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Preface

This book contains material used in an advanced undergraduate astronomy
course on stellar structure and stellar evolution that I teach regularly at the
University of Tennessee. The goal of the course and of the book is to
provide an introduction that is topically current and accessible to a reader
with some physics but minimal astrophysics background.

Specifically, the reader is expected to have physics experience
commensurate with that of a third or fourth year US undergraduate physics
major, and to be familiar with the material typically covered in an
introductory descriptive course in astronomy. The first two chapters are a
concise review of introductory concepts in astronomy, so this latter
requirement is useful but not essential for the diligent.

I don’t assume any special knowledge of nuclear, atomic, or elementary
particle physics beyond that usually covered in introductory physics
courses. Likewise, I assume that readers are conversant with special
relativity, general relativity, and quantum mechanics only at the level
typically covered in first or second year university introductions to modern
physics. Mathematically I assume the reader to be familiar with basic
algebra, geometry, calculus, and differential equations. I strongly encourage
the use of programming tools such as MatLab, Mathematica, or Maple, or
more formal programming languages like C/C++ or Java where appropriate
in solving problems. However, none of these tools is essential for working
the problems.

To aid in comprehension, many worked examples and boxes containing
supplementary information are scattered throughout each chapter. These
show how to solve problems and serve to set the subject matter in context
by providing a broader perspective. A total of 240 problems of varying
complexity and difficulty may be found at the ends of the chapters, each
chosen to illustrate important points, fill in details, or prove assertions made
in the text. The solutions for all 240 problems are available from the



publisher at www.cambridge.org/GuidryStars as PDF files in typeset book
format for instructors, and a subset of 101 problem solutions is available to
students from the publisher in the same format. Those problems with
solutions available to students are marked by *** at the end of the problem.

Many articles referenced in this book are published in journals with
limited free public access. To help ensure broad availability to these
references for readers who may not have easy access to these journals, I
have included where possible for journal articles information allowing free
access through the preprint server arXiv or the ADS Astronomy Abstract
Service. More details may be found at the beginning of the Bibliography in
Ref. [1] and instructions for using arXiv and ADS may be found in
Appendix G.

Any book dealing with astrophysics at an intermediate level must grapple
with the issue of units. One is encouraged to standardize units and in
introductory astronomy it makes sense to use the SI (MKS) system of units.
However, professionals in the field routinely employ the CGS (centimeter-
gram-second) system and more specialized units that are defined such that
fundamental constants like the speed of light, gravitational constant,
Planck’s constant, or Boltzmann constant take the value of one. Since one
of the purposes of the present material is to encourage students to use and
explore the relevant literature, I have adopted a policy of generally using
the CGS system or natural units.

Let me comment on use of this material in teaching courses, based on my
experience teaching it for a number of years to senior-level undergraduates
and beginning graduate students. As noted above the first two chapters are
intended to be a review of introductory astronomy. I generally do not cover
this material in class, but assign it as reading and require the students to do
about 15 problems from these chapters in the first week or so of class to
ensure that everyone is up to speed on introductory astronomy. (I usually
have students taking the class who have not had introductory astronomy;
this material permits them to catch up on the essentials.)

This leaves 20 chapters. That is too much to cover in depth for a one-
semester course, leaving two choices: (1) cover all the material, but assign
some as reading and homework only, or (2) cover a select set of topics in
more depth. Which topics to emphasize is a clearly a matter of personal
choice. If one desires to teach a more traditional course, then topics like
neutrino oscillations and the MSW resonance, gamma-ray bursts, black
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holes, gravitational waves, supernovae, and accretion can be omitted, or
treated in much more cursory fashion than in the book chapters. However, I
have found from experience that these are precisely the chapters that most
excite my students!

Therefore, I submit that the most effective and imaginative use of the
material in this book for teaching is to build a course on it that broadens the
appeal of stellar structure and evolution to a new set of students beyond the
traditional astronomy/astrophysics majors. Most of those condensed matter,
materials science, nuclear physics, particle physics, computer science, Earth
and planetary science, chemistry, and mathematics majors will not be
overly excited about stars as heat engines, but they can be attracted by a
meaningful discussion of some of the most exciting topics in all of
contemporary science: black holes, gravitational waves, neutrino
oscillations, supernovae, and gamma-ray bursts, set within the context of a
modern view of stellar evolution. For those wishing to teach from this book,
several additional resources are available from the publisher for instructors
and for students:

1. Instructor Solutions Manual for Stars and Stellar Processes, which is
a PDF file typeset in the format of the book that presents the solutions
for all 240 problems at the ends of chapters. This manual is available
only to instructors.

2. Student Solutions Manual for Stars and Stellar Processes, which is a
PDF file typeset in the format of the book that contains the solutions
for a subset of 101 of the 240 problems at the ends of chapters. This
manual is available to students and instructors. As noted above, the
problems contained in this solutions manual for students are marked
by *** at the end of the problem in the text.

3. Stars and Stellar Processes in Lecture Notes, which is a PDF file, one
for each chapter of the book, that presents a synopsis appropriate for
projection and presentation of the essential material in each chapter.
Individual slides are organized in a presentation format suitable for
teaching with text formatted in larger fonts and in color. These are the
slides that I use myself when teaching this material.

We conclude this list by noting that the inclusion of DOI or arXiv
numbers for all journal references–which allows easy browser access



through arXiv and ADS for most articles (see Appendix G)–may be viewed
as an additional resource permitting creative literature-based projects to be
assigned with minimal bother, if an instructor is so-inclined.

Finally, I would like to extend my thanks to the many students and
colleagues whose questions and comments sharpened this presentation, to
Nicholas Gibbons, Ilaria Tassistro, Jon Billam, and Dominic Stock at
Cambridge University Press for all their help in shepherding this book to
publication, and especially to my wife Jo Ann for her patience and support
over many years.



PART I

STELLAR STRUCTURE



1

Some Properties of Stars

The fundamental building blocks of visible matter in the Universe are
stars.1 This chapter will discuss some of the basic properties of stars such as
luminosity, radius, mass, color, and temperature as a prelude to a more
detailed exploration of their structure and evolution. Let’s begin with a
discussion of their most obvious characteristic: that they are visible in our
sky, and that even casual observation indicates that there is a substantial
variation in brightness between different stars.

1.1 Luminosities and Magnitudes
The apparent brightness of a star is a combination of an intrinsic brightness,
which is related to the internal structure of the star, and the effect of
distance, since the intensity falls off as the square of the distance. To make
much headway in understanding stars these two factors must be separated.
This requires a direct or indirect measurement of the distance to the star, or
comparison of stars that are known to be at equivalent distances (even if the
distance itself is not known). Measuring the distance to stars is difficult and
can be accomplished directly only for more nearby stars. The effect of the
distance scale can be factored out if stars are compared that are members of
physical (gravitationally bound) groupings called clusters, which come in
two types: open or galactic clusters containing tens to hundreds of stars that
are found preferentially in the plane of the galaxy, and globular clusters
containing as many as hundreds of thousands of stars that are found
preferentially in the galactic halo. Comparison of stars in a cluster makes it
certain that they lie at almost the same distance. From the variation in
brightness for stars in clusters, it is found that stellar luminosities L vary
over some 10 orders of magnitude, 10−4L⊙ < L < 106L⊙, where L⊙
represents the luminosity of the Sun.



1.1.1 Stellar Luminosities
A flux is defined to be the amount of energy crossing a unit surface area per
unit time. The luminosity L of a star is the power required to sustain the
total energy flux across a closed surface surrounding the star. It has units of
energy per unit time and is a sum of three primary components, L = Lγ + lν
+ LΔm, which are associated with emission of photons, emission of
neutrinos, and surface mass loss, respectively.

Photon emission: The total luminosity associated with the photon flux is
Lγ . This flux is emitted primarily from the thin photosphere at the surface
of the star; it is the principal luminosity source for most young stars, and is
most often what is meant when speaking loosely of stellar luminosity.

Neutrino emission: The quantity Lν is the total luminosity associated with
neutrino emission from the star. Cooling by neutrino emission becomes
important in massive stars late in their life and the energy of a core collapse
supernova, which represents the death of a massive star, is radiated
primarily in the form of neutrinos.

Surface mass loss: Most stars have mechanisms by which they lose mass
from their surfaces (see Box 1.1). Since ejected matter must be lifted in a
gravitational field, mass loss subtracts from the energy budget of the star
and is a source of luminosity according to our general definition. The term
LΔm accounts for this source.

Box 1.1 Ejection of Mass by Stars

The presence of the solar wind in our own Solar System suggests that all
stars lose at least some mass continuously. However, many stars appear
to have periods of very large mass loss early in their lives (T Tauri
winds from stars just settling to the main sequence and strong mass
flows from young, massive main sequence stars) and late in their lives
(red giant winds, planetary nebula, and related phenomena). In addition,
explosions such as novae and supernovae associated with dead and
dying stars eject mass into interstellar space, sometimes in large
amounts.

Systematics of white dwarf populations give generic observational
evidence that prior to the white dwarf stage many stars must undergo



substantial mass loss [176]. In the solar neighborhood white dwarfs with
accurately determined masses ∼ 0.4M⊙ are found. Since the study of
stellar evolution in clusters indicates that there has been insufficient
time for stars formed with that little mass to have evolved to the white
dwarf stage, these white dwarfs must have come from main sequence
stars that have shed considerable mass since their formation. In addition,
direct observation indicates the presence of white dwarfs in some
clusters with masses less than the main sequence stars in the cluster,
again indicating that they must have evolved from stars that underwent
considerable mass loss in their evolution.

1.1.2 Photon Luminosities
Henceforth, unless otherwise specified, by “luminosity” we will mean the
photon luminosity. For a spherical star the luminosity is given by

(1.1)

where Fλ is the net outgoing energy flux at wavelength λ and R is the radius.
The corresponding flux fλ detected at the surface of the Earth is reduced
according to the inverse square law,

(1.2)

where r is the distance of the star from Earth. (Generally, the observed flux
at the surface of the Earth must be corrected for absorption in the
interstellar medium and in the Earth’s atmosphere; those corrections will be
discussed below.) Therefore, FλR2 = fλr2, and a measurement of fλr2 at all λ
determines FλR2 at all wavelengths and hence the photon luminosity Lγ
through Eq. (1.1). The most difficult part is likely to be the determination of
the distance r, unless the star is nearby so that trigonometric methods may
be used to measure the distance with confidence.

1.1.3 Apparent Magnitudes



It is useful to express actual and apparent brightness in terms of logarithmic
magnitude scales. Two general classes of magnitudes may be distinguished:
apparent magnitudes, which are associated with the apparent brightness of
objects in our sky, and absolute magnitudes, which define brightness with
the dependence on distance scales factored out. Apparent magnitudes will
be discussed in this section and absolute magnitudes will be discussed in
Section 1.1.5 below.

The apparent magnitude m is defined such that for two stars labeled 1 and
2 with observed fluxes f1 and f2, respectively,

(1.3)

where log means the base-10 logarithm2 and the normalization of the
magnitude scale is discussed in Box 1.2. This definition implies that a
difference of five orders of magnitude corresponds exactly to a factor of
100 in brightness, and that algebraically smaller magnitudes are associated
with brighter objects. It is often useful to define a set of apparent
magnitudes that are restricted to a limited range of frequencies (for
example, by the use of telescopic filters; see Fig. 1.3 below). Some
common ones are

1. The visual magnitude mv, determined from the flux in the range of
frequencies to which the human eye is sensitive (peaking in the
yellow–green part of the spectrum).

2. The blue-sensitive magnitude mB, which is the magnitude determined
if the light is collected using a blue filter.

3. The photovisual magnitude mV, which is the magnitude determined if
the light is collected using a yellow filter to make the resulting
magnitude correspond more closely to the visual magnitude defined
above.

4. The ultraviolet magnitude mU, which is determined using filters to
emphasize the UV part of the spectrum.

Various other apparent magnitudes can be introduced by using other filters
that emphasize different parts of the spectrum but the ones described above



are common and representative. More will be said about such magnitudes
when color indices are discussed in Section 1.3.

Box 1.2 Normalization of Magnitude Scales

The definition of individual apparent magnitudes in Eq. (1.3) requires
setting the scale by an arbitrary choice. The scales for the magnitudes
mv and mV are set conventionally so that modern visual magnitude
scales coincide well with the subjective scales of ancient astronomy.
The convention in use employs the magnitudes of a set of stars to fix a
scale but practically it is such that a spectral class A0 star such as Vega
has visual magnitude zero (spectral classes are discussed in Chapter 2).
In the resulting scale, the brightest stars in the sky have apparent visual
or photovisual magnitudes near zero. A representative set of apparent
visual magnitudes for common objects is displayed in Table 1.1. The
magnitude zeros for other apparent magnitude scales are set by similar
conventions. For example, the blue-sensitive magnitude scale is defined
so that mB = mv for a spectral class A0 star.

Table 1.1 Some apparent visual magnitudes



The apparent magnitudes discussed above conflate intrinsic properties
(energy output) with geometric effects. It is desirable to factor out the
distance dependence to address issues of stellar structure. This is done
formally by introducing absolute magnitude scales, which will be defined
in the next section. Before doing that, it is convenient to introduce a unit
called the parsec that is a preferred unit of distance for astronomers.

1.1.4 The Parsec Distance Unit
The apparent relative positions of stars on the celestial sphere shift by small
amounts over a six-month period because of the parallax effect as the Earth
goes around its orbit. The angle p defined in Fig. 1.1, which is equal to half
the angular size of the Earth’s orbit as viewed from the star, is called the
parallax angle; it is related trigonometrically to the distance d to the star
through

(1.4)

where the astronomical unit AU is the average separation of the Earth and
Sun (the length of the Earth’s semimajor orbital axis; 1 AU ∼ 1.5 × 108 km).
A small-angle approximation is justified and p (radians) = 1AU/d.
Converting the angular measure to seconds of arc (1 degree = 3600 arcsec ≡
3600 ″ and 1 radian = 2.06 × 105 arcsec), permits writing

(1.5)

where the notation indicates that p is to be given in seconds of arc.



Fig. 1.1 The parallax angle p for a star as observed from Earth.

The relationship between parallax angle and distance given by Eq. (1.5)
suggests defining a natural distance unit equal to the distance at which a star
would have a parallax angle of 1″ . This unit is termed the parsec (from
concatenating “parallax” and “seconds”), and is abbreviated by the symbol
pc. With these units the distance in parsecs is just the inverse of the parallax
angle in seconds of arc:

(1.6)

From this equation the relationship of the parsec to other common distance
units is easily found. For example,

where a lightyear (ly) is the distance light travels in a year. Parallax angles
for even the nearest stars are tiny, as illustrated in Example 1.1.

Example 1.1 The nearby star α Centauri has a measured parallax of 0.742 ″
[2], corresponding to a distance of d = 1/0.742 = 1.348 pc, or 4.4 ly. To set
this parallax angle in perspective, 1″ is the angle subtended by a 2-cm
diameter coin at a distance of 4 km.

Parallax angles can be measured reliably down to about 0.01 ″ for ground-
based telescopes without adaptive optics, so the traditional parallax method
is useful for distance measurements out to about 100 pc (though the
uncertainty becomes substantial for larger distances). Observations with the
Hipparcos satellite could measure a parallax of 0.001 ″ and extended the
parallax range to about 1000 pc, allowing determination of high-precision
parallaxes for more than 100,000 new stars (and 2.5 million additional stars
at low precision). More recently the European Space Agency Gaia mission
was launched in 2013 with a goal of mapping precisely the position,
brightness, and variations in brightness, color, velocities, and evidence for a
companion for more than 109 stars by 2018, including parallax
measurements for more than 200 million new stars. To enable this it has the



capability to measure parallax angles as small as 5×10−6 arcseconds (the
angle subtended by a thumbnail on the Moon as viewed from Earth).
Beyond these distances, other less-direct methods must be employed.

1.1.5 Absolute Magnitudes
By convention, the absolute magnitude, denoted by M to distinguish it from
the apparent magnitude m, is the apparent magnitude that a star would have
if it were placed at a standard distance of 10 pc = 32.6 ly. Using previous
expressions for the apparent magnitude, it is then easy to show (Problem
1.3) that the absolute and apparent magnitudes are related by

(1.7)

where the quantity m − M is termed the distance modulus. Thus, the
absolute magnitude is the apparent magnitude minus the distance modulus,
and is easily calculated from (1.7) if the distance d to the star is known.

1.1.6 Bolometric Magnitudes
The bolometric magnitude is the magnitude that a star would have if the
detector could collect the entire spectrum of emitted radiant energy.
Realistic detectors cannot do this because of inherent detector limitations
and losses in the atmosphere and interstellar medium, so it is necessary to
apply a bolometric correction to raw magnitudes; this correction is designed
to add back flux that is absorbed in the atmosphere or otherwise not
detected. Then the absolute bolometric magnitude is

(1.8)

where BC is the bolometric correction. (Note: Some authors define instead
Mbol = Mv − BC, so be mindful of the sign for BC.) The bolometric
correction is large for very hot and very cool stars because they output a
substantial portion of their radiation at UV and IR wavelengths,
respectively, and these wavelengths are absorbed strongly in the



atmosphere. Even above the atmosphere there may be significant
corrections for absorption in the interstellar medium.

Example 1.2 Because the Sun emits small amounts of UV and IR radiation
relative to visible light, its bolometric correction is small. The Sun has an
absolute bolometric magnitude of  corresponding to a
luminosity of L⊙ = 3.828 × 1033 erg s−1 (this luminosity will be estimated
from observations below).

For calculations we often find it convenient to write for an arbitrary star

(1.9)

which corresponds to expressing the absolute bolometric magnitude Mbol
and luminosity L for an arbitrary star in units of the corresponding
quantities for the Sun.

1.2 Stars as Blackbody Radiators
A temperature can be defined for an object that is in thermodynamical
equilibrium. In particular, we may introduce a temperature self-consistently
for a star if it is a blackbody radiator. Stars are often assumed to be
blackbody radiators. They generally are not perfectly so, but this is a
sufficiently good approximation to be a very useful starting point.

1.2.1 Radiation Laws
A blackbody radiator has a radiation field that is isotropic, homogeneous,
randomly polarized, and independent of the walls of the container. If a body
satisfies these conditions, several important radiation laws apply.

Planck law: The Planck radiation law defines the intensity of emitted
radiation for a blackbody. The Planck function Bλ(T ) giving the power
emitted per unit surface area of a blackbody per unit wavelength into unit
solid angle is given by



(1.10)

where λ is the wavelength, T is the temperature, h is Planck’s constant, c is
the speed of light, and k is Boltzmann’s constant. Blackbody spectra for
several temperatures are illustrated in Fig. 1.2, where the total area under
the curve is seen to grow rapidly with temperature and the distribution
exhibits a single peak that shifts to shorter wavelengths as the temperature
increases. Two other important laws governing this behavior may be
derived from the Planck law, the Stefan–Boltzmann law and the Wien
displacement law (see Example 1.3 and Problem 1.4). The first governs the
total energy radiated at all wavelengths and the second governs the
wavelength at which the peak intensity is emitted.

Fig. 1.2 Planck distribution for several temperatures.

Stefan–Boltzmann law: The law of Stefan and Boltzmann says that the
total energy E radiated per unit time per unit surface area at all wavelengths
varies as the fourth power of the temperature,



(1.11)

where a is the radiation density constant and σ is the Stefan–Boltzmann
constant. Multiplication by the surface area then gives the luminosity. Thus
for a spherical blackbody L = 4πR2σT 4, where R is the radius.

Wien law: The Wien displacement law states that for a blackbody radiator
the maximum in the radiation distribution as a function of wavelength
occurs at

(1.12)

where 1 angstrom (Å) = 10−8 cm. The Stefan–Boltzmann law explains the
increase in total luminosity with temperature seen in Fig. 1.2, while the
Wien law accounts for the shift of these distributions to shorter wavelengths
as the temperature increases.

Example 1.3 The Stefan–Boltzmann and Wien laws follow from the more
general Planck law. We may illustrate by outlining the derivation of the
Stefan–Boltzmann law (you are asked to provide the details in Problem
1.4). The total energy flux emitted by a blackbody at temperature T can be
expressed as an integral over Eq. (1.10), and using the substitutions

the integral can be evaluated to give the Stefan–Boltzmann law, E = σ T 4,
where σ is the Stefan–Boltzmann constant.

The Wien law results from differentiating Eq. (1.10) to find the maximum,
as you are asked to show in Problem 1.13.

1.2.2 Effective Temperatures
If a star is assumed to be a blackbody radiator, we may use the Stefan–
Boltzmann law to define an effective surface temperature Te through the



relation

(1.13)

That is, the effective temperature Te is the temperature that a perfect
blackbody of radius R would need in order to radiate the observed
luminosity of the star. This is an integral condition that requires the total
luminosity of the star and the fictitious blackbody that approximates it to be
equivalent, but does not constrain whether the detailed wavelength
distribution of emitted radiation for the star and the fictitious blackbody are
equivalent. Box 1.3 illustrates the use of Eq. (1.13) to determine an
effective temperature for the Sun.

Box 1.3 Luminosity and Effective Temperature of the Sun

The preceding discussion may be illustrated by determining the surface
flux, total luminosity, and effective surface temperature of the Sun – a
star for which the required quantities are known rather well. The total
radiant flux of the Sun on our upper atmosphere (the solar constant) has
a value of 1.36× 106 erg cm−2s−1, and the Sun subtends an average angle
of 32 minutes of arc in our sky at an average distance of 1 AU ∼ 1.496 ×
108 km. Then from geometry the radius of the Sun is given by

and if the distance to the Sun is r, the flux at the solar surface is related
to the flux on our upper atmosphere by the inverse square intensity law,

The total solar luminosity follows from integrating this flux over the
surface area of the Sun,



and this allows an effective surface temperature for the Sun to be
calculated as

A more careful analysis yields the standard value of 
Using this temperature in the Wien law (1.12) indicates that the Sun’s
spectrum peaks at about 5020 Å, which is the yellow–green part of the
spectrum. More generally, R is known for only a few nearby bright stars;
for others, R must be estimated in some model-dependent way, and an
estimate of the distance to the star is required in order to determine the
luminosity.

1.2.3 Stellar Radii from Effective Temperatures
The (limited) direct ways available to determine the physical sizes of stars
will be discussed later in this chapter. However, if a star of known
luminosity is assumed to be a spherical blackbody and the effective
temperature Te is estimated from the spectrum (see Chapter 2), Eq. (1.13)
can be used to solve for a radius. For calculations, it is often useful to relate
the radius R and effective temperature Te of a star to corresponding
quantities for the Sun through

(1.14)

where  and L⊙ = 3.828 × 1033 erg s−1 (see Box 1.3). Of
course, radii determined in this way are effective radii that are only
approximations to physical radii since real stars are not perfect blackbodies.
Nevertheless, in many cases this may be expected to yield a rather good
estimate of the true radius of the star.



1.3 Color Indices
As noted in Section 1.1.3, magnitudes associated with specific wavelength
regions of the electromagnetic spectrum may be defined. This is typically
accomplished by using filters that allow light in only a range of
wavelengths to pass. Three common filters are illustrated in Fig. 1.3; these
filters are termed ultraviolet (U), blue (B), and photovisual (V) because of
the wavelength regions that they emphasize. Then quantities called color
indices (CI) may be defined by taking the difference of the apparent
magnitudes in these localized regions of the spectrum. For the filters
illustrated in Fig. 1.3 there are three possible independent combinations,
conventionally taken to be

(1.15)

where we let the symbols (U, V , B) stand for the apparent magnitudes. For
example,

(1.16)

where Fλ is the monochromatic flux at wavelength λ, the functions  and 
 encode the full response of the detectors and filters as a function of

wavelength, and the constant is set by convention. These continuous color
indices are indicators of the surface temperature for stars, as suggested in
Figs. 1.2 and 1.4, because they indicate the slope of the blackbody radiation
distribution over a range of wavelengths, which is related to the surface
temperature.



Fig. 1.3 Some common wavelength filters used in astronomical spectroscopy. Each filter has an
acceptance width of about 1000 Å. The V filter acceptance is similar to that of the human eye but the
U and B filters emphasize much shorter wavelengths.

Fig. 1.4 Blackbody intensity distributions for three stars having different surface temperatures.
Unlike for Fig. 1.2, each distribution has been normalized to unity at its peak. In reality, the area
under the curve for Spica would be 2094 times larger than for Antares, by virtue of Eq. (1.11).

Example 1.4 Consider the hot star Spica, with a radiation distribution
illustrated in Fig. 1.4. For Spica U = −0.20, B = 0.74, and V = 0.97 [2]. The
corresponding B − V and U − B color indices are



The negative signs of the color indices in this case are an indication that
Spica is a very hot star, as is apparent from Fig. 1.4 and the Wien law. On
the other hand, for the star Antares B = 2.75 and V = 0.91 [2], giving a B −
V color index of

The positive value of the color index in this case is an indication that
Antares is a cool star, as is also apparent from Fig. 1.4 and the Wien law.

1.4 Masses and Physical Radii of Stars
In considering the essential properties of a star, certainly the radius and total
mass are quantities of fundamental interest. However, it is very difficult to
determine either of these quantities and they are known directly for only a
small subset of stars. There are three ways in which the radius of a star can
be determined:

1. Measure the angular size and the distance of the star and use
trigonometry to deduce the radius, as was done in Box 1.3.

2. For binary star systems in which one star eclipses another, occultation
methods (based on timing of the duration of the eclipse) may be used
to determine a size.

3. If the distance to the star is known, the blackbody luminosity relations
may be used to infer the radius from the observed distribution in
wavelength. This is less direct than the preceding two methods and
yields only approximate radii.

Determining the mass for most stars is also problematic. Generally we can
determine a mass by pushing something (inertial mass) or by watching the
gravitational interaction with another object (gravitational mass).3 Since
there are no methods at our disposal to push stars, the second method is the
only feasible one. Typically, the only reliable way to determine stellar
masses is to observe the interactions in a binary star system, and even then
only in particularly favorable cases can the masses be determined reliably.



1.5 Binary Star Systems
From our parochial perch in the Solar System it is easy to conclude that
single stars like our Sun are the norm in the Universe. However, most
heavier stars, and a significant fraction of all stars, appear to be parts of
multiple star systems; most common among those are binary systems, in
which two stars orbit around the common center of mass for the system.
Figure 1.5 shows the binary system Castor, which was deduced by Herschel
to be binary in the 1790s. This is an example of a visual binary, where both
stars can be seen from Earth. If only one of the stars can be seen, it is often
possible to infer that a star has an unseen companion through the influence
of the orbiting companion on the star’s proper motion, as illustrated in Fig.
1.6(a). If the translational (proper) motion of the binary system is subtracted
out, the projection of the orbital motion is recovered, as shown in Fig.
1.6(b).

Fig. 1.5 The visual binary Castor, the first binary star system discovered. Numbers give the year of
observation. The orbit coordinate system is that illustrated in Fig. 1.9(b).



Fig. 1.6 (a) Perturbation of proper motion on the celestial sphere for Sirius A caused by companion
star Sirius B from 1910 through 1990. (b) Apparent orbits (projection of true orbit on the celestial
sphere) of the Sirius binary system with relative locations of the two stars in 1990. Orbits are to scale
but the sizes of the stars are not.

1.5.1 Motion of Binary Systems
The schematic geometry of a binary system is illustrated in Fig. 1.7. The
orbits are ellipses in the most general case and each star revolves around the
center of mass for the binary, with the separation between the star and
center of mass given by r. From the definition of the center of mass

(1.17)

where Mi denotes the mass of star i and ri is its distance from the center of
mass. Equilibration of the gravitational and centrifugal forces assuming
circular orbits requires

(1.18)

where ω1 = ω2 ≡ ω is the angular velocity and G is the gravitational
constant. This can be shown to imply Kepler’s third law (see Problem 1.7):

(1.19)



where P is the orbital period, which must be the same for the two stars to
preserve the center of mass. This derivation assumed circular orbits but the
same results hold for elliptical orbits, provided that the orbital radii for the
circular case are replaced by the lengths of the semimajor axes for the
elliptical motion of the two stars around the center of mass for the system.
Therefore, the most general form of Kepler’s third law is

(1.20)

where a1 is the length of the semimajor axis (half the long axis of the
ellipse) for the orbit of star 1 about the center of mass and a2 is the
corresponding quantity for the second star. As shown in Box 1.4, this
equation simplifies for typical applications in the Solar System if
appropriate units are chosen and one of the masses is small compared with
the other.

Fig. 1.7 True orbits for binary star systems.

Box 1.4 Reduction to Simplified Form of Kepler’s Third Law

In the Solar System the mass of a planet is small relative to the Sun and
Eq. (1.20) can be simplified. As shown in Problem 1.8, the factor 4π2/G
is numerically equal to unity if units are chosen such that distance is
measured in astronomical units, time in Earth years, and mass in solar



masses. Then if the mass of the planet is neglected relative to that of the
Sun, the familiar P2 = a3 proposed by Kepler for planetary motion is
obtained. However, in binary star systems the masses of the two stars
are often comparable and the effect of the center of mass implies a large
modification for this original simple form of the third law proposed by
Kepler.

Thus, if a1, a2, and the period P can be measured, we may use Eq. (1.20)
to deduce the total mass M1 + M2 and then use Eq. (1.17) to determine the
masses of the individual components. Although valid in principle, there are
some basic difficulties with implementing this in practice:

1. The distance to most binary systems is too large to permit separating
the binary pair images observationally.

2. Even if the components of the binary system can be distinguished,
what is seen is the projection of the elliptical orbits in 3-dimensional
space on the 2-dimensional celestial sphere [see Fig. 1.9(a) below]; the
3D orientation of the ellipse is unknown without further information.

3. If the components can be distinguished and their motion followed in a
binary system, the separations observed are in angle; to convert those
to a physical length requires knowing the distance to the binary, and
this might not be known with precision.

Despite these problems, for a limited number of binary systems it is
possible to obtain precise information on the masses and diameters of the
components, as will now be described. However, for most binary systems
one can obtain (at best) only limits on these quantities.

1.5.2 Radial Velocities and Masses
The preceding difficulties may be circumvented if we can obtain
information about the orbits in a binary system by means other than direct
measurement of the geometry. One possibility is to use the Doppler effect to
determine radial velocities for the two stars and then to use this information
to estimate masses. The orbital velocities of binary stars are small enough to
justify use of the nonrelativistic Doppler formula



(1.21)

where Δλ is the shift in wavelength of a spectral line that is normally at a
wavelength λ0 and vr is the radial component of the velocity. As illustrated
schematically in Fig. 1.8 for a simple binary system having stars with
circular orbits and the same mass and spectra, and an observer assumed to
be in the plane of the binary orbits, the Doppler effect leads to periodic
doubling of the spectral lines if the light from both stars is collected
simultaneously. This periodic doubling gives a way to determine that a
system is binary, even if the two components cannot be resolved
observationally. Binaries that are inferred from details of their spectra are
called spectroscopic binaries, as discussed further in Box 1.5.

Fig. 1.8 A double-line spectroscopic binary. Periodic doubling of spectral lines because of Doppler
shifts indicates that the system is binary, even if the two stars can’t be resolved.

Box 1.5 Spectroscopic Binaries

A binary system that is not resolved telescopically but is inferred to be
binary from Doppler shifts of spectral lines is termed a spectroscopic
binary. In fact, most known binary systems are spectroscopic binaries
because only when binaries are relatively near by and/or have large
orbital separations can the components be resolved telescopically.
Spectroscopic binaries may be further subdivided into double-line
spectroscopic binaries, where lines from both stars are seen in the
spectrum and the schematic picture is as in Fig. 1.8, and single-line
spectroscopic binaries, where the lines from one star are too faint to see



but it is still possible to infer the binary nature of the system from the
periodic shift of the lines observed for the other star.

If for simplicity of illustration we assume circular orbits with their plane
along the line of sight, because the period is the orbital circumference
divided by the orbital velocity (which is constant for circular orbits),

(1.22)

Therefore, if the radial velocities for both Stars are measured, the mass ratio
may be obtained as

(1.23)

where (1.17) has been used. In addition, since Eq. (1.22) implies that ri =
Pvi /2π,

Inserting this result into Kepler’s law (1.20) with ri = ai for circular orbits
yields

(1.24)

and Eqs. (1.23) and (1.24) can be solved simultaneously for the individual
masses. Unfortunately, in the realistic case the preceding analysis is
complicated by two issues:

1. The orbits are ellipses, not circles.
2. The line of sight for the observer is usually not the orbital plane of the

binary system.

Since the orbital plane will in the general case be tilted by some (often
unknown) angle i with respect to the observer, the realistic situation is as
illustrated in Fig. 1.9(a) and the observer measures only a component



(1.25)

of the orbital velocity v. Therefore, masses cannot be determined unless the
angle i can be ascertained. However, even if i is unknown Eq. (1.25) may
allow a limit to be set on masses; this can still be very useful information.
Finally, spectral lines often are visible from only one component of the
binary. This more complex case will be discussed in Section 17.4.1.

Fig. 1.9 (a) Tilt angle i of a binary orbit. (b) Coordinate system for visual binaries. Compass
directions on the celestial sphere are indicated on the axes.

1.5.3 True Orbit for Visual Binaries
Conventionally, for visual binaries the orbit of the less bright component is
plotted relative to the position of the brighter component using the
coordinate system that is illustrated in Fig. 1.9(b).This represents the
apparent relative orbit. The true relative orbit is usually tilted by an angle i
relative to the line of sight, as illustrated in Fig. 1.9(a). The true orbit results
from “untilting” the apparent orbit. Detailed observation of a visual binary
often can tell us something about the tilt angle. For example, if the true
orbit is elliptical the projected orbit will also be elliptical but the primary
star will not be at the focus of the ellipse if the tilt angle is non-zero.

In favorable cases the distance to a visual binary may be found by noting
from Eq. (1.22) that r1 + r2 can be inferred if v1 and v2 can be measured by
Doppler methods. Then observation of the orbit allows determination of the
angular semimajor axis α and the distance can be computed then from

(1.26)



Thus, precise distances to visual binaries can be determined without using
parallax, but the number of binary systems for which the required
observations are possible is limited.

1.5.4 Eclipsing Binaries
For a small subset of binary systems the stars periodically totally or
partially eclipse each other, as illustrated in Fig. 1.10. These eclipsing
binaries have some important features.

1. For eclipsing binaries the angle i defined in Fig. 1.9(a) is
approximately  otherwise the eclipses would not be visible.
Furthermore, from the details of the lightcurves (for example, the
depth of the eclipses), the value of i can often be fixed even more
precisely.

2. The period can be determined directly from the lightcurve, whether
the individual components can be resolved or not.

3. If the eclipse is approximately total, precise timing of the lightcurve
(duration of eclipses) can give the radii of the stars relative to the size
of the orbit.

Notice that because the tilt angle is known rather well the true orbital
velocity can be determined; then the time for an eclipse gives the true radius
without needing to know the distance to the binary. A well-known eclipsing
binary is described in Box 1.6.



Fig. 1.10 Schematic representation of an eclipsing binary system.

Box 1.6 Winking Demons

Algol (β Persei or the “Winking Demon Star”) is an eclipsing binary
system. Its properties are illustrated in the following diagram.

The primary star, Algol A, is a 3.2 M⊙, spectral class B8, main
sequence star of about 2.7 solar diameters, while the companion Algol B
is a cooler 0.7 M⊙, spectral class K0, subgiant star with a diameter of
about 3.5 solar diameters (see Section 2.1 for a discussion of spectral
classes). The center of mass for the system (denoted by × in the lower
right diagram) is just inside the primary star, and it is believed that the



shape of the secondary is distorted by the gravitational influence of the
primary. The partial eclipses (which cause light variation that is visible
to the naked eye) are deepest when part of the hotter star is hidden and
more shallow when part of the cooler star is hidden in eclipse; these
eclipses occur with a period of 68.8 hours.

1.6 Mass–Luminosity Relationships
Masses and radii for some visual binary systems are summarized in Table
1.2 (naming systems for the stars in this table are discussed in Box 1.7), and
the corresponding quantities for various main sequence spectral types are
summarized in Table 1.3. Systematics indicate that there is a strong
correlation between the mass of a star and its luminosity. Generally, it is
found that a mass–luminosity relationship expressed in the form of a power
law,

(1.27)

with α ∼ 3.5 is valid for many main sequence stars (not white dwarfs and
red giants). This mass–luminosity relationship is illustrated in Fig. 1.11.

Table 1.2 Masses and radii for some visual binaries [52, 173]



Box 1.7 Naming the Stars

In Table 1.2 stars are named using the Bayer system, in which brighter
stars are designated by an abbreviation for the Latin possessive of the
constellation and a Greek letter giving the (approximate) order of
brightness within the constellation. Stars may be named also using the
Flamsteed system, which employs the Latin possessive of the
constellation and an Arabic numeral indicating the order of the star’s
location with respect to the western edge of the constellation. Thus α
Car is α Carinae, the brightest star in the constellation Carina, and31
Leo is 31 Leonis, the 31st star from the western edge of the constellation
Leo. The brighter stars also have common names; for example, α Ori is
Betelgeuse and α Car is Canopus. Letter suffixes indicate a component
of a multiple star system. Thus, α CMa A is the brightest component of
the Sirius binary star system.

Table 1.3 Main sequence masses and radii [52, 173, 196]



Fig. 1.11 Mass–luminosity relationship. Main sequence stars with M ≥ 1 M⊙ obey L ≃ M3.5.

1.7 Summary of Physical Quantities for Stars
Let us summarize our findings to this point for the basic physical properties
of stars. In units of the solar quantities M⊙ = 1.99 × 1033 g, L⊙ = 3.83 ×
1033 erg s−1, and R⊙ = 6.96 × 1010 cm, it is found that for most stars the
masses M, luminosities L, radii R, and effective surface temperatures Te lie
in the ranges

Later we will address why stars should have physical properties respecting
these limits.

1.8 Proper Motion and Space Velocities
Although their apparent motion is slow because of their great distance, the
stars change their relative position on the celestial sphere over time. The



rate of change in angular position is called proper motion, which is usually
expressed in seconds of arc per year. The star with the largest known proper
motion, Barnard’s Star, changes its relative position on the celestial sphere
by about 10.3 seconds of arc per year (which extrapolates to the angular
diameter of the Moon over 175 years). Hundreds of stars are known with
proper motions of more than one second of arc per year.

The velocity of a star with respect to the Sun is termed the space velocity
vs. This velocity may be resolved into a component perpendicular to the line
of sight termed the tangential velocity vt (which is responsible for the
proper motion), and a component along the line of sight termed the radial
velocity vr, as illustrated in Fig. 1.12.The radial velocity can be measured
from shifts in spectral lines using the Doppler formula (1.21),

The tangential component of velocity requires knowledge of the distance of
the star to convert the proper motion (in angle) into a tangential velocity.
The tangential velocity is

(1.28)

where μ is the rate of proper motion in arcsec per year and d is the distance
in parsecs. The space velocity magnitude is then given by

(1.29)

and the direction is given by trigonometry from Fig. 1.12. Typical space
velocity magnitudes for stars are 20–100 km s−1.

Fig. 1.12 The space velocity vs and its components for a star.



1.9 Stellar Populations
Much of the initial discussion in this chapter has focused on the properties
of individual stars but properties shared by large groups of stars also are
significant in understanding stellar structure and stellar evolution. A set of
individual stars sharing a similar set of group characteristics is termed a
stellar population.

1.9.1 Population I and Population II
Consider the following history of our galaxy. The original galaxy formed in
a Universe dominated by hydrogen with some helium, and only traces of
any other elements, because that is what was produced in the big bang. The
original galaxy is thought to have been more spherical, with the subsequent
flattening into a rotating disk resulting from conservation of angular
momentum as the galaxy contracted. Thus, the first generations of stars
were poor in elements heavier than hydrogen and helium (“metal-poor
stars”), and these stars were formed with a more spherical distribution than
the present disk. They constitute the globular clusters presently found in the
halo surrounding the galaxy and in the central bulge of the galaxy (Fig.
1.13). This set of old, metal-poor stars concentrated in the globular clusters
and galactic core is called Population II (or just “Pop II” for short).

Fig. 1.13 A schematic picture of our galaxy.



In contrast, younger stars must have formed in the galactic disk because
that is where the star-forming material (gas and dust) presently is found.
Over its history, the galaxy has been enriched in heavier elements by stellar
processing and distribution; thus, this younger population of stars is richer
in metals. These stars typically form in open clusters in the spiral arms, and
constitute what is called Population I (or “Pop I” for short).

To summarize, Pop I is a mix of stars like that found in open clusters or
in the vicinity of the Sun, while Pop II is that mixture of stars typical for
globular clusters. These populations have different characteristics, as will
be explored more extensively in conjunction with the Hertzsprung–Russell
diagram (Chapter 2). For example, the most luminous stars in Pop I are blue
supergiants, but the most luminous stars in Pop II are much fainter red
giants. Some principal characteristics of these two populations are
summarized in Table 1.4.

Table 1.4 Some features of stellar populations I and II [55]

1.9.2 Population III
Theory and simulations provide strong evidence for an extremely metal-
poor population of stars that is believed to represent the very first
generation of stars formed in the Universe. This is termed Population III.
Since the elements beyond helium are not produced in significant amounts
in the big bang and must be synthesized in stars, this first generation of stars
contained almost no metals. It is believed that Pop III stars grew to
hundreds of solar masses or more because of a complex set of processes
associated with their low metal content and that these stars quickly
exploded as supernovae (often of the pair instability type; see Box 20.2),
seeding the Universe with heavier elements up to iron. It is highly unlikely



that Pop III stars survive in the nearby Universe. In principle Pop III stars
might be detected in high redshift galaxies dating to the early Universe;
there are hints of Pop III stars in galaxies at very large redshift, but thus far
no such interpretation has been confirmed. The study of Pop III is important
because of the light it sheds on initial structure formation in the Universe.

1.10 Variable Stars and Period–Luminosity
Relations
As discussed in Section 1.5.4, eclipsing binary stars vary in brightness
because of the eclipses but many other stars vary their light output because
of changes in their intrinsic properties. Variable stars may be classified
broadly into three categories: (1) eclipsing variables, (2) pulsating variables,
and (3) eruptive variables. Examples of pulsating variables include Cepheid
variables, RR Lyra variables, and long-period red variables. Examples of
eruptive variables are novae, supernovae, and X-ray bursters. As will be
illustrated later in Fig. 15.1, pulsating variable stars tend to occur in
localized regions of temperature–luminosity space (the Hertzsprung–
Russell diagram to be discussed in Chapter 2).

1.10.1 Cepheid Variables
Cepheid variables are named for the prototype, δ-Cephei, whose lightcurve
is shown in Fig. 1.14(a).They are yellow supergiant stars that vary their
light output with a well-defined period typically lying in the range 1–100
days. Because they are luminous they can be seen in other nearby galaxies
as well as our own. There are two classes of Cepheid variables, the classical
Cepheids, which are Population I stars (the prototype δ-Cephei is a classical
Cepheid), and the Type II Cepheids, which are Population II stars. These
two classes of Cepheids resemble each other except for subtle spectral
effects.



Fig. 1.14 (a) Lightcurve for δ-Cephei. (b) Period–luminosity relations for the two classes of Cepheid
variables.

As illustrated in Fig. 1.14(b), Cepheid variables obey striking period–
luminosity relations. This means that once it has been established that a star
is a Pop I or Pop II Cepheid variable and its period for variability has been
measured, its absolute magnitude can be read directly off the period–
luminosity graph, and this can then be used in conjunction with the inverse
square intensity law and the apparent magnitude to determine its distance.
Thus, once the distance scale is calibrated, the period can be used to
determine the distance to any Cepheid variable and hence to any grouping
of stars (such as a galaxy) containing the variable.

Because no Cepheid variables were close enough to Earth to use standard
parallax methods to determine their distance when they were first
investigated, the period–luminosity relations for Cepheid variables were
calibrated originally using indirect methods such as statistical parallax (a
method that determines the mean parallax for a population of stars by
analyzing their proper motion with the effect of the Sun’s motion
approximately removed) or spectroscopic parallax, which is described in
Section 2.5).4 The Cepheid variable period–luminosity relation was used by
Henrietta Swan Leavitt (1868–1921) in 1917 to demonstrate conclusively
that the Magellanic Clouds were too far away to be part of our own Milky
Way Galaxy and thus constituted separate galaxies in their own right. Later,
in 1925 Edwin Hubble (1889–1953) used Cepheids to show that the “spiral



nebulae” such as Andromeda were too distant to be part of our own galaxy
and thus were also external galaxies.

1.10.2 RR Lyra Variables
Another class of pulsating variable star that may be used to determine
distances is that of the RR Lyra variables, with the class named after the
prototype, RR Lyra.5 The RR Lyra variables are of much shorter period than
the Cepheid variables (typically 0.5–1 day); they are Pop II blue giants
(spectral class ∼ F0), and all are of approximately the same luminosity.
Thus, they are confined to a small region of temperature–luminosity space,
as will be illustrated in Fig. 15.1, and the observed brightness of an RR Lyra
variable indicates rather directly its distance. Because the RR Lyra stars are
giants, they are much less luminous than the supergiant Cepheid variables
and cannot be used to measure distances reliably beyond our galaxy. All
known RR Lyra variables are telescopic stars since the brightest, RR Lyra,
is at the unaided visual limit (apparent magnitude 7).

1.10.3 Pulsational Instabilities
Cepheid and RR Lyra variability is associated with pulsational instability, as
illustrated in Fig. 1.15, which indicates that the pulsation in brightness of a
Cepheid variable is correlated with a variation in the spectral class, surface
temperature, and surface radial velocity of the star (the first two determined
from the pattern of spectral lines and the last from Doppler shift of those
spectral lines). The periodic sign reversal of the radial velocity (referenced
to a constant space velocity) is a direct indicator that the radius is pulsating
for such stars.



Fig. 1.15 Variation in brightness, temperature, spectral class, surface radial velocity Vr, and radius for
δ-Cephei as a function of the phase of the pulsation period.

The change in radius ΔR may be measured by using the Doppler shift to
determine the surface velocity corrected for motion of the center of mass
relative to the Earth; then from dR = vdt and Eq. (1.21) [52],

(1.30)

We may derive an expression for the total radius of the star by comparing
magnitudes at two points in the oscillation corresponding to equivalent
surface temperatures. Since the surface temperatures are the same, it may be
assumed that the variation in brightness is caused entirely by the change in
surface area and therefore

(1.31)

Equations (1.30) and (1.31) give two equations to solve for R and ΔR. From
these relations it is found that for typical Cepheids the pulsations lead to a



variation in radius ΔR/R ≃ 0.20.

1.10.4 Pulsations and Free-Fall Timescales
A simple period–luminosity relation for pulsating variable stars may be
derived by considering the timescale for free-fall in the star’s gravitational
field: if the pressure support for the star were suddenly taken away, what is
the characteristic timescale on which the star would collapse
gravitationally? Since there is no restoring force, this timescale can depend
only on the mass of the star M, the radius of the star R, and the gravitational
constant G. The only combination of these quantities having the dimension
of time is

(1.32)

which may be taken as the characteristic timescale for free-fall. Introducing
a mean density ρ ∼ M/R3, this may be written as tff ( ρ)1/2 ≃ G−1/2. If this
timescale is equated with a period for one pulsation, the pulsational period
P is found to be inversely proportional to the square root of the average
density:

(1.33)

(A more precise derivation supplying the constants of proportionality is
requested in Problem 4.1.) Now if the surface temperature is fixed, the
larger the star the more luminous it is. But ρ is much smaller for larger stars
because they are so diffuse. For example, the average density of the Sun is
1.4 g cm−3 but that of a typical supergiant may be only 10−7 gcm−3, and that
of a white dwarf is approximately 106 g cm−3. Thus, Eq. (1.33) predicts a
period–luminosity relation in which the period goes up as the luminosity
goes up – in reality the period–luminosity relation is a period–density
relation, and there is generally an inverse correlation between average
stellar density and the luminosity.

This result provides a qualitative explanation for why the period of
Cepheid variables is much longer than that of RR Lyra variables. Cepheids
are supergiants, with much larger radii and much smaller average densities



than the RR Lyra stars, which are giants. Thus, the periods for Cepheids
should be considerably longer than for RR Lyra variables, as observed.
Another important class of pulsating variables is the long-period red
variables (see the long-period variable region in Fig. 15.1). They are red
supergiants, which are the largest stars, and their periods can be hundreds of
days – even longer than Cepheids.

Example 1.5 If the luminosity and average density are assumed to be
related by a power law L ≃ k( ρ)−α [55], then (1.33) may be invoked to
yield a period–luminosity relation

(1.34)

which can be expressed in terms of absolute magnitude M as

(1.35)

Many variable stars (for example, Cepheids) are observed to obey a period–
luminosity relation of this form.

Background and Further Reading
Good introductions to the material of this chapter may be found in Böhm-
Vitense [52]; Clayton [71]; Hansen, Kawaler, and Trimble [107]; Carrol and
Ostlie [68]; and Tayler [211], or any good introductory astronomy text. The
book by Hansen, Kawaler, and Trimble [107] contains an annotated guide
to selected literature at the end of each chapter that will prove useful for
those wishing to pursue many of the topics discussed here in more depth.

Problems
1.1 The star Sirius is 8.6 lightyears away. What is its parallax angle?***
1.2 The star Gliese 710 is presently 62 lightyears from Earth, but

Hipparcos data suggest that in about a million years it will pass
within one lightyear of Earth. Its apparent visual magnitude is +9.7.



What is its absolute magnitude? What will its apparent visual
magnitude be in a million years as viewed from Earth (assume that
the intrinsic brightness remains the same as it is today)? What is the
present radial velocity of Gliese 710?

1.3 Show that the absolute magnitude M and apparent magnitude m are
related by

where d is the distance to the star in parsecs.
1.4 Fill in the steps of deriving the Stefan–Boltzmann law for

blackbody radiation from the Planck Law (1.10) that are outlined in
Example 1.3.***

1.5 The average density of stars in the vicinity of the Sun is about 0.08
stars per cubic parsec. If a ground-based telescope can detect
reliably a parallax shift as small as 0.02 arcsec, estimate the upper
limit on the number of stars for which the distance could be
determined by parallax. If space-based observations such as those of
the Hipparcos satellite permit parallax shifts as small as 0.001 arcsec
to be measured, how many stars could in principle have their
distances determined by parallax in this case? Repeat this analysis
for Gaia, assuming that it can measure a parallax of 5 × 10−6 arcsec.

1.6 The first star for which a parallax was measured was 61 Cygni,
reported by Bessel in 1838. The currently accepted parallax shift for
61 Cygni is 0.286 arcsec (which is relatively close to Bessel’s
original measurement of 0.316 arcsec). What is the distance to 61
Cygni in parsecs and lightyears?

1.7 Starting from Eq. (1.18), show that for the special case of circular
orbits the motion is governed by

where r denotes orbital radii. As noted in the text, this equation
holds also for elliptical orbits provided the orbital radii for circular
orbits are replaced by the semimajor axes of the corresponding
ellipses.***



1.8 Show that Eq. (1.20) reduces to the usual simple form of Kepler’s
third law for planetary motion (P 2 = a3) if time is measured in years,
masses in units of M⊙, and distances in AU, and the mass of a planet
is neglected relative to that of the Sun.***

1.9 Ellipses are of fundamental importance in astronomy because
keplerian orbits are elliptical. The properties of an ellipse are
determined by two quantities, the length of the semimajor axis a and
the eccentricity ε, which is defined by requiring that the distance
from the center to either of the two foci of the ellipse be aε. In terms
of the distances r1 and r2 from the respective foci to a point on the
ellipse, the equation of the ellipse is r1 + r2 = 2a. Use this to show
that
(a) The length of the semiminor axis b is related to a and ε

through

(b) In terms of a polar coordinate system centered on one of the
foci, the distance from that focus to any point on the ellipse is
given by

where θ is the polar angle between the semimajor axis and the
line joining the focus to the point on the ellipse, and where 0 ≤
ε < 1.

(c) The area of an ellipse is A = πab. Use the preceding results and
Kepler’s second law for planetary motion to show that in a time
interval dt the planet travels an angular distance measured from
the focus

where P is the period for the orbit and r(θ) is given in part (b).



1.10 The Balmer Hα absorption line in the spectrum for the star Vega is
observed to be shifted to 6562.5 Å, the star is observed to change its
angular position on the celestial sphere by 0.35 ″ per year, and the
parallax shift of Vega is found to be 0.130 ″ . What are the radial,
tangential, and space velocities for Vega?

1.11 The position of the Moon with respect to the background stars is
observed at moonrise. When the Moon crosses the celestial meridian
6h12m later, it is observed to have shifted 148′ to the east relative to
the stars. How far is the Moon from the Earth? Hint: The shift in
apparent angle is caused both by parallax and the motion of the
Moon on its orbit between observations.

1.12 (a) Use the orbital properties of the Moon to estimate the mass of
the Earth.
(b) Use the orbital properties of the Earth to determine the mass of
the Sun (neglect the mass of the Earth relative to that of the Sun).
(c) Look up the orbital properties of the four Galilean moons of
Jupiter (Io, Europa, Ganymede, and Callisto). Use this to determine
the mass of Jupiter, assuming that it is much larger than the mass of
a Galilean moon. Hint: Plot log P versus  log a, where P is the
period and a the semimajor axis, and apply Kepler’s third law.

1.13 Use the Planck Law (1.10) to derive the Wien law for blackbody
radiation. Hint: You will obtain an equation that must be solved
numerically.***

1.14 Halley’s Comet has a very elliptical orbit with a period of 75.32
years and a closest approach to the Sun of 0.586 AU. What is the
greatest distance of the comet from the Sun?

1 Chapters 1 and 2 review material normally covered in introductory astronomy courses. For
readers without an introductory astronomy background they serve as an overview of concepts
that will be important for later discussion. These chapters may be skipped if you are familiar
with the basic properties of stars and with the relationship of luminosity to surface
temperature for stars captured in the Hertzsprung–Russell diagram.

2 In this book we use log ≡ log10 to denote the base-10 logarithm and ln ≡ loge to denote the
base-e or natural logarithm.

3 The gravitational and inertial masses of an object are equal, by virtue of the equivalence
principle of general relativity.

4 More recently, space-based observations have extended the range of the parallax method
considerably and have permitted the distances to larger numbers of Cepheids to be measured



directly by parallax. For example, the parallax distances to several hundred Cepheid variables
were determined using the Hipparcos data set and further improvements are expected with the
newer Gaia data.

5 This is an example of a common nomenclature in naming variable stars where a one- or two-
letter sequence of capital letters (or the letter V with a number appended) is followed by a
Latin possessive for the constellation. The sequence of letters gives the temporal order of
discovery for variable stars in the constellation (with the convention being rather esoteric).
Two well-known examples of this naming system are RR Lyra and T Tauri. Brighter variable
stars (for example, Betelgeuse) usually go by their common or Bayer name.



2

The Hertzsprung–Russell Diagram

Perhaps the most important observation concerning stellar structure is that
there are strong correlations between the luminosities of stars and their
surface temperatures.1 A few stars exhibit emission lines but the dominant
spectral feature for most normal stars is a set of absorption lines associated
with various atoms, molecules, and ions superposed on a continuum. It was
realized by the late nineteenth century that stars exhibited regular patterns
in these absorption spectra. This led to a classification with a letter
sequence A, B, C, . . . used to denote the relative strength of hydrogen
absorption lines. It was believed at first that this reflected differing
elemental compositions so that, for example, A stars had the strongest
hydrogen lines because they contained more hydrogen than other stars. We
understand now that all stars have similar composition and that the spectral
sequence is not primarily an indicator of composition but one of conditions
in the surface region of the star where the absorption lines are produced (the
chromosphere). In particular, the spectral sequence results from differing
levels of excitation and ionization that depend strongly on the surface
temperature and more weakly on the surface density. These ideas are
codified in what is perhaps the most important theoretical construct in the
stellar astronomer’s toolkit, the spectrum–luminosity or Hertzsprung–
Russell (HR) diagram.

2.1 Spectral Classes
The absorption spectrum for a given element depends crucially on the
atomic and chemical properties: whether the atoms are parts of molecules,
whether they are excited, and whether they are ionized. To illustrate these
issues the hydrogen atom often will be used, with atomic level structure and
transition properties summarized in Fig. 2.1. This is appropriate both



because hydrogen is the simplest atom and because hydrogen is by far the
most abundant element in the Universe, so it occupies a central place in
astrophysics.

Fig. 2.1 Hydrogen energy levels and some absorption spectral transition series. The corresponding
emission series result from reversing the direction of the arrows. The ground state has been placed at
zero energy. It is also common to place the zero of the energy scale at the ionization threshold, so that
all bound states have negative energy and all continuum states have positive energy. Then the ground
state is at −13.6 eV and the first excited state is at −3.4 eV. Energy differences are the relevant
quantities, so choice of the energy zero has no physical consequences.

2.1.1 Excitation and the Boltzmann Formula
If we assume approximate thermal equilibrium, the degree of electronic
excitation for a species at temperature T is given by the Boltzmann formula,

(2.1)

where i labels a state at energy Ei having statistical weight (degeneracy
factor) gi and number density ni , and k is the Boltzmann constant. The
exponential dependence on energies measured in units of kT in Eq. (2.1)
strongly favors population of low-lying states at temperatures of interest in
most astrophysical applications.

2.1.2 Ionization and the Saha Equations



Equations governing the degree of ionization may be derived in a manner
similar to that leading to the Boltzmann formula (2.1) by extending the
available states to include, with appropriate weights, the continuum states
that are populated by ionization (the gray region above 13.6 eV in Fig. 2.1).
The resulting equations are known in astrophysics as the Saha equations.
For single ionization, the ratio of singly ionized to neutral atom populations
is

(2.2)

where n+ is the number density of +1 ions, n0 is the number density of
neutral atoms, ne is the number density of free electrons, me is the electron
mass, Ei is the ionization energy, and the partition functions u+ for ions and
u0 for atoms are given by sums of the form

(2.3)

where the sum is over ground and excited states available to the species.
The degree of ionization thus depends linearly on statistical (state-
degeneracy) factors that are often of order one, inversely on the electron
density (because ne influences the competition of ionization and the inverse
recombination reaction), and exponentially on the ionization energy as
measured in units of kT . Therefore, ionization caused by thermal effects is
expected to be determined primarily by the temperature and more weakly
by pressure and atomic energy-level effects (but see the discussion of
pressure ionization in Section 3.7.1).

Example 2.1 By taking the (base-10) logarithm of both sides, exchanging
the electron pressure Pe for the electron number density ne using Pe = nekT ,
and evaluating the constants, Eq. (2.2) may be expressed in the convenient
form [52]

(2.4)



where energy is given in eV, temperature in K, and pressure in dyn cm−2.

For double ionization the Saha equation takes the form

(2.5)

where  is the energy for the second ionization A+ → A++ of the species
A, the partition function associated with the +2 ion is u++, and n+ is the
number density of +1 ions calculated from Eq. (2.2) for the first ionization
step. Equations (2.2) and (2.5) are generalized in a straightforward way to
third and higher degrees of ionization.

Assuming ideal gas behavior (see Section 3.3), the electron pressure Pe
appearing in Eq. (2.4) and the gas pressure Pg are related to the
corresponding number densities through

(2.6)

where the electron number density ne is related to the ion number densities
through

and n is the number density for all particles in the gas. Typical free-electron
pressures in stellar surfaces are of order 1 dyn cm−2 for cooler stars and
1000 dyn cm−2 for hotter stars. For the Sun a free-electron pressure of about
30 dyn cm−2 is commonly used in stellar atmosphere calculations.

Example 2.2 If a gas of hydrogen is completely ionized,

and for a pure helium atmosphere with all helium twice ionized, 



From simple algebra (see Problem 2.15), for two stages of ionization we
may express the fractional abundances of neutral, +1, and +2 ions,
respectively, as

(2.7)

where the total number densities of atoms plus ions, nT = n0 + n+ + n++, is
assumed constant, and where the ratios n+/n0 and n++/n+ are given by the
Saha equations as a function of temperature and electron density.

2.1.3 Ionization of Hydrogen and Helium
The ionization of hydrogen and helium calculated using Eq. (2.7) and the
Saha formulas is illustrated in Figs. 2.2 and 2.3 as a function of temperature
for three different pressures. In these plots we have employed the common
astrophysics convention of using roman numerals to indicate the degree of
ionization: I denotes no ionization (neutral atoms), II denotes the first state
of ionization, and so on; thus He++ is He III in this notation. Notice that the
dependence on temperature is much stronger than the dependence on
pressure, and that the ionization transitions as a function of T are rather
sharp. For example, the partial ionization of hydrogen is confined to a
region less than about 3000 K in extent.2 Notice also that helium is
appreciably harder to ionize than hydrogen: its first excited state is at about
20 eV, it first ionizes at 24.6 eV, and an additional 54.4 eV is required to
remove the second electron; conversely, hydrogen’s first excited state is at
10.2 eV above the ground state and it requires only 13.6 eV to liberate the
single hydrogen electron.



Fig. 2.2 Fractional abundance for ionic forms of hydrogen as a function of temperature for three
different electron pressures Pe.

Fig. 2.3 Fractional abundance for ionic forms of helium as a function of temperature for three
different electron pressures Pe.

Example 2.3 As another example of applying the Saha equations, consider
the degree of ionization for hydrogen in the surface of the Sun, taking for
this estimate a temperature of 6000 K and an electron pressure of 30 dyn



cm−2 [52]. For neutral hydrogen the ground state has a statistical factor 
 because of the 2J + 1 spin degeneracy of

the spin  ground state, while excited states make no significant
contribution to the partition function because they lie at higher energy and
are strongly suppressed by the Boltzmann factor exp(−En/kT ). Therefore,
for neutral hydrogen,   For the hydrogen ion
things are even simpler: there is no electron so there are no excited
electronic states and u+ = 1. Inserting these results in Eq. (2.4) gives n+/n0 =
10−4

It may be concluded from the preceding example that the solar surface is
dominated by neutral hydrogen, with only about 1 of every 10,000 atoms of
hydrogen ionized. This changes quickly even a little below the solar surface
where the temperature and density increase rapidly to levels causing almost
total ionization of hydrogen.

2.1.4 Optimal Temperatures for Spectral Lines
To understand spectral properties it is necessary to use in concert both the
Boltzmann formula, which determines the states that are likely to be
populated in a given species (neutral atoms or ions), and the Saha
equations, which determine the abundances of different ionic species.

The Balmer series: As an example, let’s estimate the optimal surface
temperature to produce strong Balmer series absorption lines in a star. The
Balmer absorption series for hydrogen illustrated in Fig. 2.1 occurs in the
visible part of the spectrum and is generated by transitions where an
electron already in the first excited (n = 2) state of hydrogen is promoted to
a higher level when a photon is absorbed. For the Balmer absorption series
to be produced there must be a population of hydrogen atoms already in the
first excited state. Therefore, the relevant quantity is the ratio n2/nT, where
n2 is the number density of neutral hydrogen atoms in the first excited
electronic state and nT is the total number density of hydrogen atoms plus
ions.



Denoting the number density of neutral hydrogen atoms by nI and the
number density of hydrogen ions by nII, we have nI ∼ n1 + n2 and nT = nI +
nII, where it is assumed in the first equation that only the ground and first
excited state are likely to be populated in the temperature range of interest
because of the Boltzmann factor. Therefore, from the identity n2/nT =
(n2/nI)(nI/nT) and the above expression for nI,

(2.8)

and it is only necessary to evaluate the ratios n2/n1 and nII/nI.

1. The ratio n2/n1 may be calculated from the Boltzmann formula (2.1)
once the degeneracy factors are evaluated. For a hydrogen atom gn =
2n2, where n is the principal quantum number (n = 1 for the ground
state and n = 2 for the first excited state). Therefore, the ground state
of the hydrogen atom at −13.6 eV relative to the ionization threshold
has degeneracy factor g1 = 2 and the first excited state at −3.4 eV has
g2 = 8.

2. The ratio nII/nI = n+/n0 can be calculated from the Saha equation (2.2)
or (2.4) using an ionization energy of 13.6 eV.

Using these results in Eq. (2.8) predicts a Balmer absorption spectrum
strength peaking near 10,000 K (depending weakly on the surface electron
pressure), falling off rapidly at lower or higher temperatures, as shown in
Fig. 2.4 for three different electron pressures. Observations indicate that
indeed the strongest hydrogen Balmer absorption lines occur for stars with
surface temperatures around 10,000 K (see Fig. 2.6).



Fig. 2.4 Fraction of Balmer series absorption versus temperature at electron pressures of 1, 10, and
100 dyn cm−2.

Calcium H and K lines: Similar considerations govern the temperatures at
which the absorption lines associated with other species have their greatest
intensity. For example, you might be surprised to learn that the strongest
lines in the solar spectrum are absorption lines associated with states in
first-ionized calcium (called the Ca H and K lines), which are hundreds of
times stronger than the solar Balmer lines. As you are asked to show in
Problem 2.9, this is not because the Sun is particularly calcium-rich
(hydrogen is about a million times more abundant than calcium at the Sun’s
surface). Rather, it is because an analysis similar to that for the Balmer
series above indicates that almost all the small amount of calcium present in
the solar surface is in the ground state of first-ionized calcium, which is
optimal for absorption to produce the calcium H and K lines. In contrast,
only about one in a billion hydrogen atoms in the solar surface is in the first
excited state that can lead to Balmer series absorption. Therefore, although
hydrogen is 106 times more abundant than calcium on the Sun, each
calcium is almost 109 times more likely to absorb a visible photon than each
hydrogen; as a consequence, the calcium H and K lines are much stronger
than the hydrogen lines in the solar spectrum.

2.1.5 The Spectral Sequence



The preceding examples suggest that the spectral classification scheme is
not a sequence in abundance, as originally thought, but rather is one in
surface temperature. The modern spectral classification utilizes (largely for
rather illogical historical reasons) the sequence O B A F G K M, with the
associated characteristics given in Table 2.1.3 A qualitative illustration of
dominant excitations and ionizations as a function of temperature for some
species relevant for the spectral classification is shown in Fig. 2.5, and
representative absorption spectra for different spectral classes are shown in
Fig. 2.6. Once it is established that the spectral sequence is a temperature
sequence, we may conclude that it is also a sequence in color index, with
more negative color indices lying toward the O end and more positive color
indices lying toward the M end of the sequence. This also establishes that
the spectral sequence is a color sequence, with red stars lying near the cool
M end of the sequence, yellow stars in the middle, and blue and blue-white
stars lying near the hotter end of the spectral sequence. For (now
discredited) historical reasons stars near the O end of the spectral sequence
are sometimes referred to as “early” and those near the M end as “late.”
Although arcane, it is still common terminology in astronomy.

Table 2.1 Spectral classes and their characteristics

Cla
ss∗

Distinguishing features Examples

O Ionized He and metals; weak H θ1 Orionis C (O6)
B Neutral He, ionized metals, stronger H Rigel (B8), υ Spica (B1)
A Balmer H dominant, singly ionized

metals
Sirius (A1), Vega (A0)

F H weaker, neutral and singly ionized
metals

τ Boötes A (F6)

G Singly ionized Ca, H weaker, neutral
metals

Sun (G2), β Aquilae
(G8)

K Neutral metals, molecular bands appear Arcturus (K1.5), Pollux
(K0)

M Strong Ti oxide molecular lines, neutral Betelgeuse (M2)



metals

∗Standard spectral classes. Additional specialized classes are discussed in Box 2.1.

Fig. 2.5 Dominant spectral line strength as a function of spectral class (qualitative). These can be
understood primarily in terms of the temperature dependence for electronic excitation and ionization
of various species. From the description of the spectral classes in Table 2.1 it is clear that the spectral
sequence is a temperature sequence, with the hottest stars lying near O and the coolest stars lying
near M. For example, only in O stars are ionized helium lines strong because cooler stars cannot
ionize helium. On the other hand, only in the K and M stars are strong molecular lines observed
because only these stars are cool enough for molecules to exist in their atmospheres.



Fig. 2.6 Absorption spectra at optical wavelengths for some main sequence spectral classes (see
Table 2.1) [3, 202]. They are characterized by a smoothly varying continuum punctuated by sharp
absorption dips (line absorption). The positions of hydrogen Balmer series lines are marked. Note the
maximal strength of the Balmer series near spectral class A, corresponding to a surface temperature
of ∼ 10, 000 K, and its decreasing strength in spectral classes corresponding to higher and lower
temperatures. Constructed from spectra at http://zebu.uoregon.edu/spectra.html; from Silva and
Cornell, Astrophysical Journal Supplement Series (ISSN 0067-0049), 81(2), 1992, 865–881.
Research supported by University of Michigan.

2.2 HR Diagram for Stars Near the Sun
The stars maintain their luminosities by virtue of their enormous energy
production and the surface temperatures of stars also are ultimately linked
to their internal energy production and energy transport. Hence, we might

http://zebu.uoregon.edu/spectra.html


expect that there is a relationship between luminosity (or equivalently
absolute magnitude) and spectral class (or equivalently surface temperature
or color index). This could be checked by plotting these quantities against
each other for a set of stars and determining whether any correlations were
evident. However, determining the luminosity or absolute magnitude for a
star requires knowing its distance, and this is problematic for all but the
nearest stars.

2.2.1 Solving the Distance Problem
There are two ways in which we might circumvent this distance problem
without appeal to more uncertain methods:

1. Use only nearby stars for the sample, for which the distance is known
by parallax.

2. Use a population of stars in an open or globular cluster. Then even if
the distance to the cluster is unknown, it is certain that it is essentially
the same unknown distance for each member of the cluster. In this case
the apparent magnitude may be used instead of the (unknown) absolute
magnitude. This corresponds to an arbitrary global shift of the
luminosity axis and preserves relationships in a plot of luminosity
versus temperature that would indicate correlations.4

The first choice yields a diagram of the form shown in Fig. 2.7, where
absolute magnitude is plotted versus the B − V color index. Such a diagram
is termed a Hertzsprung–Russell (HR) or spectrum–luminosity diagram
(though some purists reserve the term Hertzsprung– Russell for a spectral
class–luminosity diagram, as originally investigated by Hertzsprung and by
Russell). As suggested above, the horizontal axis of such a diagram can be a
color index, effective surface temperature, or spectral class, while the
vertical axis is typically either luminosity or absolute magnitude, or in the
case of clusters at unknown distances, the apparent magnitude.



Fig. 2.7 HR diagram for stars near the Sun from selected Hipparcos data [4]. There are almost no
supergiants (which would be above the giants around absolute magnitude −5) in this sample. The
main sequence for stars near the Sun is seen to be reasonably well described by the linear relationship
MV ≃ 5.8(B − V) + 0.7, where MV is the absolute visual magnitude and B − V is a color index. This
diagram does not represent the entire Hipparcos data set but rather is based on 41,704 stars for which
measurements were judged to be more precise. © ESA.



2.2.2 Features of the HR Diagram
The dominant feature of the HR diagram for the stars near the Sun is the
strong clustering into particular regions of temperature–luminosity space:

1. Approximately 90% of the stars are concentrated in the narrow band
cutting diagonally across the center of the diagram called the main
sequence. The Sun itself is a main sequence star of absolute magnitude
+4.8 and spectral class G2. The concentration of many stars in this
band implies that their properties may be parameterized in terms of a
single quantity. Later it will be shown that this quantity is the mass of
the star.

2. A much smaller group of stars is concentrated at higher temperatures
but at luminosities far below the corresponding main sequence values.
These are the white dwarfs.

3. Another smaller group consists of stars having considerably higher
luminosities than main sequence stars of the same spectral class; these
are the giants and the supergiants.

The preceding size-specific terminology arises because a vertical cut in the
HR diagram selects stars having the same spectral class and thus
(approximately) the same surface temperatures. Hence, substantial variation
in the luminosity along a vertical line can come only from different surface
areas for the stars in question, with stars below the main sequence having
smaller surface areas and stars above the main sequence having larger
surface areas than a corresponding main sequence star.

2.3 HR Diagram for Clusters
Now let us inquire whether the HR diagram for stars in clusters exhibit the
same correlations seen for the group of stars in the immediate vicinity of the
Sun. There are two types of clusters to consider: open clusters and globular
clusters, with examples displayed in Fig. 2.8. The HR diagrams for open
clusters resemble those for the stars near the Sun but the HR diagrams for
globular clusters are substantially different: there are no luminous main
sequence stars and no supergiants. Instead, the most luminous stars in



globular clusters are giants. We may understand these observations as
resulting from an age difference between open and globular clusters, which
represents our first clear indication that the HR diagram is a snapshot in
time of an evolving population of stars. The open clusters are much younger
than the globular clusters. Thus, the original more-luminous main sequence
and supergiant stars in the globular clusters have long since evolved beyond
those stages, while the much younger open clusters still contain luminous
main sequence and supergiant stars that have not yet had time to evolve to
later stages in their lives. The point in the HR diagram for a cluster that
marks the most luminous main sequence stars is called the turnoff point for
the cluster. The location of the turnoff point is a direct indicator of the age
of the cluster; this is illustrated in Fig. 2.9 for a set of open clusters.

Fig. 2.8 (a) The open cluster Trumpler 14, which contains some of the most luminous stars in our
galaxy. It is located in the Carina Nebula, about 8000 ly distant. © NASA and ESA, Jesús Maíz
Apellániz (Instituto de Astrofisica de Andalucia). (b) The globular cluster M3, which is about 30,000
ly away in the constellation Canes Venatici. It contains about 500,000 stars and is some 200 ly in
diameter. NASA © Karel Teuweu. (c) Two merging open clusters in the 30 Doradus Nebula
(Tarantula Nebula), which is a massive star-forming region some 170,000 ly away in the Large
Magellanic Cloud. The two merging clusters appear to differ in age by about a million years. NASA,
ESA, and E. Sabbi (ESA/STScl).



Fig. 2.9 HR diagram for some open clusters with the color index B − V a surrogate for temperature or
spectral class (relationships among the three are given in Tables 2.2–2.4). The right axis relates the
age of the cluster to the turnoff point for that cluster. Clusters such as M11 or M41 exhibit two
branches, with no stars in the region between the branches. As will be discussed in Section 13.4, this
region corresponds to the Hertzsprung gap, through which stars evolve rapidly and thus are unlikely
to be found at any one time. Adapted from figure in Ref. [55].

Example 2.4 From Fig. 2.9 the turnoff point for the Pleiades Cluster is at B
− V ∼ 0 and MV ∼ 0. From the right axis, this indicates an age of about 1.6
× 108 yr for the Pleiades. On the other hand, M67 has B −V ∼ 0.5 and MV ∼
+4 at its turnoff point, indicating that M67 is a much older cluster with an
age of about 7 × 109 y.



2.4 Luminosity Classes
The qualitative groupings according to luminosity discussed above may be
made more quantitative by introducing the luminosity classes illustrated in
Fig. 2.10. In this classification, main sequence stars (sometimes called
“dwarfs” – not to be confused with white dwarfs or brown dwarfs) are in
luminosity class V, there is a class VI of stars somewhat less luminous than
the main sequence called subdwarfs, white dwarfs have their own
luminosity class D, giants are distributed in three classes (II, III, IV)
according to their relative luminosities, and supergiants are divided into two
categories (Ia and Ib) according to their relative luminosities. Classification
of a star according to both its spectral class and luminosity class then
confines it to a rather localized region of the HR diagram.

Fig. 2.10 Primary luminosity classes for stars. The modern classification using letters for spectral
class and Roman numerals for luminosity class is called the Morgan–Keenan (MK) system.



Example 2.5 The bright blue star Rigel (β-Orionis) may be classified as
B8Ia, which means that it is a luminous blue supergiant of spectral class B8
and luminosity class Ia (its absolute magnitude is an impressive −7.8).
Properties of many astronomical objects, such as spectrum and luminosity
classes for individual stars, may be found in the online SIMBAD database
[2]. For example, entering “Sirius” as an object identifier in SIMBAD
returns (among other things) that it is a multiple star system with spectral
class A1V+DA, indicating a main component of spectral classification A1V
(a main sequence star of spectral sequence classification A1, so it has a
strong Balmer absorption series), and a companion of spectral classification
DA (a white dwarf with hydrogen Balmer lines in its spectrum; see the
discussion of white dwarf spectral classes in Box 2.1).

Box 2.1 Special Spectral Classes

It often proves useful to add to the traditional spectral classes in Table
2.1 new classes and subclasses specialized for particular types of stars.
These may reflect discovery of newer categories of stars, or deeper
understanding of stars previously classified under standard spectral
classes. Here are a few examples.

Hot Blue Stars with Strong Emission Lines
Hot stars exhibiting strong emission lines are of large current interest.
An example is Wolf–Rayet stars (Section 14.3.1): hot, massive, stars
exhibiting large luminosity, rapid mass loss, almost no hydrogen lines,
and broad emission lines from helium, carbon, nitrogen, and oxygen.
Wolf–Rayet stars are given a special spectral class designation W, with
subclasses reflecting the details of their spectra (particularly the relative
strength of carbon and nitrogen emission lines). For example, WN is a
Wolf–Rayet star exhibiting strong emission lines from helium in
ionization states I–II and nitrogen in ionization states III–V, and WC is a
Wolf–Rayet star with strong carbon (II–IV) emission lines. Another
similar classification is that of “Slash” stars (so-named because of a
slash in their designation), which are O stars by their absorption
spectrum but with emission lines similar to WN Wolf–Rayet stars.

White Dwarfs



White dwarfs are designated by D, with appended letters indicating
spectral features. For example DA indicates strong Balmer lines,
implying hydrogen-rich outer layers, while DQ white dwarfs display
evidence of a carbon-rich atmosphere through atomic or molecular
carbon lines. An appended V indicates pulsation: DAV is a pulsating
spectral-class DA white dwarf (also known as a ZZ Ceti variable).

Infrared Objects
Red dwarfs (low-mass main sequence stars) and brown dwarfs (Section
9.10) are faint in the visible and often studied in the infrared. New
spectral classes have been created for these IR objects. Class L objects
are cooler than class M main sequence stars. Some are powered by
hydrogen burning but most are brown dwarfs. Class T are cooler brown
dwarfs with strong methane spectral features. Class Y are even cooler
brown dwarfs that may contain some objects on the boundary between
planets and brown dwarfs.

Carbon Stars
Traditionally, R, N, and S were optional sub-branches for M. The R and
N classes are now subsumed under carbon stars (designated by C),
which have high surface carbon abundance. Carbon stars are further
subdivided according to specific properties. For example, C-R and C-N
have the characteristics of the former R and N classes, respectively. The
older class S is now viewed as interpolating between the properties of M
and C stars.

The basic physical properties of main sequence, giant, and supergiant stars
are tabulated with respect to spectral class in Table 2.2, Table 2.3, and Table
2.4, respectively.

Table 2.2 Main sequence parameters according to spectral type [55, 75]



Table 2.3 Parameters according to spectral type for giant stars [55, 75]

Table 2.4 Parameters according to spectral type for supergiant stars [55, 75]



2.4.1 Pressure Broadening of Spectral Lines
Often a star’s luminosity class can be inferred from density-dependent
features of its absorption spectra. It has already been seen that the degree of
ionization depends weakly on the electron density in the stellar atmosphere.
Further information concerning surface density may be obtained from
spectral linewidths, which are finite for three basic reasons:

1. There is a natural linewidth ΔE associated with the uncertainty
principle, ΔE · Δt ∼ ħ, that is inversely related to the lifetime Δt of the
state producing the line.

2. Otherwise sharp spectral lines are Doppler broadened by turbulent
motion of the gas.

3. Collisions of atoms and ions lead to broadening of spectral lines. This
pressure broadening is larger for higher densities because collision
frequency increases with density.

These sources of line broadening have different characteristic line profiles
so it is often possible to disentangle their effects by a careful study of
spectral line shapes. The source of immediate interest here is the pressure
broadening, which is expected to have the form

(2.9)



where λ is the wavelength, σ is the collisional cross section, and n is the
number density. Therefore, the amount of pressure broadening is
approximately linear in the density and the width of key spectral lines may
be used to estimate the surface density of a star.

2.4.2 Inferring Luminosity Class from Surface Density
Once the surface density is estimated, it is then possible to make a
luminosity classification because of the inverse correlation noted earlier
between average density and absolute luminosity. For example, pressure
broadening of spectral lines is expected to be larger for a main sequence
star of a given spectral class than for a supergiant star of the same spectral
class because the surface density of the main sequence star is orders of
magnitude higher than for the supergiant star. By similar reasoning, the
linewidths associated with white dwarfs are more broadened still because
they have much higher densities than main sequence stars.

2.5 Spectroscopic Parallax
The considerations of the preceding paragraph suggest an indirect method
for determining the distance to a star. If the spectral class can be determined
from general features of the absorption spectrum and the luminosity class
can be determined from subtle density-dependent effects in the absorption
spectrum, then the HR diagram may be used to infer the approximate
absolute magnitude of the star. Once the absolute magnitude is known, a
comparison with the apparent magnitude and invocation of the 1/r2 intensity
law yields the distance. This method of determining distances is termed
spectroscopic parallax; it has nothing to do with trigonometric parallax but
astronomers are fond of using the term “parallax” for any measurement of
distance.

Example 2.6 Let’s estimate the distance to α Centauri using spectroscopic
parallax and data in the SIMBAD database [2]. From its spectrum, α
Centauri is spectral class G2 and luminosity class V; that is, G2V.
Interpolating by eye from Fig. 2.10, for spectral class G2 on the main
sequence the absolute magnitude should be approximately 4, while the



apparent visual magnitude for α Centauri is observed to be m = −0.1. From
Eq. (1.7),

(2.10)

Inserting the numbers gives approximately 1.5 pc for the distance to α
Centauri. Actual parallax measurements [2], which are quite reliable for a
star this close since the parallax angle of 0.742 ″ is relatively easy to
measure, indicate that it is 1.35 pc away. In this case, spectroscopic and
trigonometric parallax agree to within about 11%. If a similar analysis is
applied to Arcturus, the apparent magnitude of −0.05 and spectral–
luminosity classification ∼K2III [2] imply a distance by spectroscopic
parallax of 9.8 pc. This is about 13% less than the distance of 11.25 pc
inferred from its trigonometric parallax of 0.0888 ″ [2].

Spectroscopic parallax yields only approximate distances because of
uncertainties in determining spectral and luminosity classes. These
uncertainties typically are 15–20%, largely independent of distance if the
absorption spectrum can be measured accurately and corrections for
reddening by interstellar dust can be performed reliably. In contrast,
uncertainties for trigonometric parallax grow rapidly with distance because
of the difficulty in measuring very small angles. Trigonometric parallax
with traditional Earth-based telescopes can be used out to distances of 50–
100 parsecs but uncertainties associated with spectroscopic parallax often
are smaller than those for trigonometric parallax once distances exceed ∼
20–30 pc. Newer space-based observations are greatly extending the range
of direct parallax: Hipparcos pushed the direct parallax scale out to greater
than 1000 pc and the Gaia spacecraft has a goal of measuring distances to
20 million stars with 1% uncertainty and distances to stars as far away as
the galactic center with 20% uncertainty. This will permit parallax to
compete with spectroscopic parallax at much larger distances and allow a
direct check of many star distances that formerly were known only through
spectroscopic parallax.

2.6 The HR Diagram and Stellar Evolution



As mentioned above in the discussion of clusters, the HR diagram is a
snapshot in time of the relationship between surface temperature and
luminosity for stars in a group of stars. Since it has been suggested that HR
diagrams change in time for cluster populations, this indicates that
individual stars change their position on the HR diagram with time and it is
meaningful to speak of an evolutionary track on the HR diagram for a star
(see Fig. 10.8). Thus eventually the Sun will evolve from the main sequence
into the red giant region, will emit a planetary nebula as it sheds mass late
in its life, and will finally become a white dwarf. The entire timescale for
this evolution is of order 10 billion years. In contrast, the fate of a 20 solar
mass star is more spectacular, ending in a supernova explosion on an
evolutionary timescale orders of magnitude smaller than that of the Sun.
The single most important factor governing the evolution of a star is its
mass. The more massive the star, the more rapidly it evolves through all
phases of its life. Furthermore, the reason that most stars are found on the
main sequence in Fig. 2.7 is that for typical stars the major portion of their
lives (specifically, the hydrogen core-burning period) is spent on the main
sequence.

Background and Further Reading
The material in this chapter is discussed well in Böhm-Vitense [52], Bowers
and Deeming [55], Carrol and Ostlie [68], and Tayler [211].

Problems
2.1 Estimate the color index B − V for a star assumed to be a blackbody

with a surface temperature of 18,000 K. In making this estimate,
assume the appropriate color filters to have a δ-function (that is, very
sharply peaked) response of the actual response for the filter.

2.2 In the Sirius binary system, which has a parallax of 0.38 ″ as
observed from Earth, the companion Sirius B has apparent visual
magnitude 8.44 and its spectrum suggests an effective temperature
of ∼ 30, 000 K. In addition, the semimajor axis for the primary orbit
and companion orbit are observed to be 6.54 and 13.26 AU,
respectively, and the period for the binary is found to be 50.13 years.



(a) What are the absolute visual magnitude and absolute
bolometric magnitude if the bolometric correction is BC =
−3.3?

(b) What is the luminosity of Sirius B based on this bolometric
magnitude?

(c) What is the radius of Sirius B, assuming it to be a spherical
blackbody?

(d) What is the total mass of the binary and the individual mass of
the companion Sirius B?

(e) Assuming Sirius B to be spherical, what is its average density?
(f) What region of an HR diagram does Sirius B occupy? What

kind of star is it, based on the information deduced in this
exercise?

2.3 A certain star has an absolute bolometric magnitude of −5 but its
spectrum suggests that the surface temperature is only about 3000 K.
Assuming the star to radiate as a spherical blackbody, estimate the
luminosity and the radius of this star in comparison with the Sun.
How much of the inner Solar System would this star encompass if
placed at the position of the Sun? Assuming the mass of this star to
be no more than 10 solar masses, estimate its maximum average
density. What region of the HR diagram does this star occupy, based
on the information just deduced?***

2.4 Deneb (the tail of Cygnus the Swan) has apparent visual magnitude
1.25 and is of spectral–luminosity class A2Ia. Use spectroscopic
parallax to estimate its distance from Earth.

2.5 Assume that apparent visual magnitude ∼ 28 is the limit at which
such systems can reliably determine light variability and spectrum in
order to use the Cepheid variable method (the spectrum is necessary
to ensure that the star has been identified correctly as a Cepheid
variable). Estimate the maximum distance that space-based or
ground-based adaptive effects systems can determine by using
Cepheids. Assume the limit for standard ground-based telescopes to
be apparent visual magnitude ∼ 23. What is the maximum distance
in that case?



2.6 Suppose that the main sequence of a cluster of stars at unknown
distance is observed and is found to be approximately described by a
linear relation m ≃ 5.8 · CI + 15, where m is the apparent magnitude
and CI is the B − V color index. Assuming the main sequence of
stars in the cluster to be similar to the main sequence observed for
stars near the Sun, estimate the distance to the cluster.

2.7 The Hubble Space Telescope has been used to study Cepheid
variables in the galaxy M100. Assume the period–luminosity
relation to be parameterized by [see Eq. (1.35)]

with the period P expressed in days. What is the distance to M100
indicated by an observed Cepheid having a period of 51 days and
average apparent visual magnitude of 24.9? In estimating the
distance, assume that interstellar absorption between us and M100
has dimmed the Cepheid light by 0.15 magnitudes.

2.8 A cluster of stars contains a type-II Cepheid variable with apparent
magnitude 20 and a period of 10 days. How far away is the cluster?

2.9 In the solar spectrum there are strong calcium absorption lines (the
Ca II H and K lines), corresponding to excitations from the ground
state of singly ionized calcium. These lines are hundreds of times
stronger than the hydrogen Balmer series absorption lines, even
though calcium is about a million times less abundant than hydrogen
on the Sun. Estimate the expected strength of the calcium K line and
Balmer series lines at the solar surface temperature assuming that the
partition functions for Ca I and Ca II are 1.32 and 2.30, respectively,
the electron pressure is log Pe = 1.5 dyn cm−2, the ionization energy
of calcium is 6.11 eV, the K line corresponds to a transition from the
Ca II ground state to an excited state at 3.12 eV with statistical
factors g1 = 2 for the Ca II ground state and g2 = 4 for the excited
state, and that the ratio of calcium abundance relative to hydrogen
abundance in the solar surface is 2.2×10−6. Hint: You can solve this
problem using the Saha equations to determine the population of
ionic species and the Boltzmann formula to determine the relative
population of ground and excited states within each ionic
species.***



2.10 Absorption in the surface of a star involves both discrete lines, such
as the Balmer absorption series for hydrogen, and continuum
absorption. An important source of continuum absorption is bound–
free transitions where an electron is excited from a bound state to an
unbound state (ionization). Since the final state contains an
essentially free electron, bound–free transitions produce continuous
absorption for wavelengths shorter than the threshold wavelength
corresponding to the energy difference between the bound state and
the ionization threshold. Show that Balmer bound–free continuum
absorption (corresponding to ionization from the n = 2 hydrogen
level at 10.2 eV) and Lyman bound–free continuum absorption
(corresponding to ionization from the n = 1 ground state of
hydrogen) both occur at UV wavelengths where the Sun outputs
little light. Show that Paschen bound– free absorption
(corresponding to ionization from the n = 3 level of hydrogen)
occurs primarily in the visible spectrum where the solar light output
peaks and therefore is expected to dominate the contribution of
neutral hydrogen to continuum absorption at visible wavelengths.
(However, note from Problem 2.11 that this is not the dominant
overall contribution to continuum absorption for the Sun.)

2.11 Negative ions are generally difficult to produce and are of less
consequence in astrophysics than are positive ions. One negative ion
that is important in astrophysics is H−, which is formed by addition
of an electron to neutral hydrogen and has a binding energy of only
0.7 eV. Negative hydrogen ions have very low abundance in the
solar surface but they are thought to be the dominant source of
continuum absorption at visible wavelengths. Work through the
following considerations to see why this is so.
(a) Show that under conditions expected in the solar surface the

abundance of H− ions relative to neutral hydrogen atoms is only
about 3 × 10−8.

(b) Show that bound–free absorption involving ionization of H−

occurs at wavelengths shorter than about 17,000 nm and
therefore overlaps completely the visible spectrum of the Sun.
Thus, essentially every H− ion in the solar surface is in a state
that can contribute to visible continuum absorption.



(c) Neutral hydrogen is by far the most abundant species in the
solar surface. In Problem 2.10 it was demonstrated that the
dominant neutral hydrogen contribution to continuum
absorption is expected to originate in ionization of electrons
from the n = 3 atomic hydrogen level (Paschen continuum
bound– free transitions). Compare the relative abundance of H−

ions in the solar surface with the relative abundance of neutral
hydrogen atoms in the n = 3 level (the only ones that can
contribute significantly to continuum absorption), and show
that – even though neutral hydrogen atoms are of order 10
million times more abundant than negative hydrogen ions –
negative hydrogen ions are of order 100 times more abundant
than neutral hydrogen in the n = 3 level and therefore negative
hydrogen ions are expected to dominate neutral hydrogen in
producing continuum solar absorption. Since separate problems
in this chapter demonstrate that other sources of visible
continuum absorption (for example, from helium and metals)
are less important, it is expected that ionization of H− ions is the
dominant source of visible continuum absorption for the Sun.

2.12 Neutral helium has an ionization energy of 24 eV. Show that,
although helium is the second most abundant element in the Sun,
ionization from either the ground or first excited state at 20 eV is not
expected to be a significant source of continuum absorption for the
Sun. Order of magnitude estimates are sufficient for this problem
and the effect of statistical factors may be ignored by setting them all
to one.***

2.13 Estimate the possible contribution of metals (elements with atomic
number greater than that of helium, which have a total abundance of
several percent in the Sun) to solar continuum absorption. Take as a
representative example iron, which has an ionization energy of 7.9
eV and a sufficiently high density of bound states that one may
assume as a rough approximation that for any energy below the
ionization threshold there is a nearby bound state. The relative
abundance of iron in the solar surface is about 10−4 that of hydrogen
and, for order of magnitude estimation, you may assume that the
statistical factor ratios are of order 1.



(a) Consider continuum absorption at a wavelength of 4000 Å.
Show, by considering the expected abundance of iron in a level
appropriate to give absorption at that wavelength in the solar
surface, that neutral iron is expected to be much less important
than H− ions in contributing to continuum absorption at 4000 Å
(see the results of Problem 2.11 and don’t forget the effect of
ionization on neutral iron abundance).

(b) Repeat the considerations of part (a) but for a wavelength of
2000 Å. Show that at these short wavelengths iron is expected
to dominate both H− and neutral hydrogen in its contribution to
continuum absorption through bound–free transitions.

2.14 For stellar atmospheres the free-electron pressures Pe typically
range from of order 1 dyn cm−2 for the coolest stars to of order 1000
dyn cm−2 for the hottest stars. Estimate the range of free-electron
number densities for stellar atmospheres from the hottest to coolest
main sequence stars.

2.15 Use the condition nT = n0 + n+ + n++ to derive Eqs. (2.7) for the
fractions of ionized species.***

2.16 Suppose a pure atomic hydrogen gas is found to be 70% ionized at
a temperature of 14,000 K. What is the corresponding electron
number density, assuming the ionization to be caused entirely by
thermal effects?

1 Chapters 1 and 2 review material normally covered in introductory astronomy courses. These
chapters may be skipped if you are familiar already with basic stellar properties and with the
relationship of luminosity to surface temperature that is captured in the Hertzsprung–Russell
diagram.

2 Regions of a star where atoms are partially ionized are called partial ionization zones. Such
zones are important in stellar structure and dynamics (for example they are central to
understanding many pulsational instabilities) because ionization is an energy sink that
changes the number of particles in the gas and therefore alters the effective equation of state.
Figure 2.2 suggests that partial hydrogen ionization may be expected in stellar regions having
temperatures in the vicinity of 7,000–10,000 K.

3 The sequence is associated with a traditional mnemonic: Oh Be A Fine Girl/Guy Kiss Me.
Most of our discussion will assume the basic sequence O B A F G K M but some additional
specialized classes are discussed in Box 2.1. These classifications also may be decimally
subdivided by appending a number 0−9 to give even finer classification of details. Thus a G8
star is much closer to K0 than to G0 in its spectral characteristics.



4 In practice there is a correction for interstellar reddening: because of the characteristic size of
the dust particles that light encounters as it passes through the interstellar medium, shorter
wavelengths are preferentially scattered relative to longer wavelengths and light becomes
more dim and more red as it passes through the interstellar medium. This correction is of
large practical importance but it will be ignored for much of the present introductory
discussion.



3

Stellar Equations of State

Our fundamental initial task in astrophysics is to understand the structure of
stars. In this chapter and the next four the basic equations that govern stellar
structure and stellar evolution will be developed. At a minimum, an
understanding of stars will require

1. A set of equations describing the behavior of stellar matter in
gravitational fields. These often are well approximated by
hydrodynamics in the general case, reducing to hydrostatics in the
simplest cases.

2. A set of equations governing energy production and associated
composition changes driven by thermonuclear reactions.

3. A set of equations describing how energy is transported from the
energy-producing regions deep in the star to the surface.

4. Equations of state that carry information about the microscopic
physics of the star and that relate macroscopic thermodynamic
variables to each other.

These sets of equations are coupled to each other in highly non-trivial ways.
For example, the hydrodynamics is influenced by the energy production in
the thermonuclear processes and the thermonuclear processes are in turn
strongly dependent on variables such as temperature and density that are
controlled by the hydrodynamical evolution and equation of state. The full
problem will correspond to a set of coupled, nonlinear, partial differential
equations that can be solved only through large-scale numerical
computation, but in many cases assumptions can be made that allow
simpler solutions illustrating many basic stellar features. We begin the
discussion by considering typical equations of state in this chapter, with the
other topics enumerated above to be addressed in subsequent chapters.



3.1 Equations of State
An equation of state is a relationship among thermodynamic variables for a
system carrying information about the basic physical properties of the
system that goes beyond what is known on purely thermodynamic grounds.
Schematically, an equation of state is of the form

(3.1)

where P is the pressure, T is the temperature, ρ is the density, the Xi are
concentrations variables, and so on. Equation (3.1) is intended to be highly
schematic at this point, since an equation of state can take many forms. It
need not even be specified analytically. For example, equations of state
employed in numerical astrophysics simulations often use direct
interpolation in multidimensional tables that have been constructed
numerically. It was fortunate for the development of quantitative stellar
models that in many physically relevant instances the minimal equation of
state is relatively simple and can be approximated by an analytical function
of the thermodynamical variables.

We now consider some specific equations of state that may be important
for the physics of stars. In addressing this issue it is important to ask
whether the equation of state can be described in terms of classical
thermodynamics, or whether quantum physics is required. We will find that
for many applications a classical treatment is adequate but for some – in
particular those involving high densities – a quantum prescription will
become necessary. Let us first address cases where a classical treatment is
adequate before tackling the more interesting issue of equations of state for
quantum gases. The starting point for a classical description will be to write
down a general expression for the pressure of a gas in terms of an integral
over the momentum distribution of its particles.

3.2 The Pressure Integral
Except at extremely high densities where liquid or even crystalline phases
may be found, our primary concern in astrophysics is with equations of
state for gases. If quantum-mechanical effects can be neglected, the



pressure in a gas may be expressed in terms of the pressure integral derived
in Problem 3.6,

(3.2)

where P is the pressure, v is the velocity, p is the momentum, and n(p) is the
number density of particles with momentum in the interval p to p + dp. This
formula represents a very general result that can be shown to be valid for
gas particles with any velocity, up to and including v = c (see Problem
3.18), as long as quantum effects can be neglected.

3.3 Ideal Gas Equation of State
If a gas consists of point particles in random motion with weak interactions,
the gas obeys the ideal gas equation of state, which may be expressed in a
variety of equivalent forms:

(3.3)

where P is the pressure, n is the number density of gas particles, V is the
volume, N = nV is the number of particles contained in a volume V , the
Boltzmann constant is k, the temperature is T , the number of moles in V is
NMu, the universal gas constant is R = kNA = k/Mu (where the Avogadro
constant is  with Mu the atomic mass unit), μ = ρ/nMu is the
mean molecular weight for the gas particles in atomic mass units, and ρ is
the mass density (see Box 3.1 for a discussion of these quantities). The ideal
gas equation (3.3) follows from the more general Eq. (3.2) evaluated for a
Maxwellian velocity distribution,

(3.4)

where the total particle number density is n = ∫0∞ n(v)dv (see Problem 3.7).
This distribution is illustrated in Fig. 3.1 for hydrogen gas at several
temperatures. Some authors make subtle distinctions between ideal gases



and perfect gases but that will not be important here and any gas described
at a reasonable level of approximation by the equation of state (3.3) will
qualify as an ideal gas for our purposes.

Box 3.1 Masses, Moles, and Mean Molecular Weights

The terminology mean molecular weight is a misnomer, since molecules
are unlikely to be found in stars except for the surface layers of the
coolest ones. The mean molecular weight μ is actually the average mass
of a particle in the gas (which consists mostly of atomic ions and
electrons), as will be discussed further in Section 3.4. Sometimes μ will
be expressed in units of amu (see below) and sometimes in physical
mass units like grams; it should be clear from dimensional analysis
which units are being used.

Masses and the Atomic Mass Unit Masses are commonly given in
terms of the atomic mass unit (amu), which will be denoted by Mu. The
amu is defined to be  of the mass of 12C (in its neutral ground state),
so that

For many (not all) applications in astrophysics it is sufficiently accurate
to take the mass of a hydrogen atom or proton to be 1 amu; thus, mH ≃
mp ≃ 1 amu. Such approximations introduce errors that are less than
1%: in reality the atomic mass of hydrogen is 1.007825 amu and the
mass of a proton is 1.007277 amu. For our purposes it will usually be
sufficient to ignore the distinction between nuclear mass and atomic
mass (which includes electron masses and binding energies in addition
to the nuclear mass), as will be discussed further in Chapter 5.

Moles and the Avogadro Constant
A mole (abbreviation mol) is defined to be a quantity of matter that
contains as many constituent objects (atoms, ions, …) as the number of
atoms in 12 grams of 12C. A mole of atoms is equal to a number given
by the Avogadro constant, which takes the value NA = 6.022 × 1023. The
terminology ‘Avogadro’s constant is often employed rather than the



also-common ‘Avogadro’s number’ to distinguish current usage from
historical usage with a different definition that gave essentially the same
numerical value of NA. The distinction will not be important for us
except to note that Avogadro’s number is just a number but Avogadro’s
constant carries dimension of mol−1, since the mole is now officially
recognized as a unit. Formally,

Then, since NA and 1/Mu are equivalent numerically, in equations NA in
units of mol−1 can be interchanged with 1/Mu in units of g−1. Finally, if
so inclined, one may pay homage to the exponent in Avogadro’s
constant by celebrating October 23 (10/23) as Mole Day.

Fig. 3.1 Maxwell velocity distribution f (v) = n(v)/n from (3.4) for hydrogen gas at various
temperatures.

3.3.1 Internal Energy
For a gas described by the equation of state (3.3) the internal energy U is
given by

(3.5)



with the heat capacity at constant volume CV(T ) defined by1

(3.6)

where Q is heat, S is the entropy, and the first law of thermodynamics,

(3.7)

has been used (see Box 3.2 for the distinction between δQ and dQ). The
corresponding internal energy density u is given by

(3.8)

where V is the volume and Eq. (3.5) was used.

Box 3.2 Exact and Inexact Differentials

In Eq. (3.7) we wrote the change in heat as δQ instead of dQ to make
explicit that the change in heat is not an exact differential (or not a
perfect differential). The change in internal energy dU is an exact
differential because there is a function U such that U = ∫ dU. Thus the
change in U evaluated over a path depends only on the endpoints of the
path and U is a state function: it characterizes the state of the system at a
given time and a change in U depends only on initial and final states.
Conversely, change in heat δQ and change in work δW are not state
functions and cannot be expressed as exact differentials. They are
inexact differentials and cannot be integrated without full knowledge of
the integration path.

State Functions and Non-state Functions
We may think of state functions as the integrals of perfect differentials
that characterize an equilibrium state of the system, independent of how
the system got there. On the other hand, non-state functions may be



thought of as being associated with imperfect differentials that
characterize a system in transition between equilibrium states. For
example, the internal energy U characterizes an equilibrium state and is
a state function but the work Δ W done in moving the system from a
previous state to the present one depends on the path followed. Thus it
characterizes a path-dependent change in energy that is not a state
function because its value is not determined by the present state.

A Simple Analogy
Consider a banking account where either checks or cash may be
deposited [50]. The total money in the account is the analog of U, check
deposits are the analog of δQ, and cash deposits are the analog of δW.
At any time the state of the account can be specified by the total amount
of money, but that information is insufficient to tell us how much of the
total corresponds to check deposits and how much to cash deposits.
Only a specification of the detailed history of deposits (the “integration
path”) can tell us that, since many possible “paths” lead to the same total
amount in the account. Likewise, if an equilibrium state is changed into
another in a thermodynamic system the final state is uniquely
characterized by its internal energy, irrespective of the path followed to
get there, but there are many paths leading from the initial to final state
corresponding to different relative contributions of δQ and δW to the
change in total energy, and state information alone cannot distinguish
them.

3.3.2 The Adiabatic Index
For the special case of a monatomic, nonrelativistic ideal gas,

(3.9)

Expressing the internal energy relation (3.5) in differential form, dU = CV(T
)dT, introducing the heat capacity at constant pressure,

(3.10)



and using the first law (3.7) gives for an ideal gas (see Problem 3.1)

(3.11)

The adiabatic index γ is defined by

(3.12)

For an ideal gas the heat capacities are independent of temperature and if
the gas is monatomic,

(3.13)

As we shall see in Eq. (7.37), the adiabatic index of an ideal gas is directly
related to the number of degrees of freedom for each particle in the gas.
From Problem 3.21, the relationship between the pressure P and energy
density u for an ideal gas may be expressed in terms of the adiabatic index:

(3.14)

This equation may be used to define an effective adiabatic index γ for the
general case, but only in the ideal gas limit is γ given by Eq. (3.13). The
adiabatic speed of sound vs in an ideal gas depends on γ through

(3.15)

where ρ is the density and P is the pressure, as shown in Problem 3.10.

3.4 Mean Molecular Weights
Realistic gases in astrophysics usually consist of more than one atomic or
molecular species, and each may be partially or totally ionized. For
example, the gas in a star may contain hydrogen atoms and ions, helium
atoms and ions, various heavier elements in atomic, molecular, or ionic
form, and the electrons produced by ionization. In many situations it may



be possible to treat a mixture of different gases as if it were a single gas
with an effective molecular weight. For example, as long as the density is
not too large a mixture of hydrogen ions, fully ionized helium ions, and
electrons will behave as a mixture of three ideal gases, each contributing a
partial pressure to the total pressure of the system (Dalton’s law of partial
pressures). Under these conditions the system can be treated formally as a
single gas with an effective molecular weight representing the relative
contributions of each individual gas to the system properties. The following
sections introduce some formalism and terminology associated with
concentrations and densities of various species in a gas that allow such a
treatment to be implemented.

3.4.1 Concentration Variables
The mass density ρi of an ionic species i is given by

(3.16)

where Ai is the atomic mass number, Mu is the atomic mass unit, ni is the
number density, and NA = 1/Mu is the Avogadro constant (recall the
discussion in Box 3.1). The mass fraction Xi for the species i may be
introduced by the definition

(3.17)

where ρ is the total mass density and the label i may refer to ions, atoms, or
molecules; by definition the mass fractions sum to unity:  It
also will be useful to introduce the abundance Yi ,

(3.18)

Generally, the sum of the Yi will not be unity.

3.4.2 Partially Ionized Gases



Let’s address first the most general case of a gas with multiple species, each
with arbitrary degrees of ionization. In Appendix C the definitions of the
previous section are used to demonstrate that if the energy density and the
pressure of radiation can be neglected the average mass of a particle (atoms,
ions, or electrons) in the gas is given in atomic mass units by the expression

(3.19)

where the sum is over isotopic species, yi is the fractional ionization of the
species i (yi = 0 for no ionization and yi = 1 if the species i is completely
ionized), and Zi is the atomic number for isotopic species i.

Therefore, with this formalism the actual gas, which is a mixture of
electrons and different atomic, possibly molecular, and ionic species, has
been replaced with a gas containing a single kind of fictitious particle
having an effective mass μ (often termed the mean molecular weight) that is
given by Eq. (3.19). In very hot stars the momentum and energy density
carried by photons are non-trivial and this will modify further the effective
mean molecular weight of the gas. This will be discussed in Section 3.11.1.

Example 3.1 For completely ionized hydrogen gas there is a single ionic
species and yi = Zi = Yi = 1. Thus from Eq. (3.19)

(in atomic mass units). This is just the average mass of a particle in a gas
having equal numbers of protons and electrons, if the mass of the electrons
is neglected relative to that of the protons. As a second example, the
composition of many white dwarfs may be approximated by a completely
ionized gas consisting of equal parts 12C and 16O by mass. The mass
fractions are X12C = X16O = 0.5, so the abundances are



From Eq. (3.19), this gives μ = 1.745 amu if complete ionization (yi = 1) is
assumed. From Eq. (C.4) in Appendix C the average number of electrons
produced per ion is z = 6.86 (the concentration-weighted average of six
electrons from each completely ionized carbon and eight electrons from
each completely ionized oxygen), so in a typical white dwarf the gas
contains nearly seven electrons for every ion.

As will be seen later, the preceding example implies that the mass of the
white dwarf is carried almost entirely by the ions but the pressure is
dominated by the electrons.

3.4.3 Fully-Ionized Gases
We will show later in this chapter that stars are generally completely
ionized except relatively near the surface. Hence complete ionization will
often be assumed in this discussion, which simplifies the considerations of
Section 3.4.2. Assume a completely ionized gas for which both the ions and
electrons obey the ideal gas law. From Eq. (C.2) of Appendix C the mean
weight of the ions μI is given by

(3.20)

and from the ideal gas law the pressure contributions from the ions is

(3.21)

Now consider the electrons. For the fully ionized gas the electron number
density is

(3.22)

where [see Eq. (C.3)] μe is defined by

(3.23)



The electronic contribution to the pressure is then

(3.24)

The total pressure of the gas is the sum of contributions from the ions and
the electrons,

(3.25)

where the mean molecular weight of the gas μ (averaged over all ionic
species and the electrons) is defined by

(3.26)

Thus, the completely ionized gas has the same equation of state as an ideal
gas of particles having an effective mass μ given by Eq. (3.26).

3.4.4 Shorthand Notation and Approximations
It is common to define a shorthand notation

(3.27)

where “metals” refers to the aggregate of all elements other than hydrogen
and helium2 and X + Y + Z = 1. For the Sun the composition suggested by a
study of the solar atmosphere is [28]

(3.28)

which is similar to that expected for a typical Pop I star just entering the
main sequence (commonly termed a Zero Age Main Sequence or ZAMS
star). The metal fraction Z will be less than this in Pop II stars. As an
alternative to the mass fraction Z, astronomers often specify the metal
content of a star in terms of metallicity, which is defined in Box 3.3.



Box 3.3 Metallicity

The metal content of stars is a few percent or less by mass, but even in
small doses metals are important because they produce copious
electrons when ionized. For example, ionization of a hydrogen atom
produces one electron but complete ionization of silicon and iron
produces 14 and 26 electrons, respectively. Since increasing the number
of free electrons increases the photon opacity and this in turn strongly
influences energy transport (see Chapter 7), even a small enhancement
of metal concentration can have significant influence on stellar structure
and stellar evolution.

Definition of Metallicity
The metal mass fraction Z can be used to specify metal concentration, as
in Eq. (3.28). However, the metal content of a star also may be specified
in terms of a related logarithmically defined quantity called the
metallicity. Typically the metallicity is designated by the symbol [Fe/H]
and is defined as

where log is the base-10 logarithm and nFe and nH are the iron and
hydrogen number densities, respectively.a Thus stars with solar metal
content have [Fe/H] = 0, those with more metals than the Sun have a
positive [Fe/H], and those with fewer metals than the Sun have a
negative [Fe/H]. For example, a star with 1% of the iron found in the
Sun has [Fe/H] = −2. Typical observed metallicities are as large as +1
for metal-rich stars and as small as −6 for metal-poor stars. This orders-
of-magnitude difference in metal content for stars makes the logarithmic
definition of the metallicity particularly convenient.

Stellar Age and Metallicity
The early Universe had no metals to speak of. They were manufactured
later by stars and distributed in the interstellar medium by winds and
explosions. Hence newer generations of stars incorporate on average
more metals than older generations when they form, and metallicity is



(approximately) correlated with age: other things being equal, high
metallicity tends to indicate a young star and low metallicity tends to
indicate an old star.
a The metallicity ‘unit’ is termed the dex (“decimal exponent”) in older literature. Fe is the

usual metallic reference because its spectral lines are easily identified but other metals may
be used. For example, an oxygen-based metallicity [O/H] may be defined in complete
analogy with the Fe-based one.

Simplified versions of the preceding equations and those of Appendix C
that are adequate for many applications may be obtained by approximations
assuming the contributions of metals to be small and to come from
symmetric isotopes (equal numbers of protons and neutrons). As an
example, for the mean ionic mass of a completely ionized gas

(3.29)

where 〈A〉 is the average atomic mass number for the metals in the star, and
for the average electronic mass per nucleon of that gas

(3.30)

where angle brackets indicate an average over metals (see Problem 3.20)
and the last form results from approximating  since the most
abundant metals in stars correspond to isotopes with approximately equal
numbers of protons and neutrons (symmetric matter).

Example 3.2 For the Sun, assuming complete ionization and the
composition (3.28), μe ≃ 2/(1 + X) = 1.15, and neglecting the small
contribution of metals

Then the total mean molecular weight characterizing the gas in the Sun is



with the assumption of complete ionization.

An approximate formula for the mean molecular weight of a completely
ionized gas is

(3.31)

which follows from Eqs. (3.29), (3.30), and (3.26) if metals are neglected so
that Z ∼ 0 and Y ∼ 1 − X. This often is an acceptable approximation since
most stars have a metal content of several percent or less. Applying (3.31)
using the solar composition (3.28) gives μ ∼ 0.60, as expected from
Example 3.2.

3.5 Polytropic Equations of State
An ideal gas equation of state with an effective mean molecular weight μ is
a realistic approximation for many astrophysical processes, but there are
other equations of state that are important in particular contexts. Generally,
systems in thermodynamic equilibrium may be described in terms of three
state variables P , T , and V or ρ. The most general equation of state
provides a constraint that reduces the number of independent variables to
two. If an additional constraint is placed on the system, a specialized
equation of state is obtained that allows only one state variable to be varied
independently.

3.5.1 Polytropic Processes
An example of imposing such an additional constraint is a polytropic
equation of state. Generally, we may define a polytropic process by the
requirement

(3.32)



where Q is the heat, T is the temperature, and c is a constant that may be
interpreted as the heat capacity. A number of specific processes may be
defined by Eq. (3.32), depending on the choice of c [224]. (1) If c = 0 the
process is adiabatic, as discussed in Section 3.6. (2) If δT = 0 the process is
isothermal and c → ∞. (3) If c = CV the process is isometric (occurs at
constant volume V ). (4) If c = CP the process is isobaric (occurs at constant
pressure P ).

3.5.2 Properties of Polytropes
Important properties of polytropes are explored in Problem 3.11. For
example, the first law (3.7) and Eq. (3.32) may be used to prove that for
polytropic processes in ideal gases

(3.33)

where the polytropic γ is defined by

(3.34)

which reduces to the ideal gas law adiabatic parameter γ only if the constant
c = 0. By inspection, three classes of polytropic equations of state satisfy
Eq. (3.33):

(3.35)

The most common form of a polytropic equation of state employed in
astrophysics is

(3.36)

(this is of the form PV γ = constant, since ρ ∝ 1/V ), where the polytropic
index n is related to γ by

(3.37)



Equation (3.36) implies physically that the pressure is independent of the
temperature, depending only on density. A polytropic approximation for the
equation of state often makes solution of the equations for stellar structure
easier because it decouples the differential equations describing hydrostatic
equilibrium from those governing energy transfer and the temperature
gradients (see Section 8.4). Box 3.4 discusses some cases where polytropic
equations of state are relevant in astrophysics applications.

Box 3.4 Examples of Polytropic Equations of State

For at least three situations of interest in stellar structure the appropriate
equation of state may be approximated by a polytrope:

1. For a completely ionized star that is fully mixed by convective
motion of the gas and has negligible radiation pressure, the
equation of state is

which corresponds to a polytrope with  and  The
parameter K1 is constant for a given star but is phenomenological
and differs from star to star.

2. For a completely degenerate gas of nonrelativistic (v << c)
fermions (degeneracy is defined in Box 3.6 below) the appropriate
equation of state is (see Section 3.8)

again corresponding to a polytrope with  and 
However, in this case the parameter K2 is determined by
fundamental constants and is not adjustable.

3. For a completely degenerate gas of ultrarelativistic fermions (v ∼
c), the equation of state is (see Section 3.8)



corresponding to a polytrope with  and n = 3. As in the
nonrelativistic degenerate example, the parameter K3 is fixed by
fundamental constants.

These three polytropic equations of state will be relevant for
homogeneous stars that are completely mixed by convection, low-mass
white dwarfs, and neutron stars and high-mass white dwarfs,
respectively.

3.6 Adiabatic Equations of State
In terms of the heat Q and the entropy S, adiabatic processes are a specific
type of polytropic process defined by the requirement that

(3.38)

From the first law (3.7), in adiabatic processes the change in internal energy
comes only from PdV work. Adiabatic processes do not exchange heat with
their environment, which makes them fully reversible (dS = 0). Realistic
phenomena in astrophysics are not adiabatic but many are at least
approximately so; therefore the adiabatic approximation is often a useful
one. Some properties of adiabatic processes for ideal gases are explored in
Problem 3.10 and considerably more will be said about them in subsequent
material.

It is standard practice to introduce three adiabatic exponents Γ1, Γ2, and
Γ3 through the definitions

(3.39)

where the subscripts S are a reminder that adiabatic processes occur at
constant entropy, and where the logarithmic derivatives are equivalent to ∂
ln A = ∂A/A. As may be verified directly by substitution, these definitions
imply equations of state that take one of the three forms



(3.40)

where the cn are constants and ρ ∝ V −1. Equationa (3.39) imply that (Γ2 −
1)/Γ2 = (Γ3 −1)/Γ1, so the three adiabatic exponents are not independent.
The relationship among the different adiabatic Γi and the ideal gas
parameter γ is discussed in Box 3.5.

Box 3.5 A Plethora of Gammas

For ideal gases the three adiabatic exponents defined through Eq. (3.39)
are all equal and are also equivalent to the ideal gas adiabatic coefficient
γ ,

But for more general cases Γ1, Γ2, and Γ3 are distinct and carry
information emphasizing different aspects of the gas thermodynamics:

1. Because Γ1 specifies how changes in pressure are related to
changes in density, it enters into dynamical properties of the gas
such as the speed of sound (see Problem 3.17).

2. Γ2 relates changes in pressure to changes in temperature; this, for
example, is important in understanding convective gas motion (see
Chapter 7).

3. Γ3 depends on the derivative of temperature with respect to
density, which influences the response of the gas to compression.

An example of employing these adiabatic exponents may be found in
Section 3.11, where a mixture of ideal gas and photons will be examined
in the adiabatic limit.

3.7 Equations of State for Degenerate Gases
Degenerate matter, which is defined in Box 3.6, is important in a variety of
astrophysical applications. For example, in white dwarf stars the electrons



are thought to be degenerate except very near the surface, while in neutron
stars the neutrons are expected to be degenerate. Let us look at this in a
little more detail for electrons, beginning with a demonstration that – as a
consequence of quantum mechanics – most stars are expected to be
completely ionized over much of their volume because ionization can be
induced by sufficiently high pressure, even for low temperatures. Ionization
by pressure rather than temperature implies the possibility of producing a
(relatively) cold gas of electrons, which is the necessary condition for a
degenerate electron equation of state.

Box 3.6 Quantum Mechanics and Equations of State

Stellar equations of state reflect microscopic properties of the gas. At
low densities this gas behaves classically but at higher densities a
quantum-mechanical description becomes essential. A brief but more
mathematical overview of quantum mechanics is given in Appendix F
but the requisite physics can be understood conceptually in terms of four
basic ideas.

de Broglie Wavelength
The foundation of a quantum description of matter is particle–wave
duality: a microscopic particle takes on wave properties characterized
by a de Broglie wavelength λ = h/p, where p is the momentum and h is
Planck’s constant. Thus in quantum mechanics the location of a particle
becomes fuzzy, spread out over an interval comparable to the de Broglie
wavelength.

Heisenberg Uncertainty Principle
The uncertainty principle quantifies the fuzziness of particle–wave
duality, requiring that Δ p · Δ x ≥ h, where Δ p is the uncertainty in
momentum, Δx is the uncertainty in position, and h ≡ h/2π, as well as Δ
E · Δt ≥ h, where Δ E is the uncertainty in energy and Δt is the
uncertainty in the time over which the energy is measured.

Quantum Statistics
Elementary particles may be classified as either fermions or bosons,
which characterizes how aggregates of the same type of particle behave.
Fermions (such as electrons, or neutrons and protons if their internal



quark and gluon structure is neglected) obey Fermi–Dirac statistics,
which implies the Pauli exclusion principle: no two fermions can
occupy the same quantum state. All elementary particles of half-integer
spin are fermions. Bosons (photons are the most important example for
us) obey Bose–Einstein statistics, which places no restriction on how
many identical particles can occupy the same state. All elementary
particles of integer spin are bosons. Matter is made from fermions but
forces are mediated by exchange of bosons. For example,
electromagnetic forces result from virtual photon exchange between
charged particles.

Degeneracy
The exclusion principle requires each fermion to be in a different
quantum state, so the lowest-energy state results from filling energy
levels from the bottom up. Degenerate matter is a many-fermion state
with all the lowest energy levels filled and all higher ones unoccupied. It
is common at high densities and has an unusual equation of state with
various implications for astrophysics. Degenerate matter has many
similarities with metals in the solid state.

3.7.1 Pressure Ionization
Consider the schematic diagram shown in Fig. 3.2, where atoms are
represented by the darker spheres of radius r and the average spacing
between atoms is represented in terms of the lighter spheres with radius d.
Although the argument can be generalized easily, it is assumed for
simplicity of discussion that the stellar material consists only of ions of a
single species and electrons produced by ionizing that species. Electrons
confined in the atoms obey Heisenberg uncertainty relations of the form p ·
Δx ≥ ħ (Box 3.6). Taking an average volume per electron of V0 ≃ (Δx)3, the
uncertainty principle relation becomes

(3.41)

The uncertainty principle leads to ionization when the effective volume of
the atoms becomes too small to confine the electrons because of Eq. (3.41).



The volume per electron V0 and the volume per ion Vi are related by ZV0 =
Vi , since there are Z electrons per ion, allowing (3.41) to be expressed as
the inequality  [55, 134].

Fig. 3.2 Snapshot of idealized atomic spacing in dense matter. These are slices of 3-dimensional
spherical volumes. Darker central spheres represent atomic volumes. The larger unshaded spheres
represent the average volume available to each atom at a given density.

From basic atomic physics the atomic radius may be approximated by r
≃ a0Z−1/3, where a0 = 5.3×10−9 cm is the Bohr radius. From Fig. 3.2, if the
star is composed entirely of a single element with atomic number Z and
mass number A, there are on average Z electrons in each sphere of radius d
and the average number density for the electrons is ne = 3Z/4πd3, which
may be solved for the separation d,

(3.42)

As illustrated in Fig. 3.3, ionization is likely to result at densities where d <
r because no bound electronic states remain in the potential wells centered
on the ions at those densities. Since there are A nucleons in each volume of
radius d in Fig. 3.2, the mass density is ρ = 3AMu/4πd3 and requiring that d
≃ r ≃ a0Z−1/3 defines a critical density



(3.43)

We may expect that for densities greater than this there will be almost
complete pressure ionization, irrespective of the temperature.

Fig. 3.3 Pressure ionization. At lower density the electrons occupy quantum-mechanical bound states
(denoted by dashed lines) in potential wells centered on the ions. With increasing density, fewer
locally bound states are possible until at some critical density none remain and the electrons are all
ionized. Thus, sufficiently high density can cause complete ionization, even at zero temperature.

