LAB GUIDE

RPVST Fundamentals

IMPORTANT! THIS GUIDE ASSUMES THAT THE AOS-CX OVA HAS BEEN INSTALLED AND WORKS IN GNS3 OR EVE-NG. PLEASE REFER TO GNS3/EVE-NG INITIAL SETUP LABS IF REQUIRED.

https://www.eve-ng.net/index.php/documentation/howtos/howto-add-aruba-cx-switch/

TABLE OF CONTENTS

Lab Objective		.00	0	.09	15	A.A	.00	0.	.00	00.	.0.	1.0	. 0	00	0.	.00	0.0.	0.1	i.a.	00	. 0 1
Lab Overview	• •	0 0	9	45 0	•	• •	0 0	•	•	•	•	• •	•		•	0 0	•	0 0	•	• •	.•1
Lab Network Layout																					
Lab Tasks				0 0	0	0 0	0 6		0 (•		0	0 0		0 0				0 0	.02
Task 1 - Lab setup			•	• •	•	• •	0 0	•	•	•	•	• •	•	• •	•	•	•	•	•	• •	•2
Task 2 - Configure RPVST and VLANS																					-3
Task 3 - Check configurations and output Task 4 - Path Cost						• •	0 0	•	•	•	•	• •	•	• •	•	0 (•		° _
Task 4 - Path Cost						•	0 0		0 0		0	0 0	0	0 0		0 0		0 0		0 0	6
Task 5 - RPVST timers and tuning								3	0 (•	0 0		0 0		0 (0	0 0	0	0 0	• 7
Task 5 - Spanning tree protection										•	•	• •	•	• •	•	0 (0 0	•	• •	ع •
Appendix – Complete Configurations											4.1			0.10)	0.1		0.0	11

Lab Objective

At the end of this lab you will be able to implement the basic configuration of Rapid Per Vlan Spanning Tree (RPVST) and show how RPVST creates a loop free VLAN topology with other Aruba CX switches.

The use case for RPVST is to provide a loop free redundant multipath Layer 2 network. RPVST is **not** the default Spanning Tree Protocol for Aruba CX switches.

For further details on RPVST please refer to the latest Aruba documentation located on https://asp.arubanetworks.com/

Lab Overview

This lab set up is as shown in Figure 1 and Figure 2. This will allow the reader to observe the behavior of RPVST

This lab covers configuration of the following:

- RPVST and associated VLANs
- Root bridge placement and identification
- · STP timers and edge ports
- STP protection mechanisms

Lab Network Layout

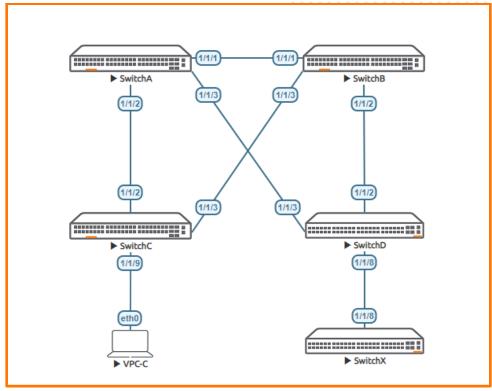


Figure 1. RPVST Lab topology

Lab Tasks

Task 1 - Lab setup

For this lab refer to Figure 1 for topology setup .Open each switch console and log in with user "admin" and no password. Note: Switch X will be configured later in the lab. The Virtual PC (VPC-C) is not required to be configured and just shown to represent an access port.

• Change all hostnames as shown in the topology:

```
configure
hostname <device host name>
```

• On Switch A and B bring up required ports:

```
int 1/1/1-1/1/3
no routing
no shutdown
```

use "exit" to go back a level

On Switch C and D bring up required ports:

```
int 1/1/2-1/1/3
no routing
no shutdown
```

use "exit" to go back a level

• Validate LLDP neighbors appear as expected on each switch. Here we show SwitchA output only.

If all switches have been configured as shown in *Figure 1* you should see Switch B, C and D via Switch A as shown below using LLDP. It is left to the reader to check other switches respectively.

