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Chapter 1

Introduction

The term ”High-Energy Astrophysics” combines two keywords which determine the scope of the sub-
ject.

The ”High-Energy” physics conventionally deals with the world of high-energy particles, i.e. par-
ticles with energies much higher than the rest energy. For electrons the rest energy is

E = mec
2 ' 5× 105 eV (1.1)

(here me = 0.9 × 10−27 g is the mass of electron and c = 3 × 1010 cm/s is the speed of light), while
for proton it is

E = mpc
2 ' 109 eV (1.2)

with the proton mass mp = 1.6 × 10−24 g. In laboratory conditions here on Earth, the high-energy
particles are produced by accelerator machines, like the Large Hadron Collider (LHC) at CERN, in
which protons reach energies in the range of 10 TeV. The main goal of the High-Energy Physics re-
search is to understand the fundamental constituents of matter (elementary particles) and interactions
between them.

Figure 1.1: The spectrum of cosmic rays measured
by different experiments. This log-log scale plot
shows the differential flux of particles per unit en-
ergy interval, F (E), multiplied by energy E to the
power 2.6. From Ref. [4].

Second part of the name High-Energy Astro-
physics contains the word ”Astrophysics” which
clearly refers to astronomical observations, typi-
cally done using various types of telescopes and
aimed at understanding of the properties and
mechanisms of activity of different types of as-
tronomical sources, like stars and galaxies.

Combining the two parts into one subject de-
fines the subject of High-Energy Astrophysics as
research in the domain of Astronomy, specifically
aimed at understanding of the role of high-energy
particles and their interactions in the activity of
different types of astronomical sources.

The fact that some astronomical objects work
as particle accelerators is established based on
two types of observational data.

First, we directly detect the high-energy
charged particles coming from space in the form
of cosmic rays. Measurements of the spectrum of
cosmic rays (Fig. 1.1) show that the energies of
the cosmic ray particles reach 1020 eV, which is

some seven orders of magnitude higher than the maximal energies of protons attained at the LHC.
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6 CHAPTER 1. INTRODUCTION

These particles are produced by some (still unknown) astronomical sources and it is one of the major
challenges of modern physics and astronomy to identify these sources. The uncertainty of the sources
of cosmic rays constitutes the long-standing problem of the origin of cosmic rays. The cosmic rays
were first discovered in 1912, so the problem is now 100-year-old.

Next, the information on the presence of high-energy particles in astronomical sources is obtained
indirectly, via observations of those sources with telescopes operating at different wavelengths, i.e.
with the tools of the ”multi-wavelength astronomy”. From the early days of the mankind, people have
started to do astronomical observations, by looking at the stars on the sky first with the naked eye,
and then, starting from Copernicus, with telescopes. Up to the middle of 20th century, the word
”astronomical observations” was synonymous to the ”astronomical observations in the visible band”,
because the only type of light sensors used was the human eye, sensitive in the visible range. The
visible energy band contains photons in the wavelength range

400nm ≤ λ ≤ 700 nm (1.3)

This corresponds to a rather narrow range of photon energies ε = 2π~c/λ

1.8 eV < ε < 3.2 eV (1.4)

Only astronomical sources emitting photons in this specific energy range were known all this time.
Starting from the end of 1960’s, the tools of radio, infrared, ultraviolet, X-ray and gamma-ray

astronomy started to develop, so that today, just 50 years after, the energy range available for the
astronomical observations comprises some 12 decades in energy:

10−6 eV < ε < 1013 eV (1.5)

Fig. 1.2 shows the definition of different ”energy windows” of the multi-wavelength astronomy.

Figure 1.2: Timeline of the history of astronomy
and definition of different energy / wavelength
bands. and different astronomical ”messenger”
particles.

The tools of the multi-wavelength astronomy
have opened a possibility of observing the ef-
fects of interactions of high-energy particles in
astronomical sources. Photons with energies up
to 1013 eV are produced by particles with en-
ergies at least E > 1013 eV, i.e. much higher
than the rest energies of proton and electron.
These particles emit photons of different ener-
gies, from radio to γ-rays via a variety of emis-
sion mechanisms: synchrotorn, Compton scatter-
ing, Bremsstrahlung, pion production and decay.
Combinaiton of multi-wavelength data is impor-
tant for getting a complete picture of physical
mechanisms of activity of the sources.

In a similar way, the high-energy sources also
emit different types of particles, ”astronomical
messengers”. Apart from photons, the most com-
mon ”astronomical messenger” particles, infor-

maiton on mechanisms of operation of high-energy sources is also carried by neutrinos, cosmic rays
and gravitational waves. Combinaiton of the ”multi-messenger” data (Fig. 1.2) is equally important
for understanding of the mechanisms of operation of sources.

In the context of the multi-wavelength astronomy, the term ”High-Energy Astrophysics” is some-
times understood in a slightly different sense, than explained above. the term ”High-Energy” might
also refer to ”photons energies higher than those of the visible / UV light”. In this case the ”High-
Energy Astrophysics” research field comprises all possible sources and physical processes which man-
ifest themselves through the X-ray and gamma-ray emission. This includes then not only processes
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related to the presence of relativistic particles in the sources, but also thermal processes in astro-
nomical objects with temperatures in the range above 100 eV (the low-energy boundary of the X-ray
band).

1.1 Types of astronomical HE sources

Large part of astronomical sources emit radiation with thermal spectrum characterised by temperature
T . The energies of particles generating this radiation could be estimated from the well-known relation

〈E〉 ∼ 3

2
kBT (1.6)

where kB = 8.6× 10−5 eV K−1 is the Boltzmann constant serving as a conversion coefficient between
the units of temperature and energy units. Presence of relativistic particles in the thermal astronomical
objects implies the temperature range

T ∼ mec
2

kB
' 0.6× 1010 K (1.7)

for the objects containing relativistic electrons or

T ∼ mpc
2

kB
' 1013 K (1.8)

for the objects with high-energy protons.
The temperature range T ∼ 1010 K might be reached in the interiors of stars or at the final

stage of life of massive stars when they explode as supernovae. The surface temperatures of the stars
are typically much lower, not exceeding 105 K, so that solar-like and massive stars powered by the
nucleosynthesis reactions are not the sources of interest in the High-Energy Astrophysics domain.

Much higher temperatures are sometimes reached in the objects powered by the release of gravi-
tational (rather than nuclear) energy. A typical first estimate of the temperature of a gravitationally
collapsing matter is given by the virial theorem

T ∼ 2

3

〈E〉
kB
∼ 1

3

U

kB
∼ GNMmp

3kBR
(1.9)

where GN = 6.7 × 10−8 cm3/(g s2) is the gravitational constant, M,R are the mass and size of the
collapsing matter configuration and U is the gravitational potential energy. Typical particle energies
become relativistic, 〈E〉 ∼ mpc

2, if the body is compact enough, with the size

R ∼ GNM

c2
. (1.10)

This size estimate is about the gravitational radius of a body with the mass M

Rgrav =
GNM

c2
' 1.5× 105

[
M

M�

]
cm. (1.11)

Objects of the size comparable to the gravitational radius are called ”compact objects”. The known
astronomical compact object classes are neutron stars and black holes, including the supermassive
black holes in the centres of galaxies and stellar mass black holes.

These two classes of objects are powering most of the astronomical sources studied in High-Energy
Astrophysics, including

• Active Galactic Nuclei (AGN):
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– Seyfert galaxies (Sy)

– quasars / blazars (QSO)

– radio galaxies

• X-ray binaries (XRB):

– Low-mass X-ray binaries (LMXRB)

– High-mass X-ray binaries (HMXRB)

– Micorquasars

• end products of the life cycle of massive stars:

– supernova remnants (SNR)

– pulsars and pulsar wind nebulae (PWN)

– gamma-ray bursts (GRB)

Figure 1.3: Spectral energy distribution of the
quasar 3C 273, in two representations. The up-
per plot shore the differential flux, which is energy
flux per unit energy or frequency. This flux is mea-
sured in the units of Jansky, 1 Jy= 10−23 erg/(cm2

s Hz). The lower panel show the energy flux as a
function of energy. From the Ref. [5].

Observations using the tools of multi-
wavelength astronomy show that significant part
of High-Energy Astrophysics sources does not
emit radiation with thermal spectrum. Instead,
they reveal signal which is spread over many
decades of energy. Fig. 1.3 shows an example of
such broad band spectrum in the quasar 3C 273.
The broad range of photon energies is explained
by the broad range of the energies of charged par-
ticles (electrons, protons) which have produced
the photons. In the particular case of 3C 273, one
could see that particle energies should be spread
over several decades in energy.

1.2 Types of physical processes
involved

High-energy particles with broad energy distri-
bution usually loose their energy via various ra-
diative energy loss channels, before being able to
”thermalise” (i.e. to establish thermal distribu-
tion in momenta). The main radiative (ie. ”ac-
companied by photon production”) energy loss
channels for electrons are

• synchrotron / curvature radiation,

• inverse Compton emission,

• Bremsstrahlung

A non-radiative energy loss especially important
for mildly relativistic and non-relativistic electrons is

• Coulomb (ionisation) energy loss
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Figure 1.4: Left: the principle of grazing incidence optics used in X-ray telescopes. Right: the set of
nested mirrors of the X-ray telescope XMM-Newton.

All these radiative and non-radiative channels contribute to larger or smaller extent to the formation
of spectra of high-energy particles in the sources and to the formation of the broad-band emission
spectra of the type shown in Fig. 1.3 for the quasar 3C 273.

In the case of high-energy protons the main radiative energy loss channel is

• production and decay of neutral and charged pions in interactions with matter and radiation
fields.

The non-radiative Coulomb losses are also important for the lower energy mildly relativistic protons.

1.3 Observational tools

A complete understanding of the physics of sources with photon emission spectra extending from radio
to gamma-rays (like 3C 273, shown in Fig. 1.3), is possible only with the detailed information on the
imaging, spectral and timing information in all energy bands. This means that the observational tools
of High-Energy Astrophysics include telescopes across all energy bands, including radio, infrared,
visible, UV, X-ray and gamma-ray bands.

However, the term ”experimental / observational High-Energy Astronomy” is usually reserved for
telescopes and observational techniques in the X-ray and gamma-ray bands, with the visible / infrared
astronomy and radio astronomies considered to be separate disciplines on their own.