Example 3.3 The condition (3.43) is satisfied rather easily. Consider pure
hydrogen. Inserting Z = A = 1 gives a critical density of 3.2 g cm−3, only a
little larger than that of water.

The critical pressure ionization densities for gases composed of isotopes for
a few representative elements are summarized in Table 3.1. These critical
densities may be compared with typical actual densities of order 102 gcm−3

for the center of the Sun, 106 g cm−3 for a carbon–oxygen white dwarf, and
109 gcm−3 for the iron core of a massive pre-supernova star. These
considerations imply that Saha ionization equations such as Eq. (2.2), which
are derived assuming ionization to be caused by thermal effects, are no
longer reliable in the deep interior of stars.

Table 3.1 Critical pressure-ionization densities



Example 3.4 The Saha equations predict approximately 24% of the
hydrogen in the core of the Sun to be neutral. However, comparison of
Table 3.1 with Table 10.1 for properties of the solar interior indicates that
the density is sufficiently high to pressure-ionize hydrogen over the inner
40% of the Sun. Between thermal and pressure effects, the solar interior is
almost entirely ionized, in contrast to what would be expected from the
Saha equations alone.

3.7.2 Distinguishing Classical and Quantum
Gases
We now examine in more depth the distinction between a classical gas and
a quantum gas, and the corresponding implications for stellar structure. The
difference between classical and quantum gases can be understood in terms
of possible statistical distributions for particles in the gas.

The Fermi–Dirac distribution: Identical fermions are described statistically
in quantum mechanics by the Fermi–Dirac distribution

(3.44)

where the energy εp for nonrelativistic and relativistic regimes is given by

(3.45)



(3.46)

and the chemical potential μ is the energy associated with changing the
number of particles in the system. It may be introduced formally by
including in Eq. (3.7) a term μdN accounting for a possible change in the
particle number N so that the first law generalizes to

(3.47)

which expresses how the internal energy changes with transfer of entropy or
heat, with compression or expansion, and through transfer of particles.

The Bose–Einstein distribution: Identical bosons are described statistically
in quantum mechanics by the Bose–Einstein distribution

(3.48)

which seems similar in form to the Fermi–Dirac distribution but is
associated with statistical behavior for bosons that is quite different from
that of fermions.

The Maxwell–Boltzmann distribution: Now it is possible to make a
concise formal distinction between classical and quantum gases. A gas is a
quantum gas if it is described by one of the distributions (3.44) or (3.48),
and it is a classical gas if the condition

(3.49)

is fulfilled. If the classical condition (3.49) is satisfied, for either fermions
or bosons the distribution function becomes well-approximated by
Maxwell–Boltzmann statistics,

(3.50)



where generally f (εp) << 1. Thus, in a classical gas the individual energy
states are scarcely occupied, quantum effects are minimized, and the gas
obeys Maxwell–Boltzmann statistics.

3.7.3 Nonrelativistic Classical and Quantum Gases
It is useful to introduce a critical (number) density variable nc through the
definition

(3.51)

where the deBroglie wavelength λ for nonrelativistic particles is given by

(3.52)

As shown in Box 3.7, the number of particles in the gas is

(3.53)

where the integration measure is

(3.54)

with p the momentum, V the volume, and gs = 2s + 1 = 2 the spin-
degeneracy factor for electrons. To obtain a rough estimate we may
substitute the Maxwell–Boltzmann distribution (3.50) with a nonrelativistic
energy (3.45) into (3.53), approximate gs ∼ 1, integrate, and rearrange the
results to give

(3.55)

where the number density is n = N/V. Therefore, the condition (3.49) has a
simple physical interpretation: satisfying it at a given temperature is



equivalent to requiring that n << nc, implying that a classical gas is
characterized by an actual number density n that is small on a scale set by
the critical quantum density nc.

Box 3.7 Density of Quantum States

The quantum states of a gas may be enumerated by confining the
particles to a cubic box of volume V = L3. The wavefunctions must obey
the Schrödinger equation

where the wavevector k = p/h has been introduced. The boundary
conditions (periodic in Li ) imply solutions labeled by the conserved
momentum k = p/h

where the ni(i = x, y, z) are positive integers, and the corresponding
energy is

Allowed states may be thought of as points in the k-space labeled by
quantum numbers (nx , ny , nz), each with an additional spin degeneracy
gs = 2s + 1.

Physical quantities involve integrals over contributions from the
particles, so an appropriate integration measure is required. In the
interval ki to ki + dki there are (L/π)dki distinct values of ni , so upon
defining a 3-dimensional k-space with coordinates kx , ky, and kz a unit
volume in this space will contain (L/π)3 quantum states. Now consider
the quantum states in the k-space lying between the concentric spheres



of radius k and k + dk, restricting to the octant where all the ki are
positive. The total volume of this region is

There are (L/π)3 discrete states per unit volume, each with additional
spin degeneracy gs , so the density of states is 

 Reverting to the momentum variable p =
hk and using V = L3 yields the integration measure

For example, if the distribution in εp is f (εp), the energy E and particle
number N are given by

For the specific case of fermions, f (εp) is given by Eq. (3.44).

Example 3.5 The preceding result has an instructive alternative
interpretation. The average separation between particles is d ∼ n−1/3, the
condition n << nc defining a classical gas implies that 1/n >> 1/nc, and from
Eq. (3.51), nc ∼ λ−3. Thus, the condition n << nc is equivalent to the
requirement that d >> λ, meaning that for a classical gas the average
separation between particles is much larger than the average de Broglie
wavelength λ for particles. This makes sense conceptually. The “quantum
fuzziness” of a particle extends over a distance ∼ λ, so if particles are
separated on average by distances considerably larger than λ quantum
effects are minimized and a classical description becomes valid. This
difference between a classical and quantum gas is illustrated in Fig. 3.4.



Fig. 3.4 Schematic illustration of classical and quantum gases. The width of each fuzzy ball
represents the quantum uncertainty in position (not the physical size) of the gas particle. In the
classical gas (left) the average spacing d between gas particles is much larger than their de Broglie
wavelengths λ. In the quantum gas (right) d is comparable to λ. The gas particles have a range of λ
values because they have a velocity distribution.

3.7.4 Ultrarelativistic Classical and Quantum Gases
Proceeding in a manner similar to that for the nonrelativistic case, for
ultrarelativistic particles (v ∼ c) the rest mass of the particle may be
neglected and εp ≃ kT = (m2c4 + p2c2)1/2 ≃ pc and Eq. (3.50) may be
employed to obtain

(3.56)

where the relativistic critical quantum density n′c is defined by

(3.57)

Comparing Eqs. (3.56) and (3.49) with the mass m neglected suggests that
in the ultrarelativistic limit the condition that the gas behave classically is
equivalent to a requirement that  As for the nonrelativistic limit,



this implies that the de Broglie wavelength λ = h/p ≃ hc/kT is small
compared with the average separation of particles in a classical gas.

3.7.5 Transition from a Classical to Quantum Gas
Equations (3.51) and (3.57) imply that we also may view the quantum gas
condition as a temperature constraint. For example, from Eq. (3.51) the
condition n >> nc implies that

(3.58)

A quantum gas is a cold gas, but cold on a temperature scale set by the right
side of Eq. (3.58) – if the density is high enough the gas could be “cold”
and still have a temperature of billions of degrees! The precise meaning of a
cold fermionic gas is that the fermions are concentrated in the lowest
available quantum states, which is the definition of a degenerate gas (see
Box 3.6).

We may conclude from the preceding results that at high density the
classical approximation fails and the gas behaves as a quantum system
subject to the quantum statistics (Fermi–Dirac or Bose–Einstein)
appropriate for the gas. Notice from (3.51) that with increasing gas density
the least massive particles in the gas will be more likely to deviate from
classical behavior because the scale set by the critical density is
proportional to m3/2. Thus photons, neutrinos, and electrons are most
susceptible to such effects. The massless photons never behave as a
classical gas and the nearly massless neutrinos interact so weakly with
matter that they leave the star unimpeded when they are produced.3 It
follows that in normal stellar environments electrons are most susceptible to
a transition from classical to quantum gas behavior. On the other hand, the
ions are sufficiently massive that they can often be treated as a classical
ideal gas, even if the electrons behave as a quantum gas.

Example 3.6 In the center of the Sun the number density for electrons is
about 6×1025 cm−3 and for a temperature of 15 × 106 K the nonrelativistic
critical quantum density from Eq. (3.51) is nc ∼ 1.4 × 1026 cm−3. Thus at
the center the actual electron density is about half the critical density. A



similar analysis at 30% of the solar radius gives that the electron density is
about 12% of critical (see Problem 10.14). Thus, the electrons in the Sun
are reasonably well approximated by a dilute classical gas and quantum
corrections are small. However, the core of the Sun, as for all stars, will
contract late in its life as its nuclear fuel is exhausted. The approximate
relationship between a star’s temperature T and radius R is

where M is the star’s mass, μ is the average mass of a gas particle, and G is
the gravitational constant [169]. Combining this equation with Eq. (3.51)
yields nc ≃ R−3/2. Since the actual number density as n ∼ R−3, as the core of
the Sun contracts eventually n will exceed nc in the central regions and the
electrons there will begin to behave as a quantum rather than classical gas.
Because the present electron density in the core is not very far below the
critical density, quantum effects in the gas of the solar core will presumably
become important relatively early in this contraction.

3.8 The Degenerate Electron Gas
As discussed above, the most important impact of quantum gas behavior in
normal stars is for the electron gas. Accordingly, let us apply the preceding
rather general discussion specifically to both nonrelativistic and
ultrarelativistic degenerate electrons.

3.8.1 Fermi Momentum and Fermi Energy
As illustrated in Fig. 3.5, evaluation of Eq. (3.44) at finite temperature gives
an occupation function that drops from one to zero over a region of finite
width, with this width decreasing as the temperature is lowered. In the limit
that the temperature may be neglected, the Fermi–Dirac distribution (3.44)
becomes a step function in energy space,

(3.59)



where the value of the chemical potential μ at zero temperature is denoted
by εf and is termed the Fermi energy. The corresponding value of the
momentum is denoted by pf and is termed the Fermi momentum. Thus, εf
gives the energy of the highest occupied state in the degenerate Fermi gas
and pf specifies its momentum. We say that εf or pf define a Fermi surface
that contains all occupied levels within it in either energy or momentum
space.4 Figure 3.6 illustrates the energy and momentum space for a
degenerate Fermi gas.

Fig. 3.5 The Fermi–Dirac distribution (3.44) as a function of temperature. Curves with successively
shorter dashes represent successively lower temperatures. The solid line defines a step function
corresponding to the limit T → 0 in Eq. (3.44). This degenerate-gas limit is illustrated further in Fig.
3.6.



Fig. 3.6 The degenerate Fermi gas with its sharp Fermi surface in energy and momentum. In
condensed matter physics the Fermi surface may have a more complex shape but it is assumed to be
isotropic in momentum for our discussion of degenerate gases in stars.

The number of electrons in the degenerate gas at zero temperature is just
the number of states with momentum less than the Fermi momentum pf,

(3.60)

where gs = 2 for electrons has been used. Solving for pf and introducing the
number density n = N/V, the Fermi momentum and Fermi energy εf = pf/2m
are found to be determined completely by the electron number density,

(3.61)

The interparticle spacing is of order n−1/3, so the de Broglie wavelength for
an electron at the Fermi surface, λ = h/pf ∼ n−1/3, is comparable to the
average separation of electrons.

3.8.2 Equation of State for Nonrelativistic Electrons
We may construct the equation of state by evaluating the internal energy of
the gas. Let’s do this first in the nonrelativistic limit and then in the



ultrarelativistic limit for degenerate electrons. In the nonrelativistic limit pf

<< mc, which implies that

(3.62)

where λc ≡ h/mc is the Compton wavelength for an electron. In this limit the
internal energy density u for the degenerate electron gas is

(3.63)

where V is the volume and Eqs. (3.45), (3.54), (3.59), (3.60), and gs = 2
have been used. For a nonrelativistic gas the pressure is given by  of the
kinetic energy density (see Problem 4.10); identifying the second term of
Eq. (3.63) as the kinetic energy density yields the equation of state [169]

(3.64)

where n = N/V and Eq. (3.61) have been used. Since n ∝ ρ, this is a
polytropic equation of state ρ ∼ K2ρ5/3 corresponding to the second example
in Box 3.4.

Example 3.7 For low-mass white dwarfs having ρ <
∼ 106 gcm−3, the

electrons are nonrelativistic and the electron pressure is approximated well
by the  polytrope implied by Eq. (3.64). Utilizing Eq. (3.22) for the
electron number density ne,

(3.65
)



As was already noted in Box 3.4, the constant factor K2 in this case is fixed
by fundamental constants.

3.8.3 Equation of State for Ultrarelativistic Electrons
For ultrarelativistic electrons,  implies that n >> (mc/h)3. Utilizing
Eq. (3.54) and the ultrarelativistic limit εp = pc of Eq. (3.46), the internal
energy density is given by

(3.66)

where (3.59) and (3.61) were used. For an ultrarelativistic gas the pressure
is  of the kinetic energy density (see Problem 4.10), so from Eq. (3.66)

(3.67)

for ultrarelativistic electrons.

Example 3.8 For higher-mass white dwarfs having ρ ≳ 106 gcm−3, the
electrons are very relativistic and the corresponding degenerate equation of
state is well approximated by Eq. (3.67). Utilizing Eq. (3.22) for the
electron number density ne,

(3.68
)

which is a polytrope P = K3ρ4/3 corresponding to the third example in Box
3.4. As for K2 in Example 3.7, the constant factor K3 is not adjustable but is
fixed by fundamental considerations.



3.9 High Gas Density and Stellar Structure
The preceding discussion implies that increasing the density can have a
large impact on the structure of stars by magnifying quantum effects in the
gas. In fact, there are a number of important implications for high densities
in stellar environments that it is useful to summarize:

1. An increase in the gas density above a critical amount exemplified in
Table 3.1 enhances the probability for pressure ionization, thereby
creating a gas of electrons and ions irrespective of possible thermal
ionization.

2. By uncertainty principle arguments an increase in the gas density
raises the average momentum of gas particles, making them more
relativistic.

3. As indicated by Eq. (3.61), an increased density raises the Fermi
momentum. This, for example, influences the weak-interaction
processes like β-decay that can take place in the star.

4. An increase in the gas density decreases the interparticle spacing
relative to the average de Broglie wavelength, making it more likely
that the least massive fermions transition from classical to degenerate
quantum gas behavior. 5. If high density drives the electron gas into a
degenerate state, this will modify the normal relationship between
temperature and pressure, with many implications for stellar structure
and stellar evolution (see Box 3.8).

6. Increased density enhances the strength of the gravitational field and
makes it more difficult to maintain stability of the star against
gravitational collapse. Higher density also makes it more likely that
general relativistic corrections to Newtonian gravitation become
important.

7. Higher density (often implying a higher temperature) changes the rates
of thermonuclear reactions and alters the opacity of the stellar material
to radiation. The former changes the rate at which energy is produced;
the latter changes the efficiency of transporting that energy. Both can
have substantial influence on stellar structure and evolution.



These consequences of increased density are highly relevant for
understanding stellar structure and stellar evolution because all stars are
expected to go through late evolutionary stages that may dramatically
increase their central densities.

Box 3.8 Thermal Pressure and Quantum Pressure

As suggested by preceding discussion, a fermionic gas has an effective
pressure of purely quantum-mechanical origin, independent of its
temperature [193]. To keep the following discussion simple and
qualitative, the gas pressure is assumed to be dominated by
nonrelativistic electrons and often factors of order one will be dropped.
For an ideal gas of temperature T the average energy of an electron is 

 so that the electron may be assumed to have a
velocity

of thermal origin. But even at T = 0 electrons have a velocity vQM
implied by the uncertainty principle. If n is electron number density, p ∼
Δp ∼ h/Δx ∼ hn1/3, and

Thus, the velocity of particles in the gas may be viewed as having two
contributions, one from the temperature and one from quantum
fluctuations, with the two logically distinct because the thermal
contribution vanishes identically at zero temperature.a The pressure
contributed by the thermal motion is

and, dropping some constant factors in Eq. (3.64), the quantum pressure
is given by



Then a degenerate gas is one for which PQM >> Pthermal . Thermal
pressure is proportional to T and density, but quantum pressure is
independent of T and proportional to a power of the density. Hence,
degeneracy is favored in low-temperature, dense gases, and a gas can
have a high pressure of purely quantum origin, even at T = 0.
Furthermore, changing T in a degenerate gas will have little initial effect
on pressure, which is dominated by a term independent of T (as long as
the gas remains degenerate). These properties will have profound
consequences for stellar structure and stellar evolution when high
densities are encountered.
a This is related to the distinction between a thermal phase transition (driven by thermal

fluctuations that vanish as T → 0), and a quantum phase transition (driven by quantum
fluctuations that remain in the zero-temperature limit). Such concepts are important in fields
like condensed matter physics.

3.10 Equation of State for Radiation
Unlike the matter, which is fermionic with finite mass and can be
relativistic or nonrelativistic in different contexts, electromagnetic radiation
in stars may be viewed as an ultrarelativistic gas of massless bosons. The
photon gas is unusual in that the particles in the gas are massless and they
all move at the same speed v = c. It is also unusual in that the number of
photons is generally not a conserved quantity, since the massless photons
can be freely created and destroyed by interactions. Thus the photon
number adjusts itself to minimize the free energy of the system. The
equation of state associated with radiation follows from using the Planck
frequency distribution

(3.69)

to evaluate the pressure and energy density (see Problem 3.8). This yields
for the radiation pressure of the photon gas,



(3.70)

where a is the radiation density constant, and for the corresponding energy
density

(3.71)

which implies an equation of state  for the photon gas.

3.11 Matter and Radiation Mixtures
For a simple model of a star containing gas and radiation, it is often a good
starting point to assume an ideal gas equation of state for the matter
(provided that the density is not too high) and a blackbody equation of state
for the radiation. In that case, for the pressure P and internal energy U,

(3.72)

(3.73)

where the first term in each equation is the contribution of the ideal gas and
the second term in each equation is the contribution of the radiation.

3.11.1 Mixtures of Ideal Gases and Radiation
In high-temperature stellar environments we will often encounter mixtures
of gas and radiation. In that case it is convenient to define a parameter β
that measures the relative contributions of gas pressure Pg and radiation
pressure Prad to the total pressure P :

(3.74)

Thus β = 1 implies that all pressure is generated by the gas, β = 0 implies
that all pressure is generated by radiation, and all values in between



correspond to situations where pressure receives contributions from both
gas and radiation.

Example 3.9 Assuming an ideal gas equation of state, the pressure
generated by the gas alone in a mixture of ideal gas and radiation is

Solving this equation for the total pressure,

(3.75)

which is of ideal gas form. Thus, the formal effect of mixing the radiation
with the gas is to produce an ideal gas equation of state but with an
effective mean molecular weight βμ, where μ is the mean molecular weight
for the gas alone.

The result of Example 3.9 implies that we may view a mixture of ideal gas
and radiation as a modified ideal gas. However, the relative contribution of
radiation and gas to the pressure varies through the volume of a star, so the
parameter β is a local function of position in the star.

3.11.2 Adiabatic Systems of Gas and Radiation
The preceding discussion of gas and radiation mixtures depends only on the
ideal gas assumption. Suppose that discussion is restricted further to
adiabatic processes. From the adiabatic condition δQ = 0, the first law of
thermodynamics, and the definition of β it may be shown that at constant
entropy (see Ref. [55] and Problem 3.16)

(3.76)

These logarithmic derivatives may then be used to evaluate the adiabatic
exponents with the results

(3.77)



(3.78)

(3.79)

The adiabatic exponents Γ1, Γ2, and Γ3 are plotted in Fig. 3.7 as a function
of the parameter β governing the relative contribution of gas and radiation
to the pressure. They have the expected limiting behavior: assuming 

 for a monatomic ideal gas and β = 1 (no radiation contribution to
the pressure) gives  while for β = 0 (all pressure
generated by radiation),  For other values of β the
adiabatic exponents are generally not equal to each other and lie between 
and 

Fig. 3.7 Adiabatic exponents in a mixture of ideal gas and radiation.



3.11.3 Radiation and Gravitational Stability
Problem 3.14 and Fig. 3.7 indicate that the adiabatic exponents (3.39) for a
pure radiation field are all equal to  As shall be explored in greater detail
later (see Sections 9.4 and 16.2.4, for example), an adiabatic exponent with
a value less than  generally implies an instability against gravitational
collapse. Therefore, admixtures of radiation (more generally, of any
ultrarelativistic component) often signal decreased gravitational stability for
a gas.

Background and Further Reading
Our treatment of equations of state follows the discussions in Bowers and
Deeming [55]; Hansen, Kawaler, and Trimble [107]; and the especially
clear presentation in Phillips [169]. Equations of state for condensed objects
such as white dwarfs and neutron stars are discussed in Shapiro and
Teukolsky [200]. Leff [142] gives a pedagogical discussion of the photon
gas equation of state. A clearly written general introduction to the
thermodynamics and statistical mechanics underlying this chapter may be
found in Blundell and Blundell [50].

Problems
3.1 Show that for an ideal gas the heat capacity at constant pressure CP

is related to the heat capacity at constant volume CV by CP = CV +
Nk, where N is the number of particles and k is the Boltzmann
constant.***

3.2 Using the considerations of Section 3.7.1 and the Bohr model of the
hydrogen atom, derive an expression for the principal quantum
number n of the highest bound state as a function of density. Assume
the Sun to be pure hydrogen. Show that even the ground state of the
hydrogen atom is expected to be unbound at densities comparable to
those at the center of the Sun.

3.3 Define a parameter β = Pg/P to be the ratio of the pressure
contributed by the gas to the total pressure P = Pg + Prad (gas plus



radiation) in a star. Assuming ideal behavior for the gas and a
blackbody spectrum for the photons, show that the temperature is
given by

where ρ is the density, Mu is the atomic unit mass, μ is the mean
molecular weight, k is the Boltzmann constant, and a is the radiation
constant. Show that if β is assumed constant, the system behaves as
an ideal gas with an effective molecular weight βμ (where μ is the
mean molecular weight of the gas alone), and that the pressure is
given by the polytropic equation of state P = Kργ with  and
the constant K defined by

(This is called the Eddington model. The parameter β is not constant
in a normal star so these results can be applied only approximately to
realistic stars.)

3.4 Hydrogen inside the Sun is almost completely ionized from not too
far below the surface to the center. From a typical temperature and
density profile of the Sun (for example, see Table 10.1), calculate the
percentage hydrogen ionization as a function of solar radius,
assuming that the ionization is caused solely by the temperature.
Explain any discrepancies between your estimate and the actual
degree of ionization in the solar interior.

3.5 Assume the Sun to be completely ionized and assume that the most
important interaction between the gas particles is the Coulomb
interaction. Derive approximate expressions for the average
separation between gas particles in terms of the density, the average
Coulomb energy between these (charged) particles as a function of
the average separation, and the average kinetic energy of the
particles in terms of the temperature. The density and temperature at



the solar center and at 50% and 94% of the solar radius are given in
the following table (see Table 10.1 for more detail).

Use the formulas just derived and the data in this table to evaluate
the validity of the ideal gas equation of state for describing the solar
interior.

3.6 Use Newtonian mechanics to analyze the momentum transfer to an
arbitrary flat surface in a gas by a beam of particles incident from
one side and demonstrate that the pressure P is given by the pressure
integral of Eq. (3.2),

where v is the velocity, p is the momentum, and n(p) is the number
density of particles with momentum in the interval p and p + dp.
Although derived in this example using Newtonian mechanics, this
formula can be shown to be valid for any velocity up to and
including v = c (see Problem 3.18).***

3.7 Show that for the Maxwellian velocity distribution,

the pressure integral (3.2) leads to the ideal gas equation of state
(3.3).***

3.8 (a) Show that for a photon gas described by the Planck distribution
(3.69),



the energy density of the gas is given by

where T is the temperature and

is the radiation density constant (related to the Stefan–Boltzmann
constant σ by a = 4σ/c). Hint: You will find

to be useful for this problem.
(b) Show that the Planck distribution in frequency (3.69) is
equivalent to the momentum distribution

(c) Use the result of part (b) and the pressure integral (3.2) to show
that the pressure of the photon gas is  Hence, the
equation of state for the photon gas is  as expected
generally for ultrarelativistic particles.***

3.9 Assuming the internal energy U(T , V ) to be a function of T and V ,
and using the definition (3.6), show that dU = CVdT is not valid in
the general case but it is true for ideal gases.

3.10 Prove that for adiabatic processes (δQ = 0, where Q is the heat) in
ideal gases

and that this has solutions



where P is the pressure, V is the volume, T is the temperature, and γ
= CP/CV is the ideal gas adiabatic index. Show that the adiabatic
sound speed vs in an ideal gas is given by

where ρ is the density and B is the bulk modulus.***
3.11 A polytropic process is specified by the requirement δQ/δT = c,

where Q is the heat, T is the temperature, and c is a constant. Prove
that for polytropic processes in an ideal gas the temperature T and
volume V are related by

where the polytropic gamma is defined by

with CP and CV the heat capacities at constant pressure and volume,
respectively. Demonstrate explicitly that

are each solutions of this equation and therefore define polytropic
equations of state for an ideal gas. Demonstrate that if a process
takes place at constant entropy in an ideal gas the polytropic γ
reduces to the adiabatic γ , and that for isothermal (constant-
temperature) processes in an ideal gas the polytropic γ becomes
unity.***

3.12 Show that for the Maxwell distribution (3.4) the most probable
speed is (2kT /m)1/2. Thus justify the common assumption that the
average energy of a particle in a classical gas is E ≃ kT .

3.13 Prove that the three adiabatic exponents defined in Eq. (3.39) all
become equal to  for an ideal gas in adiabatic approximation.

3.14 Show that for pure radiation in adiabatic approximation the three
adiabatic exponents defined in Eq. (3.39) all become equal to ***



3.15 Demonstrate that the adiabatic equations of state (3.40) imply the
relations (3.39).

3.16 Use the first law of thermodynamics, the adiabatic assumption, and
the definition of β given in Eqs. (3.74)–(3.75) to derive Eq. (3.76)
for a mixture of ideal gas and radiation at constant entropy. Then use
Eq. (3.76) to derive the values of the adiabatic exponents given in
Eqs. (3.77)–(3.79). ***

3.17 It was asserted in the text that the adiabatic exponent Γ1 is
associated with dynamical responses of the gas. In support of this
contention, prove that for adiabatic gases the sound speed is
proportional to the square root of Γ1.***

3.18 In Problem 3.7 the ideal gas equation of state was derived assuming
a classical Maxwell–Boltzmann velocity distribution. In this
problem the ideal gas equation of state is derived on more general
grounds, showing that it is valid even for relativistic velocities as
long as the Maxwell–Boltzmann energy distribution function (3.50)
is applicable.
(a) Use that the internal energy U of a gas may be written as [see

Eqs. (3.63) and (3.66)]

where f (εp) is the number of particles with energy εp given by
Eq. (3.46), to show that the pressure integral (3.2) derived
using classical considerations in Problem 3.7 may be expressed
in the more general form

Hint: Prove as intermediate steps that



where vp is the velocity of the particle with momentum p.

(b) Use the pressure integral derived in the preceding step, the
Maxwell–Boltzmann distribution (3.50), the energy expression
(3.46), the integration measure (3.54), an integration by parts,
and a comparison with the expression (3.53) for the number of
particles in the gas to show that the corresponding equation of
state has the ideal gas form.

Since this derivation for the ideal gas equation of state utilizes the
fully relativistic form of the energy relation (3.46), it is valid for
arbitrary gas velocities as long as Eq. (3.50) correctly describes the
momentum distribution in the gas.***

3.19 Letting δw ≡ PdV, show that the integral

depends on the integration path by showing explicitly that its value
for the straight-line integration path from (V , P ) = (0, 0) to (1, 1)
differs from that on the integration path (0, 0) to (1, 0) to (1, 1).
Thus, show that δw is not a perfect differential and therefore that Δw
is not a state function. Conversely, prove that f (V , P ) = PV is a
state function.

3.20 The mean molecular weight per free electron μe may be defined by
requiring that the total electron number density ne satisfy

where ne
i is defined in Eq. (C.3). Show that in the general case of an

arbitrary ionization fraction yi for each species

where in the last two steps the approximations of complete
ionization and negligible metal concentration have been made.***



3.21 Prove that for an ideal gas the pressure P and energy density u are
related by P = (γ − 1)u, where γ = CP/CV is the adiabatic index.***

3.22 Show that dU = d(PV)/(γ − 1) for an ideal gas.
3.23 The ideal gas law assumes that the particles in a gas do not interact

with each other. At least three effects known to occur in stars can
violate this assumption.
1. In an ionized plasma the electrons and ions will exert attractive

Coulomb forces on each other, which tends to reduce the
pressure.

2. Photons may contribute to the pressure, enhancing its value
over that for the gas alone.

3. The action of the Pauli exclusion principle will increase the
pressure if the density is high enough to cause the gas to become
degenerate.

The contribution of photons to the pressure was addressed in Section
3.11 and the pressure in a degenerate gas was addressed in Section
3.7. This problem considers the influence of electrostatic interaction
between particles in the gas.
(a) Derive an approximate formula for the ratio of electrostatic

interaction energy to the thermal energy for an ion–electron pair
in a gas assumed to contain only completely ionized hydrogen.

(b) Estimate the magnitude of this effect by applying this formula
at the center of the Sun using data from the Standard Solar
Model in Table 10.1.

(c) Make the same estimate for a low-mass main sequence star for
which the central density is ∼ 400 gcm−3 and the central
temperature is ∼ 5 × 106 K.

1 The heat capacity has units in the CGS system of erg K−1. A related quantity is the specific
heat, which is the heat capacity per unit mass and has CGS units erg K−1 g−1. In this book we
will use an upper-case C to denote heat capacities and a lower-case c to denote specific heats.

2 Hence the joke that it is much easier for an astronomer to memorize the periodic table than
for a chemist, since the astronomer’s version contains only three elements. However, the
astronomer’s definition is not so strange for the astrophysical context in which differing
chemical properties of elements (which are determined by the electronic structure of atoms)
play no role because most of a star is completely ionized. Then it makes sense to single out



hydrogen and helium, since they are the lightest and by far most abundant elements, and to
view all other elements to first approximation as donors of (often many) electrons to the
plasma that can be lumped into one category. Under normal Earth conditions nitrogen is a gas
and iron is a (true) metal, implying quite different physical characteristics, but with complete
ionization these chemical distinctions are no longer operative, which greatly simplifies the
periodic table of elements!

3 An exception occurs for a core collapse supernova (Chapter 20), where densities and
temperatures become high enough to trap neutrinos for a time that is long compared with the
dynamical timescale. Note also that in the very dense environment of a neutron star the
neutrons and protons may become degenerate, but they are never degenerate in normal stars.

4 It is termed a surface because in the general case the momentum is a 3-component vector so εf
becomes a surface in a multidimensional space defined by the components of momentum; see
Fig. 3.6.



4

Hydrostatic and Thermal Equilibrium

A fundamental property of main sequence stars like the Sun is their stability
over long periods of time. For example, the geological record indicates that
the Sun has been emitting energy at its present rate for several billion years,
with relatively small variation. The key to this stability is that for large
portions of their lives stars are able to maintain a state of nearly perfect
hydrostatic equilibrium, with the pressure gradients produced by
thermonuclear fusion and internal heat almost exactly balanced by the
gravitational forces. In addition, the long-term stability of stars implies that
they must be in approximate thermal equilibrium during the stable stages of
their lives. Thus the starting point for an understanding of stellar structure is
an understanding of hydrostatic and thermal equilibrium, and departures
from that equilibrium.

4.1 Newtonian Gravitation
The Newtonian gravitational field is derived from a gravitational potential
Φ that obeys the Poisson equation, which for spherical symmetry takes the
form

(4.1)

The corresponding gravitational acceleration is given by

(4.2)

where m = m(r) is the mass contained within the radius r. Hence, for
spherical geometry



(4.3)

The constant is usually fixed by requiring that Φ → 0 as r → ∞.

4.2 Conditions for Hydrostatic Equilibrium
The magnitude of the local gravitational acceleration at a radius r is given
by Eq. (4.2), where m(r) is the mass contained within a radius r. From Fig.
4.1(a) the mass contained in a thin spherical shell is

(4.4)

Fig. 4.1 (a) Spherical mass shell. (b) The small shaded volume has height dr and unit area on its
inner surface. Therefore its volume is 1 × dr = dr and its mass is Δm = ρ × 1 × dr = ρdr.

Integrating this from the origin to a radius r yields the mass function m(r),

(4.5)

Now consider the total gravitational force acting on a small volume of unit
surface area in the concentric shell of radius r and depth dr illustrated in
Fig. 4.1(b). The magnitude of this force (per unit area) will be



(4.6)

where the negative sign indicates that the gravitational force is directed
toward the center of the sphere. From Fig. 4.1, the force per unit area
arising from the pressure difference between r and r + dr is

(4.7)

where the negative sign indicates that the pressure-gradient force is directed
outward. Thus the inwardly directed gravitational force is opposed by a net
outward force arising from the pressure gradient of the gas and radiation,
and the total force acting on this volume of unit surface area is

(4.8)

From Newton’s second law the equation of motion for the mass element is
F = Δma = ρdr∂2r/∂t 2, which leads to

(4.9)

In hydrostatic equilibrium the left side vanishes because the acceleration is
zero, giving

(4.10)

where partial derivatives have been replaced with derivatives because by
our assumption there is no longer any time dependence. As discussed in
Box 4.1, dP/dr is always negative under conditions of hydrostatic
equilibrium. Equations (4.4) and (4.10) represent our first two equations of
stellar structure. They constitute two equations in three unknowns (P , m,
and ρ as functions of r). This system of equations may be closed by
specifying an equation of state relating these quantities (see Chapter 3).
Before considering that, let us explore some consequences that follow from
these equations alone.



Box 4.1 Hydrostatic Equilibrium and Stellar Interiors

Equation (4.10) relates momentum conservation to the inverse-square
law of gravity. It appears to be a local equation but in fact it reflects the
long-range gravitational influence of every particle in the star. As shown
originally by Newton, for a spherical mass distribution and a test
particle at radius r the gravitational forces exerted by all particles
outside the radius r on the test particle exactly cancel, and the
gravitational force exerted by all particles inside the radius r is
equivalent to the force produced by concentrating all mass contained
within r at a point in the center.

Notice in Eq. (4.10) that both ρ and Gm(r)/r2 are positive, so dP/dr ≤
0 and pressure must decrease outward everywhere for a spherical
gravitating system to be in hydrostatic equilibrium. This will in turn
imply that density and temperature must increase toward the center of a
star. It follows that the condition of hydrostatic equilibrium alone is
sufficient to ensure that stars must be much more dense and hot near
their centers than near their surfaces.

4.3 Lagrangian and Eulerian Descriptions
In the study of fluid motion two basic computational points of view may be
adopted. We can take a fixed grid and describe the fluid flow through the
grid; this is called Eulerian hydrodynamics. Alternatively, we can describe
the fluid motion in terms of coordinates that are attached to the mass
elements and that move with them; this is called Lagrangian
hydrodynamics.1 In the limit that accelerations of the fluid can be neglected
the Lagrangian and Eulerian descriptions of hydrodynamics reduce to
Lagrangian and Eulerian descriptions of hydrostatics, respectively.

4.3.1 Lagrangian Formulation of Hydrostatics
The equations in Section 4.2 represent an Eulerian description of
hydrostatics. The Lagrangian approach to hydrostatics may be illustrated by
reformulating the preceding equations with m(r) rather than r as the



independent variable. The general result for a change of variables between
Eulerian and Lagrangian representations, (r, t) → (m, t), is specified by
[134],

(4.11)

where the subscripts denote variables that are held constant. Clearly the
Lagrangian version of Eq. (4.4) is

(4.12)

This implies that the first transformation in Eq. (4.11) between the two
representations is explicitly

(4.13)

which may be used to convert Eq. (4.9) to

(4.14)

For hydrostatic equilibrium the acceleration on the left side may be
neglected, giving the Lagrangian version of Eq. (4.10),

(4.15)

Table 4.1 summarizes the equations of spherical hydrostatics in Eulerian
and Lagrangian form. This will be adequate for our consideration of
hydrostatics but a more extensive discussion of the relationship between
Eulerian and Lagrangian descriptions of hydrodynamics may be found in
Box 4.2.

Table 4.1 The equations of hydrostatics



Box 4.2 Lagrangian and Eulerian Derivatives

As shown in Problem 4.9, the Lagrangian time derivative D/Dt and
Eulerian time derivative ∂/∂t are related by

where v is velocity. The Lagrangian derivative has two contributions:
the local (Eulerian) time derivative ∂/∂t giving the intrinsic change
within the fluid element and v · ∇ giving the contribution from
displacement (advection) of the fluid element by the flow. The
distinction between the Eulerian derivative and the Lagrangian
derivative corresponds to the distinction between a partial derivative and
a total derivative.

A partial derivative is a derivative with respect to one variable with
all other variables held constant. Illustrating for a function f (x, y) of two
variables, ∂f /∂x is the slope in the x direction and ∂f /∂y is the slope in
the y direction. The total derivative is relevant when the independent
variables can be related to a single independent variable. A standard
example is a function of two variables relevant only along some 1-
dimensional path specified by a constraint. Think of a winding road
through a range of mountains, with the altitude of the road at any point
(x, y) specified by a function f (x, y). What is likely to be relevant is not
the (partial) derivatives in the x and y directions at arbitrary points (x, y),
but instead the slope of the road at various points (which generally has
contributions from slopes in both x and y directions). These points can



be parameterized by a single variable s that is the distance along the
road measured from some reference point, with x = x(s) and y = y(s).

A total derivative Df /Ds ≡ df /ds may be defined that is the slope in
the direction of the road at the point parameterized by the single
independent variable s. By the chain rule, the total derivative and partial
derivatives in this example are related by

The time derivative d/dt is the only total derivative that normally
appears in the description of fluids. It is often termed the material or
substantial or Lagrangian derivative, to distinguish it from the Eulerian
or local derivative ∂/∂t, which is just the partial derivative evaluated at a
fixed spatial point. The total time derivative is analogous to the total
derivative in the preceding mountain-road example, because it
represents the full derivative along a path followed by a Lagrangian
particle.

4.3.2 Contrasting Lagrangian and Eulerian Descriptions
Eulerian and Lagrangian representations are each a valid description of
hydrodynamics, with advantages and disadvantages in a particular context.
Our observational mindset is often Eulerian: we tend to think of monitoring
a river for say water temperature by placing measuring devices at fixed
points on the river rather than imagining measuring devices floating down
the river with moving packets of water. On the other hand, the microscopic
laws of physics are often formulated in Lagrangian form: in describing the
collision of billiard balls it is normal to imagine following each ball and
asking what forces are applied to it. It is less common to imagine staking
out points on the table and asking how balls move past those fixed points,
which would be the Eulerian point of view.

Because the Lagrangian approach is often more simply tied to the
underlying physical laws, the advantages of the Lagrangian formulation are
most apparent when symmetries and conservation laws are important in the
system. For example, imagine a spherical star that is neither gaining nor



losing mass but is pulsating in size. The radial distance to the surface (an
Eulerian coordinate) is changing with time but the mass contained within
the radius (a Lagrangian coordinate) is constant in time. On the other hand,
if spherical symmetry is broken and there are convective and turbulent
motions of the fluid the Eulerian description is often simpler than the
Lagrangian description for hydrodynamics.

4.4 Dynamical Timescales
Dynamical timescales are of particular importance in astrophysics because
they set the approximate time required to respond to perturbations of
hydrostatic equilibrium. From Problem 4.1, the free-fall timescale tff
introduced in Section 1.10.4 (now with constants properly evaluated) is

(4.16)

where  is the average density, G is the gravitational
constant, and g = GM/R2 is the gravitational acceleration. This defines a
timescale for collapse of a gravitating sphere if it suddenly lost all pressure
support. A second dynamical timescale may be introduced by considering
the opposite extreme: if gravity were taken away, how fast would the star
expand by virtue of its pressure gradients? This timescale can depend only
on R, ρ, and P , and the only combination of these quantities having time
units is

(4.17)

where  is the mean sound speed. This result makes physical
sense because changes in pressure are mediated by waves propagating at the
speed of sound. Hydrostatic equilibrium will be precarious unless the two
timescales (4.16) and (4.17) are comparable (τff ∼ τexp), which suggests
defining a dynamical timescale

(4.18)



which may be used to characterize the timescale for the response of
hydrostatic equilibrium to perturbations.

Example 4.1 For the Sun ρ = 1.4 g cm−3 and Eq. (4.18) gives 
minutes. If hydrostatic equilibrium were not satisfied observable changes
should appear in a matter of hours, but the fossil record indicates that the
Sun has been extremely stable for billions of years. Hence it must maintain
very good hydrostatic equilibrium over such extended timescales.

Dynamical timescales for some other astronomical objects calculated using
Eq. (4.18) are displayed in Table 4.2. The dynamical timescales vary widely
for these objects because they represent a huge range of densities.

Table 4.2 Characteristic hydrodynamical timescales

4.5 The Virial Theorem for an Ideal Gas
Many concepts from statistical mechanics are modified in the astrophysical
context because of the long range of the gravitational force. In non-
astrophysical systems of physical interest the effective interactions often are
short-ranged and the energy of the system may be approximated as an
extensive variable (roughly, the total is the sum of the parts).2 For example,
if a dilute gas of atoms or molecules is divided spatially into N parts, the
total energy is approximately the sum of the energy for the N separate parts
because the interactions are short-ranged and thus small between the parts.
But for a group of objects interacting gravitationally the total energy of the



system is more than the sum of the parts because considerable energy
resides in the interactions between the parts, by virtue of the gravitational
interaction being always unscreened and of long range. Thus results that
depend on assuming the energy to be an extensive variable are not generally
valid in gravitating systems. However, there is one powerful and rather
general result that holds in gravitating many-body systems and thus is of
considerable utility in astrophysics that will now be discussed in the context
of stellar structure.

Stars have at their disposal two large energy reservoirs: gravitational
energy, which can be released by contraction (and absorbed by expansion),
and internal energy, which can be produced by nuclear reactions and
conversion of gravitational energy. An important relationship between these
energy resources for objects in approximate hydrostatic equilibrium may be
derived if we multiply both sides of the Lagrangian hydrostatic equation
(4.15) by 4πr3 and then integrate over dm from 0 to M ≡ m(R) to give

(4.19)

where ρ, r, and P are functions of the independent Lagrangian variable m,
an integration by parts has been performed in line two, Eq. (4.12) has been
used in going from line two to line three, and the first term in line two is
identically zero because r vanishes when m = 0 (center of star) and P
vanishes when m = M (surface of star).

What is the physical interpretation of the result that we have obtained in
Eq. (4.19)? By dimensional analysis the left and right sides define energies
of some kind. Assuming an ideal gas, the equation of state is P/ρ = kT /μ
and the factor of kT indicates that the right side of (4.19) is related to the
internal energy of the gas, while the appearance of G on the left side of Eq.
(4.19) implies that it is a gravitational energy. Indeed, as shown in Problem



4.5, for an ideal monatomic gas the right side of Eq. (4.19) is equal to twice
the internal energy U of the gas,

The left side of Eq. (4.19) may be interpreted by calculating the
gravitational energy that is released in the formation of a star by accretion
of mass. Consider Fig. 4.2, where a shell of mass Δm = 4πr2ρdr is allowed
to fall from infinity onto the surface of a spherical mass of radius r and
enclosed mass m(r). The gravitational energy released in adding this shell to
the star is then given by,

and the total gravitational energy Ω released in assembling a star of radius R
and mass M from such mass shells is

(4.20)

with M ≡ m(R). Hence, the left side of Eq. (4.19) is just −Ω. Collecting
results, Eq. (4.19) may be expressed in the compact form

(4.21)



where U is the internal energy of the star and Ω is its gravitational energy.
Equation (4.21) is termed the virial theorem (for an ideal, monatomic gas).
It will prove to be one of our most important tools for understanding stellar
structure and stellar evolution because it establishes a general relationship
between the internal energy and the gravitational energy of a star that is in
hydrostatic equilibrium. The virial theorem is of broad applicability because
of the non-restrictive conditions under which it was derived, and because it
relates the two most important energy reserves for a star.

Fig. 4.2 Gravitational assembly of a star by the accretion of concentric shells, each of mass Δm =
4πr2ρdr.

4.6 Thermal Equilibrium
In addition to being in hydrostatic equilibrium, stars are in approximate
thermal equilibrium. Let us investigate this using as a guide the discussion
in Prialnik [176]. By energy conservation (first law of thermodynamics) the
internal energy of a star can be changed by adding or removing heat, or by
PdV work. Assume hydrostatic equilibrium and consider a spherical mass
shell as in Fig. 4.3. If the concentric shell is at radius r and of width dr, its
volume is dV = 4πr2dr. It will prove convenient to work in Lagrangian
coordinates to examine the heat flow, with dm = ρdV = 4πr2ρdr, where ρ is
the mass density at the radius of the concentric shell.



Fig. 4.3 A spherical mass shell of volume dV. Dashed arrows indicate heat flow out of the star.

Let u be the internal energy per unit mass and let δf denote the change of
some quantity f within the mass shell over a time t. The change in heat over
a time δt is then denoted δQ and the work done in a time δt is denoted by
δW. Then the total change in internal energy over a time δt (recall that u is
the internal energy per unit mass) is given by

(4.22)

where the first step follows because dm is constant by mass conservation.
As you are asked to show in Problem 4.20, the change in heat over a time δt
is given by

(4.23)

and the work done in a time δt is

(4.24)

where L(m) is the luminosity associated with the heat flow across the shell,
P is the pressure and q the rate of energy release per unit mass in the mass
shell, and where dV/dm = ρ−1 has been used. Substituting Eqs. (4.23) and



(4.24) into Eq. (4.22) and taking the limit δt → 0 gives a differential
equation specifying the energy balance in a mass shell,

(4.25)

as shown in Problem 4.21. In thermal equilibrium the temporal derivatives
on the left side of (4.25) vanish, implying that q = dL/dm. Integrating both
sides of this equation over the mass coordinate and introducing

(4.26)

where L is the total luminosity and L0 is the luminosity produced by nuclear
reactions in the star, leads to L0 = L. For a star in thermal and hydrostatic
equilibrium energy is radiated away at the same rate that it is produced by
nuclear reactions, which you should hardly find surprising!

4.7 Total Energy for a Star
Integrating Eq. (4.25) over the entire star yields

(4.27)

while a corresponding integration of Eq. (4.14) multiplied by ṙ over the
entire star leads to

(4.28)

As you are invited to show in Problem 4.22, Eqs. (4.27)–(4.28) imply an
energy-conservation equation

(4.29)

where dots indicate time derivatives and the total energy E is



(4.30)

where U is the total internal energy, Ω is the total gravitational energy, K is
the total kinetic energy,

(4.31)

L is the total luminosity, and L0 is the luminosity deriving from nuclear
reactions. If the star is in thermal equilibrium Ė = 0 and if it is in hydrostatic
equilibrium K = 0. In that limit the properties of the star are governed by the
virial theorem relating U to Ω.

4.8 Stability and Heat Capacity
We have argued above that stars are in a hydrostatic equilibrium that
balances gravitational forces against pressure-differential forces, and a
thermal equilibrium that balances energy production against energy
emission, but how stable is that equilibrium? A ball sitting in the bottom of
a deep valley and a ball balanced on a knife edge are both in equilibrium,
but they exhibit very different stability to perturbations. Are stars in a deep
valley, or are they balanced on a knife edge? As we shall see, the answer
can depend very much on the appropriate equation of state, and is the basis
of both the remarkable stability of main sequence stars and of some of the
most violent explosions observed in our Universe. We will address a
number of instabilities in later chapters; here we illustrate for thermal
instability.

4.8.1 Temperature Response to Energy Fluctuations
Consider a star with an ideal gas plus radiation equation of state given by
Eq. (3.72), so that



where for the ideal gas an internal energy density  is
assumed and for the radiation ur = aT 4 = 3Pr is assumed. From Eqs. (4.20)
and (4.19) the gravitational energy is

since the total internal energies are given by

by virtue of Eq. (4.4). Thus the total energy is

for an average temperature T . Letting L denote the luminosity of the star
and L0 the energy generation rate, their difference may be written as

where at thermal equilibrium L0 − L = 0. Now suppose a small fluctuation
away from equilibrium occurs such that L0 − L = δL. Solving the preceding
equation for dT /dt gives

which governs how the temperature will respond to small fluctuations in
energy average. Now consider two situations:

1. If δL > 0, the nuclear energy generation rate exceeds the luminosity,
L0 > L, and dT /dt < 0. Thus the response to an increase in energy
generation rate is a decrease in temperature, which tends to lower the
energy generation rate.

2. If δL < 0, the nuclear energy generation rate is less than the luminosity
and dT /dt > 0, so the temperature increases, which increases the rate
of energy generation.



This behavior represents the essence of a stable system: an imbalance
causes an automatic restorative action that re-establishes the balance. Yet
this essential feature of normal stars is quite counterintuitive; we could not
have predicted it based on normal experience!

4.8.2 Heating Up while Cooling Down
When δL > 0 the star is producing more energy than it is radiating, yet it
cools. Unlike every system dealt with in everyday life, a star has a negative
heat capacity, as discussed more extensively in Box 4.3. This is a generic
feature of a system bound by the long-range, attractive gravitational
interaction: adding energy to a bound self-gravitating system does not make
it hotter, it makes it colder! The objects around us locally are not bound by
long-range interactions (the force of gravity is negligible on an atomic or
nuclear scale) and they – except for a few exceptions known for nanoscale
systems – exhibit positive heat capacities. This is why our normal intuition
can be very misleading when it comes to the behavior of stars, or any bound
gravitating system such as a clusters of stars or galaxies.

Box 4.3 Stars, Black Holes, and Negative Heat Capacities

In interpreting U in Eq. (4.21) an ideal gas was assumed, so the internal
energy U can be identified with the kinetic energy of the gas particles,
Ekin = U, and the gravitational energy Ω with the potential energy, Epot =
Ω. Thus an alternative statement of the virial theorem (4.21) is that for a
self-gravitating, spherical distribution of ideal-gas particles in
hydrostatic equilibrium,

Expressing the virial theorem in this form lays bare a property that is
quite unusual.

Heat Capacities of Stars and Clusters
For almost all physical systems the heat capacity is positive but if E =
Ekin + Epot is the total energy then Ekin = −E, so that decreasing the total
energy of the system increases the kinetic energy. If the temperature is



assumed to be a measure of average particle kinetic energy, this implies
that for an object governed by the virial theorem temperature increases
as energy is lost: it “heats up as it cools down.” Since heat capacity is
the ratio of change in heat to change in temperature, a star governed by
the virial theorem has a negative heat capacity.

This counterintuitive behavior is associated with the role of the
gravitational field in the equilibrated system. That it makes physical
sense is suggested by considering a gravitationally bound cluster of stars
in which the kinetic energy of the stars is balanced by the potential
energy of the gravitational attraction of each star in the cluster for all
other stars. For a large cluster, the motion of the stars may be viewed as
defining a temperature for a “gas of stars.” Now imagine removing
slowly a small amount of energy. The cluster will re-equilibrate, but
with the average velocity of the gas particles (stars) increased because
the cluster is now more tightly bound. Thus the temperature
characterizing the gas of stars increases as energy is extracted and the
gravitating cluster exhibits a negative heat capacity.

Heat Capacities of Black Holes
Using advanced quantum field theory the distribution of energy emitted
by a black hole as Hawking radiation is found to be equivalent to that of
a blackbody with temperature given by

(see Chapter 12 of Ref. [100]), where M is the mass, k is Boltzmann’s
constant, h = 2π ħ is Planck’s constant, and G is the gravitational
constant. As Hawking radiation is emitted the black hole loses mass
(energy) and the temperature rises: the black hole becomes hotter as it
loses energy, so it exhibits a negative heat capacity.

4.9 The Kelvin–Helmholtz Timescale
Stars go through various phases in which they contract gravitationally,
particularly during formation and during the transition between different



nuclear energy sources in late stellar evolution. Except in the stellar
explosions to be described in Chapters 19–21, these gravitational
contractions are typically under conditions of approximate hydrostatic
equilibrium. Gravitational contraction for a short period releases an amount
of energy ΔΩ and, since the virial theorem must be satisfied for hydrostatic
equilibrium to hold, Eq. (4.21) implies that as a star contracts the thermal
energy must change by3

(4.32)

and the excess energy must be transported away. Thus, gravitational
contraction has three consequences for a star: (1) the star heats up, (2) some
energy is radiated into space, and (3) the total energy of the star decreases
and it becomes more bound gravitationally. As was discussed in Box 4.3,
these steps are mutually consistent only because stars have negative heat
capacities, with the released gravitational potential energy supplying both
the radiated energy and the internal heating [in equal amounts if Eq. (4.32)
holds].

If approximate hydrostatic equilibrium is to be maintained, at each
infinitesimal step of the contraction the star must wait until half of the
released gravitational energy is radiated away before it can continue to
contract. This implies that there is a timescale for contraction in near
hydrostatic equilibrium that is set by the time required to radiate the excess
energy. This contraction timescale is called the Kelvin–Helmholtz timescale
or the thermal adjustment timescale. We may estimate it by assuming
uniform density ρ and a corresponding mass  during the
gravitational contraction.4 Then, from Eq. (4.20) the gravitational energy
released in collapsing the initial cloud of gas and dust to a radius R is

(4.33)



where  Taking M = M⊙ and R = R⊙ gives that Ω⊙ = 2.3 ×
1048 erg of gravitational energy was released in forming the Sun. By the
virial theorem, half of this must have been radiated while the protosun
contracted:

(4.34)

The Kelvin–Helmholtz timescale tKH sets the characteristic time required to
radiate this energy.

Example 4.2 A rough estimate of the Kelvin–Helmholtz timescale for
contraction of the protosun to the main sequence follows from assuming
that its present luminosity of L⊙ ∼ 3.8 × 1033 erg s−1 characterized its
luminosity for the longer part of its collapse to the main sequence (see
Problem 9.14 for a justification). Then  years,
implying that the Sun contracted to the main sequence on a Kelvin–
Helmholtz timescale of about 10 million years. A more sophisticated
treatment suggests 

From the virial theorem and Eq. (9.1), if the luminosity is assumed to
derive entirely from gravitational contraction the total radiated energy is

where f is of order one. Then the solution of Problem 9.14 indicates that



(4.35)

where a Kelvin–Helmholtz timescale for the star is defined by

(4.36)

where R is the radius, M the mass, and L the luminosity, and the last step
approximates  Assuming tKH to be constant, Eq. (4.35) has the
solution R = R0e−t/tK

H, so the Kelvin–Helmholtz timescale is
(approximately, since tKH is not constant) the time for the radius to decrease
by a factor of e−1 in the contraction. From Eq. (4.36), the ratio of the
Kelvin–Helmholtz timescale for some star relative to that of the Sun is
given by

(4.37)

where  The contraction timescale also may be viewed as
being set by the timescale for photons to diffuse out of the stellar interior, as
discussed in Box 4.4.

Box 4.4 Timescale Set by Random Walk of Photons

At a more microscopic level the contraction timescale may be viewed as
being set by the time for photons produced in the core of the star to
make their way by a random walk to the surface of the star. For a
random walk, the distance traveled after Z scatterings is (see Problem
4.3)

where the mean free path λ is the average distance the photon travels
before being absorbed (λ is defined more precisely in Box 7.1). To
escape, a photon must undergo approximately



absorptions and random re-emissions. A timescale may be associated
with this random walk by estimating the average time to be emitted
again once absorbed (a typical estimate is 10−8 seconds [50]). This
approach is explored further in Problem 10.8 and Problem 10.9.

Example 4.3 From Table 2.2 an A0 main sequence star has R = 2.5 R⊙, M
= 3.2M⊙, and L = 79.4 L⊙. From Eq. (4.37), the Kelvin–Helmholtz
timescale is   This is one of many
examples that we shall encounter illustrating that more massive stars evolve
more rapidly through all phases of their lives, including periods of
gravitational contraction.

The Kelvin–Helmholtz timescale is distinct from the free-fall or dynamical
timescale (Section 4.4). The dynamical timescale is characteristic of
processes where gravity is not strongly opposed by other forces; the
Kelvin–Helmholtz timescale governs the rate at which liberated
gravitational energy can be radiated from a system in which gravitational
forces are almost exactly balanced by pressure-differential forces. The
dynamical timescale is generally much shorter than the Kelvin–Helmholtz
timescale. For example, the dynamical timescale for the Sun is of order 1
hour but its Kelvin–Helmholtz timescale is of order 10 million years.

Background and Further Reading
For clear introductions to hydrostatic equilibrium in gravitational fields, see
Hansen, Kawaler, and Trimble [107]; Kippenhahn, Weigert, and Weiss
[134]; Prialnik [176]; and Böhm-Vitense (Vol. 3) [52]. Our discussion of
thermal equilibrium and the total energy of the star follows that of Prialnik
[176], as does our general discussion of stability.



Problems
4.1 Use the gravitational equations to show that a free-fall timescale to

collapse a gravitating sphere to its center with no pressure to oppose
the collapse is given by

where G is the gravitational constant and ρ is the average density
contained in the sphere.***

4.2 Estimate the hydrodynamical timescale for the Sun, a red giant, and
a white dwarf star.

4.3 Derive an expression for the time required for a photon to random
walk from the center to the surface of a star in terms of an average
mean free path λ and stellar radius R. Estimate the random walk time
for the Sun, assuming an average mean free path of 0.5 centimeters.
Hint: Treat each step of the random walk as a vector and consider
the vector sum after N steps.***

4.4 Use the equations of hydrostatic equilibrium to place a lower bound
on the central pressure of a star in equilibrium and evaluate this
quantity for the Sun. Hint: Integrate the pressure from the center to
the surface and assume that the radius of the surface in the resulting
expression is always larger than the radius of any interior point.

4.5 Demonstrate that the right side of Eq. (4.19) is equal to twice the
internal energy for an ideal gas.***

4.6 Use the virial theorem to place a lower bound on the mean
temperature of a star and estimate this bound for the Sun. Use this
result to estimate the ratio of radiation to gas pressure for the Sun.
Hint: In the first step, if R is the stellar radius, obviously 1/r > 1/R
for any interior point.

4.7 Can a star simultaneously expand and cool through its entire
volume if total energy is conserved and it remains in hydrostatic and
thermal equilibrium?

4.8 Assume a star of uniform density and uniform temperature,
composed of a monatomic ideal gas.



(a) Show that the internal energy is  where M
is the mass, NA is Avogadro’s number, T is the temperature, and
μ the mean molecular weight of the gas.

(b) Use the result of part (a), the virial theorem, and the
gravitational energy of a constant-density sphere to show that

in units of K.
(c) Use the formula derived above in part (b) to plot log T versus

log ρ for M/M⊙ = 0.2, 1, 10, 35, 100.

(d) The preceding derivation assumed an ideal gas. On the plot
constructed in part (c) above, place

(i) A curve above which radiation pressure would
dominate the gas pressure.

(ii) A curve below which electron degeneracy would be
important. Hint: Set the Fermi energy equal to kT to
estimate where degeneracy becomes important.

(iii) A temperature above which relativistic effects would
be important. Hint: When does kT become comparable to
the rest mass of the lightest particles in the gas?

(iv) A density above which relativistic effects would be
important. Hint: Relativity will become important when
the momentum divided by Planck’s constant becomes
comparable to the inverse Compton wavelength of the
lightest particles.

(e) Use the preceding results to derive a formula estimating the
stellar mass M/M⊙ above which the radiation pressure would
be expected to dominate the gas pressure.***

4.9 From the definition of a total derivative in terms of a limit, prove
the relationship



given in the first equation of Box 4.2 between the total (Lagrangian)
derivative and the local (Eulerian) partial derivative with respect to
time.***

4.10 The pressure of an ideal gas may be expressed as [see Eq. (3.2) and
Problem 3.6]

where N is the number of particles, V the volume, n the number
density, p the momentum, v the velocity, and 〈 〉 signifies an average
over all particles in the gas. Show that for a nonrelativistic gas 

 and that for an ultrarelativistic gas  where
εkin is the corresponding kinetic energy density.***

4.11 Show that for a nonrelativistic ideal gas the virial theorem (4.21)
may also be expressed in the form P = −Ω/3V , where Ω is the
gravitational energy and V is the volume.

4.12 In deriving the virial theorem for a spherical star of radius R the
pressure was assumed to vanish at the surface of the star: P (R) = 0.
However, stars don’t have a sharply defined surface but rather a
region (atmosphere) where the pressure falls off rapidly. This is
often modeled by assuming that the star in hydrostatic equilibrium is
immersed in a thin medium (the atmosphere) of finite pressure. How
is the virial theorem (4.21) modified if it is assumed that the star has
P (R) = P0 ≠ 0?

4.13 Prove that for a sphere of radius R and constant density ρ in
hydrostatic equilibrium, the pressure at radius r ≤ R is given by

where G is the gravitational constant.
4.14 In the text the virial theorem was derived starting from the

Lagrangian description of hydrostatics. Derive the virial theorem
starting from the Eulerian form (4.10) of the hydrostatic equation



Hint: Multiply by 4πr3 and integrate both sides; then use an
integration by parts and boundary conditions to simplify the left
side.

4.15 Find the functional form of the Lagrangian mass coordinate m(r)
and the average value of the density for a star of mass M with
density parameterized by

where ρ0 is the central density and R is the radius.
4.16 Three general equations of state P = P (ρ, T ) that are relevant for

stellar structure have been considered: Eq. (3.3) for an ideal gas, Eq.
(3.36) for a polytrope, and Eq. (3.70) for radiation. Show that all can
be expressed in the form

where the coefficients α and β are greater than or equal to zero.***
4.17 A sphere of ideal gas has a total mass M. Assuming hydrostatic

equilibrium, at a given radius r(m) the gas pressure Pgas and the
hydrostatic pressure Phydro will be equivalent and by virtue of Eq.
(4.15) will be given by

Now perturb the gas slightly with a compression so that everywhere
r → (1 − δ)r, where δ is a small constant. Show that in adiabatic
approximation the condition for gravitational stability (that the gas is
capable of reacting to this perturbation and restoring hydrostatic
equilibrium) can be met only if the adiabatic index of the gas



satisfies  Hint: The perturbation was a compression, so the
gas must expand to restore equilibrium.

4.18 Consider the atmosphere of a spherical planet. Assume that the
atmosphere is an ideal gas in hydrostatic equilibrium at a uniform
constant temperature containing molecules with mean molecular
weight μ, and that the gravitational acceleration may be assumed
constant over the extent of the atmosphere. Derive equations
describing the variation of atmospheric pressure and the variation of
atmospheric mass density with height above the planetary surface.

4.19 Find the functional form of the Lagrangian mass coordinate m(r) for
a star of mass M with density parameterized (crudely) by

where ρ0 is the central density and R is the radius. Use this result to
show that the corresponding pressure gradient is

Integrate this to obtain a formula for the pressure as a function of r.
This formula will involve the central density ρ0 and central pressure
P0. Use physical boundary conditions on the star to evaluate ρ0 and
P0 in terms of the stellar radius R and the stellar mass M, thus finally
giving an expression for P (r) depending only on M, R, and r.

4.20 Prove Eq. (4.23) for the change in heat and Eq. (4.24) for the
change in work in a time δt for a concentric mass shell.***

4.21 Show that the differential equation (4.25) follows from Eqs. (4.22)–
(4.24).***

4.22 Prove that the energy conservation equation (4.29) follows from
Eqs. (4.27) and (4.28). Hint: Show that  then
evaluate the second integral on the left side of Eq. (4.27) using an
integration by parts.***

1 To appreciate the difference, consider determining the temperature of the atmosphere over
time either by using weather balloons drifting with the wind, or by observing from fixed
points on the ground. The first is a Lagrangian point of view, if the balloon is imagined to be



tied approximately to the motion of a packet of air. The second is Eulerian, since the air is
observed from fixed points as it flows by. Leonhard Euler (1707–1783) is usually credited
with the development of both the Eulerian and Lagrangian approaches.

2 Recall that an extensive property is a sum of the properties of separate noninteracting
subsystems that compose the entire system; thus, an extensive quantity depends on the
amount of material in a system. Mass is an example. An intensive property is independent of
the amount of material; density of a homogeneous system is an example.

3 Of course a contracting star cannot be in hydrostatic equilibrium. However, if the collapse is
slow the star is at each instant only slightly out of hydrostatic equilibrium and the virial
theorem will be satisfied approximately.

4 The assumption of uniform density is an oversimplification but any more realistic density
profile consistent with hydrostatic equilibrium will give Ω ∝ GM2/R as in Eq. (4.33), with the
constant of proportionality differing from  but still of order one; see Section 9.2 and Problem
9.6.



5

Thermonuclear Reactions in Stars

Stars have three primary sources of energy: (1) heat left over from earlier
processes, (2) gravitational energy, and (3) thermonuclear energy.
Gravitational energy is important for various stages of star birth and star
death, and white dwarfs shine because of heat left over from earlier
thermonuclear and gravitational energy generation. However, since the
virial theorem indicates that gravity can supply the energy of the Sun only
on a 107 year timescale, thermonuclear reactions are the only viable long-
term source for observed stellar luminosities. In this chapter and the next
we address in some depth how thermonuclear reactions influence both the
structure and the evolution of stars. To do so we require the use of
knowledge from nuclear physics about the reactions that ions in stars can
undergo, but with the added twist that these reactions occur in a hot, dense
gas having a statistical distribution of velocities for the reacting particles.
This leads to the key idea of thermally averaged rates for nuclear reactions,
which will provide the basis of a formalism for describing quantitatively the
thermonuclear reactions that power stars.

5.1 Nuclear Energy Sources
The luminosity of the Sun is L⊙ ≃ 3.8×1033 erg s−1 and that of the most
luminous stars is about 106L⊙. From the Einstein relation m = E/c2, the rate
of mass conversion to energy that is required to sustain the Sun’s luminosity
is

(5.1)



and the most luminous stars require conversion rates a million times larger.
Let us now discuss how nuclear reactions in stars can account for mass-to-
energy conversion on this scale.

5.1.1 The Curve of Binding Energy
The binding energy for a nucleus of atomic number Z and neutron number
N is

(5.2)

where m(Z, N) is the mass of the nucleus, mp is the mass of a proton, and mn
is the mass of a neutron. The binding energy may be interpreted either as
the energy released in assembling a nucleus from its constituent nucleons,
or as the energy required to break a nucleus apart into its free constituents.1
The more relevant quantity is often the binding energy per nucleon, B(Z,
N)/A, where A = Z+N is the atomic mass number. The average behavior of
binding energy per nucleon as a function of the atomic mass number A is
shown in Fig. 5.1. The qualitative behavior of the binding energy curve may
be understood from the nuclear physics considerations listed below.



Fig. 5.1 The smoothed curve of nuclear binding energy. Only the average behavior is shown; local
fluctuations have been suppressed, as has the isotopic dependence on (Z, N) for a given A. Those
details are important in nuclear physics and in practical astrophysics calculations, but only the
average behavior is important for the present discussion.

Saturation of nuclear forces: The almost constant binding energy per
nucleon over most of the range of A at about 8 MeV per nucleon is a
consequence of the saturation of nuclear forces. Because the nuclear forces
are short-ranged, vanishing quickly outside a distance of order 10−13 cm,
nucleons can interact strongly only with their nearest neighbors in a
nucleus. Thus, the binding energy per nucleon is approximately constant
(except at low A) with added nucleon number.

Surface and volume effects: The rapid increase of the binding energy per
nucleon with A for very light nuclei is a surface versus volume effect. The
nucleons in the interior of a nucleus can interact more strongly with their
neighbors than those at the surface, which don’t have other nucleons
surrounding them on all sides. But the relative importance of surface to
volume decreases with increasing nucleon number. This causes the binding
energy to increase with increasing nucleon number in the light nuclei
because it minimizes the importance of the more loosely-bound nucleons at
the surface.

Coulomb repulsion: The slow decrease of B/A with nucleon number above
A ∼ 60 is a Coulomb effect. The increased number of protons in the heavier
nuclei causes the long-range, repulsive Coulomb force to destabilize the
nucleus and lower the binding energy. The Coulomb effect on binding
increases with A because the repulsive Coulomb energy is proportional to
Z2, which increases with A.

Maximal stability of iron group nuclei: The competition of the surface
versus volume and Coulomb effects establishes a maximum of the binding
energy per nucleon in the vicinity of A = 60. The isotopes in this region are
called the iron group nuclei, and they are thermodynamically the most
stable isotopes in the Universe. A large amount of stellar physics rests
directly or indirectly on this fact.

Symmetry energy: Other things being equal, nuclei with approximately
equal numbers of neutrons and protons are more stable than those with an



excess of one or the other. This contribution to the binding energy is called
the symmetry energy. In light nuclei, isotopes with N ∼ Z are generally more
stable than those with asymmetry between N and Z. In heavy nuclei, the
competition between the symmetry energy and Coulomb energy implies
that the most stable nuclei have more neutrons than protons (60%–70%
more in the heaviest isotopes known). This effect does not show up directly
in Fig. 5.1 because only the most stable isotopes for each A are shown in
this plot. It would show up if the binding energy of isotopic chains (same Z
but different N) were plotted.

Shell effects: The realistic B/A curve exhibits fluctuations around the
smoothed average of Fig. 5.1 caused by shell-closure effects at the
microscopic nuclear structure level. These shell effects can be significant
for the details of many processes important for stellar structure but are not
important in our present general discussion.

Correlation energy: Nuclei are stabilized by 2-body interactions between
nucleons that make a contribution to nuclear binding called correlation
energy. The most important correlations are short-range pairing interactions
and longer-range quadrupole interactions. The pairing correlation is less
effective if either the number of neutrons or number of protons is odd.
Therefore odd-mass nuclei, which have an odd number of either protons or
neutrons, are generally less stable than even-mass nuclei, while odd–odd
nuclei (odd numbers of both protons and neutrons) are generally even less
stable. These pairing effects are not visible in Fig. 5.1 because this plot is a
smoothed representation that averages over such fluctuations.

5.1.2 Masses and Mass Excesses
It is conventional to define the mass excess, Δ(A, Z), through

(5.3)

where m(A, Z) is measured in atomic mass units (amu), A = Z + N is the
atomic mass number, and the atomic mass unit Mu (see Box 3.1) is given by

(5.4)



where Avogadro’s constant is NA = 6.022 × 1023 mol−1. The total number of
nucleons is constant in low-energy nuclear reactions, so the atomic mass
numbers cancel on the two sides of any equation and sums and differences
of masses (large numbers in standard units) may be replaced by the
corresponding sums and differences of mass excesses (small numbers in
standard units). For example, we may rewrite Eq. (5.2) as

(5.5)

where the mass excesses of the neutron and proton have been abbreviated to
Δ(1, 0) ≡ Δn and Δ(1, 1) ≡ Δp, respectively. Atomic masses and mass
excesses are tabulated in Ref. [29].

Example 5.1 To illustrate the use of these formulas, let’s calculate the
binding energy of 4He using Eq. (5.5). The relevant mass excesses are [29]

and the binding energy of 4He is then

This implies that 28.3 MeV of energy is required to separate 4He into free
neutrons and protons, or that 28.3 MeV of energy is released by assembling
two free protons and two free neutrons into a 4He nucleus.

5.1.3 Q-Values
The Q-value for a reaction is the total mass of the reactants minus the total
mass of the products, which is equivalent to the corresponding difference in
mass excesses,

(5.6)



It is common to specify the Q-value in energy units rather than mass units.

Example 5.2 For the nuclear reaction 2H + 12C → 1H+ 13C the mass
excesses are

The Q-value for this reaction is then

The positive Q indicates that this is an exothermic reaction: 2.72 MeV is
liberated from binding energy in the reaction, appearing as kinetic energy or
internal excitation of the products. Conversely, a negative value of Q would
indicate an endothermic reaction: additional energy must be supplied to
make the reaction viable.

5.1.4 Efficiency of Hydrogen Burning
Examination of the curve of binding energy in Fig. 5.1 suggests two
potential nuclear sources of energy: fission of heavier elements into lighter
elements or fusion of lighter elements into heavier ones. In either case the
reaction products are more bound than the reactants, implying that energy
has been released. Since stars are composed mostly of hydrogen and
helium, their primary nuclear energy source must be the fusion of lighter
elements to heavier ones. Coulomb repulsion between charged nuclei will
inhibit fusion, so hydrogen (Z = 1) will be easier to fuse than helium (Z =
2), and is the primary candidate for a thermonuclear fuel accounting for
stellar energy production. In particular, it will be shown below that main
sequence stars are powered by thermonuclear processes that convert four 1H
into 4He.2 Before considering the detailed mechanisms by which this
conversion takes place in stars, let us first estimate how much energy can be
derived from the fusion of light elements into heavier ones, and an
efficiency associated with this process.



Example 5.3 The total rest mass energy in one gram of material is

(5.7)

and in Problem 5.1 you are asked to show that the energy released in the
fusion of one gram of hydrogen into 4He is

(5.8)

Therefore, the ratio is

(5.9)

and less than 1% of the initial rest mass is converted into energy in the
stellar burning of hydrogen into helium.

These considerations show that thermonuclear burning of hydrogen is a
rather inefficient source of energy. Furthermore, reaction rates in the cores
of lower-mass main sequence stars like the Sun are actually quite small.3 As
demonstrated in Problem 5.12, the luminosity of the Sun derives from a
central source of such low power density that it is equivalent to distributing
several 100-watt light bulbs per cubic meter of the solar core. The reason
that thermonuclear fusion is able to power stars is not because it is
intrinsically efficient at converting mass to energy, or that it has a high
reaction rate under conditions found in main sequence stars. Rather, it is
because of the enormous mass of stars, which ensures that they have large
reservoirs of hydrogen available as thermonuclear fuel in their cores.

5.2 Thermonuclear Hydrogen Burning
The generic energy source for stars on the main sequence is the
thermonuclear burning of hydrogen into helium. There are two separate sets
of nuclear reactions that can convert hydrogen to helium with the release of
energy under conditions found in stellar interiors:



The proton–proton chains (PP chains).
The CNO (carbon–nitrogen–oxygen) cycle.

The proton–proton chains are responsible for most of the present energy of
the Sun and generally are dominant in main sequence stars of a solar mass
or less. The energy production in the CNO cycle quickly surpasses that of
the proton–proton chains as soon as the mass of the star exceeds about a
solar mass. As will be seen below, the primary reason for this rapid switch
is that the CNO cycle has an extremely strong dependence on temperature.
This will favor the CNO cycle in more massive main sequence stars
because they have higher core temperatures.

5.2.1 The Proton–Proton Chains
The most important reactions of the PP chains are summarized in Fig. 5.2.
Calculations within the Standard Solar Model to be described in Chapter 10
indicate that the Sun is producing 98.4% of its energy from the PP chains
and only 1.6% from the CNO cycle, and that within the fraction coming
from PP chains PP-I produces about 85% of the energy, PP-II produces
about 15%, and PP-III produces only about 0.02%. The basic reason for this
branching lies in the rates for key nuclear reactions under present conditions
in the solar core, and will be described below.



Fig. 5.2 Main branches of the PP chains. The percentage contribution to solar energy production and
the effective Q-value are shown for each branch of the chains.

5.2.2 The CNO Cycle
The name of the carbon–nitrogen–oxygen or CNO cycle derives from the
role of carbon, nitrogen, and oxygen in the corresponding sequence of
reactions. The primary cycle is summarized in Fig. 5.3(a), which
corresponds to the following set of nuclear reactions.4

(5.10)

The reactions (5.10) of the CNO cycle are sometimes called the CN cycle.
A second set of reactions can occur as a branch from the basic cycle [see
Fig. 5.3(b)]:

(5.11)



This set of reactions branches from the first set once 15N has been
produced, and it feeds back into the first set as 14N is produced in the last
step. The rate of branching into the second set of reactions depends on
stellar conditions but for temperatures below 108 K the branching is
typically less than one part in 10,000. The two sets of reactions (5.10)–
(5.11), together with some minor side branches that are not shown,
constitute the full CNO cycle. (For this reason, it is sometimes called a bi-
cycle; see the dashed-line and solid-line paths in Fig. 5.3.) As we discuss in
Box 5.1 and illustrate further in Box 6.1, the isotopes of carbon, nitrogen,
and oxygen appearing in Fig. 5.3 catalyze the CNO cycle: they must be
present for it to occur, but they are not consumed by it.

Fig. 5.3 The CNO cycle. (a) The main part of the cycle [Eq. (5.10)] is illustrated schematically. (b)
The main part of the cycle is indicated with solid lines and the branch shown in Eq. (5.11) is
indicated with dashed lines. The notation (p, i) means a proton capture followed by emission of i; for
example 12C(p, γ )13N. The notation β+ indicates β-decay by positron emission; for example,
13N→13C + e+ + νe.

Box 5.1 CNO Catalysis

The reactants and products for each reaction around the CN cycle (5.10)
may be summed to obtain



(The sum neglects γ -rays because there is no conservation law for the
number of photons.) Therefore, the CNO cycle converts protons into
4He with a corresponding release of energy and neutrinos, just as for the
PP chains, but in a very different way: 12C serves as a catalyst for the
conversion of four protons to 4He. Its presence is required but it is not
consumed because a 12C is returned in the last step of Eq. (5.10). The
sequence (5.10)– (5.11) has been written as if the (p, γ) reaction on 12C
were the first step but it is a closed cycle and any step may be
considered to be the initial one. As illustrated in Problem 5.9 and Box
6.1, this means that any of the carbon, nitrogen, or oxygen isotopes
appearing in the cycle (5.10)–(5.11) may be viewed as catalysts that
serve to convert protons into helium. The closed nature of the cycle
implies also that

1. Any mixture of these CNO isotopes will play the same catalytic
role.

2. If any one of the CNO isotopes is present initially a mixture of the
others will inevitably be produced by the cycle of reactions in Eqs.
(5.10)–(5.11).

3. The sum of abundances for the CNO isotopes is conserved by the
cycle.

These properties of the CNO cycle are elaborated further in the results
of the numerical calculation displayed in Box 6.1.

5.2.3 Competition of PP Chains and the CNO Cycle
The rates of energy release from hydrogen burning for the PP chains and
CNO cycle are illustrated in Fig. 5.4, where it is clear that the CNO cycle
depends more strongly on temperature than do the PP chains. This
temperature dependence implies that the star’s mass on the main sequence
is a crucial factor governing the competition of PP and CNO energy
production because it has a strong influence on the central temperature. The
PP chains can occur in any star but the CNO cycle requires the presence of



carbon, nitrogen, or oxygen isotopes. The CNO cycle might be expected to
be relatively more important in Pop I stars because of their higher
concentration of heavier elements, but CNO abundances are typically of
secondary importance to the temperature for the competition between the
PP chains and CNO cycle (except for extreme Pop II stars with essentially
no CNO isotopes, where the CNO cycle cannot operate at all).

Fig. 5.4 Rate of energy release in the PP chains and CNO cycle as a function of T6, the temperature
in units of 106 K [211]. (See Section 5.9 for calculation of the energy production rate.) The present
temperature of the Sun is indicated. Near that temperature PP chain energy production varies as ∼ T4

and CNO cycle energy production varies as ∼ T17 (see Section 5.10).

As an important aside, rates for PP chains and the CNO cycle are of
importance in understanding the very first generation of stars that formed in
the Universe (Pop III; see Section 1.9.2). The first such stars were probably
more massive than current stars, perhaps by factors of 5–10. This was
largely because of the absence of metals, which inhibited cooling (metals in
a gas aid cooling because of the forest of emission lines that they produce),
and the resulting higher temperatures favored the collapse of more massive
protostars (see the Jeans mass in Section 9.2). The (photon) opacity
(Section 7.4.4) for stars in the early Universe was much less than current
stellar opacities because there were few metals and metals increase opacity
by virtue of the large number of electrons that they release when ionized



(which then interact strongly with photons). Thus, as will be discussed in
Section 9.11, the low opacity stabilized these more massive nascent Stars
against pulsational instabilities and ejection of their envelopes, allowing
them to grow even more massive by accretion.

Since no CNO isotopes were produced in the big bang (see Chapter 20 of
Ref. [100] for a description of big bang nucleosynthesis), the first stars must
have operated by the proton–proton chains until some of them could
produce carbon by the triple-α process (Section 6.3) and seed formation of
later stars that could operate by the CNO cycle. The CNO cycle produces
energy more efficiently in massive stars than the PP chains by virtue of its
stronger temperature dependence. Therefore, the pace of early structure
evolution in the Universe presumably depended on when the earliest stars
produced and distributed (by winds and supernova explosions) sufficient
CNO isotopes to allow a succeeding generation of stars to switch to the
more efficient CNO cycle for energy production.

5.3 Cross Sections and Reaction Rates
A quantitative analysis of energy production in stars requires the basics of
nuclear reaction theory as applied in stellar environments. Let us examine
this, using for guidance the discussions in Refs. [71, 107, 128, 188].
Consider a representative nuclear reaction

(5.12)

where Z∗ denotes an excited compound nucleus as a possible intermediate
state [Eq. (5.12) also may be expressed as X(α, β)Y in nuclear reaction
notation]. A compound nucleus is an excited composite formed in the initial
collision that quickly decays into the final products of the reaction. In Eq.
(5.12) the left side (α + X) is called the entrance channel of the reaction and
the right side (β + Y ) is called the exit channel of the reaction. It is standard
to classify nuclear reactions according to the number of (nuclear) species in
the entrance channel; thus (5.12) is a 2-body reaction, while the
photodisintegration reaction γ + A → B + C is a 1-body reaction (since the
photon γ on the left side is not a nuclear species), and A + B + C → D is a 3-
body reaction. Ideas will be illustrated primarily with 2-body reactions in



the following discussion but 1-body reactions and 3-body reactions also are
important in stellar energy production.

5.3.1 Reaction Cross Sections
Imagine first the typical laboratory setting where the reaction (5.12) is
initiated by a beam of projectiles α directed onto a target containing nuclei
X. The cross section σαβ (v), which generally is a function of the velocity v,
is defined as5

(5.13)

and has units of area [a commonly-used unit of cross section is the barn (b),
which is defined to be a cross section of 10−24 cm2]. The incident particle
flux F (v) is given by

(5.14)

where nα is the number density of projectiles α in the beam and v is their
relative velocity.

5.3.2 Rates from Cross Sections
The number of reactions per unit time (reaction rate) per target nucleus ραβ
is

(5.15)

The total reaction rate per unit volume rαβ (v) then is obtained from
multiplying ραβ by the number density nX of target nuclei X:

(5.16)

and has units of cm−3 s−1 in the CGS system. The factor ηαX involving the
Kronecker δab (which is one if a = b and zero if a ≠ b) is introduced to



prevent overcounting if the colliding particles are identical; this is explained
further in Section D.2.3. Normally it is most convenient to work in the
center of mass coordinate system, so velocities, energies, momenta, and
cross sections will be center of mass quantities,

unless otherwise noted.

5.4 Thermally Averaged Reaction Rates
The preceding equations assume a beam of monoenergetic particles. In a
stellar environment the gas is in approximate thermal and hydrostatic
equilibrium and so has a distribution of velocities instead. Assuming that
the gas can be described classically (see Chapter 3), at equilibrium it has a
Maxwell–Boltzmann distribution Φ(E) of energies6

(5.17)

We may define a thermally-averaged cross section 〈σv〉αβ for a 2-body
reaction by averaging the reaction cross section over the velocity
distribution in the gas,

(5.18)

where v = (2E/μ)V2 was used and the units of 〈σv〉αβ are cm3 s−1 (cross
section times velocity). The corresponding thermal average of the reaction
rate (5.16) is then given by

(5.19)



where the last two lines introduce the mass fractions Xi and the abundances
Yi defined in Eqs. (3.17)–(3.18). The units of rαβ are cm−3 s−1 (rate per unit
volume), and the intuitively reasonable interpretation of Eq. (5.19) is that
the total rate per unit volume for the 2-body reaction (5.12) is the (thermally
averaged) rate for a single α to react with a single X to produce Y + β,
multiplied by the number of αs per unit volume and by the number of Xs
per unit volume.

5.5 Parameterization of Cross Sections
To proceed further we require cross sections to enable calculation of the
thermally averaged rates. These cross sections may be parameterized in the
general form7

(5.20)

where the energy widths Γi ≡ ħ/τi are expressed in terms of the
corresponding mean life τi for decay of the compound system through
channel i, the entrance channel is denoted by α, the exit channel by β, the
total width is  where the sum is over all open channels i, the
probability to decay to channel i is Pi = Γi /Γ, the reduced de Broglie
wavelength is defined through  the statistical factor g
contains information on the spins of projectile, target, and compound
nucleus (and is typically of order unity), and the detailed reaction
information resides in the factor f (E). This factor can be complicated to
evaluate in general but in two instructive limiting cases it simplifies.



1. The reaction may be resonant, in which case the rate is strongly
peaked at some energy because of a narrow (quasibound) state in the
compound nucleus. If this resonance is well-separated in energy from
other resonances (an isolated resonance), the cross section can be
approximated as described below.

2. The reaction may be nonresonant because there are no resonances in
the channel of interest, or because the reaction energy lies far from any
resonance. The approximate treatment of non-resonant cross sections
also will be described below.

In this idealized situation the total rates will be a sum of resonant and
nonresonant pieces that can be handled separately. The realistic situation is
often more complex than the idealized one imagined above. For example,
there may be multiple resonances overlapping each other, or there may be a
sub-threshold resonance, which peaks below the minimum energy for the
reaction to occur but has a tail extending into the region of allowed energies
because of its finite width. We shall ignore such complications here (see
Ref. [128] for discussion of more general cases), and proceed to describe
first the non-resonant contribution, and then the contribution of a single
isolated resonance to the cross section.

5.6 Nonresonant Cross Sections
You will not be surprised to learn that most (though not all) reactions
important for stellar energy production are exothermic (Q > 0). Typically
for the reactions of interest Q ∼ 1 MeV, with this energy going into kinetic
energy of particles in the exit channel and any internal excitation of the
products. This additional energy leads to a marked asymmetry in the
entrance and exit channels for charged particle reactions of interest in stellar
energy production. In the entrance channel the thermal energies available
are set by the temperatures through kT = 8.6174 × 10−8 T keV, with the
temperature expressed in kelvin. Hydrogen, helium, and carbon burning
occur in a temperature range 107 K ≲ T ≲ 109 K, implying kinetic energies
in the plasma of 1 keV ≲ kT ≲ 100 keV. In light of the average Q-values
noted above, generally E(entrance) << E(exit) for the charged-particle
reactions of interest.



5.6.1 Coulomb Barriers
Because of the low energies in the entrance channel, charged-particle
reactions are influenced strongly by the Coulomb barrier between colliding
ions that is illustrated in Fig. 5.5. The potential energy associated with the
Coulomb barrier may be approximated as

(5.21)

where Zi is the atomic number of particle i, the characteristic distance R is

(5.22)

Ai is the atomic mass number (in atomic mass units) of particle i, and 1 fm
= 10−13 cm.

Fig. 5.5 The Coulomb barrier for charged-particle reactions. Average energies in stellar plasmas are
far below the top of the barrier, so charged-particle reactions occur by tunneling.

Example 5.4 Consider a proton scattering from 28Si. The Coulomb barrier
is



where Eqs. (5.21) and (5.22) were used.

Some typical Coulomb barriers for proton reactions p + X are shown in
Table 5.1, where it may be noted that entrance channel energies for
hydrogen fusion in stars (which lie in the range 10−3 to 10−1 MeV) are
typically orders of magnitude lower than the Coulomb barrier. This implies
a dramatic temperature dependence for hydrogen fusion reactions. On the
other hand, exit channel energies (approximately 1 MeV in typical cases)
are not so different from the barrier energies for fusion of protons with
lighter ions.

Table 5.1 Coulomb barriers for p + X

5.6.2 Barrier Penetration Factors
Classically, the characteristic particle energies in a stellar plasma are far too
small to surmount the Coulomb barrier for charged-particle reactions.
However, quantum mechanically it is possible for tunneling to take place at
energies that lie below the height of the barrier, albeit with exponentially
suppressed probability. Assuming ECB >> E, the quantum-mechanical
barrier penetration probability for a collision having zero relative orbital
angular momentum (these are termed s-waves in scattering theory) may be
expressed as

(5.23)



where the Sommerfeld parameter η is dimensionless. For representative
values of the parameters a typical result is that for a barrier penetration in a
star P (E) ∼ exp(−12). Thus, the charged particle reactions crucial to the
power generation in stars (and to your existence!) turn out to be highly-
improbable events. Since the reaction rate will be dominated by the
likelihood to penetrate the barrier, it is reasonable to take as an entrance
channel width for nonresonant reactions Γα ≃ e−2πη, which has a very strong
energy dependence.

5.6.3 Astrophysical S-factors
In the exit channels for charged-particle reactions the energies are roughly
comparable to the barrier energies; thus we may assume that Γβ is a weakly
varying function of E and the nonresonant cross section then may be
parameterized as

(5.24)

where  has been used. The factor S(E) is termed (rather
prosaically) the astrophysical S-factor. It is assumed to vary slowly with E
and contains all energy dependence not introduced explicitly through the
factors  and exp(−2πη). The S-factor may be determined
experimentally from Eq. (5.24) by measuring the cross section at a given
energy and computing the exp(−2πη)/E factor. The measured S-factor for a
typical (p, γ ) reaction is illustrated in Fig. 5.6.



Fig. 5.6 S-factor versus laboratory proton energy for a typical capture reaction [88]. This is the
portion of the S-factor for the region below the resonance in Fig. 5.8.

Because of the low values of kT for typical stellar plasmas reaction cross
sections are often needed at energies lower than can be measured in a
laboratory. Then, experimental measurements at higher energy must be
extrapolated to the lower energy of interest. Usually this is done by
assuming no resonances at the lower energy and plotting

(5.25)

which has smoother behavior than the full cross section. Then, from Eqs.
(5.18) and (5.24) the thermally-averaged nonresonant cross section is given
in terms of the S-factor as

(5.26)

where b ≡ (2μ)1/2πZαZXe2/ħ.

5.6.4 The Gamow Window



The energy dependence of Eq. (5.26) resides primarily in the quantity

(5.27)

Since the first factor in this expression (arising from the Maxwell–
Boltzmann velocity distribution) decreases rapidly with energy while the
second (arising from the barrier penetration factor) increases rapidly with
energy, the product (5.27) defines a strong localization in energy called the
Gamow window, which is illustrated schematically in Fig. 5.7. Only if the
energies fall within the Gamow window will charged particle reactions
occur with significant probability. Thus, the Gamow window is of extreme
significance in the physics of stars. The maximum of the Gamow peak is
found to lie at

(5.28)

(see Problem 5.4). Useful approximate expressions for the width of the
Gamow peak and for the nonresonant cross section can be obtained by
assuming the Gamow peak to be a gaussian having the same peak position
and curvature at the peak as the realistic Gamow peak (see Problem 5.5). In
this approximation

(5.29)

for the 1/e width of the Gamow peak.



Fig. 5.7 Schematic representation of the Gamow window. In this figure, each curve and the Gamow
peak are plotted on different scales to better visualize the location of the peak.

Example 5.5 Equations (5.28) and (5.29) can be evaluated numerically to
give

(5.30)

Then for the interaction of two protons at a temperature of T6 = 20 (that is,
at a temperature of T = 20 × 106 K),

and from Table 5.1 the corresponding Coulomb barrier is about 550 keV.
Thus, as a consequence of the Coulomb barrier this charged-particle
reaction is most likely to occur in an energy window that is centered at
about 7 keV with a width of approximately 8 keV.

In gaussian approximation the integral in Eq. (5.26) can be evaluated
analytically and the cross section is found to be

(5.31)

in units of cm3 s−1, where  and S(E0) is the S-
factor in units of keV barns, evaluated at the energy corresponding to the



maximum of the Gamow peak.

5.7 Resonant Cross Sections
A resonant cross section is dominated by strong enhancement within a
narrow range of energies. In the simplest case of an isolated resonance, f (E)
can be expressed in the Breit– Wigner form

(5.32)

where the resonance energy Er is related to a corresponding excitation
energy E∗ for a quasibound state in the compound nucleus through (see Fig.
6.5)

(5.33)

where Q is the energy released by the reaction because of differing binding
energies in the entrance and exit channels. The corresponding Breit–Wigner
cross section for a reaction with orbital angular momentum ℓ is

(5.34)

which will exhibit a strong peak for E ∼ Er.

Example 5.6 Consider the reaction 12C(p, γ )13N illustrated in Fig. 5.8. It
has a resonance corresponding to a state in 13N at an excitation energy of
2.37 MeV that is strongly excited at a laboratory proton energy of 0.46
MeV (see Problem 5.13).



Fig. 5.8 Measured cross section σ (E) in barns for the reaction 12C(p, γ )13N [88]. The S-factor S(E) is
defined through Eq. (5.24).

If the widths Γi vary slowly over a resonance, it is valid to assume that
the dominant contribution to the integral will come for E ∼ Er and
approximate by

in which case we may write for the resonant velocity-averaged cross section
[107]

(5.35)

The integrand peaks near Er; extending the lower limit to negative infinity
and assuming the widths to be constant allows the integral to be evaluated,
giving [107]



(5.36)

where Er is in MeV, T9 indicates the temperature in units of 109 K, and the
quantity

(5.37)

is an intrinsic measure of reaction strength in units of MeV that is tabulated
in Ref. [88].

5.8 Calculations with Rate Libraries
Rates entering into the reaction formalism of this chapter have strong
temperature dependence and a weaker density dependence. Such rates,
which are determined by some combination of experiments, theory, and
extrapolation, are required in a broad range of phenomena exhibiting
temperatures and densities differing by orders of magnitude. A common
approach to making these rates available for practical calculations is to
parameterize the density and temperature dependence guided by theory and
physical intuition, and then to tabulate the corresponding parameters in rate
libraries. Appendix D describes how to use two such rate libraries that have
been employed at various places in this book. These libraries allow rates for
a reaction to be computed quickly for any temperature and density.

5.9 Total Rate of Energy Production
The total reaction rate per unit volume rαβ is given by Eq. (5.19). The
corresponding total rate of energy production per unit mass εαβ is then given
by the product of the rate and the Q-value, divided by the density:

(5.38)



which has CGS units of erg g−1s−1. The Q-value entering this expression is
defined in Eq. (5.6), but with the proviso that if a reaction produces a
neutrino that removes energy from the star without appreciable interaction
in the core, this neutrino energy should be subtracted from the total Q-value
before it is inserted into Eq. (5.38).

5.10 Temperature and Density Exponents
It can be useful to parameterize the energy production rate in the form of a
power-law,

(5.39)

where ν is termed the temperature exponent and λ the density exponent.
Equation (5.39) with constant exponents is usually valid only for a limited
range of temperatures and densities. Since energy production mechanisms
for stars often are important only in a very narrow temperature–density
range, this can still be a useful parameterization. Temperature and density
exponents for an arbitrary energy production rate function ε(ρ, T ) may be
defined through

(5.40)

Some values of λ and ν for the PP chains, the CNO cycle, and the triple-α
process (see Section 6.3), are displayed in Table 5.2. They will be discussed
further below. Notice from Table 5.2 the extremely strong dependence of
reaction rate on temperature for charged-particle reactions. This is
illustrated dramatically in Fig. 5.9, where for increasing values of Z1Z2 the
reaction threshold is pushed to much higher temperature and the slope of
the reaction rate relative to temperature steepens rapidly. Conversely, the
neutron capture reaction, which has no Coulomb barrier, has very weak
temperature dependence.

Table 5.2 Density and temperature exponents



Fig. 5.9 Variation of rates for some reactions on 12C involving different Coulomb barriers. In the
entrance channel the height of the Coulomb barrier is proportional to the product Z1Z2, which is 0 for
the neutron capture reaction, 6 for the proton capture reaction, 12 for the α capture reaction, and 36
for the 12C+12C reaction.

5.11 Neutron Reactions and Weak Interactions
Most reactions important for stars involve charged particles, for which the
Coulomb barrier has a decisive influence. However, reactions involving
uncharged neutrons are crucial for some aspects of stellar structure,
particularly in the production of the heavy elements. This is discussed
further in Box 5.2 and in Sections 13.7.2 and 20.5. Energy-producing
reactions in stars tend to be mediated by strong interactions but weak
interactions have significant influence. For example, as we shall discuss in
Section 6.1, the rate-determining step for the reaction sequence that powers



the Sun is a weak interaction. As Box 5.2 illustrates, the weak interactions
may compete with neutron capture. They also may compete with charged-
particle reactions, thereby influencing the energy production for a star, as
illustrated in the following example.

Box 5.2 Neutron Capture Reactions

Neutron reactions are unique in that there is no Coulomb barrier. They
are of minor significance in the energy budgets of stars but they
generally compete with β− decays and are important for element
production. No charge means no Gamow window and neutron reaction
rates are generally not very sensitive to temperature. In the absence of
resonances the reaction cross section 〈σ v〉 often is approximately
constant for a given neutron capture reaction (see the neutron capture
rate plotted in Fig. 5.9).

Slow Neutron Capture
When the neutron capture rate is much smaller than the rate for β-decay,
stars may produce heavier elements by the slow capture of a few
neutrons, followed by a β-decay:

This slow neutron capture or s-process can produce new nuclides only
along the valley of β-stability (the isotopes that are stable against β-
decay; see Fig. 13.11). Element production by the s-process in red giant
stars will be discussed further in Section 13.7.2.

Fast Neutron Capture
On the other hand, a neutron capture rate much larger than the rate for
β-decay can lead to a rapid neutron capture or r-process, where many



neutrons are captured before there is time for a β-decay to occur. The
following diagram illustrates.

Because the r-process leads to many successive neutron captures
without an intervening β-decay, it produces neutron-rich isotopes well
out of the β-stability valley, and also can bypass gaps in the stability
valley to produce the heavy elements beyond bismuth (Fig. 20.21). It is
thought to occur primarily in neutron star mergers and core collapse
supernovae, and will be discussed further in Sections 20.5 and 22.6.

Example 5.7 Consider the competition between β+ decay and a (p, γ )
reaction for 13N. The β-decay rate is independent of temperature but the (p,
γ ) reaction has a strong temperature dependence because of the Coulomb
barrier. Figure 5.10 and 6.3 illustrate using realistic rates. Let’s estimate the
average time to destroy 13N by these routes in two scenarios:

1. For typical CNO burning T6 ≃ 20 and ρ ≃ 100 gcm−3. From Fig. 6.3
the mean time to destroy 13Nby (p, γ ) is τpγ ∼ 106 yr and τβ ∼ 14.4
minutes, so almost all 13N produced will β-decay. The Q-value is 2.22
MeV, which is shared between the β-particle and the neutrino. The
neutrino escapes with an average energy 0.71 MeV, so the effective Q-
value is 2.22 − 0.71 = 1.51 MeV.

2. In a typical nova, T8 ≃ 3 and ρ ≃ 100−1000 g cm−3. Now the rate for
13N(p, γ )14O can exceed the rate for β-decay so the charged particle
reaction dominates the β-decay. The Q-value for 13N(p, γ )14O is 4.628
MeV and in this case the (p, γ ) reaction populating 14O leads to a
breakout from the CNO cycle into a broader set of reactions called the
hot-CNO cycle that will be discussed in Section 19.1.1.



Thus, competition of weak interactions with other reactions can determine
both energy release and element production, in a highly temperature-
dependent way.

Fig. 5.10 Rates as a function of temperature for competition of proton capture and β-decay in the
CNO cycle. Rate units for the 2-body reaction are cm3 mole−1 s−1, and for the decay s−1. To compare,
multiply the 2-body rate by ρYp to convert to units of s−1.

Finally, β+ decay, β− decay, and electron capture are the only low-energy
reactions that interconvert neutrons and protons in stars. Thus the weak
interactions are responsible for establishing the ratio of protons and
electrons to neutrons in stellar material.

5.12 Reaction Selection Rules
Sometimes the importance of various nuclear reactions may be estimated
based on conservation laws and selection rules, without invoking detailed
calculations.



5.12.1 Angular Momentum Conservation
Angular momentum is conserved always. Thus the angular momentum J of
a state populated in a 2-body reaction must satisfy

(5.41)

where j 1 and j 2 are the angular momenta associated with the colliding
particles and l is the angular momentum of relative orbital motion.

5.12.2 Isotopic Spin Conservation

The quantity called isotopic spin8 is conserved to a high degree in strong
interactions and the isotopic spins in a 2-body reaction must approximately
satisfy

(5.42)

where t 1 and t 2 are the isotopic spin vectors associated with the colliding
particles and T is the isotopic spin vector of the state that is populated in the
reaction. Unlike angular momentum symmetry, which is exact, isotopic spin
symmetry is often broken at the several percent level, so isospin selection
rules are only approximate.

5.12.3 Parity Conservation
Parity is the symmetry of the quantum-mechanical wavefunction under
inversion of the spatial coordinate system. It is maximally broken in the
weak interactions but is conserved in the strong and electromagnetic
reactions. Moreover, there is a relationship between orbital angular
momentum and the parity of nuclear states: in a 2-body nuclear reaction
that does not involve the weak force the parities must satisfy

(5.43)

where π = ± denotes the parity of the states labeled by angular momentum
quantum numbers corresponding to Eq. (5.41). Thus, compound nucleus



states with angular momentum, isospin, and parity quantum numbers that
do not satisfy the conditions implied by equations (5.41)–(5.43) will not be
populated strongly in reactions.

For nuclei with even numbers of protons and neutrons (even–even nuclei)
the ground states always have angular momentum and parity J π = 0+.
Therefore, if the colliding particles in the entrance channel are even–even
nuclei in their ground states, the angular momentum J and parity π of the
state excited in the compound nucleus are both determined completely by
the orbital angular momentum l of the entrance channel:

(5.44)

Resonance states satisfying this condition are said to be states of natural
parity.

Example 5.8 Consider the reaction α + 16O → 20Ne∗ (where * indicates an
excited state). Under normal astrophysical conditions the α-particle and 16O
will be in their ground states and thus will each have J π = 0+. Therefore,
parity conservation requires that any state excited in 20Ne by this reaction
have parity

Hence states in 20Ne having J π = 0+,1−, 2+, 3−, ... may be populated
because they are natural parity, but population of states having (say) J π =
2− or 3+ is forbidden by parity conservation. In the 20Ne spectrum there is a
state at 4.97 MeV of excitation relative to the ground state having J π = 2−.
This state cannot be excited significantly in the capture reaction 16O(α, γ
)20Ne because it is not a natural parity state. As we shall explain later, this
simple fact has an enormous influence on the relative abundance of 16O and
20Ne in the Universe (see Section 6.4.2).

Background and Further Reading
Many of the basic principles for reactions and element production in stars
were laid down in seminal work by Burbidge, Burbidge, Fowler, and Hoyle



(often referred to as the B2FH paper) [62] and Cameron [65] in the late
1950s. Much of the current standard formalism derives from the work of
William Fowler (1911–1995) and collaborators; see for example Caughlan
and Fowler [69]; and Fowler, Caughlan, and Zimmerman [88]. More
concise and pedagogical textbook versions of this material may be found in
Hansen, Kawaler, and Trimble [107]; Phillips [169]; Rolfs and Rodney
[188]; Pagel [166]; Iliades [128]; and Ryan and Norton [192]. The proton–
proton chains are discussed in Bahcall [30]. Weak interaction effects in stars
were touched upon but not covered in great depth in this chapter. That will
be remedied partially in later chapters, and an extensive review assuming
some knowledge of nuclear physics may be found in Langanke and
Martínez-Pinedo [139].

Problems
5.1 Using atomic mass tables, calculate the amount of energy released

from the fusion of one gram of 1H into 4He. What percentage is this
of the original rest mass energy of the hydrogen?***

5.2 The binding energy per nucleon for 4He is 7.074 MeV and that of
12C is 7.6802 MeV. What is the Q-value for the reaction 4He + 4He +
4He → 12Cin MeV? How much energy is released if one gram of
4He is converted to 12C?

5.3 According to certain model calculations the elemental composition
of the Sun at formation was X = 0.71, Y = 0.27, and Z = 0.02, while
presently typical solar models indicate that the core has a
composition X = 0.34, Y = 0.64, and Z = 0.02. What are the mean
molecular weights at these two times?***

5.4 Show that the maximum of the Gamow factor is located at an
energy

where Z denotes the atomic number for the relevant ion, μ is the
mean molecular weight, and T6 is the temperature in units of 106 K.
Show that for the reaction p + 12C → 13N + γ , the Gamow peak is at



E0 ≃ 31 keV for T6 = 22.5, and that the height of the peak varies as
∼ T 17 for this reaction in this temperature range.***

5.5 Derive an approximate expression for the width Δ of the Gamow
peak and the velocity averaged cross section 〈σv〉αβ in a nonresonant
reaction by approximating the Gamow peak as a gaussian of the
same height and curvature at the maximum as the actual Gamow
peak.***

5.6 Use the Caughlan and Fowler compilation in Ref. [88] to find a
formula for the rate of the reaction 12C(p,γ )13N as a function of
temperature in units of cm3 s−1; include resonant and nonresonant
contributions. Hint: See Appendix D.

5.7 If the CN part of the CNO cycle is running at equilibrium under
central solar conditions, what is the ratio of abundances Yi for
13Cversus 12C, 14N versus 12C, and 15N versus 14N? Hint: Use the
rates in Fig. 6.3(a).

5.8 Show that for the rate-controlling step of the PP chain the
temperature exponent is

so that νpp ≃ 4 for T6 = 15.***
5.9 By summing net reactants and products around the cycles implied

by Eqs. (5.10)– (5.11) starting at different parts of the cycle,
convince yourself that any of the carbon, nitrogen, or oxygen
isotopes appearing in the CNO cycle may be viewed as a catalyst
promoting the effective fusion reaction 41H → 4He.***

5.10 Suppose the Sun were capable of converting all its hydrogen to iron
by a sequence of nuclear reactions. How much energy would be
released? To what radius would the Sun have to shrink in order to
generate the same amount of energy by gravitational contraction?
What would be the Sun’s density following this contraction?

5.11 Look up the mass excesses of 4He and 20Ne in Ref. [29] and use
these to compute the corresponding masses in atomic mass units.
Check your results against the tabulated values in Ref. [29].



5.12 Show by two different methods that the energy production rate per
unit volume in the core of the Sun is remarkably low – only several
hundred watts per cubic meter.
(a) First, show this using the tabulated rates for the rate-controlling
step of the PP chain and the average energy released by the PP
chain, in conjunction with expected conditions in the core of the
Sun.
(b) Second, show this using the observed luminosity of the Sun, the
assumption that it is in equilibrium, and the assumption that most of
the energy responsible for this luminosity is generated in
approximately the inner 10% of the solar radius.***

5.13 For the reaction 12C(p, γ )13N in Example 5.6, show that the excited
state at 2.37 MeV in 13N should give a resonance at a laboratory
proton energy of 46 keV (as observed in Fig. 5.8), assuming validity
of the Breit–Wigner formula (5.33).***

1 Most mass tables give the total atomic mass rather than the nuclear mass for m(Z, N). Nuclear
masses can be obtained by subtracting from the tabulated atomic masses the rest mass of the
Z electrons of the atom and the binding energy of these electrons to the nucleus. Since the
latter is typically of order 10 eV per electron, the rest mass of an electron is 511 keV, and one
atomic mass unit is ∼ 931.5 MeV, the differences in electron binding are small on the scale
set by the rest mass of an atom. In most applications the interchange of nuclear and atomic
masses in formulas leads to errors of order one keV or less and these may be ignored in all
but the most precise considerations.

2 As is standard we use the shorthand “hydrogen fusion” for this conversion, but it actually
involves multiple reaction steps, not all of which are fusion reactions.

3 The most efficient conversion of mass to energy is matter–antimatter annihilation, which can
convert 100% of the mass to energy. However, little antimatter exists naturally in the
Universe, so that is not a viable large-scale astrophysical source of energy. The next best
conversion efficiencies come from processes involving black holes, particularly rotating black
holes, which can in principle give as much as ∼ 30% conversion of mass to energy (see
Chapters 13–15 of Ref. [100]). This is why it is generally thought that the gigantic but
extremely compact central engines powering quasars must be rotating supermassive (∼
109M⊙) black holes.

4 A compact nuclear physics notation for reactions will sometimes be used. For example, the 2-
body reaction a + b → c + d is written concisely as b(a, d)c. Thus, 12C(p, γ )13N denotes a
reaction in which a proton is captured on 12C to produce 13N and a γ -ray is emitted, while
7Be(e−, νe)

7Li denotes an electron capture reaction in which a proton in the 7Be nucleus
absorbs an extranuclear electron and is converted to a neutron, and a neutrino is emitted. A
schematic illustration of the types of nuclear reactions important for astrophysics may be
found in Fig. D.1 of Appendix D.



5 A shorthand label αβ will be used to denote the reaction being considered. This should be
thought of as a possibly-composite label carrying sufficient information to identify the
reaction uniquely.

6 If the two colliding particles belong to two separate Maxwell–Boltzmann velocity
distributions, their relative velocity will also belong to a Maxwell–Boltzmann distribution. A
proof may be found in Ref. [71].

7 The parameters Γ appearing in (5.20) have units of ħ divided by time, which is energy. They
are called energy widths because states with short lifetimes for decay (that is, with large decay
rates) correspond to spectral peaks (resonances) broad in energy, by a ΔE · Δt ≃ ħ uncertainty
principle argument. Conversely, states with long decay lifetimes (small decay rates)
correspond to narrow resonances. The limiting case is a state that is completely stable, which
then corresponds to a vanishing decay rate and a sharply-defined energy.

8 Isotopic spin (often termed isospin) is a quantum number associated with an abstract
approximate symmetry of the strong interactions. It has nothing whatsoever to do with
ordinary spin physically, but behaves mathematically exactly as if it were a spin. Isospin
symmetry implies that in a certain sense the neutron and the proton are different projections
of the same particle, just as the spin up and spin down states of a spin-  electron are normally
viewed as two different projections of the same spin. Isospin is important in the present
context because often it is approximately conserved by reactions in nuclear physics, and thus
places quantum-mechanical selection rules on which reactions can take place with significant
probability (similar to conservation of angular momentum imposing various quantum-
mechanical selection rules on permissible transitions in atomic physics).



6

Stellar Burning Processes

We will now use the reaction formalism developed in Chapter 5 to address
in more technical depth the most important thermonuclear reaction
sequences found in stars. These sequences will entail two intrinsically
linked components, each of fundamental importance: (1) the release of
energy and the corresponding influence on stellar evolution, and (2) the
thermonuclear transmutation of elements into new elements. This
discussion will address first the PP chains and the CNO cycle that power
stars on the main sequence, and the triple-α process that is the primary
thermonuclear energy source for red giant stars. Then we will consider
advanced burning stages for stars, including the burning of carbon, oxygen,
neon, and silicon, which finally lead to the iron group of nuclei as end
products. We will find that this is the end of the line for producing heavier
elements by charged-particle reactions in normal stars, but we will
introduce capture of (uncharged) neutrons as a possible means to produce
even heavier elements.

6.1 Reactions of the Proton–Proton Chains
It is natural to begin with the PP chains that power our local star. The
reaction rates of primary importance in the PP chains are displayed in Fig.
6.1 and the steps of the PP-I chain are illustrated pictorially in Fig. 6.2.



Fig. 6.1 Reaction rates important in PP-I, PP-II, and PP-III. Rates were obtained from a compilation
described in Appendix D.2. To convert these rates into units of s−1 they should be multiplied by
factors of density times abundance, as discussed in Appendix D.



Fig. 6.2 The strongest branch PP-I of the proton–proton chains in Fig. 5.2. The mean times for each
reaction in the chain are shown; the inverses of these times indicate the relative rates for each step
under solar conditions. About 85% of the Sun’s energy is currently being produced by this sequence
of reactions.

6.1.1 Reactions of PP-I
The slowest reaction in PP-I and in the overall PP chains, and therefore the
one that governs the rate at which the chains produce energy, is the initial
step 1H + 1H → 2H + e+ + νe.1 This reaction is nonresonant and from the
tabulation of reactions rates in Caughlan and Fowler [69], using the
parameterization in Eq. (D.1) of Appendix D with only the first term in the
parentheses retained, the reaction rate is [107]

(6.1)

where X is the hydrogen mass fraction and Eq. (5.19) has been used, with
account taken that the reactants are identical particles [the factor of 
which comes from ηαX in Eq. (5.16)]. As shown in Problem 5.8, the
temperature exponent (5.40) corresponding to the rate in Eq. (6.1) is νpp ≃ 4
for T6 = 15, which justifies the entry in Table 5.2 for the PP chains and the
label in Fig. 5.4 indicating that the solar energy production rate is
proportional to T 4. The mean lifetime of a proton against depletion by the
initial step of the PP chains may be estimated from Eq. (D.12) of Appendix
D,

(6.2)

where λp is the rate of proton depletion, τp = 1/λp is the corresponding mean
life, and Rpp is defined in Eqs. (D.2)–(D.3) and is plotted versus
temperature in Fig. 6.1.

Example 6.1 From Eq. (6.2) the mean life for the proton abundance as
depleted by the rate-determining step of the PP chains may be estimated as
τp ∼ (ρRppYp)−1. Taking for the center of the Sun a temperature of T6 = 15, a



density of ρ = 150 gcm−3, a hydrogen abundance of Yp = 0.4, and reading
off from Fig. 6.1 that Rpp ∼ 9× 10−20 cm3 mol−1 s−1 at the current central
solar temperature, yields τp ≃ 6 × 109 years. This is remarkably long and
sets the scale for the main sequence life of the Sun because it approximates
how long it will take the Sun to burn its available hydrogen. This time is
commonly termed the nuclear burning timescale for the star. More
generally, nuclear burning timescales for other fuels burned later in stellar
evolution may also be defined (see Section 13.6.1).

The fundamental reason that the initial step in the PP chains is so slow
and thus that the lifetime of the Sun is so long is that the diproton (2He) is
not a bound system (of the three possible 2-nucleon systems, only the
deuteron, 2H, is bound; the diproton and dineutron are unbound). If the
diproton were bound, the first step of the PP chains could be a strong
interaction and the lifetime would be much shorter. Instead, the first step
must wait for a highly improbable event: a weak decay of a proton from a
broad p–p resonance having a very short lifetime.

In contrast, Fig. 6.1 indicates that at current solar temperatures the
reaction p + d → 3He + γ corresponding to the second step of the PP chains
is about 17 orders of magnitude faster than the initial rate-determining step
(because it is a strong rather than weak interaction). Since the mean life of a
proton in the first step was determined to be ∼ 1010 yr ∼ 1017 s, the mean
life for the deuterium produced in the first step of the PP chains and
consumed in the next step (p + d → 3He + γ ) is a few seconds under the
conditions prevailing in the solar core (see Problem 10.11 for a quantitative
estimate). The final fusion of two helium-3 isotopes to form helium-4 is
much slower than the second step (τ ∼ 106 years), but is still a strong
interaction that is orders of magnitude faster than the first step (Problem
10.11). Thus, the initial step of the PP chains governs the overall rate of the
reaction and in turn sets the main sequence lifetime for stars that are
running on the PP chains.

6.1.2 Branching for PP-II and PP-III



From Fig. 5.2, the relative importance of PP-I versus PP-II and PP-III
depends on the competition between the reactions 3He(3He, 2p)4He and
3He(4He, γ )7Be. The relevant velocity-averaged rates of Fig. 6.1 may be
used in Eq. (5.19) to determine the total rate per unit volume for each
reaction. Such an analysis indicates that over the range of temperatures
where PP is expected to be important the first reaction is faster than the
second, ensuring the dominance of PP-I over PP-II and PP-III for current
conditions in the Sun.

From Fig. 5.2, the branching between PP-II and PP-III depends on the
competition between electron capture and radiative proton capture on 7Be.
These rates are also plotted in Fig. 6.1. The electron capture changes slowly
with temperature because it depends on the electron density in the plasma;
in contrast, the proton capture on 7Be has a strong dependence on
temperature because it is a barrier penetration process. At the temperature
of the Sun, electron capture dominates and PP-II is much stronger than PP-
III. At somewhat higher temperatures, Fig. 6.1 indicates that PP-III would
begin to make much larger relative contributions. (However, at higher
temperatures the CNO cycle would quickly become more important than
the PP chains in stellar energy production.)

6.1.3 Effective Q-Values
The effective Q-values for the PP chains depends on whether PP-I, PP-II, or
PP-III is followed because the amount of energy carried off by neutrinos
differs among these subchains. The effective Q-values are listed in Table
6.1. Utilizing this information, the average energy released per PP chain
proton fusion in the Sun is

where the tiny contribution of PP-III to the energy production has been
ignored and where the factor of two in the denominator of the first term
results from the requirement that the first two steps of PP-I must run twice
to provide the two 3He isotopes required for the last step (see Fig. 6.2).

Table 6.1 Some effective Q-values



Although PP-III has negligible influence on solar energy production, the
values of Qeff in Table 6.1 indicate that it produces much higher energy
neutrinos than PP-I or PP-II. The PP-III chain is strongly temperature
dependent because it is initiated by proton capture on a Z = 4 nucleus,
which has a relatively high Coulomb barrier. Therefore, detection of the
high-energy neutrinos emitted from the PP-III chain can provide a very
sensitive probe of the central temperature of the Sun. This issue will be
revisited when the production of solar neutrinos is discussed in Chapter 10.

6.2 Reactions of the CNO Cycle
The important rates in the main part of the CNO cycle are plotted as a
function of temperature in Fig. 6.3(a), which indicates that the slowest
reaction typically is p +14N→15O+ γ . Since this reaction is the slowest and
the cycle is closed (neglecting small branching), it determines the rate at
which the CNO cycle generates energy.



Fig. 6.3 (a) Important CNO-cycle rates. Rate units for the 2-body reactions are cm3 mol−1 s−1 and
those for the decays are s−1. To compare in equivalent units, the 2-body rates should be multiplied by
a density and abundance factor (see Appendix D). The reaction p + 13N → 14O + γ breaks out of the
CNO cycle into the hot CNO cycle that powers nova explosions, as illustrated in Fig. 19.3. (b)
Abundances in the CNO cycle at the center of the Sun as a function of time. Initial solar abundances
were assumed and equations of the form described in Box 6.1 were integrated at a constant
temperature T6 = 15 and constant density ρ = 150 g cm−3 corresponding approximately to the present
Sun.

Example 6.2 The results in Fig. 6.3 may be used to estimate the rate of
CNO energy generation in the Sun. The mean life for 14N in the core of the
Sun is approximately τ14-N = 5 × 108 years (see Section D.2.4). The
abundance of 14N presently at the core of the Sun is estimated2 from the
calculation in Fig. 6.3(b) to be Y14N = 3.35 × 10−4,

corresponding to a number density of 2.6 × 1022 cm−3, while from the
Standard Solar Model to be described in Section 10.1 the central hydrogen
abundance is YH ∼ 0.35, corresponding to a hydrogen concentration of 3.2
× 1025 cm−3, and in Example 6.1 the mean life for consumption of a proton
by PP chain fusion was estimated to be about 6 × 109 years. These numbers
imply that the ratio of PP chain to CNO cycle reactions in the core of the
Sun is approximately



Hence for conditions prevailing in the Sun the PP chains dominate over the
CNO cycle.

More sophisticated calculations within the Standard Solar Model indicate
that the Sun is producing 98.4% of its energy from the PP chains and only
1.6% from the CNO cycle, corroborating the simple estimate of Example
6.2.

6.2.1 The CNO Cycle in Operation
In the figure contained in Box 6.1 several remarks made in Box 5.1 are
illustrated by implementing a calculation of the CNO abundances carried to
hydrogen depletion (conversion of all hydrogen to helium) for a star with a
constant temperature of T6 = 20 and constant density of 100 g cm−3. (In a
more realistic simulation the temperatures and densities would change with
time in response to the energy and element production associated with the
reactions, but this example illustrates the basic idea.) The calculation
assumes an initial mixture having only two isotopes: 1H (0.995 mass
fraction) and 12C (0.005 mass fraction). (Note that the calculation has
already run for 104 seconds at the earliest time shown.) Also shown is the
integrated energy production from the CNO cycle as a function of time.
Even though initially there is only a trace amount of one CNO isotope
(12C), the cycle eventually generates an equilibrium abundance of all CNO
isotopes. Once the cycle is in steady state (after about 1012 seconds in this
simulation), the abundances of the CNO isotopes remain essentially
constant until hydrogen is depleted, so the CNO isotopes may be viewed as
catalyzing the conversion of hydrogen to helium, as discussed earlier in
Box 5.1.

Box 6.1 Thermonuclear Burning Networks

The evolution of isotopic abundances over time in an astrophysical
environment is described by a coupled set of differential equations



called a thermonuclear burning network that describes transitions
among a set of isotopes coupled by various reactions. The general form
of such a network coupling N isotopic species is

where Y = (Y1, Y2, ... YN) is a vector of isotopic abundances, F+
(i)(Y)

denotes a sum of terms increasing  denotes a sum of terms
decreasing Yi, and the notation indicates that these terms depend on the
other Yj in the system (which couples the equations). Appendix D
describes these equations in more depth.

A numerical solution of such a network for evolution of the isotopic
abundances in the main CNO cycle is displayed in the following figure.

Constant T6 = 20 and ρ = 100 g cm−3 were assumed, with only 1H (X1H
= 0.995) and 12C (X12C = 0.005) present initially. The dashed line shows



integrated energy release (arbitrary scale). The sum of CNO abundances
is given by the dotted line.

Notice the result (which is a general one) that the CNO cycle run to
equilibration tends to produce 14N as the dominant CNO isotope, even
though there was no initial abundance of this isotope at all in this simulation
(to understand this, see Problem 6.4). Most of the 14N found in the Universe
probably has been produced by the CNO cycle. Finally, note that the
catalytic role of the CNO isotopes does not mean that the abundances Yi are
conserved separately; for example, the abundance of 14N grows at the
expense of the other CNO isotopes as the cycle runs. The meaning of CNO
catalysis is that the sum of the abundances Yi for the CNO isotopes is
conserved by the cycle, as illustrated by the dotted line labeled ∑ YCNO.
Once steady state is reached, then the CNO isotopes also become conserved
individually.