SwitchA#show lldp neighbor-info

	0 0	0 0	0	0 6	•	0	•	0 0	0	0	0		•	0 0	
	0 0	0 0	0	0 0	0	0	0	0 0	•	0	0	0 0	•	0 0	
	\ •	0 0	0	0 0		0	0	0 0	0	0	0	0 0	•	0 0	
: 3	•	0 0	0	0 0	0	•	0	0 0	•	•	0	0 0	•	0 0	
-			0	•	0	0	0	0		0			•		
				0 0	•	0	•		0	•			•		
1 : 0		, .	0	0 0	•		•	0	0	•	0	0 0	•	0 0	
ıt : 0		0	0	0 0		0	0 (0 0	0	0	0	0 0		0 0	
			0	0 0	0	0	0 (0 0	0	0	0	0 0		0 0	
PORT-ID	PORT-DESC		∇	0 0	0	0	0 6	דידין	•	0	0	SV	79-1	ΔTA	ME.
TORT ID	TORT DEDC			0 0	0	0	•	0 0	0	0	•	0	•	0 0	0
1 /1 /1	1 /1 /1					0		100	0	0	0	• ~ •		0 0	
1/1/1	1/1/1					•	•	120	0	0	0	Sv	/itl	hcE	3
1/1/1	1/1/1					•	0 0	120	0 0	•	0	Sv	/itl	hcI	3
1/1/1	1/1/1					• • •	0 1	120 120	•	• • •	0 0 0	•	/itl	• •	
						•	0 1	0 0	•	• • • • •	• • • • • • •	•		• •	
					•	•	0 1	0 0	0 0 0	0	0 0 0 0 0	Sw		ch(C •
	: 3 : 0 : 0 : 0 DORT-ID	1 : 0 1 : 0 1 : 0	l : 0 l : 0 lt : 0	l: 0 l: 0 lt: 0	l : 0 l : 0 lt : 0	! : 0 ! : 0 !t : 0	l : 0 l : 0 lt : 0								

Task 2 - Configure RPVST and VLANs

Each VLAN has its own independent topology and in the Lab guide we set up RPVST, Root bridges and VLANs as per Figure 2 below

- VLAN 10 Root bridge Switch A, Secondary Root bridge Switch B
- VLAN 11 Root bridge Switch A, Secondary Root bridge Switch B
- VLAN 20 Root bridge Switch B, Secondary Root bridge Switch A
- VLAN 21 Root bridge Switch B, Secondary Root bridge Switch A

Note: Having deterministic Root and Secondary Root bridges is a *typically* accepted design, these are placed at the Core of the Layer 2 domain, as shown in Figure 2, where Switch A and Switch B are the core/center of the Layer 2 domain, as well as providing Root redundancy for one another.

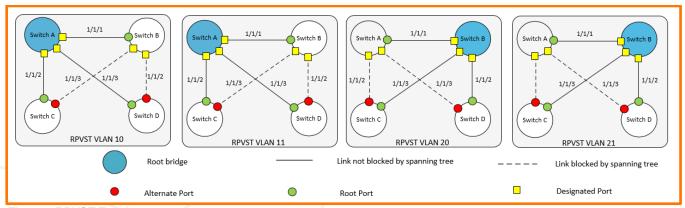


Figure 2 RPVST Topology

 On Switch A add VLAN 10-11 and 20-21. Configure RPVST making Switch A Root for VLAN 10-11 and Switch A Secondary Root for 20-21, then trunk all VLANs for interface 1/1/1 to 1/1/3.

SwitchA#

exit

 On Switch B add VLAN 10-11 and 20-21. Configure RPVST making Switch B Root for VLAN 20-11 and Secondary Root for 10-11, then trunk all VLANs for interface 1/1/1 to 1/1/3.

