafts about the vertical axis. The circular
bar has an initial angular velocity and the mass m is released
in the position shown with no velocity relative to the bar. Deter-
mine the angular velocity of the circular bar as a function of the
angle between the vertical and the position of the mass. Neglect
the moment of inertia of the mass about its center of mass; that is,
treat the mass as a particle.

b

v0,

450 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

O

A B

Figure 19.16
Rigid bodies A and B colliding. Because of the pin support, their total linear momentum
is not conserved, but their total angular momentum about O is conserved.

19.3 Impacts

BACKGROUND
In Chapter 16, we analyzed impacts between objects with the aim of determin-
ing the velocities of their centers of mass after the collision. We now discuss how
to determine the velocities of the centers of mass and the angular velocities of
rigid bodies after they collide.

Conservation of Momentum
Suppose that two rigid bodies A and B, in two-dimensional motion in the same
plane, collide. What do the principles of linear and angular momentum tell us
about their motions after the collision?

Linear Momentum If other forces are negligible in comparison to the
impact forces A and B exert on each other, their total linear momentum is the
same before and after the impact. But this result must be applied with care. For
example, if one of the rigid bodies has a pin support (Fig. 19.16), the reactions
exerted by the support cannot be neglected, and linear momentum is not
conserved.

m

R

v0

b

B

A

Problem 19.63
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Angular Momentum If other forces and couples are negligible in com-
parison to the impact forces and couples that A and B exert on each other, their
total angular momentum about any fixed point O is the same before and after
the impact. [See Eq. (19.34).] If, in addition, A and B exert forces on each other
only at their point of impact P and exert no couples on each other, the angular
momentum about P of each rigid body is the same before and after the impact
(Fig. 19.17). This result follows from the principle of angular impulse and
momentum, Eq. (19.31), because the impact forces on A and B exert no
moment about P. If one of the rigid bodies has a pin support at a point O, as
in Fig. 19.16, their total angular momentum about O is the same before and
after the impact.

Coefficient of Restitution
If two rigid bodies adhere and move as a single rigid body after colliding, their
velocities and angular velocity can be determined by using momentum conser-
vation and kinematic relationships alone. These relationships are not sufficient
if the objects do not adhere. But some impacts of the latter type can be ana-
lyzed by using the concept of the coefficient of restitution.

Let P be the point of contact of rigid bodies A and B during an impact
(Fig. 19.18). Let their velocities at P be and just before the impact
and and just afterward. The x axis is perpendicular to the contacting
surfaces at P. If the frictional forces resulting from the impact are negligible,
we can show that the components of the velocities normal to the surfaces at P
are related to the coefficient of restitution e by

(19.35)

To derive this result, we must consider the effects of the impact on the individ-
ual objects. Let be the time at which they first come into contact. The objects
are not actually rigid, but will deform as a result of the collision. At a time 
the maximum deformation will occur, and the objects will begin a “recovery”
phase in which they tend to resume their original shapes. Let be the time at
which they separate.

t2

tC,
t1

e =
1vBP

œ 2x - 1vAP
œ 2x1vAP2x - 1vBP2x.

vBP
œvAP

œ
vBPvAP

19.3 Impacts 451

A B
P Figure 19.17

Rigid bodies A and B colliding at P. If
forces are exerted only at P, the angular 
momentum of A about P and the angular
momentum of B about P are each 
conserved.

A

B

P

x

y

Figure 19.18
Rigid bodies A and B colliding at P. The x axis
is perpendicular to the contacting surfaces.
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452 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Our first step is to apply the principle of linear impulse and momentum to A
and B for the intervals from to and from to Let R be the magnitude of
the normal force exerted during the impact (Fig. 19.19). We denote the velocity
of the center of mass of A at the times and by and and denote
the corresponding velocities of the center of mass of B by and For A,
we have

(19.36)

(19.37)

For B, we have

(19.38)

(19.39)

The coefficient of restitution is the ratio of the linear impulse during the 
recovery phase to the linear impulse during the deformation phase:

(19.40)

If we divide Eq. (19.37) by Eq. (19.36) and divide Eq. (19.39) by Eq. (19.38),
the resulting equations can be written as

(19.41)
 1vB

œ 2x = -1vB2x e + 1vBC2x11 + e2. 1vA
œ 2x = -1vA2x e + 1vAC2x11 + e2, 

e = L
t2

tC

R dt

L
tC

t1

R dt

.

 L
t2

tC

R dt = mB1vB
œ 2x - mB1vBC2x.

 L
tC

t1

R dt = mB1vBC2x - mB1vB2x, 

L
t2

tC

-R dt = mA1vA
œ 2x - mA1vAC2x.

L
tC

t1

-R dt = mA1vAC2x - mA1vA2x,

vB
œ .vB, vBC,

vA
œ ,vA, vAC,t2t1, tC,

t2.tCtCt1

A

B

P
x

y

x

y R

R
rP/A

rP/B

P

Figure 19.19
The normal force R resulting from the 
impact.
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We now apply the principle of angular impulse and momentum to A and B
for the intervals of time from to and from to We denote the counter-
clockwise angular velocity of A at the times and by and 
and denote the corresponding angular velocities of B by and We
write the position vectors of P relative to the centers of mass of A and B as 
(Fig. 19.19)

(19.42)

The moment about the center of mass of A due to the force exerted on A by the
impact is From Eq. (19.28), we obtain the equations

(19.43)

(19.44)

The corresponding equations for B are

(19.45)

(19.46)

Dividing Eq. (19.44) by Eq. (19.43) and dividing Eq. (19.46) by Eq. (19.45), we
can write the resulting equations as

(19.47)

By expressing the velocity of the point of A at P in terms of the velocity of
the center of mass of A and the angular velocity of A, and expressing the velocity
of the point of B at P in terms of the velocity of the center of mass of B and the
angular velocity of B, we obtain

(19.48)

 1vBP
œ 2x = 1vB

œ 2x - vB
œ yB.

 1vBP2x = 1vB2x - vB yB, 

 1vAP
œ 2x = 1vA

œ 2x - vA
œ yA, 

 1vAP2x = 1vA2x - vA yA, 

 vB
œ = -vB e + vBC11 + e2. vA
œ = -vA e + vAC11 + e2, 
L

t2

tC

-yB R dt = IB vB
œ - IB vB C.

L
tC

t1

-yB R dt = IB vB C - IB vB 

,

 L
t2

tC

yA R dt = IAvA
œ - IAvAC.

 L
tC

t1

yA R dt = IAvAC - IAvA, 

rP>A * 1-R i2 = yA R k.

 rP>B = xB i + yB  j.

 rP>A = xA i + yA  j, 

vB
œ .vB, vBC,
vA

œvA, vAC,t2t1, tC,
t2.tCtCt1
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RESULTS
Suppose that two rigid bodies A and B in planar motion collide.

Linear Momentum

If other forces are negligible in comparison to
the impact forces A and B exert on each other,
their total linear momentum is the same before
and after the impact.

At time the x components of the velocities of the two objects are equal at P,
which yields the relation

(19.49)

From Eqs. (19.48),

Substituting Eqs. (19.41) and (19.47) into this equation and collecting terms yields

From Eq. (19.49), the term in brackets vanishes, and we obtain the equation
relating the normal components of the velocities at the point of contact to the
coefficient of restitution:

(19.50)

In arriving at this equation, we assumed that the contacting surfaces were
smooth, so that the collision exerts no force on A or B in the direction tangen-
tial to their contacting surfaces.

Although we derived Eq. (19.50) under the assumption that the motions of
A and B are unconstrained, the relationship also holds if they are not—for ex-
ample, if one of them is connected to a pin support.

e =
1vBP

œ 2x - 1vAP
œ 2x1vAP2x - 1vBP2x.

1vBP
œ 2x - 1vAP

œ 2x1vAP2x - 1vBP2x = e - c 1vAC2x - vAC yA - 1vBC2x + vBC yB1vA2x - vA yA - 1vB2x + vB yB
d1e + 12.

1vBP
œ 2x - 1vAP

œ 2x1vAP2x - 1vBP2x =
1vB

œ 2x - vB
œ yB - 1vA

œ 2x + vA
œ yA1vA2x - vA yA - 1vB2x + vB yB

.

1vAC2x - vAC yA = 1vBC2x - vBC yB.

tC,
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If other forces are negligible in comparison to
the impact forces A and B exert on each other,
their total angular momentum about any fixed
point O is the same before and after the impact.
If, in addition, A and B exert forces on each
other only at their point of impact P, the
angular momentum about P of each rigid body
is the same before and after the impact.

A B
P

Let P be the point of impact of rigid bodies A
and B, and let their velocities at P be vAP and
vBP just before the impact and v ¿AP and v ¿BP just
afterward. The components of velocities
perpendicular to the plane of the impact are
related by the coefficient of restitution.

(v ¿BP)x ! (v ¿AP)x

(vAP)x ! (vBP)x
e " .         (19.35)

A

B

P

x

y

If one of the two rigid bodies has a pin support
at a point O, their total angular momentum
about O is the same before and after the impact.

O

A B

Coefficient of Restitution

Angular Momentum
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Active Example 19.7 Impact of a Sphere and a Suspended Bar (! Related Problem 19.70)

The ball of mass is translating with horizontal velocity when it strikes
the stationary slender bar of mass and length l. The coefficient of restitution
of the impact is e.
(a) What is the angular velocity of the bar after the impact?
(b) If the duration of the impact is , what average horizontal force is 
exerted on the bar by the pin support C as a result of the impact?

Strategy
(a) The total angular momentum about C of the ball and bar is the same before
and after the impact. The coefficient of restitution relates the velocities of the
ball and the bar at the point of impact before and after the impact. With these
two equations and kinematic relationships, we can determine the velocity of
the ball and the angular velocity of the bar after the impact.
(b) We can determine the average force exerted on the bar by the support at C
by applying the principle of angular impulse and momentum to the bar.

Solution

¢t

mB

vAmA
C

h

Av

Apply conservation of angular momentum
about C. After the impact,  v¿A is the
velocity of the ball, v¿B is the velocity of
the center of mass of the bar, and v¿B is the
angular velocity of the bar. IB is the
moment of interia of the bar about its
center of mass.

Apply the coefficient of restitution. After
the impact, v¿BP is the velocity of the bar
at the point of impact.

HCA ! HCB " H ¿CA ! H ¿CB :

h(mAvA) ! 0 " h(mAv¿A) !    l (mBv¿B) ! IBv¿B.       (1)1
2

v¿BP # v¿A
vA # 0

(2)e " .

y

x

y

C

h

x

l

v$BP

v$B

v$A

v$B

1
2

(a)
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Determine kinematic relationships. Because
it rotates about the fixed point C, the
velocities of the bar at its center of mass
and at the point of impact can be expressed
in terms of the bar’s angular velocity.

v¿B ! lv¿B, (3)

v¿BP ! hv¿B, (4)

1
2

Solve Eqs. (1) through (4) for v¿A, v¿B, v¿BP,

mBl2 to

obtain the bar’s angular velocity.

and v¿B and use relation IB !
(1"e)hmAvA

h2mA " mBl2
(5)v¿B ! .

1
3

1
12

Free-body diagram of the bar showing the
average forces exerted during the impact.

Cx

h

F
x

y

Cy

P

Apply the principle of angular impulse and
momentum in the form given by Eq. (19.33)
about point P where the impact occurs.

(t2 # t1)($MP)av ! H ¿B # HB:

%t(#hCx) ! mBv¿B " IBv ¿B # 0. (6)#!       "lh # 1
2

!             "
Solve Eq. (6) for Cx and use Eqs. (3) and (5)

and the relation IB ! mBl2.
Cx ! .

(1 " e) !        "l lmAmBvAh #

mBl2h2mA " %t

1
2

1
3

1
3

1
12

Practice Problem Suppose that the pin support at C is removed, and the ball strikes
the stationary vertical bar with horizontal velocity . Assume that and

What is the angular velocity of the bar after the impact?

Answer: .v¿B =
12
11(1 + e)vA

l

h = 3
4 l .

mA = mBvA

(b)
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5050!!50!
0.65 m0.65 m0.65 m

20!

50!
x

y

P

GGG 0.78 m
vG

rP/G

(a) Aligning the x axis of the coordinate 
system tangent to the ground at P.

Example 19.8 Impact with a Fixed Obstacle (! Related Problems 19.89, 19.90)

The combined mass of the motorcycle and rider is and their com-
bined moment of inertia about their center of mass is Following a
jump, the motorcycle and rider are in the position shown just before the rear
wheel contacts the ground. The velocity of their center of mass is of magnitude

and their angular velocity is If the motorcycle
and rider are modeled as a single rigid body and the coefficient of restitution of
the impact is what are the angular velocity and velocity after the
impact? Neglect the tangential component of force exerted on the motorcycle’s
wheel during the impact.

vG
œv¿e = 0.8,

v = 0.2 rad/s.ƒ vG ƒ = 8.8 m/s,

22 kg-m2.
m = 170 kg,

Strategy
Since the tangential component of force on the motorcycle’s wheel during the
impact is neglected, the component of the velocity of the center of mass paral-
lel to the ground can be taken to be unchanged by the impact. The coefficient
of restitution relates the motorcycle’s velocity normal to the ground at the point
of impact before the impact to its value after the impact. Also, the force of the
impact exerts no moment about the point of impact, so the motorcycle’s angu-
lar momentum about that point is conserved. (We assume the impact to be so
brief that the angular impulse due to the weight is negligible.) With these three
relations, we can determine the two components of the velocity of the center of
mass and the angular velocity after the impact.

Solution
In Fig. a we align a coordinate system parallel and perpendicular to the ground
at the point P where the impact occurs. Let the components of the velocity of
the center of mass before and after the impact be and

respectively. The x and y components of the velocity are

and

Because the component of the impact force tangential to the ground is neglected,
the x component of the velocity of the center of mass is unchanged:

vx
œ = vx = 5.66 m/s.

vy = -8.8 sin 50° = -6.74 m/s.

vx = 8.8 cos 50° = 5.66 m/s

vG
œ = vx

œ
  i + vy

œ
 j,

vG = vx  i + vy  j

vG

650 mm

20!

780 mm

x

y

G

v

30!
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We can express the y component of the wheel’s velocity at P before the
impact in terms of the velocity of the center of mass and the angular velocity
(Fig. a) as

(Notice that this expression gives the y component of the velocity at P even
though the wheel is spinning.) The y component of the wheel’s velocity at P after
the impact is

The coefficient of restitution relates the y components of the wheel’s velocity
at P before and after the impact:

(1)

The force of the impact exerts no moment about P, so angular momentum
about P is conserved:

Expanding the determinants and evaluating the dot products, we obtain

(2)

Since we have already determined we can solve Eqs. (1) and (2) for and
The results are

and

The velocity of the center of mass after the impact is 
and the angular velocity is 14.4 rad/s in the clockwise direction.

Critical Thinking
Although forces resulting from an impact are often so large that the effects of
other forces can be neglected, that isn’t always the case. In this example, we
neglected the weight of the motorcycle and rider in determining their velocity
and angular velocity following the impact of the rear wheel with the ground.
Whenever there is doubt in engineering applications of momentum methods,
such effects should be included in the analysis. In order to do so, the duration
of the impact needs to be known or estimated so that the linear and angular
impulses due to other forces can be evaluated.

vG
œ = 5.66i - 3.84j m/s,

v¿ = -14.4 rad/s.

vy
œ = -3.84 m/s

v¿.
vy

œvx
œ ,

0.65mvy - 0.78mvx + Iv = 0.65mvy
œ - 0.78mvx

œ + Iv¿.

 3 i j k
0.65 0.78 0
mvx mvy 0

3  #  k + Iv = 3 i j k
0.65 0.78 0
mvx

œ mvy
œ 0

3  #  k + Iv¿.

 31rG>P * mvG2 
#

 k + Iv4 = 31rG>P * mvG
œ 2 

#
 k + Iv¿4,  HP = HP

œ :

e =
-1j #  vP

œ 2
j #  vP

=
-1vy

œ - 0.65v¿2
vy - 0.65v

.

 = vy
œ - 0.65v¿.

 j #  vP
œ = j #  1vG

œ + !¿ * rP>G2
 = vy - 0.65v.

 = j #  c vx i + vy  j + 3 i j k
0 0 v

-0.65  -0.78 0

3 s j #  vP = j #  1vG + ! * rP>G2
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y

x

30 m/s

A

1.8 m

1 m

20!

1.8 m

A

B B

1 m

20 m/s

P

Example 19.9 Colliding Cars (! Related Problems 19.91, 19.92)

An engineer simulates a collision between two 1600-kg cars by modeling them
as rigid bodies. The moment of inertia of each car about its center of mass is

The engineer assumes the contacting surfaces at P to be smooth and
parallel to the x axis and assumes the coefficient of restitution to be 
What are the angular velocities of the cars and the velocities of their centers of
mass after the collision?

e = 0.2.
960 kg-m2.

Strategy
Since the contacting surfaces are smooth, the x components of the velocities of
the centers of mass are unchanged by the collision. The y components of the ve-
locities must satisfy conservation of linear momentum, and the y components
of the velocities at the point of impact before and after the impact are related by
the coefficient of restitution. The force of the impact exerts no moment about
P on either car, so the angular momentum of each car about P is conserved.
From these conditions and kinematic relations between the velocities of the
centers of mass and the velocities at P, we can determine the angular velocities
and the velocities of the centers of mass after the impact.

Solution
The components of the velocities of the centers of mass before the impact are

and

vB = 20 i 1m/s2.
 = 28.2i - 10.3j 1m/s2 vA = 30 cos 20°i - 30 sin 20°j
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y

x20!

A

B

P

1.8 m

1.8 m

1 m

1 m

rP/B

rP/A

(a) Position vectors of P relative to the
centers of mass.

The x components of the velocities are unchanged by the impact:

The y components of the velocities must satisfy conservation of linear
momentum:

(1)

Let the velocities of the two cars at P before the collision be and 
The coefficient of restitution relates the y components of the velocities
at P:

(2)

We can express the velocities at P after the impact in terms of the velocities of
the centers of mass and the angular velocities after the impact (Fig. a). The
position of P relative to the center of mass of car A is

Therefore, we can express the velocity of point P of car A after the impact as

Equating i and j components in this equation, we obtain

(3)

The position of P relative to the center of mass of car B is

We can express the velocity of point P of car B after the impact as

 vœ
BPx i + vœ

BPy  j = vœ
Bx i + vœ

By  j + 3 i j k
0 0 vœ

B

1.8 1 0

3 . vœ
BP = vœ

B + !œ
B * rP>B:

rP>B = 1.8i + j 1m2.
 vœ

APy = vœ
Ay + 1.35vœ

A.

 vœ
APx = vœ

Ax + 1.56vœ
A, 

 vœ
APx 

i + vœ
APy j = vœ

Ax 

i + vœ
Ay j + 3 i j k

0 0 vœ
A

1.35  -1.56 0

3 . vœ
AP = vœ

A + !œ
A * rP>A:

 = 1.35i - 1.56j 1m2. rP>A = 311.82 cos 20° - 112 sin 20°4i - 311.82 sin 20° + 112 cos 20°4 j

0.2 =
vœ

BPy - vœ
APy

vAPy - vBPy
.

e = 0.2
vBP.vAP

mA vAy + mB vBy = mA vœ
Ay + mB vœ

By.

vAx
œ = vAx = 28.2 m/s,  vBx

œ = vBx = 20 m/s.

BEDFMC19_0136129161.QXD  6/20/07  6:50 PM  Page 461



462 Chapter 19 Energy and Momentum in Rigid-Body Dynamics

Equating i and j components yields

(4)

The angular momentum of car A about P is conserved:

Expanding the determinants and evaluating the dot products, we obtain

(5)

The angular momentum of car B about P is also conserved,

From this equation, it follows that

(6)

We can solve Eqs. (1) through (6) for and The results
for the velocities of the centers of mass of the cars and their angular velocities
are as follows:

Critical Thinking
The total angular moment of the two cars about any point is the same before
and after their collision, because we neglected the effects of horizontal forces
other than the force due to their collision. But to determine their motions after
the collision, we needed to use the fact that the angular momentum of each car
about P is the same before and after the impact. That is true because the
moment about P exerted on each car by the force of the collision is zero.
Notice that we could not have assumed that the angular momentum of each car
about any point is the same before and after the impact.

 vœ
B = 20.0 i - 1.18 j 1m/s2,  vœ

B = -3.54 rad/s.

 vœ
A = 28.2i - 9.08j 1m/s2,  vœ

A = 2.65 rad/s, 

vœ
B.vœ

A, vœ
AP, vœ

A, vœ
B, vœ

BP,

mB vBx = -1.8mB vœ
By + mB vœ

Bx + IB v
œ
B.

 3 i j k
-1.8  -1 0

mB vBx 0 0

3  #  k + 0 = 3 i j k
-1.8  -1 0

mB vœ
Bx mB vœ

By 0

3  #  k + IB v
œ
B.

 31rB>P * mB vB2 
#

 k + IB vB4 = 31rB>P * mB vœ
B2 

#
 k + IB v

œ
B4,  HPB = Hœ

PB:

 = -1.35mA vœ
Ay - 1.56mA vœ

Ax + IAv
œ
A.

-1.35mA vAy - 1.56mA vAx

 3 i j k
-1.35 1.56 0

mA vAx mA vAy 0

3  #  k + 0 = 3 i j k
-1.35 1.56 0

mA vœ
Ax mA vœ

Ay 0

3  #  k + IAv
œ
A.

 31rA>P * mA vA2 
#

 k + IAvA4 = 31rA>P * mA vœ
A2 

#
 k + IAv

œ
A4,  HPA = Hœ

PA:

 vœ
BPy = vœ

By + 1.8vœ
B.

 vœ
BPx = vœ

Bx - vœ
B, 
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45 m
P

16 m

Problems 19.68/19.69

1 m

4 m/s

O

B

A

Problems 19.71/19.72

3 ft

45!

P

Problems 19.64/19.65

1 m

0.2 m

b

A

Problems 19.66/19.67

Problems
19.64 The 10-lb bar is released from rest in the position
shown. It falls and the end of the bar strikes the horizontal surface
at P. The coefficient of restitution of the impact is When
the bar rebounds, through what angle relative to the horizontal
will it rotate?

19.65 The 10-lb bar is released from rest in the position
shown. It falls and the end of the bar strikes the horizontal surface
at P. The bar rebounds to a position relative to the horizontal. If
the duration of the impact is 0.01 s, what is the magnitude of the
average vertical force the horizontal surface exerted on the bar at P?

10°

45°

e = 0.6.

45°

19.66 The 4-kg bar is released from rest in the horizontal posi-
tion above the fixed projection at A. The distance 
The impact of the bar with the projection is plastic; that is, the 
coefficient of restitution of the impact is What is the bar’s
angular velocity immediately after the impact?

19.67 The 4-kg bar is released from rest in the horizontal posi-
tion above the fixed projection at A. The coefficient of restitution
of the impact is What value of the distance b would
cause the velocity of the bar’s center of mass to be zero immedi-
ately after the impact? What is the bar’s angular velocity immedi-
ately after the impact?

e = 0.6.

e = 0.

b = 0.35 m.

19.68 The mass of the ship is 544,000 kg, and the moment of 
inertia of the vessel about its center of mass is 
Wind causes the ship to drift sideways at 0.1 m/s and strike the
stationary piling at P. The coefficient of restitution of the impact
is What is the ship’s angular velocity after the impact?

19.69 In Problem 19.68, if the duration of the ship’s impact with
the piling is 10 s, what is the magnitude of the average force 
exerted on the ship by the impact?

e = 0.2.

4 * 108 kg-m2.

! 19.70 In Active Example 19.7, suppose that the ball A weighs
2 lb, the bar B weighs 6 lb, and the length of the bar is 3 ft. The
ball is translating at before the impact and strikes the
bar at What is the angular velocity of the bar after the 
impact if the ball adheres to the bar?

19.71 The 2-kg sphere A is moving toward the right at 4 m/s
when it strikes the end of the 5-kg slender bar B. Immediately
after the impact, the sphere A is moving toward the right at 1 m/s.
What is the angular velocity of the bar after the impact? 

19.72 The 2-kg sphere A is moving toward the right at 4 m/s
when it strikes the end of the 5-kg slender bar B. The coefficient
of restitution is The duration of the impact is 0.002 sec-
onds. Determine the magnitude of the average horizontal force 
exerted on the bar by the pin support as a result of the impact. 

e = 0.4.

h = 2 ft .
vA = 10 ft/s
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Ay

Ax

C

vA

b

d

y

v

Problems 19.75/19.76

19.73 The 2-kg sphere A is moving toward the right at 10 m/s
when it strikes the unconstrained 4-kg slender bar B. What is the
angular velocity of the bar after the impact if the sphere adheres 
to the bar?

19.74 The 2-kg sphere A is moving toward the right at 10 m/s
when it strikes the unconstrained 4-kg slender bar B. The 
coefficient of restitution of the impact is What are the 
velocity of the sphere and the angular velocity of the bar after 
the impact?

e = 0.6.

19.75 The 5-oz ball is translating with velocity 
perpendicular to the bat just before impact. The player is swinging
the 31-oz bat with angular velocity before the 
impact. Point C is the bat’s instantaneous center both before and
after the impact. The distances and The bat’s
moment of inertia about its center of mass is 
The coefficient of restitution is and the duration of the
impact is 0.008 s. Determine the magnitude of the velocity of the
ball after the impact and the average force exerted on the 
bat by the player during the impact if (a) (b) and
(c) 

19.76 In Problem 19.75, show that the force is zero if
where is the mass of the bat.mBd = IB>1mBy2, Ax

d = 8 in.
d = 3 in,d = 0,

Ax

e = 0.6,
IB = 0.033 slug-ft2.
y = 26 in.b = 14 in

v = 6p rad/s

vA = 80 ft/s

1 m

10 m/s

B

A

0.25 m

Problems 19.73/19.74
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60!

v

Problems 19.81–19.83

(–8, –22) in

x

y

A

Problem 19.84

18 in

6 inv

Problems 19.79/19.80

19.79 The 1-slug disk rolls at velocity toward a 
6-in step. The wheel remains in contact with the step and does
not slip while rolling up onto it. What is the wheel’s velocity
once it is on the step?

19.80 The 1-slug disk rolls toward a 6-in step. The wheel re-
mains in contact with the step and does not slip while rolling up
onto it. What is the minimum velocity v the disk must have in
order to climb up onto the step?

v = 10 ft/s

19.84 During her parallel-bars routine, the velocity of the 90-lb
gymnast’s center of mass is and her angular
velocity is zero just before she grasps the bar at A. In the position
shown, her moment of inertia about her center of mass is

If she stiffens her shoulders and legs so that she can
be modeled as a rigid body, what is the velocity of her center of
mass and her angular velocity just after she grasps the bar?

1.8 slug-ft2.

4 i - 10 j 1ft/s2

19.81 The length of the bar is 1 m, and its mass is 2 kg. Just before
the bar hits the floor, its angular velocity is and its center of
mass is moving downward at 4 m/s. If the end of the bar adheres to
the floor, what is the bar’s angular velocity after the impact?

19.82 The length of the bar is 1 m, and its mass is 2 kg. Just 
before the bar hits the smooth floor, its angular velocity is 
and its center of mass is moving downward at 4 m/s. If the 
coefficient of restitution of the impact is what is the 
bar’s angular velocity after the impact?

19.83 The length of the bar is 1 m, and its mass is 2 kg. Just be-
fore the bar hits the smooth floor, it has angular velocity and its
center of mass is moving downward at 4 m/s. The coefficient of
restitution of the impact is What value of would cause
the bar to have no angular velocity after the impact?

ve = 0.4.

v

e = 0.4,

v = 0

v = 0

l

h

(b)(a)

Problems 19.77/19.78

19.77 A 10-lb slender bar of length is released from rest
in the horizontal position at a height above a peg (Fig. a).
A small hook at the end of the bar engages the peg, and the bar
swings from the peg (Fig. b). What is the bar’s angular velocity
immediately after it engages the peg?

19.78 A 10-lb slender bar of length is released from rest
in the horizontal position at a height above a peg (Fig. a).
A small hook at the end of the bar engages the peg, and the bar
swings from the peg (Fig. b).

(a) Through what maximum angle does the bar rotate relative to
its position when it engages the peg?

(b) At the instant when the bar has reached the angle determined
in part (a), compare its gravitational potential energy to the gravi-
tational potential energy the bar had when it was released from
rest. How much energy has been lost? 

h = 1 ft
l = 2 ft

h = 2 ft
l = 2 ft
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0.3 m

1.8 m

Problems 19.89/19.90

(b)(a)

A A

1 m/s

B
B

v!

Problems 19.86/19.87

(b)(a)

A

A

B

1 m/s

B

v!

Problem 19.88

19.86* The two bars A and B are each 2 m in length, and each
has a mass of 4 kg. In Fig. a, bar A has no angular velocity and is
moving to the right at 1 m/s, and bar B is stationary. If the bars
bond together on impact (Fig. b), what is their angular velocity 
after the impact?

19.87* In Problem 19.86, if the bars do not bond together on
impact and the coefficient of restitution is what are the
angular velocities of the bars after the impact?

e = 0.8,

v¿

19.88* Two bars A and B are each 2 m in length, and each has a
mass of 4 kg. In Fig. a, bar A has no angular velocity and is moving
to the right at 1 m/s, and bar B is stationary. If the bars bond together
on impact (Fig. b), what is their angular velocity after the impact?v¿

! 19.89* The horizontal velocity of the landing airplane is
50 m/s, its vertical velocity (rate of descent) is 2 m/s, and its angu-
lar velocity is zero. The mass of the airplane is 12 Mg, and the
moment of inertia about its center of mass is 
When the rear wheels touch the runway, they remain in contact
with it. Neglecting the horizontal force exerted on the wheels by
the runway, determine the airplane’s angular velocity just after it
touches down. (See Example 19.8.)

! 19.90* Determine the angular velocity of the airplane in 
Problem 19.89 just after it touches down if its wheels don’t stay
in contact with the runway and the coefficient of restitution of
the impact is (See Example 19.8.)e = 0.4.

1 * 105 kg-m2.

300 m

b)

A

200 mm

500 mm

B

A

B
(a)

m

(

Problem 19.85

19.85 The 20-kg homogeneous rectangular plate is released
from rest (Fig. a) and falls 200 mm before coming to the end of
the string attached at the corner A (Fig. b). Assuming that the 
vertical component of the velocity of A is zero just after the 
plate reaches the end of the string, determine the angular velocity
of the plate and the magnitude of the velocity of the corner B at
that instant.
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7.3 m

(A)

4.3 m

x

y

(B)

Problem 19.94

19.94* The Apollo CSM (A) approaches the Soyuz Space Station
(B). The mass of the Apollo is and the moment of
inertia about the axis through its center of mass parallel to the z
axis is The mass of the Soyuz is 
and the moment of inertia about the axis through its center of
mass parallel to the z axis is The Soyuz is 
stationary relative to the reference frame shown, and the CSM 
approaches with velocity and no 
angular velocity. What is the angular velocity of the attached
spacecraft after docking?

vA = 0.21i + 0.05j 1m/s2IB = 70 Mg-m2.

mB = 6.6 Mg,IA = 114 Mg-m2.

mA = 18 Mg,

y

1.7 m

3.2 m

0.6 m

0.6 m

5 km/h

x

A

BP

Problems 19.91/19.92

A

B

28 in

Problem 19.93

! 19.91* While attempting to drive on an icy street for the first
time, a student skids his 1260-kg car (A) into the university presi-
dent’s stationary 2700-kg Rolls-Royce Corniche (B). The point of
impact is P. Assume that the impacting surfaces are smooth and
parallel to the y axis and that the coefficient of restitution of the
impact is The moments of inertia of the cars about their
centers of mass are and 
Determine the angular velocities of the cars and the velocities of
their centers of mass after the collision. (See Example 19.9.)

! 19.92* The student in Problem 19.91 claimed that he was
moving at 5 km/h prior to the collision, but police estimate that
the center of mass of the Rolls-Royce was moving at 1.7 m/s
after the collision. What was the student’s actual speed? (See
Example 19.9.)

IB = 7600 kg-m2.IA = 2400 kg-m2
e = 0.5.

19.93 Each slender bar is 48 in long and weighs 20 lb. Bar A is
released in the horizontal position shown. The bars are smooth,
and the coefficient of restitution of their impact is 
Determine the angle through which B swings afterward.

e = 0.8.
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M

100 mm

Problem 19.99

5 kg 10 kg

150 mm

Problems 19.95/19.96

x

y

300
mm

40!

B

M

A

C

Problem 19.97

F

Problem 19.98

19.97 Arm BC has a mass of 12 kg, and the moment of inertia
about its center of mass is Point B is stationary. Arm BC
is initially aligned with the (horizontal) x axis with zero angular
velocity, and a constant couple M applied at B causes the arm to
rotate upward. When it is in the position shown, its counterclock-
wise angular velocity is 2 rad/s. Determine M.

3 kg-m2.

19.98 The cart is stationary when a constant force F is applied 
to it. What will the velocity of the cart be when it has rolled a 
distance b? The mass of the body of the cart is and each of 
the four wheels has mass m, radius R, and moment of inertia, I.

mc,

19.99 Each pulley has moment of inertia and
the mass of the belt is 0.2 kg. If a constant couple is
applied to the bottom pulley, what will its angular velocity be
when it has turned 10 revolutions?

M = 4 N-m
I = 0.003 kg-m2,

Review Problems

19.95 The moment of inertia of the pulley is The
system is released from rest. Use the principle of work and energy to
determine the velocity of the 10-kg cylinder when it has fallen 1 m.

19.96 The moment of inertia of the pulley is The 
system is released from rest. Use momentum principles to 
determine the velocity of the 10-kg cylinder 1 s after the system 
is released.

0.2 kg-m2.

0.2 kg-m2.

BEDFMC19_0136129161.QXD  6/20/07  6:50 PM  Page 468



Review Problems 469

A B

60 in

6 in 4 in

Problems 19.103/19.104

20 in
M

Sun gear

Planet gears (3)

Ring gear

34 in

7 in

Problem 19.100

6 in

10 in3 in

5 lb

A

B

Problems 19.101/19.102

19.100 The ring gear is fixed. The mass and moment of inertia of
the sun gear are and The mass
and moment of inertia of each planet gear are and

A couple is applied to the sun
gear. Use work and energy to determine the angular velocity of the
sun gear after it has turned 100 revolutions.

M = 600 ft-lbIP = 65 slug-ft2.
mP = 2.7 slug

IS = 4400 slug-ft2.mS = 22 slug

19.101 The moments of inertia of gears A and B are
and Gear A is connected

to a torsional spring with constant If the spring
is unstretched and the surface supporting the 5-lb weight is re-
moved, what is the velocity of the weight when it has fallen 3 in?

19.102 Consider the system in Problem 19.101.
(a) What maximum distance does the 5-lb weight fall when the
supporting surface is removed?

(b) What maximum velocity does the weight achieve?

k = 0.2 ft-lb/rad.
IB = 0.100 slug-ft2.IA = 0.014 slug-ft2

19.103 Each of the go-cart’s front wheels weighs 5 lb and has a
moment of inertia of The two rear wheels and rear
axle form a single rigid body weighing 40 lb and having a
moment of inertia of The total weight of the rider
and go-cart, including its wheels, is 240 lb. The go-cart starts from
rest, its engine exerts a constant torque of 15 ft-lb on the rear axle,
and its wheels do not slip. Neglecting friction and aerodynamic
drag, how fast is the go-cart moving when it has traveled 50 ft?

19.104 Determine the maximum power and the average power
transmitted to the go-cart in Problem 19.103 by its engine.

0.1 slug-ft2.

0.01 slug-ft2.

2 m

3 m

45!

Problem 19.105

19.105 The system starts from rest with the 4-kg slender bar 
horizontal. The mass of the suspended cylinder is 10 kg. What is
the angular velocity of the bar when it is in the position shown?
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3R
8

R

Problems 19.109/19.110

120 mm

40 mm

Problem 19.106

l

u

Problem 19.107

45!

B

A

1.2 m

0.5 m

Problem 19.108

19.106 The 0.1-kg slender bar and 0.2-kg cylindrical disk are
released from rest with the bar horizontal. The disk rolls on the
curved surface. What is the angular velocity of the bar when it is
vertical?

19.107 The slender bar of mass m is released from rest in the 
vertical position and allowed to fall. Neglecting friction and 
assuming that it remains in contact with the floor and wall, 
determine the bar’s angular velocity as a function of u.

19.108 The 4-kg slender bar is pinned to 2-kg sliders at A and B.
If friction is negligible and the system starts from rest in the posi-
tion shown, what is the bar’s angular velocity when the slider at A
has fallen 0.5 m?

19.109 The homogeneous hemisphere of mass m is released from
rest in the position shown. If it rolls on the horizontal surface, what
is its angular velocity when its flat surface is horizontal?

19.110 The homogeneous hemisphere of mass m is released
from rest in the position shown. It rolls on the horizontal 
surface. What normal force is exerted on the hemisphere by
the horizontal surface at the instant the flat surface of the
hemisphere is horizontal?
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d d

1 rpm

2 m
2 m

4 rpm

(a) (b)

Problem 19.113

R

v

b

Problem 19.114

O

A

r

v

Problem 19.111

1.2 m

(a)

(b)

2.4 m 2.4 m

v!

v

Problem 19.112

19.111 The slender bar rotates freely in the horizontal plane
about a vertical shaft at O. The bar weighs 20 lb and its length is 
6 ft. The slider A weighs 2 lb. If the bar’s angular velocity is

and the radial component of the velocity of A is zero
when what is the angular velocity of the bar when

(The moment of inertia of A about its center of mass is
negligible; that is, treat A as a particle.)
r = 4 ft?

r = 1 ft,
v = 10 rad/s

19.112 A satellite is deployed with angular velocity 
(Fig. a). Two internally stored antennas that span the diameter of
the satellite are then extended, and the satellite’s angular velocity
decreases to (Fig. b). By modeling the satellite as a 500-kg
sphere of 1.2-m radius and each antenna as a 10-kg slender bar,
determine v¿.

v¿

v = 1 rad/s

19.113 An engineer decides to control the angular velocity of a
satellite by deploying small masses attached to cables. If the angu-
lar velocity of the satellite in configuration (a) is 4 rpm, determine
the distance d in configuration (b) that will cause the angular 
velocity to be 1 rpm. The moment of inertia of the satellite is

and each mass is 2 kg. (Assume that the cables and
masses rotate with the same angular velocity as the satellite. 
Neglect the masses of the cables and the moments of inertia of 
the masses about their centers of mass.)

I = 500 kg-m2

19.114 The homogeneous cylindrical disk of mass m rolls on the
horizontal surface with angular velocity If the disk does not
slip or leave the slanted surface when it comes into contact with it,
what is the angular velocity of the disk immediately afterward?v¿

v.

b

3 ft

A B

Problems 19.115/19.116

19.115 The 10-lb bar falls from rest in the vertical position and
hits the smooth projection at B. The coefficient of restitution of
the impact is the duration of the impact is 0.1 s, and

Determine the average force exerted on the bar at B as a
result of the impact.

19.116 The 10-lb bar falls from rest in the vertical position and
hits the smooth projection at B. The coefficient of restitution of
the impact is and the duration of the impact is 0.1 s. 
Determine the distance b for which the average force exerted on
the bar by the support A as a result of the impact is zero.

e = 0.6

b = 1 ft.
e = 0.6,
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h

45!

(a) (b)

v

Problem 19.118

h

u

Problems 19.119/19.120

v0

A

B

l
2

Problem 19.121

y

x

1 m/s

Problems 19.122/19.123

19.117 The 1-kg sphere A is moving at 2 m/s when it strikes the
end of the 2-kg stationary slender bar B. If the velocity of the
sphere after the impact is 0.8 m/s to the right, what is the 
coefficient of restitution?

19.118 The slender bar is released from rest in the position
shown in Fig. a and falls a distance When the bar hits
the floor, its tip is supported by a depression and remains on the
floor (Fig. b). The length of the bar is 1 ft and its weight is 4 oz.
What is angular velocity of the bar just after it hits the floor?v

h = 1 ft.

19.119 The slender bar is released from rest with and
falls a distance onto the smooth floor. The length of the
bar is 1 m and its mass is 2 kg. If the coefficient of restitution of
the impact is what is the angular velocity of the bar just
after it hits the floor?

19.120 The slender bar is released from rest and falls a distance
onto the smooth floor. The length of the bar is 1 m and

its mass is 2 kg. The coefficient of restitution of the impact is
Determine the angle for which the angular velocity of

the bar after it hits the floor is a maximum. What is the maximum
angular velocity?

ue = 0.4.

h = 1 m

e = 0.4,

h = 1 m
u = 45°

19.121 A nonrotating slender bar A moving with velocity 
strikes a stationary slender bar B. Each bar has mass m and length
l. If the bars adhere when they collide, what is their angular 
velocity after the impact?

v0

19.122 An astronaut translates toward a nonrotating satellite at
1.0 i (m/s) relative to the satellite. Her mass is 136 kg, and the
moment of inertia about the axis through her center of mass paral-
lel to the z axis is The mass of the satellite is 450 kg
and its moment of inertia about the z axis is At the in-
stant the astronaut attaches to the satellite and begins moving with
it, the position of her center of mass is The
axis of rotation of the satellite after she attaches is parallel to the
z axis. What is their angular velocity?

19.123 In Problem 19.122, suppose that the design parameters of
the satellite’s control system require that the angular velocity of
the satellite not exceed 0.02 rad/s. If the astronaut is moving 
parallel to the x axis and the position of her center of mass when
she attaches is what is the maximum relative
velocity at which she should approach the satellite?

1-1.8, -0.9, 02 m,

1-1.8, -0.9, 02 m.

675 kg-m2.
45 kg-m2.

2 m/s

A

B

2 m

400 mm

Problem 19.117
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y

x
2 ft

3 mi/h

Problem 19.124

14 in

P

Problem 19.125

19.124 A 2800-lb car skidding on ice strikes a concrete abut-
ment at 3 mi/h. The car’s moment of inertia about its center of
mass is Assume that the impacting surfaces are
smooth and parallel to the y axis and that the coefficient of restitu-
tion of the impact is What are the angular velocity of the
car and the velocity of its center of mass after the impact?

e = 0.8.

1800 slug-ft2.

19.125 A 170-lb wide receiver jumps vertically to receive a pass
and is stationary at the instant he catches the ball. At the same in-
stant, he is hit at P by a 180-lb linebacker moving horizontally at
15 ft/s. The wide receiver’s moment of inertia about his center of
mass is If you model the players as rigid bodies and as-
sume that the coefficient of restitution is what is the wide
receiver’s angular velocity immediately after the impact?

e = 0,
7 slug-ft2.

Design Project

Design and carry out experiments to determine the moments of
inertia of (a) a homogeneous slender bar, such as a meter stick;
and (b) a soccer ball or basketball. For the slender bar, com-
pare your experimental values for the moments of inertia with
the theoretical value for a slender bar of length l.
For the ball, compare your experimental values with the theo-
retical value for a thin spherical shell of radius R.
Investigate the repeatability of your experimental methods.
Write a brief report describing your experiments, discussing
possible sources of error, and presenting your results.

I = 2
3  mR2

I = 1
12 ml2

(a)

(b)
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Z

X
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Three-Dimensional Kinematics 
and Dynamics of Rigid Bodies

For many engineering applications of dynamics, such as
the design of airplanes and other vehicles, we must con-
sider three-dimensional motion. After explaining how
three-dimensional motion of a rigid body is described,
we derive the equations of motion and use them to ana-
lyze simple motions. Finally, we introduce the Euler
angles used to specify the orientation of a rigid body in
three dimensions and express the equations of angular
motion in terms of them.

! The centrifuge subjects plant tissues to high accelerations for research in
genetic engineering.
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(a) b)

c( )

(

Figure 20.1
Examples of planar and three-dimensional motions.

20.1 Kinematics

BACKGROUND
If a bicyclist rides in a straight path, the wheels undergo planar motion. But if
the rider is turning, the motion of the wheels is three dimensional (Fig. 20.1a).
Similarly, an airplane can remain in planar motion while it is in level flight or
as it descends, climbs, or performs loops. But if it banks and turns, it is in three-
dimensional motion (Fig. 20.1b). A spinning top may remain in planar motion
for a brief period, rotating about a fixed vertical axis. But eventually, the top’s
axis begins to tilt and rotate. The top is then in three-dimensional motion and
exhibits interesting, apparently gravity-defying behavior (Fig. 20.1c). In this
section we begin the analysis of such motions by discussing the kinematics of
rigid bodies in three-dimensional motion.

Velocities and Accelerations
We have already discussed some of the concepts needed to describe the three-
dimensional motion of a rigid body relative to a given reference frame. In
Chapter 17, we showed that Euler’s theorem implies that a rigid body undergoing
any motion other than translation has an instantaneous axis of rotation. The
direction of this axis at a particular instant and the rate at which the rigid body
rotates about the axis are specified by the angular velocity vector 

We have also shown that a rigid body’s velocity is completely specified by
its angular velocity vector and the velocity of a single point of the body. For the

!.
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B
rA/B

A

O

!

rigid body and reference frame in Fig. 20.2, suppose that we know the angular
velocity vector and the velocity of a point B. Then the velocity of any
other point A of the body is given by Eq. (17.8):

(20.1)

A rigid body’s acceleration is completely specified by its angular acceleration vec-
tor its angular velocity vector, and the acceleration of a single point
of the body. If we know and the acceleration of the point B in Fig. 20.2,
the acceleration of any other point A of the rigid body is given by Eq. (17.9):

(20.2)

Moving Reference Frames
The velocities and accelerations in Eqs. (20.1) and (20.2) are measured rela-
tive to the reference frame indicated in Fig. 20.2, which we will refer to as the
primary reference frame. Although some situations require other choices,
the most common primary reference frame used in engineering applications is
one that is fixed relative to the earth. When we do not state otherwise, you
should assume that the primary reference frame is earth fixed. We also use a
secondary reference frame that moves relative to the primary reference frame.
The secondary reference frame and its motion are chosen for convenience in
describing the motion of a particular rigid body. In some situations, the sec-
ondary reference frame is defined to be fixed with respect to the rigid body.
In other cases, it is advantageous to use a secondary reference frame that moves
relative to the primary reference frame, but is not fixed with respect to the
rigid body. (See Examples 20.1–20.3.)