6.2.2 Rate of CNO Energy Production
The effective Q-value for the CNO cycle is 23.8 MeV (Table 6.1). The rate
of energy production is [107]

(6.3)

where X is the hydrogen mass fraction and Z the mass fraction of metals,
which corresponds to a temperature exponent νCNO ≃ 18 for T6 = 20. This
very strong temperature dependence implies that, were the Sun only slightly
hotter, the CNO cycle instead of the PP chains would be the dominant
energy production mechanism (see Fig. 5.4).

6.3 The Triple-α Process
Main sequence stars produce their energy by converting hydrogen to helium
using either the PP chains or the CNO cycle, which builds up a
thermonuclear ash of helium in the core of the star. Nothing heavier than



helium is produced in significant amounts by main-sequence burning.3 The
star continues to burn hydrogen to helium in a shell surrounding the central
core of helium that is built up. This hydrogen shell burning adds gradually
to the accumulating core of helium and the star remains on the main
sequence until about 10% of its initial hydrogen has been consumed.

Fusion of helium to heavier elements is difficult because of the larger
Coulomb barrier, and because of a basic fact from nuclear physics that there
are no stable mass-5 or mass-8 isotopes to serve as intermediaries for the
production of heavier elements (Fig. 6.4). Thus, helium burning can occur
only at very high temperatures and densities: temperatures in excess of
about 108 K and densities of 102–105 gcm−3. Such conditions can result
when stars exhaust their hydrogen fuel and their cores begin to contract (see
Chapter 13). Because there are no stable mass-8 isotopes, the resulting
fusion of helium must involve a two-step process in which two helium ions
(α-particles) combine to form highly unstable 8Be, and this in turn
combines with another helium ion to form carbon. The resulting sequence,
which is crucial to the power generated by red giant stars and to the
production of most of the carbon and oxygen in the Universe, is called the
triple-α process. Our bodies are composed of about 65% oxygen and 18%
carbon, so the triple-α process is of more than academic interest! This will
be discussed further in Section 6.4.2. The burning of helium to carbon by
the triple-α process may be viewed as taking place in three steps:

1. Formation of a transient 8Be population: A small transient population
of 8Be is built up by the reaction 4He+4He ⇋ 8Be. (The forward
reaction is the inverse of the terminating reaction in the PP-III chain;
see Fig. 5.2.)

2. Formation of a transient population of 12C in an excited state: A small
population of 12C in an excited state is built up by the reaction 4He +
8Be ⇋ 12C∗. To produce a finite population of 12C∗ this reaction must
be resonant; otherwise it would be too slow to compete with the decay
of 8Be back to two α-particles.

3. Electromagnetic decay of the excited state of 12C to its ground state: A
small fraction of the 12C∗ excited states decay electromagnetically by
12C∗ → 12C + 2γ to the ground state of carbon-12.



This (highly improbable) sequence of reactions has the net effect of
converting three helium ions to 12C, with an energy release of Q = +7.275
MeV. We now consider each of these steps of the triple-α mechanism in
more detail, guided by the discussion of helium burning in Refs. [107, 169,
188].

Fig. 6.4 The shaded boxes indicate stable isotopes and unshaded boxes indicate unstable isotopes.
The unshaded boxes along the two dashed diagonal lines illustrate that there are no stable mass-5 or
mass-8 isotopes. This basic fact of nuclear physics has large implications both for nucleosynthesis in
the big bang and for production of carbon in red giant stars.

6.3.1 The Equilibrium Population of 8Be
The mass of 8Be is 92 keV greater than the mass of two free α-particles and
8Be is unstable against decaying back to α-particles, releasing 92 keV of
energy. The width for this decay is Γ8-Be = ħτ−1 = 6.8 eV, which corresponds
to a mean life for 8Be of τ ≃ 10−16 seconds. This is a very short lifetime but
it is much larger than the average time between collisions for α-particles in
a hot stellar plasma. However, the capture to produce 8Be will be too slow
to compete with the decay back into α-particles unless the corresponding
resonance peak overlaps substantially with the Gamow peak. Thus, this



initial step of the triple-α process is expected to be significant only when
the energy of the Gamow peak is comparable to the mass difference of 92
keV between 8Be and two α-particles, and this in turn sets the required
conditions for triple-α to proceed. The energy E0 corresponding to the
maximum of the Gamow peak is given by Eq. (5.30), which implies a
temperature of 1.2 × 108 K for E0 = 92 keV. Therefore, only for such
temperatures can the initial step of the triple-α reaction produce a sufficient
equilibrium concentration of 8Be to allow the subsequent steps to proceed.4

The equilibrium concentration of 8Be may be estimated by viewing 8Be
→ α + α as the “ionization” of 8Be and applying to nuclei a suitable
modification of the Saha equations introduced in Section 2.1.2 to describe
the dependence of this “ionization” on temperature and density. The
required changes are [107]

1. Replace the number densities of ions and electrons with the number
densities of α-particles, and the number density of neutral atoms with
the number density of 8Be.

2. Replace the statistical factors g for atoms with corresponding
statistical factors associated with nuclei. This is trivial for the present
case since the ground states of both 8Be and 4He have angular
momentum zero and g = 1 for both.

3. Replace the ionization potentials entering the atomic Saha equations
by Q-values in the nuclear case. In the present example, Q = 91.8 keV
for 8Be → αα (“ionization” of 8Be to two α-particles).

4. Replace the electron mass entering the atomic Saha equations by the
reduced mass 

The resulting nuclear Saha equation is (see Problem 6.1 and reference
[107])

(6.4)

The conditions under which such equations apply are termed nuclear
statistical equilibrium (NSE). Nuclear statistical equilibrium will figure



prominently in energy and element production processes for stars once they
move beyond the hydrogen-burning phase.

Example 6.3 Helium flashes are explosive helium-burning events in red
giant stars that will be described in Section 13.5.3. Typical helium flash
conditions in lower-mass red giants correspond to a temperature of T9 ≃ 0.1
and a density of ρ ≃ 106 gcm−3. As shown in Problem 6.2, for a helium
flash in a pure helium core Eq. (6.4) yields n(8Be)/nα = 7 × 10−9,
corresponding to an equilibrium 8Be number density of 1021 cm−3 during
the flash.

From the preceding example we see that under the right conditions the first
step of the triple-α sequence can produce a small equilibrium abundance of
8Be, which sets the stage for the second step.

6.3.2 Formation of the Excited State in 12C
The second step of the triple-α process, 8Be(α,γ )12C∗, has Q = 7.367 MeV
and proceeds through a J π = 0+ resonance in 12C at an excitation energy
relative to the 12C ground state of 7.654 MeV, as illustrated in Fig. 6.5(a).
This state is called the Hoyle resonance because its existence was predicted
by Fred Hoyle (1915–2001) as a necessary condition for red giant stars to
produce their energy. As illustrated in Fig. 6.5(b), the population of this
state is optimized if the center of mass energy plus the Q-value is equal to
the resonance energy relative to the ground state of 12C. Once this excited
state is formed the dominant reaction is a rapid decay back to α + 8Be, but a
small fraction of the time the ground state of 12C may instead be formed by
emission of two γ -ray decays, as also illustrated in Fig. 6.5(a).5 If nuclear
statistical equilibrium is assumed, the concentration of 12C∗ excited states is
given by

(6.5)

where  is the mass of 12C in the excited state (see Problem 6.1).



Fig. 6.5 (a) Nuclear energy levels in 12C labeled by Jπ and excitation energy for the final steps of the
triple-α reaction. The 0+ state at 7.65 MeV is the Hoyle resonance. (b) Relationship of Q-value,
resonance energy E∗, and center of mass energy Ep when an isolated resonance is maximally excited
in a reaction [see Eqs. (5.32)–(5.34)]. The resonance condition corresponds to the energy Ep + Q
matching the excitation energy of the resonance E∗.

6.3.3 Formation of the Ground State in 12C
The preceding considerations determine a dynamical equilibrium

(6.6)

This produces an equilibrium population of 12C∗, almost all of which
decays back to 4He+ 8Be. However, the excited state of 12C can decay
electromagnetically to its ground state with a mean life of

(6.7)

and this implies that one in about every 2500 excited carbon nuclei that are
produced decay to the stable ground state. Because this decay probability is
so small, it does not influence the equilibrium appreciably in Eq. (6.6) and
the entire triple-α process may be represented schematically as

(6.8)

where left–right arrows indicate nuclear statistical equilibrium and the one-
way arrow denotes a small leakage from the equilibrium that does not
disturb it significantly. The production rate for 12C in its ground state may



be approximated then by the product of the equilibrium 12C∗ population and
the decay rate to the ground state [169],

(6.9)

where Eq. (6.5) and that the decay rate is the inverse of the mean life have
been used. Hence the rate of carbon production is governed by temperature,
the α-particle density, and:

1. An activation energy  that must
be borrowed to create the 12C∗ intermediate state.

2. The mean life for the decay 12C∗ → 12C(gs), which is given by Eq.
(6.7).

The strong temperature dependence for the triple-α reaction is a
consequence of the exponential factor in Eq. (6.9) because at helium
burning temperatures the average thermal energy kT is much less than the
activation energy of 379.5 keV. This is illustrated dramatically in Table 6.2,
where we see that doubling the temperature in the vicinity of 108 K changes
the exponential factor by 10–20 orders of magnitude.

Table 6.2 Parameters governing the triple-α rate∗

∗The activation energy from Eq. (6.9) is 

6.3.4 Energy Production in the Triple-α Reaction



The total energy released in each triple-α reaction is Q = −0.0918 + 7.367 =
7.275 MeV and the energy production rate is given by Eq. (5.38) using the
reaction rate from Eq. (6.9). This may be represented conveniently as [107]

(6.10)

where Y is the helium mass fraction. From Eq. (5.40), this corresponds to
density and temperature exponents

(6.11)

respectively. The density dependence is quadratic because the reaction is
effectively 3-body, since three α-particles must be combined to form the
carbon. The dependence on temperature is very strong, as was already seen
in connection with Table 6.2. For T8 = 1, Eq. (6.11) yields a temperature
exponent ν3α ≃ 40. This implies that a helium core constitutes a very
explosive fuel,6 which is a fact of some importance for stellar evolution
beyond the main sequence (see, for example, Section 13.5.3).

Example 6.4 The triple-α reaction consumes three 4He nuclei (∼12 amu) to
release Q = 7.275 MeV of energy. The energy release per unit mass is then

Comparison with Example 5.3 indicates that the energy release per gram is
about 10 times less for the burning of helium to carbon than for the burning
of hydrogen to helium. This represents a first example of an important rule
of diminishing returns for evolution beyond the main sequence: Each
successive burning stage releases less energy per gram of fuel than the
preceding stage. Ultimately this follows from the behavior of the curve of
binding energy below the iron peak in Fig. 5.1.

6.4 Helium Burning to C, O, and Ne



After carbon has been created by the triple-α reaction sequence, heavier
nuclei can be formed by successive α-capture reactions on the carbon. The
probability for this to occur will depend on the stellar environment, and on
the nuclear structure of the additional isotopes that could be produced.

6.4.1 Oxygen and Neon Production
Oxygen can be produced through the radiative capture reaction

(6.12)

There are no resonances near the Gamow window so the rate is low; the
currently accepted value is plotted in Fig. 6.6, but it has substantial
uncertainty. This is of consequence because the α-capture rate on carbon
determines the ratio of C to O production, which can impact late stellar
evolution. For example, the composition of white dwarfs and of the cores of
massive stars depend on this rate, so it can influence how stars die and what
is left behind when they do. Once oxygen has been produced by the
reaction (6.12), neon can be formed by an additional α capture,

(6.13)

The rate for this reaction also is plotted as a function of temperature in Fig.
6.6. The reaction is slow under helium burning conditions because it is
nonresonant and has a larger Coulomb barrier than for (6.12). Hence little
neon is produced during helium burning and the primary residue is a
carbon–oxygen core. The carbon is produced by the triple-α sequence and
the oxygen by radiative capture (6.12) on the carbon, with the ratio of
carbon to oxygen depending strongly on the uncertain rate for the radiative
capture reaction.



Fig. 6.6 Triple-α and radiative α-capture rates important in helium burning. The vertical gray band
indicates the characteristic temperature range for helium burning.

A simulation of helium burning at constant temperature and density is
shown in Fig. 6.7. Initially only 4He is present but a population of 12C
begins to grow because of its production in the triple-α reaction, with a
corresponding depletion of 4He. This population of 12C produces a growing
population of 16O by α-capture, and by the time the 4He fuel has been
depleted almost equal mass fractions of 12Cand 16O have been produced
with this choice of parameters. On the other hand, because the rate to
produce 20Ne by α-capture on 16O is small, the mass fraction of 20Ne at 4He
depletion is 6–7 orders of magnitude below that for carbon and oxygen, and
that for 24Mg is suppressed by a factor ∼ 10−16. This result illustrates
concisely that the normal products of helium burning are carbon and
oxygen.



Fig. 6.7 Thermonuclear burning of pure helium using rates from Fig. 6.6 at constant ρ = 104 gcm−3

and T = 1.5 × 108 K. Realistically the temperature and density would change with time in response to
the burning but this simplified example illustrates the basic features expected for a more
sophisticated calculation.

6.4.2 The Outcome of Helium Burning
The outcome of helium burning, summarized in Fig. 6.8, illustrates how
different the Universe would be if just a few seemingly unremarkable
parameters had slightly different values (see also the discussion in Refs.
[169] and [188]). The proportion of carbon to oxygen in the Universe is
determined by the competition between the carbon-producing triple-α
reaction and the carbon-depleting, oxygen-producing radiative capture
reaction (6.12). Furthermore, that much carbon or oxygen exists at all
depends crucially on the existence of the Hoyle resonance and the slowness
of the neon-producing reaction (6.13).



Fig. 6.8 An overview of helium burning adapted from Rolfs and Rodney [188].

A universe with no carbon: If – contrary to fact – a resonance existed near
the energy window for the reaction (6.12), the corresponding rate would be
large and almost all carbon produced by triple-α would be converted rapidly
to oxygen, leaving little carbon in the Universe. A similar fate would follow
if the 0+ excited state in 12C at 7.65 MeV were a little higher in energy,
since this would greatly slow the triple-α rate by virtue of the Boltzmann
factor in Eq. (6.9), and any carbon that was produced would be converted
rapidly to oxygen through (6.12). Conversely, if the Hoyle resonance at
7.65 MeV in 12C did not exist the triple-α reaction would not function at all
in red giant stars and there would be little carbon or oxygen in the Universe.

A universe without carbon or oxygen: If the reaction (6.13) were resonant—
which it would be if the parity of the 2− excited state in neon were positive



—much of the carbon and oxygen produced by helium burning could be
transformed by this reaction to neon. Neon is a chemically inert noble gas,
in contrast to the rich chemistry of carbon that makes biology possible: our
very existence seems to depends on the parity of obscure nuclear states in
atoms that have nothing whatsoever to do with the chemistry of life! Some
philosophical issues associated with this observation are discussed further
in Box 6.2.

Box 6.2 The Anthropic Principle and Helium Burning

Some would argue, based on the observed diversity of life on Earth and
how quickly it arose after formation of the planet, that the appearance of
life in the Universe is inevitable. But even if this point of view is valid it
assumes existence of the chemicals on which life (as we know it) is
built. The preceding discussion suggests that the very existence of the
building blocks of life depends on arcane facts on the MeV scale
(nuclear physics) that have nothing to do with the physics of eV scales
(chemistry) that governs life, and that the possibility of biochemistry
may be an accident of physical parameter values in this particular
Universe. Such considerations lie at the basis of the (simplest form of
the) anthropic principle, which goes something like:

It is not surprising that the Universe has just the right values of
constants and just the detailed physics like the energy and parity
of obscure nuclear states that are required for life because, if it
didn’t, there would be no life in the Universe and therefore no
one to ask the question.

This line of thinking is intriguing but it is unclear whether it enhances
our scientific understanding of the Universe (or other possible universes,
provided that ‘other universes’ makes sense scientifically).

6.5 Advanced Burning Stages
If a star is massive enough, more advanced burnings are possible by virtue
of the high temperature and density that results as the core contracts after



exhausting successive fuels. Typical burning stages in massive stars are
listed in Table 6.3, and are described briefly below (see also Fig. 14.2 and
Section 20.3.2); some rates important in advanced burning stages are shown
as a function of temperature in Fig. D.3 of Appendix D.

Table 6.3 Burning stages in massive stars [231]

6.5.1 Carbon, Oxygen, and Neon Burning
The carbon and oxygen produced by helium burning can be converted into
successively heavier elements through a sequence of reactions that can
occur only at the elevated temperatures and densities possible in more-
massive stars.

Carbon burning: Carbon begins to burn at a temperature of T ∼ 5 × 108 K,
primarily through the reactions

As indicated in Table 6.3, these reactions are possible late in the lives of
stars having masses of 4M⊙ or larger. Burning stages beyond that of carbon
require conditions realized only for stars having M > 8M⊙ or so. At the
required temperatures a new feature enters because the most energetic
photons can disrupt the nuclei produced in earlier burning stages.

Neon burning: At T ∼ 109 K, the neon produced in carbon burning can burn
by a two-step process. First, neon is photodisintegrated by a high-energy
photon (which become more plentiful as the temperature is increased) in the



reaction γ + 20Ne → 16O + α. Then the α-particle produced in this step can
initiate a radiative capture reaction α + 20Ne → 24Mg + γ . This burning
sequence leaves a residue of 16O and 24Mg.

Oxygen burning: At a temperature of 2 × 109 K, oxygen can fuse through
the reaction 16O + 16O → 28Si + α. The silicon that is produced can react
only at temperatures where the photon spectrum is sufficiently “hard” (has
significant high-energy components) that photodissociation reactions begin
to play a dominating role.

6.5.2 Silicon Burning
For T ∼ 3 × 109 K, silicon may be transformed into heavier elements by a
mechanism similar to that of neon burning described above. At these
temperatures the photons are quite energetic and those in the high-energy
tail of the Maxwell–Boltzmann distribution can readily photodissociate
nuclei. A network of photodisintegration and capture reactions in
approximate nuclear statistical equilibrium develops and the population in
this network evolves preferentially to those isotopes that have the largest
binding energies. From Fig. 5.1 the most stable nuclei are in the iron group,
so silicon burning carried to completion under equilibrium conditions tends
to produce iron-group nuclei.

The silicon-burning network: The initial step in silicon burning is a
photodisintegration such as γ + 28Si → 24Mg + α, which is highly
endothermic (Q = −9.98 MeV). This implies a large activation energy that
must be supplied by a photon in the gas having an energy of ∼ 10 MeV or
greater. Such photons are rare except at high temperatures and the
astonishingly strong temperature dependence that results for the reaction is
illustrated in Fig. 6.9. The α-particles liberated in the initial step can now
initiate radiative capture reactions on seed isotopes in the gas; a
representative sequence is

(6.14)



These reactions are in quasi-equilibrium and much faster than γ + 28Si →
24Mg + α, so the initial photodisintegration of Si controls the rate for silicon
burning. The rates for some of the competing capture and
photodisintegration reactions are illustrated in Fig. D.4 of Appendix D.
From that figure, note the steep temperature dependence of the
photodisintegration reactions, and that for high enough density and α-
particle abundance many photodisintegration rates become comparable to
the rates for their inverse capture reactions somewhere in the temperature
range 109–1010 K.

Fig. 6.9 Temperature dependence of the highly endothermic, rate-controlling initial step in silicon
burning. For reference, the typical range of temperatures corresponding to helium burning and for
carbon and oxygen ignition are indicated. Silicon burning requires temperatures more than an order
of magnitude larger than for helium burning, and exhibits an extremely strong temperature
dependence.

Numerical simulation of silicon burning: A calculation of silicon burning
that starts with pure 28Si and uses the reaction rates of Fig. D.4 is shown in
Fig. 6.10. The net



effect of the simulation is to convert 28Si into a mixture of primarily iron-
group nuclei through a sequence of reactions as in Eq. (6.14). In Fig.
6.10(a) there is initially only 28Si but quickly a population of α-particles
(dashed curve) and 24Mg begins to accumulate, followed by a growing
abundance of 32S, and so on. In the quasi-equilibrium established by the
silicon burning the population becomes concentrated in the most
thermodynamically stable species. The binding energies per nucleon B/A for
the isotopic species used for this simulation are given in Table 6.4 and in
Fig. 6.10(a). The isotope 56Ni has the largest B/A so it is the most stable
species and ends up with the largest mass fraction as the network evolves.
For the simulation in Fig. 6.10 the mass fractions for 56Ni and 52Fe (shown
as heavier curves) sum to 0.997 after 109 seconds, implying that almost all
of the silicon has been converted into iron-group nuclei. The integrated
energy release is shown in Fig. 6.10(b) on a logarithmic scale. The log of
the absolute value is plotted because initially the energy release is negative
(endothermic) since 9.98 MeV of photon energy must be supplied to
photodissociate 28Si. Once α-particles are produced by this step they begin
to capture on other nuclei, which generally corresponds to exothermic
reactions. Eventually when enough α-capture is occurring the net energy
release becomes positive (after log t ∼ 2.1 in this simulation).



Fig. 6.10 (a) Burning of 28Si at constant T = 3 × 109 K and ρ = 106 g cm−3. Binding energy per
nucleon in MeV (Table 6.4) is indicated in parentheses for each isotope. The calculation used a
highly simplified network having only the 15 isotopic species shown. A more realistic simulation
would include several hundred isotopes and allow the temperature and density to be modified by the
burning but this simplified calculation illustrates the essential features of silicon burning. (b)
Absolute value of the net energy release. It is initially negative but eventually becomes positive.

Table 6.4 Some binding energies per nucleon B/A



End of the line for fusion and charged-particle capture: Since iron-group
nuclei have the greatest stability, Si burning represents the last stage by
which fusion and radiative capture reactions can build heavier elements in
equilibrium. It might be thought that still heavier elements could be made
by increasing the temperature to overcome the Coulomb barriers. But this is
self-defeating in equilibrium because the higher temperatures lead also to
increased photodissociation and iron-group nuclides are still the equilibrium
product. Subsequent chapters will address other mechanisms by which stars
can produce the elements heavier than iron found in the Universe.

6.6 Timescales for Advanced Burning



Table 6.3 indicates that the timescales for advanced burning are greatly
compressed relative to earlier burning stages. These differences are
particularly striking for very massive stars, which race through all stages of
their lives at breakneck speed. For example, the 25M⊙ example of Table
6.3 takes only 10 million years to advance through hydrogen and helium
burning, completes its burning of oxygen in only six months, and
transforms its newly minted silicon into iron group nuclei in a single day!
An analogy illustrating how remarkably short these advanced-burning
timescales are may be found in Box 6.3.

Box 6.3 The compressed timescale for advanced burning

To get a perspective on how short the advanced burning timescale is,
imagine the lifetime of the 25 M⊙ star of Table 6.3 to be compressed
into a single year. Then the hydrogen fuel would be gone by about
December 7 of that year, the helium would burn over the next 24 days,
the carbon would burn in the 42 minutes before midnight, the neon and
oxygen would burn in the last several seconds before midnight, and the
silicon would be converted to iron in the last 1/100 second of the year
(with a quite impressive New Year’s Eve fireworks display in the offing
– see the discussion of core collapse supernovae in Chapter 20)!

These timescales are set by the amount of fuel available, the energy per
reaction derived from burning the fuel, and the rate of energy loss from the
star, which ultimately governs the burning rate. The last factor is
particularly important because energy losses are large when the reactions
must run at high temperature. Each factor separately shortens the timescale
for advanced burning; taken together they make the timescales for the most
advanced burning stages almost instantaneous on the scale set by the
hydrogen burning. To quote David Arnett [26] concerning massive stars in
late burning stages: “these stars are not so much objects as events!”

Background and Further Reading
Similar coverage of the material in this chapter may be found in Hansen,
Kawaler, and Trimble [107]; Phillips [169]; Rolfs and Rodney [188]; Pagel



[166]; Iliades [128]; and Ryan and Norton [192].

Problems
6.1 Derive the nuclear Saha equations (6.4), (6.5), and (6.9) for helium

burning, beginning from Eq. (3.55) and the assumption of nuclear
statistical equilibrium. Hint: The condition for concentration
equilibrium in the reaction a + b ⇋ c is that the sum of chemical
potentials on the two sides of the equation balance, μa + μb = μc.***

6.2 Under helium flash conditions in low-mass red giant stars (see
Section 13.5.3), T9 ≃ 0.1 and the density is ρ ≃ 106 gcm−3. Estimate
the 8Be concentration and the ratio of 8Be to 4He concentrations
assuming that the flash takes place in a pure helium core.***

6.3 It was stated in Section 6.4 that radiative alpha capture on 16O to
produce 20Ne is inhibited relative to radiative alpha capture on 12C
to produce 16O by a higher Coulomb barrier. Estimate the difference
in Coulomb barrier penetration rates for these two reactions under
conditions characteristic of helium burning. Does this estimate
explain the basic rate difference between the two reactions exhibited
in Fig. 6.6 under helium burning conditions?

6.4 Use the rates given in Fig. 6.3(a) to estimate the mean life for each
step of the main part of the CNO cycle (the CN cycle) illustrated in
Fig. 5.3(a), assuming a temperature of 20 million K and a density of
100 g cm−3. Based on these results, which isotope would you expect
to become the most abundant after the CNO cycle has run long
enough to reach equilibrium? Would you expect 13N to have a high
or low abundance after the CNO cycle has been running for a while
in a star?***

6.5 For a p + p reaction at a temperature of T6 = 15, calculate the
average energy of particles in the gas, the location of the Gamow
peak, and its approximate width. For the second step of the triple-α
process, 8Be + α → 12C∗, estimate the location and width of the
Gamow peak for a temperature of T8 = 3.



6.6 Consider an idealized closed system in which 12C can undergo a (p,
γ ) reaction to produce 13N and the 13N can β-decay to 13C, with no
other reaction or decay channels open. Write a differential equation
expressing the time dependence of the 13N number density in terms
of the number densities of the other species, the velocity-averaged
(p, γ ) reaction rate 〈σv〉, and the β-decay constant λ. Rewrite this
expression in terms of the abundances Yi introduced in Eq. (3.18).
Assuming that the abundances of protons and 12C do not change
significantly over a long period of time and that temperature and
density are constant, show that the abundance of 13N approaches a
constant for long times and derive an expression for this equilibrium
concentration of 13N.

6.7 Consider the burning of pure 28Si as in Fig. 6.10, with an initial step
corresponding to photodisintegration of silicon: γ +28Si → α+24Mg.
Using estimates from Figs. 6.9 and D.3 for the relevant rates, to what
abundance does the α-particle population have to grow before the
rate of α-capture on silicon, α + 28Si → 32S + γ , becomes equal to
the rate for photodisintegration of silicon, γ + 28Si → α + 24Mg,
assuming a density of 106 g cm−3 and temperature of T9 = 3? Hint:
The relevant equations are given in Section D.2.3, and note that the
rates in Figs. 6.9 and D.3 are in different units.

1 Figure 6.1 indicates that the rate for 1H + 1H → 2H + e+ + νe is very small. This is because it
proceeds by the weak interaction rather than strong interaction (the appearance of a neutrino
is the dead giveaway that it is a weak interaction). There is a reason why weak interactions
are called weak: their reaction rates are typically many orders of magnitude smaller than
corresponding strong interaction rates.

2 The CNO rate estimate will be intrinsically more uncertain than that of the PP chains, largely
because of uncertainty in how much 14N is in the center of the Sun. Although the sum of
abundances for the CNO isotopes is conserved by the cycle and thus may be well represented
by present surface abundances, as the cycle runs it tends to convert the other CNO isotopes
into 14N (see the figure in Box 6.1). Thus the present amount of 14N depends on the detailed
history of the Sun. A simulation to estimate the current abundance of 14N in the Sun’s core is
displayed in Fig. 6.3(b). With the assumptions used there, over the age of the Sun almost all
CNO abundance has been converted to 14N, with a current 14N abundance of Y14N = 3.35 ×
10−4, corresponding to a number density of 2.6 × 1022 cm−3.

3 The CNO cycle requires an initial abundance of carbon, nitrogen, and oxygen isotopes to
serve as catalysts and alters their relative abundance, but the total abundance of these
isotopes is conserved by the CNO cycle. Likewise, PP-II and PP-III involve Z = 3, 4, and 5



isotopes in intermediate steps, but not as final products. Thus neither of the primary
hydrogen-burning sequences leads to net production of isotopes heavier than 4He.

4 These simple considerations ignore details such as electron screening that must be included
for a more precise estimate of the temperature for helium burning, but it sets the correct order
of magnitude. This temperature estimate also prompts the question of why helium was not
consumed in big bang nucleosynthesis by the triple-α mechanism. The answer is that during
the short period of big bang nucleosynthesis the temperature was high enough but not the
density. Both high temperatures and high densities, which had to await the formation of stars,
were required to produce significant amounts of carbon by the triple-α mechanism. A more
extensive discussion of big bang nucleosynthesis may be found in Chapter 20 of Ref. [100].

5 The energy of the excited state relative to the ground state is well above the energy threshold
required to form an electron–positron pair (2 × 0.511 = 1.022MeV). Therefore, the 12C
excited state also decays electromagnetically to the ground state by e+e− pair production (but
with a much smaller width than for γ -decay, so the dominant decay is by γ -rays). The energy
release in pair production appears in the kinetic energy of the e− and in the γ -rays produced
when the e+ annihilates with an electron.

6 An explosion is runaway burning (whether ordinary chemical burning or thermonuclear
burning). If a thermonuclear fuel has a large temperature exponent, in the corresponding
temperature range the rate of burning can increase enormously if the temperature increases
only a little. This greatly enhances the probability that burning becomes explosive once it is
initiated.



7

Energy Transport in Stars

Most energy production in stars takes place in the deep interior where
densities and temperatures are high, but most electromagnetic energy
emitted from stars is radiated from the photosphere, which is a very thin
layer at the surface. Thus, a fundamental issue in stellar astrophysics is how
the energy produced in the interior makes its way to the surface of the star.
This transport of energy occurs through four basic mechanisms: (1)
conduction because of thermal motion of electrons and ions, (2) radiative
transport by photons, (3) convection of macroscopic packets of stellar
material, and (4) neutrino emission from the core. These modes of stellar
energy transport will be introduced and discussed in this chapter.

7.1 Modes of Energy Transport
Conduction and radiative transport result from random thermal motion of
constituent particles (electrons in the first case and photons in the second),
while convection is a macroscopic or collective phenomenon. We shall find
that in normal stars conduction is negligible but that it is important in stellar
environments containing degenerate matter (for example, in the interior of
white dwarfs), and that radiative transport normally is dominant unless the
temperature gradient in the gravitational field exceeds a critical value, in
which case convection quickly becomes the most efficient means of
transporting energy.

Neutrino emission is important for core cooling late in the life of more
massive stars. It differs from the other energy transport mechanisms in that
it can operate only at extremely high temperatures and densities, and that
the neutrinos have little interaction with the star as they carry energy out of
the core at essentially the speed of light.1 As a result, the first three modes
of energy transport typically lead to thermalization of the energy (sharing of



the energy among many particles), which is then eventually emitted as light
of various wavelengths from the photosphere of the star, but the energy of
the neutrinos almost always remains in the emitted neutrinos.

To understand stellar structure and stellar evolution, we must consider the
role of all four modes of energy transport listed above, since each can be
important in particular circumstances. We will find that energy transport in
normal stars is dominated either by radiative transport or by convective
transport. Thus our first task will be to understand radiative and convective
transport, the crucial issue of how a star decides between the two in
transporting energy, and how to calculate the rate of energy transport in
either the radiative or convective case. Then we will address the issue of
how neutrino transport becomes the dominant mode of core cooling late in
the life of more massive stars. Conductive transport in degenerate matter
will be largely deferred until later chapters that deal explicitly with compact
objects.

7.2 Diffusion of Energy
We begin with a discussion of how energy can be transported by random
thermal motion (diffusion), following the general discussion given by
Phillips [169]. Consider the volume enclosed by the small cube illustrated
in Fig. 7.1 and introduce a random velocity distribution with a small
temperature gradient in the x direction. On average, it may be assumed that
at any instant approximately  of the particles move in the positive x
direction with mean velocity 〈v〉 and mean free path λ (Box 7.1 defines the
mean free path).



Fig. 7.1 Diffusion of energy by random thermal motion. The temperature is assumed uniform in the y
and z directions, but has a gradient dT/dx along the x axis. Thus particles crossing the boundary at x
from left to right have a slightly higher energy than those crossing from right to left.

Box 7.1 Mean Free Path

The mean free path λ is the average distance that a particle travels
before interacting with something. Qualitatively the mean free path is
long if the interactions are rare and short if the interactions are frequent.
A quantitative measure of the mean free path may be formulated
through the following considerations [192].

If a particle travels a small distance Δx through a medium containing
identical particles with number density n and the cross section for
interaction is σ (see Section 5.3), the probability of an interaction in the
interval Δx is nσΔx and the probability for survival (no interaction) in
that interval is 1 − nσΔx. If the particle passes through N successive
intervals Δx, the probability of survival Ps(x) over the distance x = NΔx
will be the product of survival probabilities in each interval Δx,

and in the limit N → ∞ the survival probability is

The mean free path λ for the particle (mean distance between
interactions) is then



where P(x)dx is the probability that the particle travels from 0 to x with
no interaction and then interacts in the interval x to x + dx. From the
considerations above, the probability to travel from 0 to x with no
interaction is Ps(x) = exp(−nσ x) and the probability to interact in the
interval dx is nσ dx. Thus P(x)dx = nσ exp(−nσ x)dx and

As will be discussed further in Section 7.4.4, the mean free path λ for
photons is inversely related to the opacity κ for a medium: κ = (λρ)−1,
where ρ is the mass density.

Let u(x) be the thermal energy density. Because of the temperature
gradient, particles crossing a plane at x from left to right have a different
thermal energy than those crossing from right to left (Fig. 7.1(b)).
Therefore, energy is transported across the surface by virtue of the
temperature gradient. The rate of this transport in units of energy per unit
time across a unit area is given by the energy current j(x),

where the heat capacity per unit volume, C = du/dT, has been introduced.
Therefore, the current across the surface may be written as

(7.1)

where K is termed the coefficient of thermal conductivity,



(7.2)

Equation (7.1) is Ficke’s Law; it is characteristic of diffusive transport. This
result has been obtained in a carelessly heuristic way but a more careful
derivation leads to essentially the same result.

7.3 Energy Transport by Conduction
Consider first heat transport by random electronic and ionic motion. As
discussed in Section 3.3, for a nonrelativistic ideal gas of electrons the
internal energy density ue, heat capacity Ce, and average velocity 〈ve〉 are
given by

(7.3)

Electron–electron collisions are much less effective than electron–ion
collisions in transferring energy, so the relevant mean free path is λei =
1/niσei, where ni is the number density of ions and σei is the cross section for
electron–ion collisions. As a first crude estimate of the electron–ion cross
section we may assume that σei ≃ πR2, where R is the separation between
electron and ion at which the potential energy is equal to the average kinetic
energy kT in the gas, Ze2/R ≃ kT . Thus, the cross section is approximately

and substitution in (7.2) yields

(7.4)

The corresponding expression for ionic conduction is obtained by the
exchanges ne ↔ ni and me ↔ mi, giving

(7.5)



As an estimate the gas may be assumed to be completely ionized, so that ne
= Zni and

But generally Z ≥ 1 and mi >> me; therefore, Ke >> Ki and we see that
conduction by electrons is much more important than conduction by the
ions. This is just a mathematical statement that there are more electrons and
they move faster, so electrons are more efficient than ions at transporting
heat. In summary, the current produced by conduction is given
approximately by

(7.6)

where Kc ≃ Ke is dominated by the electronic contribution.

7.4 Radiative Energy Transport
Assuming stars to be blackbody radiators, the photons may be viewed as
constituting an ultrarelativistic, bosonic gas with

(7.7)

By analogy with Eq. (7.1), the current associated with radiative diffusion is

(7.8)

where the coefficient of radiative diffusion is

(7.9)



All quantities in Eqs. (7.7)–(7.9) are known except for the mean free path λ.
To assess it we need to consider various contributions to the interaction of
photons with the medium that are responsible for their effective mean free
path in stellar environments.

7.4.1 Thomson Scattering
At high temperatures and low densities, Thomson scattering (the elastic
scattering of electromagnetic radiation by free charged particles) from
electrons dominates, with a cross section that is independent of frequency
and temperature,

(7.10)

For a gas in thermal equilibrium this expression is valid if kT << mec2,
which is satisfied if T << 6 × 109 K. This is true in most stars except in
extreme circumstances.2 The corresponding mean free path is

(7.11)

where ne is the electron number density, and inserting this in (7.9) gives for
the coefficient of radiative diffusion in the Thomson scattering
approximation

(7.12)

As shown in Problem 7.1, assuming complete ionization and that Thomson
scattering dominates then permits the ratio of coefficients for radiative and
conductive transport to be approximated as [169]

(7.13)



where the radiation pressure is  and ideal-gas electron pressure
is Pe = nekT .

Example 7.1 Equation (7.13) yields Kr/Ke ≃ 2×105 for the Sun, supporting
the earlier assertion that radiative transport dominates over conduction in
normal stars. This conclusion is based on the assumption of pure Thomson
scattering but will not be altered significantly by additional photon
absorption processes that will be considered in Section 7.4.3. However, it is
not true if the matter in a star has a degenerate equation of state (see Section
3.7).

7.4.2 Conduction in Degenerate Matter
Electronic conduction in degenerate matter is altered in several important
ways relative to that for an ideal gas:

1. Degeneracy increases the electron speed by a factor (εF/kT )1/2 and
decreases the heat capacity by a factor of roughly kT /εF, where εF is
the Fermi energy.

2. The mean free path λ is increased because the Pauli exclusion
principle allows an electron to scatter to a state only if that state is not
already occupied, and in a degenerate gas there are no unoccupied
states below the Fermi surface.

The net effect of these changes is that a degenerate gas behaves much like a
metal and transport of energy by conduction becomes important. The issue
of conduction in degenerate matter will be revisited when the structure of
white dwarfs is considered in Chapter 16. There we will find that in very
dense matter such as for white dwarfs or the centers of evolved stars,
conduction can become a dominant mode of energy transport.

7.4.3 Absorption of Photons
In addition to undergoing simple Thomson scattering, photons may be
absorbed. (Recall from Section 3.10 that the number of photons is in



general not conserved.) Simultaneous conservation of energy and
momentum prohibits such absorption on free electrons but it can occur for
electrons in the vicinity of ions. Thus, absorption becomes more important
at higher densities and lower temperatures. The two most important
absorptive processes in stellar environments are3

1. Bound–free absorption, where the electron that the photon interacts
with is bound initially to an ion and is ejected by the interaction. This
process is also called photoionization.

2. Free–free absorption, where the electron is unbound before and after
the interaction. This process is also called inverse bremsstrahlung.

Unlike the case for Thomson scattering, both classes of absorptive
processes imply a mean free path that depends on frequency. In the
frequency range ν to ν + dν, the photon energy density uν and heat capacity
Cν are given by

(7.14)

Let λν be the mean free path for photons at frequency ν. Then from Eq. (7.2)
we expect the total coefficient of radiative transport to be given by an
integral over frequency,

Introducing the Rosseland mean λross through the definition

(7.15)

allows the above expression for Kr to be written as

(7.16)



This is the same form as the previous expression (7.9) with the replacement
λ → λross. Thus we may cast equations for frequency-dependent mean free
paths in the same form as those for constant ones by employing the
Rosseland mean defined in Eq. (7.15).

7.4.4 Stellar Opacities
It was useful to introduce diffusion processes in terms of the intuitive idea
of a mean free path λ, but it is more usual in astronomy to discuss photon
transport in terms of a closely related quantity called the opacity. The total
probability of photon interaction is a sum of contributions from electron and
ion scattering, and from Box 7.1 the total cross section σ and mean free path
λ are related by λ ∼ (nσ )−1, where n is a number density. Hence

(7.17)

Now both the electron number density ne and the ion number density ni are
proportional to the matter density ρ, which suggests that we parameterize
(7.17) in the form

(7.18)

where κ is termed the opacity and has units of area divided by mass. Then
(7.18) may be used to rewrite the preceding formulas in terms of the opacity
κ instead of the mean free path λ. For example, the current (7.8) associated
with radiative diffusion may be rewritten in terms of opacity κ as

(7.19)

and from Eq. (7.15) we find that

(7.20)

defines the Rosseland mean opacity κross.



7.4.5 General Contributions to Stellar Opacity
The following qualitative remarks apply to ionization and various
components of the stellar opacity.

1. The contribution of bound–free absorption is important at low
temperatures where atoms are only partially ionized.

2. The contribution of free–free absorption is dominant at higher
temperature where atoms become fully ionized, producing many free
electrons with which to interact.

3. Thomson scattering contributes a constant background that is
independent of temperature.

Let us now consider some simple opacity parameterizations that are
relevant for stellar material.

Kramer’s opacity law: An approximate expression for the frequency-
averaged opacity deriving from the first two of these mechanisms is given
by Kramer’s Law:

(7.21)

where the subscript denotes that this is an absorption-dominated opacity.
The calculation of such opacities is a complex issue but approximate
formulas for the free–free and bound– free frequency-averaged absorption
opacities above T ∼ 104 K may be given in the Kramer’s form [107]

(7.22)

(7.23)

where X is the hydrogen mass fraction, Y is the helium mass fraction, and Z
is the mass fraction of metals.

Thomson opacities: Thomson electron scattering gives a constant
background opacity

(7.24)



Introducing that for a fully ionized gas ne ∼ (1 + X)ρ/2Mu (see Problem
7.2), the Thomson scattering opacity may be approximated as

(7.25)

Realistic solar opacities: Sophisticated calculations of solar opacities as a
function of temperature and density that go beyond the considerations of the
preceding simple formulas may be found in Ref. [187] and in Fig. 7.2.
These opacities indicate that the interior of the Sun is extremely opaque to
electromagnetic radiation, implying a very short mean free path for
photons. This is illustrated for some representative values of the solar radial
coordinate in Table 7.1.

Fig. 7.2 Temperatures [32] and photon Rosseland mean opacities [190] calculated for the interior of
the Sun as a function of distance from the center. The peak near the surface (R/R0 ∼ 1) is because of
complex ionization processes in that region, primarily the photoionization of hydrogen (bound–free
absorption) around T ∼ 104 K. The steep falloff of opacity at even lower temperatures closer to the
surface is because the average photon energies there are no longer high enough to either ionize
hydrogen (bound–free absorption) or to excite its electronic states (bound–bound absorption). Over



most of the solar interior the opacity lies in the range 1–100 cm2 g−1, implying mean free paths less
than a centimeter.

Table 7.1 Solar opacities and mean free paths

R/R⊙ T (K)† ρ (g cm−3)† κ(cm2 g−1)∗ λ (cm)

0 1.6 × 107 157 1 0.006

0.3 6.8 × 106 12.0 2 0.042

0.6 3.1 × 106 0.50 8 0.25

0.9 6.0 × 105 0.026 100 0.39

†Temperature and density from Standard Solar Model, Table 10.1.
∗Opacities interpolated from Fig. 7.2.

Temperature and density dependence: The dominant contributions to the
opacity as a function of temperature and density are illustrated in Fig. 7.3.
The boundaries between regions are defined by lines where the
corresponding opacities are equal. At high temperature and low density
Thomson scattering dominates. At low temperature and high density
electrons become degenerate and the gas becomes a very good conductor.
In between, the opacity is dominated by bound–free transitions at low
density and free–free transitions at higher density.



Fig. 7.3 Dominant contributions to stellar opacity as a function of temperature and density. Adapted
from a figure in Ref. [107].

7.5 Energy Transport by Convection
In some circumstances the energy to be transported is too large to be carried
efficiently by either radiative transport or conduction. In those instances the
system can become unstable to macroscopic overturn of material in a
process called convection. Because convection is a collective process that
moves entire blobs of material up and down in the gravitational field, it can
transport energy very efficiently when it operates. It will be important for
subsequent discussion to make a distinction between two broad categories
of convection. The first may be termed microconvection; it applies when the
convective blobs are small relative to the size of the region that is unstable.
The second may be termed macroconvection; it corresponds to convection
in which the blob sizes are a substantial fraction of the size of the
convective region. This distinction has an important practical implication.



For microconvection it is possible to introduce approximations (mixing-
length theory – see Section 7.9) that allow retention of spherical symmetry
in the problem; thus, 1-dimensional hydrodynamics may suffice under such
conditions. However, if macroconvection prevails spherical symmetry is
broken strongly and multidimensional hydrodynamics is required to model
the convection dynamically.

The initial discussion of convection to be presented here will be
somewhat more general than is normally required for the structure of
ordinary stars. This will provide foundation for later discussions of events
like supernovae or neutron star mergers, in which rapid and complex
convective processes may play a significant role, and for which the
convection cannot be modeled adequately by simple models and must be
simulated on large computers.

7.6 Conditions for Convective Instability
We begin by analyzing some conditions under which a region of fluid may
be expected to become unstable against convective motion, following the
discussion of Ref. [227]. Imagine a blob of matter in a gravitating fluid that
moves upward a distance λ from position 1 to position 2 because of some
infinitesimal stimulus, as illustrated in Fig. 7.4(a). If the region is
convectively stable the displaced blob experiences a restoring force that
tends to return it to its original position, as illustrated in Fig. 7.4(b).
Because of overshooting, the blob executes a stable oscillation around an
equilibrium height with a frequency termed the Brunt–Väisälä frequency.
However, if the blob of material at position 2 is less dense than the
surrounding medium it will be driven upward continuously by buoyancy
forces and the region is then said to be convectively unstable, as illustrated
in Fig. 7.4(c).4 We may choose to impose particular physical conditions on
how the blob of matter is moved, and these lead to three separate criteria for
convective instability that we now discuss.



Fig. 7.4 (a) Schematic illustration of convective motion. (b) Convectively stable situation: a blob
displaced vertically a small amount oscillates around a stable equilibrium at the Brunt–Väisälä
frequency. (c) Convectively unstable situation: a blob displaced vertically a small amount continues
to rise as time goes on.

7.6.1 The Schwarzschild Instability
Suppose that the blob moves adiabatically (constant entropy), but in
pressure and composition equilibrium with the surrounding medium.
Denote the pressure, entropy, and composition of the medium at position 1
by P , S, and C, respectively, and at position 2 by the corresponding
variables with a prime, as illustrated in Fig. 7.5(a).5 The condition for
convective instability is that the blob is less dense than the surrounding
medium at point 2:

(7.26)

Fig. 7.5 Convective instability according to the Schwarzschild criterion.



Let’s analyze quantitatively the density difference between the blob and the
surrounding medium. The difference is assumed small, which justifies
expansion in a Taylor series for a small vertical displacement λ, giving

(7.27)

By using Eq. (3.10) to introduce the heat capacity at constant pressure Cp,
the entropy S may be exchanged for the temperature T and Eq. (7.26)
becomes

(7.28)

For normal equations of state the partial derivative in the preceding
expression is negative (for example, recall that ρ = μP /kT for an ideal gas).
Thus the quantity in parentheses is typically negative and Eq. (7.28) is
equivalent to the Schwarzschild condition for convective instability,

(7.29)

A region is unstable against Schwarzschild convection if there is a negative
entropy gradient, as illustrated schematically in Fig. 7.5(b).

7.6.2 The Ledoux Instability
Now suppose that the blob moves adiabatically with no composition
change, but in pressure equilibrium, as illustrated in Fig. 7.6(a).6 The
condition for convective instability is

(7.30)

where the first term is the same as for the Schwarzschild instability and the
second term arises because of the composition difference between the blob
and surrounding medium at point 2. For most cases of interest both of the



partial derivatives in Eq. (7.30) are negative and the Ledoux condition for
instability takes the form

(7.31)

where b is positive. Therefore, a region is unstable against Ledoux
convection if both the entropy and the concentration variables have
negative gradients, as illustrated schematically in Fig. 7.6(b). If the entropy
gradient and concentration gradient have opposite signs, the stability of the
region is dependent on the relative size of the two terms in Eq. (7.31). For
example, a region of a star could be Schwarzschild-stable but Ledoux-
unstable.

Fig. 7.6 Convective instability according to the Ledoux criterion.

7.6.3 Salt-Finger Instability
Finally, consider a situation where the blob is in temperature and pressure
equilibrium with the surrounding medium, but not in composition
equilibrium, as illustrated in Fig. 7.7(a). The condition for convective
instability now takes the form,

(7.32)

Consider a layer of hot salt water that lies over a layer of cold fresh water,
and imagine a blob of the hot salt water that is perturbed and begins to sink



into the underlying cold fresh water [Fig. 7.7(b)]. This blob of sinking
material will be able to come into heat equilibrium with its surroundings
faster than it will be able to come into composition equilibrium because
transfer of heat by molecular collisions generally is faster than the motion
of the sodium and chlorine ions that causes the composition to equilibrate.
It follows that such a blob may be in approximate temperature equilibrium
but remain out of composition equilibrium. The heat diffusion will cool the
blob of salt water and, since salt water is more dense than fresh water at the
same temperature, the blob continues to sink in the surrounding fresh water.
As this motion continues, the medium develops “fingers” of salt water
reaching down into the fresh water, as illustrated in Fig. 7.7(c).

Fig. 7.7 Convective instability according to the salt-finger criterion.

As discussed in Box 7.2, this salt-finger instability is a particular example
of what are more generally termed doubly diffusive instabilities. This type
of instability is observed in oceans and lakes on Earth but whether it is
important for stellar structure and stellar evolution is uncertain. For an
example of a possible salt-finger instability associated with off-center
helium burning in stars, see Section 6.5 of reference [134]. It also has been
suggested that an analog of the salt-finger instability discussed above may
occur in a core collapse supernova when a neutron-rich region surrounds a
central region that is less neutron rich, but the claim is controversial.



Box 7.2 Doubly Diffusive Instabilities

The salt-finger instability is a particular example of a general class of
instabilities that are termed doubly diffusive instabilities. They may
occur when

1. Two diffusing substances are present (heat and salt in this
example).

2. One of the substances diffuses more rapidly than the other (heat in
this example).

3. The substance diffusing more rapidly has a stabilizing gradient and
the substance diffusing more slowly has a destabilizing gradient (in
this example, cold salt water is more dense than cold fresh water).

For an informative discussion of the effects of doubly diffusive
instabilities in lakes and oceans on Earth, see Ref. [67].

7.7 Critical Temperature Gradient for
Convection
The most important convective instability for the structure and evolution of
stars is that set by the Schwarzschild condition (7.29), which is driven by
entropy gradients. The instability criterion for Schwarzschild convection
may be expressed also in terms of a critical temperature gradient (see
Problem 7.4 and Fig. 7.8)

(7.33)

with the adiabatic temperature gradient defined by (Problems 7.4 and 7.5)

(7.34)

where cp is the specific heat (heat capacity per unit mass) at constant
pressure, and where both derivatives generally are negative in Eq. (7.33).



Thus, by the Schwarzschild criterion:

A region is convectively unstable if the actual temperature
gradient is steeper than the local adiabatic temperature
gradient.

The difference between the actual temperature gradient dT /dr and the
adiabatic gradient (7.34) is sometimes termed the superadiabatic
temperature gradient δ(dT /dr),

(7.35)

Fig. 7.8 Schematic illustration (solid line) of the critical temperature gradient for convection implied
by Eq. (7.33). In this example the actual gradient (dashed line) is steeper than the adiabatic gradient,
so the region is convectively unstable.

Conditions for which this quantity is negative (so that |dT /dt| > |(dT /dr)ad|,
since both derivatives are negative) are said to be superadiabatic. If Eq.



(7.34) is substituted into Eq. (7.33) and both sides divided by dT /dr, the
instability condition may be expressed in the alternative form

(7.36)

Thus, convective instability according to the Schwarzschild criterion
requires the temperature to fall off sufficiently fast with radius that the
actual temperature gradient satisfies Eq. (7.33) or (7.36). Equivalently,
convective instability is heralded by the appearance of a negative
superadiabatic gradient (7.35). We won’t prove it here but these
temperature-gradient conditions for convection are equivalent to the
entropy-gradient condition (7.29).

The two most important quantities governing the behavior of the right
side of (7.34) are the adiabatic index γ and the pressure gradient dP/dr.
Let’s now examine in more depth how these can influence the critical
temperature gradient that marks the boundary of convective instability.

7.7.1 Convection and the Adiabatic Index
For an ideal gas the adiabatic index defined in Eq. (3.12) may be expressed
also as

(7.37)

where s is the number of classical degrees of freedom per particle,7 each
carrying average thermal energy  Therefore, for a monatomic
gas with only three translational degrees of freedom for each atom the
adiabatic index is

and the condition (7.36) for convective instability is that

(7.38)



But if the gas has additional degrees of freedom the adiabatic index will
decrease and for sufficiently many degrees of freedom it will approach
unity:

(7.39)

As γ → 1 the factor (γ − 1)/γ tends to zero and the adiabatic temperature
gradient of Eq. (7.34) becomes less steep. Thus, an increase in the effective
number of degrees of freedom for a gas will decrease the adiabatic index γ
and thereby enhance the possibility of convective instability. Three
processes common in stellar astrophysics illustrate how an increase in the
number of degrees of freedom may occur:

1. Energy may be absorbed by exciting vibrations and rotations of
molecules, and emitted by the corresponding deexcitations.

2. Energy may be absorbed by the dissociation of molecules and emitted
in their recombination.

3. Energy may be absorbed by ionization of atoms or molecules and
emitted in the corresponding recombination.

In each of these cases the associated physical process can contribute to
convective instability by increasing the effective number of degrees of
freedom in the gas. This decreases the adiabatic index toward the critical
value of unity, making the condition (7.36) easier to fulfill. As we shall see
in later examples, the physical reason for this decreased convective stability
typically is that these processes permit rising blobs of gas to remain
buoyant longer, thereby enhancing convection.

7.7.2 Convection and the Pressure Gradient
Under conditions of hydrostatic equilibrium the pressure gradient is given
by Eq. (4.10),

(7.40)



where g(r) is the local gravitational acceleration. Thus, pressure falls off
more gradually where g(r) is small and a smaller value of dP/dr makes the
condition implied by (7.33) and (7.34) easier to fulfill, thereby favoring
convective instability. It follows that regions in which the local gravity is
weak will be more susceptible to convective instabilities than those with
stronger gravity.

Example 7.2 In close binary systems (see Chapter 18), a star may be tidally
distorted by its companion. The decreased gravity in tidally distended
regions (which occurs because a gas particle there feels a gravitational
attraction from one star that is partially canceled by the gravitational
attraction of the other star) may initiate convective instability.

7.8 Stellar Temperature Gradients
The condition (7.33) defines a (theoretical) critical temperature gradient for
convective instability in terms of the adiabatic temperature gradient (7.34).
Therefore, we must investigate the actual temperature gradients dT /dr of
stars to assess their stability against convection.

7.8.1 Choice between Radiative or Convective Transport
It may be assumed that the temperature gradients of normal stars that are
not convective and not cooled by neutrino emission are determined by the
rate of radiative energy transport, since conductive transport is negligible in
nondegenerate stars. This suggests the following approach for determining
the mode of energy transport in stars, if neutrino transport is ignored:

1. Calculate the temperature gradient for radiative transport according to
Eq. (7.43) below.

2. If this gradient is sub-critical according to the criterion of Eq. (7.33),
assume no convection and that energy transport is by radiative
diffusion.

3. If the resulting gradient is critical or supercritical, assume that
convection – because it is very efficient in transporting energy –



prevails as the means of energy transport as long as the temperature
gradient remains critical.

Notice that these considerations could lead to different conclusions in
different regions of a star; thus, we may expect that stars could be
convective in some regions and radiative in others. In regions of a star that
are convectively unstable it may be expected that the actual temperature
gradient remains very near the adiabatic gradient because of a natural
process of self-regulation: (1) A small fluctuation that steepens the
temperature gradient will tend to increase the outward heat flow, which will
work to make the temperature gradient more shallow. (2) Conversely, a
fluctuation that makes the temperature gradient more shallow will suppress
convection, which will reduce the outward heat flow and steepen the
temperature gradient.

7.8.2 Radiative Temperature Gradients
To use the transport algorithm outlined above we require an estimate of the
radiative temperature gradient. Let L(r) denote the rate of energy flow
through a shell of thickness dr at a radius r, and let ε(r) denote the nuclear
power per unit volume generated at radius r. Then the power generated in
the shell of thickness dr at radius r is given by 4πr2ε(r)dr. This adds to the
outward power flow from interior shells, so the energy flow is governed by
the differential equation

(7.41)

Outside the central power-generating regions for a star it may be expected
that L(r) approaches a constant equal to the surface luminosity of the star. If
this energy flow is assumed to be caused by radiative diffusion,

(7.42)

where Eq. (7.19) gives the current for radiative transport. Inserting (7.19) in
(7.42) and solving for the temperature gradient associated with transport by
radiative diffusion,



(7.43)

If the gradient (7.43) becomes steeper than the critical (adiabatic) gradient
defined by Eq. (7.34), the system switches to convective transport with a
temperature gradient approximated by Eq. (7.34).

Example 7.3 According to the Standard Solar Model (see Table 10.1), for a
shell at a radius R/R⊙ = 0.30 (corresponding to an enclosed mass M/M⊙ =
0.61), the luminosity is essentially the surface luminosity of 3.8 × 1033 erg
s−1 (meaning that almost all power production takes place inside this
radius), the density is ρ ∼ 12 g cm−3, and the temperature is T ∼ 6.8 × 106

K. From solar opacity tables (for example, Fig. 7.2 or Ref. [127]), the
opacity may be estimated as κ ∼ 2 cm2 g−1, and from Eq. (7.43) the
corresponding radiative temperature gradient is dT /dr ≃ −10−4 Kcm−1, the
average mean free path is λ = 1/ρκ ≃ 0.04 cm, and from these numbers the
fractional change in temperature over a characteristic distance of one mean
free path is of order 10−12. Thus, the solar interior is highly opaque, the
temperature changes slowly over a characteristic diffusion distance, and the
preceding radiative diffusion approximations are seen to be amply justified.

7.9 Mixing-Length Treatment of Convection
A proper treatment of convection in stars is a difficult subject because it
requires the solution of 3-dimensional hydrodynamics for a turbulent,
compressible fluid that is strongly coupled to other complex aspects of the
problem such as radiation transport and thermonuclear energy generation.
Modern high-performance computers are able to handle this with increasing
levels of sophistication but historically much of the understanding of
convection has derived from simple models based on mixing-length
approximations. These models have rather murky theoretical foundation but
they appear to work well as phenomenological descriptions of the most
important aspects of convection in normal stars.



Part of that success is because of the empirical nature of mixing-length
models; part is because: (1) Convection is such an efficient source of energy
transport that it often dominates all other modes, so that we do not have to
give undue thought to partitioning energy transport between radiation and
convection. (2) Convection often operates with convective velocities that
are well below sound speed, so that no shockwaves are produced. (3)
Convection often operates on a timescale that is well-separated from other
relevant timescales such as the hydrodynamic response time in the star.
However, mixing-length models are basically empirical, with the most
essential parameter (the mixing length) not specified by any fundamental
theory. As a consequence, they break down in a variety of cases. For
example, mixing-length models are generally not very appropriate for
situations where

1. Radiative transport competes strongly with convection, such as in the
surface of a convective star.

2. Convective transport is supersonic and thus produces shockwaves, as
in supernovae and neutron star mergers.

3. Convection may violate spherical symmetry strongly, as in supernova
explosions or in mergers of compact objects like neutron stars.

4. Convective timescales are comparable to other dynamical timescales,
as may happen for some pulsating variable stars and for supernova
explosions and neutron star mergers.

With this as introduction, and taking due note of the caveats, we now
consider a basic mixing-length model of convection (see Refs. [55, 68, 107,
134]).

7.9.1 Pressure Scale Height
For a gravitating gas the pressure scale height Hp is defined by

(7.44)

If we assume Hp to be constant the solution of this differential equation is



(7.45)

Therefore, the scale height has the dimension of length and is the
characteristic vertical scale for variation of the pressure in a star or in an
atmosphere, since Hp is the vertical distance over which the pressure
changes by a factor of e. Using the equation for hydrostatic equilibrium
(4.10) and the ideal gas law, the scale height may be expressed as

(7.46)

where g is the local gravitational acceleration, k is Boltzmann’s constant, μ
is the mean molecular weight, and Mu = 1/NA is the atomic mass unit.

7.9.2 The Mixing-Length Philosophy
The mixing-length idea assumes that the stellar fluid in a certain region is
composed of identifiable blobs that can move vertically in the gravitational
field between regions of differing heat content, as illustrated in Fig. 7.9. For
example, some blobs may move upward because of buoyancy forces,
carrying warm fluid outward, while other blobs may move downward
because of negative buoyancy, carrying cooler fluid inward (it is assumed
that there is no net vertical mass flow, so that hydrostatic equilibrium is
preserved). This leads to an outward transport of energy. The average
distance over which blobs move before dissipating in the surrounding
medium is termed the mixing length, ℓ . Mixing-length approaches then
analyze the motion of these blobs over a characteristic scale defined by the
mixing length with the following assumptions [107].

1. Characteristic dimensions of the rising and falling blobs are of the
same order as the mixing length ℓ.

2. The mixing length is much shorter than other length scales of physical
significance in the star. (This assumption may be violated in practice,
which is one reason for the somewhat dubious theoretical
underpinnings of the approach.)

3. The temperature, density, pressure, and composition of a blob differ
only slightly from that of the surrounding medium. The requirement



that the internal pressure of blobs remains approximately the same as
the surrounding fluid means that the timescales associated with
convective processes are long enough that pressure equilibrium is
maintained. This implies that the vertical speeds of blobs are small
compared with the local speed of sound, so that acoustic and shock
phenomena may be neglected.

We shall omit the details here but in Appendix E these assumptions and
guidelines are used to construct a simple mixing-length model of
convection.

Fig. 7.9 Schematic illustration of a mixing-length approximation for convective motion. The mixing
length ℓ  determines the vertical distance scale over which rising and falling blobs move before
merging with the surrounding medium.

7.9.3 Analysis of Solar Convection
The following example tests the mixing-length model developed in
Appendix E by applying it to some quantitative estimates for subsurface
convection in the Sun.

Example 7.4 The equations of Appendix E and parameters from the
Standard Solar Model (see Section 10.1) may be used to investigate a
mixing-length picture of the Sun’s surface convection layer with a base



lying at r ≃ 0.7R⊙. As you are invited to demonstrate in Problem 7.7, with
the assumption α = 1 the adiabatic temperature gradient is found to be

the superadiabatic gradient is

their ratio indicates that the connective gradient is only slightly steeper than
adiabatic,

and the average convective velocity is v = 1 × 104 cm s−1 = 0.1 km s−1,
which is much less than the local speed of sound, vs = 2.3 × 107 cm s−1.
Since α = 1, the corresponding mixing length is the pressure scale height,

and the timescale for the blob to travel the mixing-length distance αHp = Hp
is

For comparison, observations and detailed calculations suggest that the
solar convective zone is about 200,000 km thick, with the characteristic
convection cell size being about 104 km at the base of the convection zone
and about 103 km at its top.

The results of Example 7.4 indicate that a mixing-length model can give a
reasonable phenomenological description of convection. More generally,
mixing-length models support the earlier assertion that convection often is
such an efficient process that a temperature gradient only slightly steeper
than the adiabatic one is sufficient to carry all flux convectively, indicating
that the temperature gradient in convective regions can be well
approximated by the adiabatic gradient. The earlier reservations should be



kept in mind, however. For example, very near the surface of a star
temperature gradients in convective regions may differ substantially from
the adiabatic gradient and a slightly superadiabatic gradient may be a very
poor approximation for the actual temperature gradient in that regime.

7.10 Examples of Stellar Convective Regions
We may expect that convection will dominate radiative transport as soon as
the critical temperature gradient (7.33) is reached in a particular region of a
star. Generally, it is believed that the most massive stars are centrally
convective and radiative in their outer envelopes, that stars of a solar mass
or so have subsurface convection zones but that the central region is not
convective, and that in the least-massive stars essentially the entire star is
convective. Figure 7.10 illustrates schematically and Fig. 7.11 displays
simulations of the radial extent of convection in main sequence stars as a
function of total mass [134]. These calculations support the schematic
overview of Fig. 7.10, indicating that the lightest stars are convective
through their entire volumes, that with increasing mass this convection is
pushed outward to the surface layers until it disappears completely above
about 1 M⊙,8 and that stars of more than about 1M⊙ have no outer
convection zones but their cores are convective. Let us now examine two of
these convective regions in more detail: (1) the cores of massive main
sequence stars, and (2) ionization zones in the sub-surface layers of
intermediate-mass stars.



Fig. 7.10 Characteristic regions of convective and radiative transport for main sequence stars in
different mass ranges. Ovals and gray shading indicate convective transport; wiggly arrows and no
shading indicate radiative transport.

Fig. 7.11 Radial extent of convection in main sequence stars as a function of stellar mass. Convective
zones are shaded gray. The vertical axis is in Lagrangian units of enclosed mass and the mass of the
Sun is indicated. Figure adapted from Ref. [134]. Adapted by permission from Springer: The Main
Sequence, Kippenhahn R. and Weigert A. COPYRIGHT (1990).



7.10.1 Convection in Stellar Cores
Convection in the cores of stars is favored if the power is generated in a
compact central region for two basic reasons:

(i) In the core there is a large energy flow through a small region.
(ii) Gravity is weak in the core because at a small radius there is little

enclosed mass. Hence pressure falls off gradually and rising packets
of gas remain buoyant longer because they do not need to expand
much to equilibrate in pressure.

Setting the radiative temperature gradient (7.43) equal to the critical
temperature gradient (7.34), utilizing (7.40), and rearranging the resulting
expression gives [169]

(7.47)

This defines a critical value of L(r)/m(r) favoring convection over radiative
diffusion. Generally, we may expect convection to develop for any regions
of a star in which the luminosity reaches the critical value (which depends
on location in the star). Some possibilities are indicated schematically in
Fig. 7.12. Of immediate interest for the present discussion is the suggestion
in Fig. 7.12(c) that convective cores of radius r and enclosed mass m(r) can
develop in stars if the critical value of L(r)/m(r) defined by Eq. (7.47) is
exceeded inside the radius r.



Fig. 7.12 Schematic illustration of the competition between radiative and convective energy transport
for three qualitatively different situations. The critical luminosities computed from (7.47) are
illustrated by the dashed curves and the actual luminosities by the solid curves. For each case the star
is convectively unstable for those regions in which the actual luminosity exceeds the critical
luminosity (denoted by gray shading), and radiative in the other regions.

Example 7.5 The critical luminosity and actual luminosity for the Sun
inside a radius R = 0.1 R⊙ are estimated in Problem 7.14. There it is
concluded that the actual luminosity of the solar core is about a factor of
two less than the critical luminosity. Therefore, we may expect that the core
of the Sun is not convective but that the centers of main sequence stars only
a little more massive than the Sun are likely to be convectively unstable.
The simulation displayed in Fig. 7.11 supports this conclusion.

As suggested by Example 7.5 and shown explicitly in Fig. 7.11,
convective cores tend to develop in main sequence stars more massive than
the Sun. The physical reason is that in these stars the CNO cycle dominates
energy production and the strong temperature dependence (energy
production varying as ∼ T 16–T 18) confines the energy source to a small
central region. Conversely, for less massive stars where the PP chains are
the dominant power source the temperature dependence is much weaker
(energy production varying as ∼ T 4); then the power source is spread over
a larger central region and core convection becomes less likely.

7.10.2 Surface Ionization Zones
Convection is favored in the surface layers of less-massive stars where
constant ionization and recombination transitions are taking place. There
are two basic reasons for this [169]:

1. The opacity is large, making the temperature gradient for radiative
transport steep [see Eq. (7.43)].

2. The critical temperature gradient Eq. (7.34) required for convection is
not very steep because there are many degrees of freedom associated
with the ionization– recombination transitions and the adiabatic index
[see Eq. (7.37)] is decreased toward unity.



In more physical terms, convection is favored in these regions because
electron recombination can supply part of the energy to expand the rising
packets of gas. Thus, these packets do not cool much as they rise and are
more likely to remain buoyant. In the Sun, the subsurface convective layer
is associated with such ionization zones. This subsurface convection is
responsible for the granules observed on the solar surface.

7.11 Energy Transport by Neutrino Emission
The cores of massive stars become extremely dense and hot late in their
lives. These conditions make it difficult to transport the large energy
produced in a very small region by radiative or even convective processes.
On the other hand, this dense, hot environment favors the production of
neutrinos which—by virtue of their weak interactions with matter—can
leave the star essentially unimpeded. As a result, neutrino emission is
thought to be the dominant mechanism for cooling stellar cores that proceed
beyond carbon burning.

Neutrino emission typically is not related to the temperature gradient and
the energy outflow from neutrino cooling is directly proportional to the
local rate at which the neutrinos are produced in the core of the star. (David
Clayton has stated it nicely: as far as stellar structure and evolution are
concerned, neutrinos function mostly as a local refrigerator [71].) The
interaction of electron neutrinos with matter scales quadratically with the
neutrino energy and has an average cross section that may be approximated
by

(7.48)

where Eν is the neutrino energy and mec2 = 511 keV is the electron rest
mass energy.

Example 7.6 For most processes important in stars Eν/mec2 differs by less
than a factor of 10 from unity and a (very) crude estimate results from
approximating Eq. (7.48) for the interaction of neutrinos with stellar matter
by σν ≃ 10−44 cm2. Assuming an average density 1 gcm−3 (corresponding



roughly to a number density of n ≃ 1024 cm−3), the mean free path for an
electron neutrino in average stellar matter is

Obviously there is little chance that the neutrino scatters from the matter on
its way out of a normal star (but see Problem 14.5 and the MSW effect
discussed in Chapter 12).

7.11.1 Neutrino Production Mechanisms
Several neutrino production mechanisms influence the evolution of stars.
Let us summarize them briefly [55, 71, 194].

Neutrinos from β-decay: The most familiar stellar neutrino sources are β-
decay and electron capture occurring in stellar energy production and
nucleosynthesis. The neutrino energy losses from these sources are typically
relatively small. For example, in the CNO cycle the average energy carried
off by neutrinos in each traversal of the cycle is only a few percent of the
total energy generated by the cycle.

Pair annihilation neutrinos: Neutrino–antineutrino pairs can be produced
by the reaction e− + e+ → ν + ν. The requisite positrons (denoted by e+ or
β+) can be produced in abundance by γ + γ → e+ + e−, provided that kT ≥
2mec2 ∼ 1MeV, which requires a temperature of ∼ 109 K or greater. The
electromagnetic interaction is much stronger than the weak interaction and
the overwhelming majority of the positrons that are produced annihilate
with electrons to give two photons by e− + e+ → γ + γ , but about once
every 1019 times a ν ν pair is produced instead. For temperatures exceeding
∼ 109 K this is the dominant neutrino production mechanism, except at very
high densities where the plasmon process described below dominates.

Photoneutrinos: When the energy is too low to produce significant
numbers of neutrinos by pair production, neutrinos can still be produced by
the reaction e− + γ → e− + ν + ν, which may be viewed as a Compton
scattering process (Section 7.4.1) between a photon and an electron in



which the exit-channel photon is replaced by a ν ν pair. These are called
photoneutrinos. Except at low temperatures, photoneutrinos typically are a
relatively minor component of the neutrino flux.

Plasma neutrinos: In dense ionized gases a photon can interact with free
electrons to form a collective excitation called a plasmon.9 Direct free-
space decay of a photon to a neutrino– antineutrino pair is forbidden
because it cannot satisfy both energy and momentum conservation, but a
plasmon γpl can decay directly to neutrino–antineutrino pairs: γpl → ν +ν.
As discussed in Box 7.3, the plasma frequency ω0, which can be expressed
in terms of the electron number density ne and effective mass mf as 

 acts as an effective mass for the plasmon that
increases with higher electron density.10 Thus plasmons behave like “heavy
photons” that can decay to neutrino–antineutrino pairs while still
conserving energy and momentum. Plasmon decay becomes important
when the relation ħω0 ≥ kT is satisfied, so plasma neutrino emission is
particularly important at high densities. It becomes the dominant neutrino
production mechanism at all temperatures in very dense and electron-
degenerate environments. For example, neutrino emission from plasmons is
the dominant neutrino decay mode for cooling of hot white dwarfs.

Box 7.3 Plasmons and Neutrino–Antineutrino Pairs

A photon in free space cannot decay into a ν ν pair because the reaction
would not simultaneously conserve angular momentum, momentum,
and energy. This follows from the peculiar spin structure associated with
neutrinos and antineutrinos.

Selection Rules for Neutrino Pair Production
Neutrinos have a helicity (projection of spin on the direction of motion)
of  and antineutrinos a helicity of  (see Box 7.4), and the photon
has a spin of 1. To add up to a helicity of 1 to conserve the angular
momentum carried by the initial photon, the ν and ν must be produced
moving in exactly opposite directions. This makes it impossible to
preserve both the momentum and energy of the original photon since the



photon, ν, and ν are all ultrarelativistic particles with energy pc, where p
is the momentum [from Eq. (3.46) with m = 0].

Heavy Photons
A plasmon is a kind of “heavy photon” that acquires an effective mass
through interactions with the medium, much as will be discussed in Box
12.1. The classical dispersion relation for a photon propagating through
a plasma is given by [71]

where ω is the frequency of the electro magnetic wave, k is the photon
wavenumber, and ω0 is a characteristic plasma frequency. Comparing
with the relativistic expression for energy E2 = p2c2 + m2c4 given in Eq.
(3.46) suggests that the plasma frequency ω0 endows the plasmon with
an effective mass, which takes the value ħω0/c2 when the plasmon is
quantized. The plasma frequency is given by [71]

where ne is the electron number density and me the electron mass, and
the factor in square brackets is absent if the gas is nondegenerate.
Because it has an effective mass, a plasmon can decay directly to a
neutrino– antineutrino pair while still conserving energy and
momentum. As a corollary, the minimum energy of a propagating
photon is ħω0, so electromagnetic waves with ω less than the plasma
frequency ω0 are damped out and do not propagate in the medium.

Bremsstrahlung neutrinos: Deceleration of electrons in the Coulomb field
of a nucleus can cause bremsstrahlung (“braking radiation”) to be emitted
in the form of photons (the free–free absorption discussed in Section 7.4.3
is the inverse process). At high temperature and low density there is a finite
probability that bremsstrahlung leads to emission of a ν ν pair instead of a
photon. This process depends strongly on the charge of the nucleus and is



important only if heavy ions are present. It will be of minor significance for
the present discussion.

Recombination and Urca neutrinos: Neutrinos can be emitted if a free
electron is captured in the atomic K-shell of a completely ionized nucleus
according to the reaction e− + (Z, A) → (Z − 1, A) + ν, where (Z, A) denotes
an ion with atomic number Z and atomic mass A. If electron capture on a
stable nucleus (Z, A) produces a daughter nucleus (Z −1, A) that is β-
unstable, the reaction sequence e−+(Z, A) → (Z−1, A)+ν followed by (Z − 1,
A) → (Z, A) + e− + ν can occur. This is an example of an Urca process (see
Box 7.5 for elaboration), which leads to neutrinos being emitted and
carrying off energy with no net change in Z and A. The Urca process or a
variant called the modified area process, are important sources of cooling
for neutron stars and core collapse supernovae.

Box 7.4 Chirality and Helicity for Neutrinos

Neutrinos and antineutrinos possess a property called handedness that
can be expressed in terms of a chirality quantum number taking one of
two values, denoted by the labels L (“left-handed”) or R (“right-
handed”). It is a fundamental but unexplained fact (see Problem 11.10
for one possible explanation) that all neutrinos of any flavor are found to
be left-handed and all antineutrinos of any flavor are found to be right-
handed. This asymmetry has deep significance because it leads to parity
non-conservation for the weak interactions. If neutrinos and
antineutrinos were each equal mixtures of R and L chiralities, the weak
interactions would conserve parity (as do all other basic interactions).

Neutrinos and antineutrinos have an intrinsic spin s of magnitude 
(in units of ħ), which by the rules of quantum mechanics can take two
projections,  on some reference “quantization” axis. It is often
convenient to take that reference axis in the direction of the momentum
p of the particle. The projection of the spin on the direction of motion
for a particle is called its helicity, h. If ν or ν are massless, there is a
one-to-one mapping between the two possible chirality states and the
two possible helicity states, and it is common to refer to neutrinos as
being left-handed with negative helicity and to antineutrinos as being



right-handed with positive helicity. The following figure illustrates
schematically,

with the direction of the spin vector related to the cartoon spin motion
by the usual “right hand rule” for angular velocity. If ν and ν are
massless, this labeling by helicity is a relativistically invariant
characterization.a

If neutrinos have mass (now known to be the case), chirality and
helicity are not in one-to-one correspondence and helicity is not a
relativistic invariant (because v < c if m ≠ 0, so there do exist reference
frames moving faster than the neutrino). However, neutrino masses are
very small so helicity and chirality are almost the same, and the
common blurring of the distinction between them for neutrinos is
conceptually in error but not so serious practically since neutrino masses
are tiny.
a This figure is a cartoon of the schematic relationship among spin, momentum, chirality, and

helicity for massless ν or ν, but spin is an internal quantum variable that is not associated
with angular motion in space. Helicity is relativistically (Lorentz) invariant if the particle is
massless because to change the sign of h requires boosting to a frame moving faster than the
particle (which reverses the direction of p but not s for the observer). This is impossible for
massless particles, which move at lightspeed.

Box 7.5 Urca Processes

The label “Urca” derives from the name of a once-famous but long-
closed gambling establishment – Cassino daUrca – in Rio de Janeiro.



Allegedly the Brazilian physicist Mário Schönberg (1914–1990)
remarked to George Gamow (1904–1968) that the rapid disappearance
of energy from a cooling supernova was much like therapid
disappearance of a gambler’s money at the Urca roulette wheel. “Urca”
has since become standard terminology for a class of reactions that cool
dense matter through neutrino emission with no net change in Z/A.

Direct Urca Processes
The reaction n → p+e−+ν followed by p+e− → n+ν is an example of a
direct Urca process. It leads to loss of energy through emission of
neutrinos without a net change in the neutron and proton number. (This
example starts with a neutron and ends up with a neutron and a ν and ν
that escape, carrying away energy.) The direct Urca mechanism is
important in the cooling of neutron stars, for example.

Modified Urca Processes
The modified Urca process n+N → p+N+e−+ν followed by p+N+e− →
n+N+ν (where N is either a proton or a neutron) is like the direct Urca
process except that a second nucleon (N) acts as a catalyst. The catalyst
allows conservation of momentum and energy (without itself being
consumed) for a broader range of conditions than would be permitted
for the direct Urca process. Modified Urca is important for cooling
neutron stars under conditions where direct Urca would be blocked by
energy–momentum conservation.

7.11.2 Classification and Rates
We may classify processes that are sources of stellar neutrinos according to
several characteristics. The first is that β-decay, bremsstrahlung, and Urca
neutrino production all involve nuclei, while the other neutrino sources
listed above are purely leptonic and governed by the Standard Model for
electroweak interactions (see Section 11.2). The second is that because of
lepton family number conservation in the Standard Model the processes that
create neutrino–antineutrino pairs can produce any flavor pair of neutrino
and antineutrino, but the other processes deal only with electron neutrinos
or antineutrinos. For example, the Sun produces neutrinos predominantly by



nuclear processes and so (in the absence of flavor oscillations) the flux of
solar neutrinos is essentially all of electron flavor (Chapter 11), but in the
high-density, high-temperature environment of a core collapse supernova
neutrino pair production is rampant and most of the supernova energy is
carried off by neutrinos and antineutrinos of all flavors (Chapter 20).

The preceding neutrino reactions also may be classified according to their
importance for neutrino cooling of stars. Under conditions encountered in
normal stellar evolution, cooling by neutrino emission is typically
dominated by (1) pair production neutrinos, (2) photoneutrinos, and (3)
plasma neutrinos. Approximate formulas for energy production rates are
given in Ref. [38] and Figs. 7.13 and 7.14 show energy production rates
from these dominant processes, the schematic dependence on temperature
and density, and total neutrino energy production rates summed over pair
production, photoneutrino production, and plasma neutrino production.
Since the neutrinos are assumed to leave the star unimpeded, the neutrino
energy production rates also are the neutrino energy loss rates. These results
may be used to analyze the importance of neutrino emission for later stages
of stellar evolution, as illustrated in Example 7.7.



Fig. 7.13 Neutrino energy emission rates at four different temperatures (adapted from Ref. [38])
Adapted from G. Beaudet, V. Petrosian, and E. E. Salpeter, Astrophys. J., 150, 979 (1967).
10.1086/149398.



Fig. 7.14 (a) Dependence of dominant mechanisms for neutrino energy losses on density and
temperature (adapted from Ref. [38]). Adapted from G. Beaudet, V. Petrosian, and E. E. Salpeter,
Astrophys. J., 150, 979 (1967). 10.1086/149398. (b) Energy production rates by neutrino processes
(adapted from Ref. [38]). Adapted from G. Beaudet, V. Petrosian, and E. E. Salpeter, Astrophys. J.,
150, 979 (1967). 10.1086/149398. Curves are labeled by temperatures in units of 109 K.

Example 7.7 Typical conditions for silicon burning correspond to T = 3–5 ×
109 K and ρ = 105–107 gcm−3. From Figs. 7.13 and 7.14(a), neutrinos are
produced mostly by pair annihilation in this temperature and density range.
From Fig. 7.14(b) the total neutrino energy production rate under these
conditions is εν/ρ ≃ 1012−1015 erg g−1 s−1. This is comparable to the Si-
burning energy generation rate. For example, in the simulation of silicon
burning shown in Fig. 6.10 the peak energy generation rate was 2.8×1012

erg g−1 s−1. This suggests that most of the energy released by silicon
burning is being transported from the star by neutrino emission rather than
by radiative diffusion or convection. See Problem 7.13 and Table 7.2 for
further elaboration on neutrino cooling in late burning stages.

Table 7.2 Photon and neutrino luminosities for a 20 solar mass star [27]

Fuel ρc(g
cm−3)†

Tc(109

K)†

Duration (yr) Lγ (erg
s−1)

Lν (erg s−1)

Hydrog
en

5.6 0.040 1.0 × 107 2.7 × 1038 —

Helium 9.4 × 102 0.19 9.5 × 105 5.3 × 1038 < 1.0 × 1036

Carbon 2.7 × 105 0.81 300 4.3 × 1038 7.4 × 1039

Neon 4.0 × 106 1.7 0.38 4.4 × 1038 1.2 × 1043

Oxygen 6.0 × 106 2.1 0.50 4.4 × 1038 7.4 × 1043

Silicon 4.9 × 107 3.7 0.0055 4.4 × 1038 3.1 × 1045

†The columns ρc and Tc give the critical density and critical temperature, respectively, to ignite a
fuel.



An example of neutrino cooling dominating photon emission in late burning
stages is given in Table 7.2 for evolution of a 20M⊙ star. It is seen that
neutrino luminosity Lν exceeds photon luminosity Lγ by orders of
magnitude for carbon burning and beyond in this case.

7.11.3 Coherent Neutrino Scattering
The Standard Electroweak Theory of elementary particle physics predicts
that neutral weak currents (those mediated by the Z0 gauge boson) can
scatter coherently off the A nucleons of a composite nucleus rather than off
individual nucleons. The neutrino–nucleon scattering cross section is of the
form [compare Eq. (7.48)]  where Eν is the neutrino energy,
but the coherent cross section on a nucleus of nucleon number A takes the
form

(7.49)

For the most massive stars, Si burning produces iron-group nuclei in the
core and the coherent cross section is enhanced by a factor A2 ∼ (56)2 ∼
3000 relative to normal nucleonic weak interactions. Enhancements of this
magnitude, coupled with the increase in the basic weak interactions strength
because of the very high temperature and density of the core, can lead to
very large neutrino interactions in hot, dense matter. Because of the large
mass difference between neutrinos and heavy nuclei, coherent scattering
transfers momentum but not much energy, so it is nearly elastic. However,
the shorter mean free path implied by the enhanced neutrino cross sections
causes neutrinos to stay in the core longer before escaping, increasing the
probability that they undergo an inelastic scattering that does change the
energy. It will be argued in Section 20.3.3 that coherent elastic scattering of
neutrinos from composite nuclei through the neutral weak current can have
a large influence on core collapse in a supernova explosion.

Background and Further Reading
The presentation in this chapter has adapted often from the discussion of
energy transport in Phillips [169]; see also Kippenhahn, Weigert, and Weiss



[134]; Carrol and Ostlie [68]; and Hansen, Kawaler, and Trimble [107]. For
a summary of neutrino reactions in stars, see Clayton [71]; Bowers and
Deeming [55]; and Salaris and Cassisi [194].

Problems
7.1 Derive an approximate expression for the ratio of coefficients for

radiative and electronic diffusion, assuming the dominant photon
scattering process to be Thomson scattering and complete ionization.
Estimate this ratio for the Sun.***

7.2 Prove that the electron number density ne and ion number density ni
are given approximately by

where X is the hydrogen and Y the helium mass fractions.***
7.3 Use data from Table 10.1 and Fig. 7.2 to confirm the solar mean

free path entries in Table 7.1.
7.4 By analyzing rising blobs of fluid in a gravitational field, show that

the Schwarzschild condition for convective instability may be
expressed in the form (7.33). Hint: For an adiabatic process P ∝ ργ

.***
7.5 Demonstrate that the second form of the adiabatic temperature

gradient in Eq. (7.34), (dT /dr)ad = −g/cP, follows from the first.
Hint: See Section 3.3.***

7.6 Assume the photosphere of the Sun to be an ideal gas of hydrogen
and helium with the typical ZAMS abundance, and to have a density
of 1.8 × 10−7 g cm−3 and a temperature of 5800 K. What is the scale
height in the solar photosphere?

7.7 Apply the mixing-length model developed in Section 7.9 and
Appendix E to the analysis of solar convection, assuming a Standard
Solar Model (Section 10.1) and ideal gas behavior. Calculate the
mixing length, the adiabatic temperature gradient, the superadiabatic
gradient, the percentage by which the superadiabatic gradient



exceeds the adiabatic one assuming all transport in this region is
convective, the average convective velocity relative to the local
sound speed, and the timescale for convection set by the average
time for a blob to travel one mixing length. Make your estimates for
the convective region with a base around r = 0.7R⊙ and assume a
mixing-length parameter α = 1 and a mean molecular weight of
0.6.***

7.8 Stars are commonly treated as if they were in thermodynamic
equilibrium but the whole discussion of energy transport in stars
indicates that this cannot generally be a correct assumption. Real
stars radiate net energy into space and have temperature gradients
and thus are not blackbodies. However, if the characteristic distance
over which the temperature changes is large compared with the
mean free paths of particles and photons, the idea of local
thermodynamic equilibrium (LTE) may still be retained: particles
and photons cannot quickly escape from their local “box” and within
that local box an approximately constant temperature exists. It is
common (particularly in discussions of stellar atmospheres) to define
a temperature scale height HT that is analogous to the pressure scale
height introduced in Eq. (7.44),

and to use this scale as the characteristic one for measuring how
rapidly the temperature is changing. Show that in the deep interior of
stars the LTE assumption is valid for both matter and photons, but
that in the photosphere LTE is typically expected for matter but is
problematic for photons. (Note: this result notwithstanding, the
assumption of LTE is often used for stellar atmospheres. Notice also
that this result is an inevitable consequence of the definition of the
photosphere, since the photosphere is precisely where photon mean
free paths must become long.) You may use the Standard Solar
Model (see Table 10.1) for representative conditions in the solar
interior, and you may use that for a typical atmospheric model of the
Sun (for example, see Table 14.9 of Ref. [75]) the temperature
changes from 5980 K to 6180 K over a distance of 20 km, in a



surface region having density 2.5 × 10−7 gcm−3 and opacity ∼ 0.25
cm−2 g−1 at the dominant photon wavelengths.

7.9 Show that Eq. (7.36) follows from Eq. (7.33). Hint: This problem is
simple, except that you must be careful about the signs of factors
multiplying both sides of the inequality.

7.10 Estimate the adiabatic index for Earth’s atmosphere at standard
temperature and pressure. Hint: Is the gas ideal and will molecular
vibrational modes play a role under those conditions? What is the
corresponding speed of sound?

7.11 The formulas that have been employed for convective instability
and related issues also may be applied to planetary atmospheres. For
Mars, assume an atmosphere composed entirely of carbon dioxide at
a temperature of 220 K, and that the density of the atmosphere at the
surface is 0.02 kg m−3. Calculate the gravitational acceleration at the
surface and the scale height of the atmosphere. What is the
corresponding atmospheric pressure at the surface?

7.12 (a) Use Archimedes’ principle to derive a formula for the buoyancy
acceleration ab of a packet of gas having density ρ immersed in a
larger volume of the same gas having density ρ′. (b) Consider a layer
of air over a parking lot at a temperature of 28 ◦ C, with the
temperature of the surrounding air being 27 ◦ C. What is the
buoyancy acceleration of this layer of air?

7.13 For a density of 106 g cm−3 and temperatures of T9 = 3 and T9 = 1,
respectively,
(a) What is the radiation energy density of the photon gas for each

case?
(b) Clayton [71] gives approximate formulas for the neutrino

energy loss rate as

assuming the neutrinos to originate from the pair production
mechanism. How good is this assumption for the two



temperatures? Compare eyeball interpolation of the fluxes in
Fig. 7.14 with the results of the above formulas for T9 = 3 and
T9 = 1.

(c) Estimate the timescale for the thermal energy of the photons to
be radiated as neutrinos using the neutrino energy loss rates
eyeball-interpolated from Fig. 7.14 for the two temperatures.
How does this compare with the thermal adjustment (Kelvin–
Helmholtz) timescale for the star, assuming it to have a mass of
18M⊙?

What conclusions do you draw from these results about cooling of
the star?***

7.14 Use Eq. (7.47), parameters for the Sun from the Standard Solar
Model in Table 10.1, and solar opacities estimated from Fig. 7.2 to
show that for the volume contained in the inner 10% of the solar
radius the luminosity is less than critical. Thus, we may expect the
Sun to not be convective in its central regions.***

1 It is now known that neutrinos are not completely inert in their passage out of the star. As will
be discussed in more detail in Chapters 11–12, because of flavor oscillations the type (flavor)
of neutrino may be altered in this process. This has large implications both for our
understanding of neutrinos and the Standard Model of elementary particle physics, and for
our understanding of neutrino emission from stars, but will not be significant for the
particular considerations of this chapter.

2 At sufficiently high energy special relativistic effects for the electron must be considered.
This leads to Compton scattering. Thomson scattering may be viewed as the low-energy limit
of Compton scattering, valid when kT << mec

2. Equivalently, Thomson scattering is the limit
of Compton scattering when the wavelength of the photons is much larger than the Compton
wavelength h/mc.

3 Bound–bound absorption, corresponding to transitions between two bound atomic or
molecular states through absorption of photons, can occur also. These transitions involve
small energies and low temperatures, and thus are significant only very near the surface for
stars. They will be ignored in the present discussion but they will be important in
understanding the kilonova thought to result from the merger of two neutron stars that will be
discussed in Section 22.6.2.

4 Mathematically, the differential equation describing motion of the blob has an oscillating
solution for a certain range of parameters and an exponential solution for a different range.
Onset of the convective instability corresponds to transition from the oscillating to
exponential solution. This conceptual discussion has been implemented in terms of an
upwardly moving blob that continues to rise because it is less dense than the surrounding
medium, but in a convectively unstable region there also will be downward-moving blobs that
continue to sink because they find themselves more dense than the surrounding medium. Thus



convection involves upward and downward plumes that transport no net mass but transport
energy upward.

5 Physically, these conditions can be realized if the medium has uniform composition, diffusive
heat transport is slow because of high opacity, and the dynamical timescale is fast compared
with the timescale for vertical displacement of the blob (the speed of the blob is small
compared with the speed of sound in the medium). Then C = C′ , so the blob has the same
composition as the surrounding medium at both points 1 and 2, the pressure will equilibrate
quickly due to expansion or contraction of the blob so that the blob remains in pressure
equilibrium with the surroundings, but the blob at point 2 will generally have a different
entropy than the surrounding medium if there is an entropy gradient (S ≠ S′). Such conditions
are not uncommon over large regions of typical stars (and in atmospheres).

6 Physically, this would be the case if the medium has a composition gradient over the distance
λ and diffusion of composition is slow, diffusive heat transport is slow, and the dynamical
timescale is fast compared with the displacement time. Then C ≠ C′ , so the blob has a
different composition than the surrounding medium at point 2, it will remain in pressure
equilibrium with the surroundings, and the blob at point 2 will generally have a different
temperature and entropy than the surrounding medium if there is a temperature gradient.
Although less common than the conditions leading to the Schwarzschild instability, such
conditions can also be realized in stellar evolution; see Section 20.3.6.

7 Physically it is clear that the heat capacity (change in heat divided by the change in
temperature) should depend on the number of degrees of freedom for the particles in the gas.
Internal degrees of freedom such as molecular vibrations allow energy to be stored without
increasing the (translational) kinetic energy of the gas particles, so the total number of
degrees of freedom (translation plus internal) for the gas will affect how the temperature
changes with added heat.

8 Although less-massive stars are often convective over significant portions of their outer
layers, the amount of mass involved in convection is relatively small because of low densities
near stellar surfaces. For example, the Sun is convective from about 70% to 90% of its radius
but from Table 10.1 this convective region contains less than 3% of the Sun’s mass (see also
Fig. 7.11).

9 Plasmons are not unique to stellar plasmas. For example, they are important in a variety of
condensed matter systems where (among other things) they influence optical properties of
materials.

10 This formula is valid for nondegenerate matter; if electrons are degenerate ω0 is modified by
a factor that depends on the electron density (Box 7.3).



8

Summary of Stellar Equations

The preceding chapters have introduced and explained the essential physical
concepts that govern stars. These will be employed in succeeding chapters
to understand stellar evolution: how stars are born, how they live their
normal lives, how they die, and what this stellar life cycle entails for our
overall understanding of the Universe. As preparation for that task, this brief
chapter pulls together the material introduced in Chapters 1–7 to summarize
in a single place the essential equations that govern the physics of stars, and
introduces some methods of finding solutions for these equations. As will
be seen in the subsequent discussion, the equations governing the structure
and evolution of stars often can be expressed in remarkably compact form
but their actual application and solution in realistic systems can entail
substantial complication.

8.1 The Basic Equations Governing Stars
Let us now summarize the minimal set of equations that might be used to
describe stellar structure and stellar evolution. These may be broken down
into equations governing (1) hydrostatic equilibrium, (2) luminosity, (3)
temperature gradients, (4) composition changes caused by nuclear reactions,
and (5) equations of state.

8.1.1 Hydrostatic Equilibrium
From Chapter 4 one requires equations that describe the conditions for
hydrostatic equilibrium, expressed either in Eulerian or Lagrangian form. In
Eulerian form, these equations may be written as

[mass conservation (4.4)]



[hydrostatic equilibrium
(4.10)],

where P is pressure, m(r) is total mass contained within the radius r, the
mass density is ρ, and the labels indicate the physical interpretation of the
equation and the original equation number where it was introduced. (The
corresponding Lagrangian equations are given in Table 4.1.) The first of
these ensures that no mass is gained or lost, while the second establishes an
equilibrium between inwardly directed gravitational forces and outwardly
directed forces that arise from the radial pressure gradient.

8.1.2 Luminosity
Next, we require an equation for the luminosity L, which was given in
differential form in Chapter 7 as

[luminosity (7.41)],

where ε(r) is the power per unit volume produced in a concentric shell at r
with thickness dr. The total luminosity of a concentric shell at any radius r
is then the integral of the differential luminosity from the center to the
radius r.

8.1.3 Temperature Gradient
The radial temperature gradient for a star in hydrostatic equilibrium may be
expressed by one of two equations,

[radiative T gradient (7.43)],

[convective T gradient
(7.34)],

where T is the temperature, P is the pressure, κ is the opacity, L is the
luminosity, and γ is the adiabatic coefficient. These two equations for the



temperature gradient are to be employed in the complementary fashion
suggested in Section 7.8: the radiative gradient (7.43) should be used unless
the condition (7.33) for convective instability

is satisfied (meaning that the actual temperature gradient is steeper than the
adiabatic gradient), in which case the adiabatic gradient (7.34) should be
used.

8.1.4 Changes in Isotopic Composition
The nuclear reactions powering stars lead to elemental composition changes
in addition to releasing energy. The abundances of isotopes are described by
the coupled set of ordinary differential equations called a thermonuclear
reaction network that is discussed in Box 6.1 (see also Appendix D), which
takes the general form

(8.1)

with one equation for each of the N species, where Y = (Y1, Y2, ... YN ) is a
vector of isotopic abundances,  denotes a sum of terms that increase
the value of Yi over time,  denotes a sum of terms that decrease the
value of Yi over time, and the argument Y indicates that in general these
terms depend on the other Yj in the system. For elementary examples the
number of species (and differential equations) N may be only a few, but
more realistic simulations may require hundreds or thousands of isotopic
species with a differential equation for each in the reaction network.

8.1.5 Equation of State



Generally, the preceding equations are not closed without a further
constraint imposed by the equation of state describing the star, which takes
the schematic form

[equation of state (3.1)],

giving a relationship among thermodynamic variables for the problem. The
equation of state for stars will depend strongly on the microscopic physics
of the gas and radiation. If the density is not too high an ideal gas equation
of state is often a good initial approximation for stars, but at high density or
in regions of partial ionization the equation of state can be more complex. In
realistic simulations the equation of state often does not have a completely
analytical form and must be computed numerically.

8.2 Solution of the Stellar Equations
The equations listed above represent a considerably simplified description
of a star, but even in this simplified form they typically must be solved on
large computers and the solution for realistic cases presents formidable
numerical problems. Relatively specialized techniques must be used for
some aspects of the solution because of the boundary conditions required
for a star, and because these equations couple processes having
characteristic time and length scales that may differ by many orders of
magnitude.

Example 8.1 In the large-scale numerical simulation of a Type Ia supernova
explosion (see Chapter 20) the thermonuclear burning front that passes
through the white dwarf matter and consumes it in about a second can have
a width as small as millimeters, while the scale characteristic of the white
dwarf that is incinerated is of order 10,000 km, and in the burn front
simulation temperatures are observed to change at a rate as high as 1017

Ks−1. The numerical challenges of dealing with such extremes are among
the most serious encountered for computer simulations of any known
physical system.



On the other hand, under certain approximations the equations of stellar
structure decouple from each other in such a way that they can be solved
more simply. Such an approach yields solutions that are only approximate,
but may capture enough of the essential physics to be useful in particular
contexts. As an example, in Section 8.4 we will show that under the
approximation that the equation of state is of polytropic form it is possible
to decouple the equations describing hydrostatic equilibrium from the rest
of the equations and to obtain solutions to these equations that can be
expressed in terms of simple formulas. Then in Section 8.5 a brief overview
will be presented of the issues associated with solving the full set of stellar
equations numerically on a computer.

8.3 Important Stellar Timescales
Before discussing solution of the stellar structure equations it is appropriate
to review the timescales important for stellar evolution that have been
introduced in preceding chapters. This is useful to set solutions in context,
but also because for many problems an understanding of relevant timescales
can yield important physical insight without having to solve the full set of
equations governing stellar structure and evolution. Timescales have been
introduced earlier through a variety of physical arguments but the
discussion can be systematized by noting that a timescale τs characteristic of
some important physical process represented by a quantity s may be defined
as τs = s/ṡ.1 The three most important stellar timescales are summarized
below and in Table 8.1.

1. Dynamical timescale: In Section 4.4 we saw that a dynamical
timescale can be introduced in terms of a characteristic time to either
expand or contract if there is a deviation from hydrostatic equilibrium.
Taking the former as representative, a characteristic dynamical time
can be estimated as the ratio of the radius R to the escape velocity vesc,

(8.2)



where vesc = (2GM/R)1/2 was used and an average density ρ = 3M/4πR3

has been introduced in the last step. The time-dependent differential
equation characterized by this timescale is the hydrodynamical
equation (4.14). Applying Eq. (8.2) to the Sun gives a dynamical
timescale of about 55 minutes (see Example 4.1).

2. Thermal adjustment timescale: The thermal adjustment (Kelvin–
Helmholtz) timescale is associated with time for a star to shed thermal
energy. It may be approximated by

(8.3)

where U is the internal energy and L the luminosity, and the virial
theorem has been used to estimate U ∼ GM2/R. The time-dependent
differential equation governed by this timescale is given in Eq. (4.35).
Applying Eq. (8.3) to the Sun gives a thermal adjustment timescale of
about 3 × 107 yr (see Section 4.9).

3. Nuclear burning timescale: The time to burn the star’s hydrogen fuel
may be approximated by the timescale

(8.4)

where η is the efficiency for conversion of mass into energy in
hydrogen fusion (about 0.007; see Example 5.3), M0 is the mass of
hydrogen available to burn in the star, and it has been assumed that L =
Lnuc in thermal equilibrium (where Lnuc is the luminosity associated
with the nuclear reactions). A representative differential equation
governed by the timescale (8.4) is given by Eq. (6.2). It will be argued
in later chapters that only about 10% of a star’s mass can be accessed
under conditions suitable for main sequence hydrogen burning, so
realistically the mass entering Eq. (8.4) should be M0 ∼ 0.1M, where
M is the mass of the star. For the Sun this gives τnuc ∼ 1010 yr. In
Example 6.1 more realistic estimates give τnuc ∼ 6 × 109 yr for the
Sun.2



In all these cases a more careful solution of the problem utilizing the
differential equation responsible for the timescale yields values comparable
to those deduced from simple timescale analysis, differing by numerical
factors that are often of order one. This shows clearly the potential of
timescale analysis to give correct order of magnitude estimates in stellar
structure problems.

Table 8.1 Some important stellar timescales

8.4 Hydrostatic Equilibrium for Polytropes
It is useful to have a solvable formalism that describes a star in hydrostatic
equilibrium. One way to accomplish that is to approximate the equation of
state so that the mechanical (hydrostatic) properties may be decoupled from
the thermal and transport properties, allowing the equations for hydrostatic
equilibrium to be solved separately from the other equations governing the
star.

8.4.1 Lane–Emden Equation and Solutions
The two first-order differential equations of hydrostatic equilibrium, (4.4)
and (4.10), may be combined to give the second-order differential equation

(8.5)

Let us solve this equation using a polytropic equation of state



(8.6)

where n is the polytropic index, ρc ≡ ρ(r = 0) is the central density, and Pc ≡
P (r = 0) is the central pressure.

Dimensionless variables: To solve Eq. (8.5) with the equation of state (8.6)
it is convenient to introduce dimensionless variables ξ and θ through

(8.7)

where a has the dimension of length and θ parameterizes the density in units
of the central density and therefore ranges between 0 and 1. Then the
differential equation embodying hydrostatic equilibrium for a polytropic
equation of state may be expressed in terms of the new independent variable
ξ and new dependent variable θ(ξ) as

(8.8)

which is known as the Lane–Emden equation.3 The boundary conditions in
these new variables are

(8.9)

where the first equation follows from the requirement that the correct
central density ρc = ρ(0) be reproduced and the second from requiring that
the pressure gradient dP/dr vanish at the origin (a necessary condition for
hydrostatic equilibrium). This equation may be integrated outward from the
origin (ξ = 0) until the point ξ ≡ ξ1 where θ first vanishes, which defines the
surface of the star [since at this point ρ = P = 0; see Eq. (8.7)].

Lane–Emden solutions: Equation (8.8) has analytical solutions for the
special cases n = 0, 1, and 5, but in the physically most-interesting cases the
equations must be integrated numerically to define the Lane–Emden



constants ξ1 and  for given n. These are tabulated for various
values of n and γ in Table 8.2, and the corresponding solutions are plotted in
Fig. 8.1 for integer n from 0 to 5. Not all Lane–Emden solutions are of
physical interest in stellar applications. In hydrostatic equilibrium the
density must decrease monotonically from the center and vanish at a finite
radius (surface of the star). The scaled density θ(ξ) for a Lane–Emden
solution decreases monotonically and has a zero at finite ξ ≡ ξ1 only if n < 5,
so only these solutions are candidates for describing stars in hydrostatic
equilibrium. Of those only polytropic indices around  and 3 lead to
physical properties such as density distributions that have some resemblance
to those of actual stars. Pressure profiles computed for polytropic equations
of state with several values of n are shown in Fig. 8.2. The n = 3 polytrope
is seen to bear some resemblance to the actual pressure profile of the Sun,
which was inferred from the Standard Solar Model (Section 10.1).

Table 8.2 Lane–Emden constants



Fig. 8.1 Lane–Emden solutions θ(ξ) obtained by integrating Eq. (8.8) numerically for integer n from
0 to 5. For each curve a dot indicates the value ξ1 given in Table 8.2. The solutions for n ≥ 5 do not
intersect the ξ axis; they are not suitable for describing stars because they correspond to
configurations without a finite radius.

Fig. 8.2 Pressure versus radius for polytropes of index n. Also shown is the pressure profile of the
Sun calculated in the Standard Solar Model that will be described in Chapter 10. The n = 3 polytrope
yields a profile not too different from the actual pressure profile of the Sun.



8.4.2 Computing Physical Quantities
The Lane–Emden solution and the transformation equations (8.7) may be
used to express quantities of physical interest in terms of the Lane–Emden
constants tabulated in Table 8.2 for given values of the polytropic index n.
For example, from Eq. (8.7) the stellar radius R is

(8.10)

the central density ρc is given by (Problem 8.6)

(8.11)

and the mass M is given by (Problem 8.3)

(8.12)

Eliminating ρc between Eqs. (8.10) and (8.12) gives a general relationship
between the mass and the radius,

(8.13)

for a solution of the Lane–Emden equation with polytropic index n. As
shown in Problem 8.9, for a Lane–Emden polytropic solution with index n,
the central density ρc and central pressure Pc are related by

(8.14)

where βn is a constant independent of M and ρc that slowly varies with m
[176].



8.4.3 Limitations of the Lane–Emden Approximation
The Lane–Emden equation has elegant solutions with a direct physical
interpretation that we shall put to good use later, but its limitations should
be borne in mind. It reflects only the property of hydrostatic equilibrium,
and then only for a gas with a polytropic equation of state. Thus it describes
only the mechanical part of stellar structure and has nothing to say about
temperature gradients and energy transport, and their coupling to the full
problem.

There are two general situations where a polytropic equation of state for a
star may be a reasonable approximation (and thus the Lane–Emden
solutions very useful) [134]. The first is when the realistic equation of state
contains a temperature dependence in addition to a density dependence (for
example, an ideal gas), but additional physical constraints between T and P
lead to an equation of state having a polytropic form. For example, the
adiabatic constraint applied to an ideal gas leads to a polytropic equation of
state [see the first of Eqs. (3.40) with V ∝ ρ−1]. In such a case the
temperature is effectively fixed by a constraint T = T (P ) and not by
coupling to the full set of equations describing stellar structure. The second
is when the realistic equation of state actually is at least roughly
approximated by the polytropic form (8.6). This is often the case in very
dense matter such as white dwarfs and neutron stars, as will be discussed
further in Chapter 16.

8.5 Numerical Solution of the Stellar Equations
Numerical solution of the full set of equations describing stellar structure
and stellar evolution is a specialized topic that would take us too far afield
for the present discussion. As noted previously, in addition to features
shared with many other large-scale scientific computations, the stellar
structure and evolution problem has some specific features that complicate
obtaining numerical solutions. These issues fall primarily into two
categories: boundary conditions and extreme scale differences in the
equations.

1. The boundary conditions are unusual in that for the structure of a star
in hydrostatic equilibrium some of the boundary conditions must be



imposed at the center and some at the surface. This requires specialized
techniques to ensure compatibility of the solutions with the two sets of
boundary conditions.

2. The scale issue arises because in both spatial and time dimensions
quantities of relevance may differ in size by many orders of magnitude.
This leads to stability issues that also require the use of specialized
numerical methods. Large-scale scientific computer simulations in
other disciplines have similar problems of scale, but few are as severe
as in the stellar problem. To give one representative example, solution
of even the relatively simple case of equations (8.1) governing changes
in isotopic composition and energy release for the proton–proton
chains with only the eight nuclear species appearing in Fig. 5.2 involve
timescales that can differ by 10–20 orders of magnitude. (In
mathematical parlance, equations governed by more than one timescale
that differ by large amounts are said to be stiff.) Such equations can be
solved only with numerical methods customized to deal with this issue.

A more extensive discussion of the particular issues associated with solving
the stellar equations and methods for obtaining numerical solutions may be
found in Ref. [134].

Background and Further Reading
Discussions of the basic equations governing stellar structure and evolution
may be found in Phillips [169]; Kippenhahn, Wiegert, and Weiss [134];
Prialnik [176]; Carrol and Ostlie [68]; Bowers and Deeming [55]; and
Hansen, Kawaler, and Trimble [107]. Kippenhahn, Wiegert, and Weiss
[134] summarize how these equations are solved in practical applications
and Bodenheimer et al. [51] give an overview of the numerical methods
used for such solutions on computers. Press et al. [175] address general
issues of scientific computing, with algorithms and sample code. Prialnik
[176] gives a particularly clear overview of stellar timescales that has
influenced our presentation.

Problems



8.1 Express the basic equations of stellar structure (4.4), (4.10), (7.41),
(7.43), and (7.34) in Lagrangian form.

8.2 Apply pure scaling (dimensional) arguments to the equation for
hydrostatic equilibrium to obtain directly the Lane–Emden result

relating the mass M and radius R for a star with a polytropic equation
of state

where K is a constant, P is the pressure, ρ is the mass density, and n
is the polytropic index.

8.3 Use Eqs. (8.7) and (8.8) to demonstrate that the mass for a Lane–
Emden solution is given by Eq. (8.12).***

8.4 (a) Show that Eq. (8.5),

with appropriate boundary conditions is equivalent to the usual
formulation of the hydrostatic equilibrium problem for Newtonian
gravity.

(b) Prove that Eq. (8.8) with the assumption (8.6) is equivalent to
this result and therefore describes hydrostatic equilibrium for a
star governed by a polytropic equation of state.

(c) Show formally that the parameter a defined in Eq. (8.7) has the
dimension of length.

(d) Show that the coefficient K in Eq. (8.6) and the parameter a in
Eq. (8.7) can be written as

respectively. Thus, for a given polytropic index n the
parameters K and a are determined completely by the central



pressure Pc and the central density ρc.
8.5 Using the form of the Lane–Emden equation given in footnote 3

after Eq. (8.8), find an analytical solution for n = 0 and evaluate the
corresponding Lane–Emden constants ξ1 and 

8.6 Show that for the Lane–Emden solution the central density ρc can be
expressed as

where 
8.7 Verify the polytropic curves in Figs. 8.1 and 8.2, and the entries for

ξ1 in Table 8.2, by integrating the Lane–Emden equation (8.8)
numerically. Hint: There are various ways to do this but the simplest
is to use a combined numerical/graphics package like MatLab,
Maple, or Mathematica to integrate and visualize results.

8.8 Prove that the relationship (8.13) between the mass and radius for a
Lane–Emden solution follows from Eqs. (8.10) and (8.12).

8.9 Use Eqs. (8.13), (8.6), and (8.11) to show that for a Lane–Emden
solution with polytropic index n the relationship between the central
density and central pressure is given by Eq. (8.14).***

1 This is just a generalization of the standard example from introductory physics of estimating a
time to travel some distance x as t = x/ẋ = x/v, where v is the average velocity.

2 Stars also burn heavier fuels after they leave the main sequence and we can associate
additional nuclear burning timescales with each fuel. But these timescales typically are small
compared with that for hydrogen burning on the main sequence. Thus the time to consume
available hydrogen on the main sequence is a rough approximation to the total nuclear
burning timescale for a star.

3 Often the Lane–Emden equation is stated in the equivalent form

This is more compact but not as useful computationally as the form (8.8).



PART II

STELLAR EVOLUTION



9

The Formation of Stars

Substantial direct and indirect observational evidence and theoretical
understanding indicate that stars are born in the clouds of gas and dust
called nebulae. This chapter uses the understanding of stellar processes
developed in the preceding chapters to address some specifics of how
regions of such nebulae become unstable and collapse gravitationally to
form stars. The basics are well understood but we will find that many
details are not. Thus, there must be considerable subtlety to the detailed
steps in the formation of stars that will be glossed over at our level of
presentation. This will be justified by the observation that stars exist and,
therefore, something like these assumptions are likely to be correct.

9.1 Evidence for Starbirth in Nebulae
The observation of many hot O and B spectral class stars in and near
nebulae is a rather strong indicator that stars are being born there. These
stars are so luminous that they must consume their nuclear fuel at a
prodigious rate. Thus, their time on the main sequence is limited to millions
of years and it follows that they cannot have wandered far from their
birthplace. Also observed, usually in association with complexes of hot O
and B stars embedded in dust clouds, is a class of stars called T Tauri
variables. These are red irregular variables with a number of unusual
characteristics. They exhibit emission lines and spectral lines with P Cygni
profiles, as illustrated in Fig. 9.1, which indicate the presence of expanding
shells of low-density gas around the stars. T Tauri stars typically are more
luminous than corresponding main sequence stars, implying that they are
larger. They exhibit strong winds (T Tauri winds), often with bipolar jet
outflows, and Herbig– Haro Objects are sometimes found in the directions



of these jets. An example of outflow from a young star and the associated
Herbig–Haro objects is shown in Fig. 9.2.

Fig. 9.1 Origin of P Cygni profiles in Doppler shifts associated with expanding gas shells. The
emission peak is both red-shifted and blue-shifted for the observer because of gas moving radially
away from the star. The blue-shifted dip is caused by absorption in gas moving toward the observer
on the near side.

Fig. 9.2 Jets and Herbig–Haro objects produced by outflow from a young star hidden in dust at the
center of the image. The Herbig–Haro Objects HH-1 and HH-2 correspond to the nebulosity at the
ends of the jets. The entire width of this image is about one lightyear.



These considerations indicate that T Tauri stars still are in the process of
contracting to the main sequence. They are less massive than the O and B
stars that often accompany them, indicating that they have contracted more
slowly and many have not yet had time to reach the main sequence by the
time that the more rapidly evolving O and B stars have done so. The HR
diagram for a young cluster is illustrated in Fig. 9.3, where there is strong
evidence for many young stars that are more luminous than the main
sequence and so are still contracting. The stars marked with horizontal and
vertical bars in this figure exhibit observational characteristics typical of T
Tauri stars. The observed bipolar outflows could be explained by an
accretion disk around the young stars formed as a result of conservation of
angular momentum for the infalling matter. Then, if there are strong winds
emanating from the star they would tend to be directed in bipolar flows
perpendicular to the plane of the disk (see Fig. 9.14). However, it is difficult
to explain the tight collimation of the jets by such a mechanism, and the
source of the energy driving the winds is also not explained by such a
simple model. The Herbig–Haro objects are likely the result of shocks
formed when the matter flowing out of the T Tauri star interacts with low-
density gas clouds.



Fig. 9.3 HR diagram for the young open cluster NGC2264. Horizontal bars denote stars with Hα line
emission and vertical bars denote variable stars, both characteristic of T Tauri stars. Adapted from R.
L. Bowers and T. Deemings, Astrophysics Volumes I and II, Jones and Bartiett Publishers, Inc. 1984.

These observations suggest that stars are born in nebulae. They also
suggest that the life of protostars contracting to the main sequence may be
more complex (and more violent) than the following simple considerations
might indicate. (References [84, 110, 206] give a more detailed analysis of
the processes involved in star formation than that presented here.) Taking
note of those warnings, we turn now to a more quantitative discussion of
gravitational stability as a foundation for understanding how regions of
nebulae can collapse to form stars.

9.2 Jeans Criterion for Gravitational Collapse
We may investigate the general question of gravitational collapse by
considering a spherical cloud composed primarily of hydrogen that has
radius R, mass M, and uniform temperature T , consisting of N particles
having average mass μ. The question of stability will be assumed to be one
of competition between gravitation, which would collapse the cloud if left
to its devices, and gas pressure, which attempts to expand the cloud. The
gravitational energy is of the form

(9.1)

where the factor f is  if the cloud is spherical and of uniform density, and
larger (but still of order one) if the density increases toward the center (see
Problem 9.6). The thermal energy is assumed to be that of an ideal gas, 

 From the virial theorem (4.21) describing a gravitating gas
in equilibrium, the static condition for gravitational instability is 2U < |Ω|,
implying that the system is unstable if it has a mass M with

(9.2)



where N = M/μMu and R = (3M/4πρ)1/3 have been employed. The quantity

(9.3)

is termed the Jeans mass. It defines a critical mass beyond which the
system becomes unstable to gravitational contraction. Since MJ ∝ T 3/2ρ−1/2,
the Jeans mass will be smaller for colder, more dense clouds. This makes
physical sense: it is easier to collapse a cloud of a given mass
gravitationally if the cloud is cold and dense than if it warm and diffuse.
Equation (9.2) may be solved for the Jeans length,

(9.4)

which defines the distance scale associated with the Jeans mass and thus
characterizes the size of gravitationally unstable regions. Finally, often it is
more useful to solve the condition (9.2) for a critical density for
gravitational collapse called the Jeans density,

(9.5)

Notice that the Jeans critical density is lowest (and thus is more easily
achieved) if the mass is large and the temperature low, as would be
expected on intuitive grounds.

Example 9.1 From Eq. (9.5), a uniform cloud of molecular hydrogen at T =
20 K with M = 1000M⊙ has a Jeans density ρJ = 1.2 × 10−22 gcm−3 if 

 and μ = 1. A molecular hydrogen cloud at the same temperature
containing only 1M⊙ has a Jeans density 6 orders of magnitude larger.

The Jeans criterion is a static condition that says nothing about gas
dynamics, and it neglects potentially important factors influencing stability
such as magnetic fields, dust formation and vaporization, turbulence, jets,



and radiation transport.1 Nevertheless, it is a useful starting point for
understanding how stars form from clouds of gas and dust.

9.3 Fragmentation of Collapsing Clouds
The foregoing considerations indicate that the collapse of more massive
clouds is favored, but this alone is at odds with the observation that most
stars contain less than a solar mass of material. The solution to this dilemma
is thought to lie in fragmentation of the collapsing clouds, as illustrated
schematically in Fig. 9.4. As will be seen shortly, the initial collapse is
expected to occur at almost constant temperature. Therefore, from Eq. (9.3)
we may expect the Jeans mass to decrease in the initial phases of the
collapse (speaking loosely, since the Jeans criterion was constructed for a
cloud in equilibrium, not one that is already collapsing). Hence as large
clouds, which have the smallest Jeans density, begin to collapse their
average density increases and at some point subregions of the original cloud
may exceed the critical density and become unstable in their own right to
gravitational collapse.

Fig. 9.4 Fragmentation of a collapsing cloud into gravitationally unstable subclouds, each of which
can pursue its own independent collapse. However, actual fragmentation may be much more complex
than this simple, orderly cartoon would suggest.

If there are sufficient perturbations on the right length scales in the cloud
(caused by turbulence, magnetic fields, and jets, for example), these
subregions may separate and begin to pursue independent collapse. Within
these collapsing subclouds this scenario may be repeated: as the density
increases, subregions may themselves become gravitationally unstable and



begin to pursue an independent collapse. By such a hierarchy of
fragmentations it is plausible that clusters of protostars might be formed
that have individual masses more comparable to those of observed stars (see
also Section 9.7), or are sufficiently close that mass loss in the collapse to
the main sequence would produce the observed spectrum of stellar masses
(recall the strong outflows associated with T Tauri stars). Box 9.1 gives an
example of additional complexity that might influence the way star clusters
form.

Box 9.1 Dependence of Collapse on Composition

The globular clusters in our galaxy, which typically each contain ∼ 105

stars, are very old and were formed early in the galaxy’s history.
However, present-day star formation in the galaxy appears to be
producing much less populous open clusters (having 100–1000 stars),
not clusters of 105 stars. Thus, as the Milky Way Galaxy has evolved,
something has changed in the way clouds collapse to form clusters of
stars.

A possible clue is supplied by observations in the Large and Small
Magellanic Clouds, which are satellites of our own galaxy where larger
clusters are still forming (see Böhm-Vitense [52], Vol. 3). The
Magellanic clouds have a composition somewhat richer in hydrogen
with less dust and metals than the present Milky Way. These conditions
are closer to those thought to have been prevalent in the Milky Way
when the globular clusters formed. Thus, the size of gravitationally
unstable clouds, and the conjectured fragmentation mechanism
operating in those clouds, may be sensitive to the elemental composition
of the galaxy.

9.4 Stability in Adiabatic Approximation
Consider the adiabatic contraction (or expansion) of a homogeneous cloud.
Real clouds will exchange energy with their surroundings and so are not
completely adiabatic, and they may not be completely homogeneous, but
the results obtained in this limit will be instructive in understanding more



realistic situations. From Eq. (9.5), equilibration of gravity and pressure
forces requires that the temperature T and density ρ be related by T ∝ ρ1/3.
In Fig. 9.5, this relation has been used to divide the T –ρ plane into regions
above and below the line T = ρ1/3. For points above the stability line
(unshaded area), pressure-gradient forces are larger than gravitational forces
and the system is unstable to expansion. For points below the stability line
(shaded area), pressure-gradient forces are weaker than gravitational forces
and the system is unstable with respect to contraction.

Fig. 9.5 Gravitational equilibrium in temperature–density space assuming adiabatic conditions. The
solid line T ∝ ρ1/3 corresponds to hydrostatic equilibrium by the Jean’s condition (9.5). The dashed
lines correspond to adiabatic behavior assuming  and 

9.4.1 Dependence on Adiabatic Exponents
From Eq. (3.40), for ideal-gas adiabats (curves of adiabatic heating or
cooling) the temperature T and density ρ ∝ V −1 are related by

(9.6)

First consider a monatomic ideal gas, for which the adiabatic exponent is 
 This corresponds to the dashed line T ∼ ρ2/3 in Fig. 9.5(a), which is



steeper than the equilibrium line and therefore crosses it at some point. A
cloud that is unstable to gravitational contraction (corresponding to a point
on the dashed line in the shaded area) will follow the dashed line to the
right as it collapses (direction of increasing density), as indicated by the
arrow. But in this case the collapse will be halted where the dashed line
reaches the stability line. Likewise, a cloud unstable to expansion
(corresponding to a point on the dashed line lying in the unshaded area) will
follow the dashed line to the left as it expands (direction of decreasing
density), until it reaches the stability line and the expansion halts.