SwitchB#

```
configure vlan 10-11,20-21 exit spanning-tree mode rpvst spanning-tree spanning-tree vlan 10-11,20-21 spanning-tree vlan 10-11 priority 2 spanning-tree vlan 20-21 priority 1 int 1/1/1-1/1/3 vlan trunk allowed all vlan trunk native 1
```

 On Switch C and D define the VLANS for RPVST and trunk all vlans (same config on both with exception of hostname)

```
configure
vlan 10-11,20-21
exit
spanning-tree mode rpvst
spanning-tree spanning-tree vlan 10-11,20-21
int 1/1/2-1/1/3
vlan trunk allowed all
vlan trunk native 1
exit
```

Task 3 - Check configurations and output

- Examine and check RPVST
- Check System ID matches Root for the VLAN

SwitchA#show spanning-tree summary root

STP status : Enabled Protocol : RPVST

System ID : 08:00:09:8a:14:fa

Root bridge for VLANs : 10,11

			Root	нетто	Max	F.MG	
VLAN	Priority	Root ID	cost	Time	Age	Dly	Root Port
VLAN10	4096	08:00:09:8a:14:fa	0	2	20	15	0
VLAN11	4096	08:00:09:8a:14:fa	0	2	20	15	0
VLAN20	4096	08:00:09:12:8e:9e	20000	2	20	15	1/1/1
VLAN21	4096	08:00:09:12:8e:9e	20000	2	20	15	1/1/1

As shown above Switch A is Root for VLAN 10 and 11, identified by the System ID, and VLAN 20 and 21 Root is another device which is expected to be Switch B based on previous configurations.

• Examine Switch B and check Root switches for VLANs 20 and 21 are as expected

SwitchB# show spanning-tree summary root

STP status : Enabled
Protocol : RPVST

System ID : 08:00:09:12:8e:9e

Root bridge for VLANs : 20,21

			Root	Hello	Max	Fwd	
VLAN	Priority	Root ID	cost	Time	Age	Dly	Root Port
VLAN10	4096	08:00:09:8a:14:fa	20000	2	20	15	1/1/1
VLAN11	4096	08:00:09:8a:14:fa	20000	2	20	15	1/1/1
VLAN20	4096	08:00:09:12:8e:9e	0	2	20	15	0
VLAN21	4096	08:00:09:12:8e:9e	0	2	20	15	0

As shown above Switch B is Root for VLAN 20 and 21 identified by the System ID, and VLAN 10 and 11 Root is Switch A identified by the System ID

Continue to check switch C and D in a similar fashion (not shown in this lab guide)

- Now examine the behavior of ports and their state, by examining spanning tree state. The logical topology in Figure 2 for each switch can be observed showing a loop free Layer 2 topology. Here we observe VLAN 10 only and see ports are as set out in Figure 2. The reader can look at other VLANS at their leisure.
- Examine Switch A output for VLAN 10

SwitchA# show spanning-tree vlan 10

VLAN10 Spanning tree status : Enabled Protocol: RPVST Priority : 4096 MAC-Address: 08:00:09:8a:14:fa Root ID This bridge is the root Hello time(in seconds):2 Max Age(in seconds):20 Forward Delay(in seconds):15 Bridge ID Priority : 4096 MAC-Address: 08:00:09:8a:14:fa Hello time(in seconds):2 Max Age(in seconds):20 Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-TX	BPDU-RX	TCN-TX O TO	CN-RX
1/1/1	Designated	Forwarding	20000	128	P2P	2586	533	10 8	0 0 0
1/1/2	Designated	Forwarding	20000	128	P2P	2679	434	5 7	
1/1/3	Designated	Forwarding	2000 <mark>0</mark>	128	P2P	3106	5	6 2	0 0 0 0

Number of topology changes

Last topology change occurred : 4828 seconds ago

Above all ports shown on Switch A the Root Bridge for VLAN 10, are Designated Forwarding as expected.