Figure 20.3 shows a primary reference frame, a secondary reference frame
xyz, and a rigid body. The angular velocity of the secondary reference frame

aA = aB + " * rA>B + ! * 1! * rA>B2.
aB", !,

" = d!>dt,

vA = vB + ! * rA>B.

vB!

O
z

Primary reference
frame

Secondary reference
frame

x

y

!

#

Figure 20.3
The primary and secondary reference
frames. The vector is the angular velocity
of the secondary reference frame relative to
the primary reference frame. The vector is
the angular velocity of the rigid body rela-
tive to the primary reference frame.

!

#

Figure 20.2
Points A and B of a rigid body. The velocity of
A can be determined if the velocity of B and
the rigid body’s angular velocity vector are
known. The acceleration of A can be deter-
mined if the acceleration of B, the angular
velocity vector, and the angular acceleration
vector are known.

!
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O
z

Primary reference
frame

Secondary reference
frame

x

y

!rel

"

relative to the primary reference frame is specified by the vector and the
angular velocity of the rigid body relative to the primary reference frame is
specified by the vector If the secondary reference frame is fixed with re-
spect to the rigid body, If we express in terms of its components in
the secondary reference frame as

the rigid body’s angular acceleration vector relative to the primary reference
frame is

(20.3)

The derivatives of i, j, and k can be expressed in terms of the angular
velocity vector as (see Section 17.5)

Substituting these expressions into Eq. (20.3), we obtain the angular accelera-
tion vector of the rigid body relative to the primary reference frame in the form

(20.4)

Notice that, in general, the derivatives and are the com-
ponents of only when or when Otherwise, the rigid body’s
angular acceleration vector relative to the primary reference frame must be
determined from Eq. (20.4).

When the secondary reference frame is not fixed to the rigid body, it is
often convenient to express the body’s angular velocity vector as the sum of
the angular velocity vector of the secondary reference frame and the angu-
lar velocity vector of the rigid body relative to the secondary reference
frame (Fig. 20.4):

(20.5)! = " + !rel.

!rel

"
!

" = !." = 0#
dvz>dtdvx>dt, dvy>dt,

# =
dvx

dt
 i +

dvy

dt
 j + dvz

dt
 k + " * !.

d i
dt

= " * i, dj
dt

= " * j, d k
dt

= " * k.

"

# = d!

dt
= dvx

dt
 i + vx 

d i
dt

+ dvy

dt
 j + vy 

dj
dt

+ dvz

dt
 k + vz 

d k
dt

.

! = vx i + vy  j + vz k,

!" = !.
!.

",

Figure 20.4
The vector is the rigid body’s angular
velocity relative to the secondary reference
frame, and the vector is the angular 
velocity of the secondary reference frame
relative to the primary reference frame. The
rigid body’s angular velocity vector relative
to the primary reference frame is !rel + ".

"

!rel
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20.1 Kinematics 479

The velocity and acceleration of a point A of a
rigid body (relative to a given reference frame)
can be expressed in terms of the velocity and
acceleration of a point B, the position of A
relative to B, the angular velocity of the rigid
body, and the angular acceleration
! ! d"/dt of the rigid body.

vA ! vB " " # rA/B,                                        (20.1)

aA ! aB " ! # rA/B " " # (" # rA/B).         (20.2)

B
rA/B

A

O

"

The rate of rotation of the secondary reference
frame relative to the primary reference frame is
described by the angular velocity vector #. If
the angular velocity of the rigid body relative to
the primary reference frame is expressed in terms
of components in the secondary reference frame,

O

z
Primary reference
frame

Secondary reference
frame

x

y

"

#

k " # # ".     (20.4)! !
dvx

dt
i "

dvy

dt
j "

dvz

dt

the angular acceleration ! ! d"/dt of the rigid
body relative to the primary reference frame
contains a term that arises from the rotation of the
secondary reference frame.

" ! vxi " vy j " vyk,

RESULTS
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Active Example 20.1 Use of a Secondary Reference Frame (! Related Problem 20.2)

The car’s tire rolls on a level surface. As the car turns, the midpoint B of the tire
moves at 5 m/s in a circular path about the fixed point P (see the top view) and
the tire remains perpendicular to the line from B to P. What is the tire’s angu-
lar velocity vector relative to an earth-fixed reference frame?!

Top view

10 m 
(Not to scale)

0.36 m

0.36 m

P

AB

B

Let !rel be the angular velocity of the rigid body
relative to the secondary reference frame. It is
sometimes convenient to express the angular
velocity of the rigid body relative to the primary
reference frame as the sum of the angular velocity
of the secondary reference frame and the angular
velocity of the rigid body relative to the secondary
reference frame. 

O

z
Primary reference
frame

Secondary reference
frame

x

y

!rel

"

! ! " " !rel .         (20.5)

Strategy
Let us introduce a secondary reference frame with its origin at B and its y axis
along the line from B to P. As the tire rolls, we assume that the y axis remains
pointed toward P and the x axis remains horizontal. The motion of this
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Practice Problem Determine the velocity of point A, the rearmost point of the tire at
the instant shown, relative to an earth-fixed reference frame.

Answer: .vA = -5i - 0.18j + 5k (m/s)

Angular Velocity of the Secondary
Coordinate System
The magnitude of the angular velocity of
the line PB about P is

! ! "0.5k (rad/s).
The secondary coordinate system rotates
about its z axis in the clockwise direction,
so its angular velocity vector points in the
negative z direction.

(5 m/s)/(10 m) ! 0.5 rad/s.

Angular Velocity of the Tire Relative to
the Secondary Coordinate System
The center of the tire moves at 5 m/s and the
tire’s radius is 0.36 m, so the magnitude of
the tire’s angular velocity about the y axis is
(5 m/s)/(0.36 m) ! 13.9 rad/s. The right-
hand rule indicates that the angular velocity
vector points in the negative y direction.

"rel ! "13.9j (rad/s).

Angular Velocity of the Tire Relative to an
Earth-Fixed Reference Frame
Apply Eq. (20.5).

" ! ! # "rel
    ! "0.5k " 13.9j (rad/s).

A rotating secondary coordinate system.
The origin B remains at the center of the
tire, the y axis remains pointed toward
point P, and the x axis remains horizontal.

10 m 
(Not to scale)

0.36 m

P

A
x

5 m/s B

y

coordinate system is simple: It rotates about its z axis as the car turns. The mo-
tion of the tire relative to this coordinate system is also simple: It rotates
about the y axis. By determining the angular velocity of the secondary coor-
dinate system relative to an earth-fixed reference frame and the angular
velocity of the tire relative to the secondary coordinate system, we can use
Eq. (20.5) to determine the angular velocity of the tire relative to the earth-
fixed reference frame.
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Example 20.2 Angular Velocity and Angular Acceleration of a Rotating Disk
(! Related Problem 20.10)

The disk is perpendicular to the horizontal part of the shaft and rotates relative
to it with constant angular velocity Relative to an earth-fixed reference
frame, the shaft rotates about the vertical axis with constant angular velocity 
Determine the angular velocity and angular acceleration vectors of the disk rel-
ative to the earth-fixed reference frame.

v0.
vd.

v0

vd

R

v0

vd

R

(a)

x

z

y

Strategy
The disk’s motion relative to the earth-fixed reference frame is rather compli-
cated. However, relative to a reference frame that is fixed with respect to the shaft,
the disk simply rotates about a fixed axis with constant angular velocity. We will
therefore introduce a secondary coordinate system that is fixed with respect to
the shaft. The angular velocity vector we seek is the sum of the angular velocity
vector of the secondary coordinate system and the disk’s angular velocity vector
relative to the secondary coordinate system. The disk’s angular acceleration vec-
tor is given by Eq. (20.4).

Solution
We introduce the secondary coordinate system shown in Fig. a, which is fixed
with respect to the shaft. The angular velocity vector of the secondary coordi-
nate system relative to the earth-fixed reference frame is The disk’s
angular velocity vector relative to the secondary coordinate system is

Therefore, the angular velocity vector of the disk relative to the
earth-fixed reference frame is

Because and are constants, we find from Eq. (20.4) that the disk’s angu-
lar acceleration vector relative to the earth-fixed reference frame is

Critical Thinking
If the components of the disk’s angular velocity vector are constants, how can
the disk have an angular acceleration relative to the earth-fixed reference
frame? Remember that and are the components of expressed in terms
of the secondary coordinate system. In this example, the magnitude and direc-
tion of the vector are constant relative to the secondary coordinate system,
but rotates relative to the earth-fixed reference frame.!

!

!v0vd

" = # * ! = -v 0  

v
 d 

 k.

v0vd

! = # + !rel = vd i + v0  j.

!rel = vd i.

# = v0  j.
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Example 20.3 Angular Velocity and Angular Acceleration of a Rolling Disk
(! Related Problems 20.20–20.22)

The bent bar is rigidly attached to the vertical shaft, which rotates with con-
stant angular velocity The circular disk is pinned to the bent bar and rolls
on the horizontal surface.
(a) Determine the disk’s angular velocity vector and angular acceleration
vector 
(b) Determine the velocity of point P, which is the uppermost point of the cir-
cular disk, at the present instant.

Strategy
(a) In this example, the primary reference frame is fixed with respect to the
surface on which the disk rolls. To simplify our analysis of the disk’s angular
motion, we will use a secondary coordinate system that is fixed with respect to
the bent bar. By applying Eq. (20.1) to the bent bar, we will determine the ve-
locity of the center of the disk. We will determine the disk’s angular velocity
vector by recognizing that the velocity of the point of the disk in contact with
the horizontal surface is zero. We can then use Eq. (20.4) to determine the disk’s
angular acceleration vector.
(b) Knowing the velocity of the center of the disk and the disk’s angular ve-
locity vector, we can apply Eq. (20.1) to the disk to determine the velocity of
point P.

Solution
(a) Let the coordinate system in Fig. a be fixed with respect to the bent bar. The
x axis coincides with the horizontal part of the bar, and the y axis coincides with
the vertical shaft. The angular velocity vector of the bar and the angular ve-
locity vector of the coordinate system are equal:

Let point B be the stationary origin of the coordinate system, and let point A be
the center of the disk (Fig. a). The position vector of A relative to B is

From Eq. (20.1), the velocity of point A is

Because the coordinate system is fixed with respect to the bent bar, we
can write the angular velocity vector of the disk relative to the coordinate
system as (Fig. b)

!rel = vrel cos bi - vrel sin bj.

 = -v01h + b cos b2k.

 = 0 + 3 i j k
0 v0 0

h + b cos b -b sin b 0

3 vA = vB + !bar * rA>B
rA>B = 1h + b cos b2i - b sin bj.

!bar = " = v0  j.

"
!bar

#disk.
!disk

v0.

b

h

P

R

v0

b

Angular velocity
vector of the
bar and the

coordinate system

!bar ! "
b

x

h

y

R

A

B

v0

b

z

(a) A secondary coordinate system fixed to
the bent bar.

y

x

z

A

b

Angular velocity
vector of the disk

relative to the
coordinate system

P

C
vrel

vrel

" ! v0j

(b) Analyzing the motion of the disk.
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484 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Let point C in Fig. b be the point of the disk that is in contact with the surface. To
determine we use the condition The position of C relative to A is

Therefore,

Solving this equation for we obtain

The angular velocity vector of the coordinate system is so the disk’s
angular velocity vector is

Even though the components of are constants, we find from Eq. (20.4)
that the disk’s angular acceleration is not zero:

(b) The position vector of point P relative to the center of the disk is

Using Eq. (20.1) and our result for the velocity of the center of the disk, we
determine the velocity of point P:

Critical Thinking
In comparison to Example 20.2, this example was complicated by the fact that
we didn’t know the disk’s angular velocity relative to the bar. But we knew the
direction of its axis of rotation. Notice how we were able to use that informa-
tion and the fact that the velocity of point C of the disk in contact with the sur-
face is zero to determine That was the essential step in determining the
disk’s angular velocity vector relative to the primary reference frame.

vrel.

 = -2v01h + b cos b2k.

 = 3-v01h + b cos b + R sin b2 + vrel R4k
 = -v01h + b cos b2k + 3 i j k

vrel cos b v0 - vrel sin b 0
R sin b R cos b 0

3 vP = vA + !disk * rP>A
vA

rP>A = R sin bi + R cos bj.

 = -v 0 

v
 rel cos bk.

 "disk = # * !disk = 3 i j k
0 v0 0

vrel cos b v0 - vrel sin b 0

3!disk

!disk = # + !rel = vrel cos bi + 1v0 - vrel sin b2j.
# = v0  j,

vrel = -v0a h
R

+ b
R

 cos b - sin b b .

vrel,

 = -v01h + b cos b2k + 3 i j k
vrel cos b v0 - vrel sin b 0
-R sin b -R cos b 0

3 = 0.

 vC = vA + !disk * rC>A
rC>A = -R sin bi - R cos bj.

vC = 0.vrel,
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Problems
20.1 The airplane’s angular velocity relative to an earth-fixed
reference frame, expressed in terms of the body-fixed coordinate
system shown, is The coor-
dinates of point A of the airplane are What is
the velocity of point A relative to the velocity of the airplane’s
center of mass?

(3.6, 0.8, -1.2) m.
! = 0.62i + 0.45j - 0.23k (rad/s) .

20.3 The angular velocity of the cube relative to the primary ref-
erence frame, expressed in terms of the body-fixed coordinate sys-
tem shown, is The velocity of
the center of mass G of the cube relative to the primary reference
frame at the instant shown is What
is the velocity of point A of the cube relative to the primary refer-
ence frame at the instant shown?

20.4 The coordinate system shown is fixed with respect to
the cube. The angular velocity of the cube relative to the pri-
mary reference frame, is con-
stant. The acceleration of the center of mass G of the cube
relative to the primary reference frame at the instant shown is

What is the acceleration of
point A of the cube relative to the primary reference frame at
the instant shown?

20.5 The origin of the secondary coordinate system shown is
fixed to the center of mass G of the cube. The velocity of the cen-
ter of mass G of the cube relative to the primary reference frame
at the instant shown is The cube is
rotating relative to the secondary coordinate system with angular
velocity The secondary coordi-
nate system is rotating relative to the primary reference frame
with angular velocity 

(a) What is the velocity of point A of the cube relative to the pri-
mary reference frame at the instant shown?

(b) If the components of the vectors and are constant,
what is the cube’s angular acceleration relative to the primary ref-
erence frame?

æ!rel

æ = 2.2i + 4j - 3.6k (rad/s) .

!rel = 6.2i - 5j + 8.8k (rad/s) .

vG = 26i + 14j + 32k (m/s) .

aG = 136i + 76j - 48k (m/s2) .

! = -6.4i + 8.2j + 12k (rad/s),

vG = 26i + 14j + 32k (m/s) .

! = -6.4i + 8.2j + 12k (rad/s) .

A

x

y

z

Problem 20.1

2 m

x

AG

O

y

z

Primary reference
frame

Problems 20.3–20.5

! 20.2 In Active Example 20.1, suppose that the center of the
tire moves at a constant speed of 5 m/s as the car turns. (As a re-
sult, when the angular velocity of the tire relative to an earth-fixed
reference frame is expressed in terms of components in the
secondary reference frame, the compo-
nents and are constant.)  What is the angular accelera-
tion of the tire relative to an earth-fixed reference frame?"

vzvy,vx,
! = vxi + vy j + vz k,
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486 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.6 Relative to an earth-fixed reference frame, points A and B
of the rigid parallelepiped are fixed and it rotates about the axis
AB with an angular velocity of 30 rad/s. Determine the velocities
of points C and D relative to the earth-fixed reference frame.

20.7 Relative to the xyz coordinate system shown, points A and
B of the rigid parallelepiped are fixed and the parallelepiped
rotates about the axis AB with an angular velocity of 30 rad/s.
Relative to an earth-fixed reference frame, point A is fixed
and the xyz coordinate system rotates with angular velocity

Determine the velocities of points
C and D relative to the earth-fixed reference frame.

6k 1rad/s2.! = -5i + 8j +

20.8 Relative to an earth-fixed reference frame, the vertical shaft
rotates about its axis with angular velocity The sec-
ondary xyz coordinate system is fixed with respect to the shaft and
its origin is stationary. Relative to the secondary coordinate sys-
tem, the disk rotates with angular velocity

At the instant shown, determine the velocity of
point A (a) relative to the secondary reference frame, and (b) rela-
tive to the earth-fixed reference frame.

20.9 Relative to an earth-fixed reference frame, the vertical shaft
rotates about its axis with constant angular velocity 
The secondary xyz coordinate system is fixed with respect to the
shaft and its origin is stationary. Relative to the secondary coordi-
nate system, the disk rotates with constant angular
velocity 

(a) What is the angular acceleration of the disk relative to the
earth-fixed reference frame?

(b) At the instant shown, determine the acceleration of point A
relative to the earth-fixed reference frame.

vd = 6 rad/s .
(radius = 8 in)

v0 = 4 rad/s .

vd = 6 rad/s .
(radius = 8 in)

v0 = 4 rad/s .

vd

v0

x

A

z

y

45!

Problems 20.8/20.9

x

z

y

0.4 m

30 rad/s
0.2 mA

C

D
B

0.4 m

Problems 20.6/20.7
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v0

vd

x

z

y

R

P

3 ft

Problem 20.10

! 20.10 The radius of the disk is It is perpendicular to
the horizontal part of the shaft and rotates relative to it with con-
stant angular velocity Relative to an earth-fixed
reference frame, the shaft rotates about the vertical axis with con-
stant angular velocity 

(a) Determine the velocity relative to the earth-fixed reference
frame of point P, which is the uppermost point of the disk.

(b) Determine the disk’s angular acceleration vector relative to
the earth-fixed reference frame.

(See Example 20.2.)

!

v0 = 8 rad/s.

vd = 36 rad/s.

R = 2 ft.

xy

v0

u

Problems 20.11/12.12

20.11 The vertical shaft supporting the disk antenna is rotating
with a constant angular velocity The angle from
the horizontal to the antenna’s axis is at the instant shown and
is increasing at a constant rate of per second. The secondary
xyz coordinate system shown is fixed with respect to the dish. 

(a) What is the dish’s angular velocity relative to an earth-fixed
reference frame?

(b) Determine the velocity of the point of the antenna with coor-
dinates relative to an earth-fixed reference frame.

20.12 The vertical shaft supporting the disk antenna is rotating
with a constant angular velocity The angle from
the horizontal to the antenna’s axis is at the instant shown and
is increasing at a constant rate of per second. The secondary
xyz coordinate system shown is fixed with respect to the dish.  

(a) What is the dish’s angular acceleration relative to an earth-
fixed reference frame? 

(b) Determine the acceleration of the point of the antenna with
coordinates relative to an earth-fixed reference frame.(4, 0, 0) m

15°
30°

uv0 = 0.2 rad/s .

(4, 0, 0) m

15°
30°

uv0 = 0.2 rad/s .
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488 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.14 The object in Fig. a is supported by bearings at A and B in Fig. b. The horizontal circular disk is supported by a vertical shaft
that rotates with angular velocity The horizontal bar rotates with angular velocity At the instant shown,
what is the velocity relative to an earth-fixed reference frame of the end C of the vertical bar?

20.15 The object in Fig. a is supported by bearings at A and B in Fig. b. The horizontal circular disk is supported by a vertical shaft
that rotates with constant angular velocity The horizontal bar rotates with constant angular velocity 

(a) What is the angular acceleration of the object relative to an earth-fixed reference frame?

(b) At the instant shown, what is the acceleration relative to an earth-fixed reference frame of the end C of the vertical bar?

v = 10 rad/s .v0 = 6 rad/s .

v = 10 rad/s .v0 = 6 rad/s .

0.2 m 0.1 m

y

x

0.1 m

0.4 m

y

C

x

A

Bz

v

v0

(a)

(b)
Problems 20.14/20.15

20.13 The radius of the circular disk is and The disk rotates with angular velocity relative to the
horizontal bar. The horizontal bar rotates with angular velocity relative to the vertical shaft, and the vertical shaft rotates
with angular velocity relative to an earth-fixed reference frame. Assume that the secondary reference frame shown is fixed
with respect to the horizontal bar.

(a) What is the angular velocity vector of the disk relative to the secondary reference frame?

(b) Determine the velocity relative to the earth-fixed reference frame of point P, which is the uppermost point of the disk.

!rel

v 0 = 2 rad/s
v b = 4 rad/s

vd = 6 rad/sb = 0.3 m.R = 0.2 m,

vb

v0

vd

x

z

y

R

P

b

Problem 20.13
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20.16 Relative to a primary reference frame, the gyroscope’s 
circular frame rotates about the vertical axis at 2 rad/s. The 
60-mm diameter wheel rotates at 10 rad/s relative to the frame.
Determine the velocities of points A and B relative to the primary
reference frame.

20.17 Relative to a primary reference frame, the gyroscope’s cir-
cular frame rotates about the vertical axis with a constant angular
velocity of 2 rad/s. The 60-mm diameter wheel rotates with a con-
stant angular velocity of 10 rad/s relative to the frame. Determine
the accelerations of points A and B relative to the primary refer-
ence frame.

x

y

z

O

Problems 20.18/20.19

20.18 The point of the spinning top remains at a fixed point on
the floor, which is the origin O of the secondary reference frame
shown. The top’s angular velocity relative to the secondary ref-
erence frame, , is constant. The angular veloc-
ity of the secondary reference frame relative to an earth-fixed
primary reference frame is The compo-
nents of this vector are constants. (Notice that it is expressed in
terms of the secondary reference frame.) Determine the velocity
relative to the earth-fixed reference frame of the point of the top
with coordinates

20.19 The point of the spinning top remains at a fixed point on
the floor, which is the origin O of the secondary reference frame
shown. The top’s angular velocity relative to the secondary refer-
ence frame, , is constant. The angular velocity
of the secondary reference frame relative to an earth-fixed pri-
mary reference frame is The components
of this vector are constants. (Notice that it is expressed in terms of
the secondary reference frame.) 

(a) What is the top’s angular acceleration relative to the earth-
fixed reference frame?

(b) Determine the acceleration relative to the earth-fixed reference
frame of the point of the top with coordinates (0, 20, 30) mm.

æ = 2j + 5.6k (rad/s) .

!rel = 50k (rad/s)

(0, 20, 30) mm.

æ = 2j + 5.6k (rad/s) .

!rel = 50k (rad/s)

10
rad/sz

A

B

x

2 rad/s

y

20!

80 mm

60 mm
Frame

Wheel

Problems 20.16/20.17
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! 20.20* The cone rolls on the horizontal surface, which is fixed
with respect to an earth-fixed reference frame. The x axis of the
secondary reference frame remains coincident with the cone’s axis,
and the z axis remains horizontal. As the cone rolls, the z axis ro-
tates in the horizontal plane with an angular velocity of 2 rad/s.

(a) What is the angular velocity vector of the secondary refer-
ence frame?

(b) What is the angular velocity vector of the cone relative to
the secondary reference frame?

(See Example 20.3.)

Strategy: To solve part (b), use the fact that the velocity rela-
tive to the earth-fixed reference frame of points of the cone in
contact with the surface is zero.

! 20.21* The cone rolls on the horizontal surface, which is
fixed with respect to an earth-fixed reference frame. The x axis of
the secondary reference frame remains coincident with the cone’s
axis, and the z axis remains horizontal. As the cone rolls, the z axis
rotates in the horizontal plane with an angular velocity of 2 rad/s.
Determine the velocity relative to the earth-fixed reference frame
of the point of the base of the cone with coordinates

(See Example 20.3.)

! 20.22* The cone rolls on the horizontal surface, which is
fixed with respect to an earth-fixed reference frame. The x axis
of the secondary reference frame remains coincident with the
cone’s axis, and the z axis remains horizontal. As the cone rolls,
the z axis rotates in the horizontal plane with a constant angular
velocity of 2 rad/s. Determine the acceleration relative to the
earth-fixed reference frame of the point of the base of the cone
with coordinates (See
Example 20.3.)

x = 0.4 m, y = 0, and z = 0.2 m.

x = 0.4 m, y = 0, and z = 0.2 m.

!rel

"

20.23* The radius and length of the cylinder are and
The horizontal surface is fixed with respect to an earth-

fixed reference frame. One end of the cylinder rolls on the surface
while its center, the origin of the secondary reference frame, remains
stationary. The angle The z axis of the secondary reference
frame remains coincident with the cylinder’s axis, and the y axis
remains horizontal. As the cylinder rolls, the y axis rotates in a
horizontal plane with angular velocity 

(a) What is the angular velocity vector of the secondary
reference frame?

(b) What is the angular velocity vector of the cylinder
relative to the secondary reference frame?

20.24* The radius and length of the cylinder are 
and The horizontal surface is fixed with respect to
an earth-fixed reference frame. One end of the cylinder rolls on
the surface while its center, the origin of the secondary refer-
ence frame, remains stationary. The angle The z axis
of the secondary reference frame remains coincident with the
cylinder’s axis, and the y axis remains horizontal. As the cylin-
der rolls, the y axis rotates in a horizontal plane with angular
velocity Determine the velocity relative to the
earth-fixed reference frame of the point of the upper end of the
cylinder with coordinates x = 0.1 m, y = 0, and z = 0.2 m.

v0 = 2 rad/s.

b = 45°.

l = 0.4 m.
R = 0.1 m

!rel

"

v0 = 2 rad/s.

b = 45°.

l = 0.4 m.
R = 0.1 m

x

y

z

v0

b

l
R

Problems 20.23/20.24

z

y

0.4 m

x

2 rad/s

0.2 m

Problems 20.20–20.22
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20.2 Euler’s Equations 491

20.25* The landing gear of the P-40 airplane used in World 
War II retracts by rotating 90° about the horizontal axis toward the
rear of the airplane. As the wheel retracts, a linkage rotates the
strut supporting the wheel 90° about the strut’s longitudinal axis
so that the wheel is horizontal in the retracted position. (Viewed
from the horizontal axis toward the wheel, the strut rotates in the
clockwise direction.) The x axis of the coordinate system shown
remains parallel to the horizontal axis and the y axis remains par-
allel to the strut as the wheel retracts. Let be the magnitude of
the wheel’s angular velocity when the airplane lifts off, and as-
sume that it remains constant. Let be the magnitude of the con-
stant angular velocity of the strut about the horizontal axis as the
landing gear is retracted. The magnitude of the angular velocity of
the strut about its longitudinal axis also equals The landing
gear begins retracting at Determine the wheel’s angular 
velocity vector relative to the airplane as a function of time.

t = 0.
v0.

v0

vW

vW

x

z

y

Retracted
position

y

x

Horizontal
axis

Strut

Deployed
position

z

Problem 20.25

20.2 Euler’s Equations

BACKGROUND
The three-dimensional equations of motion for a rigid body are called Euler’s
equations. They consist of Newton’s second law,

(20.6)

which states that the sum of the external forces on a rigid body equals the prod-
uct of its mass and the acceleration of its center of mass, and equations of an-
gular motion. In deriving the equations of angular motion, we consider first the
special case of rotation of a rigid body about a fixed point and then general
three-dimensional motion of a rigid body.

Rotation about a Fixed Point
Let be the mass of the ith particle of a rigid body, and let be its position
relative to a point O that is fixed with respect to an inertial primary reference
frame (Fig. 20.5). In Section 18.1, we showed that for an arbitrary system of par-
ticles, the sum of the moments about O equals the rate of change of the total an-
gular momentum about O:

(20.7)

where the total angular momentum is

If the rigid body rotates about O with angular velocity the velocity of the ith
particle is and the angular momentum is

(20.8)HO = a
i

ri * mi1! * ri2.
dri>dt = ! * ri,

!,

HO = a
i

ri * mi 

dri

dt
.

©MO =
dHO

dt
,

rimi

©F = ma,

mi

ri

O

Figure 20.5
Mass and position of the ith particle
of a rigid body.

BEDFMC20_0136129161.QXD  6/20/07  6:56 PM  Page 491



492 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

ri

O

(xi, yi, zi)
y

x

z

!

Figure 20.6
Secondary coordinate system with its
origin at O.

In Fig. 20.6, we introduce a secondary coordinate system with its origin at O.
We express the vectors and in terms of their components in this coordinate
system as

and

where are the coordinates of the ith particle. Substituting these
expressions into Eq. (20.8) and evaluating the cross products, we can write the
resulting components of the angular momentum vector in the forms

(20.9)

The coefficients

(20.10)

are called the moments of inertia about the x, y, and z axes, and the coefficients

(20.11)

are called the products of inertia. (Evaluation of the moments and products of
inertia is discussed in the appendix to this chapter.)

Ixz = Izx = a
i

mi xi zi

Iyz = Izy = a
i

mi yi zi,

Ixy = Iyx = a
i

mi xi yi,

 Izz = a
i

mi1xi
2 + yi

22
 Iyy = a

i
mi1xi

2 + z i
22,

 Ixx = a
i

mi1yi
2 + z i

22,
HOz = -Izx vx - Izy vy + Izz vz.

 HOy = -Iyx vx + Iyy vy - Iyz vz,

 HOx = Ixx vx - Ixy vy - Ixz vz,

1xi, yi, zi2ri = xi i + yi  j + zi k,

! = vx i + vy  j + vz k

ri!
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20.2 Euler’s Equations 493

To obtain the equations of angular motion, we must substitute the compo-
nents of the angular momentum given by Eqs. (20.9) into Eq. (20.7). The sec-
ondary coordinate system in which these components are expressed is usually
chosen to be body fixed, so it rotates relative to the primary reference frame
with the angular velocity of the rigid body. However, we have seen in the pre-
vious section that in some situations it is convenient to use a secondary coor-
dinate system that rotates, but is not body fixed. We denote the secondary
coordinate system’s angular velocity vector by where if the coor-
dinate system is body fixed. Expressing the angular momentum vector in terms
of its components as

we obtain the derivative of with respect to time:

Using this expression and writing the time derivatives of the unit vectors in
terms of the angular velocity of the coordinate system,

we can write Eq. (20.7) as

Substituting the components of from Eq. (20.9) into this equation, we ob-
tain the equations of angular motion (see Problem 20.60):

(20.12)

 + !x1-Iyxvx + Iyyvy - Iyzvz2. - !y1Ixxvx - Ixyvy - Ixzvz2 ©MOz = -Izx 

dvx

dt
- Izy 

dvy

dt
+ Izz 

dvz

dt

 - !x1-Izxvx - Izyvy + Izzvz2, + !z1Ixxvx - Ixyvy - Ixzvz2 ©MOy = -Iyx 

dvx

dt
+ Iyy 

dvy

dt
- Iyz 

dvz

dt

 + !y1-Izxvx - Izyvy + Izzvz2, - !z1-Iyxvx + Iyyvy - Iyzvz2 ©MOx = Ixx 

dvx

dt
- Ixy 

dvy

dt
- Ixz 

dvz

dt

HO

©MO =
dHOx

dt
 i +

dHOy

dt
 j +

dHOz

dt
 k + ! * HO.

di
dt

= ! * i, dj
dt

= ! * j, dk
dt

= ! * k,

!

dHO

dt
=

dHOx

dt
 i + HOx 

di
dt

+
dHOy

dt
 j + HOy 

dj
dt

+
dHOz

dt
 k + HOz 

dk
dt

.

HO

HO = HOx i + HOy   j + HOz k,

! = "!,

"
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494 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

In carrying out this final step, we have assumed that the moments and products
of inertia are constants. This is so when the secondary reference frame is body
fixed, but must be confirmed when it is not. Equations (20.12) can be written
as the matrix equation

(20.13)

where

(20.14)

is called the inertia matrix of the rigid body.

General Three-Dimensional Motion
Let be the position of the ith particle of a rigid body relative to the center
of mass of the body (Fig. 20.7). In Section 18.1, we showed that the sum of the
moments about the center of mass equals the rate of change of the total angu-
lar momentum of the body relative to its center of mass; that is,

(20.15)

where the total angular momentum is

In terms of the rigid body’s angular velocity the velocity of the ith particle
is and the angular momentum is

(20.16)H = a
i

Ri * mi1! * Ri2.dRi>dt = ! * Ri,
!,

H = a
i

Ri * mi 

dRi

dt
.

©M = dH
dt

,

Ri

C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S = 3I4

+ C 0 -!z !y

!z 0 -!x

-!y !x 0
S C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cvx

vy

vz

S ,

C©MOx

©MOy

©MOz

S = C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cdvx>dt
dvy>dt
dvz>dt

S

mi

R i

!

Figure 20.7
Position of the ith particle of a rigid
body relative to the center of mass of
the body.
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(xi, yi, zi)

R i

y

x

z !

Figure 20.8
Coordinate system with its origin at
the center of mass of the body.

We introduce a secondary coordinate system with its origin at the center of mass
(Fig. 20.8) and express the vectors and in terms of their components in this
coordinate system as

and

Substituting these expressions into Eq. (20.16) and evaluating the cross prod-
ucts, we obtain the components of the angular momentum vector in the forms

(20.17)

and

where the expressions for the moments and products of inertia are again given
by Eqs. (20.10) and (20.11). Denoting the coordinate system’s angular velocity
vector by and following the same steps we used to obtain Eqs. (20.12), we
obtain the equations of angular motion,

(20.18)

 + !x1-Iyxvx + Iyyvy - Iyzvz2, - !y1Ixxvx - Ixyvy - Ixzvz2 ©Mz = -Izx 

dvx

dt
- Izy 

dvy

dt
+ Izz 

dvz

dt

 - !x1-Izxvx - Izyvy + Izzvz2, + !z1Ixxvx - Ixyvy - Ixzvz2 ©My = -Iyx 

dvx

dt
+ Iyy 

dvy

dt
- Iyz 

dvz

dt

 + !y1-Izxvx - Izyvy + Izzvz2, - !z1-Iyxvx + Iyyvy - Iyzvz2 ©Mx = Ixx 

dvx

dt
- Ixy 

dvy

dt
- Ixz 

dvz

dt

",

Hz = -Izx vx - Izy vy + Izz vz,

 Hy = -Iyx vx + Iyy vy - Iyz vz,

 Hx = Ixx vx - Ixy vy - Ixz vz,

Ri = xi  i + yi  j + z i  k.

! = vx  i + vy  j + vz k

Ri!
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496 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

which we can write as the matrix equation

(20.19)

We have obtained equations that are identical in form to the equations of angular
motion for rotation about a fixed point. Equations (20.12) and (20.13) are ex-
pressed in terms of the total moment about a fixed point O about which the
rigid body rotates, and the moments and products of inertia and the components
of the vectors are expressed in terms of a coordinate system with its origin at
O. Equations (20.18) and (20.19) are expressed in terms of the total moment
about the center of mass of the body, and the moments and products of inertia
and the components of the vectors are expressed in terms of a coordinate sys-
tem with its origin at the center of mass.

If the secondary coordinate system used to apply Eqs. (20.12), (20.13),
(20.18), and (20.19) is body fixed, the terms and are
the components of the rigid body’s angular acceleration But this is not gen-
erally the case if the secondary coordinate system rotates but is not body fixed.
[See Eq. (20.4).]

Equations of Planar Motion
Here we demonstrate how the equations of angular motion for a rigid body in
planar motion can be obtained from the three-dimensional equations. Consider
a rigid body that rotates about a fixed axis We introduce a body-fixed
secondary coordinate system with the z axis aligned with so that the
rigid body’s angular velocity vector is (Fig. 20.9). Substituting

and into Eqs. (20.12), we find that
the third equation reduces to Introducing the simpler
notation and we obtain

(20.20)

This is the equation we used in Chapter 18 to analyze the rotation of a rigid
body about a fixed axis. [See Eq. (18.17).] The total moment about the fixed axis
equals the product of the moment of inertia about the fixed axis and the angu-
lar acceleration.

©MO = IO 
dv
dt

.

vz = v,©MOz = ©MO, Izz = IO,
©MOz = Izz1dvz>dt2.!z = vz!x = vx = 0, !y = vy = 0,

! = vz k
LO,

LO.

".
dvz>dtdvx>dt, dvy>dt,

+ C 0 -!z !y

!z 0 -!x

-!y !x 0
S C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cvx

vy

vz

S .

C©Mx

©My

©Mz

S = C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cdvx>dt
dvy>dt
dvz>dt

S

y

xz
LO

!

Figure 20.9
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y

xz

Plane of
the motion

!

Figure 20.10

Rotation About a Fixed Point

For general planar motion, we introduce a body-fixed secondary coordinate
system with its origin at the center of mass of the body and the z axis perpen-
dicular to the plane of the motion (Fig. 20.10). The rigid body’s angular velocity
vector is Substituting and 
into Eqs. (20.18), the third equation reduces to With the
notation and we obtain

(20.21)

This is the equation of angular motion we used in Chapter 18 to analyze the
general planar motion of a rigid body. [See Eq. (18.20).] The total moment about
the center of mass of the body equals the product of the moment of inertia about
the center of mass and the angular acceleration. (The term I is the moment of
inertia about the axis through the center of mass that is perpendicular to the
plane of the motion.)

RESULTS
The three-dimensional equations of motion for a rigid body are called Euler’s
equations. They consist of Newton’s second law and equations of angular
motion.

Newton’s Second Law

©M = I 
dv
dt

.

vz = v,©Mz = ©M, Izz = I,
©Mz = Izz1dvz>dt2.!z = vz!x = vx = 0, !y = vy = 0,! = vz k.

The sum of the external forces on a rigid
body is equal to the product of its mass and
the acceleration of its center of mass relative
to an inertial reference frame.

!F " ma.             (20.6)

Consider a rigid body constrained to rotate
about a point O that is fixed relative to an
inertial reference frame. The secondary xyz
coordinate system has its origin at O. ! is
the angular velocity vector of the rigid body
relative to the inertial reference frame, and
" is the angular velocity vector of the xyz
coordinate system relative to the inertial
reference frame. If the xyz coordinate
system is body-fixed, " " !.

O
x

y

z

!
"
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498 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

General Three-Dimensional Motion

Consider a rigid body in general three-dimensional
motion relative to an inertial reference frame. The
secondary xyz coordinate system has its origin at the
center of mass. ! is the angular velocity vector of the
rigid body relative to the inertial reference frame, and
" is the angular velocity vector of the xyz coordinate
system relative to the inertial reference frame. If the
xyz coordinate system is body-fixed, " ! !.

y

x

z

!"

Equations (20.12) can be written as a matrix equation.

"MOx

!"MOy

"MOz

Ixx

#Iyx

#Izx

#Ixy

Iyy

#Izy

#Ixz

#Iyz

Izz

Ixx

#Iyx

#Izx

#Ixy

Iyy

#Izy

#Ixz

#Iyz

Izz

v x

v y

v z

Ixx

#Iyx

#Izx

#Ixy

Iyy

#Izy

#Ixz

#Iyz

Izz

$ ,        (20.13)

! [I ]                       (20.14)

where

is the inertia matrix of the rigid body.

0

V z

#V y

#V z

0

V x

V y

#V x

0

dv x/dt

dv y/dt

dv z/dt

Equations of angular motion. The terms "MOx,
"MOy, and "MOz are the components of the
total external moment about point O acting on
the rigid body. The terms Ixx, Iyy, and Izz are the
moments of inertia of the rigid body about the
x, y, and z axes, and the terms Ixy ! Iyx, Iyz ! Izy,
and Izx ! Ixz are the products of inertia.

(20.12)

dvx

dt
"MOx ! Ixx

# V z(#Iyxvx $ Iyyvy # Iyzvz)

$ V y(#Izxvx # Izyvy $ Izzvz),

dvy

dt# Ixy
dvz

dt
# Ixz

dvx

dt
"MOy ! #Iyx

$ V z(Ixxvx # Ixyvy # Ixzvz)

# V x(#Izxvx # Izyvy $ Izzvz),

dvy

dt$ Iyy
dvz

dt
# Iyz

dvx

dt
"MOz ! #Izx

# V y(Ixxv x # Ix yv y # Ixzv z )

$ V x(#Iyxv x $ Iyyv y # Iyzvz ).

dvy

dt# Izy
dvz

dt
$ Izz
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20.2 Euler’s Equations 499

Equations of angular motion. The terms !Mx,
!My, and !Mz are the components of the
total external moment about the center of mass
of the rigid body.

(20.18)

dvx

dt
!Mx " Ixx

# V z(#Iyxvx $ Iyyvy # Iyzvz)

$ V y(#Izxvx # Izyvy $ Izzvz),

dvy

dt# Ixy
dvz

dt
# Ixz

dvx

dt
!My " #Iyx

$ V z(Ixxvx # Ixyvy # Ixzvz)

# V x(#Izxvx # Izyvy $ Izzvz),

dvy

dt$ Iyy
dvz

dt
# Iyz

dvx

dt
!Mz " #Izx

# V y(Ixxvx # Ixyvy # Ixzvz)

$ V x(#Iyxvx $ Iyyvy # Iyzvz).

dvy

dt# Izy
dvz

dt
$ Izz

Equations (20.18) can be written as a matrix equation.

!Mx

"!My

!Mz

Ixx

#Iyx

#Izx

#Ixy

Iyy

#Izy

#Ixz

#Iyz

Izz

Ixx

#Iyx

#Izx

#Ixy

Iyy

#Izy

#Ixz

#Iyz

Izz

v x

v y

v z

$ ,      (20.19)

0

V z

#V y

#V z

0

V x

V y

#V x

0

dv x/dt

dv y/dt

dv z/dt

Using the Euler equations to
analyze three-dimensional
motions of rigid bodies
typically requires three steps.

1.  Choose a coordinate system. If an object rotates about
     a fixed point O, it is usually preferable to use a secondary
     coordinate system with its origin at O and express the
     equations of angular motion in the forms given by Eqs.
     (20.12). Otherwise, it is necessary to use a secondary
     coordinate system with its origin at the center of mass
     and express the equations of angular motion in the forms
     given by Eqs. (20.18). In either case, it is usually
     convenient to choose a coordinate system that simplifies
     the determination of the moments and products of inertia.
     Except for certain applications involving symmetric
     objects, a body-fixed coordinate system must be used
     so that the moments and products of inertia will be
     constant.

3.  Apply the equations of motion. Use Euler’s equations to
     relate the forces and couples acting on the object to the
     acceleration of the center of mass and the angular
     acceleration.

2.  Draw the free-body diagram. Isolate the object and
     identify the external forces and couples acting on it.
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500 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Active Example 20.4 Three-Dimensional Dynamics of a Bar (! Related Problem 20.26)

The vertical slender bar of mass m is rigidly attached to the horizontal disk. The
disk is attached to a vertical shaft that is rotating with constant angular velocity

Determine the force and couple exerted on the bar by the disk.

Strategy
The external forces and couples acting on the bar are its weight and the force
and couple exerted on it by the disk. We know the bar’s angular velocity and
angular acceleration, and we can determine the acceleration of its center of
mass. So we can apply the Euler equations to determine the total force and
couple exerted on the bar.

Solution
Choose a Coordinate System

v0.

v0

l

b

The coordinate system is body-fixed,
and its origin is at the center of mass of
the bar. The y axis points upward. The
x axis points radially outward from the
axis of rotation of the disk.

y

b

v0

z

x

The bar is subjected to its weight and
the force F and couple C exerted by the
disk.

y

b

mg
z

F
C

x

Apply Newton’s Second Law

Draw the Free-Body Diagram

As the disk rotates with constant angular velocity
v0, the center of mass of the bar moves in a circular
path with radius b. As a result, the center of mass
has a normal component of acceleration !bv2

0i.

"F # ma:

F ! mg j # m(!bv2
0 i).

F # !mbv2
0 i $ mg j.

The force exerted on the bar by the disk is
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20.2 Euler’s Equations 501

Apply the Equation of Angular Motion

The total moment about the center of mass of the
bar is the sum of the couple C and the moment
about the center of mass due to F.

!M " C #

i j k

0 0

$mbv2
0 mg 0

$ l1
2

1
2" C $ mlbv2

0k.

Moments and products of inertia for a slender bar
in terms of the xyz coordinate system.

"

Ixx

$Iyx

$Izx

$Ixy

Iyy

$Izy

$Ixz

$Iyz

Izz

0

0

0

0

0

0

0

ml2

ml2

1
12

1
12

Apply Eqs. (20.18) with v x " V x " 0,
v y " V y " v0, and v z " V z " 0.

dvx

dt
!Mx " Ixx

$ V z($Iyxvx # Iyyvy $ Iyzvz)

# V y($Izxvx $ Izyvy # Izzvz):

Cx " 0.

Cy " 0.

Cz $

The couple exerted on the bar by the disk is

dvy

dt$ Ixy
dvz

dt
$ Ixz

dvx

dt
!My " $Iyx

# V z(Ixxvx $ Ixyvy $ Ixzvz)

$ V x($Izxvx $ Izyvy # Izzvz):

dvy

dt# Iyy
dvz

dt
$ Iyz

dvx

dt
!Mz " $Izx

$ V y(Ixxvx $ Ixyvy $ Ixzvz)

# V x($Iyxvx # Iyyvy $ Iyzvz):

dvy

dt$ Izy
dvz

dt
# Izz

mlbv2
0 " 0.

C " mlbv2
0k.1

2

1
2

Practice Problem The bar can be regarded as rotating about any given point on the
fixed axis of rotation of the disk. The origin O of the body-fixed coordinate system
shown is located on the axis of rotation of the disk and the y axis points upward. The mo-
ments and products of inertia of the bar in terms of this coordinate system are

Use Newton’s second law and Eqs. (20.12) to determine the force and couple exerted on
the bar by the disk.

Answer: F = -mbv0
2i + mgj, C = 1

2mlbv0
2k.

C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S = C 1
3ml2 - 1

2mlb 0
- 1

2mlb mb2 0
0 0 1

3ml2 + mb2
S .

y

v0

x

z

O
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502 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Example 20.5 Three-Dimensional Dynamics of a Plate (! Related Problem 20.27)

During an assembly process, the 4-kg rectangular plate is held at O by a robotic
manipulator. Point O is stationary. At the instant shown, the plate is horizontal,
its angular velocity vector is and its angular acceleration
vector is Determine the couple exerted on the plate by
the manipulator.