Now consider Fig. 9.5(b), where it is assumed that the cloud has an
adiabatic exponent  In this case, the contraction (or expansion)
follows an adiabat for which T ∝ ρ1/3. Since this adiabat is parallel to the
stability line, the two lines never cross and a system lying on the dashed
line collapses and continues to collapse indefinitely. This also will be the
case if  Likewise, a system with  that is above the stability
line will continue to expand adiabatically as long as 

9.4.2 Physical Interpretation
The physical meaning of the preceding discussion is that a gas is less able
to generate the pressure differences required to resist gravity if the energy
released by gravitational contraction can be absorbed into internal degrees
of freedom and thus is not available to increase the kinetic energy of the gas
particles. The parameter γ is relevant because it is related to the heat
capacity for the gas. Typical sinks of energy that can siphon off energy
internally are rotations and vibrations of molecules, ionization, and
molecular dissociation. In the large clouds of gas and dust that are
candidates for stellar birthplaces, γ can be reduced to a value of  or less
by2

polyatomic molecules with more than five degrees of freedom [see Eq.
(7.37)],
the ionization of hydrogen at T ∼ 10, 000 K, or
the dissociation of hydrogen molecules at T ∼ 4, 000 K.



The large molecules required for the first situation are rare in the interstellar
medium but their presence enhances the chance of gravitational collapse for
a cloud. In hydrogen ionization or molecular dissociation zones, typically 

 and this causes an instability until the ionization or dissociation is
complete, at which point γ will typically return to normal values 
and collapse on the corresponding adiabat will reach the equilibrium line
and stabilize [see Fig. 9.5(a)].

9.5 The Collapse of a Protostar
The preceding introduction sweeps much under the rug but the existence of
stars implies that protostars form by some mechanism similar to the one
outlined above, so let us follow the consequences of the gravitational
collapse of such a protostar [169]. Assuming that fμ ∼ 1, for a one solar
mass protostar the Jeans criterion gives ρJ ≃ 3 × 10−16 gcm−3 for T = 20 K
and M = 1 M⊙. Thus, we may expect that a 1 M⊙ cloud can collapse if this
average density is exceeded. The size of this initial cloud may be estimated
by assuming the density to be constant and distributed spherically, implying
that R1 ∼ 3 × 1016 cm ∼ 2000 AU ∼ 4 × 105 R⊙. Thus, the initial protostar
has a radius approximately 50 times that of the present Solar System.

9.5.1 Initial Free-Fall Collapse
The initial collapse may be assumed to be free fall and isothermal, as long
as the gravitational energy released is not converted into thermal motion
and thereby into pressure. This will be the case as long as the energy not
radiated away is largely taken up by

dissociation of hydrogen molecules into hydrogen atoms
ionization of the hydrogen atoms.

The dissociation energy for hydrogen molecules is εd = 4.5 eV and the
ionization energy for hydrogen atoms is εion = 13.6 eV. The energy required
to dissociate and ionize all the hydrogen in the original cloud is then



(9.7)

where N denotes the number of the corresponding species and mH is the
mass of a hydrogen atom. For a protostar of one solar mass the requisite
energy is approximately 3 × 1046 erg. If this energy is supplied by
gravitational contraction from an initial radius R1 to a final radius R2,
energy conservation gives

(9.8)

Solving this for R2 assuming a mass of 1 M⊙ and an initial radius of 3×1016

cm gives R2 = 9×1012 cm ≃ 130R⊙ ≃ 0.6 AU. The corresponding time for
collapse is set by the free-fall timescale (see Problem 4.1), which is 

 Therefore, in this very simple model
a protostar of one solar mass collapses from a radius of about 50 times the
radius of the Solar System to a radius about half the radius of the Earth’s
orbit in near free fall on a timescale of order 104 years.3

At this point we may expect the collapse to slow because all hydrogen
molecules have been dissociated and all hydrogen atoms have been ionized,
the photon mean free path becomes short because of interactions with the
free electrons so that the cloud becomes opaque to its own radiation, the
temperature increases as heat begins to be trapped, and the resulting
pressure gradients counteract the gravitational force and bring the system
nearly into hydrostatic equilibrium. Thus, the virial theorem (4.21) in near-
adiabatic conditions may be applied henceforth.

9.5.2 A Little More Realism
The picture presented above is oversimplified in that a realistic cloud does
not wait until all hydrogen has been dissociated and ionized before it begins
trapping heat, but its essential features are supported by more sophisticated
considerations. A more correct variation of temperature and density for star
formation is illustrated in Fig. 9.6. In this more realistic picture the
temperature of the cloud increases and it begins to deviate from free-fall



behavior once significant heat has been trapped. After all hydrogen has
been dissociated and ionized, the collapse is governed by approximately
adiabatic conditions in near hydrostatic equilibrium.

Fig. 9.6 Schematic track in density and temperature for the collapse of a gas cloud to form a star. Flat
regions of the curve correspond to isothermal collapse.

9.6 Onset of Hydrostatic Equilibrium
The temperature at which approximate hydrostatic equilibrium sets in may
be estimated in our simple model as follows. The virial theorem gives 2U +
Ω = 0 and the gravitational energy Ω is

(9.9)

where Ω(R1) has been neglected compared with Ω(R2). From Eq. (3.9), the
internal energy for the hydrogen ions and electrons in the fully ionized gas
is approximately

(9.10)



where NH is the number of hydrogen ions and Ne ∼ NH is the number of
free electrons. Therefore, the virial theorem requires that

and this may be solved for T to give

as a rough estimate for the temperature at the onset of hydrostatic
equilibrium.

Subsequent contraction of the protostar is in near hydrostatic equilibrium
and is controlled by the opacities, which govern how fast energy can be
brought to the surface and radiated. As was discussed in Section 4.9, this
too is a consequence of the virial theorem and leads to the Kelvin–
Helmholtz timescale of about 107 years to form a star of one solar mass.
Although the energy production of the protostar is assumed to derive
primarily from gravity, some energy also may be supplied by thermonuclear
burning of primordial deuterium, as discussed further in Box 9.2.
Theoretical evolutionary tracks for protostars of various masses to collapse
to the main sequence are shown in Fig. 9.7.

Box 9.2 Deuterium Burning in Protostars

In the present discussion protostars have been assumed to derive their
energy from gravitational contraction and not from nuclear reactions
because the temperatures and densities are too low for the PP chains or
the first steps of the CNO cycle until the protostar nears the main
sequence. However, this is a small oversimplification because from Fig.
6.1 the rate for the second step of PP-I, 2H+1H → 3He+γ, is many orders
of magnitude larger than the rate for the first step of the PP chains, 1H +
1H → 2H + β+ + νe. Thus, if deuterium were already present in the



protostar, PP-I could proceed directly from its second step at a much
lower temperature.

Primordial Deuterium Production
Trace amounts of deuterium are expected in the contracting protostar
because a small amount is made in the big bang. The following figure
illustrates light-element production in big bang nucleosynthesis (the
calculation is described in more detail in Chapter 20 of [100] and uses
the methods outlined in Appendix D).

Big bang nucleosynthesis leaves the Universe dominated by 1H and
4He, but traces of deuterium (dotted 2H curve) and a few other light
isotopes are produced.

Burning Primordial Deuterium If a protostar collapses from material
never processed in stars it will contain the abundance of deuterium
(mass fraction Xd ∼ 10−5) produced in the big bang, and the deuterium
will burn when the temperature exceeds about 6 × 105 K (see also the
discussion of lithium burning in Section 9.10.1). This makes some
contribution beyond the gravitational energy to the internal heating of
the protostar, which can in turn affect the contraction and can add to the
initial abundance of 3He in the forming star. A more extensive



discussion of deuterium burning prior to main sequence evolution is
given in Vol. I of Iben [130] and in Iliades [128].

Fig. 9.7 Evolutionary tracks for collapse to the main sequence. Numbers on tracks are times in years
since the onset of near-adiabatic collapse. Notice the large difference in timescales for collapse as a
function of mass.

9.7 Termination of Fragmentation
The discussion in Section 9.3 indicated that gravitational collapse of large
clouds is likely to fragment into a hierarchy of sub-collapses, and this
fragmentation was invoked to explain why so many low-mass stars are
produced. However, this argument is incomplete (even leaving aside that
little quantitative justification was given for it) because it fails to provide a
mechanism for stopping the fragmentation in the vicinity of 0.1–1 solar
masses (since no stars would form otherwise; see Section 9.9). As will now
be explained, one possible resolution of this dilemma is that the transition
from isothermal to adiabatic collapse for the protostar implies a
modification of the Jeans criterion, and that this modification dictates a



lower limit for the mass of the fragments produced by a hierarchical
collapse.

Substitution of Eq. (9.6) for adiabats in Eq. (9.2) implies that MJ ≃ ρ(3γ

−4)/2 for adiabatic clouds. For γ = 5/3 then, MJ ∝ ρ1/2 and the Jeans mass
increases as the collapse proceeds, implying that the transition from
isothermal to adiabatic collapse sets a lower bound on the Jeans mass. The
preceding discussion has been qualitative. More realistic calculations do
suggest a lower bound controlled by cloud opacities, but it is often less than
the mass of the lightest known stars. However, as shall be discussed in
Section 9.10, there is observational evidence for collapse of fragments
having less mass than the lightest stars to brown dwarfs, which are not stars
but share some features of stars and some of planets.

9.8 Hayashi Tracks
A more fundamental understanding of the collapse to the main sequence
follows from the demonstration by Chushiro Hayashi (1920–2010) that a
star cannot reach hydrostatic equilibrium if its surface is too cool. This
implies that there exists a region in the right-hand portion of the HR
diagram that is forbidden to a given star while it is in hydrostatic
equilibrium. This region, the boundaries of which depend on mass and
composition of the star, is called the Hayashi forbidden zone; it is
illustrated in Fig. 9.8 for a star of mass M and composition c.



Fig. 9.8 Evolution of a protostar to the main sequence. While the protostar is fully convective it
follows an almost vertical path in the HR diagram called the Hayashi track.

9.8.1 Fully Convective Stars
Protostars contracting to the main sequence must have large surface areas
and (relatively) high surface temperatures, so they have high luminosities.
Furthermore, once the hydrogen is ionized they will have high opacities.
The combination of high opacity and high luminosity ensures that the
temperature gradients necessary to transport the energy radiantly are steeper
than the adiabatic gradient and, according to the discussion in Section 7.7,
the contracting protostar is expected to be almost completely convective. As
noted in Box 3.4, such objects are described approximately by a 
polytrope.

By examining fully convective stars with a thin radiative envelope,
Hayashi demonstrated that these contracting protostars follow an almost
vertical path in the HR diagram that is now called the Hayashi track for the
star. (The T Tauri stars of Fig. 9.3 are thought to be on their Hayashi
tracks.) Numerical simulations and simplified models indicate that objects
to the right of the Hayashi track in the HR diagram cannot achieve
hydrostatic equilibrium, so no stable stars of protostars can exist in this



region. Thus the Hayashi track marks the left boundary of the Hayashi
forbidden zone, as illustrated in Fig. 9.8.

9.8.2 Development of a Radiative Core
As the shrinking star descends the Hayashi track its central temperature is
increased by the gravitational contraction and this decreases the central
opacity (recall from Section 7.4.5 that for the representative Kramers
opacity, κ ∝ T −3.5). Eventually this lowers the temperature gradient in the
central region sufficiently that it drops below the critical value for
convective stability and a radiative core develops. As contraction proceeds
the radiative core begins to grow at the expense of the convective regions,
which are eventually pushed out to the final subsurface zones characteristic
of stars like the Sun (see Section 7.10.2).4

While the fully convective star is on the Hayashi track its luminosity
decreases rapidly because of the shrinking surface area. However, as the
opacity decreases over more and more of the interior because of the
increasing temperature the luminosity begins to rise again because more
energy can flow out radiantly. Since at this point the star is shrinking while
its luminosity is increasing, the surface temperature must increase and the
star begins to follow a track to the left and somewhat upward in the HR
diagram (Fig. 9.8). Finally, the onset of hydrogen burning causes the track
to bend over and enter the main sequence, as also illustrated in Fig. 9.8.
Thus, the contraction to the vicinity of the main sequence for the protostar
is composed of two basic periods: a vertical descent in the HR diagram for
fully convective protostars, followed by a drift up and to the left as the
interior of the protostar becomes increasingly radiative at the expense of the
convective envelope.

9.8.3 Dependence on Composition and Mass
Hayashi tracks depend weakly on the mass and composition, as illustrated
in Fig. 9.9. Thus, for more massive stars of fixed composition the Hayashi
tracks are almost parallel to each other but increasingly shifted to the left in
the HR diagram [Fig. 9.9(b)]. The Hayashi tracks also depend on stellar
composition, because this influences the opacity. For example, a metal-poor



star of a given mass will generally have a Hayashi track to the left of an
equivalent metal-rich star because of lower opacity [Fig. 9.9(a)]. Finally,
the transition from convective to radiative interiors, and the corresponding
transition from downward motion to more horizontal leftward drift on the
HR diagram, is generally faster in more massive stars because of more rapid
heating of the interior. Therefore, as illustrated in Fig. 9.9(c) and Fig. 9.7,
more massive stars leave the Hayashi track quickly and approach the main
sequence almost horizontally for much of their protostar evolution.
Conversely, the least massive stars never leave the Hayashi track as they
collapse and drop almost vertically to the main sequence [Fig. 9.9(c)]. They
are expected to remain completely convective, even after entering the main
sequence.

Fig. 9.9 Dependence of Hayashi tracks on (a) composition and (b) mass. The solid portions of each
curve in (c) represent the descent on the Hayashi track.

9.9 Limiting Lower Mass for Stars
A contracting protostar becomes a star only if its core temperature rises
enough to initiate thermonuclear reactions, which requires T ∼ 4 × 106 K.
The results of Problem 4.8 show that for a star composed of a monatomic
ideal gas having uniform temperature and density, the temperature varies
approximately with the cube root of the density:

(9.11)

However, this behavior assumes an ideal classical gas; the temperature will
no longer increase with contraction if the equation of state becomes that of



a degenerate gas. In Problem 4.8, the critical temperature and density for
onset of electron degeneracy were estimated by setting kT equal to the
Fermi energy, giving a critical density defined by ρ ≃ 6 × 10−9μeT 3/2 g
cm−3. Inserting this into Eq. (9.11) gives for the temperature at which the
critical density is reached in the contracting protostar,

(9.12)

Assuming representative values M ∼ 1M⊙ and  gives T ∼ 107

K. This is more than enough to ignite hydrogen fusion before the core
electrons become degenerate, so the Sun (you will be reassured to know) is
a star.

On the other hand, decreasing the mass of the protostar eventually leads
to a situation where the core will become degenerate before the temperature
rises to the value required to sustain hydrogen fusion. Detailed calculations
indicate that this limiting mass is approximately 0.08 M⊙–0.10M⊙. But the
Jeans criterion knows nothing of the above considerations and it is expected
that clouds of mass smaller than this could become unstable to gravitational
collapse. What is the fate of collapsing clouds having less than the critical
mass required to form stars? For them the growth in temperature is halted
by electron degeneracy pressure before fusion reactions can begin. It is
speculated that many such brown dwarfs may exist in the Universe,
supported hydrostatically by electron degeneracy pressure; they have no
thermonuclear furnaces but are radiating energy left over from earlier
gravitational contraction.

9.10 Brown Dwarfs
Brown dwarfs collapse out of hydrogen clouds, not out of protoplanetary
disks (like stars), but produce energy only by gravitational contraction, not
from hydrogen fusion (like planets).5 Their masses are expected to range
from several times the mass of Jupiter to a few percent of the Sun’s mass.
The cooler brown dwarfs may resemble gas giant planets in chemical
composition, while hotter ones may look chemically more like stars. Brown



dwarfs are intrinsically difficult to detect because they are small and of very
low luminosity, and once detected they are difficult to distinguish from low-
mass stars and from planets.

9.10.1 Spectroscopic Signatures
The first brown dwarf discovered was Gliese 229B, which appears to be too
hot and massive to be a planet but too small and cool to be a star. The IR
spectrum of GL229B looks like the spectrum of a gas giant planet. Most
telling is evidence of methane gas, common in gas giants but not found in
stars because methane can survive only in atmospheres having temperatures
lower than about 1500 K.

In addition to searching for gases like methane that should not be present
in stars, observational quests for brown dwarfs look for evidence of the
element lithium. Hydrogen fusion destroys lithium in stars: at temperatures
above about 2 × 106 K, a proton encountering a lithium nucleus has a high
probability to react with it, converting the lithium to helium. The amount of
lithium that can survive is a function of how strongly the material of the star
is mixed down to the core fusion region by convection. Protostars are
convective, so stars start off with a strongly mixed interior, but the initial
core temperature in the protostar is not high enough to burn lithium. The
lightest stars (red dwarfs) remain convective once on the main sequence, so
lithium is mixed down to the fusion region and destroyed in red dwarfs.
Because these stars are cool, it takes some time to burn the lithium, but
calculations indicate that lithium could survive no longer than about 2 × 108

years in the lightest true star.6 The basic interior structures expected for
stars, brown dwarfs, and gas giant planets are summarized schematically in
Fig. 9.10.



Fig. 9.10 Contrasting interiors of a red dwarf star, a brown dwarf, and a gas giant planet. Stars initiate
thermonuclear reactions but brown dwarfs and planets do not; thus, primordial lithium is destroyed in
stars but not in planets or brown dwarfs. The presence of methane is an indication that temperatures
are too low for the object to be a star. Gas giant planets can contain lithium and methane, like brown
dwarfs, but their upper interiors tend to be dominated by molecular hydrogen and helium.

9.10.2 Stars, Brown Dwarfs, and Planets
Figure 9.11 summarizes the size and surface temperature trend from middle
main sequence stars like the Sun, through the lowest mass stars (red
dwarfs), through brown dwarfs, and finally to planets. Brown dwarfs can
have surface temperatures comparable to that of the lowest-mass stars, but
atmospheric compositions similar to large planets. The challenge is to
distinguish them from these other two kinds of objects at interstellar
distances. A number of brown dwarf candidates have now been identified
but in many cases there is uncertainty about whether they are brown dwarf
companions of stars, or giant planets orbiting stars.



Fig. 9.11 Relative size (to scale) and surface temperature trends (darker is cooler) for examples of
stars, brown dwarfs, and gas giant planets.

9.11 Limiting Upper Mass for Stars
As we discussed in the preceding section, a limiting lower mass for stars is
set by the requirement that sufficient temperature be generated by
gravitational collapse to initiate the burning of hydrogen to helium in the
core. An upper limiting mass for stars is thought to exist because of the
opposite extreme: if the star is too massive, the intensity of the
thermonuclear energy production makes the star unstable to disruption by
the radiation pressure. Pressure associated with radiation grows as the
fourth power of the temperature and thus will be most important for hot
stars. It is instructive to ask what photon luminosity is required such that the
magnitude of the force associated with the radiation field is equivalent to
the magnitude of the gravitational force. This critical luminosity, which
defines limiting configurations that are marginally stable gravitationally
with respect to the pressure of the photon flux, is termed the Eddington
luminosity.

9.11.1 Eddington Luminosity
As shown in Problem 9.1, the force per unit volume associated with a
photon gas is given by the gradient of the radiation pressure,

(9.13)



Equating the magnitude of this force with the magnitude of the gravitational
force yields an expression for the Eddington luminosity

(9.14)

which depends only on the mass of the star M and an average opacity κ near
the surface. Stars exceeding the luminosity (9.14) can expel surface layers
by radiation pressure. In fact, since the total pressure will always exceed the
radiation pressure because of contributions from the gas, the stability limit
typically will be lower than the Eddington luminosity.7

9.11.2 Estimate of Upper Limiting Mass
Stars for which radiation pressure is important are hot and from Fig. 7.3 the
opacities near their surfaces are expected to be dominated by Thomson
scattering. Taking the Thomson opacity (7.25) for pure, fully ionized
hydrogen as a rough estimate of κ, Eq. (9.14) may be expressed as

(9.15)

Equation (9.15) may be used to estimate a radiation-pressure mass limit by
assuming that the most luminous stars observed (with luminosities ∼
several × 106 L⊙) are radiating at the Eddington limit.8 As shown in
Problem 9.1, this suggests a maximum stable mass for stars of order 100
M⊙. This is a very crude estimate but detailed calculations, and
observations, suggest that the most massive stars indeed have masses of this
order.

For example, Fig. 9.12 illustrates the frequency of stellar masses inferred
from near-infrared Hubble Space Telescope observations of the Arches
Cluster, which is near the galactic center and has a greater density than any
other young cluster observed in the galaxy. No star more massive than
about 130 M⊙ is observed in this cluster. The dashed lines indicate two



different fitted theoretical estimates for the initial mass distribution
(proportional to the probability that a star formed with a given mass in the
cluster; see Section 9.12). The one giving a maximum mass of 481M⊙
predicts that 18 stars should have been observed with masses greater than
130M⊙, and the one giving a maximum mass of 1120M⊙ predicts that 33
stars should have been observed with a mass greater than 130M⊙. Since no
stars are observed in the cluster with a mass greater than 130M⊙, it was
concluded that there is an upper limit to the mass of stars and that from the
mass distribution in the Arches Cluster this upper limit is no larger than 150
M⊙ though this value depends strongly on the rate of IR extinction by
intervening dust [85].

Fig. 9.12 Observed distribution of star masses in the Arches Cluster (adapted from Ref. [85]).

This conclusion rests on the assumption that the most massive stars in the
cluster have not yet been removed by supernova explosions. The absence of



observed supernova remnants in the cluster is used to justify this
assumption but there is evidence from core collapse supernova simulations
that stars with initial masses of 150 M⊙ or larger may collapse directly to
black holes, producing short bursts of neutrinos, gravitational waves, and
possibly gamma-rays, but ejecting little in the way of traditional supernova
remnants (see Section 14.6.2). This may call into question whether the data
of Fig. 9.12 really indicate a maximum star formation mass, or whether
instead they are telling us something about the masses of stars that may
collapse directly to black holes rather than eject a core collapse supernova
remnant. At any rate, observation of stars with mass greater than about 150
M⊙ is extremely rare.

As will be discussed in Section 14.3, there also is strong observational
evidence that very massive stars eject large amounts of material from their
envelopes. This tends to corroborate the idea of an upper limiting mass for
stars set by stability against radiation, because radiation pressure and
pulsational instabilities are thought to play a leading role in these observed
mass-loss events.

9.12 The Initial Mass Function
Since for stars mass is destiny, a topic of great practical importance is the
distribution in initial mass for a population of stars, which is called the
initial mass function (IMF) for that population. The initial mass function
ξ(M) may be defined by requiring that the amount of mass bound up in stars
in the mass interval M to M + dM in a given volume of space be given by
MdN = ξ(M)dM, where N denotes the number of stars in the volume.
Determining the IMF requires an indirect, semiempirical chain of reasoning
since observations give us apparent magnitudes, not masses, and stellar
populations evolve with time so a mass distribution observed today differs
from the initial mass distribution of the population.

Edwin Salpeter (1924–2008) first estimated ξ(M) in 1955 by examining
the luminosities of main sequence stars in the neighborhood of the Sun,
relating the luminosity to the mass by empirical mass–luminosity relations
like those illustrated in Eq. (1.27) and Fig. 1.11, and assuming that stars
evolve away from the main sequence when about 10% of their initial



hydrogen has been burned (see Section 10.6) [195]. Salpeter found a simple
power law,

(9.16)

The initial mass function for stars in the solar neighborhood determined in
more recent work [180] is illustrated as points in Fig. 9.13, along with a line
showing the original Salpeter estimate (9.16).

Fig. 9.13 Initial mass function (IMF). Points are from Ref. [180] for stars near the Sun and the line
represents a Saltpeter power law, log ξ(M) = −1.35 log M + 1.2.

Although both observational data and methods of analysis have improved
greatly since the time of Salpeter’s pioneering work, it is remarkable that
the original power law (9.16) continues to work well for stellar masses in
the ∼ 0.2–80M⊙ range. From Fig. 9.13 there are indications that it begins
to fail for M ∼ 100 M⊙ and larger, which presumably reflects the upper
stability limit for stellar mass discussed in Section 9.11.2, and for very low
masses. The region below ∼ 0.2 M⊙ is complex, both observationally and



theoretically, and requires special techniques that go beyond the
assumptions of the Salpeter analysis. However, these uncertainties should
not obscure the clear message of Fig. 9.13 that massive stars are rare, and
that the majority of stars produced in the galaxy have masses well below 1
M⊙. In fact, from Fig. 9.13 we may conclude that the most likely event in a
star-forming episode is the production of a main sequence star with a mass
of a few tenths of a solar mass.

9.13 Protoplanetary Disks
During the final stages of protostar collapse to the main sequence matter
from the solar nebula may be expected to continue to accrete onto the star,
most likely from an equatorial accretion disk because of angular momentum
conservation. There is strong observational evidence that young stars tend
to produce very strong winds that are focused perpendicular to the
equatorial accretion disk. Thus, accretion disks and strong bipolar outflow
may be a rather common feature of stars that are still collapsing to the main
sequence. Figure 9.14 illustrates.

Fig. 9.14 Schematic model of an accretion disk and bipolar outflow for a young star.

The strong winds blowing from young stars are not completely
understood. One idea is that they are caused by the matter drawing a
magnetic field inward as it falls into the accretion disk. The outwardly
flowing wind is partially blocked by the accretion disk around the equator
of the forming star and so escapes along the polar axis, thus producing



bipolar outflows from the young star. However, this simple picture cannot
explain the rather narrow width of some outflows. Presumably the full
mechanism is more complex, perhaps involving the effect of magnetic
fields to focus the ejected material. There also is strong observational
evidence for dust disks around these young stars. It is likely that angular
momentum plays a large role in the collapse of protostars and the formation
of these circumstellar disks; this is discussed further in Box 9.3.

Box 9.3 Stars, Disks, and Angular Momentum

The preceding discussion of collapsing protostars has mentioned the
role of angular momentum only in passing. The interstellar clouds from
which protostars collapse will in general be rotating slowly, since it
would take very special conditions to produce a cloud with no initial
angular momentum at all. Doppler shifts of radio waves from opposite
sides of these clouds may be used to infer their rotational velocities.
Typically rotations for dense regions in stellar-mass clouds are found to
have line-of-sight velocities of order 0.1 km s−1.

Angular Momentum
If such a cloud collapses decoupled from the rest of the Universe its
angular momentum must be preserved, so v0r0 = vfrf , where v0 andr0
denote an initial tangential velocity and radius, respectively, and vf and
rf denote the corresponding quantities after the collapse. In Section 9.5.1
it was estimated that a 1 M⊙ cloud collapses to a star from an initial
radius of order 1016 cm. Taking the Sun as representative of the final
star, this corresponds to a decrease in radius by 5–6 orders of
magnitude. Invoking conservation of angular momentum, if the 1 M⊙

cloud collapsed directly to the Sun from an initial radius of 1016 cm and
tangential velocity 0.1 km s−1, the surface of the Sun should have been
spun up to a velocity v = (r0/R⊙)v0 ≃ 14, 000 km s−1. No normal star is
spinning at anywhere near this rate.

Disk Formation
A basic fallacy in the preceding argument is that for finite angular
momentum the collapse will not proceed directly to a star, but will



terminate when the rotating cloud forms a stable disk for which the
gravitational acceleration exactly keeps the particles in a circular orbit
[193]. This requires that  which may be combined with v
= (r0/R⊙)v0 to give a disk radius

These disk radii typically are of order 100 AU (Problem 9.8).

Transfer of Angular Momentum
Thus, the initial collapse is likely to a rotating disk much larger than a
star, and the final star is produced by an object that condenses at the
center of this disk having much of the disk’s mass but only a fraction of
its angular momentum. The mechanism by which this takes place is not
well understood but involves transfer of angular momentum outward in
the disk. Thus, for example, in our Solar System the outer planets like
Jupiter that formed from the solar disk carry much more angular
momentum in their orbital motion than the Sun carries in its rotation.

9.14 Exoplanets
The dust disks observed around a number of young stars suggest that
planetary formation may be taking place in these systems. Indeed, in recent
decades impressive evidence has accumulated for thousands of extrasolar
planets or exoplanets. Because the field of exoplanets is changing rapidly9

and is a specialized topic only peripherally related to the main subject
matter here, we shall say only a few words about exoplanets and their
methods of detection. It will hardly come as a surprise that exoplanets are
difficult to observe directly at their great distance. They are detected using a
variety of methods but primarily through their gravitational influence on the
parent star measured using precise Doppler spectroscopy, and by eclipses
with the parent star, which cause variations in the light output of the system.
Until about 2014 most exoplanets were detected using the Doppler



spectroscopy method but more recently the majority of new discoveries
have used transit methods.

9.14.1 The Doppler Spectroscopy Method
The Doppler spectroscopy method is illustrated in Fig. 9.15. The
semiamplitude K of the stellar radial velocity caused by an orbiting planet is
given by [145]

(9.17)

where i is the tilt angle of the orbit [see Fig. 1.9(a)], mp is the mass of the
unseen companion, M∗ is the mass of the star, the orbital eccentricity is e,
and the orbital period P is given by Kepler’s third law,

(9.18)

where a is the semimajor axis of the relative orbit. Generally, the tilt angle i
is unknown (but see the discussion of transits below), so masses are
uncertain by a factor sin i in the absence of further information (see Section
1.5.2). To be useful the Doppler spectroscopy method requires that changes
in radial velocity for the parent star of order 10 m s−1 or better be detected
(see Problem 9.4). It is remarkable that modern observational astronomy is
capable of such feats.



Fig. 9.15 The Doppler spectroscopy method for detecting extrasolar planets.

9.14.2 Transits of Extrasolar Planets
When the geometry permits an eclipse as seen from Earth, the transit of
extrasolar planets across the face of their parent star may be observed, and
in favorable cases the secondary eclipse of the exoplanet by the parent star
can be seen. Such data allow the tilt angle i of the orbit to be tightly
constrained to near  and from eclipse timing the radius of the planet can
be estimated. The IR flux associated with the planet may be deduced from
the total flux decrease during the secondary eclipse, and by fitting such data
to models the properties of the planet’s atmosphere may be inferred from
the eclipse data. Transit information such as this, coupled with data from
Doppler analysis of the system when it is available, allows a rather full
picture to be constructed: a detailed orbit of the planet, its mass, its size, and
its density, and information about its atmosphere.

Background and Further Reading
For an introduction to star formation see Böhm-Vitense [52], Harpaz [108],
Hartmann [110], Phillips [169], Iben [130], and Salaris and Cassisi [194]. A
more extensive discussion of star formation may be found in Stahler and
Palla [206]. Our discussion of mass loss from stars has been qualitative. An
accessible introduction to a more quantitative analysis may be found in
Chapter 8 of Prialnik [176]. For a more extensive introduction to the initial
mass function, see Prialnik [176], and Stahler and Palla [206].

Problems
9.1 Show that in radiative equilibrium the force per unit volume

associated with a photon gas is



where L is the luminosity, κ is the opacity, and ρ is the density. (See
also Problem 9.9.) By equating the magnitude of this force per unit
volume and the magnitude of the gravitational force per unit volume
at the same radius, show that the maximal luminosity before
radiation pressure would make the star gravitationally unstable is
given by the Eddington luminosity

Use this result, along with an estimate for the opacity from Thomson
scattering, to make a rough estimate of the upper limiting mass for
stars, assuming that the most luminous stars observed (L ∼ several ×
106 L⊙) are the most massive and are radiating at the Eddington
limit.***

9.2 For the main sequence, estimate and plot versus the spectral class
the ratio of radiation pressure to gas pressure, and the ratio of the
photon luminosity to the Eddington luminosity. Hint: Use Table 2.2
for main sequence properties and the results of Problem 4.6 to
estimate the average internal temperature of main sequence stars,
and estimate opacity near the surface assuming Thomson scattering.

9.3 From the virial theorem (4.21), show that the total energy of an
ideal gas can be expressed as E =−(3γ −4)U, where U is the internal
energy and γ is the adiabatic exponent. Show that if 
hydrostatic equilibrium can be attained only if the total binding
energy of the gas tends to zero, implying that a  gas has
precarious gravitational stability.

9.4 Estimate the maximum magnitude of the variation in the Sun’s
radial velocity caused by the influence of Jupiter if you were
observing the Solar System from a distance of 30 lightyears. What is
the spectroscopic precision required to measure this amount of
Doppler shift? What is the maximum corresponding shift in angular
position of the Sun on the celestial sphere caused by the influence of
Jupiter as viewed from this distance? How far away would a 1-cm
radius coin need to be to subtend the same angle?***



9.5 What is the Jeans density for a 1000 M⊙ spherical cloud of atomic
hydrogen at temperature 20 K? Suppose that in a dense region of a
molecular cloud the number density is 1 × 108 cm−3 and the
temperature is 100 K. What is the Jeans mass?

9.6 Evaluate the constant f in the gravitational potential equation (9.1),
Ω = fGM2/R, for the density profile

that was used in Problem 4.15. (Hint: This problem will be easier to
solve if you do Problem 4.15 first.)***

9.7 (a) Derive a Jeans length for instability against gravitational
collapse by the following considerations. Assume a spherical
cold cloud of molecular hydrogen having a uniform density ρ
and radius r, governed by an ideal gas equation of state. Suppose
the cloud is perturbed and begins to collapse gravitationally.
Require for stability that the characteristic timescale for
gravitational collapse be comparable to the characteristic
timescale for the collapsing cloud to respond and produce a
radial pressure gradient to counteract the collapse. Show that the
radius for a cloud satisfying this condition is, up to factors of
order one, equal to the Jean’s length defined in Eq. (9.4).

(b) Consider a spherical cloud of pure molecular hydrogen at a
temperature of 10 K with a uniform density of 10−18 g cm−3.
What is the adiabatic coefficient γ ? Use the formula derived in
part (a) to estimate the Jeans length for this cloud. How long
would it take this cloud to collapse if there were no opposition
from pressure gradients?

9.8 From angular momentum conservation, estimate typical radii for
the disks that form and halt the gravitational collapse of clouds with
angular momentum, as discussed in Box 9.3. Assume parameters
characteristic of a 1M⊙ cloud with initial tangential velocity of 0.1
km s−1 and an initial radius of 2000 AU for the cloud.***

9.9 Use the equation of state for a photon gas to show that for radiative
heat transport the radiation pressure Prad has a gradient proportional



to dT /dr; thus prove that for a star in hydrostatic equilibrium with
heat transport by radiative diffusion

where P is the total hydrostatic pressure, κ is the radiative opacity, L
is the luminosity, and m is the enclosed mass at r.

9.10 Show that if gas and radiation pressure decrease outward in a star,
then κL(r) < 4πcGm, where L(r) is the luminosity, κ is the opacity,
and m is the enclosed mass at radius r. Hint: See the result of
Problem 9.9. Thus argue that hydrostatic equilibrium and the
equation for radiative energy transport cannot both be satisfied if
either κ or L(r) are too large. (If the inequality is violated and
hydrostatic equilibrium is assumed, then the radiative transport
equation must be invalid; indeed, heat transport was found earlier to
be convective, not radiative, if either the luminosity or the opacity
are too high.)

9.11 Consider a pair of gravitationally bound objects (two stars, or a star
and a planet, for example) having masses m1 and m2, and separated
from their common center of mass by a1 and a2, respectively.
Assuming the validity of Kepler’s third law, show that the apparent
orbits as viewed from Earth satisfy

where i is the tilt angle of the orbital plane with respect to the line of
sight

9.12 A spherical gravitating object of radius R and mass M consists of a
monatomic ideal gas in hydrostatic equilibrium that has average



density 〈ρ〉 and average temperature 〈T 〉. Show that 〈T 〉 = constant
× 〈ρ〉1/3M2/3, so that for two such objects of the same composition at
the same average temperature the more massive object must have
lower average density. Hint: Use the virial theorem.

9.13 Consider a gravitating sphere of uniform density ρ in hydrostatic
equilibrium from which (in a thought experiment) all pressure is
suddenly removed. Derive a formula giving the time for a test
particle at radius r to fall to the center (zero radial coordinate) by
assuming the particle to obey Kepler’s third law for an orbit with
eccentricity ε = 1 (that is, a straight line). You should find that the
resulting free-fall time is independent of r, so all mass points in the
sphere collapse to zero radial coordinate in the same (finite) time
interval.

9.14 Assuming the validity of the virial theorem, write a differential
equation governing the rate of energy emission with time
(luminosity L), for a star that is contracting gravitationally assuming
all the luminosity to come from release of gravitational energy.
Show that the resulting timescale tKH (the Kelvin–Helmholtz
timescale of Section 4.9) can be interpreted as the time for the radius
to decrease by a factor e−1 if the timescale is assumed constant, and
that this timescale precludes gravitational contraction as the source
of the main sequence luminosity of the Sun. Argue that because the
Kelvin–Helmholtz timescale is not constant, tKH estimated using
main sequence values of the mass, radius, and luminosity of a star is
a reasonable estimate of the time that it took the protostar to collapse
to the main sequence.***

9.15 The initial collapse phase of star formation is difficult to observe
because the collapsing protostar is usually shrouded in dust, and
because the time for collapse is very short compared with the
lifetime of the star. Verify this last statement by estimating the ratio
of the time of collapse to the main sequence to the lifetime on the
main sequence for stars with main sequence masses 1M⊙, 6.45 M⊙,
and 17.8M⊙. Hint: See Table 2.2 for data.

9.16 Use the Salpeter form of the initial mass function given in Eq.
(9.16) to make a rough estimate of the fraction of stars that form



having masses (a) greater than 1M⊙ and (b) greater than 10 M⊙.
Assume for purposes of this problem that the lowest-mass star has M
= 0.1 M⊙ and the highest-mass star has M = 100 M⊙.

1 Shortcomings of the Jeans criterion are suggested by nothing that our galaxy contains
∼109M⊙ of gas suitable to form stars, yet it produces only ∼ 1M⊙ of new stars each year.
This implies a star formation rate one to two orders of magnitude smaller than that expected
from gravitational considerations alone [84]. The formal basis of the Jeans condition has been
questioned by some because it is doubtful whether the conditions assumed in its derivation
are realized in star-formation regions. Specifically, the implicit assumption of constant
background density is generally inconsistent with conditions for hydrostatic equilibrium
because there are then no pressure gradients to balance the gravitational forces. See the
discussion in Chapter 5 of Ref. [46] and Appendix 2 of Ref. [110].

2 To simplify the initial discussion the gas will be assumed to consist only of molecular and
atomic hydrogen, with trace concentrations of polyatomic molecules. In reality about 25% of
the mass would be in helium gas, which has first and second ionization energies of 24.6 eV
and 54.4 eV, respectively, and there will likely be dust. These more realistic features are
important for a quantitative description but would not change the conceptual picture that will
be painted here.

3 The characteristic timescale for free fall  is independent of the radius of the
collapsing mass distribution. This behavior is termed homologous collapse. One consequence
of homologous collapse is that if the initial density is uniform it will remain uniform for the
entire collapse. Because configurations in homologous systems are self-similar (related by a
scale transformation), they are particularly easy to deal with mathematically. Therefore,
simple but reasonable approximate treatments of the initial phases for gravitational collapse
are often possible by making the homology assumption. Another situation where homology
can be employed to simplify the description is in a core collapse supernova, where part of the
core is expected to collapse in approximately homologous fashion (see Chapter 20).

4 In more massive stars the subsurface convective zones are eliminated completely but the core
may become convective after the star enters the main sequence if the power generation is
sufficiently large; see Section 7.10.1. In the least massive stars, a radiative core never
develops and they remain completely convective (see below).

5 However, just as for protostars, the formation of brown dwarfs could involve a small amount
of deuterium burning; see Box 9.2.

6 For stars more massive than red dwarfs, as the protostar contracts the center becomes
radiative and the region of convective mixing begins to retreat toward the surface at about the
same time that fusion is initiated in the core. Whether all the lithium is destroyed depends on
how fast this happens. If the retreat is fast enough to separate a well-mixed surface from the
interior, a small amount of the lithium will survive. Observations of the Sun indicate that
about 1% of its original lithium was preserved in this manner.

7 The ejection of material may also be abetted by stellar pulsations that result from pressure
instabilities at high luminosity, and may be influenced by the presence of stellar rotation and
magnetic fields. When stars are near the Eddington limit, strong winds driven by continuum
absorption blow from their surfaces. Most stars are not near the Eddington limit. In those
cases, any winds blowing from their surfaces are typically weaker and driven by absorption in
discrete spectral lines. These are termed line-driven winds. In the ionized gas near the surface



the radiation pressure acts primarily on the electrons but the mass resides in the protons
(assuming pure hydrogen for simplicity). The radiation pressure on the electrons lifts them on
average relative to the protons, producing a radially directed electric field that causes the
protons and electrons to eventually be expelled together. More precise treatments of the
Eddington luminosity account for ions with higher masses such as alpha particles in the gas,
and the contribution of free–free and bound–free absorption to the opacity.

8 For example, the highly unstable star η Carinae (see Section 14.3.2) has a total luminosity of
about 5× 106 L⊙ and is presently emitting mass at a rate of about 0.001 solar masses per year
[5].

9 The first confirmed exoplanet was discovered in 1992 and as of mid 2017 there are more than
3600 confirmed exoplanets, with thousands of additional candidates having been cataloged.



10

Life and Times on the Main Sequence

In Chapter 9 the collapse of a protostar to a Zero Age Main Sequence
(ZAMS) star was considered. In this chapter the nature of life on the main
sequence for such a star is examined. Since a ZAMS star achieves
hydrostatic and thermal equilibrium quickly, the ZAMS state may be
viewed as the initial condition for subsequent stellar evolution. This is
fortunate, because the discussion of Chapter 9 indicates that many
uncertainties remain in the detailed understanding of protostar collapse to
the main sequence. The essence of main sequence life is stable burning of
core hydrogen into helium under conditions of hydrostatic equilibrium,
primarily by PP chains for stars of a solar mass or less, and by the CNO
cycle for more massive stars. Because we have discussed hydrostatic
equilibrium in Chapter 4 and energy production by the PP chains and CNO
cycle in Chapter 6, the essential features of life on the main sequence have
been introduced already.

10.1 The Standard Solar Model
Since the Sun is a main sequence star, it is appropriate to begin by
examining this local star that we know the best. A large amount of relevant
data have been amassed and considerable understanding exists of how the
Sun functions. This has allowed the construction of a Standard Solar
Model: a mathematical model of the Sun that uses basic understanding from
fields such as nuclear and atomic physics, measured key quantities, and a
few assumptions to describe all solar observations. Standard Solar Models
are important because they fix the Sun’s helium abundance and the
convection length scale in the solar surface, and they provide a benchmark
for measuring improved solar modeling and a starting point for more
general stellar modeling. The essence of the Standard Solar Model is that a



1 M⊙ ZAMS star is evolved to the present age of the Sun subject to a small
set of assumptions:

1. The Sun was formed from a homogeneous mixture of gases.
2. The Sun is powered by nuclear reactions in its core.
3. The Sun is approximately in hydrostatic equilibrium. Some deviations

from equilibrium are permitted as the Sun evolves, but these are
assumed to be small and to occur slowly.

4. Energy is transported from the core of the Sun, where it is produced,
to the surface, where it is radiated into space, by photons (radiative
transport) and by large-scale vertical motion of packets of hot gas
(convection). Conduction is considered negligible for heat transport in
the Sun.

Let us now discuss each of these assumptions of the Standard Solar Model
in a little more depth.

10.1.1 Composition of the Sun
The assumption that the Sun was formed from a homogeneous mixture of
gases is motivated by the strong convection expected in the protostar during
collapse to the main sequence that was discussed in Chapter 9. The surface
abundances are then assumed to have been undisturbed in the subsequent
evolution, so that present surface abundances are an accurate reflection of
the composition of the original ZAMS star. The abundance of most
elements in the surface can be inferred by spectroscopy, except for the
noble gases He, Ne, and Ar. They are not excited significantly by the
blackbody emission spectrum of the photosphere, so their abundances
cannot be fixed well by spectroscopic information. Because evolution of the
Sun’s luminosity depends strongly on the mean molecular weight, which is
in turn strongly influenced by the helium abundance, the H/He ratio is
normally taken as an adjustable parameter in solar models. This parameter
is determined by requiring that the luminosity of the Sun at the present age
of the Solar System (4.6 billion years, as determined by dating of
meteorites) be accurately reproduced by the model.



10.1.2 Energy Generation and Composition Changes
The Sun is assumed to derive its power and associated composition changes
from the proton–proton chains PP-1, PP-2, and PP-III defined in Fig. 5.2,
and the CNO reactions defined in Eqs. (5.10)–(5.11) and Fig. 5.3. The
nuclear reaction networks (see Box 6.1) describing this energy and element
production are solved at a given time by dividing the Sun into concentric
shells, calculating the nuclear reactions in each shell as a function of the
current temperature and density there, and using the updated composition
and the energy production as input to the partial differential equations
describing the solar equilibrium structure and its time evolution.

10.1.3 Hydrostatic Equilibrium
Since the dynamical timescale of the Sun defined in Eq. (4.18) and Table
4.2 is about an hour, the Sun may be expected to have reached hydrostatic
equilibrium quickly. Although the Sun is assumed to be in approximate
hydrostatic equilibrium, a Standard Solar Model allows small expansions
and contractions in response to time evolution of the star, and it may be
expected that re-equilibration of the system after such excursions is fast
compared with the timescale for evolution. The pressure responsible for
hydrostatic equilibrium is composed of both gas pressure and radiation
pressure, but the radiation pressure even at the center of the Sun is only
about 0.05% of the total pressure. A Standard Solar Model typically ignores
the effects of both rotation and the part of the pressure deriving from
magnetic fields on hydrostatic equilibrium. Likewise, any stellar pulsations
are assumed to have negligible effect on hydrostatic equilibrium.

10.1.4 Energy Transport
It is assumed that energy transport in the Sun by acoustic or gravitationally
driven waves is negligible, and that the energy produced internally in the
Sun is transported to the surface by radiative diffusion and convection. In
the interior, the transport is assumed to be by radiative diffusion unless the
critical gradient for convective instability is exceeded, in which case the
Sun transports energy in that region convectively with an adiabatic
temperature gradient (see Section 7.7). In the subsurface region the actual



gradient is steeper than the critical gradient and mixing length theory is
used to model convection. Because convection in the subsurface region is
difficult to calculate reliably, the mixing length in units of the scale height
[the parameter α of Eq. (E.7)] is taken as an adjustable parameter, to be
fixed by requiring the model to yield the observed radius of the Sun. (The
definition of the solar radius is discussed in Box 10.1, in terms of the
optical depth τ for the Sun.) The opacities required for radiative diffusion of
energy are Rosseland mean opacities that often must be calculated
numerically. They are among the least well-determined quantities entering
the Standard Solar Model.

Box 10.1 Optical Depth and the Solar Surface

Let a radiant flux F be incident on a thin slab of stellar material
characterized by a thickness dr, density ρ, and opacity κ, as illustrated in
the following figure.

The difference between incident and transmitted flux dF is given by, dF
= −κρFdr. Assuming κρ to be constant over dr, this has a solution

where λ is the mean free path (Box 7.1). Introduce a dimensionless
quantity τ called the optical depth through the differential equation dτ =
−κρdr. The optical depth at r is then defined by integrating

Optical depth measures the probability that a photon at r will interact
before leaving the star, so it characterizes the transparency of a medium.



An opaque medium has a large τ, which can be because of some
combination of high opacity, large physical depth, or high density. A
region is optically thin if τ << 1 and optically thick if τ >> 1.

By definition, the photosphere lies at the radius where  so a
photon emitted from the photosphere will suffer on average less than
one scattering before reaching a distant observer. (Optical depth and
location of the photosphere depend on frequency through the opacity,
but this will be ignored for the present discussion.) The equation for
hydrostatic equilibrium becomes particularly simple if τ is used to
parameterize distance. As shown in Problem 10.12,

The region with τ <
≲ 1 is called the stellar atmosphere. The diffusion

approximation for radiative transport fails when τ is less than about 1–
10 because the mean free path for photons then becomes very long (in
the solar surface, λ is of order 107 cm or more, compared with fractions
of a cm in the interior). Thus, methods used to deal with radiative
transport in stellar atmospheres are much more complicated than those
adequate for the interior. It is essential to model this complex region
adequately because it defines the outer boundary conditions for
integration of the equations describing the interior structure, and
because the atmosphere mediates the emission and absorption of
radiation and therefore has a large influence on the photon spectrum
(our primary source of stellar information).

10.1.5 Constraints and Solution
Solution of the problem corresponds to evolving in time four partial
differential equations in five unknowns [pressure P, temperature T, density
ρ, enclosed mass m(r), and luminosity L], supplemented by an equation of
state that defines a relationship among T, P, and ρ, and subject to
constraints that the radius, luminosity, and mass calculated within the model
agree with current observations of the Sun. The network of equations



required to describe nuclear energy and element production is solved
separately for each timestep in each zone, as described above. The equation
of state is assumed to be given by the ideal gas law for regions that are
completely ionized. Otherwise, a numerical equation of state is typically
used.

The Standard Solar Model solution is constructed iteratively. Starting
values for the helium abundance and the mixing length parameter are used
to evolve an initial zero-age model to the current age of the Sun. The
model’s luminosity and radius are then compared with observations, the
helium abundance and mixing length parameters adjusted accordingly, and
the model is evolved again. This cycle is repeated until convergence is
obtained. Table 10.1 gives the temperature, density, pressure, and
luminosity of a Standard Solar Model as a function of radius and enclosed
mass at that radius [32]. Figure 10.1 illustrates graphically some of the
parameters of this model plotted versus the radius and Fig. 10.2 plots the
same quantities versus the Lagrangian enclosed mass coordinate.

Table 10.1 A Standard Solar Model [32]





M⊙ = 1.989 × 1033 g R⊙ = 6.96 × 1010 cm L⊙ = 3.828 × 1033 erg s−1



Fig. 10.1 Parameters from a Standard Solar Model (Table 10.1) plotted versus the radial coordinate
R. Data are from Ref. [32].



Fig. 10.2 Parameters from a Standard Solar Model (Table 10.1) plotted versus the enclosed mass
M(R). Data are from Ref. [32].



The Standard Solar Model may be tested by comparing with
observations. These tests range from general ones, such as accounting for
the existence, age, and energy output of the Sun, to specific ones such as
accounting for detailed results of solar seismology. The Standard Solar
Model has passed these tests very well. Let us discuss two specific tests that
probe the solar interior: helioseismology and neutrino emission.

10.2 Helioseismology
One way to study the Sun’s interior is to study the propagation of waves in
its body, similarly to the way geologists learn about the interior of the Earth
by studying seismic waves or how the composition of a bell may be inferred
by studying the sound frequencies that it produces. The corresponding field
of study is called helioseismology. The concepts of helioseismology
introduced here to study the Sun can be extended (with suitable
generalization) to study the interior of other stars (see Section 16.5); this is
termed asteroseismology.

10.2.1 Solar p-Modes and g-Modes
Solar oscillations were discovered by studying Doppler shifts of surface
absorption lines [143], which showed that patches of the solar surface
oscillated with a period of five minutes and velocity amplitude of 0.5 km
s−1. These 5-minute oscillations represent pressure waves (p-modes)
trapped between the surface and the lower boundary of the convective zone
at about 70% of the solar radius. They are reflected from the surface by
density gradients and refracted near the base of the convection zone because
of changing sound speed in that region. In addition to p-modes associated
with acoustical waves trapped near the solar surface, the Sun may exhibit
gravity waves or g-modes, which correspond to oscillations with gravity as
the restoring force. The g-modes carry information about much deeper
regions of the Sun than that carried by the p-modes. As will be discussed in
Sections 15.1 and 16.5, some white dwarfs are observed to be pulsating
variables and the dominant oscillation modes responsible for pulsations in
variable white dwarfs are expected to be g-modes.



10.2.2 Surface Vibrations and the Solar Interior
The solar interior can be studied by observing vertical motion of the Sun’s
surface in localized regions. The Michelson Doppler Imager (MDI)
instrument on the SOHO observatory orbits the Sun 1.5 million kilometers
sunward from the Earth,1 and is capable of measuring vertical displacement
of the solar surface at a million points per minute.

The Sun vibrates at a complex set of frequencies. By decomposing the
observed vibrations of the Sun into a superposition of standing acoustic
waves, it is possible to learn about the interior because the structure of the
interior affects the wave patterns that appear on the surface. Such
decompositions indicate that the observed motion of the surface is a
superposition of several million resonant modes with different frequencies
and horizontal wavelengths. Helioseismology places strong constraints on
theories of the solar interior. Although the analysis is complex, the basic
idea is simple: changes in the properties of the solar interior (for example,
the amount of helium in a particular region) will affect the way sound
waves travel through the interior, and this will in turn influence the way the
surface vibrates.

Example 10.1 Two important pieces of information obtained from early
helioseismology are that the helium abundance outside the core is the same
as at the surface, and that convection extends about 30% below the surface.
Helioseismology also has shown that the speed of sound inside the Sun is
very close to that predicted by the Standard Solar Model, and that the Sun
rotates differentially at the surface but that inside about 65% of the solar
radius the rotation rate becomes essentially the same for all latitudes.
However, more recently it has been found that stellar evolution models
applied to the Sun are incompatible with helioseismology if they adopt the
solar composition obtained by the newest spectroscopic models. This
unresolved anomaly is called the Solar abundance problem.

10.3 Solar Neutrino Production
Helioseismology is one way to probe the interior of the Sun. A second is to
study the neutrinos that it emits. The energy powering the surface photon



luminosity must make its way on a 100,000-year or greater timescale to the
surface before being radiated, but neutrinos emitted from the core are
largely unimpeded in their exit from the Sun, reaching the Earth 81/2
minutes after they were produced. Therefore, neutrinos carry immediate and
more direct information about the current conditions in the solar core than
do the photons emitted from the solar photosphere.

10.3.1 Sources of Solar Neutrinos
There are eight reactions or decays playing a role in solar energy production
that produce neutrinos (see Section 5.2). They are listed in Table 10.2, along
with labels that will be used to refer to them, and with their corresponding
Q-values. Six of the reactions produce spectra with a range of Q-values and
two are line sources (the neutrinos are emitted at discrete energies).
Neutrinos from the CNO reactions are difficult to observe because they are
weak (less than 2% of the Sun’s energy comes from the CNO cycle) and the
energies are low. Our primary concern will be with the reactions labeled pp,
7Be, and 8B, which correspond to branches of the PP chains.

Table 10.2 Important neutrino-production reactions in the Sun

The solar neutrino spectrum that is predicted by the Standard Solar
Model is shown in Fig. 10.3(a), while Fig. 10.3(b) illustrates the radial
regions of the Sun responsible for producing neutrinos from each of the PP
reactions. From Fig. 10.3(b), the 8B and 7 Be neutrinos probe much smaller



radii than the photons or neutrinos from PP-I (labeled pp), because they are
produced at higher temperatures and therefore at greater depth.

Fig. 10.3 (a) The solar neutrino spectrum. The sensitive regions for various experiments described in
Section 10.4 are indicated above the graph. (b) Differential neutrino production as a function of solar
radius. Labels are described in Table 10.2. The shaded area indicates the differential photon
luminosity.

10.3.2 Testing the Standard Solar Model with Neutrinos
From Fig. 5.2 and Table 10.2, each of the three PP chains may be tagged by
a particular combination of neutrinos [113]. The overall rate of energy
production in all three chains is governed by the initial step p + p → 2H +
e+ + νe, which produces an electron neutrino, with a maximum neutrino
energy (endpoint) of 0.42 MeV. The PP-II chain is tagged in addition by the
neutrinos from electron capture on 7Be, which come at the discrete energies
0.38 and 0.86 MeV. Finally, PP-III is tagged uniquely by higher-energy
neutrinos from β-decay of 8B, which has an endpoint of about 15 MeV.
Thus, detection of neutrinos from the Sun can provide a direct probe of the
relative rates for PP-I, PP-II, and PP-III, and a stringent test of Standard
Solar Models. This is a difficult but not impossible task, as will be shown in
the next section.

10.4 The Solar Electron-Neutrino Deficit



By counting the number of neutrinos produced and the average energy
released for each 4H → 4He in the PP chains, it may be estimated that the
Sun should be emitting ∼ 1038 electron neutrinos per second, if it is
powered by the PP chains (see Problem 10.3). However, detectors on Earth
see only a fraction of the corresponding number of electron neutrinos that
would be expected to reach Earth. Historically this was termed the solar
neutrino problem. Let us introduce this problem by summarizing the
experiments that confirm this deficit compared with the predictions of the
Standard Solar Model.

10.4.1 The Davis Chlorine Experiment
The pioneering solar neutrino detection experiment implemented by
Raymond Davis (1914–2006) began taking data in 1970 and continued for
several decades. It used the reaction

(10.1)

initiated in 100,000 gallons of cleaning fluid (C2Cl4). To shield against
background produced by cosmic rays, the tank containing the cleaning fluid
was placed 1500 meters below the surface in the abandoned Homestake
Mine near Lead, South Dakota. The argon atoms produced by the reaction
(10.1) are tiny in number – about one argon atom was produced per day by
neutrino interactions in the tank – but they are radioactive, so their decays
can be counted after separation of the argon from the cleaning fluid by
bubbling helium through the liquid.2

The reaction (10.1) has a threshold (minimum energy for the reaction to
occur) of 0.81 MeV, which is higher than the maximum energy of 0.42
MeV for neutrinos in the PP-I chain [see Fig. 10.3(a)]. Therefore, the Davis
experiment was sensitive primarily to the 8B neutrinos (and weakly to the
7Be neutrinos) from the reactions in Table 10.2. The Davis experiment
counted neutrinos at a rate that was approximately three times smaller than
the rate predicted by the Standard Solar Model. Because this detector was
based on chemical separation conducted well after the neutrino reactions
had taken place, it had no directional sensitivity. It was assumed that the
neutrinos were coming from the Sun because there was no other plausible



source for neutrinos of that intensity; however, this could not be proved
directly by the experiment.

10.4.2 The Gallium Experiments
The chlorine experiment was sensitive primarily to the 8B neutrinos. These
neutrinos probe the deepest regions of the Sun [see Fig. 10.3(b)], but they
come from a very minor side branch of the solar energy production cycle
(see Fig. 5.2); thus they are not related very closely to the Sun’s photon
luminosity. Because of the threshold for the reaction (10.1), the neutrinos
from the primary energy production process in the Sun (PP-I) are not
detected at all. Another chemistry-based detection system can be
constructed using the reaction

(10.2)

The 71Ge produced is radioactive so the Ge atoms can be separated
chemically and their decays observed to count the number of neutrino
reactions. The reaction (10.2) has a threshold of only 0.23 MeV, so it can
detect neutrinos coming from the PP-I chain that produces most of the solar
energy.

Two large experiments, SAGE (operated by a Russian–American
collaboration underground in the Caucasus) and GALLEX (operated by a
largely European collaboration in the Gran Sasso underground laboratory in
Italy), were implemented based on the gallium reaction (10.2). These
experiments, for which more than half of the neutrinos are expected to
come from the pp reaction in Table 10.2, also measured a neutrino deficit
compared with the Standard Solar Model. However, the deficit was not as
large as in the chlorine experiment. They found that the electron neutrino
flux is reduced by a factor of about two relative to that expected. Like the
chlorine experiment, the gallium experiments are chemistry-based and have
no directional sensitivity, so they could not demonstrate conclusively that
the detected neutrinos originated in the Sun.

10.4.3 Super Kamiokande



The Super Kamiokande detector operates 1000 meters underground in the
Mozumi Mine of the Kamioka Mining and Smelting Company in Japan,
and uses a different (non-chemical) approach to detecting neutrinos.3 A
large tank containing 50,000 cubic meters of ultrapure water is monitored
by more than 11,000 photodetectors. When the neutrino–electron elastic
scattering reaction ν+e− → ν+e− occurs in the water, the recoiling electrons
may exceed the speed of light in the medium and produce Cherenkov
radiation that is then detected by the phototubes (see Box 10.2). The
threshold for reliable detection in Super-K is about 7 MeV, so it is sensitive
only to the more energetic 8B neutrinos produced in PP-III [see Fig.
10.3(b)]. Because the detector has directional sensitivity, Super
Kamiokande (unlike the Davis experiment, SAGE, or GALLEX) was able
to demonstrate that the neutrinos being detected come from the direction of
the Sun. The Super-K results again indicated a solar neutrino deficit, with
the detector seeing fewer than 40% of the electron neutrinos expected based
on fluxes predicted by the Standard Solar Model.

Box 10.2 Cherenkov Radiation

Light in a medium travels at a velocity v = c/n, where c is the speed of
light in vacuum and n is the refractive index of the medium. For
example, the speed of light in a vacuum is 3 × 105 km s−1 (n = 1) but in
water it is about 2.3 × 105 km s−1 (n ∼ 1.3) and in glass about 2.0 × 105

km s−1 (n ∼ 1.5). Hence, a charged particle moving through a medium
can acquire a velocity that exceeds the speed of light in the medium (but
does not exceed the speed of light in a vacuum, which is forbidden by
special relativity).

Sonic Booms
This is similar to an airplane exceeding the speed of sound in air, which
generates a shockwave heard as a “sonic boom.” When the airplane
breaks the sound barrier it is “outrunning its own sound.” The result is a
shockwave that focuses an intense burst of sound in a specific direction,
as illustrated in Fig. 10.4(a). Likewise, when a charged particle exceeds
the speed of light in a medium an electromagnetic ‘sonic boom’
produces a directed burst of light called Cherenkov radiation (the blue
glow seen in water surrounding a nuclear reactor core is one common



manifestation). This is illustrated in Fig. 10.4(b), where the uncharged
neutrino interacts with a charged electron in water and the recoiling
electron exceeds the speed of light in the water and emits a cone of
Cherenkov radiation.

Detecting Cherenkov Radiation
Figure 10.4(c) illustrates detection of Cherenkov light by phototubes
arrayed around the water. The energy, direction, point of interaction, and
charged-particle type may be inferred by analyzing data from the
phototubes, which permits the direction of the incoming neutrino to be
determined.

Fig. 10.4 (a) Shockwaves produced by exceeding the speed of sound in a medium. (b) Production of
Cherenkov radiation by neutrinos. (c) Detection of Cherenkov radiation.

10.4.4 Astrophysics and Particle Physics Explanations
The experiments described above were not all sensitive to the same
neutrinos from the Sun and found somewhat different magnitudes for the
solar neutrino deficit. However, the Davis chlorine experiment, the two
gallium experiments, and the water Cherenkov experiment all found



reproducibly that significantly fewer neutrinos are being detected than
predicted by the Standard Solar Model. Table 10.3 summarizes solar
neutrino fluxes measured by these detectors and compares them with the
predictions of a Standard Solar Model. These results indicate a deficit of
solar neutrinos in all detectors by an amount that depends on which
neutrinos are being detected, with the size of the deficit well outside the
range of experimental uncertainties.

Table 10.3 Solar neutrino fluxes compared with Standard Solar Model

All fluxes in solar neutrino units (SNU; 1 SNU is the neutrino flux that would produce 10−36

reactions per target atom per second), except for Super Kamiokande results. Experimental
uncertainties include systematic and statistical contributions. Comparisons with a Standard Solar
Model (SSM) from [31].

Confirmation in the more recent experiments of the solar neutrino
problem uncovered by Davis implies some combination of two alternatives:
(1) How the Sun works is not understood (failure of the Standard Solar
Model), or (2) How neutrinos work is not understood (failure of the
Standard Model of elementary particle physics). Thus, a debate ensued over
whether the solution to the solar neutrino problem lay in a modification of
our astrophysics understanding or of our particle physics understanding.
The apparently anomalous flux of solar neutrinos has implications far
broader than would be suggested by some (difficult to measure) number
being a factor of 2–3 smaller than expected. If the Standard Solar Model
were wrong about the predicted neutrino flux it would call into question its
description of the central region of the Sun. Since the Sun is the best-
studied star, this would in turn raise issues about whether our general
understanding of stellar structure and stellar evolution were on firm ground.
Conversely, the Standard Model of elementary particle physics is arguably
the most successful scientific theory of all time, given the breadth and



accuracy with which it correlates and explains data. But despite these past
successes, a failed prediction in its weak-interaction sector would indicate
unequivocally that there is physics beyond that described by the Standard
Model.

As will be discussed in depth in Chapters 11–12, experiments and
observations have shown rather conclusively that the “solar neutrino
problem” is now resolved, and that the resolution lies in new properties for
neutrinos that imply physics beyond the Standard Model of elementary
particle physics. Specifically, there is now strong evidence that at least
some neutrinos have a non-zero mass, and that this permits neutrinos to
change their types (flavors) from electron neutrinos (to which the above
detectors are sensitive) into other types that the detectors described above
cannot see.4 As a consequence, this will provide strong support for the
validity of the Standard Solar Model. But before describing the resolution
of the solar neutrino problem, let us conclude this chapter by considering
broader issues of main sequence systematics, evolution of stars on the main
sequence, and the evolutionary processes that eventually cause a star like
the Sun to leave the main sequence.

10.5 Evolution of Stars on the Main Sequence
The main sequence is the longest and most stable period of a star’s life but
stars do evolve while they are on the main sequence, primarily in response
to concentration changes in their core as they burn hydrogen to helium in
hydrostatic equilibrium. This lowers the central pressure because it
increases the mean molecular weight (distributes the mass over fewer
particles). This in turn increases the core density and releases gravitational
energy, half of which is radiated away and half of which raises the core
temperature (the virial theorem). Energy outflow due to higher core
temperature causes the outer layers to expand slightly and the star becomes
more luminous. The surface temperature during this process may either
increase or decrease, depending on the mass of the star. For stars below
about 1.25 M⊙ the surface temperature tends to increase, while for more
massive stars it tends to decrease as the star evolves on the main sequence.
This is illustrated in Fig. 10.5(b).



Fig. 10.5 Evolution of stars leaving the main sequence (note the expanded scale) [134]. (a) Evolution
of a 7 M⊙ star from the ZAMS through exhaustion of central hydrogen. Dashed part of curve
indicates evolution after central hydrogen has been exhausted. (b) As for (a) but for a range of masses
from 0.8 M⊙ to 10 M⊙. Adapted by permission from Springer Nature: Evolution on the Main
Sequence, Kippenhahn, R., Weigert, A., and Weiss, A. COPYRIGHT (2012).

Therefore, the primary externally visible effect of a star’s evolution on
the main sequence is to cause a drift slightly upward and to the left on the
HR diagram from the ZAMS position for lighter stars, and slightly upward
and to the right for heavier stars. Internal changes are more substantial but
their effects are not very visible while the star continues to burn hydrogen
in its core. Significant modification of elemental abundances is taking
place, but these changes are limited initially to the central regions.

Example 10.2 The Standard Solar Model [30] indicates that over the 4.6
billion year time that the Sun has spent on the main sequence the radius has
increased by about 12%, the core temperature has increased by about 16%,
the luminosity has increased by about 40%, the effective surface
temperature has increased by about 3%, and the flux of 8 B neutrinos has
increased by more than a factor of 40. Near the center the mass fraction of
hydrogen has decreased and the mass fraction of helium has increased by
about a factor of 2 from their initial values, but outside of about 20% of the
solar radius hydrogen and helium retain their ZAMS abundances. Although
the mass fraction of hydrogen fuel has decreased substantially in the solar
core over its lifetime, from Sections 6.1 and 5.9 the rate of energy
production by the proton–proton chain is dE/dt ∝ ρ2X2T 4, where ρ is the



density, X is the hydrogen mass fraction, and T is the temperature. The
increase in ρ and T more than offsets the effect of diminishing X as the Sun
evolves, explaining why its luminosity is rising even as its hydrogen fuel is
being depleted.

The internal changes discussed in the preceding example set the stage for
rapid evolution away from the main sequence that will be the topic of
subsequent chapters.

10.6 Timescale for Main Sequence Lifetimes
A question of basic importance for the Sun and for main sequence stars in
general is how long the star will remain on the main sequence. Since the
main sequence is defined by stable burning of core hydrogen, the rate of
hydrogen burning relative to the amount of burnable hydrogen determines
this timescale. Comparison of stellar evolution simulations with
observations suggests a rule of thumb that stars leave the main sequence
when about 10% of their total original hydrogen has been burned to
helium.5 We may define a nuclear (hydrogen) burning or main sequence
timescale τnuc by forming the ratio of the energy released from burning 10%
of the hydrogen and the luminosity. The energy available from the burning
of one gram of hydrogen to helium is ∼ 6 × 1018 ergs. Therefore,

(10.3)

where EH is the energy available from burning all the hydrogen in the star,
L is the present luminosity in erg s−1, X is the original hydrogen mass
fraction, and M is the mass of the star in grams.

Example 10.3 Inserting values characteristic of the Sun into Eq. (10.3)
gives for the solar main sequence timescale



which, as has already been discussed, is set essentially by the rate-
determining step of the PP chains being a weak-interaction process.

Expressing this main sequence timescale in solar units, for any star

(10.4)

and utilizing the mass–luminosity relation (1.27), which is expected to be
valid for M ≥ 1M⊙,

the main sequence timescale may be expressed for M ≥ 1 M⊙ as

(10.5)

implying that mass has a large influence on main sequence lifetimes.
Main sequence lifetimes as a function of star mass are illustrated in Fig.

10.6, where we see that there is indeed a strong correlation between time
spent on the main sequence and mass of the star. The Sun has a main
sequence lifetime of about 10 billion years but a 20 M⊙ star remains on the
main sequence for about 5.5 million years and a 100 M⊙ star lives on the
main sequence for only about 100,000 years [though L/L⊙ = (M/M⊙)3.5

may be questionable in this case]. Conversely, for main sequence stars with
M << 1 M⊙ simulations indicate that the main sequence lifetime greatly
exceeds the present age of the Universe.



Fig. 10.6 Main sequence lifetimes, temperatures, and luminosities as a function of ZAMS mass.

10.7 Evolutionary Timescales
Evolution prior to the main sequence is governed by two primary
timescales: (1) the dynamical (free-fall) timescale and (2) the Kelvin–
Helmholtz (thermal adjustment) timescale. Evolution on the main sequence
and beyond is governed in addition by a third set of timescales, the nuclear
burning timescales, one for each nuclear fuel consumed in the main
sequence stage and beyond. The dynamical timescale is hours to days for
most stars and the thermal adjustment timescale is typically hundreds of
thousands to hundreds of millions of years. The nuclear burning timescale
depends on the fuel and the mass of the star (among other factors), but is
typically much longer than the dynamical and Kelvin–Helmholtz
timescales. Thus, stars spend much more time on the main sequence than in
their formation phase because time spent on the main sequence is governed
by the hydrogen burning timescale, which is much longer than the
hydrodynamical and Kelvin–Helmholtz timescales.

Once stars exhaust their core hydrogen and leave the main sequence they
can undergo successive burnings of heavier fuels, which introduce new



nuclear burning timescales. In the periods between exhaustion of one fuel
and ignition of another, thermal adjustment timescales will also be
important, and in certain cases (such as stellar pulsations or gravitational
core collapse) dynamical timescales will be relevant. The nuclear burning
timescales that become important after the main sequence are typically
longer than the corresponding Kelvin–Helmholtz and dynamical timescales,
just as for the main sequence. However, post main sequence burning
timescales are much shorter than those for main sequence hydrogen burning
because they necessarily occur at much higher temperatures and densities,
and the fuels being burned produce less energy per unit mass burned; thus, a
star generally spends more time on the main sequence than in its post main
sequence evolution.

We may conclude that the nuclear burning timescale on the main
sequence is longer than any timescale in any other stage of the star’s life,
explaining why at any one time in a population of stars one expects to see
the majority on the main sequence (unless the population is sufficiently old
that many stars have had time to evolve off the main sequence). This
accounts neatly for the existence of the main sequence, and for the age-
dependent turn off point from the main sequence found in the HR diagram
of clusters.

10.8 Evolution Away from the Main Sequence
As already discussed qualitatively in Section 10.5, while the star burns
hydrogen in near-perfect hydrostatic equilibrium on the main sequence a
series of internal changes sets the stage for the star’s subsequent evolution.

1. As hydrogen burns to helium the mass in the core is concentrated in
fewer particles. For the Sun, models indicate that the mean molecular
weight in the core has increased from about 0.61 amu at ZAMS to
about 0.85 amu presently (see Problem 5.3 and Fig. 10.7).

2. This reduction of the number of particles in the core lowers the
pressure in the energy-generating zone, causing the core to contract
and to become hotter and more dense.

3. The rise in core temperature increases the energy production and
steepens the temperature gradient dT /dr, leading to an increased flow



of energy from the star. The outer layers expand in response,
increasing the luminosity and radius, and decreasing surface
temperature.

4. These changes cause the star to develop a high-density core
surrounded by an extended, diffuse envelope with low surface
temperature – it becomes a red giant.

5. If the star is massive enough, rising internal temperatures and densities
can ignite successively higher-mass fuels in a series of advanced
burning stages (see Section 6.5).

Depending on the mass of the star, these steps can lead to the three
qualitatively different scenarios that are illustrated in Fig. 10.8.

Fig. 10.7 Mean molecular weight as a function of radius for the present Sun according to the
Standard Solar Model of Table 10.1.



Fig. 10.8 Categories of stellar evolution after the main sequence. Very low-mass stars (M <≲ 0.5 M⊙)
in category I evolve to helium white dwarfs. Stars with (0.5 M⊙ <

≲ M <
≲ 8 M⊙) in category II

evolve to C–O or Ne–Mg white dwarfs. The fate of the highest-mass stars (M >≳ 8 M⊙) in category
III is somewhat uncertain. In most cases these stars undergo a core collapse that produces a
supernova explosion and leaves behind a neutron star. However, there is growing evidence that the
most massive such stars may collapse directly to black holes, with little ejection of matter and no
neutron star.

10.8.1 Three Categories of Post Main Sequence Evolution
The details of evolution after the main sequence sketched in Fig. 10.8
depend very strongly on the mass of the star. (1) For stars with M <≲ 0.5M⊙
the core temperatures never rise high enough to ignite the helium produced
by PP-chain proton burning and the star evolves to a helium white dwarf.
(2) For stars with 0.5 M⊙ <

≲ M <
≲ 8 M⊙, this evolution produces a red

giant that eventually sheds much of its outer envelope as a planetary nebula
and becomes a carbon–oxygen or neon–magnesium white dwarf. (3) For the
most massive stars (M >∼ 8 M⊙), evolution from the main sequence leads to
a sequence of burning episodes involving successively heavier fuels until
the core of the star becomes gravitationally unstable and collapses,
producing in most cases a supernova with a remnant neutron star, but for



the most massive cases the collapse may drag the entire star into a black
hole.

10.8.2 Examples of Post Main Sequence Evolution
Figure 10.9 summarizes the final stages of collapse to the main sequence
(beginning with a brief episode of deuterium burning), evolution on the
main sequence, and evolution off the main sequence with the development
of a shell hydrogen source for a 1 M⊙ star [130]. Small open circles denote
protostar evolution, medium open circles denote main sequence evolution,
and large open circles denote evolution away from the main sequence
toward the red giant region. Numbers beside open circles indicate times in
units of 109 yr, with zero time chosen near the onset of deuterium (2H)
burning when the protostar has shrunk to a radius 10 times the present solar
radius (see Fig. 13.16). The numbers beside solid circles indicate the mass
coordinate for the hydrogen shell source (discussed in Section 13.2) at that
time in units of solar masses. In this example hydrogen is burning in a shell
enclosing 25% of the star’s mass for the last point shown, at which time the
star has expanded to about 10 times its main sequence radius (see Fig.
13.16).



Fig. 10.9 Simulated evolution of a 1 M⊙ star from the final stages of protostar collapse through main
sequence core hydrogen burning and on to hydrogen shell burning as the star leaves the main
sequence. See text for explanation of symbols and number labels. Initial composition was Y = 0.275
and Z = 0.015. Evolution beyond the last point shown in this figure will be shown later in Fig. 13.16.
Figure adapted from Iben [130]. Adapted from Volume I: Physical Processes in Stellar Interiors, Icko
Iben, Published by Cambridge University Press, 2012.

Evolution after the main sequence for stars of various masses is
summarized in Fig. 10.10. Detailed features are seen to depend strongly on
the mass of the star. Chapter 13 will address the post main sequence fate of
less-massive stars. The fate of more massive stars will be examined in
Chapters 14 and 20. As already noted, our discussion won’t have much to
say about the lightest stars because their main sequence lifetimes are so
long that there is little observational evidence concerning their evolution
after the main sequence.



Fig. 10.10 Evolution off the main sequence for stars of different initial main sequence mass [125].
Dashed lines are estimates. Times to evolve through each numbered interval are given in Table 10.4.
Adapted from Icko Iben, Jr., Annual Review of Astronomy and Astrophysics, 5, 571–626 (1967),
https://doi.org/10.1146/annurev.aa.05.040167.003035.

Table 10.4 Duration of the numbered intervals displayed in Fig. 10.10 [125]

Masses in units of solar masses; times are in units of years and have been rounded to one decimal
place.

https://doi.org/10.1146/annurev.aa.05.040167.003035


Background and Further Reading
Evolution on the main sequence and leaving the main sequence are
discussed in all books about stellar structure and evolution. The book by
Bahcall [30] is a good introduction both to the Standard Solar Model and to
solar neutrinos.

Problems
10.1 Spherical symmetry has been assumed for our basic discussion of

hydrostatic equilibrium and for the Standard Solar Model. Rotation
could flatten stars, thus invalidating this assumption. Show that
rotation of a star should cause negligible deviation from spherical
symmetry if the rotational frequency is much less than the inverse of
the hydrodynamical timescale for the star. Would you expect such
effects to be large or small for the Sun? What about for Saturn,
viewed as a sphere of gas in hydrostatic equilibrium? Are your
findings consistent with the observation that the oblateness
(difference in equatorial and polar diameters divided by the average
diameter) of the Sun is of order 10−5, while that of Saturn is about
0.1?

10.2 Mass loss is important for some stars in some phases of their lives.
The Standard Solar Model does not assume any mass loss in the
evolution of the Sun. The solar wind has an average velocity at Earth
of about 400 km s−1 and a density of about 7 protons per cubic
centimeter. Use this to estimate the rate of mass loss from the Sun.
Will this loss be significant over the approximately 1010 year main
sequence lifetime of the Sun?

10.3 Count the number of neutrinos emitted for each 4H → 4He in the
PP chains. Use this, the average energy release in the PP chains, and
the solar photon luminosity to estimate the neutrino luminosity of
the Sun.***

10.4 Assuming a spherical star of uniform density ρ, show that the
central pressure may be (very crudely) approximated by



where M is the mass and R is the radius. Calculate the central
pressure of the Sun in this approximation and compare with the
results of the Standard Solar Model.

10.5 The most massive of the four bright stars in the Trapezium open
cluster of the Orion Nebula is Theta Orionis C. Its spectrum–
luminosity class is O6V, its visual apparent magnitude is mv = 5.13,
and its absolute visual magnitude is Mv = −3.2. It is estimated to
have a radius of 8 R⊙, a mass of 40 M⊙, and its luminosity is
251,000 L⊙ (much of this at UV wavelengths, since Theta Orionis C
has the distinction of having the hottest surface temperature of any
star visible to the naked eye). What is the parallax of Theta Orionis
C? What is its surface temperature? Given that Theta Orionis C is
thought presently to be about 1 million years old, how much longer
will it spend on the main sequence?

10.6 Assume a completely ionized ZAMS star from Pop I and neglect
the contribution of metals to the mean molecular weight relative to
that of hydrogen and helium. Show that the mean molecular weight
μ defined in Eq. (3.19) can then be approximated as

where Eq. (3.28) has been used to estimate X. Compare with the
results of Fig. 10.7 for the mean molecular weight of the Sun
computed in the Standard Solar Model.

10.7 Estimate the main sequence lifetimes for stars of spectral class O5,
A0, K5, and M5. Hint: See Table 2.2 for relevant data.

10.8 (a) Suppose that the central energy-producing regions of the Sun
were unchanged but that (magically) the layers outside this
region were made transparent so that they did not impede
transport of photons. Assuming that it were still a blackbody
radiator, in what region of the spectrum would the observed
photons from the Sun peak?



(b) In reality the photon energy diffuses outward through the outer
layers of the Sun. Estimate a diffusion time to the surface
assuming a random walk with opacities characteristic of
Thomson scattering. Compare this diffusion timescale with the
Kelvin–Helmholtz timescale, which is a measure of how
rapidly a star can convert gravitational energy into emitted
photons. You should find that the diffusion timescale and the
Kelvin–Helmholtz timescale are in fact very different. Can you
explain what the fallacy is in assuming that the diffusion
timescale estimated in this way and the Kelvin–Helmholtz
timescales should be comparable?***

10.9 Use data from Fig. 7.2 and Table 10.1 to estimate the mean free
path for photons in the center of the Sun and at 90% of the solar
radius. From Fig. 7.2 estimate an average internal opacity (excluding
the surface region) and from that opacity calculate a time for
photons to diffuse to the surface by a random walk.***

10.10 Derive a formula for the ratio of energy densities carried by the
photons and by the gas in a star, assuming an ideal gas and photons
with a Planck distribution. Estimate this ratio for the Sun using a
representative interior temperature. From Table 2.2 most main
sequence stars have an average density ρ ∼ 1 gcm−3. Assuming this
density, and that one can continue to treat the radiation and gas
independently as above, at what temperature would the energy
density of the radiation become equal to that of the gas?

10.11 In Example 6.1 the mean life for loss of protons in the first step of
the PP chains was estimated to be about 6 × 109 yr. Make a similar
estimate for the mean life of the deuterium formed in the first step
and consumed in the second step in PP-I, and for the mean life of the
3He formed in the second step and consumed in the third step of PP-
I. Assume for the center of the Sun that

(the 3He abundance is rather uncertain). Use Fig. 6.1 to estimate
rates that you will need.***



10.12 Show that if the radial coordinate dr is parameterized in terms of
the optical depth dτ (see Box 10.1), the equation for hydrostatic
equilibrium can be expressed as dP/dτ = g/κ, where g is gravitational
acceleration and κ is radiative opacity.***

10.13 Stars have magnetic fields but the energy of those fields has
generally been neglected in discussing the equilibrium configuration
for stars. Justify this for the Sun by estimating an upper limit for the
average magnetic field to be given by that in sunspots, which you
may take to be about 0.1 T (the average field is certainly less than
this), and computing the ratio of the energy density of the magnetic
field to that of the gravitational field.***

10.14 The electron number density is about 6.4 × 1025 cm−3 at the center
of the Sun and 5×1024 cm−3 at 30% of the solar radius. Use results
from the Standard Solar Model to calculate the ratio of the actual
electron density to the critical density given by Eq. (3.51) at these
two radii.***

1 SOHO orbits slowly around the Earth–Sun L1 Lagrange point (see Section 18.2.2), which lies
on the Earth–Sun line about 1.5 million kilometers toward the Sun from the Earth. More
recently MDI has been superceded by the Helioseismic and Magnetic Imager (HMI) on the
Solar Dynamics Observatory (SDO), launched into a geosynchronous orbit in 2010. The HMI
instrument scans the full solar disk at 6173 Å with arcsecond resolution.

2 The chlorine neutrino-detection experiment was a brilliant scientific and technical feat, for
which Davis shared the Nobel Prize for Physics in 2002. An early popular-level account
giving more of the technical details and the historical context may be found in the article by
John Bahcall (1934–2005) [33], who contributed much of the theory behind the Davis
experiment.

3 This detector is commonly known as ‘Super-K’ in the neutrino physics community. It is a
successor to an earlier, smaller version called Kamiokande. The name derives from
‘Kamioka’ plus ‘nde’, which stands for “nucleon decay experiment”, because the original
Kamiokande detector was built to search for radioactive decay of the proton. It did not find
evidence that the proton is unstable, but its successor Super-K used similar detection
technology to do Nobel-prize-winning neutrino research.

4 Chemical experiments (Davis, SAGE, GALLEX) cannot see any flavors other than νe. Water
Cherenkov detectors like Super-K can see muon and tau neutrinos also, but with greatly
reduced efficiency because the cross section for scattering νμ or ντ from electrons is much
smaller than that for scattering νe from electrons. Hence water Cherenkov detectors record
some νμ and ντ, but cannot distinguish them easily from νe .

5 This refers to the total mass of hydrogen contained in the star at formation, not just to the
hydrogen in the central burning regions. The physical origin of this rule of thumb is that most
stars are not strongly mixed vertically, which means that only the fraction of the total
hydrogen found in the central regions is available for main sequence burning. Simulations



indicate that the hydrogen found in regions conducive to burning is typically ∼ 10% of the
total hydrogen in the star.



11

Neutrino Flavor Oscillations

In Section 10.4 we reviewed the observational evidence that fewer solar
neutrinos are detected on Earth than should be the case if the Sun were
emitting neutrinos at the rate expected from the Standard Solar Model using
the neutrino physics of the Standard Model of elementary particle physics.1
This chapter and the next will elaborate on the physics of solar neutrinos
and show that this solar neutrino deficit is not really a deficit at all, but
rather a failure to count all the neutrinos coming from the Sun because the
physics of actual neutrinos is much richer than is envisioned in the Standard
Model. Hence the reconciliation of solar neutrino observations with our
understanding of elementary particle physics to be described here and in
Chapter 12 will have fundamental implications both for astrophysics and
for elementary particle physics. Although the discussion will involve
directly only the Sun because it is the only normal star near enough to allow
its emitted neutrinos to be detected on Earth with present technology,
presumably the physics described in this chapter operates in other stars as
well.

11.1 Overview of the Solar Neutrino Problem
An understanding of solar neutrinos requires basic knowledge of weak
interactions in the Standard Model of elementary particle physics and in
conjectured extensions of that model. This will require the language and
some elementary results from relativistic quantum field theory. For readers
lacking a background in quantum mechanics and quantum field theory, a
concise introduction to the mathematical concepts essential to the present
discussion may be found in Appendix F. Although the origin of various
equations will require an acquaintance with quantum field theory, or at least
with quantum mechanics, it is possible to understand the basic ideas of this



chapter and the next if the reader is cognizant of the concepts reviewed in
Appendix F.

Our strategy will be to introduce first in this chapter the physics of
neutrinos in the Standard Model, and then to discuss possible modifications
of that picture if – contrary to a fundamental assumption of the Standard
Model – neutrinos are not identically massless. We will then review the
evidence that neutrinos undergo flavor oscillations in which neutrinos of
one flavor can interconvert with neutrinos of other flavors, which
necessarily implies that at least some neutrino flavors have a small but non-
zero mass. Then in the remainder of this chapter and in Chapter 12 we shall
develop the formalism required to understand the flux of neutrinos coming
from the Sun if—in contradiction to the assumptions of the Standard Model
—they undergo flavor oscillations. Finally, it will be shown in Chapter 12
that flavor oscillations in the Sun and in vacuum spread the flux of electron
neutrinos produced in the Sun out into a mix of electron, muon, and tau
neutrino flavors before they are detected on Earth. Thus, there is no solar
neutrino deficit if all three flavors are detected, but there is an apparent
deficit if (as in all the pioneering neutrino experiments discussed in Chapter
10) the detectors can identify only electron neutrinos. As a consequence, the
results to be presented in this chapter and the next will (1) resolve the solar
neutrino anomaly, (2) support strongly the essential correctness of the
Standard Solar Model, and (3) indicate that the Standard Model of
elementary particle physics is incomplete, and give hints about possible
physics beyond the Standard Model.

11.2 Weak Interactions and Neutrino Physics
The Standard Model of elementary particle physics assumes that the
electromagnetic and weak interactions are unified in a local gauge theory
(also termed a Yang–Mills field theory) in which the leptons and quarks are
grouped into generations or families and interact through the exchange of
gauge bosons: the photon γ, W+, W−, and Z0, where the superscripts denote
electrical charge.2 (See Box 11.1 for a review of some basic terminology in
elementary particle physics.) This unification is not apparent at low
energies, however, because the weak gauge bosons W+, W−, and Z0 have
finite mass by virtue of coupling to a background scalar field called the



Higgs field, while the photon remains massless. This acquisition of mass
through the Higgs coupling is called spontaneous symmetry breaking by the
Higgs mechanism, or just the Higgs mechanism.

Box 11.1 Some Standard Terminology in Elementary Particle
Physics

The starting point for understanding elementary particle physics is the
classification of fundamental particles in various ways.

The Classification Zoo
One distinction is whether particles are fermions or bosons (Box 3.6),
which is a question of intrinsic spin: fermions have half-integer spins
and bosons have integer spins. Thus quarks are fermions but photons are
bosons. Another distinction is between particles and antiparticles. Thus,
the antielectron (positron) is the antiparticle of the electron, having the
same mass and spin, but opposite charge. Elementary particles also may
be divided into leptons, which don’t undergo the strong interactions
(example: electrons), and hadrons, which do undergo strong interactions
(example: quarks). Hadrons may be subdivided into the half-integer spin
baryons, such as the proton, and the integer-spin mesons, such as the
pion. (Protons and pions are composite particles, but are often classified
as if they were elementary.)

Particles, Fields, and Symmetries
Particles are associated with fields described by (special) relativistic
quantum mechanics. Some common terminology is associated with
spin: spin-0 particles (or fields) are said to be scalar, spin-1 particles are
termed vector, and spin-2 particles are termed tensor. Example: the
photon is a spin-1 particle associated with a vector field. Matter fields
are always fermionic but forces are mediated by the exchange of
(virtual) bosons. For all non-gravitational forces the force-mediating
particles are spin-1 (vector) particles exhibiting a powerful type of
symmetry called local gauge invariance, which generalizes electric
charge conservation in electromagnetism. Mediators of the strong,
weak, and electromagnetic interactions – gluons, intermediate vector
bosons, and photons, respectively – are collectively termed gauge or



vector bosons. The Higgs boson, which gives mass to particles,
corresponds to a spin-0 or scalar field.

Broken Symmetries
Mass differences between weak gauge bosons and the photon imply that
electromagnetic interactions and weak interactions at low energy have
very different properties. For example, the electromagnetic interaction
has a long range but the weak interaction has a very short range. Only at
high energies ( ≳ 100 GeV) do their properties merge, leading to the
unified electroweak theory. This essential difference between
electromagnetism and the weak interactions at low energy is termed
spontaneous symmetry breaking (by the Higgs mechanism). The
convergence of the properties of electromagnetism and weak
interactions at high energy leading to the unified electroweak theory is
termed symmetry restoration.

11.2.1 Matter and Force Fields of the Standard Model
In the Standard Model matter fields are fermion fields, the forces are
mediated by gauge bosons, and the masses of the matter fields and the weak
gauge bosons come from coupling to the Higgs scalar field. The matter
fields are divided into three “generations” or “families,” I, II, and III, as
summarized in Fig. 11.1. In the Standard Model transitions across family
lines are forbidden. For the leptons this is implemented formally by
assigning a lepton family number to each particle and requiring interactions
to conserve this number.



Fig. 11.1 Particles of the Standard Model and characteristic mass scales in the quark and lepton
sectors for each generation [6]. Photons are labeled by γ and gluons by G.

Example 11.1 In generation I an electron family number of +1 may be
assigned to the electron and electron neutrino, −1 to the antielectron and the
electron antineutrino, and zero for all other particles. Then νe + n → p + e−

conserves electron family number (1 + 0 = 0 + 1) and is observed, but νe + p
→ n + e+ violates electron family number [1 + 0 ≠ 0 + (−1)] and has never
been seen experimentally.

11.2.2 Masses for Particles of the Standard Model
Also displayed in Fig. 11.1 are characteristic mass scales for quarks and
neutrinos within each generation. The neutrino masses listed represent
upper limits, since no neutrino mass has been measured directly thus far.
These limits imply that the neutrino masses are either zero or very tiny on a
mass scale set by the quarks of a generation. The explanation of this is a
major unresolved issue in the theory of elementary particles. The Standard
Model contains particles (photons γ and gluons G) for which the mass is
zero but in those cases a fundamental principle, local gauge invariance,
requires that the particles must be identically massless. In contrast, there is
no known reason why the neutrino mass should be identically zero and, if it



is not identically zero, why does it have such a small value when the other
members of the same generation are much more massive?

The Standard Model gives no fundamental reason why, but agreement
with the phenomenology of the weak interactions – in particular, with the
observation that the weak interactions violate parity symmetry to the
maximum extent possible – requires that the masses of all neutrinos must be
assumed to be identically zero. The full justification of this statement would
require an excursion into fundamental weak-interaction theory but the
central point is that there are potentially two kinds of neutrino mass terms
that could appear in the field theory: a Dirac mass and a Majorana mass.
The first is appropriate if the neutrino and antineutrino are distinct particles;
the second is appropriate if a neutrino acts as its own antiparticle, which is
not ruled out by present experiments because the neutrino carries no charge
that would distinguish the particle from the antiparticle; see Box 11.2. Both
types of mass terms must vanish for Standard Model neutrinos but at least
one could be non-zero in various extensions of the Standard Model.

Box 11.2 Neutrinoless Double β Decay and Majorana Neutrinos

A clear signature of a Majorana mass for neutrinos (see Section 11.2.2)
would be neutrinoless double β decay. Normal double β decay can be
observed if the mass of the isotope one neutron removed from some
isotope is larger than the mass of the parent (so β− decay is energetically
forbidden), but the mass of the next isotope two neutrons removed is
less than the parent. Then decay emitting two β− particles (electrons) is
possible, but with small probability: two neutrons in the nucleus are
converted to protons, with the emission of two e− and two νe,

for either Dirac or Majorana neutrinos. If the neutrino is its own
antiparticle, a variant of this decay in which no neutrinos or
antineutrinos are emitted is possible:

This is neutrinoless double-β decay. These processes are illustrated in
terms of Feynman diagrams (described in Box 11.3) in the following



figure, where now β− decay of the neutron is viewed to occur at the
quark level, converting a down quark into an up quark, and thus
transforming a neutron (udd) into a proton (uud).

A Majorana neutrino is its own antiparticle, so in (b) the virtual neutrino
emitted from one vertex can be absorbed at the other and no external
neutrino is emitted. Normal double β decay is improbable but it has
been observed for a few isotopes. Neutrinoless double β decay has not
been observed to date.

11.2.3 Charged and Neutral Currents
The Standard Model describes two basic categories of weak interactions. In
the charged weak currents electrical charge is transferred in the interaction
(total charge is conserved, of course). Because charge is transferred the
boson mediating the force must be charged. Thus, charged weak currents
involve the W+ or W− weak gauge bosons. Diagrams (a) and (b) in Box 11.3
are examples of charged weak current interactions. Since the Standard
Model represents a partial unification of weak interactions and
electromagnetism, and electromagnetism is mediated by an uncharged
gauge boson (the photon), the weak sector also must have an uncharged
gauge boson that is mixed with the photon to provide the full electroweak
unified description of electromagnetic and weak interactions. The
uncharged weak gauge boson is the Z0, and it can mediate neutral weak



currents in which there is no transfer of charge in the weak-interaction
matrix elements. An example of a weak neutral current interaction is
diagram (c) in Box 11.3. A νe can interact with an electron through the
charged weak current or the neutral weak current, but a νμ or ντ can interact
with electrons only through the neutral current.

Box 11.3 Feynman Diagrams

Inquantum field theory it is common to use pictorial representations of
interaction matrix elements (probability amplitudes) called Feynman
diagrams. They are highly intuitive: given a diagram one can (with
practice) write the corresponding matrix element, and given the matrix
element one can sketch the corresponding diagram. Here are some
important weak-interaction Feynman diagrams:

Solid lines denote (fermion) matter fields and wiggly lines denote gauge
bosons. A point where two or more lines meet (a vertex) represents an
interaction. Lines with open ends like νe are external lines denoting real
particles that could be detected. Lines with no open ends as for W± are
internal lines; they represent virtual particles, which are not detectable
as a matter of principle because of the uncertainty principle.a Feynman
diagrams such as these illustrate concisely that the forces between



fermionic matter fields are mediated by the exchange of virtual gauge
bosons.

Each diagram represents several related processes, depending on how
it is read. Diagram (a) read from the bottom represents an interaction in
which a neutron (n) exchanges a virtual W− vector boson with an
electron neutrino (νe), converting the neutron to a proton and the
neutrino to an electron. Absence of flavor indices on the neutrinos in
diagrams (c) and (d) indicates that the neutral current mediated by
exchange of a Z0 is flavor blind (see Section 11.3). The symbol A in
diagram (d) stands for a composite nucleus. Several phenomena to be
discussed in this chapter and the next are most easily visualized in terms
of such Feynman diagrams.
a Loosely, virtual particles violate energy conservation. For example, in diagram (a) read from

the bottom the initial energy is the sum of the n and νe rest masses multiplied by c2, plus
kinetic energy. The intermediate state has in addition the rest mass energy of a virtual W+ (∼
80 GeV), which violates energy conservation by an amount ΔE ≥ 80 GeV. But this violation
is not observable because the time for existence of the virtual particle Δt is restricted by the
uncertainty principle relation Δt ∼ ħ/ΔE.

11.3 Flavor Mixing
The Standard Model as described to this point is simple conceptually. It is
made richer and more complex by the experimental observation of flavor
mixing.

11.3.1 Flavor Mixing in the Quark Sector
The term flavor is used to distinguish among different species of quarks and
leptons. Thus, (νe, νμ, ντ ) are different flavors of neutrinos, and (u, d, s, ...)
are different flavors of quarks. In the Standard Model, experiments require
that for quarks the mass eigenstates and the weak eigenstates are not
equivalent. This quantum-mechanical jargon means that the quark states
that enter the weak interactions (the flavor eigenstates) are generally linear
combinations of the states for propagating quarks (mass eigenstates). For
example, restricting to the first two generations, it is found that the d and s



quarks enter the weak interactions in the “rotated” linear combinations dc
and sc defined by the matrix equation

(11.1)

where d and s are the mass eigenstate quark fields and θc is termed the
mixing angle (in this particular context it is also called the Cabibbo angle).
Comparison with data determines the Cabibbo mixing angle to be rather
small: θc ∼ 13.0◦. In the more general case of three generations of quarks,
weak eigenstates are described by a 3 × 3 mixing matrix called the
Cabibbo–Kobayashi–Maskawa or CKM matrix that has three real mixing
angles and one complex phase. There is little fundamental understanding of
this quark flavor mixing but it is clear that the data require it.

11.3.2 Flavor Mixing in the Leptonic Sector
Since in the Standard Model the quarks entering the weak interactions are
known to be mixtures of different mass eigenstates, it might be expected
that the corresponding leptons in these generations could also enter the
weak interactions as mixed-mass eigenstates. For example, in the weak
decay p+ → n + e+ + νe the electron neutrino νe is produced in an eigenstate
of the weak interactions |νe〉 (that is, a state of definite flavor), but by virtue
of Eq. (F.3) it then propagates in time as a mass eigenstate |νi 〉 (a state of
definite mass), according to |νi (t)〉 = exp(−i ħEi t)|νi (0)〉, where Ei is the
energy of the state. Since if there is flavor mixing the mass eigenstate will
be a linear combination of flavor eigenstates, this implies that the flavor of
the propagating neutrino is mixed and that the components of this mixture
can oscillate with time by virtue of the exp(−i ħEi t) factor.3

It is easy to show that if all flavor states of neutrinos are identically
massless and thus have the same mass (recall that this is an essential
hypothesis of the the Standard Model), flavor-mixing has no observable
consequences. Hence, for neutrino flavor mixing to be measurable at least
one flavor of neutrino must have a non-vanishing mass. Conversely,
observation of neutrino flavor mixing would be conclusive evidence that at



least one neutrino flavor has a non-zero mass. Thus, either the observation
of neutrino flavor oscillations, or a direct measurement of finite neutrino
mass, would be indisputable evidence of physics beyond the Standard
Model.

11.4 Implications of a Finite Neutrino Mass
A finite neutrino mass, implying the possibility of neutrino flavor mixing,
would be of fundamental importance for elementary particle physics but it
could be of similar importance for astrophysics because it suggests a
possible solution of the solar neutrino problem. If neutrino flavor
eigenstates are mixtures of mass eigenstates, neutrinos propagating in time
will oscillate in flavor. If neutrino flavors can oscillate, then when some of
the νe emitted by the Sun reach Earth they could have oscillated into
another flavor (for example, νμ). But since the experiments described in
Section 10.4 can identify only electron neutrinos, they would miss neutrinos
that had oscillated into other flavors, thus potentially explaining the
observed neutrino deficit and reconciling it with the Standard Solar Model.

Standard Model neutrinos must be massless. However, there are many
reasons to believe that the Standard Model – despite its remarkable success
– is incomplete and represents a low-energy approximation to a more
complete theory. For example, there are 20 or so adjustable parameters of
the Standard Model that have no convincing fundamental constraint, the
origin of mass through the Higgs mechanism is purely phenomenological,
the generational structure assumed for the particle multiplets and the choice
of three generations is based entirely on phenomenology, the violations of
symmetries such as parity that are observed in the weak interactions are put
by hand in the Standard Model, and so on. Various extensions such as
Grand Unified Theories (GUTs) have been proposed that go beyond the
Standard Model. Often for these theories the reasons that mass terms are
forbidden in the Standard Model are not operative and finite neutrino
masses may occur naturally.

11.5 Neutrino Vacuum Oscillations



Motivated by the preceding discussion, let’s address the possibility that
neutrinos might undergo flavor oscillations that could account for the
observed solar neutrino deficit.

11.5.1 Mixing for Two Neutrino Flavors
To get the lay of the land we consider first neutrino oscillations in a simple
2-flavor model, in the absence of matter.4 To be definite the two flavors will
be assumed to correspond to the electron neutrino νe and the muon neutrino
νμ, but the formalism could be applied to the mixing of any two flavors. By
analogy with Eq. (11.1) for quarks, the flavor eigenstates νe and νμ are
assumed to be related to the mass eigenstates ν1 and ν2 through the matrix
transformation

(11.2)

where θ is the (entirely phenomenological) vacuum mixing angle, chosen to
lie in the range 0–45 ◦ , and the unitary matrix U is parameterized by the
single real angle θ (unitary transformations are described in Appendix F).
By inverting this equation using the unitarity condition UU †  = 1 of Eq.
(F.7), the mass eigenstates may in turn be expressed as a linear combination
of the flavor eigenstates (see Problem 11.3):

(11.3)

Assuming that the respective masses are different, the different mass
eigenstates will travel with slightly different energies as neutrinos propagate
in time. Thus, the probability of detecting a particular flavor of neutrino
will oscillate with time, or equivalently, with the distance traveled. From
basic quantum field theory (see Section 12.2.1) the mass eigenstates evolve
with time t according to

(11.4)



where the index i labels mass eigenstates of energy Ei, so the time evolution
of the νe state in Eq. (11.2) will be given by

(11.5)

and this may be written as the mixed-flavor state (see Problem 11.3)

(11.6)

Squaring the overlap of Eq. (11.6) with the flavor eigenstates gives the
probabilities that a neutrino initially in an electron neutrino flavor state will
remain an electron neutrino, or instead be converted to a muon neutrino
after a time t [see Eqs. (F.4)–(F.5)],

(11.7)

with the sum of these probabilities equal to unity by construction.

11.5.2 The Vacuum Oscillation Length
Neutrinos have at most a tiny mass and the mass eigenstates are assumed to
have the same momentum p but slightly different masses mi and energy Ei .
Since Ei >> mi c2 we may approximate 

 where P = |P|. Thus, assuming
that E1 ∼ E2 ≡ E,

(11.8)

The probabilities for flavor survival and flavor conversion as a function of
distance traveled r ∼ ct are then (see Problem 11.2)

(11.
9)



where θ is the mixing angle and the oscillation length L, defined by

(11.10)

is the distance required for one complete flavor oscillation (for example, νe
→ νμ → νe), assuming that v ≃ c. Neutrino oscillations for a 2-flavor model
using these formulas are illustrated in Fig. 11.2.

Fig. 11.2 Neutrino vacuum oscillations in a 2-flavor model as a function of distance traveled r in
units of the vacuum oscillation length L. The probability as a function of r to be an electron neutrino
is denoted by  and that to be a muon neutrino by  The period of the oscillation is L and its
amplitude is sin2 2θ, where θ is the vacuum mixing angle. In this calculation θ = 33.5◦, the neutrino
energy is E = 5 MeV, the difference in squared masses for the two flavors is Δm2c4 = 7.5 × 10−5 eV2,
and the corresponding oscillation length L is 165.3 km.

Example 11.2 Let’s practice converting from the ħ = c = 1 units used in this
chapter to standard or “engineering units” by expressing L in units of
kilometers. As discussed more extensively in Appendix B, this is just a
dimensional analysis problem. First multiply Eq. (11.10) by c4/c4 = 1 to
give



where ΔE2 ≡ Δm2c4 has units of energy squared. Let [x] denote the units of
x and define our standard length unit as L, our standard energy unit as E,
and our standard time unit as T . Then dimensionally,

The final expression should have units of length L, so this result must be
multiplied by a combination of ħ and c having units of ET 4/L 3. Since [ħ] =
ET and [c] = L /T, the required factor is ħ/c3 and

(11.11)

for neutrino energy E specified in MeV and energy squared difference ΔE2

corresponding to the mass squared difference Δm2 specified in eV2. A
variation on this approach is illustrated in Problem 11.9(a).

Going the opposite direction (converting from normal units to ħ = c = 1
units) is of course trivial: write the equations and then remove all factors of
ħ and c, effectively setting them to one.

11.5.3 Time-Averaged or Classical Probabilities
Practically the oscillation wavelength may be smaller than the uncertainties
in position for emission and detection of neutrinos. For example, there are
thousands of kilometers variation in the distance traversed between
production and detection of solar neutrinos caused by varying production
location in the Sun, varying detection location since the Earth is rotating,
and varying Earth–Sun orbital separation.

Time or distance averaging: If the oscillation length is less than the
averaging introduced by the preceding considerations, the detectors will see



a distance (or time) average of Eqs. (11.9). Denoting the averaged detection
probability by a bar gives (Problem 11.7)

(11.12)

for the probability (11.9) of detecting the two flavors distance-averaged
over the oscillating factor. For two flavors the instantaneous probability to
remain a νe can approach zero if the mixing angle is large (see Fig. 11.2),
but Eq. (11.12) indicates that the average survival probability has a lower
limit of  for two flavors. For n flavors the lower limit is n−1, but that limit
can be realized only for a precisely tuned flavor mixture (maximal mixing).

Classical probabilities: The results of Eq. (11.12) have an alternative
interpretation if we define the quantum probability

(11.13)

where 〈νe(t)|νe(0)〉 may be interpreted as the probability amplitude to find
the neutrino as an electron neutrino at time t if it was created as an electron
neutrino at time t = 0. Since the propagating states are the mass eigenstates |
νi 〉, it is useful to expand this expression in terms of those states. In Dirac
notation the unit operator may be written as  where i labels
a complete set of states. Thus, for a 2-flavor basis

(11.14)

where in the second line the summation has been written out explicitly for a
2-flavor model with basis mass eigenstates |ν1〉 and |ν2〉. The final term in
the last line is the interference between amplitudes that arises because in
quantum mechanics the probability is not the sum of individual
probabilities (as it would be in classical mechanics), but rather the square of
the sum of probability amplitudes. Dropping the interference term gives the
classical average



where P (νe → ν1) ≡ |〈νe(t)|ν1〉|2 and so on. Evaluating this expression for the
2-flavor model (Problem 11.8) and comparing with Eq. (11.12) gives

(11.15)

Thus P (νe →νe) and P (νe →νμ) may be viewed either as time or distance
averages, or as classical probabilities resulting from discarding quantum-
mechanical interference effects. Because of the inevitable averaging
associated with practical observations, these are the probabilities that would
be measured in a typical solar neutrino experiment. Notice for later use that
these equations also may be written in matrix form. For example, letting the
row vector (1 0) and its corresponding column vector denote pure νe flavor
states,

(11.16)

which you can verify by matrix multiplication and trigonometric identities
is equivalent to the first of Eqs. (11.15),  (see
also Problems 12.11 and 12.12).

11.6 Neutrino Oscillations with Three Flavors
We will demonstrate in the next chapter that solar neutrinos may be
understood well in the simple 2-flavor formalism developed above. Thus at
fixed energy a single vacuum mixing angle and one mass-squared
difference characterizes the theory. However, in the general case there are
three known flavors of neutrinos (and their corresponding antineutrinos), so
the correct treatment of neutrino oscillations requires additional parameters



associated with a 3 × 3 mixing matrix. This matrix relates the flavor
eigenstates {νe, ντ, ντ} to the mass eigenstates {ν1, ν2, ν3} through [115]5

(11.17)

where the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

with cij ≡ cos θij and sij ≡ sin θij is a function of four parameters: three
mixing angles θ12, θ13, and θ23, and a phase δ. In addition, there are two
independent mass-squared differences,

Experimental values for neutrino oscillation parameters are displayed in
Table 11.1 (assuming the normal mass hierarchy; see Section 11.6.2).

Table 11.1 Neutrino oscillation parameters [115]

11.6.1 CP Violation in Neutrino Oscillations



Were an inequivalence to be observed between flavor oscillations for
neutrinos and the corresponding antineutrinos, it would indicate CP
violation in the neutrino sector (C, P, and T symmetries are discussed in
Box 11.4). If neutrinos are Dirac particles (meaning that neutrinos and
antineutrinos are distinct particles; see Section 11.2.2 and Box 11.2), the
source of any CP violation would be the phase factor e±iδ appearing in the
matrix U of Eq. (11.17), which is often termed the Dirac phase. If neutrinos
are Majorana particles instead (neutrino and antineutrino are the same
particle) Majorana phases  and  appearing in the column
vector defining the mass eigenstates in Eq. (11.17) also can violate CP.
Majorana phases could influence double β-decay but not neutrino
oscillations [78].

Box 11.4 C, P, and T Symmetries

In elementary particle physics C refers to the symmetry of charge
conjugation (what happens if particles are exchanged for their
antiparticles), P refers to symmetry under parity (what happens if the
spatial coordinate system is inverted), and T refers to symmetry under
time reversal (what happens if the time axis is inverted).

CPT Invariance
Very general theorems suggest that the product of all three symmetries,
CPT, should always be conserved (that is, all physical observables
should be unchanged under the combined operations of reversing time,
inverting the spatial coordinates, and replacing particles with
antiparticles), but combinations of only some of these symmetries are
known to be violated in some experiments. For example, P is violated
by all weak interactions and CP (simultaneously exchange particles for
antiparticles and invert the coordinate system) is violated at a very small
level by weak interactions in the quark sector.

CP-Violating Processes
The presence of a complex phase in the flavor-mixing matrix allows for
processes having different rates for particles and their corresponding
antiparticles, and thus to CP violation. This CP violation requires at
least three flavors, because for fewer flavors any complex phase can be



absorbed into a redefinition of the wavefunctions and thus is not
observable.

The phases δ, α1, and α2 all are presently unknown, so it is unclear if CP
is violated in Eq. (11.17). If it occurs, CP violation in the neutrino sector
might be important for cosmology because to generate the large
preponderance of matter over antimatter densities observed in the present
Universe a CP-violating process operating in the early Universe is
necessary (see Section 21.4 of Ref. [100]). The experimentally observed CP
violation in the quark sector is too small to account for this. If there is CP
violation in the leptonic (neutrino) sector, this might help explain the
dominance of matter over antimatter in the Universe, but presently there is
no evidence for leptonic CP violation. The idea that (as yet unobserved) CP
violation in neutrino flavor mixing could account for the dominance of
matter over antimatter is called leptogenesis.

11.6.2 The Neutrino Mass Hierarchy
Direct mass measurements have succeeded only in placing the upper limits
on neutrino masses indicated in Fig. 11.1. Oscillation measurements (1)
indicate that at least some neutrino flavors have non-zero mass, and (2)
constrain the mixing angle and the mass squared difference between flavors
participating in neutrino oscillation, but cannot give the actual masses. This
leads to the hierarchy ambiguity displayed in Fig. 11.3. In principle the
correct hierarchy can be inferred from matter oscillations but evidence for
these has been seen thus far only for solar neutrinos and not for atmospheric
neutrinos (decribed in Section 12.9.1).



Fig. 11.3 The neutrino mass hierarchy in a 3-flavor model [133]. Approximate mass-square
differences that have been inferred from present atmospheric (see Section 12.9.1) and solar neutrino
data are indicated. Since only values of Δm2 and not absolute masses are known, two orderings of the
known mass square differences are consistent with data: the normal hierarchy and the inverted
hierarchy. Shading indicates the relative contribution of the three neutrino flavors to each mass
eigenstate in the two possible orderings. Adapted from Stephen F. King and Chrisopher Luhn,
Reports on Progress in Physics, 76(5), 2013, with permission of IOP Publishing Ltd.

11.6.3 Recovering 2-Flavor Mixing
For three flavors the dominant mixing angle for atmospheric neutrinos is
θ23 and that for solar neutrinos is θ12. Thus the parameters of most
importance for solar neutrinos are the mixing angle θ12 and the mass-
squared difference  and by restricting to νe and νμ one may (with
suitable redefinitions) recover the 2-flavor formalism for solar neutrino
oscillations described earlier. The possibility of approximating most
neutrino physics in terms of a 2-flavor mixing matrix, with the effect of the
third flavor added using perturbation theory if necessary, rests on two
empirical facts: (1) the characteristic splitting in the mass-squared
hierarchies of Fig. 11.3, and (2) the small value of θ13 (see Table 11.1).



11.7 Neutrino Masses and Particle Physics
This is a book about stellar physics and the present discussion has focused
primarily on solar neutrinos and the resolution of the solar neutrino
problem. However, the neutrino oscillations that are the basis of this
solution also have profound consequences for the understanding of
elementary particle physics because they point to physics beyond the
Standard Model. This is a topic of obvious importance but would take us
too far off our primary track to pursue here. However, Problem 11.10
explores one idea for extension of the Standard Model to accommodate
masses for neutrinos.

Background and Further Reading
Portions of this chapter have been adapted from an introduction to the solar
nuetrino problem by Guidry and Billings [102]. The book by Bahcall [30] is
a good starting point for both the Standard Solar Model and to the
significance of solar neutrinos. A general introduction to the Standard
Model of elementary particle physics may be found in Collins, Martin, and
Squires [74] or in Guidry [97]. An introduction to the general topic of
neutrinos is presented in two articles by Haxton and Holstein [113, 114]. A
conceptual, non-mathematical approach to understanding neutrino
oscillations is given by Waltham [222]. The idea that neutrinos might
undergo flavor oscillations that would have physical implications is
generally attributed to conjectures by Bruno Pontecorvo (1913–1993), long
before it was possible to measure such effects; an historical account is given
in Bonolis [54].

Problems
11.1 Show that if a neutrino has a mass mν that is very small, a spread in

energy ΔEν for a set of detected neutrinos having an average flight
time t from source to detector will lead to a spread in arrival times
given by



where Eν is the average energy and ΔEν is the spread in energy.
Some 19 νe events were detected on Earth from Supernova 1987A.
These neutrinos arrived over about a 10-second time span with an
average energy of about 25 MeV and a spread in energy of about 10
MeV. Use these results to place an upper limit on the νe (and thus νe)
mass, assuming the supernova to have occurred about 170,000
lightyears away.

11.2 Show that in a 2-flavor (νe and νμ) model of neutrino oscillations, if
the two energies E1 and E2 are approximately equal and much larger
than the neutrino masses, then (ħ = c = 1 units)

where E1 ∼ E2 ≡ E and  Thus, show that the
probability for flavor survival and conversion as a function of
distance traveled r ∼ ct may be expressed as

where θ is the mixing angle and the oscillation length L ≡ 4πE/Δm2

is the distance (assuming v ∼ c) over which one complete flavor
oscillation occurs.***

11.3 Starting from the neutrino flavor eigenstates in a 2-flavor model
with vacuum mixing angle θ,

show that the mass eigenstates may be expressed as



so that the time-evolved neutrino state

may be written as the mixed-flavor state

Use this result to show that the probabilities to detect a νe or νμ after
a time t are given by

respectively.***
11.4 A smoking-gun signature of a Majorana mass for neutrinos (see

Section 11.2.2) would be the observation of neutrinoless double β-
decay, as discussed in Box 11.2. Which of the following isotopes are
potentially candidates for double β-decay experiments: 76Ge, 78Ge,
82Se, 80Se, 238U, and 236U? Hint: Compare the masses relative to
those for β-decay daughters.

11.5 Show that for a general 2 × 2 matrix

the eigenvalues are given by

where T ≡ Tr A is the trace of A and D ≡ det A is the determinant of
A.



11.6 From basic quantum mechanics we may expect the transformation
between mass and flavor basis states in a 2-flavor neutrino model to
be unitary and to have unit determinant.
(a) Prove that a unitary transformation preserves matrix elements.

Hint: This is trivial if you use the Dirac notation for matrix
elements.

(b) Prove that the most general form of a 2 × 2 unitary matrix U
with det U = 1 can be parameterized as

subject to the constraint aa∗ + bb∗ = 1. Thus justify the
parameterization of the transformation implemented by Eq.
(11.2). Verify that the transformation (11.2) is both unitary and
orthogonal.

11.7 Show that the averaged neutrino probabilities are given by Eq.
(11.12) in a 2-flavor model described by Eq. (11.9). If for neutrinos
in vacuum θ = 20 ◦ , E = 5 MeV, and Δm2 = 10−5 eV2, what is the
minimum distance over which the probabilities must be averaged for
Eq. (11.12) to be valid, and what is the averaged probability to detect
an electron neutrino if the neutrino was produced as an electron
neutrino?***

11.8 Show that the classical probability Pclass(νe → νe) of Section 11.5.3
is given by Eq. (11.15) for a 2-flavor model.***

11.9 (a) Repeat the derivation of Eq. (11.11) starting from Eq. (11.10)
and the observation that ħc = 197.3 × 10−13 MeV cm = 1 in ħ = c = 1
units. (b) In ħ = c = 1 units the weak coupling constant takes the
value GF ≡ GF/(ħc)3 = 1.16637 × 10−5 GeV−2 [6]. Express GF in
more conventional units of MeV cm3.***

11.10 Observation of neutrino oscillations implies a finite mass for
neutrinos and thus physics beyond the Standard Model. One idea for
extending the Standard Model is to add the missing right-handed
component of the neutrino, which is assumed to be very massive
since it is not seen. By some elementary arguments, it is speculated
that the 2-flavor neutrino mass matrix M (see Section 12.2) for such



a minimal extension of the Standard Model to include a heavy right-
handed neutrino may be written

where it is expected that m is of order 100 GeV and M is of order
1015 GeV. (a) Find the eigenvalues of this matrix and show that this
gives one very light and one very massive eigenvalue for the
neutrino masses. Hint: See Problem 11.5. (b) Find the corresponding
eigenvectors and argue that they can be interpreted approximately as
a left-handed Standard Model neutrino but with a small but non-zero
mass, and a right-handed neutrino with mass much too large to be
detected in present experiments.***

1 Two “standard models” will be on prominent display in this chapter. For convenience I will
often refer to the Standard Model of elementary particle physics as just “the Standard
Model,” which should not be confused with “the Standard Solar Model.”

2 The Standard Model also includes the strong interactions, which are mediated by exchange of
gluons between quarks and between gluons. However, our concern here is primarily with the
weak interaction sector, so quarks and gluons will be mentioned only in passing. The weak
and electromagnetic sector of the Standard Model is sometimes called the Standard
Electroweak Model.

3 The perceptive reader might ask whether it is possible (leaving some difficult technical issues
aside) to measure the mass of a neutrino in flight and determine it to be in a definite mass
eigenstate. Kayser [132] has shown that this is a textbook Heisenberg uncertainty principle
issue. Such a measurement done precisely enough would indeed determine a unique mass
eigenstate. However, because of the uncertainty principle the neutrino oscillation would be
destroyed by the measurement because the precision in the momentum determinations
necessary to resolve the mass sufficiently well would necessarily lead to an uncertainty in the
position of the neutrino source or detector comparable to or larger than the characteristic
spatial scale of the oscillation pattern (the oscillation length defined below). Thus, the
uncertainty principle forbids determining simultaneously the mass and flavor of a neutrino as
a matter of principle if there is flavor mixing.

4 A realistic model would consider three neutrino flavors but the physics relevant here is
reasonably well described by a simpler model with only two neutrino flavors. The full 3-
flavor case will be considered briefly in section 11.6. The discussion in much of this chapter
will employ ħ = c = 1 units, which are standard in elementary particle physics and are
explained in Appendix B.2 and illustrated in Example 11.2.

5 The phases α1 and α2 for the mass eigenstates appearing in Eq. (11.17) are relevant only if it
should turn out that neutrinos are Majorana particles (see Section 11.2.2 and Box 11.2). If
instead they are Dirac particles, α1 and α2 can be ignored by setting 
These phases play no role in flavor oscillations in any case, but they could be relevant for
neutrinoless double β-decay.



12

Solar Neutrinos and the MSW Effect

The vacuum neutrino flavor oscillations described in Chapter 11 might
contribute to depressing the flux of solar neutrinos measured on Earth, but a
large value of the mixing angle would be required to suppress the electron
neutrino flux by significant amounts. Because quark-sector flavor mixing
angles are small, initial theoretical prejudice—but no substantial evidence
—favored a small mixing angle in the neutrino sector also. We will return to
the appropriate value for the vacuum mixing angle below, but first there is
another issue to be addressed: neutrinos must transit out of the Sun.
Neutrinos interact extremely weakly with matter so the effect of solar
matter on neutrino propagation might seem unimportant. But even a feeble
interaction can have significant consequences if the wavefunction has
interfering components and the coupling strength to the different
components is unequal. Indeed, electron neutrinos couple more strongly to
normal matter than do other flavor neutrinos because electron neutrinos and
the particles making up normal matter all reside in the first generation of the
Standard Model. In this chapter we shall demonstrate that the flavor-
dependent interaction with the medium alters the effective mass of a
propagating electron neutrino and influences the flavor oscillation in a
highly non-trivial way.

12.1 Propagation of Neutrinos in Matter
Following the insight of Mikheyev, Smirnov, and Wolfenstein (MSW), we
now consider the effect of weak matter coupling on the neutrino flavor
oscillations that were discussed in Chapter 11 [30, 43, 138, 151, 229]. We
will find that the interaction of neutrinos with the solar medium causes an
unanticipated resonance condition called the MSW effect that can lead to
resonant flavor conversion of the electron neutrinos produced by the Sun.