X-rays and gamma-rays do not reach the ground. Observations in the X-ray and gamma-ray
bands are, therefore, possible only with telescopes placed outside the Earth atmosphere in space. This
explains why the age of High-Energy Astronomy has started only at the end of 1960th with the invent
of the space flight.

Another peculiarity of the telescopes used in High-Energy Astronomy stems from the fact that,
contrary to radio-infrared-visible radiation, X-ray and gamma-ray photons tend to interact with the
telescope material in a destructive way, so that it is difficult to focus the signal with the conventional
lenses / mirrors without destroying the photons. This is explained by the fact that the energy of each
photon is comparable of higher than the ionisation energy of atoms composing the lens / mirror. As
a result, the collisions of photons with atoms are inelastic and destructive.

This problem is partially overcome in the X-ray telescopes, where a special type of optical setup
enables focusing of X-ray photons with energies up to 10 keV. The principle of the setup, known under
the name of ”grazing incidence optics”, is shown in Fig. 1.4. To avoid the destructive interaction of
X-rays with the lens / mirror material, the X-ray photons are falling on the mirror surfaces at large
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incidence angles (”grazing” angles). A single grazing incidence focusing mirror (which could be e.g.
segments of parabola) would have very small collection area, because it would intercept only a small
faction of the X-ray photons. Stacks of nested mirror segments are used to achieve significant collection
areas (in the range of ∼ 100−1000 cm2) with the grazing incidence technique. The right panel of Fig.
1.4 shows an example of the mirror of the X-ray telescope XMM-Newton, which is a European Space
Agency (ESA) mission now in orbit.

Figure 1.5: The principle
of the coded mask optics
and the coded mask of
IBIS telescope on board
of INTEGRAL.

Focusing photons of higher and higher energies would require the nested
mirror systems with smaller and smaller grazing incidence angles. This,
in turn, would imply larger and larger focal lengths. Thus, the grazing
incidence technique stops to work at high energies (nowadays about 50 keV,
achieved with the NASA X-ray telescope Nu-STAR). At higher energies
astronomical observations are done without the use of focusing.

One example of non-focusing optics is the ”coded mask” technique,
which is a direct development of the method of pinhole camera. This
technique is illustrated in Fig. 1.5. Signal from an astronomical source
passing through the mask (a plane with a set of holes) casts a particular
shadow pattern on the detector plane. Registering this shadow pattern
one could determine the source position on the sky via a straightforward
ray tracing. Shadow patterns cast by different sources in the field of view
overlap, but they are recognisable one-by-one, so that the ray tracing could
be done for each source separately. This technique is used in a number of
telescope currently operating in the hard X-ray / soft gamma-ray band,
including the ESA INTergnational Gamma Ray Laboratory (INTEGRAL).
The coded mask of the IBIS imager on board of INTEGRAL is shown in
Fig. 1.5.

At the energies higher than ∼ 1 MeV even the coded mask imaging
would not work, because it would require a prohibitively heavy and thick
mask which would be able to block gamma-rays. In this energy band tele-
scopes do not use any imaging equipment at all. Instead, each gamma-ray
is individually detected and it energy and arrival direction is determined.
The observational data consist of the lists of gamma-rays detected from
a given region of the sky in a given time span. Positions of sources of
gamma-rays on the sky are identified by the clustering of large number
of gamma-rays coming from particular directions. This principle of ob-
servations is used e.g. by the Fermi gamma-ray telescope operating in
the 0.1-100 GeV energy band. Its setup is shown in Fig. 1.6. High-energy

gamma-rays entering the telescope are converted into electron-positron pairs in one of the layers of the
Tracker (the upper multi-layer part of the detector in Fig. 1.6). Trajectories of electron and positron
are ”tracked” by the Tracker and then energies of both particles are measured by the Calorimeter,
which is the lower thicker layer of the detector shown in Fig. 1.6.

At the energies higher than ∼ 100 GeV, the space-based detectors are unable to perform sensible
astronomical observations, because of their limited collection area. In this energy band, each photon
carries macroscopic energy (100 GeV=0.16 erg). The power of astronomical sources is carried by a
small number of highly energetic photons and the overall number of photons rapidly decreases with
the increase of the energy of each photon. Typical luminosities of astronomical sources are such that
in the energy band above 100 GeV only about one or less photons per year could be detected by an
instrument with collection area about 1 m2.

Astronomical observations in the Very-High-Energy (VHE) band (photon energies above 100 GeV)
are possible only with setups with extremely large collection areas (in the range of 104 − 106 m2).
Such collection areas are provided by the ground-based Cherenkov telescope arrays, see Fig. 1.7.
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The principle of detection of VHE gamma-rays is based on the fact that these gamma-rays produce
electromagnetic cascades when they penetrate in the atmosphere. High-energy particles in the cascade
move with the speed faster than the speed of light in the air and produce Cherenkov radiation in the
UV wavelength range. Large optical reflectors are used to sample this Cherenkov light which appears
for short periods of time (about ten nanoseconds) as bright ”traces” of the gamma-ray induced cascade
in the UV light. The information on the arrival direction and energy of the initial VHE gamma-ray
is obtained via stereoscopic imaging of the cascade in the atmosphere (see Fig. 1.7, left panel). Right
panel of Fig. 1.7 shows a 17 meter dish of the MAGIC telescope as an example of the large reflectors
used by the Cherenkov telescopes.

1.4 Natural System of Units

Figure 1.6: Fermi LAT telescope. The upper
part of the telescope made of many layers is the
Tracker. The lower thick layer part is Electromag-
netic Calorimeter.

High-Energy Astrophysics subject relates parti-
cle physics and astronomy. These two branches
of science use different unit conventions and it
is sometimes challenging to convert the ”lan-
guage” of particle physicists into the ”language”
of astronomers and vice versa. A convenient ap-
proach is to reduce both astronomical and parti-
cle physics quantities and formulae to put them
into a common unit system. Thoughout this
course the common system of units will be the
Natural System of Units, with the Gaussian ver-
sion for electromagnetic quantities (as opposed
to Heaviside-Lorentz, with quantities typically
differing by 4π factors between Gaussian and
Heaviside-Lorentz systems, see discussion in Ref.
[6]).

The idea of the Natural system of units is to
reduce the number of fundamental constants to
the necessary minimum. This implies typically

getting rid of the constants serving for unit conversions. For example, the Boltzman constant kB
serves for conversion between the units of temperature (which is, in essence a measure of energy) and
energy:

kB = 8.6× 10−5 eV K−1 = 1 (1.12)

This means that in the Natural system of units the temperature is always measured in electronvolts,
instead of Kelvins. Whenever a measurement is provided in Kelvins, one immediately converts it into
electronvolts using the relation

1 K = 8.6× 10−5 eV (1.13)

The same is done with the electric and magnetic permeabilities of vacuum, encountered in the
International System of Units:

4πε0 = 4πµ0 = 1 (1.14)

which serve for the introduction of the charge units (Coulomb) in this system.
In a similar way, one could see that the speed of light is, in a sense, a constant for conversion of

the units of time and distance: one could measure distance in time units, with the unity the distance
travelled by photons in one second, or, vice versa, once could measure time in the distance units, with
the unity being time in which photon crosses the distance of 1 cm. Thus, imposing

c = 3× 1010 cm/s = 1 (1.15)
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Figure 1.7: Left: the principle of operation of Cherenkov telescopes. RIght: one of the two Cherenkov
telescopes of MAGIC stereo pair.

one obtains a conversion between different time-distance units:

1 s = 3× 1010 cm (1.16)

The speed of light serves also for conversion of the units of mass into the units of energy via the
relation E = mc2. Thus, any measurement of the mass in grams could be converted into ergs or
electronvolts.

The Planck constant relates the energy and frequency of the photon: E = ~ω. Setting

~ = 6.6× 10−16 eV s = 1 (1.17)

one obtains a way of measurement of energy in the units of frequency (or inverse time) and vice versa:

1 eV = 1.5× 1015 s−1 (1.18)

(notice that the frequency of photons given in the astronomical measurements is usually ν = ω/(2π),
so that the conversion between Hz (frequency of radiation) and eV (energy of photons) differs from
the above relation by a 2π factor.

Combining the conversion of centimetres into seconds and seconds into elevtronvolts one finds a
relation

~c = 2× 10−5 eV cm = 1, → 1 eV = 5× 104 cm−1 (1.19)

In the Natural System of units the electric charge is dimensionless. This is clear from the expression
for the fine structure constant:

α =
1

137
=

e2

4πε0~c
= e2 (1.20)

The numerical value of the electron charge is

e =
√
α ' 0.085 (1.21)

Magnetic field is measured in the units of [energy]2, as it is clear from the expression for the energy
density of magnetic field

U =
µ0B

2

2
=
B2

8π
(1.22)
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The energy density is the quantity measured in e.g. [eV/cm3]. Since cm−1 is also an energy unit,
the units of U are also [eV4]. To match the dimensions in the right and left hand side of the above
equation, B should be measured in the units of [eV2]. The conversion between Gauss (the units of
magnetic field in the CGS system) and eV2 could be found from the relation

UB =
[B/1 G]2

8π

erg

cm3
(1.23)

Taking into account the conversion between the energy units ergs and eV

1 eV = 1.6× 10−12 erg (1.24)

one finds
1 G ' 0.07 eV2 (1.25)

The conversion between Tesla (magnetic field units in the International System) and Gauss is

1 T = 104 G (1.26)

Combining the last and before-last equations one gets a conversion between Tesla and eV2.
Other useful conversion coefficients which are needed to bring the astronomical and particle physics

data to the common system of units are

• energy/power

1 J = 107 erg = 6.25× 1018 eV

1 Jy = 10−23 erg/(cm2 s Hz) (1.27)

• distance

1 pc = 3× 1018 cm

1 AU = 1.5× 1013 cm

1 Å = 10−8 cm (1.28)

• mass / energy

1M� = 2× 1033 g ' 1.8× 1054 erg ' 1066 eV

me = 0.9× 10−27 g = 5× 105 eV

mp = 1.7× 10−24 g = 0.94× 109 eV (1.29)

• cross section

1 barn = 10−24 cm2 (1.30)

This set of conversion formulae will be systematically used in numerous numerical estimates encoun-
tered in the following chapters.