! = -10i + 6j 1rad/s22." = 4i - 2j 1rad/s2,
z

O

x

y

150 mm
150 mm

300 mm

300 mm

Strategy
The plate rotates about the fixed point O, so we can use Eq. (20.13) to determine
the total moment exerted on the plate about O.

Solution
Draw the Free-Body Diagram We denote the force and couple exerted on the
plate by the manipulator by F and C (Fig. a).

Apply the Equations of Motion The total moment about O is the sum of the
couple exerted by the manipulator and the moment about O due to the plate’s weight:

(1)

To obtain the unknown couple C, we can determine the total moment about O
from Eq. (20.13).

 = C - 11.77i + 5.89j 1N-m2. ©MO = C + 10.15i + 0.30j2 * 3-14219.812k4

z

(4)(9.81) N

O

x

y
F

C

300 mm

150 mm

(a) Free-body diagram of the plate.
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20.2 Euler’s Equations 503

We let the secondary coordinate system be body fixed, so its angular
velocity equals the plate’s angular velocity We determine the plate’s inertia
matrix in Example 20.9, obtaining

Therefore, the total moment about O exerted on the plate isC©MOx

©MOy

©MOz

S = C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cdvx>dt
dvy>dt
dvz>dt

S
3I4 = C 0.48 -0.18 0

-0.18 0.12 0
0 0 0.6

S  kg-m2.

!."

We substitute this result into Eq. (1) to get

and solve for the couple C:

Critical Thinking
Notice that we specified the angular velocity and angular acceleration of the plate
and used the equations of angular motion to determine the couple exerted on the
plate. In this chapter, we will discuss many examples in which an object’s motion
is specified and Euler’s equations are used to determine the forces and couples act-
ing on the object. The inverse problem, determining an object’s three-dimension-
al motion when the forces and couples acting on it are known, is more difficult and
must usually be solved by numerical methods.

C = 5.89i - 3.37j + 0.72k 1N-m2.
©MO = C - 11.77i + 5.89j = -5.88i + 2.52j + 0.72k,

= C -5.88
2.52
0.72

S  N-m.

+ C0 0 -2
0 0 -4
2 4 0

S C 0.48 -0.18 0
-0.18 0.12 0

0 0 0.6
S C 4

-2
0
S= C 0.48 -0.18 0

-0.18 0.12 0
0 0 0.6

S C -10
6
0
S

+ C 0 -vz vy

vz 0 -vx

-vy vx 0
S C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cvx

vy

vz

S
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504 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Example 20.6 Three-Dimensional Dynamics of a Tilted Cylinder (! Related Problem 20.55, 20.56)

The tilted homogeneous cylinder undergoes a steady motion in which one end
rolls on the floor while the center of mass of the cylinder remains stationary.
The angle between the cylinder axis and the horizontal remains constant, and
the cylinder axis rotates about the vertical axis with constant angular velocity 
The cylinder has mass m, radius R, and length l. What is 

Strategy
By expressing the equations of angular motion in terms of we can determine
the value of necessary for the equations to be satisfied. Therefore, our first
task is to determine the cylinder’s angular velocity in terms of We can sim-
plify this task by using a secondary coordinate system that is not body fixed.

Solution
Choose a Coordinate System We use a secondary coordinate system in which
the z axis remains aligned with the cylinder axis and the y axis remains horizontal
(Fig. a). The reason for this choice is that the angular velocity of the coordinate
system is easy to describe—the coordinate system rotates about the vertical axis
with the angular velocity —and the rotation of the cylinder relative to the
coordinate system is also easy to describe. The angular velocity vector of the
coordinate system is

Relative to the coordinate system, the cylinder rotates about the z axis. Writing
its angular velocity vector relative to the coordinate system as we
express the angular velocity vector of the cylinder as

We can determine from the condition that the velocity of the point P in
contact with the floor is zero. Expressing the velocity of P in terms of the
velocity of the center of mass C, we obtain

Solving for yields

Therefore, the cylinder’s angular velocity vector is

! = v0 cos bi + 1
2 a l

R
bv0 cos bk.

vrel = c 12 a l
R
b  cos b - sin b dv0.

vrel

 = C 12 lv0 cos b - R1v0 sin b + vrel2 D  j. 0 = 0 + 3v0 cos bi + 1v0 sin b + vrel2k4 * 3-Ri - 1
2 lk4 vP = vC + ! * rP>C:

vrel

! = " + vrel k = v0 cos bi + 1v0 sin b + vrel2k.

vrel k,

" = v0 cos bi + v0 sin bk.

v0

v0.!
v0

v0,

v0?
v0.

b

R

v0

b

l

N 

zx

P

C

mg

v0

b

(a) Coordinate system with the z
axis aligned with the cylinder
axis and the y axis horizontal.
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R
v

 /
g

2 0 0

0 10! 20! 30! 40! 50! 60! 70! 80! 90!

"5
"10
"15
"20
"25

5
10
15
20
25

b

Draw the Free-Body Diagram We draw the free-body diagram of the cylin-
der in Fig. a, showing the weight of the cylinder and the normal force exerted
by the floor. Because the cylinder’s center of mass is stationary, the floor exerts
no horizontal force on the cylinder, and the normal force is 

Apply the Equations of Motion The moment about the center of mass due
to the normal force is

From Appendix C, the moments and products of inertia are

Although the coordinate system we are using is not body fixed, notice the
moments and products of inertia are constant due to the symmetry of the cylin-
der. Substituting our expressions for and the moments and prod-
ucts of inertia into the equation of angular motion, Eq. (20.19), and evaluating
the matrix products, we obtain the equation

We solve this equation for 

(1)

Critical Thinking
If our solution yields a negative value for for a given value of the
assumed steady motion of the cylinder is not possible. For example, if the
cylinder’s diameter is equal to its length we can write Eq. (1) as

The figure shows the graph of this equation as a function of For values of
from approximately 40° to 45°, there is no real solution for v0.b

b.

Rv2
0

g
=

sin b - cos b
7
12 sin b cos b - 1

2 cos2b
.

12R = l2, b,v0
2

v0
2 =

g AR sin b - 1
2 l cos b BA 14 R2 + 1

12 l2 B  sin b cos b - 1
4 lR cos2 b

.

v0
2:

 - 1
2 A 12 mR2 Bv0

2
 a l

R
b  cos2 b.

 mg AR sin b - 1
2 l cos b B = A 14 mR2 + 1

12 ml2 Bv0
2 sin b cos b

Æ, !, ©M,

C 1
4 mR2 + 1

12 ml2 0 0
0 1

4 mR2 + 1
12 ml2 0

0 0 1
2 mR2

S .

©M = AmgR sin b - 1
2 mgl cos b B j.

N = mg.
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506 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

! 20.26 In Active Example 20.4, suppose that the shaft support-
ing the disk is initially stationary, and at it is subjected to
a constant angular acceleration in the counterclockwise direc-
tion viewed from above the disk. Determine the force and couple
exerted on the bar by the disk at that instant.

! 20.27 In Example 20.5, suppose that the horizontal plate is ini-
tially stationary, and at the robotic manipulator exerts a cou-
ple C on the plate at the fixed point O such that the plate’s angular
acceleration at that instant is .
Determine C.

20.28 A robotic manipulator moves a casting. The inertia matrix
of the casting in terms of a body-fixed coordinate system with
its origin at the center of mass is shown. At the present instant,
the angular velocity and angular acceleration of the casting are

and 
What moment is exerted about the center of mass

of the casting by the manipulator?

20.29 A robotic manipulator holds a casting. The inertia matrix of
the casting in terms of a body-fixed coordinate system with its ori-
gin at the center of mass is shown. At the present instant, the cast-
ing is stationary. If the manipulator exerts a moment 

about the center of mass, what
is the angular acceleration of the casting at that instant?
0.042i + 0.036j + 0.066k 1N-m2 ©M =

0.13k 1rad/s22. ! = 0.26i - 0.07j +" = 1.2i + 0.8j - 0.4k 1rad/s2

! = 150i + 320j + 25k (rad/s2)

t = 0

a0

t = 0
20.30 The rigid body rotates about the fixed point O. Its inertia
matrix in terms of the body-fixed coordinate system is shown.
At the present instant, the rigid body’s angular velocity is 

and its angular acceleration is zero. What
total moment about O is being exerted on the rigid body?

20.31 The rigid body rotates about the fixed point O. Its inertia
matrix in terms of the body-fixed coordinate system is shown.
At the present instant, the rigid body’s angular velocity is 

The total moment about O due to the
forces and couples acting on the rigid body is zero. What is its
angular acceleration?

6 i + 6 j - 4k 1rad/s2. " =

6 i + 6 j - 4k 1rad/s2 " =

Problems

xy

Ixx !Ixy !Ixz
!Iyx Iyy !Iyz
!Izx !Izy Izz

0.05 !0.03 0
!0.03 0.08 0

0 0 0.04
" kg-m2.

Problems 20.28/20.29

20.32 The dimensions of the 20-kg thin plate are and
The plate is stationary relative to an inertial reference

frame when the force is applied in the direction per-
pendicular to the plate. No other forces or couples act on the plate.
At the instant F is applied, what is the magnitude of the accelera-
tion of point A relative to the inertial reference frame?

F = 10 N
b = 0.6 m.

h = 0.4 m

y

z

O

x

Ixx !Ixy !Ixz
!Iyx Iyy !Iyz
!Izx !Izy Izz

4 !2 0
!2 3 1

0 1 5
" slug-ft2.

Problems 20.30/20.31

F

b

h

A

Problem 20.32
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20.33 In terms of the coordinate system shown, the inertia
matrix of the 6-kg slender bar is

The bar is stationary relative to an inertial reference frame when
the force is applied at the right end of the bar. No
other forces or couples act on the bar. Determine (a) the bar’s
angular acceleration relative to the inertial reference frame and 
(b) the acceleration of the right end of the bar relative to the
inertial reference frame at the instant the force is applied.

F = 12k 1N2
C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S = C0.500 0.667 0
0.667 2.667 0

0 0 3.167
S  kg-m2.

20.34 In terms of the coordinate system shown, the inertia ma-
trix of the 12-kg slender bar is

The bar is stationary relative to an inertial reference frame when a
force is applied at the point 

No other forces or couples act on the bar. Determine 
(a) the bar’s angular acceleration and (b) the acceleration of the
point relative to the inertial reference
frame at the instant the force is applied.

x = -1 m, y = -1 m,

 y = 1 m.
x = 1 m,F = 20 i + 40k 1N2

C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S = C 2 -3 0
-3 8 0

0 0 10
S  kg-m2.

x

y

1 m

2 m

Problem 20.33

y

x

z

1 m

1 m

1 m

1 m

Problem 20.34

20.35 The inertia matrix of the 2.4-kg plate in terms of the given
coordinate system is shown. The angular velocity vector of the
plate is and its angular accelera-
tion vector is What are the
components of the total moment exerted on the plate about its
center of mass?

20.36 The inertia matrix of the 2.4-kg plate in terms of the given
coordinate system is shown. At the plate is stationary and is
subjected to a force at the point with coordinates 
(220, 0, 0) mm. No other forces or couples act on the plate. Deter-
mine (a) the acceleration of the plate’s center of mass and (b) the
plate’s angular acceleration at the instant the force is applied.

F = -10k 1N2t = 0,

! = 60i + 40j - 120k 1rad/s22." = 6.4i + 8.2j + 14k 1rad/s2,

20.37 A 3-kg slender bar is rigidly attached to a 2-kg thin cir-
cular disk. In terms of the body-fixed coordinate system shown,
the angular velocity vector of the composite object is 

and its angular acceleration is zero.
What are the components of the total moment exerted on the
object about its center of mass?

20.38 A 3-kg slender bar is rigidly attached to a 2-kg thin circu-
lar disk. At the composite object is stationary and is sub-
jected to the moment about its center
of mass. No other forces or couples act on the object. Determine
the object’s angular acceleration at t = 0.

©M = -10i + 10j 1N-m2t = 0,

6k 1rad/s2100i - 4j +
" =

x

y

50 mm

150 mm

220 mm

Ixx !Ixy !Ixz
!Iyx Iyy !Iyz
!Izx !Izy Izz

0.0318 !0.0219 0
!0.0219 0.0357 0

0 0 0.0674
" kg-m2.

Problems 20.35/20.36

y

x

600 mm

200 mm

Problems 20.37/20.38
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508 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.39 The vertical shaft supporting the dish antenna is rotating
with a constant angular velocity of 1 rad/s. The angle 

and The mass of the antenna
is 280 kg, and its moments and products of inertia, in 
are
Determine the couple exerted on the antenna by its support at
A at the instant shown.

Ixx = 140, Iyy = Izz = 220, and Ixy = Iyz = Izx = 0.
kg-m2,

d2u>dt2 = -40°/s2. du>dt = 20°/s,
u = 30°,

20.40 The 5-kg triangular plate is connected to a ball-and-
socket support at O. If the plate is released from rest in the
horizontal position, what are the components of its angular
acceleration at that instant?

20.41 If the 5-kg plate is released from rest in the horizontal po-
sition, what force is exerted on it by the ball-and-socket support at
that instant?

20.42 The 5-kg triangular plate is connected to a ball-and-socket
support at O. If the plate is released in the horizontal position with
angular velocity what are the components of its
angular acceleration vector at that instant?

! = 4i 1rad/s2,

xy

v0

u

Problem 20.39

y

x

O

0.6 m

0.9 m

Problems 20.40–20.42

20.43 A subassembly of a space station can be modeled as two
rigidly connected slender bars, each with a mass of 5000 kg. The
subassembly is not rotating at when a reaction control motor
exerts a force at B. What is the acceleration of point
A relative to the center of mass of the subassembly at 

20.44 A subassembly of a space station can be modeled as two
rigidly connected slender bars, each with a mass of 5000 kg. If the
subassembly is rotating about the x axis at a constant rate of 1 rev-
olution every 10 minutes, what is the magnitude of the couple its
reaction control system is exerting on it?

t = 0?
F = 400k 1N2 t = 0,

20.45 The thin circular disk of radius and mass
is rigidly attached to the vertical shaft. The plane of the

disk is slanted at an angle relative to the horizontal. The
shaft rotates with constant angular velocity Deter-
mine the magnitude of the couple exerted on the disk by the shaft.

v0 = 25 rad/s.
b = 30°

m = 4 kg
R = 0.2 m

x

A B

y

20 m

20 m

Problems 20.43/20.44

R

v0

b

Problem 20.45

BEDFMC20_0136129161.QXD  6/20/07  6:57 PM  Page 508



Problems 509

20.46 The slender bar of mass and length 
is welded to a horizontal shaft that rotates with constant angular
velocity The angle Determine the magni-
tudes of the force F and couple C exerted on the bar by the shaft.
(Write the equations of angular motion in terms of the body-fixed
coordinate system shown.)

b = 30°.v0 = 25 rad/s.

l = 1.2 mm = 8 kg

20.47 The slender bar of mass and length 
is welded to a horizontal shaft that rotates with constant angular 
velocity The angle Determine the magni-
tudes of the force F and couple C exerted on the bar by the shaft.
(Write the equations of angular motion in terms of the body-fixed
coordinate system shown. See Problem 20.98.)

b = 30°.v0 = 25 rad/s.

l = 1.2 mm = 8 kg

20.48 The slender bar of length l and mass m is pinned to the
vertical shaft at O. The vertical shaft rotates with a constant angu-
lar velocity Show that the value of necessary for the bar to
remain at a constant angle relative to the vertical is

v0 = 23g>12l cos b2.b

v0v0.

x

y

v0 b

l
2

Problem 20.46

x

y

v0 b

l
2

Problem 20.47

l

v0

O

b

Problem 20.48

20.49 The vertical shaft rotates with constant angular velocity
The 35° angle between the edge of the 10-lb thin rectangular

plate pinned to the shaft and the shaft remains constant.
Determine v0.

v0.

20.50 The radius of the 20-lb thin circular disk is The
disk is mounted on the horizontal shaft and rotates with constant
angular velocity relative to the shaft. The horizon-
tal shaft is 2 ft in length. The vertical shaft rotates with constant
angular velocity Determine the force and couple
exerted at the center of the disk by the horizontal shaft.

v0 = 4 rad/s . 

vd = 10 rad/s

R = 1 ft.

1 ft

35!

2 ft

v0

Problem 20.49

R
x

y

z

vd

v0

Problem 20.50
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510 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.51 The object shown in Fig. a consists of two 1-kg vertical slender bars welded to the 4-kg horizontal slender bar. In Fig. b, the
object is supported by bearings at A and B. The horizontal circular disk is supported by a vertical shaft that rotates with constant angular
velocity The horizontal bar rotates with constant angular velocity At the instant shown, determine the y and
z components of the forces exerted on the object at A and B.

v = 10 rad/s.v0 = 6 rad/s .

y

x 

A

Bz

v

v0

(b)

(a)

0.1 m0.1 m

0.1 m

y

x 

0.1 m

0.2 m

20.52 The 10-lb thin circular disk is rigidly attached to the 12-lb
slender horizontal shaft. The disk and horizontal shaft rotate about
the axis of the shaft with constant angular velocity 
The entire assembly rotates about the vertical axis with constant
angular velocity Determine the components of the
force and couple exerted on the horizontal shaft by the disk.

v0 = 4 rad/s.

vd = 20 rad/s.

x

y
Az

Ax

Bx

Ay

By

v0

vd

z

12 in

18 in
18 in

18 in

Problem 20.52

ω0

x

Solar 
panel

z

y

x

u

ω

Problem 20.53

20.53 The Hubble telescope is rotating about its longitudinal
axis with constant angular velocity The coordinate system is
fixed with respect to the solar panel. Relative to the telescope, the
solar panel rotates about the x axis with constant angular velocity

Assume that the moments of inertia and are
known, and Show that the moment about
the x axis the servomechanisms must exert on the solar panel is

©Mx = 1Izz - Iyy2v0
2 sin u cos u.

Ixy = Iyz = Izx = 0.
IzzIxx, Iyy,vx.

v0.

Problem 20.51
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Problems 511

20.54 The thin rectangular plate is attached to the rectangular
frame by pins. The frame rotates with constant angular velocity

Show that

d 2b

dt 2
= -v2

0 sin b cos b.

v0.

! 20.55* The axis of the right circular cone of mass m, height h,
and radius R spins about the vertical axis with constant angular
velocity The center of mass of the cone is stationary, and its
base rolls on the floor. Show that the angular velocity necessary
for this motion is 

(See Example 20.6.)

v0 = 210g>3R.

v0.

x

v0

z

y
h

b

b

Problem 20.54

z

x

R

h

v0

Problem 20.55

! 20.56 The tilted homogeneous cone undergoes a steady motion in which its flat end rolls on the floor while the center of mass remains
stationary. The angle between the axis and the horizontal remains constant, and the axis rotates about the vertical axis with constant
angular velocity The cone has mass m, radius R, and height h. Show that the angular velocity necessary for this motion satisfies

(See Example 20.6.)

v0
2 =

g(R sin b - 1
4 h cos b)

3
20 (R2 + 1

4 h2) sin b cos b - 3
40 hR cos 2 b

.

v0v0.
b

h

R

v0

b

Problem 20.56
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512 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.57* The two thin disks are rigidly connected by a slender bar.
The radius of the large disk is 200 mm and its mass is 4 kg. The
radius of the small disk is 100 mm and its mass is 1 kg. The bar is
400 mm in length and its mass is negligible. The composite object
undergoes a steady motion in which it spins about the vertical y
axis through its center of mass with angular velocity The bar
is horizontal during this motion and the large disk rolls on the
floor. What is v0?

v0.

v0

x

z

y

Problem 20.57

20.58 The view of an airplane’s landing gear as seen looking
from behind the airplane is shown in Fig. a. The radius of the
wheel is 300 mm, and its moment of inertia is The air-
plane takes off at 30 m/s. After takeoff, the landing gear retracts
by rotating toward the right side of the airplane, as shown in 
Fig. b. Determine the magnitude of the couple exerted by the
wheel on its support. (Neglect the airplane’s angular motion.)

2 kg-m2.

(a)

300 
mm

45 deg/s

(b)

Problem 20.58

20.59 If the rider turns to his left, will the couple exerted on the
motorcycle by its wheels tend to cause the motorcycle to lean
toward the rider’s left side or his right side?

Problem 20.59

20.60* By substituting the components of from Eqs. (20.9)
into the equation

derive Eqs. (20.12).

©MO =
dHOx

dt
 i +

dHOy

dt
 j +

dHOz

dt
 k + ! * HO,

HO
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Z , z
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Figure 20.11
(a) The reference position.
(b) The rotation about the Z axis.
(c) The rotation about the axis.
(d) The rotation of the object relative to

the xyz system.
f

x¿u

c
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20.3 The Euler Angles

BACKGROUND
The equations of angular motion relate the total moment acting on a rigid body
to its angular velocity and acceleration. If we know the total moment and the an-
gular velocity, we can determine the angular acceleration. But how can we use
the angular acceleration to determine the rigid body’s angular position, or ori-
entation, as a function of time? To explain how this is done, we must first show
how to specify the orientation of a rigid body in three dimensions.

We have seen that describing the orientation of a rigid body in planar motion
requires only the angle that specifies the body’s rotation relative to some refer-
ence orientation. In three-dimensional motion, three angles are required. To un-
derstand why, consider a particular axis that is fixed relative to a rigid body. Two
angles are necessary to specify the direction of the axis, and a third angle is need-
ed to specify the rigid body’s orientation about the axis. Although several sys-
tems of angles for describing the orientation of a rigid body are commonly used,
the best-known system is the one called the Euler angles. In this section we de-
fine these angles and express the equations of angular motion in terms of them.

Objects with an Axis of Symmetry
We first explain how the Euler angles are used to describe the orientation of an
object with an axis of rotational symmetry, because this case results in simpler
equations of angular motion.

Definitions We assume that an object has an axis of rotational symmetry, and
we introduce two reference frames: a secondary coordinate system xyz, with its z
axis coincident with the object’s axis of symmetry, and an inertial primary coor-
dinate system XYZ. We begin with the object in a reference position in which xyz
and XYZ are superimposed on each other (Fig. 20.11a).

Our first step is to rotate the object and the xyz system together through an
angle about the Z axis (Fig. 20.11b). In this intermediate orientation, we denote
the secondary coordinate system by Next, we rotate the object and the xyz
system together through an angle about the axis (Fig. 20.11c). Finally, we ro-
tate the object relative to the xyz system through an angle about the object’s axis
of symmetry (Fig. 20.11d). Notice that the x axis remains in the XY plane.

The angles and specify the orientation of the secondary xyz system rel-
ative to the primary XYZ system. The angle is called the precession angle,
and is called the nutation angle. The angle specifying the rotation of the
rigid body relative to the xyz system is called the spin angle. These three an-
gles specify the orientation of the rigid body relative to the primary coordi-
nate system and are called the Euler angles. We can obtain any orientation of
the object relative to the primary coordinate system by appropriate choices of
the Euler angles: We choose and to obtain the desired direction of the axis
of symmetry and then choose to obtain the desired rotational position of the
object about its axis of symmetry.

Equations of Angular Motion To analyze an object’s motion in
terms of the Euler angles, we must express the equations of angular motion
in terms of those angles. Figure 20.12a shows the rotation from the ref-
erence orientation of the xyz system to its intermediate orientation 
We represent the angular velocity of the coordinate system due to the
rate of change of by the angular velocity vector pointing in the 
direction. (We use a dot to denote the derivative with respect to time.)

z¿c
#

c

x¿y¿z¿.
c

f
uc

fu
c

uc

f
x¿u

x¿y¿z¿.
c

u
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514 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Figure 20.12b shows the second rotation We represent the angular veloc-
ity due to the rate of change of by the vector pointing in the x direc-
tion. We also resolve the angular velocity vector into components in the
y and z directions. The components of the angular velocity of the xyz
system relative to the primary coordinate system are

(20.22)

and

In Fig. 20.12c, we represent the angular velocity of the rigid body relative to the
xyz system by the vector Adding this angular velocity to the angular velocity
of the xyz system, we obtain the components of the angular velocity of the rigid
body relative to the XYZ system:

(20.23)

and

Taking the derivatives of these equations with respect to time yields

(20.24)

and

As a consequence of the object’s rotational symmetry, the products of in-
ertia and are zero and The inertia matrix is of the form

(20.25)

Substituting Eqs. (20.22)–(20.25) into Eqs. (20.18), we obtain the equations of
angular motion in terms of the Euler angles:

(20.26)

(20.27)

(20.28)

To determine the Euler angles as functions of time when the total moment
is known, these equations usually must be solved by numerical integration.

 ©Mz = Izz1f$ + c
$

 cos u - c
#
u
#
 sin u2. ©My = Ixx1c$  sin u + 2c

#
u
#
 cos u2 - Izz1f# u# + c

#
u
#
 cos u2, ©Mx = Ixxu

$
+ 1Izz - Ixx2c# 2 sin u cos u + Izzf

#
c
#
 sin u,

3I4 = C Ixx 0 0
0 Ixx 0
0 0 Izz

S .

Ixx = Iyy.IyzIxy, Ixz,

dvz

dt
= f

$
+ c

$
 cos u - c

#
u
#
 sin u.

 
dvy

dt
= c

$
 sin u + c

#
u
#
 cos u,

 
dvx

dt
= u

$
,

vz = f
#

+ c
#
 cos u.

 vy = c
#
 sin u,

 vx = u
#
,

f
#
.

!z = c
#
 cos u.

 !y = c
#
 sin u,

 !x = u
#
,

c
#u
#

u
u.

x(c)

(a)

(b)

Z , z!

z

Y

y

x!

y!

X

z!

z

x!, x

y!

y

u

u

c

c

c

c cos u

c sin u

f

f

Figure 20.12
(a) The rotation and the angular velocity 
(b) The rotation the angular velocity and

the components of the angular velocity 
(c) The rotation and the angular velocity f

#
.f

c
#
.

u
#
,u,
c
#
.c
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20.3 The Euler Angles 515

However, we can obtain an important class of closed-form solutions by as-
suming a specific type of motion.

Steady Precession The motion called steady precession is commonly
observed in tops and gyroscopes. The object’s rate of spin relative to the xyz
coordinate system is assumed to be constant (Fig. 20.13). The nutation angle 
the inclination of the spin axis z relative to the Z axis, is assumed to be constant,
and the precession rate the rate at which the xyz system rotates about the Z
axis, is assumed to be constant. The last assumption explains the name given to
this motion.

With these assumptions, Eqs. (20.26)–(20.28) reduce to

(20.29)

(20.30)

and
(20.31)

We discuss two examples: the steady precession of a spinning top and the steady
precession of an axially symmetric object that is free of external moments.

Precession of a Top The peculiar behavior of a top (Fig. 20.14a) inspired
some of the first analytical studies of three-dimensional motions of rigid bod-
ies. When a top is set into motion, its spin axis may initially remain vertical—
a motion called sleeping. As friction reduces the spin rate, the spin axis begins
to lean over and rotate about the vertical axis. This phase of the top’s motion
approximates steady precession. (The top’s spin rate continuously decreases
due to friction, whereas in steady precession we assume the spin rate to be
constant.)

To analyze the motion, we place the primary coordinate system XYZ with
its origin at the point of the top and the Z axis upward. Then we align the z axis
of the xyz system with the spin axis (Fig. 20.14b). We assume that the top’s
point rests in a small depression so that it remains at a fixed point on the floor.
The precession angle and nutation angle specify the orientation of the spin
axis, and the spin rate of the top relative to the xyz system is 

The top’s weight exerts a moment about the origin, and
the moments and Substituting into
Eq. (20.29), we obtain

(20.32)

and Eqs. (20.30) and (20.31) are identically satisfied. Equation (20.32) relates
the spin rate, nutation angle, and rate of precession. For example, if we know the
spin rate and nutation angle we can solve for the top’s precession rate 

Moment-Free Steady Precession A spinning axisymmetric object that is
free of external moments, such as an axisymmetric satellite in orbit, can exhibit a
motion similar to the steady precessional motion of a top. This motion is observed
when an American football is thrown in a “wobbly” spiral. To analyze it, we
place the origin of the xyz system at the object’s center of mass (Fig. 20.15a).
Equation (20.29) then becomes

(20.33)1Izz - Ixx2c#  cos u + Izzf
#

= 0,

c
#
.u,f

#

mgh = 1Izz - Ixx2c# 2 cos u + Izzf
#
c
#
,

©Mx = mgh sin u©Mz = 0.©My = 0
©Mx = mgh sin u

f
#
.

uc

©Mz = 0.

 ©My = 0,

 ©Mx = 1Izz - Ixx2c# 2 sin u cos u + Izzf
#
c
#
 sin u,

c
#
,

u,
f
#

xX

Y

y

Z
z

mg

(a)

(b)

h

u

f

c

x

Z

z

Y

y

X

c = const.

f = const.

u = const.

Figure 20.13
Steady procession.

Figure 20.14
(a) A spinning top seems to defy gravity.
(b) The precession angle and nutation

angle specify the orientation of the
spin axis.

u

c
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516 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

and Eqs. (20.30) and (20.31) are identically satisfied. For a given value of the
nutation angle, Eq. (20.33) relates the object’s rates of precession and spin.

We can interpret Eq. (20.33) in a way that makes it possible to visualize the
motion. We look for a point in the y–z plane at which the object’s velocity
relative to the center of mass is zero at the current instant. We want to find a point
with coordinates (0, y, z) such that

This equation is satisfied at points in the y–z plane such that

This relation is satisfied by points on the dashed black line in Fig. 20.15b, where

Solving Eq. (20.33) for and substituting the result into this equation, we obtain

tan b = a Izz

Ixx
b  tan u.

f
#

tan b =
y
z

=
c
#
 sin u

f
#

+ c
#
 cos u

.

y
z

=
c
#
 sin u

f
#

+ c
#
 cos u

.

 = 3zc#  sin u - y1f# + c
#
 cos u24i = 0.

 ! * 1yj + zk2 = 31c#  sin u2j + 1f# + c
#
 cos u2k4 * 3yj + zk4
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Z
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Z
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(a)
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Z

(c)
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u

f

c

u

b

u

b

u

b

f

c

u
b

c

Figure 20.15
(a) An axisymmetric object.
(b) Points on the straight line at an angle 

from the z axis are stationary relative to
the XYZ coordinate system.

(c), (d) The body and space cones. The body
cone rolls on the stationary space cone.

(e) When the interior surface of the
body cone rolls on the stationary space cone.

b 7 u,

b

BEDFMC20_0136129161.QXD  6/20/07  6:57 PM  Page 516



20.3 The Euler Angles 517

If the angle In Fig. 20.15c, we show an imaginary cone of
half-angle called the body cone, whose axis is coincident with the z axis.
The body cone is in contact with a fixed cone, called the space cone, whose
axis is coincident with the Z axis. If the body cone rolls on the curved surface
of the space cone as the z axis precesses about the Z axis (Fig. 20.15d), the
points of the body cone lying on the straight line in Fig. 20.15b have zero ve-
locity relative to the XYZ system. That means that the motion of the body cone
is identical to the motion of the object. The object’s motion can be visualized
by visualizing the motion of the body cone as it rolls around the outer surface
of the space cone. This motion is called direct precession.

If the angle In this case, we must visualize the interior
surface of the body cone rolling on the fixed space cone (Fig. 20.15e). This
motion is called retrograde precession.

Arbitrary Objects
In our analysis of axially symmetric objects, we let the object move relative to
the secondary xyz coordinate system, rotating about the z axis. As a consequence,
only two angles—the precession angle and nutation angle —are needed to
specify the orientation of the xyz coordinate system, and this simplifies the equa-
tions of angular motion. The object must be axially symmetric about the z axis,
so that the moments and products of inertia will not vary as it rotates. In the case
of an arbitrary object, the moments and products of inertia will be constants
only if the xyz coordinate system is body fixed. This means that three angles are
needed to specify the orientation of the coordinate system, and the resulting
equations of angular motion are more complicated.

Definitions We begin with a reference position in which the body-fixed xyz
and primary XYZ coordinate systems are superimposed on each other
(Fig. 20.16a). First, we rotate the xyz system through the precession angle about
the Z axis (Fig. 20.16b) and denote it by in this intermediate orientation.
Then we rotate the xyz system through the nutation angle about the axis
(Fig. 20.16c), denoting it now by We obtain the final orientation of
the xyz system by rotating it through the angle about the axis 
(Fig. 20.16d). Notice that we use one more rotation of the xyz system than in the
case of an axially symmetric object.

We can obtain any orientation of the body-fixed coordinate system rela-
tive to the reference coordinate system by these three rotations. We choose and

to obtain the desired direction of the z axis and then choose to obtain the
desired orientation of the x and y axes.

Just as in the case of an object with rotational symmetry, we must express
the components of the rigid body’s angular velocity in terms of the Euler angles
to obtain the equations of angular motion. Figure 20.17a shows the rotation 
from the reference orientation of the xyz system to the intermediate orientation

We represent the angular velocity of the body-fixed coordinate system
due to the rate of change of by the vector pointing in the direction. Fig-
ure 20.17b shows the next rotation that takes the body-fixed coordinate sys-
tem to the intermediate orientation We represent the angular velocity
due to the rate of change of by the vector pointing in the direction. In this
figure, we also show the components of the angular velocity vector in the

and directions. Figure 20.17c shows the third rotation that takes the
body-fixed coordinate system to its final orientation defined by the three Euler
angles. We represent the angular velocity due to the rate of change of by the
vector pointing in the z direction.f
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Figure 20.16
(a) The reference position.
(b) The rotation about the Z axis.
(c) The rotation about the axis.
(d) The rotation about the axis.z–f
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518 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

To determine and in terms of the Euler angles, we need to determine
the components of the angular velocities shown in Fig. 20.17c in the x-, y-, and z-axis
directions. The vectors and point in the z-axis direction. In Figs. 20.17d
and e, which are drawn with the z axis pointing out of the page, we determine the com-
ponents of the vectors and in the x- and y-axis directions. By summing
the components of the angular velocities in the three coordinate directions
(Fig. 20.17f ), we obtain

(20.34)

The derivatives of these equations with respect to time are

(20.35)
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Figure 20.17
(a) The rotation and the angular velocity 
(b) The rotation the angular velocity and the components of in the system.
(c) The rotation and the angular velocity 
(d), (e) The components of the angular velocities and in the xyz system.
(f) The angular velocities vx, vy, vz.
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20.3 The Euler Angles 519

Equations of Angular Motion With Eqs. (20.34) and (20.35), we can
express the equations of angular motion in terms of the three Euler angles. To
simplify the equations, we assume that the body-fixed coordinate system xyz is a
set of principal axes. (See the appendix to this chapter.) Then the equations of
angular motion, Eqs. (20.18), become

Substituting Eqs. (20.34) and (20.35) into these relations, we obtain the equa-
tions of angular motion in terms of Euler angles:

(20.36)

If the Euler angles and their first and second derivatives with respect to time are
known, Eqs. (20.36) can be solved for the components of the total moment. Or,
if the total moment, the Euler angles, and the first derivatives of the Euler an-
gles are known, Eqs. (20.36) can be solved for the second derivatives of the
Euler angles. In this way, the Euler angles can be determined as functions of time
when the total moment is known as a function of time, but numerical integra-
tion is usually necessary.

RESULTS
The Euler angles are a set of angles used to describe the orientation of a rigid
body relative to a primary reference frame, or coordinate system.

Euler Angles for an Object with an Axis of Symmetry
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An object with an axis of symmetry. The primary XYZ
coordinate system and a secondary xyz coordinate system
are superimposed. The Z and z axes are aligned with the
axis of symmetry of the object.
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520 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Steady Precession

The third Euler angle f, the spin angle, specifies a rotation
of the object relative to the secondary coordinate system
about the z axis. This means that the secondary coordinate
system is not body fixed. However, because of the symmetry
of the object, the moments and products of inertia expressed
in terms of the xyz coordinate system are constant.

x

Z

z

Y

y

X c

f

u

. .

The components of the rigid body’s angular velocity relative
to the primary coordinate system can be expressed in terms
of the Euler angles. The dots denote derivatives with respect
to time.

v x ! u,

v y ! c sin u,              (20.23)

v z ! f " c cos u.

.

.

.
#Mx ! (Izz $ Ixx)c

2 sin u cos u " Izzfc sin u, (20.29)

#My ! 0,

#Mz ! 0.

(20.30)

(20.31)

. .
Equations of angular motion in steady
precession, in which it is assumed that
the spin rate f, the precession rate c,
and the nutation angle u are constant.
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c = const.

f = const.

u = const.
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Z, z ¿
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y ¿

x ¿X
c

The first Euler angle c, the precession angle, specifies
a rotation of the secondary coordinate system and the
object about the Z axis. Notice that the rotation is in the
positive right-hand rule direction when the thumb of the
right hand points in the positive Z axis direction. In this
intermediate position, the secondary coordinate system
is labeled x ¿ y ¿ z ¿.

The second Euler angle u, the nutation angle, specifies a
rotation of the secondary coordinate system and the
object about the x ¿ axis.

x ¿, x

Z, z ¿

z

Y

y ¿

y

X c

u
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20.3 The Euler Angles 521

Equation describing steady precession
of a symmetric top.

xX

Y

y

Z
z

mg

h

u

f

c

mgh ! (Izz " Ixx)c
2 cos u # Izz fc.    (20.32)

. . .

Moment-Free Steady Precession

Equation describing steady precession
of a symmetric object that is not
subjected to external moments.

(Izz " Ixx)c cos u # Izz f ! 0.    (20.33)
. .

z

X

Z

Y

y

x

u

f

c
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Space and Body Cones

Euler Angles for an Arbitrary Object

The xyz coordinate system is body
fixed and aligned with the primary
XYZ coordinate system in the initial
orientation (a). The precession
angle c is a rotation of the object
about the Z axis (b). The nutation
angle u is a rotation of the object
about the x¿ axis (c). The spin angle
f is a rotation of the object about
the z– axis (d).

Z , z!

y!

Y

x!X

(b)

Z , z

Y, y

X, x

(a)

Z , z!
y"

y!

Y

x!, x"X

z"

(c)

y
y"

x

x "

z", z

(d)

f

c

u

c

X

Y

xBody
cone

y
z

Z

Space
cone

z

Body
cone

Z
Space
coneu

b

u

b

f

c

A way to visualize moment-free
steady precession. The space
cone is fixed in space. The body
cone rolls on the surface of the
space cone. The precessing
object undergoes the same
motion as the body cone. The
angle b is related to the nutation
angle by

Izz

Ixx
!   "tan b # tan u.

If b $ u, the interior surface of
the body cone rolls on the
exterior surface of the space
cone.

X

Y

x

Body
cone

y

z
Z

Space
cone

u
b

c
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20.3 The Euler Angles 523

The components of the rigid
body’s angular velocity relative to
the primary coordinate system
can be expressed in terms of the
Euler angles. The dots denote
derivatives with respect to time.

vx !  c sin u sin f " u cos f,
vy !  c sin u cos f # u sin f,        (20.34)
vz !  c cos u " f.

.

.

.

.
.

.

Equations of angular motion in
terms of the Euler angles when
the xyz coordinate system is a set
of principal axes.

$Mx ! Ixxc sin u sin f " Ixxu cos f

" Ixx (cu cos u sin f " cf sin u cos f # uf sin f)

# (Iyy # Izz)(c sin u cos f # u sin f)(c cos u " f),

. .

.

. . . .

. . . . .

..

$My ! Iyy c sin u cos f # Iyy u sin f

" Iyy (cu cos u cos f # cf sin u sin f # uf cos f)

# (Izz # Ixx)(c cos u " f)(c sin u sin f " u cos f),

# (Ixx # Iyy)(c sin u sin f " u cos f)(c sin u cos f # u sin f).

.

. . . .

. . . . .

....

$Mz ! Izz c cos u " Izzf # Izzc u sin u
.. ..

. . .

..

.

(20.36)

Active Example 20.7 Steady Precession of a Disk (! Related Problem 20.63)

The thin circular disk of radius R and mass m rolls along a circular path of
radius r on a horizontal surface. The angle between the disk’s axis and the ver-
tical remains constant. (You may have seen a rolling coin exhibit this motion.)
Determine the magnitude of the velocity of the center of the disk as a func-
tion of the angle .u

v

u

R

r
u
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524 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Strategy
We can determine the velocity of the center of the disk by assuming that the disk
is in steady precession and determining the conditions necessary for the equations
of motion to be satisfied.

rG ! r " R cos u

y

x

z

v

u

Let the z axis of a secondary coordinate system
be aligned with the disk’s spin axis and assume
that the x axis remains parallel to the horizontal
surface. The angle u is the nutation angle. The
center of the disk moves in a circular path of 
radius rG ! r " R cos u. Therefore, the precession
rate—the rate at which the x axis rotates in the
horizontal plane—is

c ! .
v
rG

(1)
.

v y ! c sin u !

Determine the spin rate of the disk
in terms of the velocity v by using
the fact that the velocity of the point
of the disk in contact with the
surface is zero.

From Eqs. (20.23), the components of the disk’s
angular velocity are

where f is the spin rate. We express the velocity of the
point of the disk in contact with the surface in terms
of the velocity of the center:

Expanding the determinant and solving for the spin
rate yields

0 ! v i # ! $ ("R j )

v x ! u ! 0,
.

.

.

.

. .

sin u,

v z ! f # c cos u ! f #

v
rG

cos u,
v
rG

.
f # cos u

v
rG

! v i # .

i j k

0

0 "R 0

sin u
v 
rG

.
f ! "v .                 (2)# cos u

1 
rG

!             "1
R
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Practice Problem Suppose that the rolling object is a circular hoop of radius R and
mass m, so that and Determine the magnitude of the velocity
of the center of the hoop as a function of the angle 

Answer: .v = A2g(r - R cos u)2 cot u

4r - 3R cos u

u.
vIzz = mR2.Ixx = 1

2mR2

Apply Newton’s second law. The center
of mass of the disk has no vertical
acceleration, so the normal force exerted
by the surface equals the disk’s weight.
As a result of the motion of the center
of mass along its circular path, it has a
normal component of acceleration
an ! v2/ rG.

mg

N

T

an !

y

x

z

v2 

rG

u

T ! m .v
2

rG
(4)

N ! mg, (3)

Using Eqs. (3) and (4), calculate the total
moment about the x axis. ! m 

v2

rG

"Mx ! TR sin u # NR cos u

R sin u # mgR cos u.    (5)

4g(r # R cos u)2 cotu
6r # 5R cos u

v ! .

to determine the velocity.

the relations Ixx ! mR21
4 and Izz ! mR21

2

Substitute Eqs. (1), (2), and (5) into
Eq. (20.29) for steady precession and use
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20.62 The center of the car’s wheel A travels in a circular path
about O at 15 mi/h. The wheel’s radius is 1 ft, and the moment of
inertia of the wheel about its axis of rotation is What
is the magnitude of the total external moment about the wheel’s
center of mass?

Strategy: Treat the wheel’s motion as steady precession with
nutation angle u = 90°.

0.8 slug-ft2.

! 20.63 The radius of the 5-kg disk is The disk is
pinned to the horizontal shaft and rotates with constant angular
velocity relative to the shaft. The vertical shaft ro-
tates with constant angular velocity By treating
the motion of the disk as steady precession, determine the mag-
nitude of the couple exerted on the disk by the horizontal shaft.
(See Active Example 20.7.)

v0 = 2 rad/s.
vd = 6 rad/s

R = 0.2 m.

20.64 The helicopter is stationary. The z axis of the body-fixed co-
ordinate system points downward and is coincident with the axis of
the helicopter’s rotor. The moment of inertia of the rotor about the z
axis is Its angular velocity is If the heli-
copter begins a pitch maneuver during which its angular velocity is
0.02j (rad/s), what is the magnitude of the gyroscopic moment exert-
ed on the helicopter by the rotor? Does the moment tend to cause the
helicopter to roll about the x axis in the clockwise direction (as seen
in the photograph) or the counterclockwise direction?

-258k 1rpm2.8600 kg-m2.
Problem 20.61

18 ft

O

A

Problem 20.62

R

vd

v0

Problem 20.63

y

x

z

Problem 20.64

Problems
20.61 A ship has a turbine engine. The spin axis of the axisym-
metric turbine is horizontal and aligned with the ship’s longitudi-
nal axis. The turbine rotates at 10,000 rpm. Its moment of inertia
about its spin axis is If the ship turns at a constant
rate of 20 degrees per minute, what is the magnitude of the
moment exerted on the ship by the turbine?

Strategy: Treat the turbine’s motion as steady precession
with nutation angle u = 90°.

1000 kg-m2.
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20.65 The bent bar is rigidly attached to the vertical shaft, which
rotates with constant angular velocity The disk of mass m and
radius R is pinned to the bent bar and rotates with constant angular
velocity relative to the bar. Determine the magnitudes of the
force and couple exerted on the disk by the bar.

20.66 The bent bar is rigidly attached to the vertical shaft, which
rotates with constant angular velocity The disk of mass m and
radius R is pinned to the bent bar and rotates with constant angular
velocity relative to the bar. Determine the value of for
which no couple is exerted on the disk by the bar.

vdvd

v0.

vd

v0.

20.67 A thin circular disk undergoes moment-free steady preces-
sion. The z axis is perpendicular to the disk. Show that the disk’s pre-
cession rate is (Notice that when the nutation angle
is small, the precession rate is approximately two times the spin rate.)

c
#

= -2f
# >cos u.

20.68 The rocket is in moment-free steady precession with nuta-
tion angle and spin rate revolutions per second. Its
moments of inertia are and 
What is the rocket’s precession rate in revolutions per second?

20.69 Sketch the body and space cones for the motion of the
rocket in Problem 20.68.

c
# Izz = 2000 kg-m2.Ixx = 10,000 kg-m2

f
#

= 4u = 40°

b

h

R

vd

v0

b

Problems 20.65/20.66

Y

Z

X

y

x

z

u

c

f 
!