12.1.1 Matrix Elements for Interaction with Matter
For the low neutrino energies relevant in the Sun inelastic scattering is
negligible and electron neutrinos interact only through elastic forward
scattering, mediated by both charged and neutral weak currents. The
relevant Feynman diagrams are displayed in Fig. 12.1(a). For mu or tau
neutrinos only the neutral current can contribute, as illustrated in Fig.
12.1(b). Since the neutral current interaction contributes to both electron
and muon neutrino scattering, it provides an overall shift that can be
neglected for the present analysis. Therefore, the vacuum neutrino
oscillations will be modified in the presence of matter because the charged-
current diagram in Fig. 12.1(a) contributes to νe elastic scattering but not to
νμ scattering in the 2-flavor model. By evaluating the Feynman diagrams
using standard methods of quantum field theory, the charged-current
diagram in Fig. 12.1 is found to contribute an additional medium-dependent
interaction that has the form of an effective potential energy V seen only by
the electron neutrinos or antineutrinos,

(12.1)

where the positive sign is for neutrinos, the negative sign is for
antineutrinos, ne is the local electron number density, and GF is the weak
(Fermi) coupling constant.



Fig. 12.1 Feynman diagrams (see Box 11.3) responsible for neutrino–electron scattering in a 2-flavor
model with νe and νμ.

12.1.2 The Effective Neutrino Mass in Medium
For the electron neutrino subject to the additional potential V [see Eq. (12.4)
below] we have E − V = (p2 + m2)1/2 and hence

(12.2)

where the last step is justified by the assumption that V << E. Thus 
 where  may be interpreted as an

effective mass that has been modified from its value in vacuum by
interaction with the medium. Since V is positive, an electron neutrino
behaves effectively as if it is slightly heavier when propagating through
matter than in vacuum, with the amount of increase governed by the
electron number density of the matter. Figure 12.2 illustrates this. From this
figure, an electron neutrino that is less massive than a muon neutrino in
vacuum will become effectively more massive than its oscillation partner in
matter if the electron density is sufficiently high (Problem 12.4). As
discussed in Box 12.1, acquiring an effective mass through interaction with
a medium is common for particles in many contexts.



Fig. 12.2 The effective mass-squared of an electron neutrino and a muon neutrino as a function of
electron number density ne, neglecting flavor mixing. Because the νμ does not couple to the charged
weak current its m2 does not depend on ne but the effective m2 of νe increases linearly with the
electron density. Thus the order of states in the m2 spectrum in vacuum (left side) can become
inverted in matter at high electron density (right side).

Box 12.1 Effective Masses

There is nothing unusual about the effective mass of a particle being
modified from its vacuum value by interaction with a medium; it is an
everyday occurrence in the quantummechanics of interacting many-
body systems.

Classical Interpretation
The effective mass may be defined through m = F/a. If for a fixed force
applied to a particle the acceleration is large, one deduces that the
particle has a small mass, and if the corresponding acceleration is small,
one deduces that the particle has a large mass. It is obvious intuitively
that the mass inferred from this thought experiment will be different for
a particle propagating in the vacuum and one interacting with a medium.
Two other well-known examples of particles (photons in these cases)
acquiring an effective mass through interactions with a medium are
superconductivity, described below, and plasmons, described in Box 7.3.



Example: Photons in Superconductors
One way to understand the properties of a superconductor is that the
photon, which is identically massless when propagating in the vacuum,
acquires an effective non-zero mass in the superconductor through
interaction with the medium. It may then be shown that the basic
properties of a superconductor such as the Meissner effect (the bulk
expulsion of a magnetic field) follow from the photon having acquired
this non-zero effective mass through interactions in the superconductor.
A more extensive discussion may be found in Chapter 8 of Ref. [97].

12.2 The Mass Matrix
To address neutrino oscillations in matter it is desirable to introduce a more
formal derivation of the oscillation problem that will prove useful in
subsequent discussion [30, 43, 74, 138, 154, 229]. That formalism will then
be used to consider first the propagation of free neutrinos and then the
propagation of neutrinos with an added interaction with matter.

12.2.1 Propagation of Left-Handed Neutrinos
In Box 7.4 it was remarked that only left-handed neutrinos and right-handed
antineutrinos couple to the weak interactions. This implies that the full spin
structure does not influence the propagation of ultrarelativistic neutrinos (in
the absence of magnetic fields). Only the left-handed component of the
neutrino couples to the weak interactions and chirality is conserved to order
m/E, where m is the neutrino mass and E its energy. Thus for E >> m only
the propagation of left-handed neutrinos is relevant. The Schrödinger
equation of ordinary quantum mechanics is not relativistically invariant and
so is not appropriate for ultrarelativistic particles. For fermions the wave
equation must be generalized to the Dirac equation, while for spinless
particles the corresponding relativistic wave equation is the Klein–Gordon
equation. Neutrinos are ultrarelativistic fermions but if the spin structure is
eliminated from consideration the propagation of the (left-handed
component of the) free neutrino may be described by the simple free-
particle Klein–Gordon equation



(12.3)

where □ is termed the d’Alembertian operator and for n neutrino flavors |ν〉
is an n-component column vector in the mass-eigenstate basis and m2 is an
n × n matrix (for either Dirac or Majorana masses; see Section 11.2.2).

Because of oscillations, the solutions to Eq. (12.3) of interest correspond
to the propagation of a linear combination of mass eigenstates. For
ultrarelativistic neutrinos we make only small errors by assuming neutrinos
of tiny mass and slightly different energies to propagate with the same 3-
momentum p. In that approximation a solution of Eq. (12.3) for definite
momentum is given by

(12.4)

As you are asked to show in Problem 12.13, for ultrarelativistic particles
this may be approximated as

(12.5)

Differentiating Eq. (12.5) with respect to time gives an equation of motion
for a single mass eigenstate

(12.6)

which may be generalized for a 2-flavor model to the matrix equation1

(12.7)

where M is termed the mass matrix. These results are valid for both Dirac
and Majorana masses (with a corollary that oscillation measurements alone
cannot distinguish whether neutrinos are Dirac or Majorana particles).

12.2.2 Evolution in the Flavor Basis



Neutrinos propagate in mass eigenstates but they are produced and detected
in flavor eigenstates, so it is useful to express the preceding equation in the
flavor basis. The required transformations matrices are given in Eqs. (11.2)
and (11.3), permitting Eq. (12.7) to be written in the form

Multiplying from the left by U and using the unitarity condition UU†  = 1
gives

(12.8)

where the flavor states and transformation matrices are explicitly

As is clear by substitution, Eq. (12.8) has a solution

(12.9)

Since the masses m1 and m2 are presently unknown it is convenient to
rewrite Eq. (12.8) in terms of Δm2, which is measurable. Adding a multiple
of the unit matrix to the matrix in Eq. (12.8) will not modify observables (a
trick that will be employed several times in what follows), so we may
subtract  times the unit 2 × 2 matrix and use

to replace Eq. (12.8) by the equivalent form

(12.10)



where  was introduced in Eq. (11.8).

12.2.3 Propagation in Matter
The evolution equation (12.10) is just a reformulation of our previous
treatment of neutrinos propagating in vacuum as described in Chapter 11.
Let us now add a charged-current interaction with matter. By previous
arguments the charged current couples only elastically and only to electron
neutrinos, so we add to the Klein–Gordon equation (12.3) an interaction
potential given by Eq. (12.1), which modifies the equation of motion
(12.10) to

(12.11)

where  depends on time (or position) because it
depends on the electron density. As shown in Problem 12.14, this may be
expressed as

(12.12)

where M is the mass matrix in the flavor basis. Equation (12.12) is the
required result but it is conventional to write the mass matrix M appearing
in it in a more symmetric form. First define

(12.13)

(which has units of mass squared) and then subtract A/4E + (Δm2/4E) cos
2θ multiplied by the unit matrix to give the mass matrix in traceless form

(12.14)

(see Problem 12.15), where the dimensionless charged-current coupling
strength χ is defined by



(12.15)

with L the vacuum oscillation length defined in Eq. (11.10) and ℓ m an
additional contribution to the oscillation length caused by the matter
interaction.2

12.3 Solutions in Matter
For a fixed density the mass eigenstates in matter – which generally will
differ from the mass eigenstates in vacuum because of the interaction V –
may be found by diagonalizing (finding the eigenvalues) of the mass matrix
M at that density. However, since the interaction V depends on the density,
in a medium with varying density such as the Sun the mass eigenstates in
matter at one time (or position) will generally not be eigenstates at another
time or position. We may imagine dividing the Sun up into concentric
layers and that within each the density may be assumed to be approximately
constant, as illustrated in Fig. 12.3. Our strategy will be to calculate the
mass eigenstates within a single layer assuming it to have a constant
density, and then consider how to determine the evolution of neutrino states
as they propagate through successive layers of decreasing density on the
way out of the Sun.



Fig. 12.3 Solar density gradient. Neutrinos are produced near the center at high density and propagate
out through regions of decreasing density. In a given concentric layer, the density may be assumed
nearly constant.

12.3.1 Mass Eigenvalues for Constant Density
At constant density the problem resembles vacuum oscillations but with a
different potential. The time-evolved mass states in matter,  and 
may be obtained by diagonalizing the mass matrix (12.14), giving two
eigenvalues λ± (Problem 12.8)

(12.16)

The splitting between the two eigenstates is given by the second term and
reaches a minimum at the density where χ = cos 2θ. As for the vacuum
case, the mass eigenstates in matter,  and  at fixed time t, are
assumed to be related to the flavor eigenstates by a unitary transformation

(12.17)

where Um(t) is a unitary matrix yet to be determined.

12.3.2 The Matter Mixing Angle θm

The matrix Um(t) depends on time and can be parameterized as for the
vacuum mixing angle, but now in terms of a time-dependent matter mixing
angle θm(t) with

(12.18)

The relationship of the matter mixing angle θm and the vacuum mixing
angle θ at time t can be established by requiring that a similarity transform
by Um(t) diagonalize the mass matrix, with the diagonal elements being the
time-dependent eigenvalues in matter E1(t) and E2(t),



(12.19)

(A similarity transformation generally is implemented by U−1MU but U† =
U−1 for a unitary matrix.) As you are asked to demonstrate in Problem 12.9,
inserting the explicit values of the matrices U, U†, and M from Eqs. (12.14)
and (12.18) in Eq. (12.19) gives an equation that can be satisfied only if the
matter and vacuum mixing angles are related by

(12.20)

where the plus sign is for m1 >m2 and the negative sign for m1 < m2. From
Eq. (12.20), in vacuum θm = θ because for vanishing electron density ℓm →
∞and χ = L/ℓm → 0, but in matter the mixing angle will be modified from
its vacuum value by an amount that depends on density.

12.3.3 The Matter Oscillation Length Lm

From Eq. (11.10) the oscillation length in vacuum L = 4πE/Δm2 is
proportional to the inverse of the mass-squared difference Δm2 between the
states participating in the oscillation. In matter the neutrino effective mass is
altered by interaction with the medium and the vacuum mass-squared
difference is rescaled, Δm2 → f (χ)Δm2, where from the splitting of the two
eigenvalues in Eq. (12.16)

(12.21)

Hence the oscillation length in matter Lm is given by

(12.22)

which reduces to the vacuum oscillation length L if the interaction χ
vanishes. The variations of θm, Lm, and f with the dimensionless coupling χ



are illustrated in Fig. 12.4 for several values of the vacuum mixing angle θ.

Fig. 12.4 (a) Mixing angle in matter θm(χ), (b) oscillation length in matter Lm(χ), and (c) the scaling
factor f (χ) of Eq. (12.21) as a function of the dimensionless matter coupling parameter χ. All
calculations assumed E = 10 MeV and Δm2 = 7.6 × 10−5 eV2, and curves are marked with the
assumed vacuum mixing angle θ.

From Fig. 12.4(a) the matter mixing angle θm reduces to the vacuum
mixing angle θ for vanishing coupling, but  at large coupling for
any value of the vacuum mixing angle. From Fig. 12.4(b) the matter
oscillation length is equal to the vacuum oscillation length at zero coupling,
but increases to a maximum at the coupling strength where 
[compare Fig. 12.4(a)], and then decreases again. Notice that the coupling
strength at which Lm is maximal coincides with highest rate of change in
θm, and with the minimum of the scaling function f (χ) governing the
separation between the mass states in matter displayed in Fig. 12.4(c),
suggesting something special about the density where  In
particular, the rapid change of θm and the strong peaking of Lm near this
density are suggestive of resonant behavior. We will address the
implications of this observation shortly.

12.3.4 Flavor Conversion in Constant-Density Matter



In matter of constant density the electron neutrino state after a time t
becomes

(12.23)

which is analogous to the vacuum equation Eq. (11.6) but with the vacuum
mixing angle θ replaced by the matter mixing angle θm defined through Eq.
(12.20). Hence for a constant density ne the flavor conservation and flavor
retention probabilities are given by Eq. (11.9) with the replacements θ →
θm and L → Lm,

(12.24)

with P (νe → νμ, r) = 1 − P (νe → νe, r). The corresponding classical averages
are

(12.25)

which are valid when the uncertainty in distance between source and
detection exceeds the oscillation length (see Section 11.5.3).

12.4 The MSW Resonance Condition
From Eq. (12.24), optimal flavor mixing occurs whenever sin2 2θm achieves
its maximum value of unity, which occurs when  The most
significant property of Eq. (12.20) is that if Δm2 and L are positive [which
requires that m1 < m2 and selects the negative sign in Eq. (12.20)],3 then tan
2θm → ± ∞ and  whenever the coupling strength satisfies

(12.26)

as illustrated in Fig. 12.5. From (12.15), this occurs when the electron
density satisfies



(12.27)

Fig. 12.5 The MSW resonance condition for two values of the vacuum mixing angle θ. When L/ℓm
→ cos 2θ the denominator of Eq. (12.20) goes to zero, tan 2θm goes to ±∞ so that  and
the flavor conversion probability sin22θm attains its maximum value. Thus, at the resonance Eq.
(12.24) indicates that significant flavor conversion can be obtained for any non-vanishing vacuum
oscillation angle θ.

From Eq. (12.24), this corresponds to a resonance condition leading to
maximal mixing between electron neutrinos and muon neutrinos, with a νe
survival probability

(12.28)

and, from Eqs. (12.22) and (12.26), an oscillation length at resonance 
given by

(12.29)



This is the Mikheyev–Smirnov–Wolfenstein or MSW resonance [151, 229].
It implies that, no matter how small the vacuum mixing angle θ, as long as
it is not zero there is some critical value  of the electron density defined
by Eq. (12.27) where the resonance condition is satisfied and maximal
flavor mixing ensues. The important resonance parameters are plotted in
Fig. 12.6 as a function of electron density for two values of θ.

Fig. 12.6 Resonance parameters versus the electron number density ne in units of the central solar
value  and 5 ◦ , with Δm2 = 7.6 × 10−5 eV2 and E = 10 MeV.
The coupling strength χ = L/ℓm is linear in the density. Intersection of the dashed lines specifies the
electron density giving the resonance condition.

The effects of the MSW resonance on variation of the matter mixing
angle θm and the oscillation length in matter Lm are illustrated for a small
and large angle solution in Fig. 12.7. The values of θm and Lm will vary
with the solar depth since they depend on the number density ne through χ.
From Eq. (12.20), θm → θ as the electron density tends to zero, while in the
opposite limit of very large electron density  From Fig. 12.7, the
manner in which the two limits are approached depends on whether the
vacuum mixing angle is large or small. Figure 12.7(a) corresponds to
parameters valid for solar neutrinos. At the solar center (χ ∼ 2.13) the
matter mixing angle is θm ∼ 76 ◦ , compared with a vacuum mixing angle
33.5 ◦  at the solar surface. Conversely, for Fig. 12.7(b) with θ = 5 ◦  at the



solar surface, the matter mixing angle at a density corresponding to the
solar center is θ ∼ 86◦.

Fig. 12.7 The matter mixing angle θm as a function of the dimensionless coupling strength χ ≡ L/ℓm
for vacuum mixing angles of (a) θ = 33.5 ◦  and (b) θ = 5 ◦ . Also shown is the oscillation length in
matter Lm, which has a maximum at the position of the MSW resonance (see Section 12.4), marked
by the dashed vertical line. The oscillation length was computed from Eqs. (12.22) and (11.11)
assuming E = 10 MeV and Δm2 = 7.6 × 10−5 eV2. Case (a) is realistic for solar neutrinos and the
density at the center of the Sun corresponds to χ ∼ 2.13 (Problem 12.2). Hence the shaded region on
the left side of (a) indicates the range of coupling strengths available to electron neutrinos in the
interior of the Sun.

If m1 > m2 there is no resonance for νe because then the positive sign
would be chosen in Eq. (12.20) and the denominator doesn’t vanish. In that
case there is a resonance instead for the electron antineutrino νe [which
traces back to choosing the negative sign in Eq. (12.1) for antineutrinos].
Since the Sun emits primarily neutrinos and not antineutrinos, a discussion
of antineutrinos will be omitted in the present context. However,
antineutrino oscillations could occur in environments such as core collapse
supernovae or neutron star mergers, where all flavors of ν and ν are
produced in abundance.



12.5 Resonant Flavor Conversion
If m1 < m2 and the electron density in the central region of the Sun where
neutrinos are produced satisfies  a solar neutrino will inevitably
encounter the MSW resonance on its way out of the Sun. If the change in
density is sufficiently slow that the additional phase mismatch between the
νe and νμ components produced by the charged-current elastic scattering
from electrons changes very slowly with density (the adiabatic condition
discussed further in Section 12.7), the νe flux produced in the core can be
almost entirely converted to νμ by the MSW resonance near the radius
where the condition (12.27) is satisfied. As Box 12.2 illustrates, the MSW
effect can be understood intuitively as an energy-level crossing for a
quantum system. Solutions of the MSW eigenvalue problem illustrating this
level crossing for various choices of the vacuum mixing angle are displayed
in Fig. 12.8. At zero density on the left side of these plots the eigenvalues λ±
converge to the vacuum m2 values, but for non-zero density the masses are
altered by the interaction of the electron neutrino with the medium and the
mixing of the solutions by the neutrino oscillation. (Compare with the
unmixed case in Fig. 12.2.)

Box 12.2 Resonant Flavor Conversion and Adiabatic Level
Crossings

MSW flavor conversion can be viewed as an adiabatic quantum level
crossing [43, 112],a where a diabatic means that the density scale height
Hne ≡ −ne/(dne/dr) near  is large relative to a neutrino oscillation
length (see Section 7.9.1). This is equivalent to requiring that the
oscillation length be less than the width of the resonance peak in Fig.
12.5. The situation is illustrated schematically in the following figure,



and more realistically in Fig. 12.8. A neutrino produced near the center
of the Sun (high density on right side) will be in a νe flavor eigenstate
that coincides with the higher-mass eigenstate, since V representing
interaction with the medium increases the mass of the electron neutrino
but not the muon neutrino. As the neutrino propagates out of the Sun
(right to left in this diagram) the density decreases so V and the effective
mass of the neutrino decrease. Conversely, the lower-mass eigenstate
(primarily νμ flavor) remains constant in mass as ne decreases (no
coupling to the charged current). Thus the two levels cross at the critical
density where the effect of V exactly cancels the vacuum mass-squared
difference  between the eigenstates, and the
neutrino remains in the high-mass eigenstate and changes adiabatically
into a νμ flavor state by the time it exits the Sun (left side), because in
vacuum the high-mass eigenstate approximately coincides with νμ.
In summary, if the crossing is adiabatic the neutrino remains in the
high-mass eigenstate in which it was created and follows the upper
curved trajectory through the resonance in the level-crossing region, as
indicated by the arrows. It emerges from the Sun in a different flavor
state than the one in which it was created in the core of the Sun because
the high-mass eigenstate is primarily νe in the dense medium but is
primarily νμ in vacuum. Adiabatic level crossing is common in a variety
of quantum systems and is often termed avoided level crossing.



a In quantum physics “adiabatic” has a different meaning than in classical thermal physics,
where it means thermally isolated. In quantum mechanics adiabatic means that a process is
slow on some timescale. The two definitions can converge since the slow process could be
heat exchange, but the quantum definition encompasses a broader range of phenomena than
the classical thermal one.

Fig. 12.8 Solutions λ± of the MSW eigenvalue problem as a function of mass density according to
Eq. (12.16). Each case corresponds to the choices Δm2 = 7.6 × 10−5 eV2 and E = 10 MeV, but to
different values of the vacuum mixing angle θ. The individual neutrino masses are presently
unknown but for purposes of illustration  has been assumed in vacuum, so that 

 The critical density leading to the MSW resonance
(corresponding to minimum splitting between the eigenvalues) and the value of the adiabaticity
parameter  defined in Eq. (12.33) are indicated for each case (see Problem 12.5). As
will be discussed in Section 12.9, realistic conditions in the Sun are expected to imply the very
adiabatic crossing exhibited in case (d).

The number density of electrons in the Sun computed in the Standard
Solar Model is illustrated in Fig. 12.9(a), along with an approximation that
is rather good in the region where the MSW effect is most important. In Fig.
12.9(b) the approximate locations where electron neutrinos of various
energies would encounter the MSW resonance condition [obtained by
solving Eq. (12.27) for each energy] are illustrated. As explored in Problem
12.3, only neutrinos having an energy larger than some minimum energy



Emin can experience the MSW resonance in the Sun because the neutrino
must be produced at a density higher than the critical resonance density.
The conditions used to obtain Fig. 12.9(b) give Emin ∼ 1.6MeV, so the
MSW effect should be more efficient at converting higher-energy neutrinos.
Flavor conversion is found to be preferentially suppressed for lower-energy
polar neutrinos, which will prove to be important evidence favoring the
MSW mechanism over vacuum oscillations for the flavor conversion of
solar neutrinos.

Fig. 12.9 (a) Electron number density as a function of fractional solar radius from the Standard Solar
Model [32]. The dashed line is an exponential approximation that will be employed in discussing the
MSW effect. Regions of primary neutrino production in the PP chains are indicated. (b) Radius
where the MSW critical density for a 2-flavor model is realized (dots at intersection of dashed lines
with the curve for ne) for neutrinos of energies ranging from 2 to 18 MeV. A vacuum mixing angle θ
= 35◦ and Δm2c4 = 7.5 × 10−5 eV2 have been assumed. The minimum energy of an electron neutrino
Emin ∼ 1.6 MeV that could be produced in the Sun and still encounter the MSW resonance is
indicated (see Problem 12.3). Thus Fig. 10.3 suggests that the MSW resonance will affect mostly the
8B neutrinos

12.6 Propagation in Matter of Varying Density
We are now ready to consider realistic neutrino propagation in the Sun. A
neutrino produced in the center will encounter decreasing density as it
travels toward the solar surface, as illustrated in Fig. 12.3. The neutrino
flavor evolution will be governed by the analog of the differential equations
for vacuum propagation, but with U → Um(t) since the flavor– mass basis
transformation now depends on time. From Eq. (12.8) with this replacement



(12.30)

where both the wavefunctions and the transformation matrix Um are
indicated explicitly to depend on the time. Taking the derivative of the
product in brackets on the left side and multiplying the equation from the
left by  gives (Problem 12.10)

(12.31)

where  Eq. (12.18) was used, and the constant 
 times the unit matrix has been subtracted from the matrix

on the right side (which does not affect observables).
The earlier statement that mass eigenstates at some density in the Sun

generally will not be eigenstates at a different density may now be
quantified. If the mass matrix in Eq. (12.31) were diagonal the neutrino
would remain in its original mass eigenstate as it traveled through regions
of varying density, so it is the off-diagonal terms proportional to 

 that alter the mass eigenstates as the neutrino propagates.
Generally then, Eq. (12.31) must be solved numerically. However, if the
off-diagonal terms are small relative to the diagonal terms, the mass matrix
M may be approximated by dropping the off-diagonal terms so that the
mass matrix becomes

(12.32)

which affords an analytical solution for neutrino flavor conversion in the
Sun. This is called the adiabatic approximation (see Box 12.2), and
corresponds physically to the assumption that the matter mixing angle θm
changes only slowly over a characteristic time for motion of the neutrino. A
neutrino travels at nearly the speed of light so r ∼ ct and the adiabatic
condition also may be interpreted as a limit on the spatial gradient of θm.
These observations may be used to quantify the conditions appropriate for
the adiabatic approximation.



12.7 The Adiabatic Criterion
The adiabatic condition for resonant flavor conversion can be expressed as
a requirement that the spatial width of the resonance layer δrR (defined by
the radial distance over which the resonance condition is approximately
satisfied) be much greater than the oscillation wavelength in matter
evaluated at the resonance,  This can be characterized by an adiabaticity
parameter ξ defined by [see Eq. (12.29) and the discussion in Box 12.3]

(12.33)

where the label R denotes quantities evaluated at the resonance, L is the
vacuum oscillation length, and θ is the vacuum oscillation angle [43, 203].
The adiabatic condition corresponds to requiring that ξ >> 1, implying
physically that if many oscillation lengths (in matter) fit within the
resonance layer the adiabatic approximation (12.32) is valid.

Box 12.3 Matter-Wave Tuning Forks

The MSW resonance has been likened to the interaction of two tuning
forks, one of which has a variable length [154]. If a vibrating tuning
fork with variable length is brought close to another tuning fork and the
length of the first varied to match the second, the vibration of the first
fork can be almost completely resonantly transferred to the second, but
only if the frequency of the variable fork is changed slowly enough
(adiabatic condition). Likewise, because the additional potential for the
neutrino–matter interaction affects only the electron neutrino and it
depends on density, a νe matter wave in the Sun has a variable frequency
while a νμ matter wave has roughly a constant frequency. If as the νe
frequency varies with density it becomes equal to that of the νμ at some
depth in the Sun, this will lead to a resonance between the two matter
waves and resonant conversion from one flavor to the other at that
depth. As for the tuning fork example, flavor conversion can occur with
significant probability only if the adiabatic condition is satisfied.



Values of ξ computed from Eq. (12.33) are indicated in Fig. 12.8 for
several vacuum mixing angles θ. In general sharp level crossings as in Fig.
12.8(a) are non-adiabatic, while avoided level crossings as in Fig. 12.8(d)
are highly adiabatic. In the limit of no mixing (θ = 0) the levels cross with
no interaction, as illustrated earlier in Fig. 12.2. From Fig. 12.8, the MSW
resonance can occur under approximately adiabatic conditions, even for
relatively small values of the vacuum mixing angle [for example, case (b)].
As will be shown in Section 12.9, solar conditions correspond
approximately to the highly avoided level crossing in Fig. 12.8(d), for
which  Thus the MSW resonance is expected to be encountered
adiabatically in the Sun, which optimizes the chance of resonant flavor
conversion according to the discussion in Box 12.2. A simple classical
oscillation example illustrating the MSW resonance and its adiabatic
constraint is described in Box 12.3.

12.8 MSW Neutrino Flavor Conversion
In the general case neutrino flavor conversion in the Sun must be
investigated by integrating Eq. (12.31) numerically because of the off-
diagonal terms arising from the density gradient, but it has just been argued
that the adiabatic approximation (12.32) should be fulfilled very well for
the Sun. Hence, we now solve for flavor conversion of solar neutrinos by
the MSW mechanism assuming the adiabatic approximation.

12.8.1 Flavor Conversion in Adiabatic Approximation
The adiabatic conversion of neutrino flavor in the Sun is illustrated in Fig.
12.10. An electron neutrino is produced at Point 1 near the center of the Sun
and propagates radially outward to Point 2. Detection is assumed to average
over many oscillation lengths so that the interference terms are washed out
and our concern is with the classical (time-averaged) probability, as
described in Section 11.5.3. The probability to be detected at Point 2 in the |
νe〉 flavor eigenstate is then given by the generalization of Eq. (11.16) [138],

(12.34)



where θm(i) ≡ θm(ti) and the row vector (1 0) and corresponding column
vector denote a pure νe flavor state. Evaluating the matrix products and
using standard trigonometric identities gives for the probability to remain a
νe (Problem 12.11),

(12.35)

This result is valid (if the adiabatic condition is satisfied) for Point 2
anywhere outside Point 1,4 but in the specific case that Point 2 lies at the
solar surface θm(t2) → θ and the classical probability to detect the neutrino
as an electron neutrino when it exits the Sun is

(12.36)

where θ is the vacuum mixing angle and  is the matter mixing
angle at the point of neutrino production.

Fig. 12.10 Schematic illustration of adiabatic flavor conversion by the MSW mechanism in the Sun.
An electron neutrino is produced at Point 1, where the density lies above that of the MSW resonance,
and propagates radially outward to Point 2, where the density lies below that of the resonance. The
width of the resonance layer is assumed to be much larger than the matter oscillation length in the
resonance layer, justifying the adiabatic approximation of Eq. (12.32). The widths of resonance and
production layers are not meant to be to scale in this diagram.



12.8.2 Adiabatic Conversion and the Mixing Angle
The remarkably concise result (12.36) has a simple physical interpretation.
Because of the adiabatic assumption (12.32) the mass matrix for a neutrino
propagating down the solar density gradient is diagonal and a neutrino
produced in the λ+ eigenstate remains in that eigenstate until it reaches the
solar surface, with the flavor conversion resulting only from the change of
mixing angle between the production point and the surface. Thus, in
adiabatic approximation the classical probability P (νe →νe) is independent
of the details of neutrino propagation and depends only on the mixing
angles at the point of production and point of detection.

Example 12.1 Assuming a vacuum mixing angle of 33.5◦, an energy of 10
MeV, a vacuum mass-squared splitting Δm2 = 7.5 × 10−5 eV2, and a central
electron density calculated from the Standard Solar Model, from Eq.
(12.20) the matter mixing angle at the center of the Sun is determined to be 

 [see Fig. 12.7(a)]. Thus an electron neutrino produced at the
center of the Sun has a probability to be a νe when it exits the Sun of

and a probability 1 − P (νe →νe) = 0.67 to be a νμ. We conclude that because
of the MSW resonance only  of 10-MeV electron neutrinos produced in
the Sun will still be electron neutrinos when they exit the Sun.

Flavor conversion by the MSW mechanism for a 2-flavor model in
adiabatic approximation is illustrated for four different values of the
vacuum mixing angle θ in Fig. 12.11. In these figures the MSW resonance
occurs at the radius corresponding to the intersection of the solid and
dashed curves. Figure 12.11(d) approximates the situation expected for the
Sun.



Fig. 12.11 MSW flavor conversion versus fraction of solar radius for four values of the vacuum
mixing angle θ. Calculations are classical averages (Section 11.5.3) in adiabatic approximation using
Eq. (12.35), assuming Δm2 = 7.6 × 10−5 eV2 and E = 10 MeV. The exponential density
approximation of Fig. 12.9(a) was used and neutrinos were assumed to be produced in a νe flavor
state at the center (right side of diagram at R/R⊙ = 0). Solid curves show the classical electron-
neutrino probability  and dashed curves show the corresponding classical muon-
neutrino probability 

12.8.3 Resonant Conversion for Large or Small θ
As shown in Fig. 12.4(a), for either large or small vacuum mixing angles θ
the matter mixing angle θm approaches  near the center of the Sun and
becomes equal to θ at the surface. Hence neutrinos are produced near the
center in a flavor eigenstate that is an almost pure mass eigenstate, but they
evolve to a flavor mixture characterized by the vacuum mixing angle θ by
the time they exit the Sun. The most rapid flavor conversion occurs around
the MSW resonance where the  and  curves intersect. For smaller
mixing angles almost complete flavor conversion can be obtained in the
resonance, while for the large mixing angle case (d), which is representative
of 10 MeV neutrinos from the Sun, about  of the electron neutrinos
produced in the core will undergo flavor conversion to muon neutrinos
before leaving the Sun.

12.8.4 Energy Dependence of Flavor Conversion



Figure 12.9(b) indicates that there is a substantial energy dependence
associated with the flavor conversion. For example, repeating the
calculation of Fig. 12.11(d) for a range of neutrino energies E gives the
electron neutrino survival probabilities  (surface) displayed in Table
12.1, along with the fractional solar radius RR/R⊙ where the MSW
resonance occurs for that energy.5 Consulting the solar neutrino spectrum
displayed in Fig. 10.3(b), we see that the MSW effect leads to an overall
suppression of expected νe probabilities in the 30%–50% range, with larger
suppression associated with higher-energy neutrinos. Comparing this with
the experimental neutrino anomalies that are summarized in Table 10.3
suggests a resolution of the solar neutrino problem that will be elaborated
further in the remainder of this chapter.

Table 12.1 Energy dependence of solar ν flavor conversion for θ = 35◦

12.9 Resolution of the Solar Neutrino Problem
Observations, coupled with the preceding oscillation and MSW matter
resonance formalism, have resolved the solar neutrino problem.
Comparison with solar neutrino data indicates that electron neutrinos are
being converted to other flavors by neutrino oscillations, that if all flavors
of neutrinos are detected the solar neutrino deficit disappears, and that the
favored scenario is MSW resonance conversion in the Sun, but for a large
vacuum mixing angle solution. Let us now describe the observations
leading to these remarkable conclusions.

12.9.1 Super-K Observation of Flavor Oscillation
High-energy cosmic rays hitting the atmosphere generate showers of
mesons that decay to muons, electrons, positrons, and neutrinos. The Super



Kamiokande (Super-K) detector in Japan was used to observe neutrinos
produced in these atmospheric cosmic-ray showers. Super-K found that the
ratio of muon neutrinos plus antineutrinos to electron neutrinos plus
antineutrinos was only 64% of that predicted by the Standard Model [92],
and explained the discrepancy as resulting from oscillation of muon
neutrinos into another flavor. Analysis suggests that the oscillation partner
of the muon neutrino is not the electron neutrino, so νμ is oscillating with
the tau neutrino [or possibly with an unknown flavor of neutrino that does
not undergo normal weak interactions but does participate in neutrino
oscillations (sterile neutrinos)]. The best fit to the data suggested a mixing
angle close to maximal (a large mixing angle solution) and a mass squared
difference in the range Δm2 ≃ 5×10−4 –6 × 10−3 eV2. The large mixing
angle indicates that the mass eigenstates are approximately equal mixtures
of the two weak flavor eigenstates.

12.9.2 SNO Observation of Neutral Current Interactions
The Super-K results cited above indicate conclusively the existence of
neutrino oscillations and thus of physics beyond the Standard Model, but
the detected oscillations do not appear to involve the electron neutrino and
so cannot be applied directly to the solar neutrino problem. However, a
water Cherenkov detector in Canada yielded information about neutrino
oscillations that is directly applicable to the solar neutrino problem.

SNO and heavy water: The Sudbury Neutrino Observatory (SNO), sited in
an active nickel mine north of Lake Huron, was a water Cherenkov detector
like Super Kamiokande that could detect neutrinos in the usual way by the
Cherenkov light emitted from

(12.37)

This reaction can occur for any flavor neutrino but νμ and ντ scattering are
strongly suppressed relative to that for νe. However, SNO differed from
Super-K in that it contained heavy water (water enriched in 2H) at its core.
The heavy water was important because of the deuterium that it contains. In
regular water, the relatively low-energy solar neutrinos signal their presence
only by elastic scattering from electrons as in Eq. (12.37), and to get



sufficient Cherenkov light for reliable detection the neutrino energy has to
be greater than about 5–7 MeV. However, because deuterium (d) contains a
weakly bound neutron, it can break up when struck by a neutrino in two
ways. Through the weak neutral current, any flavor neutrino can initiate

(12.38)

but only electron neutrinos can initiate the weak charged current reaction

(12.39)

Both of these reactions have much larger cross sections than those for
elastic neutrino– electron scattering, so SNO could gather events at high
rates using a small heavy-water volume. In addition, the energy threshold
could be lowered to 2.2 MeV, the binding energy of the deuteron. Finally –
and most importantly – because neutral currents are flavor-blind reaction
(12.38) allowed SNO to see the total neutrino flux of all flavors, not just
that of the electron neutrinos.6

The total solar neutrino flux: Because of its energy threshold, SNO saw
primarily 8B solar neutrinos. The initial SNO data confirmed results from
the pioneering solar neutrino experiments of Davis and others: a strong
suppression of the electron neutrino flux was observed relative to that
expected in the Standard Solar Model, assuming no new physics in the
Standard Model of elementary particle physics [21]. Specifically, SNO
found that only about  of the expected νe were being detected. However,
SNO went further. By analyzing the flavor-blind weak neutral current
events, the total flux of all neutrinos in the detector was shown to be almost
exactly that expected from the Standard Solar Model. Figure 12.12(a)
illustrates the flux of neutrinos from the 8B reaction, based on SNO results
from the three reactions in Eqs. (12.37)–(12.39). The best overall fit
indicates that  of the Sun’s electron neutrinos have changed flavor by the
time they reach Earth. Table 12.2 summarizes the comparison of SNO
results and the Standard Solar Model: although the electron neutrino flux is
only 35% of that expected in a model without oscillations, the neutrino flux
summed over all flavors is 100% of that predicted by the Standard Solar
Model for electron neutrino emission, within the experimental uncertainty.



Fig. 12.12 (a) Flux of 8B solar neutrinos detected for various flavors by SNO [21]. The three bands
correspond to the results from the three reactions in Eqs. (12.37)–(12.39), with the band widths
indicating one standard deviation. The bands intersect at the point indicated by the star, which
implies that about  of the Sun’s 8B neutrinos have changed flavor between being produced in the
core of the Sun and being detected on Earth. The Standard Solar Model band is the prediction for the
8B flux, irrespective of flavor changes. It tracks the neutral current band, which represents detection
of all flavors of neutrino coming from the Sun. Adapted with permission for Q. R. Ahmad et al.
(SNO Collaboration), Phys. Rev. Lett., 89, 011301. Copyrighted by the American Physical Society,
2002. (b) 2-flavor neutrino oscillation parameters determined by SNO [22]. The 99%, 95% and 90%
confidence-level contours are shown, with the star indicating the most likely values. The best fit
corresponds to the large-angle solution given in Eq. (12.40). Adapted with permission for Q. R.
Ahmad et al. (SNO Collaboration), Phys. Rev. Lett., 89, 011302. Copyrighted by the American
Physical Society, 2002.

Table 12.2 SNO and Standard Solar Model (SSM) neutrino fluxes [21, 22]

SNO mixing solution: For solar neutrinos it is common to assume a 2-
flavor mixing model and to report confidence-level contours in a 2-
dimensional plane with Δm2 on one axis and tan2 θ on the other. Figure
12.12(b) shows the best-fit confidence-level contours for parameters based



on SNO data, which suggest that the solar neutrino problem is solved by νe–
νμ flavor oscillations with

(12.40)

This large-mixing-angle solution implies that νe is almost an equal
superposition of two mass eigenstates, separated by no more than a few
hundredths of an eV.

12.9.3 KamLAND Constraints on Mixing Angles
KamLAND (Kamioka Liquid Scintillator Anti-Neutrino Detector) was sited
in the same Japanese mine cavern that housed Kamiokande, the predecessor
to Super Kamiokande. It used phototubes to monitor a large container of
liquid scintillator, looking specifically for νe produced during nuclear power
generation in a set of Japanese and Korean reactors located within a few
hundred kilometers of the detector. The antineutrinos were detected from
inverse β-decay in the scintillator: νe + p → e+ + n. From the power levels
in the reactors, the expected antineutrino flux at KamLAND could be
modeled accurately. A shortfall of antineutrinos relative to the expected
number was observed and this could be explained assuming (anti)neutrino
oscillations with a large-angle solution having [19, 80]

(12.41)

(statistical uncertainties only), which corresponds to θ ∼ 36.8 ◦  for the
vacuum mixing angle.7 Combining the solar neutrino and KamLAND
results leads to a solution [19]

(12.42)

implying a vacuum mixing angle θ ∼ 34.4◦, which is a large mixing angle
solution (recall that θ has been defined so that its largest possible value is
45◦).



12.9.4 Large Mixing Angles and the MSW Mechanism
The large mixing angle solutions found by SNO and KamLAND indicate
that the vacuum oscillations of solar neutrinos are of secondary importance
to the MSW resonance in the body of the Sun itself in explaining the solar
neutrino anomaly. The large-angle solutions imply vacuum oscillation
lengths of a few hundred kilometers, so the classical average (11.12) applies
and for θ ∼ 34 ◦  the reduction in νe flux from averaging over vacuum
oscillations is by about ∼ 57%. Thus for vacuum oscillations the
suppression of the electron neutrino flux detected on Earth would be by a
factor of less than two, but the Davis chlorine experiment indicates a
suppression by a factor of three. A flavor conversion more severe than is
possible from vacuum oscillations alone seems required, and this can be
explained by the MSW resonance. Indeed, Fig. 12.11(d) indicates that for
10 MeV neutrinos and parameters consistent with Eq. (12.40), the MSW
resonance leads to a suppression of νe by about a factor of three.

Furthermore, vacuum oscillation lengths for the large-angle solutions are
much less than the Earth–Sun distance, which would wash out any energy
dependence of the electron neutrino shortfall. Since the observations
indicate that such an energy dependence exists (see Table 10.3), and the
MSW effect implies such an energy dependence (see Fig. 12.9 and Table
12.1), the MSW effect is implicated as the primary source of the neutrino
flavor conversion responsible for the “solar neutrino problem.” That is, the
MSW effect converts from  to  (depending on neutrino energy) of νe into
other flavors within the Sun, and these populations are then only somewhat
modified by vacuum oscillations before the solar neutrinos reach detectors
on Earth. (If the neutrinos pass through the Earth on the way to the
detectors there will be some flavor modification in the Earth, but that is
expected to be a small effect.) The predicted energy dependence for MSW
flavor conversion has been confirmed by Borexino, which is a liquid
scintillator experiment in the Gran Sasso underground laboratory featuring
very strong background suppression, thus allowing the neutrino flux from
PP-I, PP-II, and PP-III to the measured separately.

12.9.5 A Tale of Large and Small Mixing Angles



The MSW effect was invoked originally to explain how a small mixing
angle could explain the electron solar neutrino deficit, since initial
theoretical prejudice favored a small vacuum mixing angle and Fig. 12.11
indicates that the MSW resonance can generate almost complete flavor
conversion, even for small vacuum mixing angles. However, data now
indicate that the MSW effect is the solution of the solar neutrino problem,
but for a large mixing angle solution. Thus, in this tale a correct physical
idea, with some initially incorrect assumptions, led eventually to a
surprising resolution of a fundamental problem, with far-reaching
implications for both astrophysics and elementary particle physics.

Background and Further Reading
Portions of this chapter have been adapted from an introduction to solar
neutrinos by Guidry and Billings [102]. The book by Bahcall [30] is a good
introduction to both the Standard Solar Model and to the significance of
solar neutrinos. A general introduction to the Standard Model of elementary
particle physics may be found in Collins, Martin, and Squires [74] or in
Guidry [97], and a summary of important neutrino physics is given in the
reviews by Haxton and Holstein [113, 114]. Overviews of the interaction of
electron neutrinos with matter and the associated MSW effect that assume
some knowledge of quantum field theory may be found in Blennow and
Smirnov [49], Kuo and Pantaleone [138], and Smirnov [203]. The solar
neutrino problem is reviewed in Haxton, Robertson, and Serenelli [115].

Problems
12.1 Restore factors of c in Eq. (12.27) to obtain a formula for the MSW

resonance critical electron number density  in units of cm−3.
Assuming that Δm2 = 7.5 × 10−5 eV2, E = 10 MeV, and θ = 35 ◦ ,
compute  Using the Standard Solar Model results given in Table
10.1, at what fraction of the central density does the resonance occur
and approximately at what radial distance from the center is this
density realized in the Sun? For this estimate assume that the mass
density and electron density track each other over the range of
interest.



12.2 Using the density information in Fig. 12.9, estimate the value of ℓm
at the center of the Sun. What is the value of χ = L/ℓm there if E =
10MeV and Δm2c4 = 7.5 × 10−5 eV2?***

12.3 The MSW resonance can occur only if an electron neutrino passes
through a region with density equal to the critical density  after its
production. Derive a formula for the minimum neutrino energy Emin
that can encounter the resonance for fixed θ, ΔE2, and maximum
(central) electron density  for a star. Using the Standard Solar
Model with vacuum mixing angle θ = 35◦ and Δm2c4 = 7.5 × 10−5

eV2, what is the minimum energy of an electron neutrino that could
be affected substantially by the MSW resonance for the Sun?***

12.4 The additional effective squared mass gained by electronneutrinos
interacting with the electrons of a medium is given by 

 where V is given in Eq. (12.1). Derive
a formula for A in terms of the mass density ρ, neutrino energy E,
and electron fraction Ye (ratio of electrons to nucleons), and evaluate
for a 10 MeV neutrino at the center of the Sun using data from the
Standard Solar Model. Compare this calculated increase in effective
mass squared A with the difference Δm2 between vacuum mass
eigenstates that are dominantly electron and muon neutrino flavors
in Fig. 11.3.***

12.5 Using Eq. (12.33) and the exponential parameterization of the solar
electron number density given in Fig. 12.9(a), show that the
adiabatic condition  is well satisfied for realistic values of
the parameters in the Sun.

12.6 Some authors give the relationship between the vacuum mixing
angle θ and the MSW matter mixing angle θm as

where χ = L/ℓm. Show that this is equivalent to the relationship given
in (12.20). Prove that at the MSW resonance the mixing length in
matter is given by Lm = L/ sin 2θ.



12.7 (a) Demonstrate that a similarity transform S−1MS on a matrix M by
a matrix S does not change the eigenvalues of the matrix M. Hint:
The determinant of a matrix product is the product of determinants
for the individual matrices. (b) Show that a 2 × 2 matrix can be made
traceless by adding a multiple of the unit matrix to it; find the
required multiple for a general 2 × 2 matrix.

12.8 Prove that the eigenvalues of the mass matrix (12.14) are given by
Eq. (12.16). Hint: See Problem 11.5.***

12.9 Show by inserting explicit forms for the matrices in Eq. (12.19) that
for neutrinos the matter mixing angle θm is related to the vacuum
mixing angle θ by Eq. (12.20),

where χ = L/ℓm.***
12.10 Show that Eq. (12.30) leads to Eq. (12.31) for neutrino propagation

through a region of changing density.***
12.11 Prove that in adiabatic approximation the classical probability

(averaged over oscillations) that an electron neutrino produced at
Point 1 near the center of the Sun would be detected as an electron
neutrino at Point 2 is given by Eq. (12.35). Hint: Start with Eq.
(12.34).***

12.12 Demonstrate that if all matter is removed so that the matter mixing
angle becomes equal to the vacuum mixing angle, θm(t) → θ, Eq.
(12.34) yields the classical average in vacuum given by Eq. (11.15).

12.13 Supply the missing steps in deriving Eq. (12.5) from Eq. (12.4),
assuming ultrarelativistic neutrinos.***

12.14 Prove that Eq. (12.12) follows from Eq. (12.11).***
12.15 Show that Eq. (12.12) can be written in the traceless form (12.14)

by subtracting a multiple of the unit matrix and using the definitions
given in Eq. (12.15). Hint: The solution of Problem 12.7(b) is useful
for this problem.

1 Equations of motion typically will use time t as the independent variable but the distance
traveled r may be substituted as the independent variable using r ∼ ct for ultrarelativistic
neutrinos. Those familiar with elementary quantum mechanics will note that Eq. (12.6) is



mathematically similar to the time-dependent Schrödinger equation for nonrelativistic
particles. This similarity arises from ignoring the spin structure of the ultrarelativistic
neutrinos and our approximation of the energy.

2 Electron neutrinos in the Sun interact only through elastic forward scattering and the effect of
the medium on νe propagation can be described as a refraction characterized by an index of
refraction nref = 1 + V/p, where p = |p|. This is analogous to refraction of light in a medium,
except that the neutrino index of refraction depends on flavor. The quantity ℓm is termed the
refraction length, because it is the distance over which an additional phase of 2π is acquired
through refraction in the matter [203]. Notice that in vacuum ne → 0 so that ℓm → ∞and the
coupling term χ ≡ L/ℓm in Eq. (12.14) vanishes.

3 This sign criterion depends on the definition  in Eq. (11.8). If the opposite
convention,  is used, the resonance sign criteria are opposite that used
here. That is just convention but there is an interesting history associated with the
implications of choosing the physically correct sign for the neutrino–electron interaction itself
[30, 43]. Our discussion assumes (correctly) that the effective charged-current interaction V of
Eq. (12.1) is positive for neutrinos. In Wolfenstein’s original paper [229] the sign was
correctly given as positive but in a later Wolfenstein paper it was given as negative. When
Mikheyev and Smirnov elaborated on Wolfenstein’s work several years later they followed
his second paper containing the erroneous sign. Thus they deduced, incorrectly, that the
resonance for neutrinos would occur if the electron neutrino were more massive than the
muon neutrino in vacuum. Only when it was realized that the sign should be opposite that
assumed originally by Mikheyev and Smirnov (Paul Langacker pointed out the error to Hans
Bethe) did it become clear that the MSW resonance could occur in the Sun if the electron
neutrino is less massive than the muon neutrino in vacuum. As Bethe has noted [43], the
correct sign is a technically crucial but conceptually minor issue. The seminal insight that
changed neutrino physics fundamentally was the realization by Mikheyev and Smirnov that
there could be a resonance in the interaction of neutrinos with matter, and that this resonance
could lead to large flavor conversion for either large or small vacuum mixing angles.

4 Although the MSW resonance is assumed to lie between Points 1 and 2 in Fig. 12.10, Eq.
(12.35) is valid in adiabatic approximation whether that is the case or not.

5 The lowest energy for which the MSW resonance can occur of 0.7MeV in Table 12.1 differs
somewhat from the 1.6 MeV inferred from Fig. 12.9 and Problem 12.3. The discrepancy is
because Table 12.1 (and Fig. 12.11) have for convenience used the exponential approximation
illustrated by the dashed line in Fig. 12.9(a) for the central density.

6 Thus, the essence of the SNO method was to detect neutrinos in two parallel ways, one
sensitive to νe and one sensitive to the total flux of all flavors. The reaction (12.38) can be
detected when the neutron produced is captured in an (n, γ) reaction on a nucleus in the water.
This measurement requires extremely low background and the deep-underground siting of
SNO led to a cosmic-ray muon background that was about 1000 times smaller than that of
Super Kamiokande. The heavy water was contained in a 12-meter diameter acrylic sphere in
the center of SNO and was borrowed from the Canadian nuclear reactor program; it was
estimated to have a value of 300 million Canadian dollars.

7 The oscillation properties of neutrinos and antineutrinos of the same generation are expected
to be related by CPT symmetry. Thus the large-angle KamLAND solution for electron
antineutrinos may be interpreted as corroboration of the large-angle solution found for solar
neutrinos.



13

Evolution of Lower-Mass Stars

Life on the main sequence is characterized by the stable burning of core
hydrogen to helium in hydrostatic equilibrium. While on the main sequence
the inner composition of a star is changing but there is little outward
evidence of this until about 10% of the original hydrogen is exhausted and
the star experiences a rapid evolution away from the main sequence.
Although the period of stellar evolution after the main sequence is short
compared with the time spent on the main sequence, post main sequence
evolution is more complex than main sequence evolution and is relevant for
understanding a number of important topics in astrophysics. Accordingly,
we turn now to a discussion of stellar evolution after the main sequence and
the associated timescales introduced by ignition of thermonuclear fuels
more massive than hydrogen. In this chapter the post main sequence fate of
lower-mass stars [which will be taken to be stars with initial main sequence
(ZAMS) mass less than about 8 M⊙] will be discussed, while in Chapter 14
the evolution of higher-mass stars with initial mass M >

≳ 8 M⊙ will be
considered.

13.1 Endpoints of Stellar Evolution
The primary distinction between lower-mass and higher-mass stars for our
purposes will be that the endpoint of stellar evolution is (1) a white dwarf
plus expanding planetary nebula for a lower-mass star, or (2) a core-
collapse event that leaves behind a neutron star or black hole, plus
expanding debris (supernova explosion)—or a black hole with no
significant additional remnant (failed supernova)—for a higher-mass star.1
Most simulations indicate that the minimum ZAMS mass required for the
stellar core to collapse at the end of a star’s life is in the 8–10 M⊙ range,



with some uncertainty because of gaps in our understanding of stellar
evolution, and because a massive star can lose mass to stellar winds during
main-sequence evolution. For this discussion the boundary between higher-
mass and lower-mass stars will be taken as M ∼ 8 M⊙, with some fuzziness
implied because of the above uncertainties. Note that this definition of
lower-mass stars includes the stars with very low main sequence mass (M ≲
0.5 M⊙). Although theoretically these stars are expected to evolve to
helium white dwarfs, the pace of evolution for them is so slow that few
could have left the main sequence since the birth of the Universe. Hence
there is limited observational evidence and the present discussion will
mention them only in passing.

13.2 Shell Burning
An important characteristic of post main sequence evolution is the
establishment of shell burning sources, as illustrated in Figs. 13.1 and 13.2.
As the initial core hydrogen is depleted a thermonuclear ash of helium
builds up in its place. This ash is inert under hydrogen burning conditions
because much higher temperatures and densities are necessary to ignite
helium. However, as the core becomes depleted in hydrogen there remains a
concentric shell in which the hydrogen concentration and the temperature
are both sufficiently high to support hydrogen burning (Fig. 13.1). This is
termed a hydrogen shell source. As the core contracts after exhausting its
hydrogen fuel the temperature and density rise and this may eventually
ignite helium in the core. As the helium burns in the core a central ash of
carbon is left behind that is inert because much higher temperatures are
required to burn it to heavier elements. This is termed core helium burning.
However, just as for hydrogen, once sufficient carbon ash has accumulated
in the core the helium burning will be confined to a concentric shell
surrounding the inert core; this is termed a helium shell source.



Fig. 13.1 Conditions for hydrogen shell burning. Below the shell there is no hydrogen fuel to burn
and above it the temperature is too low to burn hydrogen.

Fig. 13.2 Schematic illustration of successive shell burnings for stars after the main sequence.

If the star is sufficiently massive the preceding scenario may be repeated
for successively heavier core and shell sources, as illustrated in Fig. 13.2.
Shell and core sources need not be mutually exclusive. More massive stars
may have at a given time only a core source, only a shell source, multiple
shell sources, or a core source and one or more shell sources, and these



sources can have complex instabilities and interactions. In the schematic
example of Fig. 13.2 the third stage involves both a helium core source and
a hydrogen shell source, and Fig. 13.6 below illustrates successive burning
stages involving core and shell sources in various combinations. The mirror
principle discussed in Box 13.1 is a useful qualitative guide for
understanding shell sources.

Box 13.1 Mirror Response of Mass Shells

An important aspect of stellar evolution in the presence of shell energy
sources is termed the mirror principle. Experience indicates that shell
sources tend to produce “mirror” motion of mass shells above and
below them, as illustrated below.

For example, if there is a single shell source the mass layers below the
shell source tend to contract because it has no central energy source and
the mass layers above the shell source tend to expand because
contraction of the core releases heat, as illustrated in (a) and (c). For two
shell sources, each tends to mirror the mass shells above and below, as
illustrated in (b). In the absence of core burning, with two shell sources
the core tends to contract, so by the mirror principle the layers above the
inner shell source tend to expand (moving the second shell source
further outward). Applying the mirror principle to the outer shell source,
the layers outside the outer shell source will tend to contract. Motion in
the HR diagram that is observed in late stellar evolution simulations
often can be understood simply in terms of this principle of mirrored
motion when there are shell sources.



13.3 Stages of Red Giant Evolution
As discussed in Section 2.3, globular clusters have HR diagrams differing
substantially from those for stars near the Sun or for open clusters. In
Section 2.6 this was interpreted as evidence that globular clusters are old
and that these differences are connected with the time evolution of star
populations. Those qualitative remarks may now be placed on a much
firmer footing. The most distinctive features of the HR diagrams for old
clusters are (1) absence of main sequence stars above a certain luminosity,
and (2) loci of enhanced populations in the giant region termed the red
giant branch (RGB), the horizontal branch (HB), and the asymptotic giant
branch (AGB), that are illustrated schematically in Fig. 13.3 and for an
actual cluster in Fig. 13.4. Regions of enhanced population in the HR
diagram indicate that the individual stars of a population spend
proportionally larger fractions of their lives there. As we will now discuss,
the red giant, horizontal, and asymptotic branches can be identified with
distinct periods of post main sequence evolution that are short compared
with the time spent on the main sequence, but long compared with the
stages in between.

Fig. 13.3 Schematic giant branches in an evolved cluster. Compare Fig. 13.4 for an actual cluster.



Fig. 13.4 Giant branches for the globular cluster M5 in Serpens. Compare with the schematic
branches of Fig. 13.3. Redrawn from www.messier.seds.org/xtra/leos/msf4.html by Leos Ondra.

As a representative case, consider the calculated evolution of a 5 solar
mass star, as illustrated in Figs. 13.5 and 13.6, and Table 13.1. Beginning at
the Zero Age Main Sequence (ZAMS), the star converts hydrogen to
helium and this ongoing change in the core composition causes a small
upward drift on the HR diagram for the main sequence period
(characterized by core hydrogen burning). As its hydrogen is depleted the
core contracts and eventually a hydrogen shell source is established. These
events signal a rapid departure from the main sequence that will now be
followed in some detail.

http://www.messier.seds.org/xtra/leos/msf4.html


Fig. 13.5 Evolution from the main sequence to the asymptotic giant branch for a metal-rich 5 solar
mass star (adapted from Ref. [125]). Luminosities are in solar units and the effective temperature is
in kelvin. The times to evolve through each numbered interval are given in Table 13.1. Adapted from
Icko Iben, Jr., Annual Review of Astronomy and Astrophysics, 5, 57–62b (1967),
https://doi.org/10.114b/annurev.aa.05.090167.003035.

https://doi.org/10.114b/annurev.aa.05.090167.003035


Fig. 13.6 Evolution of a 5 solar mass star after the main sequence. Darkest shading indicates regions
of energy production and regions with circles are convective. Note the breaks in scale for the time
axis. Adapted from Ref. [134]. Adapted by permission from Springer Nature, Evolution Through
Helium Burning: Massive Stars, Kippenhahn, R. and Weigert A. COPYRIGHT (1990).

Table 13.1 Duration of intervals for Fig. 13.5 in units of 106 yr [125]



13.4 The Red Giant Branch
Over time the hydrogen shell source burns its way outward, leaving in its
wake a helium-rich ash. Because the sole thermonuclear energy source at
this point is in a concentric shell, the core cannot maintain a thermal
gradient and it equilibrates in temperature. Such isothermal cores are
characteristic of stars that have only shell energy sources.

13.4.1 The Schönberg–Chandrasekhar Limit
As the core grows because of the shell burning it is supported primarily by
the pressure of the helium gas, which is typically nondegenerate and
nonrelativistic. However, there is a limit to the mass of an isothermal core
of helium gas that can be supported by the gas pressure. This Schönberg–
Chandrasekhar limit, which should not be confused with the
Chandrasekhar limit for white dwarf masses to be discussed in Section
16.2.2, is given by (see Problem 13.1)

(13.1)

for an isothermal core of ideal helium gas, where M is the total mass of the
star, Mc is the mass of the isothermal core, μc is the mean molecular weight
in the core, and μenv is the mean molecular weight in the envelope. The
growth of an isothermal helium core to this size typically requires that
about 10% of the original hydrogen be burned, which is one basis for the
earlier qualitative statement that significant evolution from the main
sequence commences when this amount of hydrogen has been consumed.

When the Schönberg–Chandrasekhar limit is reached in the core it can no
longer support itself or the layers pressing down around it against gravity;
the core begins to contract on a Kelvin–Helmholtz timescale, which is slow
compared with the dynamical timescale but rapid compared to the nuclear



burning timescale that has governed the time spent on the main sequence.
The contraction will proceed until ignition of helium fusion in the core
provides a stabilizing pressure gradient, or until interior densities are
reached where the electron gas becomes degenerate. Provided that the core
mass does not exceed about 1.4 M⊙ (see the discussion in Section 16.2.2),
the electron degeneracy pressure stops the contraction, but only after the
core has become much hotter and more dense, and substantial gravitational
energy has been released.

13.4.2 Crossing the Hertzsprung Gap
Much of the energy released in the contraction of the isothermal core is
deposited in the envelope, which expands and cools, enlarging and
reddening the photosphere. Thus the star evolves quickly to the right in the
HR diagram. The region between the main sequence and the red giant
branch (roughly between points 5 and 6 in Fig. 13.5) contains few stars and
is called the Hertzsprung gap. A given star evolves so quickly through this
region in comparison with its overall evolutionary timescale that there is
little chance of observing it in the Hertzsprung gap. From Table 13.1, the 5
M⊙ star spends only 8 × 105 yr in the Hertzsprung gap, compared with ∼ 9
× 107 yr for all evolutionary stages in the table. As the temperature of the
envelope decreases the opacity increases and the temperature gradient
exceeds the adiabatic gradient. Thus the star becomes convective in much
of its envelope, with the convection typically extending from just outside
the hydrogen-burning shell to the surface. As we will discuss further in
Section 13.10, this deep convection can bring some nuclear-processed
material to the surface, where it can be emitted from the star in the winds
described below.

The continued evolution to the red giant region may be viewed as
something like the inverse of the contraction on the Hayashi track of fully
convective protostars to the main sequence that was discussed in Section
9.8: the almost fully convective star ascends the Hayashi track in reverse to
the red giant region. The corresponding evolution in Fig. 13.5 is on the red
giant branch between the points labeled 6 and 7. While on the red giant
branch the greatly expanded star can exhibit significant envelope mass loss



through strong winds, with mass-loss rates as large as 10−6 M⊙ per year
observed for some RGB stars.

13.5 Helium Ignition
The triple-α reaction will be triggered when the core temperature
approaches ∼ 108 K (see Fig. 6.6).2 The onset of helium burning
corresponds to the cusp shown in Fig. 13.5 at point number 7, and signals
the end of red giant branch evolution. The ignition of the core helium is
qualitatively different for stars above and below about 2 M⊙, as will now
be elaborated.

13.5.1 Core Equation of State and Helium Ignition
More massive stars typically have larger core temperatures than less
massive stars at all stages of their evolution. Simulations indicate that more
massive stars have high enough central temperatures to evolve all the way
to helium burning without their cores becoming electron-degenerate. Under
these conditions the onset of core helium burning is probably a rather
smooth and orderly process. On the other hand, for stars of about 2 M⊙ or
less the core electrons will have become extremely degenerate before the
triple-α sequence ignites. The Schönberg–Chandrasekhar instability is a
property of an ideal gas equation of state. If the core becomes degenerate it
will be isothermal (because there is no central energy source, and because
degenerate matter is highly heat-conductive), but electron degeneracy
pressure will support the core and the Schönberg–Chandrasekhar instability
will not develop.

As discussed in Chapter 3, the equations of state for ideal gases and
degenerate gases differ fundamentally in the relationship between
temperature and pressure: for an ideal gas the pressure is proportional to
temperature but for a degenerate gas the pressure is essentially independent
of the temperature, because it derives primarily from the Pauli exclusion
principle, not thermal motion. As will now be discussed, this degenerate
core is stable in the absence of thermonuclear reactions but is spectacularly
unstable if thermonuclear burning is initiated in it.



13.5.2 Thermonuclear Runaways in Degenerate Matter
Thermonuclear reactions that are triggered under degenerate-electron
conditions lead to violent energy release because the reaction assumes the
character of a positive-feedback runaway:

1. Ignition of the reactions releases large amounts of energy, which
quickly raises the local temperature. In a normal explosion governed
by an equation of state nearer to that of an ideal gas the rise in
temperature causes a corresponding rise in pressure that tends to
separate and cool the reactants, limiting the explosion. This does not
happen under degenerate conditions because the pressure initially is
not increased by the sharp rise in temperature (see the discussion in
Box 19.1 and Box 3.8).

2. Since charged-particle reactions have very strong temperature
dependence, the rise in temperature causes a rapid increase in the
reaction rates; this in turn raises the temperature further and thus the
reaction rates increase, and so on in an exponentiating runaway.

3. Because of the large (metal-like) thermal conductivity of degenerate
matter, a thermonuclear runaway triggered locally in a star under
degenerate conditions spreads rapidly through the rest of the
degenerate matter.

This runaway continues until enough electrons are excited to states above
the Fermi surface by the high temperatures to lift the degeneracy of the
electron gas. The equation of state then tends to that of an ideal gas and the
resulting increase of pressure with temperature moderates the reaction.

13.5.3 The Helium Flash
When such a thermonuclear runaway occurs under degenerate conditions
for the triple-α reaction it is termed a helium flash. Simulations show that
stars of less than about 2 M⊙ that ignite helium burning will probably do so
under degenerate conditions. Simulations indicate further that the resulting
helium flash ignites the entire core of the star within seconds, that the
temperature can rise to more than 2 × 108 K before the runaway begins to
moderate, and that the energy release during the short flash can approach



1011 L⊙ (comparable to the luminosity of a galaxy)! However, these
simulations also indicate that this extremely violent event probably has little
directly visible external effect because the enormous energy release is
almost entirely absorbed in expanding the envelope. Once the degeneracy
of the core is lifted following the helium flash, or following the more
orderly initiation of the triple-α reaction in heavier nondegenerate cores, the
core helium burns steadily to carbon at a temperature of about 1.5 × 108 K.
This signals the beginning of the horizontal branch phase of red giant
evolution.

13.6 Horizontal Branch Evolution
The horizontal branch (HB) of Fig. 13.3 corresponds to a period of stable
core helium burning that is in many ways analogous to the core hydrogen-
burning main sequence (this corresponds to points 8–10 in Fig. 13.5).
Indeed, this period is sometimes termed the helium main sequence.

13.6.1 Life on the Helium Main Sequence
Life on the helium-burning main sequence is a time of near hydrostatic
equilibrium for the same reasons that the hydrogen-burning main sequence
corresponds to approximate hydrostatic equilibrium. However, for a given
star its helium-burning main sequence is much shorter than its hydrogen-
burning main sequence, for two reasons:

1. The nuclear burning timescale for helium is intrinsically shorter than
for hydrogen because burning of helium to carbon and oxygen releases
only about 10% of the energy per unit mass released by burning
hydrogen to helium.

2. The red giant star is more luminous than when it was on the main
sequence (see Fig. 13.5). Sustaining this luminosity in equilibrium
demands rapid fuel consumption.

For a particular star, these factors can make the time spent on the helium
main sequence an order of magnitude less than the time spent on the
hydrogen-burning main sequence. The following example illustrates.



Example 13.1 For evolution of the 5 M⊙ star shown in Fig. 13.5 the
simulation indicates that approximately 107 years are spent on the
horizontal branch (see Table 13.1), while the same star spends about 7 × 107

years on the main sequence. So in this case the time on the main sequence
is about seven times greater than the time spent on the helium main
sequence (horizontal branch).

As discussed in Section 6.3.4, helium burning is extremely sensitive to
temperature. Thus, for the same reasons that CNO burning on the main
sequence tends to produce convective cores (see Section 7.10.1), on the
helium main sequence core helium burning tends to occur under convective
conditions. The star remains on the horizontal branch while there is helium
fuel in its core to burn, steadily accumulating a carbon–oxygen ash in the
center.

13.6.2 Leaving the Horizontal Branch
When the core helium is exhausted, the core contracts, a thick helium-
burning shell is established, and the convection in the core is quenched. The
star now has two shell sources: the broader helium-burning shell at the
boundary of the C–O core, and the thin hydrogen-burning shell lying above
it at the base of the hydrogen envelope. In accordance with the mirror
property for the motion of mass shells around shell sources described in
Box 13.1, the core inside the helium source contracts, the inert helium layer
outside the helium shell source expands, pushing the hydrogen shell source
to larger radius, and the outer layers of the star contract (Fig. 13.7). This
causes the star to move to the left on the HR diagram and represents the
evolution between points 11 and 13 in Fig. 13.5.



Fig. 13.7 Mirror principle applied to helium and hydrogen shell sources during horizontal-branch
evolution.

The helium shell source narrows and strengthens as the core compresses.
Layers above the helium shell source expand and cool, turning off the
hydrogen shell source that was burning above the helium shell source
(temporarily; it will reignite later), leaving only a single active shell source.
The degeneracy of the core increases as the core contracts and the core
becomes isothermal since degenerate matter is highly conductive and there
is no central energy source. In accordance with Box 13.1 the star with its
single shell source contracts inside the helium source and expands outside
it, drifting quickly to the right in the HR diagram until it approaches the
Hayashi track (point 14 in Fig. 13.5). This signals the transition to the
asymptotic giant branch (AGB) of Fig. 13.3.

13.7 Asymptotic Giant Branch Evolution
In many respects the evolution on the asymptotic giant branch now mimics
that following the establishment of the first hydrogen shell source after core
hydrogen was depleted on the main sequence. However, the star now has an
electron-degenerate C–O core and two potential shell sources rather than
one. (The hydrogen source turned off because of the helium shell source but
it will re-ignite in later evolution on the asymptotic giant branch.) The
temporary quenching of the hydrogen shell source leaves only a single (He)
shell source and the outer layers continue to expand rapidly. The star again
increases in luminosity and radius and moves into the red giant region as



earlier, but at even higher luminosities on the asymptotic giant branch of
Fig. 13.3; it now becomes a bright red giant or supergiant star. The
corresponding evolution in Fig. 13.5 is from point 14 and beyond. This may
be viewed approximately as a continuation of the ascent on the RGB along
the Hayashi track that was interrupted by ignition of the core helium source
and stabilization for a time on the horizontal branch. If the star is
sufficiently massive the growing carbon core may ignite eventually, but if
M <

≲ 4–5 M⊙ this is not likely and all subsequent thermonuclear energy
production will be from the shell sources. A number of important features
characterize asymptotic giant branch evolution:

1. The brightness of the star, and thus the height of the ascent on the
AGB, is found to depend primarily on the mass of the C–O core and
not the envelope mass [176].

2. The shell sources exhibit instabilities called thermal pulses.
3. Shell sources in AGB stars are thought to be the primary site for the

slow neutron capture or s-process.
4. Stars in the red giant region often exhibit large mass loss. This is

particularly true for AGB stars.
5. Deep convective envelopes form in the AGB phase that can dredge

elements synthesized in the interior up to the surface, where they can
be distributed to the interstellar medium by winds from the surface.

Each of these important aspects of asymptotic giant branch evolution will
now be discussed in more depth.

13.7.1 Thermal Pulses
The AGB period is characterized by the presence of both hydrogen and
helium shell sources. However, these shell sources exhibit instabilities and a
complex interrelationship such that they are unable to coexist in equilibrium
and at any one time often only one of the two shell sources is burning.
These instabilities in AGB stars lead to what are called thermal pulses or
helium shell flashes.

Assume an inert C–O core surrounded by an inert He layer, with a
hydrogen shell source at the base of the hydrogen layer above adding to the



He layer, as illustrated in Fig. 13.8(a). There is no energy source inside the
hydrogen shell source so the He layer grows and compresses. This
eventually ignites the base of the helium layer, giving an inner He shell
source and an outer H shell source. But the expansion of the layers above
the hot He shell source lowers the temperature at the base of the hydrogen
envelope and turns off the H shell source, leaving the star with a single He
shell source, as in Fig. 13.8(b). The hot helium shell source produces a
steep temperature gradient and deep convective motion develops that
reaches down to the vicinity of the He shell source, as illustrated in Fig.
13.8(c). This convection mixes burning products from earlier evolution into
the surface layers. The He shell source burns outward, leaving a growing
C–O core behind. It eventually extinguishes because of insufficient
temperature at larger radius, but not before the proximity of the hot He
source re-ignites the shell source at the base of the hydrogen layer, leading
to the situation in Fig. 13.8(d). The hydrogen shell source burns outward,
leaving behind a new layer of helium and the cycle is repeated, but now
with a larger C–O core.



Fig. 13.8 Schematic illustration of the relationship between H and He shell burning that leads to
thermal pulses in an AGB star (not to scale). Adapted from figures in Ref. [176].

In the complicated tango between the shell sources that defines the cycle
in Fig. 13.8, the hydrogen shell source burns in rather stable fashion but the
He shell source can be very unstable because of the strong temperature
dependence for He burning, and because thin shell sources are inherently
unstable, as described in Box 13.2. Thus when the helium shell ignites it
can burn explosively in a short-lived shell flash (thermal pulse). The
resulting shell luminosity may reach ∼ 108 L⊙, but the energy is almost all
absorbed in the outer layers of the star. Simulations indicate that an AGB
star can undergo as many as hundreds of thermal pulses before the envelope
is eroded away by mass loss (see Section 13.7.4). The duration of a thermal
pulse is very short, so it is difficult to catch an AGB star undergoing one.

Box 13.2 Stability of Thin Shell Sources



Consider a thin shell source in a star of radius R and mass M. The
source is assumed to be in thermal equilibrium and to have a mass Δm,
density ρ, temperature T, and thickness L = r − r0 << R, as illustrated in
the following figure.

If this is a single energy-producing shell in thermal equilibrium the shell
is stable, with the rate of energy flow out of the shell equal to the rate of
energy generation in the shell. However, if the energy-generation rate is
increased by a fluctuation the shell will expand, pushing the layers
above it outward. As explored in Problem 13.4 using the generic
equation of state

with α ≥ 0 and β ≥ 0 (see Problem 4.16), stability of the shell for such
fluctuations requires that 4L/r > α. But α is positive and finite, so for
very thin shells L/r → 0 and the stability condition cannot be satisfied.
This is called the thin-shell instability; it may be significant for AGB
stars since they often develop thin shell sources. Physically the stability
requirement 4L/r > α implies that if a shell source is narrow enough the
temperature increases upon expansion, which is strongly destabilizing
and sets the stage for a thermonuclear runaway. Therefore, in many
respects a thin shell source behaves like a degenerate gas with regard to



thermal stability, even if the gas in the shell source is not degenerate.
Thin He shell sources are particularly unstable because helium is a very
explosive thermonuclear fuel (see Section 6.3.4).

About a quarter of AGB stars are predicted to undergo one final helium
shell flash after hydrogen burning has ceased. This late thermal pulse
occurs after the star has ejected most of its envelope as a planetary nebula
and is settling into the white dwarf phase (see Section 13.9). Computer
simulations of this event suggest that in such a star the helium shell can re-
ignite and the small remaining hydrogen envelope can be convectively
mixed into the helium shell, leading to additional rapid hydrogen-driven
flash burning and renewed mass ejection. The evolution in the
Hertzsprung–Russell diagram of a star that may have been captured
undergoing a late thermal pulse while cooling from the AGM to white
dwarf phase is described in Box 13.3.

Box 13.3 Sakurai’s Object and Thermal Pulses

Late thermal pulse events in asymptotic giant branch stars are expected
to be rare, with a predicted rate of only about one per decade in our
galaxy.

Thermal Pulses of V4334 Sgr
V4334 Sgr (Sakurai’s Object) may be a star caught undergoing a late
thermal pulse. Since discovery in 1996, it has exhibited rapid evolution
on the HR diagram, accompanied by substantial mass ejection. Data
(dots) and model simulation (curves) of the evolution in the HR diagram
are illustrated in the following figure [104],



Reprinted from “The Real-Time Stellar Evolution of Sakurai’s”, Marcin Hajuk et al., Science,
308(5719), 231–233, 2005, DOI:10.1126/science.1108953

with a solid curve indicating the prediction of the model for evolution
before discovery and a dashed curve indicating the prediction for
evolution afterwards.

Rapid Looping in the HR Diagram
In this evolution two loops in the HR diagram are expected. The first is
fast and associated with rapid burning of hydrogen ingested into the
helium layer. The second, slower loop corresponds to the helium flash.
These loops imply variations in the surface temperature by factors of ten
on timescales of tens to hundreds of years, and the observed effective
surface temperature increased by about a factor of two in just the ten
years following the discovery of the star in 1996. These changes are
remarkably fast compared with standard timescales for stellar evolution.



13.7.2 Slow Neutron Capture
Figure 13.9 summarizes the abundances observed for the elements as a
function of atomic mass number. It was shown in Chapter 6 that the
elements up to iron can be produced by fusion reactions and by nuclear
statistical equilibrium in stars. But what of the elements beyond iron? They
cannot be produced in the same way because the Coulomb barriers become
so large that extremely high temperatures would be required to force
heavier nuclei to react. These high temperatures would produce a bath of
photons having such high energy that they would photodisintegrate any
heavier nuclei that were formed. Thus, other mechanisms must be
responsible for producing heavier elements. One possibility is the capture of
neutrons on nuclei to build heavier nuclei (see Box 5.2). Because neutrons
are electrically neutral they do not have a Coulomb barrier to overcome,
permitting reactions to take place at low enough temperatures that the
newly formed heavy nuclei will not be dissociated immediately by high-
energy photons.

Fig. 13.9 Solar System elemental abundances expressed as a ratio relative to silicon abundance [183].



Two basic neutron capture processes are thought to produce heavy
elements, the slow neutron capture or s-process and the rapid neutron
capture or r-process. Although the astrophysical sites for these neutron
capture reactions have not been confirmed, it is widely believed that the s-
process takes place in AGB stars (for example, see Ref. [64]) and the r-
process in neutron star mergers, core collapse supernova explosions, and
possibly in jets produced by rapidly rotating collapsed objects. The s-
process will be discussed here and the r-process will be addressed in
Section 20.5.

The s-process: The s-process is a sequence of neutron-capture reactions
interspersed with β-decays where the rate of neutron capture is slow on a
timescale set by the β-decays; Figure 13.10 illustrates. In this example, 56Fe
subject to a low neutron flux captures three neutrons sequentially to become
59Fe. But as the iron isotopes become neutron rich they become unstable
against β− decay. In this example it is assumed that the neutron flux is such
that 59Fe is likely to β-decay to 59Co before it can capture another neutron.
Now the 59Co nucleus can absorb neutrons and finally β-decay to produce
an isotope of the next atomic number (nickel), and so on. By this process,
heavier elements can be built up slowly if a source of neutrons and the seed
nuclei (iron in this example) are available. Because of the competition from
β-decay, it is clear that the s-process can build new isotopes only near the
valley of β-stability illustrated in Fig. 13.11.

Fig. 13.10 Example of slow neutron capture and β-decay in the s-process. (a) Schematic. (b) Flow in
the neutron–proton plane.



Fig. 13.11 Valley of β-stability (shaded boxes). Isotopes lying in this valley are stable against β-
decay. The “drip lines” mark the boundaries for spontaneous emission of protons or neutrons.
Isotopes outside the stability valley are increasingly unstable against decay by β+ emission as the
proton number is increased, and unstable against β− emission as the neutron number is increased.

In Fig. 13.12 the s-process path is shown for the Yb–Os region. This
figure also illustrates the competition between the s-process and r-process.
As we will see in Section 20.5, the r-process populates very neutron-rich
isotopes that then β− decay toward the stability valley. Some isotopes (for
example, 186Os or 187Os) can be populated only by the s-process because
other stable isotopes protect them from r-process populations β-decaying
from the neutron-rich side of the n–p plane. Other isotopes (for example,
186W) can be populated only by the r-process because an unstable isotope
lies to their left in Fig. 13.12, blocking the s-process slow neutron capture
path. Many other isotopes can be produced both by the s-process and the r-
process. A theoretical estimate for relative contributions of the s-process
and r-process to heavy element abundances is summarized in Fig. 13.13.



Fig. 13.12 The s-process path (zigzag line) in the Yb–Os region. Gray boxes indicate β-stable
isotopes. The s-process path stays close to the β-stability valley. The r-process contributions come by
β− decay from the r-process path in Fig. 20.21.



Fig. 13.13 Relative contributions of the s-process (—) and r-process (- - - -) to heavy-element
abundances [25]. Reprinted from “Nuclear Structure Aspects in Nuclear Astrophysics,” A.
Aprahanian, K. Langanke, M. Wiescher, Progress in Particle and Nuclear Physics, 54, 533–613,
copyright (2005), with permission from Elsevier.

Neutron sources: The s-process requires neutron densities greater than ∼
106 neutrons per cubic centimeter. Only a few nuclear reactions that are
likely to occur in stars under normal conditions produce neutrons and free
neutrons are unstable against β-decay, so neutrons for the s-process are not
easy to come by. Box 13.4 discusses possible neutron sources for the s-
process that are thought to be present in red giant stars during the AGB
phase.

Box 13.4 Neutron Sources for the s-Process

A free neutron β-decays with a mean life of about 15 minutes. Thus, for
neutron capture reactions to operate in stars on timescales larger than
this there must be a source that makes neutrons available continuously
for extended periods. For the slow capture process it is thought that two
reactions that can occur in AGB stars are primarily responsible for
supplying the neutrons:

The 13C(α, n)16O reaction is expected to provide the bulk of the neutron
captures at low neutron densities (≲ 107 cm−3). It occurs primarily
between thermal pulses under radiative transport conditions, in the
region immediately below the layers homogenized by deep convection
in the preceding pulse (third dredge-up; see Section 13.10). The 22Ne(α,
n)25Mg reaction is of secondary importance and occurs primarily at
higher temperatures during thermal pulses, where it exposes material
that was produced by neutron irradiation from the 13C(α, n)16O reaction
and subsequently entrained in the thermal pulse to further neutron
processing [64].

13.7.3 Development of Deep Convective Envelopes



As illustrated in Fig. 13.6, once a thin helium shell source develops the
resulting temperature gradients drive very deep convection extending down
to the region of the shell sources. The mixing associated with this deep
convection is central to understanding nuclear-processed material
associated with surfaces and winds for red giant stars (see Section 13.10).

13.7.4 Mass Loss
Once stars leave the main sequence they can experience large mass losses,
particularly in the AGB and RGB phases. This is indicated most directly by
the observation of gas clouds with outwardly directed radial velocities of 5–
30 km s−1 near such stars. The mass-loss rate ṁ may be described
approximately in terms of the semiempirical expression [108]

(13.2)

where A ∼ 4 × 10−13 is a constant, L is the luminosity, R is the radius, and
M is the mass of the star. Thus, the mass-ejection rate increases for larger
luminosity, larger radius, and smaller mass, as would be expected for mass
loss from the surface of a luminous object3 with a surface gravitational field
determined by its mass and radius. Therefore, for RGB and AGB stars the
rapid increase of radius and luminosity leads to increased mass loss, and as
the star sheds its matter the decreased residual mass reduces the
gravitational potential and can further accelerate the loss. Although the
detailed mechanism is not well understood, it is clear empirically that the
mass loss can increase by orders of magnitude relative to that associated
with normal stellar winds in the RGB and AGB phases.

Example 13.2 For RGB stars mass losses of 10−6 M⊙ yr−1 have been
recorded, while for AGB stars the losses can approach 10−4 M⊙ yr−1. If
these rates were sustained, a red giant star would eject its mass on a
timescale that is tiny compared to its overall lifetime.



13.8 Ejection of the Envelope
In the AGB phase the envelope of the star is consumed from within and
from without: the surface is ejecting mass at a rate governed by Eq. (13.2),
while the C–O core is growing internally as the shell sources burn outward,
with the surface mass loss being more important than growth of the core by
orders of magnitude. This rapid loss of the envelope from surface mass
ejection while the core grows at very small comparative rates has two
important implications for explaining observational characteristics of late-
time stellar evolution:

1. The envelope is lost rapidly, leaving behind a core of C and O (or Ne
and Mg for more massive AGB stars). The rapid loss of the envelope
implies that a range of initial masses will leave behind cores of almost
the same mass. This is significant because white dwarf masses are
observed to be concentrated in a narrow range near M ≃ 0.6 M⊙.

2. The ejected envelope is a natural candidate for producing planetary
nebulae, which are commonly observed phenomena in late stellar
evolution.

Hence the normal outcome of AGB evolution is ejection of the star’s
envelope as a planetary nebula, leaving behind a bare C–O or Ne–Mg core
that will cool to form a white dwarf. The point at which the star leaves the
AGB branch of the HR diagram is determined by the mass of the envelope
at the end of helium core burning and the rate of mass loss from winds. Late
in the AGB phase mass loss can increase dramatically for a short period
called the superwind phase (which, as for other mass-loss phases, is not
well understood). From this point onward the evolution of the core and the
envelope may be considered separately.

13.9 White Dwarfs and Planetary Nebulae
As the core of the dying AGB star compresses it follows the evolutionary
track sketched in Fig. 13.14. This takes it to much higher temperatures than
are encountered for normal stars in the HR diagram. It finally cools to the
white dwarf region with attendant decrease in luminosity. This high-



temperature excursion is a result of retained thermal energy and
gravitational compression, since the core is no longer capable of producing
energy by thermonuclear processes.

Fig. 13.14 Schematic evolution of the stellar core after the asymptotic giant branch.

The remnants of the ejected envelope recede from the star. When the
temperature of the bare core reaches about 35,000 K a fast wind, probably
associated with radiation pressure from the hot core, accelerates the last
portion of the envelope to leave, forming a shockwave that proceeds
outward and defines the inner boundary of the emitted cloud. As the
temperature of the central star climbs, the spectrum is shifted far into the
UV and this bath of high-energy photons from the central star ionizes the
hydrogen in the receding envelope; the resulting recombination reactions
between ions and electrons emit visible light and account for the luminosity
and the often beautiful colors associated with the planetary nebula. Fig.
13.15 illustrates some of the complex morphologies that can result from
these processes. The core and the planetary nebula now proceed on their
separate ways, the core cooling slowly to a white dwarf, the planetary
nebula expanding and growing fainter, eventually to merge into the



interstellar medium and enrich it with gas and dust containing new elements
synthesized in late red giant evolution.

Fig. 13.15 A variety of planetary nebulae imaged by the Hubble Space Telescope. Clearly the ways
in which dying AGB stars eject their envelopes can be quite complex.

13.10 Stellar Dredging Operations
Red giant stars exhibit abundances of isotopes in their surfaces and winds
that only could have been produced by nuclear burning in the core or in
shell sources deep within the star (see Ref. [64] for a summary and
literature references). Since post main sequence evolution in the red giant
phases involves episodes of deep convection, it is logical to assume that the
observed nuclear-processed material is brought to the surface by such deep
convective mixing. This mechanism of transporting the products of nuclear
processing to the surface by deep convection is termed a dredge-up. Three
dredge-up episodes have been identified in post main sequence evolution:



1. First dredge-up is thought to occur as the star develops deep
convection driven by the hot hydrogen shell source prior to triple-α
ignition on the red giant branch.

2. Second dredge-up can occur early in AGB evolution for intermediate-
mass stars as a result of convective gradients generated by the
narrowing helium shell source.

3. Third dredge-up is more difficult to produce in simulations than the
first two, but appears necessary to understand surface isotopic
abundances for many evolved AGB stars. It is thought to be associated
in a complex way with thermal pulses in AGB evolution, through deep
convection that extends at least periodically into the region between
the H and He shell sources (see Ref. [64] for an overview of current
investigations).

These various dredge-up episodes are not well understood but are essential
to explaining observations like carbon stars (stars with a greater surface
abundance of carbon than oxygen), and the abundance of interstellar carbon
dust grains, as discussed further in Box 13.5.

Box 13.5 Stars, Soot, and Interstellar Dust

On Earth chemical burning of carbon produces the black powdery
material called soot. Soot is composed of complex and varied
compounds whose basic building blocks are polycyclic aromatic
hydrocarbons (PAHs), which are hydrocarbons having multiple-ring
structures.a Relatively broad mid-infrared emission features observed in
various nebulae indicate that interstellar dust is composed largely of
clumps of PAHs. It is thought that these form in the outflows from
carbon-rich AGB stars by an analog of soot formation in terrestrial
environments [214, 217], and that the mid-IR emission features result
from IR fluorescence of PAHs containing ∼ 50 molecules that have
been pumped (excited) by far-ultraviolet radiation [214].

There is little direct observational support for this hypothesized origin
of PAHs in outflows from carbon-rich AGB stars. This is probably
because PAHs are abundant in these outflows but AGB stars have
surfaces too cool to emit the UV photons required to pump IR
fluorescence of the PAHs and they are effectively invisible. (IR features



characteristic of PAHs have been observed in a binary system where the
carbon-rich outflow from an AGB star is illuminated by UV photons
from a hot blue companion star [214].) There is strong evidence for
PAH spectral features in the planetary nebulae emitted by dying AGB
stars. This is thought to be caused by the increasing effective
temperature of the central object on its way to becoming a white dwarf,
which produces a flux of UV photons that excite the PAHs in the
receding nebula into IR fluorescence. Thus the clear presence of PAHs
in the descendants of carbon-rich AGB stars provides strong
circumstantial evidence that such stars are a major source of PAHs, and
thus of interstellar dust grains.
a “Aromatic” refers to organic compounds that achieve enhanced stability by delocalizing

electrons over multiple chemical bonds, which lowers their kinetic energy by uncertainty-
principle arguments. The terminology arose because the first such compounds studied often
had a distinctly pleasant aroma.

13.11 The Sun’s Red Giant Evolution
What does the preceding discussion have to say about our own star? The
Sun will evolve into a red giant on the way to shedding its envelope to
become a C–O white dwarf. This evolution will have large consequences
for Earth. (The Sun has 5 billion years left on the main sequence, so there is
plenty of time to prepare!) Figure 13.16 illustrates a simulation describing
the predicted expansion of the Sun in the beginning of its red giant phase.
The calculation up to 12 × 109 yr is the same as that in Fig. 10.9 but Fig.
13.16 extends the red giant evolution to the point where the expanding Sun
engulfs the orbit of Earth. The top panel shows the Sun and Earth’s orbit
drawn to scale at various stages of the evolution. At present the Earth’s
orbital radius is 214 times the radius of the Sun, so the Sun is largely
invisible on the scale of the Earth’s orbit. In this simulation the Sun expands
to the size of Earth’s present orbit 12.0628 × 109 yr after the time marked
zero in the protostar collapse.



Fig. 13.16 Evolution of the Sun showing projected implications for Earth as the Sun evolves into a
red giant, adapted from Iben [130]. Times in units of 109 years are shown beside the curve. The
parallel diagonal lines join points of constant stellar radius. Protostar evolution is indicated by the
dotted curve, beginning from when the protostar has collapsed to a radius 10 times that of the present
Sun. The top panel shows Earth’s orbit and the Sun drawn to scale at various stages of the evolution.

As indicated in Fig. 13.16, the Sun’s later evolution will have dramatic
implications for Earth [130]. The oceans presently are mostly liquid, except
for ice near the poles. If the Sun’s luminosity were decreased somewhat, the
oceans would freeze. Conversely, when the Sun’s luminosity increases as it
begins to leave the main sequence Earth’s equilibrium temperature will rise
and before the Sun reaches twice its present radius the oceans of Earth will
boil away. The temperature will continue to rise and by the time the Earth
celebrates its 12 × 109-yr birthday the Sun’s radius will have increased by a



factor of 10 over the present value so that the Sun will appear as a large,
increasingly red (the spectral class will have shifted from the present G2 to
∼ K2) ball subtending a 5◦ angle on the sky, the solar luminosity will have
increased to about 40 times the current value, and temperatures on Earth
will have reached the melting point of iron. From this point the evolution
will become rapid (by astrophysical standards). It will take the Sun about 7
billion years to increase its radius from the present value to 10 times that,
but in the ensuing ∼ 60 million years the solar radius will increase by an
additional factor of more than 20 as the Sun begins to ascend the red giant
branch, engulfing the Earth a little over 12 billion years after formation of
the Solar System and causing it to spiral inward and be incinerated because
of the friction with the Sun’s outer envelope (thereby slightly increasing the
metallicity of the Sun).

13.12 Overview for Low-Mass Stars
An overview of evolution after leaving the main sequence for various stars
in the 0.25–5 M⊙ range is given in Fig. 13.17. All but the lightest evolve
into the red giant region in these simulations but they exhibit mass-
dependent differences: (1) evolution is faster, with possible looping and
switchbacks for the heavier stars, and (2) as mass increases the post main
sequence motion on the HR diagram is increasingly horizontal and to the
right, rather than the highly vertical ascent seen for lower-mass stars. These
differences with increasing mass will receive sharp focus in Chapter 14,
where we shall take up evolution of the most massive stars.



Fig. 13.17 Evolution off the main sequence for stars of 5 M⊙ or less, adapted from simulations in
Ref. [125]. Evolutionary times between the numbered points are given in Table 10.4. Dashed curves
are theoretical estimates. Adapted From “Stellar Evolution within and off the Main Sequence,” Icko
Iben, Jr., Annual Review of Astronomy and Astrophysics, 5(1), 571–626, 1967.

Background and Further Reading
See Böhm-Vitense [52]; Hansen, Kawaler, and Trimble [107]; Harpaz
[108]; Kippenhahn, Weigert, and Weiss [134]; Phillips [169]; Prialnik
[176]; and the review in Busso, Gallino, and Wasserburg [64]. The two-
volume book by Iben [130] is a comprehensive summary of decades of
pioneering stellar evolution simulations.

Problems
13.1 The Schönberg–Chandrasekhar instability for isothermal helium

cores is important for understanding the evolution of red giant stars.
To investigate the physics of isothermal stellar cores it is useful to
apply the virial theorem to the isothermal core of a star rather than to
the entire star.



(a) Repeat the derivation of the virial theorem given in Section 4.5
but now extend the integration over mass only from 0 to M(Rc),
where Rc is the assumed radius of an isothermal core. Show that
the the resulting virial theorem for the isothermal core is

where Pc is the pressure at the boundary of the isothermal core
and Ωc is the gravitational energy generated by the sphere of
radius Rc.

(b) Assuming ideal-gas behavior, show that the preceding result
can also be expressed as

where Vc is the volume of the core, and also as

where Uc is the total internal energy and γ is the adiabatic index
of the core.

(c) Use the result from part (a), parameterize the gravitational
potential by

where f is a parameter of order one accounting for the
distribution of matter in the star, and assume the gas to be ideal
and isothermal to show that

where Tc is the temperature of the isothermal core and μc is the
mean molecular weight within the isothermal core (assumed to



be constant).
(d) Show from the preceding results that there is a maximum

pressure that the isothermal core can generate. By setting the
derivative of Pc with respect to Mc equal to zero, show that the
corresponding radius is

giving a maximum pressure

Part (d) shows that the maximum pressure that the isothermal core
can generate scales as the inverse square of the mass of the core.
This pressure must balance the pressure of the layers overlying the
isothermal core for stability. Hence, there may be a maximum core
mass beyond which the pressure of the isothermal core can no longer
balance the pressure from the overlying layers. Exceeding this mass
for an isothermal helium core precipitates the Schönberg–
Chandrasekhar instability.***

13.2 Assume that a star is formed with the mass fractions X = 0.70, Y =
0.28, and Z = 0.02, and that the star is completely ionized. If at the
end of main sequence evolution all hydrogen in the core has been
converted to helium and the core is isothermal, estimate the
Schönberg–Chandrasekhar limit assuming the composition outside
the core to be unchanged from that at formation of the star. Hint: The
approximate formulas of Section 3.4.4 are useful for this problem.

13.3 Assuming a typical neutron capture cross section on a seed nucleus
to be 100 mb, estimate the number density of neutrons required
under red giant conditions to give a mean life for neutron capture on
a given seed nucleus of one year.

13.4 Consider the thin shell source illustrated in Box 13.2.
(a) Use the equation of hydrostatic equilibrium expressed in

Lagrangian form to get an expression for the pressure in the
shell in terms of an integral over the mass coordinate.



(b) Perturb the shell by shifting its radial coordinate outward by a
small amount δr/r0, leading to a small change in pressure δP,

Find an expression for the new pressure in the shell after the
small perturbation, and show that this solution implies a
variation of pressure with density given by

Hint: The perturbation is assumed small, so expansions are
justified.

(c) Use that δr and δP are small, and the general equation of state
discussed in Problem 4.16,

to show that the thermal stability condition (T must decrease if
the shell expands) can be satisfied only if 4L/r > α, where α is a
finite positive number.

Thus, if the shell source is too thin it will be unstable, even if the gas
in it is not degenerate.***

13.5 A semiempirical expression originally proposed by Paczyński for
the luminosity of an AGB star may be written as

where Mc is the mass of the carbon–oxygen core [176]. Compare
this luminosity for an AGB star with the corresponding Eddington
luminosity assuming a C–O core mass of 0.6 M⊙ and a total mass of
1 M⊙.***

13.6 Use the calculated evolution of a 5 M⊙ star displayed in Fig. 13.5
to argue quantitatively why it is very difficult to observe stars



evolving through the Hertzsprung gap. Hint: See Table 13.1.
13.7 Use interpolation from Fig. 13.16 to estimate the time since

formation, effective surface temperature, spectral class, and
luminosity for the Sun when its radius has increased to 5, 10, 50, and
200 R⊙ during its ascent to the red giant branch. Assume for present
purposes that the correlation between surface temperature and
spectral class for main sequence stars remains approximately valid
in this evolution.

13.8 Let Mto be the stellar mass corresponding to the luminosity of the
turnoff point in a star cluster (Fig. 2.9 and the relationship between
mass and luminosity discussed in Section 1.6). Derive an expression
for the ratio of the number of white dwarfs to the total number of
main sequence stars as a function of Mto (and thus of the age of the
cluster) assuming that:
1. The lowest-mass star that can form has mass M1.

2. All stars in the cluster with initial mass M ≥ MSN ∼ 8 M⊙ have
already undergone a core collapse supernova explosion.

3. Because the time on the main sequence is long compared with
all later stages, when a star leaves the main sequence it
instantaneously becomes a white dwarf or explodes as a core
collapse supernova.

4. The simple Salpeter power law (9.16) is a reasonable
approximation for the initial mass function of the cluster.

Make a plot of the fraction of white dwarfs as a function of the
turnoff point mass assuming that M1 = 0.1 M⊙ and MSN = 8 M⊙.

1 At a more technical level it is common to make more than two mass-range distinctions in
discussing stellar evolution, but for our purposes dividing stars into those that evolve to some
form of white dwarf (which we shall term lower-mass) and those that evolve to some form of
core-collapse event (which we shall term higher-mass) seems most natural.

2 The lightest stars will presumably not be able to initiate the triple-α reaction in their
abbreviated red giant phases because of low initial mass and because of mass loss after
expanding off the main sequence. These stars will lose their envelopes and their unburned
helium cores will be left behind as helium white dwarfs.

3 The luminosity of AGB stars is often near the Eddington limit of Eq. (9.15), as shown in
Problem 13.5.



14

Evolution of Higher-Mass Stars

In this chapter we shall address the evolution of higher-mass stars, which
will be defined to be those stars with a zero age main sequence mass of 8
M⊙ or more. As indicated by the discussion of the initial mass function in
Section 9.12, such stars are much less common than their lower-mass
siblings, but we shall see that they can sometimes have a more dramatic
impact. In many respects these stars go through a similar evolution as the
lower-mass stars described in Chapter 13, but there are some critical issues
that are unique to high-mass stars. We shall first summarize these features
in the following section and then proceed to discuss them in more detail in
subsequent sections.

14.1 Unique Features of More Massive Stars
Higher-mass stars exhibit a set of characteristics that are not commonly
found in lower-mass stars. These include:

1. The same burning stages as for lower-mass stars are encountered, but
additional advanced burning stages of heavier fuels are initiated that
are not accessible to lower-mass stars. If the star is massive enough it
will proceed all the way to formation of an iron core.

2. The evolution through all stages occurs more rapidly and at greater
luminosity.

3. Nucleosynthesis occurring in evolution after the main sequence
produces heavier and more varied elements than those synthesized for
less-massive stars.

4. Neutrino emission becomes increasingly important in more advanced
burning stages, with core-cooling dominated by neutrinos for carbon



burning and beyond.
5. The luminosity on the main sequence and after is often close to the

Eddington limit and remains relatively constant after the main
sequence. Thus the evolution after the main sequence for massive stars
is very horizontal on the HR diagram.

6. Mass loss by strong stellar winds can be significant, even on the main
sequence.

7. The central temperatures are high and the core electrons typically
remain nondegenerate despite the high density until the latest burning
stages.

8. The iron core formed in the last stages of main sequence evolution for
massive stars is supported by electron degeneracy pressure and is
inherently unstable if it grows beyond a critical mass of about 1.2 − 1.3
M⊙. This implies that the endpoint of stellar evolution will be
fundamentally different for a massive star relative to that for a lower-
mass star.

Each of these issues will be addressed in this chapter or in the discussion of
core collapse supernova explosions in Chapter 20. It is useful to begin with
the consequences of advanced burning stages that are accessible only to
massive stars.

14.2 Advanced Burning Stages in Massive Stars
The post main sequence evolution of 9 M⊙ and 15 M⊙ stars is shown in
Fig. 14.1. This evolution is extremely rapid, as illustrated in Table 10.4.
Because of the sequential advanced burning stages described in Chapter 6,
massive stars near the ends of their lives build up the layered structure
depicted schematically in Fig. 14.2. If the star has a mass M ≳ 8M⊙,
simulations indicate that successively heavier fuels can be burned as the star
compresses and heats up, until an iron core is formed in the center. The iron
core cannot produce energy by fusion (the curve of binding energy peaks in
the iron region; see Fig. 5.1), but simulations indicate that by the time the
iron core forms its electrons have become highly degenerate, so the core is
supported initially against collapse by electron degeneracy pressure.



However, as the silicon layer surrounding the iron core undergoes reactions
it produces more iron and the central iron core grows more massive.
Beyond a critical mass of about 1.2 − 1.3 M⊙ (depending on composition)
the core will become gravitationally unstable and collapse. This will be
described in some detail in Chapter 20. In the present chapter we will
concentrate on understanding the evolution of high-mass stars prior to
encountering the gravitational instability of the iron core.

Fig. 14.1 Evolution off of the main sequence (labeled by 1) for high-mass stars, adapted from
simulations in Ref. [125]. The evolutionary times between the numbered points are given in Table
10.4. Adapted From “Stellar Evolution within and off the Main Sequence,” Icko Iben, Jr., Annual
Review of Astronomy and Astrophysics, 5(1), 571–626, 1867.



Fig. 14.2 Central region of a 25 solar mass star late in its life. See also Table 6.3. This central region
is only a few thousand kilometers in radius and lies at the center of a supergiant star.

14.3 Envelope Loss from Massive Stars
As was discussed in Section 13.7.4, rapid mass loss is characteristic of
evolution after the main sequence for many stars. However, massive stars
may go through stages where they expel large portions of their envelopes
into space at velocities as large as several thousand kilometers per second,
even when they are relatively young [204]. In such stars, the timescale for
mass loss  where M is the mass and  the rate of mass
loss, may be shorter than their main sequence timescales [see Eq. (10.5)],
implying that they may have lost a major fraction of their initial mass early
in their evolution.

14.3.1 Wolf–Rayet Stars



Wolf–Rayet (WR) stars are hot, high-mass stars characterized by large
luminosity, envelopes strongly depleted in hydrogen, and rapid mass loss. A
survey of 64 galactic Wolf–Rayet stars presented in Ref. [158] found most
masses to lie in the range 10–20 M⊙, but with several possibly as large as
50 M⊙, mass-loss rates in the range 10−6 to 10−4 M⊙ yr−1, and wind
velocities ranging from about 700 to 3100 km s−1. Wolf–Rayet stars are
thought to be the remains of stars initially more massive than ∼ 30 M⊙ that
have ejected all or most of their outer envelope through winds or
interactions with companion stars, exposing the hot helium core (which
makes them strong UV emitters). The envelopes of Wolf–Rayet stars
typically contain 10% or less hydrogen by mass, with individual stars
exhibiting different levels of envelope stripping.

Figure 14.3(a) shows a wind-blown shell of gas that has been expelled
from the Wolf– Rayet star HD56925 (marked by the arrow.) The nebula
contains shockwaves associated with interaction of the wind and the
interstellar medium, and is glowing from excitation of previously expelled
material. Another example of Wolf–Rayet mass loss is discussed in Box
14.1. This class of stars will also assume a place of prominence in the
discussion of gamma-ray bursts in Chapter 21.

Fig. 14.3 (a) Wolf–Rayet star HD56925 surrounded by remnants of its former envelope. (b) η
Carinae, surrounded by ejected material.



Box 14.1 The Dusty Pinwheel of WR 104

Formation of dust grains is common around cool red giant stars (Box
13.5). It is less common for hot stars but some Wolf–Rayet stars exhibit
circumstellar dust clouds. This is puzzling because the intense radiation
from these hot stars is generally inimical to formation of dust [225].
(Understanding dust formation around hot Wolf–Rayet stars may be
relevant also for dust formation in even hotter environments, such as
novae or supernovae.) It has been argued that the formation of dust
requires an increase in gas density [225] that could result from the
collision of the WR wind with the wind of a high-mass binary
companion [220] (see also Section 18.5).

Dust Emission from WR104
Dust can absorb UV photons and re-radiate in the IR. One star observed
extensively [218, 219] in the IR is WR 104, which is a Wolf–Rayet star
2300 pc away in Sagittarius, with a high-mass (class OB) companion
that is resolved visually [221]. It is unusual in that it is emitting dust in
an Archimedian spiral, as illustrated below.

Adapted from “The Prototype Colliding-Wind Pinwheel WR104,” Tuthill et al. (Keck
Observatory and University of Sydney), Astrophysical Journal, 675(1) © 2008, The American
Astronomical Society. All rights reserved.
Adapted by permission from Nature, “A Dusty Pinwheel Nebula around the Massive Star
WR104,” Tuthill et al. (Keck Observatory and University of Sydney). Copyright (1999).



The left figure is a composite of dust observations centered on WR 104
[219]. The right figure illustrates a model for the spiral dust pattern
[218]: Increased gas density in the shock produced by the collision of
the WR and OB companion winds condenses dust grains that are flung
out in a spiral pattern by the revolving system.

Drawing a Bead on Earth?
WR 104 is also (in)famous for the threat it might pose to Earth. A Wolf–
Rayet star can create a gamma-ray burst (GRB) focused narrowly along
its rotation axis (see Chapter 21), which for WR 104 is pointed very
nearly at Earth. If such a burst from WR 104 struck the Earth it would
decimate the ozone layer, with catastrophic environmental
consequences. However, it seems unlikely that WR 104 would create a
GRB that could survive its dusty environment and also be aimed
precisely at us, so Earth is (probably) safe.

14.3.2 The Strange Case of η Carinae
Figure 14.3(b) shows an extreme example of mass loss from a young star:
the supermassive, highly unstable star, η Carinae, which is presently
ejecting mass at a rate of about 10−3 solar masses per year. Elemental
abundances in the nebula surrounding η Carinae are consistent with this
being the supergiant phase of a 120 M⊙ star that has evolved with very
large mass loss while on the main sequence and afterwards.1

14.4 Neutrino Cooling of Massive Stars
Emission of neutrinos as a mechanism to transport energy from the stellar
interior was discussed in Section 7.11. In the advanced burning stages
outlined in Chapter 6, neutrino cooling assumes increased importance
because the conditions in stars leading to these burning stages often involve
extreme energy-production rates in regions deep within stars having high
photon opacity. Then neither radiative nor convective transport can remove
the energy fast enough to maintain hydrostatic equilibrium, but the high-
temperature, high-density environment is at the same time conducive to



neutrino production and the material is still largely transparent to neutrinos
that are produced. Hence the very stability of stars undergoing advanced
burning depends fundamentally on neutrino cooling. This in turn implies
that the properties of late stellar evolution and the types of remnants that
result are bound up inextricably with neutrino cooling of the star.

These considerations also are valid for advanced burning in lower-mass
stars. For example, neutrino cooling on the AGB branch for a 5 M⊙ star
was mentioned in Chapter 13, cooling of hot young white dwarfs and pre-
white dwarfs will be found in Box 16.1 to be dominated by plasma neutrino
emission, and it was remarked in earlier chapters that from carbon burning
and beyond the dominant mode of cooling in stellar evolution becomes
neutrino emission (see also Example 7.7, Table 7.2, and Problem 14.4). But
neutrino cooling assumes particular importance for high-mass stars, which
can access all the advanced burning stages that have been discussed in
Chapter 6 so that their evolution depends increasingly on neutrino emission
as these stages are encountered. Indeed, it could be argued that the
culmination of massive-star evolution in a core collapse supernova (Chapter
20) is the ultimate example of massive-star neutrino cooling, since almost
all of the prodigious supernova explosion energy appears in the form of
neutrino emission.

14.4.1 Local and Nonlocal Cooling
Below temperatures of about 5 × 108 K stars are cooled dominantly by
radiation and convection, for which the net rate of heat removal depends on
temperature gradients. Thus the cooling at a given point in the star by
radiative diffusion or convection is nonlocal, in that it depends on
conditions at the point but also on conditions in the surrounding region [26].
In contrast, neutrino cooling is highly local, since the energy carried by a
neutrino produced at a point is removed from the star at nearly the speed of
light with little probability to interact with any of the rest of the star. Thus
neutrino cooling depends only on the conditions at the point of production
and not on spatial derivatives evaluated at that point.

14.4.2 Neutrino Cooling and the Pace of Stellar Evolution



Neutrino emission begins to dominate the energy-removal budget in stars
when temperatures exceed about 109 K and densities are sufficiently low
that the electrons are not too degenerate (see Figs. 7.13–7.14). However, it
should be noted that the terminology “neutrino cooling” is apt when applied
to white dwarfs or neutron stars, but is something of a misnomer for stars
undergoing thermonuclear burning in hydrostatic equilibrium. Instead of
cooling the star, the rapid energy loss from neutrino emission stimulates
increased thermonuclear rates that are required to keep the star in
equilibrium, so neutrino “cooling” actually accelerates burning and the
pace of stellar evolution for massive stars.

14.5 Massive Population III Stars
An interesting and exotic aspect of massive star evolution concerns the first
generation of stars that formed in the Universe (Population III; see Section
1.9.2). Observational evidence suggests that the first stars began forming
several hundred million years after the big bang. These stars would have
been hydrogen and helium stars with negligible metals, since they formed
from material produced by the big bang. Simulations indicate that because
of the absence of metals these stars likely were very massive, with 100–
1000 M⊙ being common. Because of their large mass, these stars would
have evolved quickly and most would have exploded as pair-instability
supernovae (described in Box 20.2) within several million years of their
birth, thus seeding the Universe with heavier elements up to iron.

At the recombination transition in the early Universe, which occurred at
a redshift z ∼ 1100 (some 380,000 years after the big bang), electrons
combined with protons to make neutral hydrogen and the Universe became
transparent to visible photons. There were no stars yet, so the ensuing
period until stars formed is sometimes called the dark ages. Observations
indicate that beginning at redshift z ∼ 20 and continuing to z ∼ 6 (roughly
from 500 million years to almost a billion years after the big bang) the
neutral hydrogen was reionized in the reionization transition. It is widely
believed that Pop III stars were instrumental in this reionization of the
Universe. The spectra of high-redshift quasars indicate that there were
heavy elements present in the Universe during reionization, which could
have come only from stars, and because of their large masses stars in this



first generation would have been hot and would have bathed their
neighborhoods with ionizing UV radiation. No conclusive observational
evidence exists for Pop III stars. Some candidates have been proposed for
star clusters found in faint galaxies at large redshift (z ≥ 6) [205], but the
observations are difficult and thus conclusions are necessarily qualified.

14.6 Evolutionary Endpoints for Massive Stars
Stars having M ≲ 8 M⊙ are all thought to end their lives with their cores
evolving to some form of white dwarf (helium, carbon–oxygen, or neon–
magnesium), and their envelopes ejected as planetary nebulae. In contrast,
the most massive stars appear ordained to one of three qualitatively
different fates more dramatic than becoming white dwarfs, with all three
initiated by gravitational collapse of the star’s core:

1. The majority of stars having M ≳ 8 M⊙ will eject the outer layers of
the star violently in a core collapse supernova (see Chapter 20), with
the central regions crushed gravitationally into a neutron star that is
stabilized by neutron degeneracy pressure.

2. For some fraction of core collapse events the mass of the
gravitationally collapsed central region will be too large for neutron
degeneracy pressure to halt the infall and the star will collapse instead
to a black hole.

3. For the special case of very massive stars (M ∼ 130 − 250 M⊙) and
low metallicities, the star can destroy itself in a pair-instability
supernova, which leaves behind no compact remnant. This was
probably the fate of many Pop III stars and the mechanism will be
considered in Box 20.2

Neutron stars will be discussed in Section 16.7 and black holes in Chapter
17. There is abundant direct observational evidence for the former, and a
wealth of indirect observational evidence for the latter. Thus, there is strong
reason to believe that both of these endpoints can issue from the evolution
of massive stars.



14.6.1 Observational and Theoretical Characteristics
The neutron star and black hole scenarios for the outcome of core collapse
might have different observational characteristics. For the former it is rather
certain that gravitational waves and a burst of neutrinos will be emitted
from the supernova explosion, the ejected outer layers will produce an
expanding supernova remnant, and the residual neutron star will cool
primarily by neutrino emission, perhaps manifesting itself as a pulsar. For
the latter, the outcome is less-well understood. A direct collapse to a black
hole is expected to produce a burst of neutrinos, gravitational waves, and
possibly a γ -ray burst, but any ejected supernova remnant might range from
similar to that for collapse to a neutron star to the case of no ejected
remnant at all, which will be discussed below.2

It is also unclear theoretically what the mechanisms are that distinguish
whether the product of stellar core collapse is a neutron star or a black hole.
As will be discussed in Chapter 20, although detection of the neutrino burst
from Supernova 1987A gives strong confidence in the basic core collapse
mechanism, only recently have quantitative simulations of that mechanism
incorporating the most realistic physics begun to yield robust explosions,
and even these simulations leave many unanswered questions. Thus,
although it is expected conceptually that for higher-mass stars the heaviest
are likely to produce black holes and the lightest to produce neutron stars,
the hard evidence backing this up, and the quantitative features that
distinguish these scenarios from each other, are not yet firmly established
by realistic simulations and observations.

14.6.2 Black Holes from Failed Supernovae?
There is considerable interest in whether massive stars can collapse directly
to black holes, without ejection of a significant remnant and without a large
increase in optical luminosity. Such events are called failed supernovae,
since they produce a black hole, gravitational waves, and presumably
neutrinos, but few of the other characteristics associated with core collapse
supernovae that will be discussed in Chapter 20. It has long been thought
that such could be the fate of very high-mass stars of low metallicity but
more recent evidence suggests that it might occur also for massive red
supergiants of solar metallicity [20].



A survey by the Large Binocular Telescope, supplemented by followup
observations using the Hubble Space Telescope and Spitzer Space
Telescope, identified a strong candidate for a failed supernova that is
illustrated in Fig. 14.4. In 2007 the star designated N6946-BH1, identified
from systematics as a 25 M⊙ red supergiant, appears as a dark spot in
Hubble Space Telescope optical images [center of the circles in Fig.
14.4(a)]. In 2009 this star underwent a weak optical outburst, brightening to
L ≥ 106L⊙ but then fading to a luminosity less than its pre-outburst
luminosity over a matter of months. Images obtained in 2015 [shown in Fig.
14.4(b)] indicate that N6946-BH1 has disappeared from view in the optical
(with an upper limit on optical luminosity five magnitudes less than that of
the progenitor), but Fig. 14.4(c) indicates faint infrared emission at the
former location of N6946-BH1. The total bolometric luminosity of N6946-
BH1 as of 2017 is much less than that of the progenitor, suggesting that the
star did not survive the 2009 event. After systematic analysis to rule out
competing explanations such as obscuration by dust, a stellar merger, or
N6946-BH1 being an exotic kind of variable star, it was concluded that
these observations are most consistent with the 25 M⊙ red supergiant
undergoing a failed supernova and collapsing directly to a black hole, with
faint residual IR activity from weak accretion on the black hole. If this
interpretation is correct, it represents the first observation of a failed
supernova and the first direct observation of black-hole birth.



Fig. 14.4 Observational evidence for a failed supernova [20]. Hubble Space Telescope optical and IR
images of the region surrounding the 25 M⊙ red supergiant star N6946-BH1 in NGC 6946 through
different telescopic filters labeled FabcW. The galaxy NGC 6946 is about 7 Mpc away and exhibits
solar metallicity. It is known as the Fireworks Galaxy because of the abnormally high rate of
supernova explosions observed there. (a) In these optical images obtained in July, 2007, N6946-BH1
is the dark spot at the center of the circles, which have radii of 1 arcsec. (b) in optical images of the
same region obtained in October, 2015, N6946-BH1 has disappeared. (c) In 2015 very faint IR
emission was observed consistent with the former position of N6946-BH1. Adapted from S. M.
Adams et al., “The Search for Failed Supernovae with the Large Binocular Telescope: Confirmation
of a Disappearing Star,” Monthly Notices of the Royal Astronomical Society, 468(4), 4968–4981,
2017, with permission by Dr Adams and Oxford University Press.

14.6.3 Gravitational Waves and Stellar Evolution
As will be discussed in Chapter 22, the detection of gravitational waves
thought to be emitted from the merger of two ∼ 30 M⊙ black holes in a
galaxy more than 400 Mpc away is perhaps the strongest observational
evidence that black holes with masses comparable to those of massive stars
exist. This new window on the Universe will presumably have large
implications for our understanding of late stellar evolution, since
supernovae, neutron stars, and black holes figure prominently in the kinds



of events that can produce detectable gravitational waves. This is
particularly true if multimessenger astronomy with gravitational waves
becomes commonplace, as will be described in Section 22.5.

14.7 Summary: Evolution after the Main
Sequence
An overview of post main sequence evolution for stars of higher and lower
masses has been given in this chapter and in Chapter 13. A summary of
evolution off the main sequence for 1 M⊙, 5 M⊙, and 25 M⊙ stars is shown
in Fig. 14.5. This is a quantitative version of the schematic diagram in Fig.
10.8, illustrating that lower-mass stars evolve to formation of white dwarfs
with emission of the envelope as a planetary nebula, but higher-mass stars
evolve quickly to catastrophic collapse of the star’s core, leaving behind a
neutron star or black hole, and possibly ejecting the envelope as an
expanding supernova remnant. This will be recognized as yet another
installment in the ongoing saga that for stars, mass is destiny.



Fig. 14.5 A summary of late stellar evolution for stars of several main sequence masses, adapted
from Ref. [126]. This is a quantitative version of the cartoon shown in Fig. 10.8. Abbreviations: HB
(horizontal branch), RGB (red giant branch), AGB (asymptotic giant branch), PN (planetary nebula),
and WD (white dwarf). Nuclear reactions in various burning stages are indicated. A discussion of
evolution for stars with M < 8 M⊙ may be found in Chapter 13 and that of more massive stars is
given in the present chapter. Adapted from Iben, I., Jr., Quarterly Journal of the Royal Astronomical
Society (ISSN 0035-8738), 26, 1–34, March 1985. Copyright Royal Astronomical Society. Provided
by the NASA Astrophysics Data System.

14.8 Stellar Lifecycles
Having summarized the evolution of lower-mass and higher-mass stars in
Fig. 14.5, we conclude this chapter by noting that the evolution of stars
leads to extensive recycling of stellar material. Each star ties up a certain
amount of mass at its birth. As the star evolves, some of that mass is
returned to the interstellar medium to participate in future star formation by



stellar winds, planetary nebulae, supernova explosions, and so on, while
some becomes locked away in compact objects: white dwarfs, neutron stars,
and black holes. The birth, evolution, and death of successive generations
of stars3 has three general consequences for a galaxy:

1. The amount of gas available to make stars decreases as more of it
becomes locked in white dwarfs, neutron stars, black holes, brown
dwarfs, and very low-mass stars that have main sequence lifetimes
much longer than the present age of the Universe.4

2. Over time the luminosity declines as massive, bright stars die more
quickly and the population is increasingly dominated by less-massive,
long-lived, fainter stars (while at the same time the color of light from
the galaxy shifts to longer wavelengths).

3. The composition of gas in the galaxy becomes enriched in metals as
nuclear-processed material is returned from stars to the interstellar
medium by winds and explosions.

Thus, successive generations of stars typically have higher metallicities.
However, the metal content does not increase uniformly with time. From
metallicities of stars with different ages in the Milky Way it may be
estimated that the mass fraction of heavy elements Z increased by much
more early in the history of the galaxy than it has more recently (see
Problem 14.7) [176]. The contribution to metallicity also is not uniform
with star mass. Massive stars are rare but they are the primary source of
metallicity increase because they eject large amounts of processed mass as
winds and explosions on a relatively short timescale.

Since the fraction and composition of stellar material returned to the
interstellar medium depends strongly on the mass of a star, the initial mass
function discussed in Section 9.12 is important in understanding the
recycling of stellar material. This is illustrated in Problem 14.6, where you
are asked to estimate the fraction of material returned to the interstellar
medium during the evolution of a single generation of stars.

Background and Further Reading
See Arnett [26]; Hansen, Kawaler, and Trimble [107]; Kippenhahn,
Weigert, and Weiss [134]; and Prialnik [176] for general introductions to



massive stars. The importance of mass loss for the evolution of massive
stars has been reviewed by Smith [204].

Problems
14.1 Hotter stars on the upper main sequence can exhibit significant

mass loss because of strong winds. Typical rates are ṁ ≃ 10−7 M⊙

yr−1, but in hot, massive Wolf–Rayet stars (see Section 14.3.1) the
rate of mass loss can be much greater. Reference [158] analyzes 64
Wolf–Rayet stars. They give a semi-empirical formula to describe
the rate of mass loss in these stars:

where L is the luminosity, and in the emitted material Y is the helium
mass fraction and Z is the mass fraction of metals (which can be
determined observationally).
(a) Using the data in Ref. [158], calculate the rate of mass loss

predicted by the preceding formula for the star labeled 136 in
Table 2 of Ref. [158] and compare with the observed rate.

(b) For the star in Table 5 of Ref. [158] with the largest rate of
mass loss, how many years would it take for the star to emit all
its mass through its wind, assuming (unrealistically) that the
present rate were to be sustained?

(c) Assume for purposes of this exercise that the star in Table 5 of
Ref. [158] with the highest rate of mass loss is a member of a
binary system, with the companion star having the same mass
as it (but to not be a Wolf–Rayet star), with circular orbits and
an orbital period of 10 days. Use the results of Problem 18.9 to
estimate the shift in binary orbital period over a year’s time,
assuming it to be caused entirely by the mass loss from the
Wolf–Rayet star resulting from a spherically symmetric wind
that is assumed to interact negligibly with the companion star.



