Technical Report

MTU Synchronization and Jumbo Frame Control

This document has been prepared as part of the ongoing network standardization, monitoring, and optimization efforts for the multi-campus infrastructure at **St. Francis School**. It outlines the MTU validation strategy, end-to-end jumbo-frame control, and operational guidelines for ensuring consistency across Aruba 6400/6300/2930F switching platforms.

Author: Antonio Pérez

Network Engineer — St. Francis School September 2025

1. Objective

Correct performance degradation and streaming interruptions across the network (SonicWall NSSP 10700 + Cisco 9500 + Aruba 6400) caused by **MTU desynchronization** and improper use of **jumbo frames**.

2. Nomenclature

Symbol	Description	Final value
MTU	Maximum Transmission Unit	1500 bytes
MSS	Maximum Segment Size	1460 bytes (1500 - 40 IP/TCP headers)
PMTUD	Path MTU Discovery	ICMP-based discovery
Jumbo Frame	Extended Ethernet frame	9100 bytes (LAN/Storage only)

3. Theory

- MTU mismatches cause **fragmentation** and strong performance degradation (especially in UDP/QUIC).
- MSS clamping prevents TCP from sending segments larger than the effective MTU (MSS = 1460 B).
- Correct design: MTU 1500 B at the network edge; jumbo frames only where the entire path supports them.

4. Evidence

4.1 MTU Test

```
Windows:
ping 8.8.8.8 -f -1 1472 -> OK (1472 + 28 = 1500)

Linux:
ping -c 4 -M do -s 1472 8.8.8.8 -> OK
```

4.2 Speed Tests

Scenario	Before	After
VLAN 508 (users)	91 Mbps	650–760 Mbps
Direct public IP	900 Mbps	900 Mbps

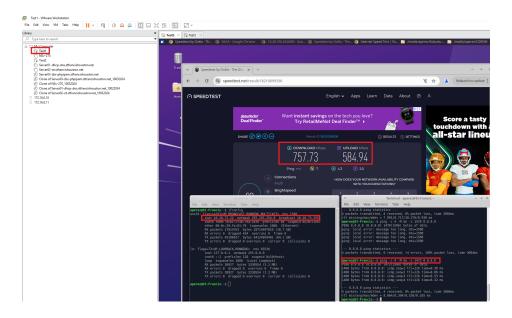


Figure 1: Speedtest behind UTM (VLAN 508).

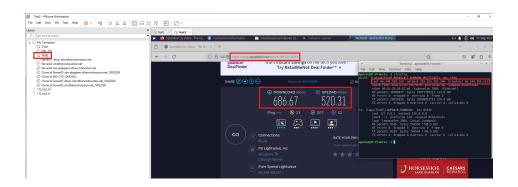


Figure 2: Direct speedtest with a public IP (VLAN 1015).

5. Applied Changes

5.1 SonicWall

Parameter	Value
MTU WAN (X26)	1500 bytes
Fragment packets (non-VPN)	OFF
TCP MSS (Enforce MSS)	1460 bytes
Jumbo Frames	OFF
Connection mode	DPI Optimized

Edit Interface - X26

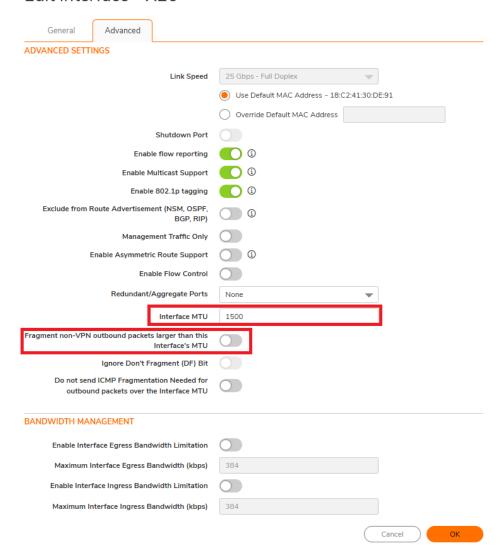


Figure 3: MTU on WAN interface.