Problem 20.67

z

X

x

Y

y

Z

u

c

f 
!

Problems 20.68/20.69

20.70 The top is in steady precession with nutation angle
and precession rate revolution per second. The

mass of the top is slug, its center of mass is 1 in from
the point, and its moments of inertia are 
and What is the spin rate of the top in
revolutions per second?

20.71 Suppose that top described in Problem 20.70 has a spin
rate revolutions per second. Draw a graph of the preces-
sion rate (in revolutions per second) as a function of the nutation
angle for values of from zero to 45°.uu

f
#

= 15

f
#

Izz = 2 * 10-6 slug-ft2.
Ixx = 6 * 10-6 slug-ft2

8 * 10-4
c
#

= 1u = 15°

Y

Z

X

y

x

z

f 
!

c

u

Problems 20.70/20.71
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z

X

Z

Y

y

x

f 
!

c

u

Problem 20.73

10!

Problem 20.74

v0

x

z

y

Problem 20.76

y

z Z

Y

X

x

Problems 20.77–20.79

20.72 The rotor of a tumbling gyroscope can be modeled as being
in moment-free steady precession. The moments of inertia of the
gyroscope are and The
gyroscope’s spin rate is and its nutation angle
is

(a) What is the precession rate of the gyroscope in rpm?

(b) Sketch the body and space cones.

20.73 A satellite can be modeled as an 800-kg cylinder 4 m in
length and 2 m in diameter. If the nutation angle is and
the spin rate is one revolution per second, what is the satellite’s
precession rate in revolutions per second?c

#f
# u = 20°

u = 20°.
f
#

= 1500 rpm
Izz = 0.18 kg-m2.Ixx = Iyy = 0.04 kg-m2

20.74* The top consists of a thin disk bonded to a slender bar.
The radius of the disk is 30 mm and its mass is 0.008 kg. The
length of the bar is 80 mm and its mass is negligible compared to
the disk. When the top is in steady precession with a nutation
angle of 10°, the precession rate is observed to be 2 revolutions
per second in the same direction the top is spinning. What is the
top’s spin rate?

20.76* The two thin disks are rigidly connected by a slender
bar. The radius of the large disk is 200 mm and its mass is 4 kg.
The radius of the small disk is 100 mm and its mass is 1 kg. The
bar is 400 mm in length and its mass is negligible. The composite
object undergoes a steady motion in which it spins about the verti-
cal y axis through its center of mass with angular velocity The
bar is horizontal during this motion and the large disk rolls on the
floor. Determine by treating the motion as steady precession.v0

v0.

20.77* Suppose that you are testing a car and use accelerometers
and gyroscopes to measure its Euler angles and their derivatives
relative to a reference coordinate system. At a particular instant,

the rates of change of the Euler angles
are zero, and their second derivatives with respect to time are

and The car’s principal
moments of inertia, in are and

What are the components of the total moment about
the car’s center of mass?

20.78* If the Euler angles and their second derivatives for the car
described in Problem 20.77 have the given values, but their rates of
change are and what are the
components of the total moment about the car’s center of mass?

20.79* Suppose that the Euler angles of the car described in Prob-
lem 20.77 are and their rates of change
are zero, and the components of the total moment about the car’s
center of mass are and

What are the x, y, and z components of the car’s angular
acceleration?
©Mz = 0.

©Mx = -400 N-m, ©My = 200 N-m,

f = 5°,c = 40°, u = 20°,

f
#

= 0,c
#

= 0.2 rad/s, u
#

= -2 rad/s,

Izz = 2600.
Ixx = 2200, Iyy = 480,kg-m2,

f
$

= -0.5 rad/s2.c
$

= 0, u
$

= 1 rad/s2,

c = 15°, u = 4°, f = 15°,

20.75 Solve Problem 20.58 by treating the motion as steady
precession.
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Appendix: Moments and Products of Inertia 529

Appendix: Moments and Products of Inertia
To use the equations of motion to predict the behavior of a rigid body in three
dimensions, the moments and products of inertia of the body, given by
Eqs. (20.10) and (20.11), must be known. In this appendix, we demonstrate how
the moments and products can be evaluated for simple objects such as slender
bars and thin plates. We derive the parallel-axis theorems, which make it possi-
ble to determine the moments and products of inertia of composite objects. We
also introduce the concept of principal axes, which simplifies the equations of
angular motion.

Simple Objects
If we model a rigid body as a continuous distribution of mass, we can express
its moments and products of inertia [Eqs. (20.10) and (20.11)] as

(20.37)

where x, y, and z are the coordinates of the differential element of mass dm
(Fig. 20.18).

Slender Bars Let the origin of the coordinate system be at a slender bar’s
center of mass, with the x axis along the bar (Fig. 20.19a). The bar has length l,
cross-sectional area A, and mass m. We assume that A is uniform along the length
of the bar and that the material is homogeneous.

Consider a differential element of the bar of length dx at a distance x from
the center of mass (Fig. 20.19b). The mass of the element is 
where is the mass density. We neglect the lateral dimensions of the bar,
assuming the coordinates of the differential element dm to be (x, 0, 0). As a
consequence of this approximation, the moment of inertia of the bar about the 
x axis is zero:

Ixx = Lm
1y2 + z22 dm = 0.

r
dm = rA dx,

 = FLm
1y2 + z22 dm -Lm

xy dm -Lm
xz dm

-Lm
yx dm Lm

1x2 + z22 dm -Lm
yz dm

-Lm
zx dm -Lm

zy dm Lm
1x2 + y22 dm

V ,

 3I4 = C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S x

y

z x
z

y

dm

Figure 20.18
Determining the moments and products
of inertia by modeling an object as a
continuous distribution of mass.

(a)

y

x

z

A
l

(b)

y

x

z

dm ! rA dx

dx

x
Figure 20.19
(a) A slender bar and a coordinate system

with the x axis aligned with the bar.
(b) A differential element of mass of 

length dx.
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The moment of inertia about the y axis is

Expressing this result in terms of the mass of the bar, we obtain

The moment of inertia about the z axis is equal to the moment of inertia about
the y axis:

Because the y and z coordinates of dm are zero, the products of inertia are zero,
so the inertia matrix for the slender bar is

(20.38)

It is important to remember that the moments and products of inertia depend on
the orientation of the coordinate system relative to the object. In terms of the
alternative coordinate system shown in Fig. 20.20, the bar’s inertia matrix is

Thin Plates
Suppose that a homogeneous plate of uniform thickness T, area A, and
unspecified shape lies in the x–y plane (Fig. 20.21a). We can express the
moments of inertia of the plate in terms of the moments of inertia of its cross-
sectional area.

3I4 = C 1
12 ml2 0 0

0 0 0
0 0 1

12 ml2
S .

3I4 = C0 0 0
0 1

12 ml2 0
0 0 1

12 ml2
S .

Izz = Lm
1x2 + y22 dm = 1

12 ml2.

Iyy = 1
12 ml2.

m = rAl,

Iyy = Lm
1x2 + z22 dm = L

1>2
-1>2rAx2 dx = 1

12 rAl3.

z

y

x l

Figure 20.20
Aligning the y axis with the bar.
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By projecting an element of area dA through the thickness T of the plate
(Fig. 20.21b), we obtain a differential element of mass We neglect
the thickness of the plate in calculating the moments of inertia, so the coordi-
nates of the element dm are (x, y, 0). The plate’s moment of inertia about the 
x axis is

where is the moment of inertia of the plate’s cross-sectional area about the 
x axis. Since the mass of the plate is the product and
we obtain the moment of inertia in the form

The moment of inertia about the y axis is

where is the moment of inertia of the cross-sectional area about the y axis.
The moment of inertia about the z axis is

Izz = Lm
1x2 + y22 dm = m

A
 JO,

Iy

Iyy = Lm
1x2 + z22 dm = rTLA

x2 dA = m
A

 Iy,

Ixx = m
A

 Ix.

rT = m/A,m = rTA,
Ix

Ixx = Lm
1y2 + z22 dm = rTLA

y2 dA = rTIx,

dm = rT dA.

(a)

(b)

y

O

T

A

y

x z

O

y

dm ! rTdA 

y

x

x

z

yr

dA

Figure 20.21
(a) A thin plate lying in the x–y plane.
(b) Obtaining a differential element of mass by projecting an 

element of area dA through the plate.
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where is the polar moment of inertia of the cross-sectional area.
The product of inertia is

where

is the product of inertia of the cross-sectional area. (We use a superscript A to
distinguish the product of inertia of the plate’s cross-sectional area from the
product of inertia of its mass.) If the cross-sectional area A is symmetric about
either the x axis or the y axis, 

Because the z coordinate of dm is zero, the products of inertia and 
are zero. The inertia matrix for the thin plate is thus

(20.39)

If the moments of inertia and product of inertia of the plate’s cross-sectional
area are known, (Eq. 20.39) can be used to obtain the moments and products of
inertia of the plate.

Parallel-Axis Theorems
Suppose that we know an object’s inertia matrix in terms of a coordinate
system with its origin at the center of mass of the object, and we want to
determine the inertia matrix [I] in terms of a parallel coordinate system xyz
(Fig. 20.22). Let be the coordinates of the center of mass in the xyz
coordinate system. The coordinates of a differential element of mass dm in the
xyz system are given in terms of its coordinates in the system by

(20.40)x = x¿ + dx, y = y¿ + dy, z = z¿ + dz.

x¿y¿z¿

1dx, dy, dz2x¿y¿z¿
3I¿4

3I4 = F m
A

 Ix - m
A

 Ixy
A 0

- m
A

 Ixy
A m

A
 Iy 0

0 0
m
A

 JO

V .

IyzIxz

Ixy
A = 0.

Ixy
A = LA

xy dA

Ixy = Lm
xy dm = m

A
 Ixy

A ,

Ixy

JO = Ix + Iy

x

y

z

dm

x!

y!

z!

(dx, dy, dz)

O
Figure 20.22
A coordinate system with its origin at
the center of mass and a parallel coordinate
system xyz.

x¿y¿z¿
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Substituting these expressions into the definition of we obtain

(20.41)

The first integral on the right is the object’s moment of inertia about the axis. We
can show that the second and third integrals are zero by using the definitions of the
object’s center of mass, expressed in terms of the coordinate system:

The object’s center of mass is at the origin of the system, so
Therefore, the second and third integrals on the right of 

Eq. (20.41) are zero, and we obtain

where m is the mass of the object. Substituting Eqs. (20.40) into the definition
of we get

Proceeding in this way for each of the moments and products of inertia, we
obtain the parallel-axis theorems:

(20.42)

If an object’s inertia matrix is known in terms of a particular coordinate system,
these theorems can be used to determine its inertia matrix in terms of any par-
allel coordinate system. They can also be used to determine the inertia matri-
ces of composite objects.

 Izx = Iz¿x¿ + dz dx m.

 Iyz = Iy¿z¿ + dy dz m,

 Ixy = Ix¿y¿ + dx dy m,

 Izz = Iz¿z¿ + 1dx
2 + dy

22 m,

 Iyy = Iy¿y¿ + 1dx
2 + dz

22 m,

 Ixx = Ix¿x¿ + 1dy
2 + dz

22 m,

 = Ix¿y¿ + dx dy m.

 Ixy = Lm
x¿y¿ dm + dxLm

y¿ dm + dyLm
x¿ dm + dx dyLm

 dm

Ixy,

Ixx = Ix¿x¿ + 1dy
2 + dz

22 m,

x¿ = y¿ = z¿ = 0.
x¿y¿z¿

x¿ = Lm
x¿ dm

Lm
 dm

, y¿ = Lm
y¿ dm

Lm
 dm

, z¿ = Lm
z¿ dm

Lm
 dm

.

x¿y¿z¿

x¿

+ 2dzLm
z¿ dm + 1dy

2 + dz
22Lm

 dm.

Ixx = Lm
C 1y¿22 + 1z¿22 D  dm + 2dyLm

y¿ dm

Ixx,
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Moment of Inertia about an Arbitrary Axis
If we know a rigid body’s inertia matrix in terms of a given coordinate system
with origin O, we can determine its moment of inertia about an arbitrary axis
through O. Suppose that the rigid body rotates with angular velocity about
an arbitrary fixed axis through O, and let e be a unit vector with the same
direction as (Fig. 20.23). Then, in terms of the moment of inertia about 
the rigid body’s angular momentum about is

We can express the angular velocity vector as

so that and Using these expressions and
Eqs. (20.9), we obtain the angular momentum about 

Equating our two expressions for yields

(20.43)

Notice that the moment of inertia about an arbitrary axis depends on the prod-
ucts of inertia, in addition to the moments of inertia about the coordinate axes.
If an object’s inertia matrix is known, Eq. (20.43) can be used to determine the
object’s moment of inertia about an axis through O whose direction is specified
by the unit vector e.

Principal Axes
For any object and origin O, at least one coordinate system exists for which the
products of inertia are zero:

(20.44)

These coordinate axes are called principal axes, and the moments of inertia
about them are called the principal moments of inertia.

If the inertia matrix of a rigid body is known in terms of a coordinate sys-
tem and the products of inertia are zero, then is a set of principalx¿y¿z¿x¿y¿z¿

3I4 = C Ixx 0 0
0 Iyy 0
0 0 Izz

S .

IO = Ixx e2
x + Iyy e2

y + Izz e2
z - 2Ixy ex ey - 2Iyz ey ez - 2Izx ez ex.

HO

 + 1-Izx ƒ ! ƒ ex - Izy ƒ ! ƒ ey + Izz ƒ ! ƒ ez2ez.

 + 1-Iyx ƒ ! ƒ ex + Iyy ƒ ! ƒ ey - Iyz ƒ ! ƒ ez2ey

 HO = HO 
#

 e = 1Ixx ƒ ! ƒ ex - Ixy ƒ ! ƒ ey - Ixz ƒ ! ƒ ez2ex

LO:
vz = ƒ ! ƒ ez.vx = ƒ ! ƒ ex, vy = ƒ ! ƒ ey,

! = ƒ ! ƒ 1ex i + ey  j + ez k2,
HO = IO ƒ ! ƒ .

LO

LO,IO!
LO

!

e

LO
y

x

z

O

!

Figure 20.23
Rigid body rotating about LO.
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Appendix: Moments and Products of Inertia 535

axes. Suppose that the products of inertia are not zero, and we want to find a set
of principal axes xyz and the corresponding principal moments of inertia 
(Fig. 20.24). It can be shown that the principal moments of inertia are roots of
the cubic equation

(20.45)

For each principal moment of inertia I, the vector V with components

(20.46)

is parallel to the corresponding principal axis.
When the inertia matrix of an object is known in terms of a coordinate sys-

tem with origin O, determining the associated principal moments of inertia and
a set of principal axes involves two steps:

1. Determine the principal moments of inertia by obtaining the roots of
Eq. (20.45).

2. If the three principal moments of inertia are distinct, substitute each one into
Eqs. (20.46) to obtain the components of a vector parallel to the corresponding
principal axis. The three principal axes can be denoted as x, y, and z arbitrar-
ily, as long as the resulting coordinate system is right handed. If the three prin-
cipal moments of inertia are equal, the moment of inertia about any axis
through O has the same value, and any coordinate system with origin O is a
set of principal axes. This is the case, for example, if the object is a homoge-
neous sphere with O at its center (Fig. 20.25a). If only two of the principal
moments of inertia are equal, the third one can be substituted into Eqs. (20.46)
to determine the associated principal axis. Then the moment of inertia about
any axis through O that is perpendicular to the determined axis has the same
value, so any coordinate system with origin O that has an axis coincident with
the determined axis is a set of principal axes. This is the case when an object
has an axis of rotational symmetry and O is on the axis (Fig. 20.25b).

Vz¿ = Ix¿z¿1Iy¿y¿ - I2 + Ix¿y¿ Iy¿z¿

 Vy¿ = Ix¿y¿1Iz¿z¿ - I2 + Ix¿z¿ Iy¿z¿,

 Vx¿ = 1Iy¿y¿ - I21Iz¿z¿ - I2 - I2
y¿z¿,

- 1Ix¿x¿ Iy¿y¿ Iz¿z¿ - Ix¿x¿  I2
y¿z¿ - Iy¿y¿ I2

x¿z¿ - Iz¿z¿ I2
x¿y¿ - 2Ix¿y¿ Iy¿z¿ Iz¿x¿2 = 0.

+ 1Ix¿x¿ Iy¿y¿ + Iy¿y¿ Iz¿z¿ + Iz¿z¿ Ix¿x¿ - I2
x¿y¿ - I2

y¿z¿ - I2
z¿x¿2II3 - 1Ix¿x¿ + Iy¿y¿ + Iz¿z¿2I2

(a)

y
x

z
(b)

y
x

z

O

Figure 20.25
(a) A homogeneous sphere. Any coordinate

system with its origin at the center is a
set of principal axes.

(b) A rotationally symmetric object. The axis
of symmetry is a principal axis, and any
axis perpendicular to it is a principal axis.

y!

x!

z!

O

x

z

y

Figure 20.24
The system with its origin at O and a
set of principal axes xyz.

x¿y¿z¿
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536 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

Example 20.8 Parallel-Axis Theorems (! Related Problems 20.90, 20.91)

The boom AB of the crane has a mass of 4800 kg, and the boom BC has a mass of
1600 kg and is perpendicular to AB. Modeling each boom as a slender bar and
treating them as a single object, determine the moments and products of inertia of
the object in terms of the coordinate system shown.

x

y 18 m

B

C

6 m

50!

A

Strategy
We can apply the parallel-axis theorems to each boom to determine its moments and
products of inertia in terms of the given coordinate system. The moments and products
of inertia of the combined object are the sums of those for the two booms.

Solution
Boom AB In Fig. a, we introduce a parallel coordinate system with its
origin at the center of mass of boom AB. In terms of the system, the inertia
matrix of boom AB is

The coordinates of the origin of the system relative to the xyz system are
Applying the parallel-axis theorems, we obtain

and
Izx = Iz¿x¿ + dz dx m = 0.

 Iyz = Iy¿z¿ + dy dz m = 0,

 Ixy = Ix¿y¿ + dx dy m = 0,

 = 518,400 kg-m2,

 Izz = Iz¿z¿ + 1d2
x + d2

y2 m = 1
12 14800211822 + 1922148002 = 518,400 kg-m2,

 Iyy = Iy¿y¿ + 1d2
x + d2

z2 m = 1
12 14800211822 + 1922148002 Ixx = Ix¿x¿ + 1d2

y + d2
z2 m = 0,

dx = 9 m, dy = 0, dz = 0.
x¿y¿z¿

3I¿4 = C0 0 0
0 1

12 ml2 0
0 0 1

12 ml2
S = C0 0 0

0 1
1214800211822 0

0 0 1
1214800211822S  kg-m2.

x¿y¿z¿
x¿y¿z¿x, x"

y
18 m

A

B

y"

9 m

(a) Applying the parallel-axis 
theorems to boom AB.
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Appendix: Moments and Products of Inertia 537

Boom BC In Fig. b we introduce a parallel coordinate system with its origin
at the center of mass of boom BC. In terms of the system, the inertia matrix
of boom BC is

The coordinates of the origin of the system relative to the xyz system are
Applying the parallel-axis theorems, we obtain

and

Summing the results for the two booms, we obtain the inertia matrix for the
single object:

Critical Thinking
Most of the objects you will encounter in engineering will be assemblies of sim-
pler parts, such as the crane’s boom in this example. When the moments and prod-
ucts of inertia of the parts are known, the moments and products of inertia of the
assembly can be determined using the procedure in this example. You apply the
parallel-axis theorems to each part to determine its moments and products of iner-
tia in terms of a given coordinate system, then sum the results for the parts to obtain
the moments and products of inertia of the assembly in terms of that coordinate
system. Notice that in order to apply the parallel-axis theorems, the moments and
products of inertia of the parts must be expressed in terms of parallel coordinate
systems.

 = C 19,200 86,400 0
86,400 1,036,800 0

0 0 1,056,000
S  kg-m2.

 3I4 = C 19,200 -1-86,4002 0
-1-86,4002 518,400 + 518,400 0

0 0 518,400 + 537,600
S

Izx = Iz¿x¿ + dz dx m = 0.

 Iyz = Iy¿z¿ + dy dz m = 0,

 Ixy = Ix¿y¿ + dx dy m = 0 + 11821-32116002 = -86,400 kg-m2,

 = 537,600 kg-m2,

 Izz = Iz¿z¿ + 1d2
x + d2

y2 m = 1
12 1160021622 + 311822 + 1-3224116002 Iyy = Iy¿y¿ + 1d2

x + d2
z2 m = 0 + 11822116002 = 518,400 kg-m2,

 = 19,200 kg-m2,

 Ixx = Ix¿x¿ + 1d2
y + d2

z2 m = 1
12 1160021622 + 1-322116002dx = 18 m, dy = -3 m, dz = 0.

x¿y¿z¿

3I¿4 = C 1
12 ml2 0 0

0 0 0
0 0 1

12 ml2
S = C 1

121160021622 0 0
0 0 0
0 0 1

121160021622 S  kg-m2.

x¿y¿z¿
x¿y¿z¿

18 m

y

y!

3 m

B

C

x!
6 mx

(b) Applying the parallel-axis 
theorems to boom BC.
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538 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

z

x

y

h ! 600 mm

b ! 300 mm

Example 20.9 Inertia Matrix of a Plate (! Related Problems 20.82, 20.83)

The 4-kg rectangular plate lies in the x–y plane of the body-fixed coordinate
system.
(a) Determine the plate’s moments and products of inertia.
(b) Determine the plate’s moment of inertia about the diagonal axis 
(c) If the plate is rotating about the fixed point O with angular velocity

what is the plate’s angular momentum about O?! = 4i - 2j 1rad/s2, LO.

z

x

y

600 mm

300 mm

LO

O

Strategy
(a) We can obtain the moments and products of inertia of the plate’s rectangu-
lar area from Appendix B and use Eq. (20.39) to obtain the moments and prod-
ucts of inertia of the plate.
(b) Once we know the moments and products of inertia, we can use Eq. (20.43)
to determine the moment of inertia about 
(c) The angular momentum about O is given by Eqs. (20.9).

Solution
(a) From Appendix B, the moments of inertia of the plate’s cross-sectional area
are as follows (Fig. a):

  Ix = 1
3 bh3,

 Iy = 1
3 hb3,

IA
xy = 1

4 b2h2,

JO = 1
3 1bh3 + hb32.

LO.

(a) Determining the moments of inertia of the plate’s area.
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Appendix: Moments and Products of Inertia 539

Therefore, the moments and products of inertia of the plate are

and

(b) To apply Eq. (20.43), we must determine the components of a unit vector
parallel to 

The moment of inertia about is

(c) The plate’s angular momentum about O is

Critical Thinking
Could you use the results of part (a) and the parallel-axis theorems to deter-
mine the moments and products of inertia of the plate in terms of any other
parallel coordinate system? Remember that the parallel-axis theorems relate
the moments and products of inertia of an object in terms of a coordinate
system with its origin at the center of mass to those in terms of a parallel
coordinate system. Therefore, you would first need to apply the parallel-axis
theorems to the results of part (a) to determine the moments and products of
inertia of the plate in terms of a parallel coordinate system with its origin at
the center of mass.

 = C 2.28
-0.96

0
S  kg-m2/s.

 = C 0.48 -0.18 0
-0.18 0.12 0

0 0 0.6
S C 4

-2
0
S CHOx

HOy

HOz

S = C Ixx -Ixy -Ixz

-Iyx Iyy -Iyz

-Izx -Izy Izz

S Cvx

vy

vz

S = 0.048 kg-m2.

 = 10.48210.44722 + 10.12210.89422 - 210.18210.447210.8942 IO = Ixx e2
x + Iyy e2

y + Izz e2
z - 2Ixy ex ey - 2Iyz ey ez - 2Izx ez ex

LO

e =
300 i + 600j

ƒ 300 i + 600j ƒ
= 0.447i + 0.894j.

LO:

Ixz = Iyz = 0.

 Izz = m
A

 JO =
14210.3210.62  a 1

3
b310.3210.623 + 10.6210.3234 = 0.60 kg-m2,

 Ixy = m
A

 IA
xy =

14210.3210.62  a 1
4
b10.32210.622 = 0.18 kg-m2,

 Iyy = m
A

 Iy =
14210.3210.62  a 1

3
b10.6210.323 = 0.12 kg-m2,

 Ixx = m
A

 Ix =
14210.3210.62  a 1

3
b10.3210.623 = 0.48 kg-m2,
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540 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

x!

y!

z!

"0.458i # 0.076j # 0.886k

0.473i # 0.864j # 0.171k

0.753i " 0.497j # 0.432kz

x

y

Example 20.10 Principal Axes and Moments of Inertia (! Related Problem 20.96)

In terms of a coordinate system with its origin at the center of mass, the
inertia matrix of a rigid body is

Determine the principal moments of inertia and the directions of a set of prin-
cipal axes relative to the system.

Strategy
The principal moments of inertia are the roots of Eq. (20.45). For each princi-
pal moment of inertia, Eqs. (20.46) give the components of a vector that is par-
allel to the corresponding principal axis.

Solution
Substituting the moments and products of inertia into Eq. (20.45), we obtain
the equation

(1)

The graph shows the value of the left side of this equation as a function of I.
The three roots, which are the values of the principal moments of inertia in

are and 
Substituting the principal moment of inertia into 

Eqs. (20.46) and dividing the resulting vector V by its magnitude, we obtain a
unit vector parallel to the corresponding principal axis:

Substituting into Eqs. (20.46), we obtain the unit vector

and substituting into Eqs. (20.46), we obtain the unit vector

e3 = 0.753i - 0.497j + 0.432k.

I3 = 5.895 kg-m2

e2 = -0.458i + 0.076j + 0.886k,

I2 = 2.397 kg-m2

e1 = 0.473i + 0.864j + 0.171k.

I1 = 0.708 kg-m2
I3 = 5.895.I1 = 0.708, I2 = 2.397,kg-m2,

I3 - 9I2 + 20I - 10 = 0.

x¿y¿z¿

3I¿4 = C 4 -2 1
-2 2 -1

1 -1 3
S  kg-m2.

x¿y¿z¿

0

0 1

I (kg-m2)
2 3 4 5 6 7

"5

"10
"15
"20

5

10

15
20
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Problems 541

x

y

1 m

2 m

Problem 20.80

0.1 m0.1 m

0.1 m

y

x 

0.1 m

0.2 m

Problem 20.81

Problems
20.80 The mass of the bar is 6 kg. Determine the moments and 
products of inertia of the bar in terms of the coordinate system
shown.

We have determined the principal moments of inertia and the components of unit
vectors parallel to the corresponding principal axes. We show the principal axes,
arbitrarily designating them so that and

Critical Thinking
Many programmable calculators and computer programs are available that will
determine roots of nonlinear algebraic equations. That is how we obtained the
precise values of the roots of Eq. (1) in this example. We needed to determine
all three roots of the cubic equation. Unless the program you use is designed to
determine all of the roots of an Nth-order equation, you may find that the pro-
gram continues to converge on a root that you have already determined instead
of one you are still seeking. You can avoid this in a simple way. In this example,
you would begin by asking the program to determine a root of Eq. (1). Suppose
that the root obtained is 0.708. (This value is rounded off to three significant dig-
its. In your computations, retain as much accuracy as your computer provides.)
Then seek a root of the equation

In this way, you are “dividing out” the root you have determined. If the next
root you obtain is 2.397, obtain the final root by seeking a root of the equation

I3 - 9I2 + 20I - 101I - 0.70821I - 2.3972 = 0.

I3 - 9I2 + 20I - 10
I - 0.708

= 0.

Izz = 2.397 kg-m2.
0.708 kg-m2, Iyy =Ixx = 5.895 kg-m2,

20.81 The object consists of two 1-kg vertical slender bars 
welded to a 4-kg horizontal slender bar. Determine its moments
and products of inertia in terms of the coordinate system shown.
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542 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.89 The slender bar of mass m is parallel to the x axis. If the
coordinate system is body fixed and its angular velocity about
the fixed point O is what is the bar’s angular momen-
tum about O?

! = vy  j,

y

x

z
O

l

h

Problem 20.89

20.84 The 30-lb triangular plate lies in the x–y plane. Determine
the moments and products of inertia of the plate in terms of the
coordinate system shown.

20.85 The 30-lb triangular plate lies in the x–y plane.

(a) Determine its moments and products of inertia in terms of a
parallel coordinate system with its origin at the plate’s
center of mass.

(b) If the plate is rotating with angular velocity
what is its angular momentum about its center

of mass?
12 j + 16 k 1rad/s2, ! = 20 i -

x¿y¿z¿

20.86 Determine the inertia matrix of the 2.4-kg steel plate in
terms of the coordinate system shown.

20.87 The mass of the steel plate is 2.4 kg.

(a) Determine its moments and products of inertia in terms of a
parallel coordinate system with its origin at the plate’s
center of mass.

(b) If the plate is rotating with angular velocity 
what is its angular momentum about its

center of mass?
10 j - 10 k 1rad/s2, ! = 20 i +

x¿y¿z¿

20.88 The slender bar of mass m rotates about the fixed point O
with angular velocity Determine its angular
momentum (a) about its center of mass and (b) about O.

! = vy  j + vz k.

z

y
x

6 ft

4 ft

Problems 20.84/20.85

x

y

50 mm

150 mm

220 mm

Problems 20.86/20.87

x

z

y

O

l

Problem 20.88

! 20.82 The 4-kg thin rectangular plate lies in the x–y plane. 
Determine the moments and products of inertia of the plate in
terms of the coordinate system shown. (See Example 20.9.)

! 20.83 If the 4-kg plate is rotating with angular velocity
what is its angular momentum about

its center of mass? (See Example 20.9.)
! = 6i + 4j - 2k 1rad/s2,

z

x

y

600 mm

300 mm

Problems 20.82/20.83
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! 20.90 In Example 20.8, the moments and products of inertia
of the object consisting of the booms AB and BC were determined
in terms of the coordinate system shown in the example. De-
termine the moments and products of inertia of the object in terms
of a parallel coordinate system with its origin at the center
of mass of the object.

! 20.91 Suppose that the crane described in Example 20.8
undergoes a rigid-body rotation about the vertical axis at 0.1 rad/s
in the counterclockwise direction when viewed from above.

(a) What is the crane’s angular velocity vector in terms of the
body-fixed coordinate system shown in the example?

(b) What is the angular momentum of the object consisting of the
booms AB and BC about its center of mass?

20.92 A 3-kg slender bar is rigidly attached to a 2-kg thin
circular disk. In terms of the body-fixed coordinate system
shown, the angular velocity of the composite object is

What is the object’s angular
momentum about its center of mass?
! = 100i - 4j + 6k 1rad/s2.

xyz
!

x¿y¿z¿

xyz

20.93* The mass of the homogeneous slender bar is m. If the
bar rotates with angular velocity 
what is its angular momentum about its center of mass?

! = v0124i + 12j - 6k2,

20.94* The 8-kg homogeneous slender bar has ball-and-socket
supports at A and B.

(a) What is the bar’s moment of inertia about the axis AB?

(b) If the bar rotates about the axis AB at 4 rad/s, what is the
magnitude of its angular momentum about its axis of rotation?

20.95* The 8-kg homogeneous slender bar is released from rest
in the position shown. (The x–z plane is horizontal.) What is the
magnitude of the bar’s angular acceleration about the axis AB at
the instant of release?

! 20.96 In terms of a coordinate system with its origin at
the center of mass, the inertia matrix of a rigid body is

Determine the principal moments of inertia and unit vectors 
parallel to the corresponding principal axes. (See Example 20.10.)

20.97 For the object in Problem 20.81, determine the principal
moments of inertia and unit vectors parallel to the corresponding
principal axes. Draw a sketch of the object showing the principal
axes.

3I¿4 = C 20 10 -10
10 60 0

-10 0 80
S  kg-m2.

x¿y¿z¿

y

x

600 mm

200 mm

Problem 20.92

y

x

z

b

b

b

b

Problem 20.93

y

A

x

z

B

1 m

1 m

2 m

Problems 20.94/20.95
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544 Chapter 20 Three-Dimensional Kinematics and Dynamics of Rigid Bodies

20.98 The 1-kg, 1-m long slender bar lies in the plane. Its
inertia matrix in is

Use Eqs. (20.45) and (20.46) to determine the principal moments
of inertia and unit vectors parallel to the corresponding principal
axes.

3I¿4 = C 1
12 sin2 b - 1

12 sin b cos b 0
- 1

12 sin b cos b 1
12 cos2 b 0

0 0 1
12

S .

kg-m2
x¿–y¿ 20.99* The mass of the homogeneous thin plate is 3 slugs. 

For the coordinate system shown, determine the plate’s principal
moments of inertia and unit vectors parallel to the corresponding
principal axes.

x!

y!

b

Problem 20.98

x!

y!

z!

2 ft

3 ft

4 ft

O

Problem 20.99

Review Problems

20.100 The disk is pinned to the horizontal shaft and rotates
relative to it with angular velocity Relative to an earth-fixed
reference frame, the vertical shaft rotates with angular
velocity

(a) Determine the disk’s angular velocity vector relative to the
earth-fixed reference frame.

(b) What is the velocity of point A of the disk relative to the
earth-fixed reference frame?

20.101 The disk is pinned to the horizontal shaft and rotates rel-
ative to it with constant angular velocity Relative to an earth-
fixed reference frame, the vertical shaft rotates with constant
angular velocity What is the acceleration of point A of the
disk relative to the earth-fixed reference frame?

v0.

vd.

!

v0.

vd.

b

A

xR

z

y

v0

vd

u

Problems 20.100/20.101

20.102 The cone is connected by a ball-and-socket joint at its
vertex to a 100-mm post. The radius of its base is 100 mm, and the
base rolls on the floor. The velocity of the center of the base is

(a) What is the cone’s angular velocity vector 

(b) What is the velocity of point A?

!?

vC = 2k 1m/s2.

x

100 mm
A

y

z

C

60"

400 mm

Problem 20.102
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20.103 The mechanism shown is a type of universal joint called
a yoke and spider. The axis L lies in the x–z plane. Determine the
angular velocity and the angular velocity vector of the
cross-shaped “spider” in terms of the angular velocity at the
instant shown.

vR

!SvL

2b

2b

y

z

L
x

f

vL vR

Problem 20.103

20.104 The inertia matrix of a rigid body in terms of a body-
fixed coordinate system with its origin at the center of mass is

If the rigid body’s angular velocity is 
what is its angular momentum about its center of mass?

20.105 What is the moment of inertia of the rigid body
described in Problem 20.104 about the axis that passes through
the origin and the point 

Strategy: Determine the components of a unit vector parallel
to the axis and use Eq. (20.43).

14, -4, 72 m?

! = 10 i - 5 j + 10 k 1rad/s2,
3I4 = C 4 1 -1

1 2 0
-1 0 6

S  kg-m2.

20.106 Determine the inertia matrix of the 0.6-slug thin plate in
terms of the coordinate system shown.

20.107 At the 0.6-slug thin plate has angular velocity
and is subjected to the force 

acting at the point (0, 6, 0) in. No other forces or 
couples act on the plate. What are the components of its angular
acceleration at that instant?

-10k 1lb2 F =! = 10 i + 10 j 1rad/m2t = 0,

y

x

6 in
1.5 in

3 in

Problems 20.106/20.107

20.108 The inertia matrix of a rigid body in terms of a body-
fixed coordinate system with its origin at the center of mass is

If the rigid body’s angular velocity is 
and its angular acceleration is zero, what are the compo-

nents of the total moment about its center of mass?

20.109 If the total moment about the center of mass of the rigid
body described in Problem 20.108 is zero, what are the compo-
nents of its angular acceleration?

1rad/s2 ! = 10 i - 5 j + 10 k

3I4 = C 4 1 -1
1 2 0

-1 0 6
S  kg-m2.
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20.110 The slender bar of length l and mass m is pinned to the 
L-shaped bar at O. The L-shaped bar rotates about the vertical
axis with a constant angular velocity Determine the value of

necessary for the bar to remain at a constant angle relative
to the vertical.

bv0

v0.

20.111 A slender bar of length l and mass m is rigidly attached
to the center of a thin circular disk of radius R and mass m. The
composite object undergoes a motion in which the bar rotates in
the horizontal plane with constant angular velocity about the
center of mass of the composite object and the disk rolls on the
floor. Show that v0 = 22g>R.

v0

O
v0

b
l

b

Problem 20.110

R

l

v0 v0

Problem 20.111

20.112* The thin plate of mass m spins about a vertical axis
with the plane of the plate perpendicular to the floor. The corner
of the plate at O rests in an indentation, so that it remains at the
same point on the floor. The plate rotates with constant angular
velocity and the angle is constant.

(a) Show that the angular velocity is related to the angle by

(b) The equation you obtained in (a) indicates that when
What is the interpretation of this result?

20.113* In Problem 20.112, determine the range of values of
the angle for which the plate will remain in the steady
motion described.

b

2 cos b - sin b = 0.
v0 = 0

hv2
0

g
=

2 cos b - sin b

sin2 b - 2 sin b cos b - cos2 b
.

bv0

bv0

2h

O

h

v0

b

Problems 20.112/20.113

20.114 Arm BC has a mass of 12 kg, and its moments and prod-
ucts of inertia, in terms of the coordinate system shown, are

and
At the instant shown, arm AB is rotating in the horizontal

plane with a constant angular velocity of 1 rad/s in the counter-
clockwise direction viewed from above. Relative to arm AB, arm
BC is rotating about the z axis with a constant angular velocity of
2 rad/s. Determine the force and couple exerted on arm BC at B.

Ixz = 0.
Ixy = Iyz =Ixx = 0.03 kg-m2, Iyy = Izz = 4 kg-m2,

2 rad/s
C

BA

x

y

1 rad/s

40!

700 mm

300 m
m

Problem 20.114
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20.115 Suppose that you throw a football in a wobbly spiral
with a nutation angle of 25°. The football’s moments of inertia
are and If 
the spin rate is revolutions per second, what is the 
magnitude of the precession rate (the rate at which the football
wobbles)?

20.116 Sketch the body and space cones for the motion of the
football in Problem 20.115.

f
#

= 4
Izz = 0.001 slug-ft2.Ixx = Iyy = 0.003 slug-ft2

Z

z

25!

Problems 20.115/20.116

20.117 The mass of the homogeneous thin plate is 1 kg. For the
coordinate system shown, determine the plate’s principal
moments of inertia and the directions of unit vectors parallel to
the corresponding principal axes.

x"

y"

z"

160
mm

160
mm

160
mm

O

400 mm

Problem 20.117

20.118 The airplane’s principal moments of inertia, in 
are and 

(a) The airplane begins in the reference position shown and
maneuvers into the orientation Draw a sketch
showing the plane’s orientation relative to the XYZ system.

(b) If the airplane is in the orientation described in (a), the rates
of change of the Euler angles are and

and the second derivatives of the angles with
respect to time are zero, what are the components of the total
moment about the airplane’s center of mass?

20.119 What are the x, y, and z components of the angular
acceleration of the airplane described in Problem 20.118?

20.120 If the orientation of the airplane in Problem 20.118 is
and the rates of change of the 

Euler angles are and and the
components of the total moment about the center of mass of the
plane are and 
what are the x, y, and z components of the airplane’s angular
acceleration?

©Mz = 0,©My = 1200 ft-lb,©Mx = 400 ft-lb,

f
#

= 0.1 rad/s,c
#

= 0, u
#

= 0.2 rad/s,
f = 45°,c = 45°, u = 60°,

f
#

= 0.2 rad/s,
c
#

= 0, u
#

= 0.2 rad/s,

c = u = f = 45°.

Izz = 50,000.Iyy = 48,000,Ixx = 8000,
slug-ft2,

Z, z
X, x

Problems 20.118–20.120
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Vibrations

Vibrations have been of concern in engineering since
the beginning of the industrial revolution. Beginning
with the development of electromechanical devices ca-
pable of creating and measuring mechanical vibrations,
engineering applications of vibrations have included the
various areas of acoustics, from architectural acoustics
to earthquake detection and analysis. We consider
vibrating systems that have one degree of freedom—
that is, the position, or configuration, of a system can be
specified by a single variable. The fundamental con-
cepts we introduce, including amplitude, frequency,
period, damping, and resonance, are also used in the
analysis of systems with multiple degrees of freedom.

C H A P T E R

21

! Earthquakes—natural vibrations of the earth—pose a major challenge to
engineering analysis and design. In this chapter we analyze the vibrations of
simple mechanical systems.
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550 Chapter 21 Vibrations

21.1 Conservative Systems

BACKGROUND
We begin by presenting different examples of one-degree-of-freedom systems
subjected to conservative forces, demonstrating that their motions are described
by the same differential equation. We then examine solutions of this equation
and use them to describe the vibrations of one-degree-of-freedom conservative
systems.

Examples
The spring–mass oscillator (Fig. 21.1a) is the simplest example of a one-degree-
of-freedom vibrating system. A single coordinate x measuring the displacement
of the mass relative to a reference point is sufficient to specify the position of
the system. We draw the free-body diagram of the mass in Fig. 21.1b, neglect-
ing friction and assuming that the spring is unstretched when Applying
Newton’s second law, we can write the equation describing the horizontal motion
of the mass as

(21.1)

We can obtain this equation by a different method that is very useful. The only
force that does work on the mass, the force exerted by the spring, is conserva-
tive, which means that the sum of the kinetic and potential energies is constant:

Taking the derivative of this equation with respect to time, we can write the re-
sult as

again obtaining Eq. (21.1).
Suppose that the mass is suspended from the spring, as shown in Fig. 21.1c,

and undergoes vertical motion. If the spring is unstretched when it is easy
to confirm that the equation of motion is

If the suspended mass is stationary, the magnitude of the force exerted by the
spring must equal the weight so the equilibrium position is

(Notice that we can also determine the equilibrium position by set-
ting the acceleration equal to zero in the equation of motion.) Let us introduce
a new variable that measures the position of the mass relative to its equilib-
rium position: Writing the equation of motion in terms of this
variable, we obtain

(21.2)
d2x~

dt2 + k
m

 x~ = 0,

x~ = x - mg>k.
x~

x = mg>k.
1kx = mg2,

d2x

dt2 + k
m

 x = g.

x = 0,

adx
dt
b ad2x

dt2 + k
m

 xb = 0,

1
2

 madx
dt
b2

+ 1
2 kx2 = constant.

d2x

dt2 + k
m

 x = 0.

x = 0.

x

k

kx

N

x

k

(c)

(b)

(a)

x

mg

Figure 21.1
(a) The spring–mass oscillator has one 

degree of freedom.
(b) Free-body diagram of the mass.
(c) Suspending the mass.
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21.1 Conservative Systems 551

A

(a)

u

(b)

Ay

Ax
Datum

mg

1
2

l

Figure 21.2
(a) A pendulum consisting of a slender bar.
(b) Free-body diagram of the bar.

which is identical to Eq. (21.1). The vertical motion of the mass in Fig. 21.1c
relative to its equilibrium position is described by the same equation that
describes the horizontal motion of the mass in Fig. 21.1a relative to its equilib-
rium position.

Now let’s consider a different one-degree-of-freedom system. If we rotate
the slender bar in Fig. 21.2a through some angle and release it, it will oscillate
back and forth. (An object swinging from a fixed point is called a pendulum.)
There is only one degree of freedom, since specifies the bar’s position. Draw-
ing the free-body diagram of the bar (Fig. 21.2b) and writing the equation of
angular motion about A yields

(21.3)

We can also obtain this equation by using conservation of energy. The bar’s
kinetic energy is If we place the datum at the level of
point A (Fig. 21.2b), the potential energy associated with the bar’s weight
is so

Taking the derivative of this equation with respect to time and writing the result
in the form

we obtain Eq. (21.3). 
Note that Eq. (21.3) does not have the same form as Eq. (21.1). However, if we

express in terms of its Taylor series,

and assume that remains small enough to approximate sin by then Eq. (21.3)
becomes identical in form to Eq. (21.1):

(21.4)

Our analyses of the spring–mass oscillator and the pendulum resulted in
equations of motion that are identical in form. To accomplish this in the case of
the suspended spring–mass oscillator, we had to express the equation of motion
in terms of displacement relative to the equilibrium position. In the case of the
pendulum, we needed to assume that the motions were small. But within those
restrictions, the form of equation we obtained describes the motions of many
one-degree-of-freedom conservative systems.

Solutions
Let us consider the differential equation

(21.5)
d2x

dt2 + v2x = 0,

d2u

dt2 +
3g
2l

 u = 0.

u,uu

sin u = u - 1
6 u 3 + 1

120 u 5 + Á ,

sin u

adu
dt
b ad2u

dt2 +
3g
2l

 sin ub = 0,

T + V = 1
2 A13 ml2 B adu

dt
b2

- 1
2 mgl cos u = constant.

V = -mg A 12 l cos u B ,T = 1
2 IA1du>dt22.

d2u

dt2 +
3g
2l

 sin u = 0.

u
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552 Chapter 21 Vibrations

where is a constant. We have seen that with this equation describes
the motion of a spring–mass oscillator, and with it describes small mo-
tions of a suspended slender bar. Equation (21.5) is an ordinary differential equa-
tion, because it is expressed in terms of ordinary (not partial) derivatives of the
dependent variable x with respect to the independent variable t. Also, Eq. (21.5) is
linear, meaning that there are no nonlinear terms in x or its derivatives, and it is
homogeneous, meaning that each term contains x or one of its derivatives. Finally,
Eq. (21.5) has constant coefficients, meaning that the coefficients multiplying the
dependent variable x or its derivative in each term do not depend on the inde-
pendent variable t. The standard approach to solving a differential equation of
this kind is to assume that the solution is of the form

(21.6)

where C and are constants. Substituting this expression into Eq. (21.5) yields

This equation is satisfied for any value of the constant C if or 
where so there are two nontrivial solutions of the form of Eq. (21.6),
which we write as

(21.7)

By using Euler’s identity we can express Eq. (21.7) in
the alternative form

(21.8)

where A and B are arbitrary constants.
Although in practical applications Eq. (21.8) is usually the most conven-

ient form of the solution of Eq. (21.5), we can describe the properties of the
solution more easily by expressing it in the form

(21.9)

where E and are constants. To show that this solution is equivalent to Eq. (21.8),
we use the identity

This expression is identical to Eq. (21.8) if the constants A and B are related
to E and by

(21.10)A = E cos f and B = -E sin f.

f

 = 1E cos f2 sin vt + 1-E sin f2 cos vt.