14.2 The iron core of a massive main sequence star that is destined to
become a core collapse supernova is produced by silicon burning
(see Section 6.5.2). The rate-determining step in silicon burning is
the photodisintegration of 28Si, with the remarkably strong
temperature dependence displayed in Fig. 6.9. This rate may be
parameterized in the form given in Eqs. (D.2)–(D.4) of Appendix D.
There generally are two significant components contributing to the
sum over Rk for Si photodisintegration. However, around T9 ∼ 3
where silicon burning first becomes important the rate may be
approximated by a single component Rk with the parameters given in
the following table [182]

Derive a formula for the temperature exponent of the corresponding
Si photodisintegration reaction rate and evaluate it for T9 ∼ 3.

14.3 It was argued in Chapter 6 that the heaviest stars can produce
isotopes up to the iron group (Z ∼ 25) in their cores. Show that for a
plasma of iron-group isotopes the mean molecular weight is about 2
amu. Hint: For isotopes of interest in this context, typically Z ∼ N.

14.4 For the late stages of Si burning in a massive star, assume an 56Fe
core of radius 5000 km, density 1010 g cm−3, and temperature 1010

K, and that the average electron neutrino energy is Eν ∼ 15 MeV.
Assuming the scattering to be dominated by coherent neutral-current
interactions, estimate the neutrino cross section and the neutrino
mean free path. Estimate the neutrino luminosity associated with the
core. Compare this with the expected surface photon luminosity,
assuming the star to be a red supergiant at this point. Hint: Use Fig.
7.14(b) and rough approximations to estimate the neutrino
luminosity from the core.***

14.5 In a core collapse supernova (see Chapter 20) the density may reach
1014 gcm−3 with temperatures of order 1010 K or greater. Under
these conditions, electron neutrinos are produced copiously and may
have energies in the 10 MeV range or greater. Use the simple



formula (7.48) to estimate the cross section and the mean free path
for electron neutrinos of energy 10 MeV for this case.***

14.6 Consider a single generation of stars with a maximum initial mass
M2 and minimum initial mass M1 for stars in the population. Assume
that all stars with initial mass M > MSN have exploded as core
collapse supernovae, that the initial mass function can be
approximated by the Salpeter form (9.16), and that stars with mass
less than MMS ∼ 0.7 M⊙ have not had time to evolve off the main
sequence since the stars were formed. Using reasonable assumptions
and approximations, estimate the fraction of the initial mass that
evolution of this population has returned to the interstellar
medium.***

14.7 Assume the Milky Way to be about 13 billion years old and that the
metallicity of the Sun is representative of stars its age in the galaxy.
Given that the metal fraction by mass of the oldest observed stars in
the galaxy is Z ∼ 3 × 10−4 and that of the youngest is Z ∼ 4 × 10−2,
what can be said quantitatively about how the metal content of the
galaxy has changed with time?***

1 η Carinae may be a member of a binary or triple-star system. Luminous blue variables or LBV
are luminous blue stars exhibiting irregular, sometimes violent, variability. The most famous
examples are η Carinae, which underwent an enormous eruption in the 1840s [see Fig.
14.3(b)], and P Cygni (see Fig. 9.1), which had a similar episode in the 1600s. LBVs may be
an important stage in massive-star evolution. One idea is that they may represent the
mechanism by which a massive star ejects most of its hydrogen envelope on the way to
becoming a Wolf–Rayet star. The absence of red supergiants with luminosities comparable to
the most luminous O stars has been cited in support of this idea, since simulations indicate
that extensive LBV mass loss can prevent the star from undergoing normal evolution into a
red supergiant [158].

2 The observational outcome depends on whether part of the star’s envelope attains escape
velocity as an expanding nebula, or whether the envelope is dragged into the black hole
through accretion. The issue also can be complicated by angular momentum of the core,
which may delay the formation of a black hole through centrifugal effects. This will be
discussed further in Chapter 21.

3 This is a complex process because each generation of stars has a range of lifetimes spanning
many orders of magnitude. Thus successive generations overlap strongly and aren’t neatly
separated in time, not unlike human generations, though the range of lifetimes within a
generation is much larger for stars than for humans.

4 This discussion assumes an isolated galaxy. Galaxy collisions complicate things (for example,
triggering intense episodes of star formation called starbursts), but the conclusions are valid
when averaged over galaxies.



15

Stellar Pulsations and Variability

A commonplace of modern astronomy that would have been quite
perplexing for ancient astronomers is that many stars exhibit variations in
brightness. In some cases these variations are asynchronous and in others
they are highly periodic. They may be so small as to require precise
instruments to detect them, or sufficiently large that they are easily visible
to the naked eye. These variable stars may be classified into three broad
categories. (1) Eclipsing binaries, for which the luminosity of the system is
altered by eclipses (see Section 1.5.4). (2) Eruptive and exploding
variables, which brighten suddenly and eject mass because of a disruption
or partial disruption of the star. Novae (Chapter 19) and supernovae
(Chapter 20) are dramatic examples. (3) Pulsating variables, which undergo
pulsations that alter the brightness periodically, without disrupting the
overall structure of the star; Cepheid variables are a well-known example.
This chapter examines in more depth this latter category and the reasons
that some stars become unstable against pulsations. We shall find that
pulsational instabilities are common in particular stages of stellar evolution,
and that they are caused in most cases by a relatively subtle interplay
among heat flow, ionization, and photon opacities in stars.

15.1 The Instability Strip
Some classes of pulsating variable stars and their characteristics are given
in Table 15.1. A strong clue to their nature is that these pulsating variable
stars are found in specific regions of the Hertzsprung–Russell diagram, as
illustrated in Fig. 15.1. For example, many types of pulsating variables are
confined to a narrow, rather vertical band in the HR diagram called the
instability strip. This suggests that there is a fundamental mechanism
operating in a variety of stars in different luminosity classes, but over a



relatively narrow range of surface temperatures, that leads to pulsational
instability. Conversely, most stars observed at a given time are not
pulsating, which suggests that pulsational instability requires a special
situation not fulfilled by most stars over most of their lives.

Table 15.1 Pulsating variable stars (adapted from Ref. [77])

Variable type Period Population Mode†

Long-period variables 100–700 d I, II R
Classical Cepheids 1–50 d I R
Type-II Cepheids 2–45 d II R
RR Lyrae stars 1.5–24 hr II R
δ Scuti stars 1–3 hr I R, NR
β Cephei stars 3–7 hr I R, NR
ZZ Ceti stars 100–1000 s I NR

†R = Radial; NR = Non-radial



Fig. 15.1 Schematic illustration of the instability strip and the region of long-period red variables in
the HR diagram [76]. With the exception of the long-period variables, most variable stars are found
within the instability strip. The ZZ Ceti stars are pulsating white dwarfs that also are classified as
DAV stars, according to the nomenclature outlined in Box 2.1.

15.2 Adiabatic Radial Pulsations
At the simplest level, stellar pulsation may be investigated in terms of
oscillations that are adiabatic and linear in the displacement, and that
maintain spherical symmetry for the star. Such an analysis has much in
common with the study of small-amplitude vibrations in other physical
systems, treating the pulsation as free radial vibrations with gas
compressibility playing the part of a spring constant. These investigations
find that stars disturbed slightly from spherical hydrostatic equilibrium
exhibit discrete vibrational frequencies that are called radial acoustic
modes. It is convenient to work in Lagrangian coordinates, where m(r) is
the independent variable and corresponds to the mass contained within a
radius r; see Section 4.3. Then if the pressure, radial coordinate, and density



are expanded to linear order as time-dependent oscillations around the
equilibrium values (which are denoted by a subscript zero),

the radial displacement δr(m) may be described by the differential equation

(15.1)

where the adiabatic exponent Γ1 is defined in Eq. (3.39), ω is the adiabatic
oscillation frequency, and  We must solve this equation
with two boundary conditions, one at the center of the star and one at the
surface. At the center we require d(δr)/dr0 = 0. The simplest physically
reasonable surface boundary condition is to require δPP0 = 0, though more
complicated ones can be used. Reference [134] may be consulted for
solutions and a derivation of Eq. (15.1).

Most intrinsically variable stars appear to be pulsing in radial acoustic
modes, which correspond to standing waves within the star. The
fundamental mode has no nodes (points of zero motion) between the center
and surface, implying that the stellar matter involved in the vibration all
moves in the same direction at a given time. The first overtone has one node
between the center and the surface, meaning that the matter moves in one
direction outside this node and in the opposite direction inside this node at a
given phase of the pulsation. Likewise, higher overtones with additional
nodes and more complex motion may be defined. Just as for musical
instruments and other acoustically vibrating systems, a star may exhibit
several modes of oscillation at once. The physical motion of the gas in
radial stellar pulsations is largest in the fundamental mode and is
considerably smaller in the first overtone. In higher overtones the motion of
the gas in an oscillation cycle is even smaller. Observed pulsating variable



stars appear to be oscillating primarily in the fundamental mode and/or the
first overtone, with higher overtones not contributing substantially to the
observed pulsation.

Example 15.1 It is thought that most Classical and Type II Cepheids
oscillate in the fundamental mode, while RR Lyrae stars oscillate in either
the fundamental mode or first overtone (or both). For long-period red
variables the evidence is less conclusive and they may pulsate in either the
fundamental mode or first overtone.

We may expect that realistic pulsations of variable stars will be more
complicated than the simple linear, adiabatic analysis of the preceding
paragraphs would indicate. For example, both the rate of energy production
and the rate of internal energy transport could be modified by pulsations, so
it may be expected that there will be deviations from adiabatic behavior in
real stars. In particular, we must ask: what energy input sustains the long-
term pulsations of a variable star?

15.3 Pulsating Variables as Heat Engines
Arthur Eddington examined whether stellar pulsations could be explained
by free radial oscillations but realized that dissipation would damp the
oscillations too quickly. For example, he estimated that Cepheid pulsations
would be damped out in ∼ 104 years, absent some mechanism to amplify
and sustain the oscillations. Thus the steady, long-term pulsing of a Cepheid
variable cannot be due to a one-time excitation of eigenmodes and cannot
be adiabatic; these oscillations must be driven in some way. Conversely the
observation that the Sun vibrates, but only with very small amplitude
oscillations, indicates that in a star like the Sun there is no mechanism to
drive sustained oscillations and vibrational excitations damp out quickly
because of gas viscosity. These ideas led Eddington to propose that
pulsating variable stars must correspond to a form of heat engine,
continuously transforming thermal energy into the mechanical energy of the
pulsation.

Although real stars are not adiabatic, it will turn out that the pulsation
may often be approximated as nearly adiabatic, because instabilities grow



on a timescale that is long relative to the time for one pulsation. Over one
acoustic oscillation cycle (which occurs essentially on a dynamical
timescale since it is related to the time for a sound wave to travel through
the star), the heat exchanged is small because energy transfer occurs on a
much longer Kelvin–Helmholtz timescale. Therefore, after a single acoustic
cycle the star returns almost – but not quite – to the initial state. The “not
quite” measures the lack of reversibility and therefore the non-adiabaticity
of the process. With this as introduction, let us now investigate the
significance of non-adiabatic effects in sustaining stellar pulsation.

15.4 Non-adiabatic Radial Pulsations
For each layer of the star a net amount of work is done during a pulsation
cycle that must be equal to the difference of the heat flowing into that layer
and that flowing out. Qualitatively it may be expected that if the oscillation
is to be self-sustaining for a single layer there must be a mechanism
whereby heat enters the layer at high temperature and leaves it at low
temperature.1 A sustained oscillation for a significant part of the star then
requires that a set of layers have some level of coherence in the phase of
these driven oscillations. We shall now show that these assertions can be
justified more quantitatively using basic ideas from thermodynamics.

15.4.1 Thermodynamics of Sustained Pulsation
Many of the features required to sustain stellar pulsation follow from simple
considerations based on the first and second laws of thermodynamics.
Following Clayton [71], we work in Lagrangian coordinates, assume the
system to be nearly adiabatic, and consider initially a single radial mass
zone in the star. By the first law, for a pulsation cycle the net change in the
heat Q for a mass zone is a sum of contributions from changes in the
internal energy U and the work W done on its surroundings during the
pulsation,

(15.2)



After a complete oscillation cycle it is assumed that the internal energy U
returns to its original value so that the work done over the cycle is entirely
contributed by the change in Q,

(15.3)

To drive oscillations, the gas must do positive work on its surroundings,
meaning that it must absorb some net heat. However, the system is assumed
to be nearly adiabatic, so that the gas returns essentially to its original state
after one cycle. Therefore, in zeroth order there is no net change in entropy
and

(15.4)

Now suppose that during the cycle the system is perturbed by a small
periodic variation in the temperature T of the form

where ΔT is zero at the beginning and end of the cycle. Then from Eq.
(15.4)

Assuming the variation in T to be small, the denominator of the integrand
may be expanded to first order, giving

or upon rearrangement,

(15.5)

Then from Eqs. (15.3) and (15.5), the work done in one pulsation cycle is



(15.6)

For the cyclic integral on the right side of (15.6) to give a net positive value
(so that the mass zone does work on its surroundings over one cycle and
can therefore drive an oscillation), it is clear that ΔT and dQ must have the
same sign over a major part of the cycle. That is, heat must be absorbed (dQ
> 0) when the temperature is increasing in the cycle (ΔT > 0), and released
(dQ < 0) when temperature is decreasing in the cycle (ΔT < 0).

The preceding discussion has concentrated on the behavior of a single
mass zone. Oscillation of the entire star means that some zones may do
positive work and other zones may do negative work within a pulsation
cycle. Thus, the condition for amplifying and sustaining oscillation of the
entire star is that

(15.7)

where i labels the mass zones of the star. (Strictly this sum is an integral
over the continuous mass coordinate, but in practical numerical simulations
the zones are normally discretized.) Now let’s ask whether the requirement
Eq. (15.7) can be realized in stars.

15.4.2 Opacity and the κ-Mechanism
One way to favor sustained oscillations is to arrange a situation where
opacity increases as the gas in a layer is compressed. Then the radiative
energy outflow can be trapped more efficiently by the layer (it begins to
“dam up” the outward energy flow) and this can push it and layers above it
upward, until the layer becomes less opaque upon expansion and the
trapped energy is released, permitting the layer to fall back and initiate
another cycle. If a sequence of layers one above the other behaves in this
general way, a sustained oscillation could be set up. Conversely, if
compressing the layer decreases opacity the heat flow works against the
oscillation and tends to damp it rather than sustain it. Normally stellar
radiative opacities do not increase with compression of the gas. From the
Kramers form (7.21), the opacity κ is proportional to ρT −3.5. Compression



of a layer increases both ρ and T but the temperature dependence of κ is
much stronger than the density dependence and a gas described by a
Kramers opacity tends to experience a decrease in opacity under
compression. Thus a star exhibiting the usual opacity behavior has a built-in
damping mechanism that stabilizes it against pulsations. This explains why
most stars are not pulsating variables.

However, there is a special situation for which the opacity could be
expected to increase with compression. If a layer contains partially ionized
gas, a portion of the energy flowing into it can go into additional ionization.
Since this energy is absorbed into internal electronic excitations, it is not
available to increase the temperature in the layer. Thus, if there is sufficient
ionization during the compression portion of the pulsation cycle the effect
on the opacity of the small rise in temperature can be more than offset by
the effect of the increase in density and compression can increase the
opacity. Conversely, electron–ion recombination in the decompression
portion of the cycle can release energy and lead to a decreased opacity.
Then, in partial ionization zones a layer can absorb heat during compression
when the temperature is high and release it during expansion when the
temperature is low, thereby setting the stage for a sustained oscillation as
described in Section 15.4.1. This heat-engine mechanism for driving
oscillations through ionization-dependent opacity effects is called the κ-
mechanism.

15.4.3 Partial Ionization Zones and the Instability Strip
The κ-mechanism provides a possible way to drive stellar oscillations, but
where is the κ-mechanism expected to operate? For most stars there are two
significant zones of partial ionization, corresponding to the possible stages
of ionization for hydrogen and helium:

(i) The hydrogen ionization zone, where hydrogen is ionizing (H I →
H II) and helium is undergoing first ionization (He I → He II). This
region is broad and typically has a temperature in the range 10,000–
15,000 K.

(ii) The helium ionization zone, where second ionization of helium (He
II → He III) occurs, typically at a temperature around 40,000 K.



From the preceding discussion, one or both of these ionization zones may
be expected to drive the pulsations of many variable stars. As discussed in
Box 15.1, the radial location of the hydrogen and helium ionization zones in
stars of particular surface temperatures, and the onset of convection near the
surface for stars with surface temperatures that are too low, are the
determining factors in producing the instability strip of Fig. 15.1.

Box 15.1 Temperature Boundaries for the Instability Strip

The physical radius for the hydrogen and helium partial ionization zones
within a given star will depend strongly on the effective surface
temperature of that star. For stars with higher temperatures the
ionization zones will be near the surface and there will be insufficient
mass in the partially ionized layers to drive sustained oscillations. On
the other hand, if the surface temperature is too low, convection will
operate in the outer layers and undermine the κ-mechanism.a This
suggests that there will be an optimal range of stellar surface
temperatures for which the ionization zones are deep enough to drive
sustained oscillations by coupling to the fundamental and overtones of
the characteristic vibrational frequencies (which determines the higher-
temperature end of the optimal range), but for which the convection is
not strong enough to invalidate the mechanism (which determines the
lower-temperature end of the optimal range). That is, these qualitative
arguments indicate that pulsating variables should be found in localized
regions of the HR diagram, as already suggested by the instability strip
in Fig. 15.1.
a A radiative opacity was assumed in the preceding argument, which leads crudely to a “dam”

or “trapping” mechanism: if opacity increases under compression in a gas layer, that layer
will tend to obstruct the outward flow of energy through it and heat up. The relationship
between pulsation and convection is complex but detailed simulations generally show that
when convective energy transport supplants radiative transport, it tends to interfere with this
trapping effect and thus to damp stellar pulsations.

Example 15.2 For classical Cepheids (and most variables found in the
instability strip), the pulsation is caused by the κ-mechanism, primarily by
forcing of the fundamental mode in the helium ionization zone. On the
other hand, the long-period red variables (large AGB stars like Mira) and



ZZ Ceti stars (which are a class of variable white dwarfs that have hydrogen
envelopes) are thought to be driven by hydrogen ionization zones.

In Fig. 15.2 opacities that are expected for stars are plotted as a function of
temperature and pressure. The shaded regions correspond to conditions that
are expected to damp oscillations and the lighter regions correspond to
conditions in which the κ-mechanism can be realized. The dashed line
indicates the relationship between temperature and pressure expected for a
7M⊙ Cepheid variable. The helium ionization region crossed by the dashed
line near log T = 4.6 is thought to be the primary driver of classical Cepheid
oscillations.

Fig. 15.2 Rosseland mean opacity versus pressure and temperature [134]. Shaded surface areas
correspond to conditions that damp the pulsation and unshaded areas to conditions that excite the
pulsation. The interior temperature–pressure relationship expected for a 7 M⊙ Cepheid variable is
indicated by the dashed line. The helium ionization zone primarily responsible for sustaining Cepheid
pulsations is located in the vicinity of log T ≃ 4.6. Adapted by permission from Springer Nature,
Non-adiabatic Spherical Pulsations, Kippenham, R., Weigert, A., and Weiss, A. copyright (2012).

15.4.4 The ε-Mechanism and Massive Stars
Before the κ-mechanism was proposed it was suggested that pulsations
could be driven by variations in energy production caused by radial
oscillations. This was called the ε-mechanism. The ε-mechanism can



enhance oscillations if energy production increases upon contraction – a
condition that usually is satisfied. Oscillations can alter the thermonuclear
energy production through density and temperature variations, but this is
important only in the more central regions of the star where energy is
produced. The problem then is that in those regions the amplitudes of
fundamental modes and overtones are small, making it difficult for changes
there to drive oscillations strongly enough to sustain pulsation. Thus the ε-
mechanism is not important for most variable stars, where the pulsation is
not because of temporal variations in energy production but rather is due to
temporal variations in the efficiency of transporting that energy. However,
the ε-mechanism may be important for stability in very massive stars, where
oscillations coupled to variations in energy production deep inside may
generate pulsations causing the star to shed mass (see Section 9.11 and
footnote 1 about luminous blue variables in Section 14.3.2).

15.5 Non-radial Pulsation
For the variable stars in Table 15.1 that are labeled NR, the mode of
pulsation is not spherically symmetric. The corresponding oscillations are
called non-radial modes. Stars exhibiting non-radial pulsation include the δ
Scuti stars, β Cephei stars, and ZZ Ceti stars. In addition, although our own
Sun is not presently classified as a variable star (it presumably will become
variable if it passes through the instability strip in the HR diagram after
leaving the main sequence), it undergoes weak non-radial pulsations that
are the target of the helioseismology observations described in Section 10.2.
Non-radial pulsations will not be considered further here but an
introduction may be found in Kippenhahn, Weigert, and Weiss [134] or
Hansen, Kawaler, and Trimble [107].

Background and Further Reading
Stellar pulsations represent a rather complex and technical subject. In the
present discussion we have deliberately avoided as much formalism as
possible, concentrating instead on a qualitative introduction emphasizing
the most important physical ideas. Other accessible and pedagogical
discussions may be found in Carroll and Ostlie [68]; Clayton [71]; and



Percy [167] (who places particular emphasis on the contribution of amateur
astronomers to the database for variable stars). Somewhat more involved
treatments may be found in Hansen, Kawaler, and Trimble [107];
Kippenhahn, Weigert, and Weiss [134]; and Padmanabhan [163]. A classic
reference giving a comprehensive discussion is Cox [77].

Problems
15.1 Estimate the period for radial oscillations of a pulsating variable

star by determining the time for sound waves to cross the diameter
of the star, assuming the density to be constant.

15.2 Use the result obtained in Problem 15.1 to estimate the period of a
classical Cepheid variable having M = 7 M⊙ and R = 80 R⊙.

15.3 Starting from Eq. (4.9) expressed in Lagrangian coordinates,
examine small fluctuations about hydrostatic equilibrium by adding
to the pressure and radial coordinates (which are functions of mass
m in the Lagrangian description) a small time-dependent deviation,

inserting this into the previous equation, and linearizing the resulting
modified equations by expanding small quantities and retaining only
linear terms. Show that the deviation in pressure δP obeys the
differential equation

where subscript zeros denote the equilibrium values of r and P for a
given enclosed mass m.***

1 If layers driving the pulsation absorb energy near maximum compression, oscillations will be
amplified. This is similar to the reason that it is optimal to fire the spark plug near the end of
the compression stroke in an internal combustion engine.



16

White Dwarfs and Neutron Stars

Red giants eventually will consume all their accessible nuclear fuel. After
ejection of the envelope as a planetary nebula the cores of these stars shrink
to the very dense objects called white dwarfs. An even more dense object
termed a neutron star can be left behind after the evolution of a more
massive star terminates in a core collapse supernova explosion. We know
already from the discussion in Chapter 3 that white dwarfs and neutron stars
will have properties very different from normal stars because their extreme
densities imply the importance of quantum mechanics and special relativity
in defining their equations of state. As a consequence their behaviors will
sometimes be quite different from objects such as normal stars that contain
approximately ideal gases. In this chapter we address the structure and
properties of these highly compact endpoints of stellar evolution in more
depth. In addition we shall discuss pulsars, which are rapidly spinning
neutron stars, and magnetars, which are spinning neutron stars with
anomalously large magnetic fields.

16.1 Properties of White Dwarfs
Let’s begin by getting acquainted with a white dwarf from the local
neighborhood. The bright star Sirius in Canis Major is in reality a binary,
with a brighter component labeled Sirius A and a fainter companion star
labeled Sirius B. Sirius A is a spectral-class A main sequence star but Sirius
B is a white dwarf.1 Sirius B is not particularly dim (visual magnitude 8.5),
but it is not easy to observe because it is so close to Sirius A. Its spectrum
and luminosity indicate that it is hot (about 25,000 K surface temperature)
but very small [124]. The spectrum contains pressure-broadened hydrogen
lines, implying a surface environment with much higher density than that of
a normal star. Assuming the spectrum to be blackbody and using the well-



established distance to Sirius (it is relatively nearby, so its parallax of 0.38 ″
is measured precisely), the luminosity of Sirius B implies that it has a radius
of only about 5800 km. But the Sirius system is a visual binary with a very
well-studied orbit (the period is slightly less than 50 years, so about three
full orbits have been observed since its discovery). Therefore, Kepler’s laws
may be used to infer that the mass of Sirius B is 1.02 M⊙, implying that a
white dwarf like Sirius B packs the mass of a star into an object the size of
the Earth. These inferences concerning Sirius B allow some immediate
estimates that will shed light on the nature of white dwarfs even before
carrying out any detailed analysis.

16.1.1 Density and Gravity
White dwarfs contain roughly the mass of the Sun in a sphere the size of the
Earth, so the average density is the density of the Sun multiplied by the
cube of the ratio of the Solar to Earth radii. The Sun is of order 100 times
larger than the Earth and the Solar average density is of order 1 g cm−3, so
white dwarfs have densities in the vicinity of 106 g cm−3. For Sirius B the
average density calculated from the observed mass and radius is about 2.5 ×
106 gcm−3. The gravitational acceleration and the escape velocity at the
surface for Sirius B are [124]

(16.1)

respectively, indicating that the gravitational acceleration g is almost
400,000 times larger than at the Earth’s surface but that vesc << c, so general
relativity effects are small and Newtonian gravity can be used in initial
approximation.

16.1.2 Equation of State
The preceding discussion suggests that hydrostatic equilibrium under
Newtonian gravitation is adequate as a first approximation for the structure
of white dwarfs. What about the microphysics of the gas? Is a Maxwell–
Boltzmann description valid, or will the quantum statistical properties of the



gas play a crucial role, and will electron velocities be describable classically
or will velocities become relativistic?

Average electron velocities and special relativity: Assume initially that
velocities are nonrelativistic and that electrons are the primary source of
internal pressure for the white dwarf, and for simplicity take the white
dwarf to be composed of a single kind of nucleus having atomic number Z,
neutron number N, and atomic mass number A = Z + N. Then the average
electron velocity is ve = p/me where p is the average momentum and me is
the electron mass. By the uncertainty principle, the average momentum may
be estimated as

(16.2)

where ne is the electron number density. The gas may be expected to be
completely ionized at the temperature and pressure characteristic of a white
dwarf and the corresponding electron number density is

(16.3)

Therefore, the average electron velocity may be approximated by

where a density of 106 g cm−3 was used and where it was assumed that A =
2Z, as would be true for 12C, 16O, or 4He, which are the primary
constituents of most white dwarfs. (Matter composed of isotopes for which
Z = N is termed symmetric matter.) This is only an order of magnitude
estimate but it suggests that on general grounds, electron velocities will
become relativistic (a significant fraction of c) for higher-density white
dwarfs.

Average separation of electrons and degeneracy: The average spacing
between electrons may be estimated as d ≃ ne

−1/3 ≃ 1.5 × 10−10 cm, where
Z/A = 0.5 and ρ = 106 gcm−3 have been used. The de Broglie wavelength of
electrons in the gas is on average



Because the separation of particles in the gas is less than their de Broglie
wavelength, by arguments similar to those given in Chapter 3 it may be
concluded that the electron gas will be degenerate, provided that the
temperature is not too high. For a degenerate fermion gas the Fermi energy
in ħ = c = 1 units is  and the gas will remain
degenerate as long as the Fermi energy is much larger than the
characteristic energy kT of particles in the gas. From the preceding equation
Ef ≥ mec2 = 0.511 MeV, implying that a temperature T = E/k = 0.511 MeV/k
≃ 6 × 109 K is required to break the degeneracy. The properties of white
dwarfs indicate that their interior temperatures are typically in the range
106–107 K, so white dwarfs contain cold, degenerate gases of electrons,
which may be described approximately using polytropic equations of state
having the form P = Kργ , where  in the limit of nonrelativistic
degenerate electrons and  in the limit of ultrarelativistic degenerate
electrons.

The ions and photons: While the electrons may be expected to be
degenerate and to become relativistic at higher densities, the ions are much
more massive than the electrons. They are neither relativistic nor
degenerate, and are well described by an ideal gas equation of state.
Because the ions move slowly, they contribute little to the pressure.
However, they carry most of the mass and most of the heat energy stored in
the white dwarf is associated with motion of the ions. Finally, photons in
the white dwarf constitute an ultrarelativistic gas approximated by a Stefan–
Boltzmann equation of state,  Thus, the picture that emerges
for a white dwarf is of a dense object that may be hot in the normal sense
but that is cold in a quantum-mechanical sense, for which the mechanical
properties (exemplified by the pressure, which is generated primarily by the
degenerate electrons) are decoupled from the thermal properties (which are
associated primarily with the ions at normal temperatures).

16.1.3 Ingredients of a White Dwarf Description



Summarizing the results described above, it is suggested that an
approximate description of a white dwarf may be afforded by a theory for
which

1. The stable configurations correspond to hydrostatic equilibrium under
Newtonian gravitation.

2. The ions carry most of the mass and store most of the thermal energy
of the white dwarf, but the electrons are responsible for the bulk of the
pressure.

3. The electron equation of state will be that of a cold degenerate gas,
conveniently approximated in the polytropic form P = Kργ with 

 for nonrelativistic and  for ultrarelativistic electrons,
respectively.

4. Ions are nonrelativistic and may be described by an ideal gas equation
of state.

5. Photons are described by a Stefan–Boltzmann equation of state.
6. Because the degenerate electron gas is primarily responsible for the

pressure but its equation of state does not depend on temperature, the
thermal and mechanical properties of the white dwarf are decoupled.

7. As density increases the average velocity of the electrons increases
and special relativity becomes increasingly important, corresponding
to a transition P ∝ ρ5/3 → P ∝ ρ4/3 in the electron equation of state.

We turn now to a theoretical description embodying these ideas in a simple
formalism. In all cases an ideal gas equation of state will be assumed for the
ions and a Stefan– Boltzmann equation of state for the photons. For the
electron equation of state, first an analytical approximation will be
considered in terms of solutions to the Lane–Emden equations described in
Section 8.4, and then a simple model that incorporates a more realistic
equation of state allowing arbitrary levels of relativity and degeneracy will
be investigated numerically.

16.2 Polytropic Models of White Dwarfs



Since white dwarfs are in hydrostatic equilibrium with degenerate electrons
supplying the pressure, we may expect that solutions of the Lane–Emden
equation (8.8) with polytropic index  corresponding to 

 are relevant for the structure of low-mass white
dwarfs where electron velocities are nonrelativistic. Likewise, it may be
expected that in more massive white dwarfs the electrons become
relativistic and the corresponding structure is related to a Lane–Emden
solution with polytropic index n = 3, corresponding to 

16.2.1 Low-Mass White Dwarfs

First consider a low-mass white dwarf. Assuming a  (that is, 
 ) polytropic equation of state, Eq. (8.13) then gives

(16.4)

This surprising result implies that, contrary to the behavior of normal stars,
increasing the mass of a low-mass white dwarf causes its radius to shrink.
This behavior is a direct consequence of the degenerate electron equation of
state. Inserting constants in Eq. (8.10), the radius of a low-mass white dwarf
described by a degenerate, nonrelativistic equation of state is [200]

(16.5)

and for the corresponding mass,

(16.6)

where the mean molecular weight per electron μe is defined by Eqs. (3.22)
and (3.23).

16.2.2 High-Mass White Dwarfs



Now imagine adding mass continuously to a low-mass white dwarf.
Initially the electrons will be nonrelativistic. As the mass increases the
electrons will move faster by uncertainty principle arguments and at high-
enough mass will become ultrarelativistic, with an equation of state
corresponding to a  polytrope. Then from Eq. (8.13)

(16.7)

The result of Eq. (16.4) was surprising but this one is stunning! Equation
(16.7) defines the Chandrasekhar limiting mass, which implies that there is
an upper limit for the mass of a white dwarf. Inserting the constants gives
that for the radius of a high-mass white dwarf described by an
ultrarelativistic, degenerate electron equation of state,

(16.8)

and for the Chandrasekhar mass,

(16.9)

where the last estimate follows because μe ∼ 2 in typical white dwarfs.
Thus the Chandrasekhar limiting mass is somewhat composition dependent
but implies an upper limit on white dwarf masses of approximately 1.4M⊙.

Example 16.1 We may illustrate the composition dependence of the
Chandrasekhar limiting mass with two examples.

(1) For the symmetric matter  commonly found in
white dwarfs, Eq. (3.23) gives μe = A/Z = 2 and the Chandrasekhar
mass is



Hence the upper limit for the mass of a typical white dwarf is around
1.4M⊙.

(2) The iron core of a massive star late in its life is supported by electron
degeneracy pressure and so is subject to the Chandrasekhar limit. For
a pure 56Fe core, μe = A/Z = 56/26 = 2.154, in which case the
Chandrasekhar mass is

As will be discussed further in Chapter 20, when the iron core
exceeds this mass it becomes unstable against a catastrophic
gravitational collapse. The smaller critical mass for the iron core
relative to the white dwarf is because the iron core is not symmetric
nuclear matter (there are more neutrons than protons), so there are
fewer electrons per nucleon to provide the stabilizing pressure against
gravity than is the case for symmetric matter.

In Fig. 16.1 the radius versus mass for white dwarfs is shown for a
numerical simulation described further in the figure caption and below.
Figure 16.1 displays clearly the behavior implied by Eqs. (16.4)–(16.9). For
lower masses the radius decreases steadily with increase in mass, in accord
with Eq. (16.4), but at high masses the curve turns over and approaches a
vertical asymptote given by Eq. (16.9). In Fig. 16.2 the variation of the
mass and radius of a white dwarf as a function of its central density is
plotted for numerical calculations similar to those described in Fig. 16.1.
The steady trend to zero radius (note the log scale) as the white dwarf
approaches the limiting mass asymptotically is apparent.



Fig. 16.1 Dependence of radius on mass for a white dwarf. The Chandrasekhar limit of 1.44 solar
masses is indicated. This calculation assumes an electron fraction of Ye = 0.5 and a numerical
equation of state that accounts fully for arbitrary degrees of electron degeneracy and relativity for
electrons. (The electron fraction Ye is the ratio of the number of electrons to the total number of
nucleons. For symmetric matter Z = N, so for fully ionized symmetric matter, .) Thus, for

electrons this equation of state approximates a  polytrope at low mass and a  polytrope
at high mass, with a smooth transition in between. The ions of the white dwarf are assumed to obey
an ideal gas equation of state and the photons are described by a Stefan–Boltzmann photon gas
equation of state.



Fig. 16.2 Variation of mass and radius for a white dwarf as a function of its central density. Obtained
using numerical simulations as for Fig. 16.1.

16.2.3 Heuristic Derivation of the Chandrasekhar Limit
The Chandrasekhar limiting mass was obtained above as a consequence of
the Lane– Emden equation, which follows from the assumptions of
hydrostatic equilibrium and a polytropic equation of state. It will prove
useful in understanding the physics of the limiting mass for white dwarfs to
obtain the Chandrasekhar result in a more intuitive way by considering the
energy balance of the star.

Energy balance: Assume a fully ionized sphere of symmetric matter with
radius R, containing N electrons and thus 2N nucleons. The mass of the
sphere is M ∼ 2mpN, where mp is the proton mass, the average spacing
between electrons is d ∼ R/N1/3, and from the uncertainty principle the
average momentum of the electrons is (with numerical constants dropped)

By estimating the total energy of the degenerate electrons and balancing
that against the gravitational energy of the nucleons (see Problems 16.1–



16.2), we obtain for the energy balance in the nonrelativistic and
ultrarelativistic limits, respectively,

(16.10)

(16.11)

where a, b, c, and d are positive constants.

Equilibrium: Notice that the two terms in the nonrelativistic case have
different R dependence. Setting ∂E/∂R = 0 yields an equilibrium
configuration in the nonrelativistic case that satisfies MR3 = constant. On
the other hand, in the ultrarelativistic case the two terms have the same
dependence on R (a direct consequence of  ). Thus, attempting to
solve ∂E/∂R = 0 for R corresponding to a gravitationally stable
configuration leads to an indeterminate result, since the resulting equation
does not depend on R.

The meaning of this result is clarified by observing that both terms in Eq.
(16.11) vary as R−1 but the first term depends on M4/3, while the second
depends on M2. Because the second term has a net negative sign and a
stronger dependence on M than the first term, the total energy will become
negative if the mass is made large enough. But since the total energy scales
as R−1 in the ultrarelativistic limit, once the total energy becomes negative
the system can minimize its energy by shrinking to zero radius: for the
ultrarelativistic degenerate fermion gas there is a limiting mass beyond
which the system is unstable against gravitational collapse. This critical
mass may be estimated by equating the two terms in Eq. (16.11), yielding
(see Problem 16.1)

(16.12)

which is correct to better than a factor of two in comparison with Eq. (16.9).



Both special relativity and quantum mechanics are central to the
preceding results. Nonrelativistic degenerate matter has  which is
gravitationally stable. But quantum mechanics (the uncertainty principle)
requires the electrons to move faster as the density increases, implying that
the velocities eventually become relativistic as the white dwarf mass
increases. Relativistic degenerate matter has  which inherently is
gravitationally unstable (see Section 9.4.1). Because the speed of the
electrons is limited by the speed of light, there is a mass beyond which even
the degeneracy pressure cannot prevent gravitational collapse of the system.
This critical point is the Chandrasekhar limiting mass.

Quantum mechanics and relativity: The foregoing discussion makes clear
that the existence of a limiting mass for white dwarfs is a direct
consequence of wedding special relativity and the quantum mechanics of
identical fermions. It is of historical interest that the first applications of the
quantum statistical mechanics of identical particles – now a cornerstone of
disciplines like condensed matter physics, atomic physics, and nuclear
physics – were not to matter here on Earth but instead to the structure of
white dwarfs that were lightyears away. Within about five years of the
advent of quantum mechanics, it had been proposed that white dwarfs must
consist of matter in an electron-degenerate state, and that the effects of
special relativity would weaken the quantum-mechanical pressure
associated with uncertainty principle fluctuations sufficiently that there
would be an upper limit to possible masses for such configurations.

Although these ideas of a young Subrahmanyan Chandrasekhar (1910–
1995) were dismissed at first by influential astrophysicists such as Arthur
Eddington, they were shown to be correct and Chandrasekhar went on to
win a Nobel Prize and become a legendary figure in the development of
modern astrophysics.2 This saga of understanding the nature of white dwarf
stars remains, even today, one of the great triumphs of quantum statistical
mechanics. It also is an instructive tale of how the revolutionary ideas of a
young graduate student eventually triumphed over the weight of established
authority, because the ideas were correct!

16.2.4 Effective Adiabatic Index and Gravitational Stability



The preceding results are another variation on a theme introduced in
conjunction with the collapse of protostars in Section 9.4. There it was
found that an adiabatic index of  implies an instability against
expansion or contraction. From Eq. (8.6),

(16.13)

Taking the logarithmic derivative (16.13) as the definition of an effective
adiabatic index γeff for an equation of state P = P (ρ), it may be expected
that in any simulation of hydrostatic equilibrium,

heralds the onset of a radial scaling instability. In Fig. 16.3 the value of γeff
as a function of radius is calculated numerically using Eq. (16.13) for white
dwarf solutions that have been obtained with an equation of state allowing
arbitrary electron degeneracy and relativity (similar to that used in Fig.
16.1). For low-mass white dwarfs the effective value of γ is near the
nonrelativistic expectation of  for the entire interior. However, as the mass
of the white dwarf is increased, the effective value of γ in the deep interior
begins to drop and as the mass approaches the Chandrasekhar limit, γeff
tends to  and the numerical solution begins to fluctuate at the highest
densities, reflecting proximity to the gravitational instability
(Chandrasekhar limit) that in this case occurs at 1.44 solar masses.



Fig. 16.3 Values of the parameter γeff ≡ d ln P/d ln ρ at constant temperature for white dwarfs of
various masses, with P and ρ computed numerically. The limiting values corresponding to
nonrelativistic (γ = 5/3) and ultrarelativistic (γ = 4/3) polytropes are indicated by dashed lines.

16.3 Internal Structure of White Dwarfs
A numerical calculation of the internal structure for a white dwarf is shown
in Fig. 16.4(a), which displays the density, enclosed mass, and temperature
as functions of the radius. The calculation corresponds to hydrostatic
equilibrium with a realistic electron equation of state in which the electrons
have arbitrary degeneracy and arbitrary degree of relativity. The ions are
assumed to obey an ideal gas equation of state and the radiation is assumed
to obey a Stefan–Boltzmann equation of state. Figure 16.4(b) illustrates the
relative contribution of electrons and ions to the pressure in this calculation,
and provides strong justification for the earlier assumption that the pressure
in white dwarfs is dominated by the contribution from degenerate electrons.



Fig. 16.4 (a) Behavior of density, enclosed mass, and temperature for a white dwarf as functions of
the radius r. In this calculation the white dwarf has a central density of 2.9 × 106 g cm−3, a central
temperature of 5.0 × 106 K, a total mass of 0.595 solar masses, and a radius of 9234 km. (b) Relative
contributions of the electronic pressure and ionic pressure for the calculation described in Fig.
16.4(a). The contribution to the pressure from radiation under these conditions is completely
negligible relative to the electronic and ionic contributions. The electronic contribution is very nearly
that expected for a fully degenerate gas, and the ionic contribution is seen to be much smaller than
that of the electrons.

16.3.1 Temperature Variation
Hydrostatic equilibrium for the Lane–Emden solutions with polytropic
equations of state and the numerical solutions with more realistic equations
of state discussed above has been calculated assuming the mechanical
properties to be decoupled from the thermal properties of the white dwarf.
The internal temperature variation in this calculation is then determined by
assuming a physical model rather than computing it self-consistently by
solving the full set of coupled stellar equations.

The temperature model employed here can be motivated by observing
that degenerate matter is an extremely good conductor of thermal energy,
which implies that the interior of a white dwarf cannot support a substantial
temperature gradient and all but a thin surface layer may be assumed to be
isothermal and strongly heat conducting. On the other hand, near the
surface the density drops to zero and the nearly ideal gas expected there is a
very good insulator. This suggests that a good model of how white dwarfs
cool is one of a conducting sphere with no temperature gradient surrounded
by a thin layer of normal gas with a gradient set by its transport properties



(that is, by its opacity). This is analogous mathematically to the cooling of a
hot metal ball surrounded by a thin insulating jacket, since degenerate gases
have many of the properties of metals.

16.3.2 An Insulating Blanket around a Metal Ball
The temperature variation in Fig. 16.4(a) follows from a “metal ball plus
insulating blanket” model like that described above in which the interior of
the white dwarf is assumed to be fully conductive, the surface is insulating
with a radiative opacity given by the Kramers bound–free opacity, and the
transition between the two is governed by the value of the degeneracy
parameter (see Section 3.7.2),

(16.14)

where μ is the chemical potential for the electrons. The variation of the
degeneracy parameter with radius is illustrated in Fig. 16.5. In the interior α
is large, indicating a highly degenerate gas of electrons, but very near the
surface α falls to zero, implying that in a thin surface layer the electrons
obey approximately an ideal gas law.



Fig. 16.5 The calculated degeneracy parameter α ≡ (μ − mec
2)/kT of Eq. (16.14) versus radius for a

white dwarf simulation, where μ is the electron chemical potential and me the electron mass. A
similar equation of state as for Fig. 16.1 was used in the calculation. We see that the electron gas is
highly degenerate except very near the surface of the star. Shown inset are state occupation profiles
for a normal gas and a degenerate fermionic gas, with εF the Fermi energy.

16.4 Cooling of White Dwarfs
A white dwarf has no internal heat source of consequence but it can remain
luminous for a long time as the heat left over from its days of stellar glory
leaks slowly away. (The heat capacity of a degenerate electron gas is small,
so the heat of the white dwarf is stored primarily in the ions.) The cooling
curve for a white dwarf should then reflect both the internal structure and
the age of the star. As we have shown, the thermal properties of white
dwarfs are described well by a spherical ball of electron-degenerate matter
surrounded by a thin ideal-gas surface layer. This can serve as a simple but
quantitative model for cooling rates in white dwarfs. By determining
observationally the surface temperature of white dwarfs in a stellar



population and relating these to theoretical cooling curves, it is possible to
estimate the age of the white dwarfs and hence infer the age of the stellar
population. Such methods are used extensively to determine the age of
stellar populations in our galaxy.

As discussed further in Box 16.1, white dwarfs may cool by neutrino
emission from hot, dense central regions in addition to cooling by photon
emission from the surface. This is in fact thought to be the dominant source
of cooling for young, hot white dwarfs and occurs primarily through
emission of plasma neutrinos from the deep interior.

Box 16.1 Neutrino Cooling of White Dwarfs

White dwarfs can cool by emission of neutrinos from the interior as well
as through photons emitted from the surface. From Fig. 7.14 and the
typical densities and interior temperatures encountered for white dwarfs,
the dominant source of neutrino cooling is expected to be plasma
neutrinos emitted from the central region, for white dwarfs with surface
temperatures greater than about 25, 000 K [228]. Direct neutrino
emission from specific stars has been observed thus far only for two
cases: neutrinos from the Sun and the neutrino burst detected from
Supernova 1987A. It has been proposed that neutrino emission might be
observed indirectly by studying the effect of neutrino cooling on
pulsations of young, hot, variable white dwarfs [228]. The DBV white
dwarfs (white dwarfs with a helium atmosphere that are pulsating
variables; see the classification discussed in Box 2.1) have effective
surface temperatures around 25,000 K, so they are thought to cool
largely through emission of plasma neutrinos. Simulations indicate that
the rate of change in the observed pulsation period versus time is
affected significantly by neutrino emission, suggesting that changes
observed in the pulsation period of a suitable DBV white dwarf could be
used to infer the rate of neutrino cooling.

16.5 Crystallization of White Dwarfs
In the early 1960s it was predicted that as the plasma in a white dwarf cools
it may become energetically favorable for the ions to form a body-centered



cubic (BCC) crystalline lattice to minimize the Coulomb repulsion (see [36,
149] and references therein).3 This is expected to occur through a first-order
liquid to solid phase transition. The corresponding latent heat of
crystallization provides a new energy source supplementing the thermal
energy stored in the ions that influences the subsequent thermal evolution of
the white dwarf. Whether this transition occurs, and its detailed properties if
it does, constitutes one of the largest uncertainties in calculating white
dwarf cooling. This in turn has implications for the use of white dwarf
cooling curves to determine the age of stellar populations.

It is possible to study the internal structure of some stars through
asteroseismology, by extending the helioseismology concepts of Section
10.2 to other stars (see Ref. [106] for a review). These methods provide a
way to test the hypothetical crystallization of cooling white dwarfs. For
typical white dwarfs theory suggests that crystallization in the core begins
when the surface temperature decreases to 6000–8000 K, but in more
massive white dwarfs crystallization is expected to set in at a higher surface
temperature. Thus asteroseismology on massive white dwarfs is a
promising source of evidence for crystallization.

Asteroseismology of the pulsating DAV white dwarf BPM 37093 has
been used to infer its internal structure [149].4 This star represents a
particularly favorable case because its mass of 1.1M⊙ is the largest known
for a DAV white dwarf. The oscillations of this and other pulsating white
dwarfs correspond to non-radial gravity waves (g-modes; see Section
10.2.1), which represent oscillations with a restoring force provided by
gravity. If the core of a white dwarf becomes solid because of the crystalline
phase transition, the difference in density at the solid–liquid core boundary
is very small so the mechanical properties of the white dwarf are not altered
significantly and the effect on evolution of the white dwarf is expected to be
minimal. However, formation of a crystalline core may have a significant
effect on the star’s pulsations because the additional shear in the solid
relative to the liquid causes a mismatch between interior and exterior waves
at the core boundary, and the exterior waves are almost completely reflected
by the boundary. Hence, the non-radial g-modes cannot penetrate the solid–
liquid interface, the white dwarf’s observable pulsations become linked to
g-modes confined to the non-crystalline liquid region outside the core, and
the size of the crystalline core exerts a potentially observable effect on the



pulsations of the star [149, 152]. From analysis of the observed pulsation
frequencies it was concluded that BPM 37093 has a core of crystallized
carbon and oxygen containing about 90% of the white dwarf’s mass [149].
A different analysis of BPM 38093 observational data concluded that the
crystalline mass most likely lies between 32% and 82% [58]. In either case
there is credible evidence that a substantial fraction of the white dwarf has
entered the crystalline phase predicted by theory.5

16.6 Beyond White Dwarf Masses
The preceding discussion of limiting masses for white dwarfs assumes that
all pressure derives from electrons. However, if the Chandrasekhar mass is
exceeded and the system collapses gravitationally, eventually a density will
be reached where the nucleons, which also behave as fermions under these
conditions, will begin to produce a strong degeneracy pressure. Whether
this nucleon degeneracy pressure can halt the collapse depends on the mass
of the collapsing object. Calculations indicate that for a mass less than 2–3
solar masses (depending on the equation of state), the collapse converts
essentially all protons into neutrons through the weak interactions,
producing a neutron star. The degeneracy pressure of the neutrons halts the
collapse at neutron-star densities and radii approximately 500 times smaller
than characteristic white dwarf radii. Calculations, and general
considerations concerning strong gravity that are independent of details,
indicate that for masses greater than this even the neutron degeneracy
pressure cannot overcome gravity and the system collapses to a black hole.
These considerations indicate also that white dwarfs, stabilized by electron
degeneracy pressure, and neutron stars, stabilized by neutron degeneracy
pressure, are the only possible stable configurations lying between normal
stars and black holes. Therefore, let us now consider the properties of
neutron stars.

16.7 Basic Properties of Neutron Stars
Neutron stars were predicted in 1933 by Walter Baade (1893–1960) and
Fritz Zwicky (1898–1974) as a possible end result of what would now be
called a core collapse supernova, and Robert Oppenheimer (1904–1967)



and George Volkov (1914–2000), building on work by Richard Chase
Tolman (1881–1948), worked out and solved equations describing their
general structure and properties in 1939. However, they were not taken very
seriously by observers until the discovery of radio pulsars in the 1960s
pointed to rapidly spinning neutron stars as their most likely explanation.

16.7.1 Sizes and Masses
Most neutron stars have masses of 1–2 solar masses and diameters of 15–20
km. Very loosely (a more precise discussion follows below), a neutron star
packs the mass of a normal star like the Sun into a volume of about 10 km
in radius. From this we may estimate immediately an average density of
order 1014 g cm−3 for neutron stars (it can actually be about an order of
magnitude larger than that). Thus, they have enormous densities that are
similar to those encountered in the nucleus of the atom. In fact, in certain
ways (but not all), a neutron star may be likened to a gigantic atomic
nucleus. These very large densities imply strong gravitational fields and the
possibility of significant general relativistic deviations from Newtonian
gravity.6 The mechanism leading to formation of a neutron star is described
qualitatively in Box 16.2, and in more detail in Chapter 20.

Box 16.2 Electron Capture and Neutronization

The formation of a neutron star results from a process called electron
capture (a form of β-decay), which can follow the core collapse of a
massive star late in its life to produce a supernova. The process is also
called neutronization, because it destroys protons and electrons to create
neutrons. The basic reaction is e− + p+ → n + νe, where the protons can
be either free or bound in nuclei. It is slow under normal conditions
(because it is mediated by the weak interaction) but faster in the high
density and temperature environment produced by core collapse in a
massive star.a In the resulting supernova explosion the enormous
amount of energy released gravitationally leads to expulsion of the outer
layers of the star, leaving behind a dense, hot remnant. As
neutronization proceeds the neutrinos escape, carrying off energy and
leaving behind the neutrons. Because neutrons carry no charge, there is
no electrical repulsion as in normal matter and the core remnant can



collapse to very high density once it has become mostly neutrons. The
formation of actual neutron stars is more complex than this and they are
not composed entirely of neutrons, but this simple picture captures the
basic idea.
a At a fundamental level the weak interaction strength scales linearly with the density and

quadratically with the temperature. At normal temperatures and densities the strength is
small, but at extremely high temperatures and densities the weak interactions are much
stronger than under normal conditions.

Because neutron stars are tiny it might be expected that they would be
very difficult to detect. In fact, you are asked to demonstrate in Problem
16.4 that neutron stars have luminosities that are comparable to that of stars
like the Sun because they have very high surface temperatures (of order 106

K). Because of the high temperature, the light emitted peaks in the extreme-
UV and soft X-ray portion of the spectrum, so neutron stars are readily
visible to X-ray observatories. An X-ray image of a neutron star at the
center of an expanding supernova remnant is shown in Fig. 16.6.

Fig. 16.6 Chandra X-ray observatory image of a neutron star in the center of an expanding supernova
remnant. This neutron star is also a pulsar (see Section 16.9). It is believed that the neutron star and
the expanding remnant surrounding it were produced by a supernova seen on Earth in 386 AD by
Chinese observers.



16.7.2 Internal Structure
The internal structure of a neutron star can be divided into the following
general regions, which are illustrated in Fig. 16.7.

1. The atmosphere is thin and consists of very hot, ionized gas.
2. The outer crust is only a few hundred meters thick and consists of a

solid lattice or a dense liquid of heavy nuclei. The dominant pressure is
from electron degeneracy and the density is not high enough to favor
neutronization.

3. The inner crust is ∼ 1 km thick. The pressure is higher and the lattice
of heavy nuclei is now permeated by free superfluid neutrons that
begin to “drip” out of the nuclei. The pressure is still mostly from
degenerate electrons.

4. The outer core is primarily superfluid neutrons that supply most of the
pressure through neutron degeneracy. This region gives the neutron
star its name.

5. The structure of the inner core is less certain because we know less
about how matter behaves under the intense pressure at the center. It
might even consist of a solid core of particles more elementary than
nucleons (pions, hyperons, quarks, ...).

Although much of a neutron star consists of closely packed neutrons and
thus has some resemblance to a giant atomic nucleus, it is important to
remember that it is gravity, not the nuclear force, that holds a neutron star
together. This is discussed further in Box 16.3.



Fig. 16.7 The schematic internal structure of a typical neutron star.

Box 16.3 Neutron Stars are Bound by Gravity

A neutron star has some resemblance to a 20-km diameter atomic
nucleus. However, there is at least one big difference. Gravity is
negligible on a nuclear scale and a nucleus is held together by effective
nuclear forces that derive from the strong interactions, but a neutron star
is bound by gravity, and the strength of that binding is such that the
density of neutron stars is even greater than that of nuclear matter.

How Does the Weakest Force Produce the Most Dense Object?
How, then, is it possible that the weakest force (gravity) can produce an
object more dense than atomic nuclei, which are held together by a
diluted form of the strongest force known? The answer has to do with
the range and sign of the forces involved:

1. Gravity is weak but it is long-ranged and always attractive.



2. The nuclear force is short-ranged, acting only between near
neighbors.

3. The normally attractive nuclear force becomes repulsive at short
distances. In fact, a neutron star would explode if gravity were
suddenly removed, because the neutrons have been forced so close
together by gravity that the average nuclear force between them is
repulsive.

Thus gravity is weak but long-ranged, and always acts with the same
sign.

The Tortoise and the Hare
This is a kind of Tortoise and Hare fable, with a correspondingly
predictable outcome: gravity is weak, but relentless and always
attractive (in the absence of dark energy acting on cosmological scales).
Over large enough distances and long enough time, gravity – that
plodding tortoise of forces – always wins. That is why a neutron star can
be compressed to the highest material density known by the most feeble
of interactions.

16.7.3 Cooling of Neutron Stars
As will be discussed further in Chapter 20, neutron stars form from the
innermost material left behind in a core collapse supernova (provided that
the center does not collapse to a black hole). The protoneutron star formed
in the supernova is initially very hot and bloated (typically with a
temperature ∼ 1011 K and a radius some 30% larger than the final neutron
star that it will become), and is still being powered by accretion from the
part of the envelope that did not escape the star in the explosion. As the
accretion tapers off the nascent neutron star cools rapidly by neutrino
emission (see Fig. 20.12).

Example 16.2 In high-energy astrophysics temperatures are often quoted in
energy units, with the corresponding temperature in kelvin given by T =
E/k, where k is Boltzmann’s constant. A characteristic temperature for a



protoneutron star formed in the core collapse of a 20M⊙ star is ∼ 50 MeV
[79], from which

for the corresponding temperature in kelvin.

Once the protoneutron star has cooled and shrunk enough in radius to
resemble a neutron-star proper, it continues to cool both by X-ray emission
from the surface and neutrino emission from the interior. As will be
discussed in Section 16.7.4, the protons in the interior likely become
superconducting and the neutrons superfluid very quickly as the
temperature drops. Hence the interior becomes a very good conductor of
heat and its temperature is uniform. But in a thin layer near the surface the
material is composed of atomic nuclei rather than a nucleonic superfluid,
which is a much poorer conductor of heat and the temperature drops off
rapidly at the surface. In a situation reminiscent of the blanket over a metal
ball picture invoked earlier in this chapter to describe the temperature
profile of a white dwarf, the interior is much hotter than the (X-ray
emitting) photosphere: typical estimates are that the interior is initially at a
temperature of ∼ 109 K while the photosphere has a temperature of only a
few times 106 K.

Under these conditions the surface X-ray luminosity will be quite large
(see Problem 16.4), but since even dense neutron star matter is largely
transparent to neutrinos,7 neutrino emission from the interior will be much
more efficient at transporting energy than X-ray emission from the
photosphere and the young neutron star cools primarily by neutrino
emission. This situation will continue until the neutron star is quite cold;
only then will X-ray emission from the photosphere begin to rival neutrino
emission in cooling the star. In more massive young neutron stars the
primary neutrino-cooling mechanism is the direct Urca process operating at
the center (see Box 7.5). In less massive neutron stars the dominant cooling
is from slower neutrino processes such as neutrino bremsstrahlung and the
modified Urca process, also described in Box 7.5. In either case the neutron
star cools sufficiently on a 100,000-year timescale that the surface



temperature is reduced to less than 106 K, suppressing the emission of X-
rays and rendering it largely invisible if it is an isolated neutron star.

16.7.4 Evidence for Superfluidity in Neutron Stars
Just as for certain systems in condensed matter – though for different
microscopic reasons – in neutron stars the neutrons and protons can exhibit
properties of essentially zero resistance to mass flow (superfluidity) or to
charge flow (superconductivity). (For convenience we will sometimes term
both effects superfluidity.) This can have strong influence on the rotational
and magnetic properties of the neutron star, as well as its rate of cooling.

The Cas A neutron star: Chandra X-ray Observatory first-light
observations discovered a compact object at the center of the Cassiopeia A
supernova remnant. It was subsequently identified as the neutron star left
over from the supernova explosion, which is estimated to have occurred in
the year 1681 ± 19. The corresponding age of about 330 years makes the
Cas A neutron star the youngest known. Evidence for superfluidity from
cooling of the Cas A neutron star is presented in Fig. 16.8, where
comparison with theory indicates that observed cooling curves for neutron
stars are strongly influenced by the presence of both neutron and proton
superfluidity.



Fig. 16.8 Cas A neutron star cooling compared with calculations [122, 164, 165]. Curves indicate
theory: “Normal matter” (dashed curve) assumes no superfluidity, the solid curve labeled “Proton
superfluid” assumes only the protons to be superfluid, and the solid curve labeled “Neutron–proton
superfluid” assumes both protons and neutrons to be superfluid. Temperatures predicted by the
neutron–proton superfluid model are marked for several years beginning 10 years after the birth of
the neutron star in ∼1680. Data points (×) were obtained by the Chandra X-ray Observatory from
1999–2010 and suggest rapid cooling. Adapted from Proceedings of Science–PoS (Confinement X),
260, “The Hottest Superfluid and Superconductor in the Universe: Discovery and Nuclear Physics
Implications,” Ho, W. C. G. et al. Copyright (2012) by the author(s) under the terms of the creative
Commons Attribution (Non-Commercial) Share Alike Licence.

A possible superfluid phase transition: The theoretical curves suggest
substantial differences between neutron stars with “normal” matter and
those containing superfluids beginning about 40 years after the birth of the
neutron star. In these models, proton superconductivity sets in soon after the



neutron star is formed, which suppresses neutrino emission and causes the
cooling rate to be slower than that for normal matter. Then, when the core
neutrons also become superfluid around the year 1930 the crust is predicted
to cool very quickly for several hundred years. The rapid drop of surface
temperature observed by Chandra between 1999 and 2010 has been
interpreted as a phase transition to superfluid neutrons in the core (though
alternative explanations have been proposed) [122, 164, 165]. Superfluidity
in neutron stars is discussed further in Box 16.4.

Box 16.4 Superfluidity in Helium-3 and Neutron Stars

At zero pressure and zero magnetic field a gas of 3He atoms (commonly
termed helium-3) becomes a liquid if the temperature is lowered to
about 1 K. If the temperature is lowered further to 2–3 millikelvin, two
distinct superfluid phases that are termed the A phase and B phase
appear (see Chapter 7 of Ref. [24] for an introduction to the superfluid
phases of helium-3).

Dense Fermi Liquids
Because of the odd number of spin  nucleons, the total spin of
helium-3 is  Thus, to the degree that the influence of any internal
structure can be ignored in interactions, which is a good approximation
at such low temperatures, the helium-3 is found to behave very much
like a strongly interacting gas of fermions (see Problem 16.11). Because
the correlations are strong, helium-3 is commonly termed a dense Fermi
liquid, and is a specific example of a quantum liquid, which is a liquid
in which the effects of both quantum mechanics and quantum statistics
are important. In this example, the Fermi–Dirac statistical properties of
the helium-3 are central to its behavior.

Dense Quantum Liquids in Neutron Stars
The relevance of this interesting physics from condensed matter to the
present astrophysical discussion is that in neutron stars it is thought that
the spin  neutrons can become superfluid and the spin  protons can
become superconducting for interior temperatures below around 108–
1010 K because of the very high density. This is observable in effects on



the moment of inertia for rotating neutron stars (for example, the pulsar
glitches discussed in Section 16.9.4), and in the cooling rates for young
neutron stars discussed in Section 16.7.4. Thus, the interiors of neutron
stars are likely dense quantum liquids exhibiting physics that may have
some relationship to that of superfluid helium-3.

16.8 Hydrostatic Equilibrium in General
Relativity
The discussion of neutron stars has been based primarily on Newtonian
gravity. This is adequate at a qualitative level but gravity for neutron stars is
of sufficient strength that a quantitative description of them requires general
relativity (GR), with their structure determined by solving the Einstein
equations for their dense-matter interior. This task is beyond our present
scope. It is taken up in Ref. [100], to which the reader is directed for more
details. However, before leaving this introduction to neutron stars, let us
sketch briefly without proof how hydrostatic equilibrium is modified by
general relativity in neutron stars.

16.8.1 The Oppenheimer–Volkov Equations
Stable neutron stars are in hydrostatic equilibrium, with gravity balanced
against pressure-gradient forces, just as was found in Chapter 4 for normal
stars. However, when gravity is derived from general relativity rather than
from the Newtonian theory the corresponding equations for hydrostatic
equilibrium are modified in a non-trivial way. As discussed in Chapter 10 of
Ref. [100], by assuming the interior of neutron stars to consist of a perfect
fluid (no shear or viscosity effects) the general relativistic equations for
hydrostatic equilibrium can be written in the form

(16.15)

(16.16



)

where P is pressure, ε(r) is energy density, and units have been chosen so
that the gravitational constant G is equal to one. Equation (16.15) expresses
hydrostatic pressure balance for a fluid in general relativity and Eq. (16.16)
expresses the conservation of mass– energy; together they are termed the
Oppenheimer–Volkov equations (or sometimes the Tolman–Oppenheimer–
Volkov equations). It is instructive to compare the Oppenheimer– Volkov
equations with their Newtonian counterparts.

16.8.2 Comparison with Newtonian Gravity
For Newtonian gravity the equations of hydrostatic equilibrium are given in
Lagrangian form by Eqs. (4.12) and (4.15), which in G = 1 units become

(16.17)

Comparing these equations with Eqs. (16.15)–(16.16) indicates that the
formulation of hydrostatic equilibrium in the general relativistic solution is
equivalent to that in the Newtonian gravity solution if the energy density is
substituted for the mass density, ρc2 → ε, except for three correction factors
(in parentheses) in the GR version (16.15) that depend on the pressure and
the mass, and represent general relativity effects causing deviations from
Newtonian gravitation. They have the following consequences.

1. In stars described by Newtonian gravity, ε is dominated by the rest
mass of the baryons and the baryons don’t contribute significantly to
the pressure (which is dominated by electrons). Thus P (r)/ε(r) ∼ 0,
and P (r)/M(r) ∼ 0, and the first two correction factors in Eq. (16.15)
are approximately unity.

2. Conversely, the first two correction factors generally exceed unity as
the star becomes more massive because pressure couples to gravity in
general relativity but not in Newtonian gravity.

3. The final correction factor in Eq. (16.15) is approximately unity for
stars described by Newtonian gravity, but becomes greater than one as
the mass increases and gravity becomes stronger.



Hence all three correction factors will generally be greater than one in more
massive objects with greater pressure. One of the most important
consequences following from these differences between Newtonian and
general relativistic gravity is that gravity is stronger and is enhanced by
coupling to pressure in the general relativistic description. This will imply
ultimately that there are fundamental limiting masses for stable strongly
gravitating objects because if the mass is large enough no amount of
pressure will be able to prevent their gravitational collapse to a black hole.

16.9 Pulsars
The year 1967 saw the discovery of something remarkable in the sky: an
object that appeared to be pulsing on and off with a period of about one
second. Shortly, other such “pulsars” of even faster variation were
discovered and the fastest now known (the millisecond pulsars) pulse on
and off with frequencies that exceed 700 times per second. There is some
variety in pulsars, but they exhibit several common characteristics:

They have well-defined periods that challenge timing from the best
atomic clocks.
Measured periods range from tens of seconds down to 1.4 ms.
The period of a given pulsar increases very slowly with time.

What could cause this rather remarkable behavior? We will now make the
case that only a rapidly spinning neutron star can do the job.

16.9.1 The Pulsar Mechanism
The observational details for pulsars are inconsistent with an actual
pulsation for known astronomical objects, but a rotating object could
appear to pulse if it had a way to emit light in a beam that rotated with the
source (just as a lighthouse appears to flash as the beam sweeps over an
observer). What kind of object would be consistent with observed pulsar
periods?

A dense object is required: Simple calculations show that only a very dense
object could rotate fast enough and not fly apart because of the rapid



rotation. Even a white dwarf is not dense enough. The minimum rotational
period for a typical white dwarf would be several seconds; for shorter
periods it would disintegrate. But a neutron star is so dense that it could
rotate more than a thousand times a second and still hold together. This
qualitative inference, augmented by much more detailed considerations,
leads to the conclusion that the only plausible explanation for pulsars is that
they are rapidly spinning neutron stars, with a mechanism to beam radiation
in a kind of lighthouse effect that is illustrated in Fig. 16.9.

Fig. 16.9 The pulsar lighthouse mechanism. The pulsing effect arises because the rotation and
magnetic axes are not aligned, causing one or both beams to sweep over the observer as the neutron
star rotates.

The lighthouse mechanism: The rapidly spinning electromagnetic field of
the pulsar accelerates electrons away from the surface near the magnetic
poles and these accelerated electrons can produce radiation by the
synchrotron effect. Because of the synchrotron mechanism and the high
velocity of the particles, the radiation produced is beamed strongly in the
direction of electron motion. These beams of radiation rotate with the star
but the magnetic axis need not coincide with the rotation axis (recall that



Earth’s rotational and magnetic axes have different orientations also) and
the beams can gyrate around the rotation axis, as illustrated in Fig. 16.9.

If these gyrating beams sweep over the Earth they act similarly to a
lighthouse and an observer on Earth sees flashes of light. Thus, the neutron
star appears to be pulsing, even though it is neither pulsing nor is it really a
star. Notice that this lighthouse mechanism means that not all rotating
neutron stars will be seen as pulsars. Only if they are favorably oriented
will the beams sweep over the Earth and give a pulsing effect.

16.9.2 Pulsar Magnetic Fields
The spin rate of a pulsar decreases slowly as it radiates away its energy,
because of coupling to its magnetic field. This change is small but can be
measured precisely and can be used to estimate the strength of the magnetic
field associated with the neutron star. It is found that some pulsars contain
the strongest magnetic fields known in our galaxy, and many of their basic
properties are thought to derive from these fields. Some typical magnetic
field strengths for various objects are listed in Table 16.1. The table
indicates that the largest known magnetic fields are associated with radio
pulsars and magnetars (see Section 16.10), which both involve rotating
neutron stars. We conclude that strong magnetic fields are likely to be
common for neutron stars, although deducing that is more difficult if the
neutron star is not observed as a pulsar or magnetar.

Table 16.1 Characteristic magnetic field strengths

Object Strength (gauss)†

Earth’s magnetic field 0.6
Simple bar magnet 100
Strongest sustained laboratory fields 4.5 × 105

Strongest pulsed laboratory fields 107

Strong magnetic stars 104–105

Maximum field for ordinary stars 107

Radio pulsar 1010–1012



Magnetars 1012–1015

†Magnetic fields in astrophysics are often given in gauss; 1 tesla = 104 gauss.

16.9.3 The Crab Pulsar
The first pulsar was found by Jocelyn Bell Burnell and Anthony Hewish in
1967. The most famous pulsar was discovered shortly after that. The Crab
Pulsar lies in the Crab Nebula (M1), about 7000 lightyears away in Taurus.
It rotates about 30 times a second, emitting a double pulse during each
rotation in the radio through gamma-ray spectrum. In visible light the Crab
Pulsar appears as a magnitude 16 star near the center of the nebula but
stroboscopic techniques reveal it to be pulsing, as shown in Fig. 16.10(a).
Both the image sequence at the top and the lightcurve display the “double
pulsing” of the Crab: in each cycle there is a strong primary pulse followed
by a much weaker secondary pulse. This double pulsing effect can be
explained by the lighthouse model if the beam from one magnetic pole
sweeps more directly over the Earth but the beam from the other pole does
so only partially. Most pulsars are detectable only by their radio frequency
radiation but a few (like the Crab) pulse strongly in other wavelength bands.

Fig. 16.10 (a) Light pulses from the Crab Pulsar. In this composite of European Southern
Observatory data the pulsar is shown in a time lapse image at the top and the lightcurve is displayed
at the bottom on the same timescale. (b) Glitches in the period of the Vela Pulsar.



16.9.4 Pulsar Spindown and Glitches
In some pulsars glitches are observed where the spin rate jumps suddenly to
a slightly higher value and then continues its slow decline. Three glitches
for the Vela Pulsar are illustrated in Fig. 16.10(b). These glitches are
evidence that some internal rearrangement of the neutron star has altered its
rotation rate by a small amount. One proposal is that “starquakes” occur in
the dense crust, causing the neutron star to contract slightly and thus to spin
faster by angular momentum conservation. A second theory proposes that
angular momentum stored in circulation of an internal superfluid liquid
(one that exhibits no frictional effects) is suddenly transferred to the crust,
altering the rotation rate. The possibility of superfluidity in neutron stars
was discussed in Section 16.7.4 and in Box 16.4.

16.9.5 Millisecond Pulsars
Since the spin of a pulsar slows with time, it may be expected that the
fastest pulsars are the youngest. For example, the Crab Pulsar is young (less
than 1000 years), and pulses 30 times a second. However, this reasoning
breaks down for the fastest pulsars known, which have millisecond periods.
About 300 such millisecond pulsars (MSP) are known in the galaxy and in
globular clusters [181]. The fastest one known pulses 716 times per second
[116], implying a 20-km wide neutron star that is spinning as fast as a
kitchen blender. For many of these very fast pulsars there is evidence that
they are old, not young, as would be expected for the fastest spin rates. This
evidence consists primarily of (1) the rate at which the pulsar spin is
slowing and (2) the astrophysical environment where the millisecond
pulsars are found.

For example, the first millisecond pulsar discovered, PSR 1937+21, has a
very high spin rate but the rate is decreasing very slowly.8 This slow
spindown rate implies that it has a weak magnetic field and is old. (Older
pulsars should have weaker fields and these should be less effective than
younger, stronger fields in braking the pulsar spin by electromagnetic
coupling.) Also, many millisecond pulsars are found in globular clusters,
which contain an old population of stars. Therefore, they are not likely to be
sites of recent supernova explosions that could have produced young



pulsars since core collapse supernovae occur in very short-lived, massive
stars.

Binary spinup: The most plausible explanation for the seeming
contradiction that the fastest pulsars appear to be very old is that
millisecond pulsars have been “spun up” at some point in their history to
higher rates. The mechanism proposed to do this involves mass transfer in
binary systems that adds angular momentum to the neutron star, as
illustrated in Fig. 16.11. In effect, this binary spinup accretion mechanism
(also termed MSP recycling) transfers angular momentum from the orbital
motion of the binary to rotation of the neutron star. Later in the evolution of
the system, after the neutron star has been spun up to high rotational
velocity the primary star may become a supernova and disrupt the binary
system, leaving the rapidly spinning but old neutron star as a lone
millisecond pulsar that defies the systematics expected for the evolution of
isolated neutron stars.

Fig. 16.11 The spinup mechanism for producing millisecond pulsars. Accretion in binary systems is
discussed more extensively in Chapter 18.

The pulsar–WD–WD triplet PSR J0337+1715: A rather exotic example of
a millisecond pulsar is the triple-star system PSR J0337+1715, which
contains a millisecond radio pulsar of period 2.3 ms and two white dwarfs,
with orbits shown in Fig. 16.12. This is a hierarchical triple-star system,



meaning that two of the stars are relatively close to each other and the other
is much further away: in PSR J0337+1715 the ratio of the periods
associated with the outer and inner binaries is ∼ 200. Such hierarchical
systems can have long periods of dynamical stability. PSR J0337+1715 has
an interesting evolutionary history that is sketched in Fig. 16.13 [181, 210].
According to the scenario outlined in the caption, which is based on a self-
consistent, semi-analytic analysis constrained by the current observations
[210], this system underwent a common envelope (CE) phase (Section
18.3), three periods of Roche lobe overflow (Section 18.2), a supernova
(Section 20.3), and two low-mass X-ray binary (LMXB) episodes (Section
18.6.2) to arrive at the present configuration of a completely degenerate
(neutron star + WD + WD) triple-star system in which the neutron star is a
millisecond pulsar. As the authors of Ref. [210] stress, this explanation for
how PSR J0337+1715 came to be stretches current understanding of stellar
evolution and stellar interactions to the limit. Hence PSR J0337+1715
should prove to be an excellent laboratory to study many aspects of stellar
evolution that are not currently well understood, such as common envelope
phases and binary spinup. In addition, this system is extremely promising as
a test of the strong equivalence principle of general relativity because of the
large gravitational acceleration of the inner pulsar–WD binary by the outer
white dwarf, and the precise timing afforded by the pulsar.9



Fig. 16.12 Orbits of the triplet hierarchical system PSR J0337+1715 [181]. (a) Orbits of the outer
white dwarf (WD) and the center of mass (CM) for the inner white dwarf and neutron star pair. (b)
Left side scaled up by a factor of 30 to show the orbits for the inner white dwarf and neutron star
(NS). Arrows indicate orbital velocities for the center of mass of the inner binary and the individual
white dwarfs and neutron star. All orbits lie almost in the same plane, are nearly circular, and have a
tilt angle i ∼ 39◦ relative to the line of sight. Adapted by permission from Springer Nature: Nature,
“A Millisecond Pulsar in a Stellar Triple System,” Ransau et al., Copyright (2014).

Fig. 16.13 Evolutionary history of PSR J0337+1715 [210]. Referring to the sequence numbers: (1)
The triple-star system formed (ZAMS) with a 10 M⊙ spectral class B star and two ∼ 1 M⊙ stars,
with one lighter star near the B star and one more distant. (2) The massive star evolved quickly and
expanded, initiating a common-envelope (CE) phase in which the closest star was engulfed and the
more distant one only partially so. (3) After shedding its hydrogen envelope the helium core of the
massive star expanded to fill its Roche lobe and accreted onto the nearest other star by Roche lobe
overflow (RLO). (4) The massive star underwent a core collapse supernova, which failed to unbind
the two companions. (5) The neutron star left behind (NS) became a pulsar, while the other two stars
continued their main sequence (MS) evolution. (6) The outermost star was the most massive of the
two lighter stars at formation. It evolved to fill its Roche lobe and began spilling mass onto the two
inner stars, with the accretion on the neutron star producing a low-mass X-ray binary (LMXB I). The
spinup of the pulsar in this accretion phase was likely minimal. (7) After the outer star shed its
envelope it became a white dwarf (WD), leaving the system with a pulsar, a white dwarf, and a main
sequence star. (8) The remaining main sequence star expanded to fill its Roche lobe and began a
second phase of accretion onto the neutron star, again producing a low-mass X-ray binary (LMXB
II). During this accretion phase the pulsar was spun up to near its current 2.3 ms period. (9) The
donor star for LMXB II shed all of its envelope and became a white dwarf, leaving the present
configuration of PSR J0337+1715: a millisecond pulsar and two white dwarfs in hierarchical orbits.
Adapted by permission from Springer Nature, “The First Gravitational-Wave Source from the
Isolated Evolution of Two Stars in the 40–100 Solar Mass Range,” Belczynski et al., Copyright
(2016).



16.9.6 Binary Pulsars
Several binary star systems are known in which both components are
neutron stars and one component is observed as a pulsar (binary pulsars), or
both components are observed as pulsars (double pulsars) [63, 212].

Formation of neutron-star binaries: Binary neutron stars are of
considerable interest for stellar physics because of the question of how such
systems could form. Either a binary star system survives two successive
supernova explosions to form the neutron stars (see Chapter 20), without
disrupting the binary gravitationally, or two free neutron stars in a dense
cluster capture gravitationally into a binary. Neither scenario is easy to pull
off and each appears to be possible only under very special conditions –
nevertheless, binary neutron stars may be rare but they exist.

Laboratories for testing general relativity: Binary pulsars and double
pulsars are of great value in their own right as exotic endpoints of stellar
evolution, but the most important consequence of binary pulsars and double
pulsars is that they are tools providing extremely precise tests of the general
theory of relativity [212]. This follows because pulsar periods have atomic-
clock precision, so the discovery of one (better yet, two) pulsars in a binary
system permits exquisite timing and precise tests of gravitational theory.
For example, as illustrated in Fig. 16.14(a), the orbital semimajor axis for
the Binary Pulsar (or Hulse– Taylor binary) [212] is observed to decay by
about three millimeters per revolution, in precise accord with the decay of
the orbit because of the emission of gravitational wave radiation (waves
corresponding to ripples in spacetime; see Chapter 22) that is predicted by
general relativity. Likewise, as illustrated in Fig. 16.14(b), the time of
closest approach (periastron) between the two neutron stars has been
observed to shift, in precise agreement with the predictions of general
relativity. A more extensive discussion of the Binary Pulsar and tests of
general relativity using pulsar timing may be found in Ref. [100].



Fig. 16.14 (a) Orbit of the Binary Pulsar and its decay by gravitational wave emission, drawn to scale
with the Sun shown for comparison. (b) Shift of periastron time because of gravitational wave
emission. Dots with error bars indicate data; the curve is the prediction of general relativity.

The precise tracking of the Binary Pulsar orbit was the first compelling
(although indirect) proof that gravitational waves exist. With the detection
of a gravitational wave produced in the merger of two black holes by LIGO
(Laser Interferometer Gravitational-Wave Observatory) in 2015 [12], the
evidence became direct that gravitational waves – the last major untested
prediction of Einstein’s general relativity – exist and can be observed. This
confirmation came almost exactly 100 years after gravitational waves were
predicted by Einstein to be a necessary consequence of general relativity
[81, 82] (though Einstein doubted that it would ever be possible to detect
them, and even at times had doubts about whether they were physical). A
concise review of gravitational waves in the context of stellar evolution is
given in Chapter 22 and a much more extensive discussion of gravitational
waves and their production in astrophysical phenomena may be found in
Ref. [100].

16.10 Magnetars
Neutron stars can exhibit very strong magnetic fields. However, a few
neutron stars have been found to emit bursts of high-energy photons
suggesting the presence of magnetic fields that are anomalously large, even
by neutron star standards. Observationally, these are called soft gamma-ray
repeaters (SGR), or more colloquially magnetars. In this designation, “soft”
means that the gamma-rays are of relatively low energy (in fact, they lie



more in the X-ray portion of the spectrum), and “repeater” means that the
bursts of gamma-rays can recur, unlike ordinary gamma-ray bursts, which
have higher energy and have not been observed to recur. In these rotating
neutron stars it has been proposed that the enormous magnetic fields act as
a kind of brake, slowing the rotation of the star. This slowing of the rotation
disturbs the interior structure of the neutron star and “starquakes” release
energy periodically into the surrounding gas, rearranging the magnetic field
and causing bursts of high-energy photons to be emitted.

Background and Further Reading
Standard references for white dwarfs and neutron stars include Shapiro and
Teukolsky [200], and Glendenning [95]. A pedagogical introduction to
neutron stars may be found in Silbar and Reddy [201] and a review in
Lattimer and Prakash [140]. Neutron star cooling is reviewed in Yakovlev
and Pethick [232]. General relativistic descriptions of neutron stars and the
tests of general relativity using pulsars in multiple-star systems are
discussed in Guidry [100].

Problems
16.1 Following the discussion in Section 16.2.3, show that the

Chandrasekhar limiting mass for gravitational stability of a white
dwarf is of order one solar mass by the following argument. Assume
that the energy balance of the star is dominated by a competition
between Fermi energy of the (assumed ultrarelativistic) electrons
and the gravitational energy of the nucleons. Show that both forms
of energy have the same dependence on the radius of the white
dwarf and that for a sufficiently large mass the total energy is
negative, implying instability against collapse. Estimate this critical
mass.***

16.2 Use general arguments as in Section 16.2.3 (not Lane–Emden
formulas) to show that for a nonrelativistic white dwarf supported by
electron degeneracy pressure and having mass M and radius R, the
product MR3 is constant. Estimate R if M = 0.6 M⊙.***



16.3 A neutron star may be expected to have an “atmosphere” of gas at
its surface, just as for a normal star. Using Newtonian gravity and
typical neutron star parameters, estimate the scale height for the
atmosphere (vertical distance for the pressure to decrease by e−1) for
a neutron star. Compare this with the radius of the neutron star and
contrast with the corresponding quantities for the Earth.

16.4 Because neutron stars are so small, they might be expected to be
dim and difficult to observe. Use their basic properties to estimate
the luminosity of a typical neutron star and show that in fact they are
expected to be comparable in luminosity to a star like the Sun, but
for photons of much shorter wavelength than for the Sun. Thus they
are readily detected by X-ray observatories.***

16.5 Unlike for the neutron stars considered in Problem 16.4, white
dwarfs are generally of low luminosity. Use the properties of white
dwarfs to estimate the luminosity of one having the same mass and
surface temperature as the Sun. Repeat for Sirius B.

16.6 Use the known properties of white dwarfs to show that for the
fastest pulsars a white dwarf in hydrostatic equilibrium cannot
pulsate fast enough to account for the observed periods, and a white
dwarf spinning fast enough to account for the period would require
velocities greater than the speed of light.

16.7 The number density n for free electrons in the momentum interval p
to p+dp obeys

By integrating this up to the Fermi momentum, show that for a white
dwarf consisting of a single isotope of atomic number Z and mass
number A the Fermi momentum is

where ρ is the mass density and Mu is the atomic mass unit, and that
the dimensionless parameter x ≡ pf/mec can be expressed using
convenient units as



Estimate x for typical conditions in more massive white dwarfs. Do
the values found for x indicate that the corresponding electrons are
relativistic? Hint: See Silbar and Reddy [201].

16.8 In our discussion it was assumed that the energy density carried by
the ions in a white dwarf is much larger than the energy density
carried by the electrons, and that the ions can be treated
nonrelativistically but the electrons may be relativistic. Justify this
quantitatively by the following considerations. Show that with these
assumptions (and the further one that the temperature is low enough
to neglect the contribution of photons to the energy density), the
total energy density for a white dwarf is

where x ≡ pf/mec and the energy density contributed by an electron
of momentum p is

Show that for typical white dwarf conditions the first term in the
equation above for ε is much larger than the second term, confirming
that the rest mass of the ions dominates the total energy density.
Hint: See Silbar and Reddy [201].

16.9 The neutronization (electron capture) reaction p+e− → n+ν has Q
=−0.78 MeV. Thus it can occur only when an additional 0.78 MeV
of energy is supplied from kinetic energy, primarily of the electrons.
Consider high-density, cold, neutral matter containing only neutrons,
protons, and electrons (no composite nuclei). Estimate a threshold
density above which the system can be expected to convert protons
into neutrons spontaneously by p + e− → n + ν. Hint: The maximum
electron energy is the Fermi energy, which increases with density.

16.10 For a carbon–oxygen white dwarf with the pressure supplied by a
degenerate electron gas, estimate the mass density above which the



electrons should be considered to be relativistic.
16.11 Consider the discussion in Box 16.4. Assume helium-3 at the

superconducting transition temperature of 2–3 mK to be a quantum
gas of fermions (the 3He atoms), with a mass density of 81 kg m−3.
Calculate the Fermi wavenumber kf = pf/ħ, Fermi velocity vf, and
Fermi energy εf, and show that the helium-3 fermion “gas” at these
temperatures is nonrelativistic and highly degenerate in the sense
discussed in Section 3.8. In reality, the interactions in low-
temperature helium-3 are sufficiently large that the system is
commonly termed a dense Fermi liquid, rather than a Fermi gas. As
discussed in Box 16.4, this dense Fermi liquid may have some
similarities to the interior of neutron stars.***

16.12 In the interior of white dwarfs the electrons are highly degenerate
but near the surface the density drops rapidly and an equation of
state similar to that appropriate for the surface of normal stars (∼
ideal gas) is a reasonable approximation. Estimate the scale height
for a white dwarf atmosphere compared with that of a normal star
like the Sun assuming ideal gas equations of state. What implication
to you think this comparison has for observed spectral lines in white
dwarfs relative to more normal stars?

16.13 Assume that the electron gas inside a white dwarf is degenerate and
nonrelativistic. Show that even though the density is very high the
electrons can be assumed to be essentially free. Hint: Compare the
kinetic energy with the Coulomb interaction for the electrons.

1 Sirius B is the nearest and brightest white dwarf, and will be used at times as illustration. But
it is in some respects not so representative because its mass of about 1.02 M⊙ is much larger
than the average mass of about 0.58 M⊙ observed for white dwarfs.

2 Chandrasekhar worked out the basic idea of the limiting mass for white dwarfs at age 20 on a
1930 ship voyage from India to England, where he was traveling to become a graduate
student at Cambridge University. He shared the 1983 Nobel Prize in Physics with Willie
Fowler, “for his theoretical studies of the physical processes of importance to the structure
and evolution of the stars.” He contributed to a broad range of understanding in astrophysics,
and his ideas underlying the white dwarf limiting mass remain a centerpiece of our current
understanding of late stellar evolution and the death of stars. The Chandra X-Ray
Observatory, in orbit since 1999 and one of NASAs four “Great Observatories,” is named in
Chandrasekhar’s honor.

3 Strictly this presumes infinite ionic masses but the quantum zero-point energy associated with
uncertainty-principle fluctuations is estimated to be much less than the Coulomb repulsion.
Hence the classical approximation of a fixed lattice is expected to be a very good one.



4 As discussed in Box 2.1, DAV is the classification for a pulsating white dwarf that has a
hydrogen atmosphere. White dwarfs of class DAV are also known as ZZ Ceti variables (see
Table 15.1 and Fig. 15.1). The star BPM 37093 (V886 Centauri in variable-star
nomenclature) is in Centaurus at a distance of about 53 ly. It has a surface temperature of a
little less than 12,000 K and a mass of 1.1M⊙.

5 Most white dwarfs are rich in carbon so crystallized white dwarfs have been referred to
whimsically as “diamonds in the sky.” Accordingly, BPM 37093 has been nicknamed “Lucy”
by some, in reference to the famous Beatles song “Lucy in the Sky with Diamonds.”

6 Our initial discussion will depend primarily on Newtonian gravity, which is sufficient for a
qualitative description. However, a quantitative treatment requires general relativity, since the
escape velocity at the surface of a neutron star is a significant fraction of the speed of light.
An introduction to the general relativistic description of neutron stars may be found in
Chapter 10 of Ref. [100], and in Section 16.8.1 we will summarize briefly this description.

7 Conversely, it will be seen in Chapter 20 that in the protoneutron star forming at the center of
a core collapse supernova the neutrino mean free path can become less than a meter and
initially neutrinos can be trapped for of order 10 seconds before they are able to escape. A
primary reason is temperature. It is much higher in the protoneutron star, and the strength of
the neutrino interaction with matter scales as the square of the temperature.

8 In the name PSR 1937+21 the PSR indicates a pulsar, the first part of the number gives the
right ascension in hours and minutes, and the second part of the number gives the declination
(preceded by sign) in degrees. The Crab Pulsar is PSR 0531-21 in this naming system. The
letter B (1950.0 epoch coordinates) or J (2000.0 coordinates) may be prepended to the
number to indicate the coordinate system used; for example PSR J0337+1715.

9 In this context the strong equivalence principle asserts that the neutron star and inner white
dwarf should fall in the same way in the gravitational field of the outer white dwarf, despite
their having very different gravitational binding energies. Any deviation from this behavior
would signal a breakdown of general relativity. This is discussed more extensively in Section
10.4.6 of Ref. [100].



17

Black Holes

In preceding chapters we saw that the endpoints for stellar evolution grow
increasingly bizarre as stars increase in mass. For lighter stars the final
chapter of stellar evolution was found to involve white dwarfs having
incredible density by Earth standards, stabilized against further collapse by
electron degeneracy pressure. For more massive stars the endpoint was
found to be neutron stars with densities exceeding that even of atomic
nuclei, stabilized against the crush of gravity by neutron degeneracy
pressure. In this chapter we consider the strangest endpoint of all: modern
gravitational theory, and a wealth of observational evidence, supports the
notion that some massive stars treat even neutron degeneracy pressure with
disdain, collapsing right through the neutron star stage until the mass of the
star is concentrated at a point singularity, which surrounds itself with a one-
way spacetime membrane called the event horizon that lets light and matter
in, but forbids their escape. This most extreme consequence of gravity is
called a black hole. For a full understanding of black holes, general
relativity is essential. A systematic introduction to general relativity is
outside the present agenda, but in this chapter some essential concepts and a
few formulas will be imported to allow a meaningful qualitative discussion
of black holes as a possible endpoint of stellar evolution.

17.1 The Failure of Newtonian Gravity
The standard theory of gravity proposed originally by Newton is a
remarkably good description of the Universe (as should be abundantly clear
from preceding chapters!). It gives predictions for most gravitational
phenomena that for all practical purposes are in exact agreement with
observations (and with the corresponding predictions of general relativity).
However, there is a small set of phenomena for which general relativity



gives the correct prediction but Newtonian gravity fails. These failures of
Newtonian gravity typically share some combination of three
characteristics:

1. Gravity becomes extremely strong, by measures that we shall quantify
shortly.

2. Characteristic velocities approach the speed of light. This can occur in
weak gravity, but is almost a given in the presence of large
accelerations produced by strong gravity.

3. Even if neither (1) nor (2) is especially well satisfied, a particular
measurement may require sufficient precision that even for weak
gravity and low speeds the deviations of general relativity from
Newtonian gravity become manifest.1

If any of these conditions is fulfilled, the predictions of Newtonian gravity
begin to fail at some level and in the extreme case where all are true general
relativity becomes the only viable theory of gravity. Black holes tend to fall
into this latter category. Although Newtonian concepts are of some utility,
they often are unreliable or even in downright error where the physics of
black holes is concerned. Accordingly, we turn now to a description of
black holes in terms of general relativity.

17.2 The General Theory of Relativity
The general theory of relativity (GR) may be thought of as resulting from
the implementation of two general principles: (1) the principle of general
covariance and (2) the principle of equivalence, in a 4-dimensional
spacetime having a geometry that differs fundamentally from ordinary
(euclidean) geometry.

17.2.1 General Covariance
The essential idea of both special and general relativity is an extremely
powerful principle: the laws of physics should not depend on the coordinate
system in which they are formulated and so should be unchanged by
transformation to a new coordinate system. The basic difference between



special and general relativity then is just that in general relativity the laws
are formulated to be invariant under the most general possible
transformations between coordinate systems, while special relativity
requires invariance only under a more restricted set of transformations that
are between inertial frames. Since general relativity is invariant under
transformations even in the absence of global inertial frames, it can describe
gravity. The formulation of physical laws such that they retain the same
form under transformation between arbitrary coordinate systems is called
general covariance.

17.2.2 The Principle of Equivalence
The fundamental insight that allowed Einstein to generalize special
relativity to a theory of gravity embodied in general relativity began with
the idea known since the time of Galileo that objects of different mass fall at
the same rate in a gravitational field. This is one formulation of the (weak)
equivalence principle. An alternative formulation is that the inertial mass of
an object, corresponding to the mass m in Newton’s second law, F = ma, is
measured to be equivalent to the gravitational mass of that same object,
corresponding to the mass m in the gravitational law F = GmM/r2, to
extremely high precision. Starting from this insight, Einstein was led to
propose that it is impossible locally to distinguish the effect of gravity from
the effect of an arbitrary acceleration. This is called the (strong) equivalence
principle, which henceforth will be termed simply the equivalence
principle.

Furthermore, Einstein reasoned that since the acceleration of an object by
gravity was independent of the mass or any other characteristic of the
object, the effect of gravity cannot be a property of objects in spacetime and
therefore must be a property of spacetime itself. This led Einstein eventually
to the central thesis of general relativity: that spacetime is curved, and that
gravity is not a force but rather corresponds to the motion of free particles
in a curved spacetime. In this view the Earth is in orbit around the Sun, not
because of a force acting between them, but because the gravitational field
of the Sun curves the spacetime around it and the Earth follows freely a
curved path in that curved spacetime. This means that general relativity is a
theory about the geometry of spacetime.



17.2.3 Curved Spacetime and Tensors
In a 4-dimensional possibly curved spacetime manifold the coordinates of a
spacetime point P are given by the 4-vector xμ,

(17.1)

where x, y, and z are spatial coordinates, t is the time coordinate, and c is the
speed of light. The most powerful and useful mathematical implementation
of general relativity is in terms of objects called rank-n tensors, which carry
a total of n upper and lower indices (when evaluated in a basis), obey
particular transformation laws, and may be viewed mathematically as
functions of n vectors into the real numbers. Loosely, tensors are the
extension of vectors to objects that generalize the vector transformation law
and may have more than one index; indeed, a vector may be viewed as an
example of a rank-1 (carrying only one index) tensor. Tensors are the
natural mathematical framework for general relativity because they
implement automatically the principle of general covariance: If an equation
written in terms of tensors is valid in one coordinate system, it is guaranteed
to be valid in any other possible coordinate system.

The geometry of spacetime is described by a rank-2 tensor called the
metric tensor, gμν , which can be viewed as the source of the gravitational
field. Thus the problem in general relativity is “simple”: just determine the
metric tensor for the space, which then determines the complete effect of
gravity. But not so fast! Not only does the gravitational “force” acting on
mass and energy in spacetime result from the curvature of spacetime, but
that same mass and energy acts on spacetime to curve it. This implies that
general relativity is a highly nonlinear theory (to determine the metric you
must already know the metric). Thus the equations of general relativity can
be written in a concise fashion using the mathematical elegance of tensors,
but they are extremely difficult to solve.

17.2.4 Curvature and the Strength of Gravity
Our primary concern in this chapter will be with strong gravity, but what
does that mean in this context? In general relativity light follows a curved
path in a gravitational field and the stronger the gravitational field the more



curved the path. A radius of gravitational curvature rc may be obtained by
fitting a circle to a local part of the curved path. This gives rc = c2/g, where
g is the gravitational acceleration and c the speed of light. A natural
measure of gravitational strength at the surface of a gravitating object may
then be formed from the ratio of a characteristic distance scale for the object
such as the radius to the gravitational radius of curvature,

(17.2)

where g = GM/R2 was used. Then weak gravity is characterized by GM/Rc2

<< 1 but if GM/Rc2 >
∼ 1 a gravitational field may be characterized as strong.

(For example, if rc ∼ R gravity can put light into orbit around the object,
which is pretty strong!) Most gravitational fields are weak by the natural
measure of Eq. (17.2). Table 17.1 gives some examples. You may tend to
think of Earth’s gravity as relatively strong, especially when climbing stairs!
But from Table 17.1, it corresponds to a paltry R/rc ∼ 10−9. Even a white
dwarf has only R/rc ∼ 10−4, which is weak on the natural scale set by light
curvature (though enormous by Earth standards), so that Newtonian gravity
is still a rather good approximation. But for gravity at the surface of a
neutron star or at the event horizon of a black hole, the gravitational
curvature radius and actual radius will be comparable and a correct
description of gravity requires general relativity.

Table 17.1 Gravitational strengths R/rc at the surface of some objects

17.3 Some Important General Relativistic
Solutions



In general relativity the rank-2 metric tensor gμν is both the source of the
gravitational field and the description of the geometry of spacetime. Thus
the task is to determine gμν , which is generally dependent on the spacetime
coordinates, for a given situation. But this is a quite non-trivial task. In
Newtonian physics the metric is fixed and specified implicitly at the
beginning of a problem. It corresponds to the flat (euclidean) spatial
coordinates and the time, which is assumed in Newtonian physics to be a
globally defined quantity that is the same for all observers. In contrast, in
general relativity the metric is not known beforehand: it is the solution of
the problem, so the framework of spacetime in which the problem is
formulated is itself unknown at the beginning.

17.3.1 The Einstein Equation
The way that this highly nonlinear problem is solved in general relativity is
that it can be shown that the solutions must obey the Einstein equation(s),

(17.3)

In this expression the indices μ and ν each range over the labels for the
spacetime dimensions (0, 1, 2, 3), and Rμν and R are rank-2 and rank-0
tensors called the Ricci tensor and the Ricci scalar, respectively, that can be
constructed from the metric tensor gμν and its first derivatives, and that
describe the curvature of spacetime. On the right side, G is the gravitational
constant, c is the speed of light, and Tμν is a rank-2 tensor called the stress–
energy tensor (or the energy–momentum tensor) that describes the coupling
of gravity to matter, energy, and momentum. Because of the indices, each
term in Eq. (17.3) can be viewed as a matrix with 16 components, but only
10 of them are independent because all terms in Eq. (17.3) are symmetric
under exchange of indices. Hence this deceptively simple expression
actually represents 10 coupled, nonlinear, partial differential equations that
must be solved to determine the effect of gravity. In the general case
analytical solutions are out of the question but in some cases of physical
interest the problem has a high degree of symmetry and this reduces the
problem to solving a much smaller set of equations that is still often
formidable, but tractable.



Often only the gravitational solution outside some mass responsible for
producing the gravitational field is of physical interest; for example, the
gravitational field outside the mass distribution of a star. Then, if the
exterior region is assumed to be a vacuum it can be shown that the Einstein
equation reduces to the vacuum Einstein equation,

(17.4)

Don’t be fooled by the seeming triviality of this equation either! Because of
the nonlinearity and the tensor indices, the vacuum Einstein equation is also
extremely difficult to solve in the general case.

17.3.2 Line Elements and Metrics
In the following some solutions of the Einstein equations (17.3) or (17.4)
will be introduced that will be of utility in the subsequent discussion. Such
solutions are often called “spacetimes,” which makes sense because the
solution literally specifies the geometry of the corresponding space and
time. Instead of giving the metric tensor that corresponds to the solution it is
common to express solutions in terms of the line element ds2 [with a
standard notation ds2 ≡ (ds)2], which is related to the metric tensor gμν by

(17.5)

where in the last step the Einstein summation convention (ubiquitous in
discussions of relativity) has been introduced: any index repeated twice on
one side of an equation, once in a lower position and once in an upper
position, implies a summation over that index.2 In this expression dxα

indicates a differential of the spacetime coordinate given in Eq. (17.1) and
ds is the length of an infinitesimal line segment. Given the definition (17.5),
specifying gμν determines ds2 and vice versa, so often ds2 is just called “the
metric,” when in reality one means the square of the line element
corresponding to a specific metric tensor.

17.3.3 Minkowski Spacetime



Let’s warm up with the “trivial” case. The simplest possibility is that there
are no gravitational fields so that spacetime has no curvature at all (flat
spacetime). Then general relativity reduces to special relativity, the resulting
4-dimensional manifold is called Minkowski spacetime, or just Minkowski
space for short, and the metric corresponds to the line element

(17.6)

Notice the crucial point that the time-like component c2dt 2 has a sign
opposite that of the three space-like components dx2, dy2, and dz2. A metric
for which the terms in the line element do not all have the same sign is
called an indefinite metric; such metrics are characteristic of our physical
spacetime in both flat and curved space. Thus 4-dimensional spacetime has
a very different geometry than 4-dimensional euclidean space (where all
metric coefficients would have the same sign), even though both are flat and
correspond to spaces with no intrinsic curvature. In fact, the relative
negative sign between space and time coordinates in the Minkowski metric
is the source of all the “strange” behavior associated with special relativity:
space contraction, time dilation, relativity of simultaneity, the “twin
paradox,” and so on, all derive from the indefinite Minkowski metric.

The metric must be used to compute physical observables, which
illustrates another fundamental difference between relativity and Newtonian
physics. In a Newtonian description coordinates may be themselves
physical quantities. For example, the value of r in spherical coordinates is a
distance that could be measured. In general (and special) relativity, space
and time coordinates are just labels, without direct physical significance.
Physical quantities must be computed using the metric and are generally not
given directly by values of coordinates. This is illustrated by the metric
itself: (ds2)1/2 measures the physical length of an infinitesimal line segment;
by inspection this distance is not given directly by any of the coordinates,
but rather is in general a non-trivial mixture of contributions from space and
time coordinates.

Example 17.1 Consider the time coordinate t in Eq. (17.6). In Newtonian
theories t is a direct measure for all observers of the passage of time. In
Minkowski space the metric (17.6) may be used to show (see Problem 17.1)
that the proper time τ, which is defined to be the time measured by a clock



carried by an observer in his inertial frame and is related to the distance
interval by dτ 2 = −ds2/c2, is related to the coordinate time t appearing in Eq.
(17.6) by

(17.7)

where v is the magnitude of the velocity and γ is termed the Lorentz γ -
factor. The proper time that elapses between coordinate times t1 and t2 is
then

(17.8)

The proper time interval τ12 is shorter than the coordinate time interval t2 −
t1 because the square root in the γ -factor of Eq. (17.8) is always less than
one. For constant velocity, (17.8) yields

(17.9)

which is just the time dilation equation of special relativity.

Thus time dilation in special relativity is a direct consequence of the
Minkowski metric (17.6), deriving specifically from the difference in signs
between the timelike and spacelike components. In a similar manner the
Minkowski metric may be used to derive the space contraction effect and
other standard features of special relativity.

17.3.4 Schwarzschild Spacetime
If the spacetime is curved, gravitational fields are present and the
Minkowski metric no longer applies. The simplest solution in that case is
obtained by assuming the spacetime where the solution is valid to be devoid
of matter, pressure, and fields [so that Eq. (17.3) reduces to Eq. (17.4)],
independent of time, and spherically symmetric in the spatial coordinates.3



This solution of the vacuum Einstein equation is called the Schwarzschild
spacetime, and has the metric

(17.10)

where t is a time coordinate, r is a radial coordinate, θ and φ are the usual
spherical angular coordinates, and M is the single parameter of the theory,
which may be interpreted in the weak-field limit as the mass responsible for
the gravitational field. In this equation another standard convention of the
relativity formalism has been introduced: the equation is expressed in a
special set of units where the speed of light c and the gravitational constant
G are numerically equal to one, so G and c do not appear explicitly in the
equations (this is explained further in Appendix B).

As for Minkowski space, the coordinates (t, r, θ, φ) are just labels and
physical quantities must be computed from the metric. Our specific interest
in the Schwarzschild solution in this chapter is that it predicts the existence
of a very unusual situation if the mass M is compressed into a region
smaller than the Schwarzschild radius rs defined by

(17.11)

where for this expression the c and G factors have been reinserted. By
computing observables using the metric, it is found that in this case the
radius rs defines an event horizon, and that as a consequence of the extreme
curvature of spacetime at the event horizon, matter or light can fall through
the horizon but once inside nothing can escape, not even light. This solution
is the simplest example of a black hole.

17.3.5 Kerr Spacetime
The Schwarzschild black hole described above is spherically symmetric and
has no angular momentum. It is very useful to illustrate the general
properties of black holes, but if black holes form from the gravitational
collapse of stars it is expected that they will have angular momentum
(because the original star is likely to have at least some spin). Assuming



axial symmetry, the general relativistic solution giving more realistic black
holes that are deformed and spinning is called the Kerr spacetime. It is
specified in terms of Boyer– Lindquist coordinates (t, r, θ, φ) by the metric

(17.12)

with the definitions

(17.13)

This gives a 2-parameter family of solutions in terms of the parameters a (or
equivalently J ) and M, where in the weak-field limit J may be interpreted as
angular momentum and M as the mass. As for preceding examples, the
coordinates are labels without direct physical significance and the metric
must be used to calculate observables in the Kerr spacetime. The most
important features of Kerr black hole properties for the present discussion
are:

1. The Kerr spacetime has an event horizon and a region outside its event
horizon called the ergosphere where a particle could enter and still
escape, carrying off part of the rotational angular momentum and
rotational energy of the black hole.

2. If the rotational energy and angular momentum are removed
completely from a Kerr black hole, what remains is a Schwarzschild
black hole, from which no additional mass or energy can be removed.
In a very loose sense, the Kerr black hole may be thought of as a
“rotationally-excited state” of the Schwarzschild black hole, which is
the “ground state” (state of lowest possible energy) for a black hole of
given mass [179].

3. The spinning black hole drags the surrounding spacetime with it as it
rotates. This is called dragging of inertial frames, or more tersely
frame dragging, and anything in that spacetime will be dragged with it.
Thus objects near the black hole will be dragged with the rotation of



the black hole even if no angular force acts between the object and the
black hole.4

4. It may be shown that there is a maximum possible angular momentum
for a Kerr black hole of mass M that is given by

(17.14)

Kerr black holes having J = Jmax are called extremal Kerr black holes.
Because black holes are likely born with some angular momentum, and
accretion from a companion through an accretion disk can spin them
up over time, it is expected that near-extremal Kerr black holes could
be relatively common.

Schwarzschild black holes are a special case of Kerr black holes
corresponding to J = 0 and it may be assumed that any real black holes are
Kerr black holes, usually with J ≠ 0. In principle black holes could be
electrically charged, which corresponds to yet other solutions of the Einstein
equations. However, it is generally thought that any black holes formed in
realistic astrophysical processes would be quickly charge-neutralized, so our
interest here will be solely in uncharged black holes.

17.4 Evidence for Black Holes
With an understanding that black holes are intrinsically objects that must be
described by general relativity and armed with a qualitative understanding
of concepts from general relativity, let us now summarize some of the
observational evidence supporting the thesis that black holes exist. Their
very name suggests that they are difficult to observe directly, but if black
holes are not isolated they should often be accreting matter and interacting
gravitationally with nearby masses, which could have observable
consequences. There are in fact strong reasons to believe in the reality of
black holes, based on observations in three categories involving accretion of
matter or gravitational interactions with other objects.

1. Binary star systems that are strong X-ray sources and where there is
gravitational evidence for a massive unseen companion.



2. Detection of gravitational waves with properties suggesting that they
originated in the merger of two black holes.

3. Observational anomalies in the centers of many galaxies, where very
large masses (millions to billions of solar masses) inferred from star
velocities exist, often accompanied by evidence for enormous energy
generation in the core of the galaxy.

Our primary interest here is in black holes with masses comparable to those
of stars that are potential endpoints for stellar evolution (which will be
termed stellar black holes), so let us concentrate on evidence for stellar
black holes in categories 1 and 2. At the end of the discussion some
evidence for the supermassive black holes in category 3 will be presented
for completeness, noting that such supermassive black holes may possibly
have formed from the merger of stellar black holes.

17.4.1 Compact Objects in X-ray Binaries
There is appreciable indirect evidence for stellar black holes with masses
∼5–50M⊙, much of it coming from observation of X-ray sources powered
by accretion in binary star systems (see Section 18.6). Most such systems
are spectroscopic binaries, where an unseen compact object (usually a
neutron star or black hole) is inferred from periodic Doppler shifts of
spectral lines for the visible star. Typically X-ray emission in a
spectroscopic binary is caused by significant accretion onto the compact
companion, which implies a relatively small separation between
components of the binary. Tidal interactions in close binaries tend to
circularize elliptical orbits, so our discussion will be considerably simplified
but not seriously compromised by assuming circular orbits. Then from
Kepler’s laws, the mass function f (M) may be related to the observed radial
velocity curve through

(17.15)

where K is the semiamplitude and P the period of the radial velocity curve, i
is the tilt angle relative to the observer of the orbit, Mc is the mass of the
visible companion star, M is the mass of the unseen component, and where



the mass ratio q ≡ Mc/M has been introduced. The mass function is useful
because in Eq. (17.15) the right side is determined by direct observation of
the radial velocity curve and the left side is a function of the masses, so the
measured velocity curve can be related to the masses in the binary.

The tilt angle i is illustrated in Fig. 17.1(a) and a typical observed
velocity curve for a binary system is shown in Fig. 17.1(b). The angle i is
generally not known for a spectroscopic binary (except that the presence or
absence of eclipses can place some limits on it). Hence, given a measured
PK3/2πG, solutions of Eq. (17.15) for the mass M of the unseen compact
object depend in the most general case on two unknowns, the tilt angle i and
the mass of the visible component Mc. As will be seen below, the mass
function in conjunction with some additional information on Mc and i can
often place significant constraints on the mass of the unseen compact object.

Fig. 17.1 (a) Tilt angle i for a binary orbit. (b) Observed radial velocity curve for the spectroscopic
binary A 0620–00 [146]. The period is P = 0.323 days and the semiamplitude is K = 433 ± 3 kms−1.
The orbital phase corresponds to the fraction of one complete orbit. Reproduced from Roger
Blandford and Neil Gehrels, Physics Today, 52(6), 40 (1999); https://doi.org/10.1063/1.882697. With
the permission of the American Institute of Physics.

Example 17.2 Let’s compute the mass function for a binary having a period
of 5.6 days and a semiamplitude for the radial velocity curve K = 75 km s−1.
From Eq. (17.15) expressed in convenient units

(17.16)

https://doi.org/10.1063/1.882697


Inserting P = 5.6 days and K = 75 km s−1 gives f (M) = 0.245M⊙.

Suppose that the period P and velocity semiamplitude K have been
determined from the observed velocity curve for a spectroscopic binary
such as the one in Fig. 17.1(b), and that the quantity

(17.17)

has been computed from that information. Then from Eq. (17.15) the
unknown compact-object mass M is determined by the cubic equation M3

sin3 i/(M + Mc)2 = F , for which the solution of physical interest is given by
the real root

(17.18)

Since F is known from measurement, the mass M of the compact unseen
component is a function of two unknowns: the mass of the visible
companion Mc and the tilt angle i. If these can be estimated in some way,
Eq. (17.18) provides a meaningful constraint on the mass M. In Fig. 17.2 the
solution M(F , Mc, i) from Eq. (17.18) is plotted as a function of i and Mc
assuming that F = 3.19 M⊙. These figures illustrate clearly

1. the degeneracy of the unknown mass M with respect to the parameters
i and Mc and

2. that the measured value F = 3.19M⊙ is the minimum possible mass for
the unseen component [corresponding to the limit of f (M) when Mc =
0 and 



Point 2 already is a significant constraint but a more precise statement about
M is possible if further information can be obtained about Mc and i, as we
shall demonstrate below.

Fig. 17.2 Mass plots using Eq. (17.18) assuming a measured mass function F = 3.19 M⊙. (a) Mass M
of the unseen component versus the tilt angle i for different values of the companion mass Mc. (b)
Mass M of the unseen component versus Mc for different values of i. The measured mass function F
is seen to set a lower limit on the unseen mass M.

17.4.2 Causality Constraints
Another important piece of observational information that can be marshaled
to determine whether a spectroscopic X-ray binary harbors a black hole is
the causality argument described in Box 17.1. If the X-ray source is
observed to vary periodically, the maximum size of the source is limited by
the finite speed of light, since some signal must correlate the periodic
variation and it cannot travel faster than light. If such considerations point to
a very small energy source, typically a black hole or a neutron star is
implicated.

Box 17.1 Causality and the Size of Energy Sources

If the luminosity of an energy source is periodic, some signal must tell
the source to vary. The signal can travel no faster than light velocity, so
the maximum size D of an object varying with a period P is the distance
that light could have traveled during that time, D ∼ cP, as illustrated in
the following figure.



The distances covered by light for various fixed times are summarized in
the following table.

This argument places only an upper limit on source size and it may be
smaller than the limit imposed by c. But the argument is powerful
because it depends only on causality.

17.4.3 The Black Hole Candidate Cygnus X-1
Let’s analyze the black hole candidate Cygnus X-1. Optical, X-ray, and RF
observations in the 1960s and 1970s [53, 56, 57, 120, 159, 223] determined



that Cygnus X-1 is an X-ray source in a binary system consisting of the
visible blue supergiant HDE 226868 and an unseen compact companion.
The X-ray source flickers with a period of milliseconds. From the table in
Box 17.1, this suggests that the source size is no more than a few hundred
kilometers, ruling out a white dwarf and indicating that the X-rays result
from accretion onto either a neutron star or a black hole. An artist’s
conception is displayed in Fig. 17.3.

Fig. 17.3 Artist’s conception of the high-mass X-ray binary, Cyg X-1. Detailed analysis suggests that
the unseen companion is a 10–20 M⊙ black hole.

Analysis of the observed velocity curve for the blue supergiant indicates a
period of P = 5.6 days and a semiamplitude K = 75 km s−1 (see fig. 2 of Ref.
[161]), which gives from Eq. (17.16) F = PK3/2πG = 0.245. Inserting this in
Eq. (17.18) and plotting M versus i and M versus Mc gives the graphs shown
in Fig. 17.4. The spectrum–luminosity class of the blue supergiant is
O9.7Iab, which permits its mass to be estimated from stellar systematics as
20–30 M⊙. The tilt angle cannot be measured directly since the orbit is not
resolved, but detailed comparison with observed systematics for the system
such as whether eclipses are seen permits it to be estimated as i = 25–35◦.
These allow the acceptable ranges for a solution to be displayed as the gray
boxes in Fig. 17.4. From this it may be concluded from our simple analysis
that the mass of the unseen companion lies in the range 10–20 M⊙. A more
comprehensive analysis concludes that i = 27.1 ± 0.8◦ and Mc = 19.2 ± 1 M
⊙, implying that M = 14.8 ± 1.0 M⊙ [161], which is consistent with our



simple estimate. Since no plausible equation of state supports a neutron star
with M > 2 – 3 M⊙, it may be concluded with high certainty that the M =
14.8 M⊙ unseen companion in Cygnus X-1 can only be a black hole. It also
may be noted that an extensive analysis [96] has concluded that the black
hole in Cyg X-1 has a spin greater than 95% of the maximal value given in
Eq. (17.14). Thus, Cyg X-1 may be a near-extremal Kerr black hole.

Fig. 17.4 Analysis of masses in the high-mass X-ray binary Cygnus X-1, based on the observed mass
function F = 0.245 M⊙ and Eq. (17.18). (a) Mass of unseen companion M versus tilt angle i for
various assumed masses Mc of the supergiant companion. (b) M versus Mc for various tilt angles i.
The gray boxes indicate further observational constraints discussed in the text. Notice that the
minimum possible mass for the unseen companion is given by the measured mass function F = 0.245
M⊙, which corresponds to the limit Mc → 0and i → 90◦.

An analysis similar to the one outlined above has been carried out for
many X-ray binaries in the galaxy. A summary of the cases that place the
mass of the unseen companion well above the maximum mass for a neutron
star or white dwarf is shown in Table 17.2. By the preceding types of
arguments, these binary systems are assumed to contain a black hole of
mass M as the unseen companion. As was noted in Figs. 17.2 and 17.4, even
in the absence of further information on Mc and i the measured value of the
mass function defines the lowest possible mass for the unseen companion.
For several entries in Table 17.2, f (M) is well above the maximum mass
that is thought to be possible for a neutron star or white dwarf.

Table 17.2 Black hole candidates in galactic X-ray binaries [48]



17.5 Black Holes and Gravitational Waves
As was mentioned in Section 14.6.3, the first direct observation of
gravitational waves in 2015 opened a new window on the Universe capable
of probing dark events that might not be observable using the tools of
traditional astronomy. Black holes are the quintessential dark objects of our
Universe, so gravitational wave astronomy is particularly well suited to their
study. Indeed the first several gravitational waves reported by the LIGO
collaboration were each interpreted as resulting from the merger of binary
black holes. These gravitational-wave observations not only provide the
strongest evidence to date for the existence of black holes with masses
comparable to stars, but their detailed interpretation has begun to yield
quantitative information about the black holes that were involved in the
merger. This in turn establishes a new methodology to study late stellar
evolution for massive stars and the black hole endpoint that is one possible
outcome of that evolution. Going forward, gravitational wave astronomy
may well prove to be the most powerful method at our disposal for the study
of black holes, as will be discussed more extensively in Chapter 22.



17.6 Supermassive Black Holes
The center of the Milky Way coincides approximately with the radio source
Sgr A∗. A 15 M⊙ star denoted S0-2 has been tracked extensively in a
Keplerian orbit with Sgr A∗ near a focus. The positions observed for S0-2
through 2002 are shown in Fig. 17.5, with dates in fractions of a year
beginning in 1992. The orbit drawn in Fig. 17.5 corresponds to the
projection of the best-fit ellipse with Sgr A∗ at a focus [197]. At closest
approach the separation of S0-2 from Sgr A∗ is only 17 lighthours. From fits
to the orbit of S0-2 assuming Keplerian motion, the mass contained inside
the orbit is 4.3 × 106 M⊙ [94], in a region that cannot be much larger than
the Solar System (and may be smaller) where there is little luminous mass.
The obvious explanation is that the radio source Sgr A∗ coincides with an
approximately 4.3 million solar mass black hole at the center of the Milky
Way. Extensive evidence for average star motion indicates that many
galaxies contain black holes of 106 M⊙ to 108 M⊙. Whether these form by
the merger of many stellar black holes created by stellar core collapse and
thus have an indirect relationship to stellar evolution, or whether they were
formed by some process independent of stellar evolution like direct collapse
from gas clouds, is unknown at present.



Fig. 17.5 Orbit of S0-2 around Sgr A∗ through 2002 [197]. The filled circle indicates the position
uncertainty for Sgr A∗ assuming a point mass located at the focus to be responsible for the orbital
motion. The star completed this orbit in 2008 and the parameters displayed in the box are those
obtained from the completed orbit [94]. Periapsis is the general term for closest approach of an
orbiting body to the center of mass about which it is orbiting. Adapted by permission from Springer
Nature, Nature, “A Star in a 15.2-year Orbit around the Supermassive Black Hole at the Centre of the
Milky Way, Schödel, R. et al., Copyright (2002).

17.7 Intermediate-Mass and Mini Black Holes
For completeness, let us remark briefly about two other classes of black
holes that either exist or are conjectured to exist, but that might not be
connected very directly to issues in stellar evolution:

1. Intermediate-mass black holes: There is some evidence for a
population of black holes having masses intermediate between stellar
and galactic ones (hundreds to tens of thousands of solar masses). The
evidence for intermediate-mass black holes has been inconclusive but



in 2017 a pulsar was discovered orbiting an unseen mass concentration
in the globular cluster 47 Tucanae [135]. The precise timing of the
pulsar indicates that the magnitude of the unseen mass concentration is

 which may represent the first conclusive evidence for
an intermediate-mass black hole. There is no significant
electromagnetic signal from this object, so if it is a black hole it must
not be accreting any matter at present.

2. Hawking (mini) black holes: From approximations of quantum field
theory in strong gravitational fields it may be shown that black holes
can radiate their mass over time as Hawking radiation. However, the
rate of emission is completely negligible except for black holes of
incredibly small mass (say the mass of a proton). Such mini black
holes are commonly termed Hawking black holes.

The detailed properties and formation mechanisms for intermediate-mass
black holes are not well understood. Hence it is not clear whether they have
any connection to stellar evolution. For example, do they form through
clumping of stellar-mass black holes into more massive ones, and is this an
intermediate step in forming the supermassive black holes at the cores of
galaxies, or do they collapse directly from gas clouds? In contrast, there is
no observational evidence for Hawking black holes thus far, and if they
exist they must have been formed in the incredibly high temperatures and
densities of the big bang and not in stellar processes. They are of enormous
potential interest for theories of quantum gravity, but can be ignored for the
present discussion.

17.8 Proof of the Pudding: Event Horizons
A compelling circumstantial case may be made for the existence of black
holes. However, the characteristic of a black hole that distinguishes it from
anything else is its event horizon, and none of the evidence supporting black
holes yet demands the existence of an event horizon. Therefore, irrefutable
proof requires imaging the event horizon of a black hole, which is obviously
a considerable challenge. The best prospects are for the supermassive black
hole at Sgr A* (see Section 17.6 above), which has a Schwarzschild radius
about 18 times larger than the radius of the Sun. Thus, seeing the event



horizon of Sgr A* requires resolving an object of this size at a distance of
about 8 kpc (see Problem 17.7). This may be possible, as very long baseline
interferometry with arrays of broadly dispersed radio telescopes is
beginning to achieve resolutions of this magnitude.

A hint of what a resolved event horizon might look like comes from
detailed analysis of data from the gravitational wave event GW150914
(corresponding to the merger of 29 and 36M⊙ black holes), which will be
described in Chapter 22. A frame extracted from a computer simulation of
how the merger might have appeared to an observer a few hundred
kilometers away is shown in Fig. 17.6. The jet-black shapes are the event
horizons shadowing all light from behind. All stars are in the background
but gravitational lensing in the strongly curved space near the black holes
severely distorts their apparent positions in Fig. 17.6(b), and produces the
flattened dark features around the event horizons. In Fig. 17.6 the black
holes are assumed isolated with no surrounding matter. Hence the image is
dominated by the shadowing of the black hole event horizons and strong
gravitational lensing effects. In contrast, the black hole at Sgr A* is in a
dense cluster of stars and is likely accreting some surrounding matter and
producing radiation from this accretion. The dominant observational feature
may still be the complete and sharply defined shadowing of background
light by the event horizon of the black hole and strong gravitational lensing
near the horizon, as suggested by Fig. 17.6, but the open question is how the
environment of Sgr A* will distort this picture and whether the event
horizon will still be identifiable in sufficiently resolved observations.