One important note concerns the gravitational force and Newton constant. From the expression
of the Newton’s law

ma =
GNMm

r2
(1.31)

it is clear that the dimensionality of the Newton constant is [mass]−2 or, equivalently, [length]2. This
means that it is not possible to set this constant to one in the Natural System of units. Instead, the
numerical value of the Newton constant is

GN = 6.7× 10−8 cm3

g s2
=

1

(1019 GeV)2
=

1

M2
Pl

(1.32)

The energy (or mass) scale entering the Newoton’s constant is called the Planck scale.
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1.5 Excercises

Excercise 1.1. Estimate the temperature of supernova remnant shell assuming that the kinetic
energy of explosion (1051 erg) is ultimately ”thermalized” within the supernova shell of total mass
1M�.

Excercise 1.2. Estimate the temperature of interstellar medium around a star forming region of 100
pc size in which 100 supernovae have exploded on short time scale.

Excercise 1.3. Find the temperature of a black body of mass about M� and radius about 10 km
(neutron star) and 1000 km (white dwarf) emitting radiation at Eddington limit L = 1038 erg/s.

Excercise 1.4. Using the Natural System of Units, find the mass M of a ”quantum black hole”, a
body for which its gravitational radius Rg = GNM equals its ”Compton-like” wavelength, λ = 1/M .

Excercise 1.5. Using the Natural System of Units, find the strength of ”QED-scale” magnetic field
B for which motion of mildly relativistic (velocity v ∼ 1) charged particles of mass m and charge e has
to be described in quantum mechanics framework. This happens when the gyroradius RL = m/(eB)
becomes equal to the ”Compton-like” wavelength, λ = 1/m.



Chapter 2

Radiative Processes

2.1 Radiation from a moving charge

Most of the formulae in this chapter for the radiative processes involving electrons (synchrotron and
curvature radiation, Compton scattering and Bremmstrahlung emission) are different applications of
the basic formulae for the dipole radiation of an accelerated charge. Taking this into account, this
section reminds the derivation of the accelerated charge radiation.

Electromagnetic field is a solution of Maxwell equations [7]

∂Fµν

∂xν
= −4πjµ. (2.1)

where xµ = (t, ~x) are the four-coordinates and jµ is the four-current. Expressing the electromagnetic
field tensor through the 4-potential Fµν = ∂µAν − ∂νAµ, we rewrite the Maxwell equations for the
potential in the Lorentz gauge ∂Aµ/∂xµ = 0 in the form of inhomogeneous wave equation

∂2Aµ

∂xν∂xν
= 4πjµ (2.2)

We are interested in the particular case of a point charge e moving along a trajectory ~r = ~r0(t). Such
a charge creates the 4-current jµ = e(δ(~r − ~r0(t)), ~vδ(~r − ~r0(t))) where ~v = d~r0/dt is the velocity.
Solution of the wave equation in a point ~r at the moment of time t is determined by the state of
motion of the charge at the moment of time t′ implicitly found from the relation

t′ +
∣∣~r − ~r0(t′)

∣∣ = t (2.3)

The solution of the system of wave equations for the potential is known to be the Lienard-Wichert
potential Aµ = (φ, ~A)

φ(r, t) =
e

(R− ~v · ~R)

∣∣∣∣∣
t′

, ~A(r, t) =
e~v

(R− ~v · ~R)

∣∣∣∣∣
t′

, (2.4)

where ~R = ~r − ~r0. Electric and magnetic fields corresponding to this potential could be calculated
from relations ~E = ∂ ~A/∂t− ∂φ/∂~x, ~B = (∂/∂~x)× ~A. This gives an expression

~E =
e(1− v2)

(R− ~v · ~R)3
(~R−R~v) +

e

(R− ~v · ~R)3

[
~R×

[
(~R−R~v)× d~v

dt

]]
~B =

1

R

[
~R× ~E

]
(2.5)
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If the velocity of the charge does not change in time, dv/dt = 0, the second term is absent and the
first term just gives the Coulomb field of the charge, falling as R−2 at large distances. Using the rules
of Lorentz transformation of electromagnetic tensor, one finds that in this case the magnetic field is
absent in the reference system comoving with the charge.

Accelerated motion of the charge dv/dt 6= 0 leads to the appearance of an additional term which
falls as 1/R at large distances. Both electric and magnetic field due to this term are orthogonal to the
direction toward the charge. This is the field of electromagnetic wave generated by the accelerated
motion. A qualitative understanding of the appearance of electromagnetic wave could be obtained via
a simple geometrical calculation, see e.g. [2, 1].

At large distances from the source, r � r0, and for non-relativistic charge motion, v � 1, one
could approximate R ' r. In this case the second term in the expression from the electric field of
slowly moving charge could be rewritten in the form

~E ' 1

r

[[
~̈d× ~n

]
× ~n

]
(2.6)

where the dipole moment ~d = e~r0 and the unit vector ~n = (~r)/r are introduced. The magnetic field
in these notations is

B ' 1

r

[
~̈d× ~n

]
(2.7)

Both electric and magnetic fields are orthogonal to the direction from the charge to the observation
point ~n and they are also orthogonal to each other. Such configuration is typical for the electromagnetic
wave propagating in the direction ~n. The energy flux carried by the wave is given by the Poynting
vector

~S =

[
~E × ~B

]
4π

=
B2

4π
~n (2.8)

Substituting the expression for B one finds the flux dI in the solid angle dΩ in the direction n at an

angle θ with respect to the direction of ~̈d

dI

dΩ
= (~S · ~n) =

d̈2

4π
sin2 θ (2.9)

One could see that the intensity of emission is directed in a broad angular range preferentially in the

direction orthogonal to the acceleration ~̈d.

Integration of the above expression over 0 < θ < π gives (dΩ = 2π sin θdθ)

I =
2d̈2

3
. (2.10)

This is the Larmor formula for the intensity of dipole radiation by an accelerated charge.

This total power is emitted in the form of photons of different energies. To know the energy
distribution, or spectrum, of the radiation we decompose the overall power onto power at a given
frequency ω by doing the Fouriver transform. For this we use the formula of Fourier analysis stating
that

∫∞
−∞ |f(t)|2dt = 4π

∫∞
−∞ |f(ω)|2dω. This means that in the non-relativistic motion case∫ ∞

−∞

dI

dΩ
dt =

∫ ∞
−∞

|d̈|2

4π
sin2 θdt =

∫ ∞
−∞

ω4|d̂(ω)|2 sin2 θdω =

∫ ∞
−∞

dÎ(ω)

dΩ
dω (2.11)

and the spectral energy density of radiation at the frequency ω is

dÎ(ω)

dΩ
= ω4|d̂(ω)|2 sin2 θ (2.12)
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Here the hat denotes the Fourier transform of the function, e.g.

d(t) =

∫ ∞
−∞

e−iωtd̂(ω)dω (2.13)

For a relativistic charge, one introduces the 4-velocity uµ = dxµ/dτ where τ is the proper time along
the particle trajectory, and the 4-acceleration aµ = duµ/dτ = (dγ/dτ, d(γ~v)/dτ), with γ = 1/

√
1− v2

being the particle gamma factor. The Larmor formula rewritten in the 4-vector notations reads

I =
2e2

3
aµa

µ =
2

3
e2

((
−dγ
dτ

)2

+

(
d(γ~v)

dτ

)2
)

(2.14)

Expressing the derivative of γ through the derivative of v and substituting dt/dτ = γ one could rewrite
the last formula in the form

I =
2

3
e2γ6

(
(~v · ~̇v)2 +

1

γ2
(~̇v)2

)
(2.15)

where dot denotes the coordinate time derivative d/dt. The quantity (~v · ~̇v) = va|| is the component of
particle acceleration parallel to the velocity. One could introduce also the normal component of the
acceleration via relation ~̇v2 = a2

|| + a2
⊥, so that the Larmor formula becomes

I =
2

3
e2γ6

(
a2
|| +

1

γ2
a2
⊥

)
(2.16)

2.2 Curvature radiation

Let us consider a relativistic particle with gamma factor γ moving along a circle of the radius R with
the speed v. The angular frequency of such motion is ω0 = v/R. The only component of acceleration
different from zero is a⊥ = ω0v. The Larmor formula (2.16) gives the total power of emission (which
is minus particle energy loss rate)

I =
2

3
e2γ4ω0v

2 =
2

3

e2γ4v4

R2
(2.17)

Figure 2.1: Angular pattern of dipole emission from
non relativistic (left) and relativistic (right) parti-
cles.

The spectrum of emission from a non-
relativistic particle in a circular orbit could be
found in a straightforward way. The velocity and
acceleration are varying periodically with the pe-
riod T = 2π/ω0, so that the only non-zero com-
ponent of the Fourier transform of d(t) is d̂(ω0).
This means that the emission spectrum (for the
non-relativistic motion case) is sharply peaked at
the frequency ω0.

The second time derivative of the dipole mo-
ment is a vector rotating in the plane of the circular motion of the particle. The angular distribution
of the emitted dipole radiation is given by Eq. (2.9) and is shown in the left panel of Fig. 2.1.

In the relativistic case, the angular distribution pattern changes due to the Doppler boosting. To
find the characteristic boosting pattern, consider a particle moving along axis x with the speed v close
to the speed of light, v ∼ 1. In the reference system comoving with the particle, particle motion is
non-relativistic and emission (e.g. dipole radiation described above) is in a broad range of angles. The
transformation to the comoving reference frame has the form

x′ = γ(x− vt); y′ = y, z′ = z, t′ = γ(t− vx). (2.18)
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Transformation of velocities between the laboratory and comoving frame is

ux =
u′x + v

1− vu′x
, uy =

u′y
γ(1 + vu′x)

, uz =
u′z

γ(1 + vu′x)
. (2.19)

Consider a photon which is emitted in the direction normal to the particle motion along y axis in the
comoving frame, u′x = u′z = 0. In the laboratory frame the components of photon velocity are

ux = v, uy =
u′y
γ
, uz = 0 (2.20)

The angle between the direction of motion of photon and particle velocity in the laboratory frame is,
therefore,

α =
uy
ux

=
1

vγ
' 1

γ
(2.21)

Figure 2.2: Geometry of emis-
sion by relativistic particle in
circular motion.

