# Best Practices for Aruba 7200 WLAN Controllers: Mitigating 'FAIR' Signal Conditions and Improving User Experience

#### Antonio Pérez

August 22, 2025

#### Abstract

This paper compiles a comprehensive set of best practices for Aruba 7200 WLAN controllers managing AP 500 and AP 600 series. It integrates vendor recommendations with academic RF design principles and field-proven adjustments. The core objective is to reduce the proportion of clients in a "FAIR" signal state by optimizing radio parameters, leveraging advanced roaming protocols, and implementing robust QoS mechanisms. Key highlights include dynamic transmit power tuning, proactive cell-size reduction, advanced ARM profile enhancements, and the strategic use of 802.11k/v/r and Agile Multiband (MBO). These practices maximize spectral efficiency, minimize latency, and ensure reliable service for real-time applications such as VoWiFi and video conferencing, ultimately leading to a superior and more stable user experience.

#### Contents

| 1        | Radio and Spectrum Optimization                      | 2 |
|----------|------------------------------------------------------|---|
|          | 1.1 Transmit Power and Cell-Size Reduction           | 2 |
|          | 1.2 Reception Sensitivity and Data Rates             | 2 |
| <b>2</b> | Adaptive Radio Management (ARM) Profile Enhancements | 2 |
|          | 2.1 Proactive Optimization                           | 2 |
| 3        | WLAN and Intelligent Roaming Protocols               | 3 |
|          | 3.1 Band Steering and MBO                            | 3 |
|          | 3.2 Fast Roaming                                     | 3 |
| 4        | Quality of Service (QoS)                             | 3 |
|          | 4.1 DSCP and WMM Mapping                             | 3 |
| 5        | Security and Management                              | 4 |
|          | 5.1 Security Posture                                 | 4 |
|          | 5.2 Monitoring and Control                           | 4 |
| 6        | Conclusion                                           | 1 |

### 1 Radio and Spectrum Optimization

#### 1.1 Transmit Power and Cell-Size Reduction

Effective transmit power management is crucial for mitigating Co-Channel Interference (CCI) and enhancing **spatial reuse**. A common misconception is that higher power levels improve coverage; in dense environments, this only degrades the overall Signal-to-Noise Ratio (SNR).

- Dynamic Transmit Power: Configure a constrained range of 9–15 dBm for 2.4 GHz and 15–21 dBm for 5/6 GHz. This promotes smaller, more efficient cells.
- Cell-Size Reduction (CSR): Use the \*\*'cell-size-reduction'\*\* parameter. Setting this to a value like 3 dB actively adjusts the RSSI threshold in the beacon frames. This mechanism discourages distant clients from associating with a suboptimal AP, proactively forcing them to seek a closer, stronger signal.

#### 1.2 Reception Sensitivity and Data Rates

- Rx-Sensitivity-Threshold: A critical Association Control mechanism. Set the threshold to a value such as 75 (equivalent to -75 dBm). This ensures that the AP only accepts clients with a robust link quality, thereby freeing up valuable airtime from low-quality retransmissions.
- **Disable Low Data Rates:** To improve overall spectral efficiency, disable legacy data rates (e.g., 1, 2, 5.5, 11 Mbps on 2.4 GHz and 6 Mbps on 5/6 GHz). This forces clients to connect at higher data rates, which require a better SNR, and reduces the time each frame occupies the air.

### 2 Adaptive Radio Management (ARM) Profile Enhancements

ARM must be configured as a proactive RF optimization engine, not just a reactive one.

#### 2.1 Proactive Optimization

- Channel Quality Aware ARM: ON: This is a cornerstone for mitigating "FAIR" conditions. ARM evaluates channels based on L2 metrics like **Packet Loss Rate** and **SNR**, not just RSSI. This enables smarter channel changes, moving APs away from sources of intermittent interference that degrade performance.
- Interfering AP Weight: 50%: In high-density environments, this higher weight makes ARM more sensitive to CCI, leading to more aggressive channel adjustments to balance interference loads.
- Rogue AP Aware: ON: This feature helps ARM respond to external sources of interference that could degrade signal quality.

2

### 3 WLAN and Intelligent Roaming Protocols

Optimizing user experience beyond the physical layer requires seamless and intelligent mobility.