Fig. 17.6 A computer simulation showing what the two black holes might have looked like to a
nearby observer just prior to merger in the gravitational wave event GW150914. (a) Background stars
in the absence of the black holes. (b) Image including black holes. The ring around the black holes is
an Einstein ring, which results from strong focusing by gravitational lensing of the light from stars
behind the black holes. Image extracted from video in [73]. A more complete sequence of images for
the merger is given later in Fig. 22.6.



17.9 Some Measured Black Hole Masses
The most reliable methods for discovering stellar-size black holes and
determining their masses are the mass-function analysis of X-ray binaries
described in Section 17.4.1, and the analysis of gravitational waves
produced by merging black hole binaries to be described in Chapter 22.
Figure 17.7 summarizes masses for more than 35 black holes in the range
∼5–65 M⊙ determined from these two types of analysis. These data from
X-ray binaries and gravitational waves from black hole coalescence
constitute the strongest evidence currently available for the existence of
stellar-size black holes. It would be difficult to account for the properties of
these objects through any hypothesis other than that of black holes.

Fig. 17.7 A summary of some black hole masses determined from X-ray binary and gravitational
wave data (adapted from Ref. [7]). Arrows indicate black hole mergers.

Background and Further Reading
Anything more than a cursory understanding of black holes requires a basic
grounding in the theory of general relativity, which in turn requires at least a
working knowledge of differential geometry and tensor calculus. Some
recommended introductions include Hartle [109]; Foster and Nightingale
[87]; and Hobson, Efstathiou and Lasenby [123]. An extensive discussion of
black holes presented within the framework of general relativity but at a
pedagogical level commensurate with the material in this book is given in



Ref. [100]. Parts of the discussion in this chapter have been adapted from
that reference.

Problems
17.1 Prove the result of Eq. (17.7) for time dilation starting from the

metric (17.6) and that the proper distance s and proper time τ are
related by dτ 2 = −dt 2/c2. ***

17.2 Compute the mass function for a binary having a period of 6 hours
and a semiamplitude for the radial velocity curve K = 400 km s−1.

17.3 The binary system Cygnus X-1 has a total mass M ∼ 30 − 50 M⊙,
an orbital period of 5.6 days, and is a strong X-ray source with
fluctuations in intensity on a timescale of milliseconds. Assuming
the validity of Kepler’s laws and that the total mass is 40 M⊙, what
is the average separation of the components of the binary and what is
the maximum size of the X-ray emitting region based on these
observations?

17.4 Show that the binary star mass function f (M) = PK3/2πG may be
expressed in convenient units as

where P is the binary orbital period in days, K is the semiamplitude
of the radial velocity in units of km s−1, and f (M) is in solar mass
units [see Eq. (17.15) and Fig. 17.1]. From the data in Fig. 17.1 and
Table 17.2, estimate the mass function and thus the lower limit for
the mass of the black hole in the X-ray binary A 0620–00.

17.5 Use Kepler’s laws to derive the mass function relation in Eq.
(17.15), assuming circular orbits for the binary. Hint: Generalize the
discussion in Section 1.5.2 to circular orbits tilted with respect to the
observer as in Fig. 17.1(a).

17.6 The soft X-ray transient A0620–00 is an interacting binary system
[a velocity curve was shown in Fig. 17.1(b)] in which a main
sequence star is transferring mass to an accretion disk around an



unseen compact object [111, 146, 147, 148, 160]. Take the orbital
period to be P = 7.75 hr and the semiamplitude of the radial velocity
curve to be K = 457 km s−1 [147]. Repeat the analysis of Section
17.4.3 to place limits on the mass of the unseen compact object in
A0620–00. Useful observational constraints are (1) the known
distance to the system and the absence of observed eclipses of the X-
ray source precludes i larger than about 80◦, and (2) the companion is
determined observationally to be a main sequence star with spectral
class lying in the range K7–K2, which from stellar systematics
constrains the mass to 0.5 M⊙ < Mc < 0.8 M⊙.

17.7 What is the Schwarzschild radius of the 4.3 × 106 M⊙ black hole at
the center of the Milky Way? What angular resolution is required to
resolve it from Earth, taking the distance to the center of the galaxy
to be 8 kpc? Hint: In reality there would be strong gravitational
lensing effects that would affect the answer, but ignore those for a
simple estimate of the angular resolution that is required.***

1 Perhaps the best-known example is the Global Positioning System (GPS), where the timing
precision required to determine position with meter-level accuracy implies that even the
relativistic corrections for low velocity in Earth’s weak gravitational field are substantial. The
GPS system would not even work without accounting for the special relativistic dilation of
time caused by relative motion of satellite and receiver, and the general-relativistic dilation of
time caused by the receiver being in a stronger gravitational field than the satellite.

2 Whether a tensor index is in an upper or lower position is mathematically and physically
meaningful, but it will be sufficient for present purposes just to remember that fact, without
going into details of why.

3 That is, some time-independent, spherical distribution of mass is assumed to produce a
gravitational field, but the Schwarzschild solution is valid only outside the mass distribution
responsible for the field. For a spherical star, this solution would be valid beyond the radius of
the star. For the spherical black holes to be discussed below, all the mass that is the source of
the gravitational field has been crushed into a singularity at the center of the black hole. Then
the Schwarzschild solution is assumed valid anywhere not too near the singularity.

4 For example, in Section 21.8 it will be shown that frame dragging of the spacetime around a
Kerr black hole can wind up a magnetic field and spiral it off the polar axes of the rotating
black hole as relativistic jets. This is believed to be a leading candidate for producing the jets
observed for gamma-ray bursts (where the black hole is of stellar mass), and active galactic
nuclei and quasars (where the black hole has masses of millions to billions of M⊙).



PART III

ACCRETION, MERGERS, AND EXPLOSIONS



18

Accreting Binary Systems

Observations suggest that more than half of the more massive stars in the
sky are in multiple-star systems, most in binary stars. When binary
components are well separated they have long orbital periods and behave
approximately as isolated stars unless a strong wind is blowing from one of
them. However, if the semimajor axis of the orbit is small enough, mass
may spill directly from one star onto the other during all or part of the
orbital period. This is an example of accretion. Although accretion does not
sound at first blush like a very exciting topic, in fact it is a critical
ingredient in many of the most interesting phenomena in astrophysics. It
plays this role either through providing a mechanism to initiate such
phenomena (for example, in novae or Type Ia supernovae), or as the
primary power source for the phenomenon (for example, in supermassive
black hole engines that power quasars), or both (for example, in high-mass
X-ray binaries). This chapter investigates a number of phenomena in binary
star systems that are accretion-driven, and lays the groundwork for more
general discussions of accretion in a variety of astrophysical settings.

18.1 Classes of Accretion
For purposes of discussion it is useful to think of binary star accretion as
falling into two extreme categories.

1. If the stars are sufficiently close together a gas particle “belonging” to
one star may wander far enough from that star to be captured by the
gravitational field of the other star. This is termed Roche-lobe
overflow.

2. Even if the two stars are not close enough for Roche-lobe overflow,
mass may be transferred between them if one star has a very strong



wind blowing from its surface and the second star captures particles
from this wind. This is termed wind-driven accretion.

As will be seen, these two methods of accretion tend to involve binary
systems having very different total masses, with Roche-lobe overflow
favored in low-mass binaries and wind-driven accretion favored in high-
mass binaries.

18.2 Roche-lobe Overflow
Let’s first address accretion in binary systems through the mechanism of
Roche-lobe overflow, with wind-driven accretion to be discussed afterward.

18.2.1 The Roche Potential
Consider the restricted 3-body problem, which refers to a 3-body
gravitational problem for the special case where two of the masses may be
considered to be much larger than a third test mass. Figure 18.1 illustrates.
In particular, for the present discussion interest lies in the case where M1
and M2 are masses for the two components of a binary star system in
revolution around its center of mass and m is the mass of a gas particle in
the system. If a coordinate system rotating with the binary axis is employed,
the potential acting on the gas particle is termed the Roche potential ΦR(r),
and is given by [89]

(18.1)

where G is the gravitational constant, ω is the frequency for revolution
about the center of mass, and the other quantities are defined in Fig. 18.1.
An energy surface corresponding to this potential is illustrated in Fig. 18.2.
The final term in Eq. (18.1) appears because a non-inertial coordinate
system rotating with the binary has been chosen. It will give rise to
centrifugal and Coriolis (pseudo-) forces. The falloff of the potential surface
in Fig. 18.2(a) at increasing distances from the binary pair is a consequence
of this term. The rotational frequency entering Eq. (18.1) is given by ω =



(GM/a3)1/2 e, where a is the semimajor axis, M = M1 +M2 is the total mass,
and e is a unit vector normal to the orbital plane.

Fig. 18.1 Three-body gravitational interaction. The restricted 3-body problem corresponds to the
assumption that m is much smaller than M1 and M2.

Fig. 18.2 (a) Potential energy surface and Lagrange points Ln for a generic binary system (surface
courtesy of John Blondin). (b) Potential contours and the Lagrange points Ln for binary masses M1
and M2 with M2/M1 = 0.25. Dashed contours lie inside the Roche lobes (indicated in gray) and the
×marked CM denotes the location of the center of mass. Adapted from Ref. [89].

18.2.2 Lagrange Points



In Fig. 18.2 the five Lagrange points Ln associated with the restricted 3-
body problem are indicated. These points correspond to the five special
points in the vicinity of two large orbiting masses where a third body of
negligible mass can orbit at a fixed distance from the larger masses
(because at these points the gravity of the two large bodies provides exactly
the centripetal forces required for the small mass to revolve with them). As
indicated in Figs. 18.2(a) and 18.2(b), the Lagrange points L1, L2, and L3 lie
on the line of centers for the two large masses and are points of unstable
equilibrium associated with saddle points of the potential. The points L4
and L5 are “hilltops” in the potential surface of Fig. 18.2(a) and appear at
first glance to also be points of unstable equilibrium. However, for
particular ranges of masses for the two large bodies, L4 and L5 are actually
stable equilibrium points because of the Coriolis force associated with the
rotating frame. A particle rolling away from the hilltop at L4 or L5
experiences a Coriolis force that alters its direction of motion. For favorable
values of the parameters, the Coriolis deflection is sufficiently strong to put
the particle into an orbit around the Lagrange point.

The L1 Lagrange point is of particular importance for binary star systems
because mass flow between the stars can occur through the L1 point. The L2
point is also of more limited interest for binary accretion because mass
overflow from star 1 to star 2 can in some cases overshoot and escape the
system through the L2 point. Such Lagrange points are also of considerable
interest in the dynamics of natural and artificial objects in the Solar System,
as discussed in Box 18.1.

Box 18.1 Lagrange Points in the Solar System

Lagrange points often are significant in the Solar System when one of
the large masses is the Sun and one a planet. For example,

1. The Trojan Asteroids lie at the Jupiter–Sun L4 and L5 points, 60
degrees ahead and behind Jupiter in its orbit.

2. The Solar and Heliospheric Observatory (SOHO) is parked at the
L1 point and the Wilkensen Microwave Anisotropy Probe



(WMAP), Planck satellite, and James Webb Space Telescope have
used or will use the L2 point of the Earth–Sun system.

3. The mythical “Planet X” of science fiction fame was purported to
be at the L3 point of the Earth–Sun system, and therefore always on
the opposite side of the Sun from Earth.

Dynamical analysis of the unstable Lagrange points indicates that for
the Earth–Sun system the L1 and L2 points are unstable on a timescale
of about 25 days; thus the observatories parked there require small orbit
corrections on that timescale to remain near the Lagrange points. The L3
point for the Earth–Sun system is dynamically unstable on a 150-day
timescale (which bodes ill for Planet X!). The parameters of the Earth–
Sun system, as for the Jupiter–Sun system, indicate that the L4 and L5
points are stable because of Coriolis forces. No analogs of Jupiter’s
Trojan asteroids have been found for Earth but there is evidence for
enhanced dust concentrations at the L4 and L5 points for the Earth–Sun
system.

18.2.3 Roche Lobes
One contour of the Roche potential intersects itself at the L1 Lagrange point
lying on the line connecting the center of mass for each star. The interior of
this figure-8 contour defines a tear-drop shaped region for each star called a
Roche lobe. The Roche lobes for the potential displayed in Fig. 18.2(b) are
shaded in gray and Fig. 18.3 illustrates the Roche lobes for a binary in more
schematic form. Roche lobes may be viewed as defining the gravitational
domain of each star. A gas particle within the Roche lobe of one star feels a
stronger attraction from that star than from the other. It “belongs”
gravitationally to the star unless there are instabilities (such as those
responsible for winds) that upset the hydrostatic equilibrium. However, the
L1 Lagrange point is a saddle between the potential wells corresponding to
the two stars. A gas particle located at L1 belongs equally to both stars,
suggesting that mass transfer can be initiated if a star expands to fill its
Roche lobe, thereby placing gas at the inner Lagrange point L1.



Fig. 18.3 Schematic illustration of Roche lobes and the inner Lagrange point.

18.3 Classification of Binary Star Systems
The Roche lobes defined in Fig. 18.3 provide a convenient classification
scheme for binary systems that is illustrated in Fig. 18.4.

1. Detached binaries are binaries where each star is well within its
Roche lobe. In the absence of strong winds, there is little chance for
mass transfer in this case. Orbits for detached binaries range from the
large orbits with periods of hundreds of years found for some visual
binaries down to stars that are separated by little more than a solar
radius but still lie within their respective Roche lobes.

2. Semidetached binaries are binaries in which one of the stars has filled
its Roche lobe. Thus, semidetached binaries generally are either
accreting through Roche-lobe overflow or are unstable against
initiation of such accretion. Semidetached binaries have orbital
separations ranging from about a solar radius up to several
astronomical units.

3. Contact binaries (also called W UMa stars if they are eclipsing)
correspond to binaries in which both members of the binary have filled
or even overfilled their respective Roche lobes. This may lead to a



“neck” between the stars, or to common envelope evolution where both
stars orbit within the same envelope. Contact binaries are typically
separated by two stellar radii or less.

As a star evolves away from the main sequence into the RGB and AGB
regions it may increase its size by a factor of 100–1000 (see Fig. 13.16).
Thus, as its stellar components evolve detached binaries can morph into
semidetached or even contact binaries. In addition, separation of the
members of a binary may change because of mass transfer or emission of
gravitational radiation, which can alter the classification of the binary with
respect to Fig. 18.4. Finally, as will be discussed in Section 18.9, mass
transfer can alter the evolution of the individual members of the binary,
confusing the issue of stellar evolution relative to that expected for isolated
stars.

Fig. 18.4 Classification of binary star systems according to whether neither, one, or both of the stars
fill their Roche lobes.

18.4 Accretion Streams and Accretion Disks
The preceding discussion has introduced the idea of Roche-lobe overflow in
qualitative terms. We now consider mass transfer through Roche-lobe
overflow in a more precise manner. To do so requires a quantitative
description of the gas flow between stars in a binary system.

18.4.1 Gas Motion
We shall assume the gas motion to be governed by a continuum version of
Newton’s second law called the Euler equation1

(18.2)



where v is the velocity, ρ is the density, P is the pressure, and f is the force
density acting on the gas (for example, from gravity or an external magnetic
field). In a frame rotating with the binary at a frequency ω the Euler
equation takes the form [89]

(18.3)

In general, numerical solutions of this equation are required for a
quantitative description of gas flow in accretion. However, we shall now
argue that many of the basic features of accretion through Roche-lobe
overflow may be understood with only minimal calculation. These features
will follow largely from two observations:

1. Mass transfer is extremely likely and highly efficient if a star fills its
Roche lobe.

2. In most cases, conservation of angular momentum for the transferred
matter implies that an accretion disk will form around the primary star.

This discussion will be guided by the presentation in Ref. [89].

18.4.2 Initial Accretion Velocity
Imagine the accretion process as seen from the primary onto which
accretion takes place.2 Tidal forces will tend to circularize orbits and to
synchronize rotation with revolution in close binaries, so we will assume
that the primary and the secondary star keep the same faces turned toward
each other during the orbital period on a circular orbit. Viewed from the
primary the companion appears to be moving across the sky since it makes
a complete circuit of the celestial sphere once each binary period. If the
Roche lobe of the companion is filled so that matter comes across the L1
point, it appears to an observer on the primary star to have a large
transverse component of motion because of the revolution of the binary
system. The relevant geometry is shown on the left side of Fig. 18.5 and the
components of velocity perpendicular and parallel to the line of centers for



the two stars are illustrated on the right side of Fig. 18.5. In the non-rotating
frame, the perpendicular and parallel components of velocity for the stream
of gas coming across the L1 point satisfy v⊥ ∼ b1ω and vǁ ≤ cs, where cs is
the local speed of sound in the vicinity of the L1 Lagrange point.

Fig. 18.5 Velocity components for the gas stream in Roche-lobe overflow for a binary system.

Example 18.1 We may make some estimates of the velocity components
for the accretion stream by using Kepler’s third law (1.20) as follows [89].
The length of the semimajor axis a is given by

(18.4)

where m1 = M1/M⊙ and m2 = M2/M⊙. Taking  and utilizing ω =
2π/P yields

(18.5)

for the perpendicular component of velocity and the local sound speed may
be approximated by

(18.6)



For normal stellar envelopes T ≤ 105 K and therefore vǁ ≤ cs ≤ 10 km s−1.
Thus,

(18.7)

[where O (n) denotes “of order n”] for typical semidetached binaries having
periods of days. Thus on general grounds the transverse component of
velocity is expected to be much larger than the parallel component for the
accretion stream.

18.4.3 General Properties of Roche-Overflow Accretion
The results obtained in Example 18.1 have several immediate consequences
for mass transfer through Roche-lobe overflow in binary star systems:

1. Since v⊥ >> vǁ the situation is as illustrated in the right side of Fig.
18.5, with the velocity at the L1 point dominated by the perpendicular
component. Therefore, gas particles coming across the L1 point will
have large angular momentum.

2. The accretion flow is supersonic because 
 Hence pressure effects will be small

because supersonic flow has no time to react to pressure waves limited
to traveling at sound speed, and the motion of the gas packets flowing
across the L1 point will be approximately ballistic (motion influenced
only by gravity).

3. Since vǁ ∼ cs << vff, where vff is the free-fall velocity acquired by the
gas particle accelerated in the gravitational field of the primary, initial
conditions at L1 will have little influence on trajectories, leading to a
narrow accretion stream.

After passing through the L1 point a gas particle falls essentially freely in
the gravitational potential of M2 with the angular momentum that it had at
L1. Thus, the particle enters an approximately elliptical orbit in the plane
defined by revolution of the binary. The set of particles executing elliptical



motion in the gravitational field of the primary forms an accretion disk if
the transverse velocity of the particles entering the Roche lobe of the
primary is sufficiently high that the deflection of the accretion stream
causes it to miss the body of the primary. This is not always the case (see
Section 18.9.1 and Problem 18.3), but it typically will be in the most
interesting situation where the primary is compact.

18.4.4 Disk Dynamics
The preceding discussion introduces the basic features of accretion by
Roche-lobe overflow. However, the effect of the accretion disk is more
complex than suggested by those considerations. This is primarily because
the orbit of a gas particle within the Roche lobe of the primary is not
actually a closed ellipse because of gravitational perturbations, most
notably those caused by the presence of the secondary mass M1. This causes
deviation from an r−1 potential and implies precession of the elliptical
particle orbits.

Disk heating and angular momentum transfer: Precession of the particle
orbits caused by gravitational perturbations leads to collisions of particles
as orbits cross each other. These collisions will heat the gas in the disk,
which can then emit energy as electromagnetic radiation. Shockwaves
presumably play a leading role in this heating because the velocities in the
accretion disk are generally supersonic. As the disk is emitting
electromagnetic radiation it has limited opportunity to exchange angular
momentum with external objects. Therefore, the timescale for angular
momentum transfer out of the disk is expected to be much longer than the
timescale for radiating energy from the disk. As a consequence of the
mismatch between these timescales, the particles in the disk will tend
quickly to nearly circular orbits having the original specific angular
momentum of the particle at L1 (since circular orbits have the lowest energy
for a given angular momentum). This orbit may be approximated by [89]

(18.8)

where Rcirc is the circularization radius.



Internal angular momentum transfer: Since the disk radiates energy, some
particles must descend lower into the gravitational potential of the primary
to conserve energy, which requires losing angular momentum. But the
timescale for transferring angular momentum from the disk is long
compared with the timescale for radiating energy, so the disk must transfer
angular momentum internally: some particles in the disk must spiral inward
while other particles spiral outward. This net outward transfer of angular
momentum implies that the disk is broadened both inward and outward
around the circularization radius. A primary unresolved issue in the physics
of accretion disks is the detailed mechanism by which an accretion disk
accomplishes this internal redistribution of angular momentum.

An accretion elevator: The picture that emerges then is of particles in the
inner portion of the disk that spiral inward slowly on a series of nearly
circular orbits of gradually decreasing radius in the binary plane. An
accretion disk then may be viewed as a natural elevator that lowers particles
gradually in the gravitational field of the primary until they accrete onto the
surface of the star, while radiating potentially large amounts of
electromagnetic radiation as the gravitational energy is released. Let us
make an estimate of the luminosity for the disk associated with this emitted
radiation.

Luminosity of the disk: The density of the accretion disk is typically low
enough that the self-gravity of the disk material may be ignored in
calculations. The particle orbits then tend to circular Kepler orbits with
angular velocity Ω(R) = (GM1/R3)1/2, where M1 is the mass of the primary
and R is the radius of the orbit. For a Kepler orbit that just grazes the
surface of the primary at radius R∗ the binding energy of a gas packet of
mass ΔM is given by Ebind = GM1ΔM/2R∗, so in equilibrium the total
luminosity of the disk is

(18.9)

where Ṁ is the accretion rate on the primary and Lacc is the accretion
luminosity defined in Eq. (18.12) below. Thus, we may expect that



approximately half of the energy derived from accretion is radiated from the
disk as the matter spirals inward toward the primary.

18.5 Wind-Driven Accretion
The schematic mechanisms for accretion driven by Roche-lobe overflow
and by winds are illustrated in Fig. 18.6. Wind-driven accretion is not as
well understood as accretion by Roche-lobe overflow. It is likely that it is
particularly important for those binary systems that contain an early spectral
class (O or B) star with a neutron star or black hole companion. These
systems tend to be luminous sources of X-rays (see Section 18.6.1). The
stellar wind from the O or B star is generally both supersonic and intense.
The velocity of the wind may be approximated by the escape velocity from
the star,

(18.10)

where R∗ is the radius and M∗ the mass of the O or B star. This implies wind
speeds of order 103 km s−1 in typical cases – far higher than the sound
speed, which is of order 10 km s−1. The rate of mass emission from such
hot, luminous stars can be 10−6–10−5 M⊙ yr−1.



Fig. 18.6 Comparison of Roche-lobe overflow and wind-driven accretion. A bow shock is expected
to form in the latter case because the wind flow is highly supersonic. As will be discussed below,
low-mass X-ray binaries are typically associated with accretion by Roche-lobe overflow and high-
mass X-ray binaries with wind-driven accretion.

Because the flow is supersonic the wind particles may be assumed to
follow ballistic trajectories, which allows for a simple estimate of the
accretion rate on a compact companion (see Problem 18.2). Such estimates
indicate that in wind-driven scenarios the accretion is very inefficient, being
typically 1000–10,000 times less than the mass-loss rate from the
companion. In contrast, Roche-lobe overflow is highly efficient, with close
to 100% of the mass loss from one star accreting onto the other star in
normal cases. It is only the remarkably high mass-loss rate from the young
O or B star, and that energy is emitted largely in the form of X-rays for
neutron star or black hole companions, that makes wind-driven accretion
easily observable in binary systems.

18.6 Classification of X-Ray Binaries
For binaries with very compact remnants (neutron stars or black holes),
persistent binary accretion seems to occur in only two general cases: High-
Mass X-Ray Binaries (HMXB) and Low-Mass X-Ray Binaries (LMXB).



These two extremes were displayed earlier in Fig. 18.6 and are discussed
more extensively in the following sections.

18.6.1 High-Mass X-Ray Binaries
High-mass X-ray binaries have the following characteristics [163]:

1. Optical counterparts are typically luminous O or B stars and the
optical luminosity from the system (dominated by visible and UV from
the O or B star) is often larger than the X-ray luminosity.

2. They are commonly found in a young stellar population near the
galactic plane.

3. They exhibit regular X-ray emission and transients with variation on
timescales of minutes, but no large X-ray bursts.

4. The X-ray spectrum is relatively “hard” (has significant high-energy
components), with an effective kT ≥ 15 keV.

5. HMXBs are thought to consist of a neutron star or black hole, and a
high-mass (≥ 15 M⊙) companion with a strong stellar wind, leading to
wind-driven accretion on the compact object. Characteristic accretion
rates are Ṁ ∼ 10−10 − 10−6 M⊙ yr−1, with wind velocities v ∼ 2000 km
s−1.

Such systems are often very luminous X-ray sources and were among the
first X-ray binaries discovered in the galaxy. The black hole candidate
Cygnus X-1 discussed in Section 17.4.3 is an example of a high-mass X-ray
binary. In Cyg XI the separation between the two stars is so small that the
wind-driven accretion is probably focused by gravity of the primary into a
stream that resembles Roche lobe overflow, even though the blue supergiant
HD 226868 is likely not overflowing its Roche lobe.

18.6.2 Low-Mass X-Ray Binaries
In contrast to high-mass X-ray binaries, low-mass X-ray binaries exhibit the
following characteristics [163]:



1. LMXB have faint blue optical counterparts and the emission from the
accretion disk may dominate over emission from the stars. The optical
luminosity is typically less than the X-ray luminosity by a factor of 10
or more, and the non-compact component is normally of spectral class
A or later (cooler) in the spectral sequence.

2. They are commonly parts of old stellar populations, spread out of the
galactic plane and concentrated toward the galactic center.

3. They produce strong X-ray outbursts.
4. The X-ray spectrum is softer than for HMXB, with an effective kT ≤

10 keV.
5. LMXB are thought to be binary systems having a compact object and

a low-mass companion (≤ 2M⊙), with accretion onto the compact
object by Roche-lobe overflow.

The X-ray bursters that will be discussed in Section 19.2 are produced by
accretion on neutron stars and are examples of low-mass X-ray binaries.

18.6.3 Suppression of Accretion for Intermediate Masses
Thus, HMXB appear to correspond to wind-driven accretion from high-
mass companions and LMXB to Roche-lobe overflow accretion from low-
mass companions, with few X-ray binaries lying in between. This
separation of mass scales can be understood as being caused by strong
suppression of accretion onto compact objects from companions in the 2–
15M⊙ range that arises for two reasons: (1) For companion masses lying in
this intermediate range the stellar winds from the companion are too weak
to drive significant X-ray luminosity from accretion. (2) For companion
masses in this range, Roche-lobe overflow accretion is quenched because
the mass transfer rates tends to become super-Eddington (see Section
18.7.2), effectively halting the accretion by virtue of the radiation pressure
resulting from the accretion.

18.7 Accretion Power



Astrophysical accretion is important for various reasons but the most
important one is that it serves as a highly-efficient mechanism for
gravitational energy conversion, and thus is potentially a very large source
of power.

18.7.1 Maximum Energy Release in Accretion
The energy released by accretion onto an object is given approximately by

(18.11)

where M is the mass of the object, R is its radius, and m is the mass
accreted. In Table 18.1 the amount of energy released per gram of hydrogen
accreted onto the surface of various objects is summarized (see Problem
18.6). From Table 18.1 we see that accretion onto very compact objects is a
much more efficient source of energy than the thermonuclear burning of
hydrogen to helium. On the other hand, accretion onto normal stars or even
white dwarfs is much less efficient than converting the equivalent amount
of mass to energy by hydrogen burning. Let us assume for the moment,
unrealistically, that all energy generated by conversion of gravitational
energy in accretion is radiated from the system (efficiency for realistic
accretion will be addressed shortly). Then the accretion luminosity is

(18.12)

if a steady accretion rate Ṁ is assumed.

Table 18.1 Energy released by hydrogen accretion



18.7.2 Limits on Accretion Rates
Assuming fully ionized hydrogen and Thomson scattering of photons, the
Eddington luminosity is given in Section 9.11.2 as

(18.13)

If the Eddington luminosity is exceeded (in which case the luminosity is
said to be super-Eddington), accretion will be blocked by the radiation
pressure, implying that there is an upper limit to the accretion rate on
compact objects. Equating Lacc and Ledd gives as an estimate for this
limiting rate

(18.14)

Eddington-limited accretion rates for white dwarfs, neutron stars, and black
holes calculated from this formula are given in Table 18.2.

Table 18.2 Some Eddington-limited accretion rates and temperatures

18.7.3 Accretion Temperatures
As shown in Problem 18.10, a crude estimate can be made of the accretion
temperature for compact objects by assuming steady accretion at a rate Ṁ
corresponding to the Eddington limit, and assuming that the accreted
material equilibrates in a surface layer with a blackbody temperature Tacc
given by

(18.15)



where R is the radius and M the mass of the compact object, and σ is the
Stefan–Boltzmann constant.3 The temperatures and corresponding spectral
regions for white dwarfs, neutron stars, and a 10 M⊙ black hole are also
displayed in Table 18.2. From this table we expect that white dwarf
accretion should lead to Tacc ∼ 106 K, and neutron star and black hole
accretion should lead to Tacc in excess of 107 K. This corresponds to spectra
in the UV to X-ray region for accretion on these objects.

18.7.4 Maximum Efficiency for Energy Extraction
The preceding discussion has considered the energy that is potentially
available from accretion. However, the issue of efficiency in extracting this
energy has not yet been addressed. For the gravitational energy released by
accretion to be extracted, it must be radiated or matter must be ejected at
high kinetic energy (for example, in relativistic jets). It may be expected
that such processes are inefficient and that only a fraction of the potential
energy available from accretion can be extracted to do external work. This
issue is particularly critical when black holes are the central accreting
object, since they have no “surface” onto which accretion may take place
and the existence of an event horizon makes energy extraction acutely
problematic.

Accretion efficiencies: From the previous equation for accretion power an
efficiency factor η may be introduced through

(18.16)

where R is the effective accretion radius. Thus η measures of the efficiency
of converting mass to energy by accretion. For accretion onto a white dwarf
or neutron star we may take the radius of the object for R. For accretion on
a spherical black hole we may assume that R is some multiple of the
Schwarzschild (event horizon) radius, which is given by Eq. (17.11),

(18.17)



since any energy to be extracted from accretion must be emitted from
outside that radius. Then for a spherical black hole

(18.18)

For a black hole a typical choice for R is the radius of the innermost stable
circular orbit in the Schwarzschild spacetime, which is located at 3rs.

Efficiencies for various processes: For burning of hydrogen to helium the
mass to energy conversion efficiency is η ∼ 0.007 (see Section 5.1.4). For
compact spherical objects like Schwarzschild black holes or neutron stars,
reasonable estimates suggest η ∼ 0.1. For rotating, deformed (Kerr) black
holes, it is possible to be more efficient in energy extraction and efficiencies
of η ∼ 0.3 might be possible.

Example 18.2 The high efficiency available from accretion onto a
supermassive black hole as a power source provides the most convincing
general argument that active galactic nuclei (AGN) and quasars must be
powered by accretion onto rotating supermassive (M ∼ 109 M⊙) black
holes. For example, in Problem 18.4 you are asked to use observed
luminosities and temporal luminosity variation to show that a quasar could
be powered by accretion of as little as several solar masses per year onto an
object of mass ∼ 109 M⊙, and that this mass must occupy a volume the size
of the Solar System or smaller.

18.7.5 Storing Energy in Accretion Disks
In addition to being a primary source of power for varied astrophysical
phenomena, an accretion disk can function as a storage reservoir for energy
released on a short timescale that then can meter the original energy release
out over a much longer period than the dynamical timescale for direct
collapse. For example, the long-period gamma-ray bursts to be discussed in
Chapter 21 last as long as many tens of seconds. They are thought to be
powered by the collapse of the core of a massive star, with the gravitational
energy from the collapse released on a timescale of order one second. It is



proposed that the core collapse leads to a rotating black hole surrounded by
an accretion disk and emitting ultrarelativistic jets on its rotation axis. The
gamma-ray burst is then produced by the jets, partially energized by the
accretion of matter from the disk, which spreads part of the collapse energy
out over tens to hundreds of seconds to power the long-period gamma-ray
burst.

18.8 Some Accretion-Induced Phenomena
Accretion is a primary factor in a number of astrophysical phenomena,
either as the initiator or as the primary power source, or as both. Let us
summarize briefly some of these phenomena.

1. Cataclysmic variables are accreting binary systems in which accretion
is onto a white dwarf, with the accretion leading to a variety of
outbursts depending on the circumstances. The most spectacular are
novae, which will be described in Chapter 19.

2. X-ray binaries may be divided into high-mass and low-mass
categories. The distinction between them was discussed in Section
18.6.

3. X-ray bursts occur in low-mass X-ray binaries. Type II bursts are less
common and may be associated with fluctuations in the accretion rate.
Type I bursts are more common and are characterized by X-ray
luminosities that increase by factors of 10 or more over a period of a
few seconds. X-ray bursts will be discussed further in Chapter 19.

4. Type Ia supernovae have been ascribed to two primary models, both
likely involving accretion onto a white dwarf as the initiator of the
explosion. In the first, accretion from a nondegenerate star onto a
white dwarf triggers a runaway thermonuclear flash in the degenerate
white dwarf matter that consumes the entire star. This is called the
single-degenerate scenario. In the second model a binary white dwarf
system spirals together and merges. Near merger one of the white
dwarfs likely is tidally disrupted, forming a disk that accretes mass
onto the other, triggering a thermonuclear runaway in degenerate
white-dwarf matter. This is called the double-degenerate scenario.
Type Ia supernovae will be discussed further in Chapter 20.



5. Rotating black hole engines are thought to power active galaxies and
quasars (see Example 17.2 above and Problem 18.4). These central
engines produce far more power within a small region than can be
accounted for easily by any source of energy other than gravitational.
The standard paradigm is that these engines derive significant energy
from accretion onto supermassive, rotating black holes.4 On a stellar
scale, gamma-ray bursts are believed to be powered in a similar way
by accretion onto a rotating black hole produced either by the core
collapse of a massive star, or by merger of two neutron stars (or a
black hole and neutron star). This will be discussed further in Chapter
21.

As noted explicitly above, most of these topics will be taken up in more
depth in other chapters.

18.9 Accretion and Stellar Evolution
Mass is destiny for stars: generally, the more massive a star is the faster it
evolves through all stages of its life. Although the evidence is
overwhelming for this hypothesis, there are particular data sets that appear
to contradict it. It is instructive that these apparent contradictions often
involve the possibility of a star interacting with another star, either through
accretion in a binary system or through collisions and mergers in clusters.

18.9.1 The Algol Paradox
One particularly interesting case is the Algol system5 (see Box 1.6), where
the more massive star of spectral class B8 appears to be much less evolved
than the less massive K0 companion. However, spectroscopic evidence
suggests that weak accretion is occurring in the Algol system (and that the
accretion is directly into the body of the primary rather than through an
accretion disk; see Problem 18.3 and Fig. 18.7). Therefore, one is led to ask
whether it is possible that accretion in the Algol system is distorting the
picture of which star is the older star. This “Algol paradox” is thought to be
resolved by the evolutionary sequence depicted in Fig. 18.8, which



indicates that previous mass transfer has altered the system from what
would have been expected for the evolution of isolated stars.

Fig. 18.7 Mass transfer in the Algol system from the K0 star to the B8 star.

Fig. 18.8 Resolution of the “Algol paradox.” The less massive star is more evolved because of an
earlier episode of mass transfer in the system.



Specifically, it is believed that initially the present spectral class K0 star
(denoted by Star B in the figure) was a more massive main sequence star
that evolved faster than its less massive companion (the present spectral
class B8 star, denoted by Star A in the figure). This initially more massive
star evolved off the main sequence, expanded to fill its Roche lobe, and
began transferring mass to its companion. Over time sufficient mass
transfer occurred to make the companion more massive and the present
spectral class K0 star less massive, and presently the accretion stream has
diminished to a trickle. It may be expected that in Algol the B8 star will
evolve to fill its Roche lobe and begin mass transfer back to the other star at
some point in the future. In general, eclipsing variable stars exhibiting an
evolutionary sequence altered by mass transfer similar to that sketched here
are called Algol variables (or algols, for short).

18.9.2 Blue Stragglers
An issue that may be related indirectly to the Algol paradox is that of “blue
stragglers” in clusters, where main sequence stars more blue (earlier
spectral class) and more luminous than the turnoff point for the cluster are
observed. According to standard evolutionary models such stars should
already have evolved off the main sequence. However, the presence of blue
stragglers could be explained if they have not evolved in isolation but
instead are stars that have had their masses altered by merger or accretion
with a binary companion, or by a collision with another star in the dense
environment of the cluster. Then the normal evolutionary picture would be
skewed because these stars have not always had the mass that they
presently have. There is some observational evidence supporting the view
that blue stragglers have undergone interactions with other stars in a cluster.

Background and Further Reading
This chapter has been influenced strongly by material in Frank, King, and
Raine [89]; Padmanabhan [163]; and Hilditch [117]. For accretion disks in
active galactic nuclei and quasars, see Peterson [168] and Robson [186].

Problems



18.1 Hot main sequence stars are expected to have substantial winds
blowing from their surfaces. Estimate the wind speed expected for
an O8 main sequence star.

18.2 Consider wind-driven accretion on a neutron star from a companion
with a strong, steady wind. Estimate the accretion rate by assuming
all wind particles to be captured if the particles cross an area 
around the neutron star, with the radius racc determined by the
volume around the neutron star where the gravitational potential is
equal to or greater than the kinetic energy of the particles in the
wind. Assume the wind to blow radially outward from the
companion, to not be deflected by the gravity of the neutron star
before capture, and to be supersonic so that pressure effects may be
neglected. Show that significant accretion rates – say 10−12 M⊙ yr−1

or greater – occur only for companion mass-loss rates in excess of
10−8 M⊙ yr−1 (which is relatively uncommon).***

18.3 Show that for Algol-like systems (binaries consisting of main
sequence or subgiant stars with periods of a few days or less) the
accretion stream may intersect the body of the primary directly (see
Fig. 18.7). On the other hand, show that for compact primaries
(white dwarfs, neutron stars, or black holes), this is unlikely and an
accretion disk is almost certain to form if Roche-lobe overflow
occurs.***

18.4 Active galactic nuclei and quasars can produce luminosities of 1047

erg s−1 with variations on timescales of days. Use this to show that
(a) If this energy derives from fusion reactions it is necessary that

several hundred solar masses be fused per year, but if it derives
from accretion (with accretion efficiencies that are theoretically
attainable with rotating supermassive black holes), the energy
output could be generated by accretion of as little as several
solar masses per year.

(b) If the source of the energy powering the AGN is accretion and
the source radiates at the Eddington limit, the mass of the
central object onto which accretion occurs must be of order 109

M⊙.



(c) The variability timescale and part (b) imply that 1047 erg s−1

must be produced in a region containing at least 109 M⊙, and
this region cannot be substantially larger than the Solar System.
Hint: What is the fastest speed for transferring information in
such a system?

This reasoning is the basis for the usual assumption that quasars and
active galaxies must be powered by accreting, supermassive black
holes at their centers.***

18.5 Derive the result (18.8) for the circularization radius. Hint: Assume
the accreted particles to go into a circular orbit determined primarily
by the gravitational field of the primary and assume the angular
momentum per unit mass at the L1 point to be preserved in this
circular orbit.

18.6 Verify the entries for energy released per gram by accretion and the
ratio of the energy released to that obtained from thermonuclear
burning of hydrogen for Table 18.1. Hint: For the black hole, assume
it to be spherical and for accretion to occur from the innermost stable
circular orbit with radius three times the Schwarzschild radium rs
.***

18.7 Verify the equations and conclusions of Section 18.4.2 concerning
velocities in accreted steams.

18.8 Accretion disks around compact objects are observed to radiate
approximately as blackbodies, often at a significant fraction of the
Eddington luminosity (9.14). Take as a simple model of an accretion
disk around a compact object a thin disk radiating as a blackbody at
a fraction η of the Eddington luminosity. Derive an expression for
the temperature T of such a disk having radius R. Use this expression
to estimate the temperature and therefore peak emission wavelength
for an accretion disk around a neutron star, and for Schwarzschild
black holes having masses of order 10M⊙ and 108 M⊙, respectively.
For the neutron star, you may approximate R as comparable to the
radius of the neutron star, and for the black hole you may
approximate R as comparable to the innermost stable circular radius
in a Schwarzschild spacetime, which is given by R = 6(G/c2)M,
where M is the mass of the black hole. Use these results to explain



the observed wavelength ranges associated with the accretion disks
for such objects.

18.9 Mass transfer in a binary system can change the orbital period P of
the binary. There are a variety of ways in which this can happen
depending, for example, on how the mass is transferred (wind or
Roche-lobe overflow), and whether the mass lost by one star is
completely captured by the other star (conservative mass transfer) or
whether some of it escapes the system (non-conservative mass
transfer). Let us investigate one of the simplest possibilities.
Consider a binary with circular orbits in which star 1 is the source of
a spherically symmetric wind that causes a mass change rate ṁ1 < 0,
any interaction of the wind with the other star is neglected (so the
mechanism is non-conservative), and the emitting star is assumed to
maintain a constant velocity magnitude on its orbit so that all
changes in the period come from mass loss.
(a) Show that for this case

implying that since ṁ1 is negative (the wind causes star 1 to
lose mass), the binary period must increase as time goes on.

(b) Observationally, binary orbital periods can be determined to
about one part in 107. Assume a binary system having a 10-day
period, with m1 = 20 M⊙ and m2 = 10 M⊙. For a wind-driven
mass loss rate of ṁ1 ∼ 10−7 M⊙ yr−1 that is typical for normal
upper main sequence stars, estimate the total binary period
change over a time of 10 years and comment on the feasibility
of measuring it.

(c) Repeat the preceding analysis but assume the star that is losing
mass to be a Wolf–Rayet star (see Section 14.3.1), which can
lose mass at rates as high as 10−5 to 10−4 M⊙ yr−1.

18.10 Assume steady accretion onto a spherical compact object at a rate
Ṁ. Real accretion is more complicated, typically involving accretion
disks (see Problem 18.8 for a more realistic example), but make a



simplified model where the accreting material accumulates in a
surface layer that equilibrates as a blackbody at temperature Tacc and
radiates the excess energy deriving from accretion (assume 100%
efficiency for purposes of this exercise). Taking the accretion to
occur at the Eddington limit, derive a formula for the temperature
Tacc in terms of the accretion luminosity and verify the entries in
Table 18.2 for accretion onto a representative white dwarf, neutron
star, and a spherical 10M⊙ black hole. You may take as an accretion
radius for the black hole radius of the innermost stable circular orbit,
which is at three times the Schwarzschild radius rs = 2.95(M/M⊙)
km. (Although not necessary to work this problem, a more extensive
discussion of spherical black holes and associated accretion may be
found in Chapters 11 and 15 of Ref. [100].)*** Hint: Take the time
derivative of Kepler’s 3rd law and use that with our assumptions that
the velocity of star 1 and the mass of star 2 are constant.

1 The Euler equation is appropriate for describing the hydrodynamics of a compressible fluid
without viscosity (termed an inviscid fluid). It follows from the more general Navier–Stokes
equations for compressible fluids by neglecting the effect of viscosity and thermal
conductivity.

2 In what follows the star onto which matter accretes will be termed the primary and the other
star will be termed the secondary of the binary. Notice that the primary is not necessarily the
brighter star. In fact, for the case of most interest where accretion is onto a compact object the
primary will usually be the less bright star.

3 Accretion onto realistic compact objects is more complicated, involving accretion disks with
possibly complex dynamics (Problem 18.8 explores a somewhat more realistic scenario).
Furthermore, general relativistic effects may not be negligible for accretion onto neutron stars
and black holes. Nevertheless, this simple estimate gives the right order of magnitude for
accretion temperatures because they are determined primarily by the release of gravitational
energy, which causes the system to re-equilibrate at a higher temperature than would be
expected in the absence of accretion.

4 See Chapter 15 of Ref. [100] for a more comprehensive discussion.
5 Algol is actually a triple-star system, but two of the three stars are very close together and

form the eclipsing binary that is commonly meant by the Algol system.



19

Nova Explosions and X-Ray Bursts

Some stars are observed to increase their optical brightness by as much as
factors of 104–105 in a matter of days, and then slowly dim back to
obscurity over a period of months. This is called a nova. Furthermore, for
some stellar X-ray sources the flux can increase suddenly in an X-ray burst
superposed on the background emission, and then fall quickly back to the
background level. What is the nature of these nova and X-ray burst events,
and what are the energy sources that power them? Strong clues are provided
by the observation that both novae and X-ray bursts seem to be associated
with binary star systems. In this chapter we shall discuss the characteristics
of novae and X-ray bursts, and propose that they are caused by a common
mechanism: a runaway thermonuclear explosion in degenerate matter
triggered by accretion onto a compact object in a binary star system. The
primary difference between the two is that the compact object is a white
dwarf in the case of the nova and a neutron star in the case of the X-ray
burst, and this difference influences the observational characteristics.

19.1 The Nova Mechanism
We begin the discussion by considering the better-understood case of novae.
The nature of a nova event is suggested by three key observations.

Novae seem to be associated with binary systems in which one star is a
white dwarf.
Doppler shifts indicate an expanding shell of gas emitting the light of
the nova.
There are recurrent novae that repeat after some period of time.



Taken together, these observational characteristics suggest the nova
mechanism illustrated in Fig. 19.1. A nova can occur in a binary star system
for which one star is non-compact (typically a main sequence, subgiant, or
giant star) and the other star is a white dwarf. Matter from the first star
accretes in a thin layer on the surface of the white dwarf because of the
other star filling its Roche lobe and spilling matter onto the white dwarf
(typically through an accretion disk), or possibly because of a strong wind
from the other star that the white dwarf captures onto its surface (see binary
accretion in Chapter 18). Eventually this layer ignites in a thermonuclear
explosion under degenerate conditions. The resulting thermonuclear
runaway (recall the earlier discussion of the helium flash in red giant stars
and see Box 19.1) blows a thin, hot surface layer off into space, causing a
large rise in light output from the system while the expanding shell remains
optically thick. Figure 19.2(a) shows the shell ejected by Nova Cygni 1992,
as imaged by the Hubble Space Telescope two years after the explosion was
first observed.1 The corresponding lightcurve is shown in Fig. 19.2(b).
Nova Cygni 1992 was visible without a telescope at its peak.



Fig. 19.1 (a) Accretion in a binary system that can lead to a nova outburst. (b) The hydrogen
accumulated on the surface of the white dwarf can ignite in a thermonuclear runaway, blowing off a
thin, hot, expanding shell that produces the nova outburst.

Box 19.1 Degeneracy and Thermonuclear Runaways in Novae

The dependence of pressure on temperature computed numerically for
conditions expected in a nova is illustrated in the following figure.



The equation of state allowing arbitrary degeneracy and degree of
relativity from the numerical simulations of white dwarf structure in
Chapter 16 was used, with the pressure coming dominantly from the
electron gas. At low temperatures the electrons are degenerate and the
pressure is essentially independent of the temperature. At high
temperatures the degeneracy is lifted and the pressure increases with
temperature, as expected for an ideal gas. Thus, a thermonuclear
reaction ignited in degenerate matter on the surface of the white dwarf
becomes a runaway until the temperature rises sufficiently to break the
degeneracy and generate a pressure that increases rapidly with the
temperature. This pressure blows off the hot burning surface layer in a
thin shell that expands rapidly, producing the rising light output of the
nova.



Fig. 19.2 (a) Expanding shell around Nova Cygni 1992, two years after the nova explosion. (b)
Visual lightcurve of Nova Cygni 1992 from the AAVSO International Database, plotted for 1991–
2002 [8]. Reprinted from www.aavso.org/v1974-eyg-nova-cygni-1992

19.1.1 The Hot CNO Cycle
The nova thermonuclear runaway is powered by an extension of the CNO
cycle at higher temperatures to a wider set of reactions called the hot CNO
cycle. Figure 19.3 illustrates the relationship between the CNO and hot
CNO cycles. The transition from CNO to hot CNO cycle is initiated by a
proton capture reaction on 13N. Whether the hot CNO cycle is populated is
a strong function of temperature and its influence on the competition
between proton capture and β-decay, as illustrated in Fig. 19.4, Example
5.7, and Problem 19.2.

Fig. 19.3 (a) The hot CNO cycle and its relationship to the CNO cycle (in the dashed box) [70].
Temperatures where sub-branches become competitive are indicated. (b) Main branch of the hot

http://www.aavso.org/v1974-eyg-nova-cygni-1992


CNO cycle as a closed path in the neutron–proton plane. Adapted from “Explosive Hydrogen
Burning,” A. E. Champagne and M. Wiescher, Annual Review of Nuclear and Particle Science,
42(1), 39–76, 1992.

Fig. 19.4 Competition of proton capture and β-decay in breakout from the CNO to hot CNO cycle
(see Problem 19.2). The proton capture rate was calculated assuming a density of 100 g cm−3 and a
hydrogen mass fraction X = 0.7. Under these conditions the proton capture leading to hot-CNO
breakout begins to complete favorably with β-decay when the temperature reaches the range
indicated by the gray box.

The β-decay of 13N in the CNO cycle is an internal nuclear process that is
independent of temperature. However, 13N also can capture a proton to
make 14O, which initiates the breakout into the hot CNO cycle. This
reaction has a very strong temperature dependence (see Fig. 6.3), since it is
inhibited by a Coulomb barrier. At low temperatures the β-decay wins but
for temperatures exceeding T9 ∼ 0.1 the proton capture reaction begins to
compete strongly and quickly dominates with even small increases in
temperature. The rising temperature of the initial nova outburst triggers this
breakout into the hot CNO cycle and the nova is largely powered by the
corresponding energy that is released. Nuclear burning through the hot
CNO cycle is often termed explosive hydrogen burning [70].

19.1.2 Recurrence of Novae



The characteristic total energy output of a nova is of order 1044−45 erg,
which is about 1011 times more energy than the Sun produces each second.
The duration of the thermonuclear runaway that produces most of this
energy is 100–1000 seconds. Despite this large energy release, a nova
outburst typically ejects only about 10−4 of the mass of the white dwarf,
thus leaving the white dwarf largely intact. This is confirmed by the
observation of recurrent novae, where following the nova outburst the
white dwarf begins accumulating accreted material again that eventually
will trigger a new nova explosion.

Example 19.1 RS Ophiuchi is a white dwarf and red giant binary, 5000 ly
away in Ophiuchus. It has been observed in nova outburst six times since
1898. In its quiet phase RS Ophiuchi has mV ∼ 12.5 but in nova outburst
this can rise to mV ∼ 5.

19.1.3 Nucleosynthesis in Novae
The hot CNO cycle leads to synthesis of new elements. Although the
species of elements produced in nova explosions are relatively few in
number compared with those produced in other events like supernova
explosions, certain isotopes likely owe their existence primarily to nova
events. The inferred abundances of elements relative to that for hydrogen in
the expanding shell around Nova Cygni 1992 are given in Table 19.1.

Table 19.1 Nova Cygni 1992 abundances relative to hydrogen [155]

19.2 The X-Ray Burst Mechanism
The mechanism for an X-ray burst is thought to be similar to that of a nova,
except that the matter accretes onto a neutron star rather than a white dwarf
(replace the white dwarf in Fig. 19.1 with a neutron star).2 The X-ray burst



is triggered by a thermonuclear runaway under degenerate conditions, as for
a nova. However, the gravity of a neutron star is much stronger than that of
a white dwarf. Thus, matter falling to the surface of the neutron star releases
more gravitational energy and the thermonuclear runaway occurs at much
higher temperatures and densities than in the nova outburst. This tends to
produce X-rays rather than visible light in the explosion, as discussed in
Box 19.2.

Box 19.2 Production of X-Rays

X-rays are emitted when fast-moving electrons pass close to slow-
moving ions and are accelerated. In equilibrium, only if the
temperatures are millions of degrees are the electrons moving at high
enough velocities to produce X-rays. The higher the temperature, the
faster the electrons move. This increases both the energy and the
intensity of the X-rays, since collisions become more violent and more
frequent at high temperature. An X-ray burst on the surface of a neutron
star may last for a few seconds, during which time the temperatures can
reach as high as ∼ 109 K. This causes X-rays to be produced in
abundance. Most nova events have maximum temperatures in the
vicinity of several times 108 K or smaller, and this tends to produce light
at visible and other longer wavelengths.

19.2.1 Rapid Proton Capture
Because the temperatures in an X-ray burst are very high compared with a
nova, the hot CNO reaction sequence responsible for powering novae can
break out into a much more extensive network of reactions involving
competition between proton capture, α-particle capture, and β-decay that is
called the rapid proton capture process or rp-process. The reaction path for
the rp-process is illustrated in Fig. 19.5. The energy released in the
reactions of the hot CNO cycle and the rp-process are thought to provide
the power source for X-ray bursts. The typical duration of the
thermonuclear runaway powering the burst is a few seconds, during which
time up to 1039−40 erg may be released, largely as X-rays. X-ray bursts from



a given system are typically highly recurrent, with some repeating on
timescales as short as hours.

Fig. 19.5 Path for the rp-process. Also shown are the s-process and r-process paths. Light-gray
squares along the s-process path indicate the several hundred isotopes that are stable against
radioactive decay. Outside the proton and neutron drip lines isotopes are unstable against
spontaneous emission of protons or neutrons, respectively. About 7000 isotopes are predicted to exist
between the drip lines. As of 2017 about 3300 of these have been observed experimentally.

19.2.2 Nucleosynthesis and the rp-Process
Because of uncertainties in nuclear reaction rates for isotopes difficult to
produce under terrestrial conditions and uncertainties in the conditions
characterizing the burst, it is not known precisely how high in proton and
neutron number the nucleosynthesis in the rp-process can go during an X-
ray burst. Because the gravitational field of a neutron star is so strong, even
if proton-rich nuclei are synthesized by the rp-process it will be difficult for
them to escape the gravity of the neutron star, though it may be possible for
some rp-processed material to be ejected in special circumstances.



Background and Further Reading
Short introductions to accretion, novae, and X-ray bursts may be found in
Carrol and Ostlie [68], and Rolfs and Rodney [188]. Many aspects of nova
explosions and explosive hydrogen burning are reviewed in Champagne
and Wiescher [70].

Problems
19.1 From Fig. 19.2(b), how much brighter was Nova Cygni 1992 near

its peak relative to when it later returned to approximately constant
brightness?

19.2 Use the Caughlan and Fowler compilations [69, 88] to calculate the
rate for the reaction 13N(p, γ)14O, for which Q = 4.628 MeV, for
temperatures relevant to main sequence CNO burning; including
resonant and nonresonant contributions. If the density is 103 g cm−3,
estimate the temperature at which this reaction begins to compete
with the β-decay

initiating a breakout from the CNO cycle into the hot CNO
cycle.***

19.3 Derive a formula as a function of white dwarf mass for the fraction
of hydrogen that must be burned to helium in the surface layer of a
white dwarf in order to supply enough energy to eject the layer in a
nova explosion. Hint: Assume the mass to be low enough that Eq.
(16.4) is approximately valid, and use the results in Fig. 16.1.

19.4 In nova explosions and X-ray bursts one often finds strong
competition between β+ decay and proton capture (p, γ) reactions.
The first has a constant rate and the second has a rate strongly
dependent on temperature. Thus, at a given density there will be a
critical temperature where proton capture begins to compete with β-
decay to depopulate a given isotope (see Example 5.7). The
following table gives the parameters pn for the ReacLib
parameterization (D.3) for β-decay of 17F [which has a single



component in the sum (D.2)] and for the proton capture reaction
17F(p, γ)18Ne [which has two components in the sum (D.2)].

(a) From these data, what is the half-life for β-decay of 17F?
(b) Plot the β-decay rate and the total (p, γ) rate computed from

the above table and Eqs. (D.3) and (D.2) as functions of
temperature for the range T9 = 0.1 to T9 = 1.

(c) Assuming a constant density of ρ = 500 g cm−3, estimate the
temperature at which the rate for proton capture on 17F to
produce 18Ne becomes comparable to that for β-decay of 17F to
produce 17O.

1 It is common to name novae using the word “Nova,” followed by the constellation and the
year the outburst was first observed on Earth. This nova was observed in the constellation
Cygnus in 1992. It is also known by its variable star name V1974 Cygni.

2 X-ray bursters also may exhibit a more steady X-ray emission upon which the bursts are
superposed. The steady emission is likely caused by heating of matter in the accretion disk.
Flickering is sometimes observed for the more steady emission, probably because of
instabilities in the accretion disk. A more general discussion of X-ray emission from low-
mass and high-mass X-ray binaries has been given in Section 18.6.



20

Supernovae

Supernovae represent the catastrophic demise of certain stars or compact
objects. They are among the most violent events in the Universe, releasing
as much as ∼ 1053 erg of energy, much of it in the first second of the
explosion. For perspective, the total luminosity of the Sun is only about
1033 erg s−1 and even a nova outburst releases only of order 1045 erg over a
characteristic period of a few hundred seconds. There is more than one type
of supernova, with two general methodologies for classification: (1)
according to the spectral and lightcurve properties, or (2) according to the
fundamental mechanism responsible for the energy release. In addition to
their intrinsic interest, supernovae are of fundamental importance for a
variety of astrophysical phenomena, including element production and
galactic chemical evolution, the relationship to some types of gamma-ray
bursts, a connection to star formation through energizing and compressing
the interstellar medium, a source of gravitational wave emission, the
creation of neutron stars and black holes, and applications in cosmology
associated with measuring distance through standardizable candle
properties. We shall initiate the discussion by considering the taxonomy of
these events.

20.1 Classification of Supernovae
The traditional classification of supernovae is based primarily on spectra
and lightcurves. Some representative spectra are displayed in Fig. 20.1 and
some typical lightcurves are illustrated in Fig. 20.2. In most cases a
schematic model can be associated with each class that can account for the
observational characteristics of that class. Those models suggest that all
supernova events derive their enormous energy from either gravitational
collapse of a massive stellar core or a thermonuclear runaway in dense,



electron-degenerate matter. The observational characteristics of supernovae
derive both from the internal mechanism causing the energy release (for
example, collapse of a stellar core) and the interaction of the initial energy
release with the surrounding outer layers or extended atmosphere of the
star. Thus, some observational characteristics are diagnostic of the
explosion mechanism itself, while others are related only indirectly to the
explosion mechanism and instead are diagnostics for the state of the star
and its surrounding medium at the time of the outburst.





Fig. 20.1 Early-time and late-time spectra for several classes of supernovae [86]. Reproduced from
“Optical Spectra of Supernovae,” Alexei V. Filippenko, Annual Review of Astronomy and
Astrophysics, 35(1), 309–355, 1997.

Fig. 20.2 Schematic lightcurves for several representative classes of supernovae [86]. Also shown is
the lightcurve for Supernova 1987A, which will be discussed in Section 20.4. Reproduced from
“Optical Spectra of Supernovae,” Alexei V. Filippenko, Annual Review of Astronomy and
Astrophysics, 35(1), 309–355, 1997.

The standard classes of supernovae are illustrated in Fig. 20.3. The
primary initial observational distinction is whether hydrogen lines are
present in the spectrum, which divides supernovae into Type I (no hydrogen
lines) and Type II (significant hydrogen lines). The standard
subclassifications then correspond to the characteristics described in the
following paragraphs. The bottom row of Fig. 20.3 indicates the mechanism
thought to be responsible for each class of supernova explosion, and implies
that the broad variety of supernova observational characteristics correspond
to only two basic explosion mechanisms: gravitational collapse of a
massive star core, or a thermonuclear runaway in degenerate matter.



Fig. 20.3 Classification of supernova events. The tree hierarchy classifies according to observational
properties. The bottom row describes the mechanism thought to be responsible for the explosion.
Note that Type II-n is not shown here but is discussed in the text.

20.1.1 Type Ia
A Type Ia supernova is thought to be associated with a thermonuclear
runaway under electron-degenerate conditions in white-dwarf matter. This
class of supernovae is sometimes termed a thermonuclear supernova, to
distinguish it from all other classes that derive their power from
gravitational collapse and not from thermonuclear reactions. No hydrogen
is observed but calcium, oxygen, and silicon appear in the spectrum near
peak brightness. Type Ia supernovae are found in all types of galaxies and
their standardizable candle properties make them a valuable distance-
measuring tool (see Box 20.1).

Box 20.1 Standard and Standardizable Candles

A standard candle is a source that always has the same intrinsic
brightness (a 100-watt light bulb, for example). A standardizable candle
is a light source that may vary in brightness but that can be standardized
(normalized to a common brightness) by some reliable method.



Standard candles, or standardizable candles, then permit distance
measurement by comparing observed brightness with the standard
brightness. Different Type Ia supernovae have similar but not identical
lightcurves. Hence they are not standard candles. However, empirical
methods have been developed that allow the lightcurves of different
Type Ia supernovae to be collapsed approximately to a single curve.
Figure 20.4 gives an example. Thus, Type Ia supernovae are
standardizable candles.

Type Ia standardizable candles are particularly valuable because their
brightness makes them visible at very large distances. The
standardizable candle and brightness properties of Type Ia supernovae
have made them a central tool in modern cosmology. For example, they
are the most direct indicator that the expansion of the Universe is
currently accelerating, implying that the Universe is permeated by a
mysterious dark energy that effectively turns gravity into antigravity.

20.1.2 Type Ib and Type Ic
Type Ib and Ic supernovae are thought to represent the core collapse of a
massive star that has lost much of its outer envelope because of strong
stellar winds or interactions with a binary companion (see the Wolf–Rayet
stars discussed in Section 14.3.1). For both Type Ia and Ib supernovae
hydrogen and silicon spectral lines are absent, but helium lines are present
for Type Ib supernovae. The distinction between Types Ib and Ic is thought
to lie in whether only the hydrogen envelope has been lost before core
collapse (Type Ib), or whether most of the helium layer has also been
expelled (Type Ic). There is some observational evidence (for example,
from the polarization of detected light) that these classes of supernovae
involve highly asymmetric explosions. Type Ib and Ic supernovae are found
only in spiral galaxies, implying a relationship with regions of strong star
formation (since such regions are characteristic of spiral galaxies but not of
elliptical galaxies).



Fig. 20.4 Empirical rescaling of Type Ia supernova lightcurves to make them standardizable candles.
(a) B-band lightcurves for low-redshift Type Ia supernovae (Calán–Tololo survey [105]). As
measured, the intrinsic scatter is 0.3 mag in peak luminosity. (b) After 1-parameter correction the
dispersion is 0.15 mag. Adapted from Ref. [91]. Reproduced from “Dark Energy and the
Accelerating Universe,” J. A. Frieman, M. S. Turner, and D. Huterer, Annual Review of Astronomy
and Astrophysics, 46(1), 385–432, 2008.

20.1.3 Type II
Type II supernovae are characterized by prominent hydrogen lines. They
are thought to be associated with the core collapse of a massive star and are
found only in regions of active star formation (they seldom occur in
elliptical galaxies, for example). Type II supernovae are further subdivided
according to detailed spectral and lightcurve properties:

1. Type II-P: In the designation Type II-P, the P refers to a plateau in the
lightcurve.

2. Type II-L: In the designation Type II-L, the L refers to a linear
decrease of the lightcurve in the region where a Type II-P lightcurve
has a plateau.

3. Type II-b: In a Type II-b event the spectrum contains prominent
hydrogen lines initially, but the spectrum then transitions into one
similar to that of a Type Ia,b supernova. The suspected mechanism is
core collapse in a red giant that has lost most but not all of its
hydrogen envelope through strong stellar winds, or through interaction
with a binary companion. Type II-b supernovae are thus viewed as a
link between Type II supernovae and Type Ib,c supernovae. Type II,
Type Ib, and Type Ic all involve core collapse of a massive star, with



the distinctions coming in how much of the envelope has been lost
before the collapse of the core.

4. Type II-n: In this supernova class narrow emission lines and a strong
hydrogen spectrum are present. These supernovae are thought to
originate in core collapse of a massive star embedded in dense shells
of material ejected by the star shortly before the explosion.

Thus, all of the Type-II subcategories, and the Type Ib and Type Ic
subcategories, correspond to a similar core collapse mechanism. The
observational differences derive mostly from the influence of the outer
envelope and surrounding medium on the corresponding spectrum and
lightcurve, not in the primary energy-release mechanism.

We now turn from strictly phenomenological classification to a deeper
understanding of the fundamental reasons that supernovae explode. As
alluded to above, there is substantial evidence that the zoo of observational
supernova types can be accounted for with only two basic mechanisms for
the central engine driving the explosion: (1) thermonuclear runaways in
degenerate matter (thermonuclear supernovae), and (2) massive-star core
collapse (core collapse supernovae). Although these lead to gigantic
explosions of similar energy, the source of the energy is fundamentally
different. In the first category the energy derives from catastrophic release
of nuclear binding energy; in the second category the explosion is powered
by catastrophic release of gravitational binding energy.1

20.2 Thermonuclear Supernovae
A Type Ia supernova is thought to correspond to a thermonuclear explosion
in electron-degenerate, carbon–oxygen white dwarf matter. Thus it differs
fundamentally in mechanism from all of the other classes of supernovae in
Fig. 20.3. While there is broad agreement that a Type Ia supernova
represents the thermonuclear incineration of white dwarf matter in a binary
star system, there is considerable uncertainty as to how the explosion is
initiated. In the single-degenerate model accretion onto an electron-
degenerate white dwarf from a nondegenerate star in a binary system
triggers the explosion. An alternative mechanism proposes the triggering of
a thermonuclear runaway by merger of two white dwarfs in a binary



system. This is called the double-degenerate model, because it involves two
degenerate objects. At present neither model can yet describe all aspects of
a Type Ia explosion without making assumptions that are not well-tested by
current observations. It could be that both mechanisms (and several possible
variations) may be required to account for the observational characteristics
of Type Ia supernovae. Substantial current research centers on whether
observational constraints on the required progenitor populations (a white
dwarf accreting from a nondegenerate companion, or a binary white dwarf
system) are consistent with the observed rate of Type Ia explosions.

Box 20.2 Pair-Instability Supernovae

More massive stars (M ∼ 130–250 M⊙) of lower metallicity are
predicted theoretically to undergo a pair-instability supernova. In very
massive stars the radiation pressure is primarily responsible for
balancing the enormous gravity, with the gas pressure playing a smaller
role. At high temperatures and densities energetic photons can produce
electron–positron pairs in abundance, which removes photons and part
of the pressure support for the core. If pairs are produced at a high-
enough rate the core begins to collapse, which leads to increased pair
production and accelerates the collapse. This in turn greatly accelerates
thermonuclear burning and leads to a thermonuclear runaway that blows
the star apart, without leaving behind a neutron star or black hole. For
the most massive progenitors, pair-instability supernovae can be
brighter than either Type Ia or core collapse supernovae. It has been
proposed that some observed overly luminous supernovae may have
been pair-instability supernovae.

For stars with masses less than about 130 M⊙ the pair production rate
is not high enough to trigger the above-mentioned runaway. A pair-
instability explosion also is unlikely if the metallicity of the star is too
high, because this increases the photon opacity and prevents the
runaway collapse that initiates the explosion. For stars more massive
than about 250 M⊙ photodisintegration of nuclei (see Fig. 20.8)
removes pressure support so rapidly that the star collapses to a black
hole rather than exploding through thermonuclear reactions. For stars in
the mass range ∼ 100–130 M⊙ the pair instability does not lead to a



supernova but destabilizes the star sufficiently that it exhibits pulsations
leading to large mass ejection. One possible explanation for the eruption
of the unstable star η Carinae shown in Fig. 14.3(b) is such an
instability.

20.2.1 The Single-Degenerate Mechanism
The Type Ia single-degenerate scenario is illustrated in Fig. 20.5. It is
similar to the nova mechanism discussed in Chapter 19, except that in a
nova a thermonuclear runaway is initiated in a thin surface layer after a
certain amount of accretion and the white dwarf remains largely intact after
the layer is ejected in the explosion, but in a Type Ia supernova matter
accretes onto the white dwarf over a long period without triggering a
runaway. As the matter accumulates nuclear burning is stable and the mass
of the white dwarf grows and can eventually approach the Chandrasekhar
limit discussed in Section 16.2.2. Central densities become very large and
temperature and density fluctuations can trigger a thermonuclear runaway
that ignites carbon and then oxygen, and quickly (in a matter of a second or
less) burns the entire white dwarf to heavier nuclei, with an enormous
release of energy. Thus, unlike a nova or a core collapse supernova that will
be discussed further in Section 20.3, a Type Ia supernova explosion does
not leave behind a significant remnant. A natural explanation of how the
single-degenerate mechanism can lead to the standardizable candle
properties of Type Ia supernovae is discussed in Box 20.3.



Fig. 20.5 The single-degenerate mechanism for a Type Ia supernova.

Box 20.3 Origin of the Standardizable Candle Property

One feature of the single-degenerate model is that it can give a plausible
explanation for the observation that all Type Ia explosions are similar in
intrinsic brightness (the standardizable candle property discussed in Box
20.1 that is crucial to modern cosmology). The Chandrasekhar mass is
almost the same for all white dwarfs, so if the white dwarf that explodes
is always near the Chandrasekhar mass it makes sense that the total
energy produced by different Type Ia events is similar. In contrast, for
the double-degenerate model there is no obvious reason for the sum of
the masses of the two white dwarfs that merge to be similar in different



events. However, this may be an oversimplified analysis. The later-time
Type Ia lightcurve is largely determined by how much 56Ni is produced
in the explosion. Thus the standardizable candle property could result
from any mechanism that causes a similar amount of 56Ni to be made in
all Type Ia explosions.

20.2.2 The Double-Degenerate Mechanism
In the double-degenerate Type Ia mechanism both stars in a binary evolve
to the white dwarf stage. This white dwarf binary loses orbital energy from
gravitational wave emission and other processes, causing the white dwarfs
to gradually spiral together. After a very long inspiral the white dwarfs will
merge, either directly, or by one star tidally disrupting the other and rapidly
accreting its matter. This initiates a thermonuclear runaway in the merged
material and the rest of the Type Ia explosion mechanism is presumably
similar to the preceding description for the single-degenerate mechanism.

20.2.3 Thermonuclear Burning in Extreme Conditions
Because of the gigantic energy release in a small region over a very short
period of time, the conditions in a Type Ia explosion are extreme, to say the
least. Simulations indicate that temperatures in the hottest parts can
approach 1010 K, with densities as large as 109 gcm−3, and the temperature
may change at rates of order 1017 K s−1 in the burn front. The physics of the
Type Ia explosion presents a number of issues that are difficult to deal with
in the large numerical simulations that are required to model such events, as
discussed in Box 20.4.

Box 20.4 Thermonuclear Burn Fronts

In the Type Ia explosion there is a thermonuclear burn corresponding to
conversion of carbon and oxygen fuel into heavier elements by nuclear
reactions that release large amounts of energy. This burn involves
energy and temperature scales far beyond our everyday experience, but
it shares many qualitative properties with ordinary chemical burning.



Disparate Distance Scales
A burn front proceeds through the white dwarf, with “cooler”(a highly
relative term!) unburned fuel in front and hot burned products (ash)
behind. This burn front can be remarkably narrow–as little as
millimeters thick. Thus there are two extremely different distance scales
characterizing the explosion: the size of a white dwarf, which is of order
104 km, and the width of the burn front that consumes the white dwarf
matter, which can be billions of times smaller. This presents severe
difficulties in accurately modeling Type Ia explosions, since standard
numerical solutions of the equations governing the explosion cannot
handle such disparate scales easily.

Deflagration and Detonation Waves
In thermonuclear and ordinary chemical burning there is an important
distinction associated with the speed of the burn front. If the burn front
advances through the fuel at a speed less than the local speed of sound
in the medium (subsonic), it is termed a deflagration wave. In a
deflagration, fuel infront of the advancing burn is heated to the ignition
temperature by conduction of heat across the burn front (recall that
matter described by a degenerate equation of state is a very good
thermal conductor, much like a metal). On the other hand, if the burn
front advances at greater than the speed of sound in the medium
(supersonic) it is called a detonation wave. In a detonation a shockwave
forms and the fuel in advance of the burn front is brought to ignition
temperature by shock heating. Generally detonation is much more
violent than deflagration.

Observational Signatures
Deflagrations and detonations produce different isotopic abundance
signatures in the ash that is left behind. The detailed observational
characteristics of Type Ia supernovae (in particular, the elemental
abundances detected in the expanding debris) could be accounted for
most naturally if it is assumed that part of the burn is a deflagration and
part of it is a detonation. This is a difficulty for the theory because
general considerations suggest that the explosion starts as a deflagration
and it is not easy to get the burn in computer simulations to transition to
a detonation without making significant untested assumptions. Thus, the



proposed Type Ia mechanism is plausible in outline, but there are details
that leave some doubt about how much is understood about the
mechanism of these gigantic explosions.

20.2.4 Element and Energy Production
The energy released in a Type Ia supernova derives primarily from the
burning of carbon and oxygen to heavier nuclei. If the explosion lasts long
enough to achieve nuclear statistical equilibrium (NSE), the characteristic
final products of this burning will be iron-group nuclei. An example of
network evolution under conditions typical of the Type Ia explosion in the
deep interior of the white dwarf is illustrated in Fig. 20.6. In this calculation
the initial temperature was T9 = 2, the initial density was ρ = 1 × 108 g
cm−3, and the initial composition was equal mass fractions of 12C and 16O.





Fig. 20.6 Element production in a zone of a Type Ia supernova. Upper: mass fractions X for 468
isotopes near time of maximum burning. Lower: abundances Y near the end of maximum burning.
Inset: variation of temperature with time (density is almost constant over this period).

The explosion is initiated by carbon burning, which raises the
temperature quickly (see figure inset) and leads to burning of oxygen and
all the reaction products produced by carbon and oxygen burning. The rapid
temperature increase is associated with coupling of the large energy release
from the thermonuclear burning to the fluid of the white dwarf, which is
described by hydrodynamics. This sudden rise in temperature increases the
rate of nuclear reactions in the network rapidly, leading to a thermonuclear
runaway in the electron-degenerate matter. Within less than 10−5 s from
initiation of the explosion the isotopic species in the network have increased
from two to almost five hundred, with significant population of the iron
group of nuclei already evident. As the thermonuclear flame burns through
the white dwarf the carbon and oxygen fuel in each region is burned in a
fraction of a second, and the entire white dwarf is consumed on a timescale
of about a second.

20.2.5 Late-Time Observables
A Type Ia supernova is expected to leave no remnant behind (except the
companion donor star in the single-degenerate scenario). The primary late-
time observables are the supernova lightcurve and the motion and spectrum
of the expanding supernova remnant. An example of a Type Ia lightcurve
was shown in Fig. 20.2 and a Type Ia supernova remnant is shown in Fig.
20.7(a). Spectroscopy of a Type Ia supernova remnant can determine the
elements in the expanding debris and their radial velocity. The radial
velocity is in turn correlated with how deep in the explosion the element
was produced (higher velocity is expected to come from deeper). Such
measurements indicate that many intermediate-mass isotopes such as those
of Si are produced in addition to iron-group nuclei [207], suggesting that
the explosion is not a pure detonation (which would produce mostly iron-
group nuclei).



Fig. 20.7 Supernova remnants. (a) Tycho’s supernova of 1572 in X-rays; it was a Type Ia explosion.
(b) The Cas A supernova remnant in X-rays. It was a core collapse supernova that occurred about
300 years ago. (c) The Crab Nebula, which is the remains of the core collapse supernova of 1054, in
visible light.

20.3 Core Collapse Supernovae
A core collapse supernova is one of the most spectacular events in nature
and is likely the source of at least some of the heavy elements that are
produced in the rapid neutron capture or r-process (see Section 20.5).
Considerable progress has been made over the past several decades in
understanding the mechanisms responsible for such events. This
understanding was tested both qualitatively and quantitatively by the
observation of Supernova 1987A (see Box 20.5 and Section 20.4) in the
nearby Large Magellanic Cloud – the brightest supernova observed from
Earth since the time of Kepler.

Box 20.5 Supernova 1987A

The Tarantula Nebula is a star-forming region in the Large Magellanic
Cloud, a satellite galaxy of the Milky Way visible in the Southern
Hemisphere. Some 163,000 years ago the core of a mag 12 blue
supergiant star in the Tarantula – Sanduleak −69 202 – imploded,
producing a burst of neutrinos and a shockwave that reached the surface
several hours later, sending most of the star’s mass hurtling into space
and generating a billion-fold increase in luminosity. Time passed…On



February 23, 1987 on Earth, 163, 000 ly away, detectors searching for
something else entirely saw an unexpected burst of ∼ 20 neutrinos. A
clue to their origin was not long in coming. Three hours later, light from
the explosion arrived and that night observers in Chile and New Zealand
were startled to find a “new star,” visible to the naked eye, in the
Tarantula. The progenitor (right) and supernova (left) are shown below.

Thus did SN 1987A announce the demise of Sk −69 202 (which could
no longer be found after the supernova dimmed). The first nearby
supernova since the invention of the telescope, SN 1987A has been
studied extensively, confirming most and modifying some of our
understanding of core collapse supernovae (see Section 20.4).

20.3.1 The “Supernova Problem”
The observations of Supernova 1987A and its aftermath provide compelling
evidence that a core collapse supernova represents the death of a massive
star in which an electron-degenerate iron core of approximately 1.2 solar
masses collapses on timescales of tens of milliseconds. This gravitational
collapse is reversed as the inner core exceeds nuclear densities because of
the properties associated with the stiff nuclear equation of state and a
pressure wave reflects from the center of the star and propagates outward,
steepening into a shockwave as it passes into increasingly less dense



material. However, the most realistic simulations of this event indicate that
the shockwave loses energy rapidly as it propagates through the outer core
and stalls into an accretion shock (a standing shockwave at a constant
radius) within several hundred milliseconds of the bounce at a distance of
several hundred kilometers from the center. Thus the “prompt shock” does
not blow off the outer layers of the star and fails to produce a supernova.
This is the “supernova problem”: there is good evidence that the basics are
understood, but the details fail to work robustly in the simple form
described above. In the remainder of this chapter we introduce important
modifications of the simple prompt shock mechanism and summarize the
progress that has been made on this problem.

20.3.2 The Death of Massive Stars
As a consequence of the advanced burning stages that are described in
Chapter 6, a massive star near the end of its life builds up a layered
structure as was depicted in Fig. 14.2. The iron core that forms in the
central region of the star grows as the silicon layer surrounding it burns to
iron. Because the iron core cannot undergo exothermic fusion reactions it
must be supported against gravity by electron degeneracy pressure and a
modified form of the discussion in Section 16.2.2 is applicable. Electron
degeneracy can support the iron core against gravitational collapse only if
the iron-core mass remains below the Chandrasekhar limit, which is
approximately 1.2–1.3 solar masses for typical iron cores, depending on the
electron fraction of the core (see Example 16.1).

When the iron core exceeds this critical mass it begins to collapse on a
dynamical timescale (which is only tens of milliseconds for the dense iron
core – see Problem 20.2). At the point where the collapse begins the iron
core of a representative 25 M⊙ star has a mass equal to the Chandrasekhar
mass of about 1.2 solar masses, a diameter of several thousand kilometers,2
a core density of ∼ 6 × 109 gcm−3, a core temperature of ∼ 6 × 109 K, and
an entropy per baryon per Boltzmann constant S ∼ 1. As discussed in Box
20.6, this is a very small entropy, which has consequences for the
subsequent collapse of the core.

Box 20.6 Entropy of the Iron Core



The entropy of the iron core in a pre-supernova star is approximately
one per baryon per Boltzmann constant. This is remarkably low. For
example, the entropy of the original main sequence star that produced
this iron core was probably about 15 in these units.

The Core of the Massive Star Tends to Order
It might seem contradictory for the core entropy to decrease as the star
burns its fuel. However, the star is not a closed system: as nuclear fuel is
consumed, energy leaves the star in the form of photons and neutrinos.a
In the process, the nucleons in the original main sequence star are
converted to iron nuclei, which represent a relatively low-entropy form
of matter. For example, in 56Fe the 26 protons and 30 neutrons are
extremely ordered compared with 56 free nucleons in the original star
because they are constrained to move together as constituents of a single
iron nucleus.

The Universe as a Whole Tends to Disorder
Thus, the core of the star becomes more ordered as the nuclear fuel is
consumed. However, the entire Universe tends to greater disorder, as
required by the second law of thermodynamics, because the star radiates
energy in the form of photons and neutrinos as it builds its ordered core.
This is not unlike biological evolution, where chemical processes
assemble locally highly ordered objects (living things), while at the
same time the entire Universe tends to greater disorder.
a Central regions are cooled by neutrino emission for massive stars in late burning stages; see

Section 7.11.

20.3.3 Sequence of Events in Core Collapse
The collapse of the iron core as the Chandrasekhar limit is exceeded
triggers a sequence of events that will occur in an elapsed time of less than
a second. Let us outline this scenario.

Initiating the collapse: When the mass of the iron core exceeds the
Chandrasekhar limit it begins to collapse under the influence of gravity.
This collapse is accelerated by two factors that are accentuated as the



temperature and density of the collapsing core rise, iron photodisintegration
and neutronization.

As the core heats up, high-energy γ -rays are produced in copious
amounts. These photodisintegrate iron-peak nuclei, as illustrated in Fig.
20.8. Although hundreds of isotopes are produced from the
photodisintegration of the iron, the most abundant species at equilibrium
under these conditions is alpha particles, and only alpha particles, neutrons,
and protons have abundances larger than 10−3. The photodisintegration of
iron is highly endothermic, as indicated in Fig. 20.8(b); for example, 56Fe
→ 13α +4n has a Q-value of −124.4 MeV (see Problem 20.4). This
decreases the kinetic energy of the electrons in the core, which lowers the
pressure and hastens the collapse.



Fig. 20.8 Simulated photodisintegration of 56Fe at a temperature of 1010 K and density of 109 gcm−3.
(a) Initially only pure 56Fe is present; after ∼ 10−12 s the original 56Fe has been transformed into 365
isotopes with non-zero populations, but the only species with abundances in excess of 10−3 are alpha
particles, neutrons, and protons. (b) The rate of energy absorption for this very endothermic reaction.

As the density and temperature increase in the core, the rate for the
electron capture reaction p+ + e− → n + νe, is greatly enhanced. This
neutronization reaction (recall the discussion in Box 16.2) decreases the
electron fraction Ye of the core and thus decreases the electronic
contribution to the pressure. The neutrinos produced in this reaction easily
escape the core during the initial phases of the collapse because their mean



free path is much larger than the initial radius of the core. These neutrinos
carry energy with them, decreasing the core pressure and accelerating the
collapse even further. They also deplete the lepton fraction (defined
analogous to the electron fraction, but for all leptons, which in this context
means mostly electrons, positrons, neutrinos, and antineutrinos).

Initial infall and neutrino trapping: The accelerated core collapse
proceeds on a timescale of tens of milliseconds, with velocities that are
significant fractions of the free fall velocities. The core separates into an
inner core that collapses subsonically and homologously,3 and an outer core
that collapses largely in free fall, with a velocity exceeding the local
velocity of sound in the medium (it is supersonic). This collapse is rapid on
the timescales characteristic of most stellar evolution, but it is slow
compared with the reaction rates and the core is approximately in
equilibrium during all phases of the collapse. This implies that the entropy
is constant, and the highly ordered iron core before collapse (S ≃ 1)
remains ordered during the collapse. As the collapse proceeds and
temperature and density rise, neutrino interactions eventually become so
strong because of coherent neutrino scattering (Section 7.11.3) that the
neutrino mean free path becomes less than the radius of the core, the time
for neutrinos to diffuse outward becomes longer than the characteristic
timescale of the collapse, and the neutrinos are effectively trapped in the
imploding core (with a mean free path that may be a fraction of a meter).

Bounce and shock formation: The collapse proceeds with low entropy and
the nucleons remain in nuclei until densities where nuclei begin to touch.
The collapsing core now begins to resemble a gigantic “macroscopic
nucleus” containing a nearly degenerate Fermi gas of nucleons with a very
stiff equation of state because nuclear matter is highly incompressible. At
this point, the pressure of the nucleons begins to dominate that from the
electrons and neutrinos. Somewhat beyond nuclear density the
incompressible core of nearly degenerate nuclear matter rebounds violently
as a pressure wave reflects from the center of the star and proceeds
outward.

The bounce wave steepens into a shockwave as it travels outward through
material of decreasing density (and thus decreasing sound speed), with the
shockwave forming near the boundary between the subsonic inner core and
supersonic outer core (at the sonic point illustrated in Fig. 20.9). In the



simplest picture this shockwave would eject the outer layers of the star,
resulting in a supernova explosion. This is called the prompt shock
mechanism. The gravitational energy released in the collapse is about 1053

erg, and the typical observed energy of a supernova (the expanding remnant
plus photons) is about 1051 erg.4 Thus, only about 1% of the gravitational
energy need be released in the form of light and kinetic energy to account
for the observed properties of supernovae.

Fig. 20.9 The sonic point during collapse (left) and the beginning of shock wave formation following
the bounce (right).

Death of the prompt shock: The simple prompt shock mechanism as
described above runs afoul of the details (where, recall, the devil is known
to reside): realistic calculations suggest that the prompt shock dissipates
energy rapidly as it progresses through the outer core for two primary
reasons:

1. Dissociation: The shockwave dissociates Fe nuclei as it passes
through the outer core and this highly endothermic reaction saps it of a
large amount of energy.

2. Neutrino emission: As the shockwave passes into increasingly less
dense material the mean free path for the trapped neutrinos increases
until the neutrinos can once again be freely radiated from the core.
This further deprives the shock of its vitality by lowering the pressure
behind it.

The radius at which the neutrinos change from diffusive to radiative (free-
streaming) behavior is termed the neutrinosphere [by analogy with the
photosphere of a regular star; see Fig. 20.10(a)]. Technically, the



neutrinosphere is an imaginary sphere beyond which a neutrino on average
will suffer less than one interaction before escaping from the star, which is
similar to the definition of the photosphere for photons. When the
shockwave penetrates the neutrinosphere a burst of neutrinos is emitted
from the core, carrying with it large amounts of energy (most of the energy
released in the gravitational collapse resides in neutrinos).

Fig. 20.10 (a) The neutrinosphere. (b) Conditions at time of shock stagnation in a core collapse
supernova. The neutrinosphere and the gain radius (defined in the text) are indicated.

As a result of energy losses caused by dissociation and neutrino emission,
the most realistic calculations indicate that the prompt shock stalls into an
accretion shock before it can exit the core, unless the original iron core
contains less than about 1.1 solar masses. In a typical calculation, the
accretion shock forms at about 200–300 km from the center of the star
within about 10 ms of core bounce. Since there is considerable agreement
that SN 1987A resulted from the collapse of a core having more than 1.1
solar masses, the prompt shock mechanism is unlikely to be a generic
explanation of core collapse supernovae. Figure 20.10(b) illustrates the
conditions characteristic of a stalled accretion shock in a modern
calculation of shock propagation in a core collapse supernova.

20.3.4 Neutrino Reheating



That neutrinos might eject the outer layers of a star in a supernova is an old
suggestion [72], but failure of the prompt mechanism to yield supernova
explosions revived interest in such ideas [45, 226]. This evolved into what
is now termed the delayed shock or neutrino reheating mechanism, in
which the stalled accretion shock is re-energized through heating of matter
behind the shock by neutrinos produced in the region interior to the shock.
This raises the pressure sufficiently to impart an outward velocity to the
stalled shock on a timescale of approximately one second and the reborn
shock then disrupts the outer envelope of the star, producing the supernova
explosion. The schematic mechanism for the supernova event thus becomes
the two-stage process depicted in Fig. 20.11.

Fig. 20.11 Neutrino reheating mechanism for a supernova explosion (after Bruenn [60]). Figures are
approximately to scale; the surface of the star would be 3 km from the center on this scale.

All neutrino and antineutrino flavors are produced copiously in the hot,
dense region near the center of the collapsed core. Predicted luminosities
are shown in Fig. 20.12. In discussing neutrinos interacting with matter



behind the shock it is useful to introduce two characteristic radii. The first
already has been encountered in Fig. 20.10(a): the neutrinosphere marks a
boundary between diffusion and free streaming for neutrino propagation.
The second is associated with the observation that the neutrino interactions
with the shocked matter could either cool or heat the matter. General
considerations suggest that there is always a radius outside of which the net
effect of the neutrino interactions is to heat the matter. This break-even
radius, beyond which the neutrino interactions become effective in
increasing the pressure behind the shock is termed the gain radius. The
neutrinosphere and gain radius are indicated schematically in Fig. 20.10(b).
Shock revival is favored by deposition of neutrino energy between the gain
radius and the shock.

Fig. 20.12 Neutrino luminosities in a core collapse supernova.

The result of a large number of calculations is that the neutrino reheating
helps, but generally does not produce successful explosions without
artificial boosts of the neutrino luminosities that are not easy to justify. This



suggests that there are additional ingredients in the supernova mechanism
that must be included to obtain a quantitative description. One possibility is
that convection in the region interior to the shock may affect it
mechanically and may alter the neutrino spectrum and luminosity in a non-
negligible fashion. Let us now turn to a discussion of how convection might
affect supernova explosions.

20.3.5 Convection and Neutrino Reheating
In Section 7.6 the general conditions under which stars can become
unstable toward convective overturn were discussed. It may be conjectured
that substantial convection inside the stalled shock could influence the
possibility of neutrinos re-energizing the shock, and affect quantitative
characteristics of a re-energized shock. In particular, to boost the stalled
shock it is necessary for the neutrinos to deposit energy behind the shock
front, outside the gain radius but inside the shock. Convective motion inside
the shock front could, by overturning hot and cooler matter, cause more
neutrino production and alter the neutrino spectrum. The convection could
also move neutrino-producing matter beyond the neutrinosphere, so that the
neutrinos that are produced would have a better chance to propagate into
the region behind the shock where deposition of energy would have the
most favorable influence in increasing the pressure and re-energizing the
shock. This would provide a possible method to produce a supernova
explosion of the required energy.

20.3.6 Convectively Unstable Regions in Supernovae
Armed with our results from Section 7.6 for predicting when a region may
become convectively unstable, let us now examine the lepton fraction and
entropy gradients produced during the period of shock stagnation in typical
supernova calculations. In Fig. 20.13 results obtained by Bruenn [60] are
shown for a 15M⊙ star, 6 ms after bounce. There are two obvious regions
where our previous considerations suggest the possibility of significant
convective instability: (1) a Schwarzschild unstable region near the shock
front at about 50–100 km where there is a large negative entropy gradient,
and (2) a region inside the neutrinospheres where both the entropy and the
lepton fraction exhibit strong negative gradients and thus favor convection



driven by the Ledoux instability. These arguments identify regions that
favor convective motion but whether such regions develop convection, the
timescale for that convection, and the quantitative implications for
supernova explosions are dynamical questions that can be settled only by
detailed calculations incorporating realistic physics.

Fig. 20.13 Lepton fractions and entropy 6.3 ms after bounce in a supernova calculation. Regions that
may be expected to be particularly favorable for convective motion are described in the text. The
progenitor had a mass of 15 M⊙, and the calculation is described in Ref. [60].

Many simulations now have demonstrated that convection plays a
significant role in the core collapse supernova problem. An example is
shown in Fig. 20.14, which exhibits spectacular convection below the
shock. Such violent and large-scale convection breaks spherical symmetry
and cannot be treated with approximations like mixing-length theory (see
Section 7.9); it can be modeled adequately only by using numerical
multidimensional hydrodynamics simulations. Current state-of-the-art
simulations include 2- or 3-dimensional hydrodynamics and better
approximations for neutrino transport than earlier work, and are beginning
to produce explosions that look somewhat realistic. However, a completely
successful model of core collapse supernovae will likely require both 3-
dimensional hydrodynamics and a complete treatment of neutrino transport.



It has not been possible to include both in current codes because of
inadequate computing power, but it is thought that the next generation of
massively parallel supercomputers5 may provide sufficient computational
power to determine whether these ingredients lead to a successful model of
core collapse supernovae, or whether they point to new physics not yet
incorporated into the models.

Fig. 20.14 2D core collapse simulation exhibiting violent convection behind a stalled shock [150].
The r coordinate is the distance from the z axis. Entropy in grayscale, with white maximum and dark
gray minimum. The shock is beginning to be distorted by the convection beneath it. In modern
calculations a standing accretion shock instability (SASI) develops associated with deformations of
the shock that can be significant in producing successful explosions.

20.3.7 Remnants of Core Collapse
Like a Type Ia supernova, a core collapse supernova is expected to eject an
expanding supernova remnant, as illustrated in Figs. 20.7(b) and 20.7(c).
Unlike a Type Ia explosion, a core collapse supernova is expected to leave
behind also a compact remnant – either a neutron star or a black hole.
Present understanding suggests that less-massive progenitors lead to
neutron stars but for more-massive stars the end result is a black hole,
produced either immediately, or with a time delay corresponding to
accretion on a remnant protoneutron star causing it to collapse to a black



hole. For increasingly-massive black hole progenitors it may be expected
that less of the envelope is ejected and more of it falls back into the black
hole. For masses above about 30 M⊙, current simulations indicate that core
collapse may lead to complete fallback of the outer layers of the star,
leaving only a black hole with no ejected supernova remnant, though even
in that case there will be gravitational waves and significant neutrino
emission is expected. This direct collapse to a black hole without a
traditional supernova explosion is probably the general fate of stars more
massive than about 30 M⊙ (with black hole masses in the ∼ 100–250 M⊙
range possibly excluded by the pair instability discussed in Box 20.2, if
metallicities are low).

Because simulations indicate that core collapse explosions are
asymmetric (see the distortion beginning to develop in Fig. 20.14), the
compact remnant is expected to receive a natal kick in the explosion.
Neutron stars have been observed with space velocities as large as ∼1000
km s−1, presumably arising from natal kicks in the supernova explosion that
produced them. For core collapse in more massive stars it is expected that
the natal kick is less severe, since less matter is ejected. For the collapse of
massive cores directly to black holes it is often assumed to be zero. The
natal kick and amount of ejected matter affect strongly whether a binary
remains bound if one of the stars undergoes core collapse (see the
discussion of massive-binary evolution in Section 22.4.2).

20.4 Supernova 1987A
Supernova 1987A (see Box 20.5) has been the most-studied supernova
because of its proximity to Earth. This section summarizes how the core
collapse mechanism outlined in preceding sections has fared in the light of
SN 1987A data. In this summary, it is important to remember the distinction
made in connection with Fig. 20.3 between classification of supernovae
with respect to spectral and lightcurve characteristics, and classification
with respect to explosion mechanism.

20.4.1 The Neutrino Burst



Arguably the most important result from SN 1987A was detection of the
neutrino burst, which was consistent qualitatively and quantitatively (within
relatively large errors because of low statistics) with the core collapse
mechanism. Neutrinos detected in the Kamiokande II and IMB water
Cherenkov detectors are shown in Fig. 20.15. Only 20 neutrinos in total
were seen but the general background expected in this plot is very low. This
low background, systematic analysis to rule out the burst being created by a
cosmic ray shower, and the coincidence of the burst with light from
SN1987A (offset by about three hours, as expected) leaves little doubt that
these neutrinos originated in the supernova. The observation of the
neutrinos in Fig. 20.15 makes it virtually certain that a neutron star or black
hole was produced by SN 1987A with the release of ∼ 1053 erg of
gravitational energy, thus confirming the basic core collapse mechanism.
Most other observational characteristics of SN 1987A that will now be
discussed are related to the properties and evolution of the envelope of the
progenitor star and are only indirectly connected to the explosion
mechanism.



Fig. 20.15 Neutrino burst from SN 1987A detected in two water Cerenkov detectors (data from Refs.
[27, 47, 118]). The inferred direction (with large errors) was consistent with origin of the burst in the
Large Magellanic Cloud. This means that the neutrinos passed through the Earth en route to the
detectors, which were located in Earth’s Northern Hemisphere.

20.4.2 The Progenitor was Blue!
The progenitor of Supernova 1987A came as a surprise for many because it
was widely (though not uniformly) believed at the time that supernova
explosions resulted from core collapse in red supergiant stars,6 not blue
supergiants like Sk −69 202, and because the early lightcurve of SN 1987A
(shown in Fig. 20.2) deviated substantially from that expected for a Type II
supernova. For example, the initial rise was quite slow and the luminosity
did not peak until 80 days after the explosion, and SN 1987A was ∼ 100
times less luminous than a typical Type II supernova.

Theoretical efforts to understand why the progenitor of SN 1987A was
blue when the star exploded focused initially on two possibilities: (1)
extensive mass loss in prior evolution, and (2) effects due to the low
metallicity of the Large Magellanic Cloud (LMC). While Sk −69 202
underwent some mass loss before the supernova, evidence suggests that it
was not extensive enough to be the primary reason that it exploded as a blue
rather than red supergiant. The Tarantula Nebula (also called the 30
Doradus region) of the LMC where the progenitor was born has a
composition generally lower in metals than the Sun, with a complex pattern
of abundances for specific elements. For example, the oxygen abundance is
about three times smaller than that of the Sun and carbon and nitrogen are
even more deficient relative to the Sun [27]. These composition effects can
have complex implications for stellar evolution but two are obvious: they
can affect the photon opacities and they can alter the rate of CNO energy
production. Simulations indicated that blue progenitors could be produced
without large mass loss for metallicities similar to those of the LMC but not
all properties were reproduced, suggesting that more was involved than the
metallicity. Subsequent work indicated that the crucial ingredients required
to produce a supernova from a blue supergiant with properties similar to SN
1987A were (a) low metallicity, (b) a progenitor mass not much greater than
∼ 20M⊙, (c) mass loss of no more than a few solar masses in prior
evolution, and (d) a tuned prescription for convection [27].



Because Sk −69 202 exploded as a blue supergiant the radius of the
envelope was much smaller than for a supernova in a red supergiant, as
illustrated in Fig. 20.16. While a 20M⊙ red supergiant has a radius
comparable to the size of the Earth’s orbit, the radius of Sk −69 202 when
its core collapsed was only about 20% of the radius of Earth’s orbit. Thus
there was much less envelope for the shockwave to plow through, and the
delay between emission of the initial neutrino burst and the sudden increase
in light output when the shock reached the surface was only about three
hours for SN 1987A. For a core collapse supernova in a red supergiant of
similar mass the time for the shock to reach the surface is likely several
times larger than that, with a correspondingly longer delay between
emission of the initial neutrinos and the sudden increase in photon
luminosity.

Fig. 20.16 (a) Size of a typical red supergiant supernova progenitor at explosion; (b) size of the blue
supergiant progenitor of Supernova 1987A at explosion.

The much more compact nature of the blue supergiant Sk −69 202
relative to a red supergiant of comparable mass illustrated in Fig. 20.16 also
provides a basic explanation for the abnormally low luminosity of SN
1987A relative to other Type-II supernovae (see Fig. 20.2). The primary
energy budget of a core collapse supernova may be divided into (1)
production of neutrinos, (2) ejection of the envelope by the shockwave, and
(3) powering the lightcurve. The neutrino emission dominates the energy



budget but it is a property of the core and not the envelope, so it is similar
in the two cases. For a compact blue supergiant the envelope lies in a
deeper gravitational potential than for a red supergiant and more energy
must be expended to eject it, leaving less energy for the subsequent light
emission. Thus supernovae that explode in the blue supergiant phase are
much less luminous than those exploding in the red supergiant phase
(partially explaining why at the time of SN 1987A understanding of
supernovae was dominated by data from the explosion of red supergiants in
other galaxies – they were easier to see).

20.4.3 Radioactive Decay and the Lightcurve
Initially the lightcurve of a Type II supernova is powered by the shockwave
but at later times it derives its energy from radioactive decay of isotopes
produced in the explosion. Figure 20.17 illustrates for SN 1987A. The
lightcurve is for optical photons but the energy causing the optical emission
at later times is supplied primarily by radioactive decay. From the shape and
height of the lightcurve the isotopes produced and their abundances may be
inferred. The initial part of the lightcurve for SN 1987A is accounted for if
the explosion produced 0.075M⊙ of 56Ni, which decays by 56Ni → 56Co +
e+ + νe + γ with a 6.1 days half-life. Initially the optical depth for gamma-
rays was high and the energy released in the 56Ni decay produced the early
bump observed in the lightcurve. Soon after peak luminosity the lightcurve
was increasingly dominated by decay of the 56Co daughter of 56Ni through
56Co → 56Fe + e+ + νe + γ , which has a half-life of 77 days. Because of the
slowly decreasing optical depth for gamma-rays and X-rays, the rate of
light production soon becomes dominated by the rate of energy production
and the slope of the lightcurve is then determined by the half-life of the
radioactive decay that is powering it.



Fig. 20.17 The lightcurve of Supernova 1987A 1500 days after the explosion (solid curve), adapted
from Ref. [209]. The dominant radioactive decays powering the lightcurve at different times are
indicated above the lightcurve. The rate of decay for the isotopes powering the lightcurve are
indicated by the dashed curves. Adapted from “The Energy Sources Powering the Late-Time
Bolometric Evolution of SN 1987A,” published in Astrophysical Journal, Part 2, Letters (ISSN0004-
637X), 384, L33–L36, 1992. © 1992. The American Astronomical Society. All rights reserved.

The explosion also produced a much smaller amount of radioactive 57Co,
which decays with a 271 days half-life. After about 1000 days enough 56Co
had decayed away that 57Co decay became dominant and the lightcurve
assumed the shallower slope determined by the half-life of 57Co. In 2017,
30 years after the explosion, the 56Ni, 56Co, and 57Co had all decayed away
and the lightcurve was being powered by the decay of the 44Ti produced in
the explosion, which has a 47-year half-life.

20.4.4 Evolution of the Supernova Remnant
Evolution of the expanding remnant of SN 1987A has been studied
extensively at multiple wavelengths, as illustrated in Figs. 20.18 and 20.19.



In Fig. 20.18 a time lapse of Hubble Space Telescope images from 1994 to
2016 depicting the collision of the SN 1987A blast wave with a ring of
matter emitted by the progenitor before the supernova is shown. Figure
20.19 shows a multiwavelength composite from 2017. In the center dust
forming in the supernova remnant is imaged at submillimeter wavelengths
by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
The locus of a ring of matter about a lightyear in diameter that was emitted
by the star before the explosion is indicated. This ring is thought to have
been produced by a wind emitted late in the life of the pre-supernova star
(at least 20,000 years before the explosion) that collided with a slower wind
emitted in an even earlier red giant phase. (Two other larger and fainter
rings that were also formed before the supernova are not shown.) It was
illuminated initially by a flash of UV light produced by the supernova,
which ionized the ring and has caused it to glow for decades since then
because of electron recombination.

Fig. 20.18 Images from 1994 to 2016 showing the collision of the SN 1987A shockwave with a ring
of matter emitted by the progenitor before the supernova explosion. See also Fig. 20.19.



Fig. 20.19 Multiwavelength composite 30 years after SN 1987A. In the center dust forming in the
supernova remnant is imaged at submillimeter wavelengths by ALMA. The locus of a ring of gas
emitted by the star before the explosion is indicated. The brightest clumps in the ring indicate visible
light captured by the Hubble Space Telescope that was emitted from the collision of the shockwave
from the supernova with the ring. The more diffuse glow concentrated outside the ring represents X-
rays imaged by the Chandra X-ray Observatory.

Beginning in the early 2000s the ring began to brighten further as the
shockwave from the explosion reached it. The brightest regions indicate
visible light emitted from this collision and captured by the Hubble Space
Telescope. The more diffuse glow corresponds to X-rays emitted from hot
gas produced in the collision and imaged by the Chandra X-ray
Observatory. Concentration of X-rays outside the ring suggests that the
shockwave has now passed through the ring and into the less dense matter
beyond.

20.4.5 Where is the Neutron Star?
A mystery concerning SN 1987 is the compact remnant. The observed burst
of neutrinos is a sure sign that a neutron star or black hole was formed,
since gravitational collapse to a compact remnant is the only plausible way



to release the energy to make the neutrinos. From stellar systematics it is
estimated that Sk −69 202 had a mass of about 18 M⊙ when its core
collapsed, and core collapse simulations indicate that for a progenitor of
that mass the compact remnant should be a neutron star. However, no clear
evidence for a neutron star has been found, despite extensive searches.
Various explanations have been proposed, none supported conclusively by
data. The most plausible are that the neutron star is obscured by dust and
not accreting, making it difficult to see, or that the compact object formed
was a black hole and not a neutron star (either directly, or by later fallback
of matter on an initial neutron star), which would not be visible if it isn’t
accreting matter.

20.5 Heavy Elements and the r-Process
An important question having broader implications than just that for
astrophysics concerns the origin of the heaviest nuclei. They cannot be
made by normal charged-particle reactions in equilibrium in stars because
the peak of the binding energy curve occurs for the iron-group nuclei, and
because of Coulomb barrier effects. It was noted earlier that (uncharged)
neutron capture reactions could circumvent the Coulomb barrier problem. It
is thought that many of the heavier elements are made in the rapid neutron
capture or r-process that is illustrated in Fig. 20.20. The r-process is similar
to the s-process discussed in Section 13.7.2, except now it is assumed that
there is a high flux of neutrons and that they can be captured rapidly
compared with the rate for β-decay. As illustrated by the theoretical r-
process path shown in Fig. 20.21, this tends to take the population up and
very far to the neutron-rich side of the chart of the nuclides before it begins
to β-decay back toward the stability valley. Thus the r-process can populate
many neutron-rich isotopes out of the stability valley that cannot be reached
by the s-process. Furthermore (unlike for the s-process), the path illustrated
in Fig. 20.21 can populate isotopes beyond the actinide gap in the stability
valley found near lead and bismuth, thus accounting for the production of
actinide species like uranium that are observed in nature.



Fig. 20.20 (a) A schematic representation of the rapid neutron capture or r-process. (b) Characteristic
r-process path in the neutron–proton plane. The s-process occurs at free-neutron densities ∼ 106

neutrons cm−3, but in the r-process the density is ∼ 1020 neutrons cm−3 and neutron capture is very
rapid compared with the rate of β decay.



Fig. 20.21 Path for the r-process expected from theory. Nuclei produced along the r-process path will
undergo rapid β− decay back toward the stability valley (see Fig. 13.12).

The astrophysical site of the r-process has been an enduring mystery. A
large neutron flux is required, which is consistent with only a few known
possibilities. In addition, there are timescales associated with production of
r-process nuclei with observable implications that are discussed in Box
20.7. The leading candidates are (1) core collapse supernovae, (2) merger of
neutron stars, and (3) jets that may be produced in mergers or in core
collapse of massive, rapidly rotating stars, with the first two options being
the strongest candidates. Until recently observational data and simulations
were inadequate to distinguish conclusively among these possibilities and it
is possible that the abundances of r-process nuclei receive contributions
from more than one of these possible sites (or sites as yet unknown). A
large step may have been taken in unraveling the r-process mystery by the
observation of electromagnetic radiation in coincidence with gravitational
waves from a neutron star merger, as described below and in Section 22.6.

Box 20.7 Timescales for the r-Process

Supernovae and neutron star mergers imply different timescales for r-
process nucleosynthesis. A supernova requires a massive star to evolve
to gravitational instability of its core, which occurs essentially
instantaneously on cosmic timescales. A merger requires a neutron star
binary to form by two successive supernova explosions in a massive
binary, or by capture of one neutron star by another, and the binary must
then spiral together by emission of gravitational waves on a much
longer timescale. Thus, the r-process associated with mergers has an
inherent time delay. The delay timescale depends strongly on initial
conditions for formation of the binary and in general can be billions of
years, but it has been argued that there is a population of fast-merger
binaries that can merge on timescales of 108 yr or less. An open
question then is whether binary mergers can account for r-process
nuclides observed in low-metallicity stars, which likely formed early in
galactic history.



One theme for understanding the origin of r-process nuclei is to ask
whether observations suggest that they were produced in a few rare events
(neutron star mergers are relatively rare, occurring maybe only once every
million years in a large galaxy), or instead were produced in many more
common events (core collapse supernovae are much more common than
neutron star mergers, occurring about once every 100 years in a large
galaxy). Some evidence had been accumulating that at least some r-process
nuclei were produced in rare events [90]. The neutron star merger leading to
gravitational wave GW170817 and associated gamma-ray burst to be
described in Section 22.6 gives direct evidence for the production of large
amounts of r-process nuclei in a single rare event. This has led to much
speculation that neutron star mergers are the primary site of the r-process,
though there are open questions about whether mergers can account for all
r-process observations because of the time-delay issues discussed in Box
20.7.

Background and Further Reading
Mezzacappa [150] and Janka [129] give reviews of core collapse
supernovae, and the earlier history of the problem was reviewed in Bethe
[44] and Brown [59]. An introduction to simple estimates for core collapse
supernova physics may be found in Cardall [66]. Portions of the core
collapse supernova discussion were adapted from Guidry [98] and the r-
process is reviewed in Thielemann, Eichler, Panov, and Wehmeyer [213];
and in Frebel and Beers [90]. The evolution and explosion of massive stars
is reviewed in Woosley, Heger, and Weaver [231], and a discussion of what
was learned from Supernova 1987A may be found in Arnett et al. [27]. An
overview of the Type Ia supernova problem is given in Guidry and Messer
[9, 103].

Problems
20.1 How much thermonuclear energy is produced if a C–O white dwarf

of 1.4 M⊙ is burned to 56Ni? Compare this energy with the
gravitational binding energy of the white dwarf, assuming uniform
density and a mass of 10.4M.



20.2 Estimate the dynamical timescale for collapse of the iron core of a
25 M⊙ star. Assume the density of the core to be 5 × 109g cm−3 at
the beginning of collapse.***

20.3 How much gravitational energy is released if the iron core of a
massive star collapses to neutron-star size? Assume the core to be of
uniform density 5× 109 g cm−3 with a radius of 500 km, and that it
collapses to a uniform sphere of radius 10 km. Compare the energy
released in this collapse with the total gravitational binding energy
of the star before collapse, assuming it to be a supergiant of 15 M⊙
and radius 2 AU before the collapse begins (you may use the
uniform-density formula for the estimate).

20.4 When the 56Fe core of a massive star becomes gravitationally
unstable, two things greatly accelerate its collapse: (1)
photodisintegration of 56Fe is extremely endothermic and absorbs
energy that can no longer be used for pressure support, and (2) rapid
neutronization, p + e → n + νe undermines stability further because
the major pressure support comes from the degenerate electrons that
are disappearing, and the core is initially transparent to neutrinos so
each emitted neutrino carries its energy out of the core at nearly the
speed of light. Estimate the amount of energy absorbed by these two
processes if the 56Fe core is entirely photodisintegrated to α particles
and neutrons, and in addition all of the available electrons undergo
neutronization reactions with the protons. Assume that the core is
electrically neutral, that Q = −124.4 MeV for 56Fe → 13α + 4n, and
that each emitted neutrino carries off average energy of 10 MeV. In a
core collapse supernova the primary part of this energy release from
photodisintegration and neutronization occurs in a fraction of a
second. How long would the Sun need to radiate at its present
luminosity to account for the energy loss estimated above for
photodisintegration and neutronization of an iron core?***

20.5 Basic properties of the r-process suggest that successive neutron
captures must occur on a timescale of microseconds. Estimate the
neutron number density required to produce this capture rate,
assuming a typical neutron capture cross section to be 100 mb. Hint:
The solution to Problem 13.3 will be useful in this estimate.



20.6 A Type Ia supernova is powered by a thermonuclear runaway in
electron-degenerate white dwarf matter. To see how such an
instability could arise, use the approximate relationship between the
central pressure and central density for a Lane–Emden polytropic
solution given by Eq. (8.14), and the generic equation of state

(where α and β are non-negative) discussed in Problem 4.16, to show
that thermonuclear burning is unstable at the center of a white dwarf
described by a polytropic equation of state. Hint: Use Eq. (8.14), and
that stability requires that changes in density and changes in
temperature have the same sign.

20.7 The absolute bolometric magnitude for the progenitor of SN 1987A
was estimated in Ref. [27] to be −7.8. Spectroscopically it was a
luminous B3 supergiant with an estimated surface temperature of 16,
000 K. What was its luminosity and radius?

20.8 The bright red supergiant Betelgeuse is a relatively nearby star that
could undergo a core collapse at any time. Use the SIMBAD
database [2] to retrieve the parallax and the ultraviolet magnitude U,
the blue magnitude B, and the visual magnitude V for this star.
Determine its U − B and B − V color indices and its distance from
Earth. Given that the (large) bolometric correction for Betelgeuse is
−2.15, what is its luminosity? If the effective surface temperature is
3500 K, what is its radius? Other things being equal, how much
larger would you expect the neutrino flux on Earth to be relative to
that for Supernova 1987A when Betelgeuse goes supernova?

20.9 What was the likely host galaxy, supernova spectal type (see Fig.
20.3), and spectroscopic redshift for SN 1969L? Hint: Use the
SIMBAD astronomical database [2].

1 Another proposed mechanism involves some aspects of both core collapse and thermonuclear
runaway: massive stars of low metallicity can undergo a pair-instability supernova, which is
described in Box 20.2.

2 This is a miniscule fraction of the total diameter. The massive star is typically a supergiant by
this time, with its tenuous outer layers spread over a volume that would encompass much of
the inner Solar System if it were placed at the position of the Sun.



3 Recall from Section 9.5.1 that a homologous collapse is “self-similar”: it can be described by
changing a scale factor.

4 This defines a unit of energy commonly used in supernova discussions that originally was
called a foe: 1 foe ≡ 1051 ergs, with the name deriving from the first letters of fifty-one ergs.
This unit is now termed a bethe, in honor of the remarkable physicist Hans Bethe (1906–
2005), who won the 1967 Nobel prize in Physics for illuminating how nuclear reactions
powered the stars and made seminal contributions to many other fields of science, including
supernova physics. Bethe (whose name was pronounced the same as “beta”) continued to do
science until close to his death at age 98, inspiring a joke that went “The nuclear physicists
were wrong; there is no Bethe decay!”

5 The next generation is expected to be exascale systems, with speeds ∼ 1018 floating point
operations per second (1 exaflop). The fastest computers available as this is written in 2017
are capable of 10–100 petaflops (10−100 × 1015 floating point operations per second).
Optimistically the exascale for scientific computing could be reached by the early 2020s.

6 A standard argument was that, assuming the usual model that supernova remnants and
lightcurves are the result of a shockwave that disrupts the outer layers of the star after core
collapse, the properties of observed bright supernovae in distant galaxies required that the
shockwave pass through mostly low-density matter on its way out of the star, and red
supergiants are of much lower density than blue supergiants (see Table 2.4) [27]. As will be
discussed further below, this was partially observational bias because core collapse in blue
supergiants is expected to produce supernovae that are much less luminous than those
originating in red supergiants. It should be noted that some theoretical work before SN 1987A
considered the possibility that supernovae of lower luminosity might originate in blue
supergiants (see [27] for references) but the lack of observational data for such events, and
that most stellar evolution calculations of the time favored explosion in the red supergiant
phase, caused this possibility to be discounted in favor of the red supergiant progenitor
paradigm.



21

Gamma-Ray Bursts

Earth’s atmosphere absorbs high-frequency photons strongly, so systematic
observation of the heavens at X-ray and gamma-ray wavelengths had to
await the space age and orbiting observatories high above the absorptive
atmosphere. In earlier sections of this book X-rays emitted by objects of
astronomical interest have been considered in various contexts, but we have
said little about gamma-rays, the highest-energy photons of all. Because
gamma-rays are energetic, they can be produced only in rather unusual and
often violent events. Therefore, the realization beginning in the 1960s that
gamma-rays (and X-rays) could be seen coming from many sources in the
sky was a revelation, suggesting that our Universe was much less sedate
and orderly than had often been assumed. The most mysterious of the
gamma-ray sources were gamma-ray bursts, which were first observed in
the 1960s but began to be understood only in the 1990s. As will be
discussed in this chapter, it is now believed that they represent the violent
death of a certain class of massive stars, or the nearly as violent demise of
merging neutron stars. As such, they are an important part of the story of
late stellar evolution, in addition to being of high intrinsic interest because
they are among the most energetic events that occur in the Universe.

21.1 The Sky in Gamma-Rays
When seen from space the sky glows in gamma-rays, in addition to the
other more familiar wavelengths. Figure 21.1(b) shows the continuous glow
of the gamma-ray sky, as measured from orbit by the Compton Gamma-Ray
Observatory (CGRO). In addition to the steady gamma-ray flux illustrated
in Fig. 21.1, sudden bursts, which can be as short as tens of milliseconds
and as long as several minutes, are observed. Figure 21.2 displays the time
profile for a typical burst event. Gamma-ray bursts were discovered



unexpectedly in the 1960s by gamma-ray detectors aboard satellites testing
the feasibility of monitoring for nuclear explosions that violated nuclear test
bans treaties. Quite surprisingly, these satellites began to see strong bursts
of gamma-rays that did not look like nuclear weapons tests. These gamma-
ray bursts (GRBs) were for several decades a great puzzle but, as will now
be discussed, newer observations have led to a much deeper understanding
of these remarkable events.

Fig. 21.1 (a) The galactic coordinate system. The angle b is the galactic latitude and the angle λ is the
galactic longitude, which are related to right ascension and declination by standard spherical
trigonometry. (b) The sky at gamma-ray wavelengths in galactic coordinates, with white the most
intense and black the least intense. The diffuse horizontal feature at the galactic equator is from
gamma-ray sources in the plane of the galaxy. Bright spots to the right of center in the galactic plane
are galactic pulsars and brighter spots above and below the plane of the galaxy are quasars far outside
the galaxy.



Fig. 21.2 Time profile of a gamma-ray burst [172]. Reprinted figure with permission from Tsvi Piran,
Rev. Mod. Phys., 76, 1143. Published January 28, 2005. Copyright (2005) by the American Physical
Society. DOI: https://doi.org/10.1103/RevModPhys.76.1143

About one burst a day is observable somewhere in the sky by orbiting
observatories. Figure 21.3 shows the position of 2704 gamma-ray bursts
recorded by the Compton Gamma-Ray Observatory. The highly isotropic
distribution of GRB events over a broad range of fluences (energy received
per unit area) in this figure argues strongly that they occur at cosmological
distances – hundreds of megaparsecs or greater. The origin of gamma-ray
bursts far outside our galaxy will be confirmed more directly below from
redshifts of spectral lines observed in the aftermath of gamma-ray bursts.
Figure 21.4 illustrates that there appear to be two classes of gamma-ray
bursts:

1. Short-period bursts, which last less than two seconds and exhibit
harder (higher-energy) spectra.

2. Long-period bursts, which have softer (lower-energy) spectra and
typically last from several seconds up to several hundred seconds.

These two classes of gamma-ray bursts share many common features but
their differences suggest that they arise from two different mechanisms. Let
us now turn to a discussion of what these mechanisms could be.

https://doi.org/10.1103/RevModPhys.76.1143


Fig. 21.3 Location on the sky of 2704 gamma-ray bursts recorded by the Burst and Transient Source
Experiment (BATSE) of the Compton Gamma-Ray Observatory, plotted in galactic coordinates with
the grayscale indicating the fluence (energy received per unit area) of each burst. These bursts are
observed superposed on the continuous gamma-ray emission shown in Fig. 21.1(b).



Fig. 21.4 Hardness HR (a parameter measuring the propensity to contain higher-energy photons) of
the spectrum versus duration of the burst, illustrating the separation of the GRB population into long,
soft bursts and short, hard bursts [178]. The parameter T90 is the time from burst trigger for 90% of
the burst energy to be collected. Reprinted figure with permission from Tsvi Piran, Rev. Mod. Phys.,
76, 1143. Published January 28, 2005. Copyright (2005) by the American Physical Society. DOI:
https://doi.org/10.1103/RevModPhys.76.1143

21.2 Localization of Gamma-Ray Bursts
The first step in understanding what causes gamma-ray bursts was to pin
down the astrophysical environment in which they originate. Could they be
associated with known galaxies or with specific events like supernova
explosions, for example? BATSE observations in the 1990s had angular
resolutions of several degrees, so it was difficult to know exactly where to
point telescopes to find evidence associated with the gamma-ray burst at
other wavelengths. Help in this regard came from a satellite looking not at
gamma-rays, but at X-rays.

In the late 1990s it became possible to correlate some gamma-ray bursts
with other sources in the visible, RF, IR, UV, and X-ray portions of the
spectrum because of a Dutch– Italian satellite called BeppoSAX that was
capable of localizing X-ray transients following a gamma-ray burst with

https://doi.org/10.1103/RevModPhys.76.1143


arc-minute resolution. This permitted other instruments to look quickly at
the burst site at multiple wavelengths, and for the first time transient
sources (“afterglows”) at other wavelengths could be correlated with a
burst. Figure 21.5(a) shows an X-ray transient observed by BeppoSAX
following a long-period gamma-ray burst and a localization for a short-
period burst by the SWIFT satellite is illustrated in Fig. 21.5(b).

Fig. 21.5 (a) First localization of an X-ray afterglow for a gamma-ray burst by the satellite
BeppoSAX. (b) Optical association of short-period GRB 050509B with a large elliptical galaxy at a
redshift of z = 0.225 by SWIFT [93]. The larger circle is the error circle for the Burst Alert Telescope
(BAT) on SWIFT. The smaller circle is the error circle for the X-Ray Telescope (XRT), which was
slewed to point at the event when alerted by the BAT. The XRT error circle is shown enlarged in the
inset at the upper left, suggesting that the GRB occurred on the outskirts of the large elliptical galaxy
(dark oval) partially overlapped by the XRT error circle. Reproduced by permission from Springer
Nature: Nature, “A Short X-Ray Burst Apparently Associated with an Elliptical Galaxy at Redshift z
= 0.225,” 437(7060), N. Gehrels et al., Copyright (2005).

Redshifted spectral lines were observed in the transients after the burst,
which for the first time began to allow distances to be estimated to gamma-
ray bursts. Assuming the redshifts to be Hubble law redshifts associated
with the expansion of the Universe, these observations show conclusively
that gamma-ray bursts are occurring at cosmological distances. Thus they
must emit enormous power at gamma-ray wavelengths, which raises
challenging questions concerning the source of that power.