A similar estimate, α ∼ γ−1 could be found for the broad range
of photon directions in the comoving frame, which are not almost
aligned with the direction of particle velocity. Thus, the effect of the
Doppler boosting on any broad angle radiation pattern is to compress
this pattern into a narrow range of directions α . γ−1 around the
direction of particle velocity v.

Relativistic beaming also dramatically changes the spectrum of
radiation. Consider an observer situated in the plane of circular mo-
tion at large distance from the particle. (S)he detects the radiation in
the form of short pulses, each time when the beam with an opening
angle α ' γ−1 directed along particle velocity passes through the line
of sight. The duration of the pulse could be readily calculated from
geometry shown in Fig. 2.2. The radiation is visible from a fraction

of the circle of particle trajectory spanning an angle 2α. The length of the arc of the angular size 2α
is L = 2αR and the time interval during which particle emits in the direction of observer is therefore
∆t = 2αR/v. Suppose that the particle passes the point A at the moment t0. The photon emitted
at this point arrives at the location of observer after a time delay δtA = d/c, where d is the distance
to the observer. The last photon in the direction of the observer is emitted at the point B, at the
moment tA = t0 + ∆t. It arrives at the location of the observer at the moment tB = t0 + ∆t + δtB,
where δtB = (d− L)/c. The overall duration of the pulse seen by the observer is

∆tobs = tB − tA = ∆t+ δtB − δtA = ∆t (1− v) =
2R

γv
(1− v) =

2R

γ3v(1 + v)
' R

γ3
(2.22)

where we have substituted v ' 1 in the last equality. The Fourier transform of the time sequence of
pulses detected by the observer has all harmonics up to the frequency

ωcurv ∼
1

∆tobs
∼ γ3

R
(2.23)

It is useful to have a numeric reference value for this frequency for the future estimates:

εcurv = ~ωcurv =
~cγ3

R
' 2× 104

[ γ
105

]3
[

R

106 cm

]−1

eV (2.24)

One could understand the above formula in the following way. Relativistic electrons with energies
Ee = γme ' 100 GeV confined within a region of the size R ∼ 10 km, they inevitably emit curvature
radiation in the hard X-ray band, at the energies about εcurv ∼ 20 keV. As an ”everyday life” example
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of such situation one could mention the past times when the LHC accelerator machine in CERN
was still electron-positron collider LEP (Large Electron Positron). It was operating at the energies
E ∼ 100 GeV accelerated in the LHC tunnel of the radius R ∼ 10 km. From Eq. (2.24) one could
find that the electron beam was a source of hard X-rays.

Situation when high-energy particles are confined within an astronomical source of finite size is
typical. Thus, generically, all astronomical sources hosting high-energy particle accelerators should
be visible in telescopes, because the charged high-energy particles confined within the source emit (at
least!) curvature radiation photons.

Particles emitting curvature radiation loose energy at the rate

−dEe
dt

= I ' 2

3

e2γ4

R2
' 4× 1011

[ γ
105

]4
[

R

106 cm

]−2 eV

s
(2.25)

(see Eq. (2.17)). Once injected in such a compact region of space, TeV electrons loose all their
energy within the time interval shorter than one second. Coming back to the LEP example, one could
conclude from Eq. (2.25) that supporting the beam of accelerated electrons in the LEP accelerator
machine required continuous ”re-acceleration” of the beam. All the beam energy was continuously
dissipated into the hard X-rays.

2.2.1 Astrophysical example (pulsar magnetosphere)

Figure 2.3: Spectrum of pulsed γ-ray
emission from Vela pulsar (the bright-
est GeV γ-ray point source on the sky).
From Ref. [8].

The reference example illustrating curvature radiation in
astrophysical environments is the currently most often con-
sidered model of γ-ray emission from magnetospheres of
pulsars.

Pulsars are strongly magnetised and fast spinning neu-
tron stars, i.e. compact stars of the size RNS ∼ 106 cm,
rotating at frequencies 1− 103 Hz and possessing magnetic
fields in the range of B ∼ 1012 G. Most of the isolated
point sources of GeV γ-rays in the Galactic Plane are pul-
sars. Spectrum of emission from the brightest pulsar on the
sky, the Vela pulsar, is shown in Fig. 2.3.

The bright GeV γ-ray emission from the pulsars is
pulsed at the period of rotation of the neutron stars
(1− 103 Hz). This implies that the γ-ray photons are pro-
duced close to the neutron star, in a region reasonably close
to the surface of the neutron star. We adopt a first esti-
mate R ∼ RNS ∼ 106 cm and leave further details for the
dedicated section on pulsars. This emission is detected at
the energies exceeding 1 GeV. It is inevitably produced by
relativistic particles.

As it is mentioned above, relativistic particles confined to a compact spatial region inevitably
loose energy at least onto curvature radiation (there might be competing energy loss channels, we will
consider them later on). Using Eq. (2.24) one could estimate the energies of electrons responsible
for the observed γ-ray emission, under the assumption that the γ-rays are produced via curvature
mechanism

Ee ' 2× 1012
[ εcurv

1 GeV

]1/3
[
R

RNS

]1/3

eV (2.26)

Assumption that emission observed in pulsars comes from the curvature radiation process provides,
in a sense an upper bound on the energies of particles contained in the sources. Indeed, we will see
later on in the course that most of the radiation processes encountered in High-Energy Astrophysics
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are different variations of one and the same process of dipole radiation. Each time when trajectories of
relativistic particles are deflected by some force, they start to radiate. The slowest possible deflection
rate and, respectively, the largest possible extent of particle trajectory is when particle is deviated
only when it crosses the entire astronomical source where it is confined. The slowest possible deflection
rate leads to the ”minimal” energy loss rate and to the emission of lowest energy photons. This is the
case of curvature radiation with R RNS in pulsars. From these arguments one could conclude that
typical energies of electrons confined around pulsars are

Ee, pulsars . 1012 eV (2.27)

This conclusion just stems from an observational fact that most of the pulsars have high-energy cut-
offs in the spectra in the GeV energy band. It does not depend on the details of the model of particle
acceleration and interactions which lead to the observed γ-ray emission.

2.3 Evolution of particle distribution with account of radiative en-
ergy loss

A competition between acceleration, energy loss and escape processes leads to formation of broad
energy distribution of high-energy particles inside astronomical sources

dNe

dE
= fe(E). (2.28)

The index e is introduced to distinguish the distribution of charged high-energy particles, e.g. electrons,
from the distribution of photons emitted by these particles, which we will denote as dNγ/dE.

The acceleration process injects particles of energy E with a rate Qe(E). Then particles are cooling
due to radiative and non-radiative losses, with a rate Ė, which is also a function of energy. As a result,
their energy decreases and fe(E) at the injection energy decreases, while fe(E −

∫
Ėdt) increases.

Particles do not disappear once injected, so that the function fe(E) should satisfy a continuity equation
in the energy space

∂fe
∂t

+
∂

∂E

(
Ėfe(E)

)
= Qe(E, t) (2.29)

The sense of this equation is that the increase / decrease of fe in a unit time in a given energy bin
of the width ∆E at reference energy E is given by the rate of injection Qe∆E, by the rate influx of

particles from the adjacent higher energy bin, −Ėf(E)
∣∣∣
E+∆E

and the rate of outflow into the adjacent

lower energy bin −Ėf(E)
∣∣∣
E

(Ė < 0 is ”velocity” along the energy axis, compare with the continuity

equation of the fluid dynamics: ∂f/∂t+ ~∇(f~v) = Q ).
In the above equation, Q is a source of particles, but could also be the ”leakage” of particles (then

it is negative). The leakage, or escape of particles is often characterised by typical escape time τesc,
which could be a function of energy. Then, the source / leakage term, from dimensional reasons, has
the form

Qe,esc =
fe

τesc(E)
(2.30)

so that the Eq. (2.29)
∂fe
∂t

+
∂

∂E

(
Ėfe(E)

)
= Qe(E, t)−

fe
τesc

(2.31)

In the steady state situation, ∂f/∂t = 0, in the absence of escape τesc → ∞, the solution of the
above equation has the form

fe(E) =
1

Ė

∫ ∞
E

dE′ Qe(E
′) (2.32)
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Figure 2.4: The effect of cooling on particle spectrum for different energy dependance of the cooling
rate.

As an example, let us calculate the energy distribution of particles reached in the situation where
the injection is a delta-function in energy Q(E) ∼ δ(E − E0). In this case the above solution of the
equation takes the form

fe(E) =

{
1/Ė, E < E0

0, E > E0
(2.33)

If the cooling is provided by the curvature radiation, then Ė ∼ E4 and

fe(E) =

{
AE−4, E < E0

0, E > E0
(2.34)

where A is a normalisation factor. One could see that cooling leads to a ”pile up” of particles at lower
energies: the number of particles per unit energy interval (or per decade in energy) increases with the
decrease of their energy.

In general, if the energy loss rate scales with particle energy as Ė ∝ Eγcool , the effect of cooling on
a powerlaw distribution of particles is ”softening” or ”hardening” of the spectrum, see Fig. 2.4.

2.4 Spectrum of emission from a broad-band distribution of parti-
cles

One could see from the previous subsection that typically high-energy particles are distributed over a
wide energy range (e.g. form a powerlaw type spectra), rather than concentrate around a particular
energy. Broad distribution of energies of emitting particles leads to a broad distribution of energies of
emitted photons.

In general, the spectrum of emission from a distribution of electrons (protons) dNe/dE = fe(Ee) ∼
E−Γe
e could be calculated once the spectrum of emission from mono energetic electrons Φ(Ee, Eγ) is

known. The intensity Φ of emission at the energy Eγ depends on the electron energy Ee. The emission
from the distribution of electrons is given by the integral

φ(Eγ) =

∫
dNe

dEe
Φ(Ee, Eγ)dEe (2.35)

Let us calculate the spectrum of curvature emission from a powerlaw distribution of electrons
dNe/dE = fe(Ee) ∼ E−Γe

e in the particular case of curvature radiation. Electrons of the energy Ee
emit curvature photons of the energy given by Eq. (2.24), Eγ,∗ ∼ E3

e . In the first approximation
one could adopt a ”delta-function approximation” for the spectrum of emitted photons, Φ(Ee, Eγ) ∼
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δ(Eγ − Eγ,∗). The normalisation of the emission spectrum is proportional to the rate of emission of
photons , given by Eq. (2.25), the emission power, divided by the photon energy Eγ = E3

e/(m
3
eR).