Examine Switch B output for VLAN 10

SwitchB# show spanning-tree vlan 10

VT.AN10

Spanning tree status : Enabled Protocol: RPVST

Root ID Priority: 4096

MAC-Address: 08:00:09:8a:14:fa

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Bridge ID Priority : 8192

MAC-Address: 08:00:09:12:8e:9e

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/1	Root	Forwarding	20000	128	P2P	537	2770	8	9
1/1/2	Designated	Forwarding	20000	128	P2P	3298	7	6	2
1/1/3	Designated	Forwarding	20000	128	P2P	3298	9	9	3

Number of topology changes

Last topology change occurred : 5247 seconds ago

Above on Switch B the Root Bridge for VLAN 10 is identified by its MAC address "08:00:09:8a:14:fa", which is Switch A. The port connecting to Switch A 1/1/1 is the Root port and Forwarding and other two ports are Designated Forwarding leading to Switch C and D respectively. All ports follow the VLAN 10 topology as expected, as per Figure 2.

Finally examine Switch C output for VLAN 10. The reader can also observe Switch D, output not shown in this Lab Guide

SwitchC# show spanning-tree vlan 10

VLAN10

Spanning tree status : Enabled Protocol: RPVST

Root ID

Priority : 4096 MAC-Address: 08:00:09:8a:14:fa

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Bridge ID Priority : 32768

MAC-Address: 08:00:09:16:7b:7e

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/2	Root	Forwarding	20000	128	P2P	438	3553	7	4
1/1/3	Alternate	Blocking	20000	128	P2P	9	3986	3	8

Number of topology changes

Last topology change occurred : 6811 seconds ago

Above on Switch C the Root Bridge for VLAN 10 is identified by its MAC address "08:00:09:8a:14:fa", which is Switch A. The port connecting to Switch A 1/1/2 is the Root port and Forwarding and other port 1/1/3 towards Switch B is Alternate Blocking preventing a looped topology for VLAN 10.

The reader can continue to check switch D, as well as check other VLANs for their own understanding in a similar fashion (not shown in this lab guide) and build a logical picture of the RPVST map as shown in Figure 2

Task 4 - Path Cost

Now examine path cost and the RPVST port state from Switch D perspective with VLAN 10.

- In Figure 3 below the Root port path cost to the Root Switch A from Switch D perspective is 20,000 via port 1/1/3
- The next alternate path is via 1/1/2 with the next lowest path being through Switch B port 1/1/1. This next alternate
 best path cost is 40,000 (20,000 (Switch D interface 1/1/2) + 20,000 (Switch B interface 1/1/1)) and is the
 summation of associated link cost.

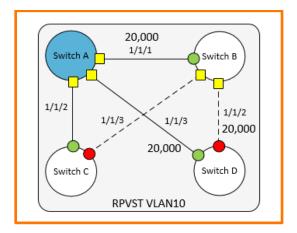


Figure 3 RPVST VLAN 10 path cost from Switch D

Check the port roles and cost from Switch D perspective

SwitchD# show spanning-tree vlan 10

```
VLAN10
Spanning tree status: Enabled Protocol: RPVST
Root ID    Priority: 4096
    MAC-Address: 08:00:09:8a:14:fa
    Hello time(in seconds):2 Max Age(in seconds):20
    Forward Delay(in seconds):15

Bridge ID    Priority: 32768
    MAC-Address: 08:00:09:ee:11:82
    Hello time(in seconds):2 Max Age(in seconds):20
    Forward Delay(in seconds):15
```

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/2	Alternate	Blocking	20000	128	P2P	7	4409	3	9
1/1/3	Root	Forwarding	20000	128	P2P	5	4406	2	9

```
Number of topology changes : 3
```

Last topology change occurred : 7971 seconds ago

Above we see the local path costs on Switch D, port 1/1/3 being the Forwarding Root port and 1/1/2 being the Blocked Alternate port

 Now manipulate the cost to change VLAN 10 topology from Switch D perspective, by changing the cost on Root port. To influence a change in this topology we need to increase cost to greater than 40,000, based on our earlier calculation.