21.3 Generic Characteristics of Gamma-Ray
Burst
Based on the original BATSE data and a series of observations that became
possible once the afterglow transients of gamma-ray bursts could be
localized on the sky and studied at various wavelengths, it is now agreed
that gamma-ray bursts have the following characteristics:

1. Cosmological origin: The isotropic distribution of gamma-ray bursts
in Fig. 21.3 suggested a cosmological origin, which was confirmed by
redshift measurements on emission lines in GRB afterglows. As of
2018, the largest known spectroscopic redshift for a gamma-ray burst
is z = 8.2 for GRB 090423.1

2. Nonthermal spectrum: The spectrum is not thermal. Box 21.1
describes the difference between thermal and nonthermal radiation and
Fig. 21.6 illustrates a typical GRB spectrum.

3. Duration and time structure: The lengths of individual bursts vary
from about 0.01 seconds to several hundred seconds, and their time
structure can range from smooth to millisecond fluctuations (with the
latter implying a compact source; see Box 17.1).

4. Ultrarelativistic jets: The gamma-rays are strongly beamed, implying
emission from tightly collimated, ultrarelativistic jets. Furthermore, the
gamma-rays must suffer little interaction with surrounding matter
before escaping, as discussed in Section 21.4.

5. Two classes of bursts: As already noted, there appear to be two classes
of bursts: long-period and short-period, with sufficient differences to
suggest that they occur through distinct mechanisms.

6. Afterglows and fireballs: The transients (afterglows) observed after
gamma-ray bursts can be explained reasonably well by the relativistic
fireball model illustrated in Fig. 21.7, where deposition of energy by
some central engine initiates a fireball expanding at relativistic
velocities that is responsible for the afterglows.

Ultrarelativistic jets are a central piece of the GRB mechanism, so we shall
now discuss the reason that this is believed to be so.



Box 21.1 Nonthermal Emission

The Planck law describes thermal emission from a hot gas in
equilibrium. The resulting blackbody spectrum peaks at some
wavelength and falls off rapidly at longer and shorter wavelengths, with
the position of the peak moving to shorter wavelength as the
temperature is increased (Wien law). Light from normal stars and
galaxies is dominantly thermal in character.

Synchrotron Radiation
Nonthermal emission has a spectrum exhibiting increased intensity at
long wavelengths. The most common example is synchrotron radiation,
where high-velocity electrons in a strong magnetic field follow a spiral
path around the field lines, radiating strongly beamed light. Synchrotron
radiation is polarized because it is emitted in a narrow beam in the local
plane of the electron’s spiral path; see the figure below left. The figure
below right contrasts nonthermal emission with a thermal (blackbody)
spectrum characteristic of 6000 K.

The wavelength of emitted radiation depends on how fast the charged
particle spirals in the field. As the particle emits radiation it slows and
emits longer wavelength radiation, which explains the broad distribution
in wavelength of synchrotron radiation. Often the distribution of
nonthermal emission is well described by a power law (a polynomial in
powers of the energy).



Implications of Nonthermal Emission
Nonthermal emission is much less common than thermal emission in
astronomy, but a nonthermal component in a spectrum typically signals
violent processes and large accelerations of charged particles. High-
frequency synchrotron radiation also implies the presence of strong
magnetic fields because the frequency increases with tighter electron
spirals, which are characteristic of strong fields.

Fig. 21.6 Spectrum of a gamma-ray burst [171]. As is characteristic of GRBs, the spectrum is
nonthermal (see the discussion in Box 21.1). Reprinted from Physics Report, 314(6), Tsvi Piram,
“Gamma-Ray Bursts and the Fireball Model,” 575–667, Copyright (1999), with permission from
Elsevier.



Fig. 21.7 Relativistic fireball model for afterglows following gamma-ray bursts. Internal shocks in
the ultrarelativistic jet produce the gamma-rays; the external shocks resulting from the jet impacting
the interstellar medium produce the afterglows.

21.4 The Importance of Ultrarelativistic Jets
As was illustrated in Example 17.1, the Lorentz γ -factor defined by

(21.1)

is a measure of how relativistic the particles in a jet are. Ultrarelativistic
particles (those for which the rest mass energy can be neglected relative to
the kinetic energy) will have γ >> 1. Because the spectrum is nonthermal
(see Box 21.1 and Fig. 21.6), we will now argue that gamma-ray bursts
must be produced by jets that are ultrarelativistic. This can be understood in
terms of the opacity of the medium with respect to formation of electron–
positron pairs through γγ → e+e−. A more extensive discussion is given in



Section 15.7 of Ref. [100] but the essential features of the argument
presented there are summarized below.

21.4.1 Optical Depth for a Nonrelativistic Burst
We first assume that the burst involves nonrelativistic velocities. The
number of counts N(E) as a function of gamma-ray energy can be
approximated for particular ranges of energy as a power law,

(21.2)

where the spectral index α may be assumed to be ∼ 2 for present purposes
[171, 172]. The observed nonthermal spectrum requires the medium to be
optically-thin (small optical depth; see Box 10.1 and Problem 21.4),
because an optically-thick medium would thermalize the photons. Energy
conservation for γγ → e+e− requires the two photons with energies E1 and
E2, respectively, to satisfy (EiE2)1/2≳ mec2, where me is the electron mass. If
f is the fraction of photon pairs having sufficient energy, the optical depth τ0
is [171]

(21.3)

where σT is the Thomson scattering cross section (7.10), F is the burst
fluence, D is the distance to the source and R is its size, with R related to the
period δt for time structure in the burst by R = cδt, using the arguments of
Box 17.1. You are asked to show in Problem 21.4 that an optical depth
estimated using this formula is enormous (τ0 ∼ 1014), and therefore
inconsistent with the low optical depth required by the nonthermal GRB
spectrum.

21.4.2 Optical Depth for an Ultrarelativistic Burst
If the burst is instead ultrarelativistic (Lorentz factor γ >> 1 ), the relative
motion with v ∼ c between source and observer will modify Eq. (21.3) in
two essential ways:



1. The blueshift of the emitted radiation will change the fraction f of
photon pairs that have sufficient energy to make electron–positron
pairs. This multiplies the factor f in Eq. (21.3) by a factor of ∼ γ −2α,
where α is the spectral index.

2. The effective size R of the emitting region will be altered by
relativistic effects, which will multiply R by a factor of γ2.

Incorporating these corrections, the ultrarelativistic modification of Eq.
(21.3) is

(21.4)

where τ0 is the nonrelativistic limit evaluated from Eq. (21.3). Thus, the
medium will be optically thin if γ is sufficiently large. Taking the estimate
from Problem 21.4 that τ0 ∼ 1014 and assuming α = 2 for the spectral index,
τ will be less than one provided that γ > 56. Hence consistency with the
observed nonthermal spectrum requires that the GRB involve an
ultrarelativistic jet with a Lorentz γ of order 100 or more.

21.4.3 Confirmation of Large Lorentz Factors
Observational confirmation that gamma-ray bursts are indeed associated
with large values of γ is supplied by the location of “breaks” in the
lightcurves for afterglows, which indicate the time when the initially
relativistic afterglow begins to slow rapidly through interactions with the
interstellar medium. This information can in turn be related to the opening
angle of the jet that produced the afterglow. Such analyses typically find
small jet opening angles Δθ, suggesting large Lorentz factors for many
GRB because from relativistic kinematics Δθ ∝ γ −1. Because of this
beaming, a fixed observer sees only a fraction of all gamma-ray bursts. The
beaming also solves a potential energy-conservation problem. If the energy
from detected bursts were assumed to be emitted isotropically, total
energies exceeding 1054 erg would be inferred for some strong gamma-ray
bursts, which is comparable to the rest mass energy of the Sun! But if
gamma-ray bursts are assumed to be emitted as collimated jets, then the



total energy released would be much smaller than that inferred from the
measured energy assuming isotropic emission.

21.5 Association of GRBs with Galaxies
The generic features of gamma-ray bursts summarized in Section 21.3
provide substantial clues to their nature, but are not sufficient to allow a
specific mechanism to be identified. They describe the phenomenology of
depositing locally a large amount of energy produced by ultrarelativistic jets
from some central engine, but do not specify the exact nature of the central
engine. The first steps in identifying the central engine will be to take
seriously the suggestion that there are two classes of gamma-ray bursts
(long-period and short-period) that are likely produced in different ways,
and to associate gamma-ray bursts observationally with particular kinds of
galaxies. An afterglow is connected only indirectly to the gamma-ray burst
central engine, but it permits localization on the celestial sphere of the
gamma-ray burst that produced it. This localization has permitted a number
of GRB to be associated with specific distant galaxies, with the following
conclusions:

1. Long-period (softer) bursts are strongly correlated with star-forming
regions.

2. Short-period (harder) bursts typically do not occur in star-forming
regions.

3. Some evidence indicates that long-period bursts favor star-forming
regions having low metallicity.

These observations provide further evidence that long-period and short-
period bursts are initiated by different mechanisms because they occur
preferentially in star populations of very different ages.

21.6 Mechanisms for the Central Engine
Based on the observational evidence, an acceptable model for the central
engines that produce gamma-ray bursts and their afterglows must embody



at least the following features:

1. Highly relativistic, strongly focused jets.

(a) Lorentz γ -factors of at least 100, perhaps larger, are required by
observations.2

(b) Jets with opening angles of only 1◦–10◦, associated with a total
energies of order 1052 erg.

(c) As will be described below, long-period bursts may be
associated with a supernova explosion, so the central engine also
must (at least sometimes) deliver ∼ 1052 erg to a much larger
angular range (∼ 1 rad) to produce the accompanying supernova,
and it must operate for 10 seconds or longer in these long-period
bursts to account for their duration.

2. The large radiated power over an extended period, particularly for
long-period bursts, points strongly to a mechanism involving accretion
onto a compact object.

Almost the only way known to explain such a rapid release of that amount
of energy is from a collapse involving a compact gravitational source. Two
general classes of models are now thought to account for GRB.

1. A hypernova in which a spinning massive star collapses to a Kerr
black hole and jet outflow from this collapsed object produces a burst
of gamma-rays (see the collapsar model discussed in Section 21.8).
This is the favored mechanism for long-period bursts.

2. The merger of two neutron stars, or a neutron star and a black hole,
with jet outflow perpendicular to the merger plane producing a burst of
gamma-rays as the two objects collapse to a Kerr black hole. This is
the favored mechanism for short-period bursts.

The unifying theme for both mechanisms is the collapse of stellar amounts
of spinning mass to a Kerr black hole central engine that powers the burst.
In the next section we describe observations that suggest a specific
mechanism powering the central engine of a long-period gamma-ray burst
that is partial to star-forming regions, as required by data.



21.7 Long-Period GRB and Supernovae
As suggested by Fig. 21.8(a), long-period GRB afterglow spectra have been
observed to evolve into spectra resembling those of supernovae, hinting
strongly that the underlying mechanism for long-period bursts may be a
particular type of supernova.

Fig. 21.8 (a) Time evolution in the optical spectrum of SN2003dh (GRB 030329) in black, compared
with a reference supernova SN1998bw in gray [121]. The initial rather featureless spectrum of the
GRB 030329 afterglow develops bumps similar to supernova SN1998bw over time, suggesting that
as the afterglow of the gamma-ray burst energy fades an underlying supernova explosion is revealed.
Hence GRB 030329 is also denoted as the supernova SN2003dh. Reprinted by permission from
Springer Nature: Nature, “A Very Energetic Supernova Associated with the γ -Ray Burst of 29 March
2003,” Hjorth, E. et al. COPYRIGHT (2003). (b) Wolf–Rayet star (tip of black arrow) surrounded by
gas that it has emitted. These massive, high-mass-loss, rapidly-spinning stars may be progenitors of
Type Ib and Type Ic core collapse supernovae, and of long-period GRB.

21.7.1 Types Ib and Ic Supernovae
As discussed in Section 20.1, supernovae may be classified observationally
by their spectra and lightcurves, or theoretically by their explosion



mechanism. The supernovae that are thought to be associated with long-
period GRB are classified in Fig. 20.3 and Section 20.1.2 as Types Ib and
Ic, for which the explosion mechanism is core collapse in a rapidly rotating,
15–30M⊙ Wolf–Rayet star (see Section 14.3.1). These stars can shed their
hydrogen and even helium envelopes before their cores collapse, and are
likely to collapse directly to a Kerr black hole instead of to a neutron star
because they are so massive. Figure 21.8(b) shows a Wolf–Rayet star
shedding its outer layers. It is thought that a Type Ib supernova occurs in a
Wolf–Rayet star for which the H shell has been ejected, and that a Type Ic
supernova occurs in a Wolf–Rayet star for which the H and part of the He
shells have been ejected, before the stellar core collapses and triggers the
supernova.

21.7.2 Role of Metallicity
The occurrence of long-period gamma-ray bursts in star-forming regions is
not surprising if they are associated with core collapse supernovae, since
these occur only for young, massive stars. The possible affinity of long-
period GRB with star-forming regions of low metallicity has been
interpreted in terms of a model of long-period gamma-ray bursts resulting
from the core collapse of a Wolf–Rayet star [230]. Low metallicity makes it
harder for radiation pressure to eject matter because it decreases the surface
photon opacity. The suppression of mass loss has two favorable effects on
the collapsar model to be described below: (1) High mass favors a collapse
directly to a black hole instead of to a neutron star. (2) Suppression of mass
loss disfavors angular momentum loss, leading to higher spin rates at
collapse. This in turn aids in the creation of a substantial accretion disk
around the black hole as it forms, which can be tapped as a source of the
extended power output needed for a long-period gamma-ray burst.

21.8 Collapsar Model of Long-Period Bursts
An overview of the collapsar model is given in Fig. 21.9. Simulations of
ultrarelativistic jets breaking out of a Wolf–Rayet star are shown in Fig.
21.10, and Fig. 21.11(a) displays a simulation of a black hole formed from a
Wolf–Rayet star, 20 seconds after core collapse. The GRB is powered by an



ultrarelativistic jet driven by rotating magnetic fields or neutrino–
antineutrino annihilation, but the supernova is powered by the disk wind of
Fig. 21.11(b), which both produces the supernova explosion and synthesizes
the 56Ni that powers the lightcurve of the supernova by radioactive decay.



Fig. 21.9 Collapsar model for a long-period GRB and accompanying Type Ib or Ic supernova [230].



Fig. 21.10 Simulations of ultrarelativistic jets breaking out of Wolf–Rayet stars [144, 230]. Breakout
of the jet is eight seconds after launch from the center of a 15 M⊙ Wolf–Rayet star. The Lorentz γ for
the jet is about 200. (a) Reprinted from “Long Gamma-Ray Bursts,” Andrew Macfadyen, Science,
303(5654), 45–46, 2004. DOI: 10.1126/science. 1091764. (b) Reprinted from “The Supernova–
Gamma-Ray Burst Connection,” S. E. Woosely and J. S. Bloom, Annual Review of Astronomy and
Astrophysics, 44(1), 507–556, 2006.

Fig. 21.11 (a) A rapidly spinning Wolf–Rayet star of 14 solar masses, about 20 seconds after core
collapse (the polar axis is vertical). The density scale is logarithmic and the 4.4 M⊙ Kerr black hole
has been accreting at about 0.1 M⊙ per second for 15 seconds at this point in the calculation [230].
(a) Reproduced from “Long Gamma-Ray Bursts,” Andrew Macfadyen, Science, 303(5654), 45–46,
2004. DOI: 10.1126/science. 1091764. (b) Simulation of the nucleon wind blowing off the accretion
disk in a collapsar model [230]. Gray-scale contours represent the log of the nucleon mass fraction X
and arrows indicate the general flow. (b) Reproduced from “The Supernova–Gamma-Ray Burst
Connection,” S. E. Woosely and J. S. Bloom, Annual Review of Astronomy and Astrophysics, 44(1),
507–556, 2006.



Figure 21.12 illustrates one model by which a rotating black hole could
couple to a surrounding magnetic field to produce ultrarelativistic jets. The
frame-dragging effects associated with the Kerr black hole (see Kerr
spacetimes in Section 17.3.5) wind the magnetic flux lines around the black
hole and spiral them off the poles of the black hole rotation axis, producing
bipolar ultrarelativistic jets [199]. The jets observed for many active
galactic nuclei and quasars also may be powered by a similar magnetic
coupling to a Kerr black hole, but on a much larger scale with supermassive
(millions to billions of solar masses) black holes as the central engines.

Fig. 21.12 Relativistic jets produced by frame dragging of magnetic fields in the spacetime around a
Kerr black hole [199]. The ergosphere and horizon are described in Section 17.3.5. Reproduced from,
“Simulations of Jets Driven by Black Hole Rotation,” Semenov, V. et al. Science, 305(5686), 978–
980, 2004, DOI:10.1126/science.1100638.

21.9 Neutron Star Mergers and Short-Period
Bursts
The core collapse of a Wolf–Rayet star represents a plausible mechanism
for long-period gamma-ray bursts that associates them naturally with star-



forming regions. On the other hand, there is little observational evidence
that short-period bursts are associated either with star-forming regions or
supernovae, suggesting that the mechanism responsible for them must be
something other than the core collapse of Wolf–Rayet stars. The favored
mechanism for short-period bursts also involves the formation of an
accreting Kerr black hole, but one produced by the merger of two neutron
stars, or merger of a neutron star and a black hole, rather than by the core
collapse of a massive star.

A simulation of a neutron-star merger to form a Kerr black hole with
strong magnetic fields is shown in Fig. 21.13 [83, 184], The first panel
shows the state shortly after initial contact and the second displays a high-
mass neutron star configuration (one too massive to remain a neutron star
for long). In the bottom two panels a Kerr black hole has formed in the
center with a disk around it, and the magnetic field is wound up by the disk
to a strength of order 1015 gauss, with an opening angle for the field lines in
the polar direction of about 30◦. These simulations indicate the propensity
to develop very high magnetic fields in neutron star mergers, enabling a
possible magnetically powered gamma-ray burst. It is also expected that
emitted neutrinos could provide some of the power for such a gamma-ray
burst.



Fig. 21.13 Neutron star merger simulation with strong magnetic fields [83, 184]. Successive panels
show the evolution in time of the mass density with magnetic field lines superposed; see text for
further description. Reproduced from Rezzolla et al., “The Missing Link: Merging Neutron Stars
Naturally Produce Jet-Like Structures and Can Power Short Gamma-Ray Bursts, © 2011. The
American Astronomical Society. All rights reserved. Astrophysical Journal Letters, 732(1).
Reproduced with permission from the authors.

21.10 Multimessenger Astronomy
The large asymmetric mass distortion, high velocities generated by
revolution on millisecond timescales, and highly compact mass distribution,
imply that neutron-star mergers will be a strong source of gravitational
waves. Likewise, core collapse events involve asymmetric motion of dense
matter at high velocity and are expected to be strong gravitational wave
sources. The frequencies for gravitational waves emitted from neutron star
mergers (as well as mergers of neutron stars with black holes) and core



collapse supernovae are expected to lie in the range accessible to
gravitational-wave interferometers like LIGO (see Fig. 22.8). Thus, in
addition to being potential sources of gamma-ray bursts, neutron star
mergers and core collapse events could be excellent candidates for
producing gravitational waves of sufficient strength to be observable in
earth-based gravitational wave detectors. This possibility will be discussed
in Chapter 22 and raises the intriguing prospect of multimessenger
astronomy, where traditional astronomy, neutrino, or gamma-ray burst
signals might be detected in coincidence with gravitational waves.

Background and Further Reading
General overviews of gamma-ray bursts have been given by Piran [171,
172]. An overview of gamma-ray bursts with emphasis on collapsar models
may be found in Woosley and Bloom [230]. Neutron star merger models for
gamma-ray bursts are discussed in Price and Rosswog [177], and in
Rosswog [189].

Problems
21.1 What is the velocity of the particles in a gamma-ray burst jet

exhibiting a Lorentz γ -factor of 200? In the first upgrade of the
Large Hadron Collider each of the colliding proton beams was
designed to reach an energy of 7 TeV (7 × 1012 eV), which
corresponds to a Lorentz γ -factor of 7460. What is v/c for a proton
beam with this energy?

21.2 Verify that γmc2, where m is the rest mass and γ is the Lorentz γ -
factor, behaves like the total energy in the limit of low velocity. Hint:
The total energy is the potential (rest mass) energy plus the kinetic
energy.

21.3 In a particular gamma-ray burst the intensity is observed to vary
with a period of approximately 10 ms. Estimate an upper limit for
the size of the central engine powering the burst.

21.4 Assume for a typical gamma-ray burst that the distance is ∼ 3000
Mpc, the fluence is ∼ 10−7 erg cm−2, the fraction of photon pairs



with sufficient energy for γγ → e+e− to occur is of order one, and
that the burst intensity exhibits fluctuations on a 10 ms timescale. If
the burst is taken (contrary to fact) to not be relativistic, show that
the optical depth given by Eq. (21.3) is inconsistent with the
observed nonthermal spectrum for gamma-ray bursts. Show that in
principle this problem is alleviated if the kinematics are
ultrarelativistic and the value of the Lorentz γ -factor is large
enough. Hint: See Eq. (21.4) and the discussion preceding it.***

1 The naming convention for gamma-ray bursts is of the form GRB followed by three 2-digit
numbers indicating the year, month, and day of observation, respectively. For example, GRB
090423 was observed by the SWIFT satellite on April 23, 2009. The redshift z = 8.2 for GRB
090423 implies that the gamma-ray burst occurred only about 600 million years after the big
bang! It will be shown below that the likely cause of the gamma-ray burst was core collapse
of a massive star. This implies that the Universe was making stars within a few hundred
million years after the big bang (see Section 14.5), which has significant implications for
ideas of how structure formed in the Universe.

2 These are very large Lorentz factors by astrophysical standards. Most jets observed from
quasars and active galactic nuclei do not exceed γ ∼ 10. On the other hand, one of the
counter-circulating proton beams of the Large Hadron Collider (LHC) at CERN has γ ∼ 7000.
This translates to a velocity only about 3 ms−1 less than the speed of light (and a special
relativity time dilation factor of γ , so time passes about 7000 times more slowly for an LHC
beam particle than for a stationary observer beside the beam line).



22

Gravitational Waves and Stellar Evolution

Detection of the gravitational wave event GW150914 in late 2015 by the
LIGO (Laser Interferometer Gravitational-Wave Observatory)
collaboration, and its interpretation as resulting from the merger of two ∼
30 M⊙ black holes, may be of as much importance for stellar physics as for
gravitational physics. Certainly the confirmation that gravitational waves
exist and can (through monumental technical ingenuity!) be detected,
coming some 100 years after Einstein’s prediction of such ripples in the
fabric of spacetime, was a remarkable achievement for gravitational physics
and the theory of general relativity.1 But it is also arguably the most direct
evidence yet for black holes, and begins to place strong new constraints on
theories of massive-star evolution. Of even broader significance for stellar
evolution was the detection in 2017 of gravitational waves from a neutron
star merger in coincidence with a GRB and accompanied by
electromagnetic signals observed at multiple wavelengths. This chapter
introduces the new field of gravitational wave astronomy and its potentially
large implications for understanding the evolution of stars.

22.1 Gravitational Waves
Gravitational waves, the requisite general relativity background, and details
of the first gravitational wave events are covered more thoroughly in Ref.
[100]. This chapter will draw heavily on the discussion in that book,
introducing only the bare minimum of mathematics and instead
concentrating on the potential implications of gravitational wave
observation for understanding of stellar evolution. It will be useful for later
discussion to summarize some basic principles without getting too deeply
into the mathematical weeds. The essential idea is that the Einstein
equations that were introduced in Eqs. (17.3) and (17.4) admit solutions that



are wavelike and propagate at the speed of light (which could be termed
more precisely in this context, the speed of gravity). These gravitational
wave solutions have many similarities with the corresponding
electromagnetic wave solutions of the Maxwell equations, but there are
some essential differences. The most fundamental concerns the question
“what is waving”? Electromagnetic waves are propagating ripples in the
electric and magnetic fields, which are defined in spacetime; gravitational
waves are ripples propagating in the metric of spacetime, so it is spacetime
itself, not some field defined in spacetime, that is “waving.”

As for electromagnetic waves, gravitational waves are transverse and
have two states of polarization, commonly denoted plus (+) and cross (×).
Gravity acts on mass so gravitational wave polarization may be illustrated
by considering the effect of a polarized gravitational wave on a circular
array of test masses, as shown in Fig. 22.1. These wave patterns in
spacetime may be detected using Michelson laser interferometers with
kilometer or longer arms, as illustrated in Fig. 22.2 [185]. Because the
gravitational wave causes periodic fluctuations in the spacetime metric, the
distance that light travels down an arm and back is modified differently for
the two arms if a gravitational wave passes through the detector, as
illustrated in Fig. 22.3. By comparing the two beams, the interferometer can
detect very small differential changes in the light travel distances for the
two arms, potentially indicating the passage of a gravitational wave. The
fractional change in effective distance for the light to travel δL(t)/L0 is
measured in terms of a dimensionless quantity called the strain h, with

(22.1)

which oscillates with the time dependence of the gravitational wave.
Exquisite precision is required because gravitational waves from expected
astronomical sources require strains ∼ 10−21 to be measured. As you are
asked to show in Problem 22.1, δL ∼ hL0 for a strain of this size is orders of
magnitude smaller than the width of nuclei in the atoms from which the
interferometer is built!



Fig. 22.1 Effect of a gravitational wave incident along the z axis on test masses in the x–y plane. The
top pattern is called plus (+) polarization (test masses oscillate in a + pattern) and the bottom pattern
is called cross (×) polarization (the test masses oscillate in a × pattern).



Fig. 22.2 Laser interferometer gravitational wave detector. In the storage arms of actual detectors
light typically is multiply reflected, greatly increasing the effective length of the arms.

Fig. 22.3 Analogy between interaction of a gravitational wave with a test mass distribution and with
an interferometer.

22.2 Sample Gravitational Waveforms
We begin the discussion with an overview of some computer simulations
indicating the varied waveforms and potential astrophysical information
that gravitational waves may carry. At least four kinds of events involving
objects from late stellar evolution are expected to produce detectable
gravitational waves: (1) merger of two black holes, (2) merger of a black
hole and neutron star, (3) merger of two neutron stars, and (4) a core
collapse supernova explosion. Simulations indicate that the corresponding
waveforms will carry signatures of the event that produced the gravitational
wave, and that these may encode detailed information about the objects
involved. Some computed gravitational waveforms for various events of the
type described above are displayed in Figs. 22.4. As we may see by
comparing these examples, the gravitational waveform is very dependent on
the nature of the objects participating in formation of the wave, and hence
should be sensitive to their detailed physics. For example, a discussion of
how supernova microphysics influences the form of gravitational waves



emitted in a core collapse supernova may be found in Refs. [157, 233, 234],
and Example 22.1 discusses how gravitational waves from neutron star
mergers might be used to constrain the equation of state for neutron stars.

Fig. 22.4 Some computed gravitational waveforms that might be observable in Earth-based detectors.
(a) Merger of two 20 M⊙ black holes (BH–BH) [10, 34, 35, 61]. (b) Merger of 1.2 M⊙ + 1.8 M⊙ (all
masses are baryonic) neutron stars (NS–NS) at distance of 15 Mpc [191]. (c) 4.5 M⊙ black hole and
1.4 M⊙ neutron star merger (BH–NS) at 15 Mpc [10, 141]. (d)–(f) Supernova at 15 kpc for two
progenitor masses; time measured from bounce [234]. Panel (f) displays the initial burst of panel (d)
at higher resolution. In panel (a) rh is shown, where r is the distance to the source in cm. In panels
(b)–(f) strain is given in dimensionless units of 10−21 by assuming a distance to the source. All waves
are h+ polarization except for in (a), where both h+ and h× are shown. Further details may be found in
the references. Figure plotted from data available at
https://astrogravs.gstc.nasa.gov/docs/catalog.html and from Figure 1, Kanstantin N. Yakunin et al.,
Physical Review D, 084040, published October 19, 2015, Copyright (2015) by the American Physical
Society. DOI:https://doi.org/10.1103/PhysRevD.92.084040.

https://astrogravs.gstc.nasa.gov/docs/catalog.html
https://doi.org/10.1103/PhysRevD.92.084040


Example 22.1 The appropriate equation of state to employ for neutron stars
is not very well constrained at present, primarily because it is difficult to
measure the radius and mass simultaneously for any single neutron star.
This introduces substantial uncertainty into the theoretical understanding of
neutron stars. The gravitational waves emitted by the merger of two neutron
stars would be sensitive to the properties of the neutron stars at merger and
could place stronger constraints than are presently available on the neutron
star equation of state. An improved neutron-star equation of state would
permit answering more definitively questions like what the upper limit for
the mass of a neutron star is (which has implications for the search for black
hole candidates in binary star systems; see the discussion in Section 17.4),
the superfluid and superconducting properties of neutron stars, the
relationship of observed cooling to internal structure for the neutron star,
and whether quark matter can exist in the centers of more massive neutron
stars. In Section 22.6 below we shall discuss the first observation of
gravitational waves (and electromagnetic radiation) from a neutron star
merger.

For 100 years after they were first proposed by Einstein, gravitational
waves had been a primarily hypothetical issue, with only a few indirect
observations indicating their existence. This changed dramatically in late
2015.

22.3 The Gravitational Wave Event GW150914
On September 14, 2015, the two LIGO detectors, one in Livingston,
Louisiana, and one in Hanford, Washington, observed simultaneously2 a
transient signal lasting about a quarter of a second that was flagged almost
immediately as a strong gravitational wave candidate. Extensive analysis
confirmed with significance greater than five standard deviations that the
transient labeled GW150914 (with the numbers a reference to the date of
discovery) was indeed a gravitational wave that was produced by the
merger of two ∼ 30 M⊙ black holes at a distance of more than 400 Mpc
[12, 13, 14]. This was a milestone event in general relativity because
gravitational waves were the last of Einstein’s major predictions not tested



by direct observation. But of equal import, in particular for the subject
matter of this book, was that GW150914 marked the opening of a new
observational window on the Universe for “dark events” that might not be
seen easily in traditional astronomy observing modes. As this book goes to
press in late 2017, gravitational waves from five confirmed binary black
hole mergers and one neutron star binary merger have been reported (see
Fig. 17.7 and Section 22.6). Thus prospects appear to be bright for studying
stellar evolution through dark events observed by LIGO and future
gravitational wave detectors such as Virgo in Italy, which came online in
2017 following an upgrade with capabilities comparable to one of the LIGO
detectors.

22.3.1 Observed Waveforms
The waveforms observed by the LIGO detectors in the GW150914 event
are shown in the upper panel of Fig. 22.5. The gravitational wave arrived
first at the Livingston detector (L1) and then 6.9 ms later at the Hanford
detector (H1). In the top-right image the H1 wave is also shown superposed
and shifted by 6.9 ms. The third row displays the result of subtracting a
numerical relativity waveform for black hole merger from the observed
waveform. The last row shows a time-frequency representation, with the
grayscale contours indicating strain. The signal swept upward in frequency
from about 35 to 250 Hz (“the chirp,” indicative of the final rapid inspiral
of a merger event), with a measured peak strain ∼ 1.0 × 10−21.



Fig. 22.5 LIGO gravitational wave event GW150914 [12]. Left panels correspond to data from the
Hanford detector (H1) and right panels to data from the Livingston detector (L1). Top row is
measured strain in units of 10−21. In the top right panel the Hanford signal has been superposed on
the Livingston signal. The second row shows numerical relativity simulations [156] of the waveform
assuming a binary black hole merger event. The third row shows residuals after subtracting the
numerical relativity waveform (second row) from the detector waveform (first row). The fourth row
shows frequency versus time for the strain data, with grayscale contours indicating strain amplitude.
The rapidly rising pattern (chirp) is indicative of a binary merger. For visualization purposes the data
and the simulations have been filtered, as described in more detail in Ref. [12].

22.3.2 The Black Hole Merger
In Fig. 22.6 a computer simulation of what the black holes might have
looked like from up close during the merger is shown (at least in a high-
speed snapshot; by this point the black holes would have been whirling
around each other many times each second). The black, sharply defined
objects are shadows of the black holes that block all light from behind.
Flattened dark features around them and the marked displacement of the



apparent background star images [compare with the undistorted background
star field in Fig. 22.6(a)] are caused by pronounced gravitational lensing
effects described in the figure caption that arise from the strongly curved
space near the event horizons of the black holes.

Fig. 22.6 Computer simulation of the GW150914 merger. (a) The undistorted background field of
stars in the absence of the black holes. (b)–(g) Successively later times in the merger sequence. (h)
The final Kerr black hole. Notice the strong gravitational lensing effects near the black holes. The



background stars, of course, are fixed in position as in (a) for each panel, but the gravitational lensing
completely distorts their apparent positions. The ring around the black holes is an Einstein ring,
which results from strong focusing of light from stars behind the black holes by gravitational lensing.
Images extracted from video in [73].

Extensive analysis comparing simulations of the merger with data
measured for the gravitational wave yields quantitative information about
the two black holes that merged, and the final Kerr black hole that resulted
from the merger. These parameters for GW150914 are displayed in Table
22.1, along with uncertainty estimates that typically are in the 10% to 20%
range. For example, the initial masses of the merging black holes were
determined to be 36M⊙ and 29 M⊙, respectively, the mass of the final
black hole was 62 M⊙ (implying from the difference of initial and final
masses that ∼ 3 solar masses were radiated as gravitational waves),3 and the
redshift and corresponding distance to the source were z = 0.09 and 410
Mpc, respectively. The spin of the final black hole was determined to be
67% of that for an extremal Kerr black hole, lending support to the
conjecture of Section 17.3.5 that near-extremal Kerr black holes may be
common. (Spins of the two initial black holes were estimated, but with
present limited data the uncertainties were of order 100%.)

Table 22.1 Properties of the black-hole merger event GW150914

Quantity Value†

Primary black hole mass

Secondary black hole mass

Final black hole mass

Final black hole spin

Mass radiated as gravitational waves

Peak gravitational wave luminosity (erg s−1)

Peak gravitational wave luminosity (M⊙ s−1)

Source redshift z



Source luminosity distance

†Masses in source frame. Multiply by (1 + z), where z is redshift, for mass in detector frame.
Spin given in units of spin for an extreme Kerr black hole of that mass; see Eq. (17.14).

The direction to the source was determined also. Since the gravitational
wave was observed by only two detectors, tracking the wave back to its
source entailed considerable uncertainty. The analysis was able to localize
the source to an error box of about 230 square degrees in the Southern
Hemisphere near the Large Magellanic Cloud. As more gravitational wave
observatories come online and a signal can be triangulated from more than
two detectors, this uncertainty will be decreased substantially (see an
example in Fig. 22.10), but gravitational wave detectors will always have
lower intrinsic angular resolution than traditional astronomy instruments.
On the other hand, gravitational wave interferometers see essentially the
entire sky at all times, not just a narrow field as for traditional telescopes.

22.4 A New Probe of Massive-Star Evolution
Notice from Fig. 17.7 that each of the two initial black holes for GW150914
had at least a factor of two more mass than the most massive black holes
that have been inferred from X-ray binary data. Thus GW150914 provided
the first conclusive evidence that such massive black holes can exist, that
they can occur in binary pairs, and that these binaries can form with
sufficiently compact orbits that they can merge within the age of the
Universe through gravitational wave emission. Understanding this is likely
to have implications for understanding the evolution of massive stars, in
particular for those in binary systems.

22.4.1 Formation of Massive Black Hole Binaries
The formation of massive black hole binaries implied by the merger event
GW150914 requires a sequence of four events to occur in the course of
stellar evolution.



1. Stars must form with very large masses (probably in the vicinity of
100M⊙).

2. These stars must not lose too much of their mass to stellar winds while
evolving to core collapse.

3. These massive stars must collapse to black holes, so they must avoid
collapsing to neutron stars and they must avoid being destroyed by the
pair instability discussed in Box 20.2.

4. The black holes thus formed must end up as part of a binary star
system.

The factors determining whether massive stars collapse to neutron stars
or to black holes when they exhaust their core fuel are not completely
understood, but most simulations indicate that the more massive a star is the
more prone it is to produce a black hole than a neutron star. In addition, the
most massive stars are more likely to accrete their envelope rather than
eject it when they collapse to black holes. Thus, the formation of 30 or
greater solar mass black holes probably involves core collapse of the most
massive stars. Two general pictures for the formation of massive binary
black holes have been proposed:

1. Evolution of massive galactic binaries in relative isolation from other
stars.

2. Capture of single black holes into binary orbits in dense star clusters.

In the first case a binary with two massive stars must form and eventually
undergo successive core collapse of each star without unbinding the binary
system and without too much mass loss to stellar winds prior to collapse.
Specific models in this category often involve one or more accretion
episodes and periods of common-envelope evolution. In the second case it
is hypothesized that in a dense star cluster black holes formed by core
collapse of massive stars quickly will become the most massive objects by
merger and accretion, and sink to the dense center of the cluster. There they
can form binaries and be ejected from the cluster by dynamical interactions.
In either case, the black hole binaries must form with orbits such that
inspiral times from gravitational wave emission are less than the age of the
Universe. Reviews of these mechanisms may be found in Refs. [40, 174].



22.4.2 Gravitational Waves and Massive Binary Evolution
A discussion of the implications of GW150914 for the binary black hole
formation mechanism is given in Ref. [15], where it is concluded that
binary black hole masses as large as those found for GW150914 are
consistent with a range of models for isolated formation of binary black
holes provided that

1. Compositions with metal content much lower than that of the Sun are
employed, which allows more massive stars to form.

2. Stellar models with newer prescriptions favoring reduced stellar winds
for massive stars are used. The lower winds lead to less mass loss and
hence to higher masses at the end of main sequence evolution.

They conclude also that the masses for GW150914 are consistent with
models for formation of black hole binaries in dense star clusters if the
metal content is less than solar, though further study is needed to determine
whether details are consistent in such models.

On the other hand, comprehensive simulations performed after the LIGO
discovery of gravitational waves [39, 208] suggest that the binary black
holes responsible for the gravitational wave events observed thus far by
LIGO could have formed through a single mechanism for formation and
merger of isolated binary black holes. There are three crucial assumptions
underlying this mechanism:

1. Massive binary stars are formed in low-metallicity environments with
initial orbital periods of hundreds of days or less.

2. The subsequent evolution of the binary involves episodes of both
Roche-overflow accretion and common-envelope evolution.

3. The cores of the massive stars in the binary collapse directly to black
holes, with no ejection of a supernova remnant and with little of the
natal kick (see Section 20.3.7) that is common for neutron stars in
normal core collapse events. Thus, the black holes form without the
parent stars undergoing a supernova explosion in the normal sense,
which keeps the binary from unbinding gravitationally.



It is argued that this mechanism gives a much higher merger rate than a
mechanism based on capture in dense star clusters, with a predicted rate
consistent with the (still highly uncertain) observed black hole merger rate
for LIGO events.

In Fig. 22.7 a possible specific scenario is sketched for the generation of
GW150914 [39]. In this simulation the massive binary formed about 2
billion years after the big bang (redshift z ∼ 3.2), with initial main sequence
masses of 96.2M⊙ and 60.2 M⊙, respectively, metal fraction of Z = 0.03
Z⊙, average separation of a ∼ 2500 R⊙, and orbital eccentricity e = 0.15.
The initially more massive star (A) evolved to fill its Roche lobe and
transferred more than half of its mass to the other star (B) by Roche lobe
overflow, as the orbit was circularized and star A evolved through the
Hertzsprung gap and possibly to core helium burning. The core of star A
then collapsed directly to a black hole of mass 35.1 M⊙, with no ejection of
a supernova remnant and with minimal natal kick from the collapse, leaving
a bound, slightly eccentric orbit. (However, in the formation of black holes
by direct collapse in this simulation it was assumed that 10% of the mass is
carried off by neutrinos during a collapse.)



Fig. 22.7 A scenario for evolution of the massive black hole binary leading to GW150914 [39].
ZAMS means zero age main sequence, MS means main sequence, HG means a star evolving through
the Hertzsprung gap, CHeB means core helium burning, a He star is a star exhibiting strong He and
weak H lines (indicating loss of much of its outer envelope), and BH indicates a black hole. Time is
measured from formation of the binary, about 2 billion years after the big bang, and the scale is
highly nonlinear. The separation of the pair is a and the eccentricity of the orbit is e. Adapted by
permission of Springer Nature: Nature, 534(7608), “The First Gravitational-Wave Source from the
Isolated Evolution of Two Stars in the 40–100 Solar Mass Range,” Bekzynski, K. et al., Copyright
(2016).

Star B had grown by accretion to 84.7 M⊙ by this point and it evolved
quickly off the main sequence to core helium burning, initiating a common
envelope phase with the black hole formed from star A. During the short
common envelope phase the orbit was again circularized and the average
separation shrank rapidly from a ∼ 3800 R⊙ to ∼ 45 R⊙. At the end of the
common envelope phase the mass of the black hole formed from star A was
36.5 M⊙ and star B was now a helium star of mass 36.8M⊙, as a



consequence of accretion and wind loss. Star B then collapsed directly to a
black hole of mass 30.8 M⊙, leaving a binary black hole system with
masses of 36.5 M⊙ and 30.8 M⊙, respectively, orbital separation 47.8 R⊙,
and eccentricity 0.05. This system then spiraled together through
gravitational wave emission over a period of 10.3 billion years, merging
about 1.1 billion years ago (z ∼ 0.09) to produce GW150914.

Note that the timescale on the left vertical axis of Fig. 22.7 is highly
nonlinear. It took only about 5 million years from birth of the binary to form
two black holes with a separation of about 48 R⊙, but then an additional ∼
10 billion years was required for them to merge because of gravitational
wave emission. The common envelope phase was instrumental in allowing
the merger on a timescale less than the age of the Universe. In this
simulation both stars lose their outer envelopes through binary interactions
and the final black holes result from direct collapse of massive Wolf–Rayet
stars to black holes.

Although the simulations described above are plausible and indicate that
massive black hole binaries such as those observed in gravitational wave
events to date can form through standard binary evolution channels, they
are subject to large uncertainties. In particular, common envelope evolution
may be essential to forming massive black hole binaries that merge on
observable timescales, and this is the least understood aspect of binary
evolution. As more black hole merger events are accumulated by
gravitational wave detectors, we may expect increasingly strong constraints
on stellar population models for binary star evolution that were not possible
before the advent of gravitational wave astronomy.

22.4.3 Formation of Supermassive Black Holes
An important question is whether there is any connection between the
formation of stellar-size black holes and the formation of supermassive
black holes found often in the centers of galaxies. Two pictures for the
formation of supermassive black holes have been proposed.

1. Supermassive black holes may have formed by successive merger of
intermediate-mass black holes created by core collapse of massive



first-generation stars,4 or they may have formed directly from the
collapse of large clouds.

2. The seeds for the growth of supermassive black holes may instead
have been massive (say greater than 25 M⊙) stellar black holes such as
those responsible for GW150914.

In either case, it is possible that the evolution of massive stars leading to the
creation of massive stellar black holes also has implications for the origin of
supermassive black holes. The merger of supermassive black holes in
galaxy collisions cannot be studied with Earth-based gravitational wave
observatories like LIGO because the gravitational wave frequency is too
low and the background noise level too high, but they could be studied in
large space-based gravitational wave arrays; see Fig. 22.8.

Fig. 22.8 Strain amplitude and frequency ranges expected for gravitational waves from various
astronomical sources [153]. Minimum strain detection bounds for advanced LIGO (aLIGO) at full
design capacity (∼2020), advanced Virgo (adV) at full design capability (∼ 2020), advanced LIGO in
the first observing run after the upgrade [aLIGO(0), indicated by the dashed curve], during which the
gravitational wave GW150914 was observed in 2015, and the proposed space-based array LISA are
indicated.



22.5 Listening to Multiple Messengers
The prospects are good for the systematic accumulation of gravitational
wave events from binary black hole mergers, binary neutron star mergers,
mergers of neutron star– black hole binaries, and core collapse supernovae
by present and future gravitational wave observatories. Even more
interesting is the possibility of multimessenger astronomy, where, for
example, a short-period gamma-ray burst might be observed in coincidence
with gravitational waves from a neutron star merger, or a neutrino burst
observed in coincidence with gravitational waves from the accompanying
supernova.5 With the Advanced Virgo gravitational wave detector now
online in Italy, detection of a gravitational wave by three detectors is
routine, greatly decreasing the uncertainty in localizing a GW source.
However, the situation is likely similar to that of gamma-ray bursts initially,
where the error box for the gravitational wave location will be large enough
that many galaxies lie within it. Thus, some amount of cleverness may be
required to establish a definite correlation between a gravitational wave
signal and other signals in the general case.

Implementation of multimessenger astronomy with gravitational waves
presents huge technical challenges but could have a large impact on the
understanding of neutron-star structure, the core collapse supernova
mechanism, and the detailed properties of central engines powering
gamma-ray bursts and gravitational wave emission, as well as providing
unprecedented tests of general relativity under strong-gravity conditions.
Since these events involve various aspects of late stellar evolution,
systematic gravitational wave astronomy and multimessenger astronomy
have the potential to revolutionize our understanding of how stars evolve.
In Section 22.6 we shall describe briefly the first multimessenger event
observed: the coincidence of a gravitational wave with a gamma-ray burst
and the subsequent electromagnetic transient.6

22.6 Gravitational Waves from Neutron Star
Mergers
On August 17, 2017 the LIGO–Virgo collaboration detected gravitational
wave GW170817, which would be quickly interpreted as originating in the



merger of two neutron stars [16]. Approximately 1.7 seconds after the
gravitational wave both the Fermi Gamma-ray Space Telescope (Fermi) and
the International Gamma-Ray Astrophysics Laboratory (INTEGRAL)
observed a gamma-ray burst of two seconds duration in the same direction
as the source of the gravitational wave, and that night various observatories
alerted to the approximate location of these events discovered a new point
source in the galaxy NGC 4993 lying within the position error box for the
gravitational wave and gamma-ray burst. In the ensuing weeks a multitude
of observatories studied the transient afterglow in NGC 4993 (named
officially AT 2017gfo) intensively at various wavelengths. Thus was the
discipline of multimessenger gravitational-wave astronomy born (see
Section 22.5).

The coincidence of the gravitational wave and the gamma-ray burst is
illustrated in Fig. 22.9 and the sky localization of the event is illustrated in
Fig. 22.10. The final combined LIGO–Virgo sky position localization
corresponded to an uncertainty area of 28 deg2, illustrating the dramatically
improved angular resolution with a third detector augmenting the LIGO
detectors. Rapid localization of the gravitational wave source and the
coincidence with the gamma-ray burst allowed electromagnetic observers to
locate quickly the afterglow about 2 kpc from the center of the
lenticular/elliptical galaxy NGC 4993, in the southern constellation Hydra.
The location of the afterglow is indicated by the small white star in the error
box of Fig. 22.10. The luminosity distance was 40+8

−14 Mpc, which is
consistent with the known distance to the host galaxy NGC 4993.



Fig. 22.9 (a) Gravitational wave GW170817 (LIGO) and (b) gamma-ray burst GRB 170817A (Fermi
satellite) [17]. The source was at a luminosity distance of 40 Mpc (130 Mly).

Fig. 22.10 Localization of gravitational wave GW170817 and gamma-ray burst GRB 170817A [17].
The 90% contour for LIGO–Virgo localization is shown in the darkest gray. The 90% localization for
the gamma-ray burst is shown in intermediate gray. The 90% annulus from triangulation using the
difference in GRB arrival time for Fermi and INTEGRAL is the lighter gray band. The zoomed inset



shows the location of the transient AT 2017gfo (small white star). Axes correspond to right ascension
and declination in the equatorial coordinate system.

22.6.1 New Insights Associated with GW170817
The multimessenger nature of GW170817 led to a number of discoveries
having fundamental importance in astrophysics, the physics of dense matter,
gravitation, and cosmology:

Viability of multimessenger gravitational-wave astronomy: The event
confirmed that gravitational wave detectors could see and distinguish events
that did not correspond to merger of two black holes, which had been the
interpretation of all previous gravitational waves, and demonstrated that
electromagnetic signals could be detected in coincidence with a confirmed
gravitational wave event.

Mechanism for short-period GRBs: The interpretation of the gravitational
wave as originating in the merger of binary neutron stars and the coincident
(short-period) gamma-ray burst provided the first conclusive evidence that
short-period gamma-ray bursts are produced in the merger of neutron stars
(see Section 21.9). The gamma-ray burst was relatively weak, which was
interpreted provisionally as evidence that the gamma-ray burst was not
aimed directly at Earth. (See the discussion of ultrarelativistic beaming for
gamma-ray bursts in Section 21.4.2.) Confirmation came two weeks later
when radio waves and X-rays characteristic of a gamma-ray burst were
detected.

Site of the r-process: The signature of heavy-element production in the
event demonstrated that neutron star mergers are one (or perhaps the
dominant) source of the rapid neutron capture or r-process thought to make
many of the heavy elements (see Fig. 20.21 and the discussion in Section
20.5). Now we have a quantitative way to investigate the relative
importance of the two primary candidate sites for the r-process: core
collapse supernovae, and neutron star mergers, but already it is clear that
the once-common view that the r-process occurs primarily in core-collapse
supernovae is probably not correct.

Observation of a kilonova: The expanding radioactive debris was observed
at UV, optical, and IR wavelengths, giving the first direct evidence for the



kilonova (also termed a macronova) predicted to occur as a result of
radioactive heating by newly synthesized r-process nuclei. That the gamma-
ray burst was emitted off-axis may have been essential in allowing the
kilonova associated with the radioactivity of heavy elements produced in
the merger to be observed, as will be described in Fig. 22.11.

Fig. 22.11 Geometry of GW170817 afterglows [131, 170, 216]. The neutron-rich ejected matter
labeled “Tidal dynamical” emits a kilonova peaking in the IR (solid arrows and solid curves labeled
“Red” in the time–luminosity diagrams) associated with production of heavy r-process nuclei and
high opacity (the red kilonova). Additional mass is emitted by winds along the polar axis (dotted
arrows and dotted curves labeled “Blue”) that is processed by neutrinos emitted from the hot central
engine, giving matter less rich in neutrons and a kilonova peaking in the optical that is associated
with production of light r-process nuclides and lower opacity (the blue kilonova). The usual GRB
afterglow is indicated by dashed curves in the plots. It dominates all other emission when viewed on-
axis but when viewed off-axis it appears as a low-luminosity component delayed by days or weeks
(until θv < θb), which permits the kilonova to be seen.

Nuclei far from stability: The r-process runs far to the neutron-rich side of
the β-stability valley in the chart of the isotopes shown in Fig. 20.21. The
lightcurves for the kilonova are a statistical blend of contributions from



many neutron-rich nuclei with no sharp lines because of the high velocities
(as large as v ∼ 0.3c) for the ejecta. However, they carry information about
the average decay rates and other general properties of these largely
unknown r-process nuclei that could provide future constraints on theories
of nuclear structure far from β stability.

The speed of gravity: General relativity predicts that gravity propagates at
the speed of light. Arrival of the GRB within 1.7 seconds of the
gravitational wave from a distance of 40 Mpc established conclusively that
the difference of the speed of gravity and the speed of light is no larger than
3 parts in 1015 [17]. Thus, alternatives to general relativity for which gravity
does not propagate at c are now excluded.

Neutron-star equation of state: The multimessenger nature of the event
indicates that neutron star mergers will provide an opportunity to make
much more precise statements about the neutron-star equation of state
because – for example – the merger wave signature is sensitive to the tidal
deformability of the neutron star matter.

Demographics of neutron-star binaries: The observation provides
quantitative information about the probability that neutron star binaries
form in orbits that can lead to merger in a time less than the age of the
Universe. The rate currently inferred corresponds to 0.8 × 10−5 mergers per
year in a galaxy the size of the Milky Way, but this number should become
more precise with future neutron star merger observations. This has large
implications for our understanding of stellar evolution, and also for the
expected rate of gravitational wave detection from such events.

Determination of the Hubble constant: Multimessenger gravitational-wave
astronomy provides an independent way to determine the Hubble constant
H0 governing the rate of expansion of the Universe, by comparing the
distance inferred from the gravitational wave signal with the redshift of the
electromagnetic signal [198]. Analysis of the GW170817 multimessenger
event suggests a value  [18], which is
consistent with the value from other methods but the error bars are large. It
has been estimated that 100 independent gravitational wave detections with
host galaxy identified as in GW170817 would reduce the error in H0 to
about 5% [18].



Off-axis gamma-ray bursts: The initial observation of the kilonova
followed two weeks later by observation of X-ray and radio emission
provides corroborating evidence for the highly beamed nature of gamma-
ray bursts [216] and represents the first clear detection of a weak, off-axis
GRB and its slowing in the interstellar medium. Systematic studies of such
events should greatly enrich our understanding of gamma-ray bursts.

We will not discuss all of these in any detail but let us elaborate further on
the kilonova powered by the production of radioactive r-process nuclei.

22.6.2 The Kilonova Associated with GW170817
Simulations of neutron star mergers identify two mechanisms for mass
ejection [131]. (1) On millisecond timescales, matter may be expelled
dynamically by tidal forces during the merger itself and as surfaces come
into contact shock heating may squeeze matter into the polar regions. (2)
On a longer (∼ 1 second) timescale, matter in an accretion disk around the
merged objects can be blown away by winds. Heavy elements may be
synthesized by the r-process in the ejected material. If the matter is highly
neutron-rich, repeated neutron captures form the heavy r-process nuclei (58
≤ Z ≤ 90), while if the ejecta is less neutron-rich, light r-process nuclei (28
≤ Z ≤ 58) are formed. The matter in the tidal tails is neutron-rich and tends
to form heavy r-process nuclei. The disk winds and ejecta squeezed
dynamically into the polar regions may be subject to neutrino irradiation
from the central engine, which converts some neutrons to protons, making
the winds less neutron-rich and favoring the light r-process.

The photon opacity of the r-process ejecta is generated largely by
transitions between bound atomic states (bound–bound transitions). For
light r-process nuclei the valence electrons typically fill atomic d shells but
a substantial fraction of heavy r-process species (often 1–10% by mass) are
lanthanides (58 ≤ Z ≤ 71), for which valence electrons fill the f shells.
These have densely spaced energy levels and an order of magnitude more
line transitions than for the d shells in light r-process species. As a
consequence, the opacity of heavy r-process nuclei is roughly a factor of 10
larger than the corresponding opacity for light r-process species, and they
have correspondingly long photon diffusion times [131].



Hence the cloud of light r-process species is considerably less opaque
with shorter diffusion times, and tends to radiate in the optical and fade over
a matter of days. In contrast, the cloud of heavy r-process species radiates in
the IR with lightcurves that may last for weeks because of the high opacity
and long diffusion times. This accounts for the observed characteristics of
the transient AT 2017gfo, which differed essentially from all other
astrophysical transients that have been observed: it brightened quickly in
the optical and then faded but a rapidly-growing IR emission remained
strong for weeks, and only after a period of weeks did X-ray and RF signals
begin to emerge.

The above considerations suggest a general picture of the geometry of
GW170817 that is sketched in Fig. 22.11. The kilonova transient AT
2017gfo that followed the gravitational wave GW170817 and associated
gamma-ray burst had two distinct components. The tidal dynamical ejection
flung out on millisecond timescales very neutron-rich matter at high
velocities v ∼ 0.3c that underwent extensive neutron capture to produce
heavy r-process species and extremely high opacity because of the
lanthanide content. In addition, winds ejected matter from the disk region
on a timescale of seconds. This matter was subject to irradiation by
neutrinos from the hot center, which increased the proton to neutron ratio.
Nucleosynthesis in this less neutron-rich matter was likely to produce light
r-process matter of lower opacity, since there weren’t enough neutrons to
produce lanthanides and other heavy r-process nuclei.

This picture is supported by model calculations that are displayed in Fig.
22.12. These simulations exhibit clearly the early emergence and rapid
decay of the optical component associated with the light r-process (the blue
kilonova), followed by the longer-lived IR component associated with the
heavy-r process (the red kilonova). The color evolution, spectral continuum
shape, and IR spectral peaks of this composite model resemble the observed
time evolution of AT 2017gfo. In the model suggested by Fig. 22.11, the
kilonova components are visible only because the gamma-ray burst was
seen off-axis, which suppressed the GRB afterglow because of relativistic
beaming so that the underlying kilonova could be seen.



Fig. 22.12 Evolution of different components of the GW170817 kilonova [131]. The total flux is a
sum of two spatially separated components: the dominantly optical emission from light r-process
isotopes (the “blue kilonova,” labeled Lr) and the dominantly infrared emission from heavy r-process
isotopes (the “red kilonova,” labeled Hr). Adapted by permission of Springer Nature: Nature,
551(7678), “Origin of the Heavy Elements in Binary Neutron-Star Mergers from a Gravitational-
Wave Event, Kasen, D. et al. Copyright (2017).

22.7 Gravitational Wave Sources and Detectors
Let us conclude with a brief overview of the prospects for detecting
gravitational waves in different frequency ranges from astrophysical
sources. Amplitude and frequency ranges for operating and proposed
gravitational wave observatories, along with corresponding ranges expected
for some important astrophysical sources of gravitational waves, were
illustrated earlier in Fig. 22.8. Earth-based detectors like LIGO are prime



instruments for elucidating the physics of neutron stars, black holes, and
core collapse supernovae. Space-based arrays could probe the gravitational
waves emitted from merger of supermassive black holes in the collisions of
galaxies, but also those emitted from ordinary binary stars within the
galaxy. The proposed space-based LISA array of Fig. 22.8 fell victim to
budgetary constraints but variations are being resurrected under the
leadership of the European Space Agency.

Background and Further Reading
See Ref. [100] for a more extensive discussion of gravitational waves and
GW150914. See also the LIGO discovery paper [12], the comments on the
discovery paper in [42], and the paper on astrophysical implications of the
discovery [15] for an overview of GW150914. Numerical relativity
references include Refs. [23, 34, 35, 37, 156], the supernova mechanism
and emission of gravitational waves are discussed in Refs. [129, 136, 137,
150, 157, 162, 234], and neutron star mergers are reviewed in [83]. Short-
period gamma-ray bursts are reviewed in Berger [41] and an overview of
the r-process in neutron star mergers may be found in Thielemann, Eichler,
Panov, and Wehmeyer [213].

Problems
22.1 Assume interference arms of length L = 2 km for a gravitational-

wave detector. At the peak strain of the gravitational wave displayed
in Fig. 22.5, how large would be the change in path length for the
laser light for one pass through the arm? Compare that with the size
of the protons in the atoms making up the detection system (a rough
estimate for the radius of a proton is about 10−13 cm).***

22.2 In the binary black hole merger leading to the gravitational wave
event GW150914, the total mass of the black holes was ∼ 70 M⊙
and the observed frequency at peak amplitude was 150 Hz for the
gravitational wave. Assuming for a rough estimate that the merger
orbits were still described approximately by Keplerian trajectories at
peak frequency, what is the lower limit on the sum of the
Schwarzschild radii for the two colliding black holes and what was



the separation between centers for the two black holes when emitting
gravitational waves at peak frequency? Hint: Because of symmetry,
for gravitational wave emission from a binary the gravitational wave
frequency is twice the orbital frequency for the binary pair.

1 As illustrated in Fig. 16.14, there already was strong indirect evidence for the existence of
gravitational waves, but GW150914 was the first direct confirmation.

2 The detection times were actually separated by about 7 ms because of the finite light (and
gravitational wave) travel time between Livingston and Hanford.

3 The 3 solar masses were converted to gravitational waves over a period of less than half a
second, with a peak gravitational wave luminosity of an astonishing ∼ 200 M⊙ s−1! This
translates through E = mc2 to well over 1056 erg s−1, which is about 23 orders of magnitude
greater than the Sun’s photon luminosity and about 5 orders of magnitude brighter than the
photon luminosity of a supernova.

4 The big bang produced essentially no metals, so the first stars had near-zero metallicity.
Simulations indicate that such stars could have had masses as large as hundreds or even
thousands of solar masses.

5 SN 1987A may be viewed as a multimessenger astronomy event, since it was observed in
neutrinos and at various electromagnetic wavelengths. However, in current usage
“multimessenger” typically has come to mean that one of the messengers is a gravitational
wave. We will use it in that restricted sense here.

6 The discussion in Section 22.6 is a synopsis of a more extensive discussion in Ref. [101] and
Section 24.7 in Ref. [100].
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Appendix A

Constants

Fundamental constants

Gravitational constant: 

Speed of light: c = 2.99792458 × 1010 cm s−1

Planck’s constant: 

Electrical charge unit: 

Fine structure constant: α = (137.036)−1 = 0.0073
Weak (Fermi) constant: 

Mass of electron: 



Mass of proton: 

Mass of neutron: 

Atomic mass unit (amu): Mu = 1.6605390 × 10−24 g = 931.49411 MeV/c2

Avogadro’s constant: NA = 6.0221409 × 1023 mol−1

Boltzmann’s constant: 

Ideal gas constant: Rgas ≡ NAk = 8.314511 × 107 erg K−1 mole−1

Stefan–Boltzmann constant: σ = 5.67051 × 10−5 erg cm−2 K−4 s−1

Radiation density constant: 

Planck mass: MP = 1.2 × 1019 GeV/c2

Planck length: ℓP = 1.6 × 10−33 cm
Planck time: tP = 5.4 × 10−44 s
Planck temperature: TP = 1.4 × 1032 K

Solar quantities
Solar (photon) luminosity: L⊙ = 3.828 × 1033 erg/s
Solar absolute magnitude Mv = 4.83
Solar bolometric magnitude 
Solar mass: M⊙ = 1.989 × 1033 g
Effective surface temperature: 

Solar radius: R⊙ = 6.96 × 1010 cm
Central density: 
Central pressure: 



Central temperature: 
Color indices: B − V = 0.63 U − B = 0.13
Solar constant: 1.36 × 106 erg cm−2 s−1

General quantities
1 tropical year (yr) = 3.1556925 × 107 s = 365.24219 d
1parsec (pc) = 3.0857 × 1018 cm = 206,265 AU= 3.2616 ly
1 lightyear (ly) = 9.4605 × 1017 cm
1 astronomical unit (AU) = 1.49598 × 1013 cm
Energy per gram from H → He fusion = 6.3 × 1018 erg/g
Thomson scattering cross section: σT = 6.652 × 10−25 cm2

Mass of Earth M⊕ = 5.98 × 1027 g

Radius of Earth R⊕ = 6.371 × 108 cm

Useful conversion factors
1 eV = 1.60217733 × 10−12 ergs = 1.60217733 × 10−19 J
1 J = 107 ergs = 6.242 × 1018 eV
1 amu = 1.6605390 × 10−24 g
1 fm = 10−13 cm
0 K = −273.16 Celsius
1 atomic unit (a0) = 0.52918 × 10−8 cm
1 atmosphere (atm) = 1.013250 × 106 dyn cm−2

1 pascal (Pa) = 1 N m−2 = 10 dyn cm−2

1 arcsec = 1″ = 4.848 × 10−6 rad = 1/3600 deg
1 Å = 10−8 cm
1 barn (b) = 10−24 cm2

1 newton (N) = 105 dyn
1 watt (W) = 1 J s−1 = 107 erg s−1

1 gauss (G) = 10−4 tesla (T)
1 gcm−3 = 1000 kg m−3



Opacity units: 1 m2 kg−1 = 10 cm2 g−1

Conversion between normal and geometrized units: see Appendix B.
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Appendix B

Natural Units

In astrophysics it is common to use the CGS (centimeter–gram–second)
system of units. However, in many applications it is more convenient to
define new sets of units where fundamental constants such as the speed of
light or the gravitational constant may be given unit value. Such units are
sometimes termed natural units because they are suggested by the physics
of the phenomena being investigated. For example, the velocity of light c is
clearly of fundamental importance in problems where special relativity is
applicable. In that context, it is far more natural to use c to set the scale for
velocities than to use an arbitrary standard (such as the length of some
king’s foot divided by a time unit that derives from the apparent revolution
of the heavens!) that has arisen historically in nonrelativistic science and
engineering. Defining a set of units where c takes unit value is equivalent to
making velocity a dimensionless quantity that is measured in units of c, as
illustrated below, thus setting a “natural” scale for velocity.

The introduction of a natural set of units has the advantage of more
compact notation, since the constants rescaled to unit value need not be
included explicitly in the equations, and the standard “engineering” units
like CGS may be restored easily by dimensional analysis if they are
required to obtain numerical results. This appendix outlines the use of such
natural units for problems encountered in astrophysics.

B.1 Geometrized Units
In gravitational physics it is useful to employ a natural set of units called
geometrized units or c = G = 1 units that give both the speed of light and the
gravitational constant unit value. Setting



(B.1)

one may solve for standard units like seconds in terms of these new units.
For example, from the first equation

(B.2)

and from the second

(B.3)

So both time and mass have the dimension of length in geometrized units.
Likewise, one may derive from the above relations

(B.4)

(B.5)

(B.6)

and so on. Velocity is dimensionless in these units since cm s−1 is
dimensionless (that is, v is measured in units of v/c).

In geometrized units, all explicit instances of G and c are dropped in the
equations. When quantities need to be calculated in standard units,
appropriate combinations of c and G must be reinserted to give the right
standard units for each term. For example, in geometrized units the
Schwarzschild radius for a spherical black hole is

so both sides of this equation have dimensions of length in geometrized
units. What is the Schwarzschild radius of the Sun in normal units? The
result is obtained by inspection since from above the mass of the Sun is
1.477 km in geometrized units. Thus,



More formally, to convert this equation to CGS units note that rS = 2M
implies that the right side must be multiplied by a combination of G and c
having the units of cm g−1 to make it dimensionally correct in the CGS
system. This clearly requires the combination G/c2, so in CGS units the
Schwarzschild radius is

Inserting the mass of the Sun in grams and the CGS values for G and c then
gives the same answer as found above:

As a second example, the escape velocity from the radial coordinate R
outside a spherical black hole is

in geometrized units. Thus, the escape velocity at the event horizon (R = rS
= 2M) is

(that is, v = c). In the CGS system velocity has the units of cm s−1, so to
convert to the CGS system the right side of the above equation must be
multiplied by a combination of G and c to give this dimensionality. The
required factor is clearly  and

in CGS units. Working the preceding problem in these units,



which is the same result as before.

B.2 Natural Units in Particle Physics
In relativistic quantum field theory the explicit role of gravity in the
interactions can be ignored (except on the Planck scale), but the equations
expressed in standard units are populated by a multitude of the fundamental
constants c (expressing the importance of special relativity) and ħ
(expressing the importance of quantum mechanics). It is convenient in this
context to define natural units where ħ = c = 1. Using the notation [a] to
denote the dimension of a and using [L], [T ], and [M] to denote the
dimensions of length, time, and mass, respectively, for the speed of light c,

(B.7)

Setting c = 1 then implies that [L] = [T ], and since E2 = p2c2 + M2c4,

(B.8)

where p = ħk. Furthermore, because

(B.9)

one has

(B.10)

if ħ = c = 1. These results then imply that [M] may be chosen as the single
independent dimension of our set of ħ = c = 1 natural units. This dimension
is commonly measured in MeV (106 eV) or GeV (109 eV). Useful
conversions are

(B.11)



where 1 fm = 10−13 cm (one fermi or one femtometer). For example, the
Compton wavelength of the pion is

in ħ = c = 1 units. This may be converted to standard units through

where Eq. (B.11) was used.
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Appendix C

Mean Molecular Weights

In this appendix the formula for the mean molecular weight quoted in
Section 3.4.2 is derived. The fraction by number fi of each ionic species in
the gas is

(C.1)

where  is the ionic number density in Eq. (3.18) and  The
average mass μI of an ion in the gas in atomic units is then

(C.2)

where Eq. (3.18) and  have been used. Upon ionization, the
average number of electrons produced per ion is  where yi
is the fractional ionization of the species i (yi = 0 for no ionization and yi =
1 if the species i is completely ionized). Thus the electron number density 

 associated with ionization of the species i is given by

(C.3)

The total number of particles produced by the ionization of an average
atom i is then one for the residual ion plus z for the ionized electrons and

(C.4)



where the identity  has been employed in the
second line. Then the average mass of a particle (atoms, ions, and electrons)
in the gas is given by

(C.5)

where the contribution of electrons to the mass has been ignored and in the
final expression the first term is contributed by the ions and the second by
electrons.

With this formalism the actual gas (a mixture of electrons and different
atomic, possibly molecular, and ionic species) has been replaced with a gas
containing a single kind of fictitious particle having an effective mass μ
(often termed the mean molecular weight) that is given by Eq. (3.19). As
discussed in Section 3.11.1, in very hot stars the momentum and energy
density carried by photons is non-trivial and this will further modify the
effective mean molecular weight of the gas.



D
Appendix D

Reaction Libraries

This appendix outlines two parameterizations and associated libraries for
the nuclear reaction rates required in practical stellar physics calculations
(see Section 5.8). A more comprehensive discussion of these and other rate
compilations, and tools for dealing with reaction rates, may be found in Ref.
[11].

D.1 Caughlan–Fowler Rates
The Gamow peak is not quite gaussian (the peak is asymmetric about the
maximum with a high energy tail) so the result (5.31) is only approximately
correct. By using expansions to characterize the deviation from gaussian
behavior of the realistic curve and allow a slow variation of S(E) around
S(E0), correction terms may be derived for the simple result (5.31) that give
a more accurate representation of the thermally averaged cross section (see
Problem 5.6 and the discussion in chapter 4 of Ref. [188], for example).
One parameterization that incorporates such correction terms and is used
often in reaction rate compilations is

(D.1)

where a, b, and fn are parameters. The nonresonant rates for the Caughlan
and Fowler compilation [88] used in some problems have been
parameterized in this manner.

D.2 The ReacLib Library



Another commonly used parameterization of the nuclear reaction rates
important in astrophysics is the ReacLib Library [182], which is a
systematic compilation of measured rates and theoretical rates where data
are not available. At the time of this writing the ReacLib library contains
the parameters necessary to compute rates for more than 60,000 reactions,
with the rates expected to be reliable in most cases over a range of
temperatures from 107 to 1010 K . Many rates used in this book have been
derived from the ReacLib library.

D.2.1 Reaction Classes
In ReacLib reactions are sorted into eight reaction classes according to the
number of nuclear species before and after the reaction, as illustrated in
Table D.1. Only nuclear species are displayed explicitly in the labeling. For
example, the photodisintegration γ + 28Si → 24Mg + α is classified as a → b
+ c (reaction class 2) because the photon is ignored in the labeling.
Likewise neutrinos, antineutrinos, electrons, and positrons are suppressed in
the reaction labeling. In Table D.1 classes 1–3 are termed 1-body reactions,
classes 4– 7 are termed 2-body reactions, and class 8 consists of 3-body
reactions, according to the number of nuclear species on the left side of the
reaction equation.

Table D.1 Reaction classes in the ReacLib library



Expressed in nuclear physics notation, the various reactions correspond
to the vectors in the neutron–proton (N–P ) plane illustrated in Fig. D.1. For
example, a (p, α) reaction generally decreases the proton number by one
and decreases the neutron number by two for the “target” nucleus: in p +
15N → α + 12C, which can be expressed compactly as 15N(p, α)12C, the
proton number of 15N (with seven protons and eight neutrons) is decreased
by one and the neutron number decreased by two, converting it into 12C
with six protons and six neutrons, and an α-particle is emitted.

Fig. D.1 Vectors describing some nuclear reactions on an isotope with proton number Z and neutron
number N that may play a role in stellar structure and evolution studies.

D.2.2 Parameterization of Rates



The rates in ReacLib are then expressed in terms of a sum over components
Rk

(D.2)

where each component Rk has a temperature dependence that is
parameterized in the form

(D.3)

where T9 is the temperature in units of 109 K and the parameters pn are
tabulated constants. In some cases a single component Rk is sufficient to
parameterize a rate over the full temperature range of interest, but in many
cases several terms are required in the sum over Rk to adequately
parameterize the temperature dependence. If there are two terms, typically
one is labeled as resonant and the other as nonresonant, but this is
sometimes only a formal distinction in the compilation and not necessarily a
statement about reaction mechanism.

An example of a reaction rate parameterized by two components is
shown in Fig. D.2. The corresponding ReacLib parameters for the two
components are shown in Table D.2. Notice the extremely large temperature
dependence exhibited for the rate plotted in Fig. D.2: a change of one order
of magnitude in T yields a change in the reaction rate of seven orders of
magnitude. This illustrates the necessity of a parameterization that can
accommodate very large changes of rates with temperature.



Fig. D.2 A reaction rate expressed in terms of two components in the ReacLib parameterization of
Eqs. (D.2)–(D.3). Parameters for the two components of this reaction are given in Table D.2.

Table D.2 ReacLib parameters for the reaction 12C(α, γ )16O

D.2.3 Rates in Reaction Networks
The coupled set of ordinary differential equations describing the evolution
of nuclear species in stellar burning environments that was described
schematically in Box 6.1 is often expressed in the specific form [119]

(D.4)

where the three terms represent 1-, 2-, and 3-body reactions, respectively,
that alter the abundance of species i, the abundance Yi is defined in Eq.
(3.18), NA is Avogadro’s constant, λj is a 1-body decay rate, 〈jk〉 is the
velocity-averaged 2-body reaction rate [with a compact notation 〈ij 〉≡ 〈σv〉ij



] defined in Eq. (5.18), 〈jkℓ〉 is a corresponding velocity-averaged 3-body
reaction rate, and the η factors are constants that account for the signs of the
terms (positive for sources and negative for sinks for Yi ) and for counting
particles (without double counting identical particles). Specifically,

(D.5)

where Ni is the number of particles of species i created or destroyed in a
single reaction, M is the number of identical particles in the entrance
channel, and sgn is +1 if the reaction increases Yi and −1 if it decreases Yi .
The denominator factors M! prevent overcounting of interacting particles in
determining the reaction rate,1 and the numerator factors Ni keep track of
how many particles of species i are created or destroyed in each reaction.

The sums in Eq. (D.4) represent contributions from all reactions that can
increase or decrease Yi , with the reactions distinguished by the indices. The
parameterized rates R defined in Eq. (D.2) generally correspond to

1. λj ≡ 1/τj (where τj is the decay or photodisintegration mean life) in
units of s−1 for 1-body reactions,

2. NA〈jk〉 in units of cm3mol−1s−1 for 2-body reactions, and

3.  in units of cm6mol−2s−1 for 3-body reactions

in the terms of Eq. (D.4). The following example illustrates explicitly
equations (D.4) for a small thermonuclear network.

Example D.1 Consider a simple network including only the three species
{α, 12C, 16O} connected by the four reactions 3α ⇋ 12C and α + 12C ⇋ 16O
+ γ . (There are other reactions that these species can undergo, but for
simplicity let us assume only these four to be operative.) There are three
equations (D.4) corresponding to the index i = {α, 12C, 16O},



where a compact notation  has been employed,
the index α12 is shorthand for the reaction α + 12C → 16O + γ , the index 3α
is shorthand for the reaction 3α → 12C, and the quantities

are the reaction rates for the corresponding reactions evaluated from Eqs.
(D.2) and (D.3). These rates, and a numerical solution of the preceding
equations for constant temperature T9 = 5 and density ρ = 108 g cm−3, are
shown in the following figure.

This example exhibits many features found in more realistic
thermonuclear networks (which can contain as many as thousands of
species with tens of thousands of reactions): it contains 1-body, 2-body, and
3-body reactions, and the equations are coupled and nonlinear. For example,
from the three differential equations the change in abundance of any isotope
depends non-trivially on the abundance of other isotopes in the network.

In very simple cases the coupled set of nonlinear ordinary differential
equations defined in Eq. (D.4) may be solved analytically but generally they



must be solved numerically. Their solution presents serious computational
issues associated with the rate parameters in the equations often differing by
many orders of magnitude. Numerically, equations with this property are
said to be stiff and their efficient solution requires special numerical
techniques that are beyond the scope of our discussion. An overview of the
methods used to solve these equations numerically may be found in Refs.
[26, 99, 119, 215].

D.2.4 Example: Mean Life for a Species
It is sometimes useful to consider the mean life for destruction of a species
through a reaction or set of reactions by generalizing the law of radioactive
decay.

Radioactive decay: The change in abundance Y with time caused by decay
of some radioactive species is governed by the differential equation

(D.6)

where λ is the decay constant, the mean life denoted by τ and half-life
denoted by t1/2 are related to λ by

(D.7)

and ln 2 ∼ 0.693 denotes the natural (base-e) logarithm of 2. For radioactive
decay these are all independent of time so the solution of Eq. (D.6) is a
decaying exponential,

(D.8)

from which we may interpret λ as the rate of decay, τ as the time for Y/Y0 to
fall by a factor e−1, and t1/2 as the time for Y/Y0 to fall by a factor  If N
different decay paths deplete a species, the decay rate and the inverse mean
life are additive



(D.9)

provided that the N decay modes are independent.

Depletion by 1-body reactions: The preceding considerations can be
generalized to depletion of a species i described by Eq. (D.4). First consider
a single 1-body term that reduces Yi according to Ẏi = −λi Yi = −(1/τi )Yi .
Two general classes of reactions would give an equation of this sort:

1. Radioactive decay of species i; for example, the β-decay 17F → 17O +
β+ + νe, which corresponds to reaction class 1 in Table D.1.

2. Photodisintegration of species i; for example γ + 28Si → 4He + 24Mg
which corresponds to reaction class 2 in Table D.1. (This is considered
1-body because there is only one nuclear species on the left side and
the photon number isn’t tracked since it is not conserved.)

The first case has already been discussed. The second case looks formally
like radioactive decay except that τi is no longer necessarily constant
because the rate of photodisintegration depends on the temperature, which
may change with time. Nevertheless, if the photodisintegration rate does not
change too rapidly with time it is useful to define an approximate mean life
for decay by photodisintegration  set by Eq. (D.4).

Example D.2 From Fig. 6.9 the rate-determining step γ + 28Si → 4He +
24Mg in silicon burning has a rate λ ≃ 10−4 s−1 at T9 = 3, implying a mean
life for silicon photodisintegration of τ = λ−1 ∼ 104 s at that temperature. In
the simulation of silicon burning at constant T9 = 3 in Fig. 6.10 the 28Si
begins to be noticeably depleted at t ∼ 104 s (about 10% of the original
silicon has been consumed by that time). In this simulation reactions such
as 4He + 24Mg → 28Si + γ are included that replenish 28Si, so its mass
fraction does not fall to e−1 of the initial value until t ∼ 4 × 106 s.
Nevertheless, this example illustrates that τ ∼ 104 s is a useful rough
estimate of the timescale for silicon burning under these conditions.



Depletion by 2-body reactions: Next, consider depletion of species i by a 2-
body reaction i + k → X, where X denotes some number of isotopic
products. From Eq. (D.4) the depletion of i by this single reaction will be
governed by the differential equation

(D.10)

where Ni is the number of times species i appears on the left side of the
reaction equation, M is the number of identical particles on the left side of
the reaction equation, and Rik is the reaction rate in units of cm3 mol−1 s−1

for i + k → X determined from Eqs. (D.2) and (D.3). The quantity

(D.11)

is not constant because ρ, Rik , and Yk will evolve with time. But if τik varies
slowly it may be interpreted as an approximate mean life for depletion of i
by the reaction i + k → X.

Example D.3 Let Yi = Yp denote the proton abundance and consider how it
changes because of the single reaction p + p → β+ + νe + d. In Eq. (D.10)
one has i = k = p and N/M! = 2/2! = 1, and sgn = −1 since the reaction
reduces Yp, so

(D.12)

where Rpp is Eq. (D.2) evaluated for the reaction p + p → β+ + νe + d. Thus
τpp may be interpreted as the approximate mean life for destruction of a
proton in the reaction p + p → β+ + νe + d. This relation is used in Section
6.1.1 to estimate the timescale for hydrogen burning in the PP chains.

D.3 Representative Applications



Rates computed from reaction libraries are useful for a quantitative
understanding of various stellar processes that are discussed in the text. For
example, the rates compared in Example 5.7 to examine the competition
between β-decay in the CNO cycle and the breakout reaction 13N(p, γ )14O
leading to the hot-CNO cycle, the CNO-cycle network integrations shown
in Box 6.1, Fig. D.3 illustrating some rates important in the advanced
burning stages discussed in Section 6.5, and Fig. D.4 displaying some
competing α-capture and photodisintegration rates important in silicon
burning, were all computed using rates from the ReacLib library.

Fig. D.3 Some rates important in advanced burning stages for stellar evolution.



Fig. D.4 Some rates for competing capture reactions A(α, γ )B and photodisintegration reactions A(γ ,
α)B that are important for silicon burning. Photodisintegration rates are in units of s−1 and α-capture
rates are in units of cm3 mol−1 s−1.

The α-capture rates and photodisintegration rates shown in Fig. D.4 have
different units, so to compare them (for example, to examine their
competition in silicon burning) they must be converted to the same units. In
general, for the reactions a+b → c and c → a+b, assuming only these
reactions to contribute, Eq. (D.4) may be used to write

where Rc is computed from Eq. (D.3) for c → b + c and is equal to λc, and
Rab is computed from Eq. (D.3) for a + b → c and is equal to NA〈σv〉ab.
Thus to compare the two contributions to Ẏi on the same footing, one
should compare RcYc with RabρYaYb, both of which will have units of s−1.
For example, in comparing the relative rates for



in Fig. D.4, the plotted rate for 24Mg + γ → α + 20Ne should be multiplied
by Y24 (where a shorthand notation subscript 24 is used to stand for 24Mg)
and the plotted rate for α + 20Ne → 24Mg + γ should be multiplied by
ρYαY20 to compare in common units of s−1.

1 The product nαnXvσαβ (v) is the rate per unit volume for the 2-body reaction (5.12) and nαnX is the
number of unique particle pairs (α, X) contained in the unit volume. But for the collision of
identical particles (so that α = X), the number of independent particle pairs (α, α) is not 

 but  Therefore, for two identical particles the rate expression must be
multiplied by a factor of 1/(1 + δαX) = 1/2 to avoid double counting. More generally, one finds
that for M identical particles a factor 1/M! is required to prevent overcounting.
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Appendix E

A Mixing-Length Model

In this appendix a simple mixing-length model of convection is constructed
according to the assumptions described in Section 7.9. The model is based
primarily on the discussion in Carrol and Ostlie [68].

E.1 Convective Velocities
Consider a rising blob in a convective region described by an ideal gas
equation of state that is assumed to be in pressure equilibrium. By
differentiating both sides of the ideal gas law P = ρkT /μ,

(E.1)

where δx indicates the difference in the variable x evaluated inside and
outside the blob. But pressure equilibrium between the bubble and
surroundings implies that the left side vanishes and

(E.2)

The buoyancy force per unit volume f acting on the blob is

(E.3)



Initially the temperature difference δT between the blob and surroundings is
zero, since the blob begins with the same temperature as its environment.
Thus, the force averaged over the motion of the blob may be approximated
by

(E.4)

where δTf is the final temperature difference between the blob and
surroundings. The work W done by the buoyancy force goes into kinetic
energy Ekin of the blob (any viscous forces are neglected in this discussion).
These quantities are given by

(E.5)

where ℓ  is the mixing length and v is the average velocity of the blob.
Therefore, equating the kinetic energy and the work gives 
which may be solved for the average velocity, giving

(E.6)

The mixing length ℓ is critical to the entire formulation but has not been
specified yet. We may expect that the pressure scale height Hp is the most
relevant length scale for the overall problem: it determines the distance over
which there is a substantial change in gas pressure and the assumption of
minimal difference in properties between convective blobs and the
surrounding medium would likely not be justified if the mixing length were
large measured on this scale. Therefore, we parameterize the mixing length
in units of the scale height,

(E.7)

where the constant of proportionality α is termed the mixing-length
parameter. It will be taken as adjustable and we expect that it should be of
order unity to be consistent with our assumptions. It will be necessary to
justify, after the fact in specific cases, whether this choice implies violation



of the other assumptions such as convective velocities being small
compared with the local speed of sound. From Eqs. (E.5)–(E.7), (7.35), and
(7.46), and using δT ∼ δ(dT /dr) dr ∼ δ(dT /dr) ℓ,

(E.8)

for the average convective velocity [68].

E.2 Convective Energy Fluxes
Our primary concern is energy transport, so let us now ask what the
convective energy flux associated with the velocity (E.8) would be. The
convective flux Fc is given by a product of the temperature difference δT
between the blob and its surrounding environment, the specific heat at
constant pressure cp (because of our pressure equilibrium assumptions), the
density ρ, and the average convective velocity v:

(E.9)

The factor of  is included to account for the assumption of balanced
upward and downward motion of blobs, but such numerical factors will not
be very important because of the phenomenological nature of the mixing-
length model. Substituting the expression (E.8) for the average convective
velocity in Eq. (E.9) gives

(E.10)

But from Equations (E.7) and (7.46),

(E.11)

and the convective flux is



(E.12)

Equation (E.12) gives us an approximate expression for the convective
flux, but to use it a value of the phenomenological parameter α must be
chosen and the difference between the temperature gradient of the blob and
its surroundings δ(dT /dr) must be determined. Solving Eq. (E.12) for this
difference gives

(E.13)

If the critical temperature gradient is exceeded the energy transport through
a region could involve a combination of radiative and convective transport.
Therefore, it is necessary to determine the relative contribution of radiative
and convective energy fluxes in convective regions. Assume for the sake of
argument that all flux is being carried by convection. Then

(E.14)

where L(r) is the luminosity evaluated at the radius r. For this special case
of pure convection, substituting (E.14) into (E.13) gives

(E.15)

How superadiabatic does the temperature gradient have to be in order for
the preceding equation to be correct (that is, for all flux to be carried by
convection)? The ratio of the superadiabatic gradient to adiabatic gradient is
obtained by dividing Eq. (E.15) by the expression (7.34) for the adiabatic
gradient. These equations are used to analyze subsurface convection for the
Sun in Example 7.4, where it is found that the temperature gradient in the
convective zone is only slightly steeper than the adiabatic gradient. This
then justifies the prescription that we adopted in Chapter 7: assume purely
radiative transport unless the actual temperature gradient becomes steeper
than the adiabatic temperature gradient, in which case the transport is



assumed to be purely convective with a temperature gradient equal to the
adiabatic gradient.



F

Appendix F

Quantum Mechanics

In modern astrophysics we often have to deal with concepts from quantum
mechanics and relativistic quantum field theories. For example, equations
of state for dense matter, neutrino oscillations, and the resolution of the
solar neutrino problem through the MSW effect are all essentially quantum
phenomena, and lie at the heart of many modern topics for which students
display keen interest. However, many students at the advanced
undergraduate level, particularly those who are not physics majors, have
had a basic introduction to quantum concepts in elementary courses but
may not yet have had a rigorous course in these matters at the time that they
encounter the material in this book. A conceptual summary of quantum
mechanics in dense-matter applications has been given in Box 3.6, but this
appendix gives a brief overview in more formal terms. It is no substitute for
a more substantial course in quantum mechanics and quantum field theory,
but may provide some orientation to concepts and terminology for students
without a solid quantum background who wish to understand at least the
basic ideas for topics like dense-matter equations of state and solar neutrino
oscillations. The author has found that even students who have not yet had a
full course in quantum mechanics are able to grasp the essence of say
neutrino oscillations and the MSW resonance if they understand the basic
concepts contained in this appendix.

F.1 Wavefunctions and Operators



Quantum mechanics describes the world using wavefunctions ψ and
operators Ô. A useful realization is a matrix representation for the Ô
operating on column vectors for ψ and row vectors for the complex
conjugate ψ∗. In the general case operators don’t commute  and
those corresponding to observables are hermitian:  where †
denotes Hermitian conjugation: complex-conjugation of elements and
transposition of rows and columns in a matrix representation.

F.2 Wave Equations
If there is no time dependence, the wavefunction ψ and associated energy E
result from solving a partial differential equation,

(F.1)

(Schrödinger equation or wave equation), where Ĥ is the Hamiltonian
operator. Solutions ψ are termed the eigenstates or eigenvectors and
energies E the eigenvalues of the problem. The time-dependent Schrödinger
equation is

(F.2)

and its solution defines a time-evolution operator ˆT that propagates a
wavefunction at time t = 0 into the corresponding one at time t according to

(F.3)

where E is the energy. The Schrödinger equation is nonrelativistic but a
propagator of the form (F.3) applies also to ultrarelativistic particles like
neutrinos if their spin structure is neglected.

F.3 Calculation of Observables
The state is specified by ψ, while an operator Ô applied to ψ extracts
information or causes transitions, but ψ and Ô are not observable.



Observables are related to matrix elements

(F.4)

where τ denotes parameters, and in Dirac notation a “ket” |ψ〉 is a
wavefunction, a “bra” 〈ψ| is its complex conjugate, and a “bra–ket” 〈ψi | · ·
· |ψj 〉 implies integration over all variables. For example, the probability
that Ô operating on |ψj 〉 causes a transition to |ψi 〉 is

(F.5)

A special case is the overlap, where Ô is set to the unit operator ˆ1 and

(F.6)

Then 〈ψi |ψj 〉 is the probability amplitude that ψj is a component of the state
ψi and |〈ψi |ψj 〉|2 is the probability that it is.

F.4 Unitary Transformations
Unitary transformations are of central importance in quantum mechanics
because they preserve all quantum-mechanical observables. Thus
everything of consequence that is true about a quantum system remains true
after a unitary transformation. In a matrix representation unitary
transformations are implemented by unitary matrices U, which have the
properties that

(F.7)

where I denotes the unit matrix and the dagger denotes the hermitian
conjugate. A unitary transformation for a quantum system then consists of
the following simultaneous operations on the operators Ô and wavefunction
|ψ〉

(F.8)



In the special case that the transformation matrices contain Ô ≡ U only real
entries the unitarity condition reduces to the orthogonality condition, OTO
= OOT = I, where OT denotes the transpose of O. Hence, unitary
transformations are a complex generalization of orthogonal transformations.
For example, the transformation matrix in Eq. (11.2) is both unitary and
orthogonal (Problem 11.6).

F.5 Quantum Field Theory
If |ψ〉 is a many-body state it is useful to generalize to a quantum field
theory. Similar concepts apply but now wavefunctions are fields defined
over all space and particles are quanta of the field. This is an instance of
quantum particle–wave duality: the system may be described in terms of
fields, or in terms of localized quanta of those fields. If v ∼ c, Lorentz
invariance is required, giving a relativistic quantum field theory. The
machinery is more complex than for basic quantum mechanics but the
principles are the same. In particular, observables are specified in terms of
matrix elements. Construction of a quantum field theory typically starts
with a Lagrangian density L , which generalizes the classical Lagrangian to
a continuous field. For quantum field theory a graphical representation of
matrix elements called Feynman diagrams becomes extremely useful (see
Box 11.3).



G
Appendix G

Using arXiv and ADS

Some journal articles referenced in this book are published in journals with
limited public availability. They will likely be available from university
libraries but readers without immediate access to a university library may
still be able to access many of these papers free of charge by using the
arXiv preprint server or the ADS Astronomy Abstract Service. Where
possible, references to journal articles in the bibliography include sufficient
information to allow arXiv and/or ADS to be used to retrieve copies of the
articles according to the following instructions.

arXiv access: An arXiv reference will be of the general form arXiv: xxxx.
Typing the string xxxx into the Search or Article-id field at http://arxiv.org
and clicking the search icon will return an abstract with links to the article
in PDF form, and a more general search on arXiv can be implemented by
clicking the Form Interface button.

ADS access: The ADS interface may be found at
http://adsabs.harvard.edu/bib_abs.html.

(i) If a DOI number of the form DOI: yyyy is given for a reference, the
article often can be accessed through the ADS interface by putting the
string yyyy into the Bibliographic Code Query box and clicking Send
Query.
(ii) If a BibCode reference BibCode: zzzz is given, the article can be
accessed through the ADS interface by typing the BibCode string zzzz
into the Bibliographic Code Query box and clicking Send Query.
Alternatively, the BibCode string can be used directly in a Web
browser. For example, BibCode: 1971Natur.232..246B can be accessed
as http://adsabs.harvard.edu/abs/1971Natur.232..246B.

http://arxiv.org/
http://adsabs.harvard.edu/bib_abs.html
http://adsabs.harvard.edu/abs/1971Natur.232..246B


(iii) A search for a general article may be implemented with the ADS
interface by giving the Journal Name/Code (there is a link on the page
to the list of codes for standard journals; for example The
Astrophysical Journal is ApJ), Year, Volume, and beginning Page of
the article, and clicking Send Query.

Articles in ADS are scanned so the quality is not high, but they are
generally quite readable.

Example G.1 Reference [219] corresponds to an article on a Wolf–Rayet
star published by Tuthill et al. in the Astrophysical Journal. If you do not
have access to that journal,

1. Reference [219] also gives an arXiv reference 0712.2111. Putting
0712.2111 into the Search or Article-id field at http://arxiv.org and
clicking the search icon should return an abstract with links to a PDF
version of the preprint for the journal article.

2. Ref. [219] also lists the DOI number DOI: 10.1086/527286; putting
10.1086/527286 into the Bibliographic Code Query box at
http://adsabs.harvard.edu/bib_abs.html and clicking Send Query
should return links to a scanned PDF version of the journal article.

Other references that list a DOI, BibCode, or arXiv number may be
retrieved in a similar way as for this example.

http://arxiv.org/
http://adsabs.harvard.edu/bib_abs.html
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accretion-induced phenomena, 415
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Eddington luminosity, 218
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limiting rate, 413
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temperature, 413
wind-driven, 401, 410
X-ray burst, 425
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as elevators, 409
as energy-storage reservoirs, 415
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heating, 408
internal angular momentum transfer, 222, 409
luminosities, 409



active galactic nuclei, 416, 469
adiabatic index, 57
ADS astronomy abstract service, 522
advection, 90
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and planetary nebulae, 316
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deep convection, 308, 314
dredge-up episodes, 317
ejection of envelope, 315
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superwind, 317
thermal pulses, 308
AGN, see active galactic nuclei
Algol paradox, 416
Algol variables (algols), 418
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formation, 372
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tests of general relativity, 373
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Castor, 14
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evolution, 405
formation of massive, 486
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mass function, 387
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visual, 18
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for gamma-ray bursts, 465, 469
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Hawking, 393
imaging event horizons, 394
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Boltzmann equation, 32, 36
Bose–Einstein distribution, 69
BPM 37093, 358
bremsstrahlung radiation, 158, 179
broken symmetries, 255
brown dwarfs, 215

carbon–nitrogen–oxygen cycle, see CNO cycle
cataclysmic variables, 415
causality and source size, 390, 468
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chirality, 181, 274
chromosphere, 32
clusters
age of, 44
globular, 3, 43
open or galactic, 3, 43



turnoff point, 43, 44, 418
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collapsar model of gamma-ray bursts, 471
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Compton scattering, 157, 179
concentration variables
abundance, 59
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mass fraction, 59
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convection
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and helium core burning, 306
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convective instability, 163
convective velocity, 516
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in core collapse supernova, 447, 448
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in the Sun, 174
Ledoux, 165
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mixing-length theory, 171, 173, 516
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radiative temperature gradients, 171
role of adiabatic index, 168
role of pressure gradient, 169
salt-finger, 166, 167
Schwarzschild, 164
standing accretion shock instability (SASI), 449
surface ionization zones, 177
coordinates
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Lagrangian, 88, 94
Coulomb barrier, 117
Coulomb forces, 107
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dark ages, 330
de Broglie wavelength, 67, 71, 78
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deflection of light by gravity
gravitational curvature radius, 381
gravitational lensing, 395, 484
degeneracy
lifting of, 305, 423
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distance modulus, 8
DOI number, 522
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double pulsars, 372
formation, 372
tests of general relativity, 373
doubly-diffusive instability, see salt-finger convection
dredge-up episodes, 303

Eddington luminosity, 218, 314
Eddington model (of star), 81
effective temperature
and blackbody radiators, 10
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Einstein equation, 382
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energy conservation for stars, 95
energy production rate, 123, 137
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energy transport, 153
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in degenerate matter, 158
Kramer’s law, 160
mean free path, 155
neutrino emission, 153, 178, 327, 329
photon absorption, 158
photon opacities, 159
radiation, 153, 157
Thomson scattering, 157
energy widths, 116
equation of state, 53
nonrelativistic gas, 70
adiabatic, 65
and de Broglie wavelength, 67, 71
and quantum mechanics, 67, 353
and quantum statistics, 67
and special relativity, 353
Bose–Einstein distribution, 69
classical gas, 69, 70
closing stellar equations, 190
degenerate, 66, 72, 74, 78
density of quantum states, 71
Fermi–Dirac distribution, 69
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matter and radiation, 79
Maxwell distribution, 70
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equivalence principle, 379
Euler equation, 406
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Eulerian derivative, 90
event horizons, 378
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Fermi–Dirac distribution, 69
Feynman diagrams, 258
first law of thermodynamics, 56, 94
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function of state, see state functions
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gamma-ray bursts, 460
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collapsar model, 471
cosmological origin, 464
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Lorentz γ -factor, 469
nomenclature, 464
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power-law spectrum, 467
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general covariance, 379
general relativity, see gravity
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and strength of gravity, 381
gravitational lensing, see deflection of light by gravity
gravitational stability, 78, 80, 96
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and equations of state, 482
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template waveforms, 480
test of general relativity in strong gravity, 476
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and curved spacetime, 380, 381
general covariance, 379
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Newtonian, 78, 86
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Poisson equation, 86
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GRB, see gamma-ray bursts
GW150914
detection, 482
luminosity, 485
properties of (table), 485
waveform, 483
GW170817, 491

Hayashi tracks,
dependence on composition and mass, 214
forbidden zone, 212
heat
and inexact differentials, 57



and work in non-adiabatic pulsations, 340
change is not a state function, 57
flow though mass shell, 95
Heisenberg uncertainty principle
and crystallization of white dwarfs, 358
and delocalized electrons, 318
and momentum, 78
and neutrino oscillations, 259
and quantum pressure, 77
energy widths, 116
statement of, 67
virtual particles, 258
helicity, 180, 181
helioseismology, 233
and asteroseismology, 358
and speed of sound in Sun, 236
g-modes, 233, 358
p-modes, 233
helium burning
and anthropic principle, 146
energy production rate, 142, 143 equilibrium population of 8Be, 139
ground state of 12C, 141
helium flash, 140
helium ignition on the RGB branch, 304
helium main sequence, 306
Hoyle resonance, 140
NSE, 140
outcome, 146
production of neon, 143
production of oxygen, 143
simulated, 145
temperature sensitivity, 142, 306
triple-α, 138, 139
helium flash, 140, 305
helium main sequence, 306
helium shell flashes, see thermal pulses
Herbig–Haro objects, 201



Hertzsprung gap, 303, 488
Hertzsprung–Russell (HR) diagram, 32
evolution of, 49
excitation and ionization, 32
for globular clusters, 43
for open clusters, 43, 44
for stars near the Sun, 41, 42
from Hipparcos data, 42
giant stars, 43, 46
instability strip, 337
ionization and Saha equations, 33
luminosity classes, 45
main sequence, 42, 46
Morgan–Keenan (MK) system, 45
spectral classes, 32, 38
supergiant stars, 43, 47
temperature boundaries of instability strip, 343
white dwarfs, 43
hierarchical triple-star system, 371
Hipparcos satellite, 7, 42, 48
homology, 208
hot CNO cycle, 423
Hoyle resonance in 12C, 140
HR diagram, see Hertzsprung–Russell (HR) diagram
Hubble parameter, 495
hydrogen burning
CNO catalysis, 112
CNO cycle, 110–113
competition of PP chains and CNO cycle, 113
efficiency of, 109
in earliest stars, 113
PP chains, 110, 113
hydrostatic equilibrium, 86
and radiation pressure, 435
conditions for, 86
contrasting Eulerian and Lagrangian descriptions, 89
Eulerian description, 88, 188



for polytropes, 192
for Sun, 229
in general relativity, 365
Lagrangian description, 88, 188
onset in protostar collapse, 209
Oppenheimer–Volkov equations, 366
Poisson equation, 86
virial theorem, 92

IMF, see initial mass function (IMF)
initial mass function (IMF), 201, 219, 335
instability
convective, 163–166, 168–170, 230, 448
doubly diffusive, 167
gravitational, 80, 203, 207, 354
of iron core, 324
pair-instability supernova, 434, 435
pulsational, 27, 337, 342, 343
Schönberg–Chandrasekhar, 303, 304
thermal pulses, 308
thermonuclear runaway in degenerate matter, 305, 415, 416, 421–423,
426, 430, 434, 435
thin-shell, 308, 310
instability strip,
and κ-mechanism, 342
temperature boundaries, 343
intensive properties, 92
interstellar reddening, 41
ionization
and mean molecular weight, 59
and Saha equations, 33, 35, 68
by pressure, 66, 68, 77
by temperature, 33, 38, 68
helium ionization zones, 343
hydrogen ionization zones, 343
in solar surface, 36
of helium, 35, 343



of hydrogen, 35, 343
of metals, 62
iron peak, 107

jets
collapsar model, 471
from gamma-ray bursts, 464
Lorentz γ -factor, 469

Kelvin–Helmholtz timescale, see timescale
Kepler’s laws, 16, 18, 387
Kerr spacetime
metric, 385
vacuum solution, 385
kilonova, 493, 495, 496
kinetic energy for stars, 95
Kramer’s law, 160

Lagrange points, 403, 404
Lagrangian coordinates, 88, 94
Lagrangian derivative, 90
Lane–Emden equation, 193, 195, 349
lanthanides and opacity, 495
Large Magellanic Cloud (LMC), 440, 451
LBV, see luminous blue variables
lifecycles, see stellar lifecycles
LIGO, 373, 392, 476, 478, 482
limiting lower mass for stars, 214
limiting upper mass for stars, 217, 218
line element, see metric
Lorentz factor
definition, 384, 467
for gamma-ray bursts, 468
for LHC, 469
for quasars, 469
luminosity
and magnitudes, 3



expression for, 171, 189
for mass shell, 95
of stars, 3
of Sun, 11
photon, 4
relationship to density, 28
relationship to mass, 22
luminosity classes, 45
pressure broadening of spectral lines, 46
spectroscopic parallax, 48
surface densities, 47
luminous blue variables, 327

macronova, see kilonova
magnetars, 374
magnitude, 3, 12
absolute, 8, 28
apparent, 5
blue sensitive (B), 5
bolometric, 8
normalizations, 6
of the Sun, 8
photovisual (V), 5
ultraviolet (UV), 5
visual, 5
main sequence stars, 42
Majorana neutrinos, 257
mass density, 59
mass fraction, 59
mass loss
and black hole formation, 486
and massive black hole binaries, 487
evidence from white dwarf masses, 4
from AGB stars, 314
from RGB stars, 304
from Wolf–Rayet stars, 326
from young stars, 326, 487



soot and interstellar dust, 318
source of luminosity, 4
mass–luminosity relationship, 20, 22
masses
atomic, 106
binding energy, 108
effective neutrino mass in medium, 273
effective plasmon mass in medium, 179
for binary stars, 387
gravitational, 379
inertial, 379
mass excess, 107
mass matrix, 274
nuclear, 106
Maxwell distribution, 70, 115
mean free path, 155
mean molecular weight, 55, 58–60
metal-poor stars, 24, 330, 487
metallicity, 62
and binary black holes, 487
and gamma-ray bursts, 469
and opacity, 470
and the r-process, 457
enrichment in galaxies, 334
massive stars as primary source, 335
of Large Magellanic Cloud, 451
of Pop III stars, 330
metals, 61, 330
metric
and line element, 382
Kerr, 385
Minkowski, 383
Schwarzschild, 384
metric tensor
and geometry of spacetime, 381
Kerr, 385
Minkowski, 383



Schwarzschild, 384
source of gravitational field, 380
millisecond pulsars, 370, 371
Minkowski spacetime
metric, 383
vacuum solution, 383
mirror principle, 299, 307
mixing-length theory, see convection
moles, 55
Morgan–Keenan (MK) system, 45
MSP recycling, see millisecond pulsars
MSW effect, see neutrino oscillations
multimessenger astronomy, 476, 490, 491

natal kick, 450, 487
natural units, 502, 504
Navier–Stokes equations, 406
negative heat capacity
black holes, 96, 98
stars, 96, 98
neutrino cooling, 178, 183, 327, 329, 356, 357
neutrino oscillations
adiabatic condition, 286
adiabatic resonance flavor conversion, 283
adiabaticity parameter ξ, 286
antineutrino matter resonance, 281
CP violation, 266
effective neutrino mass in medium, 273
energy dependence of flavor conversion, 290
interaction of neutrinos with matter, 271
mass matrix, 274
matter mixing angle, 277
matter oscillation length, 278
MSW effect in matter, 271
MSW flavor conversion, 279, 285, 287
MSW resonance condition, 280
MSW solutions in matter, 276



neutrino mass hierarchy, 267
oscillations with three flavors, 265
propagation of left-handed neutrinos, 274
Super-K evidence for oscillations, 291
time-average or classical probabilities, 263
vacuum oscillation length, 262
vacuum oscillations, 260
neutrinoless double β-decay, 257
neutrinos
and cooling of massive stars, 183, 329
and parity, 181
bremsstrahlung, 179
chirality, 181, 274
coherent scattering, 184
cooling by neutrino emission, 153, 178, 183, 304, 327, 329, 356, 357
cooling rates, 182
cross section, 178
Dirac, 257
emission, 4, 178, 327, 329
emission during silicon burning, 183
finite mass, 260
flavor mixing, 242, 259
flavor production, 182
helicity, 180, 181
Majorana, 257
mass hierarchy, 267
masses, 256
masses in Standard Model, 256
pair annihilation, 179
photoneutrinos, 179
plasma neutrinos, 179, 180, 356, 357
production mechanisms, 178
recombination, 180
reheating in core collapse supernova, 446, 447
solar, 236, 357
solar neutrino spectrum, 236
trapping in core collapse supernova, 444



Urca process, 180, 182
neutron capture reactions
no Coulomb barrier, 125
rapid neutron capture (r-process), 125, 456, 457
slow neutron capture (s-process), 125, 310
neutron stars
as dense quantum liquids, 365
as endpoint of stellar evolution, 297, 330
basic properties, 359
binary neutron stars, 372
Cas A, 364
cooling, 362
equation of state, 482
internal structure, 361
luminosity, 360
magnetars, 374
magnetic field, 374
mass, 360
natal kick, 450
neutronization, 360
Oppenheimer–Volkov equations, 366
prediction of, 359
protoneutron star, 362
pulsars, 367
size, 360
superfluidity in, 364
Urca process, 362
X-ray emission, 362
neutronization, 360
nonthermal emission, 465
from gamma-ray bursts, 464, 467
implications of, 465
polarization, 465
requires optically thin medium, 467
synchrotron radiation, 465
nova, 421
breakout from CNO to hot CNO, 126



hot CNO cycle, 126, 423
lightcurve, 422
Nova Cygni 1992, 421
nucleosynthesis, 425
recurrence, 421, 425
RS Ophiuchi, 425
NSE, 140
nuclear forces
Coulomb repulsion, 107
pairing interactions, 107
quadrupole interactions, 107
saturation, 106
shell effects, 107
surface effects, 106
symmetry energy, 107
volume effects, 106
nuclear reactions
advanced burning, 147
angular momentum, 127
barrier penetration factor, 118
carbon burning, 147
Caughlan–Fowler rates, 507
CNO cycle, 135, 136
competition of capture and β-decay, 126
Coulomb barrier, 117
cross section parameterization, 116, 123
cross sections, 114, 115, 121
density exponents, 123
deuterium burning in protostars, 247
deuterium burning in stars, 211
energy widths, 116
Gamow window, 120, 121
Hoyle resonance, 140
isotopic abundance changes, 189
isotopic spin, 127
neon burning, 147
neutron capture, 125



neutron reactions, 124
nonresonant, 116, 117
nuclear statistical equilibrium (NSE), 140, 141
oxygen burning, 147
parity, 127
PP chains, 131
rate libraries, 123, 507
rate of energy production, 123, 137
rates, 78, 114, 115
ReacLib library, 507
reaction networks, 510, 511
resonant, 116, 121
rp-process, 425
S-factor, 119
selection rules, 127
silicon burning, 148, 149, 514
Sommerfeld parameter, 118
temperature exponents, 123, 133, 142
thermal averaging, 115
timescales for advanced burning, 151
triple-α, 138, 140, 141, 304
weak interactions, 124
nuclear statistical equilibrium, see NSE
nucleosynthesis
big bang, 139, 211
CNO cycle, 135, 136
hot CNO cycle, 425
isotopic abundance changes, 189
nova, 425
PP chains, 131
r-process, 310, 314, 456
rp-process, 425, 426
s-process, 308, 310, 314, 315
triple-α, 138
X-ray burst, 426
number density, 59



OB associations, 201
opacity, 159
and metallicity, 469, 470, 487
and optical depth, 230, 231, 236
contributions to, 160
dominant contributions, 161
Kramer’s law, 160
Rosseland mean, 159, 161, 230, 344
solar opacity, 160
temperature and density dependence, 78, 161
Thomson opacity, 160
Oppenheimer–Volkov equations, 366
comparison with Newtonian gravity, 366
hydrostatic equilibrium in general relativity, 366
optical depth
altered by relativity, 468
and solar surface, 230, 231, 236
definition, 230, 231, 236
in gamma-ray burst, 467

P Cygni, 327
P Cygni profiles, 201
PAH (polycyclic aromatic hydrocarbon), 318
pair-instability supernova, see supernova
parallax
α Centauri, 7
measured by Gaia, 7
measured by ground-based telescopes, 7
measured by Hipparcos, 7
parallax angle, 6
range of, 26
spectroscopic, 48
parity
and chirality of neutrinos, 181
and nuclear reactions, 127
nonconservation in weak interactions, 181
parsec, 6, 7



partition function, 33
phase transition
quantum, 77
thermal, 77
photoneutrinos, 179
Planck law, 9, 78
planetary nebulae, 297, 330
plasmons, 179
as heavy photons, 180
decay of, 180
in condensed matter, 179
source of neutrino–antineutrino pairs, 180
Poisson equation, 86
Pop I, Pop II, Pop III, see stellar populations
PP chains
competition with CNO cycle, 113
dominant energy source for Sun, 110
minimum temperature for, 214
reactions of, 110, 131
pressure
broadening, 46
for ideal gases, 54, 60
from electrons, 60
from ions, 60
integral, 54
ionization, 66, 68
quantum, 77
radiation, 435
scale height, 172
proper motion, 22
proton–proton chains, see PP chains
protoplanetary disks, 221
protostar
contraction to main sequence, 207, 247
deuterium burning, 247
initial free-fall collapse, 208
onset of hydrostatic equilibrium, 209



PSR J0337+1715, 371
pulsars, 367
and tests of general relativity, 373
as spinning neutron stars, 367
basic properties, 367
binary pulsars, 372
binary spinup, 371
Crab Pulsar, 369
discovery, 369
double pulsars, 372
gamma-ray emission, 461
glitches, 369
lighthouse mechanism, 367
magnetars, 374
magnetic fields, 368, 374
millisecond pulsars, 370, 371
nomenclature, 370
pulsar–WD–WD triplet PSR J0337+1715, 371
spindown, 369
pulsation, 337
ε-mechanism and stability of massive stars, 344
adiabatic radial, 337
and heat engines, 340
fundamental mode, 339
nearly adiabatic, 340
non-adiabatic radial, 340
non-radial, 344
opacity and κ-mechanism, 342
overtones, 339
partial ionization zones and instability strip, 342
radial acoustic modes, 338
role of radiative opacity, 342
thermodynamics of sustained, 340
work done, 340

quantum mechanics, 519
de Broglie wavelength, 67



exclusion principle and degeneracy, 67
matrix elements, 520
observables, 520
operators, 519
quantum field theory, 521
quantum statistics, 67
relativistic quantum field theory, 521
uncertainty principle, 67
unitary transformations, 520
wave equations, 519
wavefunctions, 519
quantum statistics, 67
quasars, 330, 416, 469
Q-values, 108, 134

r-process
and Solar System abundances, 310
and the origin of heavy elements, 456
competition with s-process, 314
heavy r-process nuclei, 495–497
in neutron star mergers, 495–497
kilonova, 495–497
light r-process nuclei, 495–497
time delay, 457
timescales, 457
radial velocities (stars), 22
radiation laws, 9
Planck law, 9
Stefan–Boltzmann law, 9
Wien law, 9
random walk, 100
recombination transition, 330
recycling of stellar material, see stellar lifecycles
red giant evolution, 297
asymptotic giant branch (AGB), 300, 307
crossing the Hertzsprung gap, 303
deep convection, 303, 308, 314



development of isothermal core, 303
evolution away from main sequence, 246
helium flash, 305
helium ignition, 304
horizontal branch (HB), 300, 306
mass loss, 308
mirror response of mass shells, 299, 307
red giant branch (RGB), 300, 302
Schönberg–Chandrasekhar limit, 303, 304
shell burning, 298
thermal pulses, 308
reionization transition, 330
restricted 3-body problem, 402
Roche lobes, 372, 373, 404
Roche potential, 402
Rosseland mean, see opacity
rp-process, 426

s-process, 310, 314
S0-2, 392
Saha equations, 33, 36, 140
Sakurai’s Object (V4334 Sgr), 311
Sanduleak −69 202, see Sk −69 202
Schönberg–Chandrasekhar limit, 303, 304
Schwarzschild spacetime
metric, 384
vacuum solution, 384
selection rules, 127
conservation of angular momentum, 127
conservation of isospin, 127
conservation of parity, 127
Sgr A*
and the star S0-2, 392
evidence for a supermassive black hole, 393
mass, 393
shell burning, 298
helium shell source, 307



hydrogen shell source, 138, 301
mirror principle, 299, 307
shell sources
helium shell source, 307, 308
hydrogen shell source, 307, 308
thermal pulses, 308
thin-shell instability, 308, 310
shockwave
excluded in mixing-length models, 172
in core collapse supernova, 444
silicon burning, 148, 149, 336
Sk −69 202, 440, 451
SN 1987A, see Supernova 1987A
soft gamma-ray repeater (SGR), see magnetars
solar neutrino problem
astrophysics versus particle physics, 241
Davis chlorine experiment, 238
gallium experiments, 239
KamLAND constraints on mixing angles, 292
large mixing angle and MSW, 294
neutrino deficit, 238
neutrino flavor mixing, 259
resolution of, 290
SNO mixing solution, 292
SNO observation of flavor mixing, 291
Super Kamiokande results, 239
total SNO solar neutrino flux, 292
sound speed
and expansion timescale, 91
in Sun, 236
space velocities (stars), 22
special relativity
Lorentz γ -factor, 469
relationship with general relativity, 379
spectral classes, 32
(table), 38
and absorption spectra, 38



as color index sequence, 39
as temperature sequence, 39
carbon stars (C), 39
hot blue stars with strong emission, 39
IR objects (L, T, Y), 39
old R, N, S classes, 39
special classes, 39
white dwarfs (D), 39
spectral index, 467
spectroscopic binaries, 17
spectroscopic parallax, 48
spectrum–luminosity diagram, see Hertzsprung–Russell (HR) diagram
speed of sound, see sound speed
stability valley, see valley of stability
Standard Model of elementary particle physics, 254
beyond the Standard Model, 268
CP symmetry, 266
CPT symmetry, 266
electroweak interactions, 182
Feynman diagrams, 258
finite neutrino mass, 260
leptonic flavor mixing, 259
neutrino masses, 256
quark flavor mixing, 259
standard sirens, 495
Standard Solar Model, 228
assumptions of, 228
constraints and solution, 230
testing with helioseismology, 233
testing with neutrinos, 236, 237
standardizable candle, 431, 436
star formation, 201
brown dwarfs, 215
collapse of protostar, 207
dependence on composition, 205
development of radiative core, 213
exoplanets, 222



fragmentation, 204
fully convective stars, 212
gravitational stability in adiabatic approximation, 206, 207
Hayashi forbidden zone, 212
Hayashi tracks, 212
Herbig–Haro objects, 201
homology, 208
in the early Universe, 464
initial free-fall collapse, 208
initial mass function, 201, 219
Jeans criteria for gravitational collapse, 203
limiting lower mass, 201, 214
limiting upper mass, 201, 217, 218
OB associations, 201
onset of hydrostatic equilibrium, 209
protoplanetary disks, 201, 221
T Tauri stars, 201
termination of fragmentation, 212
starbursts, 334
state functions, 57
Stefan–Boltzmann law, 9, 10
stellar lifecycles, 333
stellar luminosities, 22
stellar masses, 13, 17, 21, 22
stellar populations, 23
features of, 24
Pop I, 23, 24
Pop II, 23, 24
Pop III, 24, 113, 330
stellar radial velocities, 17
stellar radii, 11, 13, 21, 22
stellar structure equations
boundary conditions, 196
general solutions, 190, 196
Lane–Emden solution, 192, 195
stiffness, 196
summary, 188



stress–energy tensor, 382
structure formation, 464
subgiant stars, 303
Sun, 228
5-minute oscillations, 233
bolometric magnitude, 8
CNO reactions, 135
composition, 61, 229
degeneracy of core, 73
dynamical timescale, 91
effective surface temperature, 11
energy generation, 229
energy transport, 230
engulfing Earth, 319, 320
evolution on the main sequence, 242
helioseismology, 233
Kelvin–Helmholtz timescale, 99
luminosity, 11
neutrino production, 236
optical depth, 230, 231, 236
PP chains, 131
pressure of atmosphere, 34
red giant phase, 319, 320
rotation rate, 236
solar constant, 11
solar neutrino spectrum, 236
speed of sound, 236
Standard Solar Model, 228
superfluid
in helium-3, 365
in neutron stars, 364
phase transition, 365
supergiant stars, 43
supernova, 429
1987A, 357
and formation of black holes, 486
association with gamma-ray bursts, 470



convection in, 447
core collapse, 297, 330, 360, 431, 440, 442
double-degenerate mechanism, 435
entropy of core, 442
failed, 331
lightcurves, 429, 474
neutrino emission, 357
nucleosynthesis, 438, 456
observational classification, 429
pair-instability, 330, 434, 435
remnants, 439
remnants of core collapse, 449
single degenerate mechanism, 435
standing accretion shock instability (SASI), 449
Supernova 1987A, 440, 450
thermonuclear, 434
Type Ia, 416, 430, 434
Type Ib, 431, 470
Type Ic, 431, 470
Type II, 433
Supernova 1987A, 440, 450, 451
SWIFT, 464
symmetric matter, 61, 348
synchrotron radiation, 465

T Tauri stars, 201
tangential velocities (stars), 22
Tarantula Nebula, 43, 440, 451
temperature
effective, 10
effective of Sun, 11
temperature exponents, see nuclear reactions
tensors, 380
thermal adjustment timescale, see Kelvin–Helmholtz
timescale
thermal equilibrium, 94
thermal pressure, 77



thermal pulses, 308
and dredge-up episodes, 318
duration, 308
for Sakurai’s Object, 311
number of, 308
thin-shell instability, 308, 310
thermonuclear reactions, see nuclear reactions
thermonuclear runaway, 305, 423, 426, 439
thin-shell instability, 308, 310
Thomson scattering
cross section, 157, 467
opacity, 160
relation to Compton scattering, 157
timescale
contraction, 100
dynamical, 91, 92, 101, 191
evolutionary timescales, 245
expansion, 91
for advanced burning, 151, 192
free-fall, 28, 91, 101, 208
hydrodynamical, 92
Kelvin–Helmholtz, 97, 99–101
main sequence lifetime, 243
nuclear burning, 133, 191, 192
nuclear burning of helium, 306
random walk, 100
table of timescales, 191
thermal adjustment, 97, 191
Tolman–Oppenheimer–Volkov (TOV) equations,
see Oppenheimer–Volkov equations
total energy of a star, 95
triple-α reaction, see nuclear reactions and helium burning
triple-star systems, 372, 373

uncertainty principle, see Heisenberg uncertainty principle
unitary transformations, 520
Urca process, 180, 182



valley of stability, 125, 313
variable stars, 337
δ Sct, 338
ε-mechanism, 344
κ-mechanism, 342
as heat engines, 340
Cepheid, 25, 28, 338, 343
eclipsing, 25, 337
eruptive, 25, 337
instability strip, 337
long-period red, 28, 338
Mira, 28, 338
nomenclature, 26
non-adiabatic radial pulsations, 340
non-radial pulsating, 344
partial ionization zones in pulsating, 342
period–luminosity relations, 25, 26, 28
pulsating, 25, 27, 28, 337, 338
role of radiative opacity in pulsating, 342
RR Lyra, 26, 28, 338
W Vir, 338
white dwarf, 39, 357
ZZ Ceti, 39, 338, 358
virial theorem
and negative heat capacities, 96
for ideal gas, 92
VLBA, 394

weak interactions, 106, 124
and neutrino physics, 254
charged currents, 257
electron capture, 134
neutral currents, 257
white dwarf, 346
and degeneracy, 348
and novae, 421
and polytropic equation of state, 76



and special relativity, 347
as AGB core, 316
as endpoint of stellar evolution, 297, 330
as Sun’s destiny, 319
asteroseismology, 233, 358
asteroseismology of BPM 37093, 358
Chandrasekhar limiting mass, 350, 352, 353
cooling, 356
cooling curves as age indicators, 356, 358
crystallization, 358
density and gravity, 347
equation of state, 347, 349
high-mass, 76
in HR diagram, 43
insulating blanket model of cooling, 356
internal structure, 355
ions in, 348
Lane–Emden equation, 349
low-mass, 76, 349
masses as evidence for mass loss, 4
photons in, 348
properties, 346
Sirius B, 15, 346
spectral classes, 39
temperature profile, 355
Wien law, 9
Wolf–Rayet star
and gamma-ray bursts, 470, 471, 474
and Type Ib and Ic supernovae, 433
characteristics, 326
collapsar model, 473
direct collapse to black holes, 489
mass emission, 327, 328, 335, 470, 471
spectral classification, 39
work
and inexact differentials, 57
done by mass shell, 95



done by pulsation, 340
is not state function, 57

X-ray binaries
and black holes, 389, 396
classification, 411
Cygnus X-1, 389
high-mass X-ray binaries, 387, 411, 415
low-mass X-ray binaries, 372, 373, 411, 415
X-ray burst, 415, 425
X-rays, 426

ZAMS, see zero age main sequence (ZAMS)
zero age main sequence (ZAMS), 61, 219, 246, 297, 301, 488
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