#### 3.1 Band Steering and MBO

- Band Steering: Prefer 5 GHz (and 6 GHz for AP 600): This leverages the wider, less congested spectrum available in the 5/6 GHz bands, reducing the likelihood of "FAIR" conditions caused by 2.4 GHz congestion.
- Agile Multiband (MBO): Enabled: MBO is a key extension of 802.11k/v that allows MBO-capable clients (e.g., mobile devices, IoT) to obtain richer network information, enabling them to make more intelligent roaming decisions and transition proactively to a less congested AP or band.

#### 3.2 Fast Roaming

- Fast Roaming: 802.11k/v/r: This trio of standards is essential for seamless mobility for latency-sensitive applications.
  - 802.11k (Neighbor Report): The AP provides the client with a list of neighboring
    APs and their channel usage, reducing the need for costly active scanning.
  - 802.11v (BSS Transition Management): Allows the AP to suggest a client move to a more optimal AP, aiding in network load balancing.
  - 802.11r (Fast BSS Transition): Reduces the re-association and re-authentication time from milliseconds to microseconds by using Opportunistic Key Caching (OKC). This is what makes roaming truly "seamless" for applications like VoWiFi.

## 4 Quality of Service (QoS)

Prioritizing critical traffic is paramount to ensure performance, even in suboptimal signal conditions.

#### 4.1 DSCP and WMM Mapping

- DSCP-to-WMM Mapping: Map latency-sensitive traffic to the appropriate WMM Access Category (AC).
  - Voice (DSCP 46, EF)  $\rightarrow$  **AC\_VO** (Access Category for Voice).
  - Video (DSCP 34, AF41)  $\rightarrow$  **AC\_VI** (Access Category for Video).
- U-APSD (WMM Power Save): ON: This is an extension of WMM that allows VoWiFi clients to conserve battery by entering power-save mode while still receiving voice packets without delay.

3

### 5 Security and Management

### 5.1 Security Posture

- WPA3-Personal/Enterprise preferred: Use WPA3 wherever possible for enhanced security through Simultaneous Authentication of Equals (SAE) for personal networks and opportunistic key caching for enterprise.
- **Dynamic Segmentation**: Use role-based firewalling to apply different access policies for different user types (e.g., guests, IoT, employees), isolating potentially insecure devices.

#### 5.2 Monitoring and Control

- AirMatch (for Aruba Central): ON: This cloud-based service provides a more sophisticated approach to channel and power management across multiple APs, optimizing the entire network rather than individual APs.
- Centralized Syslog and SNMPv3: Essential for proactive monitoring and troubleshooting.

#### \_\_\_

### 6 Conclusion

By implementing these comprehensive recommendations, Aruba 7200 WLAN controllers with AP 500/600 series can achieve a significant reduction in clients operating in a "FAIR" signal state. This holistic approach—from optimizing the RF physical layer to leveraging intelligent mobility and QoS protocols—leads to a more robust, efficient, and reliable wireless network. The result is a demonstrable improvement in spectral efficiency and, most importantly, a superior user experience characterized by seamless roaming, low latency, and stable connectivity for all applications.

### Appendix: Best Practices Summary

| Domain     | Best Practice                                                                 |
|------------|-------------------------------------------------------------------------------|
| Radio      | Dynamic power ranges (9-15/15-21 dBm); Disable low data rates; Rx Sensitivity |
|            | =75                                                                           |
| Coverage   | Cell Size Reduction = 3 dB (2.4 GHz); Spatial Reuse Optimization              |
| ARM        | Mode Aware ON; Channel Quality Aware ON; Interfering AP Weight $=50\%$        |
| SSID       | Band Steering (5/6 GHz); MBO Enabled; 802.11k/v/r Enabled                     |
| QoS        | Voice=DSCP 46; Video=DSCP 34; U-APSD ON                                       |
| Security   | WPA3 Preferred; Dynamic Segmentation; No Open SSIDs                           |
| Management | AirMatch ON; SNMPv3 + Syslog; Centralized Spectrum Analysis                   |

Table 1: Consolidated Aruba 7200 WLAN best practices for AP 500/600 series.