SwitchD#

configure int 1/1/3

spanning-tree vlan 10 cost 40001 <---- change the path cost on the interface to 40001 or more

SwitchD# show spanning-tree vlan 10

VLANIO
Spanning tree status: Enabled Protocol: RPVST
Root ID Priority: 4096
MAC-Address: 08:00:09:8a:14:fa
Hello time(in seconds):2 Max Age(in seconds):20
Forward Delay(in seconds):15

Bridge ID Priority: 32768
MAC-Address: 08:00:09:ee:11:82
Hello time(in seconds):2 Max Age(in seconds):20
Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/2	Root	Forwarding	20000	128	P2P	10	4483	5	9
1/1/3	Alternate	Blocking	40001	128	P2P	8	4480	2	11

Number of topology changes : 1 Last topology change occurred : 10 seconds ago

As shown above by manipulating the path cost the behavior of the ports roles changed.

Note Default cost is calculated based on port link speed for the Aruba CX OVA the ports simulate 1GbEs and are set to 20,000. Please refer to Layer 2 birding guide to get the path cost for various speed ports.

Task 5 - RPVST timers and tuning

Detailed information around STP timers is beyond the scope of this lab guide. However, it is possible to change some RPVST timers to tune and improve convergence time. However, use of such parameters depends on design and architecture of a network as it can impact switch resources under certain conditions. The timers are shown below:

- spanning-tree <vlan-list> forward-delay is the time spent in the listening and learning state. This time is equal to 15 seconds by default, and can be tuned between 4 and 30 seconds
- spanning-tree <vlan-list> hello-time is the time between each Bridge Protocol Data Unit (BPDU) that are sent on a port. The default is 2 seconds and can be tuned between 2 and 10 sec.
- spanning-tree <vlan-list> max-age is the interval, specified in the BPDU, that BPDU data remains valid after its reception. The bridge re-computes the spanning tree topology if it does not receive a new BPDU before max-age expiry. Default is 20 Seconds and can be changed between 6 and 20 Seconds.

The above three parameters are mentioned for completeness. For this lab guide we will explore:

- spanning-tree port-type admin-edge which is primarily designed to optimize ports that are connected to end points to allow the ports to transition directly to forwarding, circumventing the learning and listening phase.
- · On Switch C configure the following

SwitchC#

configure
int 1/1/9
no shut
no routing
vlan access 10
exit.

• Now examine the ports on Switch C

SwitchC# show spanning-tree vlan 10

VI.AN10 Spanning tree status : Enabled Protocol: RPVST Root ID Priority : 4096 MAC-Address: 08:00:09:8a:14:fa Hello time(in seconds):2 Max Age(in seconds):20 Forward Delay(in seconds):15 Bridge ID Priority : 32768 MAC-Address: 08:00:09:16:7b:7e Hello time(in seconds):2 Max Age(in seconds):20 Forward Delay(in seconds):15 Port Role State Cost Priority BPDU-Tx TCN-Tx Type

TCN-Rx

										,			
					0 70-6-		0-6-4-		6= = =0				
1/1/2	Root	Forwarding	20000	9	128	0 0 0	P2P	0 0 0 0	444		4647	10	10
1/1/3	Alternate	Blocking	20000			0 0 0				0 0 0 0		6	14
1/1/9	Designated	Forwarding	20000									0	0
Number of to	pology changes	: 2											

In the above we can see the newly configured switch port act like a regular P2P port and we know that it will go into a learning and listening phase which is undesirable for ports connected to endpoints.

On Switch C configure the following

Last topology change occurred : 1417 seconds ago

SwitchC#

```
configure
int 1/1/9
spanning-tree port-type admin-edge
exit
```

Now examine the ports on Switch C

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/2	Root	Forwarding	20000	128	P2P	444	4807	10	10
1/1/3	Alternate	Blocking	20000	128	P2P	15	5241	6	14
1/1/9	Designated	Forwarding	20000	128	P2P Edge	167	0	0	0

In the above we can now see the newly configured switch port is in a different mode "P2P Edge". This port will now go into forwarding mode when an endpoint is connected.

Task 5 - Spanning tree protection

Various security mechanisms are in place to protect spanning true configurations from interference and protect from rouge devices. We will explore both BPDU guard and Root guard.