Φ(Ee, Eγ) =
Ee
meR

δ

(
Eγ −

E3
e

m3
eR

)
(2.36)

Substituting this expression into (2.35) and taking the integral, we find

φ(Eγ) ∼
∫
E−Γe
e

Ee
meR

δ

(
Eγ −

E3
e

m3
eR

)
dEe

∼
∫
E1−Γe
e

meR

m3
eR

3E2
e

δ

(
Eγ −

E3
e

m3
eR

)
d

(
E3
e

m3
eR

)
∼ E−Γe−1

e ∼ E
−Γe−1

3
γ (2.37)

Thus, the spectrum of emission from a power law distribution of emitting particles is also a power
law.

We can generalise the above formula for an arbitrary dependence of the power of emission on the
electron energy, P (Ee) ∼ Eγcoole (γcool = 4 in the case of curvature radiation) and an arbitrary relation
between photon and electron energy, Eγ,∗ ∼ Eσe , (σ = 3 in the case of curvature emission). This gives

φ(Eγ) ∼ E
γcool+1−Γe−2σ

σ
γ (2.38)

We will reuse this formula to calculate the spectra of synchrotron, Compton and Bremsstrahlung
emission in the following sections.

In a particular case when the shape of the particle spectrum is affected by the effects of cooling

Γe = Γinj + γcool − 1 (2.39)

the emission spectrum is independent on the energy scaling of the cooling rate γcool:

φ(Eγ) ∼ E
2−2σ−Γinj

σ
γ (2.40)

Examples of powerlaw (or cut-off powerlaw) spectra of emission from a distribution of high-energy
particles could be found in Figs. 2.3, 2.12. Publicaitons in X-ray and γ-ray astronomy often give
representation of the spectrum in the form

dNγ

dE
(Eγ) ∼ φ(Eγ), ”differential spectrum” or

Eγ
dNγ

dE
(Eγ) ∼ Eγφ(Eγ), ”photon spectrum” or

E2
γ

dNγ

dE
(Eγ) ∼ E2

γφ(Eγ), ”spectral energy distribution” (2.41)

The first representation for the photon flux, in units of ”photons/(cm2s eV)” is called the ”differential
spectrum”, i.e. it is the photon count rate per unit detector area per unit time and per unit energy
interval. The second representation provides a fair judgement of the signal statistics in different energy
bands, because it gives the count rate of photons per unit detector area per decade of energy. Finally,
the third representation, often called ”Spectral Energy Distribution” or SED of the source, provides
an estimate of the ” emitted power per energy decade”. This representation is useful for building
physical models of the sources. It allows to judge in which energy band most of the source power is
emitted.
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Cooling law: Ė ∝ Eγcoole

Relation between photon and electron energies: Eγ ∝ Eσe
Electron spectrum: dNe/dEe ∝ E−Γ

e

Emission spectrum: dNγ/dEγ ∝ E
γcool+1−Γe−2σ

σ
γ

Evolution of electron spectrum: Γinj → Γinj + γcool − 1

γcool σ

curvature radiation 4 3

synchrotron radiation 2 2

inverse Compton (T) 2 2

inverse Compton (KN) 0 1

Bremsstrahlung 1 1

2.5 Cyclotron emission / absorption

Considering the curvature radiation, we have assumed that the emitting charged particle moves along
a circular trajectory of an arbitrary radius R. In the particular example of pulsars, this radius was
estimated to be comparable to the size of the emitting system (about 10 km, which is the size of the
neutron star). Another possibility is that the emitting particles are confined to much smaller distance
scales than the entire source size.

This is the case for the particles moving in magnetic fields. In this case particles spiral along
magnetic field lines, being confined within the distance equal to the gyroradius RL. The gyroradius
is readily found from the second law of Newton,

ma =
mv2

RL
= evB (2.42)

which gives

RL =
mv

eB
(2.43)

The angular frequency of gyration is just

ωB =
v

RL
=
eB

m
' 12

[
B

1012 G

] [
m

me

]−1

keV (2.44)

Non-relativistic particles moving in magnetic field emit dipole radiation at the frequency (energy)
ωB. This emission is called cyclotron emission. This emission is difficult to observe (remember that
astronomical observations start from radio band, in the frequency range starting from 100 MHz, which
correspond to photons of the energies higher than 10−6 eV. If the magnetic field in an object is lower
than ∼ 100 G, the cyclotron emission is not observable. At the same time, strong magnetic fields in
astronomical sources might reveal themselves through the characteristic cyclotron emission features.

2.5.1 Astrophysical example (accreting pulsars)

Such features are observed in the spectra of X-ray accreting pulsars. These systems contain magnetised
neutron stars, but there is no particle acceleration in the pulsar magnetosphere. Instead, there is
ionised matter right next to the surface of the neutron star. The neutron star is magnetised, so that
electrons and protons/nuclei gyrate in the magnetic field. The magnetic field is the dipole field of the
star, so it is very homogeneous (on small distance scales).
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Figure 2.5: Spectrum of X-ray accreting
pulsar V 0332+53, showing a series of cy-
clotron lines [10]. Upper panel shows the
overall spectrum, lower panels show the
deviations of the data from the model,
first without inclusion of the lines, and
then after addition of one, two three cy-
clotron lines. The spectrum is in ”nor-
malised counts” units, which is just a
histogram of photon counts in a given
energy bin. It is different from the con-
ventional spectra in physical units of flux
(e.g. ”photons per cm2 and second”).
Conversion from ”normalised counts” to
physical units requires a knowledge of en-
ergy response of the detector.

The gyroradius of electrons in the strong dipole field of
the neutron star is extremely small:

RL =
mev

eB
' 10−9v

[
B

1012 G

]−1

cm (2.45)

This is a microscopic radius which is comparable to the
deBroglie wavelength

λdB =
1

mev
' 4× 10−11v−1cm (2.46)

If

B >
m2
ev

2

e
' 4× 1013v2 G (2.47)

the spread of electron wavefunction is larger than the gy-
roradius. This means that the motion of electrons in mag-
netic field should be considered as a quantum mechanical
problem (see Exercise 2.4). In this case the energy levels of
particle are discrete (if there is no momentum component
pz in the direction of magnetic field. These levels are called
Landau levels:

En −
p2
z

2m
= (n+ 1/2)

eB

m
= (n+ 1/2)ωB (2.48)

where n is an integer number.

Similarly to electrons in atoms, the spectra of emission
and absorption from electrons at Landau levels are discrete.
Being the spectra of harmonic oscillators, they are formed
by series of equidistant lines. Measurement of the line en-
ergies provides a measurement of the magnetic field close
to the neutron star surface. Fig. 2.5 shows an example of
observation of cyclotron line series in the spectrum of one
of the accreting pulsars, V 0332+53, done by INTEGRAL
telescope [10].

The line energies are in the 10 keV band. From Eq.
(2.44) we infer that the magnetic field strength in the pho-
ton emission region is about 1012 G. This magnetic field
is much stronger than the fields which are encountered in
laboratory conditions (which are . 105 G for the strongest
man-made magnets). They are also much higher than the
fields of normal stars. The magnetic fields at the surface of
the Sun reach at most kG strengths.

2.6 Synchrotron emission

Cyclotron emission / absorption is produced by non-
relativistic particles gyrating in magnetic field. If the particles are relativistic, the properties of
the dipole electromagnetic radiation due to the gyration in magnetic field change.

Basic relations for the energy of synchrotron photons and power of synchrotron emission could
be found directly from the formulae for dipole and, in particular, for curvature radiation simply via
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substitution of the relativistic expression for the gyroradius (the relativistic analog of Eq. (2.43))

RL =
Ee
eB
' 3× 107

[
Ee

1010 eV

] [
B

1 G

]−1

cm (2.49)

instead of an arbitrary R in the corresponding formulae. This exercise with Eq. (2.24) gives

εsynch =
γ3

RL
=
eBE2

e

m3
e

' 5

[
B

1 G

] [
Ee

1010 eV

]2

eV (2.50)

for the energy of synchrotron photons. Note that contrary to the energy of curvature radiation photons,
which scales as E3

e , the energy of the synchrotron photons grows only as E2
e with the increase of the

electron energy. This is because the curvature radius of electron trajectory expands with increasing
electron energy.

Substituting RL at the place of R in Eq. (2.25) we find the energy loss rate on the synchrotron
emission:

−dEe
dt
' 2

3

e4B2E2
e

m4
e

' 4× 105

[
B

1 G

]2 [ Ee
1010 eV

]2

eV/s (2.51)

The energy loss rate grows only as E2
e with the increase of the electron energy. The synchrotron loss

time is then

tsynch =
Ee

−dEe/dt
=

3m4
e

2e4B2Ee
' 2× 104

[
B

1 G

]−2 [ Ee
1010 eV

]−1

s (2.52)

We could also re-use the results of Section 2.4 to find the spectrum of a broad band distribution
of electrons, e.g. from a powerlaw type spectrum with the slope Γe:

dNe

dEe
∼ E−Γe

e (2.53)

Repeating the calculation leading to Eq. 2.38 we find that for the synchrotron emission both pa-
rameters γcool and σ are equal to 2, so that the spectrum of synchrotron emission has the photon
index

φ(Eγ) =
dNγ

dEγ
∼ E−Γsynch

γ , Γsynch =
Γe + 1

2
(2.54)

We could also re-use the formulae for the evolution and steady state spectra of particles with
account of energy loss, derived in Section 2.3, to understand the influence of the synchrotron energy
loss on the spectrum of high-energy electrons. The evolution of the spectrum of electrons is governed
by Eq. (2.31) with the energy loss rate being due to the synchrotron emission, Eq. (2.51). In the
absence of escape, its general steady state solution has the form (2.32).