 E sin1vt - f2 = E1sin vt cos f - cos vt sin f2
f

x = E sin1vt - f2,

x = A sin vt + B cos vt,

eiu = cos u + i sin u,

x = Ceivt + De-ivt.

i = 2-1,
l = - iv,l = iv

Celt1l2 + v22 = 0.

l

x = Celt,

v2 = 3g>2l,
v2 = k>m,v
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21.1 Conservative Systems 553

x

vt

E
f

Figure 21.3
Graph of x as a function of vt.

Equation (21.9) clearly demonstrates the oscillatory nature of the solution of
Eq. (21.5). Called simple harmonic motion, it describes a sinusoidal function of

(Fig. 21.3). The positive constant E is called the amplitude of the vibration.
By squaring Eqs. (21.10) and adding them, we obtain a relation between the
amplitude and the constants A and B:

(21.11)

Equation (21.9) can be interpreted in terms of the uniform motion of a
point along a circular path. We draw a circle whose radius equals the amplitude
(Fig. 21.4) and assume that the line from O to P rotates in the counterclock-
wise direction with constant angular velocity If we choose the position of
P at as shown, the projection of the line OP onto the vertical axis is

Thus, there is a one-to-one correspondence between the cir-
cular motion of P and Eq. (21.9). Point P makes one complete revolution, or
cycle, during the time required for the angle to increase by radians. The
time required for one cycle is called the period of the vibration.
Since is the time required for one cycle, its inverse is the number
of cycles per unit time, or frequency of the vibration. The frequency is usually

f = 1>tt
t = 2p>v 2pvt

E sin1vt - f2.t = 0
v.

E = 2A2 + B2.

vt

E

O
vt

vt

P

Position of
P at t ! 0

x

f

f

Figure 21.4
Correspondence of simple harmonic motion with circular motion
of a point.
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554 Chapter 21 Vibrations

0
0

0.5

1

1 2 3 4 5 6

E
ne

rg
y/

m
E

2 v
2

1 2

Kinetic Potential Total

vt ! f

Figure 21.6
Kinetic, potential, and total energies of a
spring–mass oscillator.

vt

1 2 3 4

t1 " t2 " t3 " t4

f1 # f2 # f3 # f4
x

Figure 21.5
Effect of increasing the period (decreasing
the frequency) of simple harmonic motion.

expressed in cycles per second, or Hertz (Hz). The effect of changing the period
and frequency is illustrated in Fig. 21.5.

We see that the period and frequency are given by

(21.12)

(21.13)

A system’s period and frequency are determined by its physical properties, and
do not depend on the functional form in which its motion is expressed. The fre-
quency f is the number of revolutions the point P moves around the circular
path in Fig. 21.4 per unit time, so is the number of radians per unit
time. Therefore, is also a measure of the frequency and is expressed in radi-
ans per second (rad/s).

Suppose that Eq. (21.9) describes the displacement of the spring–mass
oscillator in Fig. 21.1a, so that Then the kinetic energy of the mass is

(21.14)

and the potential energy of the spring is

(21.15)

The sum of the kinetic and potential energies, is constant
(Fig. 21.6). As the system vibrates, its total energy oscillates between kinetic and
potential energy. Notice that the total energy is proportional to the square of the
amplitude and the square of the natural frequency.

T + V = 1
2 mE2v2,

V = 1
2 kx2 = 1

2 mE2v2 sin21vt - f2.
T = 1

2 madx
dt
b2

= 1
2 mE2v2 cos21vt - f2,

v2 = k/m.

v
v = 2pf

 f = v

2p
.

 t = 2p
v

, 
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If the configuration of a conservative system
is specified by a single variable, its equation
of motion can be obtained by evaluating the
derivative with respect to t of the sum of its
kinetic and potential energies T ! V " constant.

(T ! V ) " 0.
d
dt

21.1 Conservative Systems 555

RESULTS
A system is said to have one degree of freedom if its position, or configuration,
can be specified by one variable. A conservative system is one in which forces
that do work are conservative.

With v2 " k/m, this equation governs the
displacement of the mass of a spring-mass
oscillator relative to its equilibrium position.
Small vibrations of many one-degree-of-freedom 
conservative systems relative to an equilibrium 
position are governed by this same equation, 
with the constant v determined by the physical 
characteristics of the system.

! v2x " 0.           (21.5)
d2x
dt2

The spring-mass oscillator is the simplest
example of a one-degree-of -freedom
vibrating system.

x

k

Alternative forms of the general solution of
Eq. (21.5), where A, B, E, and f are constants.

x " A sin vt ! B cos vt,     (21.8)

x " E sin (vt # f).             (21.9)

Amplitude of the vibration described by
Eqs. (21.8) and (21.9).

E "   A2 ! B2.        (21.11)

The period t of the vibration governed by Eq. (21.5) 
is the time required for one complete oscillation, or 
cycle. The frequency f is the number of cycles per 
unit time. One cycle per second is called a Hertz (Hz). 
The term v " 2p f  is also a measure of the frequency 
and is expressed in rad/s.

f "

t "
2p
v
v

2p

(21.12),

. (21.13)

x

t

t
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556 Chapter 21 Vibrations

Active Example 21.1 Vibration of a Conservative One-Degree-of-Freedom System 
(! Related Problems 21.1, 21.2)

The pulley has radius R and moment of inertia I. The mass m is displaced down-
ward from its equilibrium position and released. What is the frequency of the
resulting vibrations of the system?

Strategy
A single coordinate specifying the vertical position of the mass specifies the po-
sition of the system, so it has one degree of freedom. If we can express the equa-
tion of motion of the system in the form of Eq. (21.5), we can determine the
frequency of its vibrations from Eq. (21.13).

We will first obtain the equation of motion by drawing free-body dia-
grams and applying the rigid body equations of motion. We will then demon-
strate how it can be obtained by using conservation of energy.

Determine the Equation of Motion by Applying 
the Rigid Body Equations of Motion

R

k m

Let x be the downward displacement of
the mass relative to its position when the
spring is unstretched. TC is the tension in
the cable between the mass and pulley.
a is the clockwise angular acceleration
of the pulley. RTC ! R(kx) " Ia.                                (2)

mg ! TC " m

Newton’s second law for the mass is

The equation of angular motion for the pulley is

x

k  x TC
TC

mg

Datum

a

AxAy

d2x
dt2 (1).

Solving Eq. (2) for TC, substituting the
result into Eq. (1), and using the
kinematic relationship

# kx " mg.      (3)
d2x
dt2m #

I
R2!       "a "

d2x
dt2

1
R

yields the equation of motion of the
system in terms of x.
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Practice Problem The mass m is displaced downward a distance h from its equilib-
rium position and released from rest at Determine the position of the mass rela-
tive to its equilibrium position as a function of time.

Answer: x~ = h cos vt.

t = 0.

Express the total kinetic energy in terms of 
x. The angular velocity v of the pulley is 
related to the velocity of the mass by

.v !
dx
dt

1
R

!
1
2

m "
I

R2!       " dx
dt!   "

2
.

"
1
2

 T !
1
2

m Iv2dx
dt!   "

2

Express the total potential energy in terms 
of x. We place the datum for the potential 
energy associated with the weight of the 
mass at x ! 0.

V ! #mgx "    kx2.
1
2

Obtain the equation of motion by 
evaluating the derivative with respect to t 
of the sum of the kinetic and potential 
energies T " V ! constant. " kx ! mg.                                            (3)

d2x
dt2m "

I
R2!       "

m "!       " ! 0:I
R2

dx
dt

dx
dt

# mg
dx
dt

" kx
d2x
dt2(T " V ) !

d
dt

v2 ! k

m "
I

R2

. (5)

By setting d2x/dt2 ! 0 in Eq. (3), we see
that the equilibrium position of the system
is x ! mg/k. Let a new variable
x ! x # mg/k denote the displacement of
the system relative to the equilibrium
position and express Eq. (3) in terms of x.~

~

~
~" v2x ! 0,                                                          (4)

d2x
dt2

where

Equation (4) is of the form of Eq. (21.5).
The frequency of vibration of the system 
is given by Eq. (21.13).

f !
v

2p

k!
1

2p m "
I

R2

.

Determine the Equation of Motion by Applying Conservation of Energy

Express the Equation of Motion in Terms of Displacement 
Relative to the Equilibrium Position.
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558 Chapter 21 Vibrations

Example 21.2 Frequency of a System (! Related Problems 21.32, 21.33)

The spring attached to the slender bar of mass m is unstretched when 
Neglecting friction, determine the frequency of small vibrations of the bar rel-
ative to its equilibrium position.

Strategy
The angle specifies the bar’s position, so there is one degree of freedom. We
can express the kinetic and potential energies in terms of and its time deriva-
tive and then take the derivative of the total energy with respect to time to obtain
the equation of motion.

Solution
The kinetic energy of the bar is

where v is the velocity of the center of mass and The distance 

from the bar’s instantaneous center to its center of mass is (Fig. a), so
and the kinetic energy is

T = 1
2 m c 12 ladu

dt
b d 2 + 1

2 a 1
12 ml2b adu

dt
b2

= 1
6 ml2

 adu
dt
b2

.

v = A 12 l B1du>dt2, 1
2 l

I = 1
12 ml2.

T = 1
2 mv2 + 1

2 Iadu
dt
b2

,

u
u

u = 0.

k

l
u

Stretch
! l " l cos u

Instantaneous
center

Datum

v
cos u

u

l
1
2

l
1
2

(a) Determining the velocity of the
center of mass, the stretch of the
spring, and the height of the center
of mass above the datum.

In terms of the stretch of the spring is We place the datum for the
potential energy associated with the weight at the bottom of the bar (Fig. a), so
the total potential energy is

The sum of the kinetic and potential energies is constant:

T + V = 1
6 ml2

 adu
dt
b2

+ 1
2 mgl cos u + 1

2 kl 211 - cos u22 = constant.

V = mg A 12 l cos u B + 1
2 k1l - l cos u22.

l - l cos u.u,
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21.1 Conservative Systems 559

Taking the derivative of this equation with respect to time, we obtain the equation
of motion:

(1)

To express this equation in the form of Eq. (21.5), we need to write it in terms
of small vibrations relative to the equilibrium position. Let be the value of 
when the bar is in equilibrium. By setting in Eq. (1), we find that

must satisfy the relation

(2)

We define and expand and in Taylor series in terms
of 

Substituting these expressions into Eq. (1), neglecting terms in of second and
higher orders, and using Eq. (2), we obtain

where

From Eq. (21.13), the frequency of small vibrations of the bar is

Critical Thinking
This example demonstrates the advantage of using conservation of energy to
obtain the equation of motion of a one-degree-of-freedom conservative sys-
tem. You should confirm that you can also obtain the equation of motion by
drawing the free-body diagram of the bar and applying Newton’s second law
and the equation of angular motion. But that procedure is considerably more
involved, in part because it is necessary to consider the normal forces exerted
on the ends of the bar. We were able to ignore them in applying conservation
of energy because they do no work on the bar.

f = v

2p
= 1

2p
 B3g

l
 a1 -

mg
4kl
b .

v2 =
3g
l

 a1 -
mg
4kl
b .

d2u
~

dt2 + v2u
~ = 0,

u
~

 cos u = cos1ue + u~2 = cos ue - sin ueu
~ + Á .

 sin u = sin1ue + u~2 = sin ue + cos ueu
~ + Á , 

u
'

:
cos usin uu

~ = u~ - ue,

cos ue = 1 -
mg
2kl

.

ue

d2u>dt2 = 0
uue

1
3 ml2

 
d2u

dt2 - 1
2 mglsin u + kl211 - cos u2 sin u = 0.
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560 Chapter 21 Vibrations

k

x

m

Problems 21.3/21.4

m

20!

k
x

Problems 21.5/21.6

50 mmL

Problems 21.7/21.8

Problems

! 21.1 In Active Example 21.1, suppose that the pulley has
radius and its moment of inertia is 
The mass , and the spring constant is 
If the mass is displaced downward from its equilibrium position
and released, what are the period and frequency of the resulting
vibration?

! 21.2 In Active Example 21.1, suppose that the pulley has radius
and its moment of inertia is The sus-

pended object weighs 5 lb, and the spring constant is
The system is initially at rest in its equilibrium position. At
the suspended object is given a downward velocity of 1 ft/s.
Determine the position of the suspended object relative to its
equilibrium position as a function of time.

21.3 The mass The spring is unstretched when
The period of vibration of the mass is measured and deter-

mined to be 0.5 s. The mass is displaced to the position 
and released from rest at Determine its position at

21.4 The mass The spring is unstretched when
The frequency of vibration of the mass is measured and

determined to be 6 Hz. The mass is displaced to the position
and given a velocity at 

Determine the amplitude of the resulting vibration.
t = 0.dx>dt = 5 m/sx = 0.1 m

x = 0.
m = 4 kg.

t = 0.4 s .t = 0.
x = 0.1 m

x = 0.
m = 4 kg.

t = 0,
k = 10 lb/ft .

I = 0.06 slug-ft2.R = 4 in

k = 200 N/m.m = 2 kg
I = 0.005 kg-m2.R = 100 mm

21.5 The mass , and the spring constant is 
For vibration of the spring–mass oscillator relative to its equilibri-
um position, determine (a) the frequency in Hz and (b) the period.

21.6 The mass , and the spring constant is 
The spring is unstretched when At , and the
mass has a velocity of 2 m/s down the inclined surface. What is 
the value of x at t = 0.8 s?

t = 0, x = 0x = 0.
k = 64 N/m.m = 4 kg

k = 64 N/m.m = 4 kg

21.7 Suppose that in a mechanical design course you are asked
to design a pendulum clock, and you begin with the pendulum.
The mass of the disk is 2 kg. Determine the length L of the bar 
so that the period of small oscillations of the pendulum is 1 s. 
For this preliminary estimate, neglect the mass of the bar.

21.8 The mass of the disk is 2 kg and the mass of the slender bar
is 0.4 kg. Determine the length L of the bar so that the period of
small oscillations of the pendulum is 1 s.

Strategy: Draw a graph of the value of the period for a range
of lengths L to estimate the value of L corresponding to a period
of 1 s.
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k

20 kg

x

4 kg

Problems 21.9/21.10

21.9 The spring constant is The spring is un-
stretched when Neglect the mass of the pulley, that is, as-
sume that the tension in the rope is the same on both sides of the
pulley. The system is released from rest with Determine x
as a function of time.

21.10 The spring constant is The spring is un-
stretched when The radius of the pulley is 125 mm, and
moment of inertia about its axis is The system is
released from rest with Determine x as a function of time.x = 0.

I = 0.05 kg-m2.
x = 0.

k = 785 N/m.

x = 0.

x = 0.
k = 785 N/m.

Problem 21.11

k

20!
x

Problems 21.12/21.13

k R

Problems 21.14/21.15

21.11 A “bungee jumper” who weighs 160 lb leaps from a
bridge above a river. The bungee cord has an unstretched length of
60 ft, and it stretches an additional 40 ft before the jumper re-
bounds. Model the cord as a linear spring. When his motion has
nearly stopped, what are the period and frequency of his vertical
oscillations? (You can’t model the cord as a linear spring during
the early part of his motion. Why not?)

21.12 The spring constant is and the spring is 
unstretched when The mass of each object is 30 kg. 
The inclined surface is smooth. Neglect the mass of the pulley.
The system is released from rest with 

(a) Determine the frequency and period of the resulting vibration.

(b) What is the value of x at

21.13 The spring constant is and the spring is
unstretched when The mass of each object is 30 kg. The
inclined surface is smooth. The radius of the pulley is 120 mm
and its moment of inertia is At and

(a) Determine the frequency and period of the resulting vibration.

(b) What is the value of x at t = 4 s?

dx>dt = 1 m/s.
x = 0t = 0,I = 0.03 kg-m2.

x = 0.
k = 800 N/m,

t = 4 s?

x = 0.

x = 0.
k = 800 N/m,

21.14 The 20-lb disk rolls on the horizontal surface. Its 
radius is Determine the spring constant k so that the
frequency of vibration of the system relative to its equilibrium
position is 

21.15 The 20-lb disk rolls on the horizontal surface. Its radius is
The spring constant is At the spring

is unstretched and the disk has a clockwise angular velocity of
2 rad/s. What is the amplitude of the resulting vibrations of the
center of the disk?

t = 0,k = 15 lb/ft.R = 6 in.

f = 1 Hz.

R = 6 in.
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562 Chapter 21 Vibrations

21.17 The mass of the suspended object A is 4 kg. The mass of
the pulley is 2 kg and its moment of inertia is The
spring constant is For vibration of the system rela-
tive to its equilibrium position, determine (a) the frequency in Hz
and (b) the period.

21.18 The mass of the suspended object A is 4 kg. The mass of
the pulley is 2 kg and its moment of inertia is The
spring constant is The spring is unstretched when

At the system is released from rest with 
What is the velocity of the object A at t = 1 s?

x = 0.t = 0,x = 0.
k = 150 N/m.

0.018 N-m2.

k = 150 N/m.
0.018 N-m2.

21.19 The thin rectangular plate is attached to the rectangular
frame by pins. The frame rotates with constant angular velocity

The angle between the z axis of the body-fixed
coordinate system and the vertical is governed by the equation

Determine the frequency of small vibrations of the plate relative 
to its horizontal position.

Strategy: By writing and in terms of their Taylor
series and assuming that is small, show that the equation govern-
ing can be expressed in the form of Eq. (21.5).

21.20 Consider the system described in Problem 21.19. At
the angle and Determine as a

function of time.
bdb>dt = 0.b = 0.01 radt = 0,

b

b

cos bsin b

d 2b

dt 2
= -v0

2 sin b cos b.

bv0 = 6 rad/s.

x

z

y
h

b

b

v0

Problems 21.19/21.20

120 mm

A
x

k  

Problems 21.17/21.18

15 in

4 in

Problem 21.16

21.16 The 2-lb bar is pinned to the 5-lb disk. The disk rolls on
the circular surface. What is the frequency of small vibrations of
the system relative to its vertical equilibrium position?
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21.21 A slender bar of mass m and length l is pinned to a fixed
support as shown. A torsional spring of constant k attached to the
bar at the support is unstretched when the bar is vertical. Show
that the equation governing small vibrations of the bar from its
vertical equilibrium position is

21.22* The initial conditions of the slender bar in Problem 21.21
are

(a) If show that is given as a function of time by

(b) If show that is given as a function of time by

Strategy: To do part (b), seek a solution of the equation of
motion of the form where C and are constants.lx = Celt,

u =
u
#
0

2h
 1eht - e-ht2, where h2 =

A 12 mgl - k B
1
3 ml2

.

uk 6 1
2 mgl,

u =
u
#
0

v
 sin vt, where  v2 =

Ak - 1
2 mgl B

1
3 ml2

.

uk 7 1
2 mgl,

t = 0
 c u = 0

du
dt

= u
#
0.

d 2u

dt 2
+ v2u = 0,  where  v2 =

Ak - 1
2 mgl B

1
3 ml2

.

k

u

Problems 21.21/21.22

21.23 Engineers use the device shown to measure an astronaut’s
moment of inertia. The horizontal board is pinned at O and sup-
ported by the linear spring with constant When the
astronaut is not present, the frequency of small vibrations of the
board about O is measured and determined to be 6.0 Hz. When the
astronaut is lying on the board as shown, the frequency of small
vibrations of the board about O is 2.8 Hz. What is the astronaut’s
moment of inertia about the z axis?

21.24 In Problem 21.23, the astronaut’s center of mass is at
and his mass is 81.6 kg. What is his

moment of inertia about the axis through his center of mass?z¿
x = 1.01 m, y = 0.16 m,

k = 12 kN/m.

y'

x'

x

y

1.90 m

O

Problems 21.23/21.24

Problem 21.25

21.25* A floating sonobuoy (sound-measuring device) is in equi-
librium in the vertical position shown. (Its center of mass is low
enough that it is stable in this position.) The device is a 10-kg
cylinder 1 m in length and 125 mm in diameter. The water density
is and the buoyancy force supporting the buoy equals
the weight of the water that would occupy the volume of the part
of the cylinder below the surface. If you push the sonobuoy
slightly deeper and release it, what is the frequency of the result-
ing vertical vibrations?

1025 kg/m3,
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200 mm

140 mm

A
B

Problems 21.29/21.30

21.29 The moments of inertia of gears A and B are
and Gear A is connected

to a torsional spring with constant What 
is the frequency of small angular vibrations of the gears?

21.30 At the torsional spring in Problem 21.29 is unstretched
and gear B has a counterclockwise angular velocity of 2 rad/s. Deter-
mine the counterclockwise angular position of gear B relative to its
equilibrium position as a function of time.

t = 0,

k = 10 N-m/rad.
IB = 0.100 kg-m2.IA = 0.025 kg-m2

k

m

r

V

Problems 21.26/21.27

L L

R

u

Problem 21.28

21.26 The disk rotates in the horizontal plane with constant
angular velocity The mass slides in a
smooth slot in the disk and is attached to a spring with constant

The radial position of the mass when the spring is
unstretched is 

(a) Determine the “equilibrium” position of the mass, the value of
r at which it will remain stationary relative to the center of the
disk.

(b) What is the frequency of vibration of the mass relative to its
equilibrium position?

Strategy: Apply Newton’s second law to the mass in terms of
polar coordinates.

21.27 The disk rotates in the horizontal plane with constant an-
gular velocity The mass slides in a
smooth slot in the disk and is attached to a spring with constant

The radial position of the mass when the spring is
unstretched is At the mass is in the position

and Determine the position r as a function
of time.

dr>dt = 0.r = 0.4 m
t = 0,r = 0.2 m.

k = 860 N/m.

m = 2 kg! = 12 rad/s .

r = 0.2 m.
k = 860 N/m.

m = 2 kg! = 12 rad/s .
21.28 A homogeneous 100-lb disk with radius is
attached to two identical cylindrical steel bars of length 
The relation between the moment M exerted on the disk by one
of the bars and the angle of rotation, of the disk is

where J is the polar moment of inertia of the cross section of the
bar and is the shear modulus of the steel.
Determine the required radius of the bars if the frequency of 
rotational vibrations of the disk is to be 10 Hz.

G = 1.7 * 109 lb/ft2

M = GJ
L

 u,

u,

L = 1 ft.
R = 1 ft
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k

l

R

u

Problems 21.32/21.33

350 mm

350
mm

280
mm

A

Problem 21.34

k

u0

Problem 21.35

Problem 21.31

21.31 Each 2-kg slender bar is 1 m in length. What are the peri-
od and frequency of small vibrations of the system?

! 21.32* The masses of the slender bar and the homogeneous
disk are m and respectively. The spring is unstretched when

Assume that the disk rolls on the horizontal surface.

(a) Show that the motion of the system is governed by the equation

(b) If the system is in equilibrium at the angle and
show that the equation governing small vibrations

relative to the equilibrium position is

(See Example 21.2.)

+ c k
m

 1cos ue - cos2ue + sin2ue2 -
g

2l
 cos ue d u~ = 0.

a 1
3

+
3md

2m
 cos2ueb  

d2u
~

dt2

u
~ = u - ue,

u = ue

-
g

2l
 sin u + k

m
 11 - cos u2 sin u = 0.

a 1
3

+
3md

2m
 cos2ub  

d2u

dt2
-

3md

2m
 sin u cos uadu

dt
b2

u = 0.
md,

21.34 The mass of each slender bar is 1 kg. If the frequency of
small vibrations of the system is 0.935 Hz, what is the mass of
the object A?

21.35* The 4-kg slender bar is 2 m in length. It is held in equilib-
rium in the position by a torsional spring with constant k.
The spring is unstretched when the bar is vertical. Determine the
period and frequency of small vibrations of the bar relative to the
equilibrium position shown.

u0 = 35°

! 21.33* The masses of the bar and disk in Problem 21.32 are
and respectively. The dimensions 

and and the spring constant is 

(a) Determine the angle at which the system is in equilibrium.

(b) The system is at rest in the equilibrium position, and the disk
is given a clockwise angular velocity of 0.1 rad/s. Determine 
as a function of time. (See Example 21.2.)

u

ue

k = 70 N/m.R = 0.28 m,
l = 1 mmd = 4 kg,m = 2 kg
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k

c

(a)

x

kx

c
dx
dt

(b)

x

mg

N
Figure 21.7
(a) Damped spring–mass oscillator.
(b) Free-body diagram of the mass.

21.2 Damped Vibrations

BACKGROUND
If the mass of a spring–mass oscillator is displaced and released, it will not vi-
brate indefinitely. It will slow down and eventually stop as a result of frictional
forces, or damping mechanisms, acting on the system. Damping mechanisms
damp out, or attenuate, the vibration. In some cases, engineers intentionally in-
clude damping mechanisms in vibrating systems. For example, the shock ab-
sorbers in a car are designed to damp out vibrations of the suspension relative
to the frame. In the previous section we neglected damping, so the solutions
we obtained describe only motions of systems over periods of time brief enough
that the effects of damping can be neglected. We now discuss a simple method
for modeling damping in vibrating systems.

The spring–mass oscillator in Fig. 21.7a has a damping element. The
schematic diagram for the damping element represents a piston moving in a
cylinder of viscous fluid. The force required to lengthen or shorten a damping
element is defined to be the product of a constant c, the damping constant, and
the rate of change of the length of the element (Fig. 21.7b). Therefore, the equa-
tion of motion of the mass is

By defining and we can write this equation in the form

(21.16)

This equation describes the vibrations of many damped, one-degree-of-freedom
systems. The form of its solution, and consequently the character of the predict-
ed behavior of the system the equation describes, depends on whether the constant
d is less than, equal to, or greater than We discuss these cases in the sections
that follow.

Subcritical Damping
If the system is said to be subcritically damped. Assuming a solution
of the form

(21.17)

and substituting it into Eq. (21.16), we obtain

l2 + 2dl + v2 = 0.

x = Celt

d 6 v,

v.

d2x

dt2 + 2d 
dx
dt

+ v2x = 0.

d = c>2m,v = 2k>m
-c 

dx
dt

- kx = m 
d2x

dt2 .
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This quadratic equation yields two roots for the constant that we can
write as

where

(21.18)

Because we are assuming that the constant is a real number. The
two roots for give us two solutions of the form of Eq. (21.17). The resulting
general solution of Eq. (21.16) is

where C and D are constants. By using the Euler identity 
we can express this solution in the form

(21.19)

where A and B are constants. Equation (21.19) is the product of an exponentially
decaying function of time and an expression identical in form to the solution we
obtained for an undamped system. The exponential function describes the ex-
pected effect of damping: The amplitude of the vibration attenuates with time.
The coefficient d determines the rate at which the amplitude decreases.

Damping has an important effect in addition to causing attenuation. Be-
cause the oscillatory part of the solution is identical in form to Eq. (21.8), ex-
cept that the term is replaced by it follows from Eqs. (21.12) and (21.13)
that the period and frequency of the damped system are

(21.20)

From Eq. (21.18), we see that so the period of the vibration is increased
and its frequency is decreased as a result of subcritical damping.

The rate of damping is often expressed in terms of the logarithmic decre-
ment which is the natural logarithm of the ratio of the amplitude at a time t
to the amplitude at time Since the amplitude is proportional to we
can obtain a simple relation between the logarithmic decrement, the coefficient
d, and the period:

Critical and Supercritical Damping
When the character of the solution of Eq. (21.16) is different from the
case of subcritical damping. Suppose that When this is the case, the sys-
tem is said to be supercritically damped. We again substitute a solution of the form

(21.21)

into Eq. (21.16), obtaining

(21.22)l2 + 2dl + v2 = 0.

x = Celt

d 7 v.
d Ú v,

d = ln c e-dt

e-d1t+td2 d = dtd.

e-dt,t + td.
d,

vd 6 v,

td = 2p
vd

, fd =
vd

2p
.

vd,v

x = e-dt1A sin vd t + B cos vd t2,
eiu = cos u + i sin u,

x = e-dt1Ceivd t + De-ivd t2,
l

vdd 6 v,

vd = 2v2 - d2.

l = -d ; ivd,

l
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Figure 21.8
Displacement history of a vibrating system
that is (a) undamped; (b) subcritically
damped; (c) critically damped; 
(d) supercritically damped.

We can write the roots of this equation as

where

(21.23)

The resulting general solution of Eq. (21.16) is

(21.24)

where C and D are constants.
When a system is said to be critically damped. Then the constant

so Eq. (21.22) has a repeated root and we obtain only one so-
lution of the form (21.21). In this case, it can be shown that the general solu-
tion of Eq. (21.16) is

(21.25)

where C and D are constants.
Equations (21.24) and (21.25) indicate that the motion of a system is not

oscillatory when These equations are expressed in terms of exponential
functions, and do not contain sines and cosines. The condition defines the
minimum amount of damping necessary to avoid oscillatory behavior, which is
why it is referred to as the critically damped case. Figure 21.8 shows the effect
of increasing amounts of damping on the behavior of a vibrating system.

The concept of critical damping has important implications in the design
of many systems. For example, it is desirable to introduce enough damping into
a car’s suspension so that its motion is not oscillatory, but too much damping
would cause the suspension to be too “stiff.”

d = v
d Ú v.

x = Ce-dt + Dte-dt,

l = -d,h = 0,
d = v,

x = Ce-1d-h2t + De-1d+h2t,
h = 2d2 - v2.

l = -d ; h,
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The damped spring-mass oscillator is the
simplest example of a damped one-degree-
of-freedom vibrating system. The damping
element exerts a resisting force that is
proportional to the velocity of the mass.

With v2 ! k/m and d ! c/2m, this equation 
governs the displacement of the mass of a damped 
spring–mass oscillator relative to its equilibrium 
position. Small vibrations of many damped 
one-degree-of-freedom systems relative to an
equilibrium position are governed by this same 
equation, with the constants v and d determined 
by the physical characteristics of the system.

kx

c
dx 
dt

x

mg

N

k

c
x

" 2d " v2x ! 0.     (21.16)d2x
dt2

dx
dt

When d # v, the system is said to be subcritically
damped. The general solution of Eq. (21.16) is the
product of an exponentially decaying function of
time and an expression identical in form to the
general solution for an undamped system.

x ! e$dt(A sin vd t " B cos vd t),

where

vd !

(21.19)

(21.18)v2 $ d2.

The period of vibration of the system is increased and 
the frequency is decreased as a result of subcritical 
damping.

td ! ,
2p
vd

fd ! .        (21.20)
vd

2p

The logarithmic decrement, a measure of attenuation, 
is the natural logarithm of the ratio of the amplitude 
at a time t to the amplitude at time t " td.

d ! ln ! dtd.!         "e$dt

e$d (t " td)

RESULTS
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Active Example 21.3 Damped Spring-Mass Oscillator (! Related Problems 21.36–21.38)

The damped spring–mass oscillator has mass spring constant
and damping constant At time the mass is

released from rest in the position Determine its position as a function
of time.

x = 0.1 m.
t = 0,c = 1 N-s/m.k = 8 N/m,

m = 2 kg,

k

c
x

Strategy
The equation of motion for the damped spring–mass oscillator is given by
Eq. (21.16). By calculating the values of and d, we will determine whether
the damping is subcritical, critical, or supercritical and thereby choose the
appropriate form of solution. Then we can use the given initial conditions to
obtain the position as a function of time.

v

Critical and Supercritical Damping

When d ! v, the system is said to be supercritically
damped. In this case the general solution of Eq. (21.16)
does not exhibit oscillatory behavior.

x " Ce#(d # h)t $ De#(d $ h)t,

where

h "

(21.23)

(21.24)d2 # v2.

When d " v, the system is critically damped. This is 
the minimum amount of damping for which the general 
solution of Eq. (21.16) does not exhibit oscillatory 
behavior.

x " Ce#dt $ Dte#dt.      (21.25)
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Evaluate v and d. The damping is subcritical.

k
m

v ! ! ! 2 rad/s,
8 N/m
2 kg

c
2m

d ! ! ! 0.25 rad/s.
1 N-s/m
2(2 kg)

x ! e"dt(A sin vd t # B cos vd t),

! e"0.25t(A sin 1.98 t # B cos 1.98 t).                    (1)

The general solution is given by Eq. (21.19) with

vd ! v2 " d2 ! 1.98 rad/s.

At t ! 0, the position of the mass is x ! 0.1 m
and its velocity is dx/dt ! 0. Use these initial
conditions to solve for the constants A and B.
Substituting the results into Eq. (1) determines
the position of the mass as a function of time.

! "0.25e"0.25t(A sin 1.98 t # B cos 1.98 t)

#1.98e"0.25t(A cos 1.98 t " B sin 1.98 t).      (2)

Substituting the initial conditions into Eqs. (1) and (2) 
and solving yields

A ! 0.0126 m,
B ! 0.1 m.

dx
dt

The position as a function of time is

x ! e"0.25t(0.0126 sin 1.98 t # 0.1 cos 1.98 t) m.

The graph of the position for
the first 10 s of motion clearly
exhibits the attenuation of the
amplitude.

5x 
(m

)

10

"0.1

0

0.1

t (s)

Practice Problem Suppose that the damping element of the damped spring–mass
oscillator is replaced by one with damping constant At time the
mass is released from rest in the position Determine its position as a function
of time. 

Answer: x = 0.117e-0.764t -  0.0171e-5.24t m.

x = 0.1 m.
t = 0,c = 12 N-s/m.

Solution
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k c

2R

R

x

3
dx
dt

dx
dt

2
dx
dt

(a) Using the instantaneous center to
determine the relationships
between the velocities.

3c
dx
dt

x

T 2kx

R

2R

mg
a

(b) Free-body diagram of the disk.

Example 21.4 Motion of a Damped System (! Related Problems 21.53, 21.54)

The mass of the stepped disk is its radius is and its
moment of inertia is The spring constant is and the
damping constant is Determine the position of the center of the
disk as a function of time if the disk is released from rest with the spring
unstretched.

Strategy
We will obtain the equation of motion for the disk by drawing its free-body di-
agram and using Newton’s second law and the equation of angular motion. If
the resulting equation can be expressed in the form of Eq. (21.16), we can an-
alyze its motion using the same approach we applied to the damped spring–mass
oscillator in Active Example 21.3.

Solution
Let x be the downward displacement of the center of the disk relative to its po-
sition when the spring is unstretched. From the position of the disk’s instantaneous
center (Fig. a), we can see that the rate at which the spring is stretched is 2(dx/dt)
and the rate at which the damping element is lengthened is 3(dx/dt). When the
center of the disk is displaced a distance x, the stretch of the spring is 2x.

We draw the free-body diagram of the disk in Fig. b, showing the forces
exerted by the spring, the damping element, and the tension in the cable.
Newton’s second law is

and the equation of angular motion is

The angular acceleration is related to the acceleration of the center of the disk
by Eliminating T from Newton’s second law and the
equation of angular motion, we obtain the equation of motion:

By setting and equal to zero in this equation, we find that the
equilibrium position of the disk is Expressing the equation of
motion in terms of the position of the center of the disk relative to its equilibrium
position, we obtain

d2x~

dt2 + a 6c
m
b  

dx~

dt
+ a 8k

3m
bx~ = 0.

x~ = x - mg>4k,

x = mg>4k.
dx/dtd2x>dt2

3
2

 m 
d2x

dt2 + 9c 
dx
dt

+ 4kx = mg.

a = 1d2x>dt22>R.

RT - R12kx2 - 2Ra3c 
dx
dt
b = A 12 mR2 Ba.

mg - T - 2kx - 3c 
dx
dt

= m 
d2x

dt2 ,

c = 24 N-s/m.
k = 60 N/mI = 1

2 mR2.
R = 0.3 m,m = 20 kg,
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This equation is identical in form to Eq. (21.16), where the constants are

and

The damping is supercritical so the motion is described by

Eq. (21.24) with 

The velocity is

At and From these conditions,
we obtain and so the position of the center of the
disk relative to its equilibrium position is

The graph shows the position for the first 4 s of motion.

x~ = -1.069e-1.37t + 0.252e-5.83t m.

D = 0.252 m,C = -1.069 m
dx~>dt = 0.t = 0, x~ = -mg>4k = -0.818 m

dx~

dt
= -1.37Ce-1.37t - 5.83De-5.83t.

x~ = Ce-1d-h2t + De-1d+h2t = Ce-1.37t + De-5.83t.

h = 2d2 - v2 = 2.23 rad/s:

1d 7 v2
v = A 8k

3m
= B18216021321202 = 2.83 rad/s.

d = 6c
2m

=
16212421221202 = 3.60 rad/s

0
!1

1 2

!0.8

t (s)

 (
m

)

3 4

!0.6

!0.4

!0.2

0

~ x

Critical Thinking
The disk in this example rotates and its center moves in the vertical direction.
Why is this a one-degree-of-freedom system? As the center moves downward
a distance x, the disk rotates through a clockwise angle Both the
position of the center of the disk and the disk’s angular position are specified
when x is specified. The system has one degree of freedom.

u = x>R.
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k

c
x

m

Problems 21.36–21.38

k

c

x

m

20!

Problems 21.39/21.40

Problems
! 21.36 The mass the spring constant is

and the damping constant is The
spring is unstretched when The mass is displaced to the
position and released from rest.

(a) If the damping is subcritical, what is the frequency of the
resulting damped vibrations?

(b) What is the value of x at 

(See Active Example 21.3.)

! 21.37 The mass the spring constant is
and the damping constant is The

spring is unstretched when The mass is displaced to the
position and released from rest.

(a) If the damping is subcritical, what is the frequency of the
resulting damped vibrations?

(b) What is the value of x at 

(See Active Example 21.3.)

! 21.38 The mass and the spring constant is
The spring is unstretched when 

(a) What value of the damping constant c causes the system to be
critically damped?

(b) Suppose that c has the value determined in part (a). At 
and What is the value of x at 

(See Active Example 21.3.)

t = 1 s?dx>dt = 4 ft/s .x = 1 ft
t = 0,

x = 0.k = 72 lb/ft .
m = 4 slug

t = 1 s?

x = 1 ft
x = 0.

c = 32 lb-s/ft .k = 72 lb/ft,
m = 2 slug,

t = 1 s?

x = 1 ft
x = 0.

c = 8 lb-s/ft .k = 72 lb/ft,
m = 2 slug, 21.39 The mass the spring constant is 

and the damping coefficient is The spring is 
unstretched when At the mass is released from
rest with Determine the value of x at 

21.40 The mass slugs, the spring constant is
and the damping coefficient is The

spring is unstretched when At the mass is released
from rest with Determine the value of x at t = 2 s.x = 0.

t = 0,x = 0.
c = 0.8 lb-s/ft.k = 0.5 lb/ft,

m = 0.15

t = 2 s.x = 0.
t = 0,x = 0.

c = 12 N-s/m.
k = 8 N/m,m = 2 kg,
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21.44 The 4-kg slender bar is 2 m in length. Aerodynamic drag
on the bar and friction at the support exert a resisting moment
about the pin support of magnitude where 
is the angular velocity in rad/s.

(a) What are the period and frequency of small vibrations of the bar?

(b) How long does it take for the amplitude of vibration to
decrease to one-half of its initial value?

21.45 The bar described in Problem 21.44 is given a displace-
ment and released from rest at What is the value of

(in degrees) at t = 2 s?u

t = 0.u = 2°

du>dt1.41du>dt2 N-m,

u

Problems 21.44/21.45

k

c

x

x

y

y

Car colliding with a rigid barrier

Simulation model

v0

v0

Problems 21.41/21.42

Shock absorber

Coil spring

x

k
c

m

x

Problem 21.43

21.41 A 2570-lb test car moving with velocity col-
lides with a rigid barrier at As a result of the behavior of its
energy-absorbing bumper, the response of the car to the collision
can be simulated by the damped spring–mass oscillator shown
with and Assume that the 
mass is moving to the left with velocity and the
spring is unstretched at Determine the car’s position 
(a) at and (b) at 

21.42 A 2570-lb test car moving with velocity 
collides with a rigid barrier at As a result of the behavior
of its energy-absorbing bumper, the response of the car to the 
collision can be simulated by the damped spring–mass oscillator
shown with and Assume that 
the mass is moving to the left with velocity and the
spring is unstretched at Determine the car’s deceleration
(a) immediately after it contacts the barrier; (b) at ; and
(c) at t = 0.08 s .

t = 0.04 s
t = 0.

v0 = 5 mi/h
c = 3000 lb-s/ft .k = 8000 lb/ft

t = 0.
v0 = 5 mi/h

t = 0.08 s .t = 0.04 s
t = 0.

v0 = 5 mi/h
c = 3000 lb-s/ft .k = 8000 lb/ft

t = 0.
v0 = 5 mi/h 21.43 The motion of the car’s suspension can be modeled by the

damped spring–mass oscillator with 
and Assume that no external forces act on the
tire and wheel. At the spring is unstretched and the tire and
wheel are given a velocity Determine the 
position x as a function of time.

dx>dt = 10 m/s.
t = 0,

c = 2.2 kN-s/m.
m = 36 kg, k = 22 kN/m,
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k
x

c

20!

Problems 21.49/21.50

21.49 The spring constant is and the spring is 
unstretched when The mass of each object is 30 kg. The
inclined surface is smooth. The radius of the pulley is 120 mm
and its moment of inertia is Determine the 
frequency and period of vibration of the system relative to its
equilibrium position if (a) and (b) 

21.50 The spring constant is and the spring is 
unstretched when The damping constant is

The mass of each object is 30 kg. The 
inclined surface is smooth. The radius of the pulley is 120 mm
and its moment of inertia is At , 
and What is the value of x at t = 2 s?dx>dt = 1 m/s .

x = 0t = 0,I = 0.03 kg-m2.

c = 250 N-s/m.
x = 0.

k = 800 N/m,

c = 250 N-s/m.c = 0

I = 0.03 kg-m2.

x = 0.
k = 800 N/m,

c

k

R

Problems 21.51/21.52

21.51 The homogeneous disk weighs 100 lb and its radius is
It rolls on the plane surface. The spring constant is

and the damping constant is 
Determine the frequency of small vibrations of the disk relative 
to its equilibrium position.

21.52 In Problem 21.51, the spring is unstretched at and
the disk has a clockwise angular velocity of 2 rad/s. What is the
angular velocity of the disk when t = 3 s?

t = 0

c = 3 lb-s/ft.k = 100 lb/ft
R = 1 ft.

21.46 The radius of the pulley is and its moment
of inertia is The mass and the spring
constant is The cable does not slip relative to the
pulley. The coordinate x measures the displacement of the mass
relative to the position in which the spring is unstretched. Deter-
mine x as a function of time if and the system is 
released from rest with 

21.47 For the system described in Problem 21.46, determine x as
a function of time if and the system is released
from rest with 

21.48 For the system described in Problem 21.46, choose the
value of c so that the system is critically damped, and determine 
x as a function of time if the system is released from rest with
x = 0.

x = 0.
c = 120 N-s/m

x = 0.
c = 60 N-s/m

k = 135 N/m.
m = 5 kg,I = 0.1 kg-m2.

R = 100 mm

x
ck

R

m

Problems 21.46–21.48
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2R

c
k

R

u

Problems 21.53/21.54

200 mm

140 mm

A
B

Problems 21.55/21.56

! 21.53 The moment of inertia of the stepped disk is I. Let be
the angular displacement of the disk relative to its position when
the spring is unstretched. Show that the equation governing is
identical in form to Eq. (21.16), where

(See Example 21.4.)

! 21.54 In Problem 21.53, the radius 
and the moment of inertia of the disk is

(a) At what value of c will the system be critically damped?
(b) At the spring is unstretched and the clockwise angular
velocity of the disk is 10 rad/s. Determine as a function of time
if the system is critically damped.

(c) Using the result of (b), determine the maximum resulting
angular displacement of the disk and the time at which it 
occurs.
(See Example 21.4.)

u
t = 0,

I = 2 kg-m2.
k = 150 N/m,

R = 250 mm,

d = R 2c
2I

  and  v2 = 4R2k
I

.

u

u 21.55 The moments of inertia of gears A and B are
and Gear A is connected 

to a torsional spring with constant The bearing
supporting gear B incorporates a damping element that exerts a 
resisting moment on gear B of magnitude 
where is the angular velocity of gear B in rad/s. What 
is the frequency of small angular vibrations of the gears?

21.56 At the torsional spring in Problem 21.55 is un-
stretched and gear B has a counterclockwise angular velocity of
2 rad/s. Determine the counterclockwise angular position of
gear B relative to its equilibrium position as a function of time.

t = 0,

duB>dt
21duB>dt2 N-m,

k = 10 N-m/rad.
IB = 0.100 kg-m2.IA = 0.025 kg-m2

21.57 For the case of critically damped motion, confirm that
the expression

is a solution of Eq. (21.16).

x = Ce-dt + Dte-dt
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F(t)

kx

c
dx
dt

k

c

(a) (b)

x

mg

N

x

F(t)

Figure 21.9
(a) A damped spring–mass oscillator subjected to a time-dependent force.
(b) Free-body diagram of the mass.

21.3 Forced Vibrations

BACKGROUND
The term forced vibrations means that external forces affect the vibration of
a system. Until now, we have discussed free vibration of systems—vibration
unaffected by external forces. For example, during an earthquake, a building
undergoes forced vibration induced by oscillatory forces exerted on its foun-
dations. After the earthquake subsides, the building vibrates freely until its
motion damps out.