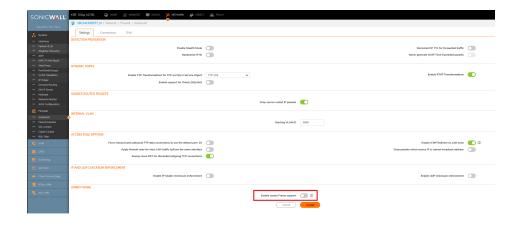


Figure 4: Jumbo Frames disabled.

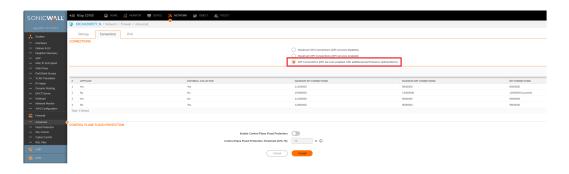


Figure 5: DPI-optimized connections.

5.2 Core (Aruba 6400) — Applied Lines

```
interface vlan 1
ip mtu 1500
interface vlan 500
ip mtu 1500
interface vlan 501
ip mtu 1500
...
interface vlan 530
ip mtu 1500
```

5.3 Cisco C9500

```
interface TwentyFiveGigE1/0/7
  switchport mode access
  mtu 1500

interface TwentyFiveGigE1/0/9
  switchport mode access
  mtu 1500
```

5.4 Aruba 2930F — AP (bridge mode) and MTU on VLAN 506

Note: Client traffic is **bridged** on the APs; $AP \leftrightarrow 7220$ control-plane and management use **VLAN 506**.

5.4.1 Justification (why MTU must be modified here)

Problem: With jumbo enabled on access switches, if any hop or endpoint does not support >1500 B, the AP control-plane and multicast flows suffer **fragmentation/drops**. In Wi-Fi, clients operate at **MTU 1500**; any fragmentation severely impacts **multicast** (retransmissions, basic rates).

Solution: Enforce **MTU** 1500 only on **VLAN** 506 (AP management) on the 2930F switches and on the **SVI** 506 on the 6400. Keep jumbo only where true end-to-end support exists (servers/storage).

5.4.2 Recommended Changes

```
On 2930F (all access switches):

configure terminal
vlan 506
no jumbo
write memory

On Aruba 6400 (SVI for VLAN 506):

conf t
interface vlan 506
ip mtu 1500
exit
write memory
```

5.4.3 Validation (PMTUD and multicast flow)

```
PMTUD (target: success with 1472 = 1500 - 28):

Windows: ping <AP_IP> -f -1 1472

Linux: ping -c 4 -M do -s 1472 <AP_IP>

IGMP Snooping (only interested ports receive multicast):

2930F: show igmp-snooping vlan 506
6400: show ip igmp interface vlan 506
show ip igmp groups vlan 506
```

5.4.4 WLAN Optimization (7220) for multicast in bridge mode

```
For every performance-sensitive SSID (not IoT):

(config) # wlan ssid-profile <SSID>
broadcast-filter arp
dynamic-mcast-optimization
dynamic-mcast-optimization-thresh 6
g-basic-rates 12
a-basic-rates 12
AirGroup/mDNS: enable only on SSIDs that require it; disable on Student/Guest if unused.
```

5.4.5 Jumbo Frame Usage Criteria (what NOT to change)

Scope	Recommended MTU	Reason
VLAN 506 (AP management)	1500 (no jumbo)	Avoid fragmentation in AP \leftrightarrow 7220 control-plane; reduces multicast penalties.
User VLAN SVIs (6400)	1500	Wi-Fi clients use 1500; ensures E2E without fragmentation.
Server/backup/replication links	Jumbo (E2E only)	Beneficial for heavy data transfers if all end- points support jumbo.
Other access VLANs	1500 (or jumbo if E2E)	$1500~\rm preferred$ unless jumbo offers measurable benefit.

6. Results

Figure 6: UTM reaching 721 Mbps peaks with aligned MTU/MSS.

7. Conclusion

Root cause: MTU desynchronization (LAN with 9100-B jumbo frames vs. edge at 1500 B).

Solution: MTU standardized to 1500 B on LAN and WAN; fragmentation disabled at the

edge; MSS = 1460 B enforced.

Effect: Stable throughput (>650 Mbps on user VLANs) and uninterrupted streaming.