In the particular case of mono energetic injection, Q(E) ∼ δ(E − E0), the solution has the form
(2.33), which in the case of Ė ∼ E2 is

dNe

dEe
∼
{
E−2
e , E < E0

0, E > E0
(2.55)

More generally, if the acceleration process results in injection of electrons in the energy range above
some limiting lowest energy (the injection spectrum has a low-energy cut-off), synchrotron cooling
leads to formation of an E−2 type spectrum of the ”cooling tail” below the minimal injection energy.

The synchrotron emission from the ”cooling tail” has a powerlaw-type spectrum with the slope
Γsynch = (2 + 1)/2 = 1.5, see Eq. (2.54).

Another useful example if that of the effect of synchrotron energy loss on the powerlaw type
injection spectrum Q(E) ∼ E−Γinj . In this case, substituting qcool = 2 into Eq. (??) we find

dNe

dEe
∼ E−(Γinj+1)

e (2.56)
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Figure 2.6: Multiwavelength image (left) and spectrum (right) of the Crab pulsar wind nebula. In
the image (from [11]): blue colour is X-ray, green is in visible light and red is radio emission. In the
spectrum (from [12]) black data points show time-averaged spectrum of the source. Blue and violet
points show examples of spectra during GeV band flares.

Thus, synchrotron cooling leads to a ”softening” of the initial injection spectrum Γinj → Γinj+1. This
corresponds to a larger and larger ”pile up” of the cooled electrons at lower and lower energies. Such
a ”pile up” could be understood qualitatively if one recalls that the kinetic equation (2.31) describes
motion of particles in energy space. The speed of this motion, Ė is decreasing with the decrease of
the energy, so that the particles get gradually ”stuck” while movingg to lower energy bins. This leads
to accumulation of larger number of particles in lower energy bins.

Suppose that the injection spectrum is an E−2 type powerlaw (this is typical slope of the spectrum
resulting from the shock acceleration, as we will see later on). Synchrotron cooling would soften the
spectrum down to an E−3 type spectrum. The photon index of the synchrotron emission from the
cooled distribution of electrons would then have the slope Γ = (3 + 1)/2 = 2.

2.6.1 Astrophysical example (Crab Nebula)

A prototypical example of the high-energy source is Crab nebula, which is a nebular emission around a
young (103 yr old) pulsar. It is one of the brightest γ-ray sources on the sky and serves as a calibration
target for most of the γ-ray telescopes. The spectrum of emission from the Crab nebula spans twenty
decades in energy, from radio (photon energies 10−6 eV) up to the Very-High-Energy γ-ray (photon
energies up to 100 TeV) band. Large, parsec-scale size and moderate distance (2 kpc) to the nebula
enable detailed imaging of the source in a range of energy bands, from radio to X-ray. The composite
radio-to-X-ray image of the nebula is shown in Fig. 2.6, top panel.

Radio to X-ray and up to GeV γ-ray emission from the nebula presents a composition of several
broad powerlaw-type continuum spectra, with the photon indices changing from Γ ' 1.3 in the radio-
to-far-infrared band to Γ ' 2.2 in the 1-100 MeV band. Such powerlaw type spectra extending down
to the infrared and radio domains are commonly interpreted as being produced by the synchrotron
emission mechanism.

Measurement of the slope of the synchrotron spectrum provides information on the shape of the
parent electron spectrum, which is of a ”broken powerlaw” type. Electrons responsible for the emission
in the radio-to-visible energy range are characterised by a spectrum with the slope close to Γe ' 2,
since the synchrotron spectrum has the slope close to Γsynch = 1.5 (see Eq. (2.54)). One could
tentatively interpret this E−2 type spectrum either as an un-cooled injection spectrum of electrons,
or as a low energy ”cooling tail” formed below the low-energy cut-off in the injection spectrum of
electrons, see Eq. (2.55).

Softening of the spectrum above ∼ 10 eV might be interpreted as the effect of synchrotron cooling
on the initial electron injection spectrum. The ”cooling break” in the spectrum of electrons, by



2.6. SYNCHROTRON EMISSION 27

∆Γe = 1 occurs at the energy at which the cooling time is approximately equal to the time since the
start of injection of high-energy electrons. Electrons with energies lower than the break energy did no
have time to loose their energy since the beginning of injection and their spectrum is the unchanged
injection spectrum.

Let us assume that the break observed in the spectrum of synchrotron emission in the Crab nebula
is due to the ”cooling break’ in the spectrum of electrons. The time passed since the start of injection
in the nebula is the age of the system, which is about 103 yr (i.e. the time since the supernova
explosion which led to formation of the system). The synchrotron cooling time is given by Eq. (2.52):

tsynch ' 103

[
B

100 µG

]−2 [ Ee
1012 eV

]−1

yr (2.57)

Thus, an estimate of the cooling time provides a constraint on the energy of electrons responsible for
the synchrotron emission in the 1-10 eV range and the strength of magnetic field in the nebula. The
energy of synchrotron photons is also determined by the energy of electrons and the strength of the
magnetic field, but in a different combination, see Eq. (2.50):

εsynch ' 5

[
B

100 µG

] [
Ee

1012 eV

]2

eV (2.58)

combining the two measurements (of εsynch and tsynch) we find that if the break in the spectrum
of synchrotron emission from the Crab nebula is due to the synchrotron cooling effect on electron
spectrum, the magnetic field in the nebula should be close to

B ∼ 100 µG (2.59)

The energies of electrons for which the cooling time is about the age of the Crab nebula are

Ee,break ∼ 1012 eV (2.60)

From Fig. (2.6) one could see that the spectrum of synchrotron emission has a high-energy cut-off
in the 100 MeV range, where is sharply declines. Electrons which produce synchrotron emission in
the 100 MeV energy range should have energies (see Eq. (2.58))

Ee,max ∼ 1− 10 PeV (2.61)

range. This shows that Crab nebula hosts a remarkably powerful particle accelerator. For comparison,
the energies of particles accelerated in the most powerful man-made accelerator machine, the Large
Hadron Collider, are in the 10 TeV range, which is three orders of magnitude lower.

Up to recently, Crab Nebula was believed to be a non-variable source and was conventionally used as
a calibration sources for X-ray and γ-ray telescopes, due to its high flux and stability. However, recent
observations by Fermi and AGILE γ-ray telescopes have revealed variability of the γ-ray emission
from Crab, in the form of short powerful flares, during which the GeV flux of the source rises by an
order of magnitude, see Fig. 2.6. These flares occur at the highest energy end of the synchrotron
spectrum and have durations in the tflare ∼ 1− 10 d∼ 105− 106 s range. Comparing the synchrotron
cooling times of the 1-10 PeV electrons with the duration of the flares, one finds

tsynch ' 24

[
B

100 µG

]−2 [ Ee
1016 eV

]−1

d ≥ tflare (2.62)

This implies that the flares occur in the innermost part of the nebula, in the regions with higher mag-
netic field (B ∼ 500 µG), otherwise, long synchrotron cooling time would smooth the flare lightcurve
on the time scale tsynch and the flare would not have 1 d duration.

The flaring time scale is most probably directly related to the time scale of an (uncertain) accel-
eration process, which leads to injection of multi-PeV electrons in the nebula. We will come back to
this issue later on in the discussion of the properties of pulsars and their nebulae.
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2.7 Compton scattering

Figure 2.7: The spectrum of Extragalac-
tic Background Light. Grey band shows
the range of uncertainties of currently ex-
isting measurements.

The spectrum of emission from the Crab nebula has ap-
parently two ”bumps”: one starting in the radio band and
ending in the GeV band and the other spanning the 10 GeV-
100 TeV needy range with a peak in at ∼ 100 GeV. We
have interpreted the radio-to-γ-ray bump as being the re-
sult of synchrotron emission from high-energy electrons in
the source. The synchrotron emission is an ”inevitable” ra-
diative loss channel in a wide range of astronomical sources,
because most of the known sources possess magnetic fields.
There is practically no place in the Universe without mag-
netic field.

Similarly to magnetic fields, the whole Universe is also
filled with radiation fields. Radiation was generated by the
hot Early Universe. This relic radiation survives till today
in the form of Cosmic Microwave Bakcground (CMB). CMB
is thermal radiation with temperature TCMB ' 2.7 K and
its present in equal amounts everywhere in the Universe.
The spectrum of CMB is the Planck spectrum. Its energy
density is

UCMB =
π2

15
T 4 ' 0.25

[
TCMB

2.7 K

]4 eV

cm3
(2.63)

and the number density of CMB photons is

nCMB =
2ζ(3)

π2
T 3 ' 4× 102

[
TCMB

2.7 K

]3 ph

cm3
(2.64)

Apart from the universal CMB photon background, radiation fields are generated by collective
emission from stars and dust in all galaxies over the entire galaxy evolution span. This leads to
production of the so-called ”Extragalactic Background Light” with a characteristic two-bump spectrum
shown in Fig. 2.7. The bump at the photon energy ∼ 1 eV is produced by the emission form stars,
the bump at 10−2 eV is due to the scattering of starlight by the dust. Fig. 2.7 shows the level of
the starlight and dust emission averaged over the entire Universe. Inside the galaxies, the densities of
both the starlight and dust photon fields are enhanced by several orders of magnitude.

Still denser photon fields exist inside astronomical sources, e.g. close to the stars or in the nuclei
of active galaxies.

High-energy particles propagating through the photon backgrounds could occasionally collide with
the low energy photons and loose / gain energy in the scattering process. This phenomenon is called
Compton scattering.

The high-energy bump in the spectrum of Crab nebula is produced by a variety of the Compton
scattering process in which high-energy electrons collide with low energy photons present in the nebula.
This results in the transfer of energy from electrons to photons so that the low-energy photons are
converted into high-energy γ-rays and electrons loose their energy. This process is called ”inverse
Compton scattering”. In this section we consider different aspects of the Compton scattering process.