The damped spring–mass oscillator in Fig. 21.9a is subjected to a hori-
zontal time-dependent force F(t). From the free-body diagram of the mass
(Fig. 21.9b), its equation of motion is

Defining and we can write this equa-
tion in the form

(21.26)

We call a(t) the forcing function. Equation (21.26) describes the forced vibra-
tions of many damped one-degree-of-freedom systems. It is nonhomogeneous,
because the forcing function does not contain x or one of its derivatives. 
Its general solution consists of two parts—the homogeneous and particular
solutions:

The homogeneous solution is the general solution of Eq. (21.26) with the right
side set equal to zero. Therefore, the homogeneous solution is the general
solution for free vibrations, which we described in Section 21.2. The particular
solution is a solution that satisfies Eq. (21.26). In the sections that follow, we
discuss the particular solutions for two types of forcing functions that occur
frequently in applications.

xp

xh

x = xh + xp.

d2x

dt2 + 2d 
dx
dt

+ v2x = a1t2.
a1t2 = F1t2>m,d = c>2m, v2 = k>m,

F1t2 - kx - c 
dx
dt

= m 
d2x

dt2 .
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21.3 Forced Vibrations 579

Oscillatory Forcing Function
Unbalanced wheels and shafts exert forces that oscillate at their frequency of ro-
tation. When a car’s wheels are out of balance, they exert oscillatory forces that
cause vibrations passengers can feel. Engineers design electromechanical de-
vices that transform oscillating currents into oscillating forces for use in testing
vibrating systems. But the principal reason we are interested in this type of forc-
ing function is that nearly any forcing function can be represented as a sum of
oscillatory forcing functions with several different frequencies or with a con-
tinuous spectrum of frequencies.

By studying the motion of a vibrating system subjected to an oscillatory
forcing function, we can determine the response of the system as a function of
the frequency of the force. Suppose that the forcing function is an oscillatory
function of the form

(21.27)

where and the frequency of the forcing function are given constants. We
can obtain the particular solution to Eq. (21.26) by seeking a solution of the form

(21.28)

where and are constants we must determine. Substituting this expression
and Eq. (21.27) into Eq. (21.26), we can write the resulting equation as

Equating the coefficients of and to zero and solving for and
we obtain

and

(21.29)

Substituting these results into Eq. (21.28) yields the particular solution:

(21.30)+ c -2dv0 a0 + 1v2 - v0
22b01v2 - v0

222 + 4d2v0
2 dcos v0 t.

xp = c 1v2 - v0
22a0 + 2dv0 b01v2 - v0

222 + 4d2v0
2 dsin v0 t

Bp =
-2dv0 a0 + 1v2 - v0

22b01v2 - v0
222 + 4d2v0

2 .

Ap =
1v2 - v0

22a0 + 2dv0 b01v2 - v0
222 + 4d2v0

2

Bp,
Apcos v0 tsin v0 t

+ 1-v0
2Bp + 2dv0 Ap + v2Bp - b02cos v0 t = 0.

1-v0
2Ap - 2dv0 Bp + v2Ap - a02sin v0 t

BpAp

xp = Ap sin v0 t + Bp cos v0 t,

v0a0, b0,

a1t2 = a0 sin v0 t + b0 cos v0 t,
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0
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v0/v
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Figure 21.10
Amplitude of the particular (steady-state) solution as a function of the
frequency of the forcing function.

The amplitude of the particular solution is

(21.31)

In Section 21.2, we showed that the solution of the equation describing
free vibration of a damped system attenuates with time. For this reason, the
particular solution for the motion of a damped vibrating system subjected to
an oscillatory external force is also called the steady–state solution. The
motion approaches the steady-state solution with increasing time. (See Active
Example 21.5.)

To illustrate the effects of damping and the frequency of the forcing func-
tion on the amplitude of the particular solution, in Fig. 21.10 we plot the non-
dimensional expression as a function of for several
values of the parameter When there is no damping the ampli-
tude of the particular solution approaches infinity as the frequency of the
forcing function approaches the frequency When the damping is small, the
amplitude of the particular solution approaches a finite maximum value at a
value of that is smaller than The frequency at which the amplitude of
the particular solution is a maximum is called the resonant frequency. (See
Problem 21.67.)

The phenomenon of resonance is a familiar one in our everyday experi-
ence. For example, when a wheel of a car is out of balance, the resulting vi-
brations are noticed when the car is moving at a certain speed. At that speed, the
wheel rotates at the resonant frequency of the car’s suspension. Resonance is of
practical importance in many applications, because relatively small oscillatory
forces can result in large vibrational amplitudes that may cause damage or in-
terfere with the functioning of a system. The classic example is soldiers march-
ing across a bridge. If their steps in unison coincide with one of the bridge’s
resonant frequencies, they may damage the bridge even though it can safely
support their weight when they stand at rest.

v.v0

v.
v0

1d = 02,d>v.
v0>vv2Ep>2a0

2 + b0
2

Ep = 2Ap
2 + Bp

2 =
2a0

2 + b0
221v2 - v0

222 + 4d2v0
2
.
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Polynomial Forcing Function
Suppose that the forcing function a(t) in Eq. (21.26) is a polynomial function
of time; that is,

where are given constants. This forcing function is important in
applications because many smooth functions can be approximated by poly-
nomials over a given interval of time. In this case we can obtain the particular
solution of Eq. (21.26) by seeking a solution of the same form, namely,

(21.32)

where are constants to be determined.
For example, if Eq. (21.26) becomes

(21.33)

and we seek a particular solution of the form Substituting this
solution into Eq. (21.33), we can write the resulting equation as

This equation can be satisfied over an interval of time only if

and

Solving these two equations for and we obtain the particular solution:

It can be confirmed that this is a particular solution by substituting it into
Eq. (21.33).

xp =
a0 - 2da1>v2 + a1 t

v2 .

A1,A0

v2A1 - a1 = 0.

2dA1 + v2A0 - a0 = 0

12dA1 + v2A0 - a02 + 1v2A1 - a12t = 0.

xp = A0 + A1 t.

d2x

dt 2 + 2d 
dx
dt

+ v2x = a0 + a1 t,

a1t2 = a0 + a1 t,
A0, A1, A2, Á , AN

xp = A0 + A1 t + A2 t2 + Á + AN tN,

a0, a1, Á , aN

a1t2 = a0 + a1 t + a2 t2 + Á + aN tN,
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With v2 ! k/m, d ! c/2m, and a(t) ! F(t)/m, this
equation governs the displacement of the mass of the
damped spring–mass oscillator relative to its
equilibrium position. Small vibrations of many
forced one-degree-of-freedom systems relative to an
equilibrium position are governed by this same
equation, with the constants v and d and the forcing
function a(t) determined by the physical
characteristics of the system and the external forces
acting on it.

" 2d " v2x ! a(t).      (21.26)
d2x
dt2

dx
dt

k

c
F(t)

x
A damped spring–mass oscillator subjected
to a time-dependent force F(t).

A homogeneous linear differential equation consists of 
terms that are linear in the dependent variable or its 
derivatives. Equation (21.26) is inhomogeneous due to 
the term a(t). Its general solution consists of the sum of 
the homogeneous solution xh and the particular solution 
xp. The homogeneous solution is the general solution of 
Eq. (21.26) with the right side set equal to zero, which 
was discussed in Section 21.2. The particular solution 
is one that satisfies Eq. (21.26).

x ! xh " xp.

RESULTS
The term forced vibration means that external forces affect the vibration of a
system.

BEDFMC21_0136129161.QXD  6/20/07  11:18 PM  Page 582



21.3 Forced Vibrations 583

Particular Solution for an Oscillatory Forcing Function

Particular solution of Eq. (21.26) if
the forcing function is an oscillatory
function of the form

a(t) ! a0 sin v0t " b0 cos v0t,    (21.27) 

where a0, b0, and v0 are constants.

xp ! sin v0t

(21.30)

(v2 # v0
2)a0 " 2dv0b0

(v2 # v0
2)2 " 4d2v0

2

" cos v0t.
#2dv0a0 " (v2 # v0

2)b0

(v2 # v0
2)2 " 4d2v0

2

Particular Solution for a Polynomial Forcing Function

Particular solution of Eq. (21.26) if the 
forcing function is a polynomial function 
of the form

a(t) ! a0 " a1t " a2t
2 "$$$" aNtN.

where a0, a1, and aN are constants. The 
constants A0, A1, ... , AN must be determined 
by substituting Eq. (21.32) into Eq. (21.26).

xp ! A0 " A1t " A2t2 "$$$" ANtN.    (21.32)

Particular solution of Eq. (21.26) if the 
forcing function is the polynomial

   a(t) ! a0 " a1t. 

a0 # 2da1 / v2 " a1t 

v2
xp ! .

Amplitude of the vibration described by 
Eq. (21.30).

Ep ! (21.31)
a0

2 " b0
2

(v2 # v0
2)2 " 4d2v0

2
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Active Example 21.5 Oscillatory Forcing Function (! Related Problem 21.61)

An engineer designing a vibration isolation system for an instrument console
models the console and isolation system as a damped spring–mass oscillator
with mass spring constant and damping constant

To determine the system’s response to external vibration, she
assumes that the system is initially stationary and at a force

is applied to the mass. Determine the position of the mass
as a function of time.
F(t) = 20 sin 4t N

t = 0
c = 1 N-s/m.

k = 8 N/m,m = 2 kg,

Strategy
The forcing function is which is of the form
of Eq. (21.27). We can obtain the particular solution from Eq. (21.30). We must
determine whether the damping is subcritical, critical, or supercritical and choose
the appropriate form of the homogeneous solution. Then the initial conditions
can be used to determine the unknown constants in the homogeneous solution,
completing the solution.

Solution

a(t) = F(t)>m = 10 sin 4t m/s2,

k

c
F(t)

x

xp ! "0.811 sin 4t " 0.135 cos 4t

The forcing function is of the form of Eq. (21.27) with
a0 ! 10 m/s2, b0 ! 0, and v0 ! 4 rad/s. The constants

Substituting these values into Eq. (21.30) yields the
particular solution.

v !  k/m ! 2 rad/s and d ! c/ 2m = 0.25 rad/s.

xh ! e"0.25t(A sin 1.98 t # B cos 1.98 t).

Because d $ v, the system is subcritically

damped. The term vd ! 

The homogeneous solution is given by Eq. (21.19).

v2 " d2 ! 1.98 rad/s.

" 0.811 sin 4 t " 0.135 cos 4 t.

x ! xh # xp

! e"0.25t(A sin 1.98 t # B cos 1.98 t)
The solution is the sum of the homogeneous and 
particular solutions.
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! 0.811 sin 4 t ! 0.135 cos 4 t m.

x " e!0.25t(1.651 sin 1.98 t # 0.135 cos 1.98 t)
At t " 0, x " 0 and dx/dt " 0. Using these 
conditions to determine the constants A and 
B determines the position of the mass as a 
function of time.

The homogeneous solution attenuates
with time, so after an initial transient
interval, the solution approaches the
particular solution. For this reason, the
particular solution resulting from an
oscillatory forcing function is also
called the steady-state solution.

10 25

!2

2

t (s)

1

!1

15 20
0

The homogeneous solution xh.

!2

2

t (s)

1

!1

0

The particular solution xp.

25

x 
(m

)
x 

(m
)

x 
(m

)

!2

2

t (s)

1

!1

0

The total solution xh # xp.

25

Practice Problem What is the amplitude of the particular solution?

Answer: 0.822 m.
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Example 21.6 Polynomial Forcing Function (! Related Problem 21.63)

The homogeneous disk has radius and mass The spring
constant is The disk is initially stationary in its equilibrium posi-
tion, and at a downward force is applied to
the center of the disk. Determine the position of the center of the disk as a func-
tion of time.

Strategy
The force F(t) is a second-order polynomial, so we will seek a particular solu-
tion in the form of a second-order polynomial of the form of Eq. (21.32).

Solution
Let x be the displacement of the center of the disk relative to its position when
the spring is unstretched. We draw the free-body diagram of the disk in Fig. a,
where T is the tension in the cable on the left side of the disk. From Newton’s
second law,

(1)

The angular acceleration of the disk in the clockwise direction is related to the
acceleration of the center of the disk by Using this
expression, we can write the equation of angular motion of the disk as

Solving this equation for T and substituting the result into Eq. (1), we obtain the
equation of motion:

(2)

Setting and in this equation, we find that the equilibrium
position of the disk is In terms of the position of the center of the disk
relative to its equilibrium position Eq. (2) is

This equation is identical in form to Eq. (21.26). Substituting the values of k and
m and the polynomial function F(t), we obtain

(3)

Comparing this equation with Eq. (21.26), we see that (there is no damping)
and From Eq. (21.19), the homogeneous solution is

x~h = A sin 4.472t + B cos 4.472t.

v2 = 20 1rad/s22.
d = 0

d2x~

dt 2 + 20x~ = 2 + 2t - 0.1t2.

d2x~

dt2 + 8k
3m

 x~ =
2F1t2

3m
.

x~ = x - mg>4k,
x = mg>4k.

F1t2 = 0d2x>dt2 = 0

3
2

 m 
d2x

dt2 + 4kx = F1t2 + mg.

 TR - 2kxR = a 1
2

 mR2b a 1
R

 
d 2x

dt2 b .

 ©M = Ia:

a = 1d 2x>dt22>R.

F1t2 + mg - 2kx - T = m 
d2x

dt2 .

F1t2 = 12 + 12t - 0.6t2 Nt = 0
k = 30 N/m.

m = 4 kg.R = 2 m

k

R

F(t)

x

m

T 2kx

F(t)

mg

a

(a) Free-body diagram of the disk.
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5

!1

0

1

10 15 20 25
t (s) (

m
)

~ x

To obtain the particular solution, we seek a solution in the form of a polynomial
of the same order as F(t). That is,

where and are constants we must determine. We substitute this
expression into Eq. (3) and collect terms of equal powers in t:

This equation is satisfied if the coefficients multiplying each power of t equal
zero, which yields

and

Solving these three equations for and we obtain the particular
solution:

The complete solution is

At and Using these conditions to determine A and B,
we obtain the position of the center of the disk (in meters) as a function of time:

The graph shows the position for the first 25 seconds of motion. The undamped,
oscillatory homogeneous solution is superimposed on the slowly varying par-
ticular solution.

x~ = -0.022 sin 4.472t - 0.101 cos 4.472t + 0.101 + 0.100t - 0.005t2.

dx~>dt = 0.t = 0, x~ = 0

 = A sin 4.472t + B cos 4.472t + 0.101 + 0.100t - 0.005t2.

 x~ = x~h + x~p

x~p = 0.101 + 0.100t - 0.005t2.

A2,A0, A1,

 20A2 = -0.1.

 20A1 = 2, 

 2A2 + 20A0 = 2, 

12A2 + 20A0 - 22 + 120A1 - 22t + 120A2 + 0.12t2 = 0.

A2A0, A1,

x~p = A0 + A1 t + A2 t2,

Critical Thinking
Forcing functions that arise in engineering applications can often be expressed
as a Taylor series or approximated by a power series over some interval of
time. When that is the case, you can analyze the response of the system dur-
ing that interval of time by the approach used in this example.
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c
x

k

xi

m

Example 21.7 Displacement Transducers (! Related Problems 21.70–21.73)

A damped spring–mass oscillator, or a device that can be modeled as a damped
spring–mass oscillator, can be used to measure an object’s displacement. Suppose
that the base of the spring–mass oscillator shown is attached to an object and
the coordinate is a displacement to be measured relative to an inertial refer-
ence frame. The coordinate x measures the displacement of the mass relative to
the base. When the spring is unstretched. Suppose that the system is ini-
tially stationary and at the base undergoes the oscillatory motion

(1)

If and 
what is the resulting steady-state amplitude of the displacement of

the mass relative to the base?

Strategy
We need to obtain the equation of motion for the mass, accounting for the effect
of the oscillating base. To do so, we must write Newton’s second law in terms
of the acceleration of the mass relative to the inertial reference frame.

Solution
The acceleration of the mass relative to the base is so its acceleration
relative to the inertial reference frame is Newton’s
second law for the mass is

We can write this equation as

where and the function

(2)

Thus, we obtain an equation of motion identical in form to that for a spring– mass
oscillator subjected to an oscillatory force. Comparing Eq. (2) with Eq. (21.27), we
can obtain the amplitude of the particular (steady-state) solution from Eq. (21.31)
by setting and 

(3)

Therefore, the steady-state amplitude of the displacement of the mass relative
to its base is

Ep =
11022210.122 + 10.122231222 - 1102242 + 4112211022 = 0.144 m.

Ep =
vi

22ai
2 + bi

221v2 - vi
222 + 4d2vi

2
.

v0 = vi:a0 = aivi
2, b0 = bivi

2,

a1t2 = -
d2xi

dt2 = aivi
2 sin vi t + bivi

2 cos vi t.

d = c>2m = 1 rad/s, v = 2k>m = 2 rad/s,

d2x

dt2 + 2d 
dx
dt

+ v2x = a1t2,
-c 

dx
dt

- kx = mad2x

dt2 +
d2xi

dt2 b .

1d2x>dt22 + 1d2xi>dt22.d2x>dt2,

10 rad/s,
v i =m = 2 kg, k = 8 N/m, c = 4 N-s/m, ai = 0.1 m, bi = 0.1 m,

xi = ai sin vi t + bi cos v i t.

t = 0
x = 0,

xi
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F(t)
12 N/m

x

6 N-s/m 3 kg

Problems 21.60/21.61

k M(t)

u

Problem 21.62

8 in

16 in16 lb/ft

8 lb-s/ft

F

Problem 21.63

k
F(t)

x

m

Problems 21.58/21.59

Problems

21.58 The mass and the spring constant is
The spring is unstretched when The mass is

initially stationary with the spring unstretched, and at the
force is applied to the mass. What is the posi-
tion of the mass at 

21.59 The mass and the spring constant is
The spring is unstretched when 

At and the force
is applied to the mass. What is 

the position of the mass at t = 2 s?
F(t) = 10 sin 4t + 10 cos 4t lb

dx>dt = 1 ft/s,x = 1 ft,t = 0,
x = 0.k = 72 lb/ft .

m = 2 slug

t = 2 s?
F(t) = 10 sin 4t lb

t = 0
x = 0.k = 72 lb/ft .

m = 2 slug

21.60 The damped spring–mass oscillator is initially stationary
with the spring unstretched. At a constant force

is applied to the mass.

(a) What is the steady-state (particular) solution?

(b) Determine the position of the mass as a function of time.

! 21.61 The damped spring–mass oscillator is initially stationary
with the spring unstretched. At a force 
is applied to the mass.

(a) What is the steady-state (particular) solution?

(b) Determine the position of the mass as a function of time.
(See Active Example 21.5.)

F1t2 = 6 cos 1.6t Nt = 0,

F1t2 = 6 N
t = 0,

21.62 The disk with moment of inertia rotates
about a fixed shaft and is attached to a torsional spring with con-
stant At the angle the angular ve-
locity is and the disk is subjected to a couple

Determine as a function of time.uM1t2 = 10 sin 2t N-m.
du>dt = 4 rad/s,

u = 0,t = 0,k = 20 N-m/rad.

I = 3 kg-m2

! 21.63 The stepped disk weighs 20 lb and its moment of
inertia is It rolls on the horizontal surface.
The disk is initially stationary with the spring unstretched, and
at a constant force is applied as shown. Deter-
mine the position of the center of the disk as a function of time.
(See Example 21.6.)

F = 10 lbt = 0

I = 0.6 slug-ft2.
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Problem 21.64

21.64* An electric motor is bolted to a metal table. When the
motor is on, it causes the tabletop to vibrate horizontally. Assume
that the legs of the table behave like linear springs, and neglect
damping. The total weight of the motor and the tabletop is 150 lb.
When the motor is not turned on, the frequency of horizontal vibra-
tion of the tabletop and motor is 5 Hz. When the motor is running
at 600 rpm, the amplitude of the horizontal vibration is 0.01 in.
What is the magnitude of the oscillatory force exerted on the table
by the motor at its 600-rpm running speed?

80 mm

Problem 21.66

F(t)

5 lb

6 in

A
B

10 in
3 in

Problem 21.65

21.65 The moments of inertia of gears A and B are
and Gear A is connected

to a torsional spring with constant The system is
in equilibrium at when it is subjected to an oscillatory
force What is the downward displacement of
the 5-lb weight as a function of time?

F1t2 = 4 sin 3t lb.
t = 0

k = 2 ft-lb/rad.
IB = 0.100 slug-ft2.IA = 0.014 slug-ft2

21.66* A 1.5-kg cylinder is mounted on a sting in a wind tunnel
with the cylinder axis transverse to the direction of flow. When
there is no flow, a 10-N vertical force applied to the cylinder
causes it to deflect 0.15 mm. When air flows in the wind tunnel,
vortices subject the cylinder to alternating lateral forces. The
velocity of the air is 5 m/s, the distance between vortices is 80 mm,
and the magnitude of the lateral forces is 1 N. If you model the
lateral forces by the oscillatory function 
what is the amplitude of the steady-state lateral motion of the
sphere?

F1t2 = 11.02 sin v0 t N,

21.67 Show that the amplitude of the particular solution given by
Eq. (21.31) is a maximum when the frequency of the oscillatory
forcing function is v0 = 2v2 - 2d 2.
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y
d

Problems 21.68/21.69

21.68* A sonobuoy (sound-measuring device) floats in a standing-
wave tank. The device is a cylinder of mass m and cross-sectional
area A. The water density is and the buoyancy force supporting
the buoy equals the weight of the water that would occupy the vol-
ume of the part of the cylinder below the surface. When the water
in the tank is stationary, the buoy is in equilibrium in the vertical
position shown at the left. Waves are then generated in the tank,
causing the depth of the water at the sonobuoy’s position relative
to its original depth to be Let y be the sonobuoy’s
vertical position relative to its original position. Show that the
sonobuoy’s vertical position is governed by the equation

21.69 Suppose that the mass of the sonobuoy in Problem 21.68
is its diameter is 125 mm, and the water density is

If what is the magnitude of
the steady-state vertical vibrations of the sonobuoy?

d = 0.1 sin 2t m,r = 1025 kg/m3.
m = 10 kg,

d 2y

dt 2
+ aArg

m
by = aArg

m
bd0 sin v0 t.

d = d0 sin v0 t.

r,

c
x

k

xi

m

Problems 21.70/21.71

! 21.70 The mass weighs 50 lb. The spring constant is
and If the base is subjected to an

oscillatory displacement of amplitude 10 in and frequency
what is the resulting steady-state amplitude of the

displacement of the mass relative to the base? (See Example 21.7.)

! 21.71 The mass is 100 kg. The spring constant is 
and The base is subjected to an oscillatory dis-
placement of frequency The steady-state ampli-
tude of the displacement of the mass relative to the base is
measured and determined to be 200 mm. What is the amplitude of
the displacement of the base? (See Example 21.7.)

vi = 0.2 rad/s.
c = 24 N-s/m.

k = 4 N/m,

vi = 15 rad/s,
xi

c = 10 lb-s/ft.k = 200 lb/ft,

! 21.72 A team of engineering students builds the simple seis-
mograph shown. The coordinate measures the local horizontal
ground motion. The coordinate x measures the position of the
mass relative to the frame of the seismograph. The spring is un-
stretched when The mass the spring constant

and Suppose that the seismograph is
initially stationary and that at it is subjected to an oscil-
latory ground motion What is the amplitude
of the steady-state response of the mass? (See Example 21.7.)

! 21.73 In Problem 21.72, determine the position x of the mass
relative to the base as a function of time. (See Example 21.7.)

xi = 10 sin 2t mm.
t = 0

c = 2 N-s/m.k = 10 N/m,
m = 1 kg,x = 0.

xi

xi x

k

c
m

TOP VIEW

SIDE VIEW

Problems 21.72/21.73
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k

R

Problem 21.76

Review Problems

21.74 The coordinate x measures the displacement of the mass
relative to the position in which the spring is unstretched. The
mass is given the initial conditions

(a) Determine the position of the mass as a function of time.

(b) Draw graphs of the position and velocity of the mass as 
functions of time for the first 5 s of motion.

21.75 When the mass is in the position in which the
spring is unstretched and has a velocity of 0.3 m/s to the right. 
Determine the position of the mass as a function of time and the
amplitude of the vibration

(a) by expressing the solution in the form given by Eq. (21.8) and

(b) by expressing the solution in the form given by Eq. (21.9).

t = 0,

t = 0 c  x = 0.1 m,
dx
dt

= 0.

21.76 A homogeneous disk of mass m and radius R rotates about
a fixed shaft and is attached to a torsional spring with constant k.
(The torsional spring exerts a restoring moment of magnitude 
where is the angle of rotation of the disk relative to its position
in which the spring is unstretched.) Show that the period of rota-
tional vibrations of the disk is t = pR22m>k.

u

ku,

90 N/m

x

10 kg

Problems 21.74/21.75

L

Problem 21.77

k P

Problems 21.78/21.79

21.77 Assigned to determine the moments of inertia of astronaut
candidates, an engineer attaches a horizontal platform to a vertical
steel bar. The moment of inertia of the platform about L is

and the frequency of torsional oscillations of the un-
loaded platform is 1 Hz. With an astronaut candidate in the posi-
tion shown, the frequency of torsional oscillations is 0.520 Hz.
What is the candidate’s moment of inertia about L?

7.5 kg-m2,

21.78 The 22-kg platen P rests on four roller bearings that can be
modeled as 1-kg homogeneous cylinders with 30-mm radii. The
spring constant is What is the frequency of horizon-
tal vibrations of the platen relative to its equilibrium position?

21.79 At the platen described in Problem 21.78 is 0.1 m
to the left of its equilibrium position and is moving to the right at
2 m/s. What are the platen’s position and velocity at t = 4 s?

t = 0,

k = 900 N/m.
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5 lb

6 in

A
B

10 in
3 in

Problems 21.80/21.81

k

l

C

Problem 21.82

21.80 The moments of inertia of gears A and B are
and Gear A is

connected to a torsional spring with constant
What is the frequency of angular vibrations of the gears
relative to their equilibrium position?

21.81 The 5-lb weight in Problem 21.80 is raised 0.5 in from its
equilibrium position and released from rest at Determine
the counterclockwise angular position of gear B relative to its
equilibrium position as a function of time.

t = 0.

k = 2 ft-lb/rad.
IB = 0.100 slug-ft2.IA = 0.014 slug-ft2

21.82 The mass of the slender bar is m. The spring is unstretched
when the bar is vertical. The light collar C slides on the smooth
vertical bar so that the spring remains horizontal. Determine the
frequency of small vibrations of the bar.

21.84 The frequency of the spring–mass oscillator is measured
and determined to be 4.00 Hz. The oscillator is then placed in a
barrel of oil, and its frequency is determined to be 3.80 Hz. What
is the logarithmic decrement of vibrations of the mass when the
oscillator is immersed in oil?

21.85 Consider the oscillator immersed in oil described in Prob-
lem 21.84. If the mass is displaced 0.1 m to the right of its equilib-
rium position and released from rest, what is its position relative
to the equilibrium position as a function of time?

k
10 kg

Problems 21.84/21.85

R

Problem 21.83

21.83 A homogeneous hemisphere of radius R and mass m rests
on a level surface. If you rotate the hemisphere slightly from its
equilibrium position and release it, what is the frequency of its
vibrations?
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m

Base

k

Problem 21.93

21.93 The base and mass m are initially stationary. The base is
then subjected to a vertical displacement relative to its
original position. What is the magnitude of the resulting steady-
state vibration of the mass m relative to the base?

h sin vi t

21.89 The 22-kg platen P rests on four roller bearings that can
be modeled as 1-kg homogeneous cylinders with 30-mm radii.
The spring constant is The platen is subjected to a
force What is the magnitude of the platen’s
steady-state horizontal vibration?

21.90 At the platen described in Problem 21.89 is 0.1 m
to the right of its equilibrium position and is moving to the right
at 2 m/s. Determine the platen’s position relative to its equilibrium
position as a function of time.

t = 0,

F1t2 = 100 sin 3t N.
k = 900 N/m.

21.91 The moments of inertia of gears A and B are
and Gear A is connected

to a torsional spring with constant The bearing
supporting gear B incorporates a damping element that exerts a
resisting moment on gear B of magnitude 
where is the angular velocity of gear B in rad/s. What is
the frequency of angular vibration of the gears?

21.92 The 5-lb weight in Problem 21.91 is raised 0.5 in from its
equilibrium position and released from rest at Determine
the counterclockwise angular position of gear B relative to its
equilibrium position as a function of time.

t = 0.

duB>dt
1.51duB>dt2 ft-lb,

k = 2 ft-lb/rad.
IB = 0.100 slug-ft2.IA = 0.014 slug-ft2

k P
F(t)

Problems 21.89/21.90

5 lb

6 in

A
B

10 in
3 in

Problems 21.91/21.92

21.86 The stepped disk weighs 20 lb, and its moment of inertia
is It rolls on the horizontal surface. If

what is the frequency of vibration of the disk?

21.87 The stepped disk described in Problem 21.86 is initially in
equilibrium, and at it is given a clockwise angular velocity
of 1 rad/s. Determine the position of the center of the disk relative
to its equilibrium position as a function of time.

21.88 The stepped disk described in Problem 21.86 is initially in
equilibrium, and at it is given a clockwise angular velocity
of 1 rad/s. Determine the position of the center of the disk relative
to its equilibrium position as a function of time if c = 16 lb-s/ft.

t = 0

t = 0

c = 8 lb-s/ft,
I = 0.6 slug-ft2.

16 lb/ft

8 in
c

16 in

Problems 21.86–21.88

BEDFMC21_0136129161.QXD  6/20/07  11:18 PM  Page 594



Review Problems 595

k M(t)

u

Problem 21.96

21.96* A disk with moment of inertia I rotates about a fixed
shaft and is attached to a torsional spring with constant k. The
angle measures the angular position of the disk relative to its
position when the spring is unstretched. The disk is initially sta-
tionary with the spring unstretched. At a time-dependent
moment is applied to the disk, where 
is a constant. Show that the angular position of the disk as a
function of time is

Strategy: To determine the particular solution, seek a solu-
tion of the form

where and are constants that you must determine.BpAp

up = Ap + Bp e-t,

 + 1

v2
- 111 + v22  e-t d .

 u =
M0

I
 c - 1

v11 + v22  sin vt - 1

v211 + v22  cos vt

M0M1t2 = M011 - e-t2 t = 0,

u

x
l

Problems 21.94/21.95

21.94* The mass of the trailer, not including its wheels and
axle, is m, and the spring constant of its suspension is k. To ana-
lyze the suspension’s behavior, an engineer assumes that the
height of the road surface relative to its mean height is

Assume that the trailer’s wheels remain on the
road and its horizontal component of velocity is v. Neglect the
damping due to the suspension’s shock absorbers.

(a) Determine the magnitude of the trailer’s vertical steady-state
vibration relative to the road surface.

(b) At what velocity v does resonance occur?

21.95* The trailer in Problem 21.94, not including its wheels
and axle, weighs 1000 lb. The spring constant of its suspension
is and the damping coefficient due to its shock
absorbers is The road surface parameters are

and The trailer’s horizontal velocity is
Determine the magnitude of the trailer’s vertical

steady-state vibration relative to the road surface, (a) neglecting
the damping due to the shock absorbers and (b) not neglecting
the damping.

v = 6 mi/h.
l = 8 ft.h = 2 in

c = 200 lb-s/ft.
k = 2400 lb/ft,

h sin12px>l2.
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A.1 Algebra

Quadratic Equations
The solutions of the quadratic equation

are

Natural Logarithms
The natural logarithm of a positive real number x is denoted by ln x. It is defined
to be the number such that

where is the base of natural logarithms.

Logarithms have the following properties:

 ln yx = x ln y.

 ln1x>y2 = ln x - ln y,

 ln1xy2 = ln x + ln y,

e = 2.7182 Á

eln x = x,

x = -b ; 2b2 - 4ac
2a

.

ax2 + bx + c = 0

A P P E N D I X

A
Review of Mathematics
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A.2 Trigonometry

The trigonometric functions for a right triangle are

The sine and cosine satisfy the relation

and the sine and cosine of the sum and difference of two angles satisfy

The law of cosines for an arbitrary triangle is

and the law of sines is

A.3 Derivatives

sin aa

a
=

sin ab

b
=

sin ac

c
.

c2 = a2 + b2 - 2ab cos ac,

 cos1a - b2 = cos a cos b + sin a sin b.

 cos1a + b2 = cos a cos b - sin a sin b, 

 sin1a - b2 = sin a cos b - cos a sin b, 

 sin1a + b2 = sin a cos b + cos a sin b, 

sin2 a + cos2 a = 1,

sin a = 1
csc a

= a
c

,  cos a = 1
sec a

= b
c

,  tan a = 1
cot a

= a
b

.

a

b

ac

b

a
c

aa

ac

ab

 
d

dx
 tanh x = 1

cosh2 x

 
d

dx
 cosh x = sinh x

 
d

dx
 sinh x = cosh x

 
d

dx
 tan x = 1

cos2 x

 
d

dx
 cos x = -sin x

 
d

dx
 sin x = cos x

d
dx

 ln x = 1
x

 
d

dx
 ex = ex

 
d

dx
 xn = nxn-1
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A.4 Integrals

Lxeax dx = eax

a2  1ax - 12
Leax dx = eax

a

 L  tanh x dx = ln cosh x

 L  cosh x dx = sinh x

 L  sinh x dx = cosh x

L  sinn x cos x dx =
1sin x2n+1

n + 1
 1n Z -12

 L  cos4 x dx = 3
8

 x + 1
4

 sin 2x + 1
32

 sin 4x

 L  cos3 x dx = 1
3

 sin x1cos2 x + 22
L  sin3 x dx = - 1

3
 cos x1sin2 x + 22

 L  cos2 x dx = 1
2

 sin x cos x + 1
2

 x

 L  sin2 x dx = - 1
2

 sin x cos x + 1
2

 x

 L  cos x dx = sin x

 L  sin x dx = -cos x

L  
dx11 - a2x221>2 = 1

a
 arcsin ax or - 1

a
 arccos ax

L  
dx11 + a2x221>2 = 1

a
 ln cx + a 1

a2 + x2b1>2 d

+ 1
8

 a2 cx1a2 - x221>2 + a2 arcsin 
x
a
d

- 1
4

 x1a2 - x223>2 Lx21a2 - x221>2 dx =

 Lx11 - a2x221>2 dx = - a
3

 a 1

a2 - x2b 3>2L11 - a2x221>2 dx = 1
2

 cx11 - a2x221>2 + 1
a

 arcsin ax d
- 1

8a2  x11 + a2x221>2 - 1

8a3  ln cx + a 1

a2 + x2b1>2 d
Lx211 + a2x221>2 dx = 1

4
 axa 1

a2 + x2b3>2Lx11 + a2x221>2 dx = a
3

 a 1

a2 + x2b3>2
+ 1

a
 ln cx + a 1

a2 + x2b1>2 d f
 L11 + a2x221>2 dx = 1

2
 ex11 + a2x221>2

 Lx1a + bx21>2 dx = -
212a - 3bx21a + bx23>2

15b2

L1a + bx21>2 dx = 2
3b

 1a + bx23>2
 L  

x dx

a - bx2 = - 1
2b

 ln1a - bx22
 L  

dx

a - bx2 = 1

21ab21>2  ln 
a + x1ab21>2
a - x1ab21>2

 L  
dx

a - bx2 = 11ab21>2  arctan 
1ab21>2x

a

Lx-1 dx = ln x

Lxn dx = xn+1

n + 1
 1n Z -12
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A.5 Taylor Series

The Taylor series of a function f(x) is

where the primes indicate derivatives.

Some useful Taylor series are

+ a sin2 a

cos4 a
+ 1

3 cos2 a
bx3 + Á .

tan a + a 1

cos2 a
bx + a sin a

cos3 a
bx2 tan1a + x2 =

 cos1a + x2 = cos a - 1sin a2x - 1
2

 1cos a2x2 + 1
6

 1sin a2x3 + Á , 

 sin1a + x2 = sin a + 1cos a2x - 1
2

 1sin a2x2 - 1
6

 1cos a2x3 + Á , 

 ex = 1 + x + x2

2!
+ x3

3!
+ Á , 

f1a + x2 = f1a2 + f¿1a2x + 1
2!

 f–1a2x2 + 1
3!

 f‡1a2x3 + Á ,

Cartesian Coordinates
The gradient of a scalar field is

The divergence and curl of a vector field
are

 § * v = 4 i j k
0

0x
0
0y

0
0z

vx vy vz

4 . § # v =
0vx

0x
+

0vy

0y
+

0vz

0z
,

v = vxi + vy j + vzk

§c =
0c
0x

 i +
0c
0y

 j +
0c
0z

 k.

c

Cylindrical Coordinates
The gradient of a scalar field is

The divergence and curl of a vector field
are

 § * v = 1
r

 4 er reu ez

0
0r

0
0u

0
0z

vr rvu vz

4 . § # v =
0vr

0r
+

vr

r
+ 1

r
 
0vu
0u +

0vz

0z
,

v = vrer + vueu + vzez

§c =
0c
0r

 er + 1
r
 
0c
0u  eu +

0c
0z

 ez.

c

A.6 Vector Analysis
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B.1 Areas
The coordinates of the centroid of the area A are

The moment of inertia about the x axis the moment of inertia about the y axis
and the product of inertia are

The polar moment of inertia about O is

 Ix¿ = 1
12

 bh3,  Iy¿ = 1
12

 hb3,  Ix¿y¿ = 0

 Ix = 1
3

 bh3,  Iy = 1
3

 hb3,  Ixy = 1
4

 b2h2

 Area = bh

JO = LA
r2 dA = LA

1x2 + y22 dA = Ix + Iy.

Ix = LA
y2 dA, Iy = LA

x2 dA, Ixy = LA
xy dA.

IxyIy,
Ix,

x = LA
x dA

LA
 dA

, y = LA
y dA

LA
 dA

.

A P P E N D I X

B
Properties of Areas and Lines

x

y

O

A

–y

–x

b

Rectangular area

x

y

O

x!

y!

b

hh
1
2

1
2
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 Ix¿ = 1
8

 pR4,  Iy¿ = ap
8

- 8
9p
bR4,  Ix¿y¿ = 0

 Area = 1
2

 pR2  Ix = Iy = 1
8

 pR4,  Ixy = 0

Area = pR2 Ix¿ = Iy¿ = 1
4

 pR4, Ix¿y¿ = 0

Area = 1
2

 bh Ix = 1
12

 bh3, Ix¿ = 1
36

 bh3

 Ix¿ = 1
36

 bh3,  Iy¿ = 1
36

 hb3,  Ix¿y¿ = 1
72

 b2h2

 Ix = 1
12

 bh3,  Iy = 1
4

 hb3,  Ixy = 1
8

 b2h2

 Area = 1
2

 bh

Triangular area

x

y

O

x!

h

b

h

a

1
3

1
3

(a " b)

Circular area

y!

x!

R

Semicircular area 

y y!

R
x, x!

O

4R
3p

b

Triangular area

x

y

O

h

x!

y!

h

b

1
3

2
3
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B.1 Areas 603

Circular sector

y

x
O

R

2R sin a
3a

a

a

Quarter-elliptical area

y

x

!       " 1

a

b

O
4a
3p

4b
3p

x2

a2
y2

b2

Quarter-circular area

y y#

R

x

x#

O 4R 
3$

Spandrel

y

x

y " cxn

b

(n ! 1)b
n ! 2

(n ! 1)cbn

4n ! 2
 Ix = c3b3n+1

9n + 3
, Iy = cbn+3

n + 3
, Ixy = c2b2n+2

4n + 4

 Area = cbn+1

n + 1

 Ix = 1
16

 pab3, Iy = 1
16

 pa3b, Ixy = 1
8

 a2b2

 Area = 1
4

 pab

 Ixy = 0

 Ix = 1
4

 R4aa - 1
2

 sin 2ab ,  Iy = 1
4

 R4aa + 1
2

 sin 2ab , 

 Area = aR2

Ix¿y¿ = a 1
8

- 4
9p
bR4Ix¿ = Iy¿ = a p

16
 - 4

9p
bR4,

Ixy = 1
8

 R4Ix = Iy = 1
16

 pR4,Area = 1
4

 pR2
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604 Appendix B Properties of Areas and Lines

B.2 Lines
The coordinates of the centroid of the line L are

x = LL
x dL

LL
 dL

, y = LL
y dL

LL
 dL

, z = LL
z dL

LL
 dL

.

y

xz

L

–y

–x –z

Semicircular arc

y

x

R

2R
p

Quarter-circular arc

y

x

R

2R
p

2R
p

Circular arc

y

x

R
a

a

R sin a

a

Length = pR

Length = 1
2pR

Length = 2aR
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605

The moments and products of inertia of the object in terms of the xyz coordi-
nate system are,

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = 0, Iy¿ axis = Iz¿ axis = 1
12

 ml2,

Ixy = Iyz = Izx = 0.

Ix axis = 0, Iy axis = Iz axis = 1
3

 ml2,

 Izx = Lm
 zx dm.

 Ixy = Lm
 xy dm, Iyz = Lm

 yz dm,

 Iz axis = Izz = Lm
1x2 + y22 dm,

 Iy axis = Iyy = Lm
1x2 + z22 dm,

 Ix axis = Ixx = Lm
1y2 + z22 dm,

A P P E N D I X

C
Properties of Volumes 

and Homogeneous Objects

Slender bar

y!

x, x!z!

y

z
O l

l
1
2

y

x
xz z

y

dm
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606 Appendix C Properties of Volumes and Homogeneous Objects

(The terms and are the moments and product of inertia of the plate’s
cross-sectional area A).

 Iz¿ axis = 1
12

 m1b2 + c22,  Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

 Ix¿ axis = 1
12

 m1a2 + b22,  Iy¿ axis = 1
12

 m1a2 + c22,
Volume = abc

Ixy
AIx, Iy,

Ixy = m
A

 Ixy
A , Iyz = Izx = 0.

Ix axis = m
A

 Ix, Iy axis = m
A

 Iy, Iz axis = Ix axis + Iy axis,

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = 1
12

 mh2, Iy¿ axis = 1
12

 mb2, Iz¿ axis = 1
12

 m1b2 + h22,
Ixy = 1

4
 mbh, Iyz = Izx = 0.

Ix axis = 1
3

 mh2, Iy axis = 1
3

 mb2, Iz axis = 1
3

 m1b2 + h22,

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = Iy¿ axis = 1
4

 mR2, Iz¿ axis = 1
2

 mR2,

Thin rectangular plate

y

x
z

y!

x!

z!

O
h

h
b

b

1
2

1
2

Thin plate

y

xz

A

Thin circular plate

z!

R

y!

x!

Rectangular prism

y!

x!
z!

b

a
c
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Appendix C Properties of Volumes and Homogeneous Objects 607

Ix¿ axis = Iy¿ axis = 83
320

 mR2,       Iz¿ axis = 2
5

 mR2

Ix axis = Iy axis = Iz axis = 2
5

 mR2

Volume = 2
3

 pR3

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = Iy¿ axis = Iz¿ axis = 2
5

 mR2,

Volume = 4
3

 pR3

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = Iy¿ axis = ma 3
80

 h2 + 3
20

 R2b , Iz¿ axis = 3
10

 mR2,

Ixy = Iyz = Izx = 0.

Ix axis = Iy axis = ma 3
5

 h2 + 3
20

 R2b ,  Iz axis = 3
10

 mR2,

Volume = 1
3

 pR2h

Ix¿y¿ = Iy¿z¿ = Iz¿x¿ = 0.

Ix¿ axis = Iy¿ axis = ma 1
12

 l2 + 1
4

 R2b ,  Iz¿ axis = 1
2

 mR2,

Ixy = Iyz = Izx = 0.

Ix axis = Iy axis = ma 1
3

 l2 + 1
4

 R2b ,  Iz axis = 1
2

 mR2,

Volume = pR2l

Circular cylinder

y

x

z, z!

R

x!

O

l

y!

l
1
2

Circular cone

y

x

z, z!

R

x!

O

h

y!

h
3
4

Hemisphere

O

z, z!

y
y!

x!
x

R
3R
8

Sphere

y!

x!

z!

R
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608

This appendix summarizes the equations of kinematics and vector calculus in
spherical coordinates.

The position vector, velocity, and acceleration are

The gradient of a scalar field is

The divergence and curl of a vector field are

§ * v = 1

r2 sin f
 4 er ref r sin f eu

0
0r

0
0f

0
0u

vr rvf r sin fvu

4 .§ # v = 1

r2 
0
0r

 (r2vr) + 1
r sin f

 
0

0f  (vf sin f) + 1
r sin f

 
0vu
0u ,

v = vrer + vueu + vfef

§c =
0c
0r

 er + 1
r
 
0c
0f  ef + 1

r sin f
 
0c
0u  eu.

c

+ Br 
d2u

dt2  sin f + 2 
dr
dt

 
du
dt

 sin f + 2r 

df
dt

 
du
dt

 cos fReu.

+ Br 

d2f

dt2 + 2 
dr
dt

 
df
dt

- r¢du
dt
≤2

 sin f cos fRef

Bd2r

dt2 - r¢df
dt
≤2

- r¢du
dt
≤2

 sin2 fRer a =

 v = dr
dt

 er + r 

df
dt

 ef + r 
du
dt

 sin f eu,

 r = rer,

A P P E N D I X

D
Spherical Coordinates

y

x

z

r

P eu

er

ef
f

u
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This appendix describes an alternative approach for obtaining the equations of
planar motion for a rigid body. By writing Newton’s second law as

(E.1)

we can regard it as an “equilibrium” equation stating that the sum of the forces,
including an inertial force equals zero (Fig. E.1). To state the equation of
angular motion in an equivalent way, we use Eq. (18.19), which relates the total
moment about a fixed point O to the acceleration of the center of mass and the
angular acceleration in general planar motion:

We write this equation as

(E.2)

The term is the moment about O due to the inertial force 
We can therefore regard this equation as an “equilibrium” equation stating that
the sum of the moments about any fixed point, including the moment due to
the inertial force acting at the center of mass and an inertial couple
equals zero.

Stated in this way, the equations of motion for a rigid body are analogous
to the equations for static equilibrium: The sum of the forces equals zero and
the sum of the moments about any fixed point equals zero when we properly ac-
count for inertial forces and couples. This is called D’Alembert’s principle.