BPDU protection secures the active topology by preventing spoofed BPDU packets from entering the network. Typically BPDU protection would be applied to edge ports connected to end user devices that do not run STP. If STP BPDU packets are received on a protected port, this feature disables the port and an alert can be sent out accordingly.

On Switch D configure BPDU guard

SwitchD#

```
configure
interface 1/1/8
no shutdown
no routing
vlan access 10
spanning-tree bpdu-guard
```

On Switch X configure the following

SwitchX#

```
Configure
hostname SwitchX
spanning-tree
interface 1/1/8
no shutdown
no routing
vlan access 1
```

Observe the output on Switch D. It can be observed that the port 1/1/8 is disabled as we received a BPDU on port 1/1/8 from Switch X. Timeouts can be configured to re-enable the port, not covered in this guide.

Below port 1/1/8 is disabled due to "Bpdu-Error"

SwitchD# show spanning-tree vlan 10

```
Spanning tree status : Enabled Protocol: RPVST
                       : 4096
 Root ID
            Priority
             MAC-Address: 08:00:09:8a:14:fa
            Hello time(in seconds):2 Max Age(in seconds):20
             Forward Delay(in seconds):15
 Bridge ID Priority : 32768
             MAC-Address: 08:00:09:ee:11:82
             Hello time(in seconds):2 Max Age(in seconds):20
             Forward Delay(in seconds):15
```

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/2	Root	Forwarding	20000	128	P2P	580	1237	400	395
1/1/3	Alternate	Blocking	40001	128	P2P	214	1057	212	303
1/1/8	Digabled	Brdu-Error	20000	128	D2D	81	Λ	0	n

Number of topology changes : 307 Last topology change occurred : 2 seconds ago

Below observe the state of the interface 1/1/8 is down as expected, due to Bpdu-Error.

SwitchD#show int 1/1/8 Interface 1/1/8 is down

Admin state is up State information: Link state: down Link transitions: 0

Description: Hardware: Ethernet, MAC Address: 08:00:09:ee:11:c4 MTU 1500 Type Full-duplex qos trust none Speed 1000 Mb/s Auto-negotiation is off Flow-control: off Error-control: off MDI mode: none VLAN Mode: access Access VLAN: 10

Note: On Switch X OVA Simulator toggle the port "shut" to "no shut" may be required to enable BPDU initially.

Root Protection. Secures the active topology by preventing other switches declaring their ability to propagate superior BPDU, containing both better information on the root bridge and path cost to the root bridge, which would normally replace the current root bridge selection.

In this lab setup enable Root guard on Switch A 1/1/2 and Switch B 1/1/3 respectively and then try and make Switch C the Root for VLAN 10, and observe the behavior.

```
SwitchA#
```

```
configure
interface 1/1/2
   spanning-tree root-guard
```

SwitchB#

```
configure
interface 1/1/3
   spanning-tree root-quard
```

SwitchC# configure

```
spanning-tree vlan 10 priority 0 <---- Make Switch C Root for instance 1
```

Below observe that VLAN 10 on both Switch A and B ports go into Root Inconsistent Alternate. Thus protecting the rest of the network from the information that Switch C is sending "better" BPDUs, and maintaining Layer 2 stability.

Note: Prior to Root Inconsistent the protected ports will go into Designated Blocking, and may also be observed depending when show commands will be executed.

SwitchA# show spanning-tree vlan 10

VLAN10

Spanning tree status : Enabled Protocol: RPVST

Root ID

Priority : 4096 MAC-Address: 08:00:09:8a:14:fa

This bridge is the root

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Bridge ID Priority : 4096

MAC-Address: 08:00:09:8a:14:fa

Hello time(in seconds):2 Max Age(in seconds):20°

Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/1	Designated	Forwarding	20000	128	P2P • • •	1606	383	432	159
1/1/2	Alternate	Root-Inc	20000	128	P2P • • • •	1571	114	520	92
1/1/3	Designated	Forwarding	20000	128	P2P	1567	172	447	167