2.7.1 Thomson cross-section

The process of charged particle – photon scattering could be described within classical mechanics as
re-radiation of waves by the particle accelerated by the electric field of the incident electromagnetic
wave.
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As an initial example, we consider this process for a non-relativistic electron. The force acting on
the charged particle is the Lorentz force

~F = e( ~E + [~v × ~B]) (2.65)

The wave has electric and magnetic fields of comparable strength. This means that the term propor-
tional to the magnetic field in the Lorentz force is much smaller than the electric field term, because
we consider v � 1. Let us consider the wave propagating in z direction, so that the electric and
magnetic field vectors are in the xy plane. The components of acceleration of the particle are

ax '
e

m
Ex

ay '
e

m
Ey (2.66)

For a linearly polarised plane wave, the electric field components at a given position vary as

Ex = E0 sin(ωt+ φ) (2.67)

where ω is the wave angular frequency. Thus, ax oscillates periodically.
Using the Larmor formula, we find the power of emission by the accelerated particle〈

dE
dt

〉
=

2

3
e2
〈
a2
x

〉
=

2

3

e4

m2

〈
E2
x

〉
(2.68)

(we introduce curly font for the emitted energy, to avoid confusion with electric field). Time averaged
emission power depends on〈

E2
x

〉
=

ω

2π

∫ 2π/ω

0
E2

0 sin2(ωt+ φ)dt =
2E2

0

π

∫ π/2

0
sin2 xdx =

E2
0

2
(2.69)

Substituting into Eq. (2.68) we find 〈
dE
dt

〉
=

1

3

e4

m2
E2

0 (2.70)

In scattering theory, the cross-section is defined as the ratio of the emitted energy to the incident
energy flux ~S

σ =
dE/dt
|~S|

(2.71)

The energy flux of the incident wave is given by the Poynting vector〈
~S
〉

=

〈
~E × ~B

〉
4π

=
E2

0

8π
(2.72)

substituting this into expression for the cross-section we find

σ =
dE/dt
|~S|

=
8π

3

e4

m2
(2.73)

If the scattering centre is an electron, e is the electron charge and m = me is its mass. In this case
the cross-section is a fundamental constant called Thomson cross-section:

σT =
8πe4

3m2
e

' 6.65× 10−25 cm2 (2.74)

Using the definition of σT one could rewrite the expression for the power of emission as

dE
dt

=
8πe4

3m2
e

E2
0

8π
= σTUrad (2.75)

where we have introduced the notation for the energy density of the incident radiation

Urad =

〈
~E2

8π
+
~B2

8π

〉
=
E2

0

8π
(2.76)
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2.7.2 Example: Compton scattering in stars. Optical depth of the medium. Ed-
dington luminosity

The most widespread example of Compton scattering in astronomy is the scattering of photons inside
stars. The nuclear reactions which power stellar activity proceed most efficiently deep in the stellar
cores, where temperatures are significantly higher than at the stellar surface. However, we are not able
to observe directly radiation from the nuclear reactions, because the star is ”opaque” to the radiation.
The process which prevents photons produced deep inside the stars from escaping is the Compton
scattering.

Let us take the Sun as an example. The average density of the Sun with the size R = R� is

n =
M�

(4π/3)R3mp
' 1024

[
R

R�

]−3

cm−3 (2.77)

From the definition of the scattering cross-section, we find that the mean free path of photons with
respect to collisions with electrons inside the Sun is just

λ =
1

σTn
' 1 cm (2.78)

This mean free path is much shorter than the distance of the order of the size of the Sun R� '
7 × 1010 cm which the photon needs to cross before leaving the surface of the Sun. Since λ � R�,
none of the photons produced in the core is able to escape. The source is opaque to photons. The
opacity of the source of the size R is often measured in terms of the optical depth, which is, by
definition

τ =
R

λ
(2.79)

In the case of the Sun we find that τ ∼ 1011. The optical depth also describes the law of attenuation of
a directed beam of photons (or of any other particles) by the scattering in the medium. The number
of particles in the beam in z direction entering the medium at z = 0 decreases with distance as

N(z) = N0 exp (−τ(z)) , τ(z) =
z

λ
(2.80)

If we assume that Compton scattering results in random changes of the direction of motion of
photons, we could describe the process of escape of photons from inside the star as a random walk or
diffusion in 3d space. The law of diffusion allows to estimate the time needed for photons to escape
from the core

t =
R2

λ
= τ

R

c
' 1011

[
R

R�

]−1

s (2.81)

Thus, Compton scattering slows down the radiative transfer from the core to the surface of the stars.
Compton scattering is important in stars in still another aspect. Compton scattering of photons

on electrons results in energy transfer between the two particles. In this way a flux of radiation from
a given direction produces pressure on the plasma (radiation pressure). If we imagine a low energy
photon bouncing from an electron, the change of momentum of the photon in result of scattering is
about the momentum itself, ∆p ∼ p ∼ ε, where ε is the photon energy. A flux of photons with density
n transfers an energy to each electron in the plasma at a rate comparable to the power of the scattered
radiation

dE
dt
' εnσT (2.82)

This energy transfer is the result of action of the radiation force dE = Fraddt.
Sun-like stars are supported by the balance of gravity force and pressure of the stellar plasma.

However, in massive stars with much higher luminosity than that of the Sun, the force due to the
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radiation pressure competes with the gravity and the equilibrium configuration of the star is supported
by the balance of gravity and radiation pressure force

GNMmp

R2
' εnσT (2.83)

(we assume that the number of protons and electrons in the star is the same). The strongest radiation
pressure force is acting on electrons, stronger gravity force is acting on protons. Expressing the density
of radiation through the luminosity L

εn =
L

4πR2
(2.84)

and substituting into above equation we find an expression for L through the mass of the star

LEdd =
4πGNMmp

σT
' 1038

[
M

M�

]
erg/s (2.85)

This mass-dependent luminosity, called Eddington luminosity, is, in fact an upper limit on the lu-
minosity of a self-gravitating object. No persistent astronomical source of the mass M could have
luminosity higher than LEdd, because otherwise the source would be disrupted by the radiation pres-
sure force. This limit applies not only to the stars, but also for numerous other source types and we
will see several examples of the use of the Eddington limit later on in the course.

2.7.3 Angular distribution of scattered waves

Figure 2.8: Geometry of Compton scat-
tering.

The angular distribution of the waves emitted by a non-
relativistic scattering centre could be found from a general
formula for the dipole radiation from non-relativistic par-
ticle (2.9)

dE
dtdΩ

=
e2

4π
|a|2 sin2 θ (2.86)

where θ is the angle between the direction of acceleration
and the direction of the scattered wave. To calculate this
angle, we choose the coordinate system in the following
way (see Fig. 2.8). The z axis points in the direction of the

incident wave. The xz plane contains the wave vector of the incident wave, ~k0 and the wave vector
of the scattered wave, ~ks. The y axis is orthogonal to the xz plane. In such notations we rewrite the
above equation as

dE
dtdΩ

=
e2

4π

∣∣∣~a× ~ks∣∣∣2 =
e4

4πm2

∣∣∣ ~E × ~ks∣∣∣2 =
e4

4πm2

∣∣∣( ~Ex + ~Ey)× ~ks
∣∣∣2 (2.87)

where ~Ex, ~Ey are components of the electric field along x and y axes. The vector ~Ex × ~ks is directed

along the y axis, while the vector ~Ey × ~ks lies in the xz plane. They are orthogonal to each other.
This implies that the square of the norm of their sum is the sum of their norms square

dE
dtdΩ

=
e4

4πm2

(∣∣∣ ~Ex × ~ks∣∣∣2 +
∣∣∣ ~Ey × ~ks∣∣∣2) (2.88)

~Ey is orthogonal to ~ks, so that their vector product is just the product of the norms〈∣∣∣ ~Ey × ~ks∣∣∣2〉 =
1

2
E2

0,y (2.89)
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where we have used the fact that the time averaging of the electric field norm square results in the
factor 1/2 (see Eq. (2.69)). Introducing the angle α between the direction of the incident and scattered
wave, one could find that θ = π/2− α. Thus〈∣∣∣ ~Ex × ~ks∣∣∣2〉 =

1

2
E2

0,x cos2 α (2.90)

Let us assume that the incident wave is unpolarised, so that E0,x ' E0,y ' E0/
√

(2) for any choice of

the scattering direction ~ks. Then we could add the two terms together to find

dE
dtdΩ

=
e4E2

0

16πm2

(
1 + cos2 α

)
(2.91)

Division by the energy flux of the incident wave gives the differential cross-section of Compton scat-
tering

dσ

dΩ
=
dE/(dtdΩ)

S
=

e4

2m2
(1 + cos2 α) (2.92)

As a verification, we could find that integrating the differential cross-section over the solid angle gives
the Thomson cross-section ∫

dΩ
dσ

dΩ
= σT (2.93)

For a polarised wave, the amplitude of Compton scattering depends not only on the angle α, but
also on the azimuthal angle φ, since θ is a function of both α and φ. This fact could be used to
measure the polarisation of the incident radiation. It is indeed used in telescopes for this purpose.
An example of a ”gamma-ray polarimeter” based on this principle is given by POLAR detector for
the measurement of polarisation of Gamma-ray bursts. We will stop at this issue in a subsection
discussing Compton telescopes later on.

2.7.4 Thomson scattering

To find the energy transfer from electron to photon or vise versa we write down the energy-momentum
conservation law

p
e,i

+ p
γ,i

= p
e,f

+ p
γ,f

(2.94)

where the subscripts e, γ refer to electron and photon and i, f are for initial and final state. We could
re-express this as

m2
e = |pe,f |2 = (p

e,i
+ p

γ,i
− p

γ,f
)2 = m2

e + 2(p
e,i
p
γ,i
− p

e,i
p
γ,f
− p

γ,i
p
γ,f

) (2.95)

Figure 2.9: Cross-section of interaction
of photons with medium (Germanium) as
a function of energy.

Let us consider the system of reference where the elec-
tron is initially at rest, that is p

e,i
= (me, 0, 0, 0) in com-

ponents. We could choose the x axis along the initial di-
rection of motion of photon in this system so that p

γ,i
=

εi(1, 1, 0, 0). Then we choose the y axis orthogonal to x in
the plane of scattering, so that p

γ,f
= εf (1, cosα, sinα, 0),

where we have introduced the initial and final energies of
the photon, εi, εf . Substituting the component in the last
equation we find

meεi = meεf + εiεf (1− cosα) (2.96)

or, reexpressing εf ,

εf =
εi

1 + εi
me

(1− cosα)
(2.97)
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For example, for the scattering at zero angle α = 0 we find
that there is no energy transfer between electron and photon: εi = εf . For the scattering at α = π we
have εf = εi/(1 + 2εi/me) < εi. In this case the energy of photon is used on the recoil of electron.