If we define and to be positive in the counterclockwise direction,
the unit vector k in Eq. (E.2) points out of the page and the term

is the counterclockwise moment due to the inertial force.
This vector operation determines the moment, or we can evaluate it by using
the fact that its magnitude is the product of the magnitude of the inertial force
and the perpendicular distance from point O to the line of action of the force
(Fig. E.2 a). The moment is positive if it is counterclockwise, as in Fig. E.2a,
and negative if it is clockwise. Notice that the sense of the inertial couple is
opposite to that of the angular acceleration (Fig. E.2b).

[r * 1-ma2] # k

a©MO

-Ia,-ma

-ma.[r * 1-ma2] # k

©MO + [r * 1-ma2] # k + 1-Ia2 = 0.

©MO = 1r * ma2 # k + Ia.

-ma,

©F + 1-ma2 = 0,

D’Alembert’s Principle

A P P E N D I X

E

!F

!ma

!ma

OD

Ia

(a)

(b)

Figure E.2
(a) The magnitude of the moment due to

the inertial force is 
(b) A clockwise inertial couple results from a

counterclockwise angular acceleration.

ƒ -ma ƒD.

Figure E.1
The sum of the external forces and
the inertial force is zero.

609
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As an example, consider a disk of mass m and moment of inertia I that is
rolling on an inclined surface (Fig. E.3). We can use D’Alembert’s principle to
determine the disk’s angular acceleration and the forces exerted on it by the
surface. The angular acceleration of the disk and the acceleration of its center
are shown in Fig. E.4a. In Figure E.4b, we draw the free-body diagram of the
disk showing its weight, the normal and friction forces exerted by the surface,
and the inertial force and couple. Equation (E.1) is

From this vector equation, we obtain the equations

(E.3)

We now apply Eq. (E.2). By evaluating moments about the point where the disk
is in contact with the surface, we can eliminate f and N from the resulting equation:

(E.4)

The acceleration of the center of the rolling disk is related to the counterclock-
wise angular acceleration by Substituting this relation into Eq. (E.4)
and solving for the angular acceleration, we obtain

From this result, we also know and can therefore solve Eqs. (E.3) for the
normal and friction forces, obtaining

In Eq. (E.4) we evaluated the moment due to the inertial force by simply mul-
tiplying the magnitude of the force and the perpendicular distance from O to its
line of action, but we could have evaluated it with the vector expression:

[r * 1-ma2] # k = [1Rj2 * 1-max i2] # k = R1max2.

N = mg cos b, f =
mgI sin b

mR2 + I
.

ax

a = -  

mgR sin b

mR2 + I
.

ax = -Ra.

 -R1mg sin b2 + R1max2 - Ia = 0.

 ©MO + [r * 1-ma2] # k + 1-Ia2 = 0:

 N - mg cos b = 0.

 mg sin b - f - max = 0, 

1mg sin b - f2i + 1N - mg cos b2j - max i = 0.

©F + 1-ma2 = 0:

610 Appendix E D’Alembert’s Principle

ax

x

y

x

y

Ia

max

mg

f

N

(a)

(b)

a

R

!

Figure E.3
Disk rolling on an inclined surface.

Figure E.4
(a) Acceleration of the center of the disk

and its angular acceleration.
(b) Free-body diagram including the inertial

force and couple.
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611

Solutions to Practice Problems

Integrate the acceleration to determine the 
velocity as a function of time. A is an integration 
constant. v ! t2 " A.

! 2t,a ! 
dv 
dt

Integrate the velocity to determine the position 
as a function of time. B is an integration constant.

! t2 " A,
ds
dt

v !

s ! t3 " At " B.
1
3

Use the known conditions at t ! 3 s to determine
A and B, obtaining A ! 5 and B ! 6.

v t!3 s ! 14 ! (3)2 " A.

(3)3 " A(3) " B,s t!3 s ! 30 !
1
3

Beginning with the x component of the
position, differentiate to determine the x
components of the velocity and
acceleration as functions of time.

vx !
dx
dt

! 16 t ft/s,

ax !
dvx

dt
! 16 ft/s2.

x ! 8t2 ft,

Active Example 13.1

! 6.82 mi/h.

Convert feet to miles.

Convert seconds to hours.

10 ft/s ! 10 ft/s
1 mi 

5280 ft!       " 3600 s
1 h!       "

Active Example 12.4

Use Eq. (12.6) to calculate the weight in newtons. W ! mg ! (0.397 kg) (9.81 m/s2) ! 3.89 N.

Active Example 12.1
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612 Solutions to Practice Problems

Active Example 13.4

First apply the chain rule to express the 
acceleration in terms of velocity and 
position instead of velocity and time.

! "0.004v2.!
dv
dt

dv
ds

!
dv
ds

ds
dt

v

Separate variables. ! "0.004 ds.
dv
v

Integrate, defining s ! 0 to be the
position at which the velocity is 80 m/s.
Here v is the velocity at position s.

ds,! "0.004
dv
v

lnv " ln80 ! "0.004(s " 0).

!ln v" ! "0.004!s" ,

v s

80 0

80L
v

0L
s

Solve for s in terms of the velocity. From 
this equation we find that the distance 
required for the velocity to decrease to 
10 m/s is 520 m.

.s ! 250 ln
80
v! "
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Solutions to Practice Problems 613

Active Example 13.6

Integrate the x component of the velocity 
to determine  the x component of the 
position as a function of time.

x ! 0.1t3.

! 0.3t2,vx !
dx
dt

L dx ! 0.3 t2 dt,
0

x

L0
t

Evaluate the x component of the position 
at t ! 6 s. 

x t ! 6 s ! 0.1(6)3 ! 21.6 m.

y ! 0.9t2  " 0.06t3.

! 1.8t " 0.18t2,vy ! 
dy 
dt

L dy !  (1.8t " 0.18t2) dt,
0

y

L0
t

Integrate the y component of the velocity to 
determine the y component of the position 
as a function of time.

Evaluate the y component of the position 
at t ! 6 s. y t!6 s ! 0.9(6)2 " 0.06(6)3 ! 19.4 m/s2.

Express the position vector at t ! 6 s in 
terms of its components. 

r t!6 s ! 21.6 i # 19.4 j (m).

Position of the helicopter as a 
function of time.

y

x
100 m50 m

30 m

t ! 2 s
t ! 4 s

t ! 6 s
t ! 8 s t ! 10 s

BEDFMS_0136129161.QXD  6/20/07  11:43 PM  Page 613



614 Solutions to Practice Problems

Active Example 13.8

Use the chain rule to express the
angular acceleration in terms of the
angular velocity and the angle
instead of the angular velocity
and the time, then separate variables.

dv ! "0.02du.

! "0.02v,!a !
dv
dt

dv
du

!
dv
du

du
dt

v

Integrate, defining u ! 0 to be the
angle at which the angular velocity
is 10,000 rpm ! 10,000p/30 rad/s.

du,
0

u

L10,000p/30

1000p/30

10,000p
30

L dv ! "0.02

10,000p/30

1000p/30

0

u
!"0.02

! "0.02u.

!  "v ! "u ,

1000p
30

"

Solve for u. u ! 15,000p rad ! 7500 revolutions.

Active Example 13.9

Calculate the tangential component
of the acceleration at t ! 10 s. 

at ! 2 # 0.2(10)
    ! 4 m/s2.

Calculate the normal component of 
the acceleration at t ! 10 s. 

! 2.25 m/s2.

(30 m/s)2

400 m!

an !
v2

r

Express the acceleration at t ! 10 s 
as a vector in terms of normal and
tangential components. ! 4et # 2.25en (m/s

2).

a ! atet # anen.
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Solutions to Practice Problems 615

Active Example 13.13

Determine the derivatives in the 
expression for the acceleration.

! p sin 2pt,
dr 
dt

! "0.4p cos 2pt,
du
dt

! 0.8p2 sin 2pt.
d2u

dt2

! 2p2 cos 2pt,
d2r
dt2

Determine the components of the
acceleration as functions of time.

! 2p2 cos 2pt " (1 " 0.5 cos 2pt) (" 0.4p cos 2pt)2,

! (1 " 0.5 cos 2pt) ( 0.8p2 sin 2pt)

# 2(p sin 2pt) ("0.4p cos 2pt).

" r
d2r
dt2

du
dt!   "

2

ar !

# 2
d2u

dt2au ! r
dr 
dt

du
dt

Evaluate the acceleration at 
t ! 0.8 s.

a ! 5.97er " 4.03eu (m/s
2).
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616 Solutions to Practice Problems

Active Example 13.16

The ship’s velocity relative to
the earth is equal to the water’s
velocity relative to the earth plus
the ship’s velocity relative to the
water.

vA ! vB " vA/B

vA vA/B

vB

5 knots

2 knots

W E

S

N

x

y

O

Determine the magnitude of the
velocity vA relative to the earth. !vA! !   (5 knots)2 # (2 knots)2 ! 4.58 knots.

The components of the ship’s velocity 
relative to the water indicate that the 
helmsman must point the ship at
arctan (2/4.58) ! 23.6$ west of north 
to travel north relative to the earth.

vA/B ! #2 i " 4.58 j (knots).

BEDFMS_0136129161.QXD  6/20/07  11:43 PM  Page 616



Solutions to Practice Problems 617

Active Example 14.1

Apply Newton’s second law to determine
the crate’s acceleration when there is no
friction force.

!Fx " W sin 20# " max:

mg sin 20#

max " " (32.2) sin 20# " 11.0 m/s2.

Integrate to determine the crate’s
velocity as a function of time. At t " 1 s,
the crate is moving 11.0 ft/s.

vx " 11.0 t ft/s.

ax " " 11.0 ft/s2,
dvx 

dt

L dvx " 11.0 dt,
0

vx

L0
t

Active Example 14.2

Beginning with the x component of the
position, differentiate to determine the x
components of the velocity and
acceleration as functions of time.

vx "
dx
dt

" 16 t ft/s,

ax "
dvx

dt
" 16 ft/s2.

x " 8t2 ft,

Beginning with the y component of
the position, differentiate to determine
the y components of the velocity and
acceleration as functions of time.

vy "
dy
dt

" 3t2 ft/s,

ay "
dvy

dt " 6t ft/s2.

y " t3 ft,

Determine the object’s mass. m " "
10 lb 

32.2 ft/s2

W 
g

" 0.311 slug.

Use Newton’s second law to determine  
the components of the total force.

!Fx " max ! t"4 s

" (0.311 slug)(16 ft/s2)
" 4.97 lb,

!Fy " may ! t"4 s

" (0.311 slug)[(6)(4) ft/s2]
" 7.45 lb.
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618 Solutions to Practice Problems

Active Example 14.5

Apply Newton’s second law in the
tangential direction to determine the
tangential component of the boat’s
acceleration as a function of time.

!Ft " mat:

200t lb " (37.3 slug)a t,

a t "

" 5.37t ft/s2.

200 t lb
37.3 slug

Integrate the tangential acceleration 
to determine the boat’s velocity as a
function of time.

a t "
dv
dt

" 5.37t ft/s2:

5.37t dt,L dv " 
20

v

L0
t

v " 20 # 2.68t2 ft/s.

Evaluate the velocity at t " 2 s.
v " 20 # 2.68(2)2

" 30.7 ft/s.

Determine the normal component of 
the boat’s acceleration at t " 2 s. " 23.6 ft/s2.

v2 
r

(30.7 ft/s)2

40 ft
" an "

Apply Newton’s second law in
the normal direction to determine the 
normal force acting on the boat a 
 t " 2 s.

!Fn " man

" (37.3 slug)(23.6 ft/s2)

" 880 lb.

Active Example 14.6

The sum of the forces in the vertical
direction (perpendicular to the train’s
circular path) must equal zero.

M cos 40$ # S sin 40$ % mg " 0.     (1)

Apply Newton’s second law in the en
direction. M sin 40$ % S cos 40$ " m

!Fn " man:

.
v2 
r (2)

Solving Eqs. (1) and (2) with 
m " 20,000 kg, g " 9.81 m/s2, 
r " 150 m, and S " 0 yields
M " 256 kN and v " 35.1 m/s.
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Solutions to Practice Problems 619

Active Example 14.9

Apply Newton’s second law in the
transverse direction. Notice that
a ! dv/dt ! 0.

"Fu ! mau:

N ! m ra # 2 v!           "dr
dt

! 2mv0vr.

Substitute the expression for vr as a
function of r obtained in the example
to determine N as a function of r.

N ! 2mv0 ! "(r2 $ r2
0) # r0 (r $ r0).v2

0 $
k
m

2k
m

Active Example 14.10

When an earth satellite in elliptic
orbit is at the position of minimum
radius, called its perigee, and when
it is at the position of maximum
radius, called its apogee, it has only
a transverse component of velocity.
Therefore the velocities at perigee
and apogee satisfy Eq. (14.14). Let
va be the velocity at apogee.

r0v0 ! rmaxva,

va ! v0
r0 

rmax

! (9240 m/s)

! 3810 m/s.

6600 km 
16,000 km

Active Example 15.1
In this case the normal force N = (120 kg)(9.81 m/s2) = 1180 N.

Evaluate the work done as the container
moves from its initial position to s ! 1 m.

U12 ! "Ft ds
s1
L

s2

! (F $ mkN)ds
0L

1

!

! 319 N-m.

[(700 $ 150s) $ (0.26)(1180)]ds
0L

1

Apply the principle of work and energy
to determine the container’s velocity when
it reaches s ! 1 m. Solving yields
v2 ! 2.31 m/s. 319 N-m ! (120 kg)v2

2 $ 0.
1
2

U12 ! mv2
2 $

1
2

mv2
1:

1
2
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620 Solutions to Practice Problems

Active Example 15.4

Calculate the work done by the
weight:
The hammer falls downward, so
the work is positive, and its
magnitude is the product of the
weight and the change in height.

Uweight ! (weight)(change in height)

! [(40 kg)(9.81 m/s2)](0.4 m)

! 157 N-m.

Calculate the work done by each
of the springs. The springs are
unstretched in position 1.

S1 ! 0,

Uspring ! "

S2 ! (0.3 m)2 # (0.4 m)2 " 0.3 m

! 0.2 m,

! "30 N-m.

k (S2
2 " S1

2)

! " (1500 N/m)[(0.2 m)2 " (0)2]

1
2

1
2

Apply work and energy to obtain
the velocity of the hammer in
position 2.

Uweight ! 2(Uspring) "

157 N-m ! 2(#30 N-m) "

Solving, we obtain

v2 " 2.97 m/s.

mv2
2 #

(40 kg)v2
2 # (40 kg) (2 m/s)2.

mv2
1 :1

2
1
2

1
2

1
2
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Active Example 15.7

400
mm

2

1

k k

Workpiece

Hammer

300 mm

y

Datum

Choose a datum for the potential
energy associated with the weight
of the hammer. Let the datum
(y ! 0) be position 2.

Vweight ! mgy.

Potential energy of one of the
springs in terms of the stretch S
of the spring.

Vspring ! kS2.1
2

Calculate the stretch of
one of the springs at
positions 1 and 2.

S1 ! 0,

S2 ! (0.3 m)2 " (0.4 m)2 # 0.3 m

! 0.2 m,

Apply conservation of
energy to positions 1
and 2 to determine the
velocity at position 2.

Solving, we obtain

v2 ! 2.97 m/s.

(Vweight)1 " 2(Vspring)1 " mv2
1 ! (Vweight)2 " 2(Vspring)2 " mv2

2:

! "mgy1 " 2 " mv2
1 ! mgy2 " 2 " mv2

2,kS1
2 ! "kS2

2

(40 kg) (2 m/s)2(40 kg)(9.81 m/s2)(0.4 m) " 0 "

! 0 " 2 mv2
2.(1500 N/m)(0.2 m)2# $ "

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Z02_BEDF9165_05_SE_SOL.QXD  1/9/08  10:40 AM  Page 621
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Active Example 15.10
The definition of a conservative force is that a potential energy exists, so the fact
that the force was obtained from its potential energy guarantees that it is con-
servative. Alternatively, we can confirm that the force is conservative by show-
ing that its curl is zero:

Use Eq. (15.31) to
evaluate the curl of the
force.

! 0.

" # F !
$
$r

er

$
$u

reu

$
$z

ez

1
r

mgRE
2 

r2 0 0%

Active Example 16.1

(t2 % t1)&Fav ! mv2 % mv1:

(20 % 10)&Fav ! (1200)(36 i ' 8 j) % (1200)(30 i ' 3 j),

10&Fav ! 7200 i ' 6000 j.

&Fav ! 720 i ' 600 j (N).

Solving yields

Apply Eq. (16.2) to the
interval of time from
t ! 10 s to t ! 20 s.

Active Example 16.2
The tangential component of the force as a function of time varies linearly from
300 N at to so its average value is

but we can confirm this using Eq. (16.4).

©Ft av = 300 N + 30 N
2

= 165 N,

300 - 9(30) = 30 N at t = 30 s,t = 0

Apply Eq. (16.4) to the interval of time
from t ! 0 to t ! 30 s.

(t2 % t1)&Ft ! mv2 % mv1:

(30 s % 0)&Ft ! (225 kg)(22 m/s) % (225 kg)(0).

&Ft ! 165 N.

Solving yields
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Active Example 16.4
When the person is stationary in his initial position, the total linear momentum
of the person and barge is zero. The only horizontal forces on the person and the
barge are the forces they exert on each other, so their total linear momentum
when the person is running must be zero.

Apply conservation of linear momentum.
Let vB be the barge’s velocity toward
the left.

mPvP ! mB("vB) # 0.

The barge’s velocity is

vB # (mP/mB)vP toward the left.

Active Example 16.5
If the masses stick together after the collision, their velocity can be determined
from conservation of linear momentum alone.

Apply Eq. (16.10) (conservation of
linear momentum) with v¿A # v¿B # v¿. (4 kg)(10 m/s) ! (4 kg)("5 m/s) # (4 kg ! 4 kg)v¿.

Solving yields v¿ # 2.5 m/s.

mAvA ! mBvB # (mA ! mB)v¿:

Active Example 16.7

Express r in terms of the initial
radius r0 and the constant
velocity v0.

r # r0 " v0t.

In plane central-force motion,
the product of the radial
distance from the center of
motion and the transverse
component of the velocity is
constant.

rvu # r0v0,

so

vu #

r0v0

r0 " v0t

r0v0

r

# .

Express the velocity as a
function of time in terms of
cylindrical coordinates.

v # vre r ! vueu
r0v0

r0 " v0t
# "v0er ! eu.

BEDFMS_0136129161.QXD  6/20/07  11:43 PM  Page 623



624 Solutions to Practice Problems

Active Example 16.9

vf ! vj

The velocity of the water leaving the sled isDetermine the velocity of
the mass flow relative to the
object. ! 300 j (m/s).

! rvA
dmf 

dt

The mass flow rate of water leaving the sled is

Determine the mass flow rate.
! (1000 kg/m3)(300 m/s)(0.01 m2)

! 3000 kg/s.

Ff ! " vf
dmf 

dt

The force exerted on the sled is

Apply Eq. (16.27).
! "(3000 kg/s)[300 j (m/s)]

! "900, 000 j (N).
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Active Example 17.1
The normal and tangential components of the acceleration can be determined
from Eqs. (17.3). To do so, the angular velocity and angular acceleration of
gear A must be determined.

Integrate aA ! dvA/dt ! 0.2t rad/s2

to determine the clockwise angular velocity
of gear A as a function of time.

3
vA

0 3
t

0

dvA ! 0.2t dt:

vA ! 0.1t2 rad/s.

Determine the angular velocity and angular
acceleration of A at t ! 10 s.

vA ! 0.1(10)2

aA ! 0.2(10)

! 10 rad/s,

! 2 rad/s2.

Calculate the tangential and normal components
of acceleration of PA.

at ! aA (0.05 m)

 ! 0.1 m/s2,

! (2 rad/s2)(0.05 m)

an ! vA
2

 (0.05 m)

 ! 5 m/s2.

! (10 rad/s)2(0.05 m)

Calculate the magnitude of the acceleration.

!a! !   a2
t " a2

n

!   (0.1 m/s2)2"(5 m/s2)2 

! 5.00 m/s2
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Active Example 17.2

Let vAB be the unknown angular velocity
of bar AB, so that the angular velocity
vector of bar AB is !AB ! vABk.

Apply Eq. (17.6) to determine the
velocity of point B in terms of vAB.

vB ! vA " !AB # rB/A

! $0.4vABi " 0.4vABj.

! 0 "

i j k

0 0 vAB

0.4 0.4 0

The angular velocity vBC of bar BC is
also unknown, but the velocity of point
C is known. Applying Eq. (17.6) to
points B and C results in two equations
in terms of vAB and vBC.

vC ! vB " !BC # rC/B:

! ($0.4vAB " 0.4vBC) i " (0.4vAB " 0.8vBC) j.

Equating i and j components,

and solving yields vAB ! 5 rad/s and vBC ! $2.5 rad/s.

$3 ! 0.4vAB " 0.4vBC,

0 ! $0.4vAB " 0.8vBC,

$3i ! $0.4vABi " 0.4vABj "

i j k

0 0 vBC

0.8 $0.4 0

Active Example 17.4

Use the instantaneous center of bar CD
to determine the velocity of point C.

! 5  8 m/s.

vC ! ( 8 m

! (  8 m) (5 rad/s)

) vCD,

A D

B C

vC

vCD

8 m
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Use the instantaneous center of bar BC
and the velocity of point C to determine
the angular velocity of bar BC. ! 5 rad/s.

so

A D

B

2 m

Instantaneous center of bar BC

vC

C

8 m
vBC

vBC !
5  8 m/s 

8 m

5  8 m/s ! (  8 m)vBC,

Active Example 17.5

! "aR i # " v2 (Ri)

! "aR i # aR j " v2R i.

aA ! aB # ! $ rA/B " v2rA/B

0

i
0

j
a

R 0 0

k

y

A
rA/B

B

x

Apply Eq. (17.10). The angular velocity
vector of the disk is " ! vk, so its
angular acceleration vector is

The position vector of A relative to B is
rA/B ! R i.

k ! ak.! ! !
dv
dt

dv
dt
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The acceleration of the pin A relative to
the body-fixed refernece frame is parallel
to the slot . Let aA rel be the unknown
acceleration of A along the slot.

aA rel ! aA rel cos 26.6" i # aA rel  sin 26.6"j. (2)

A

B C

800 mm

400 mm

y

x

aA rel

b

Substitute Eq. (2) into Eq. (1). aA ! (aA rel cos26.6" $ 0.8) i # (aA rel sin26.6" $ 6.4) j.    (3)

Let aAC be the unknown
counterclockwise angular
acceleration of bar AC. Apply  
Eq. (17.10) to points A and C.

aA ! aC # !AC % rA/C $ v2
AC rA/C 

! $0.4aAC i $ 40j.

! 0 # $ (10)2(0.4j)

i j k

0 0 aAC

0 0.4

(4)

0

Equate expressions (3) and (4)
to determine aA rel and aAC.

(aA rel cos26.6" $ 0.8) i + (aA rel sin26.6" $ 6.4) j ! $0.4aAC i $ 40 j.

Equating i and j components gives the two equations

Solving yields aA rel ! $75.1 m/s2 and aAC ! 170 rad/s2. At this instant,
the pin A is accelerating relative to the slot at 75.1 m/s2 toward B.

aA rel cos26.6" $ 0.8 ! $0.4aAC ,
aA rel sin26.6" $ 6.4 ! $40.

Active Example 17.7

Apply Eq. (17.15) to points A and B.

! 0 # aA rel # 2

! aA rel $ 0.8i $ 6.4j.

# !AB %  rA/B $ v2
ABrA/B 

aA ! aB # aA rel # 2"AB %  vA rel

0

i

0 2

j

$3.2 $1.6 0

k

# $ (2)2 (0.8i # 0.4j)0

i

0 10

j

0.8 0.4 0

(1)

k
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Active Example 17.10
In this case, Equations (17.16) and (17.17) can be
used to determine her velocity and acceleration relative to the earth.aAvA

vA rel = 0 and aA rel = 0.

Apply Eq. (17.16).

vA ! vB " vA rel " ! # rA/B

! vRj.

! 0 " 0 "

i j k

0 0 v

R 0 0

Apply Eq. (17.17).

aA ! aB " aA rel " 2! # vA rel

" $ # rA/B % v2rA/B

! %v2Ri.
! 0 " 0 " 0 " 0 % v2(Ri)

B x

y

vR

v2R

A

v

Person A is stationary relative
to the reference frame, but she
has velocity and acceleration
relative to the earth.
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Active Example 18.1

Apply Newton’s second law to determine the
total thrust of the airplane’s engines.

!Fx " T " max

" (25,800 slug) (9 ft/s2)

" 232,000 lb.

The airplane has no vertical acceleration, so
the sum of the vertical forces equals zero. !Fy " A # B $ W " 0. (1)

The airplane has no angular acceleration, so
the sum of the moments about the
center of mass equals zero.

!M " (6 ft)T # (68 ft)B $ (16 ft)A " 0.       (2)

Solving Eqs. (1) and (2) with W " 830,000 lb
and T " 232,000 lb yields A " 688,000 lb
and B " 142,000  lb.

Active Example 18.2

Solve Eqs. (1) through (3) to determine the
value of the friction force when the disk rolls.

f " mg sin b.1
3

Determine the normal force. The sum of the
forces on the disk in the direction normal to 
the surface equals zero.

N " mg cos b.

Assume that the disk is on the verge of 
slipping and solve for b.

mg sin b " msmg cos b.1
3

f " msN :

This yields

b " arctan (3ms).
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Active Example 18.3
At the instant the bar is released, Equations (1) through (5) can be solved
to determine P and N. 

v = 0.

Substitute Eq. (5) into Eq. (1) and
substitute Eq. (4) into Eq. (2).

P ! mla cos u,1
2

N ! mg " mla sin u.

(6)

(7)1
2

a ! sin u.3
2

g

l
(8)

Substitute Eqs (6) and (7) into Eq. (3)
1

12
and solve for a, using I !       ml2.

Substitute Eq. (8) into Eqs (6) and (7).
With u ! 30#, these expressions yield
N ! 0.813mg and P ! 0.325mg.

P ! mg sin u cos u,3
4

N ! mg " mg sin2 u.3
4

Active Example 19.1
Apply Work and Energy

Work is done by the disk’s weight  
and by the couple M. As the center of 
the disk moves a distance b, the disk  
rotates through the clockwise angle  
(in radians) b/R, so the work done  
by the constant couple is Mb/R.

U12 ! (mg sin b)b $ M .b
R

Equate the work to the change in the  
kinetic energy of the disk. The initial  
kinetic energy is zero. Let v be the  
velocity of the center of the disk and  
v its angular velocity when the center  
has moved a distance b.

! mv2 $1
2

Iv2 " 0.     (1)1
2

mgb sin b $ M b
R

Relationship between the velocity of
the center of the disk and the angular
velocity in rolling motion.

v ! Rv.     (2)

Solving Eqs. (1) and (2) for v and

v and substituting I ! mR2 yields1
2

Mb
mR

v ! gb sin b $ .4
3 !              "

the velocity.

Determine Kinematic Relationships
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Active Example 19.7

mAvA ! 0 " mAv¿A ! mBv¿B.                                         (1)In this case, the total linear momentum is
the same before and after the impact.

In this case, the total angular momentum
about any fixed point is the same  before
and after the impact. Apply  conservation
of angular momentum  about the center
of mass of the bar.

HA ! HB " H ¿A ! H ¿B:

h # (mAvA) ! 0 "l
1
2!       " h # (mAv¿A) ! IBv¿B.  (2)l

1
2!       "

Apply the coefficient of restitution.  
After the impact  v¿BP , is the velocity of
the bar at the point of impact.

v¿BP # v¿A
vA # 0

(3)e " .

Active Example 19.4

Let tf be the time at which slip ceases.  
Apply the principle of angular impulse and
momentum to disk A from t " 0 to t " tf,  
treating counterclockwise moments and  
angular velocities as positive.

$M dt " H2 # H1 :Lt1
t2

#RA f dt " 0 # IAv0 .L0
tf

(1)

Let vB0 be the initial counterclockwise  
angular velocity of disk B. Apply the  
principle of angular impulse and  
momentum to disk B from t " 0 to t " tf,  
treating counterclockwise moments and
angular velocities as positive.

$M dt " H2 # H1:Lt1
t2

#RB f dt " 0 #IBvB0 # 0.L0
tf

(2)

Divide Eq. (1) by Eq. (2), obtaining an  
equation for vB0.

RBIA

RAIB
vB0 " v0.
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Determine kinematic relationships. The
velocity of the bar at the point of impact
can be expressed in terms of the velocity
of the center of mass.

v ¿BP ! v ¿A " ! ¿B # rP/B:

v¿BPi ! v¿Bi " ,

i j k

0 0 v ¿B

0 0h $$ l
1
2!       "

v¿BP ! v¿B " v ¿B.             (4)h $ l
1
2!       "

Solving Eqs. (1)–(4) for v¿A, v¿B, and v¿BP,

and v ¿B and use the relations h ! l,

mA ! mB, and IB !

bar’s angular velocity.

3
4

mBl2 to obtain the1
12

12
11 (1 " e)vA

l
v ¿B ! .

Active Example 20.1

Apply Eq. (20.1). ! $5 i "

vA ! vA " ! # rA/B

! $5 i $ 0.18j " 5k (m/s).

i j k

0 $0.5

0.36 0 0

$13.9
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Active Example 20.4
Draw the Free-Body Diagram

The bar is subjected to its weight and the 
force F and couple C exerted by the disk.

y

mg

x

z

O

F
C

Apply Newton’s Second Law

The center of mass has a normal component of
acceleration !bv2

0i.

"F # ma:

F ! mg j # m(!bv2
0 i).

F # !mbv2
0 i $ mg j.

The force exerted on the bar
by the disk is

Apply the Equation of Angular Motion

The total moment about the point O is the sum  
of the couple C and the moment about O due  
to weight and the force F.

"M # C $  $

i j k

b 0

0 !mg 0

l1
2

# C.

i j k

b 00

!mbv2
0 mg 0
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Apply Eqs. (20.12) with vx ! V x ! 0,
vy ! V y ! v0, and vz ! V z ! 0.

The couple exerted on the bar by the disk is

dvx

dt
"MOx ! Ixx

# V z(#Iyxvx $ Iyyvy # Iyzvz)

$ V y(#Izxvx # Izyvy $ Izzvz):

dvy

dt# Ixy
dvz

dt
# Ixz

dvx

dt
"MOy ! #Iyx

$ V z(Ixxvx # Ixyvy # Ixzvz)

# V x(#Izxvx # Izyvy $ Izzvz),

dvy

dt$ Iyy
dvz

dt
# Iyz

dvx

dt
"MOz ! #Izx

# V y(Ixxv x # Ix yv y # Ixzv z )

$ V x(#Iyxv x $ Iyyv y # Iyzvz ):

dvy

dt# Izy
dvz

dt
$ Izz

Cx ! 0.

Cy ! 0.

C ! mlbv2
0k.

1
2

mlbv2
0.

1
2

Cz !

Active Example 20.7

relations Ixx ! mR21
2

1
2

and Izz ! mR2.

Substitute Eqs. (1), (2), and (5) into
Eq. (20.29) for steady precession and use the r2

G
mR21

2
m R sin u # mgR cos u ! v2v2

rG
sin u cos u

#mR2 v
2

rG

1
rG

1
R

cos u sin u.$!            "
Solving for yields

.v = B2g(r - R cos u)2 cot u

4r - 3R cos u

v
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Active Example 21.1

Equation (4) is the equation of motion of the system in  
terms of the displacement of the mass relative to its  
equilibrium position. The general solution of this  
equation is given by Eq. (21.8), where A and B are  
constants.

x ! A sin vt " B cos vt,     (5)~

At t ! 0, the position of the mass is x ! h and its  
velocity is dx/dt ! 0. Use these initial conditions to  
solve for the constants A and B. Substituting the  
results into Eq. (5) determines the position of the mass  
as a function of time.

~
~ Substituting the initial conditions

into Eqs. (5) and (6) and yields

A ! 0,
B ! h.

! Av cos vt # Bv sin vt.     (6)
dx
dt

~

~
The position as a function of time is

x ! h cos vt.

Active Example 21.3

Evaluate v and d. The damping is supercritical.

k
m

v ! ! ! 2 rad/s,
8 N/m
2 kg

c
2m

d ! ! ! 3 rad/s.
12 N-s/m
2(2 kg)

At t ! 0, the position of the mass is x ! 0.1 m
and its velocity is dx/dt ! 0. Use these initial
conditions to solve for the constants C and D.
Substituting the results into Eq. (1) determines
the position of the mass as a function of time.

! #0.764Ce#0.764t #5.24De#5.24t. (2)

Substituting the initial conditions into Eqs. (1) 
and (2) and solving yields

C ! 0.117 m,
D ! #0.0171 m.

dx
dt

x ! 0.117e#0.764t #0.0171De#5.24t m.

The position as a function of time is

The general solution is given by Eq. (21.24) with

h ! d2 # v2 ! 2.24 rad/s.

x ! Ce#(d # h) t " De#(d " h) t

! Ce#0.764 t " De#5.24 t. (1)

Active Example 21.5

Ep !

! 0.822 m.

a0
2 " b0

2

(v2 # v0
2)2 " 4d2v0

2

The forcing function

    a(t) ! F(t)/m ! 10 sin 4t m/s2

is of the form of Eq. (21.27) with a0 ! 10 m/s2,
b0 ! 0, and v0 ! 4 rad/s. The constants

v !  k/m ! 2 rad/s and d ! c/2m ! 0.25 rad/s.

Substituting these values into Eq. (21.31) yields
the amplitude of the particular solution.
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Answers to Even-Numbered Problems

Chapter 12
12.2 (a) (b) (c) 
12.4
12.6 The 1-in wrench fits the 25-mm nut.
12.8

12.10
12.12
12.14 (a) (b) 
12.16
12.18
12.20
12.22 (a) 0.397 kg; (b) 0.643 N.
12.24 (a) (b) 
12.26 163 lb.
12.28 32.1 km.
12.30 345,000 km.

Chapter 13
13.2
13.4 (a) 

(b) 
13.6 (a) v = 28 m/s at t = 4 s; (b) a = 0.
13.8 (a) 

(b) (c)
13.10 (a) 0.628 m/s; (b) 3.95 .
13.12
13.14 s = 100 m, v = 80 m/s.
13.16
13.18 2.47 s, 2430 m/s.
13.20
13.22 s = 505 ft.
13.24 s = 1070 m, a = –24 m/s2.
13.26 825 ft.
13.28 3630 ft. 
13.30 No. 66.7 ft/s (45.5 mi/h).
13.32 51.9 solar years.
13.34 (a) 45.5 s; (b) 3390 m.
13.36 10 s.
13.38 v = 6.73 ft/s, a = !8.64 ft/s2.
13.40 20 s.
13.42
13.44
13.46 11.2 km.
13.48 3240 ft.
13.50 2300 m.
13.52 42.5 m/s.
13.54
13.56 c = 38,900.

v = 3.42 ft/s.

v = 2.80 in/s.
v = 3.33 m/s.

a = -6.66 m/s2.

4.33 m/s2.

s = 77 m, v = 66 m/s .
m/s2

Zero.2.51 m/s;
v = -1.78 m/s, a = -11.2 m/s2;

v = 14.7 m/s at t = 6.67 s.
v = 13.0 m/s, a = 1.28 m/s2; 

v = 0, a = -4 in/s2.

6.71 * 1020 kg.4.60 * 1019 slug;

(a) kg-m/s; (b) 2.70 slug-ft/s.
27.4 lb/ft.
2.07 * 106 Pa.

32.2 in2.0.0208 m2;
g = 32.2 ft/s2.
310 N-m.
(a) 267 mi/h; (b) 392 ft/s.

17.8 m2.
e2 = 7.3892.e2 = 7.3891;e = 2.7183;

13.58 v = –2(1-s2)1/2 m/s.
13.60 (a) 1.29 ft; (b) 4.55 ft/s.
13.62 v0 = 35,900 ft/s = 24,500 mi/hr.
13.66 1266 s or 21.1 min.
13.68 r = 266.0 i + 75.3j-36.7k (m).
13.70 (a) (b) (c)
13.72
13.74 19.0 m.
13.76 ft/s.
13.78 (a) Yes; (b) No.
13.80 82.5 m.
13.82
13.84 17.2 m.
13.86 v = 0.602 i-4.66j (m/s).
13.90 a = –0.099 i + 0.414j (m/s2).
13.94 (a) Positive; (b) 
13.96 430 s.
13.98 14.6 s.

13.100 (b)
13.102 = –8.81i + 13.4j.
13.104
13.106 (a) 1730 rpm; (b) 3.01 rad/s2.
13.108 (108 g’s).
13.110 (a) v = 16et (m/s), a = 16et + 64en (m/s2);

(b) s = 8 m.
13.112 (a) (b)
13.114
13.116
13.118 v = 12.05et (m/s), a = 0.121et + 2.905en (m/s2).
13.120 (a) |a| = 45.0 ft/s2; (b) |a| = 59.9 ft/s2.
13.122
13.124 (a) v = 15.2et (m/s), a = –1.63et + 9.67en (m/s2);

(b) r = 24.0 m.
13.126 218 m.
13.128

13.130

13.132
13.134 (a) r = 16.7 ft; (b) an = 77.3 ft/s2.
13.138
13.140
13.142 (a) 

(b) 

13.144 (a) v = 0.32er + 2.03eu (m!s);
(b) v = 0.32 i + 2.03j (m!s).

13.146

13.148
13.152
13.154 a = 0, a = –0.631 rad/s2.

vC = 13.2  er + 18  eu (m/s) .
aA = -1.09er 1m/s22.aA = -58.0er - 27.0eu 1m/s22.

du>dt = 0.468 rad/s .
vA = 3.75  er + 1.40  eu (ft/s);

aA = 0.331  er + 0.480  eu (m/s2) .
v = -0.971er - 1.76eu (m/s) .

dy>dt = 0.260 m/s, d2y>dt2 = -0.150 m/s2.

an = g>31 + (gt>v0)2 .
a = 3.59et + 1.72en (m/s2).

v = 6.46 et (m/s) .

v = 18.3et 1m/s2, a = 0.6 et + 6.68en 1m/s22.v = R2g>RE.
vB = -61.7i - 61.7j1ft/s2.vB = 87.3 et 1ft/s2;

1060 m/s2

v = 12.5et (m/s), a = 3et + 0.391en (m/s2).
de/dt

u = 1 rad 157.3°2.(a) v = 1.70 rad/s;

7.27 * 10-5 rad/s, earth rotates 15°.

ƒv ƒ = 38.0 ft/s, t = 1.67 s.

31.2 6 v0 6 34.2

98.3 ft/s.
R = 35.3 m.R = 40.8 m;R = 35.3 m;

637

BEDFMN_0136129161.QXD  6/16/07  6:09 PM  Page 637



638 Answers to Even-Numbered Problems

13.156 (a) a = –3.52er + 4.06eu (m/s2);
(b) a = –0.38 i-5.36j (m/s2).

13.158 (a) a = –225er-173eu (ft/s2);
(b) a = –108 i-263j (ft/s2).

13.160 v = 1047eu + 587ez (ft/s), 
a = –219,000er (ft/s2).

13.162 (a), (b) 
13.164
13.166
13.168 east of north, 42.0 min.
13.170
13.172 (a) 7.10 m; (b) 2.22 s; (c) 11.8 m/s.
13.174 v = 42.3 m/s.
13.176 13.1 s.
13.178 68.6 ft/s.
13.180 |v| = 2.19 m/s, |a| = 5.58 m/s2.
13.182 a = –2.75er-4.86eu (m/s2).
13.184 (a) v = –2.13er + 6.64eu (m/s);

(b) v = –5.90 i + 3.71j (m/s).

Chapter 14
14.2 (a) 6.70 m/s; (b) 10.0 m.
14.4
14.6 4.03 m/s down the inclined surface.
14.8 1.77 s.

14.10
14.12
14.14
14.16 (a) No; (b) Yes, ax = 0.5 m/s2; (c) x = 2 m.
14.18
14.20 W = 88.3 kN, T = 61.7 kN, L = 66.9 kN.
14.22 L = 293.2 kN, D = 33.0 kN.
14.24 (66, 138, –58) m.
14.26 Fx = 0.359 N, Fy = 19.888 N.
14.28 2.10 m/s.
14.30 (a) 3.93 lb; (b) 19.5 ft/s.
14.32 (a) (b) 
14.34
14.36 4.43 ft up the surface.
14.38 (a) 1200 N; (b) 1.84 m/s.
14.40 forward, rearward.
14.42
14.44 (a) (b)
14.46 (a) 11.9 ft; (b) 813 lb.
14.48 y =  –18.8 mm.
14.50 (a) 50 s; (b) 40.8 N; (c) 4.8 i + j (m/s).
14.52 2.06 m/s2 up the bar.
14.54
14.56 t = 0.600 s.
14.58 Fx = –0.544 N.
14.60 Fx = –73.4 N, Fy = 612 N.
14.62 0.284 s.
14.64 vx = 0.486 m/s, vy = –0.461 m/s.
14.66
14.68
14.70 Tension is 4.8 N, force is 0.6 N.

v = 17.6 m/s, ©  Fn = 620 N.
©  Ft = 0, ©  Fn = 373 lb .

ƒaA ƒ = 7.89 ft/s2.

28.0 ft/s.773 ft/s2 124 g2;v = ; 224 - s2 m/s .
7.04 m/s20.332 m/s2

F = 125 N.
6.47 m/s2.1.01 m/s2;

Fx = -198 N, Fy = 1800 N.

18.8 ft/s2.
©F = 2.40i + 1.20j + 2.08k 1kN2.
F = 9.91 lb .

2 .34 m/s, 342 s .
9.93°
aA>B = 5i - 2j1ft/s22.aA>B = 200i + 200j1ft/s22.vA>B = -3.66 i + 3.66j1m/s2.

14.72

14.76

14.78 2.62 ! v ! 3.74 m/s.
14.80 (a) 207,000 lb; (b) 41,700 ft.
14.82

14.86
14.88 r = 697 m, e = 0.916 i-0.308j + 0.256k.
14.90
14.92 11.4 m/s2.
14.94
14.96 9.46er + 3.44eu (N).
14.98

14.100 |v| = 2.89 m/s, T = 41.6 N.
14.102 N = 1.02 lb.
14.104 ms = 0.406. The mass slips toward O.
14.106 –1.48er-0.20eu (lb).
14.108
14.110 11.5er + 44.2eu + 10ez (N).
14.112 N at t = 4.39 s.
14.114 (a) |v| = 1020 m/s; (b) t = 2.36 106 s (27.3 days).
14.116

14.118
14.120 (a) 34.6 ft/s2, 3490 lb; (b) ms = 1.07.
14.122 (a) F1 = 63 kN, F2 = 126 kN, F3 = 189 kN.

(b) F1 = 75 kN, F2 = 150 kN, F3 = 225 kN.
14.124 Deceleration is 1.49 m/s2, compared with 8.83 m/s2 on a

level road.
14.126 14,300 ft (2.71 mi).
14.128 10.5 lb.
14.130 aA = 4.02 ft/s2, T = 17.5 lb.
14.132 29.7 ft.
14.134 9.30 N.
14.136
14.138

Chapter 15
15.2 8.06 m.
15.4 3.50 ft/s.
15.6
15.8 (a) (4670 hp). 

(b) (2850 hp).
15.10 (a) 

(b) 
15.12 3.27 m/s.

6.60 * 106 ft-lb/s (12,000 hp) .
1.32 * 107 ft-lb/s (24,000 hp) .
1.57 * 106 ft-lb/s
2.57 * 106 ft-lb/s

Pave = 1.62 kW 1kilowatts2.

©F = -10.7er + 2.55eu 1N2.tan a = v2>rg.

v0 = 35,500 ft/s.

*
ƒ ©F ƒ = 8.36

k = 2mv2
0.

vr = 14.8 m/s .

©Fr = -16.8 N, ©Fu = 20.7 N.

b = 68.2°

u = L0>R - 3(L0>R)2 - (2v0>R)t .
(a) v = 140 m/s; (b) r = 815 m.

u = 49.9°, ƒv ƒ = 10.8 ft/s.
(b) du>dt = 3.95°/s.
(a) ©Ft = 9740 lb, ©Fn = 28,800 lb;  
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15.14 117 ft!s (80.0 mi!h).
15.16 (b)

15.18 (a) (b) 5.67 ft!s.
15.20 Work = 509 N-m, v = 2.52 m/s.
15.22 v = 21.8 m/s.
15.24
15.26
15.28 v = 1.72 m/s.
15.30
15.32 (a), (b), (c) 
15.34

(b)
15.36
15.38
15.40 v0 = 15.66 m/s, vtop = 7.00 m/s.
15.42
15.44 39.3 ft/s or 26.8 mi/hr.
15.46
15.48 (a) U12 = 0.210 N-m; (b) v2 = 1.45 m/s.
15.50 621 lb/ft.
15.52 (a) (b) 
15.54 2.18 m/s.
15.56
15.58 (a) (b)
15.60 0.785 m.
15.62 0.385 m.
15.64 v2 = 7.03 m/s.
15.66 5.77 m/s.
15.68 k = 997 lb/ft.
15.70 4.90 m/s.
15.72 193,000 lb.
15.74 26,600 km.
15.76 2.25 1010 N-m.
15.78 (a) (b) (c)
15.80 (a), (b) 6.48 m.
15.82 3.95 m/s.
15.84 (a) a = 60°;

(b) Before, 39.2 N; after, 58.9 N.
15.86
15.88 (a) No; (b) 857 N.
15.90

15.92 1.56 m!s.
15.94 1.99 m/s.

15.96
15.98 v = 2.30 m/s.

15.100 v = 8.45 ft/s.
15.102
15.104 v = 11.0 km/s.
15.106 2880 m/s.
15.108 v = 419 m/s.
15.110 (a) 

(b) along each path.
15.112

15.114 (a) 

(b) The work is 2 ft-lb for any path from 1 to 2.
+ (cos u + 2r - sin u cos u)eu.
F = (sin u - 2r cos2

 u)er

F = -[k(r - r0) + q(r - r0)3]er.
-2 N-m
F = -2x i - 3y2j (N);

v = 5.29er + 4 eu (m/s) .

V = 1
2 kS2 + 1

4 qS4.