: 694 Number of topology changes

Last topology change occurred : 1 seconds ago

SwitchB# show spanning-tree vlan 10

VLAN10

Spanning tree status : Enabled Protocol: RPVST

Root ID Priority : 4096

MAC-Address: 08:00:09:8a:14:fa

Hello time(in seconds):2 Max Age(in seconds):20

Forward Delay(in seconds):15

Bridge ID Priority : 8192

MAC-Address: 08:00:09:12:8e:9e

Hello time(in seconds):2 Max Age(in seconds):20 Forward Delay(in seconds):15

Port	Role	State	Cost	Priority	Type	BPDU-Tx	BPDU-Rx	TCN-Tx	TCN-Rx
1/1/1	Designated	Learning	20000	128	P2P	1127	551	608	125
1/1/2	Root	Forwarding	20000	128	P2P	1865	354	569	187
1/1/3	Alternate	Root-Inc	20000	128	P2P	1717	479	627	88

: 763 Number of topology changes

Last topology change occurred : 2 seconds ago

End of lab

Appendix - Complete Configurations

- If you face issues during your lab, you can verify your configs with the configs listed in this section
- If configs are the same, try powering off/powering on the switches to reboot them

Switch A

```
hostname SwitchA
!
ssh server vrf mgmt
vlan 1,10-11,20-21
spanning-tree mode rpvst
spanning-tree
spanning-tree vlan 10,11,20,21
spanning-tree vlan 10 priority 1
spanning-tree vlan 11 priority 1
spanning-tree vlan 20 priority 2
spanning-tree vlan 21 priority 2
interface mgmt
    no shutdown
    ip dhcp
interface 1/1/1
   no shutdown
   no routing
   vlan trunk native 1
    vlan trunk allowed all
interface 1/1/2
   no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
    spanning-tree root-guard
interface 1/1/3
   no shutdown
   no routing
    vlan trunk native 1
    vlan trunk allowed all
https-server vrf mgmt
```

Switch B

```
hostname SwitchB
ssh server vrf mgmt
vlan 1,10-11,20-21
spanning-tree mode rpvst
spanning-tree
spanning-tree vlan 10,11,20,21
spanning-tree vlan 10 priority 2
spanning-tree vlan 11 priority 2
spanning-tree vlan 20 priority 1
spanning-tree vlan 21 priority 1
interface mgmt
   no shutdown
    ip dhcp
interface 1/1/1
   no shutdown
   no routing
    vlan trunk native 1
    vlan trunk allowed all
interface 1/1/2
    no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
interface 1/1/3
   no shutdown
   no routing
    vlan trunk native 1
    vlan trunk allowed all
    spanning-tree root-guard
```

```
! https-server vrf mgmt
```

Switch C

```
hostname SwitchC
ssh server vrf mgmt
vlan 1,10-11,20-21
spanning-tree mode rpvst
spanning-tree
spanning-tree vlan 10,11,20,21
spanning-tree vlan 10 priority 0
interface mgmt
   no shutdown
   ip dhcp
interface 1/1/2
   no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
    spanning-tree vlan 10 cost 20000
interface 1/1/3
    no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
interface 1/1/9
    no shutdown
    no routing
    vlan access 10
    spanning-tree port-type admin-edge
https-server vrf mgmt
```

Switch D

```
hostname SwitchD
ssh server vrf mgmt
vlan 1,10-11,20-21
spanning-tree mode rpvst
spanning-tree
spanning-tree vlan 10,11,20,21
interface mgmt
    no shutdown
    ip dhcp
interface 1/1/2
   no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
interface 1/1/3
   no shutdown
    no routing
    vlan trunk native 1
    vlan trunk allowed all
   spanning-tree vlan 10 cost 40001
interface 1/1/8
   no shutdown
    no routing
    vlan access 10
    spanning-tree bpdu-guard
!
```

https-server vrf mgmt

Switch X

```
hostname SwitchX
!
!
ssh server vrf mgmt
vlan 1
spanning-tree
interface mgmt
no shutdown
ip dhcp
interface 1/1/8
no shutdown
no routing
vlan access 1
!
!
https-server vrf mgmt
```