Scattering of low energy photons by non-relativistic electrons is characterised by tiny changes of
the photon energy, so that εf ' εi, photons bounce nearly elastically from electrons. This limits is
called Thomson scattering (e.g. close to the surface of the star).

2.7.5 Example: Compton telescope(s)

Figure 2.10: Principle of oper-
ation of Compton telescope

The above Eq. (2.97) is the main ingredient in the principle of op-
eration of the so-called Compton telescopes, i.e. telescopes which
detect γ-rays though the Compton scattering effect. Imagine a setup
in which a moderate energy γ-ray enters a detection volume and scat-
ters on an electron at a point 1 as shown in Fig. 2.10.

The γ-ray transfers a part of its energy Ee1 = εf − εi to an elec-
tron. Depending on the choice of the detection medium, the energy
of electron can be measured in a variety of ways. For example, if the
medium is a scintillator, the scintillation signal could be sampled by
photomultiplier sensors. Otherwise, if the medium is a semiconduc-
tor, electron excitation will lead to production of electron-hole pairs
which could then be sampled in the form of a current flowing through
an electric circuit including the detector.

The scattered photon continues its path an could interact second
time inside the detector medium at the point 2. The energy of the
scattered photon εf is lower than εi and the second interaction could,

with a good chance, be photoelectric absorption, rather than Compton scattering. This is because the
Compton scattering dominates the photon-medium interaction cross-section only in a narrow energy
interval from εi ∼ 100 keV to about the rest energy of electron, εi ∼ me = 511 keV. At lower energies
εi . 100 keV the highest interaction cross-section is that of the photoelectric effect, see Fig. 2.9 for
an example of the Germanium (semiconductor) detection medium.

Photoelectric absorption also transfers the photon energy to (another) which gets the energy
Ee2 = εf . Measuring Ee2 in the same way as Ee1 one could constrain parameters of Compton
scattering at point 1. Indeed, the unknown parameters are the photon energy εi and the scattering
angle α. Measuring Ee2 = εf and Ee1 = εi − εf one could find both εi and α from Eq. (2.97).

Figure 2.11: COMPTEL tele-
scope which was operational
on Compton Gamma-Ray Ob-
servatory

Knowing the scattering angle α and the direction of the line from
point 1 to point 2, one could reconstruct the initial photon direction,
provided that the scattering plane is well constrained. Otherwise, in
the absence of information on the orientation of the plane of scat-
tering, there remains a residual uncertainty in the direction of the
initial photon: it could come anywhere from a cone with the axis
along 1-2 direction and the opening angle θ. The orientation of the
plane of scattering could, in principle, be constrained if the direction
of motion of the electron scattered at point 1 is measured. However,
this is usually challenging because the electron immediately experi-
ences miltiple scattering in the detector volume and quickly looses the
”memory” of its initial direction. In this way, the measurements of
the directions of photons detected by Compton telescopes are usually
not spots on the sky, but rather ”rings on the sky”.

The only space-based Compton telescope which was operational
up to now was COMPTEL on board of Compton Gamma-Ray Ob-
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servatory mission by NASA. It was operation in the 90th of the last
century. The setup of the telescope is shown in Fig. 2.11. In the
COMPTEL setup the ”scatterer” and ”absorber” detectors (contain-
ing, respectively, the scattering point 1 and the absorption point 2)
were separated by a distance of about 1 m onto two sub-detectors. Both sub-detectors were scintilla-
tors (liquid scintillator for the scatterer and NaI crystals for the lower absorber detector). The large
separation between the sub-detectors was necessary for suppression of the background of up-going
particles from the direction of the Earth. The up-going particles were rejected based on the ”time-of-
flight” measurement principle: they produced first signal in the ”absorber” and second signal in the
”scatterer”, while the γ-rays from the sky produced first the signal in the ”scatterer” and then in the
”absorber”.

The separation of the two detectors, although useful for the background rejection, strongly reduced
the efficiency of the telescope. Large fraction of the scattered γ-rays just did not arrive at the lower
detector. Because of this, COMPTEL had a limited sensitivity and detected only about 10 sources
on the sky. Our lack of sensitive instruments (and knowledge) in the MeV energy domain is known as
the ”MeV sensitivity gap”. Telescopes operating in adjacent energy bands (below 100 keV and above
100 MeV are much more sensitive and our knowledge of the sky in those energy bands is much more
complete.

2.8 Inverse Compton scattering

Up to now we have considered scattering of photons by electron at rest. In this case it is the photon
which transfers a fraction of its energy to electron. If electrons are moving, opposite is also possible:
electron could transfer a fraction of its energy to photon. In this case Compton scattering works as
a radiative energy loss for high-energy electrons. This process is called inverse Compton scattering.
Below we derive necessary formulae describing this radiative energy loss.

2.8.1 Energies of upscattered photons

The case of arbitrary initial four-momentum of electron could be reduced to the case of electron in
rest via a transformation to the coordinate system comoving with the electron. Suppose that electron
moves with velocity v along x axis in the ”lab” frame. In the same frame photon moves at an angle
θ0 w.r.t. electron and its four-momentum is p

γ,i
= εi(1, cos θ0, sin θ0, 0). Lorentz transformation of

photon four-momentum to the electron comoving frame changes the energy as

ε̃i = εiγ(1− v cos θ0) (2.98)

where γ is the Lorentz factor of electron. The final energy of scattered photon in the comoving frame
is

ε̃f =
ε̃i

1 + ε̃i
me

(1− cosα′)
(2.99)

where α′ is the scattering angle in the comoving frame. The final photon energy in the lab frame is
related to ε̃f also via Lorentz transformation

εf = ε̃fγ(1 + v cos θf ) =
εiγ

2(1− v cos θ0)(1 + v cos θ′f )

1 + ε̃i
me

(1 + cosα′)
(2.100)

where θ′f is the angle of outgoing photon w.r.t. the x axis in the comoving frame.
Now let us consider situation in which the energy of the incident photon in the electron comoving

frame is small
ε̃i � me (2.101)
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For this to be true we have to require

εiγ(1− v cos θ0)� me (2.102)

which, by itself requires

εiEe � m2
e (2.103)

where Ee = γme is the initial electron energy. Compton scattering of low-energy photons by relativistic
electrons in the regime where low-energy photons satisfy condition (2.103) is called ”inverse Compton
scattering in Thomson regime”.

In this case Eq. (2.100) simplifies and we find

εf ' εiγ2(1− v cos θ0)(1 + v cos θ′f ) (2.104)

Now assume that the low energy photons form an isotropic radiation field and the angle θ0 is random.
In the electron comoving frame, the scattering amplitude is comparable in all the directions, so that
the angle θ′f also takes arbitrary values. This means that a good estimate of the average final energy
of photons is

εf ' εiγ2 ' 3
[ εi

1 eV

] [ Ee
1010 eV

]2

GeV (2.105)

Thus, contrary to the scattering of waves on electron at rest, where the scattering process took the
energy from the wave, here the energy is transferred from electron to photons and the process converts
low energy photons into high energy γ-rays. Such process is called ”inverse” Compton scattering.

Note that as long as condition (2.103) is satisfied, the final energy of photons εf is always

εf � Ee (2.106)

At each scattering event electron transfers only a small fraction of its energy to the photon.
The scattering angle is approximately arbitrary in the comoving frame. However, in the lab frame

the scattering would appear strongly beamed in forward direction, within a cone with an opening
angle γ−1.

2.9 Excercises

Excercise 2.1. Use the expression for the intensity of radiation from a relativistically moving charge
(2.16) for an order-of-magnitude comparison of contributions due to the first and second term for an
ultra-relativistic particle moving with veolcity v = 1 − ε, ε � 1, experiencing acceleration on a time
scale t = 1/ω0. Which term dominates: the one proportional to a||, or the one proportional to a⊥?

Figure 2.12: Spectrum of γ-ray emission
from vicinity of supermassive black hole
in M87 galaxy, from Ref. [9].

Excercise 2.2. By analogy with the astrophysical example
of curvature radiation from pulsar magnetosphere, consider
the possibility of curvature radiation from a magnetosphere
of a black hole in an Active Galactic Nucleus (AGN) of
M87 galaxy. The black hole mass is M ∼ 4 × 109M�
and the characteristic distance scale in the source is the
gravitational radius Rg (see. Excercise 1.4). γ-rays with
energies up to 10 TeV are detected from M87 (see Fig.
2.12). Using this information find an upper bound on en-
ergies of electrons and protons present in the source. Find
a characteristic curvature radiation energy loss time scale
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tcurv = E/Icurv for electrons and protons of energy E. Is
it shorter or longer than the ”light-crossing” time scale
tlc = Rg/c?

Excercise 2.3. Find steady-state spectrum of high-energy
particles injected at a constant rate with a powerlaw spec-
trum Qe(E) ∼ E−Γinj and cooling due to a radiative energy
loss with the energy loss rate which scales as powerlaw of
particle energy: Ė ∼ Eγcool .

Excercise 2.4. ”Landau levels”. In quantum mechanical settings, find the spectrum of energy levels
for a particle of charge e moving in a plane perpendicular to the direction of a homogeneous magnetic
field with strength B.

Excercise 2.5. Find the slope of the powerlaw spectrum of high-energy electrons in Crab nebula, by
measuring the slope of its emission spectrum in 10− 108 eV photon energy range (Fig. 2.6).

Excercise 2.6. Estimate the mass of objects powering active galactic nuclei assuming that these
sources with typical luminosity 1045 erg/s radiate at the Eddington luminosity limit.

Excercise 2.7. Estimate angular resolution of Compton telescope based on given precision of mea-
surement of energy deposits ∆E by the recoil electron and at the absorption point of the scattered
photon.
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Abbreviations

AGN Active Galactic Nucleus
FR I, FR II Fanaroff-Riley radio galaxy, type I or type II
GRB Gamma-Ray Burst
HMXRB High-Mass X-ray Binary
LMXRB Low-Mass X-ray Binary
PSR Pulsar (name in astronomical catalogues)
PWN Pulsar Wind Nebula
QSO Quasi-Stellar Object (name in astronomical catalogues)
SNR Supernova Remnant
Sy I, Sy II Seyfert galaxy, type I or II
XRB X-Ray Binary
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