W[1 + 11 + 4C>W].

u = 51.2°.

13.9 ft/s.50 ft-lb;50 ft-lb;
*

6.34 ft/s.5 ft;
2.83 m/s.

274 ft/s2.k = 900 lb/ft;

-107 kN-m.

11.2 ft/s.

12.7 ft/s. 
3.55 m/s.

5.56 m/s.
(a) 5.98 m/s;

117 ft/s.

2.58 ft/s.
4.04 m/s. 

-12.5 ft-lb;

7.39 lb.(a) 2160 ft-lb;
15.118 (a), (b) 193 ft.
15.120 He should choose (b).

Impact velocity is 11.8 m/s, work is –251 kN-m. 
In (a), impact velocity is 13.9 m/s, work is –119 kN-m.

15.122 v = 2.08 m/s.
15.124 (a) 14.3 107 ft-lb; (b) 
15.126 k = 163 lb/ft.
15.128 (a) k = 809 N/m; (b) v2 = 6.29 m/s.
15.130 4.39 ft/s.
15.132 h = 0.179 m.
15.134 (a) u = 27.9°; (b) 159 lb; (c) 222 lb.
15.136 v1 = 4.73 ft/s.
15.138 1.02 m.
15.140 2.00 m/s.
15.142 24.8 ft/s.
15.144 (a) v = 0; 

(b) 
15.146 (a) 11.3 MW (megawatts); (b) 9.45 MW

Chapter 16
16.2 (a) 68.8 lb-s; (b) 22.2 ft!s.
16.4 4.72 m!s (9.18 knots). 
16.6
16.8

16.10 v = 4.29 i (ft/s).
16.12 (a) 335 kN-s; (b) 7.84 s.
16.14 18.0 m/s.
16.16 (a) 222 N-s; (b) 1.85 m/s.
16.18 0.199 s.
16.20
16.22 2.01 m/s.
16.24 (a) v = 10 i-12.1j (m/s); 

(b) –589j (N-s);
(c) v = 10 i-12.1j (m/s).

16.26 (a) N;
(b) v 3.03 i 2.61j (m/s).

16.28 5.99 s. 
16.30
16.32 105 m/s.
16.34 (a) 2070 lb; (b) 
16.36 75.1 lb (approximately 600 times the watch’s weight).
16.38 Horizontal force is 0.234 N, vertical force is 0.364 N.
16.40 1.54 lb.
16.42 @vA @ = 2.07 m/s, @vB @ = 2.76 m/s.
16.44
16.46 (a), (b) 1.64 m/s toward the right.
16.48 (a) toward the left;

(b) Zero;
(c) to his left.

16.50 2.41 m/s.
16.52 603 m/s.
16.54 96.9 mm.
16.56 (a) (b)
16.58 A: 0.215 ft/s toward the left. B: 1.385 ft/s toward the right.
16.60 A: 0.6 m/s toward the left. B: 0.4 m/s toward the right.
16.62 A: (7.09 g’s). B: (4.81 g’s).
16.64 vA1mk>2 .

155 ft/s2228 ft/s2

 x = 6.2 m, y = 6 m.4i + 30j 1mm/s2;
4 m

6.47 * 10-4 m/s

(a), (b) 1.63 ft/s toward the right.

23.8 ft/s2.

37.3 m/s.

-=
Fy = -32 sin 4tFx = -32 cos 4t N,

17.2 ft/s.

v = 5.11i + 5.67j - 1.53k (m/s) .
F0 = 0.856 N.

v = 1gRE>2 = 18,300 ft/s or 12,500 mi/hr.

v = 88[1 - e-1F0>88m2t].*
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16.66
16.68 3.00 m.
16.70 e = 0.77.
16.72 4.5 ft/s upward.
16.74
16.76
16.78

16.80 (m/s), (m/s).
16.84 vS = 35.3 m/s.

16.86

16.88
16.90
16.92 2.31 m.
16.94 6 N-m.
16.96 (a) –1440k (kg-m2/s); (b) 1.2 m/s.

16.100 103 lb.
16.102 750 N.
16.104 (a) 351 i-849j (N); (b) 1200 i-1200j(N);

(c) 2400 i (N).
16.106
16.108 51.9 i-282.2j (N).
16.110

16.112

16.114 (a) F = 3s + 12/32.2 lb. 
(b) 25.5 ft-lb.

16.116 v = v0/ C1 + ArL/2m Bs D .
16.118 6820 N.
16.120 18.5 kN.
16.122 (a) 180 i + 360j (lb-s); (b) 12 i + 44j (ft/s).
16.124 877 kN.
16.126 (a) 34.9 ft/s; (b) 15,700 ft-lb.
16.128 (a) 4.80 ft/s; (b) 415 ft.
16.130 (a) 3.45 m/s; (b) 18.7 kN.
16.132 (a) 8.23 kN; (b) 16.5 kN.
16.134 @vA @ = 2.46 m/s, @vB @ = 2.90 m/s.
16.136 1.57 ft.
16.138 e = 0.304.
16.140 2.30 m.
16.142 x = –11.13 in., y = 6.42 in.
16.144 @vr @ = 11,550 ft/s, @vu @ = 9430 ft/s.
16.146 867 lb (including the weight of the drum).
16.148 (a) 30.1 ft/s; (b) 46.8 ft/s.

Chapter 17
17.2 (a) 10.1 ft/s;

(b) Tangential, normal, 
17.4 clockwise, counterclockwise;

17.6 (a) 2.67; (b) 2.67 rad/s.
17.8

17.10 Tangential, normal, 11,800 ft/s2.25 ft/s2;
vB = -168j (in/s) .vA = 83.8i + 83.8j (in/s),

(b) ƒvA ƒ = 2.4 m/s, ƒaA ƒ = 2.99 m/s2.
0.4 rad/s2(a) 1.2 rad/s

50.5 ft/s2.2.51 ft/s2;

v = vf lna m0

m0 - .#m f t
b - gt.

1530 m/s.

0.406k 1N-m2.

v = 3.84 rad/s, vr = ;0.262 m/s.
ƒvr ƒ = 2490 m/s, ƒvu ƒ = 4310 m/s.

(b), (c) -432k (kg-m2/s).

(a) v = 1
2 t2i + 2tj (m/s), r = 1

6 t3i + t2 j (m);

vœ
B = - i + jvœ

A = i + j
vB = 3.89i - 6j + 5k 1m/s2.vA = -5.71i + 4j + 8k 1m/s2,33.2°.
0.963 m/s toward the left.

vA = 42.2 ft/s (28.8 mi/h) . 17.12
17.14 V = 30 i (rad/s).
17.16
17.18

17.20
17.22 vA = –5 i + 8.66j (m/s).
17.24 vA = 5 i (m/s), vB = –3.54 i-3.54j (m/s), 

vC = –3.54 i + 3.54j (m/s).
17.26 (a) 101 rad/s counter clockwise;

(b) 
17.28 vT = 12.4 i + 5.1j (m/s).
17.30
17.32 vOQ = 1.18 rad/s clockwise,

vPQ = 1.18 rad/s counterclockwise.
17.34 vBD = 8 rad/s clockwise, vD = 6.40 i-1.28j (m/s).
17.36 14.5 rad/s clockwise.
17.38

17.40 vE = –12.3j (m/s).
17.42
17.44 vAB = 2.31 rad/s clockwise, vB = 3.15 m/s to the left.
17.46 vC = 25.1i in./s.
17.48 vA = 1.2 i + 1.2j (m/s).
17.50 vBC = 2.61 rad/s, vC = –9.1 i (m/s).
17.52 0.95 m/s.
17.54 vC = 0.282 i + 0.202j (m/s).
17.56 vD = –0.557 i + 0.815j (m/s).
17.58 vW = 0.2 m/s, 4 rad/s counterclockwise.
17.60 35.5 rpm clockwise.
17.62 Angular velocity = 52.1 rad/s, or 497 rpm, @vA @ = 5.21 m/s.
17.64 xC = 3 m, yC = 0, vB = 10 m/s.
17.66 x = 0.35 ft, y = –1.5 ft.
17.68
17.70

17.72 6.57 in./s.
17.74
17.76

17.78 vBC = 5.33 rad/s counterclockwise,
vCD = 4.57 rad/s clockwise.

17.80 (a) x = –0.425 m, y = 0.737 m;
(b) vB = 2.31 m/s, v = 2.35 rad/s counterclockwise.

17.82 (a), (b) aA = –73.3 i + 27.0j (m/s2).
17.84 aT = 2.02 i + 2.37j (m/s2).
17.86 aA = –0.5j (m/s2), aB = 0.3j (m/s2).
17.88 vAC = 0, aAC = 1.13 rad/s2 clockwise.
17.90
17.92 aOQ = 1.39 rad/s2 clockwise,

aPQ = 1.39 rad/s2 counterclockwise.
17.94 1.77 rad/s2 counterclockwise.
17.96

17.98 aAB = 19.0 rad/s2.
aCD = 12.3 rad/s2 counterclockwise.
aBC = 26.8 rad/s2 counterclockwise,

500i - 100j (m/s2).

(b) vC = 13.5i (m/s).
(a) x = 225 mm, y = 225 mm;
1.67 rad/s counterclockwise.

vCD = 10 rad/s counterclockwise.
vBC = 5 rad/s clockwise,
vB = 6i + 3.46j 1ft/s2.

0.0857 rad/s counterclockwise.

vdisk = 20 rad/s clockwise.
vBC = 3.33 rad/s clockwise,

vG = 1.5i - 0.546 j 1m/s2.-117i - 117j (ft/s) .

vB = 1.2 i + 2.4j (m/s) .
1c2 vA>B = 4.8j 1m/s2.1b) V = 12 k 1rad/s2;1a2 vA>B = 4.8 j 1m/s2;VOQ = -4k 1rad/s2, VPQ = 4k 1rad/s2.ƒvB ƒ = 2.37 m/s, ƒaB ƒ = 22.1 m/s2.
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17.100

17.102 vAB = –0.879 rad/s, aAB = –1.06 rad/s2, 
vBC = –1.15 rad/s, aBC = –2.41 rad/s2.

17.104 aE = –12.3j (m/s2).
17.106 aC = –7.78 i-33.54j (m/s2).
17.108 aD = –0.135 i-0.144j (m/s2).
17.110 vAB = 3.55 rad/s clockwise, 

aAB = 12.1 rad/s2 clockwise, 
vBC = 2.36 rad/s counterclockwise, 
aBC = 16.5 rad/s2 counterclockwise.

17.112
17.114 aplanet = 41.4 rad/s2 clockwise, 

asun = 82.9 rad/s2 counterclockwise.
17.116 aCD = 26.5 rad/s2 clockwise,

aDE = 31.1 rad/s2 counterclockwise.
17.118 aA = –200 i + 80j (ft/s2).
17.120 aC = –8.80 i + 5.60j (m/s2).
17.122 vAC = 3 rad/s counterclockwise,

aAC = 6 rad/s counterclockwise.
17.124 0.549 m/s toward the left.
17.126
17.128 vBC = 6.17° per second counterclockwise, rate of

extension is 0.109 m/s.
17.130 vAC = 8.66 rad/s counterclockwise, and bar AC slides

through the sleeve at 5 m/s toward A.
17.132 vAC = 0.293 rad/s clockwise,

vC = –0.738 i-1.370j (ft/s).
17.134 0.801 ft/s.
17.136 vAB = 2 rad/s clockwise, vB rel = 2 m/s toward C.
17.138 vAB = 5.18 rad/s counterclockwise.
17.140 vplate = 2 rad/s counterclockwise, and the velocity at

which the pin slides relative to the slot is 0.2 m/s
downward.

17.144
17.146 vA = –3.5 i + 0.5j + 4k (m/s),

aA = –10 i-6.5j-19.25k (m/s2).
17.148 –2 i (m/s).
17.150 aA rel = –14 i-2j (ft/s2).
17.152 (a) v = vj, a = – Av2/RE B i; 

(b) v = vj-vERE cos Lk, 

17.154 (a) –9.81k (m/s2); (b) 3.29 i-9.81k (m/s2).
17.156 (a) 0.1i + 0.1j (m/s2);

(b) 0.125 i + 0.085j + 0.106k (m/s2).
17.160 OQ: 9.29 rad/s counterclockwise; 

PQ: 2.92 rad/s clockwise.
17.162 vC = –32.0j (ft/s).
17.164 aAB = 13.60 * 103 rad/s2 clockwise, 

aBC = 8.64 * 103 rad/s2 counterclockwise.
17.166 aD = –3490 i (in/s2).
17.168 aG = –8.18 i-26.4j (in/s2).
17.170 vC = –1.48 i + 0.79j (m/s).
17.172 aC = –2.99 i-1.40j (m/s2).
17.174 Velocity is 55.9 in/s to the right;

acceleration is 390 in/s2 to the left.

v2
E RE sin L cos L j + 2vE v sin L k.

a = -1v2>RE + v2
E RE cos2

 L)i +

vA = 1.44  i + 0.934j (ft/s) .

0.0972 rad/s counterclockwise.

0.0571 rad/s2 clockwise.

adisk = 93.3 rad/s2 counterclockwise.
aBC = 6.67 rad/s2 counterclockwise, 17.176 vBD = 0.733 rad/s counterclockwise.

17.178 vAB = 0.261 rad/s counterclockwise,
vBC = 2.80 rad/s counterclockwise.

17.180 vBC = 1.22 rad/s clockwise, 18.0 m/s from B toward C.
17.182 Velocity = 6.89 ft/s upward;

acceleration = 169 ft/s2 upward.
17.184 5.66 N.
17.186

Chapter 18
18.2

18.4 9.23 m/s.
18.6 (a) 

(b) 
18.8 (a) (b) 95.5 rpm.

18.10
18.12 (a) 9.25 s; (b) 195 rpm.
18.14

18.16 Falls 0.721 m, tension is 80.8 N.
18.18 (a) (b) 
18.20 4.95 rad/s.
18.22

18.24
18.26 MB = 27.1 N-m counterclockwise,

Bx = –11.0 N, By = 108.5 N.
18.28 aG = 0.1108 i-0.0168j (m/s2),

a = –0.000427 rad/s2.
18.30 FB = –19.1 i + 183.3j (N), MB = 62.6k (N-m).
18.32 6.54 m/s.
18.34

18.36 (a) (b) 41.7 N.
18.38 (a) 14.8 rad/s2 clockwise. 

(b) ms = 0.227.
18.40
18.42 (a) It doesn’t slip, a = 22.2 rad/s2 clockwise.

(b) It does slip, a = 53.6 rad/s2 clockwise.
18.44 27.9 N.
18.46
18.48 (a) 9.38 rad/s2 clockwise. 

(b) 9.57 rad/s2 clockwise.
18.50 61.3 rad/s2 clockwise.
18.52
18.54
18.56 tension is 49.2 lb.
18.58

18.62 (a) 9.34 m/s2; (b) 516 N-m.
18.64
18.66 aOQ = 4.88 rad/s2 clockwise,

aPQ = 4.88 rad/s2 counterclockwise.
18.70 a = 0.255 rad/s2 clockwise.
18.72 I0 = 14 kg-m2.
18.74 Iz axis = 15.1 kg-m2.

aBC = 17.0 rad/s2 counterclockwise.

©M = 20 N-m counterclockwise.
©  F = -340i - 160j (N),
M = 402 ft-lb,
ms = 0.108.
3.16 ft/s2.

2.35 rad/s2 counterclockwise.

Velocity = 3.81 ft/s, time = 1.97 s.

14.7 rad/s2;

vring>vdisk = 23>4.

0.581 rad/s2 counterclockwise.

Dy = 23.6 N.Dx = 27.5 N,

8.67 rad/s2.12.3 rad/s2;

(b) 799 rpm.
(a) 565 rpm;

-8.9j (ft/s2).
2.5 rad/s2;
NA = 182 lb, NB = 58 lb.
3.22 ft/s2;

(b) NA = 57.7 lb, NB = 172 lb.
(a) 0.980 ft/s2; 

0.103 rad/s counterclockwise.

Answers to Even-Numbered Problems 641

BEDFMN_0136129161.QXD  6/16/07  6:09 PM  Page 641



18.76 Ix axis = 2.667 kg-m2, Iy axis = 0.667 kg-m2, 
Iz axis = 3.333 kg-m2.

18.78 Iy axis = 1.99 slug-ft2.
18.80 20.8 kg-m2.
18.82
18.84
18.86 Iz axis = 0.0803 slug-ft2.
18.88 3810 slug-ft2.
18.90 Iz axis = 9.00 kg-m2.
18.92
18.94 I0 = 0.0188 kg-m2.
18.96
18.98 Ix axis = 0.844 kg-m2.

18.100
18.102
18.104 Iz axis = 0.00911 kg-m2.
18.106 I0 = 0.00367 kg-m2.
18.108 Iz axis = 0.714 slug-ft2.
18.110 (a) 12.1 s; 

(b) 144 lb.
18.112 (a) 20 m/s2; 

(b) c ! 49.1 mm.
18.114 I = 2.05 kg-m2.
18.116 40.2 kN.
18.118 a = –0.420 rad/s2, Fx = 336 N, Fy = 1710 N.
18.120 a = (g/l) C3 A1-m2 B sin u-6m cos u D/ A2-m2 B

counterclockwise.
18.122 Bx = –1959 N, By = 1238 N, Cx = 2081 N, 

Cy = –922 N.
18.124 aOA = 0.425 rad/s2 counterclockwise, 

aAB = 1.586 rad/s2 clockwise.
18.126 aHP = 5.37 rad/s2 clockwise.
18.128 208 m/s2 to the left.

Chapter 19
19.2 20.7 ft-lb.
19.4 1270 N-m.
19.6 353 rpm (37.0 rad/s).
19.8 (a) 78.5 N-m; (b) Zero; (c) 3.84 rad/s.

19.10 22.2 lb.
19.12 1.39 m/s.
19.14 3.33 rad/s.
19.16 0.731 rad = 41.9°.
19.18 5630 N-m.
19.20 2.59 m/s to the right.
19.22 16.7 rad/s clockwise.
19.24 7.52 ft/s.
19.26 5.72 ft/s.
19.28 s = 66.1 m.
19.30 4.33 rad/s clockwise.
19.32 0.384 m/s.
19.34 1.79 rad/s.
19.36 0.899 m/s.
19.38 2.57 rad/s counterclockwise.
19.40 4.52 rad/s counterclockwise.
19.42 2.80 rad/s counterclockwise.

U12 =

Ix¿ = 0.995 kg-m2.
Ix = 0.0535 kg-m2.

Ix axis = Iy axis = m A 3
20 R2 + 3

5 h2 B .Iy axis = 3.07 kg-m2.

Iz axis = 74.0 kg-m2.
I0 = 17

12 ml2.

19.44
19.46 M = 28.2 N-m.
19.48 (a) 

(b) 
19.50 3 s.
19.52 (a) 126 rad/s; (b) 200 rad/s.
19.54
19.56 246 kN.
19.58
19.60 3.94 rad/s (37.6 rpm).
19.62
19.64
19.66 3.37 rad/s counterclockwise.
19.68 0.00196 rad/s counterclockwise.
19.70 1.54 rad/s.
19.72 1.27 kN.
19.74
19.78 (a) (b) 2.5 ft-lb.
19.80 5.96 ft/s.
19.82 counterclockwise
19.84 Velocity = 5.77 i-2.10j (ft/s), 

angular velocity = 3.15 rad/s counterclockwise.
19.86 0.375 rad/s.
19.88 0.3 rad/s.
19.90 0.0997 rad/s = 5.71 deg/s counterclockwise.
19.92 15.0 km/hr.
19.94 0.00336 rad/s clockwise.
19.96 v = 2.05 m/s.
19.98

19.100 12.5 rad/s.
19.102 (a) 1.13 ft; (b) 1.09 ft/s.
19.104 580 ft-lb/s (1.05 hp), 

290 ft-lb/s (0.53 hp).
19.106 11.1 rad/s.
19.108 1.77 rad/s counterclockwise.
19.110 N = (373/283)mg.
19.112 0.721 rad/s.
19.114
19.116 b = 2 ft.
19.118 8.51 rad/s.
19.120 54.7°, 10.7 rad/s counterclockwise.
19.122 0.0822k (rad/s).
19.124 0.641 rad/s clockwise, v¿ = –2.24 i (ft/s).

Chapter 20
20.2
20.4
20.6
20.8 (a) 

(b) 
20.10 (a) 

(b) 
20.12 (a) 

(b) 
20.14 vC = 0.4 k (m/s) .

-0.394i + 0.0693j + 0.209k (m/s2).
! = 0.0453i - 0.0262j (rad/s2);
! = -288k 1rad/s22.vP = 48k 1ft/s2;22.6 i - 33.9j + 33.9k (in/s) .
-33.9j + 33.9k (in/s);

vC = 4i + 4k1m/s2, vD = 4i - 8j1m/s).
aA = -205i - 63.0j - 135k (m/s2) .
a = -6.94 i (rad/s2).

v =u =
v =

v¿ = A13 + 2
3 cos b Bv.

v¿ =

Pave =
Pmax =

vS =
v = 2Fb> C 12 mc + 2(m + I>R2) D .
v =
v¿ =
v¿ =

9.6 rad/s

229°;
vA = 1.47 m/s, vB = 12.8 rad/s counterclockwise.

14.7°.
1.46 m/s.

v2 = 4.55 revolutions per second.

510 rad/s 14870 rpm2.
11.4 rad/s counterclockwise.
250 N-m-s counterclockwise;

2.34 rad/s.
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20.16 vA = 80 i (mm/s),
vB = –102.6 i + 281.9j-56.4k (mm/s).

20.18
20.20 (a) 

(b) 
20.22
20.24
20.26
20.28
20.30

20.32
20.34 (a) 

(b) 
20.36 (a) 

(b) 
20.38
20.40
20.42
20.44 N-m.
20.46
20.50
20.52 (ft-lb).
20.58 157 N-m.
20.62 21.5 ft-lb.
20.64 Counterclockwise.
20.66
20.68
20.70 29.1 rev/s.
20.72 (a) 

(b) 

20.74
20.76
20.78

20.80

20.82

20.84

20.86

20.88 (a) 

(b) HO = 1
3 ml2(vyj + vzk).

H = 1
12 ml2(vyj + vzk);

Izz = 0.0674 kg-m2, Ixy = 0.0219 kg-m2, Iyz = Izx = 0.
Ixx = 0.0318 kg-m2, Iyy = 0.0357 kg-m2,

Izz = 19.25 slug-ft2, Ixy = 5.59 slug-ft2, Iyz = Izx = 0.
Ixx = 2.48 slug-ft2, Iyy = 16.77 slug-ft2,

Izz = 0.15 kg-m2, Ixy = Iyz = Izx = 0.
Ixx = 0.12 kg-m2, Iyy = 0.03 kg-m2,

Ixy = Iyz = Izx = 0.Izz = 6 kg-m2,
Ixx = 0.67 kg-m2, Iyy = 5.33 kg-m2,

©M = 2123i - 155j - 534k 1N-m2.v 0 = 10.7 rad/s.
309 rad/s 149.1 revolutions per second2.

Z

z
Body cone 58.6!

20!

Space cone

c
#

= -2050 rpm.

.
c = 1.31 rev/s.
vd = - 1

2v0 sin b.
4650 N-m.

-10j + 14.9k 1lb2, -12.4i
couple is 12.4 i (ft-lb) .Force is 20j - 19.9k (lb),

ƒM ƒ = 260 N-m.ƒF ƒ = 78.5 N,
27.4 

A = 14.53j + 4.65k 1rad/s22.A = 14.5j 1rad/s22.A = -500.0i + 24.4j 1rad/s22.! = 49.5i + 137.7j 1rad/s22.a = -4.17k 1m/s22;a = -0.33i + 2.00j - 19.52k 1m/s22.! = 28.57i + 5.71j - 2.00k 1rad/s22;|aA| = 2.5 m/s2.

©M = -76i + 36j - 60k 1ft-lb2.©M = 0.0135i - 0.0086j + 0.01k 1N-m2.F = mg j - mba0k, C = - 1
2mlba0i.

v = 0.
a = -1.28i + 0.64j - 3.20k 1m/s22."rel = -4.47i 1rad/s2.# = 0.894i + 1.789j 1rad/s2;v = -1.05  i (m/s) .

20.90

20.92
20.94 (a) 

(b) 
20.96 I1 = 16.15, I2 = 62.10, I3 = 81.75 kg-m2, 

e1 = 0.964 i-0.220j + 0.151k, 
e2 = –0.204 i-0.972j-0.114k, 
e3 = 0.172 i + 0.079j-0.982k.

20.98

20.100 (a) 
(b) 

20.102 (a) = 20 i-5j (rad/s); 
(b) vA = 0.25 i + 1.00j + 3.73k (m/s).

20.104 aB = 166j (ft/s2), 
! = 7.31 i-5.52j + 22.89k (rad/s2).

20.106 H = 25 i + 50k (kg-m2/s).
20.108 Ixx = 0.0398 slug-ft2, Iyy = 0.0373 slug-ft2, 

Izz = 0.0772 slug-ft2, Ixy = Iyz = Izx = 0.
20.110

20.112
20.114 (b) If v0 = 0, the plate is stationary. The solution of the

equation is the value of b for
which the center of mass of the plate is directly above
point O; the plate is balanced on one corner.

20.116 FB = 52.72 i + 97.35j + 9.26k (N), 
MB = 0.05 i-10.25j + 30.63k (N-m).

20.118

20.120
20.122 A = 0.0535 i + 0.0374j + 0.0160k (rad/s2).

Chapter 21
21.2
21.4
21.6
21.8

21.10
21.12 (a) 

(b) 
21.14
21.16
21.18 downward.0.287 m/s

0.692 Hz.
k = 36.8 lb/ft.

x = 0.351 m.
f = 0.581 Hz, t = 1.72 s;

x = 0.200 (1 - cos 5.37t).
L = 0.203 m.
x = 0.390 m.
Amplitude = 0.166 m.
x
' = 0.264 sin 3.79t ft.

©M = -283i - 2546j - 800k 1ft-lb2.

Z

25!8.85!

z

2 cos b - sin b = 0

v0 = Cgsin b> A23 l sin b cos b + b cos b B D1>2.

©M = -250i - 250j + 125k 1N-m2.

"

(Rvd sin u - bv0)k.
vA = -Rv0 cos ui + Rvd cos uj +
" = vdi + v0  j;

e3 = k.e2 = -sin bi + cos bj,
e1 = cos bi + sin bj,I1 = 0, I2 = 1

12, I3 = 1
12 kg-m2,

14.22 kg-m2/s.
I = 3.56 kg-m2;

H = 2.00i - 1.64j + 2.58k 1kg-m2/s2.Iy¿z¿ = Iz¿x¿ = 0.
Iz¿z¿ = 242,400 kg-m2, Ix¿y¿ = -32,400 kg-m2,
Ix¿x¿ = 15,600 kg-m2, Iy¿y¿ = 226,800 kg-m2,
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21.20
21.24 kg-m2.
21.26 (a) 

(b) 
21.28 0.39 in.
21.30
21.32
21.36 (a) 

(b) 
21.38 (a) 

(b) 
21.40
21.42 (a) (8.56 g’s);

(b) (2.10 g’s);
(c) (0.490 g’s).

21.44 (a) td = 2.32 s, fd = 0.431 Hz; 
(b) 5.28 s.

21.46

21.48
21.50
21.52 0.153 rad/s clockwise.
21.54 (a) 277 N-s/m; 

at t = 0.231 s.
21.56
21.58
21.60 1-0.289 sin 1.73t - 0.5 cos 1.73t2 + 0.5 m.1b2 x = e-t

1a2 xp = 0.5 m;
x = 0.337 ft .
uB = 0.209e-6.62t sin 9.55t rad.
1c2 umax = 0.850 rad
1b2 u = 10te-4.33t rad;

x = 0.237 m.
x = -10.363 + 1.090t2e-3t + 0.363 m.

+ 0.363 m.
x = e-2t1-0.325 sin 2.24t - 0.363 cos 2.24t2

15.8 ft/s2
67.6 ft/s2
276 ft/s2

x = 2.38 ft.
x = 0.133 ft .
c = 33.9 lb-s/ft;
x = 0.0816 ft .
fd = 0.900 Hz;

mA = 4.38 kg.
uB = 0.172 sin 11.6t rad.

f = 2.69 Hz.
r = 0.301 m;

I1z¿ axis2 = 24.2
b = 0.01 cos 6t rad. 21.62

21.64 11.5 lb.
21.66 0.113 mm.
21.70 16.5 in.
21.72 5.5 mm.
21.74

(b) 

21.78 f = 0.985 Hz.
21.80 1.03 Hz.
21.82
21.84
21.86
21.88
21.90
21.92

21.94 1b2 v = l1k>m>2p.
1a2 Ep = 12pv>l22h>[1k>m2 - 12pv>l22];

+ 0.145 sin 3.00t m.
x = 0.253 sin 6.19t + 0.100 cos 6.19t
uB = e-5.05t10.244 sin 3.45t + 0.167 cos 3.45t2 rad.
x = 0.118e-2.68t - 0.118e-14.01t ft.
fd = 0.714 Hz.
d = 2.07.
f = 11>2p223[k>m2 - 1g>2l2] .

1 2

0.3

0 3 4 5

0.2

0.1

0

!0.1

!0.2

!0.3

!0.4

0.4

x, m v, m/s

t, seconds

(a) x = (0.1) cos 3t m.

u = 0.581 sin 2.58t + 1.250 sin 2t rad.
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A
Acceleration, 5, 24, 29

angular, 61, 63–64, 119
of a line, 61
of a rigid body, 285, 316, 318

centripetal, 86, 91
Coriolis, 86, 91, 345–346
curvilinear motion, 49–55

in terms of cartesian coordinates, 49–55
in terms of normal and tangential components, 67–72
in terms of polar coordinates, 84–88
projectile problem, 50–51, 54–55

gravitational, 15–16, 45
and Newton’s second law, 7–8, 26, 107, 108–111
straight-line motion, 24–35

as a function of position, 42–43, 45
as a function of time, 26–31
as a function of velocity, 41–44
constant, 28, 30, 32–33

relative, 23–24, 99, 315–317, 328–331
Amplitude, 549, 553–554, 567, 580
Angle, unit conversions, 8
Angular acceleration, 61, 63–64, 119

of a line, 61
of a rigid body, 285, 316, 318

Angular acceleration vector, 317
Angular impulse, 257–259, 436–437
Angular momentum, 64–65, 257–259, 

437–438, 442–444
conservation of, 439
principle of angular impulse and 

momentum, 255–258, 436–437
of a system of particles, 366–369

Angular units, 8
Angular velocity, 6, 61, 63

of a line, 61
of a moving reference frame, 

339, 347, 477
of a rigid body, 284–285, 291

Angular velocity vector, 292–296, 370
defined, 292

Attenuation, 566–567, 569, 571

B
Base units, 7, 9
Body cone, 517, 522
Body-fixed reference frame, 328, 

330–331, 355

645
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C
Cartesian coordinates, 49–52, 214
Center of mass, 22, 26

equation of motion for, 108–110
and Newton’s second law, 108–110, 365–367

Central impacts, 239–241, 243
Central-force motion, 256–257
Central-force problems, and polar coordinates, 84
Centrifuge, 78–79
Centripetal acceleration, 86, 91
Chain rule, 25, 29, 42
Circular motion, 73, 87

normal and tangential components, 70
and polar coordinates, 87

Circular-orbit problem, 75
Coefficient of restitution, 240, 241, 243, 275, 

451–454
Composite object, moments of inertia of, 397, 401
Conservation of energy, 165, 197–206, 260, 421
Conservation of linear momentum, 238–239, 242,

244–245
Conservative forces, 197–201, 225
Constant acceleration, 28, 30, 32–33
Coriolis acceleration, 86, 91, 345–346
Critical damping, 566–567, 568
Curvilinear motion, 49–55

cartesian coordinates, 49–52
normal and tangential components, 67–72
polar and cylindrical coordinates, 84–88
projectile problem, 50–51, 54–55

Cycle, 553
Cylindrical coordinates, 87–89, 214

defined, 87–88
Newton’s second law, application of, 146–147

D
Damped spring-mass oscillator, 570–571
Damped vibrations, 566–573

attenuation, 566–567, 569, 571
critical damping, 566–567, 568
damped spring-mass oscillator, 570–571
damping constant, 566
damping element, 566

damping mechanisms, 566
subcritical damping, 566–567, 569–570
supercritical damping, 566–567, 570

Datum, 198–199, 201
Degree of freedom, 555
Derivatives, 552
Derived unit, 7
Dimensionally homogenous equation, 11
Direct central impacts, 239–241, 243
Displacement, 23, 25, 28
Dynamics, 4

E
Earth-centered reference frame, 343–344
Earth-fixed reference frame, 110, 125, 144, 281,

330–331, 344–345
Earth’s gravity, work done by, 188
Energy methods:

conservation of energy, 165, 197–206, 260, 421
conservative forces, 197–198, 200–201, 225
kinetic energy, 13, 169

of a rigid body, 475–547
potential energy, 165, 196–197

associated with an object’s weight, 180–181
associated with a linear spring, 199
associated with a torsional spring, 426–427

power, 168–169, 415, 422
work, 165

done by couple, 418, 421
done by an object’s weight, 180–181
done by a spring, 182
evaluating, 167–168

work and energy, principle of, 166–167, 169, 
170–171, 224–225, 255, 413–422

Equations of motion, 4
center of mass, 108–110
Newton’s second law, 112–113, 369, 372
of a rigid body in planar motion, 365, 

366–371, 372
of a rigid body in three-dimensional motion 

(Euler’s equations), 491–516
of a system of particles, 366–369

Escape velocity, 45, 75
Euler angles, 475, 513–521, 523
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Index 647

Euler’s equations, 491–516
general three-dimensional motion, 494–496
in terms of Euler angles, 519
rotation about a fixed point, 491–492, 497–498

Euler’s theorem, 292, 476

F
Fixed axis, rotation about, 281, 282–285
Fixed point, rotation about, 491–492, 497–498
Foot (ft), 5, 8
Force, 7

and Newton’s second law, 108–110
relationships between potential energy and, 213–215

Forced vibrations, 578–582
defined, 578
forcing function, 578, 582
oscillatory forcing function, 579–580, 583, 584–585
polynomial forcing function, 581, 583, 586–587

Force-linear momentum principle, 366–367, 369
Forcing function:

oscillatory, 579–580, 583, 584–585
polynomial, 581, 583, 586–587

Free vibrations, 578
Free-body diagrams, 107, 112
Frequency, 553
ft-lb, 13, 167

G
Galileo, 105
giga-, 7
Gravitation, Newtonian, See Newtonian Gravitation
Gravitational acceleration, 15–16, 45

H
Hertz (Hz), 555
Homogeneous cylinder, moments of 

inertia of, 402–403
Hour (h), 5, 8, 9

I
Impacts, 239–241, 450–454

coefficient of restitution, 240, 241, 243, 
275, 451–454

conservation of angular momentum in, 451
conservation of linear momentum in, 244–245, 450
direct central impacts, 239–241, 243
oblique central impacts, 241, 243
perfectly elastic, 241, 251, 274
perfectly plastic, 239, 241–243, 274

Impulse:
angular, 257–259
linear, 224, 226
principles of impulse and momentum, 255–258,

436–437
Impulsive force, 224–227

determining, 229
Inch (in), 8
Inertia matrix:

definition, 494
of a slender bar, 529–530
of a thin plate, 530–532

Inertial reference frames, 110–112, 167, 241, 255, 258,
342–346

earth-centered, nonrotating reference frame, 343–344
earth-fixed reference frame, 110, 125, 144, 281,

330–331, 344–345
Instantaneous axis of rotation, 292, 476
Instantaneous centers, 308–309
Instantaneous radius of curvature, 72
Integrals, 533
International System of units (SI units), 7, 9

prefixes used in, 7

J
Joules (J), 167

K
Kepler, Johannes, 6, 96, 153
kilo-, 7
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Kilogram (kg), 7, 9
Kilometer (km), 7
Kilonewtons (kN), 7
Kilopound (kip), 8
Kinematics:

of a point, 21–105
of a rigid body:

in planar motion, 279–363
in three-dimensional motion, 475–479, 

508–547
Kinetic energy, 13, 169

defined, 165
of a rigid body, 475–547

general planar motion, 497
rotation about a fixed axis, 281, 283–285, 

369, 415
and work, 166–169

L
Linear impulse, 224, 226
Linear momentum:

conservation of, 238–239
definition, 108
of a system of particles, 366–367
principle of impulse and momentum, 

255–258, 436–437
Logarithmic decrement, 569

M
Mass, See also Center of mass

and Newton’s second law, 7
in SI units, 7
in U.S. Customary units, 8
unit conversion, 8

Mass flow rate, 264
Mass flows, 263–264, 267

force resulting from, 267
jet engines, 268
thrust of a rocket, 264–265, 267

Meaningful digits, 5

Mechanics:
chronology of developments in mechanics, up to

Newton’s Principia, 6
and engineering, 4–8
engineering applications, 4
fundamental concepts, 5–8
learning, 4
Newton’s laws, 6–7
principles of, 5
problem solving, 4
as science, 4

mega-, 7
Meter (m), 5, 9
Mile (mi), 8
milli-, 7
Minute (min), 5, 8
Moment-angular momentum principles, 

367–368, 369
Moment-free steady precession, 521
Moments of inertia, 395–398

about an arbitrary axis, 534
parallel-axis theorems, 398–400, 417, 

529, 532–533
polar, 396
principal moments of inertia, 534–535

Momentum:
angular, 64–65, 257–259, 437–438, 442–444
linear, 108, 255–258, 366–367, 436–437

Momentum methods, 223–277
angular momentum, 64–65, 257–259, 

437–438, 442–444
central-force motion, 256–257
conservation of linear momentum, 238–239, 

242, 244–245
impacts, 239–242, 450–454
mass flows, 263–264, 267
principle of angular impulse and momentum, 

255–258, 436–437
principle of impulse and momentum, 

255–258, 436–437
Momentum principles for a system of particles, 

366–369
force-linear momentum principle, 

366–367, 369
moment-angular momentum principles, 

367–368, 369
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Motion of a point, 21–105
curvilinear motion, 49–55, 84, 99
polar coordinates, 84–88, 90–91
relative motion, 99–101
straight-line motion, 24–25

Moving reference frames, 342–348, 477–478
and kinematics of rigid bodies in three-dimensional

motion, 476–478
motion of a point relative to, 342–343

N
nano-, 7
Newton, Isaac, 6–7
Newton (N), 7, 9, 106
Newtonian gravitation, 15–19

potential energy, 196–197
work, 180–182

Newtonian reference frames, See Inertial 
reference frames

Newton’s laws, 6–7
Newton’s second law, 7, 8, 26, 107–158, 165, 166,

223–226, 280, 342 
and acceleration, 7–8, 26, 107, 108–111
and cylindrical coordinates, 146–147
and inertial reference frames, 110–111
and normal and tangential components, 

133–139
orbital mechanics, 153–157
and polar coordinates, 148–149
and straight-line motion, 112–115

Newton’s third law, 109, 238, 366
Normal and tangential components, 67–77

circular motion, 70
curvilinear motion, 67–72
motion in terms of, 74–75
Newton’s second law, application to, 133–139
planar motion, 67–70, 72
relating cartesian components to, 76–77
three-dimensional motion, 71–72

Numbers, 5
significant digits, 5
use of, in text, 5

Nutation angle, 513, 515, 522

O
Oblique central impacts, 241, 243
Orbital mechanics, 153–157
Oscillatory forcing function, 579–580, 583–585
Osculating plane, 71–72

P
Parallel-axis theorems, 398–400, 417, 

529, 532–533
Pascals (Pa), 10, 14
Pendulum, 5, 551, 560
Perfectly elastic impacts, 241, 251, 274
Perfectly plastic impacts, 239, 241–243, 274
Period, 553, 580
Philosophiae Naturalis Principia 

Mathematica (Newton), 6
Planar dynamics of rigid bodies, 365–411
Planar motion, 67–70, 72
Polar coordinates, 84–88

analyzing motion in terms of, 90
Newton’s second law in, 146

Polar moment of inertia, 396
Polynomial forcing function, 581–582
Position, 22–24, 28

acceleration as a function of, 42–43, 45
angular, 61, 63, 150
displacement, 23, 25, 28

Position vector, 22–24
in cartesian coordinates, 49
in cylindrical coordinates, 88
in polar coordinates, 84
in spherical coordinates, 608

Potential energy, 165, 196–197
associated with an object’s weight, 180–181
associated with a linear spring, 199
associated with a torsional spring, 426–427
conservation of energy, 165, 197–206, 260, 421
conservative forces, 197–201, 225
defined, 196
determining the force from, 215
principle of work and energy, 166–167, 169, 

170–171, 224–225, 255, 413–422
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Pound (lb), 7, 8, 9
Power, 168–169, 415, 422

defined, 168
and work, 168–170

Precession angle, 513, 515, 517, 520, 522
Precession, 515

of a top, 515
moment-free, 515–517
retrograde, 517

Precession rate, 515
Prefixes, used in SI units, 7
Pressure, converting units of, 10
Primary reference frame, 329–331, 477
Principal axes, 519
Principal moments of inertia, 534–535
Principle of work and energy, 166–167, 169, 

170–171, 224–225, 255, 413–422
Principles of angular impulse and momentum, 

255–258, 436–437
Products of inertia, 492, 495, 498, 499, 501, 

517, 520, 529–535
Projectile problem, 50–51, 54–55

Q
Quadratic equations, 567

R
Radians (rad), 8
Reference frame:

cartesian, describing motion in terms of, 
52–53, 73

defined, 22, 24
inertial (Newtonian), 110–112, 167, 241, 

255, 258, 342–346
moving, 342–348, 477–478
polar, describing motion in terms of, 91
primary, 329–331, 477
secondary, 328, 331, 342–343, 347–348, 

477–480, 485
Relative acceleration, 23–24, 99, 315–317, 328–331

Relative motion, 99–101
Relative velocity, 23–24, 99, 290–294, 

308–309, 328–331
Resonance, 580
Resonant frequency, 580
Retrograde precession, 517
Rigid bodies:

definition, 280
dynamics of:

in planar motion, 365–411
in three-dimensional motion, 475, 476,

494–496, 498
equations of motion for:

in planar motion, 365, 366–372
in three-dimensional motion, 491–516

kinematics of:
in planar motion, 279–363
in three-dimensional motion, 475–479, 508–547

Rolling, 291–294
Rotating reference frames, See Moving 

reference frames
Rotating unit vector, 61–63
Rotation about a fixed axis, 281, 

283–285, 369, 415
Rotation about a fixed point, and 

Euler’s equations, 491–492, 497–498
Rotational kinetic energy, 416, 420
Rounding off numbers to significant digits, 5
Rowlett, Russ, 9

S
Safety, and engineering, 4
Second (s), 8, 9
Secondary reference frame, 328, 331, 

342–343, 347–348, 477–480, 485
SI system of units, 7, 9
Significant digits, 5
Simple harmonic motion, 553–554
Sleeping motion of a top, 515
Sliding contacts, 328–331

bar sliding relative to a support, 334–336
defined, 328
linkage with, 332–333
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Slug, 8
Space, 5
Space cone, 517, 522
Spherical coordinates, 608
Spin angle, 513, 520, 522
Spin axis, 515, 524, 526
Spring-mass oscillator, 555, 566

damped, 570–571
Springs:

potential energy of, 201, 202–203
work done by, 182

Statics, 4
Steady precession, 515, 520

moment-free, 521
Steady-state solution, 580, 585, 588
Straight-line motion, 24–25

acceleration:
as a function of position, 42–43, 45
as a function of time, 26–31
as a function of velocity, 41–44

analysis of, 26–28
application of Newton’s second law to, 

112–113, 115, 116
and cartesian coordinates, 112–121
with constant acceleration, 28, 32–33
description of, 24–26
graphical solution of, 33, 34–35
work and energy in, 166–167

Strategies, for problem solving, 4
Subcritical damping, 566–567, 569–570
Supercritical damping, 566–567, 570

T
Tangential and normal components, See

Normal and tangential components
Taylor series, 212, 551, 587
Three-dimensional dynamics:

of a bar, 500–501
of a tilted cylinder, 504–505

Three-dimensional motion, 71–72
of a point, 21–105
of a rigid body, 475, 476, 494–496, 498

Thrust of a rocket, 264–265, 267

Time, 5
unit conversions, 8

Top, motion of, 476, 515
Torsional spring, 66
Trajectory, 21
Translation, 281, 309, 310
Translational kinetic energy, 416, 420
Triangular plate, moments of inertia of, 398
Two-dimensional motion, See Planar motion

U
Units:

angular units, 8
conversion of, 8–10
International System of units, 7

Universal gravitational constant, 15
U.S. Customary units, 5–6, 8, 9

V
Velocity, 5, 24, 28

angular, 6, 61, 63
of a line, 61
of a rigid body, 282–285, 290–291

curvilinear motion, 49–55
in terms of cartesian coordinates, 49–52
in terms of normal and tangential 

components, 67–72
in terms of polar coordinates, 

50–51, 54–55
relative, 23–24, 99, 290–294, 

308–309, 328–331
Vibrations:

amplitude, 549, 553–554, 567, 580
conservative systems, 550–554
cycle, 553
damped, 566–573

attenuation, 566–567, 569, 571
critical damping, 566–567, 568
damped spring-mass oscillator, 570–571
damping constant, 566
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Vibrations (continued)
damping element, 566
damping mechanisms, 566
subcritical damping, 566–567, 569–570
supercritical damping, 566–567, 570

forced, 578–582
defined, 578
forcing function, 578, 582
oscillatory forcing function, 579–580, 

583, 584–585
polynomial forcing function, 581, 583, 586–587

frequency of, 557, 560, 561
period of, 560, 569

W
Weight:

determining, 17
potential energy of, 202–203
work done by, 184–188

Work, 165
done by couple, 418, 421
done by an object’s weight, 180–181
done by a spring, 182
evaluating, 167–168
principle of work and energy, 166–167, 169, 

170–171, 224–225, 255, 